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Preface

This two-voluune book is based on a first-year graduate comrse on
dynamic prograunning and optimal control that I have taught for over
twenty vears at. Stanford University, the University of Hlinois, and the Mas-
sachusetts Institute of Technology., The course has been typically attended
by students from engiucering, operations rescarch, economics, aud applied
mathematics. Accordingly, a principal objective of the book has been to
provide a unified treatment of the subject, suitable for a broad audience,
In particular, problems with a continuous character, stuch as stochastic con-
trol problems, popular in modern coutrol theory, are simultancously treated
with problems with a discrete character, such as Markovian decision proh-
lews, popular in operations research. Furthermore, many applications and
exaiples, drawn from a broad variety of fields, are discussed.

The book may be viewed as a greatly expanded and pedagogically
improved version of my 1987 bhook “Dynamic Programming: Deterministic
and Stochastic Models,” published by Prentice-Iall. T have included much
new waterial on deterministic and stochastic shortest path problems. as
well as a new chapter on continuous-time optimal control problems and the
Pontryagin Maximum Principle. developed from a dynamic programuing
viewpoint. 1 have also added a fairly extensive exposition of simulation-
based approxiniation techuiques for dynamic programming., These tech-
niques, which are often referred to as “neuro-dyunamic programming”™ or
“reinforcoment. learning,” represent a breakthrough in the practieal ap-
plication of dynanmic progranmming to complex problems that involve the
dual curse of large dimension and lack of an accurate mathematical model.
Other material was also augmented, substantially modified, and updated.

With the new material, however, the book grew so much insize that it
beeawe necessary to divide it into two vohunes: one on finite horizon, ad
the other on infinite horizon problems. This division was not only natural in
terms of size, but also in terms of style and orientation. The first volume is
more oriented towards modeling, and the second is more oriented towards
mathematical analysis and computation. To make the first volume self-
contained for instructors who wish to cover a modest amount of infinite
liorizon material in a course that is primarily oriented towards modeling,



X Preface

conceptualization, and finite horizon problems, T have added a final chapter
that, provides an introductory treatment of infinite horizon problems.

Many topics in the book are relatively independent of the others. For
example Cliapter 2 of Vol 1 on shortest path problems can be skipped
without loss of continuity, and the same is true for Chapter 3 of Vol L,
which deals with continuous-time optimal control. As a result, the book
can be used to teach several ditferent types of courses.

(a) A two-sciester course that covers both volumes.

(b) A one-scmester course primarily focused on finite horizon problems
that covers most of the first volume.

{¢) A one-semester course focused on stochiastic optimal control that cov-
ors Chapters 1, 4, 5, and 6 of Vol. 1, and Chapters 1, 2, and 4 of Vol.
11.

(c) A one-semester course that covers Chapter 1, about 50% of Clapters
2 through 6 of Vol. T, and about 70% of Chapters 1, 2, and 1 of Vol.
1. This is the course T usually teach at MIT.

(d) A onc-quarter engineering course that covers the first three chapters
and parts of Chapters 4 through 6 of Vol. L.

(¢) A one-yuarter mathematically oriented course focused on infinite hori-
zon problems that covers Vol. 1L

The mathematical prerequisite for the text is knowledge of advanced
caleulus, introductory probability theory, and matrix-vector algebra. A
simnary of this material is provided in the appendixes. Naturally, prior
exposure to dynamic systen theory, control, optimization, or operations
rescarch will be helpful to the reader, but based ou my experience, the
material given here is reasonably self-contained.

The book contains a large number of exercises, and the serious reader
will benefit greatly by going through them. Solutions to all exercises are
conpiled i a manual that is available Lo instructors from Athena Scientifie
or from thie author. Many thanks are due to the several people who spent
lonig hours contributing to this manual, particularly Steven Shreve, Eric
Loicderman, Lakis Polymcuakos, and Cynara W

Dytraunic prograiuting is a conceptually simple technigque that can
be adequately explained using clementary analysis. Yet a mathematically
rigorous treatiment of general dynamic prograning requires the compli-
cated machinery of measure-theorcetic probability. My choice has been to
bypass the complicated mathematics by developing the subject tn general-
ity, while claiming rigor only when the underlying probability spaces are
countable. A mathematically rigorous treatient of the subject is carried
ont in niy monograph “Stochastic Optinial Coutrol: The Discrete Time
Cuse,” Academic Press, 1978, coauthored by Steven Shreve. This mono-
graph complements the present text and provides o solid foundation for the

Preface

subjects developed somewhat informally hiere.

. F.illiLH_\', I am thankful to a munber of individuals and institutions
I‘ul L»h('n' ('\nlt,rlﬂnlt,u)ns to the book. My understanding of the subject was
.\h.'n.p(‘n(‘(l while I worked with Steven Shreve on our F978 monograph
My interaction and collaboration with Joln Tsitsiklis on stochastic slml‘l;
est paths and approximate dynanic progrannning have heen most valu-
able. Michael Caramanis, Emmanuel Feruandez-Gaucherand l)i(‘l'l:(‘ ll:un-
blet, Lennart Ljung, and Johun Tsitsiklis taught from vorsion; of the book
and coutributed several substantive cominents and homework probleins A.
nun{hcr:»f colleagues offered valuable insights and information, part i(/'ul.z;rlv
David Castanon, Lugene Feinberg, and Krishua Pattipati. NSI° ])l‘u\'i(l(‘;l
rescarch support. Prentice-Hall graciously allowed the use of material from
my 1937 book. Teaching and interacting with the students at I\ll'lv' have
kept up iy interest and excitewent for the subject. (

Dimitri . Bertsckas
bertsekas@lids.mit.edu
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1.1

2 Indinite Horizon  Discounted Problems Chap. |

This volume foctses on stochastic optimal control problems with an
iufinite number of decision stages (an infinite horizon).  An introduction
1o these problems was presented in Chapter 7 of Vol. L. Here, we provide
a more comprehensive analysis. In particular, we do not_assume finite
nnher of states and we also discuss the assoctated analytical and compu-
tational issues in much greater depth,

We recall from Chapter 7 of Vol. I that there are lour classes of infinite
horizon problems of major interest.

(a) Discounted problems with bounded cost per stage.

(1) Stocliastic shortest path problems.

(¢} Discounted and undiscounted problems with unbounded cost per stage.
() Average cost per stage problems.

Fach one of the first lour chapters of the present vohune considers oue
of the above problem classes, while the final chapter extends the analysis to
continuous-time problems with a countable number of states. Throughout
this voluwe we concentrate on the perfeet information case, where cach
decision is made with exact knowledge of the current systenn state. Iin-
perfeet state information problenis can he treated, as in Chapter 5 of Vol
L. by reformulation into perfeet nformation problews involving a sufficient

statistic.

MINIMIZATION OF TOTAL COST — INTRODUCTION

\We now formulate the total cost minimization problen, whichi 1s the
subjeet. of this chapter and the next two. This is an infinite horizon, sta-
tionary version of the basic problem of Chapter 1 of Vol. L.

Total Cost Infinite Horizon Problem
Consider the stationary discrete-time dynamic system
o = Flee ug, ), E=0,1,..., (1.1)

where for all &, the state v is an clement of a space S, the control uy is
an clement of a space C,and the random disturbance wy is an element
of & space D. We asste that D s a countable set. The control uy is
constrained to take values in a given nonempty subset U{xg) of C', which
depends on the enrrent state ag [ Uy, Tor all g S]. The random
disturbances wy. b = 0,1, .., have identical statistics and arc characterized
by probabilities P(- | g, ug) defined on D, where P(wy | Tx.ug) is the

Sec. 1.1 Minimization ot Total Cost.  Introduction 3

probability of occurrence of wy, when the current state and control are ay,
and wuy, respectively. The probability of wy, may depend explicitly on g
and uy but not on values of prior disturbances wy .

Given an initial state xg, we want to find a policy 7 = {0,501, ...},
where pg 2 S — C, j(ag) € Ulay), for all @y € S, b = 0,1,.... that
minimizes the cost function §

N-1
Jr(wo) = A}B}; "[i Z akg(eeouler), we) 3. (1.2)
k=0,1,... k=0

subject to the system equation constraint (1.1). The cost per stage g ¢
S xC x D rs Nis given, and o is a positive scalar referred to as the
discount fuctor.

We denote by I the set of all admissible policies 7, that is, the set of
all sequences of functions ® = {po, i, ...} with pug 2 S C, jup(e) € U(a)
for all i € S, &k = 0,1,... The optimal cost function J* is defined by

J*(x) = 11:161}} Jx (), I eS8,
A stationary policy is an admissible policy of the form & = {0, 0,.. .},
and 1ts corresponding cost function is denoted by J,.o For brevity, we
vefer o {e, 41, ...} as the stationary policy je. We say that g is ()1)1&1/11211 if
Jul) = J* () for all states w.

Note that, while we allow arbitrary state and control spaces, we re-
quire that the disturbance space be countable. This is necessary to avoid
the mathematical complications discussed in Seetion 1.5 of \/:<)1. I. The
countability asswnption, however, is satisfied in many problems of inter-
est, notably for deterministic optimal control problems and probleims with
a finite or a countable number of states. For otlier problems, owr main
chsull,s cau typically be proved (uuder additional technieal conditions) by
following the same line of argument as the one given here, but also by
dealing with the mathematical complications of various measure-theoret i.('
frameworks; sce [BeST78).

The cost Jx(ag) given by Eq. (1.2) represents the limit of expected
finite horizon costs. These costs are well defined as discussed i Section

T In what follows we will generally impose appropriate assumptions on the
cost per stage ¢ and the disconnt factor o that guarantee that the limit defining,
the total cost J(ro) exists. I this limit is uot known to exist, we use instead
the delinition

Nt
Jo(wy) = lims » Fale .
(#0) lrl\,ll 'jl\l[) | '£Z ,Z: a g(J TR mk)
AN AT
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1.5 of Vol. L. Another possibility would be to minimize over 7 the expected

infinite horizon cost

oo
I E u"‘_(/(.r;..,/lk((rk),'uvk)
bt

T

Such a cost would require a far more complex mathematical fornndation (a
probability measure on the space of all disturhance sequences; see [13(387'8]).
However, we mention that, under the assumptions that we will be using,
the preceding expression is cqual to the cost given by Ta. (1.2).‘ T.lus
may be proved by using the monotone convergence th(‘orcn} (sce S(‘(‘,tl()ll.
3.1) and other stochastic convergence theorems, which allow interchange of
limit and expectation under appropriate conditions.

The DP Algorithm for the Finite-Horizon Version of the Problem

Consider any adwmissible policy @ = {0, p11, ...}, auy positive integer
N and any function J 1 S == N, Suppose that we acenmulate the costs of
the first N stages, and (o them we add the terminal cost oV J(en), fora
total expeeted cost

N
I aNJ(ry) + E (l’k[/(.’l'[\‘,/l,}‘r(.'lfk), wk)
e

A—0,1,... k=0

The minimum of this cost over 7 can be caleulated by starting with O’N./(.l?).
and by carrying out N iterations of the corresponding DP algorithm of
S('(‘Li().u 1.3 of Vol. I. This algorithiu expresses the optimal (N —k)-stage cost
starting [rom state @, denoted by Jg(a), as the miniinun of the expected
sunn of the cost of stage N — & and the optimal (N — A& — 1)-stage cost
starting from the next state. It is given by

() = win B{aN Kgle, )+ S (f(eyu, w)) } k=01,...,N-1.
acl(r
s (1.3)

with the initial condition
In(e) =aNJ(r).

For all initial states o, the optinal N-stage cost s the funcetion Jy ()
obtained from the last step of the DP algorith.
Let us consider for all & and ., the anetions Vi given by

In i (x)
V}(JO = *:;;f:ir—.

smne

Sce. 1.1 Minimization of Total Cost  Introduction 5

Then Viv (r) is the optimal N-stage cost Jy(.x), while the DP recursion (1.3)
can be equivalently he written in terins of the functions 1, as

Visr(o) = min E{g(r, u w) + aVi(f(rou,w))}, h=0,1,....N 1.

we U {.r)

withi the initial condition
Vo) = J ().

The above algorithm can be used to calculate all the optimal finite
horizon cost functions with a swmgle DP recursion. Iu particular, suppose
that we have computed the optimal (N~ 1)-stage cost function Va ;.
Then, to calculate the optimal N-stage cost function Vi, we do not need
to execute the N-stage DP algorithim. Instead, we can caleulate Vy nsing
the one-stage iteration

Vn(r) = min )E{_(/(.l', )+ aVn (f(,z', i, “.)) }

ueli(r

More gencerally, starting with some terminal cost function, we can
consider applying repeatedly the DP iteration as above. With each appli-
cation, we will be obtaining the optimal cost function of some tinite horizon
problenr. The horizon of this problent will be longer by one stage over te
horizon of the preceding problem. Note that this convenienee is possible
ouly because we are dealing with a stationary system and a common cost
function g for all stages.

Some Shorthand Notation

The preceding wmethod of caleulating finite horizon optimal costs mo-
tivates the introduetion of two mappings that play an important theoretical
role and provide a convenient shorthand notation in expressions that wonld
be too complicated to write otherwise.

For any function J + 5 — R, we consider the function obtained by
applying the DP mapping to J, and we denote it by §

(TJ)(x) = ngin ) E{g(a, u,w) + ad (f(x, u, w))}, £ ES. (L)
well () w

Stuee (TJ)(:) is itsell a function defined on the state space S, we view 1" as
a mapping that transfors the function ./ on S into the Mnction 7. on S.
Note that 1 is e optimal cost function for e onc-stage problem that
has stage cost g and terminal cost o J.

T Whenever we use the mapping T, we will impose sullicient assiptions to
guarantee that the expected value involved in B, (1.1} is well defined.
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Similarly, for any (unction J © S +— R and any control function i :
S C, wo denote

(T D) () = 15 {g (e, pulir), w) -+ (v./(f(.'r, p{x), m))} , resS. (1.5)
w
Again, T),.J may be viewed as the cost function associated with g for the
one-stage problam that lias stage cost g and terminal cost .
We will denote by T the composition of the mapping 7" with itself &
times; that is, for all & we write
(T*J) () = (T(TF-10)) (), £ ES.
Thus T/ is the lunction obtained by applying the mapping T to the
function T*=1J. For convenience, we also write
(ron(ry =.Jr), rcS.
Similarly, T%.J is defined by
(TE) () = (T (TN ) (), r €8,
and
(T () = J(r), res.

It can be veritied by induction that (I%J)(x) is the oplimal cost Jor the
k-stage, a-discounted problem with initial stale x, cost per slage g, and
terminal cosl function o®J. Similarly, (TFJ)(x) s the cost of a policy
(g4, ...} for the same problem. To illustrate the case where & = 2, note
that
(120 () = win g, u,w) +a(TI)(f(rou, w))}

w () w

= win [ {_(/(.::, uy, wy) + min £ {{/(f(:l},?l(),’IH[)),’U[,’U}[)

un CU () uy wy €U (f(aup.wo)) wy

+ o (f (S (5, w0, wo), we, )) }}

= min < glriug wo) + min K {(1(1(f(.1:, o, W0 ). g, W)
o d7 () wy wy U (S (g aeg)) )

+ (\Z,I(f(.f(-ll g, o), U, 11’1))}}'

The last expression can be recognized as the DP algorithm for the 2-stage,
a-discounted problew with initial state r, cost per stage g, and ternminal
cost Tunction a2.J.

Finally. consider a A-stage policy 7 = {10, o1, .. jie—1}. Then, the
expression (T Ty o+ T ) () is defined vecursively for i = 0,00k =2
by

L Ty T D) = (T, (T Ty D) (@)
and represents the cost of the policy m for the k-stage. «-discounted problem
with initial state x, cost per stage g, and terminal cost Junction a¥ J.

e e <o

o e pen ey =

Sec. 1.1 Minimization of Total Cost  Introduction 7
Some Basic Properties

['he following monotonicity property plavs a fundamental role in the
developments of this volume.

Lemma 1.1: (Monotonicity Lemma) For any functions .J : S —
R and J': S — R, such that
J(ry < T (), for all i € 5,

aud for any function g : .S+ C with p(x) € U(r), for all z € S, we
have
(TET) () <(TEJ) (), forallze S, k=1,2,...,

(Th () < (ThIN (), forallze S, k=1,2,...

Proof: The result follows by viewing (T*.J) () and (TFI)(r) as k-stage
problent costs, sinee as the terminal cost fuuction inereases uniformly so will
the A-stage costs. (One can also prove the lemma by using astraight forward
induction argnment.) Q.E.D.

For any two functions J 1 S+ N and J’ 1 8 — N, we write
J < iJ(e) < J'(w) for all € 5.
With this votation, Lenuna 1.1 is stated as

J < = Th] < Tk, =12

J < = ThT < T, bo=1,2,...

Let us also denote by ¢ 0 5+ R the unit function that takes the value
1 identically on S:
e(e) =1, for all » € 5. (1.6)

We have from the definitions (1.4) and (1.5) of T and T},, for any {unction
J 8 - R and scalar r

(TS + re)) () = (T ) + ar, res,

(T, (4 re))(a) = (1) () + ar, rcS.

More generally, the following lennma can be verified by induction using the
preceding two relations.
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Lemma 1.2: For every A, function J : 8+ R, stationary policy g,
and scalar r, we have
(Tk(J + re))(x) = (T*J)(x) + abr, for all w € 8, (L.7)

(Th(J +rO))(x) = (TFT) () + ok, for all € 5. (1.8)

A Preview of Infinite Horizon Results

It is worth at this point to speculate on the type of results that we
will be aiming for.

(a) Comvergence of the DP Algorithm. Let Jo denote the zero function
[Jo() = 0 for all «]. Since the infinite horizon cost of a policy is, by
definition, the limit of its k-stage costs as A — oc, it is reasonable to
speculate that the optimal infinite horizon cost is cqual to the limnt
of the optimal A-stage costs; that is,

JH(x) = ’l}i{xﬁxu(’l"',ll))(;zr), LES. (1.9)

This means that if we start with the zero function Jy and iterate with
the DP algorithm indefinitely, we will get in the limit the optimal cost
function J*. Also, for o < 1 and a bounded fuuction J, a terminal
cost. b/ diminishes with &, so it is reasonable to speculate that, if
a < 1,

lor all S and bounded Munctions /.

(1.10)

JE(a) — A““l (r+0)(r),

PO

(h

Bellinan's Equalion. Siunce by definition we have for all w € S

Z

(Tl g (o) = ll(li](l ) 1 {g(e u,w) + T Jo) (f (&, 1, w)) boo(L1l)
weli(e) w

it is reasonable to speculate that il limyg < T%Jo = J* asin (a) above,
then we must have by taking limit as & — 00,

JH(e) = min E{g(e,u,w) + ot (f(a,u, w)) }, ze S, (1.12)

uc () w

or, equivalently,
Jr="TJ*, (1.13)

This is known as Bellman’s equation and asserts that the optimal
cost Mmnetion J* is a fixed point of the mapping T. We will sce that

See. 1.2 Discounted Problens with Bounded Cost per Stage 9

Belliman's equation holds for all the total cost minimization problems
that we will consider. although depending on our assumptions, its
proof can be quite complex.

(¢) Characterzation of Oplinal Stalwnary Policies. 1 we view Bellinan's
cquation as the DP algorithm taken to s lmit as A — o~ it s
reasonable to speculate that if () attains the minino in the right-
Land side of Bethnan'’s equation for all | then the stationary policy
¢ is optimal.

Most of the analysis of total cost iufinite horizon problems revolves
around the above three issues and also around the issue of ellicient com-
putation of .J* and an optimal stationary policy. For the discounted cost
problems with bounded cost per stage considered in this chapter, and for
stochastic shortest path problems under our assumptions of Chapter 2. the
preceding conjectures are correct. For problems with unbounded costs per
stage and for stochastic shortest path problems where our assumptions of
Chapter 2 are violated, there may be counterintuitive mathematical phe-
nomena that invalidate some of the preceding conjectures. This illustrates
that infinite horizon problems should be approached carcfully and with
mathematical precision.

DISCOUNTED PROBLEMS WITH BOUNDED COST PER
STAGE

We now discuss the siimplest type of infinite horvizon problem.  We
asstune the following;:

Assumption D (Discounted Cost — Bounded Cost per Stage):
The cost per stage ¢ satisfies
lg(a;,u,w)‘ < M, for all (z,u,w) € S x Cx D, (2.1)

wliere M is some scalar, Furthermore, 0 < o < 1.

Boundedness of the cost per stage is not as restrictive as imight. appear.
It holds for problems where the spaces S, C, and D are finite sets. Even
if these spaces are not finite, during the compulational solution of the
problem they will ordinarily be approximated by finite sets.  Also, it is
often possible to reformulate the problemn so that it is defined over hounded
regions of the state and coutrol spaces over which the cost is hounded.
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The following proposition shows that the DP algorithm converges to
the optimal cost function J* for an arbitrary bounded starting function J.
This will follow as o consequence of Asswmption D, which iplies that the
“tadl” ol the cost after stage N, that is,
K

lim ¥ Z kg (e (e, wi) o

N-—o0 P!
diminishes to zero as N — oo, Furthermore, when a terminal cost oV J (zy)
is added to the N-stage cost, its effect diminishes to zero as N — oo if J
is hounded.

Proposition 2.1: (Convergence of the DP Algorithm) For any
bounded function ./ 1 .S +— R, the optimal cost function satisfies vi! .

J*(&) = lim (TNJ)(x),

— 00

forall x € S. (2.2)

Proof: For every positive integer £ initial state oy € 5, and policy 7 =
{001, -} we break down the cost Jx () into the portions inenrred over
the first I\ stages and over the remaining stages

N-1
Jx(rg) = }\}l}}lx K Z (1"'_!](.1';.',/1,;.,(&1:;\;), ll}k)
' k=0
N -1
A} N \
= L (1‘_{/(.17;,;,/1,;(.1‘#), u',l.)
k=0
N~1
IR IICRIANTY
R

Since by Asstmplion ) we have |y(.::k,/l,k(.l‘k), u';,,)| < M, we also obtain

N -1

= oW AL
lim I K g(ag, g (eg), wy < M ko= .
i Z b g (e, (o), we) pl < Z « T—a
k=i k=K
Using these relations, it follows that
Al .
So(ag) — T —ah 1:1{1\\[/(1)]
K-
SESalJ(ur) + L arg(ag, (), we)
k=0
alv Al .
< Jrplap) ! + ol lllili(!,/(.'l,')l.
e S

= G

P ————

vt 1 o X AR < e

B

Sec. 1.2 Discounted Problene with Boouded Cost per Stage [}

By taking the minimum over 7, we obtain for all &g and iy,

alv Al .
J*{ao) — —a al lilél:s\ll(d)‘
S (r['[\A./)(.lf()) (_);)
AV
< J*(ro) + a +alt 111;\5‘./(.1')}.
TN

l —a

and by taking the limit as K — oo, the result follows.  Q.E.D.

Note that based on the preceding proposition, the DP algorithnn may
be used to compute at least an approximation to J*. This computational
method together with some additional methods will be examined in the
next section.

Given any stationary policy ji, we can consider a modified disconnted
problem, which is the sanie as the original except that the control constraing
set contaius ouly one clement for each state ., the control u(r): that is,
the control constraint set is U(x) = {n(x)} instead of U(x). Proposition
2.1 applies to this modilied problem and yields the following corollary:

Corollary 2.1.1: For every stationary policy u, the associated cost
function satisfies

Ju(z) = (TN JY(x), forallz € S. (2.4)

lim
N

The next proposition shows that J* is the unique solution of Bellman's
cquation.

Proposition 2.2: (Bellman’s Equation) The optimal cost func-
tion J* satisfies

for all z € S.
(2.5)

JH(x) = H(l}tl ) E{g(x.u,w) + aJ* (f(:l:, u, w)) },
uecl/(x) w

or, equivalently,
Jr=TJ~*. (2.6)

Furthermore, J* is the unique solution of this equation within the class
of bounded functions.
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Proof: From Eq. (2.3), we have for all r € S and N,

N NAS
aN A < (TN o)) < (o) + aNj

- « |

JE(r) —

where Jy s the zero finction [Jo(x) = 0 for all v € S]. Applying the
mapping 7" to this relation and using the NMonotonicity Lenuna 11 as well
as Lemma L2) we obtain for all . € 8 and N

aN+1A] aN+EAS

(17)(x) — < (TNHVJ) () < (TT0) () +

1l -« 1 -«

Since (TN HLJy)(r) converges (o J7 () (¢f. Prop. 2.1), by taking the linit,
as N — oo in the preceding relation, we obtain J* =1/~

To show uniqueuness, observe that if J is bounded and satisfics J =
TJ, then J = limpy no TN, s0 by Prop. 2.1, we have J = .J*. Q.E.D.

Based on the same reasoning we used to obtain Cor. 2.1t from Prop.
2.1, we have:

Corollary 2.2.1: For cvery stationary policy i, the associated cost
function satisfics

for all £ € S,
(2.7)

Ju(x) = [«;{_(/(;1:, (), w) + ()/J,L(f(:r,, je(n), 'w)) },
or, cquivaleutly,
Jy =Ty

Furthermore, J,, is the unique solution of this equation within tle class
of bounded [unctions.

The next proposition characterizes stationary optimal policies.

Proposition 2.3: (Necessary and Sufficient Condition for Op-
timality) A stationary policy g is optimal if and only if p(x) attains
the minimum in Bellman’s equation (2.5) for cach x € S; that is,

T =T, (2.8)

Proof: If T'J* = T,.J*, then using Bellman’s equation (J* = TJ*), we
= Ju;

have J* = 1),.J*, so by the uniqueness part of Cor. 2.2.4, we obtain J* =
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that is, g is optimal. Conversely, il the stationary policy i is optimal, we
have J* = J,,. which by Cor. 2.2.1, vields J* = Ty, Contbining this with
Bellman's equation (J* = TJ*), we obtain 7.J* = T,.7*. Q.E.D.

Note that Prop. 2.3 implies the existence of an optinal stationary
policy when the minimum in the right-hand side of Bellinan's cquation is
atlained for all w € 5. In particular, when U(r) is finite for cach 2 ¢ S, an
optimal stationary policy is guaranteed to exist.

We finally show the folowing convergence rite estimate for any hounded
function J:

max [ (TF.J) () - .]*(.l')' < ak 111;1}'].](.:') - ,/’(:r)l. h=01,...

PR xS

This relation is obtained by combining Bellman’s equation and the following
result:

Proposition 2.4: For any two bounded functions J : S — R, J/
S— R, and for all k =0, 1, .. ., there holds

1;1(5?[(’1*1\:!])(1) - (T’”‘J’)(w)| <ak Iilerl;(I](l‘) - J'(x)]. (2.9)

Proof: Decnote
o= 111;1,x’.l(.1') - .l’(.r)‘.
PR
Then we have

J)—e< () < J(x) + e, reS.

Applying T% in this relation and using the Monotonicity Lemma 1.1 as well
as Lemma 1.2 we obtain

(TRI)(w) — ake < (Th ] () < (T ) (2) + oke, £ES,

1t follows that

(T+J)(r) - (T"./’)(.l:)l < ake, £LE S,
which proves the result. Q.E.D.

As carlier, we have:
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Corollary 2.4.1: For any two bounded functions J : § — R, J' :
S — RN, and any stationary policy g, we have

max ) k=0,1,...
7eS

(Th)(w) = (TEJI) ()| < ok I;lélg(lJ(.F) —J'(x)

Example 2.1 (Machine Replacement)

Consider an infinite horizon discounted version of a problem we formulated
in Section 1.1 of Vol. 1. Here, we want to operate elliciently a machine that
can be in any one of n states, denoted 1,2,..., 1. State 1T corresponds to a
machinc in perfect condition. The transition probabilities p,, are given. There
is a cost g(i) for operating for one time period the machine when it is in state
i. The options at the start of cach period are to (a) let the machine operate
one more period in the state it currently is, or (b) replace the machine with a
new wachine (state 1) at a cost R. Once replaced, the machine is guaranteed
Lo stay 1 state 1 lor one period; in subsequent periods, it may deteriorate
to states j > 1 according to the transition probabilities ppj. We assume an
infinite horizon and a discount factor « € (0, 1), so the theory of this section
applies.
Bellman’s equation (¢, Prop. 2.2) takes the form

J7 (i) = min I{+y/(l)+(v./*(l),.(1(1')+(\Z1),_,J*(j) , i=1,..0n.

i1
By Prop. 2.3, a stationary policy is optimal if it replaces at states @ where

n

1 g(l) 4 ad (1) < (i) ay pd (),

J=1
and it does not replace at states 7 where

n

Rt g() 4+ a7 (1) > g(i) %*tan[»,_,.l*(j).

=1

We can use the convergence ol the DP algorithm (ef. Prop. 2.1) to
characterize the optinal cost function using properties of the linite horizon
cost functions. In particular, the DI algorithin starting from the zero function
takes the form

Jo(i) =0,

(TJ0) (i) = min[ R+ g(1). g()],

e v R R S Ep O AN TR 1 eeeRESE 7

P —

e

TG
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(T* Jo)(3) = min | I} + g(b) + a(T* I, () + o Z]),_,('I'L' LI
g1
Assume that g(i) is nondecreasing i i, and that the transition probabilities

satisly
n n

RO ED T

J=1 g=1

v=1, oo, —1, (2.10)

for all functions J(i). which are monotonically nondecreasing in . It can be
shown that this assumnption is satisfied if and only if, for cevery k. Z’[' o
is mouotonically nondecreasing in ¢ {sce [Ros83b], p. 252). The assunption
(2.10) is satisfied in particular if

1y =0, it j <,

Le., the machine cannot go to a better state with usage, and

Py S Pty i<,

i.e. there is greater chance of ending at a bad state j if we start at a worse
state i, Sinee g(7) is noudecreasing in i, we have that (72,)(7) is nondecereasing,
7 and in view ol the assumption (2.10) on the transition probabilities, the
same is true for (T%70)(8). Similarly, it is seen that, for all &, (T*J))() is
noudecrcasing in 7 and so is its limit,

JT) = Y (T J0) ().

-

This is intuitively clear: the optimal cost should not decrease as the machine
starts at a worse itial state. It follows that thie function

Gy pd ()

1=l

is noudecrcasing in . Consider the set of states

Sie= Qi | Rt g(D) 400" () <9 +a S pad ) p

J=l

and let )
v {smnllvsl state in Sp if Sy ois nonempty,

Al otherwise.
Then, an optimal policy takes the form
replace if and only il 7 > §”

’

as shown in Fig. 1.2.1.
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n
AR+g)+a ¥ P1/J'(/)
j=1

\

g +a T p 0 0)
j=1

]
1
! 1
! 1
! 1
' '
! i
! 1
' 1
o
1
! 1
' '
o
1
1 -1 i Set S n i
Do not Replace
Replace

Figure 1.2.1 Determining the optimal policy in the machine replacement exam-
ple.

FINITE-STATE SYSTEMS - COMPUTATIONAL METHODS

In this section we discuss several alternative approaches for numeri-
cally solving the discounted problent with hounded cost per stage. The first
approach, value iteration, is essentially the DP algorithin and yields in the
litit the optimal cost fuuction and an optimal policy, as discussed in the
preceding section. We will deseribe some variations aimed at accelerating
convergence. Two other approaches, policy iteration and lincar program-
ming, terminate in a finite nwmber of iterations (assnming the number of
states and controls are finite). However. when the number of states is large,
these approaches are impractical because of large overhead per iteration.
Aunother approach, adaptive aggregation, bridges the gap between value
iteration and policy iteration, and in a sense combines the best features of
both methods.

Iu Scction 2.3 we will consider some additional methods, which arve
well-suited Tor dynamic systens that are hard to model bat relatively casy
to sinulate. In particular, we will assume in Section 2.3 that the transition
probabilitics of the problem are nuknown, but the system’s dyunamics and
cost structure can be observed through sinmlation. We will then discuss
the methods of temporal differences and Q-learning, which also provide
conceptual vehicles for approxitate forms of value iteration and policy

LA L R S, RIS NS By T e bty

1, R R s BT R GRS £ I S Iy e

HOTT
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iteration using, lor exaple, neural networks.

Throughout this section we assime a discounted problem (Assump-
tion D holds). We further assuine that the state, control. and disturbance
spaces underlying the problem are finite sets, so that we are dealing in
effect with the control of a finite-state Markov chain.

We first translate some of owr carlier analysis in o notation that is
wore convenient for Markov chains. Let the state space S consist of n
states denoted by 10200 n:

S={1,2.....n}.
We denote by p,, (1) the transition probabilities

piyu) = Plogyr = jlae =i =u), i, j€S, ucU()

These transition probabilities may be given a priori or mav be calenlated
from the system equation

T = J{rp wg )

and the known probability distribution P(- | ., ¢) of the input disturbance
wy.. Indeed. we have

polu) =PV (u) | i ).

where W, (u) is the (linite) set

W, (u) = {w eD| fli,u,w) :/}

To simplify notation. we assume that the cost per stage does not
depend on w. This amounts Lo using expected cost per stage in all calenla-
tions, which makes no essential ditference in the definitions of the mappings
T and T, of Egs. (1.4) and (1.5). aud in the subsequent analysis. Thus. if
g(i,u. j) is the cost of using ¢ at state i and moving to state j, we use as
cost per stage the expeeted cost g(/, u) given by

T

glicw) =Y @)ty j).

J=1

The mappings T and 1}, of Eqgs. (1) and (1.5) can be written as

n

gl w) +a Yy py () ()

i=1

(TJ)(i) = min

uel (1)
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(T D)) = (i, n()) + ) py(n()JG),  i=12.,m

s
Any function J on S, as well as the functions TJ and T),.J niay be
represented by the n-dimensional vectors
J(0) ()0 (1,1)(1)
Jo= , TJ = , T.J =
J(n) (1)) (L) ()

FFor a stationary policy s, we denote by I, the transition probability

pu(e(D)) - pua ()

natrix

Py = : : :
Pt (Qn) o ()

and by g, the cost vector

g(L u(L))
Y — .

_l](ll,/.l,(ll))

We can then write in veetor notation
Tod =gy + bl

The cost. Tanction J,, corresponding to a stationary policy g is, by
Cor. 2.2.1, the unique solution of the equation

Jp =Tty =gp +alyd,.

This equation should be viewed as a systemn of 7 linear equations with
n. unknowns, the components J, (i) of the n-dimensional vector J,. The
cquation can also be written as

(I =aP)Jg, =g,

or, equivalently,
v]/I = (1 - (\[)”)71.(]“. (31)

where T denotes the nox n identity matrix. The invertibility of the matrix
I — al, is assured since we have proved that the system of equations
representing Jy, = 1y,J, has w unique solution for any vector g, (cf. Cor.
2.2.1}. For another way to sce that [ — o P, is an invertible matrix, note
that the cigenvalnes of any transition probability matrix lie within the unit
cirele of the complex plane. Thus no cigenvalue of @, can be equal to 1,
which is the necessary and sullicient condition for I —al?, to be invertible.
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1.3.1 Value Iteration and Error Bounds

Here we start with any o-dimensional vector J and successively comn-
pute T°J, T2.7,. ... By Prop. 2.1, we have for all i

1.-121_0'0(’/*"[)(/) = I {i).

Furthermore, by Prop. 2.1 {using J/ = J* in Eq. (2.9)], the error sequence
‘(T‘“J)(i) ~ J*(#)| is bounded by a coustant multiple of o, for all i € S.
This method is called value iteration or successive approzimation. The
method can be substantially improved thanks to certain monotonic ervor
bounds, which arc ecasily obtained as a byprodhuct of the computation.

The following argument is helpful in understanding the nature of these
bounds. Let us first break down the cost of a stationary policy ¢ into the
first. stage cost and the remainder:

2.8

i) =g (i (i)} + Z(\""E{g(.rk,/1(.1'L.)) | oo =i}

k=1

“ﬁ ()/_1
e (1—,—(,> ¢SS gt <1 - ”) < (3.2)

where e is the unit vector. o = (1,1,..., 1), and 4 and 3 are the minimnm
and maxinun cost per stage:

It follows that

4 =ming(i.n(i)), A= max g (i, (7).
? ¢

Using the definition of 4 and 3, we can strengthen the bounds (3.2) as
follows:

I} o g i3
= <gq, = Je<J, <g,- ' : (3
<l—a>c‘yl+<l~u>( <<y J'_(J-—(r)( = (IA(\)( (3:3)

These bounds will now be applied in the context of the value iteration
method.

Snppose thid we have a vector J and we conmpute
Tyd = gu +aly .
By subtracting this equation from the relation

Jp = gu + by,
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we obtain

Jy = =Tyd = J +aluJ, —J).

This equation can be viewed as a varialional form of the equation J, =
1y dy, and implies that ./, — J s the cost veclor associaled with the stalion-
ary policy ju and o cost per stage vector equal to T,,.J — J. Therefore, the
bounds (3.3) apply with J,, replaced by J,, —J and g, veplaced by T, — J.

It follows that
Y oy
= < = = '
(17(14)(— ! +(J~n>(

IN
=~
-

IN ’
N
—_— ;
| I\)|
o~
: TN
e
=2
= |
—

where

5= 1.1L111[('/;,l/)(,1) -J), 7= mf_\x[(T,,./)(z) — J(i}].

LEguivalently, for every vector J, we have
c " _
J A+ il(' <Tpd +ee<Jy <Td+ee <J+ —e
N

where _
o7y 7y

—_ ¢ = o

(_41«()' T l-a

The following proposition is obtained by a wmore sophisticated application
of the preceding argunient.

Proposition 3.1: For cvery vector J, state ¢, and &, we have

(TET)() + ¢ TRV + gy

< Je () 54)
< (TRRN(E) + Crpr '
< (TRI)E) + éx,

where ’

o= T i [0 -] 65)
Fr= —— wax [(T*J)(0) = (TF=1D)(). (3.6)

l — =10
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Proof: Denote
5= min [('[’./)(i) - ,/(i)].

=1..... n
We hiave
J e <T.J. (3.7)

Applying 1" to both sides and using the monotonicity of 7', we Lave
TJ b aye = 1
and, combining this relation with Eq. (3.7). we obtain
SOy a)jye =TT aqe TR (3.8)
This process can be repeated, first applying T to obtain
TJ + (o +a?)ye < T2 + a0 <T3()).

and then using Eq. (3.7} to wrile

JH+atat)e ST+ (a+a@?)e <T2 4 aqe <TH.
After £ steps. this results in the inequalities

&
J+ (Zu’) ye <

i=0

IA N

~ ~

.I‘\l ‘\

~~ .

+ -
R T‘/\
i = = J a
e 2
\;_/ ~—

2
=2 ~

IA A

Tk+1 ]

Taking the limit as b — ~ and using the equality ¢; = av/(1 = a), we
obtain

g, (3.9)

/

-
J o+ <i) e <TT+cie <T2] 4+ ace <
Q
where ¢ is defined by Eeq. (3.5). Replacing J by 7% in this inequality, we
liave

TELT 4 ey e v

which is the second inequality in Fiqg. (3.1).
From Eq. (3.8). we liave

a3 < min (T2 — (T I

[EE PN n
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and consequently
acyp < ey,

Using this relation i Lig. (3.9) vields

2
TJ +eie < T2 +eye.
and veplacing J by T% 1) we have the first inequality in Eq. (3.1). An
analogons argumient. shows the last two inequalities in Fe. (3.1, Q.E.D. ¢ (@ (b)
!
We note that the preceding prool does not rely on the finiteness of the :*
state space, and indeed Prop. 3.1 can be proved for an infinite state space ! Figure 1.3.1 State transition diagram for Example 3.1: (a) v = u'; (b) v = o
(sce also Exercise 1.9). The following example demonstrates the nature of ]
the error bounds.
Example 3.1 (INustration of the Error Bounds) | o TR [ CTRJ0)2) [ (TH o) (1) | (T4 0) (1) | (7% J0)(2) (T 00 )(2)
Consider a problem where there are two states and two controls o ok T o
S = {12}, (':{ul_uu} § 0 0 ()
. 1 0.50( 1.0 5. 9.5 5.5
The transition probabilities corresponding to the controls 1! and u? are as 3 00 0o 5.000 )-500 5-500 10.000
shown in IFig. 1310 that is, the transition probability matrices are 4 2 1.287 1.562 6.:350 8.375H 6.625 8.600
(') (') 31 11 3 1.811 2.220 6.856 (.767 7.232 S
sy o f Pl Pzl /e ' ‘ G . ~ . ~ g
Plu'y = (1'21(“1) 1'2:(“’)) = (:;/(1 1/4) , 4 2,411 2.745 7.129 7.5:10 7160 7.870
5 2.896 3.247 7.232 7417 7.583 7.768
Py = (pl.(uz) pu(uj')) _ (1/4 ;;/11) 6 3.343 3.686 7.287 7.371 7.629 7712
N oo (0 AR Y - . .
pai(un) - paa() s ‘ 7 3.740 1.086 7.303 7315 7.651 7.692
The transition costs are ; 8 1099 SEEH 7.319 7.336 7.663 T.680
10 1.713 5.057 7.326 T.329 70671 T.67
and the discount factor is a = 0.9. The mapping T is given for i = 1,2 by 4 7 ’ ’ ' Co e
, 11 1.9714 5.319 7.327 7.328 T.672 7.67:
2 2
, i : 12 5.209 5.004 T.327 7.328 T.072 7.67:
(1)) = min d glivu') + 0 Y oy () IG). gld?) +a S py () IG) b ; 0 ‘ o7 roT
- pr 13 5.421 5.766 7.327 7.328 7.672 7.673
g 14 5.612 5.957 7.328 7.328 7.672 T.072
The scalars ¢, and ¢ of Togs. (3.5) and (3.6) are given by 1 - . . .
g 3 15 5.783 6.128 7.328 T.328 7.672 7.672
e = o win{ (M) (1) = (P LA, (PU)(@) - (@), g
—a
o= o “mx{('/""'/)(l) _ (*/*' I./)(l), (’l'k .I)('.Z) - ('['A."IJ)(B)}_ Figure 1.3.2 Performance of the value iteration method with and without {he
I —a ] crror bounds of Prop. 3.1 for the problem of Example 3.1.

The results of the value iteration method starting with the zero function Jy

[Jo(1) = Ju(2) = O] are shown in Fig. 1.3.2 and illustrate the power of the 3 Termination Issues — Optimality of the Obtained Policy
error hounds.

Let us now discuss how to use the ervor bounds 1o obtain an optimal
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or near-oplimal policy in a finite nuber of value iterations. We lirst note
that given any J, if we compute T and a policy po attaining the mininnm
i the cateulation of 770/, ie. 1,0 == TJ, then we can obtain the following

bound on the suboptimality of g

11)’;Lx[,/,,('i)7,l*(/?)J <t (ulglx[(’[',/)(i) ()] - mlin[(T.])(i) - ](/)}) :

I —a

(3.10)
To see this, apply Eq. (3.4) with & = 1 to obtain for all
a =G - (T <@

and also apply Bq. (3.01) with & — 1 and with 7}, replacing T (o obtain

4] < ./,,(i) - (’ ',,./)(i) I/l( ) (Fl)( )

Subtracting the above two equations, we obtain the estimate (3.10).

In practice, one terminates thie value iteration method when the dif
ference (¢, — ¢,) of the error hounds becotnes sufficiently small. One can
then take as linal estimate of J* the “median®

Ji =Tk + (%» (3.11)

or the “average”

n

Ji = ThT s Z ((1~.7)(0)

[P

— (TH=11)())e. (3.12)

Both ol these vectors lie in the regiou delineated by the error bounds. Then,
the estimate (3.10) provides a bound on the suboptimality of the policy
attaining the minimum in the calenlation of T4/

The bound (3.10) can also be used to show that after a sufficiently
large vumber of value iterations, the stationary policy jb that attains the
winiunm v the At value iteration fre. (T, T%=1).0 = T*J} is optimal.
Indeed, since the number of stationary policies is finite, there exists an
€ > 0 such that il a stationary policy ji satisties

mfnx[.l,l(i) - .I’(i)J SN

then o is optimal. Now let & be such that for all & > % we have

a (m;xx[('l"',/)(i) — (T* 1./)(i)] - lxl_in[(T’"J)(i) - (T’"“’,/)(i)]) < T

1~ . i

Then from Eq. (3.10) we sce that for all & > &, the stationary policy that
attains the minimn in the At value iteration is optimal.
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Rate of Convergence

To analyze the rate of convergence of valiue iteration with error hounds.
assumie that there is a stationary policy jo* that attains the minimun over
¢ in the relation

min L, T =] =Tk ]
It

for all & sulliciently luge, so that cventually the method reduces to the
lincar iteration
Ji=ge +abP

Lt view of our preceding discussion, this is true for example if g is 1 unique
optimal stationary policy. Generally the rate of convergence of linear itera-
tions is governed by the maximum cigenvalue modulus of the matrix of the
iteration [which is a in our case, since any transition probability matrix has
a unit cigenvalue with corresponding eigenvector e = (1,1,..., 1), while
all other cigenvalues lic within the unit cirele of the complex plane].

It turns out, however. that when ervor honnds are used, the rate
at which the iterates J, and Ji of Eqs. (3.11) and (3.12) approach the
optimal cost vector J* 1s governed by the modulus of the subdominant
cigenvalue of the transition probability matrix . that is, the cigenvalue
with sccond largest modulus. The prool of this is ontlined in Ixercise 1.8,
For a sketeh of the ideas involved, let Ay, .. A, e the eigenvalies of Dy
ordered according to decreasing modulus: that is

Al = A == A
with A1 equal to 1 and Ay being the subdominant cigenvalue. Assunie that
there is a set of linearly independent cigenvectors ¢y, ez, ... e, correspond-
ing to A, Az, oo A, with ey = ¢ = (1 10 1Y, Then the iitial error
J — Jyr can be expressed as alinear combination of the cigenvectors

n
J=de = Siet § S0y
j=2

for some scalars §1.&,,....&,. Siuce Ty« = g, + alpd and J,« =
G F ol suceessive errors are related by

Tind = Jye = ol (= ), for all .J.

Thus the error after & iterations can be written as
H
'1'/;}./ —Je = ake pak E A e,
)=2

Using the error hounds of Prop. 3.1 amounts to a translation of 1"*./ along
the vector e. Thus, at best. the error hbounds are tight. enough to vlnunmlv
the component a®*&ye of the error, but cannot affeet the remaining term

ak 375 o Mgje;, which diminishes like
inant cigenvalue.

it Az heing the subdom-
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Problems where Convergence is Slow

In Fxample 3.1, the convergence of vahie iteration with the error
bounds is very fast. For this example, it can be veritied that p (1) = 4?2,

$17(2) = «!', and that
b (11 3
g S0 1)

The eigenvalues of Py« can be caleulated to be Ap = Land Ay = =1, which
explains the fast convergenee, since the modulus 1/2 of the subdominant
cigenvalue Az is considerably sinaller than one. On the other haud, there
are situations where convergence of the method even with the use of error
hounds is very slow. For example, suppose that P+ is block diagonal with
two or more blocks, or more generally, that P, corresponds to a system
with more than oue recurrent elass of states (see Appendix D of Vol. 1).
Then it can be shown that the subdominant eigenvalie Ay is equal 1o 1,
aid convergence it typically slow when a s close to 1.

As an example. consider the following three simple deterministic prob-
lems, cach having a single policy and more than one recurrent class of
states:

Problem 120 == 3.0, = three-dimensional identity, _(/(i,/l,(i,)) =
Problem 2: 0 = 5.1, = live-dimenstonal identity. _(/(i,/t(i)) =i

Probleps 220 —Gg(i, (D)) = 7 and

10 0 0 0 0
0 0 1 0 0 0
0 1 00 090

0 0 0 0 1 0
0 0 0 0 01

Figure 133 shows the number of iterations needed by the value it-
cration method with and without the error bounds of Prop. 3.1 to find Ju
within an crror per coordinate of less than or equal to 10-6 111z1x,;|.],,('i)‘.
The starting function in all cases was taken to be zero. The performance
is rather unsatisfoctory but, nonetheless. is typical of situations where
the subdominant eigenvalue modulus of the optimal transition probabil-
ity natrix is close to L One possible approach to improve the performance
of value iteration for such problens is based on the adaptive aggregation
method to be discussed in Section 1.3.3.
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a— D=9 a9 =990 - 9]n .09

W/out bounds | 131 1371 131 1371 132 1392
With bounds 12 1333 129 1352 131 1371

~1

Figurc 1.3.3 Number of iterations for the value iteration method with and with-
out error bounds. The problems are deterministic. Beeause the subdominant
cigenvalue of the transition probability matrix is cqual to 1, the error hounds are
incflective.

Elimination of Nonoptimal Actions in Valuc Iteration

We know from Prop. 2.3 that, il & € U{7) is such that

H
gli i)+ a Y py()J*(j) > J*(i).
J=t
then & cannot he optimal at state 75 that is, for every optimal stationary
poliey 1, we have p{i) # . Therelore. if we are sure that the above
inequality holds, we can salely eliminate @ {rom the admissible set {7(i).
While we cannol chieck this inequality. since we do not know the optimal
cost function J*, we can guarantee that it holds if

glicit) 4 a Y pi()L(j) > T(). (3.13)

where J and J are upper and lower hounds satislying

J0) < S (i) < T, i=1,....n.

.

Tlie preceding observation is the basis for a useful application of the
crror bounds given carlier in Prop. 3.1, As these bounds are computed
in the course of the value iteration method, the inequality (3.13) can be
simultancously chiecked and nonoptimal actions can be eliminated from the
admissible sel with attendant savings in subsequent computations. Since
the upper and lower bound functions .J and ./ converge to J*. it can be seen
[taking into account the finiteness of the constraint set U(7)] that eventually
all nonoptimal & € U(7) will be climinated, thereby reducing the set T7(4)
after a finite number of iteralions Lo the set of controls that are optimal at
i. I this manner the computational requirements of value iteration can be
substantially reduced. However, the amount of computer memory reguired
to maintain the set of controls not as yet climinated at cach i € § may he
increased.
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Gauss-Scidel Version of Value Iteration

L the value teration method deseribed carlicor, the estimate of the
cost, function is iterated for all states simultancously. An alternative is to
iterate one state at a time, while incorporating into the computation the
interim results. This corresponds to using what is known as the Gauss-
Scidel mcthod Tor solving the nonlinear system of equations J - T (see
[BeT89a) or [OrR70}]).

For n-dimensional vectors J, define the mapping 7 by

(1) = wmin | g(Lou) (12/“,(11)./(./) (3.11)

ucli(l) 1
J=

and, for ¢ =2,...,n,

¢ -1 "

() = n;i,](x) gli,u) +a E P () (FETY(j) + o E pi, () J())
He ¢ .
g1 J=i

(3.15)
In words, (I.7)(i) is computed by the saune equation as (TJ){(2) except that
the previously calealated values (F7)(1), ..., (FJ)(i — 1) arc uscd in place
of J(1),....J(i — 1). Note that the computation of F.J is as casy as Lhe
computation of T (unless a parallel computer is used, in which ease the
compittation of T/ may potentially be obtained much faster than £.7; see
[Tsi8Y], [BeT9ia) lor a comparative analysis).
Consider now the value iteration method whereby we compute J, I9J,
I2j ... The following propositions show that the method is valid and
provide an indication of better performance over the carlier value iteration
method.

Proposition 3.2: Let J, J/ be two n-dimensional vectors. Then for
any k=0,1,...,

111;\.‘(]([«‘1\:,/)(1‘,) — (PRI < of max|J (i) - /’(1)] (3.10)
S €S

Furthermore, we have

(FJ*)(i) = J*(i), €8, (3.17)
l (ERD () = 000, ies. (3.18)

See. 1.3 Finite-State Systems  Computational Methods 29

Proof: It is sullicient to prove L. (3.16) lor & = 1. We have hy the
definition of 2 and Prop. 2.4

(D) = )W) = amax] ) )]
Also, using this inequality.
{(I71)(2) = (FIY)] = amax{ [(FI)(1) — (10D, ]1(2) - 7(2)]

|/ () — ()]}
< rrmnx|.](i) - .]’(i)|.
tes

Proceeding sinilarly, we have, for every @ and § < i,
(7)) — () G)] < o ums,\".l(ll) —J'(d)].
e§

50 Eq. (3.16) is proved for & = 1. The equation FJ* = J* follows from the
definition (3.14) and (3.15) of /7, and Belhnan’s cquation J* = TJ*. The
convergenuce property (3.18) follows from Lqgs. (3.16) and (3.17). Q.E.D.

Proposition 3.3: 1If an n-dimensional vector J satisfics
J(&) <(TT)E) < J*4), i=1,...,n,
then

(TRE) < (PR <T@, i=1,.,m, k=12 (3.19)

Proof: The proof follows by using the definition (3.14) and (3.15) of F.
and the monotonicity property of T (Leinma 1.1).  Q.E.D.

The preceding proposition provides the wain motivation for cmploy-
ing the mapping F iu place of 7" in the value iteration method. The vesult
indicates that the Gauss-Seidel version converges faster than the ordinary
value iteration method. The faster convergence property can bhe substan-
tiated by further analysis (sce e.g., [BeT89a]) and has been conlirmed in
practice through extensive experimentation. This comparison is somewhat
misleading. however, heeause the ordinary method will normally he used
in conjunction with the crror bounds of Prop. 3.1, Oue may also cruploy
crror bounds in the Gauss-Seidel version (see Exercise 1.9). However. there
is no clear superiority of one method over the other when hounds are in-
troduced. Furtherore. the ordinary method is better suited for parallel
computation than the Gauss-Scidel version.
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We note that there is a move flexible form of thie Gauss-Seidel miethod,
which seleets states incarbitrary order to updade their costs. This method
maintains an approximation J to the optimal vector J*, and at each itera-
tion it selects a state @ and veplaces S (7) by (T1)(7). The remaining values
J0j)s J # i, are left inchanged. The choice of the state i at eacl iteration
is arbitravy. exeept for the restriction that all states are selocted infinitely
often. This method is an example of an asynchronons ficed point iteration
and can he shown to converge to J* starting from any initial /. Analvses
of this type of method are given in [Ber82al, aud in Chapter 6 of [BeT89al:
see also Bxercise 1.15.

Generic Rank-One Corrections

We may view value iteration coupled with the error bounds of Prop.
3.1 as o method that makes a correction to the results of value iteration
along the unit veetor . 14 is possible to generadize the idea of correction
along a fixed veetor so that it works for any type of convergent lincar
iteration.

Let ws consider the case of a single stationary policy fo and an iteration
ol the form .J .= I°J, where

P =y, + Q.

tere, Q) is o matrix with cigenvalues strictly within the unit circle, and
Iy is & vector such that

Sy =1,

An example is the Ganss-Seidel iteration of Section 1.3.1, and some other
examples are given in Ixercises 1.4, L5, and 1.7, and in Scetion 5.3. Also,
the valne iteration method for stochastic shortest path problems and a
single stationary policy, to be discussed in Section 2.2, is of the above
forn.

Consider in place of J 1= [7J, an iteration of the form

J = P,

where J is related to J by

J=J+A3d.
with d a fixed vector and 4 a scalar to be selected in some optimal manuer,
I particular, consider choosing 4 by minimizing over «

[/ + v = F(+ )|,

which, by denoting

L= Qud,
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can be written as

(R A I VA

By setting to zero the derivative of this expression with respect to 4. it is
straightforward to verily that the optimal solution is

(o =2y~ )
d =zl

i

Thus the iteration J := I°J can he written as
J o= AL

where

MJ = FJ+75z.

We note that this iteration requires only slightly more compitation than
the iteration J := F.J. since the veetor 2 s computed once and the coni-
putation of 3 is simple.

A key guestion of course is under what circumstances the iteration
J = M.J converges faster than the iteration J ;= F.J, and whether indeed
it converges at all to J,. It is straightforward to verify that in the case
where (0 = ol and d = ¢, the iteration J := AJ can be written as

n
v

ST 2 (T @ = T@D)e,

i=1

Ji=T0 4

[compare with Eq. (3.12)]. Thus in this case the iteration J := A7(./) shilts
the result 7,7 of value iteration to a vector that lies somewhiere in the
middle of the error bound range given by Prop. 3.1, By the result of this
propusition it follows that the iteration converges to /.

Generally, however. the iteration J = A1.J need not converge in the
casc where the direetion veetor d is chosen arbitrarily. 1f on the othier hand
d is chosen 1o he an cigenvector of Qy,, convergence can be proved. This
is shown in Excrcise 1.8, where it is also proved that if d is an cigenoee-
tor corresponding to the dominand cigenoalue of Q0 (the one with largest
modulus), the convergence rate of the iteration J := M.J is governed by the
subdominant cigenvalue of Q. (the one with sccond largest modulus). One
possibility for finding approxinmately such an eigenvector is to apply F a
sufficiently large munber of times to a vector J. lu particular, suppose that
the initial crror J — J;, can he decomposed as

"

J—=dy= ZEA/"J'

=1

for some scalars &, ... Sy where ey iy, are eigenvectors of Q. and
A, ..oy Ay are corresponding cigenvalues,  Suppose also that Ap is the
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wiigre dominant eigenvalue, that is, [A,] < [A(] for j = 2,... . n. Then
the difference £+ — 70 ] is nearly equal to & (/\[l"+l — Aey for targe &
and can be used to estimate the dominant cigenvector ¢, i order to decide
whether & has been chosen large enough, one can test to see if the angle
between the successive differences 20V — (08 ] and 14 - '8 L s very
siall; il this is so, the components of A1) — I8 ] along the cigenvectors
Covon. e, st also e very small. (For a more sophisticated version of
this argument, see [Ber93], where the generie rank-one correction method
is developed in more general form.)

We can thus consider a two-phase approach: o the first phase. we
apply several times the regular iteration J := F.J hoth to improve onr esti-
mate of J and also to oblain an estimate d of an cigenvector corresponding
to a dominant cigenvalie; in the secoud phase we use the modified iteration
J = MJ that involves extrapolation along d. It can be shown that the
two-phase method converges to J, provided the error in the estimation of
d is small enough, that is, the cosine of the angle hetween d and Q,,d as
measured by the ratio

(1) — Fl=t ) (k=1 ] — k-2 )
FR — Ik gL k= () — B2 |

|

is sufficiently close to one.

Note that the computation of the first phase is not wasted sinee it uses
the iteration J 1= F.J that we are trying to accelerate. Furthermore, since
the second phiase involves the caleulation of £.7 atl the carrent iterate J, any
error bounds or termination criteria based on £/ can be used to terminate

the algorithm. As a result, the same finite termination mechanisin can be
used for botl iterations J := I7J and J := ALJ.

One difliculty of the correction method outlined above is that the
appropriate vector d depends on @, and therefore also on jr. In the case
of optimization over several policies, the mapping F is defined by

(PN = win b))+ g (I, i=1n (3.20)
J=1

nel/ (1)

One can then use the rank-one correction approach in two different, ways:

(1) Teratively compute the cost vectors of the policies generated by a
policy iteration schieme of the type discussed in the next subsection.

(2) Guess at an optimal policy within the first phase, switch to the second
phase, and theu return to the first phase if the policy changes “sub-
stantially”™ during the second phase. In particular, in the first phase,
the iteration J 1= I'J is used, where I7 is the nonlinear mapping of
[q. (3.20). Upon switching to the second phase, the vector z is taken
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to be equal to Quxd, where p* is the policy that attains the mininnm
in Iq. (3.20) at the time of the switel, The second phase consists of
the iteration

Jo=MJ=FJ+ 3z,

where £ is the nonlinear mapping of 15q. (3.20), and 3 is again eiven
tal l i O o

by

(d — z)’(l"./ — ./)

7= T
ZERE

To guard against subscquent changes in policy, which induce cor-
responding changes in the matrix Q+, one should ensure that the
uicthod is working properly, for example, by recomputing o if the
policy changes and/or the crror [[F7J — J| is not reduced at a sat-
islactory rate. This method is generally effective because the value
iteration method typically finds an optimal policy weh hetore it finds
the optinal cost vector,

It should be mentioned, however, that the rank-one correction method
is ineflective if there is litte or no separation between the dominant and
the subdominant cigenvalue moduli, both because the convergence rate of
the method for obtaining d is slow, and also because the convergence rate
of the modified tteration J == ALJ is not much faster than the one of the
regular iteration J := £7J. For such problems, oue should try corrections
over subspaces of dimension larger than one (sce [Ber93], and the adaptive
aggregation and multiple-tank correction methods given in Scction 1.3.3),

Infinite State Space — Approximate Value Iteration

The value iteration method is valid nuder the assumptions of Prop.
2.1, s0 it is guaranteed to converge to J* for problems with infinite stale
and control spaces. However, for such problems, the method may be -
plementable only through approximations. In particular, given a [unction
J, one may ouly he able to caleulate a function J such that

Lax [J(E) = (T0) ()] < . (3.21)

e

where ¢ is a given positive scalar. A similar situation may occur even
when the state space is finite but the muaber of states is very large. Then
instoad of calevlating (T T) () for all states v, one may do so only for some
states and estimate (77)(x) for the remaining states & by sowe form of
interpolation, or by a least-squares error Gt of (7)) with a nction
from a suitable parametric class (compare with the discussion of Section
2.3). Then the function J thus obtained will satisfy a relation such as
(3.21).
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We are thus led to consider the approximate value iteration niethod
that generates asequence {4 satisiving
wax [ () = (Te) ()] < o, k=0,1,... (3.22)
resy
starting from an arbitrary bounded function Jy. Generally, sueli a sequence
“converges” to J* to within an crror of /(L ~ a). To sce this, note that

Eq. (3.22) yiclds
TJy —ce < .J < T Jy+ ce.

By applying 7" to this relation, we obtain
T2Jy — ace <TJp < T2y + acce,
s0 by using Eq. (3.22) to write

’['./| - i ,/2

IA

Ty -t e

we have

’1‘2./() - ((l + (\’)(’ E ./2

IA

T2Jy + (1 + a)e.

Proceeding similarly, we obtain for all A > 1,

Th-ty—e(l +a-+- ok Ve < T, <TH U+ c(l+a+ -+ akb—1)e
By taking the limit superior and the limit inferior as & — oo, and by using
the fact limg .o, 7% 0y = J*, we sce that

«

Jr -

o < li,‘m infJp < limsup Jp < .J* + c.

1 —a 0 PR 1—

[t is also possible to obtain versionus of the error bounds of Prop. 3.1
for the approximate value iteration niethod. We have from that proposition

rn 8] . . E .
Pl = e in (P ) () = Ji(e)]e <
O

< T+ 1 111515[(']‘-/;,-)(.1') - JL-(-")]"-
RASH

(¢}

By using Eq. (3.22) in the above relation, we obtain

Jy o — - e uliu[,/;‘.,“(.r) + ¢ — ./k(‘r)](" < .J*

—  reES

0
< gy ee+ —a 1‘11&\ [./;.,H(:r) +— ,/,‘,(_I;)](,’
or
+aminges| e () = (e
gy = Csl[ji:( L )!(’f-/*
4 amax,os | e (0) = Ju
§~/l.-;l+ ¢ .,s[IH( ) L( )]p

I -a
These bonuds hold even whien the state space is infinite because the bounds
of Prop. 3.1 cau be shown for an iufinite state space as well. However., for
these hounds to be uselul, one should know e,
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1.3.2 Policy Iteration

The policy iteration algorithm generates acsequence of stationary poli-
cies, cach with imiproved cost over the preceding one. Given the station-
ary policy g, and the corresponding cost function J,. an improved policy
(78,70, . ..} s computed by minimization iu the DP equation corresponding
to J,.. that is. T/, = TJ,,, and the process is repeated.

The algorithin is based on the following proposition.

Proposition 3.4: Let p and 7i be stationary policies such that TrJ,, =
TJ,., or equivalently, fori=1,... n,

g(i, (i) +a Z]}jj (7(i)) 1 (5) = ugll'}l(li) glé,u) + O,Z])ij(’ll.)./ﬂ(_j)

Jj=1 J=1

Thenu we have

(i) < J i), i=1,...,m. (3.23)

Furthernore, if j¢ is not optimal, strict incquality holds in the above
cquation for at least one state i.

Proof: Since J, = T),.J, (Cor. 2.2.1) and, by hypothesis. T, = T, we
have for cvery 7,

S0y = gl (D)) +a Yy (1)) )
J=i

g +a D> py (D) ()

v

= (1) (0)-

Applying repeatedly 13 on both sides of this inequality and using the imono-
tonicity of 7% (Lemma 1.1) and Cor. 2.1.1, we obtain

I ok SN T
Je > Tq0, > > I}..I,, > > A\ln.n\ l;, Jy = T

proving Lq. (3.23).

I J, == Jz then from the preceding relation it follows that ./, -
Tz, and since by hypothesis we have 154, = T4, we obtain J, = T'J,,.
implying that J, = J* by Prop. 2.2, Thus ¢ must be optimal, Tt follows
that if g is not optimal, then Ji(i) < J, (7) lor some state i, Q.E.D.




36 Intinite Horvizon  Discounted Problems Chap. |

Policy Iteration Algorithm
Step 1: (Initialization) Guess an initial stationary policy ;0.

Step 2: (Policy Evaluation) Given the stationary policy g, com-
pute the corresponding cost function Jyx from the lincar system of
equations

([ bt (.k[)llk)J”k = yltk'

Step 3: (Policy Improvement) Obtain a uew stationary policy
1h L gatisfying
TﬂkHJ,,_k = TJ“k.

If '//t"" = T.]ﬂk stop; else return to Step 2 and repeat the process.

Since the collection of all stationary policies is finite (by the finite-
uess of § and C) and an improved policy is generated at every iteration,
it follows that the algorithm will find an optimal stationary policy in a
finite number of iterations. This property is the main advantage of pol-
icy iteration over value iteration, which in general converges in an infinite
number of iterations. On the other hand, finding the exact value of d .k
in Step 2 of the algorithin requires solving the system of linear equations
(r - (.v[’“k-).]/lk = g,&. The dimension of this systew is equal to the num-
ber of states, and thus when this number is very large, the meshod is not
attractive.

Figure 1.3.4 provides a geometric interpretation of policy iteration
and compares it with value iteration.

We note that in somne cases, one can exploit the special structure of
thie problem at haud to accelerate policy iteration. For example, somctines
we can show that if ¢ helongs to some restricted subset A7 of admissible
control functions, then J, has a form guaranteeing that 7@ will also belong
to the subset AL In this case, policy iteration will be confined within
the subset A7, if the initial policy belongs to M. Furthermore, the policy
evaluation step may be facilitated. For an example, see Exercise 1.14.

We now demonstrate policy iteration by means of the example con-
sidered carlier in this section.

Example 3.1 (continued)

Let us go through the caleulations of the policy iteration method:

Initialization: We sclect the initial stationary policy
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Figure 1.3.4 Geometric interpretation of policy iteration and value iteration.
Each stationary policy s defines the linear function Gp + oD d ol the vector
and T.J is the piccewise linear function ming g, + ol The oplimal cost J
satisfies J* = T'J*. 50 it is obtained from the intersection of the graph of 7] and
the 45 degree line shown. The value iteration sequence is indicated in the top
figure by the staircase construction, which asymiptotically leads to J*. The policy
iteration sequence terminates when the correet linear segment of the graph of T.J
(i.c., the optimal stationary policy) is identitied, as shown in the bottom figure,
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Policy Evaluation: We obtain J,0 through (he equation Jo=T,0d0 or
cquivadently, the Hoear systemn of equations

Jo(1) = g(1, u') + (npll(u')./“n(l) + npu(u,l).lﬂn(Z).

I 0(2) = g(2, u?) + apn (‘u,l)‘),lwl,(l) -+ rx,;z-_,(uz)./“u(‘.Z).

Substituting the data of the problem, we have

3 1
.I“n(l) =2 F0.9. »i . .I“[;(l) +0.9- -l . ./Nu(z),

i
Juo(2) = 340092 J0(1) £0.9- 5 0(2).

Solving this system of lincar equations for J0(1) and J0(2), we obtain

Policy lmprovement: We now find p' (1) and g (2) satislying T =
T 0. We have

s

1
(T',0)(1) = min ¢ 2+ 0.9 (I S2012 4 Al -‘25.9(5) ,

[ 3
05409 (71 201247 s.s)(;)
= min{21.12,23.15} = 23.45,

3 1
(1,0)(1) = min { 1 +0.9 (T 2124 -25.0(;) ,

[ —

3
3409 ( S22 4+ 1 25.5)()')

= min{23.12,25.95} = 23.12.

The minimizing controls are

Policy Evaluation: We obtain J 1 through the equation Ja =T,

Ja = g(bd®) + apy l(lnz).llll (1) + ()1;12(112)./“| (2),

I

J 2 (1) = g(2, u' ) 4 apa (u')d

M

1(3) + apu(u! ), 1(2).

n
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Substitution of the data of the problem and solution of the systein of cquations
yiclds
./“1 (I) ~ 7.33, ./“1 (l) ~ T.AGT.
Policy Improvement: We perform the minimization required to lind '/'.1“1 :
. . 3 |
(1 S = min ¢ 2409 <—l ST+ [ 7.67),
[ 3
0.5 4-0.9 ( B 5 T B t.(r7)
i A
= min{8.67,7.33} = 7.33,
. . R S,
(7 'Iu‘ )2)=min< 1 +0.9 (—1 ST+ 1 1.()1) ,
¢ .
, | S I
3 F0.9 T .33+ 1 7.07
= min{7.67.9.83} = 7.67.
Hence we have Joo=T.J 1. which implies that p!is optimal and =0
) =t 10(2) =4, JE) =733, J7(2) > T.67.
Modified Policy Iteration
When the mumber of states is large, solving the lincar system (I —
(vl’“k)./”;.- = g, in the policy evaluation step by direct, methods such as
Gaussian climination can be proliibitively time-consiuming. One way to
get around this difficulty is to solve the linear svstem iteratively by using
value iteration. In fact, we may consider solving the system only approx-
imately by excenting a limited munber of value iterations. This is called
’ the modificd policy weration algordhm.
To formalize this method, let Jy be an arbitrary n-dimensional vector.
Let mg.my. ... be positive integers, and let the veetors Ji.Jy, ... and the
stationary policies pig. gty ... be detined by
Ty = Tl o =T 001
’
Thus, o stationary policy g# is defined from Jj; according to T“k Jo =T,
¥

and the cost J 15 approximately evaduated by g — 1 additional value
iterations. vielding the veetor Jiy . which is used in twrn to deline g+t L,
We have the loHowing:
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Proposition 3.5: Let {Ji} and {j2x} be the sequences generated by
the modified policy iteration algoritiun, Then {Jy} converges Lo Jr.
Furthermore, there exists an integer & such that for all k >k, p* is
optimal.

Proof: Let r be a scalar such that the vector 70, delined by Jo = Jo+ re,
satisfies T o < Jo. [Any scalar r snch that 111;1x,[(TJ0)(i) — ](,(i)] <
(1 a)r has this property.] Define for adl Aoy 00T Then, it cau
be seen by induction that for all k aud e =0, 1, .. iy, t.h(: vchms 1""‘ Ji,
and I"" Ji dilfer by the multiple of the init veetor o/ttt "’” It
Iollow.s that if Jy is veplaced by Jy as the starting vector in the algorithin,
the same sequence of policies {71} will he obtained; that is, we have for all
e B B
T“;,-J;,., =T/

Now we will show Lhat, for all & we have Sy < TFJg. Indeed, we have
T“u.]() =T.Jy < Jg, rom which we obtain
’1":’,./(, < 1""*' Ju, mo=12...
so that

T’,171 :’I‘j[ S’l 1“/‘ = 7‘”]“Fl /() < ]""‘)“4/(} - 1] < [ (] /() = F/()

This arguinent. can be continued to show that for all &, we have J; <
TJy .y, so that

'Ik S 7”"7(;, lﬂ = (), |

[P

On the other hand, since 707y < Jy, we have Jr < Jy, and it follows
that application of any nuber of mappings of the form T, to Jy produces
functions that ave hounded from bhelow by J+0 Thus.

I <y < TR . k=0.1....

DBy taking the imit as b -~ we obtain limg o (i) = J7(0) Tor all 4,
amd smee loa,, oG/, 0 Oowe oban

Llim DS AN =1 .. n.

Since the mnber of stationary policies is tinite. there exists an ¢ > )
such that il a stationary policy g satisties

ma\[/ (iy=J(i)] <

~|
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then g is optimal. Now et & be such that for all & > & we have

A (nm[u'./k)(i) ()] min[(10)0) JW)J) -
I —a ' i

Then from Eq. (3.10) we see that for all & > &, the stationary poliey pk

that satisfies Lo =Ty is optinl,  Q.E.D.

Note that if my = 1 for all & in the moditicd policy iteration algorithn,
we obtain the value iteration method, while if 1y, = oo we obtain the policy
iteration method, where the policy evaluation step is porformed Heratively
by means of value iteration. Analysis aud compntational experience suggest
that it is usually best to take my larger than 1 according to some henristic
scheme. A key idea here is that o value iteration involving a single policy
(evaluating T}/ for some jo aud J) is much less expensive than an iteration
involving all policies (evaluating T°J for some /), when the number of
controls available at each state is large. Note that error bounds such as
the ones of Prop. 3.1 can be used to improve the approximation Process.
Furthermore, Gauss-Seidel iterations can be used in place of the usual value
iterations.

Infinite State Space — Approximate Policy Iteration

The policy iteration method ean be defined for problems witl infinite
state and control spaces by means of the relation

Toperid e =TT, h=0,1,....

The proof of Prop. 3.4 can then be used to show that the generated se-
quence of policies {p*} is improving in the sense that i <k for all
k. However, for infinite state space problems, the p()|l(\ ‘\'llll(lll()ll step
and/or the poll(,_\j Improvement, step of the niethiod may be impletentable
ouly through approximations. A similar situation may occur even when
the state space is finite but the munber of states is very large.

We are thus led to consider an approximate policy iteration method
that gencrates a sequence of stationary policies {g%} and a corresponding
sequence of approximate cost functions {Ji} satisfyving

max [y () = J e ()] <6, h=01,... (3.2.1)
res

and
mm(l(l bt Dy = (00 < e [ I N (13.99)
IC\
where ¢ and e are some positive scalars. and ;9 is an arbitrary station-
ary policy. We call this the approvimate policy iteration algorithmn. The
following propesition provides crror bounds for this algorithn,
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Proposition 3.6: The sequence {4} generated by the approximate
policy iteration algorithm satislics

lilusupn_lgg(.luh () = I () < (3.26)

hk—ooo <€ 1 - a)'z '

Proof: From Lqgs. (3.24) and (3.25), we have for all &

1
T,,M |./“A- — e < T,,I.v+l Jip < T + e,

where e = (1, 1,..., 1) is the unit vector, while from Bq. (3.21), we have
for all &
TJ < '['.//,L- + ade.

By combining these two relations, we obtain for all &

Tonivd o < T+ (€4 208)c < Towd e+ (C+200)c. (3.27)

From Eq. (3.27) and the equation T« ok = J e we have

Toavidw < e 4 (4 200)c.

By subtracting frowm this relation the equation 7;’;,.+1.]ILA»+1 = Jkt1, we
obtain

’1;‘/‘-‘ 1 ./IIL- — ’];‘;, t1 ./I'L- [ < Jl'k e ./“Lr+| + (( + 2(\(‘))(’,

which can bhe written as
.IIIL L 4/”;‘- < ol 4+ (c+ 200)e, (3.28)
where [ is the function given by
Fipla) = a N d o )(0) = a7 (T v i) ()

= E,,,{JI,A o (e bt ), w)) - gk (f (&, gk 1), w0)) }.

Let,
Sk = 1}}{'«71‘;'}’(./,,“1(;1') = ().

Then we have Py () << & for all o 8§, and . (3.28) yields

& < ay + o 4 20,

or
+ 200
¢ < LE=00 (3.29)

| —a
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G = max(u ) = J* ().

From L. (3.27) and the relation

11151.\’((1‘.]“1\«)(.1') - J*(.IT)) < 0k,

b N
which follows from Prop. 2.4, we have
Uy "I/"" ST+ (4 200)c < T+ ag + (e 4 200)e.
We also have
7],“ l-/“L- =Jp+ T,,M ! '/,,A» - T,,A--; I J,,m I
and by subtracting the last two relations, we obtain
'/,,’-' = Jr S ae + aly 4+ (c 4 200)c,

From this relation we see that

Corl < aly +aéy + €+ 206,
By taking the limit superior as & — oo and by using Eq. (3.29), we obtain

€+ 20d
— + ¢ + 206,
\

(} —a)limsup(p <o

h— oo

This relation simplifies to

. €+ 200
lmsup § < ——,
kh—so00 (1 - ”)“

whicli was to be proved. Q.E.D.

Proposition 3.6 snggests that the approximate policy iteration niethod
makes steady progress up to a point and then the iterates J o oscillate
within a neighborhood of the optinnun J*. This behavior appears to be
typical iu practice. Note that for & = 0 and ¢ = 0, Prop. 3.6 shows that
the cost sequence {/,« } generated by the (exact) policy iteration algorithm
converges to J* even when the stale space is infinite.
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1.3.3 Adaptive Aggregation

Lot us now consider an alternative to value iteration for perform-
ing approximate evaluation of a stationary policy g, that is, for solving
approximately the system

Sy =Ty,

This alternative ts recommended for problems where convergence of value
iteration, cven with error bounds, is very slow. The idea here is to solve
instead of the system J;, = T, another system of smaller dimension,
which is obtained by lunping together the states of the original systen
into subsets S, S2,..., 9, that can be viewed as aggregate states. These
subsets are disjoint and cover the entire state space, that is,

S=5US5U---US,,.

Consider the o x o matrix W owhose ith cohunn has unit entries at coor-
dinates correspouding to states in S, and all other entries equal to zero.
Consider also an mxon matrix @ such that the ith row of Q is a probability
distribution (q.,...,qn) with ¢,s = 01l s ¢ S;. The structure of @ implics
two usclul propertics:

(a) QW =1.

(h) The matrix
R=QPW

is an X o transition probability matrix. In particular, the ijth
component of 7 is equal to

Ty = Z is Z pst (12(5)),

sCS, es,

and gives the probability that the next state will belong to aggregate
state S, given that the current state is drawn from the aggregate
state S, according to the probability distribution {qi, | s € S,}. The
transition probability matrix 2 defines a Markov chain, called the
aggreqate Markov cham, whose states are the m aggregate states.
Figure 1.3.5 illustrates the aggregate Mavkov chain.

Apgregate Markov chains are most uselul when their trausition be-
havior captures the broad attributes of the hehavior of the original chain.
This is generally true if the states of cach aggregate state are “similar”™
some sense. Let us deseribe one such situation. In particnlar, suppose that
woe liave an estimate o of J, and that we postalate that over the slates s
of coery aggregale stale Si the variation J,(s) — J(s) is constant. This
amounts to hypothesizing that for sonme m-dimensional vector iy we have

Jy— =1y

Sec. 1.3 Pinite-State Svstems  Computational Methods Ah

Figure 1.3.5 [llustration of the aggregate Markov chain. In this example. the
aggregate states are Sy = {1,2,3}, 2 = {1,5}, and 53 = {6}. The matrix W
has cohomms (1,1, 1,0,0,0)7, (0,0,0,1,1,0), and (0,0,0,0,0, 1), In this exaanple,
the matvix @ is chosen so that each of its rows defines o uniform probability

distribution over the states of the corresponding aggregate state. Thus the rows of
Qare (1/3,1/3,1/3,0,0,0), (0.0,0,1/2,1/2,0), and (0,0,0,0,0, 1). 'T'he aggregate
Markov chain has transition probabilities ry; = %([)21 +pug), T = %(p],l + p3a).
ria o= 00 rap = 2 (paz + paa), o2 = %IMS‘ roy = .Elluh rar = 00 rag = pre.oand
33 = 0. B

By combining the equations T J = gy + ol and g, = (I — ol7,)J,. we
have

U —al)Jp—d)="T - J.

This is the variatioual form of the equation J, = T}/, discussed carlier in
connection with error bounds in Section 1.3.1, and can be used equally well
for evaluating ./,. Let us muldtiply both sides with @ and use the equation
Ju —J =Wy We obtain

QU —al )Wy == Q('l',,.l - ./).
which, by using the equations QW = I and R = QI 1V, is written as
({ —aR)y = Q(’I’,,.l - ,/).
This equation can be solved for g, since R is a trausition probability matrix
and thercfore the matrix 7 — o R is iuvertible, Also, by applying T}, to both
sides of the equation J,, = .J 4+ Wy, we obtain
S =TT d, =Ty 4 oD,y

We thus conclude that, il the variation of J,(s) — J(s) is roughly con-

stant over the states s of cacli aggregate state, then the vector T, J+a P 1y

is a good approximation for J,. Starting with J. this approximation is oh-
tained as follows.
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Aggregation Iteration
Step 1: Compute T}, J.

Step 2: Delinecate the aggregate states (ie., define 1) and specify
the watrix Q.

Step 3: Solve for y the system
(I —aR)yy=Q(T,J —J), (3.30)
where B = QI W, and approximate J, using

J=T,J+alWy. (3.31)

Note that the aggregation iteration (3.31) can be equuivalently writteu
as

Ji=1u(Jd + W),

so it differs from a value iteration in that it operates with T, on J -+ Wy
rather thau /.

Solving the systemn (3.30) in the aggregation leration has an inter-
esting interpretation. I can be seen that i is the a-discounted cost vector
corresponding to the trausition probability matrix I? and the cost-per-stage
vector Q(7y,./ — J). Thus, calculating y can be viewed as a policy evalua-
tion step for the aggregate Markov chain when the cost per stage for cach
aggregate state S, is equal to

ST an (T D)) = J(9)).

SES,

which is the average 73,0 — J over the aggregate state S accordiug to the
distribution {g,s | s € 5,}. A key attractive aspeet of the aggregation
iteration is that the dimension of the system (3.30) is m (the number of
agpregate states), which can be mnel smaller than # (the dimension of the
system Jy, = Ty, J, arising in the policy evaluation step of policy iteration).
Delineating the Aggregate States

A key issue is how to identify the aggregate states Sp,...,.5, ina
way that the ervor J, — J is of similar magnitude in cacli one. One way
to do this is to view 7T},.J as an approximation to .J,, and to group together
states i with comparable magnitudes of (T,)(7) = J(i). Thus the interval
[c. €], where

¢ = 111_in[('[‘,,.7)(i) - .l(i)],

1]

¢ = m:tx[(T,,J)(lT) - J()],

ol
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is divided iuto m segments and membership ol a stale 7 inan agpregate
state is determined by the segment within which (75,.0)(i) (i) lies. By
this we mean that for cach state i we set 7 € Sy il (1,.)(8) - J() = ¢ and
we sot

Pesy il (D) = JG) - e - (- D C(0.9).

where

This choice is based on the coujecture that, at least near convergence.
(Tud}i) — J() will be of comparable magnitude for states @ for which
Ju(@) — J(i) is of comparable magnitude. Analysis and experimentation
given in [BeC89] has shown that the preceding scheme often works well
with a small number of aggregates states m (say 3 Lo 6), although the
propertics of the method are yet fully understood.

Note that the aggregate states can change from one iteration to the
next, so the aggregation schieme “adapts” to the progress of the computa-
tion. The criterion used to delincate the aggregate states does not exploit
any special problem structure. In some cases, however, it is possible to take
advantage of existing special structure and modify accordingly the moethod
used to form the agpregate states.

Adaptive Aggregation Methods

It is possible to construct a number of methods that caleulate J, by
using aggregation iterations. Oune possibility is simply to perforin a se-
quence of aggregation iterations using the preceding method to partition
the state space into a few, say 3 to 10, aggregate states. This method
can be greatly improved by interleaving cach aggregation iteration with
multiple value iterations (applications of the mapping 7), on the current it-
erate). This is recommended based on experimentation and analysis given
in [BeC89], to which we refer for further discussion.  Au interesting er-
pirically obscrved phenomenon is that the error hetween the iterate and
Ju is often increased by an aggregation iteration, but then unnsually Jarge
improvements are made during the next few value iterations. This sug-
gests that the munber of value iterations lollowing an aggregation iteration
should be based on algorithinic progress; that is, an aggregation iteration
should be performed when the progress of the value iterations becones rela-
tively small. Some experimentation may be needed with a given problem to
determine an appropriate criterion {or switching from the value iterations
to an aggregation iteration.

There is no proofl of convergence ol the scheme just described. On the
basis of computational experbentation, it appears reliable in practice. Its
convergence nonetlicless can be guaranteed by introducing a feature that
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enforees some irreversible progress via the value iteration wiethod following
an aggregation iteration. In particular, one may calceulate the error hounds
of Prop. 3.1 at the value iteration Step 1, and impose a requirement that
the subsequent. aggregation iteration is skipped if these error hounds do
not, improve by a certain factor over the bounds computed prior to the
preceding aggregalion Heration.

To tllustrate the cffectiveness of the adaptive aggregation method,
consider the three deterministic problems deseribed earlier (ef. Fig. 1.3.3),
and the performance ol the wethod with two, three, and four aggregate
states, starting from the zero function. The results, given in Fig. 1.3.6,
should be compared with those of Fig. 1.3.3.

It is intuitively clear that the performance of the aggregation method
should imiprove as the number of aggregate states increases, and indeed the
computationral results bear this out. The two extreme cases where m = n
and m =1 arc ol interest. When i = n, cach aggregate state has a single
state and we obtain the policy iteration algorithim. When m = 1, there is
only one aggregate state, W is equal to the nnit vector ¢ = (1, ..., 1), and
a straightlorward caleulation shows that for the choice Q@ = (1/n, ..., 1/n),
the solution of the aggregate system (3.30) is

n

s Y (D) = ).

v n(l —a —

From this cqnation (nsing also the fact Dy = ¢), we obtain the iteration

n
(e}

.p:nJ+RT:3§]men~ﬂmm (3.32)

[

which is the same as the rauk-one correction formula (3.12) obtained in
Sceetion 1301 and amounts to shifting the result T,J of value iteration
within the error bound range given by Prop. 3.1. Thus we may view the
aggregation schiciie as a contimumun of algorithms with policy iteration and
value iteration (coupled with the error bounds of Prop. 3.1) included as the
two extreme special cases.

Adaptive Multiple-Raunk Corrections
One may observe that the aggregation iteration
J=T (01 W),
amounts to applying 7, to a correction of J along the subspace spanned
by the columuns of W Onee the matrix 1V is computed based on the adap-

tive procedure discussed above, we may consider choosing the vector y in
alteruative ways. An interesting possibility, which leads to a generalization
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No. of aggregate | Pro L | Pt [ P2 | Pro2 | Pr.3 | Pr. 3
states a=9a0=991a=9a=90=90=.99

2 [ 13 9 9 83 H05H

3 1 1 3 3 61 367

B! 3 3 26 351

Figure 1.3.6 Number of iterations of adaptive apggregation methods with two,
three, and Tour apgregate states (o solve the problems of Fig, 1330 Fach vow of
Q was chosen to define a uniform probability distribution over the states of the
corresponding agpregate state,

of the rank-one correction method of the preceding subsection. is to select
y so that

7+ Wy =1+ 0y (3.33)

is minimized. By setting to zero the gradient with respect to g of the above
expression, we can verify that the optimal vector is given by

g=(2'Z)"'\2/(T,.J - J),
where Z = ({ — a P, )IV. The corresponding iteration then hecomes
J=T(J+Wg)=T,J+aP, .

Much of our discussion regarding the rank-one correction method also
applies to this generalized version. In puarticular, we can use a two-phase
implementation, which allows a return from phase two to phase one when-
cver the progress of pliase two is unsatisfactory. Furthermore, a version of
the method that works in the case of multiple policies is possible.

1.3.4 Liuear Programning
Since iy oa, TN = J* for adl J (cf. Prop. 2.1), we have
J<Ty = J < T =TJ~.

Thus J* is the “largest” J that satisfies the coustraint J < T'J. This
constraint can be written as a finite system of linear inequalitics

J() < gli,u) +a zl),.,(u).l(j). i=1.... ne e UQ).

J=1
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and delineates a polyvhedron in . The optimal cost vector J* s the
“northeast™ corner of this polyhedron. as ilustrated in Fig. 137, to pi-
ticular. J* (1), ... /(1) solve the following problem (in A.....\,):

nmaximize E A,

1CS

subject to Ay < g(i,u) +a Z["-i("’)/\-i‘ P=1oo o we i),
=1

where S is any nouempty subset of the state space S = (1,...,n). This is
a linear program with o variables aud as many as 1 X ¢ constraints, where
¢ 15 the maximmun muuber of elements of the sets U(7). As 1 inercases,
its solution becomes more complex. For very large noand ¢. the linear
prograwming approach can be practical only with the use of special large-
scale linear programming methods.

42)

J2)=92,u%) + 4P+ epaAuIN2)

JU=(7(1).J2)

J2)=g@,u")y+ oy

J1)

Figure 1.3.7 Lincar progranming problent associated with the discounted iufi-
nite horizon problem. The coustraint set, is shaded and the objective to maxiniize

is (1) 4+ J(2).

Examnple 3.1 (continued)

For the examnple considered carlier in this seetion, the linear progrannming
problem takes the form

maximize Ay + Ay
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. } | 3
subject to Ay <2409 ( A+ -l/\-)) A <054+09 (—Il-/\| + T)/\g) R

I 2

3 1 :
A <1409 (—I,\l + T/\'_?) A< 0 (le,\. 4 :\> .

Cost, Approximation Based on Lincar Progranmning

When the muber of states is very large or infinite. we may con-
sider finding an approxination to the optimal cost function. which can be
used in turn to obtain a (suboptimal) policy by mininiization in Bellman's
equation. One possibility is to approximate J* () with the Frear form

Hi

J(e,r) = Z Ty (), (3.34)

k=1

where » = (ri..... 1) is a vector of parameters, and for cacli state @,
wi () are some fixed and kuown scalars. This amonnts to approximating
the cost lunction J* () by a lincar combination of nr given functions wy, ().
where & =1,...,m. These functions play the role of a basis for the space of
cost function approximations .j(.IT.T') that can be generated with different
choices of 1 (sce also the discussion of approxinations in Section 2.3.3).

It is then possible to determine » by using .i(.r,r) in place of J* in
the preceding linear programuming approach. In particular, we compute r
as the solution of the program

maximize Z J(r,r)
res
subjoct to J(x, r) < gle.u) + a Zp,,-y(u,).i(y, P, eS8, uel(r).
yes

where S is either the state space S or a suitably chosen finite subset of 5.
and U () is cither U(x) or a suitably chosen finite subsct. of U (). Becanse
j(:z:, 1) is lincar in the parameter vector 1, the above program is linear in the
parameters 7y, ..., 7. Thus if m is small, the number of variables of the
lincar progran is simall. The nuniber of constraints is as large as s-¢, where s
is the number of elements of S and ¢ is the maxinunn uumber of clements of
the scts U(.z:). However, lincar programs with a simall number of variables
and a large munber of constraints can often be solved relatively quickly
with the use of special large-seale linear programuing methods known as
cutting plane or column generation methods (see c.g. [Dan63], [Ber95al).
Thus, the preceding linear programming approach may be practical even
for problems with a very large number of states.
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Approximate Policy Evaluation Using Lincar Programming

In the case of a very large or infinite state space, it is also possible
to nse lincar programming to evaluate approximately the cost, function J,
of a stationary policy g in the context of the approximate policy iteration
scheme discussed in Section 1.3.2. Suppose that we wishi to approximate J,,
by a function ](, r) of a given form, which is parameterized by the vector
= {(riy...,rm). The bound of Prop. 3.6 suggests that we should try to
determine the parameter vector » so as to minimize

111;1.\(].}(.:',7') - ,,(.L‘)!.

re s

From the error bounds given just prior to Prop. 3.1, it can also be seen
that we have

X
I —a res

J(eyr) - Ju(i)) < () - (7,,])(LI)|

max
RIch}

This motivates choosing r by solving the problen

J(w ) = (T J) (o, r)l7

min niax
roores

where S is cither the state space S or a suitably chosen finite subsct of S.
The preceding problem is equivalent to

minimize 2

subjeet to (e r) — gl n(r)) —a Z p‘,-.,,(/l,(.r)).](;l/, r) <z, veS.

nes

When J(,r) has the lincar form (3.34). this is a linear program in the
variables z and ry, o0 .

THE ROLE OF CONTRACTION MAPPINGS

Two key structural properties in DP models are responsible for most,
ol the mathematical results one can prove abont them. The first is Lhe
monotonicily property of the mappings T and T, (ef. Lenuna L1 in Section
[.1). This property is fundamental for total cost inlinite horizon problems.
For example, it forins the basis for the resulis on positive and negative DP
models to be shown in Chapter 3.
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When the cost per stage is bounded and there is discounting, however,
we liave another property that strengthens the effects of monotonicity: the
mappings T aud T, are conlraction mappings. In this section, we explain
the meaning and implications of this property. The material in this section
is conceptually very important, since contraction mappings arc present in
several additional DP models. However, the main result of this section
(Prop. 4.1) will not be used explicitly in auy of the proofs given later in
this book.

Let B(S) denote the set of all homuded real-valued functions on 5.
With every function J @ 5 — R that belongs to B(S), we associate the
scalar

7 = numl.l(.r)l. (1.1)
FreS

[As an aid for the advanced reader, we mention that the function || - || may
be shown to be a norm ou the lincar space 3(5), and with this norin B(S)
becomes a complete normed linear space [Luc69].] The following definition
and proposition are specializations to B(S) of a wore general notion and
result that apply to such a space (see, e.g., references [LiS61] and [Luc6Y]).

Definition 4.1: A mapping H : B(S) — B(S) is said to be a con-
traction mapping if there exists a scalar p < 1 such that
s~ HI|| < p|lJ = S|, for all J,J7 € B(S),

where || - || is the norm of Eq. (4.1). It is said to be an m-stage
contraclion mapping if there exists a positive integer m and some p < 1
such that

|\ Hmed — HmJ'| < plid = I, for all J,J' € B(S), (4.2)

where I denotes the composition of H with itsell m times.

The main result concerning contraction mappings is the following.
For a proof, see references [LiS61] and [Lue6Y)].

Proposition 4.1: (Contraction Mapping Fixed-Point Theo-
rem) 1f H : B(S) + B(S) is a contraction mapping or an m-stage
contraction mapping, then there exists o nnique lixed point of 1 that
is, there exists a unique function J* € B(S) such that

HJ* = J*.
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Furthermore, if J is any function in B(S) and II* is the composition
of 11 with itsclf & times, then

lim [[HET — || = 0.
k— o0

Now consider the mappings T and T}, defined by Eqs. (L) and (1.5).
Proposition 2.4 and Cor. 2.4.1 show that T and 7, arc contraction map-
piugs (p = a). As aresult, the convergence of the vahie tteration method to
the unique fixed point of T follows directly from the contraction mapping
theorem. Note also that, by Prop. 3.2, the mapping, I correspouding to
the Ganss-Scidel variant of the value iteration method is also a contraction
wapping with p = o, and the convergence result, of Prop. 3.2 is again a
special case of the coutraction mapping theorem.

STOCHASTIC SCHEDULING AND THE MULTIARMED
BANDIT

In the probleny of this section there are n projects (or activitics) of
which only one can be worked on at auy time period. Each project 7 is
characterized at time & by its state @), If project ¢ is worked ou at time k,
one receives an expected reward of B2 (el ), where a € (0.1) is a discount
factor; the state ¢, then evolves according to the equation

il 7 1s worked on at time &, (5.1)
where wy is a random disturbance with probability distribution depending
on ;. but not on prior disturbauces. The states of all idle projects are
unaflected; that is,

Ly = g, ),

Ay = o if i is idle at time A.
We assuine perfeet state information and that the reward functions Ri(+)
are uniformly bounded above and helow. so the problem comes under the
discounted cost framework of Section 1.2.

We assime also that at any time A there is the option of permanently
retiring from all projects, in which case a reward o*Af is received and 1o
additional rewards are obtained in the future. The retirement reward Af
is given and provides a parameterization of the probleny, which will prove
very uselul. Note that for A7 sufficiently small it is never optimal to retire,
therchy allowing the possibility of modeling problenis where retirement is
not a real option.

Scc. 1.5
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Stochastic Schoduling and the Nultiarmed Bandit !

The key characteristic of the problem is the independence of the
projects manifested iu our three basic assumptions:

1. States of idle projects remain fixed.

2. Rewards received depend only on the state ol the project enrrently
cngaged.

3. Only ouc project can he worked on at a time.

The rich structure implied by these asstunptions makes possible a
powerful mcthodology. Tt turns out that optimal policies liave the form of
an index rule; that is, for cach project i, there is a function m/ () such
that an optitnal policy at time A& s to

retire if

M > wax{mr ()}, (H.3a)
J

work on projeet i if

ne () = max{m(])} > AL (5.3D)

/

Thus m'(r]) may be viewed as an index of profitability of operating the
ith project. while M represents profitability of retivement at time k. The
optimal poliey is to exercise the option of maxinnn profitability.

The problem of this section is known as a wultiarmed bandit prob-
lem. Au analogy here s drawn between project scheduling and selecting
a scquence of plays on a slot machine that hias several arms corresponding
to diflerent Hut unknown probability distributions of payoff.  With cach
play the distribution of the selected arm is better identified, so the tradeott
here is between playing arms with high expected payoll and exploring the
winning potential of other arms.

Index of a Project

Let J{a. ML) denote the optimal reward attainable when the initial
state iIs & = (&, .., 0") and the retivement reward is AL, From Scction
1.2 we know that, for cach A, J(-, AT) is the unique bounded solution of
Bellman's equation

J(r, M) = max [;\], max L, M, .1)] , for all .,

where L/ is defined by

Li(x, M, .J) = R{(x") + o E{.](.x:‘,...

ur’

yalm b [ ) ettt L

The next proposition gives some useful propertics of J.
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Proposition 5.1: Let B = max; lll&XmiiRl((Ei)]. For fixed z, the
optitnal reward fuuction J(&, M) has the lollowing propertics as a
function of Al:

(a) J(x, M} is convex and monotonically nondccrcasing.
(b) J(x, M) is constant for M < —B/(1 — a).
(¢) J(&, M) = Al for all M > B/(1 ~ a).

Proof: Cousider the value iteration method starting with the function
Jo(e, M) — max |0, M.
Successive iterates are generated by
Jipr (o, A = max [1\[, ax Li(x, M, ./;,.)] . h=0,1,.... (5.6)
and we know from Prop. 2.1 of Section 1.2 that

v Jy (e, ML) = J(a, M), for all w, M. (5.7)

Cox
We show inductively that Ji.(a, A7) has the properties {a) to (c) stated in
the proposition and, by taking the limit as A — o0, we establish the same
properties for JJ. Clearly, Jo(x, M) satisfics propertics (a) o (¢). Assue
that Ji (2, M) satisfies (a) to (¢). Then from Egs. (5.5) and (5.6) it follows
that Jy i (x, M) is convex and inonotonically nondecreasing in M, since
the expectation and maximization operations preserve these propertics.
Verification of (b) and {¢) is straightforward, and is left for the reader.
Q.E.D.

Cousider now a problem where there is only one project that can be
worked on, say project i. The optitmal reward function for this problem
is denoted Ji(at, Af) and has the properties indicated in Prop. 5.1. A
typicas torm for Ji(a?, AT), viewed as a [unction of M for fixed ¢, is shown
in Fig. 1.5.1. Clearly, there is a minimal value mi(ré) of M for which
Ji(et, M) = M; that is,

m/ () = min{ M | Ji(ar, M) = MY, for all i, (5.8)

The Mmoction (i) is ealled the inder function (or siniply index) of project.
. W provides an indifference threshold at cach state; that is, me(e) is
the retirement reward for which we are indifferent between retiring and
operating the project when at state @/,

Our objective is to show the oplimality of the index rule (5.3) for the
index function defined by Eq. (5.8).

See. 15 Stochastic Schednling and the Moltiarmed Banddit !
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-BI(1-a) ’|o m(x'y  Bi(1-a) M
|~ _ 4 __
. T~ Optimal reward over

policies that never retire

Figure 1.5.1 Form of the ith project reward function J7 (e, M) for fixed o7 and
definition of the index m! (27).

Project-by-Project Retirement Policies

Consider first a problent with a single project, say project i, and a
fixed retirement reward A7, Then by the delinition (5.8) of the index. an

optimal policy is to

retive project ¢l () < M, {(5.9a)

work ou projeet i if ity > AL (5.9h)

In other words, the project is operated continuously up to the thue that
its state falls into the reléarcment set

Sio={uri | () < M}. (5.10)

At that time thic project is permanently retirved.

Consider now the multiproject problem for fixed retiremnent reward
M. Suppose at sonie time we are al state = (@, .o, 0n). Let us ask two
questions:

1. Does it make sense to retire (from all projects) when there is still
a project ¢ with state @ such that m(e') > M7 The answer is
negative.  Retiring when e (at) > M cannot be optinal, since if
we operate project i exclusively up to the time that its state o falls
within the retirement set. S7 of Eq. (5.10) and then retive, we will gain
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a higher expected reward. {This (ollows from the definition (5.8) of the
index and the nature of the optinal policy (5.9) for the single-project
problen

2. Does it ever make sense to work on a project @ with state in the
retirement set ST of Eq. (5.10)7 Intuitively, the auswer is negative:
it seems uulikely that a project unattractive enough to be retired if
it were the ouly choice would become attractive merely because of
the availability of other projects that are independent in the sense
assumed here.

We are led therefore to the conjecture that there is an optimal project-
by-project retivement (PPR) policy thiat permanently retires projects in the
sate way as if they were the only projoect available, Thus at cach tinie a
PPR policy, when at state o = («!, ..., 07),

permanently retires project i i aie s, (5.11a)

works on some project il ¢ SJfor some j, (5.11b)

where 57 is the ith project retirement set of L. (5.11). Note that, a PPR

policy decides about retirement of projects but does not, specify the project
to be worked on out, of those not yet retived.

The following proposition substantiates our conjecture. The proof is
lengthy but. quite simple,

Proposition 5.2: There exists an optimal PPR policy.

Proof: In view of Egs. (5.4), (5.5), and (5.11), existence of a PPR policy
is cquivalent to having, for all i,

M > Li(e ML), forall ¢ with a1 € 51, (5.120)
M < Li(e, ALY, for all o with a0 ¢ 7, (5.121)

where Liis given by
Lo Moy = By o o (et V(e ) e b e A
(5.13)

and J (e, M) is the optimal reward finction corresponding to « and AL,
The ith single-project optimal reward function Ji clearly satisfies, for
all i,
S ALY < J(ah oo e e v, A, (5.14)

since having the option of working at projects other than ¢ cannot decrease
the optimal reward. Furthermore, from the definition of the retirement set
St efl Ty (5.10)],

£ g St A< RiQr) + o g {0 (J1 (i wi), M)} (5.15)

w!

See, 15 Stochastic Schedulivgs and the Naltiarmed Bandit no
Using Eqs. (5.13) to (5.15), we obtain Eq. (5.121).

ttowill sullice to show 1. (5.124) for 7 1. Denote:
Lo— (te v The state of adl projects other than project 1.

J(x. M) The optimal reward function for the problent resulting after
project 1 s permauncently vetired.

JLeV e A0 The optimal reward function for the problem involving
all projects and corresponding to state & = (!, r).

We will show the following inequality for all o (', r):
Sl M)y < Jel e M) < S MY+ (Yt M) = M. (5.16)

Lo words this expresses the intuitively clear fact that at state (') one
would be happy to retive project 1 permanently il one gets in vetwrn the
maxiim reward that can be obtained fromt project I in excess of the

retirement reward 3. We claim that to show Eq. (5.12a) for ¢ = 1. it will
suffice 1o show L. (5.16). Iudeed. when o1 € S then JH(e! Al = M.
so from Fq. (5.16) we obtain J(a!, 2, M) = J(r. M), which is in turn

cquivalent to Eq. (5.12a) for i = 1.

We now twrn to the proof of g, (5.16).  Its left side is evident,
To show the right side, we proceed by induction on the value iteration
recursions

Jepr (el ) = max [1\1, RIGY) + aB{ (St owt)e) )

n_;\Ix{R‘(.r") +aE{ (st (. wi)) }} .

Sy () = max {A[, i (R () + @By (Fr u;'))}]} . (5.17h)

Jho Gy = max [ML RV ) + o £{JH (Mot w)) s (5.17¢)
where, for all i # 1 and & = (&2, am),

e u’) = (13 co N et et ). (5.13)

The initial conditions for the recursions (5.17) are

Joele) = M. for all (1, 2), (5.19)
Jylr) = M. for all x, (5.191)
Jo(at) = M, for all ot. (5.19¢)
We know that Je(etoe) — Jtoe M) T () — S AL aud JH e -

JUzY M), so to show Eq. (5.16) it will sullice to show that for all & and
z = (x!, x) we have

Tt ) < Jple) + () et) = 8. (5.20)
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In view of the definitions (5.19), we sce that Eq. (5.20) holds for & = 0.
Assume that it holds for sote & We will show Chat it holds for &+ 1L From
Eq. (5.17) and the induction hypothesis (5.20), we have

Jepr (et ) < max [M, RY(t) + s ]y () + JL (St wh)) = MY,
l:‘,;ll\ (B () + aB{S (£, wh)) -+ I ) = A} ]
Using the facts . (2) > M oand JU(e") = M [of. Eq. (5.17)], and the
preceding equation, we see that,
Je (el ) < max(oy, ),
where

B max MRV ) okt LSt w) ]k a (S () = AT

jFy = max | A, 1:1;\‘{\[1?’(.1") + nlv'{._/k.(l""(g_‘, m'))}] Fo( ety — Al
Using Eqs. (5.17h), (5.17¢), and the preceding cquations, we sce that
Jer (e ) < max [ (") + L () = M,y (o) + JE(at) = M. (5.21)
It can be seen from Egs. (5.17) and (5.19) that J(e!') < J(#!) and
S () < Sy () for all by b, and iz, so from Eq. (5.21) we obtain that
Eq. (5.20) Lolds for & 4 1. The induction is complete. Q.E.D.
As a fivst step towards showing optimality of the index rule, we use

the preceding proposition to derive an expression [or the partial derivative
of S, MY with respect of AL

Lemma 5.1: For fixed z, let {3 denote the retircment time under
an optiwal policy when the retirement reward is M. Then for all M
for whichh 0J (&, M)/OM exists we have

9 (, M)

oar = Elafu Jao =z}

Proof: Iix o and A, Let 7+ be an optimal policy and let Apr be the
retireinent tiime under 7. If 7% is used for a problem with retirement
reward Al -k ¢, we receive

E{reward prior to retivement} + (M + o) f{o™ar} = J(o, M)+ eE{afu},

Scc. 1.5 Stochastic Scheduling and the Multinrmed Bonedit Gl

The optimal reward J{a, M + ¢) when the retircment reward is A 4 ¢ is
no less than the preceding expression, so

e M) > Je, MY+ B {alvan),
Similarly, we obtain

Je M =) > J(a M)~ cB{aln ),
For e > 0, these two relations vield

J M) = e M =) Frfaary < 2L E I M)

€ €

The result follows by taking ¢ — 0. Q.E.D.

Note that the convexity of J(a, ) with respect to A (Prop. 4.1) im-
plics that the derivative OJ (e, M)/OAM exists almost everywhere with re-
speet to Lebesgne measure [Roe70]. Furthermore, it can be shown that
9J(x, M) /OM exists for all A for which the optimal policy is unique.

For a given A, initial state x, and optimal PPR policy, let 75 be
the retirement tinie of project i if it were the only project available, lot 10
be the retirement thme for the multiproject problem. Both T, and 7' take
values that arc either nonnegative or co. The existence of an optimal PPR
policy implies that we must have

T =T+ +T,

and i addition T}, i = 1,..., n, arc independent random variables. There-
fore,

{aT} = E{aht 4D} = HE{(,'I‘,},
i=1

Using Lemma 5.1, we obtain

dJ (e, M) LA (i, M)
OAl - H OA ' (

<t

S

s
~

Optimality of the Index Rule

We are now ready to show our main vesult.

Proposition 5.3: The index rule (5.3) is an optimal stationary policy.
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Proof: Fix .= (&' ... 7). denote

mi(x) = max{m (i)},

J

and let 7 be such that
m(wt) = ll]jh\'{lll-/(.l‘j)}.
If () < M the optimality of the index rule (5.3a) at state o follows from
the existence of an optimal PPR policy. 10 () > M, we note that
JH M) = Ri(et) + ol { S (f1(riwr), M)}
and then nse this relation together with Eq. (5.22) to write

DI M) O, M) 1 (e, M)

JAL T OM e OM
17, ) A1t M)
= ECJ{[i(e w), M) T
oAU ) AT H I
JE
[ DJ1(d | Al
= a2 d S i w) A - -
N g ) A - T g
J#
=all i.l(.r‘ ..... ol e ) it e, Al)
122 ’ ’ ’ ’ A
0 o _
=a mb{./(.r' ...... vl fr(a )t :r“,]\[) },

and finally

DI A D
GO e ML),
ONT gag e ALT)

where
L Mo J)y = Re(ed) + ulf{./ (b VoS wn) et ]\1) }

(The interchange of differentiation and expectation can be justified for
almost all Af; see [Ber73al.) By the existence of an optimal PPR policy,
we also have

(o m(e)) = L(e,m(e), J).
Thercfore, the convex functions J(r, M) and L'(w, M, J) viewed as func-
tions of A for fixed & are equal for A = m () and hiave equal derivative
for alinost all AL < m (). 1 follows that for all AT < m{e) we have

Jr Ay = LiGe, ML),

This iuplies that the index rule (5.30) is optimal for all & with i (a) > M.

Q.E.D.
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Detcriorating and Linproving Cases

it is evident that great simplification results from the optimality of
the index rule (5.3). since optimization of a mmltiproject problem has boen
reduced to n separate single-project optimization problems. Nonetheless.
solution of cacli of these single-project probles can be complicated. Under
certain circumstances, however, the situation simplifics.

Suppose that for all 7, /. and w that can occur with positive prob-
ability, we have either

mit(ar) < me (i w)) (5.23)

or
wi(ety 2 e (e, w)). (H.2:1)

Under Eq. (5.23) [or Eq. (5.24)] projects become more (less) profitable
as they are worked on. We call these cases imgroving and deleriorating.
respectively.

In the improving case the nature of the optimal policy is evident:
either retire at the first period or else seleet a project with maximal index
at the first period and coutinue engaging that project for all subsequend
periods.

In the deteriorating case, note that Bq. (5.24) implies that if retire-
wment is optimal when at state @ then it is also optimal at cacli state
fi@t, w?). Therefore, for all 2/ such that A = () we ave, for all w'.

Ji(wet, M) = A JH{ [ wn) ML) = AL
From Belliman’s equation
Ji(rt, M) = max [M, Ri(r) + aB{J(f (x wt), M) Y]

we obtain

mi{rt) = Ri(ey + amt{ar)

or

m () = ¥ . (5.20)

Thus the optimal policy in the deteriorating case is
. i R+ S . H ; 3
retire if M > max; 5= and otherwise cngage the project @ with
maxinal one-step reward Ri(e).
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Example 5.1 (Treasure Hunting)

Consider o scarch problem involving N sites. Fach site § may coutain a
treasure with expected value . A scarch al site 7 costs ¢, and reveals the
treasure with probability /3, (assuming a treasure is there). Let 12 be the
probability that there is a treasure at site i. We take P, as the state of the
project corresponding Lo scarching site 7. Then the corresponding one-step
reward is

R(PY=8DPv, —c. (5.26)
If a search at site ¢ does not reveal the treasure, the probability P, drops to

B P - 3)

R

AT
as can be verified using Bayes” rule. If the scarch tinds the treasure, the
probability P, drops (o zero, since the treasure is removed from the site.
Based on this and the fact that R'(D) is inercasing with 12, [l 1q. (5.26)], it
is seen that the deteriorating condition (5.2:1) Lolds. Therefore, it is optimal
to search the site 7 for which the expression R(FP) of Eq. (5.26) is maximal,
provided max, B(/%) > 0, and to retire il R(12) < 0 for all ..

NOTES, SOURCES, AND EXERCISES

Many auwthors have contributed to the analysis of the discounted
problem with bounded cost per stage, most notably Stapley [Shabi], Bell-
wan [Belh7], and Blackwell [Bla6h]. For variations and extensions of the
problem involving multiple eriteria, weighted criteria, and constraints, see
[17%eS91], [Gho90], [Ros89], and [WhKS0]. The mathematical issues relating
to measirability concerns are analyzed extensively in [BeS78], [DyY79],
and [Her89].

The error hounds given in Section 1.3 aud Exercise 1.9 arc improve-
ments on results of [MceQG6] (see {PorTl], [Por75]. {Ber76], and [PoTT78]).
The corresponding convergence rate was discussed in [Mor71] and [MoW77].
The Gauss-Scidel method for discounted problems was proposed in [Kus71]
(sce also [Has68]). An extensive disenssion of the convergence aspects of
the method and related background is given in Section 2.6 of [BeT8%a).
The material on the generic rank-one correction, including the convergence
analysis of xercise 1.8, is new; see [Ber®3], which also deseribes aomultiple-
rank correction method where the elfeet of several cigenvalues is nullified.
Value iteration is particilarly well-suited for parallel computation; see e.g.,
[ANTO3], [BeT89a).

Policy iteration for discounted problems was proposed in [Bel57]. The
modified policy iteration algorithim was suggested and analyzed in [PuS78]
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and {PuS82]. The approximate policy iteration analysis and the conver-
gence prool of policy iteration for an infinite state space (I’rop. 3.6) are
new and were developed in collaboration witl J. Psitsiklis. The relation
between policy iteration and Newton’s method (Fxercise 1.10) was pointed
out in [PoAGY] and was further discussed in [Pul37s].

The material on adaptive aggregation is due to [BeCS89). In an al-
ternative aggregation approach [SPK8Y], the aggrepate states are fixed.
Changing adaptively the aggregate states from one iteration to the next
depending on the progress of the computation has a potentially signiticant
effect on the efficiency of the computation for difficult problems where the
ordinary value iteration method is very slow.

The lincar programming approach of Section 1.3.4 was proposed in
[D’EpG0).  There is a relation between policy iteration aned the simplex
method applied to solving the linear program associated with (he is-
counted problen. In particular, it can be shown that the simplex method
for lincar programuning with a block pivoting rule is wmathematically equiv-
alent to the policy iteration algorithm. There are also duality councctions
that relate the lincar programming approach with randontized policies,
constraints, and multiple criteria; see e.g.. [Kals3], [Put9d]. Approxima-
tion methods using basis functions and lincar programming were proposed
in [ScS85].

A complexity analysis of finite-state infinite horizon problews is given
in [PaT87]. Discretization methods that approximate infinite state space
systems with finite-state Markov chains. are discussed i [Ber75], [Fox71],
[HaL80], [Whi7s], [Whi79], aud [Whis0a]. For related multigrid approxima-
tion methods and associated complexity analysis, sce [ChT89] and [ChT91].
A different approach to deal with infinite state spaces, which is based on
randomization. has been introduced in [Rus94]; see also [Rus95]. Further
material on computational methods may be found in [Put7s].

The role of contraction mappings in discounted problems was first
recognized and exploited in [Shab3], which considers (wo-player dynamic
games. Abstract DP models and the implications of monotonicity and con-
traction have been explored in detail in [DenG7], [Ber77), {BeST73], [VeP&d],
and [VePs7].

The index rule solution of the nnltiarmed bandit problem is due to
[Git79] and [GiJ74]. Subscquent contributions include [Whis0h]. [Kel81],
[Whi81], and [Whis2]. The proof given heve is duce to [Tsi®6]. Alternative
proofs and analysis are given in [VWDBS5], [NTW8Y], [Tso91], {Webh92],
[BeNO3], [Tsi03b], [BPT94a], and [BPT94b]. Much additional work on the
subjoct is desceribed fn [Kum85] and [KuVsg).

Finally, we note that even though our analysis in this chapter requiives
a countable disturbance space, it may still serve as the starting point of
analysis of problews with uncountable disturbance space. This can be done
by reducing such problems to deterministic problems with state space a st
of probability measures. The basic idea of this reduction is demonstrated
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in Bxercise 1,13, The advanced reader may consult. [13¢S78] (Seetion 9.2),
and see how such areduction can be eflected for a very bhroad class of finite

and infinite horizon problems.

EXERCISES

1.1

Write a computer problem and compute iteratively the veetor J,, satisfying

I 34 1/4 0
Jo=12+al i/1 3/1—c ¢ gy
3 0 ¢ 1 —c

Do your computations for all combinations of o = 0.9 and ¢ = 8.999, and
¢ = 0.5 and ¢ = 0.001. Try value iteration with and without error hounds,
and also adaptive aggregation with two aggregate classes of states, Discuss
your results.

1.2

The purpose of this problem is to show that shortest path problems with
a discount factor make little sense. Suppose that we have a graph with a

nonnegative length aq, for cach are (4, j). The cost of a path (i, i1, .. s yTm)
. -1 ; . . . .
is Y0, u*qu,H 1 where ais adiscount factor from (0, 1) Consider the

problem of finding a path of winimum cost that connccts two given nodcs.
Show that this problem need not have a solution.

1.3

Consider a problem similar to that of Section L1 except that when we are at
state o, there is a probability 3, where 0 < g < 1, that the next state Ly
will be determined according (o rp y1 = f(r, i, wy) and a probability (1 —23)
that the system will move to a termination state, where it stays permancutly
thereafter at no cost. Show that even if a = 1, the problem can be put into
the discounted cost framework.

A
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14

Consider a problem similar (o that of Section 1.2 except that the disconnt
factor o depends on the curvent state ay. the control ug, and the disturbanee
Wi that 15, the cost funetion has the form

N
Jx(ro) = lin 1

g
g 3D acsg(o o). o)

L0 (S

where
Q= Q (J‘u- //u(J'U)- U‘U)“ (.1'1 IR (.l'| ) H’l) BERNE (.l';,». /1;,(.:';‘ ). u'k).
with o (r. . w) a given function satislying
< miu{n(.r, nw)ylreSueCuwe D}
< umx{u(.z‘, ww)leeSueCwe 1)}
< L.

Argue that the results and algorithins of Scetions 1.2 and 1.3 have direct
counterpiarts for sucly problems.

1.5 (Column Reduction [Por75])

The purpose of this problem is to provide a transformation of a certain type
of discounted problem into another discounted problem with smaller discount,
factor. Counsider the n-state discounted problent under the assumptions of
Scction 1.3, The cost per stage is g(Z, u), the discount factor is o, and the
transition probabilities are p,, (1), For cach j = 1,... n, lot

my = min  min p,,(u).
=1, noaeli ()

For all i, j, and u, let

Py (u) —my,

Pju) = ———,
I - Zk:[ mg
assuming that Z;’;I my < L.

(a) Show that p,, (a) are transition probabilitics.

(b) Consider the discounted problem with cost per stage g(i, 1), discount
fugtor a (1 - Z_'/I:I HIJ). and trausition probabilitics p,,(«). Show that,
this problem has the same optimal policies as the original, and that its
optinmal cost vector J' satisfies

'y « Z_,,:1 m,J')

1—a

./* - J c,
where J* is the optimal cost vector of the original problem and ¢ is the

uiit vector,
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Lot J 05— R be any bounded function on S and consider the value iteration
method of Section 1.3 with a starting lunction J : 8 +— R of the form

J(r) = J(e) + 1, r e s,
where v is some scalar. Show that the bounds (17%J) (&) +¢, and (1% J) (&) +¢x
of Prop. 3.1 arc independent of the sealar r for all x € S, Show also that if S

cousists of a single state r (e, § = {&}), then

(TI)(E) + ¢, = (TI)F) + 70 = S (&)

1.7 (Jacobi Version of Valuce Iteration)

Consider the problem of Section 1.3 and the version of the value iteration
method that starts with an arbitrary function J @ S5 — 3 and generates
recursively FuJ P2, where I is the mapping given by

(Y0 = i S0 27, P (I )

we (1) I —ap,(u)
Show that (1""./)(1’) — J7(#) as b — oo and provide a rate of convergence

estimate that is at least as favorable as the one for the ordinary method (cf.

Prop. 2.3).

1.8 (Convergence Properties of Rank-One Correction [Ber93])

Consider the solution of the system J = F.J, where F oo R" = R s the
mapping

J=h+QJ.
Iis a given vector in B, and Q is an n x nomatrix, Consider the generic

. . . . 5 (VIR . -
rank-one correction iteration J := ALJ, where A : R — R s the mapping

Al = 1" 4 ~z,

and

o C(d =) (T~ )
~ = (2([, Y= W

(a) Show that auy solution J* of the system J = [°J satisties J™ = M.J".
(b) Verily that the value iteration method that nses the error bounds in the
manner of LS. (3.12) is a special case of the iteration J 1= AlJ with d

equal to the unit vector.

Sce. 1.6 Notes, Sources, and I5xorcises GY

,\
N9

Assumne that d is an cigenvector of ¢, et A be the corresponding cigen-
value, and et Ay oo A, ) be the remaining cipenvahiies. Show (hat
Al can be written as

AT == by R,
where I is some vector in R and

) A
R=Q~ —————dd'(I - Q).
TEEVTEA

Show also that Bd = 0 and that for all k and J,

nf = rOF MM = AT,
Furthermore, the cigenvaliues of R are 0, A yoovsAn 1. (This Tast state-
ment reguires a somewhat complicated proof; see Berv3].)

(d) Let d be as in part (¢), and suppose that ¢y...., ¢, _; are cigenvectors
corresponing to Ay, ..
as

<y Au—1. Suppose that a veetor J can be written

n-
J =0 +£(:+Z£,(’,,

1==1

where J* is a solution of the systenn, Show that, for all & > L,

n-1
MY =0 4 Zg, e,

=1

so that il A is a dominant cigenvalue aud Ay,..., A,y lie within the
unit circle, A¥.J converges to J* at a rate governed by the subdominant,
cigenvalue. Note: This result can be generalized for the case where Q
does not have a full set of lincarly independent cigenveetors, and for (he
case where /7 is modilied through nultiple-rank corrections {Ber9:s).

1.9 (Generalized Error Bounds [Ber76))
Let S be aset and B(S5) be the set of all hounded real-valued functions on
S. Let T2 B(S) v B(S) be a mapping with the following two propertios:
(1) T < T for all J, J' € B(S) with J < J'.
(2) For cvery scalar 7 £ 0 and all & € 5.
(TCI+re)) () = (1) ()

a; < < ay,
-

where ajp, az are two scalars with 0 < a0y < oy < 1.
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(a) Show that T" is a contraction mapping on B(S), and hence for every
J € B(S) we have

lim (1%.0)(r) = J7 (), res,

koo
where J* is the unique fixed point of T in B(S).
(b) Show that for all J € B(S), r € S, and k=1,2,...,
(TF ) () + ¢ < (TP D)) + gy < 7)< (T (@) + B
<(THI)() + T,

where for all &

¢ - in {I L llljl![(’lvk.l)(.lf) - ('I'A"'./)(.r)].

= (Y] wES

(6.1)

vy

i [CrF gy ey = (1T ) ()] }

I — y rc

Cp = max { A lllixg[('l'k'.l)(.l') - ('l’k"l./)(.r)},

1l —a; res

(6.2)

P mas () = (]

A peometrie interpretation of these relations for the case where S con-
sists of a single element is provided in Fig. 1.6.1.
(¢) Cousider the following algorithi:
/A(l) = (Y',]k, | )(l) + Vi, €t es,
where Jy is any function in B3(S), & is any scalar in the range ¢, @],
and ¢, and & are given by ligs. (6.1) and (6.2) with (T*J)(x) -
(T* =1 () replaced by (TJu-1)(0) — Je—i(2). Show that for all &,

IIl:L\’|./A () = /*(I)I < b nlnx|,/”(.r) - ./*(.r)l.
res oS

d) Let J € R and consider the equation J = T/, where
i

TJ=h+AMJ

and the vector i € R and the matrix M are given. Let s, be the ith
g

row sun of A/ that is,
"

5, = g iy

J=t

and Jet oy = min, s,, oz = max, 5,. Show that if the clements mi;; of Al
are all nonnegative aud a2 < 1, then the conclusions of parts (a) and

(1) hold.

—_
~

[Por7s) Consider the Ganss-Scidel method for solving the system J =
g+ alJ, where 0 < a < 1 and P is a transition probability matrix.
Use part (d) to obtain suitable error bounds.
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Tlf/+C_k

TJ'
k
TJ +_Ck

"

«I’n‘

Figure 1.6.1 Graphical interpretation of the crror bounds of Fxercise 1.9.

1.10 (Policy Iteration and Newton’s Method)

The purpose of this problem is to demonstrate a relation between poliey
iteration and Newton’s method for solving nonlinear equations, Consider an
cquation of the form F7(J) = 0, where £ 00" = R0 Given a vector J € N7,

Newton’s method determines Jy ) by solving the lincar system ol equations

OF(J)

13 (] S
)+ =57

(Jog1 — i) =0,
where AF () /a0 is the Jacobian matrix of 17 evaluated at .
(a) Consider the discounted finite-state problem of Section 1.3 and deline
Oy =71TJ—J.
Show that il there is a unique posuch that
Tyd =1TJ.
then the Jacobian matrix of Foat J is

DI
S =al, -,

aJ
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where s the noxondentity.

(b) Show that the policy iteration algorithim can be identificd with Newtou's
method for solving £(/) = O (assuming it gives o unique policy at cach
step).

1.11 (Minimax Problems)

Provide analogs of the results and algorithins of Sections 1.2 and 1.3 for the
minimax problem where the cost is

N
. &
Jo(rg) = U niax ot glak, (), e,
(o) Jim 1 E ,1( ko e (e L)

Sx g e W g ()
ko0 A0

g is bounded, g is generated by gy = ./'(.rk,/u'(.rk). u'A.), and W(r, u)is a
given noncempty subset of 1 for each (rou) € 5 x L (Compare with lixercise
1.5 iu Chapter 1 of Vol 1)

1.12 (Data Trausformmations {Sch72])

A finite-state problem where the discount factor at cach stage depends on
the state can be translormed into a problent with state independent discount
factors. "To see this, consider the following set of equations in the variables

J(i):

e

.63

i

we1{s)

J(i) = win j[(i,!l)*}‘ZIH,’,(H,).I(‘[-) , i
VR

where we assume that for atl 70w € U(). and j.omi,, (1) > 0 and

i

M, (u) = Zu:,.,(u) < 1.

=1

AL (i) =, (1)
a = max { ——————= 5,
=l ow I =, ()

X 7{1 ii=j,
T i £,

Let

and define, for all 7 and j.

g1 = a)
ali ) = U ML ()

(1~ aYm,,(u)—&,)
1 — A, (u) '

iy, (1) =0,
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Show that. for all ¢ and j.

n

ZIN,_,(H) — a1, my,(u) 2 0,

a=1

and that a solution {J(0) |0 = 1. 0} ol Ve (6.3) s also a solution of the
cquations

n

J{i) = mi (. - () J(J) . p= o,
SRS ECURD SLATH n
g

1.13 (Stochastic to Deterministic Problem Transformation)

Under the asstunptions and notation of Seetion 1.3, consider the controlled
systein

peer =l k01,
where py i a probability distribution over § viewed as a row veetor, and 7,
is the transition probability matrix corresponding, to the control function ji,.
The state is py and the control is g Consider also the cost funetion

N -1

li N &
im Z P Y
N-—ox l“l‘

k-0

Show that thie optimal cost and an optimal policy for the deterministic prob-
letn iuvolving the above system and cost function yield the optimal cost and
an optimal policy for the discounted cost problem of Section 1.3,

1.14 (Threshold Policies and Policy Iteration)

(a) Consider the machine replaceiment. example of Section 1.2, and assunme
that the condition (2.10) holds. Let us deline a threshold policy to be a
stationary policy that replaces if and only if (he state is greater than or
equal to some fixed state 7. Suppose that we start the policy iteration
algorithm using a threshold policy.  Show that all the subsequently
generated policies will he threshold policies, so that the algorithm will
terminate alter at most n iterations.

(b) Prove the vesult ol part (a) for the asset selling example of Section 1.2,
assuting that there is a finite number of values that the olfer g can
take. Here, a threshold policy is a stationary policy that sells the asset
i the offer is higher than a certain lixed namboer.
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1.15 (Distributed Asynchronous DP [Ber82a], [BeT89a]) 1.17 (The Tax Problem [VWDBS5])

The value iteration method is well suited for distributed {(or parallel) compu-
tation since the iteration

J() = (1))

can be executed in parallel for all states 7. Clousider the finite-state discounted
problem of Seetion 1.3, and assue that the above iteration is executed asyn-
clironously at a different. processor 7 for each state 7. By this we mean that,
the fth processor holds a vector J' and updates the ith component of that,
vector at arbulrary thines with an iteration of the lorm

Sy (7)),

and at arbilrary times transmits the results of the latest computation to other
processors me who then update J" (i) accordiug to

JUY = ).

Assumie that all processors never stop computing and transmit ting the results
of their computation to the other processors. Show that the estimates Jj of
the optimal cost funetion available ad cach processor / al time ! converge Lo the
optimal solution function J* as t — oo, Mmt: Let J and J be two functious
such that J < TJ and T < J. awl suppose that. for all initial estimates J§
of the processors, we have J <y < 7. Show that the estimates Jioof the
processors al tinte £ satisly J < 00 < Torall t >0, and 14 < J;} < T for ¢
sufficiently large.

1.16

Assume that we have two gold inines, Anaconda and Bonanza, aud a gokd-
mining machine, Let oy and g be the current aanonnts of gold in Anaconda
and Bonanza, respectively. When the machine is used in Anaconda (or Bo-
nanza), there is a probability pu (or pp, respectively) that raary (or rpeg,
respectively) of the gold will be mined without damaging the machine, and a
probability 1T —py (or 1= pg, respectively) that the machine will be damaged
bevond repair and no gold will he mined. We assume thal 0 < 1y < 1 and
t) A AV Z B 1.

(a) Assunue that py = pp = p, where 0 < p < L. Find the mine selee-
tion policy that maximizes the expected amount of gold mined helore
the machine breaks down.  ant: "This problens can be viewed as a
discounted multiarmed baudit problem with a discount factor p.

(b) Assume that py < 1 and pp = 1. Argue that the oplimal expected
amount of gold mined has the form J*(Fa o) = Jalea) + s, where
Jalra) is the optimal expected amount of gold mined if mining is
restricted just to Anacounda. Show that there is no policy that attains

the optimal amwount J* (e, ).

This problen is similar to the multiarmed bandit probleni. “The only difference
s that, if we engage project. 7 at period &, we pay a tax n"'("’(.r-’) for every
other project Jj {for a total of o E,;#: D)) instead of carning, a veward
(1"“1?'(,1"). The objective is to find a project selection policy that inimizes
the total tax paid. Show that the problem can be converted into a baudit
problem with reward function lor project ¢ equal to

R (') = (") = als{C (S (7 w')) ]

1.18 ('The Restart Problem [KaVET))

The purpose ol this problem is to show that the index of a project in the
multiarnmed bhandit context can be caleulated by solving an associated infinite
horizon discounted cost problem. In what follows we consider a single project
with reward function (s}, a fixed initial state ro. and the calculation of the
value of wndex m(ag) for that state. Consider the problem where at state
roand time A there are two options: (1) Continne, which brings reward
a* R(ry) and moves the project to state rpyy = f{re, w), or (2) restart the
project, which moves the state to rg, brings reward a* R(rg), and moves the
project to state gy = f(eow). Show that the optimal reward functions of
this problem and of the bandit problem with A = m(ey) are identical, and
therefore the optimal reward for both problems when starting at o equals
(o). HHint: Show that Bellmaw’s cquation for both problems takes the form

J(r) = nmx[l?(,m) + (\E{J (f(,n,, ur)) }, () + (\E{ J (j'(.r, m)) }] .
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78 Stochastic Shortest Path Problemns Chap. 2

ln this chapter we consider a stochastic version of the shortest path
problem discussed in Chapter 2 of Vol I An introductory analysis of this
problem was given in Scction 7.2 of Vol. I The analysis of this chapter is
more sophisticated and nses weaker assumptions. I particular, we make
assumptions that gencralize those made for deterministic shortest path
problems in Chapter 2 of Vol. 1.

In this chapter we also discuss another major topic of this book. In
particular, in Scction 2.3 we develop simulation-based methods, possibly
involving approximations, which are suitable for complex problems that
involve a large munber of states and/or a lack of an explicit mathematical
model. These methods are most cconomically developed in the context
of stochastic shortest path problems. They can then be extended to dis-
counted problems, and this is done in Section 2.3.1. Further extensions to
average cost, per stage problems are discussed in Section 4.3.4.

MAIN RESULTS

Supposc that we have a graph with nodes 1,2,...,n,¢, where ¢ is a
special state called the destination or the termination state. We can view
the deterministic shortest, path problem of Chapter 2 of Vol. T as follows:
we want to choose for cach node i # ¢, a successor node fu(i) so that (i. (7))
is an arc, and the path forned by a sequence of successor nodes starting at
any node j terminates at £ and has the minimun sun of are lengths over
all paths that start at § and terminate at £,

The stochastic shortest. path problem is a generalization whereby at
cach node i/, we must select a probability distribution over all possible
successor nodes j out of a given set of probability distributions pj(u) pa-
ramcterized by a control w € U(i). For a given sclection of distributions
and for a given origin node, the path traversed as well as its length are
now randoni, but we wish that the path leads to the destination ¢ with
probability one and has minimum expected length. Note that if every fea-
sible probability distribution assigns a probability ol 1 to a single successor
node, we obtain the deterniinistic shortest path problewm.

We formulate this problem as the special case of the total cost infinite
horizon problem where:

(a) There is no discounting (v = 1). N
(1) The state space is S = {1.2,... 0,0} with trausition probabilitics
denoted by
po() = Pleggy = J | g = doug = ), i,jE S, ueU(i).
Furthermore, the destination ¢ is absorbing, that is, for all u € U(#),

11“(u) = 1.

See. 2.1 Main Resulis 79

(¢) The control constraint set 7(i) is a finite set for all /.

(d) A cost g(4. ) is incurred when control u € U(#) is selected. Further-
more, the destination is cost-free; that is, g(f, 1) = 0 for all v € U(1).
Note that as in Section 1.3, we asswine that the cost per stage does

not, depend on w. This amounts to using expected cost per stage in all
caleulations, Iu particular, if the cost of using w at state 7 and moving to
state jis g(i.u. j). we use as cost per stage the expected cost

gliou) = Zp,.,(u)()(i, . j).

J=1

We are interested in problems where cither reaching the destination
is inevitable or else there is an incentive to reach the destination in a finite
expected munber of stages, so that the esseuce of the problem is to reach
the destination with wmininum expected cost. We will he more specitie
about this shortly.

Note that since the destination is a cost-free and absorbing state,
the cost starting from £ s zero for every policy. Accordingly, for all cost
functions. we ignore the component that corresponds to ¢ and deline the
mappings T and 7, on functions J with components J(1),...,J(n). We
will also view the functious J as n-dimensional vectors. Thus

(T J)(i) = wmin ;](i,lt)+Z]1,;J(u).](j) . i=1,...,n,

ucl/(i)

(T D)) = g(iop(@)) + 3y (WD) IG) i=1,...,n.

g1

As in Section L3, for any stationary policy p, we use the compact
notation

pu(p(n) pin(p(1))

Py = : :
P (12(n)) P (s1(n))
and
g(1, u(1))
Yp = :

_(/(Il./.l(ll))

We can then write in veetor notation

T“.] =g, + P, J.
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I terms of this notation, the cost function of a policy = {9, pri....} can
he written as

N
Jr = hmsap Ty, - T o = limsup | gy, + 2 Do Dy 9y,
N—~ N--x P

where Jy denotes the zero vecetor. The cost funetion of a stationary policy
jt can be written as

N—1
o= lilllﬁlll)’];/,v_]./‘) = llmsup E Pl
N N — 0

The stochastic shortest path problenn was discussed i Section 7.2 of
Vol. I, nnder the assiwption that all policies lead to the destination with
probability 1, regardless of the initial state. In order to analyze the problem
under weaker conditions. we introduce the notion of a proper policy.

Definition 1.1: A stationary policy g is said to be proper if, when
using this policy, there is positive probability that the destination will
be reachied after at most 1 stages, regardless of the initial state; that
is, if

pu = lax Pluo, At rg=ip} <1 (1.1)

A stationary policy that is not proper is said to be improper.

With a little thought, it can be seen that o is proper if and only if
in the Markov chain corresponding to e, cachi state 7 is conuected to the
destination with a path of positive probability transitions. Note frow the
definition (1.1) that

Plag, #10 co =i} = Plag, ALl on #F Loy = i}
x Loy, A1 g = iop}
< /)'f,,

More generally. for a proper policy g the probability of not reaching the

destination after & stages diminishes as /',l,"‘/"l regardless of the fnitial state:
that is,
. K/ . .
[’{,:‘L.%II.I‘(,:I./I}§/),!',/”J. i=1,...,m. (1.2)

Thus the destination will eventually be reached with probability one under
a proper policy, Furthermore, the limit defining the associated total cost
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veetor Jy will exist and be finite, since the expected cost incurred o the
Ll period is bounded in absolute value hy

/)/[Il.'/HJ nll;l.\' ‘!1(L/l(i))|, (1.3)

..... "

Note that under a proper policy. the cost structure is similar to the one for
discounted problems, the main difference heing that the effective discount,
factor depends on the ewrrent state and stage, but builds up (o at least py,

per nostagoes,

Throughout this section, we asswine the following:

Assumption 1.1: There exists at least one proper policy.

Assumption 1.2: For cvery improper policy g, the corresponding

cost J, (i) is 0o for at least one state i; that is, some component of the
N-—1 . :

sum Y., 5y Pkg, diverges to oo as N = o0.

In the case of a deterministic shortest path probleny, Assumption 1.1
is satisfied if and only if every node is connected to the destination with a
path. while Asswption 1.2 is satislicd if and only if cacli evele that doces
not contain the destination has positive leugth. A simple condition that
implies Assumption 1.2 s that the cost g(ion) is strictly positive for all
i # Cand v € U(Q). Auother important case where Asssunptions 1.1 and
1.2 are satisficd is when all policies are proper. that is. when termination is
inevitable under adl stationary policies {this was assumed in Section 7.2 of
Vol. T). Actually. for this case, it is possible to show that mappings 17" and
T,, arc contraction mappings with respect to sonme norm [not necessarily
the maxinnun nornt of Feg. (1.1) in Chapter 1] see Seetion L3 of {BeTs9al.
or [Tse90]. As a result of this coutraction property, the results shown
for discounted probleins can also be shown for stochastic shortest path
problems where termination is inevitable under all stationary policies. It
turns out, however, that sinilar results can be shown even when some
improper policies exist: the results that we prove under Assumptions 1.1
and 1.2 are almost as strong as those for discounted problems with bounded
cost per stage. In particular, we show that:

(2) The optimal cost vector is the unique solution of Bellman’s equation
Jr=TJ".

(b) The value iteration nethod converges to the optimal cost vector J*
for an arbitrary starting veetor.
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(¢) A stationary policy g is optimal if and ouly i 75,.J* =17~

(1) The policy iteration algorithm yields an optimal proper policy start-
ing from an arbilrary proper policy.

The following proposition provides some basic preliminary results:

Proposition 1.1:

(a) For a proper policy g, the associated cost vector J,, satisfies
k]_'lllolo(jl’[./)(l:) = J, (i), i=1,...,n, (1.4)
for every vector J. Furtherwore,
Ju =Ty,

and Jy, is the unique solution of this equation.

(b) A stationary policy p satisfying for some vector J,
J@) = (1. 0)(4), i=1,...,n,

is proper.
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which is equivalent to J,, = 1y,J,..
Finally, to show uniqueness, note that if J = T),.J, then we have
J = 7’,‘,',1 for adl koso that = limy . T,’,‘l =

{(b) The hypothiesis J > 7,0, the monotonicity of 75, and tq. (1.5) imply
that
k-1
S =PEI Y Ditge. k=120

m=t

H g0 were not proper. by Assumption 1.2, some component of Lthe sum in
the right-hand side of the above relation would diverge to oo as k — oo,
which is a contradiction.  Q.E.D.

The following proposition is the main result of this scetion, and pro-
vides analogs to the main results for discounted cost problems (Props.
2.1-2.3 in Scction 1.2).

Proof: (a) Using au induction argiment, we have for all J € 07 and b > 1

b1
Th) =PI+ P, (1.5)

m =t

Equation (1.2) implies that for all J € R, we have
line Pk =0,
k=00 .

so that

ko1
lim 7F.J = lim E Pty = Jy.
h—rx k—ono 0

m=

where the limit above can he shown Lo exist using F. (1.2).
Also we have by definition

pkt1 ke
-[[lF J:,(/u -+ 1’;111/2'/'.
and by taking the limit as b — oo, we obtain

v]u =g + [)/,,1“.,

Proposition 1.2:
(a) The optimal cost vector J* satisfies Bellman's equation
J* =TJ*.
Furthermore, J* is the unique solution of this equation.
(b) We have
lim (T*J)(i) = J*(i), i=1,...,n,
k—o0
for every vector J.

(c) A stationary policy g is optimal if and ouly if

T, J* =TJ.

Proof: (a). () We first show that 7" has at most one fixed point. Indecd,
if J and J’ arve two fixed points, then we seleet gand gf such that J =1 =
T,JJ and J' = T.J' = T,..J'; this is possible because the control constraint
set is linite. By Prop. L.1(1), we have that goand g are proper, aund Prop.
1.1(a) buplies that J = J, and J' = J,. We have J = Tk < 7""",.] for
all & > 1, and by Prop. L.1(a), we obtain J < ling e TI';',J = Jy=J.
Similarly, J/ < J, showing that J = J" and that T has at mwost one fixed
point.
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We next show that 7" has at least one fixed point. Let, j2 be a proper
policy (there exists one by Assumiption 1.1). Choose g/ such that

Tdy =11,

the monotonicity of 7, and Prop. 1.1(a). we obtain

Then we have J, =T, > ‘Lo By Prop. L(H), g s proper, and using

Ty 2l Tl = Ty (1.6)

Contimting in the same manner, we construct a sequence {78} suel that
cach g% is proper and

,/“A- > 'I'.],,L- > .//L/. Fls

k=01 .. (L.7)

Since the set of proper policies is finite, sonme policy pr wust be repeated
within the sequence {p#}, and by Bq. (1.7), we have

Sy ="TJ,.

Thus .J;, is a fixed point of T, and in view of the uniqueness property shown
carlier, ./, is the unigue fixed point of T

Next we show that the unique fixed point of 17 is equal to the optimal
cost vector J*, and that T%J — J* for all J. The construction of the
preceding paragraph provides a proper e such that T, = J,. We will
show that T5.J — J, for all J and that J,, = J*. Let e = (1,1,....1), let
& > be some scalar, and let, J be the veetor satislying

T = J e

There is a unique such vector hecause the equation J = T,/ + & can be
written as J o= g, + ¢ 4+ IJ, 50 J is the cost vector corresponding to g
for g, replaced by g, 4 dc. Since i is proper, by Prop. 1.1{a), J is unique.

Furthermore, we have J, < .J, which iimplies that

Using the monotonicity of T and the preceding relation, we obtain

Jy=Tk), <TH]<THVJ<J. k>l

Henee, T converges Lo some veetor W, and we have

b

1 =T i ).

See, 2. Main Results 8O

The mapping 17" can be seen to be continnous. so we can interchange 17
with the limit in the preceding relation. thiereby obtaining ./ 7. By the

uniqueness of the fixed point of T shown carlior, we st have J 0 Tt
1s also seen that

Jy =00 = Tdy = < Ty, —d¢) < Ty, = 0.

Thus, T*(.J,, — é¢) is monotonically increasing and bounded above.  As
carlicr, it follows that liny . TF(J, — 6¢) = J,,. For auy J. we can find
6 > 0 such that

/

S —be < <

By the monotonicity of 7. we then have

TH( S, = be)y <THJ < THJ, > 1

and since ling o T 0= b0) =l Lo Th] = s it follows that,

i I% = J,.

h—
To show that J, = J*, take any policy @ = {pg, pe1,...}. We have
L Ty Jo = TRy,

where Jy is the zero vecetor. Taking the limsup of both sides as & — o¢ in
the preceding inequality, we obtain

Je >

80 ¢ is ann optimal stationary policy aud J, = J~*.

(¢) If y is optimal, then J, = J* and. by Assumptions 1.1 and 1.2, g is
proper. so by Prop. Ll(a), T, J* = TuJ, = J, = J+* = TJ . Conversely,
if J* =TJ* =T,J*, it follows from Prop. L.1(L) that g is proper. aud by
using Prop. 1.1(a}, we obtain J* = J,. Therefore, g is optimal.  Q.E.D.

The results of Prop. 1.2 can also be proved (with minor changes)
assuming. in place of Asswmption 1.2, that g(i, u) > 0 for all  and w € U(F).
and that there exists an optital proper policy: see lixercise 2.12.

Compact Control Constraint Sets

It turns out that the finiteness assumption on the control constraint
U(7) can be weakened. It is sullicient thal, for cach i, U(i) be a compact
subset of a Euclidean space, and that p,,(u) and g(i, @) be continuous
in wover U@, for all 7 and j. Under these compactness and continuity
assutuptions, and also Assumptious 1.1 and 1.2, Prop. 1.2 holds as stated.
The proof is similar to the one given above. but is techuically nineh more
complex. It can be found in {BeT9IbL
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Underlying Contractions

We mentioned in Section 1.4 that the strong results we derived for
discounted problems in Chapter 1 owe their validity to the coutraction
property of the mapping 7. Despite (he similarity of Prop. 1.2 with the
corresponding discounted cost results of Section 1.2, under Assumptions 1.1
and 1.2, the mapping T of this scetion need not. be a contraction mapping
with respect to any noring see Exercise 2.13 for a counterexample. Ou the
other hand there is an important special case where T is a contraction
mapping with vespect (o a weighted sup norm. In particular, it can be
shown that if all stalionary policies are proper, then there exist positive
constands ¢, ...ty and some 4 with 0 < 4 < 1, such that we have for all
vectors Jy and Wy,

(T )Y — ('1'.13)(/’)[ <A ax %I,ll(i) — ]g(l)‘

[ DN not, =1,

A prool of this fact is outlined in Lixercise 2.14.
Pathologies of Stochastic Shortest Path Problems

We now give two examples that illustrate the sensitivity of owr results
to scemingly minor changes in our assumptions.

Example 1.1 (The Blackmailer’s Dilemma [Whi82])

This example shows that the assumption ol a finile or compact control con-
straint set, caunot be casily relaxed. Here, there ave two states, state 1 and
the destination state £, At state 1, we can choose a control u with 0 < u < 1
we then move to state £ at no cost with probability o, and stay in state 1 at
a cost —u with probability 1 —u?. Note that every stationary policy is proper
in the sense that it leads to the destination with probability one.

We may regard uoas a demand made by a blacknailer, and state 1 as
the situation where the victim complics. State s the situation where the
victim refuses to yield to the blackmailer’s demand. The problenm then can
be seen as one wherehy the blackmailer tries to maximize his total gain by
Lalancing liis desire for increased demands with keeping his vietiin compliant.

if controls were chosen from a finite subset of the interval (0,1}, the
problem would come under the fraunework of this section. The optimal cost
would then be finite, and there wonld exist an optimal stationary policy, 1t
turns out, however, that without the finiteness restriclion the oplimal cost
starting al stale 1 s —oo and there crists no oplimal stationary policy. In-
deed, for any stationary policy go with (1) = u, we have

(1) = —u+ (1= a*)(1)

from which
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Thercfore, wing, J, (1) = ~oc and J*(1) = —oc, but there is no stationary
policy that achicves the optimal cost. Note also that this situation would
not change if the constraint set werve « € [0, 1] (Lo w = 0 were an allowable
control), although in this case the stationary policy that applies j(1) = 0 is
improper and its corresponding cost veetor is zero. thus violating Assumption
1.2.

An interesting fact about this problem is that there is an optimal non-
stationary policy 7 for which J (1) = —nc. This is the policy = {0, 01, ..}
that applies (1) = A /(A 4 1) at time & and state 1. where 5 is a scalar in
the interval (0, 1/2). We leave the verilication of this fact to the reader.
What happens with the policy 7 is that the blackmailer requests diminishing,
amounts over time, which nonetheless add to oo, However, the probability
of the victim's refusal diminishes at a much faster rate over time, and as a
result, the probability of the victin remaining compliant forever is strictiy
positive, leading to an infinite total expeeted payolt to the blackmailer.

Example 1.2 (Pure Stopping Problems)

This example illustrates why we need to assume that all iimproper policies
have infinite cost for at least some initial state (Assumption 1.2). Consider
an optimal stopping problem where a state-dependent cost is incurred only
when invoking a stopping action that drives the system o the destination; all
costs are zero prior to stopping. Fventual stopping is a requirement here, so
to properly formudate sucl a stopping problem as a total cost infinite horizon
problem, it is essential to make the stopping costs negative (by adding o nega-
tive constant to all stopping costs if necessary), providing aur incentive to stop.
We then come under the framework of this section but with Assumption 1.2
violated because the improper policy that never stops does not yield infinite
cost, for any starting state. Unfortunately. this scemingly small relaxation of
our assutiptions invalidates our results as shown by the example of Fig. 2.1.1.
This example is in eflect a detenuinistic shortest path problem imvolving a
cycle with zero length. In particular, in the example there is a (nonoptimal)
imiproper policy that vields finite cost for all initial states (rather than infinite
cost for sowe initial state), and T has inultiple {ixed points.

2.2 COMPUTATIONAL METHODS

All the methods developed in conneetion with the disconnted cost
problem in Section 1.3, have stochastic shortest path analogs. For exaunple,
value iteration works as shown by Prop. 1.2(h). Furthiermore, the (exact
and approximate) lincar programming approach also has a straightforward
extension (cf. Section 1.3.4), since J* is the largest solution of the system
of incqualities J < TJ. Iu this section, we will discuss in more detail some
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Cost=0 Cost=-1 Cost=0 Cost=0 Cost=0 Cost=0

Transition diagram and Transition diagram and
costs under policy costs under policy

...} .}

Figurc 2.1.1 Example where Prop. 1.2 fails to hold when Assumption 1.2 s
violated. There are two stationary policies, prand g/, with transition probabilities
and costs as shown, The equation J = T.J is given by

(1) — min{ - I‘.I(‘_’)}.

J(2) = J(1).

and is satisticd by any J of the form
gy J2) A

with & << — . Here the proper policy jis optimal and the correspouding optimal
cost vector s
J(y - -1 J(2) = 1.

The dilliculty is that the improper policy ' has linite {zero) cost for all initial
states.

of the major methods. and we will also focus on some stochastic shortest
path problems with special structure. ftturns out that by exploiting this
special structure, we can improve the convergence properties of some of
the methods. For exanuple, in deterministic shortest path problems, value
iteration terminates finitely (Section 2.1 of Vol 1), whereas this does not
bappen lor any significant class of discounted cost problems.

2.2.1 Value Iteration

As shown by Prop. 1.2(h), value iteration works for stochiastic shortest
path problems. Furthermore, several ol the enhancements and variations
of value iteration for disconnted problems have stochastic shortest path
analogs, In particular, there are error bonuds similar to the ones of Prop.
3.1 1 Section 13 (although not. quite as powerful: see Section 7.2 of Vol
). It can also be shown that the Gauss-Seidel version of the method works
and that its rate of convergence is typically faster than that of the ordi-
nary method (Exercise 2.6}, Furthermore, the rank-one correction methaod
deseribed in Section 1301 is straightforward and effective, as long as there
is sowe separation hetween the dominant and the subdominant cigenvalue
nioduli.

Seeo 202 Compatational Methaod, 1o

Finite Termination of Value Tteration

Generally, the value iteration methiod vequires an infinite number of
iterations in stochastic shortest path problems. However, ander special
circumnstances. the method can terminate finitely. A prominent exawple
is thie case of a deterministic shortest path problem, but there are other
more general circimstances where termination occurs. tu particular, let us
assune that the transition probability graph corresponding to some optimal
stalionary policy p* is acyclie. By this we mean that there are no eveles
in the graph that has as nodes the states To..oonct, and has an arve (7. )
for cacli pair of states i and j such that py, (jee()) > 0. We assime in
particular that there are no positive self-transition probabilities py, (/l*(i))
for i #£ t. but it turns out that under Assumptions L1 and 1.2, a stochas-
tic shortest path problem with such sell-transitions can be couverted into
anothoer stocliastic shortest path problem where p,, (1) = 0 for all i # ¢ and
w € U(#). Tn particular. it can be shown (Exercise 2.8) that the modified
stochastic shortest path problem that has costs

gliou) = gli.u) + !/(1';“1J}/"i.-(,1(14)/)

in place of g(i. ). aud transition probabilitics

: 0 i j =i )
Paylu) = 1y, ) it £ 1= Llo..o0n,
L—p,, (1) ] '

instead ol p,, (1) is cquivalent {o the original tn the sense that it has the
sanie optimal costs aud policies.

We clain that, under the preceding acyelicity assmnption, the value
iteration method will yicld J* after ab most noilerations when started from
the vector J yiven by

J(i) = >. i= 1.0 (2.1)
To show this, consider the sets of states Sy, Sy, .. .. defined by
S = {1}, (2.2)

Spar = {i L py () =0 for all j ¢ Uk, oS}

and let St be the last of these sets that is noucmpty. Then in view of our

k=01 ... (2.3)

acyelicity assumption. we have
oo "
Ub_oSm = {1.....n 0} (2.1)

Lot us show by induction that, starting from the veetor ol L. (2.1), the
value iteration wiethod will vield for A =010, F,

(T V(i) = J(i), for all i € UK, (S i # L




90 Stochastic Shortest Path Problems Chap. 2

Indeed, this is so for & = 0. Assume that (7F)(0) = J*(@) if i € U¥ _, 9.
Then, by the monotonicity of 1°) we have for all ¢,
() < (L)),

while we have by the induction hypothesis, the delinition of the sets Sk,
and the optimality of %,

(D@ <glion D)+ D pu () U)

Jouk

=J*(i), for all i ¢ UETN S, 0 # L

The last two relations complete the induction.

[

oS

Thus, we have shown that inder the acyelicity assmnption, al the
Ath iteration, the vahie iteration method, will set to the optimal values the
costs ol states in the set Sy o particular, all optimal costs will he found
alter A iterations.

Cousistently Improving Policies

The propertics of value itoration can be further inproved if there is
an optinal policy jo* under which from a given state, we can only go to a
state of lower cost; that is, for all ¢, we have

oy (e (i) = 0 = JHi) > J*())-
We call such a policy consistently improving.

A case where aconsistently improving policy exists arises in deter-
ministic shortest path problems when all the are lengths are positive. An-
other important case arises in contimous-space shortest path problens; sce
[Tsi93a) and Exereise 2.10.

The transition probability graph corresponding to a consistently tin-
proving policy is seen to be acyclic, so when such a policy exists, by the
preceding discussion, the value iteration method ternminates finitely. How-
cver, a stronger property can be proved. As diseussed in Chapter 2 of Vol,
I, for shortest path problems with positive are lengths, one can use Dijk-
stra’s olgorithm. This is the label correcting method, which removes from
the OPLEN list a node with minimmn fabel at. cach iteration and requires

just oue iteration per node. A similar property holds [or stochastic shortest

path problems if there is o consistently improving policy: il one removes
from the OPEN list a state j with minimunm cost estimate J (), the Gauss-
Seidel version of the value iteration method requires just one iteration per
state: see Fxereise 2001,

For problems where a consistently improving policy exists, il is also
appropriate to use straightforward adaptations of the label correcting short-
est path methods discussed in Section 2.3.1 of Vol 1. In particular, onc may
approxitnate the policy of removing from the OPEN list a minimum cost
state by using the SLIC and LLL strategies (see [PBT95)).
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2.2.2 Policy Iteration

The poliey iteration algorithim is based on the coustruetion used in the
proof of Prop. 1.2 to show that. T has a fixed point. T the typical iteration,
given a proper policy g and the corresponding cost veetor ., one oblains a
new proper policy 7 satisfying T3/, = T/, It was shown in Lq. (1.6) that
Ji < Jyu Iocan be seen adso that strict inequadity Jiz(7) <, (7) holds for
at least one state 7, if p is nonoptimal; otherwise we would have J,, =T/,
and by Prop. 1.2(¢), g would be oplimal. Therelore, the new policy is
strictly better if the current policy is nonoptimal.  Since the munber of
proper policies is finite, the poliey iteration algorithm terminates after a
finitc numiber of iterations with an optimal proper policy.

It 1s possible to excente approximately the policy evaluation step of
policy iteration, usiug a finite number of value iterations, as in the dis-
counted case, Tere we start with some vector Jy.o For all ©)a stationary
policy % is delined from Ji according to ’I’“AJk = 1TJg, the cost .I/,k 15
approximately cvaluated by my, — 1 additional value iterations, yielding the
vector Jiy1, which is used in turn to define gkt The proof of Prop. 3.5
in Section 1.3 can be esscutially repeated to show that Ji — J*, assuning
that the initial vector Jy satisfies T/ < Jy. Unfortunately, the require-
ment T Jy < Jy is essential for the convergence proof, uuless all stationary
policies are proper. in which case T is a contraction mapping (cf. Exercise
2.14).

As in Section 1.3.3, it is possible to use adaptive aggregation in con-
junction with approximate policy evaluation. However, it is important that
the destination t forins by itself an aggregate state, which will play the role
of the destination in the aggregate Markov chain.

Approximate Policy Iteration
Let us consider an approximate policy iteration algorithm that gen-

erates a sequence of stationary policies {p*} and a corresponding sequence
of approximate cost veetors {Ji} satislying

max (i) = ()] <8, h=0.1,... (2.5)
and
nax (Tprr i) () = (TT) (D] < ¢ k=01,... (2.6)
1= n

where & and ¢ are some positive sealars, and 19 is some proper policy. One
difficulty with such an algorithm is that. even if the current policy ph is
proper, the next policy pA+! mayv not he proper. In this case, we have
Juk+1 () = oo for some i, and the method breaks down. Note, however,
that for a sufficiently small ¢, Eq. (2.6) implies that T 1 Jy =TTy s0 by
Prop. 1.1(b), g**+1 will be proper. In any case, we witl analyze the method
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under the assumption that all generated policies are proper. The following
proposition parallels Prop. 3.6 in Section 1.3, It provides an estimate of
the difference S = J 0 terms of the sealar

p= nax Plaw # | o =i, i}

j1; proper

Note that for every proper policy ji and state §, we have Plu, £ ag =
i,y1} < 1 by the definition of a proper policy, and since the number of
proper policies is fiuite, we have p < L.

Proposition 2.1: Assumne thiat the stationary policies p* generated
by the approximate policy iteration algorithm are all proper. Then

n(l —p+n)(e+ 26)
(1 ~p)? '

limsup max (S (i) ~ J*(3)) <

i==1, ..

(2.7)

h—o0

Proof: The prool is similar to the oue of Prop. 3.6 in Section 1.3, We
modily the arguments i order to use the relations Ty, (J + re) <T,J + re
and PYe < pe, which hold for all proper policies y1 and positive scalars r.
We nse Bgs. (2.5) and (2.6) to obtain for all &

Tovvid o STT a0+ (c+20)e ST 00 0 4 (- 20)c. (2.8)

From L. (2.8) and the equation T = 'I/"" we have

TI'I"’ "]l"' < J“k -+- (( -+ 2(5)('.

By subtracting from this relation the equation T/:*’*"/u‘* b= '/,L“ 1,owWe
obtain
/“k Vi J“A- - 1/""* | v/},L o= '//'k — ./“k b1+ (e 4 20)c.

This relation can he written as

./“k-+| - ./“L- < 1)“;,-+| (J“}.- b ']/z"‘) + (( + 2(3)(’, (20)
where /'/,L-H is the transition probability matrix corresponding to gk tt,
Let.

& = iax (./l,;.+1(i) - ./l‘k(i)).

LR RO "

Then Eq. (2.9) vields

e < E/\,I’“A- e+ (o 20)c.
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By multiplying this relation with P a1 and by adding (¢ + 26)e. we obtain
e < &-PNA bre (e 28 - :A'I)ﬁk o 2ot RO
By ropeating this process for a total of 1 — 1 times. we have

e SL-I’)"’,‘ e ba(cn 200 7 pGue | (e 1 20).

Thus.
- n(c+ 2?*)‘

k= I—=p

Let g be an optimal statiouary policy. From e, (2.8). we have

vt o < Tprd o+ (€ 4 20)c
=T b = Ty J* 4+ J* + (e + 20)c
=P (S =)+ 0+ (4 20)e.
We also Lhave
letlﬁrl-/l,l. = J“A-u + T,,A Hv]“k *Tuk—f I J“H | = J,,,l.»u + /’“’1\-4 i (-/,,A- — ./“m 1).

By subtracting the last two relations, and by using the definition of & and
Eq. (2.10). we obtain

AR I U T+ L (e — k) + (o 20)0
<P =)+ EA-P,,H e (04 20)e

1"

< P (S = %) + e (e 4 20)¢ (2.11)
L= p4n)(c t20)

< Dl — )+ ‘.

L—p

Let
Cp = niax (.II,L (iy ~ J*(1)).

TR BOPON n

Then Eq. (2.11) vields, for all k.

I —p+n)c+26)
et ey U n ),
I -p
By multiplying this relation with £+ and by adding (L=p+n)(c+26)c/(1—
p), we obtain
(L= p4n)(e+20) 208 —p 4 n)(<j 2(3)_(‘

Chyze < Gyt Pk T, e

L—p
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By repeating this process for a total of 7 — 1 times, we have

(1 —p+u)(e+ 2(5)(. < et n(l—p+n)(e+ 2(32(‘

- p L p

Corne < Glhet

By taking the limit superior as & — ~0, we obtain

n(l—p- - 20
(I = pYlimsup ¢y < n(l = p -+ n)(c+20)
ko 1_’)

)

which was to be proved.  Q.E.D.

The error bound (2.7) uses the worst-case estiimate of the nmmber of
stages required Lo reach ¢ with positive probability, which is n. We can
strengthen the error bonud if we have a better estimate. In particular, for
Al i > 1, let

P = 1,:1:111.1?;,,, Plan, # ] xo =1, 1},
1 proper
and let 77 be the minimal m for which p,, < 1. Then the proof of Prop.
2.1 can be adapted to show that,

. . . (L — pa + 77) (e + 26)
hisup max (J () — J*(i)) < .
l»“:)lul)'.':lv-l,-‘-\‘”( ot () () = (1 = pim)?

SIMULATION-BASED METHODS

The computational methods deseribed so far apply when there is a
mat hematical model of the cost structure and the trausition probabilitics
ol the systenn. Inmany problems, however, such a model is not available,
bt iustead, the system and cost structure can he simulated. By this we
mean that the state space and the control space arce kuown, and there is a
compitter program that siiaulates, for a given control «, the probabilistic
tramsitions fronr any given state @ 10 a successor state j according to the
transition probabilities p,, (1), and also generates a corresponding transi-
tion cost g{i, e, j). Wis then of conrse possible to use repeated simulation to
calculate (at least approximately) the trausition probabilities of the system
andd the expected stage costs by averaging, and then to apply the methods
discussed carlier.

The methodology discussed in this section, however, is geared towards
an alternative possibility, which is much more attractive when one is faced
with a large and complex systent, and one contemplates approximations:
rather than estimate explicitly the transition probabilitics and costs, we

Sec. 2.3 Sinmlation-Dasced Methods

estimate the cost function of a given policy by generating o number of
simulated svstem trajectories and associated costs, and by using some form
of “least-squares fit.”

Within this context. there are a mumber of possible approximation
techniques, which for the most part are patterned after the vatue and (he
policy iteration methods. We focus first o exact methods where estiniates
of various cost [unctions are maintained in a “look-up table™ that contains
one cutry per state. We later develop approximate methods where cost
functions are maintained in a “compact”™ form; that is, they are represented
by a function chosen from a parametric class, perhaps involving a feature
extraction mapping or a neural network., We first. consider these methods
for the stochastic shortest path problens, and we Later adapt them for the
discounted cost problem in Section 2.3.4.

To make the notation better suited for the simulation context. we
make a slight change in the problem definition. by particular, instead of
considering the expected cost g(i, u) al state 7 under control u, we allow
the cost g to depend on the next state j. Thus our notation for the cost per
stage is now g(i.w, ). All the results aud the entire analysis of the preceding
scctions can be rewritten in terms of the new notation by replacing g(i. u)
with ZLL o ldg(é udj).

2.3.1 Policy Evaluation by Monte-Carlo Simulation

Consider the stochastic shortest path problem of Section 2.1, Suppose
that we are given a fired stationary policy j and we want to caleulate by
simulation the corresponding cost vector Jy. One possibility is of course to
generate. starting fron cach /0 many sample state trajectories and average
the corresponding costs to obtain an approximation to J, (7). We can do
this separately for cach possible initial state, but a more eflicient method is
to use cach trajectory to obtain a cost smmple for many states by considering
the costs of the trajectory portions that start at these states. If a state is
encountered multiple titmes within the same trajectory, the corresponding
cost samples can be treated as mnltiple independent sanples for that state.§

To simplify notation. in what follows we do not show the dependence
of various quantitics on the given policy. In particular. the transition prob-
ability from 7 to j, and the corresponding stage cost are denoted by p,; and
g(i, j), in place of p, (p(i)) and g{(i, (i), 7). respectively.

To formalize the process, suppose that. we perform an infiuite munber
of simulation runs. cach ending at the termination state . Assuie also
that within the total number of runs, cach state is encountered an infinite

§ The validity of doing so is not quite ohvious becanse in the case of multiple
visits to the same state within the same trajectory, the corresponding multiple
cost samples are corrvelated. since portions of the corresponding cost sequence are
shared by thiese cost samples. For a justifying analysis, see Bxercise 2.15.
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wunber of times. Cousider the mth time a given state s encountered,
and et (07, fan o i, 1) be the remainder of the corresponding trajectory.
Let (i, ) he the corresponding cost, of reaching state o,

clivm) = gli,in) + gliviz) 4o Fglin. ).

We assiie that the simulations corvectly average the desired quantitics;
that is, for all states ¢, we have

Al
I

Ju(i) = ’\}“—}l@)—]\_[ > cliom). (3.1)
' m=1

We can iteratively caleulate the stuns appearting in the above equa-
tions by using the update formulas

Ju (i) = J0) + v (('(i. m) - .],,(i)). m=1,2...,

where

Y = —, m=1.2 ...
m

and the initial conditions are, lor all 7,
Ju(i) = 0.

The noral way to implement the preceding algorithu is to npdate
the costs (i) at the end of each simulation run that generates the state
trajectory (iviz, ..y in )y by using for cach k= 1.... N, the forumla

TGy vz e (in) Yoy (G in i) F gl i) + -4 gln. ) = Ju()),

(3.2)
where my is the number of visits thus far to state 7 and v, = 1/my.
There are also forms ol the law of large numbers, which allow the use of
a different stepsize 4, 0 the above equation. Tt can be shown that for
convergence of iteration (3.2) to the correet cost value J, (ix ), it is sufficient
that 7, be diminishing at the rate of one over the number of visits to state
{je-

Monte-Carlo Simulation Using Temporal Differences

An alternative (and essentially equivadent) method to implement the
Monte-Carlo stimulation update (3.2), is to update J, (/1) inmediately alter
g(i1.i2) and iy are generated, then update J, (i) and J,(7z) innediately
after g{ia, i) and iy are generated, and so o, The wethod uses the quan-
titics

de = gle i) +Julep) = Julin). k=1 N, (3.3)
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with iy41 = f. which arve called temporal differences. They represent the
difference between the enerent estimate J, (i) ol capected cost to go to the
termination state and the predicted cosi to go to the termination state,

Gk kg )+ Julin ).

based on the simulated outcome of the current stage. Given a saple state
trajectory (iyore. ..o i, ). the cost update formula (3.2) can he rewritten
in terms of the temporal differences dy as follows [to see this. just add the
formulas below ana use the fact J,(ivgr) = Ju(l) = 0):

Following the state transition (7. i2), set

J(in) =) + v o= S+ Y (f/(i],iz) + i) — .I,,(i,)),
Following the state transition (iz, i3). st

Julin) o= Ju(0) + v de = (@) + 5 (,(/(i‘_’. i)+ J(in) — Ju(iz).

.]“‘(i,;g) = J,,(i:) + “;,,;3([2 = J,,(i'z) + Yy (!/(i‘_’-iii) + ./,,(i:;) - 'Iat(jll))~

Following the state transition (in. 1), set

Julin) = D) 4 v dne = Ju(i) 4+ 3 (gl ) = Ju(in)).

]“(1_3) == .//,(i;z) + A;m;;(l;\' = 'I;l(i'Z) 4”71113(.‘1("[\“") - '];1(’-‘\"))~

']/A(il\') = J;:(I'N) + ",'m)\:’[N = '//l(il\/) + Yy (!/(jA\'-”) - 'Ili(i"\'))~

The stepsizes Vi - k= 1,....N, arc given by v, = L/, where
e is the number of visits already made to state . I the case where the
sample trajectory involves al most one visit to cach state, the preceding,
updates are equivalent to the npdate (3.2} 10 there are multiple visits to
some state during a saanple trajectory, there is a dilference hetween the pre-
ceding updates and the update (3.2). because the updates corresponding to
each visit to the given state alfeet the updates corresponding to subsequent.
visits to the sanie state. However, this is an cffect whiclt is of second order
in the stepsize 5. 50 onee 4 becomes small, the difference is negligible.
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TD())

The preceding implementation of the Monte-Carlo sinmlation method
for evaluating the cost of a policy ju is known as 'TD(1) (here TD stands
for Temporal Differences). A generalization of TD(1) is TD{A), where A is
o parameler with

0<AL L

i, D) with a corresponding cost sequence

J;'(’-'N)

ven asample trajectory (i, .. A
g(in,ia). o glin, 1), TD(A) updates the cost estimates (i), ..,
using the temporal differences

di = gliecingn) Ve - dulin) b=t 0N,

and the equations

Ju(in) = Ju(h) + Yoy following the trausition (71, 42).
vl;:(il) = '][I(i|) -+ ')ml/\([z,
'//l(i:.).) = '];l(i‘l) + ’7/1112([2~

following the transition (iz.i3),

and more generally for b = I.....N,

Ju(in) o= o (in) + oy M=,
N k-2
ulh2) 1= Juliz) + N2, following the transition (ix, iy 1)

'/[I(I:]\') = J/l(ik) + Yiny, (II;.

The use of a value of A less than | tends to discount the offect of
the temporal differences of state transitions far into the future on the cost
estimate of the current state. In the case where A = 0, we obtain the TD(0)
algoritlun, which lollowing the transition (ig, ity 1) updates J, (i) by

'I/l(il.') = '/[l(i/.‘) + Yy (.(/(ikf’:k+l) + ’]l‘(i'k“i |) - ]/l(lk)) ('34)

This algoritlnn is a special case of an jmportant stochastic iterative algo-
rithin known as the stochastic approzimation (or Robbins-Monro) method
(sce o.g., [BMPY0], [BeT89%a), [Ljss3]) for solving Bellman’s equatious

E{glin, iver) + i)} = Julin) =0

In this algorithim, the expected value above is approximated by using a
single sample at cach iteration [ef. 1. (3.0l

The stepsizes y,m, need not be equal to 1/my,, where my is the number
of visits thus far to state ig, but they should dimiuish to zero with the
miber of visits to cach state, For example one may use the same stepsize
= 1/m for all states within the mth simulation trajectory. With such

~
rin

See. 2.3 Sirunlation-Based Methods 99
a stepsize and under some teclmical conditions, chiel of which is that cach
state 1= 1,...,n is visited infinitely often in the course of the simulntio{l,
it can he shown that for all A € 0, l],r the cost estimates J (1) generated
by TD(A) converge to the correet values with probability 1.

While TD(A) yields the correct values of W, (i) in the limit regardless
of the value of A the choice of A may have a substautial eflect ou the rate
of couvergence. Sonie expericnce suggests that using A < 1 (rather than
A = 1), often reduces the number of sample trajectories needed to attain
the same variance of error between J,(z) and its estimate.  However, at
present there is no analysis relating to this phenomenon.

Simulation-Based Policy Iteration

The policy evaluation procedures discussed above can be embedded
within a simulation-based policy iteration approach. Let us introduce the
notion of the Q-fuctor of a state-control pair (i, u) and a stationary policy
4, defiued as

Qui,u) = Zp,},-(u,) (g0 ucd) + Ju(0)- (3.5)
J=1

It is the expected cost corresponding to starting at state i, using control
u at the first stage, and using the stationary policy g at the second and
subsequent stages.

The @-factors can be evaluated by first evaluating J,, as above, and
then using further simulation and averaging (if necessary) to compute the
right-hand side of Eq. (3.5) for all pairs (£, u). Once this is done, one can
exccute a policy improvement step using the equation

ji(i) = arg min Q,.(i,u), P=1,... 0. (3.6)
uel/ (1)

We thus obtain a version of the policy iteration algorithm that combines
- policy evaluation using shinulation, and policy improveent using Eq. (3.6)
and further simulation, if necessary. In particular, given a policy st and its
-~ associated cost vector Jy,, the cost of the improved policy Jp is computed
" by simulation, with 7i(i) determined using Eq. (3.6) on-line.

2.3.2 @Q-Learning

We now introduce an alternative method for cases where there is
no explicit model of the system and the cost structive. This method is
* analogous to valuc iteration and has the advantage that it can he used
directly in the casc of multiple policies. Instead of approximating the cost
function of a particular policy, it updates directly the Q-factors associated
yith an optimnal policy, thereby avoiding the multiple policy evaluation
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steps of the poliey tteration method. These Q-factors are defined, for all
pairs (7, u) hy

"

Qi u) Z/l,',(u)('q(i, t, f) /‘(/))

=

From this definition aud Bellman's cquation, we see that the Q-factors
satisly for all pairs (7,u),

"
. N . . . . ’ .
QU u) =) py(u) L glicu j) + in Qj,u) ), (3.7}
we i)

gl
and it can be shown that the Q-factors are the nunique solution of the
above system of equations. The proof is essentially the same as the proof
ol existence and uniqueness of solution of Bellinan's equation; see Prop.
1.2 of Section 2.1, Tu fact, by introducing a system whose states are the
original states 1., u ¢ together with all the pairs (7, «), the above system
of equations can be seen to be a special case of Bellman’s equation (see
Exercise 2.17). Furthermore, the Q-lactors can be obtained by the iteration

QUi u) == Z[),’,(u,) (y/(/ﬁ, w, j) 4+ min )Q(,j. :L’)) . for all (/,u),

rety
=1 u i)

which is analogons to value iteration. A more general version of this is

Qli.u) = (1~”,)Q(i,'u,)+'yZp,-J(u) (y(i‘ u.jy+ min )Q(J’7 u’)) . (3.8)

aledl(y
g1

where 4 is a stepsize parameter with v € (0, 1], that may change from one
iteration to the next. The Q-learning method is an approximate version of
this iteration, whereby the expected value is replaced by o single sample,
1.0.,

QU,w) = QU u)+~ L gli uj)+ wmin )Q(.j, a') = Qi u)

W €Uy

Here j and g{i.u, j) are generated rom the pair (7. 0) by simulation, that
is, according to the transition probabilities p,, (1), This Q-learning can be
viewed as a combination of value iteration and simulation.

Beeause (Q-learning works using a single sample per iteration, it is
well suited [or a simulation context. By contrast, there is no single samiple
vorsion of the value iteration method, exeept in special cases [see Exercise
2.9(d)].  The reason is that, while it is possible to use a single-sample
approximation of a term of the form [‘}{min[-l}. stcht as the one appearing
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in the Q-factor equation (3.8), it is not possible to do so for a terni of the
form min[l'}{»}]. such as the one appearing in Bellnan™s equation.

To guarantee the convergence of the Q-learning algorithim to the opti-
mal Q-factors, all state-control pairs (7, u) must he visited infinitely olten,
and the stepsize 4 should be chosen in some special way. I particular, il
the iteration corresponds to the mth visit of the pair (7. 1), one may use in
the Q-learning iteration the stepsize v = ¢/m, where ¢ is a positive cou-
stant. We refer to [Tsi94] for a proof of convergence of Q-learning under
very general couditions.

2.3.3 Approximations

We now consider approximation/suboptimal control schenes that are
suitable for problems with a large nuniber of states. The discounted ver-
sions of these schemes, which are discussed in Section 2.3.4 can be adapted
for the case of an infinite state space. Generally there are two types of ap-
proximations to consider:

(a) Approximation of the optimal cost lunction J*. This is done by us-
ing a function that, given a state 7, produces an approximation j(l )
of J*(i) where 1 is a parameter/weiglht veetor that is typically deter-
wined by some form of optimization: for example, by using some type
of least squares framework. Ounce i(/ r) is known, it can be used in
real-tinie to generate a suboptimal control at any state ¢ according to

(i) = arg min ﬁ),- wlglicu, )+ 1, 1)),
ili) = arg ),}:,“( Yoty j)+ 0, m)

wel {1

An alternative possibility, which does not require the real-time cal-
culation of the expected value in the above formula, is to obtain ap-
proximations Q(i.w.r) of the Q-factors Q(i. 1), and then to generate
a suboptimal control at any state i according to

fi(i) = arg min QU, u, ).
wel/ (i)

It is also possible to use approximations .i,,(i. r) of the cost fuuctions
Ju of policies o in an approximate poliey iteration scheme. Note
that the cost approxiination approach can be enhanced il we have
additional information on the true functions J*(7), Qi u). ov J, (1),
‘or example, il we kuow that J*(7) > 0 for all 7, we may first compute
the approximation j(ll) by using some wethod, and then replace
this approximation by m;lx{(). j(l 1)} This idea applies to all the
approximation procedures of this section.

(b) Approximation of a policy yi. or the optimal policy p*. Again this
approxiniation will be doue by some lwction parameterized by a
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paramcter/weight vector r, which given a state 4, produces an ap-
proximation ji(é,r) of p(i) or an approximation fi*(, r) of p*(i). The
parameter /weight, vector r can be determined by some type of least
squares optimization {ramework.

In this scetion we discuss several possibilities, emphasizing primarily
the case of cost approxination. The choice of the structure of the approx-
imating functions is very significant for the success of the approximation
approach. One possibility is to use the linear form

"

J@i,r) =Y (i), (3.9)

k=1

where » = (r1,..., ru) is the parameter vector and wy (i) are some fixed
and known scalars. This amounts to approximating the cost function J* by
a linear combination of m given basis functions (uu,v(l), ceey um(n)), where
h=1...,m.

Example 3.1: (Polyunowmial Approximations)

An important example of lincar cost approximation is based on polynomial
bhasis functions.  Suppose (hat. the state consists of ¢ integer components
Liy ey 2y, cach taking values within some limited range of the nonucgative
integers. For example, in a gqueaeing systemn, &y ay represent the number
of custoniers in the Ath queue, where & = 1,...,g. Supposc that we want to
use an approximating flunction that is quadratic in the components . Then
we can deline a total of T+ ¢ 4 ¢ basis functions that depend on the state
a= (0, ., ) Via

wolr) =1, we () = a, wis{r) = apr., kys=1,...,q.

An approximating function that is a lincar combination of these functious is

given by
“a “a

“a
J(r,ry=ro+ E ryag - E E Prxl ks,
k=1 k=1 szl
where the parameter vector ¢ has components ro. re. and re,, with ks =

{,...,q. In fact, any kind of approximating function that is polynomial ix

)

=

the componeuts oy, ..., 0y can be constructed in this way.

Example 3.2: (Feature Extraction)

Suppose that through intuition or analysis we can identify a nuinber of char-
acteristics of the state that affect the optimal cost function in a substantial
way. We assume that these characteristies can be numerically quantified, and
that they form a g-dimensional vector f(i) = (j'l(i)}..,, ‘,(i,)), called the
Jeature vector of state i TFor example, in computer chess (Section 6.3.2 of
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Vol. 1) where the state is the current board position, appropriate leatures
arc waterial balance, picce mobility, king safcety, and other positional factors.
Features, wlien well-chosen, can capture the dominant nonlinearities of (he
optimal cost function /7, and can be used to approximate J* through Che

lincar combination .
Jory=ry t ZI'L ().
k-
where rgory, ... ory are appropriately chosen weights,

It is also possible to combine feature extraction with more general poly-
nomial approximations of the type discussed in Example 3.0 For example, a
feature extraction mapping f followed by a quadratic polynontial mapping,
yields an approximating lunction of the lorm

° ° °
JEr)=ro+ Y nch(+ DY i),
bl [
where the parameter vector r has componeuts ro, . and ., with Als =
L,....q. This function can be viewed as a linear cosl approximation that
uses the basis functions

woll) = 1. wi (i) = fi:(1). wi () = [ (), ks =1..... q.

Note that more that one state miay map into the same feature veetor,
so that cach distinet value of feature veetor corresponds to a subset of states.
This subset may be viewed as an “aggregate state.” The optimal cost funetion
J* s approximated by a function that is constant over cach aggregate state.

We will discuss this viewpoiut shortly.

It can e seen from the preceding examples that linear approximating
functions of the form (3.9} are well suited for a broad varviety of sitnations.
There arce also interesting nonlinear approximating linctions /(/ ). inelud-
ing those defined by neural networks, perhaps in combination with foatire
extraction mappings. In our discussion, we will not address the choice of
the structure of .J(7, r), but rather focus on various methods for obtaining
a stitable parameter vector r. We will primarily discuss three approaches:

(a) Featurc-based aggregation. where r is determined as the cost vector
of an “aggregate stochastic shortest path problen.”

{(b) Minsmnizing the Bellman cquation error. where s determined so
that the approximate cost function ](1 r} nearly satisfies Bellman's
equation,

(¢) Approrimale policy ileration. where the cost lunctions J,, of the gener-
ated policies jrare approxiuated by S (4, r), with i chiosen according
to a least-squares error criterion.

We note, however, that the methods deseribed in this subscction are not

fully understood. We have chiosen to present theur because of their potential
to deal with problems that are too conplex to be handled in auy other way.
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Feature-Based Aggregation

We nmentioned carlier in Example 3.2 that a feature extraction map-
ping divides the state space inlo subsets. The states of cach subset arve
mapped into the same feature vector, and arve “sumlar™ in that they “share
the same features.” With this context in mind, let the set of states {1.... 0}
ol the given stochastic shortest path problem be partitioned in ne disjoint
subscts Sp, b = 1,...,m. We approximate the optimal cost J*(7) by a
function that is constant over caclt set Sy, that is,

i
J{ir) = E rry(i),
k=1
where r= (r..... o) s o vector of parameters and

(i) = { 1 il;es,

0 ilie S

Fguivalently. the approximate cost function (j(l S R j(n,. 1'))/ is repre-
sented as oo where Wois the o x o matrix whose entry in the ith row
and Ath columm is wp (7). ‘The ith row of 1 may be viewed as the leature
veetor corresponding to state 7 (cf. Example 3.2).

In the aggregation approach, the parameters ry. are obtained as the
optinal costs of an “aggregate stochastic shortest path problem” whose
states are the subsets Sy, Thus reois chosen to be the optimal cost ol the
aggregate state S in an aggregate problent, which is formulated similar to
the aggrepation method of Section 1.3.3. i particular, et @ e an m xn
matrix such that the kth row of  is o probability distribution (qui.. .« k)
with gr, = 0107 € Si. As in Section 1.3.3, the stractire of Q imiplics that
for cach stalionary policy gi, the matrix

Ry = QP

s an X o transition probability matrix. The states of the aggregate
stochastic shortest path problent are the sets Sy, ..., Sy, together with the
termination state £; the stationary policies select at aggregate state Sy a
control u € U(i) for each i € Sy aned thus can be identilied with stationary
policies of the original stochastic shortest path problens; finally the tran-
sition probability matrix corresponding to g in the aggregate stochastic
shortest. path problen is Ry, Given astationary policy g, the stade tran-
sition mechanism in the aggregate stochastic shortest path problemn can
he deseribed as Tollows: al aggregade state S0 we move to state 7 with
probability ¢r,, then we move o state j with probability pj, (/I(i)), and
finally, i j is not the termination state 7, we move to the aggregate state
Sy corresponding to j (j € 5).
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Suppose now that r = (ry,...,7,) is the optimal cost function of the
aggregatce stochastic shortest path problem. Then r solves the correspond-
ing Belliman equation, which has the form

" " i

- R o .
Ty = 2 Gk, il 2 pylu) b ylicu j) + ) rows{) ). =1, .

. wel (1)

i ! s
One way to obtain » is policy iteration based on Monte-Carlo siimulation.
as described i Section 23,10 Au alternative. due to [TsVO]Cis to use a
simulation-based form of value iteration for the aggregate problem. Here,
at cach iteration we choose a subset Sp. we randomly seleet a state i € 5
according to the probabilities g, and we update rp according to

" m

ri= (1 =A)re -+~ min Zp,»,(u) gliyu.jy-+ Z roee(J) ) (3.10)

(e
welit ).,—.:1 s=1
where 7 is a positive stepsize that diminishies to zero as the algorithim pro-
gresses. The following example illustrates the method. We refer to [TsV9.1]
for experimental results relating to this example as well for convergence
analysis of the method.

Example 3.3: (Tetris [TsV94])

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be (ull or empty, making up a “wall of bricks™ with “holes”
and a “jagged top”. The squares fill up as blocks of dilferent shapes fall at a
constant rate from the top ol the grid and are added to the top of the wall.
As a given block [alls, the player can wove horizontally and rotate the block
in all possible ways, subject to the constraints itnposed by the sides of the
grid and the top of the wall. There is a finite set of standard shapes for the
falling blocks. The game starts with an empty grid and ends when a squanre
in the top row becomes full and the top of the wall reaches the top of the
grid. However, when arow of full squares is ereated, this row is removed, the
bricks lying above this row move one row downward, and the player scores a
point. The player's ohjective is to waximize the score attained (total munber
of rows removed) up to termination of the game.

Assuming that, for every policy, the game terminates with probability
one (something that is not really known at present), we can model the problem
of finding an optimal tetris playing strategy as a stochastic shortest path
problemn. The control, denoted by u, is the horizontal positioning, and rotation
applied to the falling block. 'The state consists of two components:

(1) The board position, that is. a binary deseription of the full/empty status
ol cach square, denoted by .
(2) The shape of the carrent falling, block, denoted by y.
The component. y is generated according to a probability distribution
p(y), independently of the control. Exercise 2.9 shows that auder these cir-
cumstances. it is possible o derive aredueed Tormn of Bellman’s equation
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involving a cost function J that depends only on the compoucent o ol the
state (see also Excercise 1.22 of Vol. 1). This cquation hias the intuitive forin

Jr) = Z p(y) max [y(.l:, you) 4 J (f(.l:, y. u))], for all r,

y

where g, g, u) and f(x, y, 1) are the number of points scored (rows removed),
and the board position when the state is (i, y) and coutrol w is applied,
respectively.

Unfortunately, the nmuber of states is extremely large. s equal to

Ll

, where mis the nnber of different shapes of {alling blocks, and /i and
w are the height and width of the grid, respectively. I particular, for the
reasonable mumbers sn = 7, o= 20, and @ = 7 we have over 10" states.
Thus it is essential to use approximations.

An approximating function that involves feature extraction is particu-
larly attractive here, since the gnality of a given position can be deseribed
quite well by a few features that are casily recognizable by experienced play-
ors. These features include the current height of the wall, and the presence
of “holes™ and “plitches™ (severe irregularitios) in the first few rows. Suppose
that, based on b experience and Gial and error, we obtain a method to
map cach board position .« into a vector of features. Suppose that there is a
finite numuber of possible featwre vectors, say m and define

wi () = { 1 if board position & maps into the Ath feature veetor,
w) = .
0 otherwise.

The approximating function .i(.r, ry is given by

n
S r) = E rrtg (),
Aot
where r= (r1,..., 70 ) is the parameter vector. The simulation-based value

eration (3.10) takes the form

rec= (1= )re + lnfllX[!/(»'w!/- W)+ I (flrgu),r)].

where the positive stepsize v diminishes with the number of visits Lo position
J€

One way to timplement the method is as follows: The game is simulated
niuly times from start to finish, startiug from a variety of “representative”
board positions. At cach iteration, we have the current board position z and
we detenmine Cthe featurve vector & to which - maps. Then we randomly gener-
ate a falling block i according to a known and lixed probabilistic mechanisim,
and we update 7 using the above iteration. Let u* be the choice of v that
atlains Che maxinmn in the iteration,

u” = argmax {g(,r, you) + j(f(l Y. i), 7)]
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Then the board position subsequent to .« in the simulation is f(a, y, v*), and
this position is used as the current state for the next iteration.

In the aggregate stochastic shortest path problem formulated above,
policies consist of a different control choice [or cach state. A somewhat dif-
ferent aggregate stochastic shortest path problem is obtained by requiring
that, for cach &, the same control is used at all states of Sy. This control
must be chosen from a suitable set U(k) of admissible controls for the states
in Sg. The optimal cost function 7 = (ry,...,r,)" corresponding (o this
aggregate stochastic shortest. path problemn solves the following Bellinan
equation

m

" n
T = 1iin qu Zp,j(u) gliuj) + Z res() ], k=1,....0.

weli(h) ;27 i3 /

8

This equation can be solved by Q-learuing, particularly when m is relatively
small and the munber of controls in the sets U (k) is also small.

Note also that the aggregate problem uced uot he solved exactly, but
can itself he solved approximately by auy of the simulatiou-based methods
to be discussed subsequently in this section. Tu tlis context, aggregation
is used as a [cature extraction mapping that maps cach state i to the cor-
responding leatwre vector w(i) = (wi(i).. ... w.,(i)). This feature vector
becomes the input to some other approximating function (sce Fig. 2.3.1).

Dt it ~ [ St S i I

| ! ' '

1 ' ' '

' ! | |

. \ Feature X X

1 State | Feature 1 Vector t 1 Cost Approximation
' Systemn/ Extract ! . Cost

. Pt~

. Simulator M);ratfnlon . ' Approximator !

. pping ' b .

1 : i )

' Aggregate System/ ) \ Approximator for the |

: Simulator : ' Aggregate System 1

Figure 2.3.1 View of a cost function approximation scheme thal consists of a
feature extraction mapping followed by an approximator. The scheme conceptn-
ally sepavales into an aggregate system aud a cost approximator for the apgregate
system.

We finally miention an extension of the aggregation approach wherehy

. . . 7 -
we represent. the approsimale cost function (/( Loy JJnr) as W,
where cach row of the n x i matrix 1 is a probability distribution. Thus

m

/(1 ry = Z riog (i),

A=1
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where wy (i) is the (7, A)th entry ol the matrix W, and we have

n

Zuv;,.(i,) =1, wp () >0, d=1,....,n k=1,...,m.

[

The transition probability matrix of the aggregate stochastic shortest path
problent correspouding to o is still B, = QP,W, and we may use as pa-
ramieter veetor o the optimal cost vector of this aggregate problem.

Approximation Basced on Bellman’s Equation

Another possibility for approximation of the optimal cost by « fune-
tion J(i. 1}, where » is & vector of unknown paramneters, is based on mini-
wmizing, the error in Bellman’s equation; for example by solving the problem

. 2
111'1112‘.1(7',,1') — min Z[)'J(“)(/( eI 1))' , (3.11)
r N we U (i) “
€S J
where S is a suitably chosen subset of “representative” states. This min-
inizalion may he attempted by using some type of gradient or Gauss-
Newton methaod.
A gradient-like method that can be used to solve this problem is
obtained by making a correetion to 7 that is proportional to the gradient
of the squared error term in Fq. (3.11). This method is given by

ri=r—xD0{.r)VD@.r)
= =D Do pu(@VI(r) = VIGr), (8.12)

f

where Vodenotes the gradient with respect to r, D(i,r) is the error in
Bellman's equation, given by

D@i.r) = mm Zp,, w)(g(i, )+ /N(Aj.r))—j(i,'l‘)7

we U/
u is given by
U= arg min > Py Q) (glicu, j) + 1(17)),
well(r) )

and 7y is @ stepsize, which may change from one iteration o the next. The
wethod should perform many such iterations at cach of the representative
states. Typically one should cvele through the set of representative states
S in sowe order, which may change (perhaps raudounily) from one cycle to
the next.
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Note that in iteration (3.12) we approximate the gradient of the term

min Z;),, (W) (gliouj) + i(/ ) (3.13)

weli(n)

by
> vy @V ),
J

which can be shown to be correct only when the above mininmmm is attained
at a unique @ € U(#) fotherwise the lunction (3.13) is nondiflerentiable with
respeet to r]. Thus the convergence of iteration (3.12) should be analyzed
using the theory of nondifferentiable optimization. Oue possibility to avoid
this complication is to replace the nondifferentiabie term (3.13) by a stooth
approxination, which can be arbitrarily accurate (see [Ber82b], Ch. 3).

An interesting special case arises wlhien we want to approximate the
cost function of a given policy y by a fimetion ,/:,,(lﬁ, ), where 7 is a param-
cler veetor. The iteration (3.12) then takes the form

ro=1— *,E,{(l,l(/ VUi d B {NduGojor) i}

o (3.10)
=L { G jor) Vi (12, o) i} = Vi),

1|

where

dulicjor) = (/(1 1(1),. )—| /,,(1 r) = Jyli, ).
and I, {- | i. 1} denotes expected value over j using the transition proba-
bilities p,, (42(7}). There is a simpler version of iteration (3.14) that does
not require averaging over the successor states . In this version, the two
expected values i iteration (3.14) are replaced by two independent single
saple vadues. [u particular, » is updated by

ro= = yd L, 1')(V.]I,(7, r) — v'i/'(i~ ’)) (3.15)

where j and j correspond to two independent transitious starting frou i.
It is necessary to use two independently generated states j and § in order
that the expected value (over j and j) of the produet,

dicjor) (V3 (Gor) = V(i)
given 4, is equal to the ter
l?.,{«l,,(i,.j, N f,/l}([’/, v. /,1 Syl /l} - V/,,(/ 1))

appearing in the right-hand side of 15q. (3.11).

There are also versions of the above iterations that update Q-factor
approxiniatious rather than cost approximations. In particular. let us in-
troduce an approximation (;)(i7 u, 1) to the Q-factor Qi 1), where r is an
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unknown parameter vector. Belliman’s equation lor the Q-factors is given
by [cf. Eq. (3.7)]

Qi u) = Y piilu (( iy, j) Fomin QJ,w ),

(i, 1) Zj‘lu( )yl J) U 20, ')

50 in analogy with problem (3.11), we determine the parameter veetor by
solving the least squares problein

. N 2

m}u Z . ‘Q(i, w,r) - Zp,j(u)(g(i, u. j)+ “llélli;l(li) QU r))‘ , (8.16)
(H,u)ev J

where Vs a suitably chosen subsct of “representative” state-control pairs.

The analog of the gradient-like methods (3.12) and (3.14) is given by

ro=r =y E{du(i o) i e B{NdG (G jr) i e
= — fylg‘{(l,,(i,_j, ry i, u,} ( Z[),’),‘(ll)v(,}(.j, u,r) — vQ(i.n, '1')),
J

where dy (i, j,7) is given by

4Gid.r) = i)+ e QUi 1) = QG r),
wel’(s

7 is ubtained by

w=arg min Q(j, ', 1),
W el
and v is a stepsize parameter. In analogy with Eq. (3.15), the two-sample
version of this iteration is given by

o= —ydy (i, I‘)(VQ(;,I_L, 1) - VQU,u, r)),

where j and j are two states independently generated from @ according to
the transition probabilitics corresponding to «, and

T=arg min QG.u', 7).
u' el (i)

Note that there is no two-sample versiou of iteration (3.12), which is
based on optimal cost approximation. This is the advantage of using Q-
factor approximations rather than optimal cost approximations. The point
is that it is possible lo use single-sanple or (wo-saaple approximations in
gradient-like methods for terms of the form £{minf]}, such as the one
appearing in Eq. (3.16), but not for terms of the form min [E{}], such as
the one appcaring in Eq. (3.11). The following example illustrates the use
of the two-sample approximation idea.

Sec. 2.3 Simmlation-DBased Methods i
Example 3.4: (Tetris Continued)

Consider the game of tetris deseribed in Example 3.3, and suppose that an
approximation of a given form J{(a, r) is desired, where the parameter veetor
7 is obtained by solving the problem
2

)

nljll Z ji(l, r) - Z ) m'ellx{.(/(.r. TROES i(/(l o). 1)]

S Y

where S is a suitably chusen set of “representative” states. DBecause this
problem involves a term of the form E{nm.\'[»]}, a two-sample gradient-like
method is possible. It Lias the form

ro=r—qd(e, o) (V] (f(.l:,ﬁ,ﬁ), I‘) - VJ(r, I))

where y and § are two falling blocks that are randomly and independently
generated.

Ay, r) = max [y(.z', y.u)+ j(j(n you). :)J — /(: "y,

and
T are AN g oY I o
= r\l},ll}:}?\[{/(.l.!/, u') J(j(.l,y. u :))]

SECI R F g e

Similar to Example 3.3, consider a feature-based approximating func-
tion J(u,7) given by E
m -‘tl
- $
T - . 9 It
J(r,r) = S rewg (), iy
k=1 ;

where 1 = (r1,....rn) is the parameter vector and

wiel) = { 1 if board position & maps into the Ath feature vector, ¢
’ 0 otherwise. 3

For this approximating function, the preceding two-sample gradient iteration
takes the relatively simple form

e = rp — Ad{ry, r)(u'k(f(.r.,T/,ﬁ)) - 11%(.:‘)). k=1,....m.

Note that this iteration updates at most two parameters [the ones correspond-
ing to the feature vectors to which the board positions 2 and f(r, 7. %) map.
asswiing that these feature vectors are ditferent]. "To implement the metlhod,
aset § containing a kuge nutuber of states . is selected and at each @ ¢ S,
two falling blocks y and 7 are independently generated. The controls « and @
that are optimal for (&, y) and (r,7), based on the current parameter vector
r, arc calculated, and the parameters of the featire vectors associated with
and f(x,7, %) are adjusted according to the preceding formula.
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Cuess Initial Policy

Evaluate the Approximate Cost J:.

) ‘ ! ’ Approximate
> of Current Policy ¢ Using Simulation

Policy Evaluation

Generate Improved Policy i
) Using the Approximate Cost
of the Current Policy

ti(i)=arg min, 3 0,u){(gUius)+Ju4.r)

Policy
Improvement

Figure 2.3.2 Block diagram of approximate poliey iteration.
Approximate Policy Iteration Using Moute-Carlo Simulation

We now discuss an approximate form of the policy iteration wmethod,
where we use approxiniations Jy (i r) to the cost J, of stationary policies
o, and/or approximations Q, (7., ) to the corresponding Q-factors. The
theoretical basis of the method was discussed in Section 2.2.2 (¢f. Prop.
2.1).

Simitar to our carlier discussion on simulation, suppose that for a
fixed stationary policy jr, we have a subset of “representative” states S
(perhaps chosen in the course of the sinntlation). and that for cacli i € S,
we have M (7)) samples of the cost J, (7). The mnth such sample is denoted
by (7, ). Theno we can introduce approximate costs .i,,(i, r), where 7 is
a paramceter/weight veetor obtained by solving the following least-squares
optinization problem

(i)

ml?n Z Z |.i,,(i. 1) = c{i. m)!z.

e s m=1

Once the optimal value of » has heen determined, we can approximate the
costs Sy (1) of the policy yo by J, (i, r). Then, we can evaluate approximate
Q-factors using the formmla

Qulicuer) =S iy (W) (glis ) + Ju (o). (3.17)

J
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System Simulator

Simulation .
Data r, Jor)
—— Optimizer |reeeip

Decision Generator
Decision fi(i) State /

!

Cost-to-Go Approximator
Supplies Values J, (/.r)

Figure 2.3.3 Structure of approximate policy iteration algorithin,

and we can obtain an improved policy 7 using the formula
() = arg min Qu{i u.r)
wel/(1)

arg min o, () (gliou. j) -+ j, i)}, for all /.
8 _)Z“( Yglicu.j) -+ Julior))

weli(i
J

(3.13)

i

We thus obtain an algorithin that alternates between approximate policy
evaluation steps and policy improvement steps, as illustrated in Fig. 2.3.2.
The algorithm requires a single approximation per policy iteration, nauncely
the approximation j,,(i. r}) associated with the current policy g The pa-
rameter vector r determines the Q-factors via Eq. (3.17) and the next policy
7 via L. (3.18).

For another view of the approximate policy iteration algorithin, note
that it consists of four modules (see Fig. 2.3.3):

() The simulalor, which given a state-decision pair (7, 1), generates the
next state j according to the correct transition probabilities.

(b) The decision generator, which generates the decision (i) of the im-
proved policy at the current state ¢ [ef. Eq. (3.18)] for use in the
shnulator.

(€) The cost-to-go approrimator, which is the function J, (j,r) that is
cousulted by the decision generator for approxiniate cost-to-go values
to use in the minimization of Eq. (3.18).

—
o
e

The optimizer, which accepts as input the sample trajectories pro-
duced by thie sinmlator and solves the problem

A1)

“1—?"2 ST = i) (3.19)

jiegm=1

ST

S . A e e
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to obtain the approximation .iﬁ('i,it) ol the cost of 1.

Note that in very large problems, the policy 77 cannot be evaluated
aud stored in explicit form, and thus the optimization in L. (3.18) must
he evaluated “on the lly” during the simulation. When this is the case, the
paranteter vector r associated with g remains unchanged as we ovaluatoe
the cost of the improved policy 7@ by gencrating the simulation data and
by solving the least squares problem (3.19).

One way to solve this latter problem is to use gradient-like methods.
Given a sample state trajectory {7y, iz, ..., iy, 1) generated using the policy
ji, which is defined by Eq. (3.18), the paramncter vector 7 associated with
71 is updated by

N N

T Ty Y V(i) .},(/L.:,—.)_Z,,(/,,,ﬁ(;,,,),/,,,,l) . (3.20)

bl eSS

where 7 is a stepsize. The swnmation in the right-land side above is a
sample gradicnt corresponding to a term in the least squares sunmmation of
problem (3.19).

We finally mention two variants of the approximate policy iteration
algorithm, botl of which require additional approximations per policy iter-
ation. In the first variant, instead of caleulating the approximate Q-factors
via L. (3.17), we form an approxination Q,,(i. u, y), where the paraweter
vector v is determined by solving the least squares problem

lll,ill Z |Q,,(i, u, y) —(;:),,(i,(l,r')!z. (3.21)

Y N
(ia)eVv

where Vs a “representative” set of state-control pairs (4, 1), and (}“(I:, u,r)
is evaluated using Eq. (3.17) and cither exact ealeulation or simulation.
This variant is uscful i it speeds up the caleulations of the policy improve-
ment step [ef. 1. (3.18)].

i the second vartant of the algorithg, we first perfor the approxi-
mate policy evaluation step to obtain .i,,(i. r). Then we compute the -
proved policy Ji(i) hy the formula (3.18) only for states 4 in a “represen-
tative” subset §. We then obtain an “improved”™ policy fi(Z, ¢), which is
defined over all states, by introducing a parameter vector ¢ and by solving
the least squares problem

“‘,i“Z”F(i’) - ﬂ(/.u)“z. (3.22)

s

Here, we assumne that the controls are elements of sote Fuclidean space and
[} denotes the norm on that space. This approach aceclerates the policy
improveuent step {of. Eq. (3.18)] at the expense of solving an additional
least squares problem per policy iteration.

i
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Approximate Policy Iteration Using TD(1)

Just as there is o temporal differences implementation of Monte-Carlo
simulation, there is also a temporal differences implementation of the gra-
dient iteration (3.20). The temporal differences dy. are given by

die = g(i-TH(x ) iver) + Jmling, F) = Jalin, 7), k=1,...,N, (323)

and the iteration (3.20) can be alternatively written as follows [just add the
equations below using the temporal difference expression (3.23) 1o obtain
the iteration (3.20)]:

Following the state transition (i1.72), set

=7 4+ yd | Vp(in, 7). (3.24)
Following the state transition {(iz, i3), sct

T =T 4 qdy (VI(in,7) + Vig(ia, 7). (3.25)

Following the state transition (iy,t), sct
7= F—f—",’(]‘\'(vj“,(l'[,F) + v.i;;(l';g.’?) R t v.i'l,'(li[\uf)). (3.2(5)

The vector 7 may be updated at cacl transition. although the gra-
dients Vj,—,(ikj) are evaluated for the value of 7 that prevails at the time
i is generated. Also, for convergence, the stepsize v should diminish over
time. A popular choice is to use during the mith trajectory v = ¢/m, where
¢ is a constant.

A variant of this method that has been proposed under the nane
TD(A) uses a parameter A € [0,1] in the formulas (3.23)-(3.26). 1t has the
following forn:

Tor b =1..... N, following the state transition (ig, /g 1), sel
A
Fo=T b qdy Y NVl 7).
m=1

While this method has received wide attention, its validity lias heen
questioned. Examples have heen constructed {Berdhb] where the approxi-
mating function jﬁ(i.F) obtained in the Timit by TD(A) is an increasingly
poor approximation to J, (i) as X decrcases towards () and the approxinia-
tion obtained by "I'D(0) is very poor. U is possible. however, to use Che
two-sauple gradient iteration (3.15) (or a stimulation-bhased, approximate
evaluation of thie cost functious of various policies in an approximate policy
iteration scheme. This iteration resembles the TD(0) formula but aims at
minimizing the crror in Belliman's equation.
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Optimistic Policy Iteration

Lu the approximate policy iteration approach discussed so far, the
least. squares problem that evaluates the cost of the improved policy 7i
st be solved completely for the vector 7. An alternative is to solve this
problem approxilately and replace the policy jo with the policy 77 after a
single or a few simulation runs. An extreme possibility is to replace 1 with
71 ab the end of cach stite transition, as in the next algorithm:

Following the state transition (i, i 4 1), sct

IS

Ti=T A ydy Z Vdilim. ),

m—1

atd generate the next trausition (744 1, ix42) by simulation using the control

i 1) = arg min > Pics s (W (g, w, ) + Jz(j.7).
well(i -
J

The theoretical convergence properties of this method have not been
investigated so far, althougl its TD(A) version has been used with success
in solving some challenging problems [Tes92].

Variations Involving Multistage Lookahcad
To reduce the effeet of the approximation error
Ju() = Ju(i,r)

between the true and approximate costs of a policy p, one can consider
a lookahcad of several stages in computing the improved policy 7. The
method adopted carlier for generating the decisions Ji(i) of the improved
policy,
7i{7) = arg min Zp,.,(u,)(_q(i, u, j) + .]~,,(j, ). for all i,
ac (1)
¥

corresponds to a single stage lookahead. At a given state 4, it finds the opti-
mal deeision for a one-stage problem with stage cost g(i, u, j) and terminal
cost. (after the first stage) J, (. 7).

A mstage lookahead version finds the optimal policy for an m-stage
problem, whereby we start at the current state 7. make the m subsequent
decisions with perfect state information, incur the corresponding costs of
the i stages, and pay a termiiual cost j,,(j,?'), where j is the state after
m stages. This is a finite horizon stochastic optimal control problemn that
may be tractable, depending on the horizon i and the nunber of possible
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successor states from eacl state. If w (2) is the first decision of the m-stage
lookahicad optimal policy starting at state 7, (he improved policy is defined
by

i) = ().

Note that if J,(j.r) is equal to the exact cost Ju(F) for all states 4, that
is, there is no approxiniation. the multistage version of policy iteration can
be shown o terminate with an optimal policy under the same conditions
as ordinary policy iteration (sce Exercise 2.16).

Multistage lookaliead can also be used in the real-time caleulation of
a suboptimal control policy. once an approxination 7(1/) of the optimal
cost hias been obtained by any one of the methods of this subscction. An
example is the compnter chess programs discussed in Section 6.3 of Vol.
I In that case, the approximation of the cost-to-go function (the position
evaluator discussed in Section 6.3 of Vol. I} is relatively primitive. Tt is
derived from the features of the position (inaterial balance, picee mobil-
ity, king safety, ete.). appropriately weighted with factors that are cither
heuristically determined by trial and error, or (in the case of a champion
program. IBNM’s Deep Thought) by training on examples from grandmaster
play. Tt is well-known that the quality of play of computer chess programs
crucially depends on the size of the lookahcad. This indicates that in
mauy types of problems, the multistage lookahead versions of the methods
of this subscction should be much more effective than their single stage
lookahead counterparts. This iimprovement in performance must of course
be weighted against the cousiderable inerease in computation reguired to
optimally solve the associated multistage problems.

Approximation in Policy Space

We finally mention a conceptually differcut approximation possibility
that alms at direct optimization over policies of a given type. Here we liy-
pothesize a stationary policy of a certain structural form, say ji(i, r), where
r is a veetor of unknown paraincters/weights that is subject to optimiza-
tion. We also assume that for a fixed 7, the cost of starting at i and using
the stationary policy ji(-, ), call it J(i,7), can he evaluated by simulation.
We may then minimize over

[:;{.i(,‘. "}, (3.27)

where the expectation is taken with respect to some probability distribution
over the set of initial states. This minimization will typically be carried out.
by some methiod that does not require the use of gradieuts if the gradient
of J(i,r) with respect to r cannot be casily caleulated. I the sinlation
can produce the value of the gradient V.J (1) together with J(i. r). then a
gradient-hased method can be used. Generally, the minimization of the cost
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function (3.27) tends Lo be quite difficult if the dimension of the parameter
vector rois large (say over 10). As a result, the method is most likely
effective only when adequate optimal policy approximation is possible with
very few parameters.

2.3.4 Extcusion to Discounted Problems

We now discuss adaptations of the stmulation-based miethods for the
case of a discounted problem.  Consider first the evaluation of policies
by simulation. Oue difliculty here is that trajectories do not terminate,
s0 we cannot obtain sample costs corresponding to different states. One
way to get around this difliculty is to approximate a discounted cost by
a finite horizon cost of sufliciently large horizon. Another possibility is to
convert the a-discounted problem to an equivalent stochastic shortest path
problem by introducing an artificial termination state ¢ and a transition
probability 1 — « from cach state ¢ # ¢ to the termination state {. The
remaining trausition probabilitics are scaled by multiplication with « (sce
Vol. I, Scetion 7.3). Bellmau’s cquation for this stochastic shortest path
problem is identical with Bellmanw’s equation for the original a-disconnted
problem. so the optimal cost [unctions and the optimal policies of the two
problems arc identical.

The preceding approaclies may lead to long simulation runs, involving
many transitions. An alternative possibility that is useful in sowme cases is
based ou identifying a special state, called the reference state, that is as-
sumed (o be reachiable from all other states under the given policy. Suppose
that such a state can be identilicd and f{or concreteness assume that it is
state 1. Thus, we assmne that the Markov chain corresponding to the given
policy has asingle recurrent class and state 1 belougs to that, class (sce Ap-
pendix D of Vol 1). H there are multiple recurrent classes, the procedure
deseribed it what follows can be modified so that there is a reference state
for cach class.

To simplify notation, we do not show the dependence of various quan-
titics on the given policy. In particular, the trausition probability from ¢ to
J and the corresponding stage cost, are denoted by p,, and g(7, j), in place
of p., (/l,(i)) and _:/(/f.,/l(i,),_[), respectively. For cach initial state 4, let C(i)
denote the average disconuted cost incirred up to reaching the reference
state 1. Let also mr, denote the first passage time from state i to state 1,
that is. the nwmber of trausitions required to reach state 1 starting from
state 7. Note that i, is a random variable. We denote

D(i) = I {am} .

By dividing the cost ./, (i) into the portion up to reaching state 1 and the
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remaining portion starting from state 1. we have

my -1
Sy = By abglen,ag ) fro =i
k-0
= (3.28)
+E }_4 (l}r.(/(""‘u'a"./."b l) | L, = I
b=,

= C(i) + D(i)J,(1).

Applying this equation for i = 1, we have J, (1) = C(1) + D(1).J,(1). so

that,
oo
T 1-D()’

Combining Egs. (3.28) and (3.29), we obtain

Ju(1) (3.29)

. o D(HC(1)
Ju(8) = C) A T D)
Thercfore. to caleulate the cost veetor J,, it is suflicient Lo caleulate the
costs C(i), and in addition to calculate the expected discount ters D(7).
Both of these can be computed. similar to the stochastic shortest path
problem, by generating many sample systen trajectories, and averaging the
corresponding sample costs and discount terms up to reaching the reference
state 1.

Note here that hecause C(1) aud D(1) crucially afleet the caleulated
values J, (7). it may be worth doing some extra simulations starting [ron
the reference state 1 to ensure that C(1) and D(1) arc accurately calculated.

Once a stmulation method is available to evaluate (perliaps approxi-
mately) the cost of various policies. it can be cuibedded within a (perhaps
approximate) policy iteration algorithm along the lines discussed for the
stochastic shortest. path problem.

We note also that there is a straightforward extension of the -
learning algorithim to disconnted problems. The optimal Q-factors are the
unique solution of the equation

"

Qo) = > pij()(gli ) +ad ()

)=
= Zp,,(u) gli.u j)+a min Q. u’)> .
- ’ u' ()

This is again proved by introducing a system whose states are pairs (7. u),
so that the above system of cquations becomes a special case of Bellman's
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cquation. With similar observations, it follows that the veetor of Q-factors
can be obtained by the value tteration

QUi u) = Z/),J(u) (g(/, . ) F o ain Q. u’)) .

el y)
=t

The Q-learning method is an approximate version of this iteration, wlherehy
the expected value is replaced by a single sample, i.e

QU u) = QU )+~ (g/(i, u, J)+a wmin Q') — Qi u)

weli(y)

Here j and g(i; u, j) are generated from the pair (¢00) by simulation, that,
is, according to the transition probabilities p,, (u).

We finally note that approximation based on minimization of the
crror in Bellman'’s equation can also he used in the case of a discounted
cost. One simply needs to introduce the discount factor at the appropriate
places in the various iterations given above. For example, the variant of
iteration (3.15) for evalnating the discounted cost of a policy ju is

roes o= ad (0L, l')((\'V.i,,(j. ry - V,i,,(i, ),

where o is the discount factor and

dulivjor) = glion(i)j) + adu(or) = Ju(ior).

2.3.5 The Role of Parallel Computation

It is well-known that Moute-Carlo sinmdation is very well-suited for
parallelization; one can simply carry out multiple simulation runs in par-
allel and occasionally merge the results, Also several DP-related methods
are well-suited for parallelization; [or example, cacly value iteration can be
parallelized by exceuting the cost, updates of different states in different
parallel processors (see e.g., [ANTO3]). In fact the parallel updates ean be
asyvuchronons. By this we mean that dilferent, processors may execute cost
updates as fast as they can, without waiting to acquire the most recent
updates from other processors; these latter updates may be late in cow-
ing because some of the other processors way be slow or because some of
the connunuication chaunels connecting the processors may be slow, Asyn-
chronous parallel valne iteration can be shown to ave the saune convergencee
properties as its syuchirouous counterpart, and is often substantially faster.
We refer to [Bers2a) and [Be'T8Ya) for an extensive discussion.

There are shmilar parallelization possibilitios in approximate DP. In-
deed, approximate policy iteration may he viewed as a combination of two
operations:

2.4
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() Sinrulation. which produces many pairs (7, r'(i)) ol states 7 and sample
costs (i) associated with the improved poliey ji.

{(b) Training. which obtains the state-sample cost paivs produced by the
simulator and uses thent in the least-squares optimization of the pa-

rameter veetor 7 of the approximate cost function W, (- 7).

The simulation operation can be parallelized in the nsual way by
executing multiple independent simulations in multiple: processors. The
training operation can also be paralielized to a great extent. For example,
one may parallelize the gradient iteration

N
Fi=r o Y V(i ) (Tplin, T) = Uin)

k=1
that is nsed for training [cf. Eq. (3.20)]. There are two possibilities heve:

(1) To assign dilfereut components of 7 to different processors and to
exectite the component updates in paralicl.

(2) To parallelize the computation of the sawple gradient
N R R
STV Tatin ) (Falin . F) = (i)
ki

in the gradient iteration, hy assigning differeut blocks of state-samnple
cost pairs to different processors.

There are several straightforward versions of these parallelization lll(‘l;]l()(l.\‘.
. . . ), -

and it is also valid (o use asynchronous versions of them ([ r89aj. Ch. 7).

There is still another parallelization approach for the training pro-

cess. It is possible to divide the state space S into several subsets Sy,

m o= 1.... M. and to caleulate a different approximation .//—,(i.F,,,) for
cach subset S,,. In other words, {lx(~ parameter veetor 7, that s used
to calculate the approximate cost Jz(7, 7, ) depends on the subset S, (o
which state i belongs. The parameters 7y, can be obtained by a parallel
training, process using the applicable simufation data, that is, the state-
sample cost pairs (i.r(/)) with 7 ¢ &,,. Note that the extreme case where
cach set Sy, corresponds to a single state. corresponds to the case where
there is no approximation.

NOTES, SOURCES, AND EXERCISES

The analvsis of the stochastic shortest path problems of Section 2.1 s
taken from [BeT89a) and [BeTOIb] The Latter reference proves the results
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shown hiere nnder a more general compactuess assumption on U(7) and
continuity assimption on g(Z, u) and p,, (1). Stochastic shortest path prob-
lems were first formulated and analyzed in [FaZ62] ander the assumption
gliyu) > Oforall i =1, .0 and u ¢ U(i). Finitely terminating value
tteration algorithms have heen developed lor several types of stochastic
shortest path problems (see [NgP8s], [PoT92], [PST93], [T5i93a)). The use
ol a Dijkstra-like algorithon for continunous space shortest path problems
involving a consistently improving policy was proposed in [T5193a] (sce Ex-
ereise 2.10). A Dijkstra-like algorithm was also proposed for another class
ol problems involving a consistently improving policy in [NpP8S]. The
algorithur of Exercise 2.11 is new in the general form giveu here. The er-
ror bound on the performance of approximate policy iteration (Prop. 2.1),
which was developed in collaboration with J. Tsitsiklis, is also new. Two-
player dynamic ganie versions of the stochastic shortest path problem have
been discussed in [POAGY] (sce also the survey [RaF91]).

Several approximation wethods that are not based on sitnulation were
given in [SeS85]. The interest in simnlation-hased methods is relatively re-
cent. I the artificial intelligenee community, these methods are collect ively
referred to as rewtforcement learning. la the engineering connnunily, these
wethods ave also referred o as newro-dynaniic programming. The method
of temporal differences was proposed in an influential paper by Sutton
[Sut88].  Q-learning was proposed by Watkins [Wats9]. A convergence
proof of Q-learning under fairly weak assunmiptions was given in [Ts194]; see
also [JJS93], which discusses the convergence of TD(A). For a uice survey
of related methods, which also includes historical relerences, see [BBS93].
A variant of Q-learning is the wethod of advantage npdating developed
in [Baid3], [Bai9d], [Baigs], and [HBKO] (sce Exercise 2.18). The ma-
terial on feature-hased aggregation has heen adapted from [TsVOd]. The
two-sample sinulation-hased gradient method for winimizing the cerror in
Bellman's equation was proposed in [Ber5b); see also [HBK94]. The opti-
wistic policy iteration method was used i an application to backgainmon
deseribed i [Tes92].

EXERCISES

Suppose that you want to travel from a start point S to a destination point
D in minimum average time. There are two options:

(1) Use a direct route that requires a time units.
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(2) Take a potential shorteut that requires b time units to go Lo an inter-
mediate point 1. From I you can either go to the destination D in ¢
tite units or return to the start (this will take an additional b time
units). You will find out the value of ¢ once you reach the intermediate
point . What you know a priori is that ¢ has onc of the m values
Cre.. .y e with corresponding probabilities pr.....py. Consider two
cases: (i) The value of ¢ is coustant over time, and (ii) The value of ¢
changes each time you return to the start independently of the value at
the previous time periods.

(a) Formulate the problem as a stochastic shortest path problem. Write
Belhman's equation and characterize the optimal stationary policies as
best as you can in terms of the given problem data. Solve the problem
forthecasca=2,b=1,c1=0,co=05,p1 = 0.5, p2 = 0.5.

Formulate as a stochastic shortest path problen the variation where
once you reach the intermediate point I, you can wait there. Each d
time units the value of ¢ changes to once of the values ¢, ..., ¢m with
probabilities p1,...,pa. independently of its carlier valies. Each time

(b

Nt

the value of ¢ changes, you have the option of waiting for an extra d
wnils, returning o the start, or going, to the destination. Characterize

the optimal stationary policies as best as you can.

2.2

A ganbler engages in a game of successive coin flipping over an infinite hori-
zon. e wins one dollar cach time heads comes up, and loses m > 0 dollars
cach time two successive tails conie up (so the sequence TTTT loses 3m dol-
lars). The gambler at cach time period either flips a fair coin or clse cheats
by flipping a two-headed coin. In the latter case, however, he gets caught
with probability p > 0 before hie flips the coin, the game terminates, and the
gambler keeps lis carnings thus far. The gambler wishes to maximize his
expected earnings.

(1) View this as a stochastic shortest path probleis and identify all proper

and all improper policies.

() Identify a critical value 72 such that il i > 717, then all improper policies
give an infinite cost for some initial state.

(¢) Assume that m > 7, and show that it is then optimal 1o try to cheat
if the last flip was tails and to play fair otherwise.

(d) Show that if m < T it is optimal to always play fnir.
2.3

Cousider a stochastic shortest path problem where all stationary policies are
proper. Show that for every policy 7 there exists anom > 0 such that

Plag =1 ry=i,m)>0
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for all i = 1,... 0. Abbreviated Proof: Asswune the couttrary; that is, there
exists a nonstationary = {jo, /0, ...} and an initial state @ such that
P, =t | w0 = i,m) = 0 for all m. For cach state 7. let () be the

minimu integer e such that state j is reachable from i with positive prob-
ability under policy 7 that is,

m{j) = min{m | Pl = j oo =i,m) > ()},

where we adopt the convention that m(j) = o0 if j is not reachable from
fnder woben, Pla, = | g = dow) = 0 for all . I particular, we
have in(i) = 0 and m(l) = oo. Consider any stationary policy g such that
#0) = () Tor all j with m(j) < oo. Argue that for any two states
Joand j5owith m(f) < oo and m(j’) = &, we have [1”/(11,(./‘)) = 0. Thus,
states 3° with (") = oo (including ¢) are not reachable under the stationary
policy ji from states j with m(j) < oo (including &), thereby contradicting
the hypothesis.

2.4

Consider the stochastic shortest path problew, and assume that gl u) <0
for all i and u € U(i). Show that cither the optimal cost is —oo for some
initial state, or else, under every policy, the systen eventually enters with

probability one a set of cost-free states and never leaves that set thereafter.

[+

Consider the stochastic shortest path problem, and assume that there exists
at least one proper policy. Proposition 1.2 implics (hat, if) for cachi improper
policy g, we have J, (i) = oo for at least oue state 7, then there is no iproper

policy p1” such that S () = —oo for al least one state j. Give an alternative
proof of this fact that does not use Prop. L2, IHint: Suppose that there
exists an improper policy ' such that J(J) = —oo for al least one state .

Combiue this policy with a proper policy to produce another nuproper policy
" Tov which J,n (i) < oo for all 7.

2.6 (Gauss-Scidel Mcethod for Stochastic Shortest Paths)

Show that the Gauss-Seidel version of the value iteration method for stochas-
tic shortest paths converges under the same assumptions as the ordinary
method (Assumptions 11 and 1.2). Hinf: Consider two functions J and J
that differ by a constant from J* at all states exeept the destination, and are
such that J <7TJ aud T < J.
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2.7 (Sequential Space Decomposition)

Constder the stochastic shortest path problem, and suppose that there is a
finite sequence of subsets of states 87, 5%, ..., Sar such that cach of the states
i = 1,....n belongs to one and only one of these subsets, and (e following
property holds:

For all m = 1..... Moand states ¢ €8, the successor state s

cither the termination state ¢ or else belongs to one of the subsets
Sy S 1s--2 St for all chioiees of the control w ¢ U (7).

(a) Show that the solution of this problem decomposes into the solution
of Al stochastic shortest path problems, each involving the states in a
stitbset Sy, plus a termination state.

)

bl

Show also that a finite horizon probleny with N stages can be viewed
as a stochastic shortest path problem with the property given above.

2.8

Consider a stochastic shortest path probleny under Asswmptions 1.1 and 1.2
Assuming p,(u) < 1 for all i £ 1 and « € U7}, cousider another stochastic
shortest path problem that has transition probabilities /),_,(u)/(l fp,,(n)) for
all 7 # 1 and J # i, and costs

gl wypa(u)
1 — pp, (1)
(a) Show that the two problems are equivalent in that they have the same

optimal costs and policies.  Hlow would you deal with the case where
po{u) =1 for some i # ¢ and v € U(i)?

glivu) = gli u) +

(b) Interpret (i, 1) as an average cost incurred hetween arrival to state 7
and transition to a state j # /.

2.9 (Simplifications for Uncontrollable State Components)

Counsider a stochastic shortest path problem under Assutaptions 1.1 and 1.2
where the state is a composite (i, y) of two components ¢ and y, aud the evo-
Intion of the main cotponent i can be directly alfected by the control u, hut,
the evolution of the other component y cannot (ef. Section 1.4 and BExercise
1.22 of Vol. T). In particular, we assinne that given the state (i, y) and the
control v, the next state (. 2} is detenined as follows: lirst j is generated ace-
cording (o transition probabilitics p,,(u. y). aud then 2 is generated according,

to couditional probabilitics p(z | j) that depend ou the main component j of

the new state. We also asstme that the cost per stage is g(¢, y, 1, ) and does
not depend on the second component 2 of the next state (j, z). For functions
J(0), i = 1., n. consider the mapping

H

TN = ply i) .@?3.{',‘,,,);1”’(“‘7’)(”“"" w i)+ J0))
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and the corresponding mapping of i stationary policy i,

(T3 d)( Z!’ (14 le (i) w) (a(ivy i), 3) +0(3)) -

j=1

(1) Show that J == T'J is a form of Bellmans equation and can be used to
characterize the optimal stationary policies. Hint. Given J(4,y), define

J(i) =3, o | I, y).

(b) Show the validity of a modified value iteration alg,outhm that starts
with an arbitrary function J and sequentially produces T 1 1’2]

—_
~
L

Show the validity of a modilied policy iteration algorithim whose typical
iteration, given the current policy 3% (i, y), consists of two steps: (1) The
policy (‘vdllmlu)n step, which computes the unique function ./ Lk that
solves the linear system of equations I b= 1 e / k- (2) The policy
mprovenient step, which computes the nnpmvv(l lmh(\ IRt y) from
the equation I “ll =T 1 e

(d) Supposc that y is the only source of randomness in the problem; that
is, for cach (4, y, u), there is a state j such that p,(u,y) = 1. Justify
the use of the following single satiple version of value iteration (cf. the
Q-learning algoritlun of Seetion 7.6.2)

w1 y)

() == JG) ( nin {g(i,,y, w, j) + /(j)} - /(L)> .

Here, given i, we generate y according to the probability distribution
ply | ), and jis the unique state corresponding to (i, y. u).

2.10 (Discretized Shortest Path Problems [Tsi93a])

Suppose that the states are the grid poiuts of a grid on the plane. The set of
neighibors of cach grid point r is denoted U () and includes between two and
four grid poiuts. At ecach grid point &, we have two optious:

(1) Choose two neighbors 11,0 € Uw) and a probability p € [0, 1], pay a

cost g(wr)\/p? + (1= p)2, and move to o+ or to o7 with probability p
or | —p, respectively. lHere gy is a function such that g(a) > 0 for all «.
(2) Stop and pay a cost 1(r).

Show that there exists a consistently inmproving optimal policy for this prob-
lenn. Nofe: This problem can be used to model disceretized versions of deter-
ministic continous space 2-dimensional shortest path problems. (Compare
also with Iixercise 6.11 in Chapter 6 of Vol. L)
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2.11 (Dijkstra’s Algorithm and Counsistently Lmproving Policies)

Consider the stochastic shortest path problem under Assumptions 11 and
1.2, and assune that, there exists a consistently improving optimal stationary
policy.

(a) Show that the transition probability graph ol this policy is aevelic,

(h) Consider the following alporithing, which maintains two snbsets of states
£ oand L, and o function J delined on the state space. (1o relate the
algorithm with Dijkstra’s wiethod of Section 2.3.1 of Vol. I, associate
Jowith the node labels,) Lowith the OPLEEN Dist, and 72 with the subset
of nodes that have already exited the OPEN list.) Initially, 7 = §,

= {t}. and
. ili=1,...,n
S =
@) 0 ili=t
At the typical Hteration, select a state 7 from L such that

ST = arg minJ ().

et

(10 L is empty the algorithm terminates.) Remove J° from Loand place
itin 2. In addition, for all i ¢ 7 such that there exists a w € (7(i) with
Po(u) >0, and

P ) =0 forall j ¢ I,
define
Uiy = {u cU() | p,-(u)>0and p,(u)=0forall j ¢ P }

set,

J(i) :=min | J(i), min g(i,u)+Z/h,(H)J(j) )

il

u () Ser
and place 7 in Lif it is not already there. Show that the algorithm
is well defined in the sense that U(7) is nonempty and the set L does
not become enipty until all states are in 2. Furthermore, cach state
Jis removed from L oonce, and al the tune it is removed, we have

JU) = T"()

2.12 (Alternative Assumptious for Prop. 1.2)

Consider a variation of Assumption 1.2, whereby we assume that g(i, u) 2 0
for all i and u € U(i). and that there exists an optimal proper policy. Prove
the assertions of Prop. 1.2, except that, in part. (a), uniquencss of the solution
of Bellman’s equation should be shown within the set Y = {J | J > 0}
(rather than within %), and the veetor J in part (h) must belong to N

o
I
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Hint: Proposition 1.1 is uot valid, so a somewhat diflerent proof is needed.
Complete the details of the following argument. The asstmptions guarantee
that /" is linite and J* € RH [We have J* 2 0 because g(i, ) > 0, and
JT (i) < o0 because a proper policy exists.] The idea now is to show that
J* > TJ7 and then to choose g such that 15,7 = 77 and show that g is
optimal and proper. Let @ = {410, 401,...} be a policy. We have for all i,

ey = g (i) + > oy (10(D) I, ()
-1
where wp is the policy {ju, 2. ...}, Sinee Jry 2 J7, we obtain
(i) 2 g (im0 (D) + > p (10())I7 () = (T 730 > (7)),
gt
Taking the inlimum over 7 in the preceding cquation, we obtain
U= (1.4

Let ge be such that 7,0 =707 From Bq. (L1), we have J™ > 1,07,
and using the monotonicity of T),, we obtain

N NI
x oL N N e 2 2 N ’
NS A A LA RS E Pla, > E Plg. N > 1. (4.2)
0 [
By taking Himit superior as V- a0 we obtain J7 ™ J,0 Pherelore, g is an

optimal proper policy. and J* = J,,. Sinee jr was selected so that 1, 0% = 777,
we obtain, using J¥ = J, and J,, =T, J,,. that J* =7TJ". For the rest of the
prool, use the veetor d¢ similar to the proof of Prop. 1.2,

2.13 (A Contraction Counterexample)

Cousider a stochastic shortest path problem with a single state 1) in addition
to the termination state . At state 1 there ave two controls v and o', Under
e the cost is 1 and the system remains in state | lor one wore stage; under 1’
the cost is 2 and the systenr moves to {. Show (hat Assmuaptions 1.1 and 1.2
are satisfied, but 7" is not. a contraction wmapping with respect to any norn,

2.14 (Contraction Property - All Stationary Policies are Proper)

Assime that all stationary policies are proper. Show that the mappings T
and T}, are coulraction mappings with respect to some weighted sup norm
!

i .
17 = ,lax (TII(IH

= n
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where ¢ is a vector whose components o, ..., p, are positive.
Abbreviated proof (from [BeTS9a]. p.o 325; see also [Tse90[): Partition the
state space as follows. Let Sp = {1} and for & == 2.3.. .. deline sequentially

S = {i 1 ig S1U--USy and in ax P,y () > U} .
[

e (N JES U U,

Let Sy be the last of these sets that is nonempty. We claimn that the sets Sg
cover the entive state space. that s, U Sy == S0 To see this, suppose tht
the set S = {i |7 ¢ U}\f'_,,Sk} is noncempty. Then for cach + € S, there
exists sonie w, € U(d) such that p,,(w,) = 0 for all j ¢ S«. Take any g such
that p(i) = u, for all i € S<. The stationary policy jr satisfies [l’l;\'],_, =0 for
all 7€ S, j ¢ 9. and N, and therefore cannot be proper. This coutradicts
the hypothesis.

We will choose a vector © > 0 so that T is a contraction mapping with
respect to - e, We will take the it component ¢, to be the same for states
i i the sane set Si. I particular. we will choose the components e, of the
vector o by

vy= Y if i e Sty
where yy... .. o are appropriately chosen scalars satislying
T=u <ye <o < Yo (1.3)

Let
= min  win min Z [F)es- (L1

w2 € M €Sy,
JES U USE

and note that O <2« Lo We will show that it is sullicient to choose go, 0Ly

so that for some 5 < 1, we have

U, Y-t )
Nk 3 P e s (1.5)
Yk Wk

and then show that such a choice of ya. ..., Yo CXista.

M

Indeed. for veetors J and Jin R™, let o be such that 1,0 ="T.J. Then
we have for all /.

(T = (P () = (TIW) = (T, 1))
< (1 )6) = (T 1))

" (~l.(i)
el (W W)

Let k() besuch that j belongs to the set Sy, Then we have for any coustaut
("

||’//7’/|iv'§;(' il /I(l) =) = s J=20

e
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and Bq. (4.6) implics that for all i,

TN -- (T (1 | - ;
(____)_)—(_)m < - ;p,_, (/l/(lf)).'lk(./)

CYr(o) Yk

< Y 3 P (D)

.
" ’(‘\'I”"“"'L(,) |

'IH -
+ T/f: Z Ilu(/’(l))

TSy

Yy 1t Ym . Y
PR kil ML R LI i i)} 4 ——
( We(1) ?/A»(,)) Z b (/ ( ))

iy
PES U USLyy I

Y i " m
< Yein 1+ oy cr Y <
Y Yk Yk
where the second inequality follows [rom 1. (1.3), the third inequality nses
Eq. (L4) and the fact gy o) 10—y < 0, and the last inequality [oHows from
. (15). Thas, we have
TV i) — (T .
D =N

) 1ty

iy

and we oblain
r/“ 1 - — v v.
max (DO = (THE)
¢ t

i

or

W10 =T < ey, Torall J,J € R with || = /||, < c.

It follows that 1" is a contraction mapping with respect to ) -],

We now show how to choose the sealars yi g, <., g 5o that Egs. (4.3)
and (1.5) hold. Let yo = 0, gy = 1, and sappose that gy, g, ..., ye have been
chosen. H e =1, we choose ya 10 = g+ 1. I ¢ < 1, we choose yrqy 1o be

1
Y= Q(Uk + Ay),
where
. ‘
M = min [!/, + ?*"(!/1 = 1)] .
| EAaa ) — ¢

Using the fact

M = min {/\IL‘, Y1 + I‘:T("“‘H - y;..)},

il is scen by induction that for all &,
Yo < Yy < My

tn particular, we have

Y < My, = lyni(n [;'/,, +

1 —

which implies Feq. ((1.5).

See. 2.1 Notes, Sources, and Facreises 131
2.15 (Multiple State Visits in Monte Carlo Simulation)

Argue that the Monte-Carlo simulation formula

AL

1 Y
'I"(’.):,\}if};ﬁ E c(i,m)

-l

[el. Eq. (3.1)] is valid even if a state may be revisited within the same sample
trajectorvy. Mint: Suppose the Al cost samples are generated from N trajec-
torics, and that the kth trajectory involves ny visits to state 7 and generates
ny corresponding cost samples. Denote my = ny + -+ 4 nyg.. Write

A I N s g
. 1 . . WLL-;lZm:,mk,, |I((I””)
fim — E c(i,m) = lim 0
M- M | N—oc RT(”] +"'+”N)
m= ;
o g, o
K {Lm:mk.~l+l ((I" ”L)}
B E{ng) '

and argue that

g

B Z o(iym) y = E{m i),

mzng o+

(or see [Ros83b), Cor. 7.2.3 for a closely related result).
2.16 (Multistage Lookahcad Policy Iteration)

(a) Consider the stochastic shortest path problem under Assumptions 1.1
and 1.2. Let ¢ be a stationary policy, let J be a function such that
TJ <J < Ju (J=J, ts one possibility), and let {7y, 7ty ... iy} be
an optimal policy {or the N-stage problem with termninal cost function
J, el

T, TV =T

Iy N l.'—-(),l,...,N—l.

(a) Show that,

J,

I < Jo forall A =0,1....,N = 1.
Hint: First show that 1% <1t ) < J for all k, and then show that

the hypothesis T; TN=k=V = N-kJ implies that J; < TN=k-V].

IANS &

(b

o

Use part (a) to show the validity of the multistage policy iteration
algorithm discussed in Section 2.3.3.
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2.17 (Viewing Q-Factors as Optimal Costs)

Consider the stochastic shortest path problem under Assumptions 1.1 and 3 ;

1.2, Show that the Q-factors Q(7, 1) can be viewed as state costs associated :

with a modified stochastic shortest path problem. Use this fact to show that !

the Q-factors Qi, 1) are the unigne solution of the system of equations ;

13

Q) = > pu () (i) + win Q) ). f

. W El(y) . ;

Undiscounted Problems |

Hint: Introduce a new state for cach pair (i, u), with transition probabilities f

Py () to the states j = 1,0, n,t. i

2.18 (Advantage Updating) )
Consider the optimal Q-factors Q7 (7, 1) of the stochastic shortest path prob-

lem under Assiniptions 11 and 120 Define the advantage funclion by i

A"(hu) = min Q' (i,u") ~ Q" (i.u).

uw cli() ‘:“1

(1) Show that A7/, 1) together with the optimal costs /(i) solve uniquely g

the system of equations

S = A )+ Y (e ed) + 7)), Contents
J=1

- ’ 3.1. Unbounded Costs per Stage . . . . . . . . . . p. 131

Juax 4 (i,u) =0, b= 3.2. Lincar Systems and Quadratic Cost . . . . . . . . . p. 150

3.3. Inventory Countrol . . . . . . . . . .. . p- 103
() hitroduce approximating functions A(7, u,7) and J(i, r), and derive a 3.4. Optimal Stopping . . . . . . . . . . p. 155 '
gradient method aiined at minimizing the sum of the squared crrors of 3.5. Optinial Gambling Strategies N P V414 :
the Bellman-like equatious of part (a) (¢f. Section 2.3.3). 3.6. Nonstatiouary and Periodic Problems . . . . . . . . p. 167 ;
3.7. Notes, Sources, and Exercises . . . . . . . . . . p. 172 i
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In this chapter we cousider total cost infinite horizon problems where
we allow costs per stage that are unbounded above or below. Also, the
discount factor & does not have to be less than one. The complications
resulting are substantial, and the analysis required is considerably more
sophisticated than the one given thus far. We also consider applications of
the theory to important classes of problems. The problem scction touches
on several related topies.

UNBOUNDED COSTS PER STATE

[ this section we consider the total cost infinite horizon problem of
Section 1.1 nunder one of the following two assumptions.

Assumption P: (Positivity) The cost per stage ¢ satisfies

0 < g(a,u, w), for all (z,u,w) € S x C x D. (L.

Assumption N: (Negativity) The cost per stage g satisfies

g(x,u, w) <0, for all (x,v,w) € § x C x D. (1.2)

Probleins correspouding to Assuption I are sometimes referred to
in the rescarch literature as negative DI problems. This name was used in
the original reference [Str66], where the problem of maximizing the infinite
st of negalive rewards per stage was considered.  Sihmilarly, problems
corresponding to Assumption N are sometimes referred to as posilive DP
problems [BlaGh], [Str66].  Assuniption N arises in problems where there
is a nonuegative reward per stage and the total expected reward is to be
masinized.

Note that when o < © and g is either bounded above or below, we
may add a suitable scalar to g in order to satisfy Eqg. (1.1) or Eq. (1.2),
respectively. An optimal policy will not be alfected by this change since,
in view of the presence of the discount factor, the addition of a constant r
to g merely adds (I —a)~1r to the cost associated with every policy.

One complication arising from unbounded costs per stage is that, for
some initial states g and some genuinely interesting admissible policies
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= {j1y, i1, ...}, the cost Jx(a9) may be oo (in the case of Assumption 1)
or —o¢ (in the case of Assumiption N). Here is an example:

Example 1.1
Consider the scalar system
Lhg1 = Bk + vk, h==0,1,...,

vhore 1 A - . . .
where p € R and up € R, for all &, aud 4 is a positive scalar. The control
coustraint is fux| < 1, and the cost is

N-—1

Jn (o) = Nlim Z o).

k=0

Consider the policy 7 = {ji, 1,...}, where i(r) = 0 for all 2 € R. Then

N-1
Ja(wo) = Nll—l»llo Z ukﬂk|.vu|,
k=0
and hence
0 ifey=0

./ﬁ(x(,):{oo e i apzl

while
— _lwol_
1 —ap

Ji(z0) if ap < 1.

Note a peculiarity here: if # > 1 the state oy diverges to oo or to —00, but if

the discount factor is sufliciently small (o < 1/4), the cost Jx (o) is finite.
1t is also possible to verify that when 8 > 1 and o > | the optimal

cost J™ (o) is equal to 0o for {wo] > 1/(8— 1) and is finite for |z¢| < 1/(F—1).

The problem here is that when 3 > | the system is unstable, and in view of

the restriction jugl < 1 on the control, it may not bhe possible to lorce the

state near zero once it has reached sufficiently large magnitude.

The preceding example shows that there is not much that, can be done
about the possibility of the cost function being infinite for some policies.
To cope with this situation, we conduct our analysis with the notational
understanding that the costs Jx(xg) aud J*(g) may be oo (or —oo) under
Assumiption P (or N, respectively) for some initial states 29 and policies
7. In other words, we consider Jx(+) and J*(+) to be extended real-valued
functions. In fact, the entire subsequent analysis is vadid even il the cost
g(z,u,w) is co or —oo for some (¢, u,w), as long as Assumption I or
Assumption N holds.

The line of analysis of this scction is fundamentally different. from
the onc ol the discounted problem of Section 1.2, For the latter problem.
the analysis was based on ignoring the “tails” of the cost sequences. In
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this section, the tails of the cost sequences may uot be small, and for
this reason, the control is much more focused on atfecting the long-term
Lehavior of the state. For example, let oo = 1, and asswe that the stage
cost at all states is nonzero exeept for a cost-free and absorbing termination
state. Then, o primary Gask of control under Assumption P (or Assiumption
N} is roughly to hring the state of the system to the termination stale or
{0 a region where the cost per stage is uearly zero as quickly as possible
(as lale as possible, respectively). Note the difference in control objective
between Assumptions P and N. It accounts for some strikingly different
results under the two assuniptions.

Main Results — Bellman’s Equation

We now present resulls that characterize the optimal cost function
J7, as well as optimal stationary policies. We also give conditions under
which value iteration converges to the optimal cost luuction J*. In the
prools we will often need to interchange expectation and limit in various
relations. This interchange is valid under the assumiptions of the following
theorenn.

Monotone Convergence Theorem: Let P = (p1,p2,...) be a prob-
ability distribution over S = {1,2,...}. Let {hn} be a scquence
of extended real-valued functions on S such that for all i € S and
N=12,...,

0<hn(i) < ha+(2).

Let fv: S+ [0, 00] be the limit function
h(i) = IVIE}})(, ha ().

Then

i=1 i=1

i it (@) = D Jimn i) = 3 ().

Proof: We have

i/),h,v(i) < iy:,h,(i).

=) =1

By taking the limit, we obtain

~< 2. V)
Nhil(lx) Z I)IILN(i) < Z])i/l(i),

=1 1=1
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s0 there remains to prove the reverse ineqguality. For every integer A1 2 1,
we have
~ A M
lim Z/:,/l,y([) > Thn Z[I,/l/\‘(f) = Z/l,/l(i},
N N Pt

and by taking the Hmit as Al — o¢ the reverse inequality follows.  Q.E.D.

Siiilar to all the infinite borizou problems considered so far. the
optimal cost function satisfies Belliman's equation.

Proposition 1.1: (Bellman’s Equation) Under cither Assumption
P or N the optimal cost function J* satishies

J*(r) = ulelrlji}lr) {E{g(m, u,w) + e * (f (2, u,w))}, r€S

or, cquivalently,
Jr=TJ*.

Proof: For any adwissible policy 7 = {p. ety . . .}, consider the cost Jr (@)
corresponding to m when the initial state is .. We have

Ja(r) = E{_(/(.l“/l()(.l‘), w) + Ve ([ (2, po(r) w)) b (L.3)

where, for all vy € 5,

N1

Vil(er) = lim 2 E ) aFg (e, pe(re). o)
N w0y i
h=12... =

Thus, V(1) is the cost from stage 1 to infinity using 7 when the initial
state is 1. We have clearly

Vel(1) 2 ad*(ry), for all &y € 5.
Hence, from Eq. (1.3),

g (1) 2 ]5{{](.1:, pro(e), w) + aJ* (f(l, jo(a), u;))}

ut

> min F{g(r.u w) +ad*(f(r o, w)) }.

wel/ () w
Taking the winimum over all adinissible policies. we have
minJo () = J*(r)
T

> min E{{/(.f, u, ) + o (f{ru,w))} (1.4)

well(r) w

(TJ*) ().

]

RS
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Thus there remains to prove that the reverse inequality also holds.  We
prove this separately for Assamption N and for Assumption P

Assume P. The following prool of J* < T./* under this assumption
would be considerably simplified if we knew that there exists a e such
that T),.J* = T'J*. Since in general such a je need not exist, we introduce a
positive sequence {cg}, and we choose an admissible policy © = {9, p11,...}
such that

(T, I)() < (TTNa) +cy w €S, k=01,...

Sucht a choice is possible becanse we know that, under P, we have —oo <
J* (&) for all . By usivg the inequality T.J* < J* shown carlier, we obtain

(D I M) < T () + gy resS, hk=01,...
Applying T, | to both sides of this relation. we liave
(B Ty S 0) < (T ) (0) + ey,
(TJ*)(0) + ey -+ ey
JH(r) + oy 4 ey

IN A

Coutinuiug this process, we obtain

Jb

(Lo Ty - Loy ) ) < (20T *) () + L“"l'

i=i

By taking the limit as & — > and noting that
T () < Jr(x) = Alim (T Ty - T do)() < A]im (Tyy Ty - Ly JJ* ) (),
e e

where Jy is thie zero lnction, it follows that

Sy < Jx(e) S(TT) ) + > ale,, €S

[Et]

Since the sequence {e} s arbitrary, we can take Ztu ovte, as small as
desired, and we obtain J*(x) < (TJ*)() for all & € S. Combining this
with the inequality Jr(e) = (T'J*)(r) shown carlier. the result follows
(under Assmuption ).

Assume Noawd let Sy be the optimal cost function for the correspond-
g, N-stage problem

N-—1
In(ro) =min £ Z u"'_(/(.l:;,;,/LL.(.:;L.), uv;\.) . (1.5)

b =0
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We first show that

JH(x) = Nlim I (), rEeS. (1.6)

Yoo

Indeed, in view of Assumption N, we have J* < Jx for all N, so

J(e) < i Iy (), £ ES. (1.7)

N—o0
Also, for all 7 = {0, 41, ...}, we have

N-1

E Za’“g(.l'k,/z,k(mk),wk) > JIn{wo),
k=0

and by taking the imit as N — oc,
Jx(x) > lm Jn(x), £ ES.
N-—oo
Taking the mininnun over m, we obtain J* () > limy o, Jy (), and com-

bining this relation wich Eq. (1.7), we obtain Eq. (1.6).
For cvery adinissible g, we have

Tyin 2 Iy,

and by taking the linit as N — o0, and using the monotone convergence
theorem and Eq. (1.6), we obtain

Tde = )0

Taking the minimum over i, we obtain T°J* > J*, which combined with
the inequality J* > TJ* shown earlicr, proves the result under Assumption

N. Q.E.D.

Similar to Cor. 2.2.1 in Section 1.2, we have:

Coroliary 1.1.1: Letl u be a stationary policy. Then under Assump-
tion P or N, we have

Ju(r) = {g{g(w,/t(w), w) + ady (f(z, pu(x),w)) }, resS

or, equivalently,
Ju=Tpdy. (1.8)

Contrary to discounted problems with bounded cost per stage, the
optimal cost function J* under Assumption P or N need not bhe the unigue
solution of Bellman’s equation. Cousider the following example.

o ama¥e Dtz e

e % A
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Example 1.2

Let S = [0,%) (or § = (=, 0]) and
gl u ) 0, Jeou w) = r

13
Then for every /3, the function J giveu by
J() = pr, €S,

is awsolution of Bellman's equation, so 7" has an infinite munber of fixed points.
Note, however, that there is a uniqgue lixed point within the class of bounded
finetions, the zero function Jy(r) = 0, which is the optimal cost function for
this problem. More generally, it can be shown by using the following Prop. 1.2
that if @ < I and there exists a bounded function that is a fixed point of T,
then that function must be equal to the optimal cost function J* (see Exercise
3.5). When a = 1, Bellman’s equation may have an inlinity of solutions even
within the class of bounded functions. This is because oo = | and J(+) is
any solution, then for any scalar »#, J(-) + r is also a solution.

The optimal cost function J* however, has the property that it is
the smallest (nnder Asswunption P) or Largest (under Assumption NY lixed
point of T in the sense deseribed in the folowing proposition.

Proposition 1.2:

(a) Under Assuniption P, if J 8 (—oc, oc) satisfics ~2 TJ and
cither J is bounded below and a < 1y orJ 20, then J > J*,

(b) Under Assumption N, if J 8 s [—o0, o0) satisfies .J § TJ and
either J is bounded above and « < 1, or J <0, then J < J*.

Proof: (a) Under Asswmption P2, let » be a scalar such that i(l) +r>0
for all r € S and if o > 1 let r = 0. For any sequence {ex} with e, > 0, let
= {fi0.j11, ...} be an admissible policy such that, for every x € S and &,

’[‘{([(l Jue (). w) + (\.i(./'(.l‘, ja), w)) } < (]’])(1) + 4 (1.9)

Such a policy exists sinee (1J)(a) > —oo for all ++ € S, We Lave for any
initial state ey € 5,

N1
Jr(rg) = min lim F Z (\"‘_r/(.z:;\.,/:,\.(.1:;‘.), u),‘.)
T N
k()

N1

< minlininf 2 oV (J(ey) + )+ Z kg (e gu(er), we)

T N—x
k=0

N--1

l'}\l}xLiiloi'li u’\(/(zm +1 Z(Mq 1,\,/1;(1“;) u;,)

IN
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Using Liq. (1.9) and the assmuption J > 17, we obtain

N-1]
r u'NJ‘(.rA\r) + Z Wy, fien).ow)
[t
N_f
=k (l‘v./(f(.lfN;l,/7.\',1(.l‘;\,‘,l),IHY\'_‘])) + L n"r/(l;, Jucg ). wy )
b0
N -2
<ESaN-LI(ry_ 1)+ Z (lA'g(.I‘L-,/l/l-(.lf[,v), mA.) +aN=len
Jee=)
. N3
< ESaN=2](rx_u)+ Z (I,".(/(.Iik,/7L.(,l‘;l.)‘ mk) +alN=2cpn_5
k=0

+aN-ten_y

N1

< j(.l‘“) 4 Z ke,

=0

Combining these inequalitics, we obtain

JHao) < (l(;) + Ilm aVr 4 Z akey

N
b=}

Since the sequence {eg} is arbitrary (except for ¢ > 0), we may select
{cx} so that limpy ZI\;)] ey is arbitrarily close to zero, and the result
follows.

(b) Under Assumption N, let 1 be a scalar such that J(r) + r < 0 for all
re s, and if a > 1, let r = 0. We have for every initial stave ag € S.

N-
J*(rg) = wmin lim g Z ak gl (o))
T N—n ’
k=0
N -1
> minlimsup £ < aN(J(ey) + 1) + Z aFg(ap. pulan), i)
TN— k=0
N-1
> limsupmin £ aN (J(oy) +7) + Z ab gl ulaw) o)
N—noo 7 k-0

(1.10)
whiere the last inequality follows {rown the fact that for auy sequence {hx(€)}
of functions of a parameter € we have

minlimsup ix (§) = limsupmin iy (§).
$ Noo Nono &

s
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This incquality follows by writing

hn(€) > m{inhN(f)

and by subscquently taking the limsup of both sides and the minimum
over € of the left-hand side.
Now we have, by using the assumption J < 7T/,

N-1
in 2 N Jly kg, te(a .
win fg {(y J(xn) + z kg (g, (), urk)}

k=0

ERNHIWIREIDAR min I {_r/(.::N L UN SN 1)
n un €U ) oy
+”j(f(-’UNAlvUN—ls"”N—l))}

N2
+ z bk glay, (e, ’mk)}

k=0

v

N-2
in e Nt J(rn_ R P ]
1117:111,{(1 J(xn-1)+ Za f/(JA,/Lk(Ek),uvL)}

k=0

J(.I,'U).

Using this refation iu Eq. (1.10)

v

we obtain

J*(z0) > j(.z:(;) + Nlim aNyr = j(.L‘()).
Q.E.D.

As belore, we have the following corollary:
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Proposition 1.3: (Necessary and Sufficient Condition for Op-
timality under P) Let Assumption P hold. A stationary policy p
is optimal if and only if

TJ* =T,J*

Corollary 1.2.1: Let p be an admissible stationary policy.
(a) Under Assutuption P if J: S (=00, oc] satisfics J > T,J and
cither J is bounded below and a < 1, or J > 0, then J > J,,.

(b} Under Assumption N, if J:S ks [—00, o) satisfics J < T,lj and
cither J is bounded above and o < 1, or J <0, then J < J,,.

Conditions for Optimality of a Stationary Policy

Under Assumption P, we have the same optimality condition as for
discounted problems with bounded cost per stage.

Proof: I T+ =T, J7, Bellman’s equation (J* = 1°J*) implies that J*
T,J*. From Cor. 1.2.1(a) we then obtain J* > J,, showing that p

optimal. Conversely, if J* = J,,, we have using Cor. 1.1.1, T"J* = J*
Sy =Tyd, =T.J . QE.D.

is

I

Unfortunately, the sufficiency part of the above proposition need not
be true under Asstmption N; that is, we may have TJ* = 7},.J* while p is
not optimal. This is illustrated in the following example.

Example 1.3
Let $=C = (—00,0], U(z) =C forall z € S, and
g(r,u,w) = fz,u,w) = u,

for all (z,u,w) € § x C x D. Then J* (&) = —oo for all & € S, and every
stationary policy p satisfies the condition of the preceding proposition. On
the othier hand, when p(e) = 0 for all » € S, we have J, (#) = 0 for all & € 5,
and hence ¢ is not optimal.

It is worth noting that Prop. 1.3 implics the existence of an optimal
stationary policy under Assumption P when U(r) is a finite set for every
x € 5. This need not be true under Assimuption N (see Example 4.1 in
Section 3.1).

Under Assumption N, we have a different characterization of an op-
timal stationary policy.

Proposition 1.4: (Necessary and Sufficient Condition for Op-
timality under N) Let Assumption N hold. A stationary policy p
is optimal if and only if

TJ,=Tudy. (1.11)

Proof: If TJ,, = T,.J,, then from Cor. 111 we have J,, = T,.J,,, so that
Ju is a fixed poiut of T\ Then by Prop. 1.2, we have J, < J*, which immplics
that g is optimal. Couversely, il J,, = J*, then Ty J,, = J, = J* =TJ* =
TJ,. Q.E.D.
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The interpretation of the preceding optimality condition is that per-
sistently using ge is optimal il and ondy i this performs at least as well as
wsing any i al the first stage and using g thereafter. Under Assumiption
I” this coudition is not sullicicnl to guarantee optinality of the stationary
policy 1, as the following example shows.

Example 1.4
Let S = (=00, 00), U(+) = (0,1] for all & € 5,
gl u,w) = Lrl, Sl ou m) =a 'ua,
for all (e,u,w) € SxCx D, Let pu(e) =1 for all £ € S. Then J,(+) = oo
it . # 0 and J,(0) = 0. Furthermore, we have J, = T, J, = T.J,, as the

reader can easily verify. It can also be verified that /™ (x) = {&], and hence
the stationary policy ris not optimal.

The Value Iteration Method

We now turn to the question whether the DI algorithin converges to
the optimal cost function J*. Let Jo be the zero function on S,

Jo(r) =0, £ e S,
Then under Assumption P we Lave
Jo STy <T2y < STy <
while under Assumption N, we have
Jo>Thy>T20y > =TIy > -

In either case the limit function

Jo () = lim (TFJy)(r), @€ S, (1.12)
ko0
is well defined, provided we allow the possibility that Jo can take the value
oo (under Assimption P) or —oco (under Assumption N). The question is
whethier the value iteration method is valid in the scuse

Jo = J*. (1.13)
This question is, of course, of computational interest, but it is also of

analylical interest since, if one knows that J* = Limg_.~, T*.Jy, one can
infer properties of the unknown function J* from properties of the k-stage
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optimal cost functions T .0y, which are defined in a conerete algorithmie
mater.

We will show that /s = J* under Assumption N. It turns out.
however. that under Assnmption P)owe may have Jo 7/ T (see Exor-
cise 3.1). We will Later provide casily verifiable conditions that guarantee
that J = J* under Assumiption P. We have the {ollowing proposition.

Proposition 1.5:

(a) Let Assumption P liold and assume that
Joc () = (T Joo )} (%), reS.

Then if J : S — R is any bounded function and a < 1, or
otherwise if Jy < .J < J*, we have

lim (TR J)(z) = J*(x), res. (1.14)

k—no

(b) Let Assumption N hold. Then if J : 5 + R is any bounded
function and a < 1, or otherwise if J* < .J < Jy, we have

lim (T*J)(z) = J*(x), xeSs. (1.15)

k—oo

Proof: (a) Since under Assumption P, we have

Jo STJy <o STV Jg < <

it follows that ling o~ T*Jy = Joo < J*. Stnee Jo 18 also a fixed point of

T by assutuption, we obtain from Prop. 1.2(a) that J* < Jo. I follows
that
S = J*, (1.16)

and hence Eq. (1.14) is proved for the case J = J.
For the case where o < 1 and J is bounded, let » be a scalar such
that
Jo—re < J < Jy+re. (L.17)

Applying T+ to this relation, we obtain
Tk Jy = akre < TR <TH ]y +abre. (1.18)

Since 7% Jy converges to J*. as shown carlier, this relation implies that T .J
converges also Lo J*.

Fadedun
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b the case where Jy < J < J* we have by applying 1%
ThJy <ThJ < J*,  k=0,1,... (1.19)

) , ‘ ok
Sinee T*.Jy couverges to J*, so does T*./.

{(b) It was shown carlier [of. . (1.6)] that under Assinption N, we have

i (T%Jp) () = J*(r). (1.20)

__k~wx

I ()
The proof from this point is identical to that for part (a). Q.E.D.

- S . . )
We now derive conditions guaranteeing that Jo, = T holds under
i ; i ies the = J*  We prove tw
Asswption P, which by Prop. L5 implies Ll.mL S -.J . V\.(, Drove two
propositions. The first admits an casy proof but requires a finiteness as-
sumption on the control constraint set. The sccond is harder to prove but
requires a weaker conpactuess assumption.

Proposition 1.6: Let Assumption P hold and assume that the con-
trol constraint set is finite for every z € S. Then

oo =T Joo = J*. (1.21)

Proof: As shown in the proof of Prop. 1.5(a), we have for all b, T Jy <
Joo < JE0 Applying T to this relation, we obtain

TEEL o)) = min 2{g(e, u,w) + a(THJo) (f (e v, w)) }

(1 0)(x) ”6('}(1_) L {/( ( (122)
(7)),

and by taking the limit as & — oo, it lollows that

IN

Joo €T

Suppose that there existed a state & € 8 such that

Jo (1) < (T Jee)(E). (1.23)
Let wg minimize in . (1.22) when @ = & Sinee U(F) is finite, there musE
exist some o o () such that g = 0 for all A in some infinite subsct K
of the positive integers. By Eq. (1.22) we have for all & € K

(T () = k{g(F, i, w) + a(TFJy) (S, a, m))}
ur
< (TJ%)('E)'

R

o o

,
; l
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Taking the limit as & — 0o, k € K, we obtain

Joo(F) = E{g(F, &, w) + wJoo (&, &, w)) }

w

> (TJoo ) (i)

= uIEnUlElJ:) 13{(](7", U, w) + adoo (f(1, u, w))}.

This contradicts Eq. (1.23), so we have Joo(E) = (I'Joo)(E). Q.E.D.

The following proposition strengthens Prop. 1.6 in that it requires o
compactness rather than a finiteness assumption. We recall (sce Appendix
A of Vol. T) that a subset X of the n-dimensional Euclidean space ®7 is said
to be compact if every sequence {zi} with 2, € X contains a subscequence
{Zk }ren that converges to a point 7 € X. Equivalently, X is compact, if
and only if it is closed and bounded. The empty set is (trivially) consid-
ered compact. Given any collection of compact sets, their intersection is
a compact sct (possibly cmpty). Given a scquence of nonempty compact,
sets X1, Xu..., Xy, ... such that

}\'1DX23~~-DXA-:))\';,A;,1D~~~ (1.211)

their intersection NP2 Xk is both nonempty and compact. In view of this
fact, it follows that if f: R s [~00, 20} is a function such that the set

Fx={weR|fux)< A} (1.25)

is compact for every A € 7, then there exists a vector o winimizing f;
that is, there exists an o* € B such that

Sle) = min f(x). (1.20)

zERM

To sce this, take a sequence {Ai} such that Ay, — mingepn Sle) and Ay >
Akyt for all k. If mingenn fa) < oo, such a sequence exists atd the sets

Iy ={eeR| flo) < A} (1.27)
are nonempty and compact. Furthermore, Fy, D Ex, ., tor all b and
hence the iterscetion Op Iy, 15 also nonempty and compact. Let o he
any vector in N /7, . Then

F) <Ay k=12, (1.25)

and taking the limit as & — oo, we obtain ) € mingepn f(), proving
that &* wminimizes (). The most common case where we can guarantee
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that the set Iy of 1. (1.25) is compact for all X is when [ is continuous
and f() — o as [l = oc.

Proposition 1.7: Let Assumption I hold, and assume that the sets

Ur(a,A) = {u e U(x)

E{g(z,u,w) + o(T*Jo) (f(x,u,w))} < /\}
u

(1.29)
are compact subsets of a Euclidean space for every z € §, A € R, and
for all & greater than some integer A Then

Joo = T'Jo, = J*. (L.30)

Furthermore, there exists a stationary optimal policy.

Proof: As in Prop. 1.6, we have Jo, < Too.. Suppose that there existed
a state 7 € 5 such that

T (F) < (Thso) (F). (1.31)
Clearly, we must have Jo () < ~c. For every k > &, consider the sets

(/L(T‘ '[/XJ(';.))
= {U, < (/(;)

F{ (i wow) + (T J0) (f (o, w))} < ]oo(F)}

w

Let also wg he a point attaining the minimum in

(TR ) (F) = n[ljé[) Ely(F,u,wy + o (TF L) (f (2w, w) |
aClU{r) w

that is, uy is such that

(TREVJo) () = E{gCr aew) + o(TRJ) (f (i k. w)) }.
ur
Such miinimizing points vy exist by our compactness assinption. For every
h >k, consider the sequence {u, )72, Since TFJy < TRy < ov < o,
it follows that

1 g(E s, w) + (T ) (f(r, )}
< /5{;}(.&, w,w) + o T Jo) (f (i wew)) }

< Iald),  izk
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Thercfore {u,} 2, C Up (5. Joo (&), and since Ug (& Jx () is compact. all
the lmit points of {u,}2, belong to Uy, (1 ./N(.E')) aud at least one such
lituit point exists. Henee the same is true of the it points of the whole
sequence {”’},X;;T‘ It follows that if & is a limil. point, of {u,};"k then

e ﬂ‘;‘:EUk(.i‘, I (F)).
This inuplies by Eq. (1.29) that for all & > &

S () = E{g(Foaow) + a(T+Jo)(f (&, 0, w)) } = (TR ().
w
Takiug the liunit as & — >0, we obtain

I () = E{gli aow) + ads (f(3 . w))}.
ur
Siuce the right-hand side is greater than or equal to (740)(8), Bq. (1.31) is
contradicted. Hence Jo = T/ and Eq. (1.30) is proved in view of Prop.
1.5(a).
To show that there exists an optimal stationary policy, observe that
Eq. (1.30) and the last relation imply that i attains the minimum in

Jr(F) = ulelllri'tli') 1[{]{{/(7 wow) 4 o> (f(Fu )}

for a state F € § with J*(F) < . Tor states & € S such that J*(F) = oc.
every u € U(F) attains the preceding minimum. Hence by Prop. 1.3(a) an
optimal stationary policy exists.  Q.E.D.

The reader may verify by inspection of the preceding proof that if
pelE) k=01, .. attains the mininnun in the relation

(Tr+1 ) (E) = 1,223’8.-> g{g(.i', uyw) + a(TrJ0) (f (7, wow))

then if g (F) is a Hiit point of {j ()}, lor every & € S, the stationary
policy ji* is optiinal. Furthermore, {yix(2)} has at least one limit point for
every .t € S for which J*(r) < oc. Thus the valuc iteration method under
the assumplions of cither Prop. 1.6 or Prop. 1.7 yiclds in the limit not only
the optimal cost function J* but also an oplimal stalionary policy.

Other Computational Methods

Unfortunately, policy iteration is not a valid procedure under either P
or N in the absence of further conditions. If y and 77 are stationary policies
such that 13/, = T'J,, then it can be shown thal under Assuption P we
have

Jﬁ(.l‘) < .I,,(.l?), e s, (1.32)
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To see this, note that T, = TJ, < T,J, = J, [rom which we obta%n
limpy —eo TllLVJ“, < Jp. Since Jg = limN..,Oo TTiVJU ;1,11.(1 Jo < J,., we obtain
Jip < Jy. However, J, <), by itsell is not safficient to g‘um‘.zmt,cc t'.h("
validity of policy iteration. For example, it is not clear that strict inequality
holds in Eq. (1.32) for al least one state « € S when 4 is not optimal. Th.c
difficulty here is that the cquality J,, = T.J, does not imply thm,. Jiis
optimal, and additional conditions are needed to guarantee the valuht,.y) of
policy iteration. However, for special cases such conditions can be verified
(sce for example Section 3.2 and Excrcise 3.16).

It is possible to devise a computational method based on mathemat-
ical programnming when S, C, and D are finite scts by making usc of Prop.
1.2. Under N aud « = 1, the corresponding (linear) program is (compare
with Section 1.3.4)

1
subject to A, < g(i,u) + Zpij(u,)/\J, i=1,2,...,n, welU(i).
=

When v = | and Assumption P holds, the corresponding program takes
the form

n
)
INnInze 2 /\,

=1

n
subject to Ay = min fg(i, n) + Z]);J(u,)/\_,- . i=1,...,0,
! uel(d) st

but unfortunately this program is not linecar or even convex.

3.2 LINEAR SYSTEMS AND QUADRATIC COST

Consider thie case of the lincar system
g = A + Bug + g, A=0,1,...,

where . € B, uy € R for all k, and the matrices A, B arc known. As
in Sections 1.1 and 5.2 of Vol. 1, we assume that the random disturbances
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W are independent with zero mean and finite second moments. The cost,
function is quadratic and has the form

N—|
Jrlay) = ;\']i_ljl\ “[.i Z (1”"(.)?2_(2.1';\. + /11\‘(,1',‘.)’[{/1,\.(,:1.)) ,
k=001, N -1 A=

wlhere @ is a positive seniidefinite syunnetric 7o e matrix and 22 s a positive
definite synnnetric m x m matrix. Clearly, Asswmption P of Seetion 3.1
Lolds.

Our approach will be to use the DP algorithm to obtain the functions
TJy, T2y, ..., as well as the pointwise linit [unction /o, = g o T .
Subscquently. we show that J. satisfics Joo = T and hence, by Prop.
L5(a) of Section 3.1, Jo, = J*. The optimal policy is then obtained from
the optimal cost function J* by minimizing in Bellman’s equation (cl. Prop.
1.3 of Section 3.1).

As in Section 4.1 of Vol. I, we have

J(;(,l‘) = U, T e N”,
(TJo)(x) = minl’Qu + v Ru) = 4/Qu, TR
(T2Jo)(r} = min E{rQe + u'Ru+ oA+ Bu + W) QA + Bu + w)}

="K+ al{wQul, rE R,

k-1
(Tk“JU)(-‘f) =N+ Z ”klmE{“'II\'m“’}- N k=12 ...

1=20)

where the matrices i, K Koo ave given recursively by
]\—U = Q
Ky = A’(aI\’;\. — PN BaB' Ny B+ R)-1 B’I\';\.)A + Q. h=01,...

By defining I = R/a and A = Vad, the preceding equation may be
written as

Ripr = A(Ny ~ K BUBKWB + RV BIG) A +
and is of the form cousidered i Section 1.1 of Vol. 1. By using the result
shown there, we have that the generated mateix sequence { K} converges
to a positive delinite symimetric matrix I,
Ny — K,

provided the pairs (4, I3) and (/i ). where Q = C'C. are controllable and
observable, respectively. Since A = vad, controllability and observability
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ol (A, B) or (A, C) are clearly equivalent to controllability and observability
of (A1) or (.1, C), respectively. The matrix A is the unique solution of
the cquation

KN =A(aRN —a?KBaBNB+ R) " B'K)A+ Q. (2.1)

Because Ny — IV, it can also he seen that the limit,

[
. < N .
¢~ lim 2 S DR BTU NI
hoox
m -0
is well defined. and in fact.
a . )
=7 E{w KNuw}. (2.2)
—a

Thus, in conclusion, il the pairs (4, B) aud (A, C) are controllable
and obscrvable, respectively, the Hmit of the functions T*.Jy is given by

T () == ,.“l’l')l&(,ljl"./())(.l') =l W e (2.3)

Using Eqgs. (2.1) to (2.3), it can be verified by straightforward calculation
that for all # € 5

J () = (TJ ) () = min [.r’Q.r + ' Ru 4 a2 { o (A + Bu+ m)}]

(2.4)
and heneey by Prop. 1.5(a) of Section 3.1, /5, = J*. Another inethod for
proving that Sy = T/« is to show that the assmnption of Prop. 1.7 of

Section 3.1, is satisfied; that is, the sets

Up(e A) = {u | 1:'{.:;’(2.!‘ + ! Ru+ o (T4 Jo)(Ar + Bu+ uv)} < /\}

are compact for all & and scalars A, This can be verified using the fact
that TH.Jy is a positive semidelinite quadratic function and R is positive
delinite. The optimal stationary policy jre, obtained by minimization in
L. (2.1), has the lorm

() = ~a(aBN DB+ B)- VDK A, £ €N

This policy is attractive lor practical implementation since it is lnear and
stationary. A number of generalized versions of the problem of this sec-
tion, inchiding the case of imperfect state information, are treated in the
exercises. Interestingly, the problem ean be solved by policy iteration (sce
Exercise 3.16), even though, as discussed in Scction 3.1, policy iteration is
not valid in general under Assumption P
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INVENTORY CONTROL

Let us consider a discounted. infinite horizon version of the iventory
control problem of Section 1.2 in Vol. L. Inventory stock evolves according
Lo the equation

Lpgl = O+ U — Wy h=0.1.... (3.1

We assuie that the suceessive demands wy are independent qnd bonnded,
and have identical probability distributions. We also assume for shmplicity
that there is no fixed cost. The case of a nonzero fixed cost can he treated
similarlv. The cost function is
N-—1
Jr(ng) = A]iiu ,[1 Z ok (cpp(er) + 1 (0 + plan) — wi))

>
k00N -1 k=0

where
H{y) = pmax(D. —y) 4 I max(0.y).

The DI” algorithin is given by
Jolr) =0,
(TFHV o) () = 1(}2}‘1 E{eu+ H(x +u—=u) +a(TF D)o+ u—w)}. (3.2)
We first show that the oplimal cost is {inite for all mitial states, that
Jr(arg) = n;ian (rg) < oc, for all g € 5. {(3.3)
Indeed, consider the policy @ = {ji,/1,...}, where i is defined by

0 if 2> 0.
-z ifr<0.

() = {

Since wy, is nonnegative and bounded, it follows that the inventory stock
xp when the policy 7 is uscd satistics

—wy—y < e < max(0,rq), k=12 ...,

and is bounded. Hence i) is also bounded. 1t follows that the cost per

stage incurred when 7 is used is bounded, and in view of the prescuce of

the discount factor we have
J;r(.lJu) < U, xg € 5.

Since J* < Jz, the finiteness of the optimal cost follows.

e s
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Next we observe that, under the assumption ¢ < p, the Tunctions
1% .Jy are real-valued and convex. Indeed, we lrave
Jo < Ty < <TRJy < oen <
which implies that T%Jy is real-valued. Convexity follows by induction as
shown in Section 4.2 of Vol. 1.
Consider now the sets

U A) = {u> 0] B{cu+ H{z+u—w)+o(TrIp) (e —w)} < A}, (3.4)

These sets are bounded since the expected value within the braces above
tends to oo as w — oo, Also, the sets Uy (e, A) are closed sinee the expected
value in Eq. (3.4) is a continuous function of « [recall that T4.Jy is a real-
valned convex and henee continuous function]. Thus we may invoke Prop.
1.7 of Scction 3.1 and assert that

lim (TR J0) () = J* (), £ ES.

Ao

It follows from the convexity of the functions T*.Jy that the limit function
J* is a real-valued convex function. Furthermore, an optimal stationary
policy p* can bhe obtained by minimizing in the right-hand side of Belhnan’s
cgitation

JH(e) = Ill\il,l E{eu+ 1T(r 4w~ w) 4 o (a4 u—w)}.
ul

We have
S* — o if e < S,
prr) =

0 otherwise,
where S~ is a minimizing point of
GH(y) = ey + L) + al2{ 0 (y = w)},
with

L(y) = E{H(y - w)}.

It can be seen that i p > e, we have limy, L G*(y) = oo, so that such a
mininizing point exists. Furthermore, by using the observation made near
the end of Section 3.1, it follows that a minimizing point S* of G*(y) may
be obtained as a limit point of a sequence {S;}, where for cachi & the sealar
S nnnimizes

Gr(y) = cy + L{y) + aE{(T*Jo)(y — w)}

and is obtained by means of the value iteration method.
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It turns out that the critical lovel S* has a simple characterization.
It can be shown that $* inimizes over y the expression (1~ a)ey + L(y),
and it can be essentially obtained in closed form (sce Excrcise 3.18, and
[HeS84], Ch. 2).

In the case where there is a positive fixed cost (i > 0), the same
line of argunient may be used. Similarly, we prove that J* is a rcal-valued
K-convex function. A separate arguiuent is necessary to prove that J* is
also continuous (this is intuitively clear and is left for the reader). Once
K-convexity and continuity of J* are established, the optimality of a sta-
tionary (s*,.5*) policy follows from the equation

Jr(x) = min B{C(u) + H(z + u — w) + a* (¢ +u — w)},

u>0

where C(u) = K+ cu il «w > 0 and C(0) = 0.

OPTIMAL STOPPING

Consider an infinite horizon version of the stopping problems of Sec-
tion 4.4 of Vol. I At cach state o, we must chioose between two actions: pay
a stopping cost s(.r) and stop, or pay a cost ¢(r) and continue the process
according to the system equation

Lyt = f(»(,l';,., llY},»)7 ;= 0, l, e (l l)

The objective is to find the optimal stopping policy that winimizes the
total expected cost over an infinite number of stages. It is assumed that
the input disturbances wy, have the same probability distribution for all &,
which depends ouly on the current state ..

This problem may be viewed as a special case of the stochastic short-
est path problem of Section 2.1, but here we will not assume that the state
space is finite and that only proper policies can be optimal, as we did in
Section 2.1. Instead we will rely on the general theory of unbounded cost
problewss developed in Seetion 3.1.

To put the problem within the framework of the total cost infinite
horizon problem, we iutroduce an additional state ¢ (termination state)
and we complete the system equation (4.1) as in Section 4.4 of Vol. 1 by
letting

Tryr =1, it up = stop or g =t

Once the system reaches the termination state, it remains there perma-
neuntly at no cost.
We first assunie that

s(z) =20, () 2 0, for all r € S, (1.2)
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thus coming under the framework ol Assumption P ol Section 3.1, The case
correspoiding to Assumption N, where s(e) <0 and e{a) < O forall 2 € §
will be considered later. Actually, whenever there exists an ¢ > 0 such that
() > ¢ for all € 5, the results to be obtained under the assumption
(4.2) apply also to the case where s(r) is bounded below by some scalar
rather than bounded by zero. The reason is that, if ¢(r) is assutied to be
ercater than ¢ > 0 for all o 5, any policy that will not stop within a
finite expected nmumber of stages vesults in infinite cost aud can be excluded
from consideration. As a result, if we reformulate the problem and add a
constant 1 Lo s(r) so that s(r) +r > 0 for all o € S, the optimal cost J*(x)
will merely be incrcased by, while optimal policies will remain unaffeeted.
The wmapping T that defines the DP algorithim takes the form

(TT)(r) = {miu[s(.x;), cla) + E{T(fe(r.w)) }] il £, (1.3)

0 if =1,

whore s(r) is the cost of the stopping action, and e(a) + E{.I(,/}(.r, m))}
is the cost of the continuation action. Since the control space Las only two
clements, by Prop. L6 of Secetion 3.1, we have

k-l-h-“ (TkJo)(0) = T+ (). £ ES, (1.4)

where Jy is the zero function [Jy(e) = 0, for all & € S]. By Prop. L3 of

Section 3.1, there exists a stationary optimal policy given by

stop i s(r) < e(a) + E{T(folew)) ).
continue il s(r) > () + LI (felr w)) }.
Let us denote by S* the optimal stopping set. (whicli may be enmipty)
S ={re S| ste) <o)+ LI (Je(eow)) )
Consider also the sets
Sp={res]s(r)<elr)+ BTk Jg) (fola,w)) }}

that determine the optimal policy for finite horizon versions of the stopping
problem. Since we have

Jo < Ty <o <THJy < -0 <X,

it [ollows that,
S,Cc8C---CS,C---CS5*

and therefore U S, € S*. Also, iF 5 ¢ U Sk then we have

s(i) = e(F) + E{T I0) (fo(Fow)) }, k=01....,
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and by taking the lit and using the monotone convergence theorem and
the fact 1% Jy = J*, we obtain

5(&) = c(r) + LI (fola, w)) },
from which * ¢ S*. Heuce
St = U S (-L.5)
In other words, the oplimal stopping sct S* for the infinde horizon problem
is cqual to the union of all the finite horizon stopping scls Sy.
Consider now, as in Section 4.1 of Vol. 1, the one-step-to-go stoppiug
set :
Sy = {.1: € S 1) <ee)+ E{(fe(e,w)) }} (1.06)
and assine that Sy is absorbing in the sense
fole,w) € S, forall s €S, web. (4.7)
Then, as in Section 4.4 of Vol. I, it follows that the one-step lookahead
policy N
stop if and only if » € 9)

is optimal. We now provide sonme examples.
Example 4.1 (Assct Sclling)

Consider the version of the asset selling example of Scetious 4 and 7.3 of
Vol. I, where the rate of interest r is zero and there is instead a maintenance
cost ¢ > 0 per period for which the house remains unsold. Furthermore, past
offers can be accepted at any future time. We have the following optimality
equation:
JT () = max [.r,. —c+ E{J* (III&L.\(.L“ w)) H
L this case we consider maximization of total expected reward, the continua-
tion cost is strictly negative, and the stopping reward o is positive. Hence the
assumption (4.2) is not satisficd. If, however, we assutne that @ takes values
in a bounded interval [0, M], where M is an upper hound on the possible
values of offers, our analysis is still applicable [cf. the discussion following Eq.
(4.2)]. Consider the one-step-to-go stopping set given by
5 = ez —et E{nmx(,z:, IU)}}.
Alter a calculation shmilar to the one given in Section d.f of Vol. 1. we see
that
Sy o= | > al,

where @ is the scalar satislying
~
a = P(a)a -+ / w dD(u) - .
Jw

Clearly, 51 is absorbing in the sense of Bq. (1.7) and therefore the one-step
lookahead policy that accepts the first offer preater than or equal to @ is
optimal.
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Example 4.2 (Sequential Hypothesis Testing)

Consider the hypothesis testing problem of Section 5.5 of Vol. I for the case

whaore the number of possible observations is unlimited. Here the states are
0

Y and ' (true distribution of the observations is fu and Ji, respectively).
The set S is the interval [0, 1] and corresponds to the sufficient statistic
P = [’(.’l';,. = .I‘() | S0 20y ey ZA-).
To cach p € {0, 1] we may assign the stopping cost
s(p) = min[(l —p)Lo, le],
that is, the cost associated with optimal choice between the distributions fo
and fi. The mapping T of Eq. (4.3) takes the form

TJ)(p) = min — VLo, ply, e+ 1012 pfo(z)
(D) (p) = [(1 ) o, plin, +1z,{/(pf0(z)+(]w)/}(g))}]

for all p € [0, 1], where the expectation over z is taken with respoct to the
probability distribution

P =pfoz) + (1 = ) f1(2), € Z.

The optimal cost funetion J* satislies Bellinan’s equation

- = min —p ) PR * pJo(2)
JT(p) = [(I IDIXNDANCE 1; {" (1)‘/'(,(;) + (1 “'P)fl(z)) }]

and is obtained in the limit through the equation

S0 = D (TN A ), pe o],

where Jy is the zero function on [0, 1].
Now consider the functions 7% Jy, k= 0, 1,... 1t is clear that

Jo STdo <+ T8y < -+ < min[(1 = pjLo, pLi].

FFurthermore, in view ol the analysis of Section 5.5 of Vol. 1, we have that the
funetion 7% Jy is concave on [0, 1] for all k. Hence the pointwise limit function
J* s also concave on [0, 1. In addition, Bellman's equation implies that

S0y =J7(1) =0,
J (p) < miu[(l - [;)LU,le}.
Using the reasoning illustrated in Fig. 3.4.4 it follows that [provided ¢ <
Lola /(Lo + L1)] there exist two scalars @, 8 with 0 < 8 < @ < 1, that
determine an optimal stationary policy of the form
aceept fo il p <@,
accept [y ifp <y,
continue the observations if < p<i
In view of the optimality of the preceding stationary policy, the sequen-
tial probability ratio test described in Section 5.5 of Vol. T is justificd when
the number of possible observations is infinite.
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4
~(1-p)Lg pLy,-
LoLq N fol2
eyt i > c+E,qJ" —_P0a d2)
0t+ty AN pfg+ (1 -p)f1(2)
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Pie I ) ~ o
(o] ! 1 ~
N =N
t | |
-t p— -
0 B, a 1 p
 Accept f17’?:ontinue T Accept /07
Observations

Figure 3.4.1 Derivation ol the sequential probability vatio test.
The Case of Negative Transition Costs
We now cousider the stopping problem under Assumption N, that is,
s(r) <0, () <0 for all » € §.
Under these circumnstances there is no penalty for continuing operation of

the system (although by not stopping at a given state, a favorable oppor-
tunity mway be wissed). The mapping 7" is given by

(TJ)(r) = min[s(r), c(e) + E{J(fe(x, w))}.

The optimal cost function J* satisfies J*(x) < s(e) for all & € 5, and by
using Props. 1.1 and 1.5(h) of Scetion 3.1, we have

J* =T, WASES Aliln TkJy = lim Tks,

Ao

where Jy is the zero fimetion. I ean also he scen that, il the one-step-to-go
stopping set St s absorbing [cf. Eq. (4.7)], a one-step lookahead policy is
oplimal.
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Example 4.3 (The Rational Burglar)

This example was considered at the end of Scection (L1 of Vol T where it
was shown that a one-step lookahead policy is optimal for any finite horizon
length. The optimality equation is

JHr) = nmx[.:\ (- /))I','Jl,l'(.r -+ m)}].

The problen is equivalent to a minhization problem where

so Asstnption N holds. From the preceding, analysis, we have that The — J*
and that a one-step lookahead policy is optithal if the one-step stopping set
is absorbing [cl. Egs. (1.6) and (4.7)]. It can be shown (see the aualysis of
Section Lo ol Vol 1) that this condition holds, so the finite horizon optimal
policy wherehy the burglar retires when his accumulated carnings reach or
exceed (L= p)w/p is optimal for an infinite horizon as well.

Example 4.4 (A Problem with no Optimal Policy)

This is a deterministic stopping problem where Assumption N holds, and an
optimal policy does not exist, even though only two controls are available
at cach state (stop and continue). The states are the positive integers, and
contitmation from state i leads to state i 4 1 with certainty and no cost, that
is, S ={1,2,...},e(5) =0, and fo(i,w)=i+1forallie S andw e D. The
stopping cost is s(7) = — 14+ (1/i) for all i € &, so that there is an incentive to
delay stopping at every state. We have J*(7) = — 1 for all i. and the optimal
cost =1 can be approached arbitrarily closely by postponing the stopping
action for a sulliciently long time. However, there does not exist an optimal
policy that attains the optimal cost.

OPTIMAL GAMBLING STRATEGIES

A gambler enters a certain game played as [ollows. The gambler may
stake at any time F any amount g > 0 that does not exeeed his current
fortune .y {defived to be his initial capital plus his gain or minus his loss
thus far). e wins his stake back and as much more with probability p
and he loses Tis stake with probability (1 — p). Thus the gambler's fortune
evolves according, to the equation

Lhy) = It g, h=0,1,..., (51)
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where wy, = L with probability p and wy = —1 with probability (1 - p).

Several gamnes, such as playing red and black in roulette, it this deseription.

The gambler enters the game with an initial capital .y, and his goal is
to increase his fortune up to a level X He continues gaunbling until he cither
reaches his goal or loses his entire initial capital, at which point he leaves
thie game. The problem is (o deterinine the optimal gambling strategy for
maximizing the probability of reaching his goal. By a gambling strategy,
we mean a rule that specifies what the stake should be at time & when the
gaibler’s fortune is g, for every rg with 0 <y < X,

The problem may be cast within the total cost, infinite horizon frame-
work, where we consider maximization in place of minimization. Let us
assume for convenience that fortunes are normalized so that. X = 1. The
state space is the set [(), l] WA}, where £ ds a termination state to which the
system moves with certainty from both states 0 and 1 with corresponding
rewards 0 and 1. When oy # 0. #£ 1, the system evolves according to
Eq. (5.1). The control constraint set is specified by

0 < uy <y, 0<u, <1 -y
The reward per stage when op £ 0 and o £ 1 s zeroo Under these
circumstances the probability of reaching the goal is equal to the total
expected reward. Assumption N holds since our problem is equivalent to a
problem of mininiizing expected total cost with nonpositive costs per stage.

The mapping T defining the DP algorithm takes the form

max o<u-s [pJle 4+ @)+ (L= p)J(e—u)] if e (0.1),
Ty =409 ifr=0
L if

)

L,

—_
jia}
8%

=

for any function J : [0.1] — [0, oc].
Consider now the case where

0 !
<p< 5,

that is, the game is unfair to the gambler. A discretized version of the ease
where 1/2 < p < 1 is cousidered in Bxercise 3.21. When 0 < p < 1/2, it
is intuitively clear that if the gabler follows a very couservative strategy
and stakes a very small amount at cach time, he s all hut certain to lose
his capital. For example, if the gambler adopts a strategy of betting 1/n
at cach time, then it may be shown (sce Exercise 3.21 or [Ash70], p. 182)
that his probability of attaining the target fortune of L starting with an
initial capital i/n, 0 < i < n.is given by

(5 =) (5 )
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If0 < p<1/2 ntends to inlinity, and 7/n tends Lo a constant, the above
probability tends to zero, thus indicating that placing consistently swall
bets is a bad strategy.

We are thus led to a policy that places large hets and, in particular,
the bold strategy whereby the gambler stakes at cach time A lis cntire
fortune @y or just cnough to reach his goal, whichever is least. In other
words, the bold strategy is Lhe stationary policy gt given by

() = £ if0<w<1/2,
= Ve 2o <L

We will prove that the bold strategy is indeed an optimal policy. To this
end it is sullicient to show that for every initial fortune « € {0, 1] the value of
the reward function J,+ () correspouding to the bold strategy po* satisfics
the sulliciency condition (cf. Prop. 1.4, Section 3.1)

T-//:* = 'l/l"v
or cquivalently
S () =0, Je(1) =1,
Jur () 2 pdye (et w) + (L~ p)dp (6 —u), (5.3)
for all z € (0,1) and w e [0, 2] N[0, 1 — ]
By using the definition of the bold strategy, Bellman’s equation
v]/t.* - ,['/:* 'I/l* 3
is written as
Je0) =0,  Je(1)=1, (5.4)

N 2 Ho<e<1/2, .
i () = {[}+ (L=p)J=2e—1) H1/2<z <1, (5:5)

The following lemma shows that J,= is uniquely defined from these rela-
tions.

Lemma 5.1: For every p, with 0 < p < 1/2, there is only one bounded
function on [0,1] satisfying Eqs. (5.4) and (5.5), the function J».
Furthermore, Jy» is continuous and strictly increasing on [0, 1].

Proof: Suppose that there existed two hounded {unctions Jy : [0,1] — R
and Jy [0, 1] — R osuch that J,(0) =0, J,(1) =1, i = 1,2, and

J (2. if r <1/ .
J () = Pt () . 31.0‘<I <172, =12,
p+ U =p),(2e—1) if1/2<0x <,
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Then we have

() = Ja(2)

Ji(2x) = Sa(22) = , it < <1/, (5.6)

P
Ji(2e=1)= L(2e-1) = Zill)——lb(ll, ii/2<r<l. (5.7)
—p

Let = be any real nuber with 0 < 2 < 1. Define
L ifo<z<1/2
P21 i12<z <,

o) 2z if0< 2,y <1/2,
T2 1 i 1/2< 5o <,

for k= 1,2.... Then from Eqs. (5.6) and (5.7) it follows (using p < 1/2)

that | (<) ( )‘
Ji(z) = Iz
[ 1(ak) = (=] 2 l(l —p)*

Since Ji(z) — Ju(zk) is bounded, it follows that Ji(2) — Jo(z) = 0, for
otherwise the right side of the inequality would tend to oo. Since 2 € {0, 1]
is arbitrary, we obtain Jy = Jy. Hence Jy+ is the unique bounded function
on [0,1] satisfying Eqs. (5.4) aud (5.5).

To show that J,+ is strictly inereasing and contimous, we consider
the wapping T+, which operates on functions J : {0, 1] — [0.1] and is
defined by

k=12,

. o pd2) (1= p)J(0) if0 <0 <1/2,
(L d)(e) = { ;

e pJ)+(1=p)J2r-1) fl1/2<a <1,
(T )O) = 0. (L)1) = 1. (5.3)
Consider the functions Jo. Tpr Jg, - - - T;’;* Jo, ..., where Jy is the zero func-

tion [Jo() = 0 for all » € [0, 1]]. We have

Jx () = klﬂg:(Tlf" Jo)(a). r €0, 1]. (5.9)

Furthermore, the functions T"‘; Jo can be shown to be monotonically nonde-
creasing in the interval [0, 1). Hence, by Eq. (5.9), J,» is also monotonically
nondecreasing.

Counsider now for n = 0,1, ... the sets

S = {x € [0.1] |+ = k27" k = nouncgative integer}.
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1t is straightforward to verify that
(T Jo)(a) = (T Jn) (), rEe€Sy 1, m>=zn>
As a result of this equality and Eq. (5.9),
Jpe (o) = (1) Jo)(r), reS, o, o>zl (5.10)

A further fact that may be verified by using induction and Eqs. (5.8) and
(5.10) is that for any nomnegative integers b, o for which 0 < A2° <
(k4 1)2 -7 < 1, we have

P < e (k4 1)27m) = e (R270) < (1 = p). (5.11)
Since any number in [0, 1] can be approximated arbitrarily closely [rom
above and below by unumbers of the form &2- 7 and sinee Jy+ has been
shown 1o be monotonically nondecrcasiug, it follows from Bq. (5.11) that
Jy is continuons and strictly inereasing. Q.E.D.

We are now in a position to prove the following proposition.

Proposition 5.1: The bold strategy is an optimal stationary gam-
bling policy.

Proof: We will prove the sullicieney condition

S () = pdpe (e )+ (U= p) Sy« (=), €01 wel0.4Nnfo, 1—2].

(5.12)
In view of the continuity of J,+ established in the previous lemma, it it
suflicient to establish By, (5.12) for all @ € [0, 1] and « € [0,0] 0 [0, 1 — ]
that belong to the union Uy, S, of the sets S, defined by

Sy =z e 0]} = k20 k= nonnegative integer .

We will use induction. By using the fact that J,+(0) = 0. J,» (1/2) = p,
and J,+ (1) = 1, we can show that Eq. (5.12) holds for all v and w in So
aud S}, Assune that Eq. (5.12) holds for all w.u € S, We will show that
it, holds for all wyu € .9, 41-
For any &+, u € 8,1 with v € [0,0] 0 [0, 1 — o], there are four possi-

bilities:

o4 <172

O VR

3or—u<aw<l/2<r+4u,
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dor—u</2<0< 04 u,

We will prove L. (5.12) for cacli of these cases.
Case Lo W row o Sypae then 20 C 5,0 and 20 08, and by the
induction hypothesis

S () pdye (e 2u) (U py e (200 20) 0 (h.13)
If 4+ u < 1/2. then by Eq. (5.5)

Ju () = p Ly (e u) = (L= p) e (= 1)

= (e (20) = ppe (24 2u) = (1 = p)dye (20 = 2u))
and using Eq. (5.13), the desired relation Eq. (5.12) is proved for the case
under consideration.

Case 2. Wi 8y then (20 - 1) € 5, and 20 ¢ 5, and by the
induction hypothesis

T (20 = ) = pd o (20 1 20 - 1) = (1 - e (2 20 - 1) 0.
Ife—u>1/2.then by Eq. (5.5)

Jur () = pdp () = (L= p)dpe (= 1)
=p+ (L= p) e (2e = 1) = p(p+ (1 = p)due (20 + 20 — 1))
=1 =p)p+ =Py (20 —2u—1))
= (1= p) (S (20 = 1) = pdyo (20 + 20 — 1) = (1~ p)de (200 = 2u — 1))
>0,
and Eq. (5.12) [ollows [rom tie preceding relations.
Case . Using Eq. (5.5). we have
Jur Q) = pds (R ) = (L= p)de (0 — u)
= p L (20) = p(p et (0= )l (2004 20 - D) - p(t plde (20 20)
=p(Jy Q) = p— (1= p)ye (2 + 20 — 1) — (1 — P) L (20 - 2u)).
Now we must have o > l‘ for otherwise v < 11 and 4w < 1/20 Henee
2r > 1/2 and the sequence of equalities can he continned as (ollows:
Ju ) = pdps (e a) = (L= phd- (0 — u)
=p(p+ (L= p)dy (b= 1) p
— (L= ) (2 + 20 = 1) — (1= p)dye (20— 2u))
= pld = py (S (e = 1) = T (20 1 20 — 1) — Jy (200 - 20))
= (L= p) (e Q20 = 1/2) = pd s (20 4 20 = 1) = p e (200 = 2u)).
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Since p < (1 — p), the last expression is greater than or equal to both
(1= p) (S (2 = 1/2) = pdye (22 + 20 — 1) — (1 = p)Jus (20 — 20))
and
(U= p) (e (2= 1/2) = (L= p)Spe (20 + 20 = 1) = p e (20 — 2u)).

Now for 2,4 € Syy1, aud 1> 1, we have (20 — 1/2) € S, and (20 —1/2) €
Sy if (20— 1/2) € [0, 1], and (1/2 — 2u) € S,y if (1/2 = 2u) € [0, 1]. By the
induction hypothesis, the first or the secoud of the preceding expressions
is nouncgative, depending on whether 26 420 —1 2 20— 1/2 or 20— 2u 2
20~ 1/2 (e, u>toru< 4). Hence . (5.12) is proved for case 3.
Case 4. The proof resciubles the one for case 3. Using Eq. (5.5), we
have
S () = pdye (& 1) = (L= p) (v — )
=p+(L=p)Je(2e— 1) = p(p+ (1= p)ys (20 + 20 ~ L)
— (L = pIpdys (20 = 2u)
=p(l = p)
+ (L =p) (e (20 = 1) = pJp (20 + 2u = 1) = pJpe (20 — 2u)).

31 ; I ee
We ninst have o < % for oltherwise v < l‘ and r—w > 3. Hence 0 <

20— 1<1/2< 20— 1/2<1, and using Eq. (5.5) we have
(I =p) (20 —1)=(1 - PIpdys (e = 2) = 1)(./,,»(2.1‘ —-1/2) - 1;).
Using the preceding relations, we obtain

e () = pdpe (2 u) = (L= p) e (0 — u)
= p(L = p) + p( S (20 — 1/2) —p) = p(b = p)Jps (20 + 2u— 1)
— p(L = p)Jy (20 = 2u)
=p((L=2p) + ], (20 = 1/2) = (1 = )y (20 4 20— 1)
— (1= p) e (20 = 20)).
These relations are equal to hoth
p((L=2p)(1 = s (20 + 20— 1))
A S (e = 1/2) = plye (20 4 20— 1) = (L= p) S (20 — 2u))
and

p((1=2p} (1 = Ty (20 — 2u))
S (20 = 172) = (L= p)ye (20 + 20— 1) = pJy= (22 — 2u)).
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Since 0 < S (20420 -1 < Tand 0 < S (20 2y < 1 these expressions
arc greater than or equal to hoth

P(Te (20 = 1/2) = pdye (20 -+ 20— 1) — (1 — p)dye (2 -- 2u))
and

P (2 = 1/2) = (L= )T (20 4 20~ 1) — pd,s (20 — 2u))
and the result follows as in case 3. Q.E.D.

We note that the hold strategy is not the unique optimal stationary
gambling strategy.  For a characterization of all optinal stralegios. see
[Dus65], p. 90. Several other gambling probleins where strategies of the
bold type are optimal are deseribed in [DuS65], Chapters 5 and 6.

NONSTATIONARY AND PERIODIC PROBLEMS

The standing assumption so far in this chapter has been that the prob-
lem involves astationary system and a stationary cost per stage (exeept for
the presence of the discount factor). Problems with nonstationary system
or cost per stage arise occasionally in practice or in theoretical studies and
arc thus of some interest. 1t turns out that such problems can be converted
to stationary ones by a simple reformulation. We can then obtain results
analogous to those obtained carlier for stationary problems.

Consider a nonstationary systen of the form

L] = f;,-(.l';;., . ll‘L-). b= 0, I....

and a cost function of the form

N-—1
Ja(g) = Vlilll ) { Z by (,l'k, Ju (g ) ln;\.)} . (6.1)
N

Dianie ¥ LY
k=0

In these cquatious, Tor cach A, ay belongs to a space Sp.ouy helongs Lo w
space G and satisfies wy € Up(eg) for adl g € Sp. and wy belongs (o a
countable space Dy, The sets Sg, Cr, U (). Dy may diller fron one stage
to the next. The randont disturbances iy are characterized by probabilities
Pi(- | iy wge). which depend on g and wg as well as the time index &, The
sel of adimissible policies 1 is the set of all sequences m = {pg.per, ...} with
Je o Sk Croand g (ry) € Up(ay) for all oy € Sy and b = 0,1,... The
functions gy @ Sk x Ci x Dy — R are given and are assumed to satisfy one
of the following three assumptions:
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Assumption D’: We have a < L and the functions g satisfy, for all
k=01,

';//, (rp, v, u,m.)] < M, for all (g, up,wy) € S x C x Dy,

where A is some scalar.

Assumption P’: The [unctions gy satisly, for all A =0, 1...

0 < gr(on, vg, wi), for all (g, g, wi) € S x Cp, x Dy

Asswnption N/: The functions g satisly, for all K =0.1, ...

gk, wge, wy) <0, for all (g, up, i) € 55 X Cr x Dy,

We will refer to the problem formulated as the nonstationary problem
(NSP for short). We can get an idea on how the NS can be converted to a
stationary problem by considering the special case where the state space is
the same for cach stage (e, Sy = 9 Tor all ). We consider an augiiented
state

a= e b

where € 5, and A s the time index. The new state space is S = 9 x Iy,
where A denotes the set of nonnegative integers. The angimented system
evolves according to

(kY = ([alrovpowg) ke + 1), (e k)€ s,
Similarly, we can deline a cost per stage as

g)((.r, FYoupwg) = g la wg, ), (. k)€ S.
Hois evident that the problenn corresponding to the angmented systein is
stationary. If we restrict attention to initial states 7o € § x {0}, it can be
scen that this stationary probleny is eqitivalent to the NSP.

Let us now cousider the more general case. To simplify notation, we
will assmme that the state spaces S, ¢ = 0,1, ... the coutrol spaces O,
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¢ = 0.1..... aud the disturbance spaces D, 0 = 0,1...., are all mutually
disjoint.  This assumption does not involve a loss of generality since, il
neeessary, we may relabel the elements of S, CrLand D, without affecting
the structure of the problem. Define now a new state space S. o new control
space ¢ and a new (conntable) disturbance space D by

5= U5 = 0,0 1 =ux,D,.

i ¢

Introdiee a new (stationary) systei
Teer = f(en a0y, A=0olo. .. (6.2)

where 7y € S. iy € CLng € D.oand the systew function [ Sx('x [)— 8
is defined by

Jleoasw) = [l ala), oS, vy, waelh, -0,

For triplets (& a0 @) where forsomie i = 0.1, ..., we have B € S, bt @ ¢
or @ ¢ D, the definition of [ is inmaterialy any delinition is adequate for
owr purposes in view ol the control constraints to be introduced. The
control coustraint is taken to he & € U(x) for all & € 9, where U(4) is
defined by

Uy — U, (1), rares,. -0,

The disturbance @ is characterized by probabilities P2(a | . 1) such that
PlweD | Fres. aeC)=1, i=0.1....
Plarg DS, e ()= 0, A | DO
Furthermore. for any w, € D,. 0, € S, u, € C;, i =0, L..... we have

Pl L iou) = P, |, u).

We also introduce a new cost funetion

N—-1
./,‘ (.i'u) = !il“ l‘:

Jmo B S akg(ie plin) ) ¢ (6.3)

k=01 N- | k=0

whiere the (stationary) cost per stage g0 8 x (' x D — R is delined for all
1=0,1,... bv

glrecuyw) =g (eyaoe), ee S, wel,. wel),.
For triplets (i, &, ), where for some i = 0,1, ..., we have & €5, but it ¢ (4

or ai* ¢ D;. any definition of ¢ is adequate provided I;/(.F'. . ri')‘ < M for
all (E.a.@) when Asswnption D’ holds, 0 < g(. a, @) when P! hobds, and



170 Undiscotunted Problemns Chap. 3

g(F. i) < 0 when N7 bolds. The set of admissible policies 11 for the new
problem consists ol all sequences @ = {fro ...}, where fig 0 8 s C and
m(rye U(F) forall F € S and k=0,1,....

The construetion given defines a problem that elearly lits the [rame-
work of the infinite horizon total cost problem. We will refer to this problem
as the stationary problem (SP for short).

Hois baportant to understand the nature of the intimate connection
between the NSP and the SP formulated here. Let 7 = {pg.pe1 ...} be an
admissible policy for the NSP. Also, let # = {fig. fi1....} be an adiissible
policy for the S such that

Ju(ry = (). iteres,. i=0.1,... (G.4)

Let g € Sy be the initial state for the NSP and consider the same initial
state for the SP (i.e.. 7o = g € Sy). Then the sequence of states {1}
generated i the SPowili satisly &, € 5., 7 = 0.1, ..., with probability 1
(L.c., the system will move from the set Sy to the set Sy, then to Sy, ete,
just as in the NSPY Farthermore, the probabilistic law of gencration of
states and costs is identical in the NSP and the SP. As a result, it is casy
to see that for any admissible policies 7 and 7 satisfying Ee. (6.-4) and
initial states aq, o satislving g = Fo € Sy, the sequence of generated
states in the NSP and the SP is the same (@, = ¥, for all i) provided the
generated disturbances w, and dr, e also the same for all 7 (w; = :Zv,, for
all 7). Furthermore, if 7 and & satisfy . (6.4), we have J(ro) = Jz(F)
if ey = Ty € 5y, Let us also consider the optimal cost functions for the

NSP and the SP:

./' (,I'U) B lllill ./n(.l'(]). ) € b'().
il

j*(.;'()) = in .I;;(.;'()). I € S().
well

Then it follows rom the construction of the SP that
Jriee) = J (el ). il 7y € 9, N (6.5)
where, for all 7 == 0,1, ...,

N1
J(rooi) = min i D) N ke A (o) >, (6.6
('“ I) 7rL||N~‘lflx Wy L“ '(II(IL /A( A) /‘) ( )

RO b=y
if rg = .0, € 5,. Note that in this cquation, the right-hand side is defined in
terms of the dataof the NSP. As a special ¢ase of this equation, we obtain

./*(.i’()) = jv (.I~'u. U) = ./*(.I'()), il g = 29 € 9. (()7)
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Thus the optinal cost function. J* of the NSP can be obtained from the
optimal cost function J* of the SP. Furthermore, if 7% — {ag.ny.. ) isan
optimal policy for the SP; then the policy % = {51, 44 . .} defined by

py (@) = fir(a,), for all &, € S,, i=0,1,..., (6.8)

is an optimal policy for the NSP. Thus optimal policics for the SP yicld
oplumal policics for the NST wia Fq. (6.8). Auother point to be noted is
that if Assumption D' (P!, N') is salisficd for the NSP, then Assumption
D (P, N) introduced carlier in this chapter is satisfied for the SP.

These observations show that one may analyze the NSP by means of
the SP. Every result given in the preceding sections when applicd to the
SP yields a corresponding result. for the NSP. We will just provide the form
of the optimality cquation for the NSP in the following proposition.

Proposition 6.1: Under Assumnption D’ (P’, N*}, there holds

J*(z0) = J*(0,0), zg € Sp,

where for all i = 0,1,..., the functions J*(-,7) map S; into R ([0, o0},
[~00,0]), are given by Eq. (6.6), and satisfy for all 2; € S; and i =
0,1,...,

J* (i) = ulélbl,iil(lli)iy:{gl(ml, ui, wi) o d* (filzi,ws,ws), i+1)}. (6.9)

Under Assumption D’ the functions J* (+,i),1=0,1,..., arc the uuique
bounded solutions of the set of cquations Bq. (6.9). Furthermore,
under Assumption D7 or P/, if p¥(z;) € Ui(x:) attains the minimum
in Eq. (6.9) for all #; € S; and i, then the policy 7* = {3, i}, .} is
optimal for the NSP.

Pcriodic Problems

Assume within the framework of the NSP that there exists an integer
p > 2 (called the period) such that for all integers i and j with li—j| = mp,
m=1,2..... we have

S=S. C=C.  Di=Dy  U() =10
fi= 1. 9= 1. P o j)=P( | ). () e S, x (.

We assume that the spaces Sy, C5, Dy, i = 0,1,...,p — 1. are mutually
disjoint. We define new state, control, and disturbance spaces by

-t r -1 p— |
S=U"S.. C=U_,C. D =U'"_,D;.
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The optimality equation for the equivalent stationary problem reduces to
the system of pequalions

S (0. 0) = min Ig‘{yu(.l‘u.uu, ty) l'(1.]*(_/},(,1'1..uu,u'”). l)},

uo€lindrg) g

Jr(r )= min [;‘{;/(.1:1_11,1, wy) + aJe (,/’1(.1'|.u,1.(1*1).‘2)}.

wp CO () wy

(e, p-1) = win R TR i)

g L H e, ey,
+ (l./\*(fl,q(.l‘l,,hIII,A |,’1HI,, 1).())}.

These equations may he used Lo obtain (under Assumption DY or PY) a
periodic policy of the form {/1(*,, L. ,/l,;*, G ,/1,;‘,” 1+ -« -} whenever the
minimun of the right-hand side is attained for all w0 7 = 0,1,...,p -
Lo Wlhen all spaces involved are {inite, an optimal policy ay be found
by means of the algorithims of Section 1.3, appropriately adaptod to the
corresponding SP.

NOTES, SOURCES, AND EXERCISES

Uidiscounted problems and discounted problems with unbounded
cost per stage were first analyzed systematically in [DuSG65], [Bla65], and
[Str66]. An extensive treatiment, which also resolves the associated mea-
surability questious, is [3eS78). Suflicient conditions for convergence of the
value iteration method under Assumption I (cf. Props. 1.6 and 1.7) were
derived independently in [Ber77) and [Sch75]. The former reference also de-
rives necessary conditions for convergence. Problems involving convexity
assuniptions are analyzed in {Ber73b).

We liave bypassed a nunuber of complex theoretical issues relating
to stationary policies that historically have played an importaut role in
the development of the subject of this chapter, The main question is to
what extent is it possible to restrict attention to stationary policies. Much
theoretical work has heen done on this question {BeST9], [BlaG5], {Bla70],
[Dus65). [Fei7s]. [Fess3], [Feid2a], {Feio2b], [Orn69], and some aspects are
still open. Suppose, for example, that we are given an ¢ > 0. One issue
is whether there exists an c-optinmal stationary policy. that is, a stationary
poliey g such that

Jula) < J () + e for all x € 5 with J*(x) > —oc,
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1
Sy < ==, forall re S with Jr(r) = —~.
«

The answer is positive nuder any one of the following conditions:
Lo Assumption PP holds aud o < 1 (see Jixercise 3.8).

20 Assimption N holds, S s a finite sl a0 b andd ) s o o all

€5 (see Exercise 3.11 or [Bla65], [Bla70], and [Or6]).

3. Assumption N holds, S is o conntable set. a1 and the problem is
deterministic (see [3eS79]).

The answer can be negative under any one of thie following conditions:
& . il
Lo Assuniption P holds and a0 - | (sce Exercise 3.8).
2. Assuniption N liolds and o < 1 (see Exercise 3.11 or [BeST79]).

The existence of an e-optimal stationary policy for stochastic shortest path
problems with a finite state space. butl under somewhat difforent assinp-
tions than the ones of Section 2.1 is established in {Foig2h).

Another issue is whether there exists an optimal stationary policy
whenever there exists an optimal policy for each initial state. This is true
under Asstumiption P (see Bxercise 3.9). [t ix also trie {(but very hard to
prove) under Assumption N if Je(r) > —no for all v € S5, o = (. and (he
disturbance space D is comntable [Bla70]. [Dus65). [OrnGY]. Simple two-
state examples can be constructed showing that (e result fails to hold if
a=1and J*(r) = —oc for some state o (see Exercise 3.10). However,
these examples rely on the presence of o stochastic element i the problen.
If the problem is deterministic, stronger results are available: one can find
au optimal statiouary policy if there exists an optinal poliey at cach initial
state and cither o = 1 or a < I and J*(0) > —x for all + € & These
results also require a difficnlt proof {BeSTY].

The gambling problem and its solution are taken from [DuS6hH]. o
[Bil33]. a surprising property of the optimal reward fnetion J* for this
problem is shown: J* s almost everywhere differentiable with derivative
zero. yet it is strictly increasing. taking values that range rom 0 to 1.

EXERCISES

3.1

Let & = [0.) and € = U(r) = (0,00) be the state aud control SPRCeS,
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respectively, let the systemn equation be
2
iy = | =} &+ Uk, k=0,1,...,
«
where v is the discount factor, and let

,(](JTk,UIc) = X + U

be the cost per stage. Show that for this deterministic problem, Assumption
P holds and that J* (&) = oo for all & € S, but (T*J5)(0) = 0 for all & [Jo is
thie zero function, Jo(s) =0, for all & € 5.

3.2

Let Assumption P hold and consider the fintte-state case S = D = {1,2,...,n}
o =1, 41 = wy. The mapping 1" is represented as

)

T

(rn3) = chn:i"x(ll) gli,u) + Zp,,(u,).l(j) , i=1,....n,
g=1

where py, (1) denotes the transition probability that the next state will be j

when the current state is 7 and control wis applied. Assume that the sets U(7)

are compact subsets of W™ for all 4, and that p;; (u) and g(i, u) are continuous

on U@ for all i and j. Show that g (T*J)(i) = J* (i), where Jo(i) =0

for all 7 = 1,..., n. Show also that there exists an optimal stationary policy.

3.3

Consider a deterministic problem involving a lincar system
R ZA.I‘;_-+HU;h IJIU,I,...,
where the pair (2, B3) is controllable and oy € N, w € N, Assume no
constraints on the control and a cost per stage g satislving
0 < g(r,u). () € R" x R".

Assume furthermore that g is continnous in e and o, and that g(e,, 1w,) — o0
if {o,} is bounded and {ju, || — oo.

(a) Show that for a discount [actor e < I, the optimal cost satislies 0 <
JT(r) < oe, for all € N, Furthermore, there exists an optinial
stationary policy and

Jim (VI () = T (), rEN".

(L) Show that the same is true. exeept perhaps for J* () < oc, when the
system is of the form ey = flanaw), with f R x " — R being
a continnous function.

(¢) Prove the same results assuing that the control is constrained to lie in
a cotpact set U € R™ [ () = U {or all ] in place of the assumption
gl on) — o if {, ) is bounded and Ju,|| — oc. Hint: Show that
Ty is real vadued and continons for every k, and use Prop. 1.7,
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3.4
Under Assuwmption Polet g be such that for all o€ S, p(e) < U ) and
(T )&y < (7)) + e

where ¢ is some positive scalar. Show that, il o < 1,

Hint: Show that (7/5/‘)(1) < JM ) + ZTI'(l a'c. Alternatively, let J' =

)
JT 4 (:/(l - u))(u show that 75,4 < J', and use Cor. 7.1.1.

)

Under Assumption P or N, show that if o < 1T and J' : 5 — R is a bounded
function satislying J' = TJ’, then J' = J*. fhwt: Under P, let r be a scalar
such that J* + re > J0 Argue that J* > J and use Prop. 1.2(a).

3.6

e > 0, for all &) and wmaxinizes z;‘;w g(u), where ¢ > 0 and g(u) > 0
for all v > 0, g(0) = 0. Assume that g is monotonically nondecreasing on
[0, ). Show that the optimal value of the problem is J* (¢}, where J* is a
monotonically nondecreasing fitnetion on [0, o0) satisfving J*(0) = 0 and

. . - ~ _
We want to lind a scalar sequence {uwg, wr, ...} that satislies ZFU e < ¢

JU(r) = max {g/(ll) + S~ u)}, € {0, 00).

Osu<r

Let Assnmption P ohold and assime that 7 = {pf.pi.. ..} € I satisties
Jr = E,: J for all k. Show that 7™ is optimal, e, J« = J%.

3.8

Under Assumption P, show that, given ¢ > 0, there exints o policy m, ¢ Isuch
that Jr, () < J%(x) +  for all r € 5, and that for o« < 1 the policy w, can
be taken stationary. Give an example where a = | and for cach stationary
policy @ we have J (&) = oo, while J*(r) = 0 for all . [find: See the proofl
of Prop. 1.1.
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Uinder Assuwmption ) show that if there exists an optimal policy (a policy
wt e L such that S« = J7), then thore oxists an optimal stationary policy.

3.10

Use the following connterexaiple to show that the result of Kxercise 3.9

may fail to hold under Assumption N if /') = —x for some € S, Let
B | N I O N VR TL R TEN 1 O SO T 110 B TR A (1) B (R O Y A G DR T U
/;(u~ O -0y = Loaudplw =1 =tu)= 1. Show that J () = —x,

(1} == 0 and that the admissible nonstationary poliey {ye. ey ...} with
/IL 0) = - ’/r\ M is optimal. Show (hat every stationary policy 1 satisfies
J(0) = ( 2/(2 - )0}, (1) = 0 (see [BaT0] [Dus65), and [Orn69) for

related (lll.llv\hl.\).

J.11

Show that the result of Ixercise 3.8 holds under Assumption N il S is a finite
sety o= Loand Jr) > - for all e e S0 Construct o connterexample
to show that the resull can fail to hold i S is countable and a < 1 [even
i () > = for all 0 € S} Uit Consider an integer N such that
the N-stage optimal cost Jy satisfies Sy () < J7(r) -+ ¢ {or all o For a
connterexample, see [BeS79].

3.12 (Dcterministic Lincar-Quadratic Probleins)

Consider the deterministic lincar-quaddratic problem involving the system
S = Ay A4 Buy

and the cost

2
(o) = L(.r’,,.(}.r;, 4 g (e )'l\’/l;\.(.r;, ))

Lo
We assuine that 1Y is positive definite ssummetrie, @ is of the form C'C, and
the pairs (AU3), (L O) e controllable and observable, respectively. Use the
theory of Sections LT of Vol Fand 8.1 to show thal the stationary policy p*
with

Yy = —(BRB+R) BN A
is optimal, where N ois the unique positive semidefinite synmietrie solution of
the algebraie Riceati equation (ef. Seetion 4.1 of Vol. 1):
K= V(N-KBB'KB+I)'B'K)A+Q.

Provide a similar vesult under an appropriate controllability assamption for
the case of a periodic deterministic lincar system and a periodic (uadratic
cosl (cf. Section 3.6).
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3.13

Consider the incar-quadratic problem of Section 3.2 with the only ditlerence
that the disturbances wy, have zero mean, but their covariancee mal rices are
nonstationary and uniformly bonnded over k. Show that the optimal control
law reinains unchanged.

3.14 (Periodic Linear-Quadratic Probleins)
Consider the linear system
o = 4 Bag oy ooooob
aud the quadratic cost

A

. _ : - ko ’

Jalrg) = \lllll I E o (e, Qe 4 ug Ry 3

N oo~ wy
=00 LN -t hoo

where the matrices have appropriate dimcnsious, Qn and Ry are positive
seuidefinite and positive definite symunetric, re spectively, for all & and 0 <
a < Lo Asswe that the svstem aud cost are periodic with period p (el
Section 3.6). that the controls are unconstrained. and that the disturbances
are independent. and have zero mean and fnite covarianee. Asstune farther
that the following (controllability) condition is in effect.

For any state Fo, there exists a finile sequence of controls {un. T, ... i}
such that Ty = 00 where T, is generated by

Tryy =T + B A=0.1..... .

-

Show that there is an optimal periodic policy 7 of the form

= N S TN TR THO N T
where g, ooy are given by
p ) = oI, B R B, v N N T

o () = 7r|(r113;,__1 KoL+ Ry y) "[?l',, LTS P

and the matrices Ko, Ny ... Ny 1 satisly the coupled set of palgebraic Rie-

cati equations given lor i =01, .., p—1hy
i, = A-l:(nl\', b= N BB, B, + Ry '"BK,, 14-1,) + Q,

with
1\’,, = 1\-().
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3.15 (Lincar-Quadratic Problems - Tmperfect State Information)

Consider the lincar-quadratic problem of Section 3.2 with the difference that
the controller, instead of haviug perlect state information, has access to mea-
surements ol the Torm

Zho= (/'.I'A + (27 9N b= (), |, e

As in Scction 5.2 of Vol 1, the disturbances op are independent and have
identical statistics, zero wean, and finite covariance matrix. Assume that for
every aduissible policy 7 the matrices

B{(en — 1o | ) (o — Efew | 1)) 7}

arce wniformly honuded over &, where Iy is the information veetor defined in
Section 5.2 of Vol [ Show that the stationary policy % given by

) = —a(a KB+ 1) B R ALy | Iy}, Torall Iy, k=0,1,...

is optimal. Show also that the same is true i wy, and ¢ are nonstationary
with zero ean and covariance matrices that are wniformly bounded over k.
Hint: Combuae the theory ol Seetions 5.2 of Vol Faud 3.2.

3.16 (Policy Itcration for Lincar-Quadratic Problems [Kle68])
Consider the problem of Section 3.2 and let Lo be an i X o matrix sueh that
the malrix (A + BlLg) bas cigenvalues strictly within the unit civele.

(a) Show that the cost corresponding to the stationary policy 1o, where
jta(ar) = Lo is of the Torm

gy () = 2" Ko + constat.,

where Ky is a positive seidefinite syimmetric matrix satisfying the
(lincar) equation

Ko = oA DL Ko(A 4 BLo) +Q + LiR L.
(b) Let o) abtain the minimaan for each . in the expression
min{ u B a (e + Ba) Ko(Aa + 1111)}.
Show that for all . we have
Sy () = N4 constant < Juo L),

where Ky is some positive semidefinite synunetric matrix.

—
~
~

Show that the policy iteration process deseribed in parts (a) and (b)
yields a sequence {8} such that

Ny — K.

wheve A s the optimal cost matrix of the probiem.
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3.17 (Periodic Inventory Control Problems)

In the inventory control problem of Section 3.3, consider the case where the

statistics of the demands wi, the prices eq, and the holding and the shortage

costs are periodic with period p. Show that there exists an optimal periodic
- . . g - * .

policy of the form 7™ = {5 15 b, TN &

o () = {b, —u ifax<sy,

o ! P=000.0 -
0 il otherwise, el ’
where 8, ...,5, 1 arc appropriate scalars,

3.18 [HeS84]

Show that the eritical level 8™ for the inventory problem with zero fixed cost
of Seetion 3.3 winimizes (1 - a)ey + L(y) over y. Hint: Show that the cost
can be expressed as
>0
s 5 e
(o) = I ;u ((1 — ey + I,(yk)) + m/o{u'} -y B,
v =t

where gy = g+ (g ).

3.19

Consider a machine that wmay break down and can he repaired. When it
operates over a time nnit, it costs —1 (that is, it produces a beuefit of L nnit),
and it may break down with probability 0.1. Wlhen it is in the Lreakdown
mode, it may be repaired with an effort w. The probability of making it
operative over one time unit is then u, and the cost is Cu?. Determine the
optimal repair effort over an infinite time horizon with disconut factor a < 1.

3.20

Let zo, 21, ... be a sequence of independent and identically distributed van-
dom variables taking values on a finite set Z. We kuow that the probability
distribution of the zs is one out of 1 distributions Sioooo fuy and we are
trying fo decide which distribution is the correct one. At each time k alter
observing zy, ..., 25, we may cither stop the observations and accept one of
the n distributions as correct, or take another observation at o cost ¢ > 0.
The cost for accepting f, given that f, is correct is Lyyivj=1,....n. We
assume Ly, > 0fov i #£ j, L, =0, i=1,...
Sieoooofu s denoted

e The a priort distribution of

ZI’:) = L

=1

Po={phori. ... o I 1y > 0.

Show that the optimal cost J*(1%) is a concave function of 1. Characterize
the optimal acceptance regions and show how they can be obtained in the
litnit by means of a value iteration method.
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3.21 (Gambling Strategies for Favorable Ganes) 3.23 (Infinite Time Reachability [Ber71], [Ber72])

A pambler plays a gane such as the one of Section 3.5, bt where the prob-
ability of winniug p satistios 1/2 7 p <= 10 His objective is Lo veach a final
fortune o, where o is an integer with o~ 20 His initiat fortune is an integer
iwith 0 < @ <, awd his stake at thime A cau take only integer vadues g,
salisfying O < g < g, O <o <7 — g, where g is his Tortnne at thne b
Show that the strategy that always stakes one unit is optimal {ie., " () = 1
for all integers o with 0 <2 < o is optimal]. il Show that if p e (1/2.1),

1] i I
. [
Ay (i) = (L);—£> — 1 K—#’) - 1} L0i<

and il p =172,

{or see [AshTOL p. 182, for a proof). Then use the sutficiency condition of
Prop. L. Fin Section 3.1,

3.22 [Sch8l]

Consider a network of 0 quenes wherehy o customer at quene @ upon comple-
tion of service is vouted (o quene j with probability p,, | and exits the network
. . — . .
with probability 1 -3 p,,. For cach quene i denote:
) 2., P

r: the external customer arrival rate,
FL: the average customer service time,
I3

Ao the custoiner departure rate,

1,0 the total customer arrival rate (sim of external rate and departine
rates frome apstream quenes weighted by the corresponding probabili-
ties).

We have
H
a, =4 ZA,,,,,. for atl 4,
;-

and we asstine that any portion ol the arrival rate a, v excess of the serviee
rate g, is lost: so the departure vate al guene 7 satislies

A, = minfpg o] = g+ L/\,[)_,,
)

Assume that 7, 2 0 lor at least one 7, and that for every queue iy with | 2> 0,
there s a quene @ with | -- }:, P > 00 and a sequence iy, ik, §osuch
that py ey > 00, Py 2O Show that the departare rates A, satislying the
preceding cgnations are unigue and can be [ound by value iteration or policy
iteration. Mimd: "This problein does not quile it our framework because we
may have }:Ip,, 2o o some o However, it is possible to carry out an
analysis based on m-stage contraction mappings.

Consider the stationary sistem
KRR T g wyg). I 0,0 ...,
where the disturbance space D s an arbitrary (not necessarvily countable) set,
The disturbauces vy can take values ina subset Wiy cug ) of D that may
depend on g and w0 This problem deals with the following question: Given
A nonewpty subset X of the state space S, under what conditions does there
exist an admissible policy that keeps the state of the (closed-loop) system
Ly = ./'(_p,. (). uv,\.) (7.1}
i the set X for all & and all possible values wy € \l'(.l'k,/:k(,u.))‘ that is.
oy N for all wy ¢ “'(.l'/,./lk(.l';‘)). [ SR VN PR (7.2)
The set X ds said to be anfinifely reachable il there exists an admissible
poliey {ga g, .o} and some initial state g € X for which the above relations
are satisfied. 1t is said (o be strongly reachable if there exists an adissible
poliey {pa gt such that for ol initial states .y € X the above relations
are sadisfied.
Consider the function 1! mapping any subset 2 of the stade space S
into a subset R(Z) of S defined hy

IHVAN {.r | for some w C U(r). flron wy ¢ 20 for all e W, u)} nz.

(a} Show that the set X is strongly reachable if and ouly i (X)) = ..

Ly Given X consider the set X defined as follows: wg € N if and only
if 2o € X and there exists an adinissible policy {gm.go0. ) such that
that Lgs. (7.1) and (7.2) are satisficd when ag is taken as the initial
state of the system. Show that a set X s inlinitely reachable if and
only if it contains a nounempty strongly reachable set. Furthermore.
the largest such set is X' in the sense that X7 is strongly reachable

whenever nonempty., and i X € X is another strongly reachable set,

then N ¢ X,

(¢) Show that il X is infinitely reachable, there exists an admissible sta-
tivnary poliey g such that if the initial state g belongs to X*0 then
all subsequent states of the closed-loop system g = f(.rk.. s, u';,)
are gnaranteed to helong to X7,

(dy Civen X consider the sets (X)), A = 1,2,..., where ¥ (X) denotes
the set obtained alter & applications of the mapping B on X, Show
that

N O Y.
(e

Given X, consider for each o ¢ X and b= 1.2, ... the set
Ug(a) = {u [ Jlriu w) e RYON) for all wo W (e, u)}.

Show (hat. il there exists an index & such that for all o+ ¢ X and
o>k the set U () is o compact subset of & Faclidean space, then

Nt =0 RY(Y).
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3.24 (Infinite Time Reachability for Linear Systems)

Consider the lincar stationary system

Trp1 = Arg o+ Bug + Gy,

where mr € N, wpe € R™, and wi € N, and the matrices A, B. and G are
known and have appropriate dimensions, The matrix A is assumed invertible.
The controls uy and the disturbances wy are restricted to take values in the
cllipsoids U = {u | o/ Ru < 1} and W = {w | w'Qw < 1}, respeetively, where
It and @ are positive delinite synuncetric matrices of appropriate dimensions.
Show that in order for the ellipsoid X = {o | 2/ K¢ < 1}, where R is a positive
definite symuetric matrix, to be strongly reachable (in the terminology of
Lixercise 3.23), it is sufficient that for some positive definite symmetric matrix
Al and for some scalar € (0, 1) we have

Average Cost per Stage

Problems
-1
- 'f 7 —
K=aA|(1-mn ' = 17’-(.‘(3"'(: +BRBY A+ A,
' | e [ oo -
KN - ?(,(2 (" positive definite.
!

Show also that if the above relations are satisfied, the linear stationary policy

s, where " (o) = L and

L=—(R+DB'FB)'BFA,

-3 ,
F={(l-gK ' = '—[T’GQ*' ;

achieves reachability of the ellipsoid X = {r | /Ko < 1}, Lthermore, Contents
Lthe matrix (A 4- BL) has all its cigenvalues strictly within the unit circle.
(For a proof together with a computational procedure for finding matrices K L .
satisfying the above, see [Ber71] and [Ber72h).) 4.1 Preliminary Aualysis .. 0. 0000 000000 plI8l
4.2, Optimality Conditions . . . . . . . . . . . . ol
o e - . 4.3. Computational Methods . . . . . . . . . 0 0 po2oe
3.25 (The Blackmailer’s Dilemma) A4.3. 1 Value lleration .. 0 . . . 0 0 0 0 0 L0 0 po202
Consider Example 1.1 of Section 2.1, Here, there are two states, state | and 132 1’9]1(;y’ Iteration R :ZJJ
a tormination state £ At state 1, we can choose a control v with 0 < o < 1; 1.3.3. Ifmem' I.)rogmmmmg S e 221
wao then move to state £ al no cost with probability p(u), and stay in state 1 4.3.4. Shmulation-Based Methods ... ... 00222
at a cost —u with probability 1 — p(u). 4.4, Tufinite State Space . . . . . . .. 0L L. p.226
4 5 J W \ RPN D oPot e .
(1) Let p(u) = u”. For this case it was shown in Exawple 1.1 of Section 2.1, 15 Notes, Sources, and Bxercises . ..o p. 229

that the optimal costs are J*(1) = = and J*(1) = 0. Furthernore, it
was shown that there is no optimal stationary policy, although there is
an optimal nonstationary policy. FFind the set of solutions to Bellman's
equation and verily the result of Prop. 1.2(h).

(b} Let plu) = u. Find the set of solutions to Bellman's equation aud
use Prop. 1.2(b) to show that the optimal costs are J*(1) = —1 and
JH(1) = 0. Show thiat there is no optimal poliey (stationary or not).
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The results ol the preceding chaplers apply uainly to problems where
the optinal total expected cost is finite cither heeause of discounting or
because of a cost-free absorhing state that the system eventually enters,
In many sitnations. however, discounting is tnappropriate and there is no
natural cost-free absorbing state. In such sitnations it is often meaningful to
optimize the average cost per stage. to be defined shortly. In this chiapter,
we diseuss this type of optimization, with an emphasis on the case of a
finite-state Markov chain.

Anintroductory analysis of the problem of this chapter was given in
Section 7.0 of Vol L That analysis was hascd onra counection hebween {he
average cost per stage and the stochastic shortest patl probleni. While
this conmection can he farther extended to obtain more powerful results
(see Bxercises LI3-116). we develop here an altoruative line of inalysis
that is based ou a relation with the disconnted cost problent. This relation
allows us to use discounted cost resules, derived in Sections 1.2 aud 1.3, in
order to conjecture and prove results for the average cost problen.

PRELIMINARY ANALYSIS

Lot us formuudate the problens of this chapter for the case of finite
state and control spaces. We adopt the Markov chain notation used in
Section 13. o particular, we denote the states by 1. ... 1. To cach state
and control a there corresponds a set of trausition probabilitios polu), j =
oo Fach time the system is instate 7 and control  is applied, we inear
an expected cost g(7ou). and the system moves to state j with probability
Py (). The objective is to winimize over all policies 7 = {procpir. .o} with
1:(8) € UG for all i and kB, the average cost per stage §

N
I —
Jilag) = Ali“,' VE 2 {/(,l';,-,/l;,(.lr;,)) ,

h=0

for any given initind state 4.

| When the limit defining the average cost s uol known to exist, we use
instead the definition

A
. | -

J"(Jv”):“,’]\?ll.\:‘ll)KI'} IE {/(.I'A»A/l,‘\.(.l'[,))
ety

We will shiow. liowever, as part of our sitbsequent analysis that the linit exists

al least for those policies 7 that are of interest.
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As in Section L3, we use the following shorthaud notation for a sta-
tionary policy i
g{1. (1)
Y = : ‘ Ly
j/(ll./l(ll))

pralp (D)) cp (1)
Pl (/1(11)) c P (//(n))

Ju ()
Since the (70 /)t clement of the matrix P§ (% to the kb power) is the
k-step transition probability Py == j | o = 1) corresponding to it can
be seen that

N o1
J TR }“ D}
, Jo— oo T
" N N i) i
k=0

An importaut result regavding transition probability matrices is that the
limit in the preceding equation exists. We show this fact shortly in the
& ¢4 )
context of a more general result, which establishes the conneetion hetween
the average cost per stage problem and the discounted cost problem.
bl O

Au Overview of Results

While thie material of this chapter does not rely on the analysis of the
average cost problew of Section 7.0 in Vol. 1, it is worth swunmarizing sore
of the salient features of that analysis (sce also Excreises 4.13-116). We
asstuned there that there is a special state, by convention state n. which is
recurrent in the Markov chain corresponding to cach stationary policy. Il
we consider a sequence of generated states, and divide it into eveles marked
by successive visits to the special state n, we see that cachi of the eyeles
can be viewed as a state trajectory of a corresponding stochastic shortest
path problem witl the termination state being essentially n. More pre-
cisely, this stochastic shortest path problem has states 1,2, 0, plus an
artificial termination state ¢ to which we move [rom state i with transition
probability p,,, (). The transition probabilities from a stale 7 to a state
J # noare the same as those of the original problem, while p,,, (1) is zcro.
For any scalar A we considered the stochastic shortest path problem with
expected stage cost g(i, 1) — A for cach state ¢ = 1, ..., 1. We then argued
that il we Hx the expected stage cost incurred at state 7 to be

glicu) = A,

where A is the optiuial average cost per stage starting from the special
state 7. then the associated stochastic shortest path problem becomes es-
sentially equivalent to the original average cost per stage problem. -
thermore. Bellman's equation for the associated stochastic shortest path
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problenn can be viewed as Belliman’s equation {or the original average cost

per stage problent. Based on this line of analysis, we shiowed a nuinber of

vesudts, which will be strengthened in the present chiapter by using different
methods. T summary, these results are the following:
(1) The optimal average cost per stage is independent of the initial state.
This property is a generie feature for almost all average cost problems
of practical interest.

(h) Bellman’s equation takes the form
A0y = i g u) + N (i)t (| . t=1.....n,
() = i Naou) 4 gl () ,

where /() = 0, A* is the optimal average cost per stage, and h+(i)
has the interpretation of a relative or differential cost for each state
¢ (it is the minimum of the difference between the expected cost o
reach o from 7 for the first time and the cost that would be incurred
il the cost per stage was the average A7),

¢) 'There are versions ol the value iteration. policy iteration, adaptive
0 b
aggregation, and lincar progranuning methods that cau be used for
computational solution under reasonable conditions.

We will now provide the foundation for the analysis of this chapter by
developing the connection hetween average cost and discounted problems.

Relation with the Discounted Cost Problem

Let s consider the cost of a stationary poliey g for the corresponding
a-discounted problem. It is given by

> X,

ko0 h=0
(1.1)
To get a sense of the relation with the average cost of ji, we note that this
latter cost is written as

N -
1
(i) = ‘\1171}1% NI/ IZ” g(replen))

L{ ,_0 a q(u /L((;))}
= Hlm lim -
N s 2| LA “ (Y
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Assuming that the order of the two limits in the right-hand side above can
be interchanged, we obtain

{L, )(x""(/(:;, /L(IA))}

Ja(i) = il -t :
/l(l) x -l]l N!-l\)x; LI\A 0 (]
. N-1

limivono B {ZZ_“ a’“g(,rk,/l,(.::;,-))}

N1
By e Do pny aF

hm (1 — ) o (i).

|

= lin
|

Ii

The formal prool of the above relation will follow as a corollary Lo the next,
proposition.

Proposition 1.1: For any stochastic matrix I and a € (0, 1), there
holds
(I-aP)"'=(1—-a)"'P*+ H+ O(! - a), (1.2)

where O(]1 — «f) is an a-dependent matrix such that
lim1 O(1 - al) =0, (1.3)
a—

and the matrices P* and H arc given by

Pro= hlu Z Ik, (1.4)

k=0
H=(I~P+P*)-1 - P+ (1.5)

(It will be shown as part of the proof that the limit in Eq. (1.4) and
the inverse in Eq. (1.5) exist.] Furthermore, P* and I satisfy the
following cquations:

P+ = PP* = P*P = P*Pr, (1.6)
PrH =0, (1.7)
P+ H =+ PH. (1.8)

Proof: Irom tlie matrix inversion formula that expresses cach entry of the
inverse as a ratio of two determivants, it is seen thatl the matrix

Ma)={1—-a)I—-aP)"!
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can he expressed as a matvix with elements that are cither zero or fractions
whose mnnerator and denominator are polynomials in o with 1o comnmon
divisor. The denominator polynomials of the nonzero clenents of M(ev)
cannot have I as a root. since otherwise some elements of M {a) would
tend (o infinity as o — 15 this is not possible, hecause frowmn b (1.1) for
any g1, we have (1 - a) =P AM(Q)g, = (I —aP)- Vg, = Jo 0 and 1, ()] <
{1 —a) " max, g, ()], baplying that the absolute vatues of the coordinates
of Al () g, are bounded by wax, [g, (/)] for all o < 1. Therefore, the (i jth
clement of the matrix M (o) is of the form

7o *(I)"'(” —Cp)

m,(0) = -
Y (0= &) (a=¢&,)
where 5, G0 o= hla, poand & F = L0 g ave scalios such that NP
fori=1..... 7
Define
P+ = lim! M), (1.9)

and det 11 be the matvix having as (1, )th clement the Ist derivative of
=niy(a) evaluated at o = 1. By the Ist order Taylor expansion of the
clements of mi,{a) of A(a). we have for all o i a neighborhood of a = 1

M{a) =P+ (1= o)l 4 0((1 = a)?2), (L10)
where O((1 - a)?) is an a-dependent matrvix such that

lim ()((l —~ “l;)

—_— = ().
a1 (l—-a)

Multiplving Eq. (1.10) witl (I = a) T, we obtain the desived relation (1.2)
[although, we have yet (o show (hat 127 and [1 are also given by gs. (1.4
and (1.5), vespectively].
We will now show that P* as defined by LBy, (1.9). satistios Eqgs. (L.6).
(L), (L7}, (1.8). and (L.1). in that order.
We have
(I —al)(l —al) V=1 (1.11)

aund

ol —al)yI —al) t=al. (1.12)

Subtracting these two cquations and rearranging ters, we obtain
al’(l =)L —al”) V=A{l—-a)l —al’) ' (a- 1)1
By taking the it as o — L and using the definition (1.9), it follows that

[)I)* — I)*‘
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Also. by reversing the order of (1 — al?) and (I —al2) Vin Egs. (1.11)
and (1.12), 0t follows similarly that 24 = Peo Fromn 20 = 7, we also
obtain (I o) (L )P or P (0 o) aly=t e and by
taking the Himit as a — 1 and by using Eq. (1.9), we have PPr = [+
Thus Fq. (L.6) has been proved,

We have, nsing Bq. (1LG). (7= P+)2 == 72 L and similavly

VA L L N )

Therefore.

N
(aly V(- o= S akre
JASNY]
=P Y k(P g

[
S (L=l — 1) o

On the other hand, frons Eq. (1.10), we have

I =T (I - )~ 'A(a) = (1 = a) 1 PY)

o -1
=l ((/ —aP)=1 = (1 —a)=1+).

oo

By combining the last two equations, we obtain

Ol (I —a(lP=P) " = Pr= (1= Pk Doyt — P,

a—i

whicli is L. (1.5).
From Eq. (1.5), we obtain

([ - P+ [”)[[ = ] - ([__ I <|,])+)])*

or. using Eq. (1.6).
H—PH Pl =1 ]+, (1.13)

Multiplving this relation by 2 and using Iiq. (L.6), we obtain 241 = 0,
which is Eq. (1.7). Equation (1.8) then follows from Fg. (1.13).
Multiplving Eq. (L8) with % and using Eq. (1.6), we obtain

D PRIT o= PRy PREVI (SRRt R I
Adding this relation over b == 0., N — 1 we have

N1
NP Il =3" Pra PN

fo—-0)
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Dividing by N and taking the limit as N — oo, we obtain Eq. (1.4).
Q.E.D.

Note thal the matrix P* of Bq. (1.4) can be used to express concisely
the average cost. vector J of any Markov chain with transition probability
matrix P and cost vector g as

J =l Pkg = l Pk = P+
J Nxf’lng Z q= im Z g=Prg

k=0 N=oo N =0
To interpret this equation, note that we may view the ith row of * as a
vector of steady-state occupancy probabilitics corresponding to starting at
state 7; that is, the 7jth clement py; of P* represents the long-ter fraction
u[ lllll(‘ tliat the Markov chain \pcml\ at state j given that it starts at state
Thus the above equation gives the average cost per stage J (i), starting
h()m stale i, as the sum Y70 27,45 of all the single-stage costs g, weighted
by the corresponding oceupancy pmlml)lln ies.
From Eq. (1.1) and Prop. 1.1, we obtain the following relation between
a-discounted and average cost corresponding to a stationary policy.

Proposition 1.2: For any stationary policy pe and « € (0, 1), we have

Jop = (L=a)= Ly 41y + O(|1 - al), (1.14)
where
=
= Pigp = | Jim ;} Bl gu

is the average cost vector corresponding to i, and hy is a vector sat-
isfying
Jp 4+l =g+ Puly,. (1.15)

Proof: Equation (1.11) follows {rom Vigs. (1.1) and (1.2) with the iden-
tifications P = P, I = DPp and by, = Hg,. Equation (1.15) follows
by multiplving Fe. (L8) with ¢, and by wsing the same identitications.

Q.E.D.

In the next section we use the proceding results to establish Bellman’s
equation for the average cost per stage problew. As in the earlier chapters,
this equation involves the mappiugs T and T),. which take the form

(PG = min gl )+ piw ). =10, (1.16)

u (1) —
i=
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(T I) iy = y(ip(i Z,,,, () J(G). i=1 . (1.17)
-l

42 OPTIMALITY CONDITIONS

Our first resudt introduces the analog of Bellman’s equation for the

casc ol cqual optital cost for cach initial state. This is the case that

norally appears in practice. as discussed i Section 7.1 of Vol 1. The
proposition shows that all solutions of this equation can be identificd with
the optimal average cost and an associated differential cost. However. it
provides no assurance that the equation hias a solution. For this we need
further assiwmptions. which will bhe given in the scequel (see Prop. 2.6).

Proposition 2.1: If a scalar A and an n-dimensional vector h satisty

A0 = min |g(i,u) + Z[),-j(u)h,(_j) , i=1,....n, (2.1)
Jj=

uell (i)

or equivalently
Ac+ To==Th, (2.2)

then A is the optimal average cost per stage J*(4) for all i,
A=minJ; (i) = J*(i), i=1,...,n. (2.3)

Furthermore, if ;o (i) attains the minimum in B, (2.1) for cach ¢, the
stationary policy o is optimal, that is, J«{7) = A for all i.

Proof: Lt m == {pgy. ...} be any adwiissible poliey and let N he
positive integer. We have, fronn B, (2.2).

Ty > e 4 b

By applyving T}, , to botl sides of this relation. and by using the mono-
tonicity of 75, and P (2.2)0 we see that
- - . o .
Tavaa Dy D2 Ty e+ Iy = Ne T o 0 = 20 40
Continuing in the same manner. we finally obtain

TuiTy, -+ Tne B> NAe o+ 1o, (2.1)
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with equality il cach jo. k=001, N — | attains the minimum in kq.
(2.1 As disenssed in Seetion L (15,75, Ty ) Is equal Lo the

N-stage cost corresponding to initial state 7. policy {pocpe ... Jivoqbeoand
terminal cost function /: that is,

I

A0

N- |
Do Ty T G) = 28 hex )+ 3 gl ()

-0

Using, (his relation in Eq. (2.1 aud dividing by N, we oblain for all ;

{ . .
;(?/'J{/'(-I',\') b =im} + ik

~—
——
‘2
[
|
(7

|
> A + ‘S/I(I)

By taking the imit as N -+ . we see Hal

with cquality if g (7), & = 001 ... altains the wminiunm in B (2.1).
Q.E.D.

Note that the proof of Prop. 2.1 carries througl evew if the state space
and control space are infinite as long as the function # is bounded and the
uinimum in the optimality equation (2.1) is attained for cach 7.

L order to interpret the vector # in Belhnan's equation Ae -7 = Th,
note that by iterating this equation N times (sce also the prool of the
preceding proposition). we obtain NAe + /4 = T'Vh, Thus for any lwo
states 7 and j we have

AF D) = (TNYIY). AE D) = (TNR)(),
which by subtraction vields
Iy h(jy  (UNIDGY (TN, for all i, .

For any &0 (7V1)(4) s the optimal N-stage expected cost starting at i
when the terminal cost function is . Thus, according to the preceding
equation, Li(i) = h{j) represents, for every N the difference in optital V-
stage expected cost due to starting al state / rather that stacting at state
J- Based on this interpretation, we vefer to 7 as the differential or relalive
costoveetor. (An alternative but shuilar interpretation is given in Section
74 ol Vol 1)

Now given a stationary policy jo, we may cousider. as in Section 1.2, a
problem where the constraint set (/) is replaced by the set [7(7) = {n(i}};
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that is. {7(7) contains a single element. the control ji(7). Sinee then we
would luwe only oue admissible policy, the poliey . application of rop.
2.1 yields the [ollowing corollary,

Corollary 2.1.1: Let g be a stationary policy. Hoa sealar Ay and au
n-dimensional veetor h, satisty, for all 7,

—
3™
Nl

s

Mot Iy (i) = g (it (8) + 37y (1)) I ()
A

or equivalently
A€ F =Ty

then
/\/l:'/l(i’)ﬁ i—:l....,ll.

Blackwell Optimal Policies

IC turns out that the converse of Prop. 2.1 also holds: that is. il for
some sealar A we have J*(7) = Morall 7 = L. i then M together with o
vector fsatisfies Bellman's equation (2.1). We show this by introducing (he
totiv ot a Blackwell optimal policy, whicli was first formulated in [13la62].
togethier with the line of analysis of the present section.

Definition 1.1: A\ stationary policy p is said to be Bluckwell optimal
it is sinmltanconsly optimal for all the a-discounted problems with
a in au interval (@, 1), where @ is some scalar with 0 <@ < L.

The following proposition provides s nseful characterization of Black-
well optinial policies, aud essentially shows the converse of Prop. 2.1.

Proposition 2.2: The following hold true:

(a) A Blackwell optimal policy is optimal for the average cost prob-
lem within the cass of all stationary policies.

(b) There exists a Blackwell optimal policy.

Proofi (a) If i+ is Blackwell optimal, then for all stationary policies g
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and o inaw interval (@, 1) we have J, v < Jo . Equivalently, using Eq.

(111,
(L=a) "N+l +O( T =) < (1 =) LT 40, +O0(1L—a)), o€ (@ l)
or
Je < T+ (=) = D) + (1= 2)O(]1 = al), o € (@, 1).
By taking the limit as o - [0 we obtain J,e <,

(h) From Eq. (1.1), we know that, for cach e and state i, J, . (i) is a rational
function of «, that is, a ratio of two polynomials in «. Therefore, for any
two policies je and i the graphs of J, (i) and J, /(i) either coincide or
cross only a finite number of times in the interval (0, 1), Since there are
only a {inite nuber of policies, we conclude that for cach state @ there
is a policy g7 and a scalar @, @ (0.1) such that g is optimal for the a-
discotnted problem for a ¢ (@, 1) when the initial state is . Cousider the
stationary policy defined for cacli @ by 2 (7)) = (7). Then pe(7) attains
the minimum o Bellman’s equation for the a-discounted problem

Joi) = min) gliou) -+ uZ/},.,(u)J(.(j)

b
H (r =

for all 7 and for all « in the terval (m;lx, a,. l). Thercfore, p* is a station-
ary optimal policy for the a-discounted problem for all o in (mux,- a;, 1)
inplying that jo* is Blackwell optimal. Q.E.D.

b

We note that the converse of Prop. 2.2(a) is not true; it is possible
that a stationary average cost optimal policy is not Blackwell optiutal (sce
IExercise <41.G). We mention also that one can show a stronger result than
Prop. 2.2(h). namely that a Blackwell optinial poliey is average cost opli-
mal within the class of all policies (not just those that are stationary; see
[oxereise 1.7).

The nest proposition provides a useful characterization of Blackwell
optinal policies.

Proposition 2.3: If ;¢* is Blackwcll optimal, then for all stationary
policics g1 we have

Jye = Pyedye < Pudyr (2.6)

Furtherinore, for all g such that D« J» = P J,e, we have
Jpr =+ e =g 4+ Pyehys < g+ Buhys, (2.7

where b+ is a veetor corresponding to po* as in Prop. 1.2
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Proof: Since pu* is optimal for the a-discounted problem for all a in an
interval (@, 1. we must have, for every e and o € (@, 1)

G+l do e gyt aPydy e (2.8)
From Prop. 1.2, we have, for all o € (@, 1),
Jogor = (U =a) L 4 Iy + O] — af).
Substituting this expression in Eq. (2.8), we obtain
0< gy = gur + (P = P ) (1 =)L + Dy + O(11 —a])),  (2.9)
or equivalently
0< (L =a)gp =g ) + a(Pu = D) (Jpr + (L= a)lyer + O((1 = 0)2)).

By taking the limit as o — 1, we obtain the desired relation P J,s <
P,
Wy is such that Pysdys = P, J,+, then from Eq. (2.9) we obtain

0 < g —gue + (P = Do) (e + O = al).

By taking the limit as o — 1 and by using also the relation J,o + i+ =
G+ Lyl [efl Eq (1.15)]. we obtain the desired relation (2.7).  Q.E.D.

As a consequence of the preceding proposition, we obtain a converse
of Prop. 2.1.

Proposition 2.4: If the optimal average cost over the class of sta-
tionary policies is equal to A for all initial states, then there exists a
vector 1t such that,

uel

A h(E) = min |g(i.w) + pij()h(j) 1, i=1,...,n (2.10
(i) | fotiw) ;p.}( Y(j) i, (2.10)

or equivalently
Ae +h=Th.

Proof: Let yi be a Blackwell optimal policy. We then have Ju- (i) = A
for all i. For every i cach element of the veetor J,+ is equal to A xo
that Py Jyr = PiJy». From Eq. (2.7), we then obtain the desived relation
(2.10) with h = hy». Q.E.D.
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Bellman’s Equation for a Unichain Policy

We recall fromn Appendix D oof Vol T that in a (inite-state Markoy
chain. a recurrent class s a set of states that communicate in the sense
that from every state of the set, there is a probability of 1 to event wally
80 to alb other states of the set and a probability of 0 to ever go to any
state ountside the set. There are two kinds of states: those that helong to
some recirrent elass (these ave the states that after they are visited ouce,
they will be vistted an infinite number of times with probability 1), and
those that are transiont (these are the states that with probability 1 will
be vistted only a finite number of tines regardless of the initial state).

Stationary policies whose associated Markov chains have o single re-
crrrent class and a possibly clpty set of (ransient states will play an -
portant role in our development. Such policies are called wnichain. The
state trajectory of the Markov cliain corresponding (o o unichain policy., is
eventitally (with probability 1) confined to the recrvent, class of states, 5o
thie average cost per stage corresponding (o all initial states as well as the
differential costs of the recurrent states are independent of the stage costs
of the transient states. The next proposition shows that lor a unichain
policy e the average cost per stage is the same for all initinl states. and
that Bellman’s equation Ape -y, = 10y holds. Furthermore, we show
that Belbuan’s equation has a unigne solution. provided we fix the ditfer-
ential cost of some state at some arbitrary value (0. for exainple). This is
necessary. since il A, and £, satisfy Bellinan’s eqnation (2.5), the same is
vrue for Ay, and by, -+ e, where v is any sealar,

Proposition 2.5: Let o he a unichain policy. Theu:

() There exists o constant A, and a vector fry, such that
Juli) = A, P=1o00n, (2.11)

and

/\/l Jl’ h;l(i) — ’/ Ll)u /l /’/l(j)v

(2.12)
() Let £ be a fixed state. The systein of the # 4+ 1 linear equations

+2‘1711 ,“

A+N(i) = g(i h(4), i=1,...,n, (2.13)
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hit)y =0, (2.14)
i the 41 uukuowns A h(1), ... li(n) has a unique solution.

Proof: (n) Let t be a recurrent state under 1. For each state 1 = lot
C, and N, be the expected cost and thie expected munber of stages. re-
spectively. 1o xo(uh ffor the first time starting from 7 under policy . Let
also Cp and Ny be the expected cost and expected number of stages. re-
spectively. to return to 1 for the first time starting from ¢ under policy 4.
From Prop. 1.1 in Section 2.1, we have that ', and N, solve uniquely the
systems of equations

n

Co=g(in@)+ D pun))Cy i=1..... " (2.15)

Jla#t

N,o= |+ Z ()N, PN NS (2.16)

Let,
(@
Moo= L 217
! Ny ( ll)

Multiplving Eq. (2.16) by A, and subtracting it from Eq. (2.15). we obtain
Com AN = g (i) =Nut D (DN =N\N)D). i= 1.
po-log st

By defining,
I(i)y = C = N Nj i (2.18)

and by noting that from Eq. (2.17). we have
Ity =0,

we obtain
Moy (8 = gl p( Z"’/ (1)), (). FRE ",

which is 18q. (2.12). Ecuation (2.11) follows from B, (2.12) and Cor, 2.1.1.

(b) By part (a). for any solution (A. /1) of the system of couations (2.13)
and (2.11). we have A = A as well as B(4) == 0. Suppose that £ belongs (o
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the recurrent class ol states ol thie Markov chain corresponding to g Then,
in view of Bq. (2.14). the system of equations (2.13) can be written as

iy = g n() = Ae D oy ()0 ).

J=1 A

P= i A

and is the same as Belluna’s eguation for a corresponding stochastic short-
est, path problem where s the termination state, {1(/,./1(1')) — Au s the
expected stage cost oat state 7, and A(7) is the average cost, starting from
i up to reaching (. By Prop. 1.2 in Section 2.1, this system has o unique
solution. so h(Q) is nniquely defined by Eq. (2.13) for all i # ¢.

Suppose now that ¢ is a transicnt state of the Markov chain corre-
sponding to ji. Then we choose another state £ that belongs to the recurrent
class aud make the transformation of variables (i) = (i) — h(f). The sys-
tem of cquations (2.13) and (2.11) cau be written in terms of the variables

Aand hi(i) as

h(i) = g{i,n(i)) = X + Z Pij (/1(1))%(/) t=1...,ni#1,
T b
(1) =0,
so by the stochastic shortest path argument given carlier, it has a unique

solution, implying that the solution of the system of equations (2.13) and
(2.14) is also unique. Q.E.D.

Conditions for Equal Optimal Cost for All Initial States

We now turn to the case of multiple policies, and we provide condi-
tions under which Bellman's equation Ae + I = T'h has a solution, and by
Prop. 2.1, the optimal cost is independent of the initial state.

Proposition 2.6: Assumec auy onc of the following three conditions:

(1) Every policy that is optimal within the class of stationary policies
is unichain.

(2) For every two states @ and j, there exists a stationary policy =
(depending on ¢ and j) such that, for some &,

Play =jlxo=1,7) >0.
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+ (3) There exists a state £, and constants L > 0 and @ € (0, 1) such
that

|Jo(i) = Ja()] < L, foralli=1,....,n, and o € (&, 1),
(2.19)
where Ji, is the a-discounted optimal cost vector.

Then the optinal average cost per stage has the same value A for all
initial states 4. Furthermore, A satisfics

A= lm (1 — a)Ja(i),

a—1

i=1,...,n, (2.20)
and for any state ¢, the vector I given by

hii) = liml(J;,(i) — J(,(t)), i=1....,n, (2.21)

satisfies Bellman's equation
Ae+h="Th (2.22)

together with X.

Proof: Assume condition (1). Proposition 2.2 asserts that a Blackwell
optimal policy exists and is optimal within the class of stationary policies.
Therefore, by condition (1). this policy is uuichiain, and by Prop. 2.5, the
corresponding average cost is indepeudent of the initial state. The result
follows from Prop. 2.4.

Assue condition (2). Cousider a Blackwell optimal policy o it
yields average cost that is independent of the initial state, we are done, as
carlior. Assume the contrary; that is, both the set

M = {i ‘ ~I/l'(i) = Iax 'Il"(j)}
J

and its complement A7 are nonempty. The idea now is o use the hypoth-
esis that every pair of states conmnunicates wuder some stationary policy.
in order to show that the average cost of states e M can be reduced by
opening connmunication to the states in /Tf, thereby ereating, a contradic-
tion. Take any states 0 € M and j € B, and o stationary policy j¢ such
that, for some b, Plrg = j |y = i) > 0. Then there must exist stales
m € M and 7 € M such that there is a positive transition probability
from m to M under yi; that is, [Pylym = Plegy = 0 | e = mop) > 0.
It can thus be seen that the mth component of PyJys is strictly less than
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max, J,o (1), which is cqual to the mith component of Jy,e. Phis conlradicts
the necessary condition (2.6).

Finally, asswine condition (3). Let g7 be a Blackwell optimal policy.
By Eq. (1.11), we have for all states @ and « in some interval (&, 1)

Jo(@) = (L =)V (i) + hys (i) + O(JL = al). (2.23)

Writing this cquation for state ¢ and for state £, and subtracting. we obtain

for all ¢ # ¢,

[ Sy (i) =y ()] < (L) [T (@) =S 1)+ (L) [Py (7)o (1) +O((1~a)?).

Taking the it as o — 1 and using the hypothesis that IJ(.(I') ’[”(/')I <L
for all o€ (0, 1), we obtain that . (£) = J,+(£) for all . Thus the average
cost of the Blackwell optimal policy is independent. of the initial state, and
we are done.

To show Ligs. (2.20)-(2.22), we note that the relation lin,—. (1 —
@) S (i) = X lor all ¢ follows from Eq. (2.23) and the fact Jue (1) = Afor all
i. Also, fromm Fq. (2.23), we have

Jali) = Ja(l) = e (i) = e (1) + O([L = al),

s0 Lhat

Iiml(,l,.(i) - J,.(I)) =Ny (1) = hy< ().
Setting fi(7) =l (1) =l (£) for all i, and using the fact J,(7) = A for all §
and 13q. (2.7). we sce that the condition Ae +h = T'h is satistied.  Q.E.D.

The conditions of the preceding proposition are among the weakest
guaranteeing that the optimal average cost per stage is independent of the
initial state. o particular, it is clear that sonie sort of accessibility condi-
tion mst be satisfied by the transition probability watrices correspondiug
to stationary policies or at least to optimal stationary policies. For if there
existed two states neither of which could be reached from the other no
matter which policy we use, then it caun be only by accident that the same
optimal cost per stage will correspond to cach one. An extreme example
is a problem where the state is forced (o stay the same regardless of the
coutrol applicd (e cach state is absorbing). Then the optimal average
cost per stage for cach state 7 is winyeg iy g(,u), and this cost may be
different for different. states.

Example 2.1: (Machine Replacement)
Consider o machine that can be in any one of 0 stales, 1,2,...,n. There

is o cost g(i) Tor operating for one time period the machine when it is in
state 7. The options at the start of cach period are to (a) let the machine
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operate oue more period in the state it currently is, or (b) repair the machine
ab a positive cost R and bring it to state | (corresponding to a machine in
perfect condition). The transitions between different states over each time
period are governed by given probabilitics pry- Onee repaired, the machine
is guarauteed to stay in state 1 for one period, and in stbsequent. periods, it
may deteriorate to states j > 1 according to the transition probabilitios py,.
The problem is to find a policy that winimizes the average cost per stage.
Note that we have analyzed the discounted cost version of this problem in
Example 2.1 of Scetion 1.2, As iu that example, we will asstine that g(1) is
noudecrcasing in 7, and that the transition probabilities sat 1sfy

Z,),JJ(J')gz,;,,w,,/(j), i=1o -1,
PR

J=1

for all functions J (i), which are monotonically nondecreasing wn 7.

Note that not all policies are unichain here. For exatnple, consider the
stationary policy that replaces at every state except the worst state n {a poor
but fegitimate choice). The corresponding Markov clain lias two recurrent
classes, {1,2,...,n— 1} and {n} (assuming that py, = 0). It can also he seen
that condition (2) of Prop. 2.6 is not guaranteed in the absence of {urther
asstptions. [This condition is satisficd if we assume in addition that, for all
Lwe have pygy > 0, beeause, by replacing, we can bring the system to state
I, from where, by not replacing, we can reach every other statel]

We ean show, Liowever, that condition (3) of Prop. 2.6 is satislicd. -
deed. consider the corvesponding discounted problem with a disconnt factor
a < 1. We have for all 4

Jo(i) = min | R+ g(1) + aJo (1), g(i) + o Z;),J,I,,(j) .

j—1

and in particular.

Jai) < B+ y(1) -+ ad, (1),

Jo (1) = min | B4 g(1) + o, (1), g(1) + o Zm_,./u(_/)
1

From the last two equations, by subtraction we obtain
Ja(i) = Ja (1) < max [ R o | (1) — Z,,.J./,.(.,') <R,
J=t
where the fast incguality follows [rom the facl
0 < Ja (1) = Ja (1), i=1,...,n,

which holds sinee Jo(7) = J, (1) is nondecreasing in i, ax shown in Example
2.1 of Section 1.2, The last two relations imply that condition (3) of Prop.
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2.6 is satistied, and it follows that there exists a scalar A and a vector i, such
that for all /,

A+ h(@) = min [ R4 g(1) + (1), g0+ Y puh()]
=1

while the policy that chooses the minimizing action above s average cost
optimal.

By Prop. 2.6, we can take h(/) = limg - (J,.(i) - J,,(l))7 and since
Jo (1) = Jo (1) s nondecreasing in 7, it follows that /i(i) is also nondecreasing
in . Similar to Exawmple 2.1 of Section 1.2, this implies that an optimal policy
takes the form

replace if and only if i > 77,
whiere
;= {sumllcsL state in Sp o if Sp is nonempty.
n+1 otherwise,

anl

Sp=4i ‘ Bt gD+ h(1) < () + > pushly)

a1

4.3 COMPUTATIONAL METHODS

All the computational methods developed for discounted and stochas-
tic shortest path problems (ef. Sections 1.3 and 2.2) have average cost per
stage counterparts, whichh we discuss in this section. However, the deriva-
tions of these miethods are often intricate, and have no direet analogs in
the discounted and stochastic shortest path context. In fuct, the validity
of these methods may depend on assumptions that relate to the structure
of thi underlying Markov chains, something that we have not encountered
so far.

4.3.1 Value Iteration

The natural version of the value iteration method for the average
cost problem is simply to generate successively the finite horizon opiimal
costs TFJy, k = 1,2,..., starting with the zero function Jy. It is then
natural to speculate that the R-stage average costs TRJo/k converge to
the optimal average cost vector as A — oo (this is in fact proved under
natural conditions in Section 7.4 of Vol. 1). This method has two drawbacks.
First, some of the components of T*Jy typically diverge 1o oo or —o0, so
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direct calculation of g, T%Jy/k is nwnerically tnpractical.  Sccond,
this wethod will not provide us with a corvesponding dilferential cost vector
h.

We can bypass both difficultics by subtracting a multiple of the unit
vector e from T Jy. so that the difference, call it 2%, remains bounded. In
particular, we consider methods of the form

Nk =Tk — ok, (3.1
where 6F is some scalar satisfying

min (TFJo)(i) < ok < max (T Jy)(i),

1=1...., n i=1,.... n
such as for example the average of (T*.Jo)(7)

n

1 : )
'Sk = ;" ;(’IWJ())(I).
or

ok = (r]wl".]())(/,),

where ¢ s sowme lixed state. Then if the differences wax, (I%.Jo) (i) -
min, (7% Jy) (@) remain bounded as & — oc (this can be guaranteed under
the assumiptions of the subsequent Prop. 3.1), the vectors h* also remain
bounded, and we will sce that with a proper choice of the scalar 6%, the
vectors Ik converge to a dilferential cost vector.

Let us now restate the algorithm ¥ = T Jy — é%¢ in a form that is
suitable for iterative calculation. We have

hb+t = TIH—LJU _ ék+1(3’
and since
Tkt Jy =TT+ Jy) = T(WF + bke) = Thv 4 dke,

we obtain
AT = ThE 4 (§F — 0%+ 1)e, (3.2)

In the case where 0% is given by the average of (T%Jy) (i), we have

] n l n l 1"

ORI = = N (TR (i) = - D (rUs A RO = = Y (IIE) i) 1 ok,
i=1 Ta=1 "4

so that the iteration (3.2) is written as

H

Jit = Tk SN ThE G (3.3)
1 et

e==1
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Similarly, in the case where we fix a state £ and we choose 08 = (T+.Jy)(1),
we have

SRV = (TR ELJ () = (1K 0 (1) = (ThR) (L) + 0%

I3

and the iteration (3.2) is written as
Rk+L = ThE — (ThEY (e, {3.4)

We will heneeforth restriet attention to the case where 8% = (T%.74) (1),
and we will call the corresponding algorithin (3.4) relative value ileration,
sinee the iterate A% is equad to T%Jy — (TFJ) (e and may he viewed as
ah-stage oplimal cost vecetor relalioe to state t. The following results also
apply to other versions of the algorithim (see Exereises 4.0 and 1.5). Note
that relative value iteration, which generates ¥ is ot really ditforent, than
ordinary value iteration, which generates 7.y, 'The veetors generated by
the two methods merely dilfer by a mnltiple of the unit vector, and the
ntinimization problems involved in the corresponding iterations of the two
methods are mathematically equivalent.,

It can he seen that if the relative value tteration (3.4) converges to
some veetor r, then

(riny(tye +h =7Th,

which by Prop. 2.1, implies that (77)(f) is the optimal average cost per
stage lor all initiad states, and hois an associated diflerential cost veetor.
Thus convergence cain only be expected when the optinial average cost. per
stage is independent of the fuitial state, indicating that ad least one of the
conditions of Prop. 2.6 is required. However, it turns out that a stronger
hiypothesis is needed for convergence. The following example illistrates the
reasol.

Example 3.1:
Consider the tteration

PR =~ (Y (e,
which is the relative value iteration (3.4) for the case of a fixed jo. Using the
expressions T, hY = g, + P.0Y and (L8 (1) = ety + Puh®), where ¢f is the
row vector haviug all coordinates equal to 0 except for coordinate ¢ which is
cequal to 1, this iteration can be wrilten as

WY = g b Dt = el (g + D).

Eqguivalently, we have

AR Y AT PR LW (3.5)
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where
P (I =cen)l. (3.6)

Convergence of iteration (3.5) depeuds on whether all the cigenvalues ol 12,
lie strictly within the wnit civele. We have for any cigenvalue 5 of 1, with
corresponding cigenvector v,

’)/1” = ([ - ('(';)])Il" = ’Y(" - [’(‘:”)v

and in particular, for the cigenvalue v = 1 and the corresponding eigenveetor
. . I}
v = ¢ we obtain using the fact eje = 1.

>,
Ppe=1(.
Therefore, we hiave
g 7 r
Py(o—coe)y =~ - cepv),

and it follows that cach cigenvalue v of 2, with corresponding eigenvector o,
which is not a scalar multiple of e, is also an cigenvalue of 12, with corre-
sponding cigenvector (¢ — ecpe). Thus, il P, has an eigenvahie 4 # 1 that is
on the unit cirele. the iteration (3.5) is not convergent. This oceurs when 17,
has a periodic structure and some of its nonunity cigenvalues are ou thie unit
circle. FFor example. suppose that

01
P —
P = (1 u> '
which has cigenvalues T and =10 Then taking £ = 1, the matrix IA',, of Lq.
(3.6) is given by

(0 - (o o) (1) (18,

and has eigenvalues O and = 1. As a result, eration (3.5) does not converge
ceven though g is @ unichain policy.

The following proposition shows convergence of the relative value it-
cration (3.1) wider a technical condition that exetudes situations such as
the one of the preceding example. When there is only one control available
per state, that s there is only one stationary policy ji, the condition of the
following proposition requirves that for some positive integer . the matrix
D has at least one colunm all the components of which are positive. As
cau be seen from the preceding example. this condition need uot hotd if e
is unichai. However. we will fater provide a variant of the relative value it-
cration (3. 1) that couverges under the weaker condition that all stationary
policies are unichain (sce Prop. 3.3).
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Proposition 3.1: Assumne that there exists a positive integer m such
that for every admissible policy m = {po, 11, ...}, there exists an ¢ > 0
and a state s such that

Pro Pr_1 - Pulis > €, i=1,...,n, (3.7
(B Pt -+ - Puglis > €, i=1,...,n, (3.8)

where [-]is denotes the clement of the ith row and sth columu of the
corresponding matrix. Fix a state ¢ and consider the relative value
iteration algorithi

WAL = (ThR) () — (ThE)(E),  i=1,....n, (3.9)

where A9(i} are arbitrary scalars. Then the sequence {h%} converges to
a vector I satistying (Th)(t)e + I = Th, so that by Prop. 2.1, (Th)(t)
is equal to the optimal average cost per stage for all initial states and
lvis an associated differential cost vector.

Proof: Denote
qk 8y = IR LGY — IR0, P=12...,n
We will show that for all i and & > m we have
m’uxq"(/ﬁ) - mliu gk (i) < (1 —¢) (m;x.x gt (i) — ml_in q’“""(}ﬁ)) . (3.10)

where 1 and ¢ are as stated in the hypothesis. From this relation we then
obtain, for some 3 > 0 and all &,

max ¢ (1) — min gk (/) < B(1 = )k/m,
1 !
Sinee ¢* (1) = 0, it follows that, for all 7,

|IE RV = IR = gk ()] < max gk (§) — mingh(j) < B(1 — e)k/m,
J J

Therefore, for every r > L and 7 we have

r-1
|/,,A:-} (i) - /,’L~(,')| < Z |/,.L+/+1 (4) - /,l.-+/(,;)l
=0
r—1
’;/ ];(1 . ()L’/m Z(l . ()I/m. (3]1)
1=0

B ]}(1 — (.)k/m(] _ (l _ F)1'/7:1)
‘__,(]_F)I/m, ?
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so that {#%(i)} is a Cauchy sequence and converges 1o a limit h(i). From
Eq. (3.9) we see then that the equation (Th)(6) + h(i) = (Th)(7) holds for
all 1. 1t will thus be suflicient to prove Eq. (3.10).

To prove Ky (3.10), we denote by ji(7) the control that attains the
minimunt in the relation

(Th*)(0)) = win | g(i,u) + Z[},l,-(u)/:,"'(j) . (3.12)

well(e) .
Je=

for every & and i Denote
A= (Th*)(1).
Then we have
IRt = g+ Py i = Mo < gy 4 P, = Ne,

hi = g 1+ Py l/l“"1 - Apoqe < Ypp + ]’,,,\_h""1 — Apoqe.

where ¢ = (I, 1) is the unit vector. From these relations, using the
definition ¢k = hk Vi — Ik we oblain

Py,\,’[’“"" -+ (/\},» 1 /\k)(' < ([}" < [)“kr 1(["'”l + (,\;,- | — /\1,-)(’.
Since this relation holds for every & > 1. by iterating we oblain

LA " LR (g, = A)e < g
S P Dy @7 A (e = A

(3.13)

First, let us assume that the special state s corvesponding to jig. .. ..,
as in Igs. (3.7) and (3.8) is the fixed state ¢ used initeration (3.9); that is.

lljl’lr"'l)l'k—m}l]’l > ¢, P=1,...,n, (3.1.0)

Puw o Py i e, i=1,....n (3.15)

The right-hand side of Bq. (3.13) yields

"
(i) < 2:[1)/’/\71 e P b @ T ) 4 A — A
=1

so using Eq. (3.15) and the fact gk~m (1) = 0, we oblain

() < (L= max gt () £ Nemw = Ay
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implying that

mas g (J) < (1~ ) max gk~ () + A — Ao (3.16)
J J

Similarly, from the left-hand side of Eq. (3.13) we obtain

wing*(j) = (1 = e)mingd=m(5) + A — A, (3.17)
J J

and by subtracting the last two relations, we obtain the desired . (3.10).
When the special state s corresponding to jig .. e s in Eqgs.
(3.7) and (3.8) is not equal to ¢, we define a related iterative process

WEALGY = (TIY)(0) — (TI%)(s),  i=1,....n, (3.18)
I0(i) = ho(i), i=1,... .
Then, as carlicr, we have
max gh (i) — mingh (i) < (I~ o) (m:_xx gk (i) - mm gk )) (3.19)

where ~ }

gk = Wkl — pk,
It is straightforward to verily, using Eqgs. (3.9) and (3.1
k we have

8), that for all ¢ and

WETY = IR0y + (ThE-1)(s) — (TTk= 1)(1).
!‘lwr( fore, the coordinates of both I* and ¢* differ from the coordinates of
P and g+, respectively, by a constant. It follows that

miax ¥ (0) - min gk (7) = max k7)) — min gt (i),
? i ! !
and from Eq. (3.19) we obtain the desired . (3.10). Q.E.D.

As o by-product of the preceding proof, we obtain a rate of conver-
gence estimate. By taking the limit in Iq. (3.11) as r — oo, we obtain

B(1 = e)k/m

Sk WY . k=01,...,
1_(1_()1/m’ ’

max|hk (i) - hi)| <
13

so the bound on the error is reduced by (1 — )V at cach iteration. A
sharper rate of couvergence result can he obtained if we assume that there
exists a nigue optimal stationary policy gt Then. it is possible to show
that the winimm in Ig. (3.12) s attained by g2 (6) for all § and all §
alter a certain index, so for such &, the relative value iteration takes the
fovwy WEA T = Tu b — (T h9) (e, and is governed by the largest cigenvalue
modulus of the madrix 1",,* given by . (33.6).

Note that coutrary to the case of a discounted or a stochastic short-
est path problem, the Gauss-Scidel version of the relative value iteration
method need not converge. Indeed, the reader can construct examples of
such hehavior involving two-state systems and a single policy.

¥
Sec. 4.3 Computational Methods
N | Error Bounds
G Stiilar to discounted problems. the relative value iteralion
&

209

nicthod

can be strengthened by the calculation of monotonic cerror hounds.

Proposition 3.2: Under the assumiption of Prop. 3.1, the itern
of the relative value iteration method (3.9) satisfy

Cp S Crp1 AL Ty <Gy,
where A is the optimal average cost per stage for all initial state

= miin[(Th.’“)(i) — hk(i)],

T = m?x[(Th’V)(i) — Ik (3)].

tos Lk

(3.20)

s, add

|

Proof: Let (i) attain the mininnn in

e . o
(TREYG) = nin (7, u) + ;1),,J(u)hk(/)

for cach & and /. We have, using Eq. (3.9),

le (r (D)) k()

J=t

,“l +ZPU /’A

(THhR)(E) = (i

H

f/l =) ~ (ThE-1)(t

and
(i) < g(i, g

+ LPM /’I

a1

DY) = (ThE=1)(4).

Subtracting the last two relations, we obtain

n

(PIYGY = 1) 2= 3 o, e D) (10 D)) -1 1)),

J=1

and it follows that

llliill{(,f‘/),l")(/) - IL"(IZ)] > miin[(Tl:,"'*‘)(i) = i),

),
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or cquivalently

i~

=
IA
I~

A similar argument shows that

2
=
iIA

2]

-1
By Prop. 3.1 we Lave h¥(2) — h(i) and (Th)(i) — h(i) = X for all i, so that -

o = A Sinee {o ] i also nondecreasing, we must have ¢, < A for all k.

Sunilarly, ¢ > M for all £, Q.E.D.

We now demonstrate the relative value iteration method and the error
bounds (3.20) by means of an example.

Example 3.2:
Consider an undiscounted version of the example of Section 1.3. We have

S= {12}, Co= {u', P},
o pr(ut) piz(ut) _ 3/4 1/4 .
PO = () paalu) 3/ 1))

Pla?) — ])11(11,?) 1)12(11,2) _ 1/4 .:3/4 ’
T A pn (@) paa(u®) 1/4 374
and
g(lu') =2, g(1,u®) =2 0.5, g2,y =1, g(2,u”) = 3.

The mapping 7" has the form

2 2

. . 24 .
(Fm ) = min{ gl u'y B3 p @), gty + 3 p @ h() b

31 1=1
Lotting & = 1 be the reference state, the relative value iteration (3.9) takes
the form

A1) =0
BN 2) = (Th*)(2) - (TRS)(1).

The results of the computation starting with 1°(1) = 4%(2) = 0 arc shown in

the table of Fig. 4.3.1.
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1 0 0.500 [0.625 1 0.875
2 0 0.250 | 0.687 | 0.812
3 0 0.375 10.719 1 0.7581
4 0 0.312 10.734 { 0.765
5 0 0344 1 0.7402[0.708
0 0 0.328 1 0.746 | 0.754
7 0 0.336 10748 | 0.752
8 0 0.332 10.749 ] 0.751
] 0 0.334 1 0.749 1 0.750
&LU_JLL” (l.TSg 0.750

Figure 4.3.1 ltorates and error bounds generated by the relative value iteration
method for the problem of Example 3.2.

We note an interesting application of the error bounds of Prop. 3.2.
Suppose that for some vector J; we caleulate a g such that
b

T = Th.

Then by applying Prop. 3.2 to the original problem aud also (o the modilicd
problem where the only stationary policy is y1, we obtain

C< i) AL <

where

1

¢=min{(Th)(i) - h(i)], ¢ o= lllj’l‘X[(’l‘h)(l’) — (1))

We thus oblain a bound on the degree of suboptimality of /- This bound
can be proved in a nore general setting, where J*(7) is not, necessarily
independent of the mitial state i (sce Exercise 4.10).

Other Versions of the Relative Value Itceration Method

As mentioned carlicer, the condition for convergenee of the relative
value iteration wethod givea in Prop. 3.1 is stronger than the conditions of
Prop. 2.6 for the optimal average cost per stage to be independent of {he
initial state. We now show that we can bypass this difficulty by modifying
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the problem without allecting cither the optimad cost or the optimal poli-
cies and by applying the relative value iteration method to the modified
problem.

Let 7 be any sealar with

0<r <l
and consider the probleny that results when cach transition matrix 1y, cor-
responding o a stalionary policy o is replaced by
Do=7P + (1 —7), (3.21)

where [ is the identity matrix. Note thal 3,, is o transition probability
matrix with the property that, at every stale, a scll-transition occurs with
probability at least (1 — 7). This destrovs any periodic character that Py,
may have. For another view of the same point, note that cach cigenvalue
of I, is of the forin 7y + (1 = 7), where v is an cigenvalue of P,. Therefore,
all cigenvalues v # 1 of P, that Jic on the uuit circle are mapped into
cigenvalues off 13,, strictly inside the noil cirele.
Belhuan’s equation for the modified problom is

N A Dy = ay + Dyl = g+ (18, + (L= 1)),
whicli can be written as
;\/,(‘ + TL,, = g -k P,,(Til,,).

We observe that this equation is the same as Bellmau's equation for the
original problem,
/\/l(’ -+ /111 =yu + [)]l/l/u

with the identification
hy=7h,.

It follows from Cor. 2.1 1 that if the average cost per stage for the original
problem is independent. of ¢ for every g, then the same is true for the
modilivd probletn. Furthermore, the costs of all stationary policies, as
well as the optitial cost, are equal for both the original and the modified
problem.

Consider now the relative value iteration method (3.9) for the modi-
fied problem. A straiphtforward caleulation shows that it takes the form

IRV = (1= 7)) + ll;i/l(l) gliou) + TZ[},'J(H,)IL}"(_/“)
wel/ (1
=1

(3.22)

— min g(t.,u)+TZ])U(u)h"'(j) ,

uCl7{t) "
J=
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where 4 is some fixed state with 49(4) = 0. Note that this iteration is as
casy lo execute as the originad version. 1t is convergent, however, under
weaker conditions than those required o Prop. 3.1,

Proposition 3.3: Assuine that cach stationary policy is unichain,
Then, for 0 < 7 < 1, the sequences {7%(i)} generated by the modified
relative value iteration (3.22) satisfy

h(7)

lim hk(i) = =2
kl{];u ! (L) T ’
li i t,u) + g hE(JY] = A, 3.23
l.._,nlolo urenl}l(li) (]( “) TJ:1 ])['1(“) l (J) / ( )

where A is the optimal average cost per stage and his a differential
cost vector.

Proof: The proof consists of showing that the conditions of Prop. 3.1
are satisfied for the modified problem involving the transition probability
watrices Py, of B, (3.21).

Indeed. let i > nnyg, where s the number of states and g is the
number of distinet stationary policies. Consider a set of coutrol functions
JU0, H1, - n. Then at Teast one g is repeated o times within the subsct
iy ftm—1. Lot s be a state belonging to the recurrent class of the
Markov chiain corresponding to g Then the conditions

i» o o
'11,111::"' ;l]Jls 2(, i == l....,l},,

> > -
[1/’111 [ ']/'n]'-‘ 2

J

2N R T

are satisfied for some ¢ because, i view of Eq. (3.21), when there is a
positive probability of reaching s from i at some stage, there is also a
positive probability of reaching it ot any subsequent stage.  Q.I8.D.

Note that, since the modified value iteration method is nothing but
the ordinary method applied to a modified problem, the error hounds of
Prop. 3.2 apply in appropriately modified form.

4.3.2 TPolicy Iteration

The policy iteration algorithin for the average cost problew is similar
to those described in Sections 1.3 and 2.2, Given a stationary policy, one
obtains au improved policy by means of a minimization process until no
further improvement is possible. We will assume throughout this section
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that cocry stationary policy cncountered in the course of the algovithm is
unichain.

At the kth step of the policy tteration algorithin, we have astationary
policy gib. We then perform a policy coaluation step; that is, we oblain
corresponding average and differential costs A¥ and 14 (7) satisfying

M 0k () = g (i, k() + Lp,, g hE (), i=1,....n, (3.24)

or equivalently
Aok =TT 1 hk =g o + Pk

Note that A and A% can be computed as the nuique solution of the lincar
system of equations (3.24) together with the normalizing equation h*(t) =
0. where 1 is any state (cf. Prop. 2.5). This system can be solved either
directly or iteratively usiug the velative value iteration method or by an
adaptive aggregation method, as discussed later.

We subsequently perform a policy improvement step; that is, we find
a stationary policy p#+7 ) where for all ¢, p#+1(i) is such that

ikt 0 (pk FLONRR(GY = min | g(d ) + R OLLOIR
qo Z,ll P O)IRG) = in g a) L]m he)
2
or equivalently
T i1 = ThE.

Il pob 1 = b the algorithn terminates; otherwise, the process is repeated
with p+1 replacing pv,

There is an casy prool, given in Exercise (L 11, that the policy iter-
ation algorithm terminates finitely if we assune that the Markov chain
corresponding to cach gk is irvedueible (Is wuichain and has no transicut
states). To prove the result without this assumiption, we impose the f{ol-
lowing restriction in the way the algorithn is operated: iof p* (i) atlains the
mingman in Eq. (3.25), we choose p#+1(0) = pb (i) cven if there are other
controls attuining the manimum n addition to pk(i). We then have:

Proposition 3.4: If all the gencrated policies are unichain, the pol-
icy iteration algorithm terminates linitely with an optimal stationary
policy.

It is convenient to state the main argument necded for the proof of
Prop. 3.4 as a lenuna:
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Lemma 3.1: Let g be a unichain stationary policy, and let A and k
be corresponding average and differential costs satislying

Ae+h="T,h, (3.20)

as well as the nornalization condition

N-
lnn Z K= 0. (3.27)

[The above limit and the limit in the following Eq. (3.29) are shown
to exist in Prop. 1.1} Let {#, &, ...} be the policy obtained from p
via the policy iteration step descrlbed previously, and let X and T be
corresponding average and differential cost satisfying

e+ ho=Tx(h) (3.28)
and
1 N-1
: Ly .
Jim g PRy = 0. (3.29)

Theu if T # g, we must have either (1) X < A, or (2) X = A and
(i) < R() for all i = 1,...,n, with strict inequality for at least oue
state ¢

We note that, once Leina 3.1 is established, it can be shown that
the policy iteration algorithing will terminate finitely. The reason is that the
vector b corresponding to g via Eq. (3.26) and (3.27) is unique by Prop.
2.5(b), and therefore the conclusion of Lennna 3.1 gnarantees that no policy
will be encountered more thau once i the course of the algorithm. Since
the number of stationary policies is finite. the algorithin nst terminate
finitely. If the algorithm stops at the Ath step with p*+1 = g we sce from
Eqs. (3.24) and (3.25) that

Mee + hk = Thk,

which by Prop. 2.1 hmplics that g% is an optimal stationary policy. So ta
prove Prop. 3.1 there remains to prove Lenuna 3.1,

Proof of Lemima 3.1: TFor votational convenience, denote

P="P, P=r; P= llm L Pk, P = hm — \

k =0
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9= Yu. 9= 9
Define the vector & by
=X+ h -7 —Ph. (3.30)
We have, by assumption, Tih = Th < T,h = Ae + h, or equivalently
G+DPh<g+Ph=X4h, (3.31)
[rom which we obtain
() >0, i=1,....m (3.32)

Define also _
AN

By combining Eq. (3.30) with the equation Ac + 7 =7 + DI, we obtain

o= (A=Ne+A-TA.

Multiplying this relation with 77 and adding from 0 to N~ 1, we obtain

N 1
SO = NA=Re+a-PA, (3.33)
k=0)

Dividing by N and taking the limit as N — 0o, we obtain

=% . 1 - < .
Plo= lim YT = (e (3.34)

11 A > N, we are done. so assime that A = X A stale 7 is called -
recurrent (P-transient) it 7 belongs (does not belong, respectively) to the
single recurrent elass of the Markov chain corresponding to 7. From .
(3.34). P70 = 0 and since 6 > 0 and the elements of P that are positive
are those colimns corresponding to P-recurrent, states, we oblain

o(i) =0, for all i that are P-recurreit. (3.35)
It follows by construetion of the algorithum that il 7 is P-recurrent, then

the ith rows of P and P are identical [siuce F(i) = p(i) for all ¢ with
8(i) = 0]. Since P2 and P have a single recurrent class, it follows that this
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class is identical for both I and P, From the normalization conditions
(3.27) and (3.29), we then obtain A(i) = L(4) for all i that are P-recurrent.
Buivalently.,

Afi) =0, for all i that are P-recurrent. (3.30)
From Eq. (3.33) we obtain

N-1
i PYA = A~ lim S oa e
A=—0

N N—sou 4
. . . . 5N . .

I view of Iq. (3.36). the coordinates of 27 A corresponding to ’-transient
states tend to zero. Therefore, we have

o(7) < A(R). for all / that are P-transiont. (3.37)
From Eqs. (3.32) and (3.35) to (3.37), we sce how that cither ¢ = 0. in
which case jo =71, or else A > 0 with strict inequality A7) ~ 0 for at least
one P-trausient state /. Q.E.D.

We now demonstrate the policy iteration algorithin by means of the
exainple of the previous section.

Example 3.2: (continued)

Let
iy =t w2y = o

We take £ =1 as a reference state and obtain Ao I o(D)and b o(2) from
the system of equations

Ao+ bol) = g(l, u') -+ poy (UI)II“()(I) + (! Me,0(2),
Ao+ o (2) = g(2, u’) + 1)21(u2)/1,‘,u(l) + 1»23(:12)11“(1(2),

() = 0.
Substituting the data of the problem,
A 2 I/ (2) Noo bl o2y 30T h o2
A0 e 1 f ), AL pule ] Py 2),
from which

Ao == Ioa(l) =0. ho(2) =2

W B I
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We now find 7' (1) and 72'(2) by the minimization indicated in I
(33.25). We determine
min (gL a') 4 pra(a')h,0(1) + pua(a')h,0(2),
gl a®) + pi(u)h (1) + pra(u®)h,o (2)]
= nin [2 + l] -2, 0.5+ —; -2
= nin{2.5, 2]
and

win [y('z, w') 4 pay (ul)h“u(l) + [)zg(u])h“.,('z),

(2, 0”) + oy (“])”u“(l) + 1)22(112”!1,“(2)}
3
= min [1 + ll 223k i .zj!

= min{1.5, 1.5].

I

The minhuization yiclds
i 2 L I
o) =, wo(2) =
We obtain Ay o (1), and I, (2) from the system of equations
A A () = g u?y + 1;11(11,"))11“1 (1) + pl-_:(u‘z)/!“; (2),
Al (2) = gl w') + pay(u! Moo (1) 4 [Igg(“,l)/l,“[ (2),
/l“|(l) = 0.
By substituting the dida of the problem, we obtain

3 1
A= T Iy (1) =0, o (2) = 3

P
We find 7%(1) and % (2 by determining the minmmum in
! / IS

min [y(l, uY 4 p (e () + [)]2(“1)/1“1 (2).
gLy +pri ()b, (1) + pra(eHh 0 (2)]

. [2+1 L g 1]
n Sl on+2 L

B I N I
= min{2.08. 0.75],

andd

min [_11(2, u') 4 par (1 Mo (1) 4 pazu : Mo (2),

g2, 0% ¥ pay (u'"')h“| (1)t [)_31(“,2)/1“] (l)]
b1 301
:miu[] +Z~§,I5+%<§}

= min|1.0%, 3.25).
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The minintization yiclds
;12(1);/“(1):“"’, /l”’('.l} - /ll(ll)f ut

and henee the preceding policy is optimal and the optimal average cost is

/\“1 =3/

The algorithnn of this scction shiares some of the features of other
types of policy iteration algorithms. In particular, it is possible to carry
out. policy evaluation approximately by using a few relative value iterations:
see [Put9d] for an analysis. Note also that in specially structured problems
onc may be able to confine policy iteration within a convenient, subset of
policies. for which policy evaluation is lacilitated.

Adaptive Aggregation

Consider now an extension to the average cost problem of the aggre-
gation wmethod described in Section 1.3.3. [For a given unichain station-
ary policy g, we want to calculate an approximation to the pair (A, h,,)
satisfying Bellman's equation Aye + Ny, = T, hy, and h,(n) = 0. where
the state 1 is viewed as the reference state. By expressing A, as A, =
(Tyhy ) (n). we can eliminate it from this system ot equations, and obtain
hy =Tyl — (Tuhy)(n)e. This equation is written compactly as

hy = Th,,,
where the mapping T is defined by
Th = g. + Ph,

and

gr = (1 - CC;').(/H’ Po= (1 - (‘(';))[)/,.

with e, = (0.0....,0,1)".

We partition the set ol states into disjoint subscts S1, 8%, . ... S, that
arc viewed as aggregate states. We assume that one of the subsets, say
Si, consists of just the reference state n; that is, S, = {n}. As in Scction
1.3.3, consider the n x e matrix W whose ith column has unit entrics at
coordinates corresponding to states in S, and all other entries equal to zero.
Consider also an m x n matrix @ such that the ith row of Q is a probability
distribution {gi,..., i) with ¢is = 01l s ¢ S,. Note that QW = I, and
that the moxom matrix 8= QL1 s the transition probability matrix of
the aggregate Markov chain, whose states are the m aggregate states.

Suppose now that we have an cstimate I of hy, and that we postulate
thal over the states s of coery aggregale state S, the variation hy(s) — h(s)
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is constanl. This amounts to hypothesizing that for some m-dimensional
veclor i we have

=Tl =1y
By combining the equations Th - gr b Dlvand Dy, =g 4 Pihy o we have
(L= D)l = h) ="Th I

By multiplving botli sides of this equation with Q. and by using the rela-
tions Ji,e - I = Wy and QW = [, we obtain

(I =QPW)y = Q(Th ~ ).

Assutuing that the matrix 1 — Q2017 is invertible, this equation can be
solved for g Also. by applving 7" to both sides of the equation iy, = 41y,
we oblain

yo="Th,, =Th + PV y.

Thus the aggregation iteration for average cost problems is as fullows:

Aggregation Iteration

Step 1: Compute Th = gr -+ Pl where

== (1 — (I(’;:)f/h» [)r = ([ - (3"¢1)])l’r'

Step 2: Delineate the aggregate states (fe., define 1) and specily
the matrix .

Step 3: Solve for g the system
(I-QPW)y=QTh,
aud approxitate fy, using

I="Th + PAVy.

For the iteration to bhe valid. the mawrix T — Q71 must be invertible.
We will show that this is guaranteed under an aperiodicity assumption such
as the one used to prove convergence of the relative value iteration method
(cf. Prop. 3.1). In particular. we assuwme that all the eigenvalues of the
transition matvix 1 - Q1,0 of the aggregate Markov chaing exeept, for a
single nnity cigenvalue. lie strictly within the unit circle. Let us denote by
¢ the m=dimensional veetor of all s, aud by ¢, the m-dimensional vector
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with last coordinate 1, aud all other coordinates 0. Then using the casily
verified relations Qe — ¢ and 4,0 - ¢, we see (hat

QPW = (] — et VR,

From the analysis of Example 3.1 in Seetion L3, we have that Q00 has
m— 1 cigenvalues that are equal to the m — | nonunity cigenvalues of 12
and has 0 as its mth eigenvalue. Thus QP 0V must have all its cigenvalues
strictly within the unit civele, and it follows that the wabrix / QN s
invertible,

Lo adaptive aggregation method, a key issue is liow to identify the
aggregate states Si...., 8y i a way that the error £, — I is of simika
magnitude in cach aggregate state, Smilar to Section 1.3.3, one way to
do this is to view T'h as an approximation (o Iy and to group together
states ¢ with comparable magnitudes of (f//)(/) — L{i). As discussed in
Section 1.3.3, this type of aggregation method can be greatly improved by
terleaving cach aggregation iteration with multiple relative vadue itera-
tions (applications of the mapping T on the enrrent iterake). We refer to
[BeCs9] for further experimentation, analysis, and discussion.

4.3.3 Linear Programnming

Let us now develop a lincar programming-based solution method.
assuiing that any oue of the conditions of Prop. 3.3 holds, so that the
optimmal average cost A* is independent of (he initial state, and togethier
with an associated differential cost vector b, satisfios Mo 4 b = Th+.
Counsider the following optimization problem in the variables A s h(i).
= 1,....n.

axiimize A

subjeet to A+ h{7) < (Th)(i), i=1,...,n
which is cquivalent to the lncar program

maxinize A

subject to A+ h(i) < yliou) + Zp,l,(u)h(.j). i=1,....n.
g o=l

u G U(i).

(3.3%)
A nearly verbatim repetition of the proof of Prop. 2.1 shows that. if
(A1) is a feasible solution. that is, Ae + 2 < T'h, then A -7 A, which
implies that (A*.h*) is an optimal solutiou of the lincar program (3.38).
Furthermore, i any optimal solution (X, /) of the lincar program (3.38),
we have X = A+,
There is a linear program. which is dual to the above and whicli
admits an interesting interpretation. In particular, the duality theory of
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linear progranuuing (sce c.g., [Dan63}) asserts that the following (dual)
lincar program

minimize 2 Z i)

vl ol
subject to Z ((j, u) L Z qUompila),  j=1,...,n,
el (j) i=1 ugl(i) (3.39)

Z L q(iyu) =1,

=1 uel(z)
qli,u) 20, i=1,...,n, velU(i),

has the same optimal value as the (primal) program (3.38). The variables
qliyu), i = 1,...,n, w € U(i), of the dual program can be interpreted
as the steady-state probabilities that state ¢ will be visited at the typical
transition aud that control u will then be applied. The constraints of the
dual prograu are the coustraints that (i, 1) wust satisfy iv order to be
feasible steady-state probabilities under some randomized stationary policy,
that is, a policy that chooses at state ¢ the coutrol w probabilistically,
by sampling the constraint set (i) according to the probabilities (i, u),
w € U(1). The cosl function

L > aliwyg(isu)

=1 wg ()

of the dual problem is the steady-state average cost per transition. Duality
theory asserts that the minimal value of this cost is A7, thus implying that
the optimal average cost per stage that can be obtained using randomized
stationary policies is no better than what can be achieved with ordinary
(deterministic) stationary policies. Indeed, it can be verified that if pg* is
an optimal (deterministic) stationary policy that is nnichain, and pf is the
steady-state probability of state ¢ in the corresponding Markov chiain, then

rlon = {1 To=00)

0 otherwise,
is an optimal solution of the dual problem (3.39).

4.3.4 Simulation-Based Methods

We now describe briefly how the sinnulation-based methods of Seetion
2.3 can be adapted to work for average cost problems. We make a slight
change in the problem definition to make the notation better suited for
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the simulation context. In particular, instead of considering the expeeted
cost g(i 1) at state 7 under control u. we allow the cost g to depend on
the next state j. Thus our notation for the cost per stage is now g/, u, j).
as in the sinmlation-related material for stochastic shortest path and dis-
counted problems {ef. Section 2.3). All the results and the entive analysis
of the preceding sections can be rewritten in terins of the new uotation by
replacing g(7, u) with L s () g (i, ).

Policy Iteration

Iu order to implement a simulation-based poliey iteration algoritlnn
like the one of Section 2.3.1, we need to be able to carry out the policy
evaluation step for a given unichain policy jr. This can be done by using
the connection with the stochastic shortest path formulation deseribed in
Section 4.1. We fix a state £, and we evaluate the cost of the given pol-
icy g for two stochastic shortest path problems whose tennination state
is (essentially) 1. In particular. we evaluate by Monte-Carlo stmulation or
TD(A) the expected cost € from cach state & up to reaching ¢ [cf. L.
(2.15)]. This reguires the gencration of many trajectories terninating at
state t and the corresponding sample costs. Shnultancously with the eval-
uation of the costs C,, we evaluate the expected number of transitions IV,
from cacli state i up to reaching ¢ {cf. Bq. (2.16)]. Then the average cost
Au of the policy is obtained as

Cy
Ay ==, 3.40
o5 (3.10)
[¢f. Eq. 2.17)], and the associated differential costs are obtained as
(i) = Cy = AN, i=1,...,n, (3-11)

[ef. Eq. (2.18)].

To implenient. a simulation-based approximate policy iteration algo-
rithm, a similar procedure can be used. In particular, one can obtain by
Monte-Carlo simnulation or TD(1) functions Ci(r) and Ni(r) that depend
on a paramcter vector r and approximate the costs C; and N, of the corre-
spouding stochastic shortest path problemns, as described in Section 2.3.3.
Tlien, one can use

3 Ci(r)
Aulr) = ==
1\'{(7')

as an approximation to the average cost per stage of the policy and also
use

hu(i) = Co(r) = NN, i= L,

as approximations to the corresponding differential costs [ef. Egs. (3.40)
and (3.41)].
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Note here that becanse the approximations Cr(r) and N (r) play an
important role in the calculations, it may be worth doing some extra siimula-
tionus starting from the reference state £ Lo ensure that these approximations
are nearly exact.

Value Iteration and (Q-Learning

To derive the appropriate form of the Q-learning algorithin of Section
2.3.2, we forin an auxiliary average cost problemn by angmenting the original
system witlh one additional state for cach possible pair (i, u) with v € U(i).
The probabilistic transition mechanisi from thic original states is the sanie
as for the original problem; while the probabilistic transition mechanisi
fromy an auxiliary state (7, 1) is that we move only to states j of the original
problem witl corresponding probabilities p,j(¢) and costs ¢(i,u, j). It can
be seen that the auxiliary problem has the same optimal average eost per
stage N as the original, and that the corresponding Bellman’s equation is

AL h(i) = min L}),, () (i, a, ) v hi)), i=1,0m, (342)

w ()
A4 Qi n) L/),, w)(g(iy u, j) 4 h())), P=A, 0 we Ud),
(3.43)

where Q(i,u) is the differential cost corresponding to (7, 1), Taking the
minimunt over u in Eq. (3.13) and substituting in Eq. (3.42), we obtain
h(i) = min Q(i, u), i=1,.n. (3.44)
nel/ (1)
Substitnting the above form of k(i) in Bq. (3.43), we obtain Bellmanw’s
equation in a forus that exclusively involves the Q-Tactors:

A+Q(i. ) }_‘p,,(u ( iy, J)+ nin Q(j,u )> yi=1,. 0, uwe U®).

u'clu(y)
(3.45)
Let us now apply to the auxiliary problem the following variant of
the relative value teration

V=Thb — hk(i)e,

(see Exercise L5 for the case where ¢ =0, pp =1, and p;j = 0 for j # t).
We then obtain the iteration

hRPY(E)y = min Lp,, () (gl u, j) + BF()) = hE(e), i=1,...,n,

uel{i)
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k
QF+1(i u) Lp,, W) g(iou, j)+nh () =1k (1), =l ue U,

. .
Frouw these equations, we have Lhat

IR = min QF(i ). i=1,...n, (3.18)

w170

and by substituting the above form of I in B (3.47), we obtain the
following relative value iteration for the Q-factors

Q1 (i u) = Zl’u(“) (!I(/. woj)+ min QF(j u )) — min QF(1. ).

ey WU () ueU(l)

o . (3. 19}
Thl.\' Heration is analogous to the value iteration for Q-factors in the stochas-
tic shortest path context. The se quence of vahies Wil ey QF (L 1) is ox-
bected to couverge to the optimal ave rage cost per stage and the sequences
()f”\'(l]ll(h mit, o) QUL u) are expected to converge Lo differential costs
h{i).

A incremental version of the preceding iteration that involves a pus-
itive stepsize v is given by

Qi u) := (1 = )Q(i, u) Z]),, (u){ gli,u, )+ win Q. u")

w'eli(y)

= win QL) |,

weli(n
o (3.50)
[compare with Eq. (3.8) in Section 2 331 The natnral form of the Q-lcarning
method for the average cost pro )l(m s an approximate version of this
teration, wherehy the expected value is replaced by asiugle sanple, ie..

QUi.u) == Qi u) +~ (f/(i,’lt.,j) + min Qj.w') - min Q1 u')

w CUj) welst)

(3.51)
~ Q. u)),

where § and g(i,w, j) are generated from the pair (o) by sunnbation.

Minimization of the Boelhman Kquation Ereor

There is a straightforward extension of the method of Section 2.3.3
for obtaining an approximate representation of the average cost A and as-
sociated differential costs Li(7). based on minimizing the squared ervor in
Bellman's equation. Here we approximate A by A(r) and h{i) by h(i.r).
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where 1 is a vector of unknown parameters/weights.  We impose a nor-
walization constraint such as b(f, 1) = 0, where ¢ is a fixed state, and we
minimize the error in Belhnans equation by solving the problemn

n 2

\ N by . W) \ . . . ~

min A(r)y + h(i,r) — win o) (gli o, j) + N, r) }

in 32 M) i) = i 3 ) )
1S =l

where S is a suitatbly chosen subset of “representative”™ states. This min-

imization may be attempted by using some gradient method of the type

discussed in Seetion 2.3.3.

INFINITE STATE SPACE

The standing assumption in the preceding sections has been that the
state space is finite. Without finiteuess of the state space, many of the
results preseuted in the past three seetious no longer bold. For exanple,
whereas one could restrict attention to stationary policies for finite state
systems, this is no longer true when the state space is infinite. The following
example from [Ros83a] shows Lhat if the state space is countable, there may
not exist an optimal policy.

Example 4.1:

Let the state space e P11 02,27.3.37 00 and et there be two controls, o
and ¢, The transition probabilities aund costs per stage are

l’r(l—ll)(“l):: Iv I’u'(“u):' L, i= I‘.')”""

poou') = pua(a®) = 1. P=1200, /

gl u') = g(i, u?) =0, e 102,000 i

\

ro g2y t . . )
y(i,ll):g}(’l.:t):-l+7, P=1,2,.... T

fiowords, al state @ we may, ab a cost O, cither move to state (¢4 1) or move
to state i, where we sty theroalter at a cost —1 - 1/i per stage.

I can be seen that for every policy @ and state i = 1.2,..., we have
J:(i) > —1. However, for every stale i) we can obtain an average cost per
stage =1 4+ 1/, where § > ) by nioving to state j* onee we get to state .
Heuce, for every initial state 7 = 1,2, .., an average cosl per stage of —1 can
be approached arbitrarily closely, but cannot be attained by any policy.

Here is another examwple, from [Ros70]. which shows that for a count-
able state space there may exist an optimal nonstationary policy, but not
an optimal stationary policy.

{"{2 L\/ A ( (/ Cod-
/ \\‘,

L.

14
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Example 4.2:

Let the state space be {1,2.3,. .}, and lot there be two controls, o' and o,

The transition probabilitics and costs per stage are coF= 7 ot
| 2 Ve TNU2
mesnlu ) =p,(u”) =1, Q 4 )U
Yt -
. : 1 . v > 4
giu'y =1, geou®y = -, P=1,2 ... e

1
I words. at state ¢ we may cither move Lo state {14 1) at a cost 1 or stay at
tatacost 1/i.
For any stationary policy j other than the policy for which (i) = '
for all 7. let n(u) be the smallest integer for which
/l,(n(/z)) =u?.
Then the corresponding average cost per stage satisfies
1
Ju(i) = — >0
w(0) n(mw) '
For the policy where (i) = o' for all i, we have Jx(1) == 1 for all i Sinee the
optinal cost per stage cannot be less than zero, it is clear that

min J(7) = 0. i=1,2,...

for all ¢ with ¢ < n(x).

However, the optimal cost is not ttained by any stationary policy, so no
stationary policy is optimal. On the other hand, cousider the nonstationary
policy 7 that on entering state i chooses u® for i cousceutive times and then
chiooses u'. f the starting state is 7, the sequence of costs incurred is

11 1 ) 1 1 1 ] 1 1
A CHLTEE T T e g2
N ——’

¢+ bimes (o1 1) Limes

The average cost correspouding to this policy is

Jae(i) = lim g
oo P (1, + k)

0 i=1,23,...

3

Hence the nonstationary policy 7% is optimal while, as shown previously, no
stationary policy is optimal.

Generally, the analysis of average cost probleis with an infinite state
space is difficult. although there has been consideralle progress (see the
references). An important tool is Prop. 2.1, which admits a straightforward
extension to the case where the state and control spaces are infinite. In
particular; if we can find a scalar A and a bounded function /v such that
Bellman's equation (2.1) Lolds, then by repeating the proof of Prop. 2.1,
we can show that A must be the optimal average cost per stage for all
witial states. Among other situations, this result is useful when we can
guess the right A and h, and verily that they satisfy Bellman's cquation.
Some inportant special eases can be satisfactorily analyzed in this way (see
the references). We deseribe one such case, the average cost version of the
lincar-quadratic problem examined in Chapters -1, aud 5 of Vol. 1.
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Lincar Systems with Quadratic Cost
Consider the linecar-quadratic problem involving the systent
Ty = e b Bug 4wy h=0,1,..., (1.1

and the cost funetion

N -1
| — .
-/ﬁ(-"(l) — ‘\l.lll\l\ 7\', ”]‘i 2 (.l'll,Q.l'k F /l;;(.l'/,-)’1{/1/\-(.1';,-)) . (4.2)

b0 k=-0

We make the same asstmptions as in Section S, that is. Qs positive
semidetinite symmetrie, I¢is positive defliuite symmetrie, and wy are in-
dependent, and hiave zero mean and finite secoud moments. We also as-
sine that the paiv (L1, 73) is controllable and that the pair (2. ('), where
() = (", is observable, Under these assuptions, it was shown in Section
A1 of Vol T that the Riceati equation

Ko =0, (4.3)
Wi = NNy = K B(BN, B 1) B'Ip) A+ Q (L4)

vields in the limit a matrix K.
N = ,\Al,i,l,“\ Ny, (-1.5)

which is the unigue solution of the equation
N = /l’(l\' ~RKBBNDB Ry DB R)A+Q (4.6)

within the chass of positive semidefinite synunetrie matrices,
The optimal value of the N-stage costs

N
—L; I Z (. Qe+ up uy) {1.7)

[ N T (A

has heen derived earlier and was seen to be equal to

N
oW N > L K] ).
L0

Sinee W= g o g and

N

Al.”'“\ l\‘ Z LN ey = E{u’Nw}.

[

TN
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we see that the optimal N-stage costs tend to
A= I’ W} (1Y)

as IV — o lu addition, the N-stage optimal policy in its initial stages
tends to the stationary policy

() = —(B'KB+ Ry ' A, (-L.9)

Furthermore, a simiple caleulation shows that, by the definition of Ay I,
and g (), we have

A 'K = m“in Q- w! R A4 (A + Bu - W)y N(Aw 4 Bu+ w)}.
while the mininnun in the vight-hand side of this equation is attained at
ur = () as given by Isq. (1.9).

\ By repeating the proof of Prop. 2.1, we obtain

1
A< L{aKey | ag,w)

/ =N
L R
- 7\7,1'(’)1\'.17[) + NL Z (0 Qg+ wp Ruy) | wo,m p
k=0

with cquality if @ = {yr. %, ..} Hence, if 7 is such that Elol Ko |
2, 7} is uniformly bounded over N, we have, by taking the it as N — ~o
in the preceding relation,

A< L), aemn,
with equality if @ = {yr7 pr. .} Thus the linear stationary poliey given
by B, (L.9) Is optimal over all policies 7 with I2{ey Ky | o, 7} hounded
uniformly over N,

45 NOTES, SOURCES, AND EXERCISES

Several authors have contributed to the average cost problem {[Howto],
[BroG5]. [Ros70], [Schi6s]. IVeitit]. [Veit9]), most notably Blackwell ([Bla62]).
An alternative detailed treatinent to ours is given in [Pwt94]. An extensive
survey containing many refevences is given in [ABIYS).

The result of Prop. 2.6 under conditions (2) aud (3) was shown in
[Bat73] and [Ros70]. respectively. The relative value iteration method of
Section 4.3 is due to [WhiG3]. and its modified version of 1. (3.22) is due
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to [Seh7L]. The error honnds of Prop. 3.2 are due to Odoni ([Odo69]). The
value iteration method has been analyzed exhaustively in [Sch71], [Se 77,
and [ScF78]. Convergence under slightly weaker couditions than those
given here is shown in [Pla77]. The ervor bounds of Exercise 4. 10 are due
to Varaiya ([Var7s]), who uscd them 1o construct a differential forn of
the value iteration method. Diserete-time versions of Varaiya's method are
given in [PBW79]. The value iteration method based vn stochastic shortest
paths of Bxercise L5 is new (see [Berdhe]).

The policy iteration algorithin can be generalized for problems where
the optimal average cost per stage is not the same for every initial state (sce
[Bla62], [Pwt9d], [VeiGt], and [Der?0]). The adaptive aggregation method
is due to [BeC'89).

The approximation procedures of Scetion L34, and the Q-learning
algorithis of Section 1301 and Bxcrcise .16 are new.  Alternative algo-
riths of the Q-learning type are given in [Sch93] and [Singd].

For analysis ol inlinite horizon versions of iventory control prob-
lemis, such as the ones of Section 4.2 of Vol I, sce {Igl63a], [Igl63b], aud
HoT7A]. Tufinite state space models are discussed in [Kus78], [Sen&0),
[Lass], [Bors], [Cav89al, [Cav89Db), [Her89}, [Seus9a]. [Scnsoh), [IFAN90],
PAMOL], [Cavl]. [HHLOY], [Seud1], [CaS92], [RiS92], [ABEFYZ], [Sen93a)
[Sen93b). and [Put9].

)

EXERCISES

4.1

Solve the average cost version (o = 1) of the computer manufacturer’s prob-

lem (Exercise 7.3, Vol. ).

4.2

Consider a stationary inveutory control problem of the tvpe considered in
Scetion L2 of Vol T hut with the ditference that the stock £y can only take
integer values from 0 (o some integer AL The order uy; can take integer values
with O < uy < M -.rg, and the random demand wy can only take nonmegative
integer values with P(w, = 0) > 0 and (o == 1) > 0. Unsatisfied demand is
lost, so stock evolves according o the equation sy vy = max(0, .0 -+ wg — wi).
The problenn is to find an inventory policy that minimizes the average cost
per stage. Show that there exists an optimal stationary policy and that the
optimal cost is independent of the initial stock .
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4.3 [LiR71]

Consider e person providing o cortain type of service to customers. The
person receives at the beginning of each time period with probability p, a
proposal by a customer of type oo where i - 120000 0, who offers an amount
of money M, We assume that \;:;' P < L The person may rejeet the offer,
in which case the customier leaves and the person remains idle during that
period. or the persou may aceept the olfer in which case the person spends
sowe e with that customer determined according (o a Marhov process witly
transition probabilities ;3,0 . where, for b = 1.2, ..

“

P = probability that the type 7 customer will leave alter A periods, given
that the customer has already stayed with the person for A — 1 peviods.

The problem is to deterniine an aceeptance-rejection policy that maxinizes
. L. . .
lim = {Expected paviment over N periods}.
N N

Consider iwo cases:
boode =7, € (0,1) for all k.
2. For cach  there exists &, such that ,Hlf,\jl = 1.
(a) Formulate the person’s problenn as an average cost per stage problem,
and show that the optimal cost is independent of the initial state.

(b) Show that there exists a scalar A” and an optimal policy that aceopts
the offer of a type i customer if and only if

where T, is the expected time spent with the type @ customer given by

Tos=da 4> ke (0= dea) (- ).

k=2

4.4

Let Y be an arbitrary veetor in 8", and define for all i and & > |

WY = Ry (e

n

/lk _ J./,.hu _. % 2(11 /l“)(/)(‘,
=1

=1~ i (r* %y ie.
1=1,...,n

Lot also AY = 1Y = 1" = 1",
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(a) Show that the sequences {A5} {/;A}, and {45} are generated by the
algorithins
BV = TRE (TR (e

B N
K41 ik ik s
] =Th" — — Th, Y
h, Th - E (Thy ) (i)
=1
EEPU =R~ min (TR (i)e.
bl

(b) Show that the convergence result of Prop. 3.1 holds for the algorithins of
part (a). Iint: Proposition 3.1 applies to the algorithims that generate
(PP, Vixpress Y and 1 as continuous fanctions of {h*Y, i =1,.. ., n.

4.5 (Variants of Relative Value Tteration)
Consider the following two variants of the relative value iteration algorithin:
WFEU = (1R (i) = AR, i=1,...,n,
where )
M=+ o).
J=1

or

A= e Yt G).

g0

Here ¢ is an arbitrary scalar and (pr, ..., p,) is an arbitrary probability dis-
tribution over the states of the system. Under the assumptions of Prop. 3.1,
show that the sequence {2%} converges Lo a vector i and the sequence {AY}
converges to a sealar A satisflying Ac 4 o= Th, so that by Prop. 2.1, X s
equal to the optimal average cost per stage for all initial states and o is an
associnted differential cost veetor. Himt: NModify the problem by introdacing
an artificial state ¢ from which the system moves al a cost ¢ to state j with
probability p,, for all u. Apply Prop. 3.1

4.6

Consider a deterninistic systen with two states O and 1. Upon entering, state
0, the system stays there permanently al no cost. i state L there is o choice
of staying there al no cost or moving to state 0 at cost 1. Show that every
policy is average cost optimal, bhut the only stationary policy that is Blackwell
optimal is the one that keeps the system in the state it currently is.
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4.7
Show that a Blackwell optimal policy is optimal over all policies (not just those

that are stationary). flint: Use the lollowing result: I {en} is a nonnegative
bounded sequence, then

N ~o
li ‘flz < liminf(1 )E v
iminf — ¢ iminf(l ~a aeg
N oo N = alt o
=0 k=0
~
< limsup(l — a) é aFer
ol bt
N
< i Ly
< limsup — L Ch-
Nono N

A proof of this result can be found in [Putdd], p. 417.

4.8 (Reduction to the Discounted Case)

For the finite-state average cost problem suppose there is a state  such that
for some ;3 > 0 we have pafu) 2 43 for all states 7 and controls «. Consider
the (1 = )-discounted problem with the same stato space, control space. and
transition probabilitios

5 _ =) () ifj#1,
7’11(“')_ {(l _/’)-‘](]l,.,(ll)—ﬂ) 1[‘/:/

Show that [‘Z(l,) and J(i) are optimal average and diflerential costs, respee-
tively, where J is the optimal cost function of the (1 — #)-discounted problem.

4.9 (Deterministic Finite-State Systeins)

Consider a deterministic finite-state system. Supposc that the system is con-
trollable in the sense that given any two states i and Jy there exists a sequence
of admissible controls that drives the state of the system from ¢ to j. Con-
sider the problem of finding an admissible control sequence {ug, uy, ...} that
minimnizes

N -

{ -
Jale) - \vli"i}; N Ly(.r;,,u,/‘.).

k=0

Show that the optinal cost is independent of the initial state, and that there
exist optimal control sequences, which after a certain time index are periodic.
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4.10 (Generalized Error Bounds)
Let b be any n-dimensional vector and g he sueh that
Tyl = T'h.
Show that, for all /|

wmin[(Th) () = h(j)] < () < Ju(i) < iax [(Th)G) = ()],

!

regardless of whether J*(7) is independent of the initial state i. flint: Com-
plete the details of the following argmnent. Let

O0) = (PG~ W), i Lo
and let & he the vector with coordinates 8(7). We have
Toh =+ h, Tl =T Lo =06+ D041

and, coutinuing in the same manner,

N -1
,I'I‘l\"/, - Z I,Il:h 4 h, N=172...
k=0
Henee
B T
Jo= lim ST o= D6,
N -~ !
where
| N
Pr=li PE
1 [\'“.l; N I\X: f
e =0

proving the right-hand side of the desired relation. Also, let 7 = {0, 1y, ..}
be any admissible policy. We have

T =26+ h

"o
from which we obtain

LN N N

Yun o Tunh 2D bty 2Dy 0 +0+ 022 m’in 6(j)e + h.

Thus, for all /.

| . "™ N . h(i)
N g Lo Ty () 2 win o) + 25y

aud, taking the limit as NV — 0o, we obtain

J= (1) > mind(j).
’

Sinee 7 is arbitrary, we obtain the left-hand side of the desired relation.
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4.11
Use Prop. 1.1 to show that in the policy iteration algorithnn we have for all

k,
M= by I’“'M TR Nk, )

B

where
N -1
. . ™
Py = lim — B P
' N N Lo
=0

Use this fact to show that if the Markov chain corresponding to ' han no
transicnt states and ;5% s ot optimal, then MM E < A%,

4.12 (Policy Iteration for Lincar-Quadratic Problemns)

The purpose of this problem is to show that policy iteration works for linear-

quadratic problems (even though neither the state space nor the control space
, - arce finite). Consider the problem of Section 4.1 under the usual controllability.
J observability, and positive (semi)definitencss assumptions. Let Ly he an m ><‘u
/ malrix such that the matrix (A 4+ BLy) is stable.

(a) Show that the average cost per stage corresponding to the stationary
: { . " ‘
policy 1, where j°(r) = Lax, is of the form
g = ]‘,’{w'/l\".zr}.

¢

where Koois g positive seimtdennie ~vinmetie tnanis satistving the
{(lincar) equation

Ko = (A + BLy) Ko(A -+ BL) A Q & Ly .

(b) Let g (@) = Lo = (It 4 B'INo3) "1 Wosle be the control funetion

attaining the mininum for each 2 in the espression

min{u'lfu bbb By ho( e Ifu)}.
u

Show that
J= E{w' K} < J 0,

where Iy is some positive semidelinite symimetric matrix.

—
(g]
N

Consider repeating the (policy iteration) process deseribed iu parts (a)
aud (b), thereby obtaining a sequence of positive setiidelinite symimetric
matrices { Ny}, Show that

Ny - I\,

where A is the optimal cost matrix of the problem,
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4.13 (Alternative Analysis for the Unichain Case) cost at state ¢ is g(

Lu)— A, where A is a scalar parameter. Let oy, 5 (4) be the

The purpose of this exercise is to show how to extend the average cost problem
analysis based on the commection with the stochastic shortest, path problem,
which is giveu in Section 7.4 of Vol. 1. In particular, here this connection is
used to show that there exists a solution (A, 1) to Belhman’s equation Ae+h =
Th if every policy that is optimal within the class of stationary policics is
unichain, without resorting to the use of Blackwell optimal policies (c¢f. Prop.
2.6). For this we will wse the stochastic shortest path theory of Section 2.1,
and from the present chapter, Prop. 2.1 and Prop. 2.5 (which is proved using
a stochastic shortest path argument). Complete the details of the following
proof:

For any stationary policy g, let X, be the average cost per stage as
defined by . (2.17), et A = min, A, and let AL = {0 | A\, = A}, Suppose
that there is a state s that is simultancously recurrent in the Markov chains
corresponding (o all o€ AL Shoilar to Section 7.1 in Vol I, consider an
associated stocliastic shortest path problem with states 1,2,...,n and an
artificial termination state { to which we move [rom state i with transition
probability p,.(#). The stage costs in this problem are (i, u) — X for i =
1, .., i, and the transition probabilities from a state 7 to a state j # s are
the same as those of the original problem, while p,<(u) is zero. Show that in
this stochastic shiortest path problem, every improper policy has infinite cost
lor some initial state, and use this fact to conclude that if 2e(¢) is the optimal
cost starting at state £ = 1. .. n, then A and b satisfy Ae 41 = Th. If thereis
no state s that is simultancously recurrent for all 1 € M, select a @ € M such
that there is no g € AJ whose recurrent class is a strict subset of the recurrent
class of ji (it is suflicient, that fi has minimal munber of recurrent states over
all g € M), change the stage cost of all states ¢ that are not recurrent under
7T to g(i,u) + ¢, where € > 0, use as state s in the preceding argument any
state that is reenrrent under 77, and take ¢ — 0.

4.14 (Stochastic Shortest Path Solution Method)

The purpose ol this exercise is Lo show how the average cost problem can be
solved by solving a {inite sequence of stochastic shortest path problems. As
in Scetion 7.4 ol Vol. 1, we assume that a special state, by convention state
n, is recurrent in the Narkov chain corresponding to cach stationary policy.

’

For a stationary policy p, let
Cue) o expected cost starting from @ up to the first visit to n,

N, (&) ¢ expected mamber of stages starting from § up to the first visit to n.

The proof of Prop. 2.5 shows that A, = C,(n)/N, (). Let A" = min, Ay be
the corresponding optimal cost.

Consider the stochastic shortest path problem obtained by leaving un-
changed all transition probabilities p,, (1) for j # n, by sctting all trausition
probabilitics pi, (v) to 0, and by introducing an artificial termination state t to
which we move from each state ¢ with probability p,, («). The expected stage

(?()st of stationary policy y for this stochastic shortest path problem
from state ¢ ’

() Show thit Tor all sealars A and N, we have

P a (@) = Dy, o () + (N = AN, (6), i=1,....n.

(L) Deline

ha(i) = min by, A (i), i=1,..,n.
I

Show that fey (i) is concave, monotonically decre

: ‘ asiug, and piecowise
lincar as a function of A, and that

ha(n) =0 i and ouly if A=A

Figure 4.5.1 illustrates these relations.

g . .
(c) Consider a one-dimensional searc

) . I procedure that finds a zero of Uhe
llllLt'IOl.l fix(n} of A This procedure brackoets A* from above and below
aud is illustrated in Fig. 1.5.2 ,

2. Show that (his procedure solves the
average cost problan by solving a linite number of stochastic shortest
path problems.

h#,;‘ () = (/'lll -A )N#

,’/1 (n)

s g o . . .
Figure 4.5.1 Relation of the costs of stationaty policies in the average cosd

problem and the associated stochastic shortest path problem.

' : starting
cand let 7 (i) = min, Iy a(@) be the corresponding optinnd cost.
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] Iy an)

/’ﬁ (n)

Figure 4.5.2 Oue diwensional iterative scarch procedure o find A .s‘lu:h t,h;lL
() = 0 [ef. Exercise 1 14(¢)]. Bach value hy(n) is obtained by solvm\g :lm

)\ - ) ’ ‘ ‘ 1 dAa0e cos ; — . f 1
associnted stochastic shortest. palh problern with stage cost y(ll,;l) </\/\: l< 11;
" : i iterati ¢ have scalars o and J such that a 3,
start of the typical iteration, we have sca, I o h
together with the corresponding nonzero vidues I, () and hz(n). We find o

such that o —a _han)

o =3 hlm)

»

and we caleulate by, (). Lot 3 be such that

B—a’ ()

B -« Il,.(ll,) ’

We then replace o by o and if 8/ < 4, we abso caleulate iy (1) and we rcplaceg
Ly 4. We then perform another iteration. The algorithin stops if cither b (n) =

or hy(n) = 0.

4.15 (Stochastic Shortest Path-Based Value Iteration [Ber95c])

i 1 Vv e 1 2 F avera e
The purpose of this exercise is to provide a value iteration method for (;»mt gt
. 4 H — Jevet } N rtes

cost problems, which is based on the connection with the stochastic sho

path problem.  Let the assumptions of Exercise 4.14 hold.  Consider the

algorithim
n—1
. . . ; kg —\k iZl-"!”v
MY = min g u) 4 PG () A ’
I (1) et ( ;

: ko kg kel
A= AR eR R,
i - all unichain policies and 6*
where n is the special state that is recurrent for all unichain § S

Is @ positive stepsize.
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() Interpret the algorithin s a value teration algoritho for o slowly vary
ing stochastic shortest path problem of the type considered in Fixereise
LEL Given that, Tor smaldl & the fteration of /s faster that the it-
cration of A, speculate on the vonvergence properties of the algorithi.
[T cam be proved that there CXists apositive constant & such that we
have /lk(ll) — 0 and AY e iFd < & w8 where O s some positive
coustant. Another interesting possibility for whicl, convergenee can he
proved is to select 6% a5 a constant divided by | plus the winmber of
times that 2% (n) Las chianged sign ]

(b) Usc the error bounds of Prop. 3.2 to justify the iteration
n-
A i) = min giou) + Z/:,A,(u)hk('}) — Ak f=1,....n.

aCligey |°
1=1

A= ettt )

)

where [t denoles the projection of a scalar ¢ on the inferval
—
wax A" wmin gt
= k= m=0,., .k
with

1#n

_1' =2 4 min {miu[/:k“(i) - hk(i)]‘ R* ](n,)J .

7= Ak + max [n:xx [h“rx(l’) - /lk(i)], /1’"“(11)} .

4.16 (Q-Learning Based on Stochastic Shortest Paths)

The purpose of this exercise is to provide a Q-learning method for average
cost problems, whicli is based on the value iteration method of Exereise . 5.
Let the asswmptions of Excreise 4. 14 hold. - Specnlate on the convergence
properties of the following, Q-learning algorithm

QUiou) = Qi u) 4~ (;/(i, )+ min Q) dy = Q, 11)) - A,
)

well(y
P=1, 0w € i),
Ai=X48 min Qn, ),

Wl (ny

where o )

N QU.u') il j #n,

QUj,u') = -

0 otherwise,

and Joawnd (i, 0 g) are generated from {he pair (1, u) by simulation. Here
the stepsizes 4 and 6 should bhe diminishing, but & should diminish “lastor”™
than ~ {for exanple v = cr/kand & = ok log k, where ¢ and ¢z are positive
constants and & is the number of iterations performed on the corresponding
pair (i u) or A].
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Wo have considered so far problems where the cost per stage does
not depend on the time required for transition from one state to the next.
Such problenis have a natural diserete-time vepresentation. On the other
hand, there are sitnatious where controls are applied at discrete times hut
cost iIs continuously accumulated. Furthermore, the time bhetween sucees-
sive control choices is variable; it may be raadom or it may depend on the
current state and the choice of coutrol. For example, in queucing systems
state transitions correspond to arrivals or departures of custoniers, aud
the corresponding times of transition are random. This chapter primarily
discusses problems of this type. We restriet attention to continmous-time
systems with a finite or countable number of states. Many of the practical
systetns of Lhis type involve the Poisson process. so for many of the exan-
ples discussed, we assume that the veader is familiar with this process at
the level of texthooks such as [Ros83b] and [Gal9h].

In Scction H.1, we concentrate on an iimporlant class of continuous-
tinme optimization models of the discounted type, where the times hetween
stceessive transitions have an caponential probability distribution. \We show
that by using a conversion process called wniformization. discounted ver-
sions of these models can bhe analyzed within the diserete-time framework
discussed up Lo now.

In Seetion 5.2, we discuss applications of uniformization. We concei-
trate on quencing models arising i various comnmunications aud scheduling
contexts.

In Scction 5.3, we discuss wore general continuous-time models, called
semi-Markov problems, where the times between suceessive transitions need
not have an exponential distribution.

UNIFORMIZATION

I this chapter, we restrict ourselves to continuous-time systems with
a finite or a conntable munber of states. Here state transitions and control
selections take place at discrete times, but the time from one transition to
the next is random. In this section, we assuwme that:

1. 1f the svstem s in state ¢ and coutrol « is applied. the next state will
be j with probability p,, (u).

2. The time interval 7 between the transition to state ¢ and the transition
to the next state is expouentially distributed with parameter v, (a);
that is,

P{transition time interval < 7] i u} <1 - cmnludr
or equivalently, the probability density function of 7 is

plr) = v, (u)e (T > 0.
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Furthermore, 7 is independent of carlier transition tines, states, and
controls. The parameters v, () are uniforily bounded in (he sense
that for some 7 we have

vy () <, for all i w ¢ U0).

The parameter v, (u) is referved to as the rate of bansition associaled
with state 7 and control w. It can he verified that the corresponding average
fransition tine is

e |
E{T} = / T]/I(“)“*l’,(ll)T(lT e
0 7, (u)

50 vi{u) can beinterpreted as the average number of transitions per unit
tine.

The state and control at any time { are denoted by e(f) and u(f).
respectively. and stay constant between transitions. We use the following
notation:

{1 The time of occwrrence of the Ah travsition. By convention, we
~denote ty = 0.

T = g — ._ 1 The Ath transition time interval,

wp =.x(f): We have () = oy for 1 <<y qy.
W = u(te): We have u(t) = uy, for tp <t < bpyy.

We consider a cost funetion of the form

Ill\v
lm E{/ =g ((h), w(t))di o, (1.1)
Jo

N—x

where ¢ s a given function and 3 is a given positive discount paraeter.
Similar to discrete-time problems, an admissible policy is a sequence 7 =
{1041, -} where each gig s a function mapping states to controls with
pe(i) € U@) for all states 7. Under 7, the control applied in the interval
[{,k, Ui} is g (). Because states stay constant, between transitions, the
cost function of 7 is given by

T
./r;(,l'()) = Z E / (’“*I”.(] (.’I'L., /ll\:(-17l,~))~ Ty

1

We first consider the case where the 1ale of iransition is the same for
all states and controls; that is,

v () =, for all 7, .
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A little thought shows that the problem is then essentially the same as
the one where transition times are fixed, because the control caunot influ-
cnee the cost ol a stage by affecting the length of the next transition Lime
interval.

Indeed, the cost (1.1) corresponding to a sequence { (ag, ux) } van be
expressed as

~ -y

ol e ISl
Dok / g (), () e =D L / =0t o B{g(ax, we) §

k=0 th k=0 Sty
(1.2)

We have (using the independence of the transition tune intervals)

g /./Hl s [,'{(n “’k}(l _ ],/{(. B })
s 19
Bl ) (- B ()
)
ak(1 —a)
= 3 ,
where .
o= I{e=ir} = / o e dr =
Jo 7

The above expressiou for a yields (1 — «)/8 = 1/(3 + v), so that from fq.

(1.3), we have
[ Y
) / Y (’f”’dll =
Ju, J B

From this equation together with Eq. (1.2) it follows that the cost of the
probleny ean be expressed as

0

S D o Byl w) )
-

Thus we are faced in effect with an ordinary diserete-time problem where

expected total cost is to be mintmized. The cffect of randomness of the

transition times has been simply to appropriately scale the cost per stage.
To summarize, a continuous-time Markov chain problem with cost

N
i IS {/ e=Prg(e(1), u(ﬁ))d:‘}
Jo

N—onoo
and rate of transition v that is independent of state and control is equivalent
to a discrete-time Markov chain problem with discount factor

VvV

= 1—:}—4 l,’

(1.4)

(81

Sce bl Uniformization

e
3

and cost per stage given by

aliu)
B+’

i, u) =

I particadar, Belhuan's equation takes the form

J{i) = min gl )
wel/(i) | B+ v

+ad piu )|, (1.0)
J
or equivalently,

1

J(i)zﬂj; Juin g{i, u) '+‘V¥1)u(“r)-/(.j) : (1.7)

lu some problems, in addition to the cost (1.1), there is an extra expected
stage cost g(i,u) that is incurred at the time the control v is chosen at
state 4, and is independent of the length of the trausition interval. Tn that
case the expected stage cost (1.5) should be changed to

s &

(i, u) 4
aud Bellman’s equation (1.6) becomes

¢

. Fa im0

JO) = min | g{i ) +
() wel(a) J( )

Example 1.1

A manufacturer of a specialty item processes orders in batches, Ovders arrive
according to a Poisson process with rate v per unit time; that is, the succes-
sive Interarrival intervals are independent. and exponentially distributed with
paratcter v. For cach order there is a positive cost ¢ per unit time that the
order is unfilled. Costs are discounted with a discount parameter 8 > 0. The
setup cost for processing the orders is K. Upon arrival of a new order, the
nanufacturer must decide whether to process the curvent. batel or to wait for
the next order.

Here the state is the nunber @ of unlilled orders. If the decision to fill
the orders at state i is made, the cost is A and the next transition will be
to state 1. Otherwise, there will be an average cost (ci)/(# + v) np to the
transition to the next state i + 1 [ef. Bq. (1.5)], as shown in Fig. 5.1.1. [Note
thal the setup cost A is incwrred immediately after a decision to process the
orders s made, so K is uot. discounted over the time interval up to the next
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transition: of. Fq. (1.9).] We are in effect faced with a disconnted discrete-
time problem with positive hut unbouuded cost per stage. (We coukd also
consider an alternative model where an upper bound is placed on the unmber
of nnfilled orders. We would then have a discounted discrete-time problem
with bounded cost per stage.)

Sinee Assnmption Pois satislied (e Section 3.1). Bellman™s equation
holds and takes the form

J(@) = min [ K 4 o.J(1), ——{ aJ{i+1) Pe= 200 (1.10)

where a = v/(;7 4+ 1) is the effective discount. factor [of. Eq. (1.1)]. Reasoning
from first principles, we see that J(7) is a monotonically nondecreasing fune-
tion ol ¢, so from Bellman’s equation it follows that there exists a threshold
i such that it is optimal to process the orders i and only if their number
oxceods i,

/

N\
\\\ v - / I
N - . ’
o - - -~ . ’
-
~ - ,
s e Vv - ’,
~ - - - ’
~ —_—4_—— Pl
~
~o -

Fi rure 5.1.1 'l‘I'ILHSiLi(Jll (“il}_’l’(’“ll t})l' (rlll‘ continuous-titne l\lill'l\'UV (,'hilill of EX—
!

ample 1.1 The transitions associated with the first conutrol (do not fill the orders)

are shown with solid lines, and the transitions associated with the second control
(fill tle orders) are shown with broken lines.

Nonuniform Transition Rates

We now argue that the more general case where the transition rate
i, (1) depends on the state and the control can be converted to the previ-
ous case of uniform transition rate by using the trick of allowing fictitious
transilions from a state to iself. Roughly, trausitions that are slow on
the average are speeded up with the understanding that somctimes after a
transition the state may stay unchanged. To see how this works, let v be a
new uniform transition rate with v,(u) < v for all i and u, and define new

See. 5 Wilormizati :
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transition probabilities by

N N iti £ ),
piylu) = ',(“) () .
L) 1~ el LS
We refer to this process as the wniform version of the original (sce g,
5.0.2)0 We argue now that leaviug state 7 al a rate 1,(1) i the origi-
ual process is statistically identical to leaving \l.ll( ¢ ot the faster rate o,
but retwrning back to ¢ with probability 1 — w, (u)/r in the new process.
cpuivalently, transitious are real (lead to a different. state) with probability
v,(u)/v < 1. By statistical equivalence, we mean that, for any given policy
. initial state ao. time £, and state 7, the probability P{ My =ilao.m)is
identical for the original process ,md its uniform version. We give a proof
of this fact in Exercise 5.1 for the case of a finite number of states (see also
[LipT5]. [Ser79], and [RosS3b) for further discussion).
To suniarize, we can convert a coutinnous-time Markov chain prob-
lew with transition rates v (1), transition probabilitics pij(u), and cost

AN
N_lim L{/ (:*3[.(/(.1'(/)4u(l))(ll},
A Bande & JO

into a diserete-time Markov chain problem with discount factor

14
G =
T (1.11)

where 7 is a uniform transition rate chosen so that
) <, for all i, u. (1.12)

The transition probabilities are

l/y(“ ])zj( ) ]1,¢‘].

plu) =19 .7, v en 1.13
! ‘>,;,,( L= = (1.13)

and the cost per stage is
gliu) = ———=, for all 7, 4.

In particular, Bellinan's equation takes the forin

we (1)

J(Ey = min |gli ) -4—(1273(,(11).](.}') ,
j
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vi(u), Pu(u)

ve (1), ,, (1)

Transition rates and probabilities
for continuous-time chain

vj (u)
‘/

{-

v {W) pj (L)

v v
1 vi (1) ; vk(U)
. vie (W) P () v

v

Transition probabilities for uniform version

Figure 5.1.2 Transforming a continuous-time Markov chain into its uuniform
version through the use of fictitious sell-transitions. The uniform version has a
uniforn trausition rate v, which is an upper hound for all transition rates v, (u)

of the original, and transition probabilities p,; (v) = (u,(u,)/u)p,J(u,) for i # 7,
and () = (l/,(u)/u)/:,,(u) Fl—-v,(u)/vfor j =i Iu the example of the tigure

we have p,, () =0 for all ¢ and u,

which, after some ealeulation using the preceding definitions, can be written

as

J{i) =
(7) /34 v ouel (i)

l min | g(i,u) + (v = vilu))J () + viu) Zp,,]-(u).l(j)
J
(1.14)
In the case where there is an extra expected stage cost g(i,u) that is in-
curred at the time the control u is chosen at state 7, Bellman’s equation

gtk

See. 1.3 Uniformmization 2149

becomes [ef. Bqg. (1.9)]

1
T =y min (54 )i, m) + (i)

(1.15)
+ (v = vilw)) () + v (u) Zp,l,(u,),/(j) .

Undiscounted and Average Cost Problems

When the discount paramcter /4 is zero in the preceding problem
formulation, we obtain a continuous-time version of the undiscounted cost
problem cousidered in Chapter 3. If in addition, the number of states is
finite and there is & cost-fiee and absorbing state, we obtain a continuous-
time analog of the stochastic shortest path problem cousidered of Chapter
2. However, when 3 = 0, it is unnecessary to resort to uniformization.
It can be seen that the problem is essentially the same as the diserete-
time problem with the same transition probabilities but where the average
transition cost at state 7 under ¢ is the average cost per unit tiime g7, )
nultiplicd with the expected length 1/w, (1) of the transition interval, Thus
Bellman's equation has the form

wet(n | v {u)

J(i) = min M%-Zp,‘,(’u)./(./) . {(1.16)
7

After some caleulation. it ean be seen that the above equation can also be
obtained from Eq. (1.14) Ly setting 4 = 0.

In faet for undiscounted problems. the preceding argument does 1ot
depend on the character of the probability distributions of the transition
times. Regardless of whether these distributions ace exponential or not.
one simply needs to multiply g(i, ©) with the average transition time cor-
responding to (7, u) and then treat the problem as if it were a discrete-time
problem.

There is also o continuons-time version of the aAverige cost per sta
probleni of Chapter L The cost function has the form

I v
li [E— : L .
Ry E{fA'}L{./() g(.)((),u(l))(/{}

We will consider this problem in Scetion 5.3 in a more geueral coutext
where the probability distributions of the trausition timnes need not be
exponential,

e
2
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QUEUEING APPLICATIONS

We now illustrate the theory of the preceding seetion throngh some
applications involving the coutrol of quenes.

Example 2.1 (M/M/! Queue with Controlled Service Rate)

Cousider a single-server queacing systomn where customers arvive according
to i Poisson process with vate A The serviee time of a4 eustonmen s cxXpoien-
tially distributed with parameter o (called the service rate}. Service times of
customers are independent and are also independent of customer interarrival
times. The service vate g can be selected from a closed subset A7 of an inter-
val [0, 77) and can be changed at the times when a custotuer arrives or when
a customer departs from the system. There is a cost ¢(y) per unit time for
using rate jrand a waiting cost e{7) per unit time when there are 7 eustomers
in the system (waiting in queue ov undergoing service), The idea is that one
should he able to ent down on the customer waiting costs by choosing a faster
service rate, which presunably costs more. The problens. roughly. is to se-
leet the service rate so that the service cost is optimally traded off with the
custonmer wailing cost.
We assume the following:

L. For some g€ M we have 1 > A (In words, there is available a ser-
vice rate that is fast enough (o keep up with the werival rate, thereby
maintaining the gueue length bounded.)

2. The waiting cost function ¢ is nounegative, monotouically nondecrcas-
ing, and “convex™ in the sense

A2y = (i 1) 2 (i 1) = e(d), [ R IR

3. The service rate cost fuiction ¢ is nounegative, and continuous on [0, 711,
with ¢(0) = 0.

The problew fits the framework of this section. The state is the won-
ber of customers in the system, and the control is the choice of service rate
following a customer arrival or departare. The transition rate al state i is

4 A =0,
v (pt) =
M Ny ifi> 1.

The transition probabilitics of the Markov chain and its uniform version for
the choice

<

= A4

are shown i Fig. 5.2.1.
The effective (ll.\t‘()llll( factor is

“ThErv

See, !
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Al(A+p) 1/(/1+;1)
WA+ JH(A+p) ;l/(lun
Transition probabilities for continuous-time chain
G044 1) W=D AA E ) G A Y
HUA+E)  ANA+H) AHA+)

B A+ A+ LA+

Transition probabilities forthe uniform version

Figure 5.2.1 Coutinnous-time Markov chain and uniforim version for Exan-
ple 2.1 when the service rate is cqual to g The transition rates of Lhe original
Markov chain are v, (51) = X 4- 1 for states o > 1 and vy(p) = A for state 0.
The travsition rate for the uniform version is 1 — AT

and the cost per stage is

»}JH/( (M) Falp).

The forin of Bellman’s cquation is [ef. Eq. (1.11)]

.mn:j{,(n)(uAMﬂm+Aun)

and for i =12 ..,

i

J(i) = T ,x,]r“{}[ (D) Fq() 4+ 40T (i = 1)+ (= A — ) J() + NI (i + l)] (2.1)

An optimal poliey is to use at state i the service vate that minimizes the
expression ou the right. Thus it is optimal to use al state ¢ Lhe service rate

J () = arg llllll {q(,u) N AYD) } (2.2)

pe A
where A(7) s the differential of the optimal cost
Ad) = J@) = J(i - 1), i=1,2....
[When the mininnn in by, (2. 2) is attained by more than one service rate

4 we choose by convention the smallest ] We will demonstrate shortly that
A(d) s monotonically nondecreasing. It will then follow from Eq. (2.2) (sce
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.lk; |(1) = B
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Pig. 5.2.2) that the oplimal scrvice rate " (i) s monotonically nondecrcasing.
Thus, as the queue length increases, it is optimad Lo use a faster service rate.

To show that A(7) is monotonically nondecrcasing, we use the value
iteration method to generate a sequence of functions Jy from the starting
function

.]()(1:) = (), l::()7 l,
For k=0,1,..., [c[. Eq. (2.1)], we have

Jen(0) = B% (c{0) + (v = N)Ju(0) 4 AJ(D)),

and for i =1,2,...,

oy '1‘1&1'11” [r‘(i) +q() 4 i = 1) + (= A=) I (@) + A (i + I)J
(2.3)

Fork=0.1,. . andi=1,2,... let
Ay (I) = ./A-(i) -y (I — 1).

I'or completeness of notation, define also Ag(0) = 0. From the theory of
Section 3.1 (sce Prop. 1.7 of that section), we have Jy(i) — J(i) as b — o.
It Tollows that we have

klim A = A(), i=1,2,...

Therefore, it will suflice to show that A, (7) is monotonically nondecreasing,
for every A I'or this we use induction. 'The assertion is trivially true for
Ak = 0. Assuming that Ag(d) is monotonically uondecreasing, we show that
the same is true for Ay (4). Let

#H0) =0,
i (£} = arg min [:/(/:,) — /:Ak(l)], i=1,2,...
1AL
From Fe. (2.3) we have, for all i = 0,1, ...,

A+ D) = 8 D) = i (d)
= }741?7("“ ED g G D) e D)
(v oA =yt G D)L
PN ) (i) =g (G D) = G =) (2
- (v = N = D)) = (i D)
- -/717 (e 4 1) = (i) + ADRG +2) 4 (1~ NAgli + 1)
= DAL+ ) = Al(D).

See. 5.2 Qucucing Applications 2H3

Similarly, we obtain. for i =1,2,.. ..

1

A (1) € =
k(i) < ey

(i) = el = 1)+ A0 1) 1 (2= DAL

=D (ARG) = Acli - D))

Subtracting the last two lnequalities, we obtain, for ¢« = 1,2, .

W) Bk D) = Ay (D) 2 (cli+ 1) = e(@) = (i) = (i = 1))
FAAR(i+2) = Aeli+ 1))
F = A=y G D) (ARG + 1) - A4(D)
ot = (AR () - Awli ~ 1)).
Using our convexity assimption on (i), the fact v — X = (i + 1) = 71 -
T . 1) 2 0, and the induction hypothesis, we see that every terin on
the right-hand side of the preceding inequality is nonnegative. Therefore,

Ap (i 4+ 1) 2 A (D) for 7= 12,00 1vom B, (2.1) we can also show that
A (L) 20 =A541(0), and the induction proof is complete.

A
q{u)
aw) ! Slope Ali + 1) =J (i +1)-J (i)
‘\:\:
' 1 Slope pli)=J{i)-J(i -1)
; :
0 0w i u

Figure 5.2.2 Defenmining the optimal service rate at states 7 and (i + 1) in
Example 2.1. The optimal service rate (i) tends to inerease as the system
becomes more crowded (7 increases).

To swmmarize, the optimal service rate p*(2) is given by 3q. (2.2) and
: } / 8 A i
tends Lo becomne faster as the system becomes more crowded (7 increases).
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Example 2.2 (M/M/1 Queuc with Controlled Arrival Rate)

Consider the same queneing systein as in the previous example with the dif-
[orenee that the service rate pois fixed, but the arrival rate A can be contiolled.
We assie that A is chosen from a closed subset. A of aninterval [(),;ﬂ, and
there is a cost ¢(A) per unil time. All othier assuuptions of Example 2.1 are
also i elfect. What we have here is a prohlem of How control, wherehy we
wani to trade ofl optimalty the cost for (hrottling the arrival process with the
customer waiting cost.

This problem is very sunilar to the one of Example 2.1, We choose as
nniform transition rate

v=A +

and construct the uniform version of the Markov cbhain. Bellman’s equation
takes the form

J() = T i [0) 4+ q(A) 4 (= A)J(0) + AJ () )],
J(i) = ,TIJ i et} + (N + (i = 1) + (= X = () + MG+ D],

An optimal policy is to use at state 7 the arrival rate

—
(32
ot

=

AT(8) = arg mn\l [1/(,\) + MA@+ l)],
where, as before, A(i) is the differential of the optital cost
A() = J@) = Ji - 1), i=1,2,...
As in Example 2.1, we can show thal A(/) is monotonically nondecrcasing;

so from . (2.5) we see that the oplimal arvival vale fends to decrease as the
system becomes maore crowded {7 increases).

Example 2.3 (Priority Assigminent and the e Rule)

Consider i quenes that share a single server. There is a positive cost ¢, per
unit tite and per customer in cach queue 7. The service time of a customer
of queue i is exponentially distributed with parameter pg, and all customer
serviee times are independent. Assuming that we start with a given nunber
of customers in cach gueue and uo further arrivals occur, what is the optimal
order for serving the customers? The cost here is

n

.
. X PN L
N!TLNL ./“ ¢ Lr,,.z,,(:‘)d[ ,

=1

where r, (1) is the muuber of customers in the ith quene at time #, and 3 is a

positive discount parameter.

[N

Sec. 5. Quencing Applications

We lirst construet the uniform version of Llie problein.

,
P'he coustrieti

A Yo lit construct | : s lon
i> shown in Fig. 5.2.3. The discount factor is

a = ) (2.6)
where
it |||;|x{/l, i,
.
and the corresponding cost is
s I

1 N
B+/LL“ F L(’,.L“ . (2.7)

k-0 [

BTV RN N L . .
where oy is the number of customers iu the ith quene after the

s At transiti
(real or fictitious). e

1
1 1

Transition probabilities for the ith
queue when service is provided

1

Hi Hj

Transition probabilities for uniform version

SR oo L . .

Figure 5.2.3 Continuous-time Markov chain and uniform version for the ith
qm"u(‘ of Example 2.3 when service is provided. The transition rate for the
uniforu version is g = max, {y, }.

, . We now rewrite the cost in a way that is more conveniont, for analysis.
The idea is to transforns the problem from one of mininizing waiting costs

2() one of maximizing savings in waiting costs through customer service, For
v = 0.1, .., define .

iy = f i if the Ath transition corresponds to a departire from queue i,
L0 if the kth transition is fictitious,
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Denote also

Cry = 0,

. P . . .
rg o the initial uumber of customers in queue .

Then the cost (2.7) can also be written as

n ~ n -1
IS i S S - Y
— €00 oy oy - o,
}j + /l "t
1= [ =1 1)
X n ™ (a9
1 " , . &
= a g |- I (L.
RET
k=0 =1 m=0k=m#+i

1 « A &
= I e,
R *«»)Zf ST +m(1—u),2a““ e

O b
Ny — = o e, b
/ B font

=1 ko)
Therefore, instead of minimizing the cost (2.7), we can equivalently

o0
T -
uaximize 3 o Is{c, (2.8)
k=0

where ¢, can be viewed as the samngs in wailing cost rate obtained from the
feth transition.

We now recognize problem (2.8) as a mulliarmed bandit problem. Fhe
n queues can be viewed as separate projects. At cach time, a nonempty
queue, say i, is selected and served. Since a custower departure occurs with
probability gz, /s, and a lictitious trapsition that leaves the state unchanged
oceurs with probability 1-- g, /pr. the corresponding expected reward is

L, (2.9)
F

It is evident that the problem falls in the deteriorating case examined at the
el of Section 1.5, Thercfore, after cach customer departure, it is optimal
to serve the quene with maximnm expected reward per stage (i.c., engago
the project with maximal index; of. the end of Section 1.5). Equivalently
lef. Ba. (2.9)], i s optumal to scrve the nonemply queue & for which ju,c, s
mazitnwm. This policy is known as the pee rule. 1t plays an inportant role in
several other formulations of the priority assignment problem (see [BOMS3],
[HarThal, and {Har75b]). We can view fr,¢, as the ratio of the waiting cost
rate ¢, by the average time 1/p, needed to serve a customer. Therefore, the
e rule aunounts to serving the quene for which the savings in waiting cost
rale per unil average service time are maximized.

See, 5.2 Quenecing, Apphications 267

Example 2.4 (Routing Policies for a Two-Station System)

Consider the systemn consisting of two quenes shown in Fig. 521 Customers
arrive according to a Poisson process with rate A and are routed npon arrival
Lo one of the two queues. Service times are independent and exponentially
distributed with parameter g in the first quene and o in the second gueue.
The cost is

I
lin f2 / ¢ ‘“((‘[.I?l(f)'0*(';.1‘2(1))1” ,

N—oo Jo

where 3, er.and ¢z are given positive scalars, and o (0) and 22(t) denote the
number of custoniers at time ©in quenes | and 2, respectively.

As carlier, we construct the uniforny version of this problem with uni-
form rate

v=A+ o 4 2 (2.1)

and the transition probabilitics shown in Fig. 5.2.5. We take as state space
the set of pairs (7. f) of customers in queues 1 and 2. Bellinan’s equation takes
the form

. L . . .

J(i.j) = m(('n 4 cay +/L1J((1,A l)+.j) -+ /12./(1',,(j — 1)4'))

N (211
+ B+u

min[ (i + L), J (i j + )],
where for any o we denote
()" = max(0, r).
fromn this equation we see that an optimal policy s to route au arriving

custonier to quene il and only if the state (7, f) @t the time of arrival belongs
to the set

St= {16+ 1)) < I+ D} (2.12)

Queue 1 b——» Hy

D

Queue2 |f———m Hp

Figure 5.2.4 Queucing systein of Example 2.4 The problem is to roule
cach arviving customer to guene 1 or 2 50 as o minhmize the total average
discounted waiting cost.
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Components of the transition rates when
customers are routed to queue 1

Hy+ Hp
v

v=A+ gt o

Transition probabiiities for uniform version

i i ark shain ¢ iforin version fur Kxam-
Figure 5.2.5 Continwons-time Markov chain and uniforin . ) -
ple 21 when custoners are ronted to the liest quene. The states are the pe

of customer nubers in the two quenes.

This optimal policy can be characterized better by some [urther ;ul;ll.,ly-
sis. Intuitively, one expects that optimal routing can be il(‘,lll(‘\'(:(l.l)y sClC .mﬂg
a customner t,(; the queue that is “less crowded™ in somne sense. It is theretore
natural to conjecture that, if it is optimal to route to the flrs_t, quene wlf-n the
state is (7). it st be optimal to do the same when the fns.l quene l.h_.elv)extl‘
less crowded; that is, the state is (i —m, J) with i > 1. This is equivalen

Sec. 5.2 Quencing Applications 259

to saying that the set of states Sy for which i, is oplimal to route to the first
quene is characterized by a tonotonically uondecreasing threshold Junction
E by means of

St={{iu) = I(j)} (2.13)

(see Fig. 5.2.6). Accordingly, we call {he cotresponding optimal policy a
thicshold policy.

4 Numberjin Queue 2

Route to Queue 1

Route to Queue 2

—

0 Numberiin Queue 1

Figure 5.2.6 Tyvpical threshold policy characterized by a threshold function
I

We will denonstrate (he existence of a threshold optimal policy by
showing that the functions

Bulig) =J(+1,j) ~ J(i.j+ 1),

B2l jy =, j+ 1)~ (i +1,)

are monotonically nondecreasing in ¢ for cach fixed j, and in j for cach tixed i
respeetively. We will show this property {or Ay: the prool for A is analogons.
It will be sullicient to show that for all & = 0,1, ... the functions

AV g) = duli+ 1,3) = Juli, j + 1) (2.10)

are monotonically nondecreasing in § for each fixed Jo where Jx is gener-
ated hy the value iteration method starting from the zero fune on; Lhat is,
Jiv1(,3) = (T I, j), where T is the D wmapping defining Bellinas (-
tion (2.11) aud Jy = 0. This is true because Sy (i, j) — J(i.j) for all 7. as
F — o (Prop. 1.6 in Section 3.1)0 To prove that A’{(i,_/') has the desired
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property, it is useful to {irst verify that Ji{i, j) is monotonically nondecreas-
ing in ¢ (or j) for fixed j (or ). This is simple to show by induction or by
arguing from first principles using the fact that Ji (i, j) has o k-stage oplimal
cost interpretation. Next we use Bgs, (2.11) and (2.11) to write

(B )AL ) = - e
R ACAHERA (GO RVER))
(e (i LG DY) = D)) (2.15)
A AM(min [ eG4 2,5), Je(i 4 10+ 1)]
—win[Je(i + L,j + 1), i (i.j +2)]).

We now argue by induction. We have AY(i,§) = 0 for all (i,5). We assunie
that Akl'(i,j) is monotonically nondecreasing in ¢ {or fixed j, and show that
the sance is true for AM1( 7). This can be verilied by showing that ecach of
the terms in the right-hand side of Eq. (2.15) is monotonically nondecreasing
in ¢ for lixed . Indeed, the first term s constant, and the second and third
terms are seen to be monotonically nondecreasing in @ using the induction
hvpothesis for the case where i, 7 > 0 and the carlier shown fact that Ji (i, j)
is monotonically nondecreasing in ¢ for the case where i = 0 ovr j = 0. The
last term on the right-hand side of Eq. (2.15) can be written as

A4 1,5+ 1) +min{Je(i 4 2,§) = S (i + 1, + 1),0)
= (i LA ) = min0, (i +2) = S+ L+ 1))
= A(min [0, Jo(i +1.0) = (i + 1,5+ 1)]
Famax [0, S @+ 1,7+ 1) = (i, j +2)])
= A(min[0, AT( + 1,.)] +max[0,AY G5+ D)]).

Sinee AV 4-1, ) and AY (G, j+ 1) are monotonically nondecreasing in 7 by the
induction hypothesis, the same is troe for the preceding expression. There-
fore, cach of the teris on the right-hand side of Eq. (2.15) is monotouically
nondecreasing in 7, and the induction proof is complete. Thus the existence
of an optimal threshold policy 1s established.

There are a number of generalizations of the routing problem of this
example that admit a similar analysis and for which there exist optimal poli-
cies of the threshold type. For example, suppose that there arve additional
Poisson arrival processes with rates Ay and Ay at quenes 1and 2, vespectively.
The existence of an optimal threshold policy can be shown by a ncarly ver-
batin repetition of our analysis. A wore substantive extension is obtained
when there is additional service capacity g that can be switehed at the times
of transition due to an arrival or serviee completion to serve a customer in
quene T or 20 Then we can similarly prove that it is optimal to route to queue
Ll and only if (70 ) ¢ & and to switelh the additional service capacity to
queue 2iFand only if (i 4+ 1. j4 1) € 510 where S s given by Eq. (2.12) and is
characterized by o threshold finction as in g, (2.13). For a proof of this and
further extensions, we refer to [Haj&d], which generalizes and uaifies several

cirlier results on the subject.

5.3
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Discounted Problems

Let us first consider a cost unction of the form

IN ,

lin £ / =g, u(I,))(U} . (3.1)

N Jo

where £y s the completion thine ol the Vil transition, and the l"uuvm;x g
il i The cost funeti an

and the positive discount parameter  are given. .lhg‘ (‘obt} funetion o

adinissible N-stage policy m = {10, g1, .., ftnv =1} 1s given by

N-—1 Loyt .
IV = Z Is // e g (e, g () )t o =i
=0 ik

We sce that for all states @ we have

IR = Glio@) + 3 /m I Qu (dr () I (32)
I 0

where S I(j) is the (N =1)-stage cost of the policy 7 = {/L],/I,Q.. .. ./1N_.1}
that is 11.1;(:(1 after the first stage, and G(i, w) is the expected single stage
cost corresponding to (7, «). This latter cost is given by

Gi,u) = glt, u) Z /“ (/” (f“/“dl,) Qr(dr, u),

J

. T -, . _ -_IiT :
or equivalently, since [ e=Hdt = (1 = ¢=17) /33,

] - (’ﬂ%( T, u) (3.3)
G, u) = gld, M)L./U i Qo (dT ).
J
I we denote -~ ‘
myj(u) = / =70, (dT, u), (3.4)
’ Jo
we see that T, (3.2) can be written in the form
/Lol ) ) ) (3.5)
IR () = (,'(;,/m(:)) + LIH,J (/m(/))l a U
)

i ion for disc ul diserete-time
which is similar to the corresponding equation for discounted diserete-t
problewns {we liave my, (1) in place of (vp,,(u)]: e

The expression (3.5) wotivates the use of mappings T and 7), t ’1"{-
| N p 1 .. 3 . ) J 2l le
similar to those used in Chapter tfor discounted problews. Let us defia
: ar to those

for a function J and a stationary policy e,

(FeD) (i) = G p(i)) + Y ()10, (3.6)
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uclr()

(T'1)(i) = win Gliu) + Zm,_,(u)./(.j) . (3.7)
J
Then by using T. (3.5), it can e scen that, the cost function J, of an
infinite horizon policy 7 = {ro. v, .} can be expressed as
Ja(l) =l SN = T (7,7, RN SN ST
N v x N oo

where Jy is the zero function [Jo(i) = 0 for all ]
policy 1 can be expressed ay

Ju(i) = T (1Y Jy) ().
N =,

. The cost ol a stationary

The disconnted cost analysis of Section 1.2 carries through in its en-
tirety, provided we assume that:

(2} g(i 1) [and hence also G (i, u)] is a bounded function of ¢ and u.

(b) The maximum over (i, u) of the sum E/ g, () is less than ones that

18,

P = max my, () < 1. (3.8)
ioueli(i) ’

Under these circumstances, the nappings 7" and T, can be shown to be
contraction mappings with wmodnlus of contraction p [compare also with
Prop. 2.4 in Section 1.2]. Using this fuct, analogs of Props. 2.1-2.3 of
Section 1.2 can be readily shown, [n particular, the optimal cost function

J* 15 the wmique bonnded solution of Bellan's equation .J = T or

) = min [ GGL) + Z me(e)J ()
ucli{s}
J
In addition, there are analogs of several of (he computational methods of
Section 1.3, including policy iteration and linear programuing,

What is happening here is that essentially we have the equivalent of
a diserete-time discounted problem where the discount factor depends on
and w. In fact, in Bxercise 1,12 of Chapter I, adata teansformation is given,
which converts such a problein to an ordinary discrete-time discounted
probleny where the discount factor is the sawe for all 7 and w. With a little
thought it can be seen that this data transformation is very similar to the
uniformization process we discussed in Section 5.1.

We note that for the contraction property p <1 el Ba. (3.8)] to hold,
it is sullicient that there exist 7 > () and ¢ 2 0 such that. the transition
time is greater than 7 witl probability greater than ¢ > 0; that is, we have
for all i and w € U(4).

1=>"Q,(Fu) = YoPrFiu )
j J

J

i

C. (3.9)
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In the case where the state space is conntably infinite and the func-
tion g(/ 1) is not bounded, the mappiogs 1" and T, are uot contraction
mappings, and a discounted cost analysis that, patallels the one of Section
1.2 is not possible. Fyen in this case, however, analogs of the results of
Section 3.1 can often be shown under appropriate conditions that parallel
Assumptions P and N of that seciion.
We finally note that in some problems, iu addition to the cost (3.1),
there is an extra expected stage cost g7, 1) that is incurred at the time
the control w is chiosen at state 7, and is independent. of (e length of the
transition interval, To that case the mappings 7 and 7), should be changed
to
(T 1)) = (o) + Gl (D) + 3 m (1)),

J

TJ)i) = min
( )( ) al (1)

Glu) + Clu) + >y, () ()

J

(3.10)

Anothier problem variation arises when the cost per unit vime ¢ depends
on the next state j. i this problem formulation, once the system goes into
state 7 a control u € U(7) is seleeted, the next state is determined to be j
with probability p,, (u), and the cost of the next transition is g(i, . j)7i;(u)
where 7,,(u) is random with distribution Q;;(7,1)/pi, (u). Tu this case,
G(i, u) should be defined by

— [ A =T
G u) = }_4 / g(i. 11.])—3—~Q,J(d7‘, ),
~ Jo i
A
[ef. Top. (3.3)] and the preceding developent goes through without modi—l
fication.

Exaumple 3.1

Consider the manufacturer’s problem of Example 1.1, with the only differ
cnce that the times between the arrivals of successive orders are uniformly
distributed ina given interval [0, 7,0 ] instead of being exponentially dis-‘
tributed. Let I and N denote the choices of filling and not filling th
orders, respectively. The transition distributions are

ey = Jwin 1 ]oirj =1,
@ (rdr) = 0 " otherwise,
and [ } ) .
e in|l. - ity =i+
Q. (1. NI :{“““ :
enlr ) 0] otherwise.

The effective cost per stage ol B, (3.3) is given by

GU )Y =0, G, NIP) = ~ci,
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Ty T
Y == ——dT.
Jo l‘rm.n\

The sealars i, of Fao (31) that are nonzeto ane

[
o
[

where

1 (F) = mjy 1, (NF) = a,

SESTITIEN (‘—,17— 1 — ¢ HBrinax
G = dr = T
v Trax BTinax

Bellman's cquation has the form

where

J{i) = min[l\’ Fad(l), qei +ad (i + 1)} P=1.2,....

As in Bxample 1.1, we can conclude that there exists s threshold i* such that
it is optimal to {ill the orders if aud ouly if their number i excecds i*

Example 3.2 (Countrol of au M/D/1 Queue)

Consider a single server queue where custoniers arrive according to a Poisson
process with rate A, The service time of a customer is delerministic and is
equal to 1/p where g is the service rate provided. The arrival aud service rates
Aand g ocan be selected from given subsets A ad A, and can be changed
ouly when a customer departs from the system. There are costs () and ()
per unit time for using rates A and g, respectively, and there is a waiting cost
c(2} per unit time when there are £ customers in the system (waiting in quene
or undergoing service). We wish to find a rate-sctting policy that minimizes
the total cost when there is a positive discount, parameter 3.

"This problem bears similarity with Iixamples 2.1 and 2.2 of Seetion 5.2,
Note, however, that while in those examples the rates can be changed both
when a customer arrives and when a customer departs, here the rates can be
changed only when a customer departs. Beeanse the service tinee distribution
is not exponential, it is necessary to make this restriction in order to be able
to usc as state the number of customers in the systeny; if we allowed the
arrival rate to also change when a customer arrives, the time already spent
in service by the customer found in service by the arriving customer would

~ have to be part of the state.

The transition distributions are given by

Lt AT e —
Qu(r Ay =4 Lo i =1,
0 otherwise,
i/ <r,

P>t

’

N
Quirdg = { P
dulm A ) 0 otherwise,
where pi, (A, 1) are the state transition probabilities. 1t can he scot that for
2 laud j>i—1, p,(\ ) can be ealeulated as the probability that j -+ 1
arrivals will occur in an interval of length [0,1/p). In particular, we have
MEG )
pir(A ) = 0 T iy =i~ 1,

) 1> 1
otherwise,
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Using the above formulas and gs. (3.3)-(3.4) and (3.6)-(3.7), one can wrile
Bellman’s equation and solve the problem as if i, were essentially a discrete-

time disconnted problem.

Average Cost Probleins

A natural cost function for the continous-time average cost problem

would be

-0

<
lin -,I-E / g (), u(t))dt 3. (3.11)
r r Ju

Howcever) we will nse instead the cost function

! N } -
(1T T—— ) gLe(), ult))di 5, (33.12)
1'\/1“-“>u I'J{/N}I {/n 'l( 1.t ))

where {y is the completion time of the Noh transition. This cost funetion
is also reasonable and turns out to be analytically convenient. We note,
however, that the cost functions (3.11) and (3.12) are equivalent under the
con(litioﬁs of the subsequent analysis. although a rigorous justiﬁcnti(m. of
this is beyond our scope (see [RosT0], p. 52 and p. 160 for related anadysis).

\\’V(“ilﬁh'lllll(‘ that there are 2 states, denoted 1...., 0, and that the
control constraint set U(7) is linite for cach state &0 For cach pair (7. a), we
denote by G(iou) the siugle stage expected cost corresponding to state i
and control «. We have

G u) = g(d, )7, (u), (3.13)
where 7, (1) is the expected value of the transition time corresponding to
(i, u):

7,(u) = Z / 7CQ,, (dr, u). (3.14)

jel Y

I the cost per unit time ¢ depends on the next state j, the expeeted
transition cost G2, «) should be defined by

" o~

G u) = Z / gli,u j) 7 Q) (dr, ).

J I.(l

aud the following analysis and results go through without modification.]
We asstune throughout the remainder of this section that

0 <7 (1) < x. i=1 o uwe U (3.15)
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The cost function of an admissible policy 7 = {19, y11, .. -} s given by

I Nt
Jel) = lim —— h“.-:‘
v N E{ty | wo =i, n} FL:B/,A 9w (i) df | g = i

Our carlier analysis of the diserete-time average cost problem in Chayp-
ter 4 suggests that under asswmptions similar to those of Section 4.2, the
cost J,(7) of a stationary poliey g1, as well as the optimal average cost per
stage J* (i), are independent of the initial state 4. Indeed, we will see that,
the character of the solution of the problem is determined by the strue-
ture of the embedded Markouv chain, which is the coutrolled discrete-time
Markov chain whose trausition probabilitics are

Py (u) = lim Q. (1. u).

T o

In partientar, we will show that Jy(d) and J*(i) are independent of i if
and only if the sume is truc Jor the cimbedded Markou chain problem. Yor
example, we will show that J,(7) and J*(i), are independent of 7 if all
stationary policies g are unichain: that i3, the Markov chain with rausition
probabilities p,, (/1(17)) has o single recurrent, class.

We will also show that Bellman® s cquation for average cost sei-
Markov probleins reseibles the corresponding discrete-time equation, and
takes the form

hi) = v |Gl - /\?,-(u)Jr/:Z:p,_,(u,)lz(j) . (3.16)

As a special case, when To(u) = 1for all (4,u), we obtain the correspond-
ing discrete-tine equation of Chapter 4. We illustrate Bellman's equation
(3.16) for the case of o stogle unichain poliey with the stochastic shortest.
path argument that we used to prove Prop. 2.5 in Scetion 1.2,

Consider a unichain policy 7 and without loss of generality assune
that state 1 is a recurrent state in the Markov chain corresponding to 1. For
cacli state 7 £ n let €, and T; be thie expected cost and the expected time,
respeetively, up to reaching state n for the Hrst Gioe starting from ¢, Let
also ¢ and T, be the expected cost and the expected time, respectively,
up to returning to n for the first time starting from n. We can view C, as
the costs corresponding to e in a stochastic shortest path problem where
n s a termination state and the costs are (.'(i,/l(i)). Stice s a proper
policy for this problem, (rom Prop. 1.1 in Section 2.1, we have that the
scalars C; solve uniquely the system of equations

n

Co=Gp@)+ > pu(e®)C,, =1, n (3.17)

J=1 0 #n
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Stmilarly, we can view 7T, as the costs corresponding to e in a stochastic
shortest path problem where 1 is a tenination state and the costs are
Ti (/1(i)), so that the T solve uniquely the systent of equations
"
gt = . - N\ rp . . :
c= T (i) + E Py (1)) T, Pe=1oon. (3.18)
Jot/n

Denote

C
Multiplying Eq. (3.13) by A, and subtracting it from Eq. (3.17), we obtain
foralli=1,...,n

i

Do pu ()€ = NT).

s=0#n

Cio= Ml = G (D)) = AT () A

By defining
hp(i)y = C, = AT, =1, (3.20)
and by noting that from Bq. (3.19) we have
Iy =0,

we obtain for all i = 1,.... n,

hyi) = G i, (i) = N7 (i Z[),, HiN I (5), (3.21)
which is Bellman’s equadion (3.16) for the case of a single stationary policy
.

We have not yet proved that the scalar A, of Eq. (3.19) is the average
cost per stage corresponding to . This Tact will follow from the following
proposition, which parallels Prop. 2.1 in Section 4.2 aud shows that if
Bellman's equation (3.16) has a solution (A, h), then the optimal average
cost s equal to A aud is independent of the mitial state.

Proposition 3.1: Il a scalar A and an n-dimeusional vector I satisfy

+‘Z])ij(ll-)/l(j) , i=1,...,n,

J=1

hii) = i G(i,u) — ATy
() uré}}l(li) (i,u) ~ AT (u)

(3.22)
then A is the optimal average cost per stage J* (i) for all 4

A = min Jg (i) = J*(i), i=1,...,n (3.23)

Lurtherore, il g (6) attains the winimum in Bq. (3.22) for cach ¢, the
stationary policy y¢* is optimal; that is, Ju=(2) = A for all 4.
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> . N T Y, 9 H ‘
Proof: For any ;i consider the napping T, 0 00— 10 piven by

+L1)l, /1

and the veetor 7() and watrix Dy given by

(Tuh)(i) = G(i

)7 1= PITPI N

) 1)11(/1(1)).‘./n,,(/l(l))

T(p) = . P, =
T (/l(”’)) ])"1(/1(7’)) e Pun (/l(ll))

Let m = {1, ...} be an
. any admissible policy aud NV be : ¢ integer
- h'm‘ o B (o) 1 Y AUV be a positive integer.
Lo h > A=) + I
By applying T,,N_ to both sides of this relation, and by using the mono-
tonicity of T}, _, and Eq. (3.22), we sce that
Lo Tun 2T, (V1) + I
= \II'N 2 (.“N~1) +1ﬂm N
2 APy ST (i) + AT (jn 2) + h.

Continuing in the same manner, we {inally obtain

TI'UTHI T TI'Nq h> ’\TN(W) + I (3.2‘1)

where () is given by

IN( )— [I'u [I’A 2 (/’N~l)
+ 1/’0 e IDI’-N”_'gF(/L/\"Z) + -t F(/l()).

Note that the ith component of the vector IN(T) s Bty | wg = .7}
the expected value of the completion time of the Nih t.l'il,ll.\:'lt,i()’lll“\\Il(‘Il. (/lllj(:
}mtml state is 7 and 7 is used. Note also that cquality holds in I t'% ‘}1
:i“y‘k(i) attains the mininmm in Fq. (3.22) for all & ;;‘n(l i, .l( <-n:1 ll.u"x*.:(/'x)x
i .

o . ghY
(Tuu[,,, T 1)) = L{ aw) + / {/(.r(l,), IL([,))JI, ] Iy = I-.7T}‘
0

Usiug this relation in 1. (3.2 ividi
: ; Al (320) and dividing by iy e
obtain for all / s

Bfiten) |20 =in} | B0 a(e(t).u(n)a it | ro =i v)

i g =4, 7} L{’N l ,m}”"‘“‘“'

Eliy | ey =i, x} "

ST we

= A4+
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Taking the limit as N — 0o and using the fact limyoe L{tn | 2o =
i, w} = o0 fef. Eq. (3.15)], we see that
2 {[‘:N g(e (D) u(D)dt

Frg = i,W}
litn - -t = (0) oA, TR
N—o I‘J{IN | Iy =1, 71'} "( ) ! '

with equality it g (7) attains the minimum in g (3.22) lor all & and 7.
Q.E.D.

By combining Prop. 3.1 with Eq. (3.21), we obtain the following:

Proposition 3.2: Let g be a unichain policy. Then:

(a) There exists a scalar Ay, and a vector fiy, such that

Jlt(i') :/\;u 1= 1,‘..,”,, (

o
b
&
NJ/

and

By (i) = G (i, (i) = AT (,u,(i))+z pij (@) bu(j), i=1,...,n.
j=1

(3.26)
(L) Let ¢ be a fixed state. The system of the 1 + 1 linear equations

h(i) = G(i, (7)) = N7 (1e(0)) + Zp,,j (n@)h(), i=1,....n,

(3.27)
h(t) =0, (3.28)

in the no-F L unknowns A, A(L), ... h(n) has a nuique solution.
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Lt can be scen that we have for all 4 and J
n
0 < by (u), ZI"I_/(“) =1
;0
pola) -0 if and ouly il po ) . (:3.30)

We view P, (u) as the transition probabilities ol the discrete-time average

cost problem whose expected stage cost corresponding (o (i u)is
S G(i, u)
Gli,u) -~ = . (3.51)
7,(u)

We eall Chis the auwrdiary duserete e wocrage cost problem. The follow
ng proposition shows that this problem is essentially equivalent with owr
original semi-Markov average cost, problem.

Proof: Part (a) follows from Prop. 3.1 and Eq. (3.21). The proof of part
(b is identical to the prool of Prop. 2.5(b) in Section 4.2. Q.E.D.

To establish conditions under which there exists a solution (A, 1) to
Bellman's equation (3.22), we formlate a corresponding diserete-time av-
crage cost problent Let 4 be any sealar sueh that.

Ti(n)
1 = p,(0)
for all 7 and v € U(i) with pii(u) < L. Define also for all 4 and v € U (i),

<y <

2y, () if j £,

‘T‘,(u)( )
L= pi, ()
L O

Py (u) = (3.29)

ifj =i,

Proposition 3.3 If the scalar A and the veetor satisly

n
hiz) = 1 a1t — ~ T _
10 Juin Gli,u) — A+ Z}pu(u)h(]) , i=1,....m,
=
(3.32)
then A and the vector h with conponents

h{i) = ~vh{i), i=1,...,n, (3.33)

satisfy Bellman's equation

h(i) = “1611[}1(11) Gliyu) — N7 (u) + ;pu(u)h,(j) ) i=1,...,n,

(3.34)
for the semni-Markov average cost problem.

Proof: By substituting Iiqs. (3.29), (3.31), and (3.33) in Eq. (3.32), we
obtain after a straightforward caleulation

n
. 1 : . ) .
0= min —— [G(i, 1) = AT, (u) t E po () = By, 0 Lo,
weli(n) 7, (1) .
1=
This nmplies that the mininnun of the expression within brackets in the
right-hand side above is zero, which is equivalent to Bellinan's equation

(3.34). QE.D.
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Note that in view of 1q. (3.30), the ausiliary discrete-time average
cost. problem and the semi-Markov average cost problem have the same
probabilistic structure. In particular, il all stationary policies are unichain
for one problem, the same is trne for the other. Thus, the results and
algorithims of Seetions 12 and L3, when applied to the anxiliary diserete-
titne problem, yield results and algorithis {or the semi-Markov problem,
For example, value iteration. policy tteration. and linear programming can
be applied to the auxiliaey problem in order to solve the semi-Narkov
problem. We state a partial analog of Prop. 2.6 from Section 4.2.

Proposition 3.4: Consider the semi-Markov average cost probleny,
and assunie cither one of the lollowing two conditions:
(1) Every policy that is optimal within the class of stationary policies
is unichain.

{2) For every two states ¢ and 7, there exists a stationary policy 7
(depending on i and j) such that, for some k&,

Plag=j|eo=1m >0

Then the optimal average cost per stage has the same value A
for all initial states i. Furthermore, A together with a vector h
satisfies Belhuan’s equation (3.34) for the scni-Markov average
cost problem.

Proof: By Prop. 2.6 in Scction 1.2, under cither one of the conditions
stated, Belbuan's equation (3.32) for the auxiliy discrete-time average
cost problem has a solution (/\,ii)7 from which a solution to Belliman’s
cquation (3.31) can be extracted according to Prop. 3.3, Q.E.D.

Example 3.3:

Consider the average cost version of the manufacturer’s problem of Example
3.1 Here we have

Timax

T(F)=F (NI = .
CiTrns

G ) = K, GU NIy = 5

where [ and NI denote the decisions to Gl and nov fill the orders, respee-

tively, Bellman's equation takes the form

Tax

U h(i 4+ t‘)] .

?m-\,\

oy

h(7) == min [I\' - A b (1), iRt
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We leave it as an exercise for the reader to show that there exists a threshold
" such that it is optimal to Il the orders if and only if exceeds 0t

Example 3.4: [LiR71]

Consider a person providing o certain type of service to customers, Poten-
tial customers arrive according to a Poisson process with rate 2 that s the
customer’s interarrival times are independent. and exponentially distributed
with parameter . Each eustomer offers one of 7 pairs (m,,T,), i == 1,...n,
where n, s the amount. of woney offered for the service and 7, is the aver-
age amount of time that will be required to perform the service. Suceessive
offers are independent and offer (1., T3) occurs with probability p,. where
Zj':l po= L An offer may be rejected, in which case the customer leaves,
or may be aceepted iu which ase all offers that arrive while the customer is
being served are lost. The problem is to determine the aceeptance-rejection
policy that maximizes the service provider’s average tucome per unit time,

Let us denote by i the state corresponding to the offer (m,, 7)), and let,
Aand R denote the aceept, and reject decision, respectively. We have

- 1
RN =T+, ()= !

1.7
Gli,A) = —n,, G R) =0,

Py Y =p,(R) =p,.

Bellan's equation is giveu by
, , o] - , R
(i) = min [ —m, — A (1,‘ + ,—> -+ Zj];_,h‘(_/)7 ~—/\]-' + L])J/I,(_})
=1 g1

I follows that an optimal policy is to acceept oller (r. 1) if
S > —A
7~ ’

where - A is the optimal average income per init bime,

5.4 NOTES, SOURCES, AND EXERCISES

The idea of using uniforization to convert continnous-time stochas-
tie control problews involving Markov chaius into diserete-time problems
gained wide attention following [Lip75h): sce also [BeR87].
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Control of gquencing, systems has been rescarched extensively. For wheve v 2 v, i =1, on. Consider also the following equation:
additional material on the problem of control of arrival rate or service rate
(cf. Examples 2.1 and 2.2 in Section 5.2), sce [BWN92}, [CoR87], [CoV3l], oAl gt Bt _ i (Buh*
[RVWS2], {Sob2], [StP74], aud [Sti85]. For wore on priority assigunent ’ ’ ’ K

and routing (cf. Examples 2.3, 2.4 in Section 5.2), see [BDMS83], [BaDs1]. he
[BeTs9b), [BLEOL], [CoVad], [HarTda], [Har7hh], [Palksl], [SuCyl], and Use these relations (o write
[AyRO1], [CrCol], [EVWS0], [EpV8Y], [Hajs4], [LIKSd], [TSCI2], [VilEss], ‘
respectively. - iy _ '

Semi-Markov decision models were introduced in [Jew63] and are also p(t) = p(0) Z Cik 057,
discussed in [Ros70)]. k=0

where
" (Ut)k st ) Iy
EXERCISES I'(k,t) = i C = Prob{k transitions occur between 0 and ¢

in the uniform Markov chain}.

Verily that for + = {,... n we have
5.1 (Proof of Validity of Uniformization) m(l) = Pml){.r(t) = ¢ in the uniform Markov chuiu}.

Complete the details of the following argument, showing the validity of the
unitformization procedure for the case of a finite nuber of states i = 1. ..., n.
We fix o policy, aud for notational simiplicity we do not show the dependence
ol transition rates on the control. Let p(4) be the row veetor with coordinates

[%]
]

Consider the A7/M/1 queucing problem with variable service rate (IExample
2.1 in Section 5.2). Aasimie that no arrivads are allowed (A = 0). and one can
cither serve a customer at rate ji or refuse service (A = {0, 4}). Let the cost
rates for customer waiting and service be (i) = ¢ and (g0, respectively,
We have with ¢(0) = 0.

dp(l)/dt = p(1) A,

pot) = P{e(t)y =i} RN VN n.

{a) Show that an optimal policy is to always serve an available customer if
where p(0) is the row vector with ith coordinate equal to one if &y = ¢ and
zero otherwise, and the matrix A has clements q(s) ¢

vy WA,
a,, = . .
' —u, b= and to always refuse service otherwise.
) . (b) Analyze the problem when the cost rate for waiting is instead (i) = ¢i?.
[Prom this we obtain

p(t) = 1)(())(““.

5.3
where
N A . . . .
mt N 7(‘7”)« A person has i asset to sell for which she receives ofters Thad can take one
— Al of n values. The times between successive offers arve random, independent,
and identically distributed with given distribution. Find the offer acceptance
Consider the trausition probability malrix 13 of the uniform version policy that maximizes £{a”'s}, where T is the time of sale. s is the sale price,
and a0 € {0, 1) i¢ a disconnt. factor.
A
B=1+ -,

1/
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[
15N

Analyze the priorvity assigmuent problem of Fxample 2.3 in Scetion 5.2 within
the semi-Markov context of Section 5.3, assuming that the customer service
times are independent but not expouentially distributed. Consider both the

discounted and the average cost cases.

5.5

An unemployed worker receives job oflers according to a Poisson process with
rate . which she may accept or rejeet. The offered salary (per unit time) tokes
oue ol n possible valiues . ... w, with given probabilities, independently of
preceding offers. I she accepts an olfer at salary w,, shic keeps the job for a
random amount of time that has expected value 1,0 I she rejects the olfer,
she receives unemployment compensition ¢ (per unit time) and is cligible to
accept future offers. Solve the problem of maximizing the worker’s average

income per unit time.

Consider a single server quencing system where the server may be cither on
or off. Customers arrive according to a Polsson process with rate A, and their
service times are independent, identically distributed with given distribution.
Each time a customer departs, the server may swilch from on to off at a fixed
cost. C'y or from off to on at a fixed cost C. There 1s a cost ¢ per unit time
and customer residing in the systenn. Analyze (his problem as a semi-NMarkov
problem for the discounted and the average cost cases. In the latter case,
assnie that the quene has limited storage, and that enstomers arriving when

the gquene is full are lost.

7

1}

Consider a semi-Markov version of the machine replacement problem of Ex-
ample 2.1 in Section 120 Here, the trausition times are random, independent,
and have given distributions. Also g(¢) is the cost per unit tune of operat-
ing the machine at state i Assume that p,4qy > 0 for all i < 0. Derive
Bellman’s equation and analyze the problem.
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