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Preface

This book is designed to serve as an introduction to the study of
integer programming. The first two chapters contain applications of the
subject and a review of linear programming.

The integer programming problem is then placed in a parametric
context. From that perspective, an understanding of the integer pro-
gramming process is acquired and the convergence proofs and algorith-
mic results are developed.

The approach is to express the variables of the integer program in
terms of parameters and then to vary the parameters until the problem
is solved. This flexible framework permits the handling of such previous-
ly difficult problems as those in which the variables have upper bounds
and helps to establish the relationship between the all-integer and the
continuous solution methods.

The book also offers an enumerative prbcedure for the solution
of integer programs. The procedure is developed by means of a dynamic

xi



xii PREFACE

programming format that makes it possible for many solutions to be
generated at one time. The enumeration is then accelerated by a meth-
od that establishes the variable values leading to the solution of the
problem.

The book concludes with a branch and bound scheme that eliminates
the necessity for large computer storage capacity—a drawback in the
early branch and bound methods.

I am very grateful to Professo1 Richard Bellman, who proposed the
writing of the book, and to my wife, Eleanor, for her editorial assistance
and typing of the manuscript.



1 INTRODUCTION TO INTEGER

PROGRAMMING

1 PRESENTATION OF THE PROBLEM

A great many problems in mathematical programming are solved as

linear programs. The usual linear programming problem
x; > 0forj=1,2, ..., nthat minimize z when

is:

Find

The solution to the problem usually results in fractional x; values.
The integer programming problem arises when the x; variables are

restricted to integer values.

To illustrate the range of integer programming, we present examples
of practical problems that are amenable to solution within an integer
programming format. We also describe mathematical programming
problems that can be handled as integer linear programs. (Most of the

examples presented were first collected by Dantzig [6].)
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2 PILOT SCHEDULING

A major concern of many airlines is how to schedule their flight
crews. A crew member is assigned to a particular flight. For example,
Captain Bursting is pilot of Flight 92. It leaves New York City at 11.20
a.m. and arrives in Boston at 12.02 p.m. After arriving in Boston, Cap-
tain Bursting goes to the flight operations office to report on his trip
and to learn of any changes in his forthcoming flight. He must allow 30
min for this period. Bursting then has 50 min for lunch. He reports to
the flight operations office 40 min before the scheduled departure time
of his next flight to receive the flight plan, weather reports, air traffic
reports, etc. He is scheduled for a flight to leave Boston after 2.02 p.m.
The flight could be any one of those shown in the accompanying tabu-
lation.

Flight Number  Departure Time  Arrival Time Arrival Station

(p.m.) (p.m.)
121 2.30 3.25 New York City
171 . 2.35 3.59 Chicago
437 3.00 4.03 New York City
759 3.00 5.44 Miami
103 3.35 4.59 Chicago

Meanwhile, Captain Masters is pilot of Flight 230. It leaves Chicago
at 8.55 a.m. and arrives in Boston at 11.48 a.m. He is also eligible to fly
the same listed flights out of Boston. How should both Bursting and
Masters be scheduled ?

What we have begun to describe is a combinatorial problem of
enormous size. The airline company has 100 flights into and out of
Boston every day. How should the incoming and outgoing flights be
linked as part of a pilot’s continuous flight schedule ? Before we can even
answer the question, we must view the problem in a broader context.
Boston connects directly to 25 other cities. A total of 75 cities are in the
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overall network that comprises the flight schedule for the airline com-
pany. What is the complete flight schedule for all pilots when all the
other cities are included ?

Fortunately, the problem can be expressed as an integer program:

Find x; =0 or 1 for j =1, 2, ..., n that minimize z when
n
2 ¢x; =1z
Jj=1
n
Y a;x;>1, i=1,2,...,m,

where

i stands for a particular flight (number) between two cities,
m s the total number of flights,

Jjstands for a set of flights that describe a path,

n is the total number of possible paths,

a;; = 1 means flight 7 appears in path j,

a;; = 0 means flight / does'not appear in path j,

c; Is the cost of path j,

x;= 1 means path jis flown, and

x; = 0 means path jis not flown.

The units on the right side of the inequalities cause all flights to be flown.
The greater than or equal sign permits pilots to ride as passengers to
other cities to meet their next flights. The costs ¢; may include per diem
rates for pilots, hotel costs, meals, premium pay, etc. If all ¢; = 1, we
minimize the number of pilots needed to fly the schedule. Otherwise,
we minimize the total cost.

The flights that make up each path (i.e., the a;; values) are found by
enumerating all combinations of flights that can physically connect and
that comply with the airline’s flight regulations. Typical flight regulations
for pilots are:

(1) The pilot must check in at flight operations 45 min before the
scheduled departure of his first flight of the day.

(2) He must allow 30 min check-out time after his plane lands.

(3) The minimum stop between flights is 40 min.
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(4) The maximum ground duty time is 5 hr.

(5) The minimum stop for food is 50 min.

(6) The maximum duty time is 12 hr.

(7) The maximum number of landings allowed in any 24-hr period is 4.
(8) Only paths that return to home base within 3 days are permitted.

The total number of combinations of flight paths has been found
quite rapidly with the use of computer calculations. Even though a
typical schedule often has several thousand paths possible, the problem
can be solved as an integer program.

3 A QUADRATIC ASSIGNMENT PROBLEM

The dean at a large western university has heard of mathematical
programming. He naturally thinks of using this powerful tool for sche-
duling classes at the university. He calls in several members of the De-
partment of Operations Research and presents them with the problem.
After several minutes of thought, the members suggest that the problem
be solved as follows: Find x,; = 0 or 1 that minimize z when

n
2
ji=1

m-— m

1
cikxijxkj = Z,
i=1 k=i+1

where

z1is the total scheduling cost,

x;; = 1 means course 7 is assigned at time period 7,

x;; = 0 means course / is not assigned at time j,

¢; is the cost of assigning courses / and k at the same time,
mis the number of courses, and

nis the number of time periods.

For a nontrivial solution, m > n. The costs ¢y occur when two courses
are scheduled for the same time period and students wish to take both
courses. If ¢y is taken as the number of students who desire to enroll in
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both course / and course k, then z is the total number of students that
cannot be accomodated.

The mathematical model is a variation of the quadratic assignment
problem [/7]; it was developed in the form given above by Carlson and
Nemhauser [4], who found local minima. The same model was obtained
by Freeman et al. [8] in a slightly different context.

We showed in [//] how to convert the problem to an integer pro-
gram by making the change of variables

n
Yik = Z Xij Xkj
j=1

to obtain the equivalent problem: Find y, =0 or 1 that minimize z
when

m—1 m
Z Ay Vixk = 2,
i=1 k=i+1
m-1 m nd(d — 1)
> > )’ikZ_T + dmy,
i=1 k=i+1

Yie+ Vii— Y <1,
Ve + Vg — Vi < 1,
Yij+ Vi~ yu <1, all i<k<j,

where d = [m/n] and my = m mod n; [x] being the greatest integer less
than or equal to x.

When the optimal y;, are found, the x;; are obtained by inspection.
For example, if y; = 1, then x; = 1 and x,; = 1 for some arbitrary j
value. Reference [//] shows how to find the solution to the integer
program by enumeration. Any of the methods presented in this book
can be used for the same purpose.

4 THE KNAPSACK PROBLEM

We can think of the knapsack problem in two senses. In the first,
a given space is to be packed with items of differing value and volume.
The problem is to select the most valuable packing. In the second sense,
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a given item is to be divided into portions of differing value and our aim
is to find the most valuable division of the item.

We can express the knapsack problem as: Find integers x; > 0 that
maximize z when

2 X =z,
j=1

Ya;x; <L,

i=1
where the =; are positive numbers, the a; are positive integers, and L
is an integer.

The most interesting application of the knapsack problem occurs
in the solution of a large-size linear programming problem. In solving
a one-dimensional cutting stock problem as a linear program, Gilmore
and Gomory [9] use the knapsack solution to generate the pivot column
in the simplex method. They employ the inverse matrix method of
Chapter 2; the r; are the simplex multipliers in the inverse matrix. The
x; in the knapsack solution correspond to the a;; values of the original
linear programming problem. If maximum z is small enough, then the
current basic solution is optimal. Otherwise, the optimal x; values are
used to generate the pivot column and a new basic solution is found.

There are other applications for the knapsack problem: Hanssmann
[13] for capital investment, Kolesar [/6] for network reliability, Cord
[5] for capital budgeting, and Kadane [/5] for the Neyman-Pearson
lemma of statistics.

The knapsack problem was formulated by Bellman and Dreyfus [3]
as a dynamic programming model. Efficient algorithms for the solution
are contained in Gilmore and Gomory [/0], Shapiro and Wagner [2/],
and the author [/2, this volume].

5 THE TRAVELING SALESMAN PROBLEM

The traveling salesman starts in one city, goes to n other cities once,
and then returns to the first city. How can he determine the order in which
to visit each city so that the total distance he covers is at a minimum ?
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The traveling salesman problem is formulated by Miller er al. [20]
as an integer program: Find x;; = 0 or 1 that minimize z when

> 2 dyx; =z

i=0 j=0
Y x; =1, j=0,1,2,...,n,
i=0
3 xy =1, i=1,2,....n,
=0

up—u; +nx; <n-—1, l<is#j<n,
where

x;; = 1 means that the salesman travels from city i to city j,

x;; = 0 means that the salesman does not travel from city i to city j,
d,;is the distance between cities i and j (d;; = o), and

u; are arbitrary real numbers.

The first j > 0 equalities insure that the salesman enters each city once
from one of the n other cities. The next » equalities insure that the
salesman leaves each city i > 1 once for one of the n other cities.

A circuit is a tour of k < n + | cities that starts and ends in one city.
The last group of inequalities in the problem insures that every circuit
contains city 0. Suppose there was a circuit that did not contain city 0
for some integer solution satisfying the equality constraints. We have
x;; = 1 around the circuit; thus

u;

—u; < —1
for cities i and j in the circuit. By adding all such inequalities, we obtain
0 < —1, a result which contradicts our supposition. It is clear, then,
that if we have any circuit at all, it must be a possible salesman’s tour.
What we must demonstrate now is the existence of u; values that
satisfy the inequalities. Take u; = tif city i is the th city visited. If x;; = 0,
then u; — u; + nx;; <n—1 for all u; and u; values. If x;; =1, then
Ui—u;+nx;=1t—(t+ 1)+ n=n— 1. In either case, the inequalities
are satisfied. Any feasible solution of the constraints produces a possible
tour; the minimization achieves the smallest length tour.
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There are other problems in the traveling salesman category. For
example, there is the case of sequencing jobs on a machine. We require
that a number of jobs be performed successively. After job i is completed,
the machine is set up for job j at a cost ¢;;. The problem is to order the
Jobs in such a way that the total cost is at a minimum.

6 THE FIXED-CHARGE PROBLEM

Another problem which can be represented in integer programming
terms is the fixed-charge problem. For example, a factory has a fixed
charge a > 0 whenever x > 0 items are shipped. It incurs a cost C
given by

C:{a+cx, if x>0,
0, if x=0.
The objective is to minimize the total shipping cost.

The problem is generally formulated as: Find x; > 0 that minimize z

when

n
Y a;;x;=b;, i=1,2,...,m,

_ 0, ]f xj:(),
YiT\1, if x,>0,

where g; > 0. Our method of solving the problem is to convert it to a
mixed integer format by determining some upper bound d; for each x;,
and replacing the last group of constraints by

x;<d;y;, y;=0 or 1.

These inequalities occur because if x; > 0, then y; must be one, while if
x; =0, then y; must be zero since y; = 1 produces a higher z value.
If we restrict the x; to be integers, the problem becomes an integer
program.
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The fixed-charge problem is discussed by Hirsch and Dantzig {/4].
Other applications are by Balinski [/] for transportation problems,
Balinski and Wolfe [2] and Manne [/8] for plant location problems, and
Weaver and Hess [22] in apportionment cases.

7 NONLINEAR APPROXIMATION

Nonlinear functions of a single variable may be approximated in a
mixed integer format. Let the function be f(x); the curve of f(x) passes
through the points Py, P, ..., P,, where the coordinates of points P;
are (a;, f(ay) = (a;, b)ywith a; < a;,. The linear interpolation between
points P; and P;., is used to approximate f(x) for a;<x <a;,,.
Thus we replace x and f(x) by

x=1lolg+ A0, + 1 + Lay,
f(x)=Agbg + A b+ -+ A, b,
1:}.0 +}-1 ++}'k’

where 1; > 0. This approximation is the same one used in separable
programming. For example, see Miller [/9].

Since the interpolation is between points P; and P;,,, we need to
impose the conditions that all 4; = 0 except for one pair 4; and 4;,,.
This is accomplished by defining integer variables §; = 0 or 1. If 3, = 1,
the interval between P; and P; ., is considered. If §, = 0, some other re-
gion is considered. Hence, if we take the k = 4 case, we have

Ao < 8o,

Ay <00+ 0y,

Ay < 8, + 62,

Ay < 8y + 93,
Ay < d3,

where

o+ 08, 4+, +3,=1.
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To illustrate the approximation in nonlinear programming, consider
the problem: Find x; > 0 that minimize z when

3 S ==

Zaijx’=bi’ i=1,2,...,m

i=1 !
We replace each f;(x;) as above and obtain an approximate mixed
integer problem in terms of continuous variables 4,; > 0 and integer
variables d,; > 0. This and other methods for nonlinear approximation
are given in Dantzig [7].

8 DICHOTOMIES

A dichotomy occurs in a mathematical programming problem
when there is an ““either-or ” type of constraint. It can be expressed in
integer programming terms. Assume we have the problem of coloring
a map with four colors. Let the regions of the mapber=1,2,..., R
and integer ¢, one of four possible values; thus ¢, = 0, 1, 2, 3. The values
correspond to the four colors. If regions r and s have a common boun-
dary, they are colored differently. Hence,

t,—t,#0,
and either

t,—t;>1
or

t,—t,=1.

We introduce the integer variable 8, = 0, 1. Thus,

t,—t,=1—45,,
t,— 1, = =3 +45,

replaces the dichotomy.
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In general terms, suppose k of the conditions

Gi(x) =0,
Gz(x) 2 0’

Gy(x) 2 0

must hold simultaneously, where x = (x|, x,, ..., X,) is defined in some
region S. We replace the alternatives by

G(x)—-9d,L, =20,
G2(x) - 52 L2 2 07

G,(x)—8,L,>0,

I
where L ; is a lower bound for‘G,-(x) for x in .S and §; = 0 or | satisfies
0, +d0,+ " +6,=p— k.

Thus for the four color probfefn where k = 1, p =2, we have L, = —4
and L ; = —4, which produces the result

tr—ts—1+45rs20a
ts"tr—1+45sr20
with

5rs + 5sr = 1.
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2 LINEAR PROGRAMMING

—_—

The theory and methods of linear programming have useful appli-
cations in integer programming. Developed largely by Dantzig [/],
linear programming is an important technique in solving optimization
problems when the variables are not integer restricted.

In this chapter we review the concepts of linear programming. These
concepts are structured so that similar ideas in integer programming will
be more readily grasped.

1 THE GENERAL LINEAR PROGRAM

Linear programming deals with the minimization of a linear func-
tion in which the variables are nonnegative and constrained by a system
of linear equations. We can express the general linear programming
problem as: Find x; > 0, x, >0, ..., x, > 0 that minimize z when

CiX; + X+, X, = 2,
Ay Xy +apx; + 0 +a,x, = by,

(D

Ay X, +a3%, + 0+ ay,Xx, = by,

Am1Xy + ra Xz + "+ A Xy = bm’
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and the a;;, b;, and ¢; are given constants. The linear form z is called the
objective function.

The general linear program is always defined in terms of minimiza-
tion. When the objective in a given problem is to maximize z = Z¢;x;
we simply convert it to a minimization problem by minimizing —z.
All maximization problems may thus be treated as minimization prob-
lems.

The general linear programming problem is written in terms of
equality constraints. There may be, however, problems having inequality
constraints. In these cases, we convert the inequalities to equalities.

A linear inequality constraint for the x; is of the form

a;x; +a,x,+°--+a,x,<b.

To convert the inequality to an equation as in (1), we introduce a slack
variable x, , , > 0; thus

a,x; +a;x; +°- +anxn+xn+1 = b>

and we consider that ¢, , = 0 in the objective function z.
If we have the inequality form

a, X, +a,x,+ - +a,x,>b,
we introduce a surplus variable x, ., > 0; thus
ax, +a,X, + "+ 8, %, — Xy = b

with ¢,.; = 0. A different slack or surplus variable is of course used
for each inequality.

2 RECOGNITION OF OPTIMALITY

In this section we present a linear programming problem in which the
optimal solution is recognizable by inspection. This enables us to de-
termine the format for solving any linear program.

We consider the problem: Find x; >0, x, >0, ..., z,>0 that
minimize z when
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—Z+Em+1xm+1 + .”+Enxn= —20$
Xy +al,m+1xm+1 + - +alnxn= Bl’
(2) X3 + Aymi1Xmey + 0+ G2,X, = by,

Xm +amym+1xm+1 + +amnxn= Bm’

withay;, ¢;, by, and Z, as constants.

The distinguished variables x; for i =1, 2, ..., m as in Eq. (2) are
called basic variables. Each basic variable has a coefficient of unity and
occurs in one equation only. The variables for x; for i=m + 1, m + 2,
..., h are the nonbasic variables. Writing the objective function as in
Eq. (2), we have —z as a basic variable.

A system of linear equations, with each equation having one basic
variable, again as in (2), is called a canonical form. The canonical form
helps to define a basic solution to the equations of the linear program.
Here the basic solution is z=Z,, x, =b,, x,=b,, ..., x,=b,,
Xmi1 =0, Xpmss =0, ..., x, = 0. If, in addition, all b; > 0, then the x;
are nonnegative; we have a basic feasible solution and the linear pro-
gram is in feasible canonical form.

A feasible canonical form provides a basic feasible solution. It also
yields an optimal solution to the linear program of Eq. (2) when all
¢; 2 0. We can show this by the following theorem:

Theorem 1
The basic feasible solution x;, = b, x, =b,, ..., Xp = by Xpysy = 0,
Xm+2=20, ..., x,=0 is a minimal solution with the objective value

z=7z,if¢;>0forj=1,2,..., n

Proof

If all ¢; > 0, then the smallest possible value of Z¢;x; is zero for any
values of x; > 0. The minimum possible value of z — Z, is thus zero
and we can have only min z > Z, when we consider the restrictions of
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Eq. (2). We have produced a basic feasible solution, however, with
z = Z,; thus, min z = Z, and the solution is optimal. Note that any x; > 0
forj=m+ 1, m+2, ..., ncan produce only the same or higher values
of z. A solution with the property that x; > 0 for ¢; > 0 is not minimal.

To obtain a solution to the problem in Eq. (1), we transform the
equations to a form given by (2). We accomplish this with the simplex
method, which we present in Section 3. To facilitate the transformation,
write the objective function as

—Z4 X +Cxy+ -+ ¢,x,=0.

When we arrive at the optimal solution for (2), we see that the identical
solution is optimal for (1).

Theorem 2
The minimal feasible solution x, =b,, x,=b,, ..., x,,=b,,
Xmi1 =0, X4, =0,...,x,=0,z=2Z,of Eq. (2) is also a minimal feasi-

ble solution of (1), where (2) is the given linear transformation of (1).

Proof

Any feasible solution of (2) also satisfies (1) and vice versa. If there
exists a minimal solution of (1) with z < z,, the solution also satisfies
(2). But this cannot be true because Z, is the minimum possible value of
z for (2). Thus, we obtain a minimal feasible solution for (1) given by
x;=b,,x,=by, ... % =bp» Xs1=0,%p1,=0,...,x,=0,2z=2,.
When (2) is achieved we have the solution of linear program (1) by
inspection.

In addition to the criterion of Theorem I, if ¢; = 0 for a nonbasic
variable, then x; may be made into a basic variable and the value of z
will remain unchanged. In this case we would have minimal solutions
that are nonunique. Thus
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Theorem 3

If x;', t=1,2, ..., k represent minimal feasible solutions to a linear
program, then x;* = ¥_, 4, x;" is also a minimal solution forj =1, 2,
..., n, where 4, are any nonnegative constants satisfying Y ¥. 4, = 1.

Proof
Since the minimal solution is nonunique we must have objective

value

isthen .

k n

= Z}“rz ¢;x)'
=1 j=1
k

=Y hzo=12,.

t=1
Thus the x;* produce the same objective value as the x;*. Furthermore,
each x;' and A, are nonnegative; it follows that x;* > 0 for every j.
Also, since

we have

and consequently
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The x;* satisfy the constraints for any constants A, where 4, > 0 and

k.4, =1 and are a minimal feasible solution. In the nonunique case
there are an infinite number of optimal solutions since any nonnegative
A, summing to one produce optimal solutions. This selection of 4, can

be made in an infinite number of ways.

Observe that we have written Eq. (2) with the basic variables x,, x,,
..., Xn- We have selected these particular variables to illustrate the final
form desired, but it should be understood that in a given problem other
variables may be basic.

Thus far we have developed the canonical form and shown when we
have an optimal solution. Theorem 1 provided the optimality criterion
for a feasible canonical format; a minimal solution resulted when all ¢;
were nonnegative.

We now ask: When does a feasible canonical format not produce an
optimal solution? Clearly, when one or more of the ¢; are negative. In
such a case, we can attempt to reduce the value of z by allowing non-
basic x; to have a value. Thus x; is made into a basic variable and a new
canonical form is developed. If the new canonical form is still nonopti-
mal, we repeat the process; eventually, we will obtain the optimal
solution.

In particular, suppose ¢, is negative. Let x, have a positive value while
keeping all the other nonbasic variables at zero. To see the effect of
increasing only x, we write Eq. (2) in terms of the basic variables and x;
to obtain.

zZ=2Zy+ Coxg,
x,=b, —a,x,,

3 X, = 52 —ayx,,

Xom = Bm — Qs Xs»

where b; > 0fori=1,2, ..., m. Since ¢,is negative we readily see that z
will be decreased in value if x; is made positive.

In attempting to reduce the value of z, it is also advantageous to
make X, as large as possible. We should allow x, to achieve some value
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as long as the basic variables x; for i = 1, 2, ..., m remain nonnegative.
If a;, is negative, then increasing x, will also increase the basic variable '
x;. If @, is positive, x, at this stage can only be increased to b;/a;,. If
X, 1s given any larger value, x; would be negative. Thus it is obvious that
the greatest amount x, can be increased is

=2l

4 X, =~

rs

{

= mi

dis>

b
0 ais

Further, if all g, <0, then x, can be made as large as possible,

s —

making z arbitrarily small. Thus

Theorem 4

Assume the canonical form, Eq. (2), in which ¢, <0 and all g;, < 0
for some index s. There then exists a class of programs with positive
basic variables x; for i =1, 2, ..., m where the nonbasic variable x,
may take on increasing nonnegative values and where, as a result, the

set of z values has no lower bound.

If the conditions of Theorem 4 hold, the solution is unbounded and
no finite minimal program exists. If at least one a, is positive, however,
the value of z will become

&) z

I
N

b

-_ r
o+ C—
arS

IA
N

(O]

and x, will have a value given by Eq. (4). Equation (4) also acts as a
choice rule for determining the index r.

The possible reduction of z in (5) indicates that x, be made a basic
variable and x, be made nonbasic. We do this by dividing each term in
the rth constraint of (2) by a,, forming the equation
(6) xs+_Lx,+ i ‘i—”x-=—_b—'.
a,, a a,,

. J
j=m+1
j#s

rs
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We then eliminate x, from the other equations of (2). Thus, to obtain
the coefficient of x; in the ith constraint, we multiply the coefficient of
x; in (6) by a;, and subtract the result from a,;. To obtain the coefficient
of x; in the z equation, we multiply the coefficient of x; in (6) by ¢,
and subtract the result from ¢;. In this way we obtain the new feasible
canonical form

C n . C,a )
—zZ——=—Xx,+ Z (C,— A rj)xj= —Z, iy
rs j=m+1 s s
@) o _
a; L O T _ a,b _
X ——x + a;— —|x;=b,———, i#r,
i r ij i i
a,s j=m+1 a,s s

with (6) as the additional equation. Equation (6) defines x, as a basic
variable. This procedure for producing the new canonical form is called
pivoting; a, is called the pivot element. The elements a;, make up the
pivot column. _

The new feasible canonical form may have a smaller objective value
than in (2) as seen by (5). The objective value does remain the same if
b, = 0. Also, if b, is zero, the basic solution has x, = 0 in (2).

A basic solution is called degenerate if one or more of the basic
variables has zero value. Thus, with the use of choice rule (4) and the
development of (5), (6), and (7), we can state

Theorem 5

Given the feasible canonical form Eq. (2), in which ¢, <0 and at
least one a;; is positive, a new basic feasible solution can be constructed.
If, in addition, the original canonical form is nondegenerate, the result-
ant objective value will be smaller in the new system.

In ordinary computationai work when more than one ¢; is negative,
the practice is to select the index s where

(8) ¢, =min¢;

< 0.
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We use choice rule (8) here because of its simplicity, but other rules may
result in faster solutions to linear programs. Reference [4] gives the
experimental results for various choice rules.

The altering of the canonical form Eq. (2), may not necessarily
produce an optimal format in (6) and (7). In that event we know that
at least one of the coefficients of the nonbasic variables in the objective
function of (7) is negative. We repeat the procedure to obtain a new feasi-
ble canonical form, continuing until we have an optimal solution as
expressed by Theorem 1 or until the solution is shown to be unbounded
by Theorem 4. This method of solution constitutes the simplex algo-
rithm,

3 THE SIMPLEX METHOD

The general linear program in Eq. (1) is presented without a basic
feasible solution. But we have seen that this basic solution is essential;
the corresponding canonical form enables us to recognize and to achieve
optimality. If we arbitrarily select any of the m variables of (1) as basic
variables, we may not produce a feasible solution because some of the
variables may turn out to be negative. It is necessary that we have a
method that insures the attainment of a basic feasible solution.

The simplex method starts with the general program (1). We intro-
duce artificial variables into the general program to achieve a canonical
form. The simplex algorithm is then used to achieve a feasible canonical
form if one exists. When the feasible canonical form is obtained, the
simplex algorithm is used to achieve the minimal canonical form if one
exists.

Simplex Method

(A) Arrange the system of equations in (1) so that all 4; are non-
negative by multiplying, where necessary, any equation through
by minus one.
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(B) Introduce a set of variables that function initially as basic
variables. These variables, not in the original equations, are
called artificial variables and are later discarded. Thus we aug-
ment the system by the artificial variables x,,, >0, x,,, >0,

s Xp+m = 0so that we now have

ciXy+ x4+ +c,x,—z=0,

g Xy +apX;+ 0+ a,X, + Xy q = by,
(9) Ay(Xy + Ay X+t Ay X, + X, 45 = by,
X1+ apoXo+ "+ ApXp + Xpim = by,

(C) Define w as the sum of the artificial variables and write the in-
Jeasibility form

(10) Xn+1 +xn-+;2+'“+xn+m=w-

By summing the last m equations of (9) we can eliminate the
artificial variables from (10) to obtain

an dixy +dyx,F o dx, —w= —wg,
where

dj=—(ay+ay+ " +au), Jj=12...n

~wo = —(by + by + -+ by).

The simplex algorithm is used in Phase I to minimize w to zero
subjectto (9) and x; =0 forj=1,2,....,n,n+1,...,n+m Initially
We treat — W, —2, Xpi1, Xpt 25 - - - » Xg4m 48 basic variables. We eliminate
the artificial variables from (10) to form(11) and obtain a feasible canoni-
cal form. At the conclusion of this phase, w can only be zero when all
the artificial variables are zero, leaving usually m of the variables x;
for j=1,2,...,nas basic variables.
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3.

(13)

(14)

2 LINEAR PROGRAMMING

Develop a new canonical form from (12), making x, a basic vari-
able. The new system of equations is obtained by using a,, as the
pivot element. Divide both sides of the rth equation by a,, so that
the resultant equivalent equation is

Equation (13) defines x;, as a basic variable, We eliminate x, from
the other equations of {12) to form

n a . b
- < Qrj _ — = Yr
Z(dj—ds—_—)xj—w_ —Wo—ds:—',
j=1 s s
n B ; _ B B br
Z Cj—C —2)x;—z=—Z,— ¢ —,
j=1 ars ars
" _ —
a,; -~ b
— — j _ — v
Z(au_als '—-_)x1+xsi_bl_ats—_—5 l?ér;
Jj=1 a,s s
a,; b,
Z — Xt X =
J#s Qps Qs

Obviously, the elimination of x, in the w equation is necessary
only during Phase I. When the constants have been properly
relabeled, then Eq. (14) is exactly the form given in (12). We return
to step 2 for the next iteration.

The use of the Phase I procedure will indicate when a system of
equations has redundancies or inconsistencies, or when it is not solvable
in nonnegative values. For example, the inconsistent inequalities

Xy — Xy 23,

—x;+x, >4,
x; >0, x, >0
produce the Phase I problem:
—w + x5+ x4 = -7,
X; — X, — X3 + X5 = 3

—X; + X, — X4 +xe= 4,
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where x; and x, are surplus vaniables and x5 and x, are artificial
variables. Thus, all d; > 0 and w, > 0; w cannot be reduced to zero and
no feasible solution exists.

In another example showing the effectiveness of Phase 1, consider

—w — 6x; + 2x, + 3x, = —6,
3x, — x; —2x3+ x4 = 3,
3x; — X5 — X3 +x5= 3,

XJZO, j=1,2,...,5,

where x, and x are artificial variables. To make x, a basic variable,
use the coefficient of x; in the third equation as pivot element to obtain
the equations

—w + X3 =0,
X3+ x, =0,

xp = 3x; — 4x3 =1.

Note that x5 has been dropped; also that w, = 0 and Phase I has ended.
Since d; = 1 > 0, we must take x; = 0 to make the equations consistent.
Otherwise, x; may attain a positive value during Phase I1. Observe also
that the second equation defines the artificial x, as a basic variable but
with zero value.

The example shows that Phase | may end with an artificial basic
variable. At the end of the phase we have

(15) alxl+32x2+”'+am+nxm+nzw5

where d; > 0. If any d; >0, we take the corresponding x; = 0. The
only possible way for an x; to have a positive value is when d; = 0.
If any of the artificial x; have a positive value, then w has a positive
value from Eq. (10); this contradicts w = 0 from (15). Thus we have

Theorem 6

If an artificial variable is basic in Phase 11, its value will never exceed
Zero.
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Example for the Simplex Algorithm
Find x; > 0, x, > 0, x; > 0 that minimize z when
2x; —3x, — x5+ 2x, = 2,
—3x; + 2x;, — x5+ 3x, =2,
— X+ 2x, + x5+ 2x, =3,

Take the artificial variables x5 >0 and x4 > 0 and start Phase I by
writing

—w + 4x, — 4x, — 5x4 = —5,
—z+2x; —3x, — X3+ 2x4 = 0,
—3x; + 2x, — x3 + 3x4 + X5 = 2,
— X3+ 2%, + x5+ 2x, + xg =
The initial basic feasible solutionis —w = =5, —z =0, x5 = 2, x, = 3.
The most negative coefficient in the w equation is d, = —5; we make

x4 basic. Since s = 4 and min(%, 2) = 2, we see that r = 1; x, is made
nonbasic and 3 is the pivot element. We obtain

[
(XU I

5 —_—
—w — Xy — 3X;— 3x3 =

—z 4+ 4x; — L3x, — ix; =

- X1+ dx—dx; 4 x, =

W

Xy + %X2+-§*X3 + Xg =

as the new canonical form. The artificial variable x has been dropped.

The basic solution is —w= —3%, —z= —%, x, =2, x¢ =5. We have
not reduced w to zero and so we repeat the algorithm. The most negative
coefficient in the w equation is d; = —<; we make x5 basic. We see that

3 in the last equation is the only positive coefficient of x; for the con-
straint equations. Thus, artificial x4 is made nonbasic and dropped.
Using $ as the pivot element, we obtain the new form

—w = 0
—z + Hlxy — &, =-1
- %X1+ %XZ + X4 = 1

—_—

3 2
$X1+ §X2 + X3
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We have w = 0 and Phase I ends. We start Phase II by dropping the w
equation. The basic solution is —z= —1, x, =1, x3 = 1. The most
negative coefficient in the z equation is ¢, = —&L; we make x, basic
and x4 nonbasic. Using £ as the pivot element, we have

-z + —24—1)(4 = “14_7’
=X+ X + ixa=1,
Xy +x3— Ixa=1%
We see that all ¢; > 0. Thus, the basic solution is minimal; z = —4Z,

x, =%, and x; =3 is optimal for the problem. Note that ¢ =0;

x, can be made basic to produce alternate minima.

4 TABLEAU FORM

In demonstrating the simplex method in Section 3 we used the equa-
tions of the problem. For ease of computation, we write the equations
in tableau form using only the constants of the problem. At the start
of the simplex method, the tableau equivalent to (9) with (11) we will
call Tableau 1.

Basic Equality
Variables Xy X5 X3 s X, Constants
—w d, d, d, - d, —Wq
—z ¢y Cy C3 Sty 0
Xn+1 agy a2 a3 T gy b
Xn+2 azy az; Az "t Ay, b,
Xn+m (21 Q2 A3 T Qiun bm
Tableau |
The tableau omits the x,.,, Xp42, «--» Xp+m» —2 and —w columns.

The values in each of these columns is zero or one, except when an
artificial variable becomes nonbasic, in which case it is dropped.
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At the start of any iteration, we have a tableau with constants taken
from (12). The basic variables are listed at the left column of each
tableau. The next tableau contains the constants from (14) resulting
from the pivot operation. The difference between the tableaus in Phase [
and Phase 11 is that the former contains the w row while the latter does
not.

Example

To illustrate the use of the tableau form, we solve the example prob-
lem of Section 2 again. The initial and subsequent tableaus are written
as Tableaus E1-E4. The minimal solution appears in Tableau E4 .

X{ Xy X3 X4 X, X, X3 Xg
—w 4 —4 0 -5]| =5 —-w|=-1 =% —3 0| -3
—z 2 =3 -1 2 0 —z 4 13 1L 0| -%
x5 =3 2 =1 3 2 Xq| —1 Z -1 2
Xe| =1 2 1 2 3 X 1 2 30 2
Tableau El Tableau E2
X1 Xa X3 X4 x1 Xy X3 Xy
—z | & -2 0 0] -1 —z 0 0 O L iz
X, |—% £ 0 1 1 x -1 1 0 2 2
xs| % £ 10 1 x3] 10 1 —4 L
Tableau E3 Tableau E4

5 THE INVERSE MATRIX METHOD

In the simplex method it is necessary to calculate the coefficients from
each equation in every iteration. We find the smallest d; or ¢; value from
either the w or z objective function to select the pivot column and use
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only the a;; values from the column. The remaining constants are then
changed in pivoting for possible use in a subsequent iteration.

It is possible, however, to calculate the coefficients in the equations
only when they are needed if we use the inverse matrix method, some-
times known as the revised simplex method.

The inverse matrix method can best be described with matrix
notation. We present first the method for Phase Il of the simplex
procedure. The constraints and objective function of (1) can be written

as
1 c¢\[{-=z 0

s (o A)(73)- )
where ¢ is an n-vector with components ¢;, 4 is an m X n matrix with
elements a;;, b 1s an m-vector with components b;and x is an n-vector
with components x;. Suppose we can achieve a canonical form similar
to that in (2), where x; represents the basic variables and is a vector
with m of the components of x; xy represents the nonbasic variables and
is a vector made up of the remaining components of x. Thus, we may
write (16) as

1 ¢ cy -z 0
(17) X | = s

0 A; Ay Xy b
where ¢ and ¢y are vectors with components that correspond to
x¢ and xy respectively. Similarly, A; and A, are matrices with elements
that correspond to x; and x4 respectively. Since we can solve (17) for
the basic variables —z and x;, the matrix

{1 cg

B=(o 22)

has an inverse, shown as
_ 1 —cgAg!
() B=(y o )
Premultiplying (17) by B™*, we obtain the canonical form
1 0 cy—cgAG'Ay\ [—2 —ccAg'h

(19) xG = ’

0 I Ag'Ay Xy Ag'b
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where I is an m x m identity matrix. The canonical form of (19) is the
same as the canonical form achieved by the series of pivot operations
in the simplex method.

After the development of (19), we see how to perform the simplex
method with the inverse matrix B~ !. First we store the c, A, and & values
of (16). We list the basic variables x; and the inverse matrix B~ " in every
iteration and calculate ¢;, the coefficient of nonbasic x; in the current
objective function. Stating B~ ! from (18) as

i1 =-ny, —-mpy ... —m,

0 by, b, ... bim
(20) B 1=|0 1‘721 1_722 s l?Zm

0 bml bm2 LK bmm

we see from (19) that ¢; is given by

The =; are often called simplex multipliers.

When ¢, = min ¢; <0 is obtained to produce the pivot column,
we calculate only the a;, values; no a; for j# s values are needed.
We have

m
ais = Z by ay.
k=1

Similarly,

b= byb,.

We use the standard procedure to obtain the pivot elementa, .

The inverse matrix is available for calculations if the matrix 4 con-
tains an identity matrix which is taken as B! initially. If 4 does not
contain an identity matrix, then B~! is at first arbitrarily taken as the
identity matrix.
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This is seen by introducing some new variable vector y to change
(17) to

1 ¢g cuy\/—2 0
0 A; Ay Xy b

Premultiplying (21) by B~ ', we obtain the canonical form

1 0 cy—cgAg'dy\ /-2 —cgAg'b
(22) xg| +B 'y = .
01 A5 Ay Xn AZ'b

Note from (22) that B~ is always the coefficient of y. Thus, we can start
with the identity matrix in (21) and have the matrix B~ available at
every iteration. The actual pivoting from one iteration to the next is
performed within B~' to calculate a new inverse. The new inverse ele-
ments are

a, b,; .
b =b; — —=, i#r

a,g
! _br_'
ri — =
a,s

r_ csbrj
; —nj+

The variable vector y is not considered in the problem calculations.

We have described the inverse matrix method in terms of Phase 11
of the simplex algorithm; now we modify the analysis for use in Phase I
of the algorithm. We consider the inverse matrix as

1 0 -6, -0, ... —o0,

01 —-n, —-m, ... -—m,

0 0 b, b, ... by,
(23) B_1 = 0 0 b21 b22 s bzm s

00 b, b ... b
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where o; are the simplex multipliers relative to the w equation. Initially,
B~ 'istakenastheidentity matrix. In anyiteration of Phase I we calculate

m
di=d;— 3 oa,
i=1

m
Wo = Wy + ZO‘ibi,

and find min d; to locate the pivot column. Pivoting then occurs in the
inverse matrix (23). When Phase 11 is initiated, the first row and column
of B™"is discarded to form the B™" of (20) and the procedure continues
as previously explained.

Example

We list the values needed to solve the example problem in Section 3
as they are calculated. The problem is written in the form of Tableau El.

Xy X3 X3 Xg4

4 -4 0 -5 | -5
2 -3 -1 2 0
-3 2 -1 3 2
-1 2 1 2 3

Tableau El

The unit coefficients of —w, —z, x5, and x, are omitted. Provision is
made for listing the basic variables, the equality constant values, the
inverse matrix B™', the d; values, the ¢; values, and the x, column

values.

ITERATION 1. Phase |.

X4 B!
—w -5 1 0 0 0 -5
—z 2 0 1 0 0 0
x| 310 0o 1 o0 2 |
x, 2l o o o 1 3
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ITERATION 2.

X3 B~!
—w -3 1 0 3 0 -3
—z -3 0 1 —3 0 —%
xs | —3% o o 4 0 30
Xe 3 0 0 —3% 1 3
31__15(1'2:_%533__%534:0
ITERATION 3. Phase 1.
X5 B!
T
x4 % 0 —;— % 1 s
| 2o -z 3| 1
El='25_1’62= _'25_1’E3=0’E4=0
ITERATION 4.
B—l
—z S S S IR A
X2 0 x 'y *
| 0 -1 1|3
¢, =0, ¢=0, ¢=0, ¢, =2 The minimal solution is z= —17,

— 5 .o _ 1 — —
X, =2,X3=2,%x,=0,x,=0.

6 VARIABLES WITH UPPER BOUNDS

An important class of linear programs occurs when the variables
have upper bound restraints. We wish to find the solution to (1) with the
additional constraints x; <m; for j=1, 2, ..., n, where the m; are
given constant values.
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It appears necessary at first to include these new restraints and their
corresponding slack variables with the constraint equations of (1).
Then the simplex method could be used on the considerably enlarged
problem. By slightly generalizing the simplex procedure, however, we
obviate the necessity to handle the larger problem. We see how the gener-
alization 1s made as a result of

Theorem 7

Any values of x; satisfying the constraint equations in Eq. (2) and
x; <mjforj=1,2,..., nare an optimal solution for min z if ¢; > 0
for variables at their lower bound zero and ¢; < 0 for variables at their
upper bound m; .

Proof

We have optimality by the conditions of the theorem since any in-
increase in the variables at the zero level or any decrease in the variables
at their upper bound can only increase z.

With the theorem providing the optimality conditions, we next
improve a fteasible solution that is not minimal. The method 1s to in-
crease a nonbasic variable x; at the value zero when &; < 0 or to de-
crease a nonbasic variable x; at its upper bound when ¢; > 0. In either
case there is an opportunity to decrease z; this is evident from (2).
With some of the nonbasic variables at their upper bounds, the values of
the objective function and basic variables are given by

zo' =Zo + Y. &imy,
jeuU
(24) b/ =b,— Y a;m;
jeu
the objective value is z," and the ith basic variable has value ;" with U
as the index set of nonbasic variables at their upper bounds. Suppose
now that ¢, is negative and nonbasic x, has zero value. The effect of

letting x, = 0 is seen by changing (24) to the new values
Zg = ZOI + Es 9,

25
(25) b} = b — ;0.
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The objective value is z'’ and is reduced from z,’ for positive . We also
require that the basic variable values b} be feasible, i.e.,, 0 <b! < m;.
If a;; <0, then x; can be increased to 8 = (m; — b, )/(—a,,). If a;; >0,
then x, can be increased to 6 = b;//a;;. The greatest that x, can be in-
creased and still maintain feasibility is

mg,

m; — b,/

13 i _— 0
(26) 0* =min| —a, > =T

by

-, a, >0

a.

Suppose that ¢, is positive and nonbasic x, has value m;. Let x, = 0
instead. The values obtained in (24) change to
ZIO’ = ZO + Zélml + 6895
Jeu
(27) Jj#s
b} =b;— Y a;m; — a®.
JjeU
. J#s
We rewrite (27) as

Zo=1Zo+ ) ¢;m;— i(m; —0)

JjeU
(28) =% =&Y,
b/ =b; — Zvﬁij m; + a;(m; — 0)
je
= bx'/ + ai.;’)’;

where y = m; — 0 1s the amount of decrease of x;. We use Eq. (28) to
relate the old and new objective and basic values. The objective value
is reduced for positive y. We also require that 0 < b/ < m,; to maintain
feasibility. If a,; <0, then x, can be decreased by y = b,//(—a,). If
d; > 0, then x, can be decreased by y = (m; — b;)/a,,. The greatest that
x,can be decreased by and still maintain feasibility is

Mg,
bi/
. — a;,,<0
(29) y* = min{ —a,,’ e
m; — bi’
3 ais > 0
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The index s 1s obtained from ¢,” < 0 where

for nonbasic variables at their lower bound,

(30) ¢’ = mml_ for nonbasic variables at their upper bound.

If no ¢,/ < 0, then of course the present solution is optimal. After se-
lecting the nonbasic variable x, by the choice rule of (30), we have

Case /.

Here x;, = 0 and ¢, < 0. In the next iteration, x, = 8*, the new ob-
jective value is z” =z, + ¢,0* and the variable values become b}
=b; — a,0* from (25); all other nonbasic vaniables retain their same
values. In addition, if 8* = m, from (26), x, assumes its upper bound
value and no pivot operation is performed; the basic set remains un-
changed. Otherwise, 6* # m, and x, is made basic; choice rule (26)
selects some basic variable x, to become nonbasic from either

b,

- or 0* =

Qs s

0* m, — br’

In the former instance, x, assumes zero value; in the latter, x, assumes
its upper bound value m,. The usual pivot operation is then performed.
Note that the pivot element a,, may be negative.

Case /l.

Here x, = m, and ¢, > 0. In the next iteration, x, = my; —7*, the new
objective value is z§ =z, — ¢,y* and the variable values become
b} = b; + a,y* from(28); all other nonbasic variables retain their same
values. In addition, if y* = m, from (29), x, assumes zero value and no
pivot operation is performed; the basic set remains unchanged. Other-
wise, x, is made basic and some basic variable x, is made nonbasic.
The variable x, is selected from (29) with either

* br’ * m, — br’
pr=—— or pr=—"—.
— Qs
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In the former instance, x, assumes zero value; in the latter, x, assumes
its upper bound value. Pivoting then occurs.

The Phase I procedure is almost the same as the one just described.
To select x,, find d;' < 0 where

for x;atits lower bound
for x;atits upper bound.

i

QI QU

d,/ = min

VR

We consider the artificial variables with infinite upper bounds. Similarly,
the inverse matrix method remains substantially the same.

Example

Find nonnegative x; with x; <3, x, <2, x3 <1, x, <3, x5 <2
that minimize z when

4x; + 2xy, + 3x3+ x4 — x5 = 2z,
3x +4x, + 6x3 + x4 — x5 =15,

—X +2x3 4+ x4+ x5 = 5.
We write the Phase [ problem
—w = 2x; —4x, — 8x3— 2x, = =20,
—z4+4x; 4+ 2x; + 3x3+ X4 — X5 = 0,
3x  +4x, + 6x3+ X4 — X5+ Xg = 15
—X, + 2x3 + X4+ X5 +x,= 5

with —w, —z, and artificials x4, > 0 and x, > 0 as basic variables. The
feasible solution is w=20, z=0, x;, =0, x, =0, x;=0, x, =0,
x5 =0, x, = 15, and x, = 5. Since d; = —8 is negative, we increase x;
to 0* = min(l, %2, 3); the next feasible solution is w =12, z =3,
x =0, x,=0, x3=1, x4, =0, x5=0, x, =9, and x;=3. Since
d, = —4, we increase x, to 0* = min(2, 2); the next feasible solution is
w=4z=7x=0,x,=2,x3=1,x,=1,xs=0,xs =1,and x; = 3.
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Since d, = —2, we increase x, to 6* = min(3, 4, 3); x, is made basic
and x4 is dropped. We pivot to obtain

—w +4x, + 4x, + 4x, —2x4 = 10,
—z4+ x;—2x, — 3x; = —15,
3x; +4x, + 6x3 4+ x4 — x5 = 15

—4x; —4x, — 4x, + 2x5 + x;, = —10;

the feasible solution is w=2, z=8, x;, =0, x, =2, x;=1, x, =1,
x5 =0, and x, =2. Since d, =4 is positive, we decrease x, by y*
= min(2, (3-1)/4, 2/4); x, is made basic and x, is dropped. We pivot to
obtain

—~z + 3x, — X3 — x5 = —10,
— X, +2x3+ x4+ x5 = 5,
X+ X+ X3 —ixs= 3

where w is zero. Phase T ends. The feasible solution at the start of Phase
Misz=9,x, =0, x,=2, x3=1, x, =3, and x5 = 0. Since 5 = —1,
we increase x5 to 0* = min(2, 3, £/4); x5 is made basic and x, becomes
nonbasic at its upper bound value. We pivot to obtain

—Z 4+ Xx; —2x; — 3x, = —15,
X4+ 2x, +4x3 + x4 = 10,
—2x; — 2x, — 2x,4 +x5=— 3,

with the minimal solution z =8, x, =0, x, =2, x; =1, x, =2, and
x5 = l.

7 THE LEXICOGRAPHIC DUAL SIMPLEX METHQD

We will need to use a lexicographic dual simplex method in the study
of integer programs. We present the method here after introducing the
concept of duality.

Associated with every linear program is a second linear program
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called the dual program. If we take the primal problem as: Minimize z
when
cx =z,
Ax > b,
x=0.

then the symmetric dual problem is: Maximize v when

ub = v,
uAd <c,
u>0,

where u is a row vector with m components u;. These problems are
symmetric in the sense that if an inequality format appears in the primal,
then an inequality format appears in the dual problem.

The unsymmetric dual problem arises when the primal problem is:
Minimize z when

cx =z,
Ax = b,
x>0

The dual problem is: Maximize v when

ub=u,
uAd <c;

the u; are unrestricted in sign for the unsymmetric case.

There are other types of dual problems in which the primal constraints
have both equalities and inequalities and some of the x; are unrestricted.
(Dantzig [/] and Hadley [2] give a fuller discussion of duality.)

The dual problems are of mathematical interest primarily. In com-
putation the solution of one problem contains the solution to the other.
For example, when the primal solution is found, the dual solution is
given by u; = n;, the simplex multipliers of Eq. (20).

The simplex method of Section 3 operates with feasible solutions
of the primal problem until a transformation is achieved with non-
negative constants in the objective function. A dual simplex method
also operates on the primal problem, but it starts with the constants of
the objective function, i.e., the ¢; values, as nonnegative. The ¢; values
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are kept nonnegative in every iteration. When a feasible canonical form
is reached, i.e., all b, > 0, we have the minimal solution. Because ;=0
at each iteration produces a feasible solution to the dual problem, the
method i1s known as the dual simplex method.

The dual simpiex method is used with a lexicographic ordering to
insure that the minimal solution is achieved in a finite number of steps.
A vector R is defined as being lexicographically greater than zero,
R >0, if R has at least one non-zero component, the first of which is
positive. (A fuller explanation of lexicographic ordering will be given
in Chapter 3.)

The linear programming problem is written in the form: Find

x;>0forj=1,2,..., nthat minimize z when
2= ) ¢x;,
(31)
xn+i:_bi+ Zaij'szo; i=12,...,m.
=i
We assume that ¢; > 0 forj = 1,2, ..., n and then write Eq. (31) as
zZ= ) ¢y,
=1
(32) x;=y;20, j=1,2,...,n,
Xpyi= —b; + Zai,-y,-ZO, i=1,2,...,m.
=1

The y; variables are used to relate the method to the integer program-
ming algorithms presented later. See Simonnard [3] for the standard
method. The starting basic solution is given by x,,,; = —b;for i=1, 2,
., om.
We can write (32) in the vector form

(33) x=p+ Zlcxjyj,
~

where x is a vector with components z, X, X3, ..., Xp4,., B 15 @ column
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vector with components 0, 0, ..., 0, —b;,, —b,, ..., —b, and a; is a
column vector with components ¢;,0,0,...,1,...,0,a;;, a5, .-, a,,;.
The one appears as the (j + 1) component of a;.

Since all ¢; > 0, then «; > 0. Suppose at some iteration we achieve
a form like (33) where ;> 0. The nonbasic variables are given by the
form x; = y;; the basic variables are then apparent. If all components of
B are nonnegative, the minimal solution to (31) is given by all y; = 0;
i.e., x = B. Otherwise, one or more components of f are negative.
Select a row from (33) with negative f component. Let the equation be

34 x, = —bg + Zlajyj,
=

where — b, is the negative component.
Since y; > 0, at least one of the a; is positive for the equation to have

a solution. Define J* as the set of indices j where a; > 0. Let sbe inJ *;
we solve (34) for y, and obtain

where y,' > 0 is taken for x,. If y; is eliminated from (33), then

(35) x=p+ Zlcxj’y,-,
=
where
ﬂl — ﬂ + _Qas’
r aj -
(36) o) =a; ——a, Jj#s
L1
o =— o
as

also, y,’ has been replaced by new variable y,.
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We require that o' > 0in (35). Thus

1 1 .
— o, <—a;, J#s;
s aj
index s is chosen by
1 o1
—o, = l-min — o,
as jest a;

where the minimum is defined in the lexicographic sense.

When (35) is developed, we designate the ' and a;’ values to be the
current § and «; values. Hence, (35) is of the same form as (33). If one
or more components of f are negative again, we select a row with nega-
tive § component and repeat the process begun with (34). Eventually
a form is attained where f has no negative components and x = f§ is
the minimal solution.

With «; >0 at every iteration, § is lexicographically increasing
as seen by (36). The minimal solution is reached in a finite number of
steps since the same set of basic variables cannot be repeated.

Example
Find x; = 0, x, > 0, x; > 0 that minimize z when

2xy + 3x5 + 3x3 =z,
2xy —3x;+ x3=4,
X1+ x5+ 2x3>3.
We introduce surplus variables x, > 0 and x5 > 0 and put the problem
in the format of (32) in the following tableau.

1 2

X2
X3

Wk OOOO
—_N OO =N
_— O = O W
N = —_—0 0o Ww|Ww




PROBLEMS 43
ITERATION 1.

The basic variables are x, and x5. The x, rowis selected; /* = (1, 3).
s = | and we develop the tableau below using (36).

1 2 3
z 4 1 6 2
X1 2 3 % —%
X, 0 0 1 0
X3 0 0 0 1
X4 0 1 0 0
Xs -1 3 3 %

ITERATION 2,

The basic variables are x; and xs. The x5 row is selected; J* = (1, 2,
3). s = 3 and we develop the following tableau.

1 2 3
: | B %3
X1 % % % -1
X5 0 0 1 0
X3 £ -3 “'% £
X4 0 1 0 0
X5 0 0 0 1

ITERATION 3.

The minimal solution is reached; z =48 x, =3, x,=0, and

— 2
X3——§.

Problems

1. If any of the x; in (1) are unrestricted in sign, show that each such
x; can be replaced by
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with x;" > 0 and x4 > 0. Thus, we need to introduce only one new
variable to obtain the general linear programming format.
2. Find x; > 0 that minimize z when
3x1 — X3 + 12X3 + X4 = 2,
X+ X3+ 3x3—3x,=4,
3x, = 3x, 4+ 1lx; + x, =2.
3. Usethelexicographic dual simplex method to solve:
2x, +3x, =z,
3x; +2x, 29,
2x1 + SXZ > 8,
Xy > 0, X = 0.
4. Use the bounded variable technique to find nonnegative x, < 1,
x; <1,x3 <1,x4 <1and min zfor
3x, + X3+ 2x, =2,
X;p+ X2t X3 =2,

S5x; — 3%, + 3x3 — 4x, = 4.
5. Find nonnegative x; and min z in
3x, + 4x, = z,

2x, + x, =1,
x; + 3x, = 4.

Use the inverse matrix method.
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3 ALL-INTEGER METHODS

e

We begin our study of integer linear programs with a presentation
of all-integer methods. In an ‘all-integer method the problem is stated
with given integer coefficients; all calculations result in integer coeffi-
cients at each iteration.

We give the theory of all-integer methods using a parametric ap-
proach. Two main all-integer algorithms are developed: The first is
similar to one by Gomory [3] but has different convergence properties;
the second is used to solve bounded variable integer programs.

We then examine the interesting bounding form method developed
by Glover [I]. The method may not produce rapid convergence in the
solution of integer programs, and may not, therefore, seem practical;
it is valuable, however, for the insights it offers into the integer pro-
gramming process. We will use the method again in Chapter 6 to solve
some of the classical problems of number theory.

These first methods are all based on the dual simplex algorithm.
No feasible integer solutjons are available until the optimal solution is
achieved. We conclude the chapter with a simple primal algorithm,
i.e., one that produces feasible integer solutions. We can offer no assur-
ance that thijs algorithm will produce the optimal solutions, but modifi-
cations by Young [4] and Glover [2] insure convergence.
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1 OPTIMALITY THEORY FOR INTEGER PROGRAMMING

We are interested in solving the integer programming problem:
Find integer x; > O for j =1, 2, ..., n that minimize z when

2 X =1z,
j=1
(1)
n
Y ai;x;=b;, i=1,2,...,m,
j=1
and the a;;, b;, and ¢; are given integer constants.

The method we use to find the optimal solution to Eq. (1) consists
of making a series of changes of variables to achieve the transformation

2) x;=dj+ Ydypy, Jj=12,...,n
=1

The integer constants d;, d;, are developed in an iterative procedure
during the solution of the problem. The initial transformation is estab-
lished by writing Eq. (1) in parametric form as

z= ) ¢y,
=1
3) x;=y;20, j=12,...,n
x"+i=_bi+ Za,JyJZO, i=1,2,...,m.
ji=1
The variables x,,; for i =1, 2, ..., m are surplus variables.
Eliminating x; from (1), using (2), we obtain the equivalent program:
Find integer y; > O for j = 1,2, ..., n that minimize z when
z2=2Zo+ ) &y,
=1
4) X;=d;+ Y dyy=0, j=1,2,...,n,
k=1
x"+i=—5i+ l_l”yJZO, i=1,2,...,m.

j_
The constants Z,, ;, b;, and a;; are developed as a result of the trans-
formation with
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Z, chdj,
Jj=1
Ej= chdkj’ J:l’ 2’ , N,
k=1
&) .
b;=b,— Y ayd;, i=1,2,...,m,
j:
a;; = Zaxkdkj’ i=1,2, ,myj=1,2, ,n
K=1
We have
Theorem 1

If the constants are such that ¢; >0, d; > 0, and b; < O for all  and
Jj» then the minimal solution to Eq. (4) is given by z = Z,, y; =0 for
j=1,2,...,n

Proof

Ifd;>0and b; <0, then ;=0 for j=1, 2, ..., n satisfy the con-
straints of (4) and produce z = z,. In addition, since ¢; = 0, a positive
value for any y; can only increase z.

We shall prove in Section 3 that Eq. (4) is an equivalent problem
to (1), The minimal solution to (1) is then given by z = Z,, x; = d; for
J=1,2, ..., n. We see from (5) that when d; >0 and b; <0, then
X; = d; satisfies the constraints of (1) with objective value Z,.

2 IMPROVING A NONOPTIMAL SOLUTION

We demonstrate here how to find the transformation, Eq. (2),
that yields an equivalent problem, Eq. (4), and leads in a finite number
of steps to the optimality conditions ¢;>0,d;>0,and b, < 0.
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Consider the case where all ¢; > 0. We can write (4) as

n

(6) x=ﬁ+ Zajyja

i=1
where x is a column vector with components z, Xy, X5, ..., Xy+m, B 15 @
column vector with components z,, d, d,, ..., d,, —b,, —b,, ..., =b,,,
and «; is a column vector with components ¢;, d,;, dsj, ..., dyj, 4y,
dzj, ..., ay;. Initially (3) is also in the form given by (6) with § compo-
nents 0,0, ...,0, —b;, —b,, ..., —b, and «; components ¢;,0,0, ...,
0,1,0,...,0,a,;,ay;,...,a,;. The one appears as the (j -+ 1) compo-
nent of «;.

To insure a finite algorithm we use lexicographic ordering in consider-
ing the o; and f vectors. A vector R is defined as being lexicographically
greater than zero, or lexicopositive, if R has at least one nonzero com-
ponent, the first of which is positive. A vector R is less than vector
S, R < S, in the lexicographic sense, if the vector S minus R is lexico-
positive, S — R > 0, Define the symbols “ <" and “>’’ to mean less
than and greater than, respectively, in the lexicographic sense.

If (3) is written in the form of (6), we see that «; > 0 because all
¢; = 0. Suppose at some iteration we have achieved a form like (6)
where a; > 0 and one or more components of § are negafive; the opti-
mality conditions of Theorem 1 are not fulfilled. Select a row from (6)
with negative § component. Let the inequality be

(N .Zlaj)’jzbo,
i=

where — b, is the negative component of §. For the inequality to have a
solution, at least one of the g; is positive. Taking 4 a positive number,
any value a;/A may be written as

a; AT O
() Y-{-2 0sr<a
where {a} denotes the smallest integer greater than or equal to a.
Thus, after dividing by 4 in (7) and using (8), we obtain

a

n

by 1 &
y.> 24 Vi
L Pi¥i= T A
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where p; = {a;/4}. Note that

hence we have

n b
) I ATES

Since the left side of (9) can have only an integer value, then

(10) le,-y,-z g,
~

where g = {bo/4}. It is desirable to make a change of variables for
y,, where a; > 0; then if 1 is chosen so that 1 > g, from (10), we obtain
(11) yszq_;pjyj+ysl’

i¥s
where integer y,’ > 0 represents the surplus variable in (10). If y, from
(11) is substituted into (6), we have

(12) x=p+ Y ajy;.
j=1
The coefficients of (12) are
aj/=aj_pjas7 j?és
(13) o = o,
B'=B+ qo;

also, y,” has been replaced by new variable y, in (12).
We require that the a; remain lexicopositive. Thus

(14) aj_pfas>07 j # S.

Condition (14) enables us to determine the index s and a value for 4,
Which produces the p; values. If J* is defined as the set of indices j
where a; > 0 from (7), the index s is chosen by the rule

oy = l-min o;
jed*
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a, is the lexicographically smallest of the o, for jeJ*. We define /-min
to be the lexicographic minimum. Define integer value ; as the largest
integer that maintains o; — u;a, lexicopositive for jeJ™; also take
s = 1. Condition (14) is fulfilled if p; < y;.

Now we can determine 2. If 1 = g,/u, for some index keJ ™, then
D = e If 1= a/y,, then p, can only be reduced and condition (14)
holds. The requirement for all j is that 1 > a;/y;. In addition, to reduce
the number of iterations, ¢ is made as large as possible to affect the
greatest change in f. Since f is bounded from above, as seen in Section 4,
we make f approach the bound rapidly. For example, the first compo-
nent of B is Z,, which is bounded by the optimal value. By making ¢
large we might produce an objective value that is close to optimum.
Thus, to produce large ¢ value, 4 is made as small as possible ; we take A
by the rule

Note that 4 may be fractional and that 1 > g, so that p, is unity in (10).

When (12) is developed, we designate the f” and «;’ values to be the
current f§ and a; values. Hence, (12) is of the same form as (6). If one or
more components of f§ are negative again, we select a row with negative
f component and repeat the process begun with inequality (7). Eventu-
ally a form is developed where § has no negative components. At this
point the form (6) is like (4) and the conditions of Theorem 1 are ful-
filled. The optimal solution to (1) is then produced by the first (n + 1)
components of 5.

The solution of program (1) is obtained by using

Algorithm 1

1. Develop a tableau by listing the columns f, «;, %5, ..., «,. Before
any iteration § has components zy, di, @5, ..., dy, —by, —by, ..., —bp;
column «; has components &;, dy;, daj, .., dyjs Qyj, Azjs +ovs Amj-

Initially 2, =0, d, =0, b, =b;; ¢;=¢;20, d;; = 1, d;; =0, for i #j;
ﬁ,-j=a,-1.GOtO2.
2. Ifd;=0forj=1,2,...,nand b;<0fori=1,2, ..., m, the
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minimal solution is z = Z,, x; = d; for j =1, 2, ..., n; stop. Otherwise,
select the nonobjective row with the smallest f component. Suppose the
row is —by, a;,a,, ..., a,. Define J* as the set of indices j where

a; > 0. If all g; <0, the problem has no solution; stop. Otherwise, go
to 3.

3. Determine index s from a = /lmin;,.«;. Find the largest
integer y; that maintains a; — ;o > Ofor jeJ ™, j # 5. If «;and o begin
with an unequal number of zeroes, take y; = co. Otherwise, suppose the
first nonzero terms are e; and e;. If e does not divide e;, take u; =
[e;/e;], where [a] denotes the greatest integer less than or equal to a. If
e, does divide e;, then y; = ejfe, if a; — (e;/e)ou, >0 and u; = e;le, — 1
otherwise. Also u; = 1. Take 4 = max;,+ a;/ ;. Go to 4.

4. Calculate g = {by/2.}, p; = {a;/A} and new column values g’
= f +qo, and o' = «; — p;a for j # 5. Designate ' and o to be the
current ff and ;. Return to 2.

Example
Find integers x; = 0, x, > 0, x5 > 0 that minimize z when
2x; + 6x, + 3x3 = z,
Xy +3x, + x325,
2xy + 5x, — 3x3 2 6,
2x; + 3x; + 2x5 = 4.

We follow the steps as they occur in Algorithm 1.
1. The problem is listed in the following tableau.

1 2 3
z 0 2 6 3
Xy 0 1 0 0
X, 0 0 1 0
X3 0 0 0 1
X4 -5 1 3 1
X -6 2 5 -3
Xe —4 2 3 2

The integer surplus variables are x, , x5, and x.
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ITERATION 1.
2. The xsrowisselected. J* =(1,2).

os=Lpmy=1,pu,=2;A=max(%,3) =3.
4. q=3.p; =1,p, =2, p; = —1. We form the following tableau.

1 2 3
z 6 2 2 5
X, 3 1 =2 1
X2 0 0 1 0
X3 0 0 0 1
X4 —~2 1 1 2
Xs 0 2 1 -1
X6 2 2 —1 4

ITERATION 2.

2. The x, rowisselected. J* =(1, 2, 3).
s=2pm=Lp=Luy=21=max(},1,3) =1
4. g=2,p, =1,p, =1,p; = 2. We form the tableau below.

1 2 3
z 10 0 2 1
Xy -1 3 -2
X, 2 -1 1 -2
X3 0 0 0 1
X, 0 0 1 0
Xs 2 1 1 =3
X 0 3 -1 6

ITERATION 3.

2. The x, rowis selected.J* = (1, 3)
3.s=1lLyuy =1pu;=00;4=3.
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4. g=1,p, =1,p, =0, p;=2. We form the following tableau.

1 2 3
z 10 0 2 1
X, 2 3 -2 -1
X, 1 -1 1 0
X3 0 0 0 1
X4 0 0 1 0
Xs 3 1 1 =5
Xg 3 3 -1 0

ITERATION 4.

2. The minimal solution is reached in the preceding tableau. It is
z=10,x; =2,x, =1,x3 =0.

In step 2 of Algorithm 1 the nonobjective row with smallest §
component is chosen for ineduality (7). This choice rule serves two
purposes. First, it may make g = {b,/A} large, thereby increasing f
the most; secondly at the end of the iteration, the corresponding f
component has value —b, +qga;, > —b,, which may be positive and
more nearly fulfill the optimality conditions. The choice rule leads to a
finite algorithm. Other choice rules may be effective, such as the selec-
tion of

the row that makes the greatest lexicographic change in g,
the first nonobjective row with negative f component,

the rows in a cyclic manner,

the rows at random.

holl o

3 EQUIVALENT INTEGER PROGRAMS

We define two integer programs as equivalent if the minimal solution
to one produces the minimal solution to the other and vice versa. We
now show that the transformation (2), developed in Section 2, causes
Programs (1) and (4) to be equivalent.
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Consider program (1) in matrix form, with relaxed integer restric-
tion: Find x; > Oforj = 1,2,..., nthat minimize z when

cx =z,

(13) Ax > b,

where x, ¢, and b are vectors with components x;, ¢;, and b;, respectively;
Ais a matrix with elements @;;. Write the transformation (2) as

(16) x=d+ Dy,

where d and y are vectors with components d; and y; respectively;
D is a matrix with elements d;;. Eliminate x from (15) using (16) and
consider the program: Minimize z when

¢Dy =z —cd,
an Dy > —d,
ADy > b — Ad.

We have

Theorem 2

If the inverse matrix D! exists and y° is a minimal solution to (17),
then x° = d + Dy is a minimal solution to (15).

Proof

Suppose x satisfies the constraints of (15) with objective value
Z=cx<z=cd+ cDy°. Since D' exists, then y=D " 'x— D7 'd
satisfies the constraints of (17) with objective value Z; thus, the assump-
tion that y° is a minimal solution is contradicted. Hence, x° = d + Dy°
is a minimal solution to (15). Similarly, the minimal solution to (15)
produces the minimal solution to (17).

In addition, if d, D, and D! have only integer elements, then
(15) and (17) are equivalent programs for integer x; > 0 and integer y;.
Now we must show that our transformation (11) leads to the proper D
matrix and that the equivalence of (15) and (17) then holds for non-
negative integer y;.
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Transformation (2), as contained in (4), is obtained by repeated use
of transformations like (11). Transformation (11) may be written as

(18) YO = =0+ Py

¥ is the y vector after iteration r [i.e., the rth use of forms like (11)],
Q, is a vector with n — | zero components and some component s,
with value g, , and P,isann x nelementary matrix*

) 1

19 P,.= ) )
( ) Pir D2r - - - 1 o Dur

i 1
where P, differs from the identity matrix in row s,. The valuesgq,, p;,,

and s, are the g, p;,and s values obtained from using (11) in iteration r.
The transformation arises by writing (11) in the form

— -1
y(lr)_ i ),

¥ =y5h,
(20 r = r—
) wWe=—a+ ¥ pyi,
~
0= o,

where the r subscripts on s, g, and the p; have been neglected; p, = 1.
The inverse to P, is

B '

(21 }),._1 = ) )
) —DPir —P2r - - - 1 o — Pnr

L 1

' An elementary matrix differs from the identity matrix in just one row or column.
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and the inverse transformation to (18) exists and is
(22) Y =0, 4+ P7Y".

We use (22) recursively. Initially, ') = x and transformation (2)
is achieved after some iteration ¢ as

t
(23) x=Y T,..0, + Ty,
r=1
where
T, =1,
T,=P{'P;' ... P L.

Since T, is the product of elementary matrices of the form (21), the
determinant of T, is one; thus, T, ! exists. Also define d and D for (2),
from (23), as

(24) d= ZIT,_IQ,,
D=T,.

Clearly, the conditions of Theorem 2 are fulfilled. Programs (15)
and (17) are equivalent for D given by (24). Since the determinant of D
is unity and D is composed of integer elements, D! is also composed
of integer elements. Hence, (15) and (17) are equivalent problems for
integer x; > 0 and integer y; when the transformation is given by (23).
We proceed to show that (15) and (17) are also equivalent problems for
integer x; > 0 and integer y; > 0.

In working out the development of (17) we are really considering a
new problem for each iteration r. The successive use of (22) leads to the
constraints of each new problem (17). Program r of (17) is defined as
(17) with y; =y{”. We prove inductively that any integer y{” values
that satisfy the constraints of problem r must be nonnegative.

We show that integer y{” > 0 for all r. Take r = 1; since y$» = x;,
we have y$V = x; for j # s and

(25) yO=—-q+ le,-xf
~

from (20). Equation (25) is developed, as in the formation of (11), by
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requiring that x; = y{® > 0 be integers in (3) for the first iteration.
Following (10), integers x; > 0 must satisfy

i=

Program (15) with integer x; > 0 and program one of (17) with integer
y$b are equivalent for transformation (20) with r = 1. Thus feasible
integers y{V to (17) will produce feasible integers x; > 0 to (15). These
feasible integers must satisfy (26). Hence, p¢" >0 from (25) and y{"
=x; >0, # 5. Program (15)and programone of (17) are equivalent for
integer x; > 0 and integer y{"’ > 0.

Assume now that problems r — 1 and r of (17) are equivalent for
integer ¥V >0 and integer »7 >0 for r=1, 2, ..., t (the r =0
problem of (17) is (15) for integer x; = 0). We shall prove that integer
Y+ > 0. The equations in (20) hold for r =1+ 1, where the s, g,
and p; may be different than in (25). The equations for y{*" in (20)
result from the requirement that y; = y{ > 0 be integers in (4). Thus,
following (10), integers y{” > 0 must satisfy.

(27) le,-y(-" >gq.
~

Problem ¢ of (17) with integer »{’ >0 and problem ¢+ 1 with
integer y{'*V are equivalent for transformatijon (20) with r = ¢. Thus,
feasible integers y'* " to problem ¢ + 1 of (17) will produce feasible
integers y{"’ > 0 to problem ¢ of (17). These feasible integers must satisfy
(27). Hence, y{*" > 0 from (20). Problems ¢ and ¢ + | are equivalent
for integer y{” >0 and integer y{*" > 0. Therefore, by induction,
(15) and problem ¢ of (17) are equivalent for integer x; > 0 and integer
y$ > 0 for any 7 value.

4 CONVERGENCE TO OPTIMALITY

The integer programming problem appears to be readily solvable
by Algorithm 1. We must show that the algorithm produces the minimal
solution in a finite number of iterations. The convergence of the algo-
rithm js a result of the lexicographic ordering or the a; columns of (6).
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The a; columns are lexicopositive in each step of the algorithm.
Since f, from one iteration to the next, is given by

B =B+ qaq,

then B’ > B; B is always increased lexicographically. Suppose the initial
value of § obtained in (3) is . After iteration ¢ of the algorithm, the j
value is f,. A B sequence is produced with successively larger lexico-
graphic values as , < f; < B, <---. Also, since the components of
are integers, the sequence changes by integer quantities.

Assume there exists a finite minimal solution x, with objective
component z,; i.e., Xo = (Zo, X;°, x,% ..., x,°). Then x, must satisfy
(6) with constants for ff and «; that result after any iteration. There must
exist y; > O that satisfy

(28) _glajyj=xo - B.

The convergence of the algorithm can now be proven. If the com-
ponents of 8 are bounded from above by finite values, the algorithm
requires a finite number of iterations. Consider the firstcomponent of f,
the objective value Z,. It can increase only for a finite number of itera-
tions and then must remain at some fixed value Z, < z,. If Z;, > z, after
some iteration, then write the objective row from (28) as

n

j;léjyj =zo—25<0;
since ¢; >0, no y; >0 values can possibly produce z = z,. Thus, Z,,
the first component of §, is bounded from above by z,.

An infinite number of iterations occur if some component of f
becomes unbounded. Suppose the (r+ 1) component, | <r<n,
takes an arbitrarily large value; then d,, the value of variable x,,
becomes large. Let d, > x,° after some finite number of iterations.
Write the corresponding row from (6)

Yd,y,=x°—d, <0;
j=t
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if all d,; >0, then no y; >0 exist and 4, must be bounded by x,°.

If some d,; < 0, then the inequality
(29) T (—dy; 2 d - x°

jeJ~
must hold. We define J ™ as the set of indices j where d,; < 0. The y; are
restrained by (29), which is of the form given by (7). We proceed as
follows:

1. Obtain the index s by selecting a, as the lexicographic smallest
ofthea;forjeJ .
2. Find y; as the largest integer that keeps o; — ;o> 0 for jeJ ™ ;
also, u, = 1. Take A = max,,- —d,;/jy;.
3. Calculate ¢ = {(d. — x,°)/2} and p; ={—d,;/4} for jeJ ; p;=0
otherwise.

This leads to forms like (10) and (11); y, is eliminated from (6)
using (11) and (6) becomes

(30) x=B+an+ Yoy,

asin(12).

The convergence becomes apparent by induction. Suppose d; > x,°
after some iteration. The objective value from (30) is
(31) Zo' = Zo + 4E,.
At least one d,; must be negative and the «; are lexicopositive, causing
¢, to be positive. Since Z,’ < z,, then g < (z, — Z,)/¢, produces a bound
for d; given by

Mzg—2Z
0 + ( 0— 0) .

¢

dy < x

Any larger value of 4, can produce only a value of z larger than z,,
which is impossible.

Suppose, further, that d,, d,, ..., d._, are bounded by é,,6,, ...,
d,_y, respectively, and that d, > x,° after some iteration. The objective

value again is of the form of (31) In addition, the next (r — 1) compo-
nents of § are

di/=di+qdis’ i=1,2,...,r—1-
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From the lexicopositive property of o, and from the fact that 4., <0,

one or more of the values &, dy, d,, ..., d,_,  is positive. Thus
Zo—Z .
x4+ 22—"2  if £>0
CS
d, <
0 i di . .
x4+ A—, if d,>0, i=1,2,...,r—1,
is
In any case d, is bounded. By induction d,, d,, ..., d,, the first n com-

ponents of f, have finite bounds. Also, the next m components of §,
representing the surplus variables, must be bounded. Since f is bounded
and is lexicographically increasing by integer steps, the algorithm must
take a finite number of iterations to achieve the optimal solution.

5 BOUNDED VARIABLE PROBLEMS

We are interested in solving the integer programming problem when
the variables have upper bound restraints. We seek to find the solution
to (1) with the additional constraints x; < m; for j =1, 2, ..., n, where
the m; are given integer values.

A possible solution to the bounded variable problem might be ob-
tained by including the inequalities —Xx; > — m; with the constraints
of (1) and using Algorithm 1 to handle the considerably enlarged prob-
lem. We choose a different approach. We shall use Algorithm 1 and dis-
regard the upper bounds on the variables until an iteration is reached,
in developing (4), with d; > m, for some index j. Naturally, if alld; < m;
for every iteration, Algorithm 1 solves the problem.

Suppose at some iteration we have achieved a form like (6), where
a,> 0 and one or more of the d; components of § have value d; > m;.
Select one such row from (6). For that row we have

xj- =dj+k;1djkyk

<m;.
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The y, must then satisfy

(32) - Y duyezdi—m,

> 0.

If we define g, and b, by

the
the

ay= —dp, k=1,2,...,n,

bo=d;—m,,
n (32) is exactly of the form given by (7). Using (32) then as (7),
analysis follows as before; we develop transformation (11) and the

new form of (6) given by (12). The lexicographic property of the «;
is maintained. The selection of index s and the A calculation remain the
same. Furthermore, the theory presented in Sections 3 and 4 holds; the
bounded variable problem is simply solved by the use of (32). For upper
bound problems we have

1.

Algorithm 2

Same as step | of Algorithm 1 with the additionallisting of m,, m,,
e, m,.

2. (a) If0<d;<m;forj=1,2,...,nandb;<0fori=1,2,...,m,

3.

the minimal solution is z=2Z2,, x;=d; for j=1, 2, ..., n;
stop. Otherwise, go to 2 (b).

(b) Ifd; <m;forj=1,2,...,n, go to 2(c). Otherwise, select the
row with d; component of f that produces the largest value of
d;—m;>0.Take by =d; ~m;, a, = —dyfork=1,2,...,n
‘as the row picked. Go to 2(d).

(c) Select the nonobjective row with the smallest § component.
Suppose the row is — by, a4, a3, - - ., a,. Go to 2(d).

(d) Define J* as the set of indices j where a; > 0. If all a; <0,
the problem has no solution; stop. Otherwise, go to 3.

Same as step 3 of Algorithm 1.

4. Same as step 4 of Algorithm 1.

The choice rules of steps 2(b) and 2(c) may be changed just as in the

previous algorithm. See the discussion immediately following Algor-
ithm 1.
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Example
Find nonnegative integers x; < 1, x, <1, x; <1 that minimize z
when
3x; + 2x5 + S5x3 = z,
3x, + 5x, + 4x5 = 3,
3x; + 2x, + 2x5 > 3,
2xy + 2x5 + Tx53 > 4.

We follow the steps as they occur in the algorithm.
1. The problem is listed in the following tableau.

1 2 3
z 0 3 2 5
X, 0 1 0 0
X, 0 0 1 0
X3 0 0 0 1
X4 -3 3 5 4
X -3 3 2 2
X —4 2 2 7

ITERATION 1.

2. (c) The x¢ rowis selected.
@ J*=(,273).
3os=2pu=1pu= luy =2;4 = max(%,%,%) :‘%'
4. q=2,p,=1,p, =1, p; =2. We form the tableau below.

1 2 3
z 4 1 2 1
X, 0 1 0 0
Xy 2 -1 1 -2
X3 0 0 0 1
X4 7 =2 5 -6
Xs 1 1 2 -2
X¢ 0 0 2 3
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ITERATION 2.

2.(@) d,=2,my=1;d, >m,.
(b) bg=1l,a,=1,a,=—1,a;,=2.
@ Jt=(,3).
3.s=3. =1L pus=1;A=max(}, %) =2.
4. g=1,p, =1,p, =0,p; = 1. We form the following tableau.

1 2 3
z 5 0 2 1
X, 0 1 0 0
X, 0 1 1 -2
X3 1 -1 0 1
X, 1 4 5 -6
Xs -1 3 2 =2
Xe 3 -3 2 3

ITERATION 3.

2. (¢) The x5 row is selected.
@ Jt=(1,2.
Js=lyuy =1pu,=00;1=3.
4. q=1,p, =1,p, =1,p; = 0. We form the tableau below.

1 2 3
z 5 0 2 1
X, 1 1 -1 0
X, 1 1 0 -2
X3 0 —1 1 1
X, 5 4 1 -6
X 2 3 -1 =2
Xe 0 -3 5 3

ITERATION 4.

2. (a) The minimal solutjon is reached in the tableau of the previous
iteration. Itisz = 5,x, = 1, x, = 1, x, = 0.
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6 NEGATIVE ¢; VALUES

The methods discussed so far have required that ¢;=0forj=1,2,
..., n. These methods can be modified, however, to include the case
where any of the ¢; are negative. We examine such a case here.

Let us define /™~ as the set of indices j where ¢; < 0. If the problem is
to be of interest, the sum of x; for jeJ™ must have a finite upper bound.
This upper bound is either apparent or readily obtained by solving the
linear programming problem: Find x; > 0 forj =1, 2, ..., n that maxi-
mize z’' when

(33)

In either case, we can assume that
Z X; < do )
jed~
where integer d, is initially given or obtained from (33) as the integer
part of optimal z'. We express Eq. (1) in the form given by (6). The
inequality with x; replaced by y; is
(34) ZJ y; < do;
jes~
we find index s from
oy = l-min «;.
jeJ~
We introduce a slack variable y," = 0 and solve for y,in (34) to obtain
(35 ys=do— ; Vi — Vs
jel-
7¥s

Using (35), we replace y, in (6) to form (12) where

r
]

’

oy = — 0o,

B =B+doos.

=aj_as’
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Designate §’ and the ;" to be the current § and «;. Observe that the o;
become lexicopositive. We begin Algorithm 1 in step 2.

Example
Find integers x; > 0 that maximize z when
Xy — 2x, + 3x5 =z,
—=3x; +3x, + x3 <4,
2x, + 2x, — x3<4,
3x; — 2x, <L
Note that this is a maximization problem. We maximize z’ = x; + X3

subject to the constraints and obtain max z'= 18 We write the problem
in Tableau E1; s = 3, dy, = 5, and we form Tableau E2.

1 2 3 1 2 3
z 0 -1 2 =3 z |—15 2 2 3
X, 0 1 0 0 X, 0 1 0 0
X, 0 0 1 0 X, 0 0 1 0
Xy 0 0 0 1 X3 5 -1 0 -1
x, | —4 3 -3 -1 X, | —9 4 -3 1
X¢ | -1 =3 2 0 x¢ | -1 =3 2 0

Tableau E1 Tableau E2

Tableau E2 is the starting point for the algorithm.

7 THE USE OF BOUNDING FORMS

There is another dual simplex method in addition to the method
described in Section 1, one that is formulated by Glover [2] and known
as the bound escalation method. 1t is based on the observation that
Ys 2 q = {bo/a;} if an inequality of (4), namely Y"_ a;y;> by >0,
has the property that a; >0 for some index s and a; <0 for j #s.
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The inequality is then a bounding form because it provides a positive
lower bound to variable y,. We shall show how bounding forms are
produced and how they lead to the solution of integer programs.

When a bounding form does not exist, it can always be developed
through a single transformation. Let the inequality

(36) _Elajy,-z by
=
>0

have two or more positive coefficients a;. Suppose a, > 0; we desire a
bounding form that maintains a, > 0. [f we write the inequality as

37N Yoa;y;+ > a;y;= b,
jel+ jed~

where J* is the index set for ¢; > 0 and J~ is the index set for a; <0,
then
(38) Z vjyj+ys=ysl20’

JjeJ*

J#s .
where v; = {a;/a,} for jeJ*. Eliminating y, from (37) using (38), we
obtain
(39) Yoaj/'vi+ Y a;y;=bg,

JjeJt jeJ~

where
-lls, j€J+s j¢s’

aj = a;—v;
a, = a

and y,’ is replaced by new variable y,. Since a;/ <0 for jeJ*, j#s,
then (39) is a bounding form with y, > g = {b,/a,}.

Take the integer programming problem as given by (6) where
a; > 0 and one or more components of f§ are negative. Select a row with
negative f component. Let the inequality be (36) and define index s
from o, = /l-min; ;. «;. If we use (38) to eliminate y, from (6), we
achieve (12) where

af =a;— v, jeJT, j#s
o =ay,

(40) (Xj/ =0a;, jedJ,
B =B.
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We now make an additional change of variable

ys=4q+ys

and replace §’ by
(41) B'=p+ qu,.
When a sequence of lexicographically increasing f values are produced,
the method solves the integer programming problem. The increasing
B values occur if the o; remain lexicopositive in (40). To insure «;" > 0,
we require that v; < p;, where y; is the largest integer that keeps
a; — pyo > Oforjet ™.

We have seen that if any v; > y;, then the bounding form may not
lead to a finite algorithm, To maintain «; > 0 we change (38) to

(42) ,E;J’f yitys=ys
Jj#s

>0,
where p; = min(v;, u;). We use (42) to eliminate y, from (6) and achieve
(12) with v; replaced by p; in (40). Hence, if any v; > u;, then (39) is not
a bounding form and the § vector is not changed by (41). We repeat the
process in an effort to obtain the bounding form; the S vector remains
the same and we select the row that gave us (36). Eventually, we
obtain a bounding form and a new B given by (41). Thus, we maintain
a; > 0 and produce an increasing .

We sum up the procedure in

Algorithm 3

Steps 1 and 2 are identical with those in Algorithm 1.

3. Determine index s from o, =/lmin;,. ;. Find the largest
integer 4, that maintains a; — o >0 for jeJ*; u = 1. Calculate
v; = {a;/a,} for jeJ*. Goto 4.

4. Take p; = min(v;, ;) and calculate new column values o =
a; — p;a for jeJ*, j# 5. Designate the ;" to be the current ;. If all
V; < pj;, calculate g = {by/a;} and the new column B’ =g+ qo;
designate B’ to be the current f and return to 2. Otherwise, some v; > ;.
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The row selected in step 2 has new values — by, a,, a,, ..., a, Define J*
as the set of indices j where a; > 0 and return to 3.

We have presented an algorithm in which a bounding form is
developed, but a search procedure may be included to determine whether
or not a bounding form already exists. Glover [2] presents methods to
force faster solution.

Example
Find integers x, = 0, x, > 0, x5 > 0 that minimize z when
5x; + 7%, + 11x3 =z,
4x, + 5x, + 5x3 =6,
x1+ x2+ 3X327,
Sx; +3x, + 2x3>5.

We write the steps as they appear in the algorithm.
1. The problem is listed in the following tableau.

1 2 3
z 0 5 7 11
X, 0 1 0 0
X, 0 0 1 0
X3 0 0 0 1
X, -6 4 5 5
X -7 1 1 3
X -5 5 3 2

The integer surplus variables are x,, X5, X¢-

ITERATION 1.

2. The x5 rowis selected. J* = (1, 2, 3).

os=lyuy=Lu=1Lpuy=2vy=1v,=1,v; =3,

4. py=1,p, =1,p3 = 2; v3 > u;. We form the tableau below. For the
xsrowJt =(1,3).
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X1
X2
X3
Xa
Xs
X6
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1 2 3

0 5 2 1
0 1 -1 =2
0 0 1 0
0 0 0 1
-6 4 1 -3
=17 1 0 1
-5 5 -2 -8

s=3y=5pu=1v=1v=1
4. py = 1,p3 = 1;q = 7. We form the following tableau.

X1

X3
Xa
Xs
X6

ITERATION 2.

1 2 3

7 4 2 1
-14 3 -1 =2
0 0 1 0

7 -1 0 i
-27 7 1 -3
0 0 0 1
-61 13 -2 -8

2. The xq row is selected. J ¥ = (1).
os=l.py=1;v =1
4. py = 1;4 = 5. We form the following tableau.

X1
X2
X3
Xa
Xs
Xe

1 2 3

|z

PO OONO -~

i
WOoON—=Oowah

N O — O = =N
p—

n
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ITERATION 3.

The minimal solution is reached in the tableau in Iteration 2. It is
z=27,x,=1,x,=0,x3 =2.

8 A PRIMAL INTEGER METHOD

A primal integer programming method uses the primal simplex
algorithm so that feasible values of the basic variables are present at each
iteration. The advantages of the primal method are:

(1) a feasible solution obtained by any means may be used as a
starting point for the algorithm, and
(2) afeasible solution is available at any time in the calculations.

The simple all-integer primal algorithm which we present has been
known for a considerable time and may be attributed to Gomory.
Assuming that a feasible canonical form is available initially, the problem
is: Find integer x;for j=1,2,...,n,n+1,..., n + m that minimize z
when

—z4 Y ¢;x;=0,

i=t
(43) xn+,~+ zlaijxjv=bi, l=1, 2,...,m,
j=
x; 20, j=12,...,n,0n+1,...,n+ m,

and the a;;, b;, and ¢; are given integer constants. In addition, b; > 0
so that a feasible solution x, , ; = b; exists.
To find the optimal solution, we make the transformation

(44) xf:d"_kzxdﬂ‘yk’ j=12,...,n

We develop the integer constants d;, dj, in an iterative process duringthe
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solution of the problem. The initial transformation is established by
writing (43) as

2+ Ty, =0,
i=t

xl-yl=0’ j=152""5n5
Xpei T _Zlaijy,:b,-, i=1,2,...,m.
=

Eliminating x; from (43), using (44), we obtain the equivalent
problem: Find integer y; > 0 for j =1, 2, ..., n that minimize z when

—z+ Zz‘fyf= —Zo>
Jj=1
(45) xj+kgldjkyk=df’ j=1,2,...,n,

n
Xpas + Zaiij.:Bi, i=1,2,...,m.
=1

The constants, z,, ¢;, @;;, and b, are developed from the transformation.
If the constants are such that all ¢ >0, b; >0, and d; > 0, then the
minimal solution to (43) is given by z =Z,, x; =d; for j=1,2, ..., n
and x,,;=b,fori=1,2,...,m.

Equation (45) can be written as

n
(46) x+ Yoy =8
i=1
where x is a column vector with components —z, X;, X3, -+, Xp4m»
a; is a column vector with components ¢;,d,;,dy;s ..., dyj, Qyjs Gajs .- »

a,;, and §is a column vector with components —z,, d,, d,, ..., d,,

by, by, ..., b,. Initially, ¢;=c;, d;;=0 for i #j, dy= -1, Z,=0,
d;=0,b;,=b;.

After some iteration, suppose equations like those in (45) are ob-
tained where all b; >0, d; > 0, and some ¢; are negative; we develop
the transformation that converts (46) to an optimal format. We deter-
mijne index s from ¢, = min ¢; < 0; if all @;; < 0 and d;; <0, the solution

is ~= js =
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is unbounded. Otherwise, find 6 = min(b,/a;,, d;/d,), where the minimum
is over indices i and j so that @;; > 0 and d;; > 0. Select some equation of
(45) with [b,/a;] < 0 or [d,/d;]] < 6, where a,; > 0 and d;; > 0.

Let the selected equality be

47 X, + _Zlaij-:bo.
=

Dividing through by @, >0 and noting that g;/a, = [a;/a,] + r; with
0 <r;<1,(47) appears as

(48) ys + ijyj=__zrjyj_——xr’
J#s a a

s J#s s
where p; = [a;/a,]. From (48) the inequality
by
(49) Yo+ Y piy;<—
jEs a

s

results. Since the left side of (49) can take on only integer values, a
more restricted relation holds, i.e.,

(50) Vs + ;pfy,-Sq,
j#*s
where g = [ by/a,]. Inequality (50) then leads to
(51) ys=q— ;pfy,-—ys’,
j#s

where integer y,’ represents the slack variable in (50). If y, from (51) is
substituted for the y,in (46), the latter becomes

(52) x + _Zlaj'yf =g
I=
where
o =a; — p;a, Jj#s,
o = —o,
B =pB-qu,

and y| is redefined as y,. Designate «; and p’ as the current «; and f;
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(52) is again of the form given by (46). The same process can be repeated
until an iteration is reached in which the optimality conditions hold.
We are now ready to state a primal simplex algorithm for the solution
to (43).

Algorithm 4

1. Develop a tableau by listing the columns «,, a5, ..., %,, B. Before
any iteration o; has components &, dy;, dyj, ..., dyj, A1y Agjs oo Qs
column § has components —Z,, d,, d,, ..., d,,b,,b,, ..., b,. Initially,

& =¢, dy=—1,d;=0 for i#]j, a;=ay; z,=0, d;=0,b;,=b;.
Goto2.

2. If¢;=0forj=1,2,...,n, the optimal solution is z = Zy, x; = d;,
forj=1,2,...,nand x,,;=b,, fori=1,2, ..., m; stop.
Otherwise, select index s by ¢, = min ¢; < 0. Go to 3.

3. If all d;; <0 and a;, <0, the solution is unbounded; stop. Other-
wise, calculate 6 = min(b;/a;;, d;/d;) for a,;>0 and d;;> 0. Select a
row with the property that [d,/d;] <6 or [b;/a;] < 0, where d;, >0
and a;; > 0. Suppose the row is g, , a,, ..., a,, b, . Calculate p; = [a;/a,]
for j=1, 2, ..., n and g =[by/a,]. Calculate new column j values,
J # s, by multiplying the values of column s by p; and subtracting the
result from column j. Calculate a new constant value column by multi-
plying the values of column s by ¢ and subtracting the result from the

constant value column. Finally, change the sign of each element of
column s. Go to 2.

Example
Find integers x, > 0, x, > 0, x; > O that minimize z when
—2x; —3x,+ x3=2,
4x; — x; —3x3 <5,
—2x, +2x, +3x, < 7.

We introduce slack variables x, and x; to achieve the feasible solution
X4 =35, x5 = 7. We write the steps as they occur in the algorithm.
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1. The problem is listed in the tableau below.

1 2 3
-z -2 -3 1 0
X, -1 0 0 0
X, 0 -1 0 0
Xy 0 0 —1 0
X4 4 -1 -3 5
Xs -2 2 3 7

ITERATION 1.

2. s=12,
3. The x5 row is selected; a, =2, py, = -1, p, =1, p; =1, g=3.
We form the following tableau.

1 2 3
—z -5 3 4 9
Xy —1 0 0 0
X, —1 1 1 3
X3 0 0 -1 0
X4 3 1 =2 8
Xs 0 -2 1 1

ITERATION 2.

2. s=1.
3. The x, row is selected; a, =3, p, =1, p, =0, py= —1, g=2.
We form the tableau below.

1 2 3
-z 5 3 -1 19
X, 1 0 -1 2
X, 1 1 0 5
X3 0 0 -1 0
X4 -3 1 1 2
Xs 0 -2 1 1
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ITERATION 3.

2.s=13.
3. The x5 row is selected; a,=1, p, =0, p, = -2, p;=1,g=1.
We form the following tableau.

1 2 3
-z 5 1 1 20
Xy 1 =2 1 3
X, 1 1 0 5
X5 0 -2 1 1
X4 -3 3 -1 1
Xs 0 0 -1 0

ITERATION 4.

The minimal solution is reached in the tableau in Iteration 3. It is
z=-20,x,=3,x,=5,x3=1,x, =1, x5 =0.

Algorithm 4 is not very useful in computational work because it
generally requires many iterations even in very small problems. Since
it is possible that ¢ = [b,/a,] may be zero for each iteration, the algo-
rithm may not produce an optimal solution in a finite number of jtera-
tions. Young and Glover present means for preventing this occurrence,
but the resulting algorithms converge very slowly.

Problems
1. Show that the m equalities
Zaiij-:b,-, i=1,2,---3m5
J=1
and m + 1 inequalities

n
Yagx;=b, i=12..,m,
j=1
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are equivalent where

h

Il
i
o>
S

i=1
Thus equality constraint integer programming problems can be
converted to inequality constraint problems.
2. Minimize z in the following problem by means of the all-integer
algorithm:
3x; + 2x, + 6x3 = z,
2x1 - 3x2 + 4X3 > 5,
x; +4x, — 5x3 = 8,
3x1 - 2x2 — X3 24,
x, =0, x, 20, x3=0.
3. Find min z and integers x; > 0, x, > 0, x3 > O for
2x; + 3x; + 2x3 = 2,
3x1 - 2x2 — X3 > 4,
—2x1 - 2x2 + x3= 5,
—x; +3x,— x3=3.
4. Solve the negative ¢; value problem
21— X3+ x3=12,
Xy +2x, — x326,
—Xy +2x, — x322,
Xy — X+ 2x3 =24
5. Solve by the bounding form method
Ix; + 2x, + 4x3 =z,
X, — 2x, + 5x3 23,
6X1 + x, + 3X3 24,
4x; + Tx, — 2x3 = 2.
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6. Minimize zwhen x; =0or1forj=1,2,3
Xy 4+ 2x, + x5 =z,
2x, + 2%, + x5 23,
2x; — 2%, + x3 =1,
Xy + 2x, — 2x3 > 1.
7. Solve by the primal integer method: min z for integers x, > 0 and
x, > 0 when
—X;— X, =2z,
3x; + 2x, < 7.
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4 SOLVING INTEGER PROGRAMS
BY ENUMERATION

—_——

An enumeration method for solving integer programs often has
advantages over other methods. Obviously, since the variables take on
only discrete values, they can be listed easily, although they may be
numerous. For the procedure to be manageable, the enumeration should
be ordered in such a way that solutions are obtained with a minimal
amount of calculation.

We enumerate all possible values of the objective function for an
integer program and demonstrate how to use the enumeration in finding
the solution to the program. We also provide rules to accelerate the
enumerative process. The enumeration is given by a dynamic program-
ming formulation of the problem. (See Bellman [3]for a general presenta-
tion of dynamic programming.) In conclusion we give an enumerative
solution to the knapsack problem.

1 A DIRECT ENUMERATION METHOD

We shall find the solution to the integer programming problem:
Find integer values of x;=0forj=1,2,..., nthat minimize z when

M
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To solve (1) directly by enumeration, we begin by finding all the
values of z from

(2 Z2=C0Xy + X + 0+ G X,

that are produced by nonnegative integer values of x; where the c;
are positive numbers. Equation (2) is the objective function of the inte-
ger program (1). We find all feasible values of z as a monotonic increas-
ing sequence. For a feasible value of z, say z,, we also find the x; values
that produce z, .

In the process of developing the monotonic sequence of the z, we
obtain the solution to (1) when the smallest z value in the sequence has
corresponding x; values that satisfy the constraints. Since the x;
values produce the smallest objective function value consistent with the
constraints, the solution must be optimal. Thus the enumeration of (2)
is performed in order of increasing values and stopped when the con-
straints are satisfied. )

The method for generating feasible values of z from (2) is contained

Theorem 1

If z, is a feasible value for z = )., ¢; x; that is produced by integer
values x,-0 forj=1,2,...,n,then other feasible values of z are produced
by zo+c¢;forj=1,2,...,n

Proof

Since zy =Y 7., ¢;x;% we can form another feasible z value by
increasing any x,° value, say x,°, by one. The result is yet another feasi-
ble z value given by z=)7.,¢;x;° + ¢ =z, + ¢. Other feasible z
values then can be formed by z, + ¢, fork =1,2,..., n.

In Theorem 1 we see how an enumeration of z values can be per-
formed when a feasible z already exists: Given a list of feasible z,
additional feasible z are found by using a z value, such as z,, as generator
and forming z, + ¢; for j=1, 2, ..., n. We then add the new z values
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to the list and select another z value as generator. If we select the small-
est unused z, we insure that every z value will act as a generator. The
only problem is to find the first generator. Since each feasible z value
has corresponding x; values, the first generator is z = 0 with x; = 0.

We give the formal algorithm for generating all feasible z values
and then prove that no z values are omitted using the algorithm.

Algorithm 1
1. List the values of the problem as
1 2 3 n
) c; C, c,
x;=0

Goto 2. .

2. Given the list, find ¢, = min ¢; for all unmarked columns in all
sections. Take ¢ = ¢, and go to 3.

3. Add a new section of columns to the list as follows:

(a) Calculate ¢;” = ¢ + c; for the indices j of the unmarked columns
in the section containing column r. The values of ¢; used are
from the first section.

(b) Mark the r column.

(c) Add columns headed by the prescribed indices in a new section
with values ¢;". Consider the ¢;" as new c; values.

(d) Underneath the section added, write the x; values from the
section containing the newly marked 7 column. Increase x,
by one for the new section. Go to 2.

This concludes the algorithm.

There are no feasible z values omitted by the algorithm as seen by

Theorem 2

Every feasible value of z for z=37_,¢;x

; with integer x; >0 is
listed by Algorithm 1.
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Proof

The values of z generated by z =0 are ¢;forj=1,2, ..., n and are
listed in the algorithm. Suppose z* is a feasible value that is not listed;
we have z* = Z?=1 c;x;*. If z* > 0 is feasible, then some x;*, say x,*,
is positive. Another feasible z exists for x;, = x,* — 1, x; = x;*, j # k,
and has value z' =Y., ¢;x;* — ¢, and we have z’ = z* — ¢;. Thus, z*
would be generated by z using Theorem 1. Furthermore, z’ is not listed
by the algorithm; if it were, it would generate the value z* which would
be listed. If z' > 0, then it can be generated by some smaller value of z
which is not on the list. Each value of z > 0 not on the list can be gener-
ated by a smaller value not on the list. We can find smaller and smaller
feasible z values that are not produced by the algorithm and which will
generate z values that lead to z*. Since we can always find a smaller
feasible z as generator and because there are only a finite number of z
values smaller than z*, we see that z =0 must be a generator and thus
must generate all values of z that lead to z*. Moreover, z = 0 cannot
generate values of z on the list that lead to z*. All possible feasible
values of z generated by z = 0, however, are on the list; these are the ;.
Thus we have a contradiction and all feasible values of z are produced
by Algorithm 1.

We have just shown that Theorem 1 leads to Algorithm 1 for the
enumeration of z and corresponding x; values that satisfy z = Z7=1 CjX;
with integer x; > 0 and ¢; > 0. Theorem 2 proves that every feasible z
value is enumerated by the algorithm.

Example
Find feasible z that satisfy
z=3x, +4x, + Tx;

for x,, x,, x5 = 0 and integer. Welist

1 2 3

3) 3 4 7

x17x27x3=0
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Note that min ¢;is the 3 of column 1. We mark the 3 and form

@ 6 7 10

The minimum unmarked element is the 4 in column 2 of (3). We mark
the 4 and form

2 3

(5) 8 11

szl

We do not have a column headed by 1 in (5) because it would duplicate
the column headed by 2 in (4). Both would require that x; = 1, x, = 1.
This storage reduction is handled by step 3(a) of the algorithm. The 6
from (4) generates the next values

X, =2

As the method continues, the list in subsequent steps becomes

3 7231231123 3 2 3 3 2 3

14 1114112151213 16 17 14 17 18 15 18

x =1 =1[x,=2|x,=1|x, =1
Xy=llx,=11x,=2] x;=3 |x3=1|x,=1]|x3=1|x,=1

The list goes on indefinitely since z may take on unbounded values.



86 4 SOLVING INTEGER PROGRAMS BY ENUMERATION

Feasible values of z are listed in order as

z 1013[4]6|7|7(8]910{1011{11]12|12{13{13]14{14{14{15|15]|1

wn

x, [[0]1[{012]0{1|0[3|1]2{0|1]0[4]2]{0[{0|1|{2(0]1

X, |0]0j110§0[1{2{0j041{1}2§3{0(0|2{0]1{2|2]3

olo| v

x3 1010{0]0:1/0}0f{0}1:0/1}0,0{0/1]1{211]0/1]0

2 SOLUTION TO THE INTEGER PROGRAM

We are now ready to solve Eq. (1) by considering the problem:
Find x; = Oforj = 1,2,..., nthat minimize z when
X1+ X+ +Cyx, = 2,
(6) 141 2h2

Xy +op Xy + 0+ a,x, =a,

where the «; are column vectors with elements g;; and « is a feasible
variable column vector. Take «, as a column vector with elements b;.

As in Section 1, we enumerate values for z in (6) as a monotonic
increasing function. This time, however, the corresponding x; values
produce values for « in the constraints. We achieve a solution to (1)
for the smallest z value and corresponding x; values that produce a
vector « with the property that « > «, (each component of « is greater
than or equal to the corresponding component of «,).

We can remove the ¢; > 0 restriction in solving (6). If Algorithm
1 is used where ¢, = min ¢; <0, the enumeration will continue by
increasing only x, without limit. [n a particular problem, however, x,
may be bounded either implicity through the constraints of (1) or by
having an upper bound initially. In either case we will assume that

(7 x;<m;,  j=1,2,...,m

m; are bounds on the variables (any m; value may be infinite). For those
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indices j where ¢; <0, we must first attempt to find a finite m; for vari-
able x;. If a variable is not initially bounded, then a bound, if it exists,
may be obtained by solving the linear program: Maximize x, subject
to the constraints of (1). The variable x; is simply one of the variables
from (1) for which it is desirable to achieve a bound. If x;° is the result-
ant value of max x,, then we have x, < [x,°] where [x,°] is the
integer part of x,°.

While it is most useful to bound each variable, it may not be practical
because of the need to solve a linear programming problem for each
variable. An alternate strategy is to solve the single linear program:
Maximize Y ;.;x; subject to the constraints of (1), J being the set of
integers j where ¢; < 0. We take the resultant bound as integer dy and
have Y ;c;x; < dp.

For the solution of (1) with the additional constraints x; < m; for
Jj=1,2,..., n, we present Algorithm 2. If ¢; > 0, then m; may be in-
finite; if ¢; <0, then m; must be finite for the method to solve every
problem. In any case, m; may also be prescribed by the problem.
(We see, for example, that m; = 1 restricts the variable x; to being zero
or one, which constitutes an important class of integer programs.)
For each ¢; < 0 we make the change x;" = m; — x;. We can then assume
all ¢; > 0. Thus we have

Algorithm 2
1. Define solution vector S(z*, x,*, x,*, ..., x,*), where x;* for
J=1,2,...,nis afeasible integer solution to the problem with objective

value z*. If no feasible solution is apparent take z* = 0. Go to 2.
2. List the values of problem (1) as

1 2 3 n

>
Cl Cy C3 e C,
oy Ay oz ... A,

%o and the m; are also listed. Component i of a; is a;;, j # 0. Component
iofayisb,. Goto 3.
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3. In the newly listed section, find index r from ¢, = min ¢; for indices
J with «; > . Mark each such column. If no such column exists or
¢, > z*, go to 4. Otherwise take z* = ¢, and form S(z*, x,*, x,*, ...,
x,*) where the x;* are the nonzero x; values found below the new section.
The other x;* values equal zero. Increase x,* by one. Go to 4.

4. Given the list, the solution S(z*, x,*, x,*, ..., x,*) is the minimal
integer solution if there are no unmarked columns with ¢; < z*. Stop.
Otherwise, find index r from ¢, = min c; for all unmarked columns in all
sections. Take ¢ = c,anca = a,. Goto 5.

5. Add a new section of columns to the list, if possible, as follows:

(a) Calculate ¢;' = ¢ + ¢; and «;' = a + «; for the indices j of the

unmarked columns in the section containing column r. The

¢;, a; values are taken from the list in step 2. Mark the r
column.

(b) Add columns with values ¢;” and «;" headed by the prescribed
indices j if ¢; < z*. Include a column headed by r only if
x, + 1 < m, for the x, value found below the section containing
the newly marked r column. Designate the ¢;" and a;" values
as ¢; and o; values respectively.

(¢) Underneath the section added write the x; values from the
section containing the newly marked r column. The non-
appearance of a variable means it has zero value. Increase x,
by one for the new section. Go to 3. If no new section is added,
return to 4.

While enumerating z values for z = Z¢; x; in the algorithm, we are
simultaneously enumerating o values for « = Z «; x;. The « enumeration
is performed with «, as generator. We form new values of « from «, + «;
for j=1, 2, ..., n. As in the z enumeration, the method succeeds in
enumerating all feasible « values. The order of enumeration of the z
values directs the o enumeration and permits all feasible « to be pro-
duced.

The solution vector S(z, x;, X;, ..., X,) is used in the algorithm
to reduce the amount of computation. If z and corresponding x; values
are listed and feasible, then there is no need to list the same or larger z
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values. In addition, if we have a bound for the variables given by
Y jesx; < dy,we medify Algorithm 2 by the variable change x;" = do — x;
for jeJ. We can then assume all ¢; > 0. List the values of the problem
in step 2 as

1 2 3 n
cy € €3 ... C4
ay oy Az ... A,
a, a, as ... Q,

Consider the bound inequality as 7., a;x; < dy. Thus we have a; = |
ifjeJand a; = 0 otherwise.

In step 5(a) of the algorithm, calculate ¢;’ = ¢, + ¢;, o) = o, + a;,
a; = a, + a; for the indices j of the unmarked columns in the section
containing column r. The ¢,, «,, and a, values are from the section con-
taining column r. The ¢;, ;,’and g, values are taken from the list in step
2. Mark the r column.

In step 5(b), add columns with values ¢/, «;, and ;" headed by the
prescribed indices j. Include the j column only if a;” < d,,. Also, include
the r column only if x, + 1 < m, for the x, value found below the section
containing the newly marked r column. Designate the ¢;’, «;’, and g}
values as ¢;, «;, and g; values, respectively.

Algorithm 2 succeeds in solving the integer program with a finite
number of steps when a finite minimal solution exists. We enumerate all
objective values z < z, where z, is the optimal one. We also find all
x; values that produce each z. Since there are only a finite number of
integer values less than or equal to z,, the minimal solution must be
listed in a finite number of steps.

We do not claim any efficiency for the direct enumeration method,
although it works well when the optimal x; values are small. Because the
two operations performed are additions and comparisons, the method is
particularly amenable to computer calculation and can readily be coded
to produce extremely rapid solutions to some integer programs. In Sec-
tion 3 we show how to accelerate the enumeration.
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Example
Consider the problem: Find integers x; >0, x, =0, x; >0 that
minimize z when
3x; +4x; + Tx3 =z,
3x; + 2x5 + 3x3 > 8,
4x, — x, —2x3=6,
—X; + 3x, + 4x,=> 2.
We list the steps as they occur in the algorithm.
1. z*¥ = c0.
2. The problem is listed in Tableau E1; o, = (8, 6, 2), all m; = co.

1* 2% 3% 1* 2% 3 2 3 1 2 3% 2 2
3 4 7 6 7 10 8 11 9 10 13 11 12
3 2 3 6 5 6 4 5 9 8 9 7 6
4 -1 -2 8 3 21 -=2-3 12 7 6 2 | =3
-1 3 4} -2 2 3 6 7, -3 1 2 5 9
x; =1 X, =1 xy =2 x,=1{x,=2
X, =
El ‘ E2 E3 E4 E5 E6
Tableaus

4. r = 1lin Tableau El, ¢, = 3.

5. We form Tableau E2. Mark column | of Tableau El (the marking
is shown by the *).

4, r=2inTableauEl,c, = 4.

5. Weform Tableau E3. Mark column 2 of Tableau E1.

4. r = lin Tableau E2, ¢, = 6.

5. We form Tableau E4. Mark column 1 of Tableau E2.

3. A feasible solution is apparent in Tableau E4. r =3, a, > a,
where «, = (9, 6, 2). z* =13, x;* =2, x,* =0, x3*=1. Mark
column 3.

4. r=linTableau El, ¢, = 7.
No new tableau is formed. Mark column 3 of Tableau El.
4. r=2inTableauE2, ¢, = 7.

e
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5. We form Tableau E5. Mark column 2 of Tableau E2.
4. r =2in Tableau E3, ¢, = 8.
5. We form Tableau E6. Mark column 2 of Tableau E3.

The method continues easily. No new tableaus are formed. The feasible
solutionz = 13, x; = 2, x, =0, x5 = 1 is minimal.

3 AN ACCELERATED ENUMERATION

As we indicated in Section 2, it is sometimes desirable to accelerate
the enumeration. This can be done once the variables become evaluated.
We present several rules for making the variables known.

In (1) it may occur that a positive value for one of the x; variables
may not allow a feasible solution to be found; alternatively, some of the
x; must have positive values in order for the solution to be found. Simi-
lar conditions may exist when Algorithm 2 is applied in the search for
the solution to (1).

Consider (1) as listed in step 2 of Algorithm 2. We form an index

set K with initial members j =1, 2, ..., n. We then form
(8) Ui=zaikyk’ l=1,2’ym3
kekK

i for ke K is a nonnegative integer that represents the subsequent
increase in x,,. Thus y, <m,’ where m,’ = m, — x,/. Initially all x,” = 0.
We require that U; > b;. Hence, we may be able to determine from
(8) whether no y, can produce feasibility or whether some y, must have
avalue to produce feasibility. Take
€) U*= Y a,m/, i=1,2,....,m,
keK;*

Where K;* is the set of indices in K with a;, > 0 and U,* is the maximum
value of U,. If K;* has no members, then U;* = 0. The following rules
apply where initially c =0 and d; =0 for i = 1, 2, ..., m. (These rules
are extensions of the ones developed by Le Garff and Malgrange [6]
and Balas [/] in the m; =1 case. For a concise presentation of the
m; =1 case, see Beale [2].)

Al. If any U* < b; — d;, then no y, values can produce feasibility.
No feasible solution to the problem can be found. Stop.



92 4 SOLVING INTEGER PROGRAMS BY ENUMERATION

A2. If U* + a;; < b; — d; for je K, then y; = 0 since y; = 1 produces
infeasibility. Mark column j and remove index j from K. Write a new
form for the U; in (8) and calculate the U;* in (9). Return to rule Al.

A3. (a) If jis the only index in K,* and d; < b, thena;;y; > b; — d;

requires that y; > 0 where 6 = {(b; — d)/a;;}.!

(b) If U* — a;;m;” < b, — d; for je K, then y; > 0, where 0 is the
smallest integer with the property that U* —a;;m;" + a,;0
= b; — d;. Any y; < 0 produces infeasibility.

(c) When 8 is found in (a) or (b), increase x;" by 0, decrease
m;’ by 0, replace ¢ by ¢ + ¢;0 and d; by d; + a;;0. If m;/ = 0,
remove index j from K. Write a new form for the U, and
calculate U;*. Return torule Al.

If, as a result of adhering to these rules, all x; = 0, continue in the
algorithm with step 3. If, on the other hand, some x;’ is positive, prob-
lem (1) can be solved only with x; > x;’ for all j. We then take value d;
as component i of a. If @ > u,, the problem is solved with z = ¢ and
x; = x;’ for all j. Otherwise, add a new section of columns to the list.
Each column is headed by an index k € K. The column values are given
by ¢’ =c+ ¢, and o' = a + «,. The ¢, and «, values are taken from
the list in step 2. Underneath the section write the x; = x;’ values. Mark
all unmarked columns on the list from step 2 and go to 3.

We are able, further, to evaluate the variables within Algorithm 2.
In the enumeration to the solution of (6) we have a feasible solution to
(1) whenevera = «, isachieved withthe property thata, > «,.Eachcolumn
k developed in Algorithm 2 is a listing of z and « that results when the
x; values appearing below the column section, with x, increased by
unity, are substituted in (6). 1t may be that these values of x; do not
allow a feasible «, to be produced or that some of the x; must be in-
creased to obtain values of 2, > «,. We can therefore modify Algorithm
2 to ascertain whether a current stage of the enumeration will lead to a
feasible « or whether some of the x; require specific values in order to
produce a feasible «.

When index r is found from ¢, =min ¢; in step 4 (with ¢ =c,),

! This rule is useful if m; = oo, If m; is finite, then rule (b) holds as well.
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we define a set of columns K as follows:

(a) Form set K’ where column k€ K" if k is an index of one of the
unmarked columns in the section containing column r.

(b) Remove k from K'if ¢, > z* (the ¢, value in the section).

(c) Remove r from K" if x, + 1 = m, for the x, value found below the
section.

(d) Remove k from K" if ¢ + ¢, > z* where the ¢, value is taken from
the list in step 2.

(¢) The remaining set K'is taken asset K.

Define the column values for «, and d,, d,, ..., d,,. The possible val-
ues of z and component V; of « that can be enumerated at this stage are
given by

=C+ chyks
(10) keK
Vi:di+Ui’_ i:192,"'7m9

where U, is given by (8) for the present set K y, is a nonnegative integer
that represents the subsequent increase in x,. Thus, y, <m,’ where
m, = m, — x,’. The x;’ are the x; values that appear below the section
containing column r with x,” = x, + 1.

In terms of Eq. (1), we require that V; > b;. This means that we may
be able to determine from (10) whether no y, can produce feasibility or
whether some y, must have a value to produce feasibility. Consider

V*=d, + U*, i=1,2,...,m,

where U;* is given by (9) with K;* as the set of indices in current K
with a;, > 0. Then V;* is the maximum value that V; can attain when
we perform the enumeration starting with the section containing column
r. The following rules then apply.

BI. If any V;* < b;, then no y, values can produce feasibility. Mark
column r and continue the algorithm in step 4.

B2. If V* +a;;<b; for jeK, then y; =0 since y;>1 produces
infeasibility. Remove index j from K and write new forms for the U;.
Calculate the V;* and return to rule Bi.
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B3. (a)

If jis the only element in K;* and d; < b;,thend, + a;;y; > b;
requires that y; > 0 where 0 = {(b; — d})/a;;}.

(b) If V* —a;;m; <b; for jeK, then y;> 60 where 0 is the

(©)

smallest integer with the property that V;* —a;m;" + a;;0
> b,. Any y; < 6 produces infeasibility.

When 6 is found in (a) or (b) and if ¢+ ¢;0 = z*, then
mark column r and continue the algorithm in step 4. Other-
wise, increase x;' by 6, decrease m;" by 0, replace ¢ by
c+c¢;0 and d; by d; +a;0. If m; =0, remove j from K.
If ¢ + ¢, = z*, remove k from K.

Write new forms for the U;; calculate V;* and return to
rule BI.

When the application of the rules is completed, we return to the
algorithm in a modified step 5. The modifications consist of the follow-

ing:
5. (a)

(b)

Mark column r. Take value d, as component i of a. If a > a4
take z* = ¢ and form S(z*, x,’, x,, ..., X,/ ); go to 4. Other-
wise, go to 5 (b).

If set K has no elements, go to 4. Otherwise, add a new section
of columns to the list. Each column is headed by an index
ke K. The column values are given by ¢, =c¢ + ¢, and o’
=« + a,. The ¢, o, values are taken from the list in step 2.
Underneath the section write the x; = x;’ values. Go to 3.

Example

Find

nonnegative integers x; < | that minimize z when

S5x; + 8x, + 10x3 + 2x4 + X5 =z,
X, —3x,+ 5x34+ x4 —3x5— 6x42=2,
——2x1+6x2— X3“‘3X4+2xS+2x622,

—X; = Xy 4+ 2x3— X4 + x¢=1.

We list the problem values in Tableau El with 25 = (2, 2, 1) and all
m; = 1. We obtain U,* =7, U,* =10, U3* =3 with K=(1,2, ..., 6).

For rule
from K.

A2, U* + a,4 =1 <2; we mark column 6 and remove the 6
Hence, U, * =7, U,* =8, Us*=2. For rule A3, y; = 0=1;
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x;7=1,¢=10,d,=5, d, = —1, d; =2. We remove 3 from K; no
further rules apply and we form Tableau E2. All unmarked columns
in tableau E1 are marked.

1 2 3 4 5 6+ 1 2 4 5
5 8 10 3 1 0 15 18 13 11
1 -3 5 1 -3 -6 6 2 6 2
-2 6 -1 -3 2 2 -3 5 -4 |
-1 =1 2 -1 0 1 1 1 1 2
Tableau El x3 =1
Tableau E2

A feasible solution is apparent in column 2 of Tableau E2. We have
z¥ =18, x,* =1, x3*=1, x;*=0, x,* =0, x;* =0, x* =0; mark
column 2. In step 4 of Algorithm 2, r = 5 in Tableau E2 with ¢, = 11.
We obtain K = (1, 4) and V * =4, V,* =1 <2, V3* =2 for rule Bl.
We mark column 5 and continue the algorithm. No other column can
pass rule B1. The current feasible solution is minimal.

4 A DYNAMIC PROGRAMMING METHOD

The enumeration in Section 2 may be interpreted as a dynamic
programming procedure. In this section we proceed to formalize the
method in terms of the dynamic programming equations.

We define the function

(11) F(cx)=min(icjxj

Y a;x; =a, integerx;> O),
/=1 =1
F(0) =0,

where « is a feasible variable vector. Problem (6) is equivalent tothe func-
tional relationship given by (11). Note the the zero argument of F(0)
1s a vector with zero elements. We are able to convert (11) to a dynamic
programming recursion in
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Theorem 3
The functional relationship (11) leads to the recursion

F(«) = min(c; + F(a — a))),
(12) j
F(0) =0,

where « is feasible. (The recursion given in (12) was first formulated by
Gilmore and Gomory [4] for knapsack functions.)

Proof

Consider (11) with a # 0; then some x; is positive. Suppose we have
X, positive ; then

F(a) = min(ck + Y x4 elxe— DY ajx; + o (x, — 1) =a — a,
J#k J#Ek
integer x; > O),
Thus

(13) F(a) = ¢, +min( i c;x;’
=1

n
Yoajx; =a—o, integerx; > O),
j=1

where the change of variables x;" = x;, j # k, x," = x; — 1 is made; note
that the min term is F(« — «,) from definition (11). We have

(14) F(a) = ¢, + F(a — ).

Equation (14) holds in the case where x, > 0; hence, we have

(15) Flo)<c¢; + F(a — a)), =12 ...,n

in all cases. Inequality (15) is another way of writing (12) provided that

the equality holds for at least one j, as in (14). Since at least one x; is
positive for « # 0, we have achieved (12) and proven the theorem.

The recursion in (12) may be solved as a direct enumeration because
F(a,) = c,, where ¢, = min ¢;. Thus we produce one solution value for
F(2). Replacing a by o — «, in (12), we form

Fla — a,) = min(c; + F(a — o; — ,)),
i
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which we substitute for the F(x — «,) term on the right side of (12).
We then obtain

(16) F(a) = min(m_in(cj' + Fa —a))), r_nin(cj + F(ax — a)))),

where cj' =¢;+c and o) =a;+a for j=1, 2, ..., n Designate ¢,
and o;" as ¢; and «; values. Note that (16) is of the same form as (12)
except that the original ¢, + F(x — ,) term is missing and other terms
are included. Since we have the same form as (12), we obtain the solution
value F(a,) = ¢, by finding a new ¢, = min ¢;. In this way we find F(«)
for all feasible «. By keeping track of the indices j that produce each
F(a,), we obtain the corresponding x; values.

The method of solution just outlined is the same as given in Section
2. Algorithm 2 conveniently lists the values of F(a) at any stage of the
enumeration.

5 KNAPSACK FUNCTIONS

The knapsack problem and its applications were introduced in Chap-
ter 1. Following the author’s [5] approach, we shall present a dynamic
programming solution to the problem. We define the knapsack problem
as: Find integers x; > 0 that maximize z when

where each c; is a positive number, each g; is a positive integer, and L
is a positive integer.
We express the one-dimensional knapsack function as

W) F(x)——-max(chxj Y a;x;=x, integerszO)
=1 =1
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for feasible values of x. (See Gilmore and Gomory [4] for higher di-
mensional knapsack functions.) The knapsack problem is solved when
we find the maximum of F(x)for x < L.

In a manner like that used in Section 4, the knapsack function can
be written as the dynamic programming recursion

(18) F(x) = max(c; + F(x — a;)),

jiajsx

F(0) = 0.

The maximum in (18) is for indices j with the property that a; < x.
This occurs because the x; values are zero when the corresponding g;
values are greater than x in (17).

We can obtain an immediate solution to (18) by finding a, = min g;
for all j. If a, =a, for k s r, then index r is chosen where ¢, > ¢;.
We take x = a, and produce F(a,) = ¢,. We then replace x by x — a,
in (18) and have :

F(x_ar)= max (Cj+F(x_ar_aj))’
japtaj<x
which we substitute for the F(x — a,) term on the right side of (18).
Hence,

F(x) = max( max (c¢; + F(x — a})), max (¢; + F(x — a})),
j#Era;j<x jay <x
(19)

where ¢, = ¢, + ¢; and g; = a, + ¢; for all j. If all ¢;" and a;" are defined
as additional ¢; and g, values, then (19) is of the form given by (18)
and another immediate solution can be obtained by seeking a new
a, = min a;; again F(a,) = ¢,. We continue this way until F(L) is found
or until no other F(x) for x < L can be produced. At the same time,
we remember the j = r that produces the solution so that we can deter-
mine the optimal x; at the end of the procedure. We also consider only
distinct g; values. If a; = g, and ¢; > ¢, for j # k, then take x, = 0.
The method for solving the knapsack problem is contained in
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Algorithm 3

1. List the values of the problem as follows:
1 2 3 ... n
cy €3 €3 ... Cy ;
a, a, as ... a,

L is also listed. Go to 2.

2. Given the list, find index r from g, = min g; < L for all unmarked
columns in all sections. 1f g, = L or if no a, exists, go to 4. Otherwise,
takec =¢,,a=a,andgo to 3.

3. Add a new section of columns to the list, if possible. Calculate
¢/ =c+c;and g = a + g for the indices j of the unmarked columns
in the section containing column r. Mark the r column. The ¢;, g, values
are taken from the list in step 1. Add a column with values ¢;" and g’
if: ’

(@ a/ <L

(b) a;"is not on the list.

(c) a; is on the list and has corresponding c; value that is smaller
than ¢;’.

Underneath the section added, write the x; values from the section con-
taining the newly marked r column. Increase x, by one for the new sec-
tion. Designate the ¢;’, a;" as ¢;, a; values and go to 2.

4. The problem is solved with solution ¢, = max ¢; for a, < L for
columns in all sections. The values of the variables are found below the
section where ¢, appears; increase x, by one.

Algorithm 3 is a single pass algorithm in the sense that the x;
values are always available. If desirable, the x; values need not be main-
tained but may be calculated in a back-tracking procedure. We would
then define the function I(a,) = r in step 2. When index s is found in
step 4, we calculate the x; values as follows:

(a) Initially all x; = 0.
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(b) Take a = g, instep4.
(c¢) Increase x, by one.
(d) Calculate m = a — a,, where a, is the value from the list in step 1.

If m =0, the current x; values are optimal. Otherwise, take
s = I(m) and return to (c).

Example
Find integers x; > 0 that maximize z when

3x; + 4x, + 3x; =z,
9%, + Tx; + 6x5 < 13,

We list the values in Tableau El with L = 15. We have r=3, ¢ =3,

“a =6 in Tableau El. We mark the 3 column and form Tableau E2.
We have r =2, ¢ = 4, a = 7 in Tableau E1. We mark the 2 column and
form Tableau E3. No other columns are added. The maximum solution
is in column 2 of Tableau E3. It is z = 8 with x, =2, x;, =0, x; =0.

1 2% 3* 1 2 3 2

3 4 3 6 7 6 8
9 7 6 15 13 12 14
x3=1 xy =1
El E2 E3
Tableaus

Problems

1. The map coloring problem was described in Chapter 1. Show how a
feasible solution may be found by enumerating values of «,, for

t,—t, = .

When the problem is tabulated as in Algorithm I, what is a good
column selection criterion that leads to all «,; # 0.
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. The traveling salesman problem was discussed in Chapter 1. Show
how to enumerate solutions to the objective function until the con-
straints are satisfied.

. Solve the example on page 90 by the accelerated enumeration of
Section 3.
. Find integers x; > 0 and min z for
2x, + 5x; + 4x; = z,
3x; + 2x, + 3x; > 8,
Xy + 3x, + 5x3 = 11,
. Minimize z when 0 < x; <1,0<x,<2,0<x%x;<3,0<x,<1 in

2x, + x; + 3x3 4+ 5x, =z,
—Txy — X3+ X3+2x423,
2%, + X3+ X3+ 2x, > 6.
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5 CONTINUOUS SOLUTION
METHODS

—_—

We turn our attention to a study of continuous solution methods
for solving integer programs. The simplex algorithm is an efficient
method for solving a linear program for continuous variables and can
be used to advantage for the integer problem.

First, we present the theory for continuous solution methods in
which the integer restriction i1s temporarily relaxed and the problem
solved as a linear program. If the continuous solution is also integer,
then the integer problem is solved. If the solution values are fractional,
we obtain the optimal integer values from the continuous solution. The
method is analogous to the all-integer dual simplex method of Chapter 3.
The resulting algorithm is comparable to one by Gomory [2], but has
different convergence properties.

We then show how to combine the continuous solution and all-
integer methods; this process tends to improve the convergence.
The approach taken in Sections 4 and 5 was indicated by Gomory [3].
The chapter concludes with a new algorithm for problems having vari-
ables with upper bounds, and a method to solve the mixed integer
problem.
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1 A CONTINUOUS SOLUTION METHOD

The integer programming problem may be written as: Find integer

x;=0forj=1,2,..., nthat minimize z when
n
Clxl = Z,
(1) =t
n
Za,-jxj=bi, i=1,2,...,m,
i=t
and the a;;, b;, and c; are given integer constants. Suppose the integer

constraint on the x; is relaxed, i.e., the x; may take on fractional values.
The resulting continuous problem may be solved by the simplex method
which converts the equations of (1) to an optimality format

1 -
Z=Zo+ ijxj,
i=1

(2)

t
Xpp1=Dbi+ Y a;x; i=1,2....m,
i=1

where the first t = n — m and the last m variables have been arbitrarily
selected as the nonbasic and basic variables, respectively. Since (2) is an
optimal canonical form, ¢ >0 and b; > 0; the optimal continuous
solution to program (1) is x,,; = b; for the basic variables and x; =0
for the nonbasic variables. In addition, if the continuous solution has all
b; as integer, program (1) is solved. When any of the b; are fractional,
the equations of (2) are used to obtain the integer solution. Program (1)
is equivalent to: Find integer x; > 0 for j =1, 2, ..., n that minimize z
when the objective function and constraints are given by (2).

We shall follow closely the approach of Chapter 3. The method to
find the optimal integer solution from (2) consists of making a series of
changes of variables to achieve the transformation

t
(3) xl‘=dj+kzldjkyk, j=1,2,...,t.
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The integer constants d;, d;, are developed in an iterative procedure
during the solution of the problem. The initial transformation is
established by writing (2) in parametric form as
t
zZ = 20 + Z Ej yj N
j=1
4) x;=y;20, j=12 ...,
t
xt+i=5i+zaijyj, i=1,2,"',m'
j=1

Eliminating x; from (2) using (3), we obtain the equivalent problem:
Find integer y; > Oforj =1, 2, ..., t that minimize z when

t
z=12z4 + Z ¢;/'y;,
=1
t
(5) xj=dj+kzldjkyk, j=1,2,...,l,

t
, .
xt+i=bil+ Zaijyj’ l=1,2,...,m.
j=1

The constants z,’, ¢;’

'/, by, and a;; are developed as a result of the trans-
formation with

- i,
20 =Zo+ Y &;d;,

j=1
t
¢;' = Y &dyy, j=1,2,...,1,
k=1
t
bl,_5i+ Zaijdj’ l=]"2? , m,
j=1
t
al{j = Z ‘_lik dkj’ all i and j
k=1

If the constants are such that ¢;/ >0, d; and b;" are nonnegative
integers, then the minimal solution to (5) is given by z =z, y;=0
for j=1, 2, ..., . In addition, the minimal solution to (1) and (2) is
givenby x; =d;forj=1,2,...,rand x,,; =b/fori=1,2,..., m.
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In Section 2 we develop transformation (3). The proof of optimality
and the equivalence of programs (2) and (5) then follow by adapting the
methods and proofs of Chapter 3. We leave the details to the reader.

2 IMPROVING A NONOPTIMAL SOLUTION

We demonstrate here how to find the transformation (3) that yields
an equivalent problem, Eq. (5), and leads in a finite number of steps
to the optimality conditions ¢;” > 0, integer d; > 0, and integer b;" > 0.

We can write (5) as

t
(6) X=ﬂ+2“jy1'a
ji=1

where x is a column vector with components z, x;, X, ..., X,. f1s
a column vector with components z,’, d;, d, ..., &, b, by’, ..., b,/
and o, is a column vector with components ¢/, d,;, daj, ..., dy;, a{;,
ay;, ..., a,;. Initially (4) is also in the form given by (6) with § compo-
nents z,, 0,0, ..., 0, b, b,, ..., b, and «; components ¢;,0,0,...,0,
1,0,...,0,a,;,d,j, ..., dy,;. The one appears as the (j + 1) component
of a;.

We insure a finite algorithm by maintaining «; lexicopositive. If
(4) is written in the form of (6), we see that «; >0 because all ¢; > 0.
Suppose at some iteration we have achieved a form like (6) with «; > 0,
all nonobjective function components of 8 nonnegative and at least one
component of B fractional. Select a row with fractional § component.
Suppose the corresponding equation is given by

@) Xo = by + Zl”f Y-
~

Defineq = {b,} — b, > 0and p; = a; — [a;] = 0. Thus(7) may be written
as

t t
(®) Xo — Zl[aj]yj =bo + lejy,-.
Jj= Jj=
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Defining integer y as the left side of (8), we have y > {by} or y — )’
= {b,} for integer y’ > 0. From (8) we obtain

t
(9) Y==a+X P
=
> 0.

Equation (9) is a new restriction that the y; must satisfy to produce an
integer value for x,. Note that b, may be negative so that the objective
function may be used to generate a new restriction. To produce a finite
algorithm, we will use the topmost fractional component of f to select
the row for (7). Thus x, in (7) represents z or some x;.

Next find index s from

1 .
— oy = l-min —a;,
Ps jeJ*+ Pj
where J ¥ is the set of indices j where p; > 0. The constraint (9) may then

be written as

(10) o= —q+ j;sp,- Vit Psys.
If yis eliminated from (6) using (10), we obtain
(1 x=B+ Ya/y,,
where "
p=p+2La,
Ds
aj’=aj—&as, j#s,
’ ]' S
o) =—a;,

and y,’ has been redefined by new variable y,. If in addition ' and o
are redefined as f and «;, then (11) is again of the form of (6) with a; > 0.

The dual lexicographic method is then used in conjunction with (11)
to find a new continuous solution. In effect, we employ a continuous
simplex method in an attempt to achieve an integer solution. As in the
lexicographic dual method of Chapter 2, we determine the equation of
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(6) [after redefining (11) as (6)] with most negative 8 component, exclud-
ing the objective function. If all such components are nonnegative, the
continuous solution is given by x = 8. Otherwise, let the equation deter-
mined by a negative component be

t
(12) X, = —b0+ Azlajyj,
j=

where b, > 0. Define J* as the set of indices j where a; > 0. Define
index s from

1 .
— o, = l-min — «;
as jeJ+t aj
and write (12) as
(13) X, =—bo+ Ya;y;+a,y,
JEs
s
>0,

where y,” 1s a nonnegative integer defined equal to x,. Eliminate y,
from (6) using (13) with y,” and obtain the form of (11) where

’ bO
ﬂ =ﬂ+-as?
as
a;
aj=aj__as? j#s’
a
, 1
Uy = — Ay,

and y,” has been redefined as y,. Note that the constant term in the x,
row becomes zero and the equation becomes x, = y,. Thus x, is consi-
dered nonbasic. This enables us to make a lexicographic argument to
show that optimality for the continuous solution is reached in a finite
number of steps.

When the form of (11) is achieved, it is redefined as (6). If any non-
objective components of § are negative, we repeat the procedure that
led to the selection of (12) and the new form of (6). Otherwise, we have
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achieved a new continuous solution. If the continuous solution is frac-
tional, then (9) is developed and the method repeated until the optimal
continuous solution is all-integer. The entire procedure is contained in

Algorithm 1

1. Solve (1) by the simplex algorithm of Chapter 2 to obtain a form
equivalent to (2). If the basic continuous solution has all integer values,
the integer programming problem is solved; stop. Otherwise, go to 2.

2. Develop a tableau by listing the columns x| 8, a;, a5, ..., ,.
Column x is a listing of the variables. The first element of x is z; the
next ¢ are the nonbasic variables in order and the next m are the basic
variables in order of equation appearance. Assuming the basic and non-
basic variables are indexed as in (4), the f and «; values are assigned
accordingly. Initially, then, zy" = Zo, ¢/ = ¢;,d; = 0,d;; =1, d;; = 0 for
i #j, b/ =b; and a;; = a;; where the unprimed values are from (2).
Use the corresponding values when the problem format is different;
the basic and nonbasic variables are indexed according to the problem.
Goto3.

3. Select the topmost row with fractional f component. The row val-
ues are by, a;, a, ..., a,. Calculate ¢ = {by} — b, and p; = a; — [a;],
forj=1,2,...,1. Goto4(a).

4. (a) Define J* as the index set where p; > 0. Determine index s

from
1 o1
— o, =I-min —«;.
ps jedJ* pj
Calculate new column values
pr=p+Ly,
Ps
’ p' .
a}.:(xj—;ias, _]?és,
, 1
o =—a.
Ps

Designate ', «; as the current f, «;, and go to 4 (b).
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X3
X4
X1
X2
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(b) If no component of § beyond the first is negative, the optimal
continuous solution is achieved. If the optimal solution is
fractional, go to 3. If the solution is all-integer, the problem is
solved with values x = 8. Stop. Otherwise, select the nonob-
jective row with most negative  component. The row values

are —by, a;, ay, ..., a,. Takeq=by,p;=a;,j=1,2,...,¢
and go to 4(a).
Example

Find integers x; > 0 that minimize z when
3y — x, + 12x;+ x,=12,
X, + x,+ 3x;—3x,=4,
3x; —3x, + 11x; + x,=2.

1 2 1 2 1 2
I S A T I
0 1 0 X3 1 % - % X3 % % - %
0 0 1 xs| O 0 1 X | ¥ % %
7 -4 4 x |—=1 =5 3 x [ 0 0 1
3 3] w2 b 3| xm|: 3 %
Tableau El Tableau E2 Tableau E3

1 2 1 2 1 2
8 6 1 z |3 5 ¥ z (12 5 5
I N A I L
% % % X4 % 1 % X4 2 1 2
+ - % < X | 3 —2 3 X | 5 =2 6
13 13 3 xy | 4t 2 3 b 2 3
Tableau E4 Tableau E5 Tableau E6

. Using the simplex algorithm, we transform the equations to
z =184 3x;+148x,
—12x; 4+ 3%,

+ix5 + $xg.

X, =

Wi Wl

x2=
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2. Tableau E1is formed.

. The zrowisselected.g =2, p, =%, p, = F

4. (a) J* =(1,2);s = 1. We form Tableau E2.
(b) Reminimize. The x; row is selected.g =1, p; = —5,p, = 3.
(a) J* =(2); s = 2. We form Tableau E3.

. The zrowisselected.g =4, p, =%, p, = .

(a) J* =(1,2); s = 2. We form Tableau E4.

The x, rowisselected.g =1, p, =%, p, =%

. (@) J* =(1,2); s =2. We form Tableau ES.

The zrow is selected.g =2, p, =0,p, = ;.

. (@) J* =(2); s = 2. We form Tableau E6.
(b) The minimal solutionisz=12,x; =0, x, =2, x =5, x; = 5.

(98]
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¢

Since a; >0, every utilization of step 4(a) of Algorithm 1 causes f§
to increase lexicographically. In an argument similar to that in Chapter
3, we show that the components of § have finite upper bounds. The
problem of producing a finite algorithm arises because of the fact that
although p is lexicographically increasing, the components of f may
change only by minute amounts over an infinite number of iterations.
To prevent these infinitessimal changes and obtain a finite algorithm,
we select the topmost row with fractional § component in step 3 of the
algorithm. We shall prove that the algorithm takes a finite number of
iterations with this row selection strategy.

There are two types of convergent processes occurring during the
use of the algorithm. One of these occurs during the reoptimization
phase. Each minimization cycle takes only a finite number of iterations
because the number of basic variables is fixed during the cycle. Since
is lexicographically increasing from iteration to iteration, the same set
of basic variables may not recur and since there exist a finite number
of sets of basic variables, the optimal continuous solution must be
arrived at in a finite number of iterations.
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The second convergent process occurs at the end of each minimiza-
tion phase. At the end of some cycle the continuous solution must even-
tually be all-integer. The number of minimization cycles must remain
finite. To achieve a finite number of cycles, we first show that the com-
ponents of f have finite upper bounds when a finite optimal integer
solution exists.

Assume there exists a finite optimal solution x° with objective com-
ponent z°% ie., x°=(z°% x,°% x,°% ..., x,°. Thus x° must satisfy (6);
there must exist y; > 0 that satisfy

(14) Zlocjyj=x°—ﬂ.

Consider the first component of f, the objective value z,’. Although
monotonically increasing, z,’ < z° holds for all minimization cycles.
This is readily apparent because if z,” > z° after some cycle, the objec-
tive row from (14) is

t
(15) Yoei/yi=2"~-zy
=1

< 0;

since ¢;/ > 0, then, as seen from (15), no y; > 0 values can possibly
produce z = z° Thus z,’, the first component of f, is bounded from
above by z°.

The other components of 8 remain bounded. Suppose, on the con-
trary, that the (» + 1) component, 1 < r < n, takes on arbitrarily large
values. Take the (r+ 1) component as d, with d, > x,° (for r>1t,
take d, = b, and d,; = a;;). The corresponding equation from (14) is

t
(16) Ydyi=x"~d,
i=1

< 0.

If all d,; >0, then no y; > 0 exist that satisfy (16) and d, would be

rj =

bounded by x,°. Thus if (16) exists, some d,; < 0 and
(17) Z drj yj < xro - dr

jeJ~
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must hold; J ™ is the set of indices j where d,; < 0. We perform the follow-
ing steps.

1. Obtain index sfrom

: I-mi
—— o, = I-min o; -
_drs jeJ= T U,j !
2. Write (17) in the equality form
(]‘8) AZI:_drjyj-i_ys/:xro _dra
je

where y,” = 0. Use (18) to eliminate y, from (6) and obtain the form of
(11) where
x°—d,

d

(19) B=p+

o .
The boundedness of 8 follows easily by induction. Suppose d; > x,°.
The objective value from (19) becomes
4]
” ’ Xy = dl ’
Zo=2Zo +—¢;
4] 4] dls s
since a,>90 and d,, <0, then ¢, > 0. Furthermore, zj < z° which
results in

zV —zy
d, S)‘10"' P 2 (—dyy.

S

An upper bound has been achieved for d;, the second component of 8.

Suppose now that d,, d,, ..., d,_, are bounded by §,, 5,, ...,
8,_,, respectively, and d, > x,°. Since «, >0 and d,, <0, one or more
of the values ¢,’, d,,, d,,, ..., d,—;, is positive. We achieve an upper
bound for d,

ZO _ ’
[0+ 222 ay, i >0,
i CS
200 d,<-
| o, 0i—d, . .
Lxr+ 7 (—d,y), if d,>0, i=1,2,...,r—1

Thus by induction all components of # are bounded. Note from (20),
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however, that the bounds can be quite large since ¢,” and the d;; may
be small in a given problem. Large bounds will reduce the efficiency of
the algorithm. The means for rectifying this deficiency will be discussed
in Sections 4 and 5.

We need to show that the components of § may not change by
minute amounts over an infinite number of cycles while remaining be-
low their upper bounds. If the process takes an infinite number of cycles,
then an infinite sequence, f§; < ff, < ;< ..., results where B, is the
continuous solution at the end of minimization cycle k. Suppose that the
first » components, | <r <n + 1, of B remain fixed at integer values
starting at some cycle k,. This supposition will be proven true for at
leastr = 1.

In the r = 1 case, let z,* be the objective value at the end of minimi-
zation cycle k. Let n, be the smallest integer with the property that
2o* < n for all k. Some bound like n, exists since z,* is bounded by z°.
We now show that z,* = n, for all cycles k > k.

From the definition of n, we must have z,' =n, — g with0 < ¢ < |
after some cycle 7. 1f ¢ = 0, then z,* = n,, for k > i. If g > 0, then we use
the objective row in step 3 of the algorithm to produce a new objective
value z,' =z, + q¢/p,, where p, = ¢/ —[¢,;'] > 0. Since ¢, > 0, then
ps<ciandzy =z, + ¢ =ny. Thus zo* = nyfork > i + 1 = k, and the
first component of f remains fixed at an integer value after some cycle k.

If we assume that the first ¥ components of § remain fixed at integer
values after some cycle, we see that the algorithm takes an infinite
number of cycles if component r + | increases over an infinite number
of cycles. Take b, as component r + 1 of § and a,, a,, ..., a, as the
corresponding row values. Since b, is bounded, then for it to increase
over an infinite number of cycles there exists an integer n, such that for
all cycles k > i > k, we have n, — | < by < n,, where n, is the smallest
integer with the property that b,* < n,. Row r is the eligible row, after
cycle i, in step 3 of the algorithm. The new value b, = b, + qa,/p,
is produced where g =n, — b, and p,=a,—[a,]>0. The first r
components of f must remain fixed in the next minimization cycle.
Thus a; is the first nonzero component of o, > 0 and a, > 0. Since a, > 0,
then p, < a, and b, = b, + ¢ = n,, which contradicts the condition
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that b,* be smaller than n, and the assumption that b, increases over an
infinite number of cycles.

We have demonstrated that it is impossible for component r + |
of B to increase for an infinite number of cycles; similarly, every com-
ponent of B attains a fixed value which it maintains from some cycle
onwards after a finite number of cycles. The fixed value is also an integer.
The choice of the topmost fractional component of § is thus sufficient
to achieve the finiteness.

4 REDUCING THE CONTINUOUS SOLUTION TO AN ALL-INTEGER
FORMAT

The continuous solution in the integer programming problem is
usually found rapidly with the simplex method. The integer solution,
however, may be more difficult to obtain because the components of
may have large upper bounds as shown in (20). In an effort to produce
the integer solution rapidly, we present a method that changes the con-
tinuous solution (2) to an all-integer format. When the constants are
integers, Algorithm 1 of Chapter 3 may be used to find the minimal
solution. Alternatively, the simplex method may be used to reminimize.

We begin by investigating the constants of (2). Equation (1) may be
written in matrix form as
(21) Axy + Bxg=b,

where xy = (xq, x5, ..., x,) and xg = (X, 41, X, 12, - -., X,) are vectors
representing the nonbasic and basic variables, respectively; the inverse
matrix B™! must exist. Thus, multiplying (21) through on the left by
B~!, we obtain the matrix form of the constraints of (2) as

(22) xg=B"'b— B 'Axy.

Since B~ ! exists it may be written as

-~

_ B

" det B’

where B is the adjoint matrix of B and det B is the determinant of B.
Since the elements of B are assumed to be integers, the elements of B

-1
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are integers. Furthermore, all elements of 4 and b are assumed to be
integers; thus; every constant appearing in (2) or (22) is of the form
i/{det B, where numerator /is an integer.

We are interested in D, the absolute value of det B. If D =1,
an integer solution is produced in (2) and the integer program is solved.
If D is very large, the constants of (2) may be quite small with resulting
large upper bounds in (20). The use of constraint (10) and the remini-
mization may result in still larger D = D’ at later cycles. Ultimately the
process results in a D’ value that equals one (i.e., if D’ does not divide
equally into the respective numerators for the variable values). Thus,
Algorithm 1 may take many iterations to provide the integer solution
if D’ becomes large.

The D value develops during the simplex algorithm as the product
of the pivot elements. The pivot step in the first iteration is represented
by left-multiplying the matrix (a;;) of (1) by the elementary matrix

1 ok
1 k,
(23) Bl = kr 3
k, 1
where
ki = —%, l # r.
al’S
1
k,=—.
al’S

Pivoting in iteration i consists of left-multiplying B;_,B;_, --- By(a;))
by B;, where B; is an elementary matrix of the same form as (23)
with k; = —a,/a,,, i # r and k, = 1/a,; (with usually different r and s
values for each iteration). Thus each row of B~ ! is given as a row in the
matrix formed by the product By By_, - - B, of elementary matrices,’

! The inverse matrix in this form is called the product form of the inverse and as
such is useful in computational work.
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where N is the number of iterations to achieve the optimal continuous
solution (2). Matrix B~ itself does not usually result from the product
since the order of the basic variables will most likely be different from
that shown for x; in (22). Since det B; = 1/a,,, where a,; is the pivot
element (initially @, =a,), then the absolute value of det B! is one
divided by the product of the pivot elements. Also, BB~ = I; hence,
det Bdet B™* =1 and D is proven to be the product of the pivot
elements.

By calculating D we have a measure of how close we are to achieving
an integer solution. The effect of using constraint (10) is the same as
adding an equivalent constraint with integer coefficients to (1). Thus
p, becomes the pivot element in developing (11). If D is the determinant
value at step 3 of Algorithm 1, then D’ = p,D is the determinant value
at the end of step 4(a). Similarly, a, is the pivot element when (13) is
used during the minimization cycle. Thus, the value D may be deter-
mined during the use of Algorithm 1. When (2) is achieved we desire
toreduce D to unity. ’

The repeated use of (10) without the minimization cycle enables us
to reduce D to unity. This reduction is possible because the pivot
element p, is always less than one. In fact, p, must be of the form i/ D,
where integer i < D; thus D’ =i Whenever fractions appear in (6),
constraint (10) is developed with subsequent reductionin determinant D.
Eventually all integer coefficients will result (the variable values, how-
ever, may turn out to be negative integers).

The procedure for converting the continuous solution (2) to an all-
integer format is summed up in Algorithm 2, The optimal integer solu-
tion is then found by the all-integer algorithm of Chapter 3.

Algorithm 2

1. Same as step 1 of Algorithm 1 except that D is calculated at each
simplex iteration as the product of the pivot elements.

2. Same as step 2 of Algorithm 1.

3. Select the topmost row with fractional § component, if possible.
If all components of § are integers, select a row with fractional «;
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component. The row values are b,, a;, a;, ..., a,. Calculate g = {b,}
—boand p; = a; —[g]forj=1,2,...,1. Goto 4.
4. Define J* as the set of indices where p; > 0. Determine index s

from
1

!
— o, = l-min — a;.
DPs jeJ* pj

Calculate D’ = p, D and new column values

F=p+2a,
Ds
ajIZaj_gjas’ j?ésa
, 1
oAy = — -
DPs

Designate D', f’, a;" as the current D, B, a;. If all components of §
are nonnegative integers, the problem is solved with values x = f.
Stop. If D =1 or all tabular values are integers (set D = 1), go to 5.
Otherwise, go to 3.

5. Use Algorithm 1 of Chapter 3 to complete the solution.

Example

We shall solve the example problem on page 110. Tableaus El and
E2 are identical with those of the first algorithm. We start with Tableau
E2 with D = 2.

1 2 1 2
z 7 3 3 z 7 0 5
X3 1 3 -1 X3 1 2 -1
X, 0 0 1 b 0 -1 2
x| -1 =5 3 x | -1 -8 6
Xy 2 3 3 X5 2 -1 3

Tableau E2 Tableau E3 Tableau E4
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3. The zrowisselected.q =0,p, =%,p, = 1.

4. J* =(1, 2); s=2. We form Tableau E3. D =1; an all-integer
format is obtained.

5. The all-integer algorithm: the x, row is selected and J* = (2)
and s=2.1=6,9=1, p, = —1, p, = 1. Form Tableau E4. The
minimal solution is reached in Tableau E4;z =12, x; =0, x, = 2,
x, =5,x,=3.

The same procedure for converting the continuous solution (2)
to an all-integer format is given by Algorithm 3. The lexicographic
dual simplex method is then used to obtain a new continuous solution.
The method alternates between the reduction of D phase and the
minimization phase until the optimal integer solution is reached.

Algorithm 3

Steps 1, 2, 3, and 4 are the same as those in Algorithm 2.
5. Select the nonobjective row with most negative B component.

The row values are —b,, a;, a,, ..., a,. Take g =b,, p; = a; for j =1,
2,...,t.Goto6.
6. Define J* as the index set where p; > 0. Determine index s from
1 .
— o, = l-min —«;.
Ps jeJ+ pj

Calculate D’ = p; D and new column values

B=p+2La,
Ps
’ p‘
aJ:aJ_;:as’ J#s,
o1
o) =—a.
p;

Designate D', g, ;" as the current D, §, ;. If all components of f
beyond the first are nonnegative, the optimal continuous solution is
achieved. Otherwise, go to 5. If the optimal solution is all-integer,
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the problem is solved with values x = f. Stop. Otherwise, the solution

is fractional. Go to 3.

Example

Find integers x; >0 that minimize z when

5 CONTINUQOUS SOLUTION METHOOS

2x, + 3x, =2z,
3x,+2x =9,
2x, + 5x, = 8,
1 2 1 2
z e &K z 7 0 1
X3 0 1 0 X3 0 1 0
Xa 0 0 1 Xa ¥ % 4
I T A I S S
X1 % T _1_21' X1 2 3 _%
Tableau El Tableau E2
1 2 1 2
z 7. 0 1 z 8 4 1
X3 4 5 - 1 X3 3 % —%
x, | -3 -4 3 X, 0 0 1
x, [ —1 -2 1 b 0o -2 1
X 5 3 - X, 4 : -1
Tableau E3 Tableau E4

1. Using the simplex algorithm, we transform the equations to

2. x5 and x, are the surplus variables. Tableau El is formed. D = 11.

— 76 4 5.
z=17+ 11X+ 71%4>

X2

X1

O

6
1

2 5.

l

—+

SN
—

2 3
= 11X + T1%4>

2. .
T1X3 — T1%4»

3. The zrowis selected.q = i, p; = 7%, P2 = T4~
4. J* =(1,2); s = 2. Tableau E2 is formed. D = 5.
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The x, rowisselected. g =4, p, =1, p, = 1.

J* =(1,2);s = 1. Tableau E3 is formed. D = 1.

. The x, rowisselected. g = 3,p; = —4, p, = 3.

. J* =(2); s =2. Tableau E4 is formed. D = 3. The optimal integer
solution is apparent in Tableau E4. z = 8, x; =3, x, =0, x, =0,

N h W

x; =4

Martin [4] has a method somewhat similar to Algorithm 3. He
achieves D = 1 by using a constraint different from (10) and then re-
minimizes. In Algorithm 3, however, the lexicographic increase of f§
is maintained and the form of (10) permits b," to be at least the next
highest integer value after b,, a property that produces convergence.

5 BOUNDING THE DETERMINANT VALUE

Let the integer program be written in the form of (6) with a; >0
and the components of § having finite upper bounds. A bound y may
be selected for D so that for every iteration D < y. If § is now forced
to be lexicographically increasing by any method, then from the analysis
made in Section 3, the optimal integer solution will be produced in a
finite number of steps.

We present one of several possible strategies for maintaining the
bound on the determinant value. If a pivot element a, should cause
D" =a,D >y, we employ either the determinant reduction procedure
of Algorithm 3 or the all-integer algorithm. We show this in

Algorithm 4

1. Assume that the integer program is in the nonoptimal format of
(6) with o; >0 and available D value. Develop a tableau by listing the
columns x | B, ay, «,, ..., «,. Assign the upper bound value y. Go to 2.

2. If all components of f and o, are integers, set D= 1. If D <y
80 to 3. Otherwise, go to 4.
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3. If no component of f beyond the first is negative, the optimal
continuous solution is achieved; if the optimal solution is fractional,
go to 4. If the solution is all integer, the problem is solved with values
x = f. Stop. Otherwise, select the nonobjective row with most negative

B component. The row values are —by, ay, a,, --., a,. Take ¢ = by,
pi=a;forj=1,2,...,t Define J* as the set of indices j where p; > 0.
Determine index s from

1 .

- oy =l-min —a;.

Ds jel* Pj

If D=1,and p, >v,goto 6.If D > 1 and p, D > y, go to 4. Otherwise,
D’ = p, D. Designate D’ as the current D and go to 5.

4. Select the topmost row with fractional § component, if possible.
If all components of B are integers, select a row with fractional «;
component. Therow valuesare b, a,, a,, ..., a,.Calculateg = {b,} — b,
and p; =a; —[a]] for j=1,2, ..., t. Define J* as the set of indices j
where p; > 0. Determine index s from

1 !
— o, = l-min —a;.
Ps jeJ* pj
Calculate D’ = p, D; designate D’ as the current D and go to 5.
5. Calculate new column values

ﬂ/=ﬂ+ias,
Ds
’ p‘ .
a1=a1—;’scxs, J#s,
, 1
o) = —ay.
Ds

Designate f’, o}’ as the current §, ;. If D = 1, go to 3. Otherwise, go to 2.

6. Select the nonobjective row with most negative f§ component.
The row selected is — by, ay, a,, ..., a,. Define J* as the set of indices j
where a; > 0. Determine index s from

o, = l-mina,.
jeJ*t
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Find y; as the largest integer that maintains o; — p; o> 0 for jeJ*,
j#s; ps=1. Take A= max;,. a;u;. Calculate p; = {a;/4} and
g = {bo/A}. Go to 5.

Example

We shall solve the example problem for Algorithm 1. Take y = 5.
Tableaus El and E2 are identical with those of the first algorithm. We
start with Tableau E2; D = 2.

3. The x, row is selected. g =1, p; = =5, p, =3; J© =(2), and
s=2.p, D=6>y.

4. The z row is selected. g =0, p, =1, p,=4; J* =(1, 2), and
s=2.D=1.

5. We form Tableau E3.

3. The x, row is selected. g =1, p, = —8, p, =6; J* =(2), and
s=2.p, =6>1y.

6.J 7 =(2);5=2.4=6,g=1,p,=—1,p,=1.

5. We form Tableau E4. *

3. The minimal solution is reached in Tableau E4. z = 12, x; =0,
Xa=2,x =5 x,=5.

1 2 1 2 1 2

z 7 3 3 z 7 0 5 z 12 5 5

X3 1 3 -1 X3 1 2 -1 X3 0 1 -1

X4 0 0 1 X4 0 -1 2 Xa 2 1 2

x| -1 -5 3 x| -1 -8 6 x; 5-2 6

X, 2 1 3 b 2 -1 3 X, 5 2 3
Tableau E2 Tableau E3 Tableau E4

6 BOUNDED VARIABLE PROBLEMS

We can use the approach developed in Chapter 3 for the bounded
variable problem. We seck to find the solution to (1) with the additional
constraints x; < m; for j =1, 2, ..., n, where the m; are given integer
values.
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The integer constraint on the x; is relaxed and (1) is solved as a
linear program by the bounded variable technique of Chapter 2. The
canonical form of (2) is then achieved with feasible x; values. The opti-
mality conditions are: ¢; > 0 for nonbasic variables at their lower bound
zero and ¢; < 0 for nonbasic variables at their upper bound m;.

If the feasible solution is fractional, we again find the optimal integer
solution from (2) through transformation (3). The initial transformation
is given in (4). If (4) is then written in vector format as in (6), we may
not have all a; lexicopositive. If ¢; < 0, then we make the change of

variables
yi=m;—y/,
where integer y;” > 0. Thus we obtain the form of (11) with
B=p5+ 3 mu;,
jeI-
o = —a;, for jeJ™,
o =a 7 otherwise;

J 7>
J ™ is the set of indices j where ¢; < 0. If B’ and «;” are redefined as f8
and «;, then we have the form of (6) with «; > 0.

Nonobjective components of f are infeasible in the continuous
minimization phase whenever they are negative or whenever they
exceed their upper bound values. When a component of 8 is negative,
the lexicographic dual simplex method is used as in Algorithm 1.
When a component of f§ exceeds its upper bound value, we can modify
the dual simplex method. Suppose at some iteration we have achieved
a form like (6) where «; >0 and one or more of the components of
exceed their upper bound values. Select one such row from(6). For that

row we must have
t
X, =bo+ Y a;y;<m,,
=1
where bo > m, . The y; then satisfy

t
(24) y'=m —bo— 3 a;y;20
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for integer y’. If we define

q=b0—mr
> 0,

pj=_aj’ j=132""ata

then (24) is exactly of the form given by (9).? Using (24) as (9), the
analysis follows as before; the selection of index s remains the same
and we develop transformation (10) and the new form of (6) given by
(11). The lexicographic property of the a; is maintained. For upper
bound problems, then, we have

Algorithm b

1. List my, m,, ..., m, and solve (1) by a bounded variable simplex
algorithm to obtain a form equivalent to (2). If the feasible continuous
solution has all-integer valués, the integer programming problem is
solved ; stop. Otherwise, go to 2.

2. Same as step 2 of Algorithm 1.

3. Define J~ as the set of indices j where €; < 0. If /™ has no members,
go to 4(a). Otherwise, calculate new column values as

B=p+ T mo,

jeJ=
o) = —a;, forjelJ™,
o) = o otherwise.

Designate ', a;” as the current §, «; and go to 4(a).

4. (a) If any component of B exceeds the corresponding upper
bound value, go to 5(a). Otherwise, go to 4(b).
(b) If any nonobjective component of f is negative, go to 5(b).
Otherwise, go to 4(c).

2If (24) is handled the same way as (7), a constraint stronger than (24) may be
found by defining ¢ = {bo — m,} — bo + m,, p= —a, — [—a,] for (9).
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5. (a)

(b)

©
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The optimal continuous solution is achieved. If the solution
1s also all-integer, the problem is solved with values given by
x = f. Stop. Otherwise, the solution is fractional; go to 5(c).

Select the row with § component that exceeds the upper bound
by the greatest amount. The corresponding variable and row
values are x,, by, @y, a5, ..., a,. Takeq = by —m,, p; = —a;,
and go to 6.

Select the nonobjective row with most negative § component.
The row values are —by, ay, a,, ..., a,. Take g = by, p; = a;
and go to 6.

Select the topmost row with fractional f component. The
row values are by, a, a,, ..., a,. Take g = {bo} — by, p;

=a; — [a;] and go to 6.

6. Define J* as the set of indices j where p; > 0. Determine index s

from

1 ;
— oy = l-min —«;.
DPs jeJ* Pj

Calculate new column values

’ q
ﬂ=ﬂ+_as7
Ds
’ p' -
cxj=cxj-—;:ocs, j#s,
, 1
Uy = — O
Ds

Designate §’, a;" as the current 8, «; and go to 4.

Example

Find nonnegative integers x; <1, x, <1, x3<1, x4, <1 that

minimize z when

3%, + X3+ 2x, =2,
X4+ X, + x5 =2,
5x1 — 3x; + 3x3 — 4x, = 4.
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1. Using the bounded variable technique of Chapter 2, we transform

the equations to

the minimal continuous solutionis z = 4, x; = 1,

N
Il

=
w

=
(M)

2. Tableau El is formed.
3. J~ = (1). We form Tableau E2.
5. (¢) The zrow is selected. g =%, p; =4, p,

6. J* =(1,2);s = 1. We form Tableau E3.

5. (a)

6. J* =(2); s = 2. We form Tablcau E4.

4. (b)

X1
Xa

X2

Xa
X3

W e o

+

1 2
8 _ L 2
3 3 3
0 1 0
0 0 1
s _4 2,
3 3 3
1 1 _2
3 3 3
Tableau El
1 2
3 1 0
-1 =3 2
0 0 1
3 4 -2
0 -1 0
Tableau E3

1 2
—3X; + 3X4,

—ixl +%x4a

3
1
X1

—3x,;

_ 2
2 =3, X

3

2
%
1 2
z 1 2
3 3 3
1 -1 0
0 0 1
1 4 2
3 3 3
2 _1 _2
3 3 3
Tableau E2
1 2
3 1 0
1 1 1
1 2 1
1 0 -1
0 -1 0
Tableau E4

The x; rowis selected. g = 2, p; = —4,p, = 2.

= 0.

The minimal solutionisachieved. z = 3,x; = 1, x, = I, x; =1,
xz = 0.



128 5 CONTINUOUS SOLUTION METHOOS

7 THE MIXED INTEGER PROBLEM

The mixed integer problem is expressed as in (1) with the difference
that not all of the x; variables are restricted to be integers. We find the
continuous solution and follow the procedure developed in Section 1.
Hence, we assume that at any iteration we have the form (6). We follow
Gomory’s [/] method.

If a component of f is fractional while the corresponding variable
is an integer variable, then we have not achieved the minimal solution.
Select such a row. Suppose the corresponding equation is given by

t
(25) Xo = by + 'Z1aj Vi
=

b, is fractional-valued and X, is one of the integer restricted variables.
We then write (25) in the form

Xo=bo+ Y a;y;+ Y a;y;;
jeJ+ jeJ~

define J * as the setof indices j where a; > 0 and J ~ as the set of indices j

where a; < 0.
If
2 a;y;+ z;. a;y; <0,
jeJ~

jeJ*t

then xo < by; also, x, < {bo} — 1. Hence, we obtain

Yoa;yi+ Y ajy;<q-l,
jeJ ™~

jeJ*t

whereq = {by} — b, > 0. Therefore,
2 a;y;<q-1

jeJ~
and we can write

q
- Z ]__-—qajyqu.

jeJ™

We then certainly have

(26) Y a;y;— Z-lzqajijq.

jeJ+t jeJ
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If, on the other hand
Ya;y;+ ) a;y;20,
jeJ* jel-
then xo = bo; also, xo > {bo}. Hence, we obtain
Z a;y;+ Z a;y;=4q.
JjeJ* jeJ=
Therefore,
2 a;y;i =4
jeJ*t

We then certainly have

q
Y ayi— X =YYz
jel* jel- 1 —4

which is the same as (26). Thus, (26) holds in either case.
In the mixed integer problem, we replace Eq. (9) by

’ q
27N y=—q+zJ: a;yi— 3
jeJ*%

a:V:
jeJ‘l_q Jyj

> 0.
The analysis then is the same as after (9), where we define
a;, for jeJ®,

=13 4
1-4¢q

a; for jed .

]

We develop the new form of (6) given by (11).

129

We can also produce a stronger constraint than (27) if some of the
y; variables are integer. The integers y; are apparent when we have
Xx; = y; as one of the equations of (6) for integer x;. Otherwise, y; is frac-

tional. We write (25) as

(28) Xo=bo+ Y a;y;+ Y a;y;+ Y a;y;,
jer JjeF*t jeF~

where we define:

I as the set of indices j where y; is integer,
F7 as the set of indices j where y; is fractional and a; > 0, and
F~ as the set of indices j where y;is fractional and a; < 0.
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Forjel let

(29) a;=[al+f;, if f;<gq,
or else

(30) a;=1{a;} —yg,, if g;<gq.

Define I'* as the set of indices j eI when (29) holds and 1~ as the set of
indices j € I when (30) holds. Thus, we can write (28) as

y=bot Y fivit Xayyi— Y g;y;i+ Y a5y,
jel* jeF+ jel™ jeF~
where integer y is
Y =X — Z Lasly; — Z {a;}y;.
jel* jel-

Following the previous analysis, we obtain

t
Y'==a+ 3 piys
~

>0
to replace (9) where
fi for jelI”
a;, for jeF™
p;=- l_z_qgj, for jel”

t_ 1 4, for jeF.

The new constraint is stronger than (27) in the sense that 8’ may be
lexicographically larger with the possibly smaller p, value.

The convergence in the mixed integer case follows exactly as in the
integer case if z is constrained to be integer and the row selected for (25)
1s for the topmost eligible component of j.
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Example

Consider the example of page 110 with only z, x,, and x; as integers.

2. Tableau E1 is formed.
3. The zrowisselected. y, is integer. g =%, p, =4, p, =12.
4. (a) J* =(1,2);s = 2. We form Tableau E2.
3. The x, row is selected. y, isinteger.q =%,p; = %,p, = £.
4. (a) J* = (2); s =2. Weform Tableau E3.
(b) The minimal solutionisz=7,x3 =0,x, =1, x, =3,x, = 5.
1 2 1 2 1 2
z (& 3 R z 6 1 1 z 7 0 3
x31 0 1 0 x;1 0 1 0 x;1 0 1 0
x| 0 0 1] x|+ -1 X, | + -4 2
x| 3 - 3 R e x | 3 -4 1
X2 | % T 3 x| 2 0 ¥ x| 3 —% s
Tableau El Tableau E2 Tableau E3
Problems

1. Find integers x; > 0 that minimize z for
16x, + 15x, + 12x, =z,
8xy + S5x; 4+ 2x3—x,=4,
2%y + 3x,+ 3x3—x,=3.
2. Find min z in the following integer programming problem:
—3x; 4+ x5, —5x3+ x,=z2,
x;p— X +3x;+ x,=8,
X, + 2x, —2x3 — 3x, =4.
3. Minimize z when
z=3+%$x; + %3,
Xy =% —gx; — X3,

Xg=3%—4x;— 4x;.
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4. By the method in this chapter, minimize z when x; =0 or 1 for
j=12,3:

v
—_ = W) N

X, +2x; + x4
2x, 4+ 2x, + x5
2x; —2x, + x3 2>

5. Find integers x; > 0 and min z for
2x; +3x, — x5+ x,=2,
X; —2x,+2x;— x,=4,

2x; 4+ x3— x34 x,=7.
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6 NUMBER THEORY RESULTS

_

It is instructive to regard various concepts of number theory in the
context of integer programming. Since some of the number theory
results are needed in the next chapter, it is appropriate to offer the appli-
cable material at this point. We shall also present algorithms using inte-
ger programming methods for some of the classical problems of number
theory.

1 THE EUCLIDEAN ALGORITHM

The Euclidean algorithm provides a method for computing the great-
est common divisor (ged) of a set of positive integers a,, a,, ..., a,.
We can assume positive integers since the greatest common divisor of a
set of integers is unchanged if any a; of the set is replaced by —a;.
The problem can also be solved as an integer program: Find integers
X{, X3, ..., X, that minimize

(1) zZ = Za.x.

wherez > 1.
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Proof that the optimal value of z is the greatest common divisor
of the g, is contained in the following four theorems. (See Griffin [/]).

Theorem 1

The minimum positive integer in the set of integers

is the greatest common divisor of the set, where the a; are given integers
and the x; are all possible integers.

Proof

There is a finite number of integers between zero and any positive
integer. The set L contains at least one positive integer; hence, the set
has a minimum positive integer. Denote the minimum positive integer
by

(2) d= iajx/.

By Euclid’s theorem, for any integer s and positive d, there exist integers
p and g such that
€) s=pd+q, 0<g<d.

For any s in L we also have

4 s= Y 4],

From (2), (3), and (4) we obtain

Y a;xi=p) a;x;/ +4
i=1 j=1
or

5 ax; = px)) = 4.

j=
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Since X} — p;x; is an integer for each j, then g is an integer in L. Also,
since ¢ < d and d is the minimum positive integer in L, ¢ must equal
zero. From (3) we see that d divides s and thus divides every member of
L;' dis a common divisor of L. No integer greater than dis a common
divisor of L since dis in L and it would have to be a divisor of d. There-
fore, d is the greatest common divisor of L.

Theorem 2

The greatest common divisor of the a; exists and is the minimum
positive integer in the set L.

Proof

Each integer a; is in L. From Theorem 1 the minimum positive in-
teger d in the set is a common divisor of all the a;. Therefore, there exist
integers x;" where

. n
/'
d= Zlajxj :
I=

consider d’ any common divisor of the a;. We have a; = a;/d’, where
the ;" are integers. Hence,

n
7 1ot
d=d _Zlajxj ;
=

any common divisor of the a; divides d. The greatest common divisor
of the a; then exists and is d.

Theorem 3

If d is the greatest common divisor of the a;, then d is the greatest
common divisor of the set of integers L.

! An integer b divides an integer a if there exists an integer ¢ such that a = bc.
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Proof

If d = ged(ay, a,, ..., a,), then a; = a;/d, where the a;’ are integers.
Also, dis a common divisor of set L since

n
L= dj;laj’xj.

Furthermore, any common divisor of the set divides the a; because the

a; are in L. Any common divisor of the a; is also a divisor of d (as seen

in the proof of Theorem 2); hence, a common divisor of the set L must

divide d. Thus d is the greatest common divisor of the set.

Theorem 4

The greatest common divisor of the set L is unique.

Proof

Suppose d, and d, are greatest common divisors of L. Since d,
and d, are in L, d; must divide d, and d, must divide d,. Consequently,
d, <d,andd, <d,. Therefore, d, = d,.

From Theorems 14, it is clear that the greatest common divisor
of a, a,, ..., a, may be obtained by solving the integer program (1).
The optimal value of z is then the greatest common divisor.

The application of Algorithm 3 of Chapter 3, properly modified
for variables unrestricted in sign, provides a means for solving (1) and
determining ged(a,, a,, ..., a,). Write problem (1) as

z= Z a;y; 21,
(5)

X;=Y;, j=1,2,...,n

We make a series of transformations of the y; in (5) until an integer
solution is apparent. At the start of any iteration we have

(6) x= Y ;¥
j=1
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where x is a vector with components z, x;, x5, ..., x, and «; is a column
vector. Initially, the first component of «; is a;, the (j+ 1) component is
unity and all other components are zero.

Suppose the first component of «; is taken as a;. At any iteration
define J* as the set of indices j where a; > 0. If J* contains more than
one member, find index s from

a, =min a;
jeJt
and calculate v; = [a;/a,] for all jeJ*. Make a change of variables for
¥, given by
(7) Zvjyj-'_ys:ysla
jelJ+
Jj¥s

where y,’ is an integer. Eliminating y, from (6) using (7), we obtain

(8) x= Yoy + oy
FEa
where
9) o =o;—ogv;, JEJT, j#ES
o =, jéJ" .

Designating «;” and y,’ as the current «; and y,, respectively, we obtain
the form (6). The first component of «; is again called a;. We repeat the
process. It 1s clear that in a finite number of iterations a form must
develop with only one positive a; value. The equivalent optimization
problem becomes: Find integer y, that minimizes z when

(10) z=a,y,
> 1,

where s is the only index in J*. The other equations of (6) are not
restricting and can be temporarily disregarded. The obvious solution of
(10) is y, = 1 with optimal z = a,. (Again, the a, value need not be one
of the original a; values; it represents the result of (9) over possibly many
Iterations.) The optimal z value obtained is the greatest common divisor
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of the original a; values. The complete solution is then

an X=o,+ Y 0V,
Jj¥#s
where the y;, for j # s, act as parameters.

We use (11) to find all possible x; values that produce the ged(ay, a;,
..., a,). If the greatest common divisor is desired and the x; values not
needed, the method is performed with only the first components of the
o;.

Example

Find the greatest common divisor of 15, 36, and 81 together with the
x; values. We list successively

15 36 81 15 6 6 3 6 0 3 0 O
1 0 0 I -2 =5 5 -2 =3 5-12 -3
0 1 0 6o 1 0 | -2 1 1 -2 5 -1
0o 0 1 0 0 1 0o 0 1 0 0 1

and obtain z =3 as the greatest common divisor with x;, =5 — 12y,
—3y3,x = =245y, —y3,and x3 = y3.

Theorem .5

The set of integers L consists of all and only multiples of d, the great-
est common divisor of @, a,, ..., a,.

Proof

Every integer of the set L has been shown to be a multiple of d.
Since there exist integer x;* values with

n
_ %
d= Zlajxj R
=

then

kd = Zlaj(kxj*)

=
is obviously in L. Thus, all, and only, multiples of d are in L.
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Theorem 6

If d, is the greatest common divisor of a;, a,, ..., 4,, then the great-
est common divisor of a,, a,, ..., 4,, a,+, is the greatest common
divisor of d; and a,,, ;.

Proof

There exist integers x; so that

Ifd, = ged(d;, a,. ), then there exist integers y;, ¥, so that
dy=diy, + @415
We have

dy =3 aj(ylxj) T+ a,41Y2.
If d; = ged(ay, a,, ..., a,, a,+,), we see that d; divides d,. Further-
more, since d, divides a;, for j=1,2, ..., n, and since d, divides d; and
a,+1, we see that d, is a common divisor of a;, for j=1,2, ..., n,n+ 1;
hence, d, divides d, from the proof of Theorem 2. Therefore d, = d;.

2 LINEAR DIOPHANTINE EQUATIONS

A Diophantine equation is a rational integral equation in which the
constants are integers and the solutions, or values of the variables that
satisfy the equations, are integers.

Theorem 7

The linear Diophantine equation

(12) Z":ajxj=b

i=1
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has a solution if and only if the greatest common divisor of q;, a,, ...,
a, divides b.

Proof

In the previous theorems, we showed that d = ged(ay, a,, ..., a,)
divides L =Y%_, a,x; for all integral values x;. If (12) has a solution,
then d divides b. Alternatively, if d divides b, let b = b, d. Since d is in L
there exist integers x;’ so that

n
b = bo Z aj Xj/.
/=1
Thus, x; = b, x;’ solves Eq. (12).
Integers a, and a, are relatively prime if the greatest common divisor
of a, and a, is unity. Thus, a necessary and sufficient condition that

a, and a, are relatively prime is that there is a solution of the linear
Diophantine equation

aix,+a;x,=1.

Theorem 8

If m divides ab, and m and a are relatively prime, then m divides b.

Proof
Since m and a are relatively prime,
mx; +ax, =1
has a solution x,’, x,”. Then
b(mx," +axy’)=05b
and
mbx," + abx,” = b.
Since m divides ab, then ab = mr for some integer r and
m(bx,” + rx;’)=b.

Hence, mdivides b.
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The system of linear Diophantine equations

(13) Ya;x;=b, i=12..,m

i=1
may be solved by modifying Algorithm 3 of Chapter 3 for variables un-
restricted in sign. Write (13) as

(14) Zai,-y,:b,-, i=1,2,...,m,
j=1
Yi=x;, j=12,...,n.

We make a series of transformations of the y; in (14) until an integer
solution is apparent. At the beginning of any iteration we have

(15) LY =x.
i=1

At the first iteration x i1s a vector with components b,, b,, ..., b,,
Xy, X3, --+5 Xy, and «; is @ column vector. Also, initially, component
i, 1 <i<mof a;is a;;; component m +j is unity and all other compo-
nents are zero.

Consider the first equation of (15) as

(16) Zla; y;=bo.
=

Define J as the set of indices j where a; # 0. If J contains more than
one member, find index s from

|as| = min |aj|’
jeld
where | a| means the absolute value of a. For each je J, j # s, determine
an integer v; value that produces the minimum of |a; — v,a,]. Note

that v; may be positive or negative. Make a change of variables for y,
given by

(17) Zvjyj+ys=ys”
JelJ

F#s
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where y." is an integer. Eliminating y, from (16) using (17), we obtain
(18) Zaj/yj-'_asys/:xa

FEXS
where
’

:a}._

o =0, J&J.

i 3

7

o Vs, jed, j#s,

Designating «;" and y,” as the current «; and y, respectively, we obtain
the form (15). We repeat the process. It is clear that in a finite number of
iterations a form must develop with only one nonzero term in (16).
The equation then reads

(19) a,y,=b,.

To have a solution, a;, must divide b, . If this is the case, we eliminate y,
from (15) using (19) and obtain
20) B+ Yay=x,

i%s
where f = o by/a,. If B is subtracted from both sides of (20), we again
have the form (15) with x replaced by x — 5. Note that in this new form
of (15) the first row has all zero values on both sides. The s column has
been eliminated. Next the first row is discarded. The new first row is
then changed like (16) until only one nonzero element is left. We obtain
(19) and (20) once more. Another column and row are eliminated and
the process is continued until only the last n rows of (15) remain; at this
point the solution is

(21 B+ a;y;=x,
where B’ is the result of m applications of (19) and (20) and the sum in

(21) is over the columns remaining. The y; variables in (21) represent
parameters.

Example

Find integers x; that satisfy
4x, —4x, + 3x; =3,
5x; — Txy + 6x3 =4,



3 LINEAR CONGRUENCES 145

We list successively with x = (3,4, x;, x,, x3)

4 —4 3 I -1 3 1 0 0
5 =1 6 -1 -1 6 | -1 -2 9
1 0 0 1 0 0 1 I -3
0 1 0 1 0 0 1 0
0 0 1 -1 1 1 -1 0 4

We obtain =3, —3, 3, 0, —3); x is replaced by (0, 7, x, — 3, x,,
x; + 3). We discard the first row and first column and list successively

-2 9 | =2 1 0 1
I -3 1 1 3 1
1 0 1 4 9 4
0 4 0 4 8 4

We obtain f = (7, 7, 28, 28). The solution is

x1.= 10 + 3y,
x, =28 + 9y,
x3 =25+ 8y.

3 LINEAR CONGRUENCES

For any nonzero integer m an integer a can be expressed uniquely
as
a=qm-+r,

where 0 < r < |m|. All integers can be separated into m classes accord-
ing to the remainder r devéloped after division by m. Two integers, a and
b, are congruent modulo m if and only if division of each by m results in
the same remainder r. Thus

(22) a=qm+r,
b=q,m+r,
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where 0 <r <|m|; a and b are considered to be in the same residue
class. The integers congruent to a given integer for the modulus m
make up a residue class modulo m.

The notation

a=b mod m

means that a is congruent to » modulo m or that a is congruent to b
for the modulus m.
We have

Theorem 9

Two integers are congruent modulo m if and only if their difference
is divisible by nonzero m.

Proof
Suppose a is congruent to b modulo m. From (22)
a—b=m(q, —q,)

and m divides a — b. Conversely, If @ —b = mk, than a= b mod m,
since otherwise

a=qlm+rla

=q,m+r,,
with0 < r, r, < |m|. We have
a-b=m(q, —q;)+r —ry;

hence, m divides r, — r,, which can occur only if r; = r,. Thus we have
proved that a and b are in the same residue class.

The following properties of congruences can be stated:

1. Ifa=bmodm and ¢ = d mod m, then a+ ¢ = b+ d mod m and
ac = bd mod m.
2. Ifddivides mand @ = b mod m, then a = b mod d.
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3. Ifa=bmod m, and a = b mod m,, then a = b mod m; where m,
is the least common multiple of m, and m, .*

4, If ac = bc mod m and ged(c, m) = 1, thena = b mod m.

5. If ac = bc mod m and ged(c, m) = d, then a = b mod m,, where
m=mgyd.

We need to solve the linear congruence

ax=b mod m.

We have first

Theorem 10
When a is prime to m, the congruence
(23) ax=1 mod m

has one and only one solution modulo m. This solution is also prime
to m. )

Proof
The congruence (23) is equivalent to the equation
(24) ax +my=1,

which has an integer solution, from Theorem 7, when a is prime to m.
If both x, and x, satisfy (23), then

ax, =ax, mod m
and

X, =x, mod m.
Furthermore, if x, satisfies (23), then the equation

xu+mov=1

2If m = q,a = q,b, then mis a common multiple of a and b. If, in addition, every
common multiple of a and b is a multiple of m, then mis the least common multiple
ofaand b.
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has a solution for # and v, namely, ¥ = a and v =y from (24). Thus
x, and m are relatively prime.

Theorem 11
When a is prime to m, the congruence
(25) ax=b mod m

has one and only one solution modulo m.

Proof
Since a is prime to m, from Theorem 10, the congruence
ax=1 mod m
has a unique solution
x=x, mod m.

Clearly, x,b satisfies (25). As proved in Theorem 10, there can be but
one solution modulo m; the solution, however, may not be prime to m.

Theorem 12
If dis the greatest common divisor of @ and m, then
(26) ax=b mod m

has a solution if and only if d divides b. There are d solutions modulo m
when d divides b.

Proof

Since d =gcd(a, m), then a = ayd and m = m,d. If the congruence
has a solution, there exist integers x" and y’ so that

ax' + my =b.

Thus
d(agx’ + mgy)=5b
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and d divides b. Conversely, if d divides b, let b = ¢d and reduce the
congruence to
(27 apx=c¢ mod myg.

Furthermore, there exist integers x* and y* so that
ax* + my* =d;
hence,
aox* + moy* =1.

Thus a, and m, are relatively prime and (27) has one solution x,
modulo m,. Consider the class of integers of the form x; + kmy.
All of the integers in the class also solve (26). Some of the integers are
congruent to each other modulo m and would represent the same solu-
tion to (26). For these integers there would be values k, and k, with

x;+kmy=x, +kym, mod m.

Hence,
mo(k, —k;) =0 mod m
and
ki=k, mod d.
Therefore, when k 1s 0, 1, ..., d — 1 the integers x; + km, are exactly

d solutions of (26) that are incongruent for the modulus m.

Example
Solve 9x = 15 mod 24.‘

Since ged (9, 24) = 3 and 3 divides 15, the congruence is reduced to
3x = 5 mod 8, which has one solution x = 7 mod 8. Hence, the solu-
tions of the original congruence are x =7, 15, 23 mod 24. All other
solutions are in one of these 3 residue classes modulo 24.
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We are now interested in a method for solving
ax=b mod m.
The equivalent problem is: Find integers x = x, and x, that satisfy
ax; + mx, = b.

We solve this equation by the method of Section 2. We list

a m
0

and reduce the first row to a form having zero and nonzero elements.
The second row then contains the solution for x.

Example

Solve 3x = Smod 8.

We list
3 8
1 0

and form successively

The first row produces
—y2=35
and the solution is then apparent in the second row as
x =15~ 8k.

Thus x = 15 mod 8; x = 7 mod 8 solves the congruence.
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4 THE SOLUTION OF A SYSTEM OF LINEAR CONGRUENCES

The system of linear congruences
n
Y ay;x;=b; mod m,, i=1,2,...,¢t
j=
may be solved by writing the equivalent system of linear Diophantine
equations

n
Zaiij+miyi=bia i=1,2,...,¢t
j=1

The theorems and method of solution presented in Section 2 may then
be applied to the system of equations.

Example

The Chinese remainder thebrem states that if m,, m,, ..., m, are
relatively prime in pairs, then the system
x=a, mod my,
= a, I‘ﬂOd msy,

x=a, mod m,
has a unique solution modulo m, where m =mm, ---m,. Solve
=3modl14,x=4mod9,x = 6mod 1.
We write the equivalent equations

x + 14y, =3,
X 4+ 9y2=4,
x+ 1ly; =6.

Using the method in Section 2, we write the tableau

1 0

1

% N W
—_— = —
OO
SO0V O
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We do not need to keep track of the y; variables. Thus we obtain
successively

3] 1 0 0 0

411 —-14 9 0

6|l 1 —14 0 11

x{ 1 —14 0 0
1 “14 9 0 49 0 4 1 0 0 1 0
3 —14 0 11| —14 0 11| —14 28 11| —126 28 11
x—3| —14 0 0| —-14 0 0| —14 28 0] —126 28 0
—25[ =126 11 =5 11 =5 1 0 1
x—31| =126 0| —126 0| —126 —~252 | —1386 —252 |

Thus x = 6331 — 1386k or x = 787 mod 1386.

Problems

1. Find integers x; that minimize

z =42x, + 63x, + 78x; + 102x,

forz>1.
2. Find the greatest common divisor of 117, 108, 54, and 135.
3. Solve the simultaneous Diophantine equations
Tx, — 3%, + 3x; — 2x, =12,
3x; + 2%, + 3x3 — Tx, = 4,
2%, — X, +5x;3+ x,= 9.
4. Find integers that satisfy
33x, — Txy + 5x5 — 4x, = 54.
5. Solve the system of congruences
x=6 mod 7
x=1 mod 35
x=3 mod 4
x=9 mod 11,
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7 DYNAMIC PROGRAMMING
SOLUTIONS

We solve the integer programming problem by means of a dynamic
programming enumeration. The method can be used to solve the im-
portant class of problem’s in which the variables have upper bound
values. This includes the problems where the variables are restrained
to zero or one.

In Chapter 5, we relaxed the integer constraint on the variables
and used the simplex method to find the continuous solution. If the
continuous solution was fractional, we used additional constraints and
minimization cycles to produce the optimal integer solution. In this
chapter, we again relax the integer constraint on the variables and use
the simplex method to find the continuous solution. We go on to de-
velop linear congruences that the nonbasic variables must satisfy, We
then obtain the integer solution by means of a dynamic programming
enumeration analogous to the one presented in Chapter 4. This approach
was developed in [2]. The remainder of the chapter contains rules for
accelerating the enumeration.



156 7 DYNAMIC PROGRAMMING SOLUTIONS

1 A DYNAMIC PROGRAMMING SOLUTION

Once again, consider the integer programming problem: Find

integers x; > 0 forj =1, 2, ..., nthat minimize z when
n
¢;x; =z,
(1) 7=
n
Zaijszbi’ i=1,2,....m,
J=1

where the a;;, b;, and ¢; are given integer constants. Equation (1) may
be solved as a linear program by relaxing the integer constraints to
obtain the optimal canonical format

?
—z+ Y §x;= —%,
J=1 -

(2

?
X+i+ 3 @yx;=Dby, i=1,2,...,m,
j=1

where the first t = n — m and the last m variables have been arbitrarily
selected as the nonbasic and basic variables, respectively. Since (2) Is an
optimal format, ¢; >0 and b, > 0; the optimal continuous solution
to (1) is x,,; = b; for the basic variables and x; =0 for the nonbasic
variables. If the continuous solution has all b; as integer, the integer
program is solved. If any of the b; are fractional, however, the integer
variables x; must still satisfy (2), which are then used for obtaining the
integer solution.
Select some equation of (2) with b; as fractional. Suppose it is

t
(3) x,+ Zal j=b0.

=

Define f, > 0 from by = [by] + fo; Eq. (3) may be written as

@) S a;x;  fo = [bo] — ..

i=1
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The right side of (4) is an integer ; thus

(5) iajszfo mod 1,

=1
In (5) we have developed a congruence, which means that Y |, a,x; — f,

1s an integer. Furthermore, define the fractional parts /i =0 from
a; = [a;] + f;; Eq. (5) may be written as

(6) Z' fjijfo mod 1.

i=1

Congruence (6) arises because [a;]x; = 0 mod 1 for integer x;. We have
now developed a congruence that the nonbasic integer variables must
satisfy to produce an integer value for basic variable x,. If b, is integer
and some q; are fractional, then (6) still holds with f, = 0. If b, and the
a; are all integers, then the trivial congruence 0 = 0 mod 1 results. Thus
we may write a congruence similar to (6) for every equation of (2). We
need not develop a congruence from the objective equation of (2)
since it is apparent that if all solutions to the congruences like (6)
produce integers x;, then z must have an integer value from (1).

Let us write (2) in the form

t
—z4+ ) ¢x;=—17,

()

where x is a vector with components x, . ;, each o, for j # 0 is a column
vector with components @,;, and «, is a column vector with components
b;. The congruences developed from (7), as in (6), may be written as

®) ,2ﬂjxj5[30 mod 1

where the f; are the columns of fractional parts of the o, . In addition,
since x,,; > 0, the constraints of (7) may appear as
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It is clear that the equivalent problem to (1) is: Find integers
x; = 0 that minimize z when :

=z — 2y,

-
o
=
S
I

~.

&)

iX;i =%,
1

t
Y Bix;=p, mod 1.
=1

e,
i -
K
=
IA

When the optimal solution x;° of (9) is determined, then the basic
variables x of (7) are given by

We can solve (9) by writing the function

F(a, B) = min(.i ¢ x;

13 13
zlocjxj=oc, .Zlﬁjszﬁ mod 1,
J= J=
integer x; > 0),

where o and f§ are variable vectors and the inequalities of (8) are changed
to equalities.' Since some x; > 0, we can use the same argument as in
Chapter 4 to develop the dynamic programming recursion

(10) F(o, f) = miny(@; + F(a —a;, = B,)).

Note that the second argument of Fis taken modulo 1.

The recursion in (10) may be solved as a simple enumeration. Ob-
serve that F(«,, B,) = ¢,, where ¢, = min ¢. We then form F(x —«,,
f — B.) by replacing o and f by x — «,and B — f, respectively in (10) as

(11) F(x —a,, ﬁ_ﬂr)=minj(z'j+F(“_“j_“r’ﬂ_ﬁj_ﬁr))-

! Gomory [1] initiated this type of round-off procedure by considering F(8) = min
(Zio eix; |30, By x; =B mod 1, integer x; > 0); (9) is solved by his method if x°
emerges as nonnegative.
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We substitute (11) for the F(a — o,, § — ,) term on the right side of
(10). Thus we obtain

(12) Fa f) = min(min(e; + Fx ~a/, f = ),
J min(e; + Fla— o, f = 5,)))

j#r

where ¢/ = ¢, + ¢;, o/ = o; + %,,and B; = B; + B, mod 1. Designate ¢
;/, and f,’ as the current ¢;, «;, and f3; values; observe that (12) is of the
same form as (10), except that the ¢, + F(ox — «,, f§ — f,) term ismissing
and other terms are included. Thus from (12) we can produce the solu-
tion value F(a,, f8,) = ¢, by finding a new ¢, = min ¢;. Continuingin this
way, we find F(x, ) for all feasible « and . We can also obtain the
corresponding x; values by keeping track of the indices j that produce
each F(«, p).

The procedure just outlined is an enumeration of all possible values
of Y i, ¢;x; in order of increasing value. To solve the integer program
given by (9), we stop the procetdure when F(a, ) is calculated for some
o < o (i.e., when each component of « is less than or equal to the
corresponding component of &),

The method for the solution to (10) may fail in case any ¢; are zero;
the same r value may be picked an infinite number of times and the
constraints may never be satisfied. Thus, to insure a finite algorithm,
we must assume that all x; values have finite upper bounds m;

Let x,<m; for j=1, 2, ..., n be an additional constraint in (1).
The bounded variable linear programming technique is used to trans-
form (1) to (2). Some of the nonbasic variables may be at their upper
bounds in the continuous solution of (1). These variables have corres-
ponding ¢; values that are nonpositive, We also have ¢; > 0 for nonbasic
variables at the zero value. For ease of computation, we make the trans-
formation x;” =m; — x; for those nonbasic variables at their upper
bound. When the optimal solution is obtained, we use the reverse trans-
formation to calculate the x; value. Thus we may assume a form like
(2) with all ¢; > 0 and all nonbasic variables at zero value.

When the variables are bounded, the dynamic programming enu-
meration is performed so that the upper bounds m; are not violated.
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If we define M as a vector with ith component m,,;, we stop the pro-
cedure when F(a, ) is calculated with 0 < oy — o < M.
Thus we are led to

Algorithm 1
1. Define a solution vector S(z*, x,*, x,*, ..., x,*), where x;* for
Jj=1,2,..., tis afeasible integer solution to the problem with objective

value z*, If no feasible solution is apparent, take z* = o0, Go to 2,
2. List the values of the problem as

1 2 3 ...t
¢, € €3 ... ¢
2%}

oy P
By By Bs ... B

Goto3.

3. In the newly listed section, define J as the set of indices j where
B; =By and 0 <y — a; < M. If J has no members, go to 4. Otherwise,
find index r from ¢é, =min,,¢;. If¢, > z*,goto4, Otherwise, take z* = ¢,
and form S(z*, x*, x,*, ..., x,*), where the x;* are the nonzero x;
values found below the section. The other x;* values equal zero. In-
crease x,* by one and go to 4.

4. Given the list, the solution S(z*, x,;*, x,*, ..., x,*) is the minimal
integer solution if there are no unmarked columns with ¢; < z*. Go to 6.
Otherwise, find index r from ¢, = min ¢; for all unmarked columns in all
sections, Go to 5.

5. Add a new section of columns to the list as follows, if possible:

(a) Calculate ¢/ =¢,+ ¢, o =a, + «;, and ;' =B, + ; mod 1
for the indices j of the unmarked columns in the section
containing column r. Mark the r column. The ¢;, «;, and §;
values are taken from the list in step 2.

(b) Add columns with values ¢, o, and ;" headed by indices
Jif ¢/ < z* Include a column headed by r only if x, + 1 <m,
for the x, value found below the section containing the newly
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marked r column. If no new columns are added, go to 3.
Designate the ¢;, «;/,and §;" values as new ¢;, «;, and f§; values,
respectively.

Underneath the section added, write the x; values from the
section containing the newly marked r column. The non-
appearance of a variable means that it has zero value. Increase
x, by one for the new section. Go to 3.

6. The minimal solution to the integer program is z =2, + z¥,

x =

—_— t. . »*
Y io1o;x;* End.

Example

Consider the problem first given on page 110: Find integers x; > 0
that minimize z when

3, — X+ 12x3 4+ x, =2,
X+ X3+ 3x;—3x,=4,
3x; = 3%, + 1lx; + x,=2.

Using the simplex algorithm, we transform the equations to

5 10, _ _16
-z T X3+ FXa= -5
10 _ 1
Xy t3X3— 53X 3
1 5., _ 5
X2 — 3X3— FX4= 3

and develop the congruences

Ixs+3x,=4 mod 1,
Zx3+ix,=%2 mod 1.
1. z* = 0.
2. The problem is listed in Tableau El; Z; =148, ay = (3, 3, and
Bo=@ %
3. Jhas no members.
4. r=3inTableau El, ¢, = 3.
5. We form Tableau E2. Mark column 3 of Tableau EI.
3. Jhas no members.
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3* 4* 3* 4 4 3
3|5 s
i e
_% _§ -2 -2 -2 -1
A I S I N B
3 3 ¥ 0 3 0
x; =1 x,=11x3=2

El E2 E3 E4

4, r =4inTableau El, ¢, = 1>,

We form Tableau E3. Mark column 4 of Tableau El.

. J=(4) in Tableau E3. r=4 and ¢,=42; we have a feasible

solution z* = &% x;* = 0, x,* =

4, r =3inTableau E2, ¢, =12

5. We form Tableau E4. Mark column 3 of Tableau E2. No further
tableaus are formed and the current feasible solution is minimal.

6. The solution to the original problemisthenz =12, x;, =5, x, =5,
x;3=0,x, =2,

w o

2 REDUCING THE NUMBER OF CONGRUENCES

Algorithm 1 required that calculations be made for m congruences
in (8). Ordinarily, it is not necessary to include all the congruences in a
problem; all solutions of one congruence may satisfy a second congru-
ence, which, then, need not be included. We now show how to deter-
mine the congruences to be included.

On the basis of results in Chapter 5, we know that the constants
of the optimal format (2) are in the form i/ D. Numerator / is an integer
and denominator D is the absolute value of the determinant of the co-
efficient matrix of basic variables x,.,, X;+2, ..., X, in the original
problem Eq. (1). Furthermore, the constants in congruence (6) are also
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in the form i/ D, since they are the fractional parts of the constants in an
equation in (2). Hence, congruence (6) may be written as

t
(13) Z ’ij—D— mod 1,

where f;=h;/D and h; is an integer. Other congruences developed
from (2) may have the same integer solution as in (13).

A congruence that has the same integer solution as in (13) may be
generated by forming

t
(14) Zlgjszgo mod 1,
=
where
kh,
(15) ngD—l mod 1, j=0,1,...,1

k is a positive integer. The fact that all integer solutions of (13) also
satisfy (14) is seen from

Theorem 1

If integer x * solves (13), then x;* solves (14).

Proof

If x;* solves (13), we have

t h; h
16 L2
(16) jZI DY T =W
where wis an integer. From (15) we obtain
kh; .
17 gj_~D—’=yj, j=0,1,...,1,

where y; is an integer. Multiplying (16) through by positive integer k
and using (17), we obtain

t t
(18) 295" —go=kw—yo+ ¥ vx;*
i=1 i=1
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Since the right side of (18) is an integer, it follows that
t
Y g,x* =g, mod 1.
i=1

Thus x;* solves (14), thereby proving the theorem.

Since any solution of congruence (13) satisfies (14), we need not
include the latter in (8). Observe that some solutions to congruence
(14) may not satisfy (13); care must be taken in picking the congruence
to keep when both are developed from (2).

Sometimes it may happen that the congruences are equivalent.
Two congruences are equivalent congruences if they have exactly the
same solutions. If k and D are relatively prime, then (13) and (14) are
equivalent; either congruence may be used. Thus

Theorem 2

If gcd (k, D) = 1, then (13) and (14) are equivalent congruences.

Proof
Since the converse was proven in Theorem 1, we need prove only
that if x;* solves (14), then it solves (13). Let x;* satisfy (14); then
t
Z gjxj* —go=W,
i=1
where w is an integer. Using (17), we obtain

t
(19) k(z hox,* — ho) _ Dy,
=1

where integer y is given by
t

y=w=% y;x*+yo.

=1
Looking at (19), we see that k must divide y because ged(k, D) = 1.
Thus, y = ky*, where y* is an integer and

t
(20) Y hyx* — ho = Dy*.
=1
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Dividing both sides of (20) by D, we see that x* satisfies (13), thereby
proving the theorem.

In a given problem it is possible for a single congruence to generate
all the other congruences. It is therefore desirable to find the congruence
of (8) that generates the largest number of congruences. We have

Theorem 3

If #; and D are relatively prime, then k#;/ D is incongruent to /;/D
mod lfork=2,3,..., D.

Proof
Suppose
kh; h;
, -F’ = B’ mod 1.
There exists an integer y so that
kh;, h;
2 D0’
and

Since 4; and D are relatively prime, 4; must divide y, or y = h;r for some
integer r. Thus

k—1=rD
or k must satisfy
‘ k=1 mod D.
Therefore, k =2, 3, ..., D produces k,;/ D noncongruent to 4,/ D mod 1.

From Theorem 3 we know that if a congruence of (8) has any con-
stant with numerator and denominator D relatively prime, then the
congruence can generate D — 1 other congruences. These other congru-
ences, if they appear in (8), are not needed and may be eliminated.
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It should be noted that a congruence with the desired property may not
necessarily generate every other congruence. More significantly, a
congruence without a constant having a numerator and denominator
relatively prime cannot generate a congruence with a constant having
that property.

Instead of developing all the congruences of (8) first and then
searching for a congruence having a constant with the required property,
it is better, from a computational standpoint, to find an equation of
(2) having a constant with relatively prime numerator and denominator.
The congruence developed from the equation will then have a constant
with the required property.

In hand-solved problems, the constants of (2) can be inspected easily
to determine the equation having a constant with numerator and de-
nominator relatively prime. But when an electronic computer is used to
solve extremely large problems, it is not practical to evaluate each con-
stant until one is found having the relatively prime property.

To offset this difficulty, we offer a method to facilitate the compu-
tations. In solving Eq. (1) as a linear program, we shall assume that the
inverse of the basic variables is available. Following Section 5 of Chap-
ter 2, the inverse is

1 —m -7y ... —T,

0 by, by, ... bim
B~ = 0 1_721 1_722 {72111

0 by by .- bpum

Thus, ¢;, Z,, d;;, and b; in (2) are given by

m
¢ =¢;— X mdy,

i=1

m

Z, = Znibia
i=1
m

a;; = Z bikakja
k=1
m

Ei= Z bikbk‘

k=1
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Let us examine, for example, the relationship for a;;. Since each aj;
= hy;/ D and b, = f/ D, where the h;; and f;, are integers, we have

(21) hij = kzlfik ay g

and arrive at

Theorem 4

If h;; and D are relatively prime for some i and j, then ged(f;;,
fiZa'--afimaD)= 1

Proof

If h;; and D are relatively prime, then there exist integers x and y
so that
h;x+Dy=1.

Using (21), we obtain
xé:lfik a;+Dy=1
For the given j value we have y, = xa;; and y, is an integer. Thus,
kilfik yt+Dy=1

andng(filafiZa ---’fima D) = 1

The converse of Theorem 4 is not true. We shall use the theorem,
however, in Algorithm 2 to develop the necessary congruences in (8).
We must first solve (1) as a linear program by the inverse matrix
method. The value D is calculated during the computation as the pro-
duct of the pivot elements. When (2) is achieved and B~ is available,
we use the Euclidean algorithm of Chapter 6 to calculate the values

Di=ng(fi1’fi2a---afimaD)a i=1,2a---anl,
and determine index s from

D;=min D;;
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in case of ties we arbitrarily select the smallest index. We then form a
single congruence, as in (6), from constraint s of (2). The requisite
procedure is contained in

Algorithm 2

1. Same as Algorithm 1.
2. Same as Algorithm 1, except that, initially, only the congruence
from constraint s makes up the f;.

3. (a)

(b)

In the newly listed section, define J as the set of indices j
where B, =B, and 0 <oy —o; <M. If J has no members,
go to 4. Otherwise, go to 3(b).

Find index r from ¢, = min;, ¢;. If ¢, = z¥*, go to 4. Other-
wise, calculate x = ay — «,. If the componentsof x are integers,
take z* = ¢, and form S(z*, x;*, x,*, ..., x*), where the x*
are the nonzero x; values found below the section. The other
x;* values equal zero. Increase x,* by one and go to 4. If any
component of x is fractional, define I as the set of indices i
where component i of x is fractional. Find index s from
D, = min,.; D, Form a new congruence

t
jzlfjszfo mod 1

from constraint s of (2). Each f; for j=0, 1, ..., t is'enlarged
by the additional component f;. Modify the list in step 2
accordingly. In addition, calculate a new f§; component in each
section having unmarked columns by first calculating

t
f=Y fix; mod 1,
=1

where the x;” are the nonzero x; values found below the section.
The other x; values equal zero. The additional component of
pB; for the unmarked j column of the section is then

fi=f+f; mod L
Goto 3(a).

4,5,and 6. Same as Algorithm 1.



3 AN ACCELERATED DYNAMIC PROGRAMMING SOLUTION 169

Example

Consider the problem on page 161. If it is solved as a linear program
by the inverse matrix method, we obtain a value of D = 6 and inverse
matrix

1 -1 —3%
e LR
0 3 -3

From the second row of B™' we calculate D; =gcd(3, 1, 6)=1;
from the third row D, = 1. We develop the congruence

Ix;+4x,=1 mod 1.

The problem is then solved with this congruence only.

3 AN ACCELERATED DYNAMIC PROGRAMMING SOLUTION

In Eq. (2) it may occur that a positive value for one of the variables
may not allow a feasible solution to be found. It may also be that some
of the variables must have positive values to obtain a feasible solution.
Similar conditions may exist when Algorithm 1 is applied in the search
for the solution to (2). When these situations arise, we can accelerate the
dynamic programming enumeration, just as we did in Chapter 4.

Consider (9) with x; < m; as listed in step 2 of Algorithm 1. Since
X, 43 < m,,;, we have from (2) that

?
Zaiij-ZEi—m,+i, i=1,2,...,m.
=1
Form an index set K with initial members j= 1, 2, ..., t. Then form
(22) U= Y ay . i=1,2,...,m;
ke K

y for ke K is a nonnegative integer that represents the subsequent
increase in x,. Thus, y, <m,, where m,’ =m, — x,’. Initially all
xk, = 0
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We require that U; >b;, — m, ;. Hence, we may be able to determine
from (22) whether a positive y, value produces infeasibility or whether
¥, must have a positive value to produce feasibility. Take
(23) U*= Y a,m,/, i=1,2,...,m,

keK;+
where K;* is the set of indices in K with a;, > 0. The development of
U* in (23) is similar to the development of the U;* in (9) of Chapter 4.
Therefore, rules A1-A3 of Chapter 4 apply here with a;; replaced by
a;;and b; replaced by b; — m,, ;.

We can now augment the rules of Chapter 4 by calculating
(24) U= Y agm, i=1,2,...,¢

keK;~
where K;™ is the set of indices in K with d;, < 0 and U}’ is the minimum
value of U;. If K;” has no members, then U;’ = 0. Since x,,; >0, we
require that U;” <b,. The following rules apply where K, c, the m,’, d
and x;" are the result of AI-A3:

i

A4. If any U/ > b, — d,, then no y, values can produce feasibility.
No feasible solution to the problem can be found. Stop.

AS. If U/ + a;; > b; — d; for je K, then y, = 0 since y; > | produces
infeasibility. Mark column j and remove index j from K. Write a new
form for the U, in (22) and calculate the U;* in (23). Return to rule Al.

A6. (a) If j is the only index in K,” and d; > b;, thena,;y;, < b, — d,

requires that y; > 6 = {(b, — dy)/a,;}.

(b) If U/ —a,;m; > b; — d, for je K, then y; > 0, where 0 is the
smallest integer with the property that U, —a;;m; + a,; 6
<b,—d,. ‘

() When 6 is found in (a) or (b), increase x,;” by 8, decrease m;’
by 6, replace ¢ by ¢+ ¢;0 and d; by d; + a;;0. If m/ =0,
remove index j from K. Write a new form for the U, and
calculate U;*. Return to rule Al.

Each time rule A4 is applied, the U, calculation from (24) must be
done again. If as a result of adhering to rules A1-A6 all x;" = 0, con-
tinue Algorithm 1 in step 3. If, on the other hand, some x; is positive,
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we define vector a with d; as component ; and calculate
t
B= Y B,x;/ mod 1.
i=1

If = foand 0 < @y — a < M, then program(2)issolved withz =z, + ¢,
xj=xj'forj= 1,2,..., tand

for the basic variables. Otherwise, add a new section of columns to the
list. Each column is headed by an index k € K. The column values are
given by ¢’ =c+ ¢, ' =a+a and =+ f, mod 1. The ¢,
,, and B, values are taken from the list in step 2. Underneath the section
write the x; = x; values. Mark all unmarked columns on the list from
step 2 and go to 3.

We are also able to modify the algorithm to ascertain whether a
current stage of the enumeration will lead to a feasible « or whether
some of the x; require specific values in order to produce a feasible a.

When index r is found from &, = min¢; in step 4 (with ¢=7¢,),
we define the set of columns K as on page 93. Define the column values
for o, as d,, d,, ..., d,,. The possible values of z and components V;
of o that can be enumerated at this stage are given by

z=c+ Y &y,
keK

Vi=d; + U, i=12,...,m

where U, is given by (22) for the present set K; y, < m,’, where m,’
=m; — x,’. The x,” are the x; values that appear below the section con-
taining column r with x,” = x, + 1.

Since x,,; < m,,,;, we require that V; > b; — m, ., ;. Consider

I/i*zdi+Ui*, i=1929"'5m5

where U* is given by (23) with K;* as the set of indices in current K
with @, > 0. Then V;* is the maximum value V; can attain when we
perform the enumeration starting with the section containing column
r. The development of V* is similar to the development of the V;*
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of Chapter 4. Rules BI-B3 of Chapter 4 apply here with a;; replaced by
da;;and b, replaced by b, — m, . ;.

We can add other rules following rule B3. Since x,,; >0, we
require that V; < b,. Consider

v/ =di+ U/,

where U;' is given by (24) and K;™ is the set of indices in current K
with a; < 0. Then, V; is the minimum value that ¥V, can attain when
we perform the enumeration starting with the section containing column
r. The following rules then apply:

B4. If any V; > b,, then no y, value can produce feasibility. Mark
column r and continue the algorithm in step 4.

BS. If V{ + a;; > b, for je K, then y; = O since y; > | produces in-
feasibility. Remove index j from K and write new forms for the U; in
(22). Calculate the V;* and return to rule Bl.

B6. (a) If jis the only index in K;~ and d; > b;, thend; + d;;y; < b,

requires that y; > 6 = {(b, — d))/a;}.

(b) If ¥V —a,;m; > b, for je K, then y; > 6 where 6 is the small-
est integer with the property that V' —a;;m;’ + a,;;6 <b;.

() When 6 is found in (a) or (b), increase x;” by 0, decrease m;
by 6, replace ¢ by ¢ + ¢;0 and d; by d; + a;;0. If m;’ =0,
remove index j from K. If ¢+ ¢, = z*, remove k from K.
Write new forms for the U; and calculate the V;*. Return to
rule BI.

Each time that rule B4 is applied, the V, calculation must be
done again. When the application of the rules is completed, we return
to the algorithm in a modified step 5. The modifications consist of the
following:

5. (a) Mark column r. Take value d; as component { of «. Calculate

?
=Y B;x;/ mod 1.
=1

If B=p, and 0 <oy —a <M, take z*=c and form
S(z*, x,’y x5/, .. -, x,"); go to 4. Otherwise, go to 3(b).
(b) 1fset K has no elements, go to 4. Otherwise, add a new section



The equations are in an optimal canonical format. The continuous

solution is z=3, x, =35, x;=2, x;=0, x, =0, x;=0, x, = 0. We
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of columns to the list. Each column is headed by an index
keK. The column values are given by ¢,'=c+ ¢, «’
=o+ o and ;' = f + f,mod 1. The ¢,, «,, B, values are
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taken from the list in step 2. Underneath the section write

the x; = x;’ values. Go to 3.

Example

Find nonnegative integers x; < 1 that minimize z when

T e
1 5 2 1, —— 8

X; o+ eXzt+FXst+ §Xs T 3Xe = 5
11, 5 1
x2+—9—)~3—%x4— 5x5+%x6— T

develop the congruences

1.
2. The problem is listed in Tableau El:

1 2
oX3 + 3x4 + x5 + %x6

2 1 4
X3 + 3x4 + 5X5 + 3Xg

I

z* = 0.

Z)and allm; = 1.

Tableaus

3* 4* 5 6 6 6
L0 30| &
COREE SR S T O
a2 3 1 1 2
9 3 9 3 9
b % 1|0 | g
A D N A
x3=1]|x5=

x5 =
El E2 E3
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3. J has no members. We obtain U= -3, U, = —4! with K
=(3,4, 5, 6). For rule A5, U," + d,, =% > &; we mark column 4 and
remove 4 from K. No other rules apply.

4. r=3 in Tableau El, ¢, =1%; d, =4, d, =4, and V' = -2,
V,)=%§ with K=(5, 6). Since V,” —a,s =4 >, then y;=1 and
K = (6). No other rules apply. We mark column 3 and form Tableau E2.

3. Jhas no members.

4. r =5 in Tableau El, ¢, = 4*. No rules apply. We mark column 5
and form Tableau E3.

3. J=(6). The optimal solution becomes apparent from Tableau
E3jitisz=3, xs=1,x4=1,x3=0,x,=0,x, =1, x; = 1.

Problems

1. Solve the problem on page 161 by the accelerated enumeration pro-
cedure.
2. Use the inverse matrix method to develop a single congruence in:
16x, + 15x, + 12x5 =z,
8x, + Sx; 4+ 2x; - x, =4,
2x; 4+ 3x, 4+ 3x3—x,=3.
Solve the problem.

3. Use the accelerated enumeration method to find nonnegative x; < 2
and min z for

1 11 2 — 2

-2 + §X3+_9 x4+3x5——3,
7 4 1 —

X - §X3+ 3x4+3-x5— %,

11 5 1 — 2

Xy +-5X3 — §X4+3X5 = 5.

4. Discuss means of saving computer storage space by calculating «;
and f; values only when needed. Show how a backtracking operation
can be used to obtain the x; values.
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8 BRANCH AND BOUND
PROCEDURES

The branch and bound procedure for the solution to integer pro-
grams, as originated by Land and Doig [3], works well on problems
having few variables. For problems with many variables, however, it
requires extremely large computer storage capacity. We shall present
an extension of the method into a branch search scheme that overcomes
these large storage requirements. We also provide a method for solving
the mixed integer problem.

1 A BRANCH AND BOUND METHOD

We wish to solve the integer programming problem: Find integers

x; 2 0forj=1,2,..., nthat minimize z when
n
3 =2
=
n
(D Y ajjx;=b;, i=1,2,...,m,
/=1
xX; < my, j=1,2,...,n,

where the ¢;, a
be infinite.

i» bi, and m; are given integers. Any or all of the m; may
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We are able to solve (1) by enumerating solutions in a tree search
procedure. Consider (1) as a linear program by relaxing the integer
constraints on the x;. The resulting continuous problem may be solved
by the simplex method, which converts the equations of (1) to an opti-
mality format and equivalent problem: Find nonnegative integers
x; < m; that minimize z when

n
—z+ Y &x;=—Zo,
(2) J=m+1
n —
xi+ Z aijxj:bi’ l=1,2,...,m,
J=m+1

where the first m variables and the last # — m variables have been arbi-
trarily selected as the basic and nonbasic variables, respectively. In
addition, ¢; > 0 for variables at their lower bound zero and ¢; <0
for variables at their upper bound m;. The values of the objective func-
tion and basic variables are given by
2o’ =Zo + ) &my,
JjeU
b/ =b,— Y a;my;
JjeU
the objective value is z,', the ith basic variable has nonnegative value
b,/ <m;, and U is the index set of nonbasic variables at their upper
bounds.

If the continuous solution has allb;’ as integer, program (1) is solved.
Ifanyof the b, are fractional, we start the tree enumeration. We consider
the zero node of a tree as corresponding to the fractional solution with
objective value z,'. Integer x; must satisfy x; < [b;,] or x; > [b;/] + 1.
We branch to level one of the tree by adding either the upper or the
lower bound to the constraints of (2); then we find a new continuous
minimum for z. Whichever bound we choose, we pursue the single
branch until it becomes necessary to backtrack. Then we follow the
other branch. The minimal integer solution occurs for one of the
branches. This type of single-branch procedure originally appears in
Dakin [71.
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Let us assume that after some minimization we are at level r of the
tree. We have a canonical form like (2) with the additional constraints
0 <p; < x; < my; p; and m; are lower and upper bounds, respectively.
Initially p; = 0 and m; = m;. The values of the objective function and
basic variables are given by

(3) JeU JeL
bl,—El— Zaijmf— Zaifﬁf;
JjeU JeL

the objective value is z,’, the ith basic variable has value b, where
p; < b <m;, and L is the index set of nonbasic variables at their lower
bounds. We consider the node at level r as corresponding to the current
fractional solution.

The optimality conditions for (2) with the current bounds are given

Theorem 1

Any values of x; for j =1, 2, ..., n satisfying the constraint equa-
tions in (2) and p; < x; < m; are a minimal solution for z if ¢; > 0 for
variables at their lower bound p, and ¢, < O for variables at their upper
bound ;.

Proof

We have optimality by the conditions of the theorem, since any
increase in the variables at their lower bound or any decrease in the
variables at their upper bound can only increase z.

Suppose some of the b,” are fractional. We select some fractional b,
and branch to level r + 1 of the tree. We accomplish this by adding
either x; <, =[b;/] or x; = p;=[b/]+ 1 to the constraints of (2)
and then reminimizing. Whichever bound we choose, we pursue the sin-
gle branch until it becomes necessary to follow the other branch. We
must decide which fractional-valued basic variable to use and, at the
same time, whether to use an upper or lower bound for the variable.



180 8 BRANCH AND BOUND PROCEDURES

The choice of either an upper or a lower bound will cause the objective
value to be greater than or equal to z,” because another constraint has
been added to the problem. Thus, z, is a lower bound to all objective
values for nodes that lead from the current one.

We can calculate the change in the objective function for the newly
constrained problem. Let us suppose that x;, a basic variable, has a
fractional value after the optimal canonical form (2) has been achieved.
We determine

(4) D, = min <L

i Qi
>0,

where D, is taken as infinite if no proper a;; exists to produce a finite
value. We also calculate
. —C
(%) I, = min —¢
o
>0,

where [, is taken as infinite if no proper a;; exists to produce a finite
value.! We can now determine the effect on the objective function of
either a decrease or an increase in the value of x;. Equations (4) and
(5) each define a variable with index j that can be eliminated from the
objective function of (2) and produce an optimality format for z. Thus,
we are able to calculate the smallest change in the objective value that
results when x, is decreased or increased.? If x, is to be decreased, we
use (4) with the z and x; equations of (2) to form

n
©) z2=Zo+ Db —Dix;+ Y (¢;— D;a;)x;;
Jj=m+1
if we take x, < m;, we must have z > U;, where

Ui = ZOI + Di(bil - Mi).

! The index i on D; or I,, will more generally be s;, the index of the basic variable
in equation i.

2 This is the cost ranging procedure of linear programming. (See Driebeck [2] for
its original application in integer programming.)
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If x, is to be increased, we use (5) to form

(7) Z=20—I,-E,-+I,-xi+ ) Z (5J+I,(_Iu)xj,

Jj=m+1
if we take x; > p;, then we have z > V,, where
Vi=zo + Li(p; — b/).

Note that if no a;; with the proper sign exists to produce a finite value
of D;, then it is not possible to reduce the value of x;; we take x; > p,.
Similarly, if no proper a;; exists to produce a finite value of /;, it is not
possible to increase the value of x; and we take x; < m,;. If U; + 1 > z¥,
we take x; > p;, while if V;+ 1 > z* we take x; <im;, where z* is the
objective value of a feasible integer solution.

At this point we can decide which basic variable to pick for branch-
ing. If U, is large for basic variable x;, we may not need the x; < m,
branch if we use x; > p;. There is a chance of obtaining a feasible integer
solution with objective z* with U, + 1 > z*. (This type of strategy was
developed by Little, and co-workers [4] for solving the traveling sales-
man problem.) Similar possibilities exist if V; is large. The branching
variable x, is obtained by selecting the index & from

(8) Wi = max(U,, V)

for indices i where x; is fractional. Therefore, if the maximum occurs
for Uy, we use x, = p, =[b,] + 1;if it occurs for V,, we use x, < i,
=[b].

Suppose now that a feasible integer solution to (1) is available with
objective value z*. This solution is an upper bound to the optimal one.
There is no need to branch from node level rto r + 1 if:

1. zy + 1> z*%,

2. all the b, are feasible integers and z," <z* (we have found a
feasible integer solution with new z *),

3. no feasible solution exists at the node.

In any of these three cases, we backtrack to a node at level ¢t < r
that has only one branch and has W, < z* — 1. We eliminate all 77,
and p; bounds along the path from the r level to the ¢ level node. We
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then branch to level ¢ + 1 by imposing x, < m, if x, > p, initially, and
vice versa.

We must find the new canonical form and variable value for level
r + 1. In the canonical form (2) at level r, the equation for basic variable
X, 18
% X+ Y dyx;=Db,.

Jj=m+1

The current value of x, is b,'. If we use x, < m,, then b, > in,. We
replace (9) in (2) by

n
(10) xk+ Z ﬁijj+x,,+k=5k,
J=m+1
where x,., = 0 is an artificial variable. The variable x, is given the
value m, and x,,, has value x,,, = b, — #i,. The simplex method is
Initiated again by adding the w-objective function

(11) —w—=Xx,— 3y a;x;=—b

Jj=m+1
to (2). The w-objective value is w, = b, —m,. If we use x, > p,,
then b,” < p,. We replace (9) in (2) by

n
(12) =Xk = ) FgXp X = by,
j=m+1
where x,,, > 0 is an artificial variable. The variable x, is given the
value p, and x,,, has value x,,, = p, — b,’. The simplex method is
initiated again by adding the w-objective function

(13) —wH X+ Y dyx;=b,
j=m+1

to (2). The w-objective value is w," = p, — b,’. At the end of the mini-
mization phase we have the canonical form for level r + 1.

To convert the canonical form at level r to a canonical form at level
t + 1, we first remove the bounds along the path from the r level to the
t level node. The bounds for the ¢ level are given by the branchings from
the zero level node to the ¢ Icvel node. Let us impose these bounds as the
p; and ;. All current variable values at level r satisfy p; < x; < mj; the
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current canonical form is feasible. To obtain the canonical form for
level ¢, we simply reminimize as a Phase II simplex problem. When the
canonical form is achieved, we must branch with the x, variable. If x,
is not a basic variable, due to a nonunique solution, we make x; basic
(the corresponding &, is zero). We then achieve the form given in (9).
We impose the appropriate bound to obtain (10) and (11) or (12) and
(13), and reminimize to get the canonical form for level ¢ + 1.

The two phases of the simplex method for obtaining a new continu-
ous solution follow from the methods of Chapter 2. In any case, assume
that the w equation from (11) or (12) is of the form

—w Y djx;= =W,

i=1
The index s is obtained from

for x; not at its upper bound,

o . 6—115
(14) d;' = min d for x; not at its lower bound

Je
in Phase .

Let us assume that d, is negative and that nonbasic x, has value x,’.
The effect of increasing x, by 6 is seen by changing w,’, z,, x, ., and
the b; for i # k to the new values

wg = w, +d,0,

(15) 26=ZO,+5s65
Xp+k = Xpix — is 0,
bl =b/ - a,0.
The greatest x, can be increased and still maintain feasibility is
r—ﬂs - xs,5
mi - bi’ P .
T, dis < 0, 1 # k,
is
* H ; —
(16) 0™ = ming p; — p, _ _
= ais > 0; i # ka
s
xl
ootk a,, > 0.
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Suppose that d, is positive and that nonbasic x, has value x,’. The
effect of decreasing x; by y is seen by changing w,’, z,", x,,,, and the b;
for i # k to the new values

’

”
wo = wo' — d,7,
(17) 26220"‘Es%
” o =
Xp+k = Xnik + Ais Vs
"o =
bi = bi + a;s .

The greatest x, can be reduced and still maintain feasibility is

xs, —ﬁsy

bi, - ﬁi -

_, a, <0, i#k,
—

(18) y* = min{ 7. — p,

i i - .

—_—_, ais > 0, l # k,
ais
’

X —

otk d,, <O0.

— s

After selecting the nonbasic variable x; by the choice rule of (14), we
have

Case /.

Here x, = x, < m, and d, < 0. In the next iteration x, = x,” + 0*.
The variable values are given in (15) with @ = 6*; all other nonbasic
variables retain their same values. If 6* = /i, — x,’, then x, assumes its
upper bound value and no pivot operation is performed. Otherwise,
x, Is made basic; we use choice rule (16) to select some basic variable x,
to become nonbasic. The usual pivot operation is then performed with
a,, as pivot element.

Case Il.

Here x, = x,' > p, and d, > 0. In the next iteration x, = x,’ — y*.
The variable values are given in (17) with y = y*; all other nonbasic
variables retain their same values. If y* = x," — p,, then x, assumes its



1 A BRANCH AND BOUND METHOD 185

lower bound value and no pivot operation is performed. Otherwise,
x, is made basic; we use choice rule (I18) to select some variable x,
to become nonbasic. Pivoting then occurs.

If w=w{ >0, we repeat the procedure starting with choice rule
(14). If w cannot be reduced to zero, the branching is infeasible. When
w = 0, we Initiate Phase IT of the simplex algorithm by finding index s
from

¢, for x; not at its upper bound,

¢,/ = min .
(19) : —¢j, for x; not at its lower bound.

The analysis follows as in Eq. (15)-(18) where the w and x,,, rows do
not appear. Case I is the same for x; = x;” < i, and ¢, < 0. Case 11 is
the same for x; = x;’ > p; and ¢, > 0. We have the newest continuous
solution and canonical form when ¢;” > 01in (19).

The branch search procedure is summarized in

Algorithm 1
1. Define solution vector S(z*, x,*, x,*, ..., x,*) where x;* for j = 1,
2, ..., n is a feasible integer solution to (1) with objective value z*,

If no feasible solution is apparent, take z* = co. Let r refer to the rth
branching variable, where {(r) is the index of the variable, N(r) is the
number of branchings [initially N(r) = 0], B(r) is the bound for the
variable (this bound will usually be a temporary one), and G(r) =0
indicates that x, < B(r) for k = I(r); G(r) = 1 indicates that x, > B(r)
for k = I(r). Initially all p; = p; = Oand i, = m;.

Solve (1) as a linear program. If the solution is all integer, the prob-
lem is solved. If not, set » =0 and go to 2, maintaining the canonical
form and variable values to the solution to (1).

2. Set r=r + 1. Select index k and determine W, from (8). If W,
= U, in the calculation, set B(r) =[b,'] + 1, G(r) = 1, and p, = B(r).
Otherwise, W, = V,; set B(r) =[b,'], G(r) =0, and m, = B(r). In any
case,set I(r) =k, N(r) = 1, W(r) = W,, and go to 3.

3. Solve the linear program from the current canonical form with the
new bounds on the variables. We do one of the following:

(a) If the solution produces an objective value z with z + 1 > z*,
goto4d.
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(b) If the current problem has an infeasible solution, go to 4.

(c) If the solution produces an objective value z with z < z*
and the solution x;*, x,* ..., x,* is all integer, redefine
S(z*, x,*, x,*, ..., x,*) as a new feasible integer solution where
z*¥* =2 Gotod.

(d) If the solution produces an objective value z with z + 1 < z*
and the solution is fractional, go to 2.

Backtrack. Setm; = m;and p; = p;forj=1,2,..., n. Go to 4(a).

(a) If W(r)> z* — 1, go to 4(f). Otherwise, go to 4(b).

(b) If M(r)=1and r=1, go to 4(e). If N(r)=1 and r > 1, let
¢t = | and go to 4(c). Otherwise, N(r) = 2; go to 4(f).

(c) If G(¢) =0, let m, = B(t) for k = I(). Otherwise, G(¢) = 1;
let p, = B(t) for k = I(t). Let t =t + 1 and go to 4(d).

(d) If t < r, go to 4(c). Otherwise, ¢ = r. Solve the linear program
from the current canonical form with the new bounds on the
variables. Go to 4(e).

(e) If G(r)=0, set B(r)= B(r)+ 1 and N(r) = 2. Thus, p, = B(r)
for k = I(r). Go to 3. Otherwise, G(r) = 1; set B(r) = B(r) — 1
and N(r) = 2. Thus, m, = B(r) for k = I(r) Goto 3.

{f) If r = 1, the feasible solution S(z*, x,*, x,*, ..., x,*) is opti-
mal. Stop. Otherwise, set N(r) = 0,r = r — 1 and go to 4(a).

Example

Find integers x; > O that minimize z when

3x, + 4x, =2z,
2x, + x; — X5 =1,
x, + 3x, — x4 =4

We solve the problem as a linear program to obtain

5 _ 16
-z + 3% +4x, = — 45
1 1,
3X; + X, —ixg= %
5 . 1y — 1
—3X1 + X3 —3X4 = 3

16

The solutionisz =12, x, =0,x, =%, x; =%, x, = 0.
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2.r=1.D,=35 D;=00.Wesetx; > 1and W(l) =
3. The new canonical form is

-z + X3+ x,= -5,
Xy + 33X —dx,= 4
X1 —-%x3+%x4= ‘%,
where we have the solutionz =6, x, =%, x, =%, x; =1, x, =0.

2.0r=2 D,=5 D=5 15L=31=3U,=7 U =8, V,=8§,
=7 Wetake W, =V, = 8. Weset x, < | and W(2) = 8.
3. The new canonical form is

-z —5x, + 3x, = —12,
5x, + x5 — 2x, = 7,
xy + 3x, - x,= 4
where we have solution z* =7, x; * = |, x,* = 1, x,* = 2, x,* = 0.

4, Backtrack. W(2) > 6, W(l) > 6. The current feasible solution is
minimal.

2 TIGHTENING THE BOUNDS

In Algorithm 1 the upper bounds m; and the lower bounds p; = 0
remain fixed. The m; and p; are regarded as temporary bounds. When-
ever a continuous linear programming solution is found in steps 1, 3, or
4, further bounds may be placed on the variables. This tightening of the
bounds will tend to improve the efficiency of the algorithm.

The improvement is possible when a feasible integer solution is
available with objective value z*. Thus, if we are interested in obtaining
a smaller objective value‘, we need consider only values of the objective
function given by

Z=2Zy+ Z chJSZ — 1.
J=m+1

We can obtain bounds on the nonbasic variables x; where ¢, # 0.
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If &, < 0, we achieve x, > {v,} where

z¥—1-12z,
vy=my b —— 0

Cs

If ¢, > 0, we have x, < [1,] where

z¥—1-12z,
U =ps+———

Cs

Thus, the lower bound on the variable x; can be increased to {v}
if the present bound is smaller (when ¢, < 0). Also the upper bound on
x, can be reduced to [w,] if the present bound is larger (when ¢, > 0).
Similar results hold for the bounds m; and p; during the branching
process, if we define i, and &, by replacing m, and p, by m, and p;,
respectively.

In addition, we can use (6) and (7) to tighten the bounds on the x;
by requiring that z < z* — 1. Using (6) we obtain

z>zy + Db/ — D;x;;
thus when D; > 0 we have x; > {v;} where

* I
o L 1770

. i D,
Using (7), we obtain
22z —Lib/ +I;x;
thus, when /; > 0, we have x; < [u;] where
z¥—1-2zy

I,

1

up= b/ +

We replace bounds 77; and p; by these new bounds if the latter are tighter.

3 THE MIXED INTEGER PROBLEM

The algorithm in Section 1 is modified slightly to handle the mixed
integer case where only some of the x; variables are restricted to be
integers. The remaining variables can be integers or fractions and are
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never picked to be the branching variables. The enumeration is per-
formed for the integer-restricted variables only; eventually a feasible
solution results for both the integer and fractional variables.

If the objective value is also constrained to be an integer, it appears
simplest to replace the objective function in (1) by

Xp+1 ™ Xpt2 =2

and include the additional constraint

n
Z CiX;— Xpy1 + Xpi2 :05
=1

where x, and X, , , are nonnegative integers.

If the objective value z can be fractional, we replace steps 3(a) and
4(a) of the algorithm by

3. (a) If the solution produces an objective value z with z > z*,
goto4. :

4. (a) If W(r) = z*, go to 4(f). Otherwise, go to 4(b).

Example

Find x, = 0, integer x, > 0, x; > 0, and integer x, > 0 that minimize
z when

5x,— x;— X3+ 2x,=2,
9x; —2x, — 5x3 +4x, = 2,

X+ x3+ x,=4.

1. We solve the problem as a linear program to obtain

1 3 —
—z+ 23X, + 3x3 = —1,
"3 3 _ 5
—2Xy + X, + 5X3 =7
3 _ 3
2% — X3+ x, = 4

1 H — 1 — — 5 — — 3
The solutionisz=4,x;, =0,x, =5, x; =0, x, =

2.r=1.D,=1,D,=%L,=%41L,=3,U,=1, Uy=% V,=%
Vo=2.W,=V,=2 Wesetx, <1and W(l) = 2.
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3. The new canonical form is

-z +—§‘X3—%x4=—1,
x2+ x3+ X4 = 4;

] 2y =
xp —dxzt+idxg= 1,

where we have solution z* =4, x,* =L, x,* = 3, x;* =0, x,* = 1.
4. Backtrack. W(1) = £. The current feasible solution is minimal.

Problems

1. Use the branch and bound technique to solve the integer problem:

-z + 3% HiPx = A
xp+A4Px - dx = -4,
X Ixy— 3xa= 4
2. Find the minimum z for the integer problem:
—2Z —%xl +%X4: —%;
X3+ 4% — %= 3,
Xp—3x b= 8

0<x;<1 for j=1,2,3,4.

3. Solve the mixed integer problem on page 189 where z is constrained

to be an integer.
4. Minimize z for integers x; > O in

-z +4x +5x;=-3
X+ 6%+ gX3 =

x4+%x1 + %x3=

N N
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