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PREFACE

Integer programming, in its often disparate guises, has been advancing
with vigor yet by fits and starts in many different directions. The group
theoretical or algebraic approach, first investigated by Gomory in 1958, is
now well established and being pushed forward computationally and
theoretically. In particular, a spate of recent activity concerns polytopal
descriptions of regions having integer valued extreme points. Enumeration,
or “branch-and-bound,” spurred by the successes of Little ef al. in solving
traveling salesman problems in 1963, and perhaps the most effective ap-
proach for practical computation, is being pursued. Heuristic devices for
finding “‘good solutions™ quickly, such as that used with such surprising
results for the traveling salesman problem by Lin in 1965, continue to be
proposed. And, since the enormously successful marriage of “relaxation”
and “branch-and-bound” affected by Held and Karp (again for the
traveling salesman) in 1971, the use of relaxation in integer (and, incidental-
ly, otherwise modified) programming problems is being explored.

Along with these various and other tendencies has come the need for
generalized settings or theories explaining the “place” or categorizing the
type of this or that approach, the need for sets of reasonable problems with
which to experiment and by which to compare approaches, and, finally, and
most important, the expanding need of the practitioner to solve real pro-
blems.

All of these directions, tendencies, and needs are displayed in this
STUDY: as such it is a fairly reliable witness to the-state of the art and
major preoccupations and efforts in integer programming today.

Paper 1, by Breu and Burdet, focusses on enumeration but is motivated
by pragmatic computational experimentation with “reasonably” difficult
or large problems. Guided by the results of computer tests, it passes in
review various ideas, tactical choices and overall strategies which have been
or can be used in defining a branch and bound method. On this level it takes
on the role of a survey, categorizing and comparing. At the same time it
reports extensively on the results of tests, and gives careful descriptions for
the generation of test problems.

Paper 2, by Burdet and Johnson, is concerned with the group problem

v



vi Preface

(itself a relaxation of the) underlying integer programs, but attacks it by
means other than the analysis of the group structure. This is at least partly
motivated by the potentially large order of the groups encountered. Using
results about the generation of valid cuts for the group problem with sub-
additive functions, and more particularly, “‘diamond gauge functions,” the
paper develops a new cutting algorithm for solving the problem in which the
computational effort is not directly related to the order of the group.

Paper 3, by Fulkerson, Nemhauser and Trotter, identifies the particu-
larly interesting, because difficult, minimim cardinality set-covering pro-
blems which arise in seeking the 1-width of incidence matrices of Steiner
triple systems. There is pure mathematical interest in seeing new informa-
tion concerning old speculations from the solution of one of these problems
(having 117 constraints and 27 variables). There is both theoretical and
computational interest in the challenge of solving the other problem
(having 330 constraints and 45 variables), which has so far resisted the
efforts of theoretician and practitioner alike.

Paper 4, by Geoffrion, notes the success of the relaxation idea in solving
various special problems (notably the traveling salesman) and develops the
idea in a general framework for use in enumerative approaches to integer
programs. Certain already known approaches emerge as special cases, such
as the “penalty” approach, “surrogate” constraints, and some cuts. Ap-
plication to three particular types of integer programs— 0,1 problems,
0,1 problems with “multiple choice,” and 0,1 problems with location type
inequalities—is carefully investigated.

Paper 5, by Ibaraki, Ohashi and Mine, proposes a heuristic approach
and program for the solution of mixed integer programming problems
which extend earlier ideas of Hillier. Extensive computational evidence is
presented to argue the validity and excellence of the approach.

Paper 6, by Johnson, analyses the group problem which results from
a relaxation of the mixed integer programming problem. Although consi-
derably more difficult than the group problem for the pure integer problem,
subadditive functions are again used in providing cuts and faces of the poly-
hedron of feasible solutions to the group problem.

Finally, Paper 7, by Williams, investigates the effect on computation of
formulating each of five problems arising in practice as two different integer
programs. In each case a branch-and-bound program is used. Definite
differences are found and some morals are drawn from these.

M.L. Balinski
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BRANCH AND BOUND EXPERIMENTS IN
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This paper investigates, both from a theorctical and practical point of view, the ability
of a general branch and bound approach to solve pure zero-one programming problems.
Large scalc experiments show that our algorithm is able to compete successfully with special
purpose implicit enumeration codes.

An effort has been made in the presentation to put various concepts into the proper
perspective from the point of view of an efficient computer implementation. We give a brief
general description of those “‘classical” aspects which were found useful in our framework.
Most of the paper, however, deals with new ideas emerging from pragmatic analysis.

Introduction

The efficiency of mathematical programming codes and their ability
to solve large scale problems in the area of linear and mixed-integer pro-
gramming has been greatly increased over the past few years. In fact many
practical problems can now be solved [27, 30, 35].

While the branch and bound approach proposed by Beale and Small
[7], Land and Doig [22], Little et al. [26] and others has proved quite
successful [8, 28] for mixed integer problems with many linear (continuous)
and few integer-constrained variables, it has not received much attention
in the all-integer context.

The area of pure integer (also zero—one) programming has evidently
not enjoyed the same development trend; it seems to remain limited to an
order of magnitude (50 to 100 zero—one variables, depending on the degree
of difficulty of the problem) reached by the better enumerative codes
[2, 16, 18]. In order to break this barrier, several new approaches have
recently been proposed to construct cutting planes [3, 4, 11, 12, 19] and
new algorithms [5, 10, 13, 21]. The practical value of such “sophistica-
ted” techniques has yet to be tested in a realistic implementation, however.

* This project was partially supported by the National Science Foundation (grant GP
37510X) and the U.S. Office of Naval Research (contract N0014 67 A -0314 00u NR 047 048)

** Visiting Fellow 1972 1973.

*** Associate Professor of Industrial Administration, on leave from the Graduate School
of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pa.



2 R. Breu, C.-A. Burdet, Branch and Bound experiments in zero -one programming

In spite, or perhaps because of their conceptual simplicity, the so-called
rudimentary branch and bound algorithms have generated little enthusiasm
in pure zero—-one programming. Such an LP based approach is expected
to introduce a mass of arithmetic operations, problems of numerical
accuracy and various additional difficulties. Furthermore, as pertinently
observed by Balas in [1] all that is required to solve pure integer programs
are boolean and/or integer additions. In reality, however, things are some-
what different : in order to become efficient, Balas’ algorithm must be
reinforced by a multitude of special purpose devices; LP solutions, in
particular, are extremely useful [16]. We investigate here an alternate
methodology based on the flexibility of a general Branch and Bound ap-
proach and we show that it is competitive with other currently developed
and implemented algorithms. This opinion is supported by the following
comments :

(1) If CPU time is taken as a measure, our code’s performance on “hard”
and/or ‘‘large” problems is satisfactory (see Tables X.11 and X.12).

(1) The approach proves reliable in the sense that it solves all test pro-
blems from the literature even those previously unsolved.

(ii1) In spite of the fact that our code is set up to handle mixed problems,
its performance on highly structured pure zero one problems is good
(see Table X.13).

(iv) The code can also contend with subsidiary issues of a practical
nature such as sensitivity and multiple (sub-)optimal solutions within a given
percentage of the optimum.

(v) Through its ability to solve both pure and mixed formulations,
our approach allows the investigation of integrality requirements and their
influence on the solutions.

Success in solving difficult zero -one (pure or mixed) problems depends
upon a few essential elements. First, one has to adequately control the
effects of numerical errors and the number of arithmetic operations, in
order to generate updated subproblems and to perform a great many
pivot steps without distortion of the ““exact problem structure”. A careful
organization of the computer operations is also required during the cal-
culation of bounds and branching choices (tactics). Finally, the natural
flexibility of the method ought to be exploited : during the execution, one
should have ready access to the mass of information accumulated during
previous node computations. This can be accomplished by the adaptive
strategies suggested in Section IL.2.

The paper is self-contained and surveys those classical aspects which
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were found useful in the development of new techniques. We frequently
attempt to test the relative merit of elementary yet powerful devices and of
more elaborate results. Section I outlines the general framework and ter-
minology used throughout the paper. It exposes the interested reader to
some practical details of the implementation. Section Il contains a des-
cription of methods to compute bounds and to choose a branching va-
riable. In Section HI we discuss strategic principles to determine the se-
quence of tactical operations.

Throughout the study we try to remain faithful to a pragmatic philo-
sophy, testing a wide variety of computationally simple devices in our
experimental code (all-FORTRAN, all-in-core). Initially all ideas which
were implemented stemmed from classical results and common sense.
But later, we gradually obtained significant improvements of the overall
performance by observing the solution process and making ad hoc modifi-
cations. The practical value of a given property critically depends upon
the form of its implementation; this is not always apparent from the litera-
ture where such aspects are rarely developed in sufficient detail. The pat-
tern of our research is different in that it originates at the level of a coded
implementation. In this precise context, our investigations have led us to
exploit elementary properties of integer programs, some of which have
not been previously explored. The ultimate criterion to validate algorith-
mic proposals in this manner is based on computational performance and
our judgment in that respect is subjective. It is colored by our general
approach and the particular programming style of our code. The selection
of test problems is a further element of subjectivity. We do not feel that
performance of a code on problems which can be solved in less than a
couple of seconds is meaningful. In view of the exponential growth under-
lying integer programs, the extrapolation of any measure of efficiency
becomes extremely ambiguous. We thus base our judgment on difficult
and/or large problems.

I. Branch and bound

L.1. General framework and terminology
Consider the linear program

minimize x, = ¢ x,

subjectto Ax = b ()
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with vectors x and ¢ (n components), b (m components) and a m by n
matrix A; we assume that the linear program (1) is in Dantzig format and
that the first n,, components of the vector x are structural binary (zero—one)
variables, i.e.,

x;=0,1 forallieN, = {1,2,...,n,}. )

Depending on the nature of the rows of A, some (or all) slack variables
may also be integer constrained.
The following terms are used throughout the paper :
Node. Any partition of the index set N, into three mutually exclusive
sets :
Nzero UNone u]Vfree = Nzo

and the corresponding subprogram
minimize x, = ¢ X,

subject to 4 x = b,

X = 0, iENzero’
x; =1, 1€ N e,
0 Sx,- < 1, iENfree.

(There are 2"=*1 — 1 possible nodes.)

If the subprogram has an optimal solution, then the corresponding
tableau in explicit format is denoted as follows :

Xy = Xo + Z_cjxj,
N

It

X; =X; — a;;Xx;

where N is the (optimal) non-basic index set for the subprogram and one has

;=0 forall jeN,
0 < 35,- <1 for ieNfrcc,
0 x; otherwise.

X
Furthermore, if 0 < X; < 1 for some i € N¢,,., then the basic variable x; is
said fractional.
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Successor node. A node k is called successor of a node h if one has

k h
N 2 NL,

zeroy

k h
Ng. 2 NG

one>
Nite S N{e.
Bound (of a given node). Any real number f such that X, =B for all
(integer) feasible solutions X of the subprogram corresponding to that
node; in particular, one has

X;=0o0r1 forallieNg,,.

Penalty (at a given node). Any quantity p =0 which can be used to
produce a valid bound B = X, + p from the LP optimal value X, of the
corresponding subprogram.

Cut-off value. The quantity y is called a cut-off value when the solutions
to (1, 2) which satisfy x, > y are of no interest.

Level (of a node). Number of fixed variables at that node.

Pending node. A node which has been explicitely identified but is not
yet either fathomed or branched (see below).

Fathomed node. A node which need not be further considered because
— either its subprogram is infeasible
— or its bound is above the cut-off value (f > v), implying that no solution

of the corresponding subprogram is of interest.

Branched node. A node whose two direct successors are either pending
or fathomed.

Feasible, optimal, suboptimal solutions. As customary in mathematical
programming, taking also the integrality requirements (2) into account.

Breadth (of a level). Number of branched or pending nodes at that level.

Depth (of a branch). Number of branched nodes on that branch.

Front. Set of pending nodes (at a given time) during the execution; we
shall also use the maximal front as a cardinal measure of performance.

Tactics. Considerations made for a single node and with the corres-
ponding local information; for instance penalty and bound computa-
tions, determination of a branching variable at that node.

Strategy. Rules and guidelines governing the sequence of tactical oper-
ations; for instance, the choice of the next node, and the control of breadth
and front. In contrast to tactics, strategies invoke informations gathered
from several nodes (subtree).
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Tuctical improvement. A modification of a procedure which reduces the
amount of computations or generally increase the efficiency at a single node.

Strategic improvement. A modification which brings about a reduction
of the number of nodes to be considered for further tactical operations
such as bound computations, branching, storage, etc.

One may remark that neither tactical nor strategic improvements need
bring about an overall improvement; a tactical improvement may be stra-
tegically catastrophical because it triggers an avalanche of additional
nodes. Similarly a strategic improvement may reduce the number of nodes
but require many expensive computations for each node.

The basic framework in which we propose to operate is best referred
to as Branch and Bound [7, 22, 26, 29]. The algorithm may be sketched
as follows :

(1) Initialize the algorithm by defining a cut-off value (e.g., y = +00)
and put the zero level node (N,;, = Nope = 0, Ngree = N,,) into the front.

(2) Select a node of the front for further branching. Determine its two
successors (subprograms) and compute the corresponding bounds. Up-
date y whenever new integer solutions are found with a better (i.e., smaller)
objective function value than the current cut-off y. Update the front by
removing the branched node and adding its two successors (if they are not
immediately fathomed). Fathom the nodes of the front which are domina-
ted by the new cut-off value y. Iterate (2).

(3) The algorithm terminates with an empty front. The & best solutions
are collected or one shows that therc are only I < k feasible (integer)
solutions.

The algorithm contains three crucial procedures-:
— bound computation (tactical),
branching variable selection (tactical),
— node selection (strategic).

And the efficiency of these procedures, measured by the overall perfor-

mance of the algorithm, depends entirely on the following :

(i) Detective ability to divine a path (branch) to the optimal solution or,
at least, to a very good suboptimal solution; this provides a tight
cut-off value early in the execution.

(i) Power of discernment to eliminate fruitless branches as close as
possible to their root; this is the job of the bound machinery (opti-
mality) and/or the arsenal of logical implications (feasibility) des-
cribed in Section 1.
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(iii) Computational effectiveness to derive with sufficient accuracy the

information required by (i) and (ii), at a low cost.

Theoretically, observations of this type offer little more than the frus-
tration of a trivial philosophical ratiocination; but one must constantly
keep them in mind if an implementation is to be more than a vaguely co-
herent conglomerate of subroutines which conscienciously hammers
through numerical arabesques with the elegance of a pachyderm.

L.2. Some linear programming aspects

The computational results presented here are obtained with the help
of an all FORTRAN LP code using the product form of the revised Sim-
plex method. In order to handle large and structured problems, array sto-
rage and all arithmetic manipulations handle only non-zero entries ex-
plicity. All LP’s are processed in their primal formulation. In the present
zero one context, it is necessary to treat all upper bounding constraints
implicity.

It is well known that linear programs occurring in the integer program-
ming context (particularly all integer) often possess peculiar characteris-
tics. Thus special care must be given to the various “‘exceptional” cases of
LP theory. The specific configuration of our implementation also puts
a heavier emphasis on some LP subroutines which are otherwise expected
to play an accessory role as explained below.

L.2.1. Reinversion and Eta-file

Branch and Bound implementations requirc very frequent (re)con-
struction of a basis; this is due to a multitude of numerical and conceptual
reasons. One must frequently control numerical accuracy with great care
to avoid eliminating integral solutions. The branching process also neces-
sitates a Phase I or dual optimization for every node and thereby creates
unusually voluminous “Eta files” (i.e., unnecessarily long sequences of
pivots). Most powerful bounds are based on additional backward trans-
formations which generate updated rows; these backward transformations
involve a number of arithmetic operations proportional to the length of
the Eta file and it is therefore indispensable to keep this number of pivots
to a minimum by frequent reinversion. There are also several other minor
organizational details which have the tendency to unduly lengthen the Eta
file.
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1.2.2. Primal versus dual optimization

As mentioned in the preliminary comments of this section, we use
primal LP formulations. But in an all-integer context with all structural
variables zero or one, it is always possible to start with a dual feasible solu-
tion (replacing x by 1-x whenever the cost is negative).

Thus one may either apply a dual pivot selection rule or use a primal
approach (with Phase I) for the LP post-optimization in any subprogram
(node). Table X.2 contains the corresponding comparison. One would
expect dual pivoting to be more efficient for the node-reoptimization oc-
curing after branching. However, experiments show the opposite, as primal
re-optimization seems more efficient on subprograms with few variables
and many constraints at the lower levels.

1.2.3. Arborescence

The tree structure is constructed node by node and stored sequentially
in an array called front. Variables are flagged and nodes represented by
bookkeeping arrays; each bit is activated individually in order to limit
storage requirements. The array storage structure in a computer always
gives a natural lexicographic order to the tree; but further preference rules
can be superimposed at virtually no additional cost. It is possible, for ex-
ample, to reinforce the lexicographic order (which favors the so-called
Last-In-First-Out node selection rule) with a second order relation derived
from the bounds; as a result, nodes are activated according to their bounds
in combination with HFO (wishful branching, see Section II).

The all-in-core storage of the tree and these multiple ordering techniques
allow strategic flexibility in the node selection; this would be lost if the
system were to rely heavily on intermediary storage media. In our code a
minimal amount of information is stored for each node, and in-core me-
mory space was never found to be a scarce resource; there are also stra-
tegic and tactical advantages in limiting the front to a modest size (sce
Section III).

1.2.4. Control parameters
We have introduced various sets of parameters to control numerical
accuracy and storage needs; rather than describing everyone of the more
than 40 parameters in detail, we list below the role of each parameter set :
—control the accuracy of individual operations (round off errors, zero
tests, integrality tests),
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- error propagation control (solution checks with reference to the initial
system, before and after reinversion tests),

- reinversion control,

— capacity control (number of entrics in the Eta file, tree size),

- choice of pivot selection rules (for primal or dual feasible tableaux),

- organizational parameters to regulate tree storage.

In comparison to linear programming, the role and importance of
control parameters is amplified in integer programming. Their effect is
sometimes surprising, not easily understood and lacks theoretical founda-
tion. One easily convinces oneself that dichotomous branching, for in-
stance, represents a foreign element in the flow of LP computations. Due
to the influence of round-off errors, it creates infeasibility and inconsistency
of the linear subprograms. The high degree of degeneracy in most “exact
subprograms” contributes to further complicate the matter; particularly
during the solution of some set covering problems, numerically absurd
situations may arise.

1.2.5. The influence of finite arithmetics on the algorithm

This brief description of numerical aspects would be incomplete without
the following remarks; in order to understand the real meaning of the
present numerical experiments, it is imperative to realize how the concepts
of performance, accuracy and reliability interact :

Measures of performance (e.g. nodes or isec in Appendix X) are easily
influenced by accuracy control parameters. Consider bound calculations,
for instance, where the real influence of numerical errors is difficult to
assess : one has to introduce control parameters so that, in spite of its
inaccuracy, the bound activated by the algorithm remains valid in an
exact sense; otherwise optimal solutions may be lost. Practically the choice
of a value for such control parameters is often a subjective matter : inac-
curate (i.e., not rigorously valid) bounds may seem satisfactory, because
their potentially disastrous effect in skipping solutions is unlikely to occur.
Control parameters also effect performance dramatically : the problem
L —S D2 was solved with identical strategies and different sets of control
parameters (delivering always the true optimum) and the corresponding
solution times ranged from less than 70 seconds to more than 150 seconds.
Similar ranges were also found for other measures like nodes. Which per-
formance should then be reported?

In all tables of the appendix, we adopt a conservative attitude, sacrificing
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excellence to reliability, in order to ascertain that the optimization is indeed
rigorous.

IL. Tactical computations in the Branch and Bound algorithm

I1.1. Bounds

The following developments are presented under the assumption that
all structural variables are bivalent. This is the focal point of our exper-
iments; the analysis however is easily extended to the mixed case and all
subroutines are implemented in this general form.

IL.1.1. Simple bounds

The primary role of a bound is to fathom nodes; thus good bounds
may have a drastic effect on the final phase of the algorithm where opti-
mality must be proved. It should be pointed out however that a good
bound is not necessarily one with a good numerical value; the price which
must be paid to compute this value is an equally significant factor. A good
comparative measure for the quality of a bound can be obtained by com-
paring it to LP bounds (see BD 1, below).

There is an abundant list of bound proposals in the literature. We have
experimented with most of those which seemed promising in the present
context; a few of them are mentioned in this subsection, not necessarily
bacause they were found very efficient, but rather because they represent
the starting point for the improved bounds of the subsections II.1.2 and
IL.S.

BD 1. Optimal LP value. The quantity f§ = X, is easily seen to yield a
valid bound; it is generally not very effective but provides a good basis for
comparisons.

BD 2. Optimal LP value with cut(s). If a valid cut is appended to the
subprogram then the bound f = x, may (sometimes) be improved. Usually
the integrality requirements of the basic variables x;, i € N¢,, are used to
calculate valid cuts and this may require a costly LP updating procedure.
After inserting the cut into the subprogram, the LP becomes primal in-
feasible but remains dual feasible; thus every dualpivot step performed to
restore primal feasibility furnishes a valid bound. But explicit pivoting is
usually too expensive : instead a so-called penalty is computed to indicate
the improvement after one (single) dual pivot step. Pivoting need not be
explicity carried out to determine this penalty value.
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BD 3. Dantzig cut [14]. The cut ;.5 x; = 1 is valid and yields the penalty
P= i

where N denotesthe index set of non-basic (free) variables (integer con-
strained).
BD 4. Gomory's mixed-integer cut [ 20]. Consider the inequality

Z_(_”j) X; £ -1 (my > 0).

JjeN
Choose a fractional basic 0-1 structural variable x; to generate the following
coefficients :

Mo = 1
and, for je N,

;= fij/ Xi if f;; <X,

= (1 — fi)/(l —X;) otherwise,

where f;; is the (positive) fractional part of the updated coefficient a;; when
x; is an integer constrained variable. Note that n; < 1 holds true. (For
continuous variables one has

T = ag/x; a; = 0,

=—a;/(1 — ;) otherwise.)

The corresponding penalty is
pg = miﬁn {c;/mj n; # 0}.
Jje
These penalties have been successfully used by Tomlin [34] in mixed
integer programming.

BD 5. Dichotomous penalties. Consider branching on a fractional (basic)
0--1 variable x;; one introduces the cuts

x; <0, x; =21
which are valid for the corresponding nodes, thus obtaining the penalties

pd = min {X,c /a;;: a; > 0} down penalty
jeN

pu = min {(X; — l)¢,/a; < 0} up penalty.
JjeN
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For the initial node one has the penalty

p = min {pd, pu}.

Note that dichotomous penalties can also be derived for non-basic -1
variables; one then has pd = 0, pu = ¢;. This information will be useful
for gap branching (see subsection 11.2.3).

I1.1.2. I'mproved bounds

The most effective bounds require a certain amount of preliminary
computations; once this tactical set-up cost is incurred, it becomes advan-
tageous to engage in the computation of further marginal improvements of
the bound and to exploit all readily available information. The resulting
increase in tactical efficiency depends upon the form of this information
retrieval. The following remarks and example illustrate a generally effective
improvement policy.

(1) Bounds generated from penalties which in tum are computed from
a valid cut should benefit from all integrality requirements; not only during
the construction of the cut, but also afterwards, during the penalty compu-
tations where integrality of the non-basic variables can be used.

(2) When the dual pivot selection rule indicates that an integer con-
strained variable should enter the basic at a fractional value, then the same
updated cut row can be used again to form a new cut. Thus a chain of cuts
can be constructed with few arithmetic operations.

As an illustration of the above principles we now describe penalties
(derived from Gomory’s mixed cut) which were found more efficient than
those proposed by Tomlin [34].

Example 1 (BD 7). If x; is a fractional basic variable, then the correspon-
ding mixed integer Gomory cut reads

L(-m)x; < 1,

jeN
where n; is defined in BD 4.

Ifjo € N,,, then x4 has an upper bound of 1 ; furthermore one has ;) < 1;
hence after one dual step the variable x; obtains the value %;, = n;)' = 1;
thusifmr; < 1, X, is > 1 and one may automatically perform another dual
step which brings £; back to 1.

The following penalty computation reflects these two dual steps.
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lpg = Ej() + ij(l - njn)/njl’
where

Cio/mio < ¢ fm; < cj/m; forall j # jo, jy, m; > 0.

Example 2 (BD 8). There is yet another way to use the mixed integer cut.
Compute the (down) penalty pd,, i.e., introduce the cut x; < 0 which also
reads

Z:_(_Eij) X; < =X

JjeN
and perform a dual step (with corresponding slack s, x;, variable entering
the basis)

Z_: agjlag, X — 1/a;, s + xj, = Xifajo, (%)
jeN

jji_fo

ZI% (¢j — ayfay, ¢;,) xj + €[5 — Xo = —Xo — C;Xifdyj,. (*%)
Jje

J#jo

Now, if x;_ is an integer variable, and X;/a;;, is not integer, then (*) can
be used to compute a mixed integer Gomory cut (note that s =0 — x;
is an integer variable). The corresponding improved penalty (Example 1)
using the updated objective function (x+) yields the improved down pe-
nalty ipd = pd + ipg. A similar treatment holds for the up penalty ipu.

Example 3 (chains; BD 6). The idea of chained cuts circumvents some of the
obstacles encountered by cutting plane algorithms. Most of the cost of
creating a cutting plane from different fractional variable lies in the cost
of up-dating the corresponding rows; for a chain of cuts we simply observe
that once a row has been updated it is easily kept in updated form during
subsequent pivot steps.

Construct for instance the cut described in BD 4 for a given fractional
variable x; . Selection of a dual pivot brings another integer variable x;,
into the basis and the updated form of the corresponding row reads

Z_:(nj/njo) xj—mits + x;, =mnplh
jeN
i*Jo
Clearly this row (i.e., the fractional variable x;) can be used to generate a
new Gomory cut; and so on.
Such chain reactions may be triggered at virtually every tactical bound
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or penalty computation with the advantage of avoiding explicit pivots as
for penalties.

Further improvements can be deduced from logical implications (see
subsection I1.5). Finally, note that improvement procedures (particularly
chains) automatically generate special updated rows (see subsection 11.4).

A final comment. As remarked in the introductory part of subsection
I1.1.1, the purpose of the bound mechanism is to fathom nodes; not ar-
bitrary nodes, but those explicitly identified and inserted into the front.
There is a trade-off between bound improvement at a given node and
branching to its successors; the latter can also be viewed as an improve-
ment with the difference that it increase the size of the arborescence and
the front.

In any case, when a node is selected for bound computation, one should
keep in mind that the following may occur :

(a) the node is pruned due to its “good” bound,

(b) the algorithm backtracks and branches.

A posteriori it is obvious that, no matter how powerful and efficient
the bound computation is, branching has to occur at certain nodes. The
basis for such strategic considerations concerning bounds is straight for-
ward : compute only those bounds which cause pruning. One should apply
flexible bound tactics and engage in expensive bound computations only
when there is a reasonably good chance that pruning will occur; the dif-
ference between the cut-off value y and the bound f§ may be used here as a
basis for this choice.

I1.2. Branching

The tactical selection of a branching variable resembles compass na-
vigation in a labyrinth. Confronted with an abominable exponential mess,
one has little hope of gaining theoretical insight. This is probably the
reason why “branching” has received almost no attention in the literature
in comparison with the opulance of the “bound industry”. But it is equally
important to obtain good values for both y and f3; and v is a direct product
of the branching strategies (see Section III). The next subsections explore
tactical results in this area.

I1.2.1. Ordinal branching

BR 1. Lexicographic priority. The implementation of a computer program
entails by fiat a natural ordering of its array operations. If the variables
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are initially ordered according to some measure of “importance”, syste-
matic branching on the one free variable x; (j € Ny,..) with smallest index j
will automatically take this property into account.

BR 2. Cost ranking. This is a variant of BR 1, where the absolute value
|¢;| is adopted as measure of importance.

I1.2.2. Wishful branching.

BR 1 and BR 2 fail to distinguish between basic and nonbasic variables
at the LP optimum as well as between fractional, integer valued or fixed
variables. The following rules aim at restoring integral feasibility under the
bias of the objective function.

BR 3. Maximal fractional part. Select the branching variable x;, accor-
ding to

|x;, —0.5) = miin |x; —0.5],

among all fractional variables x;.

BR 4. Maximal penalty [26]. If BD4 and BD 5 are used to compute
penalties then one may select x;  according to p;, = p; for all i.

BR 5. Pseudo-costs [8]. This branching rule seems to enjoy a successful
carreer in large scale mixed-integer programming with a vast number of
continuous variables. In the present all integer context, however, it has not
quite lived up to our expectations (see Table X7).

Consider a node k with LP-value x,*, its branching variable x; (with
a fractional value x;%), and its successor nodes with corresponding LP-
values X,** ! and x,%*?. Define

)—Co(k+ 2) _?xo(k)
pew; = ———5—
(k)
1 - xi

(assuming that node k + 2 corresponds to x; = 1). pcd and pcu give
the deterioration of the objective function value subsequent to fixing the
variable. It can be computed statistically during the branch and bound al-
gorithm [8].

To select a branching variable at node k, one now chooses

pc; = min {pey; (1 — x;¥), ped; X0}

and x;  is selected such that pc;, = pc;, for all i.
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Note that pseudo-costs provide no bounds.

BR 6. Feasalties. Pseudo-costs and penalties work reasonably well.
But one feels intuitively that they fail to capture the nature of the problem
with respect to feasibility, in both the LP and integral sense. They are based
on the objective function only. We therefore propose to introduce a mea-
sure of feasibility degradation into the choice of a branching variable and
this type of tactical rule was found to exhibit surprising clairvoyance. It
is also efficient because few arithmetic operations are involved.

Take any zero—one variable x; and impose tentatively x; = 0; if the
current LP becomes infeasible, then one dual pivot step is performed on
the “most infeasible” row whereby only the new right-hand side X need
be computed. Then define the following (down) feasalty

fd;= ) (mino,{0,%} + ming, {0,1 — %}),
keNfree
where the o, are given parameters (for instance o, = 1, all k or o, = [¢]).

The (up) feasalty fu; is obtained in a similar way upon imposing tem-

porarily x; = 1. Finally, compute the feasalty

f; = min {fd,, fu;}

and choose the branching variable x;, according to f;, = f;, for all i.

One may feel that the influence of the objective function is unnecessarily
eliminated from the above development. This can be corrected by adding
to f; any one of the penalties described earlier. The single dual step dicho-
tomous penalty is often sufficient. More generally we can combine feasal-
ties and penalties in the following convex manner :

Mid, + (1 —Apd,  Ae[01]

(and similarly for fu and pu).

The parameter A may be chosen (at any node) to reflect one or the other
tendency in the branching rule; in particular, the node may be dual dege-
nerate and all penalties vanish. Thus the branching choice will be based
on feasalties alone. On the other hand, a single dual step may restore primal
feasibility and feasalties will vanish. The.choice of a branching variable
is then left to the penalties. These two extreme cases correspond to A =1
resp. 0. One easily imagines criteria based on measures for dual degeneracy
and primal infeasibility to select intermediate values for A. Note also that
feasalties can be derived for both basic and non-basic variables.

Of course, the concept of feasalty may also be used in a statistical manner
as in the case of pseudo-cost branching.
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Thus pseudo-feasalties are defined as :
pfdl = fdi/yi, pfui = ful/(l — Ei)y

and one will choose the branching variable according to the convex com-
bination

A pfd; + (1 — &) ped,

(similarly for pfu and pcu).

Convex combinations of the type presented in this section should be
kept in proper perspective. One should not expect minor modifications of
the A coefficients to have a dramatic effect on any given problem. The pri-
mary motivation for such devices is their low cost. They involve very little
additional overhead. It furthermore gives one the opportunity to let exper-
imentation choose heuristically its own approach since theory fails to
provide adequate support.

I1.2.3. Gap branching

The branching rules of the previous subsection are all based on some
quantified measure: penalty, feasalty, etc. The general philosophy for
branching tactics is simply to hope that the optimal solution lies on the
branch which currently seems most “promising”. . This optimism is not
always rewarded : backtracking could often be avoided if an element of
“safety” were introduced into tactical branch selections. Gap branching
is an attempt in this direction. The absolute magnitude of the penalty and
a relative measure are both taken into account by the difference

Ap; = ,pui - pdil-

This also requires but few computational modifications to the standard
choice of the branching variable.

BR 7. Gap penaities. Denote by pd; and puy; any of the (down, resp. up)
penalties, pseudo-costs or (pseudo-) feasalties described in 11.2.2.; and
set p; = min {pd;, pu;}. Define

g =Aip; + (1 —2)Ap, rel0, 1]

The branching variable x;, is then chosen according to g;, = g; for all i.
One has the following special cases :
A =1, a pure BR 4-type rule.
A = 0, a pure gap selection rule.
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A = %, where g; reduces to
g; = zmin {pu;, pd;} + 'zl‘lp“i - pdil = tmax {pu;, pd;}.
The purpose of gap penalties is to branch on variables which are “‘safe”,
one of the two branches being clearly “‘better” than the other; thus there
is little chance that one will have to backtrack to that node.
Finally, a general expression can be formed to include penalties, feasal-

ties, pseudo-quantities and the various related gaps; this simply requires
several A control parameters.

I1.3. Miscellaneous devices

I1.3.1. Cut-off values

The concept of cut-off value is very useful to accelerate the algorithm
and to control storage requirements. The following list is self-explanatory :

CV 1. Current best value. As integer feasible solutions are discovered,
y is systematically updated to represent the best objective function value
(current optimum). If p solutions to the integer program are desired, v is
is simply chosen to be the p-best value among all feasible solutions at any
given stage (or Y = + oo if the algorithm has not yet identified p feasible
solutions).

CV 2. All-integer cut-offs. In the all-integer case, the above y value can
be improved as follows : New solutions must satisfy

xO = Z ijj < Y;
jeNzo

hence, upon division by 8 > 0, one obtains
Y (cif®) x; < v/3;
jENZO

now if 8 is such that (c;/d) is integral for all je N,
the left-hand side must be integer, i.e.,

Y (/8 x; <v/8 — 1

JeNzo
(the quantity v/8 =) .y (c;/8)x; is integral because y =) .y, cX}
for some integer solution x'). Finally, multiplying by & one has

Xo= ) ¢x; Sy—8=7 6 > 0)

JeN 2o

i.e., ¥ is an improved cut-off value.
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CV 3. Near optimality. In some cases it is not necessary to determine
the optimum of the given integer program but merely to detect a good
integer feasible solution, garanteed to lie within a certain range p > 0
of the optimum. The value of p may be defined in absolute or percentage
terms to yield the following cut-off values:

Y=y—-p (ory=7-p.

CV 4. All (sub)optimal solutions in a given range p. This case is the
opposite of CV 3, and the cut-off value is increased. Suboptimal solutions
within the given range p > 0 are stored :

¥=y+p (or¥ =7 + p)

11.3.2. Rounding

As the algorithm proceeds, there are many opportunities to ‘hit” a
feasible solution accidentally. For instance when the LP optimal solution
of a node can be rounded to an integer feasible solution. This involves only
few additions and may sometimes curtail the search by providing an un-
expectedly good cut-off value.

Rounding also interacts advantageously with the logical implications
of subsection IL.5.

(a) The list of implications will guide rounding and speed up the local
search process.

(b) Rounding is a type of partial enumeration at the node, i.e., within
a facet of the unit hypercube defined by the fractional variables. If that
facet has no feasible solution, a new logical implication has been found.

(c) Rounding and logicals operate in close contact with one another :
both procedures are frequently used and involve a great many simple
operations. For both, the philosophy is to engage in such operations to a
limited degree only; just enough to take advantage of a small probability of
success. Any massive rounding search could be catastrophical because it
neglects other sources of information.

11.3.3. ““Trouble-shooting”’

The bulk of computations occurs during LP operations. Branching
and LP characteristics of integer programs cause variables to repeatedly
jump in and out of the basis; and this disagreable phenomenon creates
superfluously long Eta files, frequent reinversions, inaccuracics... This
can be detected by performance statistics and identified during the execu-
tion. The remedy is to eliminate the trouble-maker (variable) with an ad hoc
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dichotomy : if it is a structural zero—one variable, simply branch on it;
and otherwise keep it in the basis on one branch, and out on the other.

There are further occasions where trouble-shooting is recommended :
dual degeneracy and small updated costs can be eliminated by simultaneous
branching on the degenerate variables; a variable which frequently appears
in logicals is a prime candidate for branching; fixing it will reduce the degree
and strengthen the influence of all implications containing that variable.

In fact, the idea of trouble-shooting is quite general and need not be based
on rational arguments. A set of control statistics will guard against any
abnormal behavior by triggering appropriate counter-measures. Consider
the order, for instance, in which variables are processed by branching
and logical subroutines. Because it is column-oriented, the LP set-up
allows some flexibility in this respect; it is advantageous to take those
variables first which are most “relevant”. This is true of all operations where
chronology has an influence, as in the construction of logical implications.

Many such decisions are based on “hunches” and empirical evidence.
Their track record can be evaluated statistically and correction factors
determined for each problem.

IL.4. Special updated rows

I1.4.1.

Most of the implications used in zero—one programming are derived
from linear expression with integrality conditions. The continuous LP
structure and the discrete nature of the problem have little in common;
and equivalent representations of the linear expression may lead to ge-
nuinely different implications.

It is therefore advantageous to take every opportunity of performing
this type of computation (see subsection I1.5). Of course there is a limit to
such recommendations due to the high price of the updating process. The
information which could be extracted from an updated row does not seem
to compensate for the prohibitive cost of updating. Thus we propose to
use special updated rows to amplify the potential advantages of this idea
without expensive updating computations. There are two kinds of special
updated rows.

(i) Rows which must be updated anyway during the flow of computa-
tions : objective function, pivot rows, and eventually also fractional rows
and chains (subsection 11.1.2).

(ii) Linear expressions which are constructed ad hoc and updated for
this purpose.
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Special updated rows of type (i) are of course chosen for the simple
reason that they involve no set-up cost.

11.4.2. Explicit row combinations

In some occasions the variables of an integer (sub)program are found
to interact in a particular manner which can be expressed by a linear ex-
pression

o(x) = Z %A X;.

Since a linear combination of several rows can be updated in one single
backward transformation, relatively few arithmetic operations are in-
volved.

(1) Canonical expressions (o; = 0, + 1). linear relations of this form arise
from compounded logical implications and may be used for simultaneous
branching, for instance.

(2) Structural expressions. If the initial LP has some structure (blocks),
one can be use partial rows : o; = g, for some or all i in the row k). This
structure may have a strong influence on solutions.

(3) Fractional expressions (; = X; '). It may be desirable to isolate
“almost integer” fractional variables for trouble-shooting purposes; one
may then “‘lump” them together in a special updated row.

11.4.3. Branching on a special updated row

Special updated rows introduce new branching variants. Consider two
values 6* and o~ satisfying

(@oc” <ot

(b) ZM— %S0, Ziel+ c; =o',
where

I™ ={ira; <0}, I" = {i:o; > 0}.

One then defines the dichotomy :

o(x)<o7, o(x) = o*.

If one chooses 6~ = Y-, for example, and ¢* = ¢~ + min; |y,
the dichotomy corresponds to a simultaneous branching step because the
first inequality (o(x) < o~) becomes an equality which is only satisfied by
x; =1foralliel”, x; = 0 for all i eI*; the second inequality (o(x) = c*)
in turn is valid for all other solutions.
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Apart from branching, special updated rows are extremely useful for
the derivation of logical implications because they furnish many new
implications (without set-up cost).

Finally, if the coefficients o; are integral, one may always generate a
Gomory cut (and chains) from the special updated row.

IL5. Logical implications

A rudimentary Branch and Bound scheme may require an astronomical
number of nodes. Fathoming tests are therefore necessary. A large number
of infeasible or suboptimal zero—one solutions can be eliminated by check-
ing the rows of the initial (sub) tableaux and/or special updated rows. This
results in a list of logical implications which are stored to be available at
no significant retrieval cost.

Logical implications have been studied, in a rather general context,
by several authors under the name fathomings tests, filters, preferred
inequalities, etc. [2, 16, 21, 32]. Our experience, however, has been that
only trivial implications increase efficiency. The derivation of “‘sophisti-
cated” logical relationships tends to require a prohibitive number of opera-
tions. We propose instead a cascading approach to generate only those
relations (of higher complexity) which can be derived economically.

In every tactical branching or bounding operation the logical machinery
proves reliable, and consistently increases the overall efficiency of the al-
gorithm (see Table X.3).

IL.5.1. Elementary implications
The complexity of a logical implication can be measured by the number
of variables it actively involves; it is called degree [32].

Degree zero (LP feasibility). Group the coefficients of each linear rela-
tion Y .y a;;x; = b; for all i, according to their sign, and define :

with

1 ifjeN,,
u; = ¢ an upper bound for the variable x; ifj¢N,,,
+oo0  if x; has no known upper bound.

The following expressions characterize the range of the artificial variable
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yi=b— Z a;; X,

jeN
b — 2, qu;=r; <y, <rf =b— ) a;ju;. (*)
jeJt Jjedv

For every solution of the IP the artificial variables y; must all vanish.
Thus the subproblem has no (integer) feasible solution if r;¥ <Oorr; >0
for some i.

Degree one. Choose a variable x;, j € N ,; fix x; to 0 (or 1) and investigate
the remaining terms of the above relation (x).

One sees that the subproblem has no (integer) feasible solution with

. = 0 ifrgy<Oorrg >0,
7711 ifry <Oorr; > 0.
Such conditional statements are derived when the variable x; is proposed
for branching.

Higher degrees. In general, any combination of variables x;, je N, can
be fixed. Assume

JO C._;Nzo, Jl gNZO’ WIth JomJl ZQ,

and define
+
ri=b~ a;~ DT
Ji Ji —J1—Jo
r,-_ = bi - Za,-j - . Z a,‘juj‘.
Ji Ji —Ih—Jo

Ifrf < 0orr” >0, one obtains
ij + Zx_j = 1,
Jo Ji1

where x _; denotes 1 — x;.

A systematic analysis of all such higher order relations is impractical
because of the large number of cases ((3), (3),..., () which must be
explicitly considered.’

II.5.2. Compounding.
Elementary implications are stored along with the tree structure. One
has the following observations.

! In a private communication, K. Spielberg pointed out that this situation is not so dis-
advantageous in mixed linear programming with many continuous variables and that higher
degree relations may be expected to perform better for such problems.
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- Any valid implication at a given node is also valid for all the successors

of that node.
— Any valid implication at a given node (N,erg, Nones Niree) Yields an ex-

pansion which is valid throughout :

Yoxj+ Y xo i+ yx+ Y xo; =1,
Niero None Jo J1

Such relations are used to identify infeasible nodes without LP compu-
tations. Known implications will speed up the search for new implications;
thus chronology is not immaterial and generates a compounding effect. This
particular manner of automatically selecting implications whose higher
degree is determined by the flow of operations is very efficacious.

I1.5.3. Reduction and cascades

Large sets of logical implications can be reduced to equivalent and
simpler systems [21, 32]. The aim is to derive implications of degree zero
or one (eventually two). However, our experience shows that the amount
of work required by a reduction destroys the resulting pay-off. Only two
special cases (degree two and cascades) seem profitable in 0—1 programming.

Lemma (reduction). If Y, x; =1 and Y x; =1 (where J =Jyu {—j:
jeJ,}, and similarly for K) are both valid (at a given node) and if there exists
exactly one index |l| such that le J and —Ie K, then
x; =1
J-{HuK-{-1)
is also valid.
Proof. The proof is immediate by contradiction.

The lemma may be used as follows to produce simpler implications.

Example 1 (degree 2). If x; + x; 2 1 and x; + x_; = 1 are both valid, then
x; =1 must hold.

Example 2 (Cascades). If ) px; + Y, x; 2 1 (£ jo¢P, joeL) and x;, +
x_j = 1forallje Pare valid implications, then x;, + Y x; = 1isalso valid.

This can be established by repeated application of the reduction lemma.
Note that if the rest term ) , x; is of degree zero or one, then any implica-
tion of degree |P| + |L| can be reduced to a cascade of degree one or two.
A similar statement holds when j, e L.
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In these two examples reductions are obtained at virtually no additional
cost. The necessary sweep through existing logical implications of degree
< 2 involves only few boolean operations.

11.5.4. Computational aspects

The first logical implications are generated from the rows of the initial
tableau. Further implications are derived from the subtableau at each
node, and from special updated rows as the algorithm proceeds.

The objective function (cut-off inequalities), pivot rows and chains are
also used consistently for this purpose. However the net savings that result
from logical implications depend less on their intrinsic logical strength
than on the efficiency of the implemented computational procedure.

For most problems, known logical implications are used as often as
possible in fathoming tests, penalty and bound calculations. They are
stored in compact form (bit-wise) to minimize retrieval costs.

IL5.5. Penalty improvement

For penalty or bound computations, logicals tend to involve too many
operations to yield a significant pay-off. In special situations, however,
a cumulative effect may act favorably. Consider the following examples to
illustrate this idea.

The logical implication

Y ox+ Y xo =1 (*)

jelo jedi

implies that at least one x; jeJ, or x_; jeJ;, must take value 1. The
penalties pd;, pu; (for all je J, U J,) combine with (%) to yield the following
valid penalty

— mi : : \
p = min {min pu;, min pd;}. (%%)
jeJo Jed

Furthermore, when several logical implications (J,J%: k = 1,2, ...) are
available such that

(i) the index sets J%, J%, are all disjoint (an index belongs at most to
one set),

(ii) J& and JX (for all k) contain no current basic index,
penalties can be cumulated :

p=>rh
k
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where p* is defined by (x+). This cumulative effect increases the efficiency
of penalty computations.

Example 1 (See BD 5 in Section II). Improved bounding rule BD?9.
Consider an implication with JX = ¢ and J§ = N = current non-basic
set. Then one has the dichotomous penalties
d. = 0’ .= C. k = i _.'
p J pu] CJ p ?;1;? CJ
Example 2 Improved bounding rule BD 10. Usually penalties are com-
puted for basic variables from a cut (BD 5 or BD 6), written in the form
L(—m)x; < —1,
jeN
Let the variable x;, enter the basis at the first dual step, and assume

Jo#J% for all k. Compute the penalty p = ¢;, /n;, from the cut.
As in example 1, one now obtains

p=§+;&
with

pk = ml,? {EJ - (nf/njo) Ejo}'
Jjedy

With dichotomous cuts, one will improve the up (resp. down) penalties in
this manner.

Finally, logical implications can also influence LP optimization. They
represent GUB rows which need not be explicitly implemented in the ta-
bleaux; the results presented in the Appendix, however, make no use of
this property.

1.6 Surrogate constraints (theory and practice)

Several years ago, Glover [18] and Balas [2] proposed the use of linear
row combinations called surrogate constraints. In his implicit enumeration
algorithm, Geoffrion [16] found surrogates to be efficient. The basic idea
is to use a linear expression

cx+yb—Ax)+s=y (y = cut off).
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In Geoffrion’s case, the y; coefficients are LP-optimal dual variables and
the resulting expression becomes the updated objective function as shown
below.

y=cgB™! (B = Basis of the LP optimal tableau)
yielding

cx+cgB '(hb—Ax)+s=y, s=0
which can be written as

cpxg — cgB 'Bxg + cyxy — cgB !N xy + cgB b +5s=17
or

cx+s=y—cgB b=y — X,
But s = 0 implies

Z_ijj _<_Y - xO
JjeN
or
Xg = Z_ij_i + Xo < Y-
jeN

Logical implications can now immediately be derived from this inequality :
Degree 0. If y < xq, then the node cannot generate desirable feasible
solutions.
Degree 1. If ¢; > y — X, then x; = 0 must hold for all successors.
Degree 2. If ¢; + ¢, >y — X, then (I — x;) + (1 — x;) = | holds for
all successors.
These tests for logical implications can be performed at every step of a
dual LP optimization since the objective function is always dual feasible.
The same holds for penalty calculations (improved or chains of section I1.1).

Example. Construct a (mixed-integer) cut

L(-m)x; < —1

jeN
to yield, after a dual step, the following objective function cut

m; c; C;

p - J Jo o v _

2 (=T x+ s <% +7 .

JeN jo Jo Jo
i#Jjo
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The logical tests now read :

Degree 0. If y < X, + ¢;,/m;,, then there is no desirable
feasible solution

Degree 1. If ¢; > ¥ — xo — (1 — @y ¢;/n;,, then x; = 0 must hold.
These tests are now stronger because

c;, >0, T, > 0, m; <1

III. Strategies

Strategies are general guidelines which govern the overall flow of opera-
tions. They influence the node selection and other tactical computations.
The efficiency of a strategy cannot be captured by a mathematical argu-
ment; the influence of a strategic choice depends heavily upon imple-
mentation details and/or the structure of the tree.

Naturally, one may study ir abstracto the properties of a given strategy,
but such efforts cannot characterize the behaviour of a practical imple-
mentation without taking technical details into account : relative speed of
computers’ elementary operations, storage capacity limits, information
transfer speed and/or tactical aspects (such as relative efficiency of a branch
forward versus backtracking step) of different branching and bounding
computations, etc.

III.1. Basic node selection rules

At each branching step, the algorithm has to choose one among a set of
pending nodes, called the front.

NS 1. Depth first. Priority is given to the immediate successor nodes,
provided one, at least, is pending. The aim is obviously to identify quickly
an integer feasible solution. The real pay-off depends upon the efficacy
of the resulting cut-off tests. This strategy is compatible with LP opera-
tions because subprograms are always readily available in updated form
from the preceding node.

NS 2. Breadth first. The node of the front with the best bound is automa-
tically chosen for branching. If bounds are reliable predictors, this rule will
find good solutions rapidly.

NS 3. Alternate depth-breadth. The strategies NS 1 and NS2 may be
engaged alternately according to a predetermined pattern, for instance
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*“depth first”, initially, but “breadth first” as soon as backtracking becomes
necessary.

NS 4. Last-in-first-out (LIFO) [34]. This is essentially NS 1; but back-
tracking is made to the node most recently introduced into the front.

NS 5. Mixed depth-breadth [8]. Let B* denote the better bound of the
two immediate successors of the node h, 3, the best bound in the front,
and ¢ a given positive real. Then

if B* > By + g, select the By, node,
if B* < B, + g, select the B* node.

This rule imposes a depth tendency at the beginning of the algorithm; then
it turns into a breadt strategy. When the value 3, is good, almost all new
nodes are dominated by an amount = g; and the node b is preferred.

NS 6. Front control. This flexible rule will influence the size of the front
in function of the parameter a € [0, 1].

Let B,, = worst bound (of the front) below cut-off value. Then

if B* > a B, + (1 — ) By, select the B, node,
if B < a B, + (I — o) By, select the B* node

if no successor is pending, take the 3, node.

This strategy corresponds to NS 3 for a =1 and to NS2 for x = 0.
For o = 0.8, one has a breadth strategy as long as the front remains small
(at the beginning, for instance). It becomes a depth strategy as the front
becomes larger. This type of strategy controls storage requirements in an
adequate self-regulating manner.

NS 7. Single and simultaneous branching. The flow of LP iterations sug-
gests that significant savings can be achieved if only one of the successor
nodes is formed. This is called single branching and the algorithm follows
a straight downward path. The aim is to find a good solution; a good
cut-off value y may then cause most “open” branches to be pruned. Single
branching requires gap branching tactics to reduce the frequency of back-
tracking.

Simultaneous branching is a tactical variation of this approach; several
successive variables are fixed to a given value at the same node. A penalty
for the other branch can be computed from special updated rows of type (ii).

There is little theoretical difference between simultaneous and repeated
single branching. The difference lies in the organization of computer opera-
tions. The amount of work performed on *“open” branches is another
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factor influencing the efficacy of the algorithm. A single branching step
differs from double branching in that all LP operations are omitted for
expediency (see Fig. la,b). Simultaneous branching groups several single
branching steps into one and combines several “open’ branches into one.
In fact, at the practical level of a coded implementation, there exists an
entire spectrum of options : simultaneous, single and double branching are
but three particular strategic choices in this manifold. Our experiments
favored the stepwise approach of single branching; probably because
single branching determines a set of bounds and penalties which guides
effectively the choice of branches, while simultaneous branching has to
rely more heavily on an initial hunch.

But single branching is not able to efficiently cope with massive back-
tracking; conservative versions of double branching are better equipped
for this situation. They store much information as it becomes available.

Fig. la. Single branching. Fig. 1b. Double branching.

O pending nodes which are computed (LP opt.) and stored in the front
x “‘open” branches to nodes which are identified but not computed
® branched nodes which are computed but not stored

IIL.2. Adaptive and learning strategies

The behaviour and effectiveness of a strategy can be analysed by a
posteriori observation of the tree structures; it reveals the actual flow of
operations generated by the algorithm. The arborescence exhibits the
ability of a particular combination of tactical and strategic rules to extract
the relevant information from the problem.

Assume that the nodes of the tree in a given problem possess common
characteristics. Then the experience gathered by the algorithm as it goes
through earlier branches may indicate how an initially chosen strategy
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should be modified. For such adaptive strategies one has to carry a number
of statistical appraisals of the flow of operations.

Similarly, operation control parameters will record the life time expe-
rience of the computer code. These control parameters are constantly
tuned for each class of problems by appropriate statistics. Thus the com-
puter code learns as it solves problems.

Statistical devices of this type are used to choose a numerical value of
several “free” parameters which are best determined heuristically : the
o parameter of NS 6, A in BR 7, special updated row parameters, reinver-
sion, and other numerical and operational parameters, etc.

There are three distinct levels of decisions :

(1) Tactical decisions (node dependent).

(2) Strategic decisions and adaptive measures (branch and subtree or
front dependent).

(3) Structural decisions (problem class dependent).

In our general branch and bound approach the same code is capable
of handling problems of fundamentally different structure : mixed or pure
zero—one, dense or sparse, etc.

This flexibility is maintained at all levels of our implementation and
regulated by strategic parameters.

IV. Numerical experiments

As observed at various points in this report, numerical results in integer
programming should be examined with caution because of many elements
of “subjectivity’’; test problem set, computer implementation, accuracy
and reliability, computer characteristics (machine, compiler) etc.; all are
vital factors which make intrinsic evaluation and comparison difficult.

Nevertheless, by running a code through a multitude of problems, one
ultimately gains a feeling for its performance characteristics. In this paper,
we try to convey such messages by emphasizing those aspects which
highlight our experience in the general Branch and Bound framework.

Naturally most readers will also want to see “hard facts” and for this
purpose we present a series of tables in Appendix X which are derived
from a series of numerical experiments. The primary purpose of these ta-
bles is to illustrate tendencies, not polished performance.

But one still wants a quantitative measure which allows in some sense a
comparison with other methods (particularly implicit enumeration, with
imbedded LP); this type of experiment would be very interesting but it
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cannot be based simply on comparing independent experiments (different
machines). To be serious, such a study must make certain that comparisons
are based on similar quantities (particularly with respect to accuracy and
reliability as mentionned in subsection 1.3).

The tables in Appendix X are chosen to illustrate the highlights of our
study; due to the complex nature of our code where dichotomies and LP
operations interact in many different ways, it is difficult to quantify the
individual effect of a particular choice.

Our intent here is to present numerical observations rather than results.
We identify a few technically relevant options; this provides a basis for
the difficult study of problem characteristics and the corresponding (adap-
tive) strategic decisions. Throughout this report and in the comments of
Appendix X, we indicate how a given device affects the algorithm. Our
current research with adaptive strategies seeks to determine “when this
effect seems desirable”; for it is only the combination of the two which
can produce good results.

IV.1. Improvements

A first set of tables (X.1, X.3, X.4, X.6, X.9) shows whether marginal
improvements are worthwhile or not.

Penalty improvement based on readily available information is ad-
vantageous. The same holds for logical implications.

The tables indicate the individual improvement trends. A larger in-
crease in efficiency is possible with composite improvement procedures.

IV.2. Conceptual differences

Tables X.2, X.5, X.7 and X.8 illustrate basically different approaches
within the context of our Branch and Bound code.

IV.3. Test problems (see also Appendix Y)

Finally, in the Tables X.11, X.12 and X.13, one finds typical run sta-
tistics. They illustrate the power of our approach.

In Table X.11 particularly, one observes that our performance on smali
and “‘easy” problems (under 1 minute CPU) is relatively poor; this is not
surprising since we deploy an entire arsenal to kill a fly. On the other hand,
our code is the first to solve L-S D 2 and E.

The strategy in Table X.11 is a good and reliable one with adequate
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overall performance; it does not yield the best time for every problem but
rather shows how well a fixed strategy works. It also provides us with a
good basis of reference in our research with adaptive and learning strategies.

IvV.4. Epilogue

The practitioner should not be discouraged by the fact that 50 by 50
problems (P 22) can be difficult; this is a mathematical reality which has
in fact little to do with the practicability of a method.



34  R. Breu, C-A. Burdet, Branch and Bound experiments in zero-one programming

Appendix X. Numerical results

X.0. Notations

M Number of rows (constraints).

N Number of variables (slacks and artificials not in-
cluded).

Z,p Optimal value of the objective function.

IMP Number of improvements (incumbent suboptimal

solutions); number of solutions which were found to
deliver the best objective value at some point during
the execution.

OPT AT NODE Node at which optimal solution is found (value of the
nodes counter at that time which indicates the number
of nodes which had to be created before the optimum
was discovered).

NODES Total number of branched nodes during the course of
calculations. More precisely, when a node has to be
chosen in the front according to a node selection rule,
this counter is increased by 1.

Note that this accounting method differs significantly from the following
less stringent one used by some authors :
Number of nodes which were branched to produce
both successor nodes as pending nodes in the front.

This differs from nodes in the following cases :

— If one or two of the successor nodes are fathomed immediately (without

ever belonging to the front), then the branched node is counted as node

but not in the latter accounting.

- During a single branching phase, backtracking to the second branch of

a node in the front causes the counter nodes to be augmented while this

would not be registered in the other method.

— Explicitely identified feasible solutions are also counted as nodes but

not in the other case. Our choice of the nodes counter is motivated by a

desire to obtain representative measurement for the bulk of tactical

operations.

ISEC CPU solution time in seconds (rounded to nearest
seconds; Univac 1108, Exec 2). Isec does not include
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MAXFR

DEGREE 0
DEGREE 1

DEGREE 2
CASC

LPITER
PU
PD
PG

IPU, IPD

input/output, but includes all preprocessing, such as
rearrangement, scaling, initialization.

Maximal number of nodes in the front. This measures
the maximum amount of storage required by the tree
organization.

Number of logical implications of degree 0 (logical
infeasibility) encountered by the algorithm.
Number of logical implications of degree 1 (preferred
variable).

Number of logical implications of degree 2.

Number of logical cascades (logical implications of
degree > 2 which are reducible to a degree < 2).
Number of LP iterations (pivot step).

Up dichotomous penalty.

Down dichotomous penalty.

Gomory-Tomlin penalty, improved by using inte-
grality requirements of nonbasics (see BD 7 in sub-
section 11.1.2).

Improved up or down penalty (elementary chain,
see BD & in subsection II.1.2).

(For a definition of the terms node, pending, fathomed, branched or
front see subsection I.1),

X.1. Further conventions

D1 Use of logical tests of degree < 1.

D2C Similarly for degree < 2, including cascades.

RD Rounding.

DUAL LP optimization according to dual pivot selection.

PRIMAL (also when not specified): Optimization with primal pivot
selection rule (and Phase I).

BD Bound procedure.

BR Branching rule.

Cv Cut-off value.
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Table X.1
Penalty statistics (NS 6 (0. = 0.8); BR4; D 1, CV2)

F_ A B C

Gy &y 3(1 Y4 Bu Yu 6 x

1

B-M 24 1.029 1.381 | 0.661 1.311 33.417 34.555 | 15 1.015
25 1.029 1.155 | 0.630 1.238 33.396 34369 | 13 1.011
LS B 1.019 1.017 | 0.186 1.333 172.613  174.596 | 04  1.005

C 1.005 5.596 | 0.152 1.114 87.851 88.077 | 22 0.998
D2 1.046 1.556 | 0.264  0.898 17.404 18.214 | 03 1.010
IBM 5 1.349 1.049 | 0315 1.690 15.627 16.091 | 01  0.941
6 1.537 1.511 0.656  1.741 3.966 5312 | 01 1.079
9 1.686 1.720 | 0.443 1.140 1.467 2,114 | 27 0951
P 6 1.514 1.494 | 0.585 1.204 2,612 3.624 | o1 1.188
7 2.053 1.322 | 0.355 0.985 2.773 3.789 | 01 1.159J

Tables A and B compare improved penalties to dichotomous penalties on the one hand and
Gomory penalties on the other. In Table C, it is apparent that penalties involve a small
percentage of the objective function.

In A, the quantities a4 = ipd/pd and 0, = ipu/pu represent the mean improvement ratio
suggested in Example 2 of subsection I1.1.2.

In B, the quantities By = min {pd, pu}/pg and B, = max {pd, pu}/pg compare Gomory-
Tomlin penalties with dichotomous penalties. Similarly for the improved penalties with
Y4 = min {ipd, ipu}/pg and y, = max {ipd, ipu}/pg.

In C, the quantity @ = (pg/|x,[) x 10* indicates the relative importance (quantitavely)
of Gomory-Tomiin penalties (x, = objective function value at LP optimum). Finally,
% = |ipd-ipul/|pd-pu| shows how gaps are modified on the average by this improvement.

Table X.1 (Cont.}
Influence of penalty improvement (NS 6 (0. = 0.8); BR4; D 1; CV 2)

ISEC NODEsT LPITER | MAXFR | DEGREEI ‘

B-M 24 125 145 |133 148 | 4553 5017 | 32 52 |41 44 | 552 608
25 375 278 355 270 | 13759 9485 | 130 70 |72 73 | 1647 1060
L-S B 6 5|16 9 274 189 9 9|2 o 85 2
C 1 6 9 18 92 212 6 11 |0 4 77 179

D2 | 281 215 [375 221 | 10122 6473 ] 103 60 {53 26 | 3053 2044
IBM 5 60 23 |181 56| 2082 863 22 38 {0 O 66 4
6 92 88 | 39 32| 2679 2353| 26 21 [ 0 0 30 0

9 41 46 | 50 55 | 1417 1610] 19 27 |1 O 74 80

p 6 9 7|27 13 581 344 | 18 12 [ 2 2] 129 8
7 15 19 | 39 35 919 914 22 30 | 2 0 | 122 75

First columns : Gomory-Tomlin penalties (BD 4). Second columns: improved (BD 8).

In this table we see that improved penalties do not merely produce better bounds but
also influence the tree search and branching process. In most cases, improved penalties
are recommended. This is particularly true of more elaborate improvements e.g. BD 9 and
BD 10. These rules also involve logical implications, however, so that it is more difficult
to evaluate the intrinsic effect of penalty improvement. This is better indicated by the above
comparison BD 4 versus BD 8.
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Table X.2
Primal versus dual LP optimization (NS 1 + NS 7 (single); BR 7; D 1; RD; CV 2; BD 8)

ISEC NODES LPITER

P D P D P D

B-M 24 54 48 | 163 163 | 2061 1909
25 105 95 | 384 381 | 4133 4045
LS B 12 2 2 7179
C 6 7| 76 76 | 345 391

D2 | 132 200 | 291 352 | 3729 7459
IBM 5 34 73 | 189 334 | 1573 3335
6 37 15 | 23 9 | 544 253

9 24 29| 71 6l 824 1159

p 6 7 6| 31 31 | 261 234
| 7 5 4| 21 20 | 163 220

It is apparent from the above table that there is no striking difference in performance
between a primal and dual approach to LP computations. A more careful study of LP
computations reveals, however, that a code’s performance can be consistently improved
by choosing the reoptimization mode (primal versus dual) of each subproblem according
to its structure, m and n. Note also that this option does not only affect LP operations (see
NODES count); there are logical implications which appear in one case and not the other
due to our special updated row technique; and this can be seen to have a marked effect on
the tree.

Table X.3
Influence of logical implications I (NS 1; BR 4; BD 4; CV 2)
ISEC NODES LPITER MAXFR (I))EGRFiE —‘

B-M 24 224 125 209 133 9818 4553 43 32 | 41 552
25 545 375 525 355 23483 13759 95 130 72 1647

L-S B 20 6 56 16 813 274 37 9 2 85
C 27 1 156 9 1762 92 9 6 0 77

D2 1451 281 1102 375 | 45880 10122 | 253 103 53 3083

IBM 5 499 60 (2224 181 34060 2982 143 22 0 66
6 302 92 164 39 7491 2679 32 26 0 30

9 68 41 67 50 2023 1417 15 19 1 74

P 6 13 9 44 27 904 581 26 18 2 129
7 18 15 36 39 1084 919 17 22 2 122

For each table, the first column corresponds to “no logicals” and the second one to
“logicals of degree < 1”’; the last two columns indicate how many logicals were used. It is
quite apparent that logicals are effective. This effect is even more pronounced with other
bounding and branching rules which require logicals to generate further improvements.
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Table X.4

Influence of logical implications H (NS | + NS 7 (single); BR 7; BD 8; RD; CV 2)

DEGREE
liSEC NODES| LPITER | MAXFR 0 1 5 CAS;’
B-M 24 54 67163 1442061 1698| 37 35 (27 38| 289 344| 661 | 633
25 1105 128 | 384 329 | 4133 3274 87 81 70 100| 581 737 1091 | 1400
L-S B 1 3 2 71 11 89 3 5 1 0p 24 32| 303 113
C 6 8| 76 32| 345 103 18 12 |16 13| 306 210| 1716 | 1781
D2 132 152|291 2123729 2462 71 43 | 7 261231 834 |27487 | 16659
IBM 5 34 681892231573 1695 24 22 | 6 10| 157 199| 789 465
6 37 761 23 54| 5441170 17 32 |0 O 9 27| 224| 127
9 24 26| 71 64| 824 806| 13 14 | 8 16| 104 116 684 393
P 6 7 12 31 44) 261 280| 13 21 |5 2| 114132| 358! 194
7 5 18] 21 44J 163 239 9 23 |1 0] 113103f 151 61 J

Similar to Table X.3, where “degree < 1” (first column) is now compared to “degree
< 2 including cascades™ (second column). The last two columns indicate how many impli-
cations of degree two and higher (cascade type) were used. This table illustrates an interesting
phenomenon: by eliminating certain nodes, D2 C fails to discover some powerful D 1
implications and eventually has to search through a larger total number of nodes.

Table X.5
Single versus double branching (NS 1; BR7; BD8; CV2; D 1)
ISEC | NODEs | LPITER |DPOREE DEGREE |\, ypp
S D S D S D S D S D S D
B-M 24 61 102 | 182 113 |2125 3448 | 36 55 |322 354| 39 23 1
25 119 189 | 426 261 | 4186 6764 | 83 128 | 615 695 95 43
LS B 5 6 20 13 146 168 0 1 12 64| 19 13
C 7 2 70 138 288 796 | 17 64 |330 435 21 63
D 121 300 | 228 284 | 3132 8036 6 61 (947 2347 | 52 78
IBM 5 31 75 | 152 221 1214 3394 4 3 123 99 | 24 28
6 58 67 61 28 | 1323 1732 0 0 18 0! 37 21
9 34 45 82 51 997 1489 6 2 83 75 20 13
P 6 9 15 62 58 405 569 1 14 23 1551 25 34
7 8 33 147 101 279 1502 0 9 | 107 281 26 31}
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Table X.6
Influence of feasalties (NS 1 + NS 7 (single); BR6; BD§; RD; CV2; D)

o S
Tsac NODES | LPITER |MAXFR DOEGRFE
] B | N
BfM 2 | 65| 206 | 293 | 48 | 48 439
25 | 164 | 464 5610 149 | 99 1091
LS B 2 3 82 3 0o 27
c 2 15 76 6 0 8
p2| 152 | 277 4049 76 | 18 1384
IBM 5 | 35 | 191 1459 29 9 191
6 | 13 8 184 7 0 1
9 | 65 26 756 3 6 94
P 6 3 s 138 8 ) 53
7 | 10 49 465 14 3127
L N B SR

A comparison with Table X.11 shows comparative advantages of a feasalty strategy.
When the objective function is a good predictor for the choice of a branching variable,
feasalties are less efficient than penalties. In the case of massive dual degeneracy (IBM 6,
P 6), however, penalties are poor and feasalties good. Thus, at each node, penalties and
feasalties ought to be combined according to the subproblem structure.

Table X.7
Three typical branching rules (RD; D 1; CV 2)
i | OPT
ISEC NODES LPITER MAXFR AT NODE

B-M 24 52 54 78 | 111 163 295 | 2677 2061 3682 | 30 37 86/ 2 14 182
25 | 331 105 301 | 516 384 1199 16181 4133 14576 (171 87 399| 356 27 923
L-S B 3 1 3 5 2 8 70 71 105 4 3 5 0 0 O

C 7 6 6 58 76 120 | 550 345 460 1318 21f 0 0 O
D2 506 132 195 |1082 291 618 |21823 3729 8375 (215 71 152|275 6 352
IBM 5§ 78 34 68 | 323 189 701 | 5789 1513 4643 | 34 24 109 23 20 46
6 15 37 17 5 23 12] 335 544 395) 417 7 220 5
9 27 24 21 46 71 82| 1383 824 1208 | 1713 22| O O O
P 6 4 7 3 14 31 18| 224 261 135] 813 10 331 3
7 12 5 5 35 21 33| 600 163 197 | 13 9 17| 3020 27

First columns :NS1;BR3;BDI.
Second columns : NS 1 + NS 7 (single); BR 7; BD 8.
Third columns : NS 1 4+ NS 7 (single); BR 5; BD 1.
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Table X.8
Breadth versus depth strategies (NS 6) (BR7; BD 8; RD; D 1; CV 2; NS 7 (single))

OPT
ISEC NODES LPITER MAXFR AT NODE

B-M24 | 57 52 522|111 111 111| 2809 2677 2737| 38 30 28| 2 2 2

25 1609 331 324|639 516 52529378 16181 16127|413 171 166|508 356 368
L-S B 3 3 If 5 5 5 70 70 700 4 4 4, 0 0 O
7 7 6|60 58 58 554 550 537\ 14 13 127 0 O O
21369 506 626|706 1082 130516977 21823 27373 (190 215 248 260 275 459
505 323 262{10352 5789 4675|267 34 261286 23 19
15 15 15 5 5 5/ 335 335 335/ 4 4 4 2 2 2
29 27 26/ 48 46 45| 1561 1383 1309 20 17 14| 0 O O
3 4 3114 14 14/ 211 224 224 7 8 8] 3 3 3
I5 12 111 40 35 36| 799 600 626| 13 13 13| 31 30 32

IBM

—
(v}
[=)}
-~
o0
(=)}
(983

First columns :a =0,

Second columns : o = 0.8.

Third columns :a = 1.0.

Observe that this option is clearly problem dependent. Since the o parameter can be
changed at any time without further complication, the art of problem solving consists in
divining the proper value for each problem and subproblem; an adaptive strategy with
statistical appraisal of its performance is used to modify an initially chosen value. This
modification can be local (for one node) or global (for the problem).
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Table X.9
Feedback effect for the construction of logical implications (NS 1 + NS 7 (single};
BR7;BD§;D1;CV2)

ISEC | NODES | LPITER |MAXFR| DEGREEI
{B~M 24 61 46 | 182 136 | 2125 1764| 39 30 |36 31 | 322 5%
25 | 119 98 | 426 335 | 4186 3904 95 97 |83 78 | 615 1103
LS B 5 5| 2 11| 146 114] 19 12 |0 0] 12 36
c 7 10 ] 70 69 | 288 4l1] 21 27 |17 16 | 330 460
D2 | 121 204 | 228 234 {3132 59251 52 64 | 6 7 | 947 2261
IBM 5 3 74| 152 257 | 1214 3546| 24 38 | 4 3 | 123 1341
6 58 45 | 61 38 | 1323 o11| 37 23 | 0 0| 18 108
9 34 46 | 82 65 | 997 1904] 20 15 | 6 8 | 83 116
P 6 9 8| 62 3| 405 268 25 24 | 1 o0 |123 201
7 8§ 9| 47 43 | 279 284] 26 25 | 0 0 | 107 175

The flow of computations is organized here as follows (for each node):

(1) Derive logical implications for the subprogram (in the corresponding subtableau of

the initial tableau).

(2) Solve LP.

(3) Compute penalties, bounds and branching variable.

(4) Derive logical implications from special updated rows, in particular the surrogate
constraint.

New implications found during steps 3 and 4 may, in turn, lead to new ones if step 1
were repeated; similarly bounds, penalties and branching variable computations also could
be improved.

The above table contains in the first columns results obtained by one single sweep (1
through 4) while in the second columns we present results obtained by jterating these four
steps until no further improvement occurs.

It can be observed that although the number of nodes is generally reduced, the overall
performance is frequently degraded because the iteration process is costly.
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Appendix Y. A class of zero—one programming test problems

Our motivation for describing below a set of test problems is manifold :

(1) Good test problems are not easy to come by: a great many numerical
results are based on problems which are nowhere available for compara-
tive studies (not even from the authors).

(i) Often running times are given without the solution (not even the
optimal value) which also makes checks and comparisons impossible.

(it) The modest set of problems which is readily available in the litera-
ture and frequently used for comparative purposes is totally inadequate to
test the limits and versatility of an efficient code.

The proposed set of problems has the following characteristics :

They are easily reproducible (see attached generating programs).

— Problems of any size can be generated, both in terms of density and/or
number of constraints and variables; commonly available test problems
are, with few exceptions, too small for efficient codes: the exponential
growth of the “difficulty” of integer programming problems renders
experimentation with small problems questionable.

~ Problems can be made extremely difficult, for any given size, simply
by varying certain generating parameters.

-~ Usually, rounding and cost ranking of the variables does not really help
in solving these problems.

- It is often easy to find a good solution; but it is very difficult to find an
optimal solution and to prove its optimality. Unlike most other test
problems, it often occurs here that good branching strategies do not find
an optimal solution in the earlier stages of the execution. This puts an
additional accent on the numerical accuracy of bound computations.
Finally, in spite of their artificial nature, the proposed problems possess
some typical characteristics of integer programming applications : the
constraints are either of the budget restraint type (multiple knapsack) or
of a type specifying minimal accomplishment levels (reversed knapsack).

Y.1. Problem generator?®
A generator defines the following number stream (u, v,): Let
uO: D q9 Fo, ¥ (1)

be a set of integral seeds.

2 A FORTRAN program of this generator can be obtained from the author.
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Set®
Ury = p + qu (mod rop), ()
Uge 1 = | e 1(r — 1) /(ro — 1) + 0.5] 3
For all our problems, the following coefficients are used :
p=17, q = 20029, r, = 100000, uy = 39527.
Each problem is characterized by a set of 8 parameters:
m,n,reN, a, B, y,0,0eR*

in the general form

minimize Z = Y ¢;x,, Q)]
j=1
subjectto Y a;x; + (—1)'s; = b, ®)
=1
x; = 0,1, j=1,...,n, 6)
s; 2 0 integer, i=1,...,m )

The coefficients a;; and c; are computed by a 60-line subroutine which
is omitted here for brevity.

Y.2. Some comments

(1) The matrix (g;;) has a projected density 6 : every row has approxi-
mately o n entries and the matrix therefore has about 6 n m entries (# 0).

Non-zero entries are (approximately) found along the diagonal, with
band width |on].

(2) All real parameters may take arbitrary values in R*. However, the
following restrictions should be observed:

I/m<o<l1 (¢ > 1: matrix full,
¢ < 1/m: problem is a knapsack problem),
=0, B=0,
0<y<2 (y > 2: no feasible solution),
0<6<% (y > %: solution trivial),
3y <96 (y > &: no feasible solution).

3 The floor and ceiling functions (| } and [ |, resp) are the standard APL notations;
a small FORTRAN program is also given in the problem generator to avoid confusion.
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(3) « =p =y =0 =1 furnishes an “average” problem (and problem
difficulty). For y < 1, 6 > 1 the problem becomes easier since more vertices
of the unit hypercube become feasible. On the other hand, 2y ~ § usually
produces more difficult problems.

For o > f, the objective function tends to be positive, and the “> (10a)
constraints active. In this case approximately [1y] of the variables are 1
for feasible solutions.

For o < f, the objective function tends to be negative, and the “<” (10b)
constraints active. Approximately | 35| of the variables assume the value 1.

Choosing « > Bor f > aor3y ~ 6 < } creates very difficult problems
(as long as the other parameters do not take trivial simplifying values).

Y.3. Test problems

Table Y.1 contains a sample of problems adopted to illustrate the per-
formance of our code.

Table Y.1
Problem m n r a By 8 o LP,,, Z,p

PO g8 15 20 111 1 2 —130.62 —108
1 10 100 50 1 11 1 4 —1704.46 —1689
2 10 50 50 111 1 % —797.48 —765
3 10 75 50 I 11 1 1 —1243.58 —1217
4 10 100 50 I 11 3 3 —1848.11 —1835
5 10 100 50 11 3 1 4 —1921.50 —1921
6 20 100 50 11 4 18 1 —2065.46 —2042
7 50 100 50 11 4 L& 4 —998.49 - 956
8 10 100 50 0 1 % 4 1 —5557.50 —5555
9 10 100 50 011 1 3% —5245.07 <-—5239
10 10 200 50 111 3 4 —3495.94 —3492
11 10 200 50 11 1 % —3493.60 —3482
12 20 200 50 I 11 3 % —3726.24 —3713
13 20 200 50 011 1 3 —5156.12 < -5130
14 20 200 50 11 4 1 —2537.86 —2515
15 50 200 50 111 3 4 —2925.21 —2893
16 50 200 50 114 3 % —1716.27 — 1693
17 50 200 50 11 4 1 4% —1687.00 — 1662
18 20 200 50 t 1 4 1 4 —942.68 <-842
19 10 400 50 t 11 3 % —4568.16 —4562
20 10 400 50 111 1 % —3021.02 <-2946
21 20 400 50 11 3 1 4 —5948.38 —5946
22 50 SO 20 1 04 4 % 1827.83 <1980
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Problem P 0 is not a difficult problem. It is given explicitly in Table Y.2
to allow further users to verify their problem generator.

Table Y.2

X1 Xz X3 Xg4 X5 X¢ X5 Xg  Xg Xyo X113 X12 X13 X14 X5 1
29 —-9 —~11 825 —24 —-23 —15 —-25 -8 5 -5 —15 18 —11

14 14 14 311 3 5 5 2 416 O 0 0 0 = 40
0 1 1 11 1 { 1 t 1 1 1 1 0 0 <17
0 0 0 2 3 2 3 2 2 3 1 1 1 0 0 =z 8
0 0 00 0 15 11 12 g 7 18 9 15. 0 0 < 68
5 5 7 00 0 0 2 1 1 8 6 6 4 1 =20
1 16 17 0 0 0 0 0 0 8 2 7 17 2 18 < 68
6 11 121416 0 0 0 0 0 0 9 16 11 8 = 44
7 7 11 23 3 10 4 g§ 0 0 O 0o 1 2 <4

2 This and the other numbers of this row are objective function coefficients.
Optiinal solution Z,, = —108.
x;=1forj=236,7,8,13,15; and 0 otherwise.
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Solving the linear program associated with an all-integer program gives the group
problem N x = b(mod 1), x = 0 and integer, z = ¢ x (minimize), upon relaxation of non-
negativity of the basic variables, where ¢ = 0 and N is the fractional part of the updated,
non-basic columns. A method is given for solving this problem which does not require an
explicit group representation and is not dependent on knowing the order of the group. From
a diamond gauge function the algorithm constructs a continuous function =, which is shown
to be subadditive on the unit hypercube. Such continuous functions yield valid inequalities
and are used in solving the group problem.

1. Integer programs and their group problems

Given an integer program

minimize z=cXx, (1a)
subjectto Ax = b,
x =0, (Ib)
x integer, (l¢)

we consider the associated LP optimal basis representation of (1a, b):

minimize (z — zg) = CyXp, (2a)
subject to x5+ (B"'N)xy = B~ 'b,
Xg, Xy = 0, (2b)
where
zg = cgB™'h, (3a)

Z’N = CN - CB(B_lN) 2 0. (3b)
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As is customary in linear programming, this representation (2), (3) cor-
responds to a partition of the original matrix A into

A = (B,N), (4)
where B is a square non-singular matrix (basis). To simplify, the non-basic
variables, x, will be denoted by x,, x,, ..., x,, and the basic variables xj

BY Xps 15 Xnt25 ooy Xpime Written according to the partition (4), the con-
straints (1b) read

BXB+NXN=b, XBZO, XNZO

Relaxing x5 > 0 but imposing the integrality requirement (lc), one
obtains

N xy = b (mod B), (5a)

xy = 0 and integer. (5b)

One easily verifies that N xy (mod B) generates an abelian group.
We apply a non-singular linear transformation (basis transformation)
to obtain an isomorphic representation of this group:

(B"!'N)xy = B~ 'b(mod 1) 6)
xy = 0 and integer.

Now comparing (6) and (2b), we note that the group structure can be
defined directly in terms of the updated LP tableau corresponding to the
LP optimal solution

xB = -5 - IZXN 2 0,
b= B'b, A = (B"'N).

Since the congruence (6) is not essentially modified when the entries of
the matrix 4 = (B™ ' N) are changed by integral amounts, we can restrict
our attention to the matrix F = (f;;) defined as follows. Let

f;‘O:Ei" LE,JZO, lEDCB

The index set D denotes a subset of fractional (basic) variables; it cor-
responds to a set of integrality requirements which are not satisfied by the
current LP optimal solution and will be enforced via the group problem 7.

Now define the vectors f; (je N) by

fi = { dy = @yl 0 <a; —|ay| < fo
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Note that the unit hypercube U < R,
U={ufo— 1 <uy <fy forall ieD},

contains the vectors fg, fi. ..y for
One now defines the group minimization problem corresponding to the

integer program (1) by

minimize (z — zg) = Y, ¢X;, (7a)
j=1
subject to Y fi;x; = fio (mod 1), ieD, (7b)
j=1
x; 2 0 and integer, j=1...,n (7¢c)

Note that the integer program (1) and the group problem (7) are not
equivalent since the requirement xz; = B~'b — B™'N xy > 0 of (1) has
been relaxed in (7) to (7b). This paper is primarily concerned with the
group problem (7); thus with respect to the original integer program (1),
our results merely reflect a necessary condition; of course, necessary condi-
tions of the problem (7) are also necessary conditions for (1), while the
(optimal) solution of (7) is only an (optimal) solution to (1) when it passes
the sufficiency test xz > 0.

There exists a variety of methods in the literature to derive necessary
conditions for integer programs (1): our approach is to use the group
problem as a vehicle to this end. One may also consider only a subgroup
defined by a subset of the rows i = 1, ..., d; historically, this is the initial
approach adopted by Gomory {3} where only one row is used to generate
a necessary condition (cutting plane). Another way to form a subproblem
would be to distinguish between rows stemming from slack and structural
variables in the original LP formulation, since these two types of variables
usually have a very different cost configuration.

In the theory presented below, we have adepted the basic philosophy
which consists in pursuing the determination of the “most restrictive”
necessary conditions which can be obtained for the group problem (7);
typically, our approach is capable of producing necessary and sufficient con-
ditions for (7). In fact, it can be seen to provide a direct method for finding
an optimal solution to the group problem which does not require any
explicit knowledge of the group structure (like its factorization into cyclic
subgroups via the Smith normal form) and which is not affected by a large
group order.
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In [5], a method was given which was only applicable to cyclic group
problems. This paper gives a method based on diamond gauge functions
which make it possible to do away with this assumption that the group is
cyclic; this study also results in a different algorithm for the cyclic group
case.

As far as the original integer program is concerned, the present theory
also opens some new paths:

(i) The cutting planes and bounds which are described in this paper can
be used in a branch and bound context.

(i) An extension of the present result furnishes a new type of approach
for finding directly the optimal solution to integer programs; this is the
object of a follow-up paper.

2. Valid inequalities

Definition 2.1. The inequality Y 7_, m;x; = 7, is called valid if it is satisfied
by all feasible integer solutions to (1).

Of course, an inequality which is satisfied by all the solutions to the
group problem (7) is valid. The following theorem indicates how valid
inequalities can be obtained.

Theorem 2.2. Let 7 be a function defined on the d-dimensional unit hypercube
U satisfying

au)y =0 forallueU, (8a)
7(0) = 0, (8b)
a(u) + m(v) = n(u + v) (subadditivity) (8c)

for all u and v in U, where (u + v) is taken modulo 1 so that (u + v)e U.
Then the inequality

Z n(fp) x; = n(fo) )

is valid.

Proof. Take a (feasible) solution ' to the group problem

n
o = Z % = for x; = 0 and integer;
ji=1
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we show that

= 5, 1)

j=1 j=1
where f; is assumed for all je N to belong to U. The proof is straight-
forward, starting with u = f; (j; is such that x; > 0) and v = f;, one
applies (8c) to obtain

n(u) + n(v) = n(f;) + =(f;,) = m(2f;,)- (%)
This can be repeated (with u = 2f;))

Tf(th) + k(fh)z 7[(3.[“)7 (*)

until the point u = x;, f; is reached; now choose v = f;, (> # j;, such that
x;, > 0)

70, f3) + 7Sy Z 70, S+ S %)

until u = x;, f;, + x;,f;, is reached; and so on until the last inequality

nw — f;,) + ol f;) = n@). (%)
Now summing up all () inequalities, one obtains

.Zl xm(f;) = ?:(Zl x}f,> = n(u)

i= i=

because the right-hand side of each inequality cancels out with the first
term of the next inequality.

Subadditivity and other properties of valid inequalities are also develop-
ed in [4] and [6].

3. Subadditivity and diamond gauge functions

Consider the d-dimensional vector space R? corresponding to the
constraints (7b) of the group problem (7); we have

fo = (flO’ ...,ﬁio)ERd.

For the unit hypercube U, one knows that
(a) 0e U = RY,
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(b) for any vertex V of U, one has

Vi=fio or fi,—1 forali=1,...,d

Definition 3.1..Given a set of (d + 1) parameters o, &, ..., o, satisfying

o; =20 foralli=0,1,...,d, (10a)
d — —_
2. %ifiofio = %o, With fio =1 — fio. (10b)
=1
We define the diamond gauge function D by
d
D(u) = Z ;0 (u;) u;, (11a)
i=1
with ~
L if0<u
oy ={ o TO=w (11b)
_ﬁo lf u,- S 0.

Property 3.2. There are d degrees of freedom in the definition of the func-
tion D; the d parameters o, ..., &, (plus one degree for the scaling factor
o, which is compensated for by the equation (10b)). For the time being,
these parameters are kept unspecified; but an algorithm (see Section 4,
remark 3) will try to take advantage of such freedom.

Property 3.3. For any vertex V of U, one has
d _
D(V) = _Zl % fiofio = o3
furthermore,
D(0) =0,

0<Dw<a, foralluel.

Property 3.4. Consider one of the 2? (truncated) orthants Q

0=<uy <f,p forallied™
= . — 12
Q {u —fio<u; <0 forallied” <U (12)

where 4* and 4~ are given disjoint index sets such that 4* U4~ =
{1, ..., d} which characterize Q.
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For any u € Q, one has

D(u) = Z+aiﬁ0ui - Z &; fiol;

ied ied—

d
(13a)
= O
&0
with

5 = { af, foried* (u; =0), (13b)

—a;f;o for ied™ (u; < 0)

Thus we have proved the following lemma.

Lemma 3.5. The diamond function D is linear in Q.

Furthermore, one has:

Lemma 3.6. The level set lev, D = {u: D(u) < a} is convex. (See also [2]).

Proof. For a < 0, one has lev, D = ¢ because D(u} = 0 by construction
(see Property 3.3). For 0 < o < o, the set lev, D can be seen to be defined
by the intersection of 2¢ halfspaces of the form

d
Z 5iu,- < o
i=1

generated by all the partitions 4%, 4~ of the index set {1, ..., d}; hence
lev, D is convex.

Property 3.7. The function D has been named after the set lev,, D which
is a diamond polyhedron centered at the origin (see [1,2]); for each vertex
V of U there corresponds one (d — 1)-dimensional facet of lev,, D.

Lemma 3.8. D is a convex gauge function on U.

Proof. We must show that D is a gauge and that it is convex.

(a) D(u) = 0, and D(0) = O (see Property 3.3).

(b) Lemma 3.5 shows that D is linear in every orthant Q; thus it is
linear along every ray starting from the origin.

(¢) Since the level sets lev, D are convex, D is quasi-convex; then (a)
and (b) imply convexity of D.

Lemma 3.9. D is subadditive on U.
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Proof. Subadditivity follows from convexity. One has for all 2e [0, 1],
Diu+ (1 — A)v) < AD(uw) + (1 — A)D(v) forallu,veU.
Take 2 = J, then
D(3(u + v)) < D(w) + D(v)).

But D is linear on the ray passing through (u + v)e U; thus
D((u + v)) = 3D(u + v) = 1D(w),

where we U and w = u + v(mod 1) by Lemma 3.10.

Lemma 3.10. For ue U,
D(u) < D(t) forallt = u(mod 1).
Proof. Foragiven ue U, lett = u + k, where k; integer, i = 1, ..., d. From
(11),
d
D(r) = Y wot)t;
i=1

= _i 0;0(t;) (u; + k;).

Thus, by a coordinate-wise argument, we show
oit) (u; + k) = ou;yu; for each i.
Consider the two cases:
~ (a) u; =2 0. The inequality is true if k; > 0 since then o(t)) = o,(u;) =

fio 2 0. We need only consider k; < —1. Furthermore, ; < f;, and also
u; + ki < —fio = fio — 1. Therefore,

ofu) u; = ﬁoui < ﬁof:o
< —foolu; + ki) = o(t)(u; + k).
(b) u; < 0. Similarly, we need only consider k; > 1. There, one has
—fio =fio — 1 £ u;and u; + k; = fy. Hence,
o{u;) u; = —fiou; S]i.of;'o

Sf_io(ui + k) = o(t)(w; + k).
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The basic tool of this paper is the following function n:
n(u) = miEn {d, + D(u — ¢)} forall ueU, (17

where E is any finite subset of U called generator set with given quantities
d, > 0forall eeE.

Theorem 3.11. w is subadditive on U, provided it is subadditive on E, that is,
if nle,) + =le,) = n(e, + e,) holds true for every pair e, e, € E.

Note that (e; + e;) need not be in E.

Proof (by contradiction). Suppose n(u) + #(v) < #(u + v)for someu,ve U.
Now one has by construction, n(u) = d, + D(u — e) for some e E. Con-
sider the line between u and e,

w(l) = u + Ale — u) Ae[0,1];
and one has
n(w(l)) + n(v) = d, + n(v) = n(w) + n(v) — D(u — e).

In a similar way, we know that n(e + v) = d, + D(e + v — f) for some
fe E; we will next show that zn(e) + n(v) < n(e + v), that is,

d. + n(v) < d, + D(e + v — f).
Recalling that the definition (17) of n stipulates that
mu+v)<d,+ Du+ v —f)
and that we previously assumed (for the sake of contradiction) that
n(u) + n(v) = d, + D(u — e) + a(v) < n(u + v),
we now obtain:
n(u) + n(v) — Du — ) = d, + n(v) < #(u + v) — D(u — e)

<d;+Du+v—f)— Du-—e),
while we need show

d, + n(v) < d; + D(e + v — f);
thus it is sufficient to show that

Du+v—~f)—Du—e) <De+v—1),
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ie.,
Du—e)+ De+v—f)=Du+v-—-Yf)
that is
DW)+ D)= D +v), withu =u—e vVvV=etv-—f

Lemma 3.9 can now be seen to establish the desired result.
In summary, we have shown that

n(u) + n(v) < n(u + v) implies mn(e) + ™v) < 7(e + v)
for some e E,

where u and v are arbitrary points in U. Let us now choose v as a new
point u and let e be the new point v and apply the above implication with
these new points; one obtains

a(v) + n(e) < n(v + ¢) implies n(e) + n(e) < n(e’ + o),
where ¢’ is some element of E such that
a(v)y=d, + D(v — ¢).
The proof is now complete because
n(e’) + n(e) < n(e’ + e)

exhibits a contradiction to the subadditivity hypothesis of m on the gene-
rator set E.

To conclude, we note that Sections 2 and 3 contain the necessary
theoretical foundations for a method to construct valid inequalities: given
any generator set E with the described properties, the relations (9) and (17)
will deliver a valid inequality.

In the next section, we show that:

(i) The classical mixed-integer Gomory cuts correspond to a special
(trivial) generator set E.

(i) Better (i.e., more restrictive) inequalities can be obtained in a
constructive process which defines non-trivial generator sets E.

(iil) This process terminates finitely in a natural way when a gencrator set
E containing the point f, € U is identified ; together with a “best inequality”,
this approach also furnishes an optimal solution to the group probler.
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4. Solving the group problem with diamond gauge functions and a generator
set E
4.1. Gomory and diamond cuts [1, 2, 3]

Let E = {0}, with d, = 0; the definition (17) and the expression (9) then
become

DTN (182)
where B
(fifio OS5 (< fio),
“"'_{f;fm if (—f0 <) f <0. (180

This inequality (18) represents a diamond cut which can be shown (see
[2]) to be a non-negative linear combination of the mixed-integer Gomory
cuts

ZUV>fafzo

generated from the i™ row with coefficients o; > 0, i = 1, ..., d. (Recall

Y4y aifiofio = % (10b))

4.2. Bounds

Suppose the parameters o, ..., &, are chosen to satisfy

af) = Zom”_

where ¢; > 0 is the reduced cost associated with the non-basic variable x;
in the LP tableau one has

n n
Z— = .Zl CX; = ,Zl f)%; = %o,
i= i=

that is, the parameter o, provides a lower bound (zg + a,) for the answer
to the group minimization problem (7).

Thus by defining a process (see subsection 4.3) which gradually raises
the value of a, above its initial level ay = 0, one generates bigger (ie.,
better) bounds for the group problem; note that (z5 + ) is also a bound
for the original integer program (1). Eventually the best bound (i.e., the
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optimal value for the group problem) can be found, along with the optimal
solution to (7).

4.3. A process to solve the group problem

In order to increase the numerical value of a, while maintaining sub-
additivity of the function 7, one has to build up a generator set E, adjoining
step by step some new additional points to the trivial generator set E = {0}.

Since the basic idea in this process is to increase the value 7n( fy) = ay,
one verifies that the value 7(u) also increases (in the weak sense) for all
ueU.

But such modification of the entire function z on U is constrained by
the two following simultaneous conditions:

(1) Subadditivity of # must be maintained.

(ii) 7(fo) = 7(}7=1 fix;)) < Y- Tpx; must hold true so that a, always
represents a lower bound.

Clearly as a, is initially increased (from a, = 0) the function 7z remains
subadditive (it keeps the same conical shape); for some value ay = a,, the
constraint (ii) will then become active, for some j = j (see Fig. 1), i.e., we
must have z(f;) = ¢; for all a, > a,; this means that a further increase of
o, will destroy the conical shape of the function x: testing subadditivity
now becomes a non-trivial task; at this stage one has the generator set
E = {0, f;} with d; = ¢; Examination of the definition (17) convinces one
that the function m now “consists of two cones” (see Fig. 1) because one has

o 3 0 R F1 Fo  F3 1

Fig. 1. A one-dimensional illustration of the process defined by raising the value of ag, and
of the definition of the function = as the minimum of several diamond functions D.
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to take the diamond function (translated gauge) ¢; + D(u — f;) into account
in the min, ¢ calculation (17); and as new elements are introduced into the
generator set E, more cones need be considered.

In order to organize the verification of the constraints (i) and (ii), as this
construction devclops, we set up two lists E and F:

F is a list of points in U which have been identified as those points
where the constraint (ii) may become active.

E is the current generator set; it contains all the points where the con-
straint (i) has become active while lifting the n function; originally one has

= {0}, then E = {0,f;}, ..., and so on until E = {0, f; ..., fo -

Every element of E and F is a non-negative integer combination (taken
modulo 1) of the original f, j =1, ..., n, i.e.. for all e€ E,

e= 9*'( Y iﬁf,-), A5 =0 integer (19a)
=1
with
me)=d, = ) A5¢; = 0. (19b)
i=1

(# is the fractional part operator (modulo 1) which maps R? onto U))
From Theorem 3.11, we see that every fe F is the sum of two elements ¢,
€ in E; thus one has

Moo+, j=1..,n
dfzdp+de’g

i(Z x,{f;).

j=1

f

4.4. Remarks

(I) Termination of this process (defined by increasing a, = 7(fy)) will
occur when the element f, must be included into the generator set E;
indeed this means that a least cost non-negative integer combination

fo = 3*‘( Y i{"fj), Af° > 0, integer
j=1
with

n(fo) = dp = Z )'JIOEJ'

i=t
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has been uncovered, exhibiting an optimal solution to the group problem
(7). Since f, € E, the value of a, = z( f;) can no longer be increased without
cutting off this optimal solution.

Note that nowhere in this process do we need any information on the
group structure other than the fact that the left-hand side of the con-
gruence (7b) generates all group elements.

Note also that the order 4 of the group (recall that 4 = det B) does not
intervene explicitly in the computations.

Finally, it should be clear that since both lists E and F only contain
distinct group elements, the finiteness of 4 implies finite termination of the
process.

(2) From Theorem 3.11 one may be led to believe that the set F must
contain the points (e + ¢') corresponding to all pairs (e, ¢') of elements e
and ¢ in the generator set E. Fortunately, Theorem 4.3 below indicates
that only a “small” subset of these pairs need be considered.

Definition 4.1. A pair (e, f;)) of elements in the generator set E, with

e=3 Af; 4; =2 0 integer (19)
j
is called extremal if
@) (e + fi) ¢ E,
(b) for all other pairs (¢' = Y ;4 f; f;;) such that (¢ + f},) ¢ E, one has
4i < A; forall j # jo, jo

/"jo +1< /'jo’

A < A + L.

Lemma 4.2. Let nt be subadditive on U if there exist two elements
e, =Y ;Ajf;and e, = Y ; A7f; in E such that

nle,) + n(ex) = 7le, + e2), (20)
then

n(e) + n(f;,) = nle + f}) b
holds true for any e = ) ; 4,f; and f;, such that

0<i; <A} + i} forallj+# jo, (22a)
0<i, <AL +i2 —1. (22b)
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Proof. Consider the following list of inequalities due to the subadditivity
of mon U.

n(f1) + 7 f1) = n(2f1),
n(2f,) + 7l f) = 73,
n(Aify) + i f) = i fy + f2)
: : : (23)
(e) +7(fj) = 7le + 1),

nley + ex — f) + n(f,) = nle, + )

The condition (22b) guarantees that the inequality (23) will appear in
the above list. Summing all inequalities, we obtain

LG4 + ) n(fy) Z ales + e),

because the right-hand side term of each inequality cancels out with the
first term on the left-hand side of the next inequality. But since ¢, and e,
belong to E, we know (from (19b)) that

nley) = Y. Al ),

and similarly for e,; hence
n(eq) + nlez) = Z(A} + 23 n(f) = nle; + ey).
J
By hypothesis of Lemma 3.10, however, we know that equality holds in
the latter inequality; therefore, equality must also hold for each inequality
in the list, in particular for (23).

Remark. All points in E (and F) can be expressed by a non-negative (integer)
combination of the original f, j = 1, ..., n,
e= Y Lfp 4; 20, A;=0(mod 1).
jeN

This expression can be interpreted as a path from the origin to the point
e using each f}, 4; times; a subpath is then defined by ) ;.5 A}f; = ¢ with
A; < 4; for all j. Definition 4.1 can now be seen to state that a pair (e, f},)
is extremal iff the point f = (e + f},) ¢ E, while every subpath f" of f belongs
to E (ie., f' € E). But for every pair e,, ¢, € E such that the point f = (e; +
e,) ¢ E, one has a subpath ' with f' = (e + f;,), where (e, f,) is extremal.
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The condition of Theorem 3.11 can be relaxed to include only extremal
pairs as stated below.

Theorem 4.3. The function = is subadditive on U if
a(e) + n(f;,) = nle + f;,)

for all extremal pairs (e, f;), e€E, f;, € E.

Proof (by contradiction). Suppose that, for some value &, of the para-
meter oy, one has

i(ey) + Ti(ey) <Ti(e; + e3)

for some e,, e, in E. (Zdenotes the n-function corresponding to the value
8o in (10b), (11a) and (17)). By construction of the function # we know that
if (¢; + e;) € E, then we must have #(e,) + %(e,) = 7(e; + e,); hence we
can assume (e; + e,) ¢ E.

Now, at the level ay; = 0, Theorem 4.3 trivially holds true; thus, by
gradually increasing the value of &, we will eventually find a value %, and
a pair (e,, ¢;) such that:

(i) 0= a < d,
(i) 7 is still subadditive on U,
(iii) 7(e,) + 7(ey) = d,, + d,, = Te, + e,);
d,, +d,, < 7ile; + e).
Thus, we can apply Lemma 4.2 to the function 7 to obtain
e} + 7l fj,) = Te + o)

for all pairs (e, f},) satisfying (22). Furthermore, for the function %, we must

have
Re) + 7 fip) <Tle + f}) (24)

for at least one of these pairs, otherwise we would have
de1 + dez = ;Z(el) + ﬁ(ez) 2ﬁ:(el + eZ)

which is contrary to our assumption (iii).
We now show that, among the pairs which satisfy (24), there exists an
extremal one, i.e., there exist

eeE and f; eE (25a)
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such that

(e +fi)¢E (25b)
while

f(e) + 7 f;,) < fle + fj)- (24)

For this purpose we consider an index j; such that 1} > 0 (this implies
that f; € E) and set e = f;. Two cases can arise:

(i Either (25) holds true for some j, such that A} + A2 =1 and we
have found an extremal pair satisfying (24) because

i(e) +7(f;,) = 7le) + 7(f;,)= Te + f;,) < Tle + f;)

since (7t(u) > 7(u) for all ue U — {E}, by construction).
(ii) Else one has
w(f) + M fo) = B, + fio)
for all j, such that A} + A3 > 1; since by construction #(u) > 7(u) for all
ue U — {E}, the point (f;, + f;) must then belong to E, and we may
choose e = f;, + fj,.

This can be repeated until an extremal pair (e, f;) which satisfies (24)
is finally identified ; such a pair must exist, for otherwise we would ultimately
reach (e, + e;) with equality #(e,) + 7i(e,) = #(e; + e,) which is contrary
to hypothesis.

But, now the identified extremal pair satisfies (24) which contradicts the
hypothesis of the theorem. Thus, our assumption must be rejected and we
have shown

n(e,) + n(ey) = n(e, + e,) forall ey, e;eE.
The proof can be completed by applying Theorem 3.11.

(3) Nothing yet has been said concerning the (free) choice of the para-
meters o, i = 1, ..., d; our theory, (in particular Theorems 3.11 and 4.3)
applies to a fixed set of values «;, However, it can readily be seen that,
for a given generator set E (i.e., at any stage the computations) these values
o; can be changed, provided the following conditions remain satisfied:

(a) the new values o; satisfy (10),

(b) the new function z, corresponding to the new values &, remains

subadditive on all extremal pairs in E.
Indeed, in this case, the new function = is again subadditive on U (Theo-
rem 4.3).
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In practice, one would be interested in finding the values «; which
produce the best function z, i.e., the function = which dominates uniformly
all the other ones; this is obtained by solving the optimization problem:
Find the values a; which

maximize z(a) = miEn {d. + D(f, — e)}, (26a)
subject to dpj, 2 miEn {d, + D(f;, — o)} (26b)

for all extremal pairs e, f;; in E.

This problem (26) is generally non-convex so that the determination of
a (globally) optimal set of values o; may be impractical. One should remem-
ber, however, that this optimal solution to (26) is not required and that
any feasible solution can be used. In practice, one will conveniently choose
a “good feasible set of values «;” (typically a local optimum of (26) which
can be achieved by linear programming).

The use of such a freedom of choice for the parameters o, in an algo-
rithmic implementation is based on the hope that “good” values will lead
to an earlier termination of the process defined by increasing the «, value;
as can be seen in (26b) the meaning of the word “good” here depends on
the set E (and in particular on its extremal pairs) so that it changes with
every iteration where the set E is augmented. This unfortunate situation
forbids a simple evaluation of the “long range effect” of a particular set of
values o;. This may be considered as an open area for applied research;
it is related to the old question of choosing the “best” row to generate a
Gomory cut.

Appendix

Example. We briefly outline the first steps of the process described in
Section 4.3.
Consider the group problem

minimize Xy + 35,
subject to X, 4 3x, =3
i —
—2X1 teX2 =3
Xy, X, = 0(mod 1).

The general from of the diamond gauge reads

% %
D(uy, up) = 0‘1{ 3} u + 0‘2{ 1}”2
- 4q -3
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forueU={u:—4<u, <3 —-%3<u, <%l
The Gomory (mixed integer) cuts are obtained as follows:
(1) ¢y, =12,0, =0, E= {eo = 0}§ F= {fl = (ia —'%)afz = (%a%)}’
D(u) = 12{

Thus one has

|
FNIRFN
e
<
iy

3 3 7
23Xy + 93Xy 2 g = d,

where o, is the bound delivered by this Gomory cut.
(2) oy = 0,2, = 6; E and F as above.

The cut reads
Xy +3x, 2 %

If one keeps E and F as above, the bound o, = max {7,%} = 7 can be
improved by modifying the o parameters; an optimal value in this case is
the following.

Diamond cut (o, = 10, a, = 3):
x, + 3x, =42,

The process now consists in extending the E set, where one has to
include the following e points for which the constraints (ii) become active:

ey =fi= (%, —%), er=f, = (%, %)

For the set F we must now consider the following points:
2f1 = (%’ O)a 2f2 = (Oa %_)a
fi +fo=(—% —).

Since both f] and f, belong to E, the coefficients of the (subadditive) cut
are known to remain:

n(fy) = d, =1, a(f)) =d;, = %

Thus one only need compute 7(f,) to determine the new right-hand side
Ty = & (which is also a new bound). One has

E=1{e=0,¢ =f,e, =fa},
dO = Oa dl = 1, dz =
F = {2f1a2f2,f1 +f2},

m(fo) = 73 3) = min {d, + D(u - ¢)}.

Nl

b4
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In this phase, we seek to improve the bound by increasing o, and a,;
for this 1llustrative example, we set

a; = 10g, Uz = %q

and the parameter q is now increased until the constraint (ii) of Section 4.3
becomes active for one of the three points in F.
Hence g must satisfy

min {D,2f;), 1 + D21}, 3 + D,2f})} =2,
where the right-hand side 2 is the cost of the point 2, i.e.,
min {3g, 1 + ¢, 3 + 44} = 2

which can be satisfied by the value g = 4.
Similarly one has

. min {Dq(sz)’ 1 + Dq(sz)a % + Dq(sz)} = 3,
1.€.,
min {3q, 1 + 29,3 + 39} =3

which gives ¢ = 6; and finally,
min {D,(f; + f2), 1 + D,(fi1 + f2) 3+ Dffi + f2)} =23,

Le.,
3 17 3 1
mln{%‘q,1+%q,f+‘1}=27

and therefore g = £9.

Now one should take the smallest among the above values of g, in order
to obtain a function 7 which does not violate subadditivity at any element
of F, i.e, ¢ = 29. The resulting bound is oy = 7(fy) = 275.

For simplicity we do not attempt here to improve this bound by (local)
optimization of the cut with respect to «, «,; instead we will augment
the generator set E and thereby increase the value of g. The points where
the constraint (ii) is active must be introduced into E, ie.,

es=fi+fi=(—% -3 dy =2}
The F-list must also be augmented accordingly:
F = {201,202y + fo. fu + 22, A1 + 12}

Here we shall use Theorem 4.3 to reduce the number of pairs to be
checked.
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The extremal pairs are

(e1,f1) and (e, f3).

But we already have computed the value g for these pairs, namely
(er, f1):q = 4; (e2,/2):q = 6.

Thus we may now set ¢ = min {4, 6} = 4 and compute the bound
n(fo) = 2o = min {4(F), | + 4(), 3 + 4@)} = 5.

One sees that extending the generator set E has allowed a bound im-
provement from the diamond cut (¢, = %) to a, = 5; i.e., one has the
valid inequality

X1 +%x225

The optimal solution of the group problem is (x; = 1, x, = 5) with
objective value 8%; and 5 can be considered a “good” bound.
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Two minimum cardinality set covering problems of similar structure are presented-as
difficult test problems for evaluating the computational efficiency of integer programming
and set covering algorithms. The smaller problem has 117 constraints and 27 variables, and
the larger one, constructed by H.J. Ryser, has 330 constraints and 45 variables. The constraint
matrices of the two set covering problems are incidence matrices of Steiner triple systems.
An optimal solution to the problem that we were able to solve (the smaller one) gives some
new information on the 1-widths of members of this class of (0,1)-matrices.

1. Introduction

The purpose of this note is two-fold. First, we supply data for two in-
teger programming (set covering) problems which we believe are com-
putationally hard. Our experience indicates that optimal solutions to these
problems are very tedious to compute and verify, even though they have
far fewer variables than numerous solved problems in the literature. Thus
these problems seem to be appropriate difficult test problems for evaluating
the computational efficiency of integer programming and set covering
algorithms.

* This research was supported, in part, by National Science Foundation Grants GK-
32282X and GP-32316X and Office of Naval Research Contract No. N00014-67-A-0077-0028
to Cornell University. A substantial amount of the computer time was provided by the
Mathematics Research Center of the University of Wisconsin under U.S. Army Contract
No. DA-31-124-ARO-D-462.

** Currently at Yale University, New Haven, Conn,, U.S.A.
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The constraint matrices of the two set covering problems are incidence
matrices of Steiner triple systems. An optimal solution to the problem that
we were able to solve (the smaller one) gives some new information on the
I-widths of members of this particular class of (0,1)-matrices. This new
information is the second purpose of this note.

2. Origin of the problems

The a-width of a (0,]1)-matrix A4 is the minimum number of columns
that can be selected from A such that all row sums of the resulting sub-
matrix of 4 are at least . Here o is an integer parameter ranging from
zero to the smallest row sum of the matrix 4. This notion was introduced
and studied by Fulkerson and Ryser in a series of papers [3, 4, 5]. Hence-
forth we restrict attention to the case o = 1 and denote the [-width of an
m x n (0,1)-matrix A having no zero rows by w(4). The integer w(4) can
thus be determined from an optimal solution to the set covering problem

w(A4) = min 1,x,
(2.1)
Ax =1, x 2 0 and integral.

Here 1, is the k-vector all of whose components are 1, and we are viewing
A as the incidence matrix of m elements (rows) versus n subsets (columns)
of the m-set. (Alternatively, and this point of view is perhaps more appro-
priate for the discussion to follow, we can view (2.1) as the problem of
determining the least number of elements of an n-set required to represent
all members of a family of m subsets of the n-set.)

A Steiner triple system on n elements is a pair (S, 7)), where § =
{1,2, ..., n} and 7 = (S,, ..., S,) is a family of triples (subsets of § of
cardinality 3) such that every pair of elements of S (every subset of S of
cardinality 2)is contained in precisely one of the triples. It is well known that
Steiner triple systems exist if and onlyif n = 3 and n = 1,3 (mod 6), in which
case m = n(n — 1)/6, and each element of S appears in precisely 3(n — 1)
of the triples. (Steiner triple systems are particular cases of combinatorial
configurations known as balanced incomplete block designs, which are used
in the statistical design of experiments. For example, if n drugs are to be
tested on m patients, and each patient is to be given three drugs, a Steiner
triple system provides a design in which each pair of drugs is tested on one
patient.)

The incidence matrix A4 = (a;;) of a Steiner triple system is a (0,1)-matrix
whose rows correspond to the triples and whose columns correspond to
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the elements of S. Thus g;; = 1 if and only if j € §;. Corresponding to each
of the parameters n = 3, 7, 9 there is a unique Steiner triple system; for
n = 13 there are two distinct systems, and for n = 15, there are eighty
distinct systems [14]. The unique system for n = 9 is given by the 12 x 9
incidence matrix

Ag = (2.2)

—~ o~ O N
~ o N~
~ N~

where 0 is the zero matrix of order 3, I is the identity matrix of order 3,
and

0 1 1
Z={1 0 1].
1 0

For the system (2.2) we have w(A44) = 5, since the rows of A, are covered
by its first five columns, but by no smaller set of columns. Both systems
corresponding to n = 13 have 1-width 7; for n = 15, the 1-width varies
from 7 to 9 [5]. Indeed, in their study of 1-widths of Steiner triple systems,
Fulkerson and Ryser [5] derived the lower bound

w(d) = Yn — 1) (2.3)

and determined conditions under which equality holds in (2.3). They
remarked, however, that good upper bounds seem difficult to obtain. Since
all triple systems on 15 or fewer elements have 1-widths at most 31 — 1,
they at one time speculated that this might be an upper bound. Ryser
subsequently constructed a 45 element system as a potential counter-
example, and conjectured that it had 1-width 30. Ryser’s construction of
the 45-element system starts with a particular 15-element system that has
1-width 9. This 15-element system has the 35 x 15 incidence matrix

A5 = (2.4

~ o N
~ o N tm
~Nmo
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where

0 011
0 0 01
1 0 00
11 00
01 1o
01 00
1 01 0
01 0 1
0 01O
1 0 01

]

O — OO OO0 =~ —, O

| S

S OO O~ OO OO =

S OO — OO0 —O

S Om O OO0 —OO

S~ OO0 OO~ OO

— O OO0 O = OO OO

L
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and I is the 5 x 5 identity matrix. He then constructs a 45-element system
having a 330 x 45 incidence matrix of the following form:

Ais 0
0 Ais
0 0
(OLI |
¢

0

0
A15
Pl

}:)15

2.5)

In (2.5), I is the 15 x 15identity matrix;fork = 1,...,15, Ctisa 15 x 15
matrix whose k'" column contains all ones and whose other columns contain
all zeros, and P*isa 15 x 15 permutation matrix with ) 12, P* = J, where
J is the matrix of all ones.

We attempted to determine w(A,s) by solving the set covering prob-
lem (2.1), but did not succeed. We then used the matrix 44 from (2.2) to
construct a 27-element system structurally similar to A,s. The resulting

117 x 27 incidence matrix is

e O o O
O

T OO
=0

~-
o

(2.6)
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We solved (2.1) for 4,, and found that w(4,,) = 18. Thus %n — 1 is not
an upper bound on 1-widths of Steiner triple systems on #n elements. The
system (2.5), constructed by Ryser, has w(A4,5) < 30, and we feel reasonably
sure that Ryser’s speculation that w(A4,5) = 30 is correct.

More detailed descriptions of 4,, and 4,5 are given in Table | and
Table 2.

Table 1
The triples of 4,,

(1 234 (2 135 (3 126 (4 567
) 468 (6 459 (7 189 (8 279
( 9) 378 (10 147 (11 258 (12 3609
(13) 111213 (14 101214 (15 101115  (16) 141516
(17) 131517  (18) 131418  (19) 101718  (20) 111618
(21) 121617  (22) 101316  (23) 111417  (24) 121518

(25 202122 (26 192123  (27) 192024  (28) 232425
(29) 222426  (30) 222327 (31) 192627  (32) 202527
(33) 212526  (34) 192225 (35 202326  (36) 212427

( 37) 11019 ( 38) 11124 ( 39) 11223 ( 40) 11325
( 41) 11421 ( 42) 11520 ( 43) 11622 ( 44) 11727
( 45) 11826  ( 46) 21024 ( 47) 21120 ( 48) 21222
( 49) 21321 ( 50) 21426 ( 51) 21519 (52) 21627
( 53) 21723 ( 54) 21825 ( 59) 31023 ( 56) 31122
( 57) 31221 ( 58) 31320 ( 59) 31419 ( 60) 31527
( 61) 31626  ( 62) 31725 ( 63) 31824 ( 64) 41025
( 65) 41121 ( 66) 41220 (67 41322 ( 68) 41427
( 69) 41526 (70 41619 (71 41724 (T2 41823
( 73) 51021 ( 74) 512 (75 51219 ( 76) 51327
(77 51423 ( 78) 51525 ( 79) 51624  ( 80) 51720
( 81) 51822 ( 82) 61020  ( 83) 61119  ( 84) 61227
( 85) 61326  ( 86) 61425 ( 87) 61524  ( 88) 61623
( 89) 61722 ( 90) 61821 ( 91) 71022 ( 92) 71127
(93) 71226  (94) 71319 ( 95) 71424 (96 71523
(97) 71625 ( 98) 71721 ( 99) 71820  (100) 81027
(101) 81123 (102) 81225 (103) 81324  (104) 81420
(105) 81522 (106) 81621 (107) 81726  (108) 81819
(109) 91026 (110) 91125  (111) 91224  (112) 91323
(113) 91422  (114) 91521 (115) 91620  (116) 91719

(117) 91827
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Table 2
The triples of A,

(D 346 ( 2 4 57 ( 3 158 ( 4 129
( 3 2 310 ( 6 256 7 137 ( 8) 2 438
9 3509 ( 10 1 410 (1Y 8 911 (12) 91012
(13) 61013 (19 6 714 (15) 7 815 ( 16) 71011
(17 6 812 (18) 7 913 (19 81014 ( 20) 6 915
( 21) 11314 (22 21415 (23 31115 (29 41112
(25 51213 ( 26) 11215 (27) 21113 ( 28) 31214
( 29) 41315 ( 30) 51114 ( 31) 1 611 (32 2 712
( 33) 3 813 ( 39 4 914 ( 35) 51015 ( 36) 181921
( 37) 192022 ( 38) 162023 ( 39 161724 ( 40) 171825
( 41) 172021 ( 42) 161822 (43) 171923 ( 44) 182024
( 45) 161925 ( 46) 232426 ( 47) 242527 ( 48) 212528
( 49) 212229 ( 50) 222330 (5 222526 ( 52) 212327
(53) 222428 (59 232529 ( 55) 212430 ( 56) 162829
(57) 17 29 30 ( 58) 1826 30 ( 59 192627 ( 60) 202728
( 61) 1627 30 ( 62) 17 26 28 ( 63) 182729 ( 64) 1928 30
( 65) 202629 ( 66) 162126 ( 67) 172227 ( 68) 182328
( 69) 182429 ( 70) 202530 (7 333436 (72 343537
( 73) 313538 (79 213239 (75) 323340 ( 76) 323536
(77 313337 ( 78) 323438 (79 333539 ( 80) 313440
( 81) 383941 ( 82) 394042 ( 83) 364043 ( 84) 363744
( 85) 373845 ( 86) 374041 (87) 363842 ( 88) 373943
(89 384044 ( 90) 363945 (91 314344 (92) 324445
(93 3341 45 (99 344142 (9% 354243 ( 96) 314245
(97) 324143 ( 98) 334244 (99 344345 (100) 354144
(101) 313641 (102) 323742 (103) 333843 (104) 343944
(105) 354045 (106) 11631 (107) 11739 (108) 11837
(109) 11940 (110) 12038 (111) 12141 (112) 12233
(113) 12335 (114) 12432 (115) 12534 (116) 12636
(117) 12745 (118) 12844 (119) 12943 (120) 13042
(121) 21639 (122) 21732 (123) 21840 (124) 21938
(125) 22036 (126) 22135 127) 22242 (128) 22334
(129) 22431 (130) 22533 (131) 22643 (132) 22737
(133) 22841 (134) 22945 (135) 23044 (136) 31637
(137) 31740 (138) 31833 (139) 31936 (140) 32039
(141) 32134 (142) 32231 (143) 32343 (144) 32435
(145) 32532 (146) 32645 (147) 32744 (148) 32838
(149) 32942 (150) 33041 (151) 41640 (152) 41738
(153) 41836 (154) 41934 (155) 42037 (156) 42133
(157) 42235 (158) 42332 (159) 42444 (160) 42531
(161) 42642 (162) 42741 (163) 428 45 (164) 42939
(165) 43043 (166) 51638 (167) 51736 (168) 51839
(169) 51937 (170) 52035 (171) 52132 (172) 52234
(173) 52331 174) 52433 (175) 52545 (176) 52644
(177) 52743 (178) 52842 (179) 52941 (180) 53040
(181) 61641 (182) 61735 (183) 61834 (184) 61933
(185) 62032 (186) 62136 (187) 62244 (188) 62342
(189) 62445 (190) 62543 (191) 62631 (192) 62738
(193) 62840 (194) 629 37 (195) 63039 (196) 71633
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Table 2 (continued)

(197) 71742 (198) 71831 (199) 71935  (200) 72034
01) 72144 (202 72237 (203) 72345  (204) 72443
(205) 72541 (206) 72640  (207) 72732 (208) 728 39
(209) 72936 (210) 73038  (2l1) 81635  (212) 817 34
(213) 81843 (214) 81932 (215) 82031 (216) 82142
217) 82245 (218) 82338 (219) 82441 (220) 82544
@21) 82639  (222) 82736  (223) 82833  (224) 829 40
(225) 83037  (226) 91632 (227 91731 (228) 91835
(229) 91944  (230) 92033 (231) 92145  (232) 92243
(233 923 41 (234) 92439  (235) 92542  (236) 92638
(237) 92740  (238) 92837  (239) 92934  (240) 93036

(241) 101634  (242) 101733 (243) 101832  (244) 101931
(245) 102045 (246) 102143 (247) 102241 (248) 102344
(49) 102442 (250) 102540  (251) 102637  (252) 102739
(253) 102836 (254) 102938 (255) 103035  (256) 111636

@57 111743 (258) 111845 (259) 111942 (260) 1120 44
@261) 112131 (262) 112240  (263) 112339  (264) 112438
(65) 112537  (266) 112641 @67) 112734  (268) 112832

(269) 112935  (270) 113033  (271) 121645  (272) 121737
(273) 121844 (274  12194] @75 122043  (276) 122138
Q11 122232 (278) 122336 (279) 122440  {(280) 122539
@81) 122634  (282) 122742 (283) 122835 (284} 122933
(285) 123031 (286) 131644  (287) 131741  (288) 131838

(289) 131945  (290) 132042 (291) 132140  (292) 132239
(293) 132333 (294) 132437  (295) 132536  (296) 132632
(97) 132735  (298) 132843  (299) 132931  (300) 133034
(01) 141643  (302) 141745  (303) 141842  (304) 141939
(305) 142041 (306) 142137  (307) 142236  (308) 142340
(309) 142434  (310) 142538  (311) 142635  (312) 142733
G13) 142231 (314) 142944 (315 143032  (316) 151642
(17) 151744  (318)  15184] (319) 151943  (320) 152040
(21) 152139 (322) 152238  (323) 152337 (324} 152436
(325) 152525  (326) 152633  (327) 152731 (328) 152834
(320) 152932 (330) 153045

3. Computational experience

An optimal linear programming solution in both problems is, of course,
to set all variables equal to %, giving values of 9 and 15, respectively, for
the sum of variables in the two problems. Optimal linear programming
bases are not unique for A,; and A4,5; the computer produced optimal
bases with determinants of magnitude 273 and 453, respectively. An optimal
solution to (2.1) with 4 = A4, is given by columns 1, 2, 3, 4, 5, 6, 10, 11,
12, 13, 14, 15, 19, 20, 21, 25, 26 and 27.

Both problems were attempted by an implicit ennmer«tion algorithm
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[17] and a cutting planc algorithm based on Gomory’s method of integer
forms [7]. All computing was done on a Univac 1108. We also sent A4 to
several people who have obtained computational experience with integer
programming codes different from those available to us. Of particular
interest would be results obtained from codes based on the group-theoretic
approach to integer programming [2, 8, 9, 10],' and codes based on spe-
cialized algorithms for set covering problems [1, 11, 13, 16]. Nobody has
informed us that they have solved (2.1) for A,s. There were a few negative
responses. These generally did not report unequivocal failure, but difficulty
in treating a problem of this size with an experimental code, etc.

Using the cutting planc code, we solved (2.1) for 4 = A, in about 20
seconds after adding 44 cuts. The cutting plane code was unsuccessful on
the larger triple systems A5, 4,7 and A4s. Typically, the first few iterations
yielded cuts that caused an increase in the objective value, but this was
followed by long sequences of cuts that failed to produce a significant
change in the value of the objective function. For example, in treating 4,5,
the initial sequence of 19 cuts raised the objective value from 5.0 to 5.425,
after which 32 cuts left the value unaltered. (Recall that w(A,s) = 9.) This
particular run took 82 seconds. In contrast, this problem was solved in
5 seconds using implicit enumeration. This enumeration algorithm is very
similar to one developed and tested by Geoffrion [6]. It uses simple tests
for infeasibilities, and uses linear programming relaxations to obtain
lower bounds and thus a necessary condition on whether a given partial
solution to (2.1) has a feasible completion of smaller value than the best
available solution. The linear programming solutions also generate sur-
rogate constraints. A dual algorithm is used to solve the linear programs.
When fathoming occurs, the next partial solution considered is determined
by backtracking. Biair.iiing is done by fixing a free variable at zero or one.

In our successful run with 4,, we began with the partial solution cor-
responding to the optimal solution, which was found by inspection. About
6000 partial solutions were considered before optimality was verified. The
run consumed about 16 minutes of computer time. Most of the fathoming
came from the LP bounds, but this bounding test was quite ineffective for
partial solutions having a small number of fixed variables. Several attempts

! Shapiro [15] attempted to solve (2.1) with A,, using 1PA [10]. The enumeration was
abandoned after about 1 minute of computer time on the IBM 360/67. Optimal solutions
found for the group probiems were highly infeasible and little progress was being made
towards achieving {>asibility in the enumeration phase.
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at solving the problem for A, failed, although we began with what is
probably an optimal solution.

In contrast with our experience on these problems, others have reported
considerable success in solving set covering problems with a variety of
algorithms [1, 6,9, 10, 11, 13, 16]. For example, Geoffrion [ 6] has reported
solving, with an algorithm essentially identical to our implicit enumeration
algorithm, several set covering problems with m = 30 and 30 < n < 90 in
times varying from one to twelve seconds on the IBM 7044, a much slower
computer. Lemke et al. [13] have solved considerably larger problems in
a reasonable amount of time, e.g., a problem with m = 50, n = 450 was
solved in about 2 minutes on an IBM 360/50. Gorry et al. [10] have solved
some airline crew scheduling problems; one with m = 313 and n = 482
was solved in about 3 minutes on the IBM 360/85.

Compared to most of the covering problems considered in the literature,
the problems A4,, and A, have a relatively small number of variables but
a large number of constraints. Supposedly, however, of the two parameters,
the number of variables is the more significant in solving a covering
problem by implicit enumeration. Furthermore, the densities (number of
ones/mn) of A,; and A,s are close to the densities in the problems con-
sidered in [6] and [13] mentioned above.

Why, then, are these two problems 4,, and A4, difficult? We don’t
really know, but some plausible explanations might be:

(1) The symmetries in the problems no doubt tend to increase the
amount of enumeration required.

(2) The rather large determinants of optimal LP bases contribute to
the unattractiveness of cutting plane methods and indicate that group-
theoretic methods may encounter difficulties.

(3) The optimal value in the integer problem is large compared to the
optimal value in the real (or rational) problem, thus emasculating the power
of linear programming.

Recently, Jeroslow [12] has constructed a simple family of n variable,
(0, 1)-integer programs that cannot be solved by implicit enumeration, even
using linear programming for fathoming, without enumerating at least
2"2 possibilities. Although A,, and A,s are not in this family, they show
that problems that arise naturally can be nasty. We hope that a reasonable
set of such hard problems can be accumulated for the purpose of evaluating
the efficiency of proposed integer programming algorithms.
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Taking a set of “complicating” constraints of a general mixed integer program up into the
objective function in a Lagrangean fashion (with fixed multipliers) yields a “Lagrangean
relaxation” of the original program. This paper gives a systematic development of this simple
bounding construct as a means of exploiting special problem structure. A general theory is
developed and special emphasis is given to the application of Lagrangean relaxation in the
context of LP-based branch-and-bound.

1. Introduction

The general integer linear programming problem can be written as

(P) minimize c x,
x20
subjectto A x = b, Bx =d,
x; integer, Jjel,

where b, ¢ and d are vectors, A and B are matrices of conformable dimen-
sions, and the index set I denotes the variables required to be integer. The
reason for distinguishing two types of constraints is that the second of
these, B x = d, is supposed to have special structure.

We define the Lagrangean relaxation of (P) relative to A x = b and a
conformable nonnegative vector 4 to be

(PR mini>r{)1ize cx + A(b — Ax),

subject to Bx = d,
x; integer, jel

* An earlier version of this paper was presented at the IBM International Symposium
on Discrete Optimization, Wildbad, Germany, October 30-November 1, 1972. This research
was supported by the Office of Naval Research under Contract Number N00014-69-A-0200-
4042 and by the National Science Foundation under Grants GP-26294 and GP-36090X.
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The fruitful application of (PR}) in specific cases requires judicious parti-
tioning of the constraints into the two types A x = band Bx = d, and an
appropriate choice of 4 = 0.

Lagrangean relaxation has been used by Held and Karp [20,21] in their
highly successful work on the traveling-salesman problem; by Fisher [6]
in his promising algorithm for scheduling in the presence of resource
constraints and in his efficient machine scheduling algorithm [ 7]; by Fisher
and Schrage [9] in their proposed algorithm for scheduling hospital
admissions; by Ross and Soland [ 26] in their remarkably efficient algorithm
for the generalized assignment problem; and by Shapiro [27] and Fisher
and Shapiro [10] in the context of a group theoretic approach to pure
integer programming. See also [8]. Other authors have also made special
application of Lagrangean relaxation ideas implicitly if not explicitly in
their work. Not to be forgotten is the general relevance of the literature on
Lagrangean methods for nonconvex optimization (e.g., [2, 5, 18]).

The purpose of this paper is to develop the theory and explore the useful-
ness of Lagrangean relaxation in the context of branch-and-bound or
implicit enumeration methods for (P). In contrast with most of the references
just cited, our emphasis is on LP-based branch-and-bound algorithms
rather than those whose bounding constructs do not involve linear pro-
gramming. This is not to deny the great value of non-LP-based techniques
for special problems, but rather to stress the as yet untapped potential of
Lagrangean relaxation as a means of making the most widely used general
purpose approach more efficient for problems with special structure. The
development is intended for use at two levels. Pedagogically it strives for a
untified exposition of a number of old and new developments in integer
programming. As a research effort it aims to develop what appears to be
a potent general approach to the design of improved algorithms for special
classes of integer programs. Although the algorithmic context of this paper
is the branch-and-bound approach to integer linear programs, it is clear
that these ideas can also be applied to other classes of algorithms and
problems.

The paper is organized as follows. The basic results concerning the
relation between (P), (PR;) and related problems are collected in Section 2.
Lagrangean duality theory turns out to play a surprisingly major role. In
Section 3, a generic LP-based branch-and-bound approach for (P) is
reviewed, and the basic uses and strategies of Lagrangean relaxation in this
context are described. Section 4 derives the standard penalties of Driebeek
[4] and Tomlin [28] from the viewpoint of Lagrangean relaxation, and
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several new penalties are developed. In Section 5, the concept of surrogate
constraints as developed by Glover [17] and the author [12] is shown to be
subsumed by the Lagrangean relaxation viewpoint. Section 6 derives
cutting-planes based on Lagrangean relaxation, including some which
utilize the penalties of Section 4. Concluding comments are given in
Section 7.

Three simple examples for the special constraints B x = d will now be
introduced. They will serve in the sequel to illustrate general ideas and to
emphasize that Lagrangean relaxation is intended to be specialized to
particular problem structures. The final subsection of this Introduction
summarizes the special notations and assumptions commonly used in the
sequel.

1.1. Three examples

The Lagrangean relaxation (PR;) must be much simpler to solve than
(P) itself in order for it to yield any computational advantage. It should
admit a closed form solution or be solvable by an efficient specialized
algorithm. Thus the constraints B x = d must possess considerable special
structure. Three of the simplest possible examples of such structure are as
follows. They will be referred to repeatedly in the sequel.

Example 1. The constraints B x = d specify only upper bounds on some
or all of the variables. For instance, in 01 programming problems the
integer variables possess upper bounds of unity. It is easy to see that the
optimal solution of (PR;) can be written down by inspection of the signs
of the collected coefficient vector of x, namely (c — 1 A).

Example 2. The constraints B x = d are as in Example 1 but also include
some generalized upper bounding constraints of the form
Y x; =1, k=12...K, (1)
Jjedx
where J,,...,Jg are disjoint subsets of I. Such constraints perform a
“multiple choice” function. The optimal solution of (PR;) can again be
written down by inspection, with a search for the smallest (¢ — 4 A); now
being necessary over each subset J,.

Example 3. The constraints B x = d are as in Example 1 but also include
some constraints of the form
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ZJ: BiiXi = Brxs k=1,...,K, )
JeJk
where the K subsets {k, J,} are disjoint, x,, ..., xx are 0-1 variables, the

variables in J, are continuous-valued, and all f coefficients are strictly
positive. This type of constraint typically arises in location and expansion
models. In the familiar capacitated plant location problem for example,
x; is 1 or 0, according to whether or not a plant of capacity §,, is built at.
the k™ site, x; for jeJ, corresponds to the amounts shipped from plant
site k to various destinations, and the ;s are all unity. The Lagrangean
relaxation (PR}) can be solved easily because it separates into K indepen-
dent problems of the form

minimize Y (¢ — A A)x; + (¢ — A A)x,,
JjeJx

subject to Y Biix; < BuXes
jeJx

(3%

O_S_xjguja jeJk,

x,=0orl,

where u; is the upper bound on variable x;. If x, = 0, it follows from the
positivity of f; that x; = 0 must hold for all je J,. If x, = 1, (3}) becomes
a trivial “continuous knapsack problem” with bounded variables. The best
of the solutions obtained under the two cases x, = 0 and x, = 1 yields the
true optimal solution of (3%). From these K solutions one may directly
assemble the optimal solution of (PR)).

These three examples are among the simplest types of special constraints
B x = d for which the associated Lagrangean relaxation can be optimized
very efficiently. Whereas closed form solutions are available for these
examples, other applications may call for specialized algorithms of a less
trivial sort. In most practical applications of integer programming there are
several obvious and tractable choices for the constraints to be designated
as Bx = d. In Held and Karp’s excellent work on the traveling-salesman
problem [20, 21], for example, (PR;) is a minimum spanning “I-tree”
problem for which highly efficient algorithms are available. And in Fisher
and Schrage’s algorithm for hospital admissions scheduling [9], (PR;)
separates into a relatively simple scheduling problem for each patient.
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1.2. Notation and assumptions

Notation and terminology is generally standard and consistent with
that of [14], a survey paper containing additional background material.
However, the reader should memorize the following peculiar notations:
if (*) is an optimization problem, then v(-) is its optimal value, F(-) is its set
of feasible solutions, and (¥) refers to the same problem with all integrality
conditions on the variables dropped; the vector i denotes an optimal
multiplier vector (dual solution) associated with the constraints 4 x = b
for the ordinary linear program (P).

We adopt the convention that the optimal value of an infeasible optimiza-
tion problem is +oc (resp. — ) if it is a minimizing (resp. maximizing)
problem. The inner product of two vectors, be they row or column, is
denoted simply by their juxtaposition.

Two benign assumptions are made throughout this paper in the interest
of decluttering the exposition, except where explicitly stated to the contrary.
The first is that the nonspecial constraints 4 x > b are all inequality
constraints. If some of these constraints were given as equalities, then the
corresponding components of 2 would not be required to be nonnegative.
This is the only change required to accommodate equality constraints.
The second assumption is that the special constraints Bx > d include
upper bounds on all variables. This obviates the need for special treatment
of the case where (P) or one of its relaxations has optimal value equal to
— ¢, and also permits certain notational economies. This assumption is
consistent with the vast majority of potential applications. It is a simple
exercise to allow for its absence in all of the results to follow.

2. Theory of Lagrangean relaxation

The term relaxation is used in this paper in the following sense: a mini-
mizing problem (Q) is said to be a relaxation of a minimizing problem
(P) if F{Q) = F(P) and the objective function of (Q) is less than or equal to
that of (P) on F(P). Clearly (PR;) is a relaxation in this sense for all A = 0,
for the extra Lagrangean term A(b — 4 x) in the objective function of
(PR;,) must be nonpositive when A x = b is satisfied. Notice that the
common practice of relaxation by simply throwing away some of the
constraints is equivalent to Lagrangean relaxation with 4 = 0. Permitting
4 # 0 (but always =0) allows the relaxation to be tighter.

The potential usefulness of any relaxation of (P), and of a Lagrangean
relaxation in particular, is largely detcrmined by how near its optimal
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value is to that of (P). This furnishes a criterion by which to measure the
“quality” of a particular choice for 4. The ideal choice would be to take 4
as an optimal solution of the (concave) program

(D) ma§i>r¥)1ize v(PR}),

which 1s designated by (D) because it coincides with the formal Lagrangean
dual of (P) with respect to the constraints 4 x = b (see, e.g., [13]). This
problem in turn is intimately linked to the following relaxation of (P):

(P%) minimize ¢ x,
X

subject to 4 x = b,
xeCo{x = 0: Bx = d and x; integer, je [},

where Co denotes the convex hull of a set. It may be difficult to express the
convex hull in (P*) as an explicit set of linear constraints, but in principle
this is always possible and so (P*) may be regarded as a linear program.
In fact, as we shall see, (P*) and (D) are essentially LP duals. An optimal
multiplier vector corresponding to 4 x = b will be denoted by A* when
(P*) has finite optimal value.

Theorem 1 describes some of the basic relationships between (P), (PR,),
(D), (P*), and (P) (the usual LP relaxation which drops the integrality
requirements).

Theorem 1. (a)
(a) F(P) 2 F(P*) 2 F(P), F(PRy) 2 F(P),
v(P) < o(P*) < u(P), (PR) £ v(P) forall 2 = 0.
(b) If (P) is feasible, then v(P) £ v(PRy).
(c) If for a given A a vector x satisfies the three conditions

() xis optimal in (PR)),
(i) Ax =z b,
(i) 2(b — Ax) =0,

then x is an optimal solution of (P). If x satisfies (1) and (ii) but not (ii1), then x
is an g-optimal solution of (P) withe = A(A x — b).
(d) If (P*) is feasible, then

(D) = max o(PR;) = v(PR;,) = v(P*).
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Proof. Parts (a) and (c) are very easy. Let (P) be feasible. Then it has finite
optimal value, for Bx = d includes upper bounds on all variables, and

v(P) = max v(PR}) (by the dual theorem of linear program-

ming)!,
= v(PR3) (by the definition of 1),
< o(PRy) (because F(PRy) 2 F(PRy).

This proves part (b). An identical argument (the third portion is not needed)
applied to (P*) yields the conclusion of part (d) if one uses the following
observation in the obvious way:

o(PR;) =[mincx + A(b — 4 x),

st. xeCo{x = 0: Bx = dand x; integer, jeI}],

which holds because the minimum value of a linear function over any
compact set is not changed if the set is replaced by its convex hull.

A few comments are in order. Part (a) simply records the most obvious
relations between (P) and its relaxations (P), (P*) and (PR)). Part (b) shows
that 4, an immediate by-product of optimally solving the standard LP
relaxation (P), yields a Lagrangean relaxation that is at least as good as (P)
itself (hopefully it will be better). Part (c) indicates the well-known conditions
under which a solution of a Lagrangean relaxation is also optimal or
near-optimal in (P). This is in recognition of the fact that Lagrangean
relaxation is of interest not only for the lower bounds it yields on »(P), but
also for the possibility that it may actually yield an optimal or near-optimal
solution of (P). It follows, incidentally, that (PR,) can yield in this manner
a proven ¢-optimal solution (¢ = 0) of (P) only if o(PR,) = v(P) — & Thus
the provable quality of the feasible solutions obtainable from Lagrangean
relaxation by invoking part (c) is limited by the gap (if any) between v(P)
and v(D). Part (d) establishes that Lagrangean relaxation can do as well as,
but no better than (P*). Thus, the position of v(P*) in the interval [o(P), v(P)]
is the question of central concern when analyzing the potential value of
Lagrangean relaxation applied to a particular problem class.

! We have taken here the “partial” dual of (P) with respect to the constraints 4Ax = b,
rather than the “full” dual customarily used in linear programming. See [13] (especially Sec.
6.1) for an account of this generalization of the traditional duality theory. It is easily verified
that 4 is a bona fide optimal solution of the partial dual even though it may be defined in
terms of the full dual.
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It bears emphasis that the conclusion of part (d) is really a simple con-
sequence of the fact that (P*) and (D) are essentially LP duals of one
another. The true dual of (P*) when multipliers are introduced just for the
A x = b constraints is

maximize [min¢x + 2 (b — A x),
i2z0 x

st. xeCo{x 2 0: Bx = dand x; integer, je I }].

But, as observed in the proof of part (d), the maximand of this problem
equals (PR ;),s0 (D) must have the same optimal value and optimal solution
set as the true dual of (P*). Thus one may invoke most of the rich optimality/
duality theory for linear programming to say much more about the relation-
ship between (P*) and (D) than is said in Theorem 1 (d). For instance, one
may assert when (P*) is feasible that the set of its optimal multipliers
coincides with the set of optimal solutions of (D) and also with the negative
of the set of subgradients at y = 0 of its (convex) b-perturbation function

o) £ [inf ¢ x,
st. Ax=b—y,
xeCo{x = 0: Bx = dand x; integer, je I }],

(see, e.g., [13, Th. 1 and 3]).

Theorem 1 leaves open two important questions: the relations between
¢(P) and »(P*) and between v(P*) and »(P). These relations are taken up in
the next two theorems.

Theorem 2 shows that 1(P) = v(P*) when the following holds:

Integrality Property. The optimal value of (PR;) is not altered by drop-
ping the integrality conditions on its variables, ic, o(PR;) = o(PR})
forall 4 = 0.

Theorem 2. Let (P) be feasible and (PR,) have the Integrality Property.
Then (P*) is feasible and

v(P) = o(PRz) = (D) = v(PR,;,) = v(P*).
Proof. In view of Theorem 1 (b), (d), it is enough to show that v(P) = ¢(P*).
We have

o(P) = max o(PR;)  (by duality),

= max v(PR;) (by the Integrality Property),
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= max [mincx + A(b — A x),

iz
st. xeCo{x = 0: Bx = d and x; integer, je I }]

{by the observation used in the proof of
Theorem 1 (d)),

= p(P*) (by duality).

Notice that the feasibility of (P*) is a consequence of the fact that its dual
has finite optimal value.

Thus Lagrangean relaxation can do no better than the standard LP
relaxation (P) when the constraint partition A x > b, Bx > d is such that
the Integrality Property holds.? The best choice of A for (PR,) is then 1
from (P). In this circumstance, Lagragean relaxation seems to be of ques-
tionable value unless a near-optimal solution of (D) can be found by
specialized means more rapidly than (P) can be solved by linear program-
ming methods. Generally it is more promising to use Lagrangean relaxa-
tions for which the Integrality Property does not hold.

The Integrality Property clearly holds for Examples 1 and 2 (one may
assume without loss of generality that the upper bounds on the integer
variables are integers), but it does not hold for Example 3. The presence or
absence of the Integrality Property is evident in many applications upon
inspection of (PR;) in light of the special structure of the constraints
Bx =z d. In other applications one may be able to appeal to the total
unimodularity characterization of natural integer solutions of linear
programming problems (e.g., [30]).

We now turn to the relationship between v(P*) [or v(D)] and o(P).
A sufficient condition for o(P*) = v(P) obviously is

F(P*) = Co [F(P)],

but this is likely to be difficult to verify in specific cases because the “integer
polyhedron” is a notoriously difficult object to study.

Most of what is known about the relationship in question is a conse-
quence of the fact that (D) is the formal Lagrangean dual of (P) with respect
to the constraints A x = b. Careful examination of Lagrangean duality
theory shows that many of the results do not require convexity of the primal

? This fact has been noted by Nemhauser and Ullman [25] in the special context of
Example 1.
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problem. For instance, convexity is not used in the proofs of the key
Lemmas 3, 4 and 5 of [13]. These results yield Theorem 3, which uses the
following definitions. The b-perturbation function associated with (P) is
defined as

#4(0) £ [inf e x.

st. Ax=>2b—y, Bx=d,
x; integer, jel].

A vector y conformable with y is said to be a giobal subgradient of ¢, at
y = 0 (assuming ¢,(0) = v(P) is finite) if

Op(y) Z v(P)+ yy forally.

The adjective “global™ is used to emphasize that the subgradient definition
used here relates to a global rather than local aspect of ¢, (which is generally
nonconvex).

Theorem 3. Assume that (P) is feasible (and therefore has an optimal solution,
since all variables are bounded).

(a) The following are equivalent:

(1) o(P) = (D).

(2) There exists a global subgradient of ¢, at y = 0.

(3) There exists a pair (x, 4) satisfying 4+ = 0 and conditions (1), (i1)
and (iil} of Theorem 1(c).

(b) If v(P) = (D), then each optimal solution of (D) is the negative of a
global subgradient of ¢, at y = 0 and conversely, and any such solution i*
yields the set of all optimal solutions of (P) as the vectors x which satisfy
conditions (1), (ii) and (iii) of Theorem 1 (c) with A = 2*.

The most interesting aspect of Theorem 3 is the criterion for the equality
p(P) = »{D) in terms of the existence of a global subgradient of ¢, at the
origin and the identification of these subgradients with the solutions of (D).
The theorem also confirms that Lagrangean relaxation does indeed yield
the optimal solutions of (P) when vo(P) = v(D), via the optimality conditions
of Theorem 1 (c).

The b-perturbation function ¢, thus emerges as a key object for study
if one wishes to understand when »(P) = (D) is likely to hold. What is
known about ¢,? Clearly it is nonincreasing. It can also be shown to be
lower semicontinuous. It is piecewise-linear and convex over any region
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where the optimal values of the integer variables stay constant, for in such
a region the perturbed (P) reduces to a perturbed linear program. And ¢,
is obviously bounded below by the piecewise-linear convex perturbation
function ¢} defined earlier for (P*). In fact, this last observation can be
strengthened to assert that ¢} is actually the best possible convex function
which nowhere exceeds ¢, in value. This geometrically obvious but impor-
tant result is stated more precisely as follows.

Theorem 4. The b-perturbation function ¢} associated with (P*) is precisely
the lower convex envelope of the b-perturbation function ¢, associated with (P).

Proof. An alternative way of phrasing the result is to say that the epigraph
of ¢f is the convex hull of the epigraph of ¢,; that is, Epi[¢¥] = Co

{Epi [¢;]}. Clearly,

Epi[¢0] £ {(11): 1 Z D))}
={(wy:p=cxandb - Ax < yforsome xe X},

where
X £ {x 2 0: Bx = dand x; integer for je I},

and similarly for Epi[¢¥] with X replaced by Co {X}. Suppose that
(L7 eEpi[¢F] Then i = cxand b — AX < ¥ for some X € Co { X}. Let
X = Y, 0,x", where x" € X, 6, = O for all hand },, 0, = 1. Define y* = ¢ x"
and y* = b — Ax" for all h. Clearly (u" y*)eEpi[¢,] for all h. Hence
3 0u(u", ¥ e Co {Epi[¢,]}. But

; gh(uk’ yh) = (Zh ghuha Zh ghyh)
= (a0 X", Y, 04b — AX") = (cX, b — AX) £ (1, 7)

and so (%, ¥) must also be in Co {Epi [¢,]}. This shows that Epi [¢}] S
Co {Epi[¢,]}. Now suppose (f,7)eCo {Epi[¢,]}. Let (my) =) ,0,
(4", "), where (1", y*) e Epi [¢,], 6, = 0 for all h and ¥, 6, = 1. Let x" be
any point in X satisfying y* > ¢x" and b — 4 x* < y*. Then

Y0 2 T fext = o,

h h

D02 Y 0 — Ax") =b - AX,
h h
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where x £ Y 0px". Thus (Z,7) = (cX,b — AX) with x e Co {X}, which
shows that (i, ) € Epi [ ¢¥]. This completes the proof.

This is the central connection between (P) and (P*) — actually, between
two parameterized families of problems of which (P) and (P*) are members
of special significance. The duality gap (if any), v(P) — v(D), is precisely
equal to the difference between the b-perturbation function of (P) and its
lower convex envelope, both evaluated at the origin. This characterization
provides the basis for a qualitative understanding of duality gaps—and
hence of the potential of Lagrangean relaxation—when applied to specific
classes of problems with reference to salient characteristics of the data.

Some of these ideas are illustrated in Fig. 1 for a hypothetical mixed
integer program with but a single A-type constraint (so that y is a scalar).
Suppose that only two sets of values for the integer variables enter into an
optimal solution of (P) as b varies. The piecewise-linear and convex b-per-
turbation functions for the two corresponding linear programs (with the
integer variables fixed) are drawn as light lines. One of these linear programs
becomes infeasible for y < y!, while the other becomes infeasible for
y < y* The pointwise minimum of these two functions is ¢,(y), which is
superimposed as a heavy line. The lower convex envelope of ¢,(y), namely
@¥(y), is superimposed as a line with alternating dots and dashes. It is
clear that there is no duality gap (difference between ¢,(y) and ¢F(y))
for y2 < y < y? or y* < y. A global subgradient of ¢, at y = 0 will exist

S
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b- perturbation functions with
integer variables held fixed
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Fig. 1. Hypothetical illustration of b-perturbation functions.
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(any subgradient of ¢} at y = 0 will do) if y = 0 falls in either of these inter-
vals. If y = O falls between y' and y? or between y* and y*, on the other
hand, there will be a gap and no global subgradient of ¢, at y = 0 will exist.

We note in closing that the duality gap tends to be rather small for the
class of problems with which we have numerical experience, namely
capacitated facility location problems with additional constraints. The
special constraints are as in Example 3. For four practical problems the
values averaged as follows (after normalization via division by 0.01 »(P)):

»(P) = 100.00,
WD) = 9993,
v(PR3) = 98.97,
u(P) = 97.46.

Notice that the duality gap is small by comparison with the gap between
the integer problem and its usual LP relaxation, and that the LP multipliers
4 yield a Lagrangean relaxation quite a bit better than the LP relaxation
itself. See [15] for further details.

3. The use of Lagrangean relaxation in LP-based branch-and-bound

Virtually all of the current generally successful integer linear program-
ming algorithms are of the branch-and-bound type with linear program-
ming as the primary source of bounds [14]. This section and those to follow
discuss the use of Lagrangean relaxation as a device for possibly improving
the efficiency of such algorithms for special classes of problems.

A Dbrief review of the usual LP-based branch-and-bound approach to
(P) is necessary at this point. The terminology adopted is that of [ 14] which
can be consulted for further details. At any given time there is a list of
so-called candidate problems, each of which is simply (P) with certain
additional “separation” constraints appended. The union of the feasible
regions of the candidate problems constitutes a partition of the unenumerat-
ed portion of the feasible region of (P). There is also a number z* representing
the objective valuc of the incumbent, the best currently known feasible
solution of {P) (initially z* can be taken to be a suitably large number). The
primary iterative step is to select one of the candidate problems, say (CP),
and to examine it for the existence of a feasible solution of (P) with value
better than z*. The examination may be conclusive or inconclusive, depend-
ing on how much effort is expended; the usual practice involves solving the
linear program (CP), which ignores all integrality conditions on the
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variables of (CP). A conclusive examination is one for which the outcome is

(i) that (CP) is infeasible (e.g. (CP) is infeasible), or
(ii) that o(CP) = z* (e.g. o(CP) = z*), or
(1) that v(CP) < z* and an optimal solution of (CP) is at hand (e.g. the
optimal solution X of (CP) happens to satisfy the integrality condi-
tions); this solution replaces the current incumbent and z* is updated.

Then (CP) is said to be fathomed and is deleted from the list of candidate
problems. Otherwise, (CP) is not fathomed and must be separated into two
or more simpler candidate (sub)problems to be added to the list. This is
accomplished via mutually exclusive and exhaustive separation constraints.
The usual practice (cf. [3]) is to select a particular separation variable j, € I
and to invoke an interval dichotomy on its range. For instance, for j, = 3
one subproblem might receive the new constraint x; < 2 and the other the
new constraint x; = 3. Candidate problems continue to be examined in
this fashion, with fathoming or separation occurring each time, until the list
of candidate problems is exhausted.

It should be evident that a Lagrangean relaxation of (CP), say (CPR}j,
is just as amenable as the usual linear programming relaxation (CP) as a
device for examining candidate problems: the infeasibility of (CPR ;) implies
that of (CP); o(CPR,) = z* implies v(CP) = z*; and an optimal solution of
(CPR)), say x®, is optimal in (CP) if it is feasible in (CP) and satisfies com-
plementary slackness (see Theorem 1 (c)). Note that if x® is feasible in (CP)
but does not satisfy complementary slackness, it may still improve on the
incumbent, in which case it should be used to update the incumbent and z*
even though (CP) is not fathomed. In cases where x® is not feasible in (CP)
it may be worth trying to adjust it in some problem-specific manner so as
to gain feasibility and, hopefully, to improve thereby on the incumbent.
This is exactly the same tactic as is commonly used with (CP) when the
(fractional) LP solution is rounded to satisfy integrality in the hope of
obtaining an improved feasible solution.

The usual linear programming relaxation (CP) is also used commonly
to derive conditional bounds for use in guiding separation, for tagging
newly created candidate subproblems with lower bounds on their optimal
value, and for reducing the range restrictions on integer variables without
sacrificing optimality. Lagrangean relaxations of (CP) can be used for these
same purposes. Suppose that some variable j € F has a fractional value in the
LP solution X of (CP). We are interested in lower bounds on o(CP | x S =[x
and y(CP| x; = [X;] + 1), where « ]” signifies that the constraint following
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it is appended to the problem, and [X;] stands for the integer part of X;.
Such conditional bounds are given, respectively, by

vp(j) L v(CPR, ' x; < [%;],

vo() £ o(CPR, | x; = [X,] + 1). 4)
If vo(j) = z* holds, then the lower limit for x; obviously can be tightened to
[%;] + 1. Similarly, vy(j) Z z* implies that the upper range restriction can
be lowered to [X;]. It is even possible that both vp(j) = z* and vy(j) 2 z*
hold, in which case it is clear that (CP) is fathomed. The bounds (4) can also
be used to guide separation in the event that (CP) is not fathomed. Let
Vp(j) and ¥,(j) be computed for every j e I such that X; is fractional. One
appealing choice for the separation variable would be the one which
maximizes the larger of Vp(j) and V(j) over all eligible j. Several successful
integer programming codes have employed an analogous criterion based on
(CP) rather than (CPR,). Once a separation variable j, is selected, ¥5(jo)
and V(j,) yield lower bounds for future reference on the newly created
candidate subproblems.

The computation of conditional bounds like (4) is taken up in more
detail in Section 4. We note here only that the bounding problems have the
same structure as (CPR,) since we have assumed that range restrictions on
all variables are incorporated into the special constraints B x = d, just as
(CPR,) will have the same structure as (PR)) if, as is usually the case, the
separation constraints employed are simple range restrictions on the
variables.

Thus we see that Lagrangean relaxation can be used for the standard
branch-and-bound tasks of fathoming, generating improved feasible solu-
tions, range reduction, and guiding separation. It can also be used to derive
surrogate constraints and cutting-planes. These uses are taken up in
Section 5 and 6.

We turn now to a discussion of the strategy questions which arise in
connection with the use of (CPR}) as an adjunct to (CP). The two main
questions concern how A is to be chosen and whether (CPR ) should be
used before or after or even in place of (CP). These questions cannot be
answered definitively in general, but an obviously important consideration
is whether or not the Integrality Property defined in Section 2 holds for the
particular constraint partition under consideration.

Suppose the Integrality Property does hold. Then (CPR;) can be infeas-
ible only if (CP) is infeasible, and if (CP) is feasible, then by Theorem 2 it
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must yield the best possible choice of 4 for (CPR;) and o(CPR;,) = o(CP).
Thus (CPR;) cannot fathom (CP) by infeasibility or by value unless (CP)
would also do so. One can also show that at least one of the conditional
bounds Vy(j) and ¥,(j) must coincide with v(CP) for each variable that is
fractional in an optimal solution of (CP) when the natural choice 4 from
(CP) is used in (4). Moreover, both of the bounds coincide with (CP) in
the special case of Examples 1 and 2 and perhaps in other cases as well.
These facts argue against the use of a Lagrangean relaxation for which the
Integrality Property holds. It has little to offer that cannot already be
achieved by (CP), though it may possibly prove to be more fruitful than
(CP) as a source of improved feasible solutions. It is important to recognize,
however, that this negative conclusion rests on the implicit assumption
that (CP) is of manageable size as a linear program. If this is not the case,
then (CPR;) may be a comparatively attractive computational alternative.
A beautiful illustration is provided by Held and Karp’s work on the
traveling-salesman problem. Here (CP) has such an enormous number of
constraints that it is not practical to solve directly. Of course, the omission
of (CP) necessitates the introduction of some method for computing a near
optimal A (see below). And even if (CP) is of manageable size it may still be
sufficiently burdensome computationally that (CPR;) is attractive as a
surrogate to be invoked prior to (CP) during the examination of a candidate
problem. The hope is that the Lagrangean relaxation will permit (CP) to
be fathomed without having to resort to the more expensive linear program
(CP). The best choice for 4 is likely to be a multiplier vector saved from the
linear program corresponding to the prior candidate problem most closely
related to the current one. Section 5 indicates how this tactic coincides in
special cases with the use of surrogate constraints — a device which has
proven quite effective computationally in some applications (cf. [14, Sec.
3.1.5]).

Now suppose that the Integrality Property does not hold. Then (CP)
does not necessarily yield the best choice for 4, and (CPR;) may succeed in
fathoming where (CP) fails. It makes strategic sense to invoke (CPR,) either
before or after (CP) or even in lieu of it, depending on the relative tightness
and computational expense of the two relaxations. The most effective
strategy also depends on the role played by (CP) in generating the A to be
used by (CPR ), since (CP) can be used to generate a starting (or even final)
value of A which can then be improved upon by some independent method.
To indicate the possible methods for finding a suitable 4 we shall consider
for the sake of notational convenience the situation encountered before any
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branching has taken place. Then (CP) is (P) itself and (CPR,) is just (PR ).
The general situation is entirely analogous.

There are two broad approaches to computing a suitable A for (PR)):
(sub)optimization of the concave Lagrangean dual problem (D) and (sub)
optimization of the linear program (P*). The first approach yields A directly,
whereas the second yields 4 indirectly as the multiplier vector associated
with the A x = b constraints in (P*). The distinction should not be thought
of as a rigid one; some methods can be described naturally from either
viewpoint.

Consider the first approach. One of the most promising methods for
seeking an optimal solution of (D) is via the Agmon-Motzkin—-Schoenberg
method as revived by Held and Karp [21]. See also the recent and extensive
study of this method by Held, Wolfe and Crowder [22]. The idea is very
simple. Let * = 0 be the current estimate of an optimal solution of (D)
and let x* be an optimal solution of (PR;,). Then the new estimate is

Al =max {A" + (b — A x"),0},

where the max operator is applied component-wise and 8" is a positive step
size satisfying ceftain requirements [22]. The vector (b — A x”) is a sub-
gradient of o(PR;) at A = A* but the sequence { »(PR;,)> is not necessarily
monotone. Favorable computational experience has been reported for
several different applications [8, 21, 22]. An alternative is to carry out an
ascent method for (D); see [8, 10, 20]. Still another method is to optimize
(D) by tangential approximation (outer linearization/relaxation) making
use of the fact that the evaluation of v(PR,) for a given 4 yields a linear
support at that point. The available evidence [20, 24] suggests that conver-
gence is slow in some applications. A combination of ascent and tangential
approximation is possible with the BOXSTEP method of Hogan, Marsten
and Blankenship [23].

Consider now the indirect approach via (P*). Perhaps the most obvious
method is to apply generalized programming (Dantzig—Wolfe decomposi-
tion, inner linearization/restriction) with the convex hull portion of the
constraints of (P*) represented in terms of its extreme points. The column-
generation problems are precisely of the form (PR;). Since this method is
equivalent to the tangential approximation method for (D), however, its
efficiency is suspect. Another possibility is to apply the primal-dual simplex
method to (P*) with special provisions to accomodate the convex hull. This
method, developed by Fisher and by Fisher and Shapiro, can also be
interpreted as an ascent method for (D). Some encouraging computational
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experience has been reported [8]. In some applications the form of the
constraints describing the convex hull in (P*) is known. Then it may be
possible to apply the dual simplex method to (P*) with (most) violated
constraints generated as needed. This is probably one of the best methods
for obtaining a near-optimal 4 fairly quickly when it applies. It has the added
advantage of yielding valid constraints that may be appended to (P) to
make it a tighter relaxation of (P).

Other specialized techniques, both exact and heuristic, can be devised
for (D) or (P*) in particular applications.

4. Penalties

The so-called “penalty” concept in integer programming was propelled
to prominence by Driebeck [4], although the essential notion was used
earlier by Dakin [3] and Healy [19]. The original idea was to underestimate
the amount by which the optimal value of the LP relaxation of the current
candidate problem would increase if separation were carried out using a
particular separation variable. The estimates of change, referred to as
penalties, can be used to help guide separation and may also permit
fathoming or range reduction. An important subsequent refinement of this
original idea was the recognition that it is the candidate problems and
subproblems themselves, and not their LP relaxations, which are central
to the underlying enumerative process. Tomlin [28, 29] showed how to
modify the penalty formulae so as to take at least partial account of the
integrality conditions. The resulting penalties are underestimates of the
difference between v(CP) and the optimal value of a candidate subproblem
derived from (CP). See [14] for a discussion of current practice in the com-
putation and use of penalties.

Lagrangean relaxation furnishes a convenient setting for deriving the
simple and strengthened penalties alluded to above. This is done in sub-
section 4.1. More importantly, it leads naturally to extensions and speciali-
zations which do not follow as easily from the more traditional viewpoints.
These are illustrated in subsections 4.2-4.4 for Examples 1-3. It is hoped
that these improved penalties and their counterparts for other structures
will add new vitality to the penalty concept by overcoming the limitations
of standard penalties pointed out so clearly by Forrest, Hirst and Tomlin

[11].



100 A.M. Geoffrion, Lagrangean relaxation for integer programming

4.1. Basic results: B x = d vacuous

The first task is to show how the formulae for simple and strengthened
penalties are related to Lagrangean relaxation. This requires taking A = 4
and specializing B x 2= dto be vacuous (in contrast to our usual convention,
in this subsection, B x = d will not include upper bounds on the variables).
Define I, to be the indices in I such that X; is fractional (X is the optimal
solution of (CP)). It is easy to verify that the objective function coefficient of
(CPRjy) vanishes for all such je I, and hence for all such j we have

Wolj) = oCPRz | x; < [X,]) = o(CP),
Vo(j) £ o(CPRz| x; = [%;] + 1) = o(CP).

Thus the Lagrangean relaxation (CPRy) appears to yield zero “down” and
“up” penalties for separation on x;.

A simple remedy is to employ an alternative representation for x; in
terms of variables whose objective function coefficients in (CPR3) do not
vanish. Such a representation is available from the final tableau of the
linear program (CP) since je I s must be basic therein:

Xj=X; =

[ag!

a;iXi,

Z

€

where N is the set of nonbasic variables. The use of this representation in the
definition of V() and ¥,,(j) leads to the following conditional bounds: for
jelg,

Vo) = U(CPRI,EJ" — YN ajiﬂ‘i < [x)),
)
V() = o(CPR: | X; — Yiew djixs = [X] + 1).

Clearly,
() £ o(CP | x; < [X)]).
WO S o(CP{x; 2 [X] + 1)

for all je I; that is, these conditional bounds really do underestimate the
optimal value of the candidate problems that would result if (CP) were
separated using x; as the separation variable.

Unfortunately the computation of VF(j) and V¥(j) may be onerous if
a;; # 0 for some variables i e N n I. The computation then requires solving
a knapsack-type problem with some integer variables. Hence it is natural
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to think of estimating Vg(j) and V{f(j) from below by simply dropping all
integrality conditions:

VEo(j) £ o(CPRz | X; — Yiew @jixi < [X;]),
(6)
V() £ o(CPR; | X; — Yien @y 2 [X,] + 1).

The computation of each of these conditional bounds merely requires
minimizing a linear function with all nonnegative coefficients [(c — 1 4)=0,
by duality] subject to a single linear constraint and x = 0. This is sometimes
referred to as a “continuous knapsack” type problem and it is easy to write
down an explicit solution:

V() = o(CP) + (x; - [x;]) minimum {e = 2A)ya}, (O

ieN: a;

VEU) =vCP) + ([X;] + 1 — X )nlnanmum {(c — 1A)/(—a;)}
(we have used the fact that b = v(CP) by LP duality). These conditional
bounds are identical to those associated with the simplest penalties men-
tioned earlier (cf. (5) in [4]).
The strengthened penalties of Tomlin can also be recovered from this
viewpoint by retaining the condition that x; must not be in the open interval
(0,1) for je N n 1. Then we obtain

V() £ oCPR; | X; — ¥,y @i < [X;]and x;¢(0, forallie N N I),

lEN jt

8)
V() £ o(CPR; | X; — Yiewd@;x; = [X;] + Land x;¢(0, 1) forallie N n ).

It is not difficult to see that at most one variable need be at a positive level
in an optimal solution of the modified continuous knapsack problems
defined in (8). This observation leads to the explicit formulae:

{ (c — 2 A)(x; — [x;])/a; ifig¢l,
(¢ — A A); max {(_J—[xj])/&j,.,l} ifiel,
®
{(C — 7 A); ([EJ] +1- _J)/( a;) ifi¢l,
(c—A A)max {([X,]+1-X)A—a;), 1} ifiel

#!(j) = o(CP) + minimum

ieN: aj; >0

V¥ (j)=v(CP)+ mlmmum

N: @;; <0

These formulae are identical with the strengthened penalties of Tomlin
(cf. (10) and (11) of [28] or (3.5) and (3.6) of [29]). It is evident from the
very definitions (5), (6) and (8) that
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BO0) < 80) < B0),
WU £ WH0) £ KO

for all jel,.

This completes the recovery of known formulae for Driebeek and Tomlin
penalties for jeI;. Exactly the same type of analysis holds for penalties
associated with basic variables of I — I,. Such penalties are of interest as a
means of obtaining tighter ranges on integer variables which happen to be
naturally integer in the optimal solution of (CP). For a nonbasic variable
variable x; in I — I, the quantity of interest is ®(CPR; | x; 2 1); no alter-
native representation in terms of nonbasic variables is possible. Evidently,

o(CPRy | x; 2 1) = oCP) + (c — 1 4),. (11)

(10)

Again this is a standard result.
Another technique for strengthening (6) makes use of the following
elementary and well-known result.

Theorem 5. Let (IP) be a minimizing integer linear program in which exactly
one variable, say x,, is declared to be integer-valued. Suppose that X,, the
optimal level of x;, when (IP) is solved ignoring the integrality requirement,
is fractional. Then the optimal value of (IP) is given by

v(IP) = min {o(TP | x, = [X,]), oIP | x, = [X,] + 1)}.

The possibility that (IP | x, = [x,]) or (IP | x, = [X,] + 1) or both are
infeasible is not excluded (recall that our convention is to define a minimum
over an empty set as + co).

Let ip(j) be the minimizing nonbasic i in the formula for V*°(j) given in
(7). The index iy(j) is defined similarly. Then application of Theorem 5 in
the obvious way permits the following improvement on (6) to be computed
with only a little extra effort:

VE2(j) £ o(CPR; | X; — Yien d;x; < [X;] and x,; integer),
(12)
V2(j) £ o(CPRz | X; — Yiew djix; 2 [X;] + 1and x;; integer).

Neither (12) nor (8) necessarily dominates the other; one may verify the
following relationship for jel,:
e — 5 Va5im0 EH =10z 320), (13)
(] + 1 = XM= o) (511 = V() EIRF0).
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We are unable to supply a reference to the conditional bounds (12) in the
published literature. However, Armstrong and Sinha [ 1] have independently
and very recently proposed a precisely analogous strengthening of (8) for
the mixed integer 01 case. They report favorable computational experience.

So far we have required B x = d to be vacuous; that is, all upper bounds
and other special constraints are treated as general A4-type constraints.
Analogs of the previous penalty results as well as new penalty results emerge
easily by allowing B x > d to be nonvacuous. This will now be illustrated
for the three examples.

4.2. Penalties for Example 1

Example 1 differs from the previous development only in that (CPRy)
now has upper-bounded variables. As indicated in Section 3, it can be shown
that both V_(j) and ¥;(j) equal o(CP) for all j e I ; due to the vanishing of the
corresponding objective function coefficients in (CPR;). The remedy for
these vanishing penalties is again to invoke the representation for x; which
is available from the final LP tableau of (CP). This representation will be
written as

X;=aj — y oyx; forjely, (14)
i#j
where, of course, many of the coefficients a;; may be 0. The resulting strength-
ened conditional lower bounds on o(CP|x; < [X;]) and o(CP|x; =
[x;] + 1) for jel, are

VE() £ oCPRy | x; = ajo — Y aix; < [X)]),
(15)
V() £ o(CPRy | x; = ajo — g %ix; 2 [X]) + 1),

We have used the notations V¥ and V¥ as in (5) because (15) is an exact
counterpart of (5). Like (5), (15) could be too expensive computationally
because each estimate requires solving a knapsack-type problem in integer
variables. The fact that the knapsack problem now has upper-bounded
variables is a dubious advantage. The most easily computed lower approxi-
mation to (15)is obtained by dropping the integrality requirements as in (6):

Vg°() £ oCPRz | x; = wjo — Yz %% = [X;]),
(16)
Vo) & o(CPRy | x; = ajo — Zi#j apx; = [X;] + 1).
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The notations Vg° and V{*° have again been carried over. The differences
VEoU) — oCP),  $°() = o(CP) (17)

are Driebeek-like up and down penalties for Example 1. The computation
of (16) requires only slightly more effort than the computation of (6).
A “continuous knapsack™ problem with upper-bounded variables must
now be solved. Explicit formulae for ¥¥° and V*° are slightly more cumber-
some than expression (7), but are casily programmed for a computer.

To strengthen (16) one may formally write the counterpart of (8), but
unfortunately explicit calculation may be nearly as costly as that of (15)
itself. This is because the upper bounds generally invalidate the key property
of (8) that at most one variable need be at a positive level in an optimal
solution of each associated optimization problem. Thus the strengthened
penalties of Tomlin do not generalize usefully to B x 2 d when it includes
upper bounds on variables.

But the other technique based on Theorem 5 for strenthening Vg°(j)
and V*°(j) does generalize nicely. Let ip(j) and iy(j) be respectively the
fractional-valued variables in the solutions of the optimizations corres-
ponding to V°(j) and V¥°(j). It is easy to see that at most one variable need
be fractional in each of these solutions; if none is, then that penalty cannot
be strengthened by the present device. The strengthened conditional bounds
analogous to (12) are:

V() £ o(CPRz | x; = aj0- 2z %X < [X,] and x;,;, integer),

. ~DPD | 18
V) < (CPRz | x; = ajO‘Zi#j'xjixi (18)

2 [x;] + 1 and x,; integer).
The required optimizations are inexpensive to carry out. Clearly,
VBO0) < V3P0) < V() = oCP | x; < [X)]),

W) < W) S WH0) < olCP x; 2 [x] + 1) 1

Exactly the same types of penalties can be constructed for je I — I, when
the objective function coefficient of x; vanishes in (CPR3).
4.3. Penalties for Example 2

The development of penalties for Example 2 closely parallels that for
Example 1. For je I;, both up and down penalties again vanish, and it is
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necessary to use the final LP tableau representation of the form (14).> The
resulting conditional bounds Vi¥(j) and V{¥(j) defined in (15) may still be too
expensive computationally to use in general, but the multiple choice
constraints do tend to make the computation easier by comparison with
Example 1. There are nontrivial situations where Vi (j) and V{F(j) can be
computed relatively economically by a simple enumerative procedure. But
in general one may have to fall back on the Driebeek-like penalties defined
by (16). The required computations are no longer simple continuous
knapsack problems with upper-bounded variables, but they can still be
carried out efficiently by specialized techniques (e.g. by parametric optimiza-
tion applied to the dual of (CPRy) with respect to the added constraint).
Strengthening these penalties along the lines suggested by Tomlin as in (8)
appears to be no easier in general than (15) itself. But again, as with Example
1, the strengthening of (18) based on Theorem 5 is attractive. The indices
ip(j) and iy, (j) may be selected to be any of the fractional-valued variables in
the solutions of the optimizations corresponding to ¥#°(j) and V*°(j). The
implementation of (18) on a computer is only slightly more expensive than
that of (16). Naturally, (19) continues to hold. The reader should have no
difficulty seeing what to do if penalties are desired for variables in I — I,.

The special nature of the muitiple choice constraints (1) makes it possible
to define “cumulative” conditional bounds on the “upward” problems as
follows:

VEOU; Ju) & max {VFO(), V(i) forie {J, —j}} (20)

where it is understood that j is in J, in these definitions. That this provides
true lower bounds on ®(CP|x; = 1) follows from the fact that x; = 1
implies x; = Oforalli 3 jin the same multiple choice set. Similar cumulative
bounds hold for V*2 and V*.

4.4. Penalties for Example 3

For Example 3 we must distinguish between the “switching” (x;) versus
the “nonswitching” variables in I . The up and down penalties associated
with ¥(j) and V{,(j) are highly unlikely to vanish for the fractional switching
variables. In fact, one can argue that they are likely to be quite large. Our
experience with the practical facility location problems mentioned at the
end of Section 2 has been that these penalties tend to be at least an order of

3 Numbered displays from the discussion of Example 1 will be used here with the under-
standing that (CP), etc, have the structure of Example 2 rather than Example 1.
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magnitude greater than the standard Tomlin penalties when A is used,
and yet take less time to compute [15]. For the nonswitching variablesin I ;,
however, it is easy to see that the naive penalties vanish and thus that
alternative representations from the final LP tableau may be useful. The
detailed discussion would be so close to that for Example 2 that it will not
be given here.

5. Surrogate constraints

Consider the case where (P) is a pure 01 integer program with B x = d
consisting solely of unit upper bounds on all variables. The present author
proposed [12] the use of “surrogate” constraints (after Glover [16]) of the
form

cx+ A(b — Ax) < z¥, (21)

with the prescription that A = 0 be chosen as the optimal dual vector
corresponding to A4 x = b in (P) or some (CP). Clearly such a constraint
must be satisfied by every feasible solution to (P) with lower objective value
than that of the incumbent. Two uses of this type of surrogate constraint
were proposed in connection with the examination of a typical candidate
problem: as a possible means of fathoming via the easy test

min_ilgqlum {ex +A(b— Ax)} é z* (22)

and as a possible means of range reduction via the following easy tests
applied to a typical (say the jth) variable:

min_it(}llum {cx 4+ A(b—Ax) st x; =0} é z*, (23a)
minimum {ox + A(b— 4x) st x; =1} 2 2* (23b)

If (22) holds, then (P) is fathomed. If (23a) [resp. (23b)] holds, then x; must
be 1 [resp. 0] in any feasible solution of (P) which is superior in value to the
current incumbent. It is understood, naturally, that all separation constraints
must also be honored in taking the minima in (22) and (23) when examining
a candidate problem subsequent to (P). If all separation constraints involve
only additional range restrictions on the variables, as is usually the case,
then (22) and (23) remain computationally trivial.

It is easy to interpret (22) and (23) from the viewpoint of Lagrangean
relaxation (remember that Bx = d consists of just the upper bound
constraints x; < 1). Test (22) can be rewritten as
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o(PR,) = %, (24)

which is precisely the elementary fathoming criterion normally associated
with (PR;). Similarly, (23) can be rewritten as

o(PR, |x; = 0) 2 z*, (25a)
WPR; |x; = 1) = z* (25b)

This is precisely the ordinary range reduction criterion described in
Section 3. And the injunction to obtain 4 from the usual linear programming
relaxation is a consequence of Theorem 2, which implies that the strongest
tests are obtained in this way.

Thus the surrogate constraint (21) and the tests based on it are seen to be
completely subsumed by the simplest Lagrangean relaxation techniques
for the special case of Example 1. Generalizations of (21)23) when (P) is
not a pure 0--1 program or when B x = d includes more than simple upper
bounds can be obtained without difficulty. Some such generalizations were
developed several years ago by this author in unpublished lecture notes and
by Glover [17] using the surrogate constraint viewpoint, but in each case
the same results may be obtained easily as special cases of more general and
powerful results based on Lagrangean relaxation.

6. Cutting planes

For present purposes, a cutting-plane is any linear inequality which
must be satisfied by all of the feasible solutions of a candidate problem but
is violated by an optimal solution of its usual linear programming relaxation
(CP). Appending cutting-planes to (CP) makes it a tighter relaxation of (CP)
and thereby yields better bounds for use in a hybrid branch-and-bound
algorithm (cf. [ 14, Sec. IV]). Cutting-planes may also, of course, be used in
a purely cutting-plane approach.

This section explores the uses of Lagrangean relaxation as a source of
cutting-planes. For notational convenience we only consider cuts relative
to the initial candidate problem (P) itself. It is a simple matter to apply the
ideas developed below to any candidate problem.

The simplest type of cutting-plane for (P) is (here 4 = 0)

U(PR)Scx+ A(b — AX). (26)

A special case of this cut was proposed by Shapiro [27], who showed that
it can be at least as strong as all of the cuts in a well-known group theoretic
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class. The validity of this constraint for any feasible solution of (P) follows
from the definition of v(PR;) and the fact that the feasible region of (P) is
contained in that of (PR,). It will be violated at X, an optimal solution of
(P), if y(PR;) > v(P) holds, because 4 > 0 and 4 X = b imply

WP)=cX=cX +A(b — AX).

The condition »(PR;) > v(P) will hold when »(P) < (D) and 4 is sufficiently
near optimal in (D). Of course this condition is impossible when the
Integrality Property holds; in fact, the Integrality Property implies that
(26) cannot be violated by any solution of (P) whatever, because then

v(PRy) = o(PR)) < cx + A(b — AX)

for all x feasible in (PR;) and thus for all x feasible in (P). Thus (26) can be a
true cutting-plane only when the Integrality Property does not hold.
Appending it to (P) must increase the optimal value of (P) at least to o(PR,)
because (26) implies

cx 2 v(PR;) — A(b — Ax) = v(PR,) for all x feasible in (P).

An improvement of (26) is obtained by replacing v(PR;) with (PR, | x;,,
.., X;,), which denotes the optimal value of (PR, ) as a function of specified
values for the distinguished cut variables x;,, . . ., x;,. (If the values of the cut
variables are such that no completion exists which is feasible in (PR,)}—
e.g., if an integer cut variable takes on a fractional value—then by conven-
tion, (PR, | x;,, ..., x;,) is defined to be + oo at such a point.) The con-
straint

. .IP

(PR, | x; X )Scex + A(b— Ax) (27)

IERERE]

is valid by an argument similar to that for (26) and is uniformly at least as
tight because

o(PR;) < (PR, | x] G X (28)

Jue
obviously holds for every fea51ble solution x’ of (P). Strict inequality holds
in (28) except when x} , ..., x}, happens to be part of an optimal solution
of (PR,). This fact also renders (27) less susceptible to neutralization by the
Integrality Property.

The difficulty with (27), of course, is that o(PR, | x;,, . .., x;,) need not be
a linear function. It depends upon the structure of (PR;) and the choice of
cut variables. One source of nonlinearity has to do with the domain on
which it is + co. Fortunately, (27) need only hold for feasible solutions of



A.M. Geoffrion, Lagrangean relaxation for integer programming 109

(P), and so »(PR,| x;,,..., X;,) can be redefined arbitrarity wherever it is
+ 0. It 1s clear that this redefinition should be linearly interpolative in
nature. Of course, this still may not render (27) linear. It may be necessary
to determine a linear lower bounding function l;(x;,, ..., X;.),

Ll -0, x;,) £ o(PR; | x for all x feasible in (P). (29)

Jx""’ JP)

Clearly, I; should be as “tight” as possible, esgecially in the vicinity of x.
Thus the linear constraint to be appended to (P) is of the form

[{x, W X)) Sex + Ah — Ax), (30}

IR

where (jy, . .., jp) is an arbitrary set of cut variable indices, 4 = 0, and (29)
must hold.

The above ideas can be illustrated with reference to the three examples
of Section 1. Examples 1 and 2 satisfy the Integrality Property and so
constraint (26) cannot be violated at x. Furthermore, it can be shown for
these examples that no constraint of the form (30) can be violated at X,
no matter what A or cut variables are chosen. Example 3, on the other hand,
does lend itself to the derivation of useful cutting-planes. Cut {26} tends to
be quite good, even when 4, an immediate by-product of (P), is used. We see
from the computational experience cited at the end of Section 2 that, in the
four practical problems studied, a single cut of the form (26) with 4 = 4
raised the optimal value of (P) an average of at least 39.6 %, of the distance
from v(P) to »(P). If the effort to find an optimal A were expended, (26) would
raise the optimal value an average of at least 97.1 9, of the way to v(P).
It should also be noted that a cut of the form (30) is available as an immediate
by-product of the evaluation of (PR;). Recall that (PR;) separates into
independent subproblems of the form (3%):

oPR,) = Ab + i o(3)
k=1

+ mm1mum (Yierlc —AA)x; st 0 x; S w,

xj, jeT

je T and x; integer, je Tn1},  (31)

where T comprises the indices of all variables not appearing in any of the
subproblems of type (3%). To evaluate v(PR,) one makes use of the fact that

p(35) = min {03} | x, = 0), o35 | % = 1)} (32)

and of the fact that the last term involving j e T'in (31) is trivially evaluated
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by inspection. Thus the binary variables x, are obvious choices for cut
variables. We have

X
v(PR; | x4, ..., xg) = CON; + Z (34| xp), (33)

where the constant CON, equals the first and last terms of (31). The binary
nature of the variables makes it easy to write down a linear function [,
satisfying (29) with equality in this case:

CON, + Z G4l x = 1) x, = (PR, | x4, ..., xx)
for all binary (x, ..., xx). Thus (30) becomes
X
CON; + Y v¥|xi=1)x, S ex+ A — Ax). (34)
k=1

Our experience with the same four practical problems as mentioned above
is that a single cut of this type raised v(P) an average of 69.7% of the way
from o(P) to v(P) when 4 was used [15].

The derivation of a type (30) cut for Example 3 generalizes easily to the
frequent situation where (PR,) separates into a number of independent
subproblems involving 0-1 variables. Suppose

v(PR,) = 1b + Z (PRE),

where (PR%) involves the variables J, (J4, . .., Jp is a mutually exclusive and
exhaustive partition) among which is a 0—1 variable Ji- Suppose further that
both (PR} | x;, = 0) and (PR | x; = 1) can be obtained inexpensively in
the course of evaluatmg v(PRX). Then Ji is a natural choice for a cut variable
and a type (30) constraint is

Ab+ Z (PR% | x;, = 0)(1 — x;,) + o(PRY | x; = 1)x;, <

Scx+2(b-—Ax). (35)
We have made use of the relations

P
o(PR; | x;,...,x;)=4b+ Y o(PR%|x;),
K=1

o(PR% | x;,) = o(PRY | x;, = O)(1 — x;)
+ o(PRY | x;, = 1)x;, forx; =0,
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The latter relation furnishes the required [, function with equality in (29).
Constraint (35) is likely to improve on the counterpart of (26), namely

,lb+z (PRY < cx + A(b — Ax), (36)

because
o(PRY) = min {t(PR} | x;, = 0), o(PR% | x;, = 1)}

< o(PRY | x; = 0)(1 — x,,
+ u(PRY | x;, =1)x; for0<x; < 1.

It should also be pointed out that (35) and (36) can be decomposed into P
component inequalities:
o(PRS | x;, = O)(1 — x;) + o(PRE | x;, = 1)x;, £ Y (c — AA)x;, (35)

JjeJx
oPRY < 3 (c — A 4)x;. (364)
jeJi
The validity of (35;) and (36,) should be evident. Their sum over all & yields
(35) and (36), respectively.

Other types of cutting-planes can be devised with the help of the penalty
formulae of Section 4. In particular, useful cutting-planes for Examples 1
and 2 can be determined (recall that neither (26) nor (30) were useful in this
context). Both the simple penalties based on (16) and the strengthened
penalties based on (18) can be used to generate cuts violated by X so long
as at least one of these penalties is nonzero. This may be done as follows.
Consistency of notation requires that we let (CP) equal (P) when applying
the results of Section 4.

Consider first the simple conditional bounds (16). Select any je I, such
that at least one of the penalties is strictly positive and take this j to be the
one cut variable. Clearly

(PR | x; = tjo — Dz 0iix)) <
<cx+AZcx+ A(b — Ax) forall x feasible in (P).  (37)

The left-hand side of (37) is convex as a function of x;, and thus the unique
linear function passing through it at the points [x;] and [%;] + 1 does not
overestimate it for any integer value of x;:

VEO0) + (V°0) — BP0 — [X)) <
< uPRz|x; =a; — ) a;x) forall integer x;. (38)

i#j
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Together, (37) and (38) imply that
V3O0) + OR°0) — 0N — [X) Sex +A(b — Ax) (39)

is a legitimate cut. Notice that if there are several je I, for which Vixo(j)
and VF°(j) are computed, then it is an easy matter to select j so as to yield
the cut of type (39) which is most violated by x.

Now consider the strengthened conditional bounds (18). An analog of
inequality (37) holds, but the analog of (38) does not because of the added
integrality requirement in (18). It appears necessary to require that jel,
be a 0-1 variable if a cut is to be based on (18) with j as the single cut variable.
Then

B20) + 3%0) = V320D x; Sex + A(b — Ax) (40)

is a legitimate cut. By (19), (40) is clearly a superior cut to (39). It is a simple
matter to select j so as to yield the cut which is deepest at X among those of
the form (40).

For Example 2 one should of course use in (39) and (40) the cumulative
penalties defined in (20) in place of F*°(j) or V() if the necessary quantities
are at hand. One may further improve cuts (39) and (40) when j is a multiple
choice variable by using one of the obvious cuts

Y VG J)x;Sex 4+ A(b — Ax), k=1,...,K 41)

JjeJi
or the still stronger cuts
Y VF;J)x; < cx + A(b — Ax), k=1,...,K. (42
jeJy
Each of these cuts takes all of J, as the set of cut variables. It is easy to verify
that cuts of the form (41) [resp. (42)] are at least as strong as those of the
form (39) [resp. (40)] for all x feasible in (P).

A cut similar to (41) was proposed by Healy [19]. To be precise, for the
kth cut he omitted the term A (b — A x) and used V*°(j) as the coefficient
of x;, where V¥°(j) is computed with B x = d taken to consist of only the
kth multiple choice constraint (no upper bounds or other multiple choice
constraints are included). This cut is dominated by (41).

We note in closing that penalty-based cuts with more than one cut
variable can often be obtained for Examples 1 and 2 and other structures
by: (i) adding to (PRy) relations of the form (14) for any subset of j’s in I so
long as no variable appears with a nonzero coefficient in more than one
of these relations, and then (ii) exploiting separability.



A.M. Geoffrion, Lagrangean relaxation for integer programming 113

7. Conclusion

Lagrangean relaxation is a systematic exploitation of the formal Lagran-
gean dual problem in integer programming. This dual problem need not
be solved optimally and need not be devoid of a duality gap in order to be
useful. It provides a means for fathoming, range reduction, generating
improved feasible solutions, and guiding separation (Sec. 3). It also provides
new penalties (Sec. 4) and cutting-planes (Sec. 6) and supplants the narrower
notion of surrogate constraints (Sec. 5). All of these functions usually can
be tailored to the special structure of the particular problem class at hand,
beginning with the judicious choice of the subset of constraints to play the
role of B x = d. This has been carried out in detail for three of the simplest
structures. Some of the uses of Lagrangean relaxation have been explored
by other authors for several more complex structures [6], [7], [8], [9],
[10], [20], [21], [26]. Yet it remains to work out the full import of Lagran-
gean relaxation even for these structures and for many others of importance.
It is hoped that the framework of this paper will facilitate this effort and
encourage new applications.
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A heuristic algorithm for solving mixed-integer programming problems is proposed. The
basic idea is to search good feasible solutions located ncar the LP optimal solution. it con-
sists of four phases : Phase 0. computation of LP optimal solution; Phase 1. computation of
the central trajectory T of the feasible region; Phase 2, search for (integer) feasible solutions
along T; Phase 3, improvements of feasible solutions. The computational results are encou-
raging. I'or example, randomly generated problems with 50 c¢onstraints and 400 variables
consumed 2 ~ 3 minutes on a FACOM 230/60. The quality of the obtained solutions seem
to be quite high. In fact, for many problems with known optimal solutions. our algorithm
was successful in obtaining exact optimal solutions.

1. Introduction

Motivated by the limited success of integer programming algorithms
guaranteeing optimal solutions, various heuristic algorithms have been
investigated by Reiter and Rice [12], Echols and Cooper [2], Senju and
Toyoda [14]. Roth [13], Hillier [5] and possibly by others. A heuristic
algorithm aims at obtaining a good feasible solution relatively quickly.

The results obtained by Hillier [ 5] motivated our research. His algorithm
deals with all-integer programs and, for example, could obtain suboptimal
solutions of problems of the size 60 x 300 (constraints x variables) in
about 5 minutes on an IBM 360/67. The quality of the obtained solutions
seems to be quite high.

* This paper is a slightly shortcned version of the working paper [8]. which is available
from the authors. A FORTRAN list of the entire code is also available upon request.
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In this paper, we will give a heuristic algorithm for mixed-integer pro-
grams. The basic idea is to search integer feasible solutions located near the
LP optimal solution. It is similar to Hillier’s but differs in many respects.
The main differencc consists in the search method for obtaining initial
integer feasible solutions, which will be explained later. The computational
results for various test problems are encouraging. For example, solutions
of problems of the size 50 x 400 with 50 400 integer variables are obtained
in 2 3 minutes on a FACOM 230/60. Judging from the computational
experience for test problems with known optimal solutions, the obtained
integer feasible solutions are usually very close to (and frequently even
cqual to) exact optimal solutions. It is concluded that the heuristic approach
of this type can be considered as one of the most promising practical algo-
rithms for mixed-integer programs.

2. Preliminaries

Let a mixed-integer programming (MIP) problem P be written as
follows:

P: maximize z = Z cxi+ Y ey (1)
i=1 j=1
subject to x,, +; = b; — Z aix; — Z dyyi, i=12....m (2)
ji=1

x; = 0, Jj=12...,n + m, 3)
J/JZOa j=172$‘--3n29 (4)
y; integer, J=12,...,n,, (5)

where x, ., i = 1,2,...,m are slack variables. Let
n=n; + n,. (6)

Without loss of generality we assume that coefficients in (2) are normalized
so that

3

U+Ld2_ i=1,2,....m 7

1 j=1

1}

7

holds.
Let P denote the linear programming (LP) problem obtained from P
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by neglecting the integer constraint (5). Let 4 = (.1, . ... 1,,). where n,
are nonnegative integers, and let

bin) = b; — Zl dijn;, i=12,...,m (8)
i<

P(y)denotes the LP problem P with each b, replaced by b{x). In addition, if
all variables y; are fixed to 0 in P(x), the resulting problem is denoted P(x).
P(n) is the LP problem obtained from P by fixing each integer variable y;
to n;.

In describing our algorithm, it is sometimes required to use the simplex
tableau of P(y) with integer variables v; being restricted to be nonbasic
(ie., fixed to 0). Let continuous variables x|, x,,....Xx,, ., be partitioned
into basic variables u,, u,....,u, and nonbasic variables ¢,, t,, ... ¢
The corresponding simplex tableau is written as follows.

ngt

j=1

Z = %po + Z ij(_tj) + ‘Zl BOJ(—yj)a
i-

n

u; = % + Elaij(_tj)+ Y Bil—y), i=12...,m
j= i
3. Outline of the algorithm

Our algorithm consists of four phases, Phases 0-3. We now give an out-
line of each phase. The details will follow in subsequent sections.

In Phase 0, the LP problem P is solved. If P is infeasible, so is P. Thus
computation terminates. If P has an optimal solution, it is denoted (X, ¥).
In this case, if ¥ is an integer vector, (x, y) is an optimal solution of P, and
the computation terminates. Otherwise, Phase 1 is entered. Finally, if P is
unbounded, it may be the case that P is unbounded. However, we omit this
case from consideration. If necessary, we can add constraints x;, y; < M,
where M is a large positive number, to eliminate unboundedness.

In Phase 1, trajectory T (defined in Section 5) is calculated. T starts
from (X, y) obtained in Phasc 0 and moves to the interior of the feasible
region of P. In some sense, T is considered as the trajectory of the center
of the feasible region.

Phase 2 tries to find integer feasible solutions of P. The search starts
from (¥, y) and proceeds along T calculated in Phase 1. The basic idea is
to round each vector on T to its nearest integer vector, and to perform a
search for an integer feasible solution in its neighborhood in case the roun-
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ded vector is not a feasible solution. When the prespecified number of
integer feasible solutions are obtained or all search procedure along T is
completed, Phase 2 terminates. If no integer feasible solution is found in
this computation, Phase 2 is concluded to be a failure. Otherwisc. it pro-
cecds to Phase 3.

In Phase 3. an attempt is made to improve each integer feasible solution
obtained in Phase 2. The search for improvement is guided by coefficients
By; in the simplex tableau (9) which serve as a measure of the amount of
the increase (or decrease) of the objective value incurred by changing y; by
| or —1. After carrying out the search of the prespecified depth, the best
integer feasible solution obtained is provided as a suboptimal solution of P.

Each phase in the above algorithm contains various program parame-
ters, such as the depth of each search. These parameters should be deter-
mined prior to exccution. Since they are directly related to the quality of
the obtained solution and the computation time, it is crucial for achieving
a good performance to have reasonable values. These are usually deter-
mined empirically, and some typical values are given in Section 8. A list
of all program parametcrs is given in the Appendix.

4. Phase 0

Phase 0 is straightforward. The LP problem P is solved by the simplex
method. In our code of Section 8, the following strategy is taken. If P is
initially neither primal nor dual feasible, the so-called two-phase method is
applied. If P is initially primal feasible, only the second phase of the two-
phase method is applied. On the other hand, if P is initially dual feasible, the
dual simplex method is applied instead of the two-phase method. In the rest
of this paper, we assume that an optimal solution (x, y) of P with its objective
value Z has heen obtained.

5. Phase 1
Consider the following LP problem.
Q(u): maximize 4, (10)
subject to x,, ,; = b; — .il a;jxj — il diy; — A,
f= i=

(11)

i=12....,m
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Py ¢;x; + j; ey =u, (12)
x; =2 0, j=12,....,n, + m, (13)
y; 20, =12 ..n, (14)
420, (15)

where 4 is a new variable and v is a given constant.

Let z and z respectively denote the objective values of an optimal solu-
tion of P and of an optimal solution of the LP problem obtained by re-
garding P as a minimization problem (z could be — c0). Q(u) has a feasible
solution if

z<u<lz (16)

is satisfied.

The optimal solution of Q(u) is equal to the point in the intersection
of the feasible region of P and the hyperplane (12), that maximizes the
minimum of distances to the hyperplanes defined by

ny ny
b= Y ap;+ Y dyy;, i=12...,m
j=1 j=1

From this geometrical interpretation, the following property is easily
proved. A(u) and (x(u), y(u)) denote the maximum value of 4 and an optimal
solution of Q(u). Let {y(u)) be the vector obtained from y(u) by rounding
each element to its nearest integer. Then if

Au) = $/nz (1)

is satisfied, (x(u), <y(u)») is an integer feasible solution of P, since the
sphere with radius 3,/n, in the n,-dimensional space obtained by fixing
continuous variables to x(u) necessarily contains an integer point.

Even if (17) is not satisfied, it would be reasonable to search a feasible
solution around (X(u), ¥(u)). This idea was originally used by Huard in his
“method of centers” [ 7]. Although Huard started his search from the point
(X(u), y(u)) with u maximizing A(u), we choose rather to concentrate our
search to the neighborhood of (¥, y) (LP optimal solution), since it is expec-
ted with relatively high probability that integer feasible solutions with
good objective values are located around (X, y). For this purpose it is
helpful to calculate the trajectory of (¥u), y(u)) when u is continuously
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decreased from z (see (16)). This trajectory is denoted T. and calculated in
Phase | of our algorithm.

The calculation of Tis done by parametric linear programming (sec [8]).
T consists of a series of line segments connected consecutively. In our code
of Section 8, only the first CUT1 (program parameter) line segments from
(X, y) are actually computed. Their junction points are numbered as

(x5, Y3, i=01.., CUTI (18)

in the increasing order of the distance from (x,, y,) = (X, ¥).
6. Phase 2

Let {y) denote the integer vector obtained by rounding each clement
of y to its nearest integer value. Starting from (x,. y,) and moving inward
on tracjectory T. {y) for each point (x, y) on T'is calculated. Let y' denote
the i integer vector obtained. To each y' i = 1,2,...,CUT2 (program
parameter), a search is then applied to find an integer feasible solution of P.
The search consists of two stages :

() Solve LP problem P(y). If P(y) is feasible, its optimal solution is an
integer feasible solution of P. If P(y') is infeasible, go to (ii).

(ii) Change one of the elements of y' by +1 or —1 as discussed below.
Solve P(y'), where y' is the resulting integer vector. This process is repeated
until

(a) a new integer feasible solution of P is found,

(b) a solution already obtained as an integer feasible solution of P is

again generated, or

(c) the search is conctuded to be a failure, i.e., the prespecified number

DEPTH2 of changes are completed.

In repeating the above process. each changed variable y; is recorded
together with its direction, and it is prohibited to change y; back to its
original value.

This search applied to y!, y2.... is terminated when NINT2 (program
parameter) integer feasible solutions of P are generated or all y!, y%,. ...
¥°VUT? are tested. In the latter case the search of Phase 2 is concluded to be
a failure if no integer feasible solution is found, and the computation
terminates. This indicates that either P is infeasible or the feasible region
of P is too small for a feasible solution to be found by this type of search.

However, no decisive conclusion is usually drawn. If the search is considered
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PHASE 1: (XO’ yo), cees (XCUTl’
Yeurp): Trajectory T.

Calculate (x'i, yi)
by rounding points on T

Solve P(yl).

Change y1 to ?1
according to

3 -
Is P(y } feasible? q; of (20) and (21)

Is 371 an integer
feasible solution
already obtained?

je-it] yes

ke k+1

Store its optimal solu-

tion as (x(g), y(g')).

L 2+ [Denote ?i as yi 1
no Is &=NINT2 es
or i=CUT2 ?
yes

(PHASE 3 )

Fig. 1. Flowchart of Phase 2.

to be too shallow, the computation of Phase 1 and Phase 2 may be again
tried with larger values of CUT1, CUT2 and DEPTH2. The flowchart of
Phase 2 is given in Fig. 1.

Integer feasible solutions obtained in the above computation are denoted

(x(D, yD), (xP, ), ..., (xNINT2), yNINTZ) (19)

and Phase 3 is then entered.

Now the detail of stage (ii) is described. Let (9) denote the simplex tableau
when P(y') is found to be infeasible. Define g}, q; as follows (%, B,; are
coefficients of the simplex tableau (9)):
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qj_ e Z 0 1,‘0 + Bkj} ify; > 0,
s if % = 0,
’ (20)
qj:’- = kzl mln {0, 1"0 - /;kj}’ _] = 1, 2,...,”2

g¥ (x denotes + or —) is a mcasure of infeasibility aftcr the variable y;
is changed by *1. (Note that %, + f;; and a,, — f,; respectively denote
the first column of the simplex tableau when y; is changed by —1 and +1.)
Let

gy =max {q;,q;: j=1,2,....n}, (21)

then y;, is changed by *1 in stagc (ii) (this new solution is denoted ') since
this is the most promising change according to the above measure. This
completes the description of Phase 2. A slightly modified definition of g}
was also tested (see [8]) to speed up the computation of these parameters.

7. Phase 3

Let 2V, 22 ... z(NINT2) be the objective values of integer feasible solu-
tions (x'1, p{), ... «(xNINT2) NINT2)) ohtained in Phase 2. Rearranging
superscripts if necessdry. we assume without loss of generality that

z(l) > Z(Z) > > Z(NIN'I"Z)

holds. In Phase 3, we attempt to improve the first NINT3 (<NINT2)
feasible solutions.

Before proceeding to the details, we outline the improvement procedure
applied to (x, ). First one of integer variables y; is selected and changed
by +1 or —1 so that the objective value may increasc. If the resulting so-
lution is still feasible, (x', y'?) (and z*) is replaced by it and an attempt for
improvement is again initiated from the new solution. On the other hand,
if the resulting solution is not feasible, the search for a feasible solution with
a better objective value takes place in a manner similar to Phase 2. If a
feasible solution is found by this search, (x', y"”) (and z"") is also replaced
by it, and an attempt for improvement is again initiated.

This attempt is repeated for WIDTH3 (program parameter) integer
variables of each of (x, y¥)), i =1,2,..., NINT3.

The selection of the integer variable y; to increase the objective value
is done according to the simplex tableau (9) of P(y""). If we do not change
the basis, the objective value a,, (= z') becomes
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dgo £ Bo,’ (22)

by the change of y; by ¥ 1, where ,; is the modified cost of y; given in the
simplex tableau (9) of P(y®). Thus if B,; is positive (negative), we can tem-
porarily increase the objective value by decreasing (increasing) y; by 1.

It is desirable to determine the integer variable and its direction of the
change so that the increase in the objective value (22) may be as large as
possible while keeping the displacement from the feasibility condition

o £ Biy 20, k=1,2,....m (23)

of the resulting tableau as small as possible. To achieve this objective, the
following parameters s; and r; are used. They are similar to those used by
Hillier [5].

First define h,;and hy;fork =1,2,...,m, j=12,...,n, by

0 if Bo; = 0, or Bo; > 0and )’ = 0,

hy; = ako/‘ﬁkj’ if Bo;Be; <O, (24)
o0 lfﬁ,”:oor BOJBKJ>09
hy; ifh,; <1

h,=1" i ’

Y {[hk,-] if hy; > 1 (25)
([,] denotes the integer part),
s; =min {h;: k=1,2,...,m}, j=12,...,n,, (26)
i =\Bojlsi J=L2..,ny 27N

Each s, (=0) gives the amount of y; to be changed from y{” in the direction
of increasing the objective value without destroying the feasibility condition
(23). r; indicates the amount of the objective value increased by this change.

Now if s; = 1 for some j, it implies that y; can be changed by 1 in the di-
rection of increasing the objective value. Thus y; (with the largest r; among
those satisfying s; = 1) is so changed and (x', y¥) is replaced by the new
solution. On the other hand if

s; <1, j=12,...,n,
holds, r; is arranged in the decreasing order
> (28)

.o ing?

r, erz =

i

and the first WIDTH3 (program parameter) indices are selected. (If r;, = 0
for some j,, they are arranged in the decreasing order of |, |)
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For each ji, let y® (j,) denote the integer vector obtained from y® by
changing y;, as follows :
Vi € yjk+1 ifBO.fk < 0’
Vi < Vi —1 if o, > 0.
P(y? (j,)) is then solved. Three outcomes are possible.

(i) P(»'"(j,)) is feasible and its optimal solution has the objective value
greater than z®,

(ii) It is known that P(»”(j,)) cannot have the objective value greater
than z%, since a,, of the tableau satisfies a,, < z*”. (The tableau is dual
feasible).

(iii) P(»“(j,)) is infeasible.

If (i) occurs, an improved integer feasible solution of P is obtained, and the
solution (x¥, y¥) (and z"V) is replaced by the new solution. In case of (ii),
the search is concluded to be a failure, and

(1) moves to the computation for j,, , if k< WIDTH3.

(2) moves to the improvement of (x“* 1V, yt* Y} if k = WIDTH3 and

i < NINT3,

(3) terminates the whole computation if k = WIDTH3 and i = NINT3.
In case of (iii), the search for a feasible solution is carried out. The detail
is however omitted, since it is similar to that used in Phase 2. This search
is also based on g¥ of (20), (21) and the search depth (the maximum number
of variables to be changed) in this case is prespecified by the program para-
meter DEPTH3. (A slightly modified definition of g7 is also used, and seems
to be effective; for details, see [8].) The only difference is that the objective
value o, of the simplex tableau is always observed and the search is aban-
doned whenever it is no greater than z{?, The treatment of this case is the
same as case (ii) above. If an improved solution is obtained, it is treated in
the same manner as case (i). Finally, if the search is completed and no
feasible solution is found, the same procedure as case (ii) takes place.

The entire procedure of Phase 3 is shown by the flowchart of Fig. 2.

8. Computational results

The algorithm described was coded in FORTRAN and run on the FA-
COM 230/60 of Kyoto University. This machine very roughly corresponds
to the IBM 360/65 and the UNIVAC 1108. The computation was carried
out all in core unless otherwise stated.
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PHASE 2: (x(T y(”) s
(NINT3) (NINTB)) with

t‘neir objectwe values
z('l)Z z(2)2 > Z(NINT3)‘

i=1
-
Calculate s. and r, of .21 for some j ? yes
p(y{1)) by (26) and (27)] 7\
no Change yj wit
P it k=1 Find Jya dgs ool the greatest
i i 5
< JWIDTH3 by (28). rj among those
1o ke k+1 solve Ply 1) G, satisfying sjzl in the
\[/ k increasing direction of
no
the objective value.
yes yes s
? DTH3? Does obgectwe(\ﬁlue Obtain the new solution.
z satisfy z<z ? \]/
no : -
) J/ - yes [Replace (xh), y(1))
<I.<. Ply (jk)) feas1b®% by the new solution.
no Update ),
I P he 1
| q/ i
; Calcuiate q:]?. Change one :
I of Y5 according to q’f of (20){21)| |
|
!
| Is the new so]utwn an :
: integer feasible solution ;
[ already obta1ned” i
: pegt] {
{ Does obJectwe va] }
; z satisfy zsz Ii
{ !
I Is an integer fea- l
| 2=DEPTH3? sible solution
i obtained?
[ I

Search for integer feasible solutions
(Similar to the Phase 2 procedure)

Fig. 2. Flowchart of Phase 3.

Table 1 shows the computational results of problems taken from the
literature, for which optimal solutions are known. The results in Table 1
were obtained for program parameters such that



126 T. Ibaraki et al., An algorithm for mixed-integer programming problems

CUT1 =5 CUT2=200, NINT2 =1, NINT3 =1,
DEPTH2 =3, WIDTH3 = min (10, n,),
DEPTH3 =3, YM = 0.1

This set of parameters may be classified as a “shallow search”. To see the
effect of the value of parameters, Table 2 shows results obtained for some
problems in Table 1 with different sets of parameters. It should be men-
tioned that some problems in Table 1 satisfies A(u) = O for all u. Even for
them, our code was successful in obtaining feasible solutions.

Since it is possible to control the computation time to some extent by
adjusting program parameters, it may be useful to have a standard for a
reasonable amount of computation time. One possibility is to base the
standard on the LP time (7,) for solvinig P (i.e., Phase 0). Practically, it may
be desirable to have the total computation time (T,,,,;) satisfy

’Ttotal = k TOa (29)

where k& is a specified constant (e.g., k = 10).

It is important that (29) holds independent of problem size so that we
may be able to estimate the computation time in advance with some accu-
racy.

The results of Table 1 and Table 2 appear to roughly satisty the above
standard. The constant k, however, seems to vary from one type of problem
to another. The estimation of k is usually done empirically based on a cer-
tain amount of computational experience for similar problems.

To see the behavior of our algorithm for problems without particular
structure, a number of problems have been randomly generated and solved.
Each coefficient of Type A problems is an integer generated randomly
from a uniform distribution with intervals

g dip €;:[0,99],
b;: [1000, 1999].

(The normalization (7) takes place after the generation of all coefficients.)
These conditions are the same as those used by Hillier [5] for his Type II
problems. Type B problems differ from Type A in that coefficients g;; and
d;; with nonzero values are first selected randomly with probability 0.1
under the condition that at least one coefficient in each column is to be
selected, and then values of nonzero eoefficients are randomly determined
according to (30).

a i

(30)
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Table 3 lists the computational results for random problems. The re-
sults for Type A problems are the average of five problems. All nine pro-
blems of Type B in Table 3 have the same coefficients (with 11.5 9, nonzero
coefficients) but differ in the number of variables specified to be integers.
The optimality of these problems cannot be indicated because optimal so-
lutions are not known. However, the normalized deviations from the LP
optimal solutions (%, y), i.e.,

ni n _1/2
nd=@Z-2{ g+ Zef) (31)
=1 =1

are listed, where z is the objective value of the best suboptimal solution.
Since n.d. for these problems are quite small, they are expected to be very
good suboptimal solutions.

It is of course possible to use our algorithm for all-integer problems.
To see the performance of our algorithm for all-integer problems and to
compare it with Hillier’s, some random problems whose data are given in
[6] are also solved. The results are listed in Table 4 together with Hillier’s
results.

Although it is not possible to draw a decisive conclusion, our algorithm
seems to be at least competitive with his. Roughly speaking, our algorithm
tends to use more computation time than his but give solutions of higher
quality. For example, the best solution obtained in [5] for Thompson 9
with the minimal objective value 464 (which seems to be a very difficult
problem) has the objective value 474, while ours has 468. This may suggest
the effectiveness of using the trajectory T in Phase 2.

To get certain information about the quality of integer feasible solutions
obtained in Phase 2, some problems are solved with large NINT2. Table
5 summarizes the results when the best solution among those obtained in
Phase 2 is found. From Table 5, we may conclude that NINT2 = 2 (or at
most NINT2 = 3 ~ 4) is a reasonable value to be used.

Table 6 shows how many improved solutions are found in Phase 3
for INIT3 initial solutions. The data are taken for problems and parameters
of Tables 1 and 3. It is observed that the direct improvement due to s; = 1
for some j occurs less frequently than other types of improvement. (Thus
for most problems the improvement is attained after the search is once
made into the outside of the feasible region.) This tendency is even stronger
for problems with more integer variables. It should also be noted that
NINT3 = 1 is sufficient for most problems. For problems listed in Tables
1-4, the best suboptimal solutions in Phase 3 were always derived from the
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Table 5
Computational results about when the best among
feasible solutions in Phase 2 is obtained"

Time when the best among
feasible solutions in 112" 3|4
Phasc 2 is obtained

Problems in Table 1 14
Type A Problems (Table 3) 8 16| 1

w
oo

Total 2191 210

¢ Excluding Fixed Charge Transportation 9. Project Planning, Blending, and Graph

Partition.
O Each entry in the i column shows the number of problems with the best solution ob-

tained as the i'" feasible solution.

Table 6
The number of improvements attained in Phase 3 for
computational results of Table 1 and Table 3

Number of o| 1]23|4ls5|6~10[11~15| 16~20
improvements

Problems in Table 1 10 811157010 0 0 0
Type A Problems (Table3) | 6 | 4|0 | 1|1 |1 2 0 0
Type B Problems (Table 3) | 0 o1 {1]3]1 1 0 1
Total 16122742 3 0 1

) Each entry shows the number of problems with the correcsponding number of im-
provements.

best feasible solutions (x'*, ') obtained in Phase 2, with only one excep-
tion—the best suboptimal solution of the fixed-charge transportation
problem 9 of Table 2 was derived from the second best solution (x‘%), y%))
of Phase 2.

9. Discussion

Since our LP code used in the algorithm of the previous section is very
primitive, at least the following capabilities should be added.

(1) The incorporation of the upper bounding technique or the genera-
lized upper bounding technique.
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(2) The use of revised simplex method. which takes advantage of the
sparseness of nonzero coefficients in practical problems.

(3) The use of auxiliary memory so that larger problems may be handled.
With these modifications, our algorithm is expected to be able to solve
much larger problems. In particular, those problems with larger number
of continuous variables but with relatively small number of integer varia-
bles (at most about 100 as those solved in the previous computational
experimentation) scem to be readily solved, since the total number of pivot
operations tends to be rather insensitive to the number of continuous
variables.

Reviewing the original manuscript, onc of the referces notified us that
F.S. Hillier was also developing a similar hecuristic procedure for MIP
problems as an extension of his procedure [5] for all-integer problems.
By private communication with Hitlicr, it turned out that he also developed
the same idea of using the trajectory T for initiating the search for integer
feasible solutions, about the same time as the submission of this paper.
(However, our idea was originally presented at the ORSJ Conference in
1971 [8].) Hillier’s idea was based on the suggestion by Faaland that the
optimal solution of Q(u) without constraint (12) should be used as x(?
defined in [5]. The property stated after (17) was also noticed by Faaland.
Hillier’s procedure corresponding to our Phase 2 and Phase 3 is significantly
different from ours. He treats the MIP problem as an all-integer problem
by fixing continuous variables to some appropriate values, while we treat
thc MIP problem as an LP problem by considering integer variables as
parameters. It should be noted, however, that both procedures partially
use very similar ideas, and furthermore some computation steps used in one
procedure can be substituted for the ones used in the other. A direction of
future research would be to clarify all the advantages of each approach
(empirically or theoretically), and then to combine them into a single more
effective procedure.

It seems that Hillier is still attempting the improvement of his approach
[5] and conducting an intensive computational experiment (mainly for
all-integer problems). Therefore the date taken from [5] such as used in
Table 4 should be properly corrected upon the completion of his experiment.
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Appendix
List of program parameters

Phase 1
CUT]1 : The maximum number of line segments of T to be calculated.
YM : The margin that is used to perturb T so that more number of pro-
mising integer points may be tested in Phase 2; y; satisfying [y;] + 0.5
—YM <y;<[y;] + 05+ YM is treated as a number which can be
rounded up and/or down. (See [8] for details.)

Phase 2

CUT?2 : The maximum number of integer test points obtained by round-
ing the points on T.

DEPTH2 : The search depth for an integer feasible solution initiated
from each integer point obtained above.

NINT2 : The total number of integer feasible solutions to be obtained
in Phase 2.

Phase 3

NINTS3 : The number of integer feasible solutions for which the improve-
ment will be attempted in Phase 3. (NINT3 < NINT2).

WIDTH3 : The number of integer variables, each of which is tentatively
changed by 1 or —1 to initiate the search for the improvement of an integer
feasible solution obtained in Phase 2. (WIDTH3 < n,).

DEPTHS3 : The depth of the above mentioned search initiated by chan-
ging one integer variable.
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A theory is developed for a group problem arising from mixed integer programming.
This theory gives descriptions of functions on the unit hypercube from which cutting planes
can be constructed for any mixed integer program. Methods for generating such functions
are given.

1. Introduction

For a pure integer programming problem

minimize Z =cx,
subjectto A4 x = b, x = 0 an integer,

the group problem is obtained by relaxing the non-negativity restriction
on the basic variables (usually corresponding to an optimal basis). The
group problem is, thus,

Y ax; = b;(mod 1), i=1,..,m,

jeInN

x; = 0 and integer, jeJdn

where Jy is the index set of non-basic variables and a;;, b; are the updated
coefficients (see [3, 5, 6] for further details).
In the mixed integer case, we obtain a system of congruences:

Y ayx; = b; (mod 1),

jeJn
with one such congruence for each basic variable which is required to be
integer. That is, from an updated linear programming tableau (usually
corresponding to an optimal linear programming basis), drop the rows
which have basic variables not required to be integer-valued. Then, convert
the remaining rows into congruences modulo 1.
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This congruence, or group, problem is a relaxation of the original
problem obtained by deleting the non-negativity restrictions on the basic
variables. We retain the integrality requirement on those basic variables
which should be integer and also on the non-basic variables which are
required to be integer. Non-negativity of all of the non-basic variables is
also imposed in formulating this group problem.

Any inequality satisfied by all solutions of this group problem (referred
to subsequently as valid inequalities) is a legitimate cutting plane for the
original integer program. In addition, any bound Zj satisfying Z, > Zg
for Z, the optimal solution of the minimization problem

minimize Z = ) Cyx;

] i*is
jedn

subject to  x;, j € Jy, satisfying the group problem

is also a bound for the integer program. That is, the integer optimum Z,
satisfies Z; = Z; + Zg, where Z, is the linear programming optimum. Such
bounds are useful in branch and bound algorithms or implicit enumeration
and can be obtained easily from one cut or by solving a linear program
over several cuts.

The difficulty in the mixed integer case is that the additional restrictions
on x; for je Jy, the non-basic variables, are x; = 0 for all je Jy and x;
integer only for a subset of the je Jy; say for je J;n Jy, where J; denotes
the subset of the variable indices corresponding to variables required to be
integer-valued. The case where all of the variables x; are required to be
integer-valued, i.e., j e J; for all j, is well understood in theory although in
practice there may be difficulties (see [5, 8]). It is striking that dropping
the integrality restriction on some non-basic variables should make the
problem more difficult to handle. Nevertheless, cutting plane methods
seem to be more successful in the pure integer than the mixed integer case.
Some work has been done with no integrality restriction on the non-basic
variables [1]. This paper studies the general mixed integer group problem
in an attempt to develop a basic understanding of the interaction of the
integer variables and the continuous variables. Previous work [6, 7] in that
direction concentrated on group problems with only one constraint. That
case is well-understood but seems not to capture enough of the difficulty
of the overall problem to be very useful in the mixed integer case. We
now consider general mixed integer group problems having any number
of rows.
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First some notational conventions need to be mentioned. In a system

of congruences of the form

Y a;x; = b;(mod 1)

jeJn
for je Jy n Jy, a;; can be reduced to its fractional part F(a;;) with 0 < F(a;;)
< 1 without changing the congruence. Similarly, b; can be changed to
F(b,). In what follows, we let u = (F(@y), ..., F(a,, ;) be the vector of fractional
parts of the coefficients for some x, je Jy N Jyand let U denote the entire
set of such vectors. Let W denote the set of vectors w = (@, ..., Gy;) for
jeJn Ji Let uy be the vector (F(by), ..., F(b,)). Then, the system of
congruences can be written:

Y utu) + F< y ws(w)) = u,.
uelU weW

Each u is a vector of fractional parts of coefficients for some variable x,,
jeJyn Jy, and now that x; is written simply #(u). Similarly, x;, je Jy \ J},
with coefficient column w becomes s(w). The t(u), u e U, are required to be
non-negative integers, and s(w), we W, are required to be non-negative
real numbers. We drop the = and (mod 1), and consider that any equation
of fractional parts is always modulo 1.

2. Problem definition

Let I be the group of real vectors u = (uy, ..., u,) in the unit cube
[0, 1] x ... x [0,1] with addition taken modulo 1 in each component.
Let U be any subset of I"™. Let S™ be the set of real numbers w = (wy, ..., w,,)
having max {|w;|: i =1, ..., m} = 1. That is, S" is the boundary of the
cube —1 <x;,<1,i=1, ..., min R™ Let W be any subset of S™.

Let ¢t be a function on U such that (i) t(u) is an integer for all ue U,
(1) t(u) = O for all ue U, and (iii) t has finite support; that is, t(u) > 0 only
for a finite subset U, of U. Correspondingly, let s be a non-negative real-
valued function on W with finite support, but s is not required to be integer
valued. Let T(U, W, u,), uge I™ ~{0}, be the set of all such pairs (t, 5)
such that

Y utu) + F< y ws(w)) = U, (1)
uelU weW
Here, Y w s(w) is a real number, and F is the mapping from R™ to I"™ con-
sisting of taking the fractional part of each component of a real vector.
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We do not consider I™ as a subset of R™ but instead as an additive group.
Thus, (1) is written as equality in the group I". The mapping |u] is used to
denote the vector in R™ corresponding to u e I"™. We can write (1) equiva-
lently as

Y |ultw) + Y ws(w) = |up] (modulo 1).

uelU weW
We say that (¢, s)e T(U, W, u,) 1s a solution to the problem P(U, W, u,).

One definition used throughout will be made here. If f and g are real-

valued functions on a set X, and if A is a subset of X, then f(4) < g(A4)
means f(x) < g(x) for all x€ 4, and f(x) < g(x) for at least one x € 4. For
a scalar, such as zero, 0 < f(A4) means Z(4) < f(A4), where Z(x) = 0 for
all xe A. When 4 = X, we usually omit it and write f < g or 0 < f.

3. Inequalities

A valid inequality for the problem P(U, W, u,) is a pair of non-negative
real-valued functions (r, u), = defined on I and u on S™ such that

ZU m(w) tu) + ZW Hw) s(w) = 1 )
forall(t, s)e T(U, W, u,). We will frequently use the notation (z, p) - (¢, s) = 1
to mean (2).

A minimal valid inequality for P(U, W, u,) is a valid inequality (=, p) for
P(U, W, up) such that there is no other valid inequality (p, v) for P(U, W, u,)
with (p, v) < (7, u); that is, p < 7 and v < y, and at least one of p < 1 or
v < u holds.

An extreme valid inequality for P(U, W, u,) is a valid inequality (z, z1)
such that

(?I, l'l') = %(pls vl) + %(/)2: Vz),
for (py, v,) and (p,, v,) valid inequalities for P(U, W, u,), implies (p,, v,) =
(p29 v2) = (Tt, l'l')

Theorem 3.1. The extreme valid inequalities are minimal valid inequalities.

Proof. If (z, #) is not minimal, then there is a valid inequality (p, v) with
(p, v) < (=, u). Clearly,

('Eaﬂ) =%(p,V)+ %(K + (TI - P)aﬂ+ ([.l - V))
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Since (7, p) is a valid inequality and since # — p =0 and p—v =0, it
follows that (m + (m — p), u + (1 — v)) is also a valid inequality. Therefore,
(m, w) is exhibited as a midpoint of two different valid inequalities, contra-
dicting extremality.

The next theorem is a limited converse of Theorem 3.1. Since the extreme
valid inequalities are among the minimal valid inequalities, they are
obviously among the minimal valid inequalities which can not be written
as the midpoint of two other minimal valid inequalities. The next theorem
says that the only such minimal valid inequalities are the extreme valid
inequalities. In fact, every minimal valid inequality which is extreme among
the minimal valid inequalities is an extreme inequality.

Before stating the theorem, let us remark that the set of valid inequalities
is a convex set, and our definition of an extreme valid inequality is a
standard way of defining extreme point of a convex set. The set of minimal
valid inequalities is not necessarily a convex set, but we can define an
extreme minimal valid inequality in the same way, that is, a minimal valid
inequality which can not be written as the midpoint of two different
minimal valid inequalities. Theorem 6.1 shows that the minimal valid
inequalities are a convex set in the important special case where U = I"™
and W = S™. In other cases, the minimal valid inequalities are not a convex
set. The theorem to follow is of interest in either case.

Theorem 3.2. If (n, p) is an extreme minimal valid inequality, then (r, p) is
an extreme valid inequality.

Proof. Suppose that such a (z, p) is not an extreme valid inequality. Then
(7, ) = Hpy1, vi) + Hps, vo) for (o1, v)) # (02, v2). We show that minimality
of (, u) implies minimality of (p,, v,) and (p,, v,), contradicting (=, ) being
extreme among the minimal valid inequalities.

Suppose (p;, v;)is not minimal. Then there is a valid inequality (p3, v3) <
(p1, v1). Because the valid inequalities are a convex set, (1, u;) = 3p3, v3) +
Yps, v2) is a valid inequality. But, (7., u;) < (%, ), contradicting minimality
of (r, u) and completing the proof.

A subadditive valid inequality for P(U, W, u,) is a valid inequality (r, p)
for P(U, W, uy) such that

n(u) + n(v) = (u + v), whenever all three of u, v and u + v
are in U; 3)
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m(u) + Y. pw)s(w) = n(v), whenever u,vin U, and

weW < > (4)
u+F[ Y wsw))=no,
Y. uw)s(w) = p(x), whenever x = Y ws(wje W. (%)
wFx wEX

In (4) and (5), s is assumed to be a non-negative real-valued function on
W with finite support.

Theorem 3.3 The minimal valid inequalities are subadditive valid inequalities.

Proof. Suppose (7, u) is a minimal valid inequality for P(U, W, u,) but is
not subadditive. Then at least one of (3), (4), (5) is not satisfied.

Suppose first that (3) is violated. The argument in this case is practically
the same as the proof of [6, Theorem 1.2] and will not be repeated. The
same idea is used when (4) or (5) are assumed to be violated.

Suppose (4) is violated. Then, for some v, v, and s,(w), we W,

vy + F< ) Wsl(W)> = V3,

weW

n(v,) + ZW uw) s1(w) < m(vy).

Define p on I by

) = {x(u) if u # v,,
PO =200 + T aw)sitw) ifu = vs.
weW

Given (t, s) e T(U, W, u,), define

tv,) + tvy) ifu=vo,,
t*(u) =< 0 ifu = v,,
H(u) otherwise,

s*(w) = s(w) + t(v,) s,(W), we W,

Then (t*,s*)e T(U, W, uy) and (p, u) - (¢, 5) = (m, u) - (t*, s*) = 1. Therefore,
(p, w) is a valid inequality for P(U, W, u,) contradicting minimality of (r, u).

The case when (5) is violated is also similar, If (5) is violated, then for
some xe W,
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Y uw) s;(w) < p(x), where x = Y ws,(w).

w¥x wEX
Let v be defined on S™ by
Vo) w(w) if w#x,
w) = .
{ Y Hs0) i w = x.
yEx

Now, for (¢, s) e T(U, W, u,), define

o | Sw) + sy w)s(x) if wo# x,
S(W)_{o if w = x,

Then (t,s*)e T(U, W, u,) and (z,v) is a valid inequality contradicting
minimality of (z, ). The proof is completed.

The following theorem is concerned with (7, u) which are extreme in the
set of subadditive valid inequalities. The set of subadditive valid inequalities
is a convex subset of the set of valid inequalities. We have shown that the
extreme points of the sets of valid inequalities are precisely the extreme
points of the set of minimal inequalities and are therefore in the set of
subadditive valid inequalities. They are, then, extreme points of the set of
subadditive valid inequalities. There may be other extreme points of this
latter set, and the next theorem addresses that question.

Theorem 3.4. If (n, p) is extreme in the set of subadditive valid inequalities
and if (7, p) is a minimal valid inequality, then it is also an extreme valid
inequality.

Proof. The theorem is actually a corollary of the Theorem 3.2 since if (r, ut)
is not extreme, then by minimality of (z, i) it must be a midpoint of minimal
valid inequalities. But minimal valid inequalities are subadditive, contra-
dicting the hypothesis of the theorem.

4. Subadditive functions on subgroups U

Let U be a non-empty subgroup of I”™. Then 0 e U in particular. Define
(, 1) to be a subadditive function on (U, W) if = and u are non-negative real
valued functions satisfying (3) and both of
Y u(w)s(w) = n{v), whenever v =F < Y ow s(w)) 6)

welL wel
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Y uw)s(w) = u(x), whenever x = Y ws(w). (7

welL wel
In both (6) and (7), L denotes a linearly independent subset of W and s
is a positive real-valued function on L with finite support. In (7), we may
as well exclude the case x € L. The restriction of linear independence on
L does not change the class of functions satisfying (6) and (7), as the next
lemma proves. The restriction of linear independence is intended as a
limitation on the inequalities (4} and (5) which must be satisfied in order
for all of them to be satisfied.

The purpose of this section is to start with (3), (4) and (5) and substitute
weaker conditions for (4) and (5). To begin, (3), (4) and (5) will be shown
to be always equivalent to the weaker conditions (3), (6) and (7). Then, in
various special cases, (3), (6) and (7) will be shown equivalent to other
conditions which are either weaker or more descriptive.

Lemma 4.1. If U is a subgroup and if (n, p) is a subadditive function on
(U, W), then (4) and (5) hold.

Proof. In the first place, in (4) and (5) we can restrict s to being positive
on a linearly independent subset L of W since otherwise there is a function
4 on the subset of W for which s(w) > 0 and such that

Y. wiw) =0.

weW
Then

ZW p(w) (s(w) + & Aw)) = ZW pw)s(w) + & ), p(w) Alw).

weW

By increasing & from 0 when ) y(w) A(w) < 0 or decreasing ¢ from 0 when
Yu(w) Aw) > 0 we have Y u(w)s(w) = Y u(w) s'(w), where s'(w) = s(w) +
¢ A(w). The ¢ can be changed in this way until some s'(w) becomes zero.
In this way, the w for which s'(w) > 0 can be reduced to a linearly inde-
pendent set. Recall that the s we started with had finite support, so s(w) > 0
on only a finite set.

Secondly, if x has s(x) > 0 in (5), then the inequality in (5) holds auto-
matically if s(x) = 1. If s(x) < 1, then an equivalent inequality is obtained
from

s(w)

= LT

weW
wFEx
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Thirdly, if

u+ F<Z ws(w)) =0,
wel
then v — ue U, so FQ .ws(w)) e U and by (6) and (3),

n(u) + Y pw)s(w) = w(u) + n(F ( Y ow s(w))) = n(v).

weL weL
Hence (3) and (6) imply (4), completing the proof.

Conditions (6) and (7) will be shown equivalent to weaker conditions in
several special cases including U a finite subgroup and U = I™.
Before proceeding, two useful lemmas will be shown.

Lemma 4.2. If & is a function on I'* satisfying n(u) + =(v) = #(u + v) for u,
ve U, U a subgroup of I"™, then

Y () t(u) = n< Yu t(u))
uelU

uelU

for any non-negative integer valued function t on U with finite support.
Proof. See [5, 6]; particularly [6, Theorem 1.5].

By definition, 7(0) = 0 for subadditive #. The next lemma is concerned
with the slope of n(u) as u approaches 0.

Lemma 4.3. If © is a real valued function on I satisfying n(u) + n(v) =
u + v) for all u, v in I and if
n(F(hw))

}'1}13 sup—h— =f < o0,

for some we S™, then

. m(F(hw)
i = b
Proof. By the lim sup being f, for any ¢ > 0 thereis an & < 1 with n(F(h w))/
h > B — ¢ and with n(F(W'w))/h’ < B + ¢ for 0 < I’ < h. If the limit does
not exist, then there is an h,, 0 < h; < h, with 7(F(h,w))/h; < B — .
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Then for some r satisfying 0 < r < h,
h = |h/h|hy + 1,
where | x| means the largest integer below or equal to x. By (3),

a(F(hw)) < a(F(Lh/hiJhw)) + a(F(r w))
< | b/hy | n(F(hyw)) + n(F(r w)
< | Wb ] (B — &) hy + n(F(rw))
=@B—-egh—(B—¢er+ n(F(rw).

By the lim sup being 8, & can be chosen small enough that =(F(h'w))/h
< B+ ¢ for 0 <h < h Then

aFrw) < (B + &)r.
Hence,
aFthw) <(B—eh—(—¢€r+B+er
<PB—¢eh+2r

Now, we can fix h and let k, and, hence, r be arbitrarily small. Therefore,
n(F(hw) < (8 — )b,

a contradiction. The lemma is proven.

We now prove for several cases that (6) and (7) can be replaced by
equivalent, weaker statements. That is, a non-negative real valued function
(m, ) is a subadditive function on (U, W), U a subgroup of I"™, provided
(3) holds, ie., m(u) + #(v) = 7(u + v), and provided some weakening of (6)
and (7) hold. We first consider U = I'" and any W < S™.

Lemma 4.4. If U = I"™, then (6) can be replaced by

u(w) 2 lim F (:: W eew @8)

Proof. The proof consists of showing that (3), (6) and (7) imply (8), and
conversely that (3), (8) and (7) imply (6).
First, it is clear from (6) that

uwyh = n(Fthw)) forO0<h and weW.

Hence
? . a(F(hw))
>
uw) = hnhlis(}lp P
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By Lemma 4.3, (8) follows.
Next, let us show that (3), (8) and (7) imply (6). Suppose not. Then

ZL uw) s;(w) = m(vy) — &, e>0, v = F( Zwsl(W))’

wel

where s;(w) > 0,we L. Let
g = i >0
2 ZweL Sl(w) ’

By (8), for each we L there is an hy(w) > 0 such that
A(F(h(w) w))
h(w)

Let h(w) = s,(w)/n(w) for n(w) an integer satisfying n(w) > s,(w)/ho(w). Then
0 < h(w) < hy(w), and

WZE:L p(w) s1(w) = WZE:L n(w) 7I<F<il((ww)) w)) — le.
Substituting ?I(Ul) — & = ZM(W) Sl(w) gives

a(v,) = Y, nw) n<F<Sl(W) w)) + Le.

wel n(W)

ww) > g for 0 < h(w) < ho(w).

Now, by Lemma 1.6,

(vy) = x(wZE:L n(w) F<s’;((x))) w)) + e

> n( Y s1(w) w) + 1o = n(v)) + Le.

welL

Thus, a contradiction is reached, proving the lemma.

The next lemma concerns the case W = S™ Taken together, these two
lemmas give a characterization of the subadditive functions on (I", S™).

First, a definition is needed. For a function u on S™, define the homo-
genous extension of u to R™ to be the function f on R™ given by

0 if v=20
1) ={ ) Tf y=5 ©9)
max; {|)’;|} #(mﬁ if y#0.
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Lemma 4.5. If W = S™ then (7) may be replaced by the requirement that the
homogenous extension of u to R™ be a convex function.

Proof. The proof consists of showing that (7) implies f is convex and
conversely. Clearly, f defined by (9) is positively homogenous. If fis convex,
then (7) holds (see [ 11, Theorem 4.7 and Corollary 4.7.1]).

Suppose now that (7) holds for W = S™. Let f be defined by (9). Let x
and y be in R™ and let 0 < A < 1. We wish to show that

A+ A =Af)2f(Ax + (1= Ay

If x (or y) is zero, then the inequality holds by (1 — A)f(y) = f((1 — ) y).
Hence, let x # 0 and y # 0. Let M, = max; {|x,|} and M, = max; {|y,|}.
Then M, >0 and M, > 0. If Ax + (1 — A)y =0, then the inequality
holds by non-negativity of fand by f(0) = 0. Let Ax + (1 — 4) y # 0 and
let M,, = max; {Ax; + (1 — ) y;}.

By definition (9) of f, convexity of f is now equivalent to

X Ax+ (1 =24
A Mxy<M—> + (1= HMyp <Ml> > Mxyﬂ<—H>,
x y xy

AM, (x\ (A -HM, (¥, </1x+(1—,l)y
M, "\, M, “\M) " M, '

xy xy y

or

But the above holds by (7) and by

lMxi+(l—l)Myy _Ax+ (1 -4y
M, M, M M, M, '

xy y

y

The proof is, thus, completed.

Rockafellar [11] defines a gauge to be a non-negative, positively homo-
genous convex function which is zero at the origin. For pu(w) = 0, we S™,
the homogenous extension f of u to R™ is obviously non-negative and
positively homogenous. Hence, Lemma 4.5 says that (7) holds for W = §"
if and only if f given by (9) is a gauge.

A gauge f is characterized by the convex set C = {x: f(x) < 1}. Hence
u satisfying (7) is also characterized by such a convex set C, where f'is the
gauge given by (9). In terms of that C,

p(w) = max {A:AweC}
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since for A* such that f(A*w) = 1, u(w) = A*. This observation suggests a
close connection between the u of a subadditive function (m, 1) and the
intersection cut of Balas [1]. When we come to discussion of subadditive
valid inequalities, this connection will be pursued further.

We now turn to the case where U is a finite subgroup of I™. A result
analogous to Lemma 4.4 is given below.

Lemma 4.6. If U is a finite subgroup of I"™, then (6) can be weakened by
assuming that L, in addition to linear independence, has the property that
there is no v'e U, and s'(w), we L, with 0 < s'(L) < s(L) such that

v = F(Z ws'(w)).
wel

Proof. Suppose (6) holds for all linearly independent subsets L and all s
satisfying the conditions of this lemma. We, then, show that (6) holds in
general.

If L is linearly independent, v = F(} .., ws(w)), and if the conditions
of the lemma do not hold, then

v = F( y ws’(w)), 0 < s'(L) < s(L).
weL

Let us choose s' minimal with respect to this property; we can do so

because U is a finite subgroup. Then

Y uw) s (w) = (o)

welL

by (6) holding in this special case. But now,
Y uwysw) = ) pw)s'(w) + ZL Hw) (s(w) — s'(w))

welL welL
2 n(v') + ZL (W) (s(w) — s'(w)).

We can now repeat for s(w) — s'(w), we L, and use (3) to eventually show
> u(w) s(w) = n(v) because Y w(s(w) — s'(w)) also belongs to U. All we need
to prove is that eventually s(w) — s'(w) will not allow an s'(w), 0 < s'(L) <
s(L) — s'(L) with ) w s'(w) e U. We started with a fixed linearly independent
subset L of W and s(w) > 0 for we L. In the rectangle x = Y ., ws'(w),
0 < s'(L) < s(L), there are only a finite number of x such that F(x)e U.
It is this number which is reduced by at least one every time we replace
s(w) by s(w) — s'(w).
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Part of the next lemma is analogous to Lemma 4.5 in the case of a
finite set W < S™. However, a result about (6) is also included. This result
is actually included in Lemma 4.4 when U = I™. Hence, the main interest
in the weakening of (6) is when U is a finite subgroup of I™.

Lemma 4.7. If W is a finite subset of S™, then (6) and (7) can be weakened
by requiring that L, in addition to linear independence, has the property that
there is now e W L, w' # Y . ws(w) such that

w= 3 ws(w)

wel

for s'(L) = 0.

Proof. The proofs of (6) and (7) will be developed in parallel. In (6), let
x =) wsw) and v = F(x). Here x need not be in W but veU is
required.

Suppose that (6) and (7) hold for all x and L subject to the conditions
of the lemma. Then (6) and (7) must be proven for all linearly independent
L and x with x =), ws(w), s(w) > 0 and x ¢ L. The proof will be by
induction on the number of w' = Y, ., ws'(w) in W ~ L with s'(w) = 0 for
we L. By the conditions of the lemma, we have assumed that (6) and (7)
hold when there are no such w' # x.

Suppose, as induction hypothesis, that (6) and (7) hold when there are
k — 1 or fewer points w'. Suppose now that there are k such points and
let them be denoted w!, w?, . ..., w*, where

Y wsi(w), i=01,...,k

wel
with s(w) = 0 and w' ¢ L. For consistency, let w® = x and sy(w) = s(w) > 0
for we L. We then have w°, w!, ..., w* in R™ which are not in L but are
representable as non-negative linear combinations of we L. We want to
show that 7(v) < ) p(w) so(w) whenever v = F(w®)e U and that u(w°) <
Y u(w) so(w) whenever w® e W. Here, w', ..., w* are in W.
Let x' e L be chosen from we L having s,(w) > 0 so that

So(W) > So(x1)
si(w)  5,(xy)

for all we L having s,(w) > 0.

Since w' =3 . ws,;(w) and x'e L with s,(x') > 0, the set L, = (L ~
{x'})u {w'} is a linearly independent set whose non-negative cone (i.c.,
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the set of all non-negative linear combinations) is contained in the non-
negative cone of L. Furthermore, x' is not in the non-negative cone of L,
since
wh=xls,(x"y + Y wsy(w),
we L ~{x1)
SO
.1 s(w)

_ = w
Sl(xl) we L~ (x!) Sl(xl)

and —s,(w) < 0 for at least one we L ~ {x'}. This latter fact is due to x'
and w' being different points of S™, so they can not be scalar multiplies
of each other.

Next, w® will be shown to be in L, by the choice of x'. We know
wl =3 . wso(w) with sy(w) > 0 for we L. Hence,

w? = xlso(x) + Y wse(w)

weL < {x!)
I 5,(w)
1 1 1
=|lw —— w So(x') + w Sp(W)
< Sl(xl) WELZ\:(x‘) Sl(xl weLZ\:(x‘)

= w! S—O(xl + Z w(so(w) - sl(w)w>

Sl(xl) we L~ (x1) sl(xl) '

The above representation of w® as a linear combination of we L, is a
non-negative linear combination if

so(x')
sy(x")

which is true when s;(w) = 0 by so(w) > 0 and when s,;(w) >0 by the
choice of x'.

We are now in a position to apply the induction hypothesis. The point
x = w® is representable as a non-negative linear combination of we L,
and there are k — 1 or fewer points (in fact, such points will be among w?,
..., w¥) of WL, in the non-negative cone of L,. We first consider (7).
If w® e W, then the induction hypothesis assures that

uw®) < 3 pw) ro(w),

wEL1

so(w) — s, (W) >0, weL ~{x'},

where
Solx 1)

rO(wl) = Sl(xl)’
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1
o) = so(w) — 5,(w) 00

5.0 we L ~{x'}.

We wish to show that
Hw°) < T p(w) 5o

wel
In order to do so we must reverse the role of w® and w' in the above devel-
opment. There we obtained a set L, containing w' and including w® in its
non-negative cone. Here we find a set L, containing w° and including w!
in its non-negative cone. To do so, let x° € L be chosen such that

0
Sl st
So(w)  So(x)
Here, so(w) > 0, w e L, so the restriction syo(w) > 0 need not be stated. Let
Ly = (L ~{x°}) U {w®}. Then, as before, x° is not in the non-negative cone
of Ly, w' is in the non-negative cone of L,, and the induction hypothesis
applies to give
pw') < 3 pw)ri(w),

we Lo
where

wh= 3% wr/w),

welLg

and r (w), we L, is given by

_ 51(x°)
rl(wo) - SO(T())’ ,
ri(w) = s;(w) — So(W)%, we L ~{x°}.

As before, ri(w) = 0, we L,, by the choice of x°.
We are now in a position to prove (7), that is, p(w®) < 3o p(W) so(w).
We have proven two inequalities:
uw®) <3 pw) ro(w),

wel,

Hw') S Y uw) i (w)

WELo

Multiplying the first by s;(x!) > 0 and the second by s,(x') > 0 and adding
gives
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u(w")(sl(xl) ~ solx!) S‘("O)) <

5o(x%)

< 5(x) LZ( , p(w) ro(w) + so(x") LZ( ) H(w) ri(w)
because ro(w!) = so(x')/sy(x") and r;(w% = s;(W°) = 5,(x°)/s0(x°). Sim-
plifying the above inequality using the expressions derived for ry(w),
we L ~{x'}, and r (w), we L ~{x°}, gives the desired inequality provided

Sl(xo)

Sl(xl) - So(xl);o(x—o) > 0.
Certainly, the left-hand side is non-negative by the choice of x°. If it were
zero, then the ratios s,(w)/sy(w) would all be the same by the choice of x*.
Then, w® and w! would be scalar multiples of each other, a contradiction
because they are different points of W < S§™ The proof is completed.

There are four different cases which will be considered in more detail:
(i) U=TI"and W= 8", (i) U = I™ and W a finite subset of S™; (iii) U a
finite subgroup and W = S§™; and (iv) U a finite subgroup and W a finite
subset of S™. Case (i) is treated by Lemmas 4.4 and 4.5, case (ii) by Lemmas
4.4 and 4.7, case (iii) by Lemmas 4.6 and 4.5, and case (iv) by Lemmas 4.6
and 4.7. In case (iii), however, condition (6) is only weakened in Lemma 4.6
by requiring that there be no v' = F(}_,, 1wsw)), 0 < s'(L) < s(L). There
is more that can be said.

Lemma 4.8. If U is a finite subgroup and W = S™, then (6) is equivalent to
(v) < 1 uw), (10)

when F(Aw) = v, A > 0, and FAw)¢ U for 0 < A’ < A.

Proof. Clearly (10) is a special case of (6).

The remainder of the proof is to show that (3), (10) and (7) imply (3),
(6) and (7). Suppose not. Then,

(v) > ZL w(w) s(w), v=F < Yow s(w)),

welL
and no v' = F(}_,eLw s(w)) for v'e U and 0 < s'(L) < s(L). Let
x =Y ws(w).

weL
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Then, xe R™ ~{0} so A = max; |x; is positive and w' = (1/4) x € S™. By (7)
and w' = (1/2)x = (1/1)Y. Lws(w),

HOV) < 1A T ) ().

Combining the above gives
n(v) > Auw),  v=F@Aw)

a contradiction to (10). In addition, F(Aw)¢ U for 0 < A’ < A since
F(} erws'(w) is not in U for 0 < s'(L) < s(L).

5. Subadditive valid inequalities

Let us now establish the close connection between subadditive valid
inequalities and subadditive functions. Any subadditive function (z, ) can
be scaled by multiplying both = and u by a positive number A. The next
theorem says that a properly scaled subadditive function is a subadditive
valid inequality.

Theorem 5.1. If (n, u) is a subadditive function on a subgroup U of I and if

au)+ Y ww)s(w)=1, whenever uy=u+ F< Yw s(w)) (11)

ng welL

for L a linearly independent subset of W and s(L) > O, then (m, 1) is a sub-
additive valid inequality for P(U, W, u,). Conversely, a subadditive valid
inequality (, u) for P(U, W, u,), where U is a subgroup of I"™ is a subadditive
Sunction satisfying (11). In condition (11) we can clearly exclude s(w) for
which

Uy = u + F( y ws’(w)) for 0 < s'(L) < s(L).

weL

Proof. The converse part of the theorem and the last assertion are obvious.

Lemma 4.1 showed that (z, u) satisfies (4) and (5), so if (x, u) is a valid
inequality, then it is a subadditive valid inequality.

We now prove that (m, u) is a valid inequality. First, if we know (11) for
linearly independent subsets L of W, then in fact (11) is true for any subset
of W. As always, s must have a finite support. The proof of this assertion
is exactly the same as proving (4) in Lemma 4.1.
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Secondly, from (3) we know

Y mu) t(u) = 7:(2 u t(u))

uel uclU

by Lemma 4.2. Hence, for any (z, s)e T(U, W, u,),
Y mlu) () + Zw u(w) s(w) =

uelU

> x(Z ut(u)) + Y uw)s(w) = 1,

ucl weW

completing the proof of the theorem.

When U is the zero subgroup, U = {0}, n(u) = 0 and (11) becomes

Y pw)s(w) = 1, whenever u, = F< y ws(w)).

wel wel

The above is the condition on the scaling of u in order for it to be a valid
inequality. In this special case, the only content of the theorem is that

T p(w) sw) > 1
weW

will be true for all non-negative s with finite support for which u, =
F()_w s(w)) provided it is true for all non-negative s with linearly inde-
pendent support.

In the above case, it is interesting to return to the gauge f defined from
u by (9) and the convex set C = {x: f(x) < 1}. This convex set has w u(w)
on its boundary, as mentioned in the discussion following Lemma 4.5. The
condition for u to be a valid inequality is that } u(w) s(w) = 1, whenever
uy = F(Q ws(w)). If u is subadditive, f given by (9) is convex and f(w) =
ww), so

S(W)

L) stw) = Tf ) s0w) = (TsONES () s

> (Zs(W))f<Z ZSE())> = f3w s(w)).

If Zw s(w) is outside of C or on its boundary, then f(3 ws(w)) > I and
Y u(w) s(w) = 1 is satisfied. Thus it suffices to require that ) w s(w) lie outside



156 E.L. Johnson, The group problem for mixed integer programming

or on the boundary of C whenever u, = F() w s(w)). This argument is
similar to the reasoning used by Balas in defining his intersection cut [1]
and by Glover in developing the convexity cut [4]. For further details of
this comparison, see [2].

When U is not the zero subgroup, u is closely related to = whenever
(7, w) is a minimal subadditive valid inequality as will be shown in the next
section. Only when U is the zero subgroup will our # correspond to an
arbitrary convex set C.

The next corollary further limits the conditions which must hold for
(7, w) to be a valid inequality for the case where U is a finite subgroup and
W is a finite set.

Corollary 5.2. If (=, u) is a subadditive function on (U, W), where U is a
finite subgroup of I and W is a finite subset of S™, and if (11) holds whenever
there is neither any ve U, v = u + F(}_,,c w5 (W), where 0 < s'(L) < s(L),
noranyw'e W,w' =Y . ws'(w), where 0 < s'(L), then (m, p) is a subadditive
valid inequality for P(U, W, uy).

Proof. The proof closely parallels the proofs of Lemma 4.6 and 4.7. There,
we were proving (6) and (7) under similar restrictions on w’ and L. Roughly
speaking, we transfer those arguments here by shifting the origin to a
fixed u; that is, by considering w' = Y .. ws(w) with F(w) = u, — u and
then considering the inequality Y .. u(w) s(w) = 1 — m(u). We, of course,
use (6) and (7) in the proof here.

Corollary 5.3. If (n, u) is a subadditive function on (U,S™), where U is a
finite subgroup of I and if
a(u) + Ap(w) = 1, 12)

whenever uy = u + F(Aw), where u + F(A'w) is not in U and is not u, for
0 < A" > A, then (=, w) is a subadditive valid inequality for P(U, S™, u,).

The proof of this corollary closely parallels that of Lemma 4.8.

Corollary 5.4. If uge U in Theorem 5.1, then (11) can be weakened to
n(uo) = 1. In particular, when U = I, n(uy) = 1 is necessary and sufficient
to insure that a subadditive function is a subadditive valid inequality for
P(U, W, uy).
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In principal, we now have a constructive definition of the subadditive
valid inequalities when U is a finite subgroup of I" and W is a finite subset
of S™. That is, (7, u) must be non-negative, satisfy (3), (6), (7), and (11) where
(6), (7), and (11) need only be required in the cases given in Lemmas 4.6,
4.7, and 5.2. These restrictions on (7, ) are linear inequalities, and there
are only a finite number of such inequalities provided the we W have
rational numbers for each component. In that case, the extreme subadditive
(7, w) can be found. In order to find the extreme valid inequalities, we need
to know which of these extreme subadditive inequalities are minimal. The
next section addresses that question.

6. Minimal inequalities

The previous development provides necessary and sufficient conditions
for (m, ) to be a subadditive valid inequality for P(U, W, u,) when U is a
subgroup of I™ Since minimal valid inequalities are subadditive by
Theorem 3.3, we know some necessary conditions for minimal valid
inequalities. In this section, necessary and sufficient conditions will be
developed for some cases. The case U = I"™ and any W < S™ will be treated
first.

Theorem 6.1. Let © be a function on I™ to the non-negative reals and let p
be a function on S™ to the non-negative reals. For any uy e I ~{0} and any
W < 8™, (n, u) is a minimal valid inequality for P(I", W, u,) if and only if

7(u) + m(v) = mu + v), u,vel™ (13)
uw) = }Ii{lg LF(:@, we W < 8™, (14)
a(u) + mug —u)y=1 foralluel™ (15)

Before proving the theorem, a lemma will be shown. Conditions (13)
and (14) here are almost enough to assure that (=, ) is a subadditive
function. The next lemma says that they are, in fact, enough.

Lemma 6.2. If n and p are functions as given in Theorem 6.1 and satisfy
(13) and (14), then (n, p) is a subadditive function on (I", W).

Proof. By assuming (14), we assume that the limit there exists. By Lemma
4.4, we need only show (7); that is,
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M) S T s, x= T wsw)
where L is a linearly independent subset of W. Since L is linearly inde-
pendent in R™, there are m or fewer elements in L. Fix L and s(w) > 0,
we L, withx = Yws(w)e W.Foranye > 0,let¢ = ¢/(2 |L]). By (14), there
is an hy(w) > O for we L such that

F(#

1(w) (W) = plw s(w)) > w— €, 0<h< hyw)
Similarly there is an h, > Osuch that u(x) < n(F(h x))/h + 3efor0 < h < h,.
Let h, = min {h,, ho(w): we L}. Then h, > 0 and for 0 < h < h,,

Y uw)s(w) = Y puw s(w))

wel wel

> ! Y wF(hws(w)) — 3¢

hweL

1
> —x( Y F(h ws(w))) — J&
h wel

by subadditivity of n. Clearly, Y F(hw s(w)y = F(h ). ws(w)) = F(h x) since
the first summation is actually modulo 1. Hence,

1
Y. uw)s(w) = (R x) — 3¢

wel

= u(x) — e

Since ¢ > 0 is arbitrary. the inequality (7) follows.

Proof of theorem 6.1. Suppose (13), (14) and (15) hold for (z, ). By the
previous lemma, (m, u) is a subadditive function on (I, W). By (15) with
u = 0, n{uy) = 1. By Corollary 54, (m, ) is a subadditive valid inequality.
To show it minimal, we must show that there is no other valid inequality
(p, v) for PUI™, S™, u,) with (p, v) < (x, p). Clearly, (15) excludes p < 7 since
then p(u) < m(u) for some ue U and p(uy — ) < nlu, — u), so p(u) +
pluy — u) < L. We nex: show that (14) excludes v < z.

Let v(w) < u(w) and ¢ = p(w) — v(w) > 0 for some we W. By (14), there
is an h, 0 < h < 1, with u(w) < a(F(hw))/h + ¢. Then (u, — F(hw)) +
F(hw) = uy so (p, v) being valid implies p(u, — F(hw)) + hv(w) = 1. But
by the above,

hviw) =huw) — he < a(F(hw)) + he — he < p(F(hw)).
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Hence,
plug — F(hw)) + hv(w) < p(ug — F(hw)) + p(F(hw)) = 1,

a contradiction. Therefore, (7, 1) is a minimal valid inequality for P(I", W,
ugy) whenever (13), (14) and (15) hold.

Suppose now that (r, u) is a minimal valid inequality for P(I™, W, u,).
We show that (13), (14) and (15) hold. By Theorem 3.3, (n, p) is a subadditive
valid inequality. By Theorem 5.1, (x, p) is a subadditive function, and by
Corollary 5.4 it satisfies 7(uo) = 1. By definition of subadditive function,
(13) holds. By Lemma 4.4, the limit in (14) exists and

n(F(h w))

>lim—=
uwy = }'1{18 PR weW.

By Lemma 6.2 and minimality of u, equality must hold because otherwise
(m, im (F(h w))/h) is a valid inequality less than (r, u). Hence (14) holds.

We next show that (15) holds. The proof is similar to the proof of [6,
Theorem 1.6]. If (15) does not hold, then for some ve I™,

) + wlup —v) =1+ 4, 0>0.

At least one of n(v), m(u, — v) is positive, so suppose n(v) > 0.
Define p on I"™ by

1 .
o) = 1+5Tt(V) ifu=ry,
7(u) fus#ov, uel™

Since 6 > 0and =(v) > 0, it follows that p < n. A contradiction to minimal-
ity of 7 will be reached if (p, 1) can be shown to be a valid inequality for
P(I™, W, ug).

Let (t, ) T(I™, W, u,). We wish to show that (p, p)- (¢, 8) = 1; i.e,

Y AWt + Y p(w)s(w) = 1.
uelm weW

By definition of p,
Y plu)tw) + Y. plw)s(w) =
uelm weW

= ;m l(u) t(u) + ZW u(w) s(w) + 7(v) t(v).

1+6
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If t(v) = (1 + J)/n(v), then clearly (p, u)- (¢, s) = 1 holds. If #(v) = 0, then it
holds by (#, p) being a valid inequality. Hence, suppose

146

a(v)

Regrouping the term (1/(1 + 8)) n(v) t(v) above gives

Y pwyru) + Y pw)siw) =
uelm weW
= < Zl:m”(u) t(u) + m(v) (o) — 1)) + ZW u(w) s(w)

1 < t(v) <

ufv
o
+ 7(v) — T 5?!(0) tv)
> ( Y utu) + v(t(v) - 1)) + Y uw)s(w)
uel™ weW
uFv
0 t
+mw—l+5dw@%

by subadditivity and Lemma 4.2. Subadditivity also implies (4), so the
above is greater than or equal to

(v + n(v) —

I i 5 a(v) t(v) = w(v') + () —

by t(v) < (1 + 6)/n(v). Here
v'= Y utw)+ o) — 1) + F< y ws(w)).

uelm weW
utv

But (1, s)e T(I™, W, u,), so

y ut(u)+F<Z ws(w)) = Ug.

uelm eW

Hence v' = u, — v, and we get

EZI;" p(u) t(u) + ZW u(w) s(w) = n(uy — v) + 7(v) — 6 = 1.

Hence, (p, 1) is a valid inequality for P(I™, W, u,), a contradiction is reached
and the theorem is proven.
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In this case, where U = I™, the set of minimal valid inequalities, is a
convex set and the extreme points of the set of minimal valid inequalities
are precisely the extreme valid inequalities by Theorem 3.2.

The following corollary is a consequence of Lemma 6.2 but is interesting
in itself. Recall the defmition (9) of the homogenous extension fof u to R™.

Corollary 6.3. If © is subadditive function on I™ (that is, n(u) + n(v) =
m(u + v)) and if the limit

. (F(hw))
lim ————
R10 h
exists for all we S™, then the homogenous extension f of u for u defined by
oy TFC W)),
hi0 h

eS",

is convex.

Proof. Lemma 6.2 shows that (x, y) is a subadditive function on ( I"™, S™),
and, hence, (7) holds. By Lemma 4.5, the homogenous extension of u to
R™ is a convex function. Thus, the corollary is proven.

We next consider finite subgroups U of I"™ and finite subsets W of S™.

Theorem 6.4. Let  be a function on I™ to the non-negative reals and let u
be a function on S™ to the non-negative reals. Let U be a finite subgroup of
I™ and let W be a finite subset of S™ such that each element w € W has rational
components. For any uy € I™ ~{0}, (n, p) is a minimal valid inequality if and
only if all of (16}H19) below hold:

() + n(v) = 2u +v),  wvel, (16)
w; u(w) s(w) = n(v), whenever v =F <W§L ws (W)), (17)
W;L u(w) s(w) = p(x), whenever x = ng w s(w), (18)
n(v) + W;L pu(w) s(w) = 1, whenever uy = F(v + W;L w s(w)), (19)

where in (17), (18) and (19) the set L is a linearly independent subset of W,
s(w) = 0, and we can assume the condition of Lemma 4.7: there isno y e W,
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yEL, y# Y ws(w), such that y =Y ., ws(w), for some s'(w) >0, we L.
In (17) we can assume there is no v’ € U and s'(w), 0 < s'(w) < s(w) forwe L,
such that v = F(} ... w s'(w)). Let

Up={veU: nv)+ ) pw)sw)=1

wel

for some L and s(Ly withuy = v + Y. ws(w)}

and let "
Wo = {xeW:n(v) + Y pw)s(w)=1

welL
for some ve Uy and L with x e L and s(x) > 0}.
For minimality, we need

Sor every ue U, either ue U, or there exists ve U, such
that n(u) + n(v — u) = n(v), (20)

for every we W, either u(w) =0 or we W, or there
exists xo€ Wy with p(xo) = Y o1 H(x) S(x), where L is
a linearly independent subset of W, we L, s(w) > 0, and
Xo = Der X S(X). (21)

Proof. Conditions (16)-19) are necessary and sufficient for (n, y) to be a
subadditive valid inequality by Theorems 4.6, 4.7, and 5.2. By Theorem 3.3,
the minimal valid inequalities are subadditive. Thus we need only prove
that (20) and (21) are necessary and sufficient for a subadditive valid
inequality to be minimal.

Suppose, first, that (z, ) is a subadditive valid inequality and that (20)
and (21) hold. Clearly, (20) implies that no 7(u) can be lowered and still
have (7, u) be valid. Similarly, (21) implies that no u(w) can be decreased
and still have (z, u) vald.

Finally, suppose (z, u) is a minimal valid inequality. We must show
that (20) and (21) hold. Clearly, U, and W, are both non-empty for a
minimal valid inequality.

We first prove that if (20) does not hold for some u, then (20) does not
hold for some u for which n(u) > 0. Suppose n(u) = 0 and (20) does not
hold for u. Then,

n(u, — u) = n(u,) + 6,, 0, >0, forall u,eU,.

Clearly n(u, — u) > 0 for all u; e U, If (20) does not hold for some u; — u,
we are done. Otherwise, (20) does hold for every u, — u, so that for every
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u, € U, either u; — ue U, or there exists u, € Uy, depending on u,, for
which

mluy — u) + wuy — (g — u)) = w(uy).
Clearly this u, s u,, since if u, = u,, then the previous inequality becomes
(u, — u) + 7(u) = n(u,), contradicting the fact that (20) does not hold

for u.
Consider first the case that for some u, e Uy, u; — ue U, Let u, =
u,; — u. Then by (20) not holding for u and by n(u) = 0,

w(u, — u) = a(u;) + oy, 0, >0,

w(u, — u) = wuy) + 0, d, > 0.
But u, = u; — u and, hence, u, — u = uy, so adding the two above equa-
tions and cancelling gives

0=20, + 0,5,

a contradiction,

Suppose now that for every u, e Uy, u — u; ¢ U and there exists a
u, € Uy, depending on uy, for which m(u,) = a(u; — u) + #(u, — (u, — u)).
This u, # u,. Begin with any particular u, € U,. Then we get u, as above,
U, # u,. Now from u, we can similarly find u; # u,. Given u; we can
find u,. Since U is finite, eventually one of the u; must be one of the previous

u;’s. Then
m(u; — u) + 7wy, - (u; — u)) = nlu; 4 1),

m(u;—y — u) + ™y; - (uj— 1 — u) = n(uy),

where u; = u;. Now, from u not satisfying (20) and n(u) = 0, n(u;, — u) =
n(uy) + 6, 6, > 0. Substituting in the above gives

m(u;) + 0; + iy — (u; — u)) = alu; ),
Uiy 1) + 0ivq + 7’-'(”i+_2 — Uiry —u) = 7ty ),

;- () + 0;-1 + m(u; — (uj—y — u)) = n(uy).

Cancelling 7(u;) = n(u;) and =(u; , ;) = 7(u;4,), ..., from the equations gives

Z5k+ Z — (- —u) =0,

k=i+1

a contradiction since J, > 0 all k.
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Now assume (20) is violated by u for which z(u) > 0. Let
6; = min {n(u) + n(u; — u) — n(u,): u, € Uy}.

Then 6, > 0 because (20) does not hold and because U, is finite. Let

0, = flg}}n {min {m(v) + Y u(w)sw) — l}},

wel

where the interior min is over all s = 0 for which

v+ F < >ow s(w)) = u,, L linearly independent.
wel

Now, ¢, > 0 because it can be shown to be a minimum of a finite
number of terms each of which is positive. Since v¢ U,, each term is
clearly positive. Also, there are only a finite number of v ¢ U, since U is
finite. Since W is finite, there are clearly only a finite number of linearly
independent subsets L of W. Thus, we can fix v¢ Uy and L S W, L linearly
independent. There are a discrete number of points congruent modulo |
to up — v in R™ Each such point can be written in exactly one way as a
linear combination Y w s(w) of the w e L because L is linearly independent.
Each w has rational coordinates by assumption, say w = (p;/q;,i = 1, ..., m).
L

ot sw) = Lem. {q,, .., gn} = D(w),
where l.c.m. means least common multiple. Then, w s(w) is congruent to
w(s(w) — D(w)). Since pu(w) = 0, we know in the min defining 5, that
s(w) < D(w). For a given u, — vand a given L, there are only a finite number
of points in R™ congruent to u, — v which can be written as ) w s{(w) with
0 < s(w) < D(w). Each of these points can only be formed in one way as
such a linear combination. Hence, only a finite number of terms
) + Y u(w)sw) — 1
wel

need be considered in defining 6§, and §, > 0.

Let 6 = min {Jy, d,},50 6 > 0. Let

S if v = u,
o) =1 T+ 5?:(u) ifo=u
7(u) ifv# u

By n(u) > 0, p(U) < =(U). If (p, p) is shown to be a valid inequality, then
a contradiction is reached. Let (¢, s) be a solution to P(U, W, u,). Then
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Y. plo) t(v) = p() tw) + . m(v) o)

veU v¥u
_ 7(u) tu)
=115 + v;u 7(v) t(v).

If t(u) = 0, then ) p(v) t(v) = Y n(v) t{v), so clearly

Z{:} pv) () + ZW p(w) s(w) = 1.
If t(u) = (1 + 9)/n(u), then ) p(v) t(v) = 1 already. Otherwise 1 < t(u) <
(1 + 0)/n(u). Let us regroup:
0
T 0 0) = % 7)) + 70 ) - ST

velU vFu

Hence, Y p(v) t(v) > Y 7(v) t(v) — & and #u) > 1. Hence,

Y p(v) t(v) > { Y w(v) t(v) + n(u) (t(u) — l)} + w(u) — o

velU v¥u
= m(u, — u) + n(u) — o,
by subadditivity, where u;, = Y v t(v). If u, € Uy, then by 6 < 4,
Y. p(v) t(v) + ZW H(w) s(w) = m(u,) + ZW p(w) s(w) = 1.

vel
If u, ¢ Uy, then the same result follows from 6 < §,.

We now turn to (21). The proof of (21) is somewhat similar to that of
(20). Suppose we W and (21) does not hold for w. Then w ¢ W,,, u(w) > 0,
and if any x, € W, with xo = Y ,.; x s(x), we L, and s(w) > 0, then

p(xo) < ZL w(x) (x).
Here, L is linearly independent. Since W is finite, there are only finitely
many subsets L and finitely many x, € W,. For each x, € W, and L with
we L, there is a unique s(x), x € L, such that x, = Y, x s(x). Define

0, = min{ Y w(x) s(x) — p(x): we L, s(w) > 0, s(x) = 0 for xeL,
xel

Xo = Y xs(x),and L is a linearly independent subset of W}.

xelL
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Clearly 6, > 0 since it is the minimum of a finite number of positive
numbers.
Just as in proving (20), §, > 0, where

8, =min{x(u) + Y p(x)s(x)y — 1:0 + F<Z xs(x)) = up, wel,

xeL xelL

s(w) > 0, s(x) = 0 for xe L, L linearly independent}.

As in proving (20), d, is the minimum of a finite set of positive numbers
because we need only consider s(x) < D(x).
Hence 6 = min {6,,6,} > 0. Form v by letting

w(x) if x#w,
v(x) = 1
i

Since (21) is violated, u(w) > 0 and hence v(w) < u(w). It remains to show
that (=, v) 1s valid. Let (¢, s) e T(U, W, u,). Then, as in showing (20),

Y w(w) t(u) + Y v(x)s(x) =

uelU xe

w) if x =w.

0 pu(w)
1+

If s(w) = (1 + 8)/u(w), then clearly v(w) s(w) = 1 so (=, v) is valid. Otherwise,
0 < s(w) < (1 + 6)/u(w). Then

Y nu) t(u) + ZW v(x) s(x) > Y m(u) t(u) + ZW u(x) s(x) — 6.

uelU uel

= ) ) f(u) + ZW u(x) s(x) — s(w).

uelU

As in showing (20), the proof now follows by the way é was defined.

7. A fill-in procedure

This section gives a way to form a subadditive valid inequality (7, p)
for the problem P(I™, S™ u,) from a subadditive valid inequality for the
problem P(U, W, u,), where U is a finite subgroup and W is a finite subset
of §™ such that any x e R™ can be written as x = ) . w s(w) for some
s(W) = 0. The assumption that every x € R™ can be written in this way is
a restriction on W used below.

The initial valid inequality for P(U, W, u,) can be obtained from com-
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puting extreme valid inequalitics using Theorem 6.4. In Section 8, some
extreme valid inequalities are given for some particular cases with m = 2.
The method given here is analogous to the “two-slope fill-in” of [6]
(see Theorem 3.3).
We begin by extending pu from W to §™ For each x € ™, let

u(x) = min { Y pw)sw)ix = Y w s(w)},
wel we L
where L is a linearly independent subsrt of W and s(L) > 0. By our assump-
tion that each xe R™ can be written as a non-negative combination of
we W, we know that p(x) is finite for all xeS™.
Now, let g be the gauge function which is the homogenous extension of
u to the entire space R™. Extend 7 to I" by letting

a(v) = min {z(w) + g(x): v = u + F(x)},

In this way, a function (m, u) has been defined on (I™, S™). It remains to
show that the function is a valid inequality for the problem P(I™ S™, u,).
We will show (x, u) to be a subadditive valid inequality. By Lemmas 4.4
and 4.5 by Corollary 5.4, we need to show four conditions:

a(u) + n(v) = n(u + v) forallu,vel™
g is convex,

ulw) = ’llilng E(E(:w—)) for all we S™,

m(uy) = 1.

We first show g to be convex. It suffices to show that the set of {x:
g(x) < 1} is convex since g is a gauge function. In fact, {x: g(x) < 1} = C,
where

w
C = convex hull {—-—: we W}.
H(w)
Clearly,
g(x) = min{ Y uw)sw):x = Y ws(w), (W) = 0},
weW

so ¢g(x) < 1 if and only if there is an s(W) = 0 such that
Y pw)s(w) < 1 with x = ) ws(w).

weW weW
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Now, 0e C so
y iw)—eC

weW )
provided Y A(w) < 1. Letting A(w) = u(w) s(w), the above condition for
g(x) < 1 shows that g(x) < | implies x € C. On the other hand, if xe C,
then let
x= )Y Aw)——, where Y Aw)=
weW ) weW
Now, let s(w) = A(w)/y(w), and we see that g(x) < 1.

The above arguments assumed that u(w) > 0. If u(w) =0, then C
includes the ray Aw for 4 > 0 and so does the set of x with g(x) < 1. The
above arguments are, thus, easily extended to this case.

Thus, g is convex. Before showing the other three conditions on (z, p),
an observation is needed. By definition of subadditive valid inequality,
(3) holds so for ve U,

n(v) < nuielun {m(u) + g(x): v = u + F(x)}.

Hence, our z on I™ is a true extension in that n(u) remains unchanged for
ue U. Similarly, (4) assures that u(w) remains unchanged for we W.

To show 7(uy) = 1 is easy using Theorem 5.1 since (11) there implies
7(ug) = 1. Also, to show

u(w) = lim ZECY),

wesS™
h—0 h ’

is easy since n(F(hw)) < g(hw) = h u(w), or T(F(hw))/h < u(w).
Subadditivity remains to be shown; that is, z(u) + n(v) = n(u + v) for

all u,veI™ We know that subadditivity holds whenever u and v are in U,
by assumption. For v not in U, n(v) = n(u) + g(x) for some ue U, where
v = u + F(x). The fact that the minimum used in defining n(v) is actually
achieved for some 1 and x is the same as used earlier in proving Theorem 6.4.
Let n(v,) = n(u;) + g(x,), and 7n(v,) = 7(u,) + g(x,) for u,, u, € U. Then

avy) + (02) = n(uy) + w(uz) + gx1) + glx2)

= w(uy + uy) + g(x, + x3)

by subadditivity of = on U and convexity of g. Since

Dy + Uy = Uy + Uy + F(xl) + F(XZ)

=u1+u2+F(x1+x2),
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it follows that
(o, + vy) < w(uy + uy) + glxy + x3).

Here, the fact that U is a group implies u, + u, € U, and we also use the
definition of n(v, + v,) as a minimum over such terms. Thus, subadditivity
is proven.

The next section gives the extreme valid inequalities for particular finite
U and W and shows the fill-in described here.

8. Computing some extreme valid inequalities

For certain problems P(U, W, u,), the extreme valid inequalities have
been computed. All were for the two-dimensional case m = 2. The simplest
was U = {(0,0)} and W= {1,0),(0,1),(—1,0),(0, —1)}. The problem
P(U, W, u) is then

F<<(l)> s(1,0) + (?) s(0, 1) + <_Ol>s(—1,0) +
0 _ (U0
o(2))so-0)= (i)

where the variables s(1, 0), s(0, 1), s(— 1, 0), s(0, — 1) must be non-negative
real numbers. A valid inequality is given by numbers u(1, 0), (0, 1), u(—1, 0),
u(0, —1) such that

w(1,0) 5(1,0) + (0, 1) (0, 1) + p(—1,0)s(—1,0)
+ (0, —1)s(0, —1) > 1

for any solutions.
Using Theorem 6.4, only conditions (19) apply, and the extreme valid
inequalities are given by the extreme solutions to

gy #(1,0) + uo, u(0,1) = 1,

(1 —up) (= 1,0) + ugy u(0,1) = 1,

(1 — upy) w(—1,0) + (1 — upx) p©0, —1) = 1,
gy (1,0) + (1 — upz) u(0, —1) = 1.

In addition, (21) must hold. Here (21) amounts to requiring that of these
four inequalities the following hold with equality: one or two and two
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or three and three or four and one or four. For example, if one and three
hold with equality, then (21) is satisfied. Essentially, (21) means that for
any x € W there is some solution s(W¥) such that

Up = F< ) WS(W)>

weW

with 1 = ) p(w) s(w) such that s(x) > 0.

There are two extreme valid inequalities for this problem. They can be
obtained by taking the Gomory mixed integer cut [3, p. 528] for each row
of the problem. They were obtained by hand calculation using the double
description method [10] and treating (u, , 4,,) symbolically. The values of
p are given in Table 1 in terms of u;, = u,, and u, = u,,. By symbolic cal-
culation in u, and u, is meant that the symbols u, and u, are carried along
so that the computation remains valid for all values within a given range.

Table 1

Face w1, 0) w0, 1) w—1,0 | w0, —1)

1 1

uy 1 —u

2 0 1 0 !
u, 1 —u,

The fill-in procedure of Section 7 gives a function for each of the two
above extreme valid inequalities. These two functions are

X .
— fo0Lx, <u,,
uy
pa(xq, x3) =
1 - xl .
ifu, < x; <1,
I —u,
x2 .
—= if 0 <x, <uy,
Uz
pa(xy, X5) =
1 - X2 .
if u, < x, < L.
I —u,

These two functions are pictured in Fig. 1.
A more interesting problem is obtained by taking U = {(0,0), (3, 0),
(0,3), (3, 3)}- This U is congruent to the direct product C, x C,. When W
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L7 T

Fig. L.

is empty and u, is in U, the faces are given in [5]. Consider now the mixed
problem P(U, W, u,), where W is as before and for this U. The problem is
to find s(w) = 0 and integer t(U) = 0 such that

1 1
(7) 13 0) + <?) (0, 3) + @ 1z, 5)
0 Vi . 3
I 0 ~1
+ <O)s(1,0) + <1)s(0, 1) + < 0 )s(— 1,0) +
+ < 0 )s(o, —1) = <”‘”).
—1 Uoz

The extreme valid inequalities for this problem were obtained using
SCRATCHPAD [9] to execute the double description method treating u,,
and u,, symbolically. These calculations are similar to those described in
the appendix of [6] where we actually carried out the same kind of symbolic
calculation for the one dimensional case m = 1. In this case, the u,, and
uo, were restricted to 0 < uy, < 3 and 0 < uy, < uy, since any other
problem can be changed to this form using the following observation. We
get the same problem (with a different u, and a rearrangement of the
variables) by performing any or all of the two following types of operations:

(1) reversing either or both axis;

(i) swapping axes.

The extreme valid incqualitics are given in Table 2. They are scaled to
n(uy) = 1 and are given in terms of u; = u,, and u; = ug,.

The filled-in functions obtained from the first two extreme valid in-
equalities are the same as in Fig. 1. The next two are pictured in Fig. 2.
They can be obtained by multiplying each row of the problem through by
two and then generating Gomory’s mixed integer cut. The last two extreme
valid inequalities are more interesting. The filled-in function for the first
of these two is pictured in Fig. 3 for u, = (0.2, 0.1). The last one, that is
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Ve

Fig. 2.

extreme valid inequality number six, is obtained from number five by
reversing the axes.

We will now describe in some detail how a cut can be derived from the
filled-in function from inequality 5. First, the change in variables necessary
to adjust the right-hand side u, so that 0 < u,, < u,, < 1 will be further
described. The basic fact being used is an extension of [5, Theorem 14],
and the proof is essentially the same as there, so is deleted. The next two
theorems state the results.
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Theorem 8.1. There are two types of automorphisms of the problem P(I™,
S™, ug). They are:

i) PWis s W) = (W, ey Wil ([, Wy Wi, oo Wim 1, Wy, Wisits.eo),
i

(p(ul, . um) = (ul, e Uiy, Upy Ui b 15 <00y Uj s Up Ujyy, -);

(_.) (0(W1, ey Wm) = (Wl, ceny Wi_l, *Wi, Wi+1, ...),
11

(p(ub Ty um) = (ub-uaui—l’ 1 - Uy, Uiy 1, -)

The first swaps axes i and j, and the second reverses axis i. These two types
of automorphisms can be combined sequentially to produce other auto-
morphisms.

Theorem 8.2. If (n, p) is a valid inequality for P(I™, S™, uy) and if ¢ is an
automorphism of P(™ S™ u,), then (n',u’) defined by

) =z@ u),  pw) = p@"'w),

is a valid inequality for P(I"™, S™,@(uy)). The theorem remains true if we
replace valid inequality by any of subadditive valid inequality, minimal valid
inequality, or extreme valid inequality.

Both theorems remain true if instead of U = I™ we have U = C x C x

. x C, a direct product of finite cyclic groups or if instead of W = S™
we have a finite W closed under the two types of mappings ¢ described
in Theorem 8.i.

The functions obtained from inequalities 5 and 6 of Table 2 are examples
of these two theorems. If we start with inequality 5 and let

Pwyi, W) = (W, wy), @uy, uy) = (uy, uy),

then applying Theorem 8.2 gives inequality 6. In particular, if we start with
a up satisfying 0 < uy, < uy, < 4 and apply the above mapping @, we get
exactly the same faces as in table 2 except that 1 becomes 2, 2 becomes 1,
3 becomes 4, 4 becomes 3, 5 becomes 6, and 6 becomes 5. Thus, Table 2 is
actually valid for 0 < ug,, uy, < 4.

We will now show how to use the theorem to get the extreme valid
inequalities for 0 < u,, <% and % < uy, < 1 using these two theorems.
Let @(wy, wy) = (wy, —w;) and @(uy, u;) = (uy, 1 — u,). Then @(uy, u;) =
(uy, u3) = (uy, | — u,) satisfies 0 < u), uh, <% whenever 0 < u, < { and
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1 < u, < 1. Thus we can use Theorem 8.2 and Table 2. Let uy = (uo, Up?)
with 0 < up) < 3and i < up, < 1,and let uy = (Upy, tg2) = (Up1, 1 — ).
Table 2 gives us inequalities for u, in terms of uy,, Uy,. To change them
to inequalities for P(U, W, up), we must substitute uy, = 1 — up, into
those expressions. Also, 4/(0, 1) is now given by (0, —1), u(0, —1) by u(0,3),
while the remainder are unchanged. The result is shown in Table 3.

As an example, six cuts from this table will be derived for a particular
two row integer program. Let

x; + 04x; + 1.3x, — 0.01x5 + 0.07x, = 0.2,
xZ — 0.3X3 + 0.4X4 - 0.04X5 + 0.1x6 = 0.9,

where x,, x;, x5, and x, are integer variables. The cuts from Table 3 are
given from the filled-in functions (7, ) on I™ x §™ by

7(0.4,0.7) x5 + 7(0.3,0.4) x, + 0.04u(—0.25, —1) x5
+ 0.1u(0.7, ) xg = 1.
Here they are:

06 07 001 007
3T 08T+ T o8 T o2 =

08

0.7 0.4 0.04 o1
09 *tooXet oy ¥ty Ye=
0.1 L0200 007
03 T3 T o3 T o2 6"
0.2 x +0'4x +0'O4x +—x, =1
04 *T047F 7 1 77T 04 T
9'11 x+0'3x +(—)gx +0;4§x >1
09 27097* 0977 09 T

-—0'433 +ﬂx +(—)§x +9ﬂx >1
11 3T s Ty et

or,
0.75 x3 + 0.875x, + 0.0125x5 + 0.35 x4 = 1,

0.778x5 + 0.444x, + 040 x5 + 0.11 x4 = 1,
0.333x; + 0.667x, + 0.0333x5 + 035 x¢ = 1,



E.L. Johnson, The group problem for mixed integer programming 177

\%

05 x5+ X, + 040 x5 + 025 x4 = 1,
0.444x; + 0.333x, + 0.0555x5 + 0478x¢ = 1,
0.394x; + 0.636x, + 0.346x; + 0.155x4 = 1.

Note that, in this case, the last inequality dominates the fourth one because
every coefficient of the last one is smaller.

The extreme valid inequalities for one other problem have been com-
puted. This problem has

U = {0},
W= {(130)9(17 1)’(0, 1)’(— l: 1),('— 190)a(_ 1, - 1)5(05 - l)’(l’ - 1)}9

and u, = (0.2, 0.1). This problem has not yet been attempted with SCRAT-
CHPAD because of its size. Thus there is only one particular u, for which
the answer is known.

There are seventeen faces and the values of u(w), we W, are shown in
Table 4. The first four faces are pictured, in their filled-in form, in Fig. 4.
The contour lines of all seventeen are shown in Fig. 5. The filled-in versions
of the last thirteen can be formed, but they become rather complicated.

Table 4
WL,0) [ ) | p0,1) (-1, | (—=1,0) | f(—1,=1|u(0, ~1)| w(1, =1)

110 0 1.111 2222 1.111 0 10 20

2 5 5 0 1.25 1.25 1.25 0 5

3 3.333 6.667 3.333 0 1.429 2.857 1.429 0

4 0 10 10 10 0 1.111 L.111 1.111
5 2.8 7.2 44 1.6 1.2 0.8 3.6 6.4

6 4.706 5294 | 0.5882| 1.765 1.176 0.5882 5.294 10

7 4.848 5.152 0.303 1.515 1.212 0.9091 2.727 4.545
8 5294 4.706 5.294 5.882 0.5882 1.176 0.5882 5.882
9 3.043 6.957 3913 0.8696 1.304 1.739 0.4348 3.478
10 2.902 7.098 4.197 1.295 1.244 1.192 0.4663 3.368
11 3.478 6.522 3.043 3913 0.8696 2.174 1.304 0.4348
12 2.881 7.119 4.239 1.358 1.235 1.111 1.111 1.111
13 3.704 6.296 2.593 1.358 1.235 1.111 L.111 1.111
14 3.704 6.296 6.708 7.119 0.4115 1.111 1.111 1.111
15 3.6 6.4 6.8 7.2 0.4 1.6 1.2 08
i6 3.704 6.296 2.593 3.519 0.9259 1111 1.111 1.111
17 4.186 5814 | 6.279 6.744 0.4651 1.163 0.6977 2.558
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Five practical problems are each formulated in two different ways as 0-1 integer pro-
gramming models. All the models have been solved by the Branch and Bound method using
a commercial package program. Full details are given of the manner of the different formu-
lations and the computational ease of solving them. The purpose of this paper is to investigate
the computational effects of different formulations on such problems. The problems con-
sidered are a market allocation problem, a combinatorial problem, two mining problems
and a problem of logical design.

1. Introduction

Integer programming (IP) is computationally far more difficult than linear
programming (LP). It has, however, become possible in the last few years
to solve many practical integer programming problems using commercial
packages. Some such developments are described by Benichou et al. [4].
Most commercial packages use a form of the Branch and Bound Algorithm
as described by, for example, Land and Doig [8], Dakin [5] and Beale
and Small [2]. Algorithms of this kind start by solving an integer pro-
gramming problem as if it were a continuous LP problem. No variables
are constrained to take integer values and the continuous optimum is
obtained. A tree search is then carried out, systematically imposing bounds
on integer variables which have not attained integer values. When all the
integer variables have attained integer values, a feasible integer solution
has been reached. If the tree search is continued to completion, the best
such feasible integer solution is the integer optimum. The full details of the
algorithms are described in the references above.

Five different optimization problems are described here. Each problem
is formulated as an integer programming problem in two different ways.
In most cases one formulation takes far less time to solve than the other
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formulation. The superior formulation is always the one which is “tighter”
in a continuous sense. Geometrically, the boundary of the feasible region
has been moved to reduce its size but not to exclude any feasibie integer
points. The result is a problem which has less continuous solutions but
the same number of integer solutions. It may therefore be expected that
the continuous optimum be closer to the integer optimum in the “tighter”
formulation.

There is little practical connection between the five problems. The
choice of problems has been deliberately made in order that this shall be
so. There is merit in comparing computational experience between quite
different practical problems using the same algorithm. It is apparent that
the computational ease of solving an integer programming problem is very
dependent upon the problem’s structure. An artificially constructed model
very often has little structure. The choice of practical, rather than artificial,
problems has therefore also been deliberate. All five problems are fairly
small although far from trivial. They can all, however, be extended easily
to similar, but much larger, problems.

Numerical data for Problems 1 and 3 can be obtained from the author
on request.

2. Setting up the experiments

In all these problems, the ICL mathematical programming system
XDLA [10] on a 1904A computer was used. All problems were run in a
partition of 50 K words. In order to obtain as realistic a comparison as
possible between formulations, penalty calculations were not used to con-
trol the tree search nor was any priority order used to control the choice
of branching variable. In all cases, branching occurred on the integer
variable with the most significant fractional value first in the direction of
the nearest integer. Shorter runs could almost certainly have been obtained
by a more sophisticated approach to the tree search. Using a knowledge of
the structure of each problem by specifying a priority order for branching
would almost certainly be valuable. Experience of doing this in combination
with reformulation ideas similar to some of the ideas used here has been
described by Beale and Tomlin [3]. Explicitly putting slack variables in
certain rows and specifying them as integer variables as suggested by Mitra
[12] would almost certainly have proved of value if such variables had
been given priority in branching. As stated before, however, the purpose
of the experiments was to compare formulations rather than algorithms.
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Any approach that used an understanding of the structure of the model
was avoided.

The solution times given for each formulation are Mill times for the
total job. It is not, unfortunately, possible with the XDLA system to obtain
Mill times for stages in the computation. Elapsed times have little meaning
in a multi-programming environment. The Mill time for the computation
up to the continuous optimum of each problem would be of interest. In
most integer programming problems this time is very small in comparison
with the time taken for the second phase involving the tree search.

3. Discussion of problems

Problem 1. Allocating Market Share

This problem involved a distribution company with two divisions 4
and B. The company was responsible for supplying its products to 23
retailers M1 to M23. It was desired that division 4 control 40 % of the
company’s operations and division B the remaining 60°%;. The problem
was therefore to allocate 409/ of the retailers to 4 and 609 to B. Each
retailer had a known market for each product. The allocation of retailers
to divisions had, therefore, to be made in such a way that the 40/60 split
applied over the total market for each product. Some retailers were con-
sidered to have better growth prospects than others. It was therefore
desired to divide those with good prospects in the 40/60 ratio as well as
those with lesser prospects. Each retailer also had a given number of
delivery points. The division of retailers between 4 and B had to be such
that the split in delivery points serviced by 4 and B was 40/60. To obtain
a 40/60 split exactly over all these categories was almost certainly impossi-
ble. The condition was therefore relaxed that the split had to lie within the
limits 35/65 to 45/55. It was, however, desirable to keep as near the 40/60
split as possible. The objective was to minimise the total of all the devia-
tions as long as they lay within the specified + 5%,

Formulation 1

The problem was formulated as an integer programming model where
each of the 23 retailers was represented by an 0-1 variable X,. If X; = 1,
retailer i was assigned to division 4. Otherwise he was assigned to divi-
sion B. Slack variables were introduced into each restraint to provide the
required objective. For example Product 3 could only be supplied to
retailers M 19 to M23. The markets (in suitable units) of these retailers for
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Product 3 were as below:

M19 M20 M21 M22 M23
6 15 15 25 39

It was therefore desired to split this total market of 100 in the appropriate
ratio between A4 and B. This can be accomplished by the restraint

6X19 + 15X20 + 15X21 + 25X22 + 39X23 + yl - y2 = 40. (1)

y, and y, are slack variables which are introduced and each given a cost
of 1 in the objective. They also have upper bounds of 5 to keep the split
within the appropriate limits,

Following the suggestion of Mitra [12], y, and y, were also made
integer variables. Other restraints were treated in a similar fashion. All the
right-hand side coefficients were kept integer by, if necessary, taking the
nearest integer to the appropriate value and suitably adjusting the bounds
on the slack variables (such as y, and y,). In this way it was possible to
specify all variables in the problem as integer. The resultant problem
contained 9 restraints and 40 integer variables (23 were 0-1).

This problem was “difficult” in that one integer solution need bear very
little resemblance to another. The problem was constructed as a small
version of a much larger problem which had given great difficulty on a
much more powerful computer and produced no integer solution.

Formulation 2

This was conceptually almost the same as formulation 1 except that 3
of the restraints were replaced by “simpler” but “logically equivalent”
restraints. Restraint (1) can be regarded as the two restraints

6X 1o + 15X,0 4+ 15X,, + 25X,, + 39X,, < 45, )
6X 1o + 15X50 + 15X,, + 25X,, + 39X,5 > 35. 3)

Since all the variables in these restraints are 0-1, they can be shown to be
logically equivalent to the restraints

X0+ 2X50 +2X5, +3X;,, +4X,3 <5, 4)
Xio +2X,0 +2X,5, + 3X,, +5X,3 25, )

It is easy to verify that combinations of values 0 or 1 for the X; satisfy (2)
if and only if they satisfy (4). Similarly for (3) and (5). (4) and (5) are, how-
ever, “tighter” than (2) and (3).
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The possibility of “simplifying” restraints in this way and a systematic
means of doing it was suggested by Hammer [7]. It is applicable to any
pure 0-1 restraint even if some coefficients are negative (in this case, X; is
replaced by 1 — X,). In this particular example, 3 restraints such as (1)
were simpliefied in this manner yielding 6 new restraints. The original
3 restraints (now redundant) were left in the model to simplify calculation
of the objective.

Clearly a certain amount of calculation is involved in simplifying the
restraints. This was done by a combination of hand and computer calcu-
lation (it is itself an LP problem). The times involved in the computation
were negligible.

The results of the two formulations are given below.

Results of formulation 1
Continuous optimum in 25 iterations. Objective = 0.
First integer solution in 89 nodes. Objective = 51.
No better integer solutions were sought.
Total Mill time 147 sec.

Results of formulation 2
Continuous optimum in 42 iterations. Objective = 0.
First integer solution in 49 nodes. Objective = 28.
No better integer solutions were sought.
Total Mill time 76 sec.

Clearly the second formulation not only obtains an integer solution
more quickly, but also obtains a better first integer solution. Neither
formulation was run until the tree search was completed.

Problem 2. Three-dimensional noughts and crosses

This is a combinatorial problem. It was thought of by the author and
he is not aware of it having been considered before.

Given a 3 x 3 x 3 cube consisting of 27 cells, the problem is to fill
each cell with either a black ball or a white ball so as to minimise the
number of “straight lines” in the cube containing balls of identical colour.
A straight line is a row of 3 cells including all possible diagonals. (There
are 49 such lines in all). There is no restriction on the ratio of black to
white balls.

27 0--1 variables X, are used to indicate whether a cell should be filled
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by a black ball (X; = 1) or a white ball (X; = 0). This problem is clearly
characterised by the existence of a large number of feasible intcger solu-
tions (227). Obviously the symmetry of the problem could be exploited to
greatly aid solution. This was not, however, done in either formulation as
it was desired to gain an understanding of how to tackle such problems
with a large number of feasible solutions even if they had no symmetry.

A knowledge of “good” solutions could have been used to restrict the
trec search. This was not done as it was hoped to obtain an understanding
of how to “formulate in the dark”.

Formulation 1
The cells of the cube were numbered | to 27. For each of the 49 lines

in the cube (for example cells I, 2, 3) the following type of restraint was
given:
X, +X,+X;+y2>3. (6)

A different continuous variable y was introduced for each line. In the
objective row (to be minimised) the X variables are given coefficients equal
to the number of lines (restraints) in which they occur. The y variables are
given coefficients of 2. For any line (such as cells 1, 2, 3) the following
possibilities occur:

All Ole,XZ,X_;:O,

y = 3, contribution to objective = 3.
One of X,, X, X; = 1, y = 4, contribution to objective = 2.
Twoof X,, X,, X5 = I, y = 0, contribution to objective = 2.
1

All of X, X,, X5 , ¥ = 0, contribution to objective = 3.

I¥

By minimising the objective function as few lines as possible will have
all cells with balls of the same colour.

This formulation has 49 restraints and 76 variables (27 0-1 and 49
continuous).

Although y is a continuous variable, it will only take values 4 or 3. The
problem could therefore be easily converted into a pure integer problem.

Formulation 2
The cells of the cube were numbered as before. For each of the 49 lines
in the cube (for example cells 1, 2, 3) 2 restraints of the following type were
given:
X i+ X,+X;-06<2, n

X, + X, + Xy +82>1. 8)
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The 6 variables (one for each of the 49 lines) are integer (0-1) variables.
In the objective row (to be minimised) only the § variables have a coefficient.
This coefficient is 1. If for a particular line (such as cells 1, 2, 3) 6 =0,
then not all of the balls in that line can be of the same colour. By minimising
the objective function, as few lines as possible will have all cells with balls
of the same colour.

This formulation has 98 restraints and 76 variables (all 0-1).

Although the variables ¢ are 0-1 they would automatically take integer
values in the optimal solution if they were specified to be continuous.

In order to compare the two formulations it is convenient to regard
each restraint (6) in formulation 1 as contributing a constant amount 2 to
the objective as well as a variable amount 0 or | depending on the values
of the X;’s. If the y variable in formulation 1 is restricted to its discrete
values 0, 1, 3 but the X;’s are allowed to be continuous, it is always possible
to obtain at most as small a contribution to the objective from restraint
(6) as from the restraints (7) and (8). For example, if y = 0 in restraint (6),
the minimum contribution to the objective is 3 (=2 — 3) if X, X,, X,
are allowed to be continuous. The case corresponding to this situation
with restraints (7) and (8) is 6 = 0. Here the contribution to the objective
is 0 which is greater than the effective contribution of —3 with restraint (6).
Therefore in this sense the second formulation is stronger. Solutions
produced from the second formulation in the course of optimization will
tend to be closer to the integer solutions than those produced from the
first formulation.

Result of formulation 1

Continuous optimum in 52 iterations. Objective = 75 5.

First integer solution in 22 nodes. Objective = 104 (6 lines of same
colour).

Second integer solution in 26 nodes. Objective = 104 (6 lines of same
colour).

Third integer solution in 34 nodes. Objective = 103 (5 lines of same
colour).

No better integer solution was found after 102 nodes.

Total Mill time 250 sec.

Note. The objective function in this formulation is effectively a constant
of 98 added to a variable amount which is comparable to the value of the
objective function in the second formulation.



H.P. Williams, Experiments in the formulation of integer programming problems 187

Results of formulation 2
Continuous optimum in 136 iterations. Objective = 0.
First integer solution in 18 nodes. Objective = 4 (4 lines of same colour).
This is the known optimal solution although the run was halted at this
point and optimality was not proved.
Total Mill Time 128 Secs.

The second formulation is clearly better than the first.

Problem 3. Mining for profit

This is an open-cast mining problem which has been approached through
both separable programming and graph theory. These approaches are
described by Meyer [11] and Lerchs and Grossman [9].

The problem is to excavate within a permissable area in order to obtain
valuable ore. Ore body and overburden are divided into blocks (usually
50 foot cubes). Each block has a certain net income obtained by subtracting
the cost of extracting it from the revenue obtained after refining and
selling the ore. For blocks near the surface (overburden) the net income
is often negative but usually positive for richer ore deeper down.

There is an “angle of slip” at the edges of the excavation so that a block
can only be excavated if the upturned cone of blocks above it are also
removed. The blocks are as shown in Fig. 1 when seen in a vertical plane.
It is therefore not possible to excavate block 1 unless both blocks 2 and 3
have already been removed.

Fig. 1.
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In this particular example, the area within which excavation could take
place was a square 200 ft x 200 ft. Therefore the most that could possibly
be excavated was an upturned pyramid of blocks. On the surface there
were 16 blocks. At successively lower levels there were 9, 4 and 1 blocks.
Each of the 30 blocks was given an estimated net income R; (in some cases
negative). An 0-1 variable X; was assigned to each block. X; = 1 indicated
that block i should be excavated. Otherwise X; = 0. The objective was to
maximise

30
Y RX.. ©)
=1

1

Formulation 1

Each restraint has to specify the condition that a block can only be
excavated if the 4 blocks directly above it are also excavated. (In three
dimensions, Fig. 1 would show 4 blocks directly above block 1). Suppose
block 1 has the four blocks numbered 2, 3, 4, 5 above it. Then the restraint
can be written as

X+ Xs+ X, + X5 — 4X, > 0. (10)

Similar restraints are written for all the other blocks (apart from those
on the surface).

This formulation gives a model with 14 restraints and 30 variables
(all 0-1).

Formulation 2
Instead of a series of restraints of the type (10), each such restraint is
replaced by the following 4 restraints.

X,— X, =0, (11)
X;— X, >0, (12)
X,— X, =0, (13)
Xs—X, =0 (14)

This formulation gives a model with 56 restraints and 30 variables
(all 0-1).

The second formulation has the property that each restraint now
contains exactly one coefficient + 1 and exactly one coefficient — 1. The
dual problem will therefore have exactly one +1 and exactly one —1 in
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each column. This is a known sufficient condition for a problem to be
expressible as a transportation problem. The matrix of both this problem
and its dual are therefore unimodular. Hence the continuous optimum to
formulation 2 will be also the integer optimum.

Results of formulation 1
Continuous optimum in 6 iterations. Objective = 21625,
First integer solution in 2 nodes. Objective = —2000.
Integer optimum in 7 nodes. Objective = 17500.
Optimality proved in 11 nodes.
Total Mill time 23 sec.

Results of formulation 2

Continuous optimum in 36 iterations. Objective = 17500 (= integer
optimum).

Total Mill time 14 sec.

Obviously the second formulation is far superior to the first because of
the unimodularity property. In an example of this size both formulations
were easy to solve. For larger examples the avoidance of integer programm-
ing in the second formuiation would be even more desirable.

It is interesting to note the exact equivalence of restraint (10) with
restraints (11), (12), (13), and (14) in an integer sense but the greater “tight-
ness” of the second set in a continuous sense.

Problem 4. Mining for investment return

This problem is the same as Problem 3, except that the objective is now
to maximise return on investment rather than net income. Investment is
taken to be the cost of extraction. The return on investment is the ratio

total net income

total investment

If the cost of extracting block i is I, this objective is

(15)
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This hyperbolic objective function is converted into a linear function by
the following steps:

(i) Introduce a continuous variable y into the problem to represent (15).
The objective is then to maximise y.

(i) Equating y to (15) and multiplying out gives the (non-linear) restraint

30 30

(i) Replace the expressions X;y (for each i) by Z,. Z; are now con-
tinuous variables.

(iv) It is now necessary to impose restraints that force Z; to truly
represent the value of X,y. In this particular example it can be reasoned
from the numerical data given that y will never exceed 10. The necessary
restrictions are then imposed by the restraints:

Z, — 10X, <0, 17)
Z,-y=<0, (18)
—Z;+y+ 10X, <10 (19)

for i =1, ..., 30. It is also necessary to impose on the model a restraint
which avoids getting an unbounded solution where the objective is 0/0
obtained by excavating nothing. This can be done by imposing the restraint

30
X > 1. (20)
i=1

Formulation 1

This contains all the new variables and new restraints described above
together with the restraints of type (10} in Problem 3.

This formulation gives a model of 106 restraints and 61 variables (30 0-1,
31 continuous).

Formulation 2

This is the same as formulation 1, except that each of the restraints of
type (10) is replaced by the 4 restraints of types (11), (12), (13) and (14) in
Problem 3.

This formulation gives a model of 150 restraints and 61 variables (30 0-1,
31 continuous).
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Results of formulation 1
Continuous optimum in 38 iterations. Objective = 9 . 668.
First integer solution in 24 nodes. Objective = 0.
Integer optimum (unproved) in 81 nodes. Objective = 0. 333,
The search was abandoned after 101 nodes.
Total Mill time 215 sec.

Results of formulation 2
Continuous optimum in 86 iterations. Objective = 9. 668.
First integer solution in 8 nodes. Objective = 0.
Integer optimum in 29 nodes. Objective = 0. 333.
Optimality proved in 33 nodes.
Total Mill time 90 sec.

With this new objective, the second formulation is still “tighter” in a
continuous sense than the first formulation although the continuous
optima of both formulations are the same.

The property of the second formulation in Problem 3, that the continuous
problem is so tight as to yield an integer continuous optimum no longer
holds.

Problem 5. Logical design

This problem is concerned with building a logical system to respond in
some prescribed logical fashion to possible inputs. Such a system has one
output and a number of inputs. Signals which can occur at the inputs and
outputs are all 2-valued (0 and 1). Given a logical function which the
system is to perform (this is prescribed by a truth table), the problem is to
construct a system out of NOR gates to perform the function.

The NOR gates act as “building blocks”. A NOR gate has 2 inputs
(4 and B) and 1 output and performs in the manner indicated by the truth
table (Table 1).

Table 1

Inputs Output

——0 O
—_0 = O

OO O M-
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Tabie 2

Inputs Output

—_— O
—_0 -~ O
(==

A “circuit” is connected up by outputs from some NOR gates being
inputs to others. An optimization problem arises in that it is desirable to
construct a circuit to perform a prescribed logical function using the
minimum number of NOR gates. This problem is described by Williams
[14] and a method of obtaining a good (though non-optimal) solution
described. The possibility of using integer programming for this type of
problem (together with many other problems of logical design) is discussed
by Muroga [13].

Although the author doubts the feasibility of integer programming as a
practical means of tackling this type of problem, he has experimented with
two different formulations of a fairly simple example.

The problem considered here is to construct a circuit of NOR gates
with 2 inputs to perform the logical function in Table 2.

|
NOR 1

NOR 2 NOR 3

NOR 4 NOR 5 NOR 6 NOR 7

T Inputs b ' I Inputs f !

Fig. 2.
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An external input signal (4 or B) can be connected into inputs of more
than one NOR gate.

“Fan-in” and “Fan-out”, however, are not permitted. That is more than
one output from a NOR gate cannot lead into one input. (Nor can more
than one external input signal.) Nor can one output lead into more than
one input. (Although an external input signal can.)

In order to simplify the formulation, the optimal circuit can be assumed
to be a “subnet” of the maximum net shown in Fig, 2.

In both formulations, the following variables are introduced

(1) S;

1 if NOR gate i exists, i = 1,7,
0 otherwise.

1 if external input 4 is an input to gate i,
otherwise.

(i) fi1

I
o

t;; =1 ifexternal input B is on input to gate i,
0 otherwise.

If

(i1i) X;; = output from gate i for the combination of external input

signals specified in the j™ row of Table 2.

Il

The objective function to be minimised is ) /=, S;.

Formulation 1

The following restraints are imposed:

A NOR gate can only have an external input if it exists. These condi-
tions are imposed by the restraints

=28+t + i <0, i=1,..,7 (21)

If a NOR gate has one (or two) external inputs leading into it, only one
(or no) NOR gates can feed into it. These conditions are imposed by the
restraints

Sj+Sk+til+ti2S29 i:1,2,3, (22)

where j and & are the two NOR gates leading into i in Fig. 2.

The output signal from NOR gate i must be the correct logical function
(NOR) of the input signals into gate i if gate i exists.

Let oy (a constant) be the value of the external input signal 4 in the j*
row of the Table 2. Similarly, a,; corresponds to the external input signal B.
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These restrictions can be written as
Ayt + oyt + Xy + Xg + 2X;, < 2, (23)
=S8+ oty +ayly + Xy + Xy + Xy 20, (24)
i=1,..7, [=1,2,3,4,

where j and k are the two NOR gates leading into gate i in Fig. 2. The
values X,; (I =1, ..., 4) are the outputs from the last NOR gate which
are prescribed and can therefore be set to the constant values 0, 1, 1, 0.

If there is an output signal of 1 from a particular gate for any combina-
tion of the input signals, then that gate must exist. These restrictions can
be imposed by the restraints

4Si_Xil _XiZ_Xi3_Xi4ZO? i= 1,..., 7 (25)
As before, X, are set at constant values.

This formulation has 73 restraints and 45 variables (all 0-1).

Formulation 2
In the formulation the restraints (21) are replaced by the two restraints

—S;+1t;, <0, (26)
—Si+1t,<0 27

for i =1, ..., 7. Restraints (23) are replaced by the series of restraints:
X+ Xu<1, (28)
Xu+ Xy <1, (29)
dyty + Xy <1, (30)
Oyt + Xy =1, (31

i=1,...,7, l=1,2,3’4’

where j and k are the NOR gates leading into gate i in Fig. 2.
Since the a;; are constants, some of the restraints (30) and (31) will be
redundant for particular values of [ and may be ignored.
Restraints of type (25) in the first formulation are replaced by the
restraints
Si— Xu=0, i=1,..7 1[1=12234

This formulation has 114 restraints and 45 variables (all 0-1).
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Results of formulation 1
Continuous optimum in 14 iterations. Objective = 0. 75.
Integer optimum in 15 nodes. Objective = 5.
Optimality proved in 45 nodes.
Total Mill time 120 sec.

Results of formulation 2
Continuous optimum in 14 iterations. Objective = 2.
Integer optimum in 5 nodes. Objective = 5.
Optimality proved in 17 nodes.
Total Mill time 80 sec.

In a similar fashion to the Mining problems, it proves worth expand-
ing the logical restraints of types (21), (23) and (25) into a series of restraints.
The resulting restraints are equivalent in an integer sense although “tighter”
in a continuous sense.

The optimal solution to this problem is shown diagrammatically in
Fig. 3.

NOR 1

NOR 2 NOR 3

® ©

NOR 4 NOR b

® S ®

Fig. 3.
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4, Conclusions

The following points are suggested as a result of these experiments.

(a) Ingenious formulations to make a model more compact (less
restraints) are usually not as good as less sophisticated formulations.

(b) It is desirable to make an integer programming problem as tight as
possible in a continuous sense. This may result in bringing the continuous
optimum closer to the integer optimum, as in the Mining for Profit problem
and the Logical Design problem. Even if the value of the objective in the
continuous optimum is the same in the tighter formulation, the continuous
optimal solution may be more realistic. This is the case in the Market Share
problem. Even when the continuous optima of both formulation are the
same, as in the Mining for Investment Return problem the tighter formu-
lation may show beneficial effect later in the tree search.

(c) The number of iterations taken to reach the continuous optimum
is usually greater in the tighter formulation. For all except the Logical
Design problem, this is the case. The effect of this, however, is more than
offset by the improvement in performance during the second (much more
difficult) phase of the tree search.

It is worth remarking that the replacement of a single 0-1 restraint
(such as (10) in Problem 3) by a number of restraints (such as (11), (12),
(13) and (14)) is a special case of a procedure described by Hammer [6] for
reducing pure 0—1 programming problems to generalised covering problems.
An alternative way of doing this, based on geometrical considerations, has
recently been described by Balas [1].

The value of doing this for more general types of restraints than [10]
has not been investigated here and would generally lead to an enormous
expansion in the size of the problem. Nor does it always lead to a tightening
of restraints. In some cases the effect is to weaken restraints.

The replacements here of one restraint (such as (10)) by a series of
restraints (such as (11), (12), (13) and (14)) can be deduced by simple common
sense reasoning about the situation being modelled.
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