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PREFACE

In this third volume of Methods and Models of Operations Research our
loyal readers will discover that the same organization has been adopted as
in the first two volumes: a first part in which mathematics is subordinated
to the practical aspects of the concepts to be studied and a second part devoted
to the mathematical side of the various problems. This method of presentation
in the earlier volumes has been widely welcomed, as shown by the numerous
editions and by translations into a variety of languages.

This volume deals with integer programs and programs with mixed values
and will complete a small library for engineers and specialist groups. Opera-
tions research is now a part of their equipment, but advances in this field take
place every year and it is necessary that they should become acquainted with
them.

For the present volume I have had the collaboration of my friend A.
Henry-Labordére, Engineer in Arts and Manufacturing, Master of Science,
and Ph.D. He is an engineer with a wide reputation in operations research,
an advisor to a very important firm of European consultants, and has also
taught mathematical programming at I’Ecole Centrale des Arts et Manufac-
tures in Paris for several years.! The latter experience has assisted him in
presenting numerous sections of this work in an instructional form. We have
shared the production between us, with the author of the previous volumes
retaining the responsibility for its coordination.

Integer programming is a subject that is of ever-increasing interest to
engineers, economists, and informaticians since problems with integer solu-
tions occur in every field of science and technological research. Such problems
are, as a rule, appreciably more difficult to solve than those with continuous

! At present, Dr. Henry-Labordére is teaching at 1’Ecole Nationale des Ponts et Chaus-
sées in Paris.

vii



viii PREFACE

and linear values. For the latter, the storehouse is well stocked with algo-
rithms, but the same does not yet apply for problems with integer values,
although considerable progress has been made, especially during the past five
years. Thereason for this liesin the fact that diophantinemathematics contains
combinatorial difficulties that do not occur with continuous values. This is a
situation that cannot be altered, but considerable progress has nevertheless
been made and some essential results are now available.

As all mathematicians concerned are aware, the subject of this volume is
a mathematically difficult one, but we have endeavoured to balance the strict-
ness of the theory with the instructional needs of our readers. Among the
more useful methods of procedure are some very difficult algorithms such as
Gomory’s asymptotic algorithm as well as the methods of Benders and
Trubin. These have been grouped in a Supplement, but they have still been
given the same instructional presentation.

The largest category of programs and the one involving the greatest diffi-
culties, that of nonlinear programs, will be treated in a fourth volume now
in preparation. I have again asked A. Henry-Labordére to be my collaborator,
while we have been joined by my friend and former pupil at Grenoble, M. D.
Coster, who is currently a consultant in informatics and operations research.
During recent years he has acquired a wide knowledge of these nonlinear
problems.

Returning to the present volume, I would like to outline my attitude toward
the publication of new material in the series MMOR (Methods and Models
of Operations Research) as they are now known by a wide circle of engineers.
Instead of bringing the volumes up to date with each new edition I have
preferred to leave them as published and to publish the new material every
five or six years in fresh works that will not render the earlier ones obsolete.

In writing these MMOR volumes we have often recalled one of the rules
of St. Benoit: “Encourage the strong without discouraging the weak.”” By
means of this precept each student can progress according to the individual’s
mental speed and available resources. What is needed is to progress, slowly
and surely or quickly and dangerously, according to one’s wishes and ability,
as long as progress is made. It is not in human nature not to advance or to
attempt, since this is reserved for the negligent and the idle, for those who
do not wish to confer any benefit on their fellows but merely to live for them-
selves. The latter are those to whom I scathingly referred in one of my books*
as “‘subhumans,” and this is the lot of far too many who refuse to realize that
self-improvement at all levels is the object of existence.

The conquest of knowledge and of mental, moral, and emotional equi-
librium is the basic adventure of our species; and if in this respect it has

! A. Kaufmann and J. Pezé, “Des sous-hommes et des super-machines,”” Albin Michel.
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something of the tortoise and the hare, its only real goal is that of self-mastery.

I wish to thank our friends: Hervé Thiriez, Professor at the Centre d’En-
seignement Supérieur des Affaires at Jouy-en-Sosas, and Michel Gondran,
Research Engineer with Electricité de France, who have taken meticulous
care in rereading and finalizing the manuscript. We are additionally indebted
to them for a number of constructive suggestions about the models and the
proofs.

My son Alain has also had an important part in checking the manuscript
and the proofs.

Finally, we wish to thank the editor and his collaborators for their usual
care in the publication of this series, as well as the Director of the Collection,
Professor Ad. André-Brunet who has always given me his sincere encourage-
ment and support.

L’Institut National Polytechnique A. KAUFMANN
Grenoble, France






Part 1. METHODS AND MODELS

Chapter I. PROGRAMS WITH INTEGER
AND MIXED VALUES

Section 1. Introduction

In this chapter we shall consider such practical problems as can be expressed
in the form of mathematical programs, which are similar to those of linear
programming as discussed in the first volume,! except for the requirement that
the variables must be integers such as 0, 1, 2, 3, .... The reader will already
have been convinced as to the practical importance of problems defined by
linear programs. In operations research and econometrics we are often aware
that the choices are discrete, in other words, that they can only assume definite
and not closely contiguous values, that this or that has to be done, a factory
has to be built or not built. Consequently, for practical purposes, problems of
linear programming with integer solutions are of an even greater importance
than the classic problems of linear programming. We shall see that choices
for investment and problems for the engineer and even for the plumber can be
expressed in this form.

It may well be asked, therefore, why the interest in programming with
integers is so recent, dating from some fifteen years only, if it can be so widely
applied. Paradoxically, discrete mathematics, which originated with the
arithmetic of the Greeks and Arabs, has over recent centuries occupied the
position of a poor relation in the field of research. From many points of the
scientific spectrum, logic, algebra, operations research, information, humane
sciences, and the arts, interest in them has awakened to such a degree that at a

! Note to Reader : Throughout the present work, Volume I refers to A. Kaufmann, “Methods
and Models of Operations Research,” Prentice-Hall, Englewood Cliffs, New Jersey, 1963.
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2 1. PROGRAMS WITH INTEGER AND MIXED VALUES

recent congress of pure mathematics more than half the discussion was
devoted to the subject of discrete mathematics. It is but recently that effective
methods have been discovered for solving such problems; easy to formulate,
they possess the disadvantage of extensive calculations, containing, as they do,
numerous variables and constraints.

In this chapter we shall give practical cases that can be expressed as problems
with integer variables. Brief statements about the main properties will be given,
and methods will be outlined. In the second part of this work the reader will,
as usual, find the requisite theoretical analyses. In particular, he will find those
dealing with the problems of programs with mixed numbers in which some
variables must be integers and others may be continuous, as in classic linear
programming. We shall observe that the latter type of problem is specially
important.

Section 2. Some Examples of Problems with Integer Solutions

1. Characteristics of Problems with Integer Solutions

Let us consider the set 8 containing the solutions of a linear program and
let [x] =[x, x5, ..-, X,] be one of the solutions belonging to 8. If we now
impose the constraint that the components of [x] must be natural numbers
(integer and nonnegative) we can state that [x] is an integer solution. Thus,
in a case where n = 5,

(2‘1) [x]=[x1,x2,x3,x4,x5]=[3, 0, l, 9:0]5

[x] will be an integer solution. This will not be the case for

2.2) [x] =[xy, X2, X3, X4, Xx5] =[3 ,1.08,0,5.7,1],
nor for

2.3) [x]=[-1,0, —3,2,9]

and

2.4 [x]=16,1,9/2,2/3,0].

Let us examine a simple example of linear programming of which we will
temporarily ignore the economic function to be optimized.
Let

6x,+9x,<54,
Tx,+6x,<42,
Q.5 x; <4,

x =20,

XZZO.
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The set 8§ of the solutions of (2.5) is represented by the hachured area of
Fig. 2.1. Let us now introduce the constraint of only accepting as solutions
those of which the components x; and x, are nonnegative integers: the set X
of the corresponding solutions is represented in Fig. 2.2.

This subset 2 of 8 consists of

(2.6) £ ={[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6],
(1,0}, [1, 13, [1, 2], [1, 3], [1, 4}, [1, 5], [2, O,

2, 1), [2, 2], [2, 3), [2, 4], [3, 0), 3, 1], [3, 2],

(3,3, [4,0], [4, 1], [4, 2]} .

Here the number of integer solutions is finite; in other cases it might be
infinite.
Let us now suppose that the economic function of the linear program (2.5) is

2.7 [MAX]z=7x,4+5x,.

From Fig. 2.3 it can be seen that the maximal solution of the linear program
2.5, (2.7 is
(2.8) [x1, %] =[4,7/3].

This is not an integer solution, but let us nevertheless calculate the corre-
sponding value of z:

2.9) z = (1).4)+6).(7/3)
=393 = 39.66.. .

Let us now impose the constraint that the solution of this program is to be
integer. With the very simple problem that we are considering, it is sufficient
to determine which will be the first point (or points) representing an integer
value encountered after entering the polygon of solutions when the straight
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line 7x; 4+ 5x, = z, has undergone a parallel displacement. It can be seen by
inspecting Figs. 2.2 and 2.3 that this point will be

@10 [x,x]=[4,2],
for which we have
@2.11) z=(7).(4+(5).(2)=38.
The next point with integer values that we encounter is
2.12) [x1, x,]=13, 3],

and for this we obtain
(2.13) z=(7).(3)+(5).(3)=36.

It is advisable to clarify at once for the reader that the maximal solution
with integer values is not always obtained by taking the maximal solution of
the program for continuous values and by then suppressing the decimal
portion of it. In this context, the reader should study the linear program
represented in Fig. 2.4. The maximal solution of this program is [2.8; 4.3]
and the maximal solution for integer values is not [2.4] or [3.4] but [3.3], as
can be verified by sliding the straight line representing the function z parallel
to itself. The same remark applies when we consider a minimal solution with
integer values. This is not always obtained from the minimal solution for the
corresponding program with continuous values. For example, if [3.17; 2.92]
is the minimal solution of a given program, it is perfectly possible that neither
[3.3] nor [4.3] is a minimal solution for integer values.

In addition, when the number of variables in the program exceeds two, it
may prove very difficult to determine the solutions with integer values without
enumerating and verifying all the solutions by means of the constraints. Such
a process, useful as it may be for certain particular cases, is not generally
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FiG. 2.4 F16. 2.5

practical because of the large number of integer solutions to be considered.
Even in a program with three variables and three constraints (Fig. 2.5),

X X X
224341,

7" 4 6
2.14) Ty X 5oy,
573
x1<29
xl 20; x2 20» x3 >0~

it is by no means easy to discover the integer solutions; to obtain the set that
contains them, it is necessary to verify some thirty points.

Except for very simple problems, we are therefore obliged to make use of
special algorithms for programs with integer values. The various principles
underlying them will be very briefly discussed in the present chapter, and their
fuller explanation and proofs will be given in the second part.

Let us, however, first consider some very simple examples.

2. Some Preliminary Examples

A Problem Dealing with the Transportation of School Children'
In a village A4 there is a school attended by some hundred children, 72 of
whom live a certain distance away, whence the need to arrange their trans-

! This problem is given by Mlle. Edith Heurgon in her thesis, ‘‘Programming with integer
numbers. Arborescent method of Robert Faure and Yves Malgrange.” Faculté des Sciences
de Paris, 1967. We have slightly modified the terms to satisfy the requirements of the present
work.
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portation by bus. There are two main collection points B and C (B being
situated between 4 and C) (Fig. 2.6). The number of pupils to be collected is
as follows: 42 at C, six between C and B, 20 at B, and four between B and A.
The firm that can provide the transport owns two types of bus: one with
35 seats and another with 50 seats. The prices charged by the firm are as
follows for each journey and for each kind of bus:

Type of Bus
335 seats 50 seats
BA 39F 50.50 F
CA 54 F 68 F
CB 45 F 57.50 F.

We must not be surprised that the proposed charges are not proportional to
the distances, since the fixed costs of such an operation generally exceed the
variable ones.

The problem is to decide which type of bus should be used on each of the
sections in order to minimize the total outlay.

Let us use the following symbols for the variables representing the number
of buses to be considered in each case:

Buses
35 seats 50 seats
BA X x'
CA y y'
CB z z

The linear program with integer numbers is easily obtained:
[MIN]f=39x+54y+45z+50.5x"+ 68y +57.52,
35y+35z+50y'+50z' > 48,

(2.15)
35x+35y+50x'+50y" =72,
xz20, y=20, z=20, x'20, y =20, z=0.

The first line of the program (2.15) expresses the economic function, the
total cost. The second line represents the constraint imposed by the different
possibilities that the buses must provide when they start their collection of
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pupils at C, bring them to B and finally to A. The third line represents the
buses that finish at 4.

Resolved into continuous variables, the linear program (2.15) provides an
optimal solution of

(2.16) x=0, y=0, z=0, x'=12/25, y' =24/25, z'=0,
min £ = 89.52.

Resolved into integer variables by means of one of the algorithms described
in the second part, or by enumeration (which is easy in this case), we then
obtain as the minimal solution

.17 x=1, y=0, z=0, x'=0, y' =1, z=0, minf=107.

It will be observed that this solution cannot be obtained by rounding off
the solution of (2.16) to the integer immediately below or above it.

The Problem of the Knapsack. A Problem of Investment

A hiker wishes to carry a certain number of articles X, , X;, ..., X, in his
knapsack. He knows the weight P,, P,, ..., P, of each of the articles, as well
as their respective volumes' ¥, V,, ..., ¥,. He is unable to carry a total load in
excess of P, and his knapsack cannot contain a volume greater than V. The
hiker allots values k, , k,, ..., k, to each of the articles according to its intrinsic
utility. Which objects should he take with him to maximize their total utility?

This problem will be represented by the following linear program with
integer values, in which x, is the number of the articles X, to be carried:

MAX]z=k,x,+k,x,+... +k,x, ,

P x,+Pyx,+...+P,x, <P,
(2.18)

V1x1+ VzX2+...+ ann S V,

x, 20, x,20,...,x,20.

A variation of this problem plays an interesting part in a number of algo-
rithms. Let us suppose that our aim is to maximize V and to take P as a
constraint (which would not make much sense for the bearer of the knapsack,
but makes sense for other concepts). We should then write

IMAXI V=V x+Vox;+...+V,x,,
(2.19) Pix+Pyxs+...+Px, <P,
x,20, x,20,...,x,20.
A concrete and practical problem can be envisaged in the form of (2.19).

* It would be strictly more fitting to speak of cumbersomeness rather than of volume.
The introduction of volumes (unless the articles are soft ones) is clearly open to criticism,
and we must ask indulgence for the somewhat theoretical nature of the term.
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A capital sum K is available and can be used to construct units of production
in different localities L, L, , L5, and L,, the installation costs C,, C,, C5, and
C, varying according to the locality selected. Let us use By, B,, B;, and B, to
represent the unit profits derived from investments in the corresponding
localities. The problem is which localities to choose and how many units of
production to build in each of them in order to maximize the total profit.

FiG. 2.7

Taking as variables x,, x,, x5, X, to represent the number of units to be
built in the various localities, we obtain as a model one in all respects similar
to (2.19).

[MAX]z=B;x;+B,x,+B3x3+ By x,,
(2.20) Cixi+Cox,+C3x3+Cyx, €K,
x,20, x,20, x320, x,=20.

The reader will have learned in Volume 2! (Section 12, page 86) how to
resolve this problem by means of dynamic programming. Some problems
with integer values can, indeed, be resolved by this method, but, in cases where
there are a greater number of constraints, the method cannot easily be

employed and may even have to be discarded from the outset, since the problem
cannot be reduced, after it has been transformed, into a sequential form.

3. Another Well-Known Problem

In Volume 1 (page 64) and in Volume 2 (page 265) we gave a problem known
in mathematical parlance as a problem of assignment but which is equally a

! Note to Reader: Throughout the present work, Volume 2 refers to A. Kaufmann, “Graphs,
Dynamic Programming, and Finite Games,” Academic Press, New York, 1967.
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linear program with integer values. Here these values are bivalent; that is to
say that, in such problems, they can only assume the values of 0 or 1.

Let us recall this problem.! We have to consider n workmen X, X,, ..., X,
and n positions of employment Y, Y,, ..., ¥,. To each assignment (X;, ¥;)a
cost is attached (Fig. 2.8):

(2.21) Cij>0, l,j= 1, 2,..., n.

Some of the ¢;; may be infinite (which means that the corresponding assign-
ment is impossible).

We are required to assign the n workmen to » positions in such a manner
that each workman will have one and only one position and that the total
cost of the assignments will be minimal. This gives the following program:

[MIN] zZ = Z Z C,-J-x,-j,

i=1 j=1
X5 = 1, J = 1, 2, (N
(2.22) f; ’
le.i=1’ l=1,2, > i,
ji=1
2 PR
xl'_i=xl'_i’ L] = 1,2,...,”.

The relation x,-zj = x;; imposes the constraint on each variable x;; that it
cannot be equal to a number other than 0 or 1. An assignment is represented
by a table (Fig. 2.9) containing a single and only a single 1 in each line and also
in each column. Various special methods exist for the solution of such prob-
lems, as can be discovered from our references [K74]-[K76].

Y Y Y Y

1 2 3 n
T e g
)
Xilen 24 : § Cin oft]o it 0
X31°21 {©22] %23 - ®am 1{ao]o i I 0
e T ..-_'._’...
X, |e c c v c '
31931 %2 %33 ;o 3n o|lofo b 1
[ T ---.{_,--_
' I 1 ' ¢!

] HE ! VY P b '

R Mot R s et R S e o SN Y

s R R I M e

1 [] []

P i b R
x e Te Te v T
n|“nl | n2|"n3 N ®nn 6|0 1 " 0

PR P P wamebad o
Fi1G. 2.8 Fi1G, 2.9

!This problem is given by M. R. de Grove, Revue Frangaise de Recherche Opération-
nelle, No. 39, pp. 171-183.
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Section 3. Boole’s Binary Algebra

1. The Binary States of a System

Situations in which decisions appear as alternatives are the most frequent
among those by which each of us is confronted. Indeed, it can be shown that
every decision, in a system in which the number of states is finite, can be
reduced to alternatives in a more or less complex set of variables. Boole’s
binary algebra enables us to deal with problems of this kind; it has come to
play a fundamental® part in all the sciences and especially in operations
research, information theory, and language theory. In the course of the
preceding volumes the reader has been provided with such information about
this algebra as was required in the context. We now propose to enter more
deeply into this subject.

The concept of an alternative is, therefore, one of the most frequent with
which we have to deal in our reasoning and in our actions:

all or nothing,

red or white,

open or closed,

exists or does not exist,
Qorl,

true or false,

dead or alive, and so on.

To be sure, these alternatives correspond to models that we use, usually
for convenience, in our reasoning.? In nature, it is not only black or white
but colors, which are to be found, but to convey these colors we nevertheless
make use of directions of all or nothing (color television), which can be reduced
to such alternatives. A tap may be half-closed (or half-open, if one prefers);
by means of an appropriate binary symbolism we can exactly describe the
three states: open, half-closed, and closed. There may be situations in which
we cannot state whether a thing is true or false, and we then add a third
situation (and eventually others). Dead or alive may not be accurately observed
or determined (since certain types of coma may be variously interpreted). But

! Because a number of problems derived from the humane sciences cannot, or can only
with great difficulty, be reduced to a logical treatment by Boole’s algebra, there is a growing
interest in methods which permit the introduction of shades, of fuzzying of propositions and
relations. Such is the aim of the theory of fuzzy sets enunciated by L. A. Zadeh. Note, as an
example, A. Kaufmann, “Introduction to the Theory of Fuzzy Subsets,” Volume 1,
Academic Press, New York, 1975.

2 It is interesting to note that an inverse tendency is now appearing.
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we shall be more disposed to classify the finite states with the aid of more or
less complex binary concepts, rather than try to determine whether the vari-
ables of the system that we have examined are intrinsically bivalent or not.
We know that the concept of a variable, whether it is in a phenomenon of
nature or in a phenomenon of organization, is an arbitrary one; it is part of
the model that our imagination has constructed.

Let us, accordingly, study a system S containing a single element or com-
ponent S, which is free to assume two and only two states E; and E,. We
shall then introduce a variable x, :

x, =1 if S, is in the state E,

3.1
=0 if S, isin the state E, .

The choice of the values 1 and O for x; to represent the state of the system
is arbitrary; the variable could equally well be defined in the following manner:
x; = 0 if S, is in the state E,,

3.2 —
1 if S, is in the state E| .

Let us now consider a system S having two elements or components S, and
S,, and let the two possible states of S; be represented by E; and E, , and those
of §,, in like manner, by E, and E,. We now introduce the variables x, and
X,, such that

xy =1 if S, isin the state E,,
if §, isin the state E,,

3.3 =1 ifS, is in the state E,,

if S, is in the state E,.

However, it is possible to employ a more general representation:

[x15 x2] = [1, 1]

if 8 is in the state [E,, E,],

= [1,0] if Sisin thestate [E,, E,],
S = [0, 1] if Sisinthestate [E,, E,],
= [0,0] if 8 isinthestate [E,, E,].

And in a more general manner, if § contains n elements or components
, S,, able, respectively, to assume the states E; or E,, E, or

50,85, ...
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E,, ..., E, or E,, we can introduce the following values:

(3.5
[X15 X2, ..., x,] =[1,1,...,1], if S isin thestate [E,, E,, ..., E,],

=[1,1,...,0], ifSisinthestate [E,,E,, ..., E,],

=[1,0,...,0], ifSisinthestate [E,,E,,..., E,],
=[0,0,...,0], ifSisinthestate [E,,E,,...,E].

It is always possible to use binary variables to represent states with a system
S of which the elements, finite in number, can assume a larger number of
states than two. Thus, let us consider a system 8§ containing a single element
S, capable of assuming states 4, B, and C. We can arbitrarily define 4, B, C
by a variable composed of several binary variables and write
[x, x¥] = [1, 1] if S, is in state 4,
= [1, 0] if S, isin state B,

= [0, 1] if S, is in state C,
= [0, 0] impossible.

(3.6)

Or again, to avoid various difficulties of logic, we can write
[x", ] = [1, 1] if S, is in state A,

= [1, 0] if S, is in state B,

= [0, 1]

= [0, 0]

3.7
if S, is in state C.

In the latter case, two values of (x{V, x{») instead of one represent a state
of S, and this may be the cause of other difficulties. We shall, nevertheless,
show that an integer can always be represented by a binary number.

2. Binary Enumeration

Let us remind ourselves of the significance of decimal expression; for
example,

(3.8) 2518 = 2.10%+5.10*+1.10* +8.10°.
We know that it is possible to employ other bases than 10, for instance, 7:

(3.9) 305 = 6.7*4+1.7'+4.7°;

or also 12 (by associating two new digits with those of the base 10, for example,
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a=10, g =11):
(3.10) 30,92 = 3.123 . 12249.121 +2.12°,

The use of 2 as a base plays a fundamental role in the new mathematics and
in numerous applications of them. Thus,

(3.1 110110 =1.2°41.2*40.2>+1.224+1.2" +0.2°.

It is easy to convert a number given with 2 as a base and express it with base
10. All that is needed is to carry out the expansion. Thus,

(3.12) 110110 =32+164+0+4+2+0 = 54
base 2 base 10.

To effect the inverse conversion, we consider the remainders of the divisions
by 2 of the successive quotients, in the manner shown in the following example:

(3.13)

Coefficient
of 20 7

The four operations of common arithmetic can be used for numbers with
2 as a base. Thus, the calculation 1101410111 1-is expressed as follows:

1101 (13)
(3.14) +101111 + (@7
111100 (60)

A subtraction is performed in the following manner: for example, to calculate
1001101-10110,

1001101 7
(3.15) — 10110 —(22)
110111 (55)

Multiplication and division are rather more complicated, but these com-
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plications mainly arise from our methods of calculation acquired when using
10 as a base.

3. Operations with Bivalent Variables!

More than a hundred years ago George Boole (1815-1864) showed how
logical propositions could be expressed in algebraic form. Hence, it is possible,
thanks to Boole’s algebra, to determine the truth or falsity of a proposition by
a series of comparatively simple operations.

Let us suppose that we have two propositions connected by the conjunction
and, with a and b, for example, representing the simple elements of which
sodium chloride is composed, namely chloride and sodium. Neither chloride
nor sodium alone is sufficient; both are needed. In like manner, a man and a
woman (ignoring parthenogenesis) can have a child. The proposition a and b
is expressed as a.b.

Proceeding further, we use the type of proposition and/or when the presence
of a single component is sufficient to prove the truth of that proposition. For
example, to settle an account we can use either a check or a postal order
(indeed, both could be used at the same time, part of the account being settled
by one method of payment, the remainder by the second method). A further
example is heating by gas and/or electricity. In both these cases the proposition
a and/or b is written as a{ b.

On the other hand, we use the proposition of the type or when the presence
of a component excludes that of the other. For instance, to write a letter, I use
either a pen or a pencil (just try writing a letter with both!). This disjunctive
or is written as a @ b.

Lastly, there is the negation or complementary proposition. If a represents
the proposition, “man has set foot on the moon,” a will represent the prop-
osition, ‘““man has not set foot on the moon.” By means of the negation we can
immediately verify that the disjunctive or, symbolized by @, provides the
equivalence: a@ b = a.b{a.b: a pen and no pencil and/or a pencil and no
pen.?

Another means of demonstrating the practical use of Boolean algebra is to
consider the connections that enable an electric current to pass or not pass
through a circuit. In Figs. 3.1-3.3 different arrangements of electrical con-
nections are shown. In Fig. 3.1 the current is free to pass if and only if switches
A and B are closed (@ = 1 and b = 1). In Fig. 3.2 it passes if one of the switches

1 As in Volumes 1 and 2, we shall refrain in Part 1 of this book from using any mathe-
matical concepts other than the four most common operations, and this restriction will even
include the theory of sets in its elementary form. In Part 2, all these concepts will be con-
sidered from a more advanced mathematical standpoint.

2 In this case, as will immediately be apparent, the and/or is reduced to or.
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is closed (2 = 1 and/or b = 1). In Fig. 3.3 it passes if one and only one of the
switches is closed (the closure of switch A at the top ensures the opening of
switch A4 at the bottom, the same applying remprocally to B but with the
simultaneous situation reversed).

Henceforward, we shall designate by the terms ‘‘binary variable,” “*bivalent
variable,”” or even ‘“‘Boolean variable” a variable x that can only assume the
values O or 1. But these variables can equally express any alternative such as
black or white, true or false, dead or alive, and so on. For this purpose, it will
suffice to establish an arbitrary connection between the pair 0 and 1 and
whichever pair is being considered for an alternative.

4, Boolean Functions

Let us recall the concept of a system introduced earlier in this section and
consider a system 8§ with # components §,, S,, ..., S,. Let us represent the
state of each component by a binary variable x;, i =1, 2, ..., n. Let us further
suppose that the system 8 can, in turn, assume one of the two states repre-
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sented by the binary variable y = 0 or 1. We say that the state of system 8 is
a Boolean function of the » binary variables x,, x,, ..., X,.

To begin with, let us consider the number of separate Boolean functions
that can exist for n Boolean variables.

For n = 1, namely, y = f(x,), there are 23" = 4 different Boolean functions,
which are given below (this being a trivial case):

(3.16)
) ) )
“ | % (xl % f (e N A 2| £’
0 0 0 0 0 1 0 1
1 0 1 1 1 0 1 1
{x) =20 ) = =z =
fo s fl(:t:1 ) fz(:::l) :cl fa(:::l) 1

For n=2, namely, y=f(x,, X,), the number is already appreciably
greater: 23" =16, and is shown in table (3.17). All these functions are
expressed from the three basic functions (it being possible to choose others):
fo(xy) (see (3.16)), f1(x;, x,) and f7(x,, x,) (see (3.17)). To avoid any omis-
sion or repetition in the enumeration of the 16 functions given in (3.17), the
numbers from O to 15 have been shown vertically in binary form, starting
from the bottom, and the digits have formed the column fi(x,, x;) for
i=0,1,2,..,15

The number of separate Boolean functions with three variables x;, x,, x3
is 2029 = 28 = 256; with n variables x,, X,, ..., X, it is 23, The number of
possible Boolean functions very soon assumes vast proportions.

From the above, it is possible to form some interesting conclusions. In the
first place, if we consider all the systems with # binary components that can
assume a binary value, each system contains 2" possible states and there are
neither more nor less than 2™ systems of such a kind.

*As a demonstration of this, we give a table showing the smaller powers of
2" and 22",

This table (Fig. 3.4) proves that the number of possible systems with binary
components becomes infinitely greater when # exceeds 6 or 7 than the number
of states that these systems are capable of assuming. For systems formed of
tertiary or quaternary instead of binary components, the problem becomes
infinitely more difficult.

It is now possible to enunciate the following general property that is not as
unimportant as it might appear.

The number of separate systems with #» components, each of which is
capable of assuming a number of states equal to or greater than 2, is infinitely
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Number of separate
states of a system with Number of separate systems
bi with n binary components

n binary components

n
on 202"
1 21=2 20h =224
2 22=4 220 =2%=16
3 23=8 2% =28 — 256
4 2¢=16 209 =216 — 65 536
5 25 =132 229 =232 — 0.42950x101°
6 26 =64 2029 = 264 = (,18447x102°
7 27 =128 2(27) =2128 =, number with 39 digits!
Fi1G. 3.4

larger than the possible number of states that each of these systems can
assume.’

This principle will be of implicit importance in the theory of programs with
integer values solved by Boolean methods.

5. Important Properties of Boole’s Binary Algebra

Let us take as fundamental or basic operations of Boole’s binary algebra,
the following operations:

(3.17a) complement or negation: @ (function f5(x,));
(3.17b) Boolean addition or union: @ + b (function f5(x,, x,));
(3.17¢) multiplication or intersection: @ . b (function f(x,, x,)).

It is possible to express all the Boolean functions by means of only two

! This also explains why so many researchers are at present interested in machines capable
of adapting the information that is fed into them. The coordinator has a fixed or almost
fixed structure; a machine capable of artificial intelligence would need to possess the quality
of self-structuring to a highly diversified degree. When we think, we not only change the states
of our neurons but the entire shape of our cerebral system.
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operations or even of only one differing from the three operations just given,
but their expression then becomes much more complicated. As is now the
usual and even standard practice, we shall most frequently make use of the
operations (=), (+), and (.).

Let us now examine the properties of this binary algebra.

A primary property is derived from the numbers themselves: 0 and 1. Each
is equal to its respective square.

(3.18) 0=0
and
(3.19) 12 =1.
The equation
(3.20) a¢—a=0 or ad’=a

has as its solutions: a=0ora = 1.

It is easy to show that, whatever more or less complex operations are applied
to the binary variables x; = 0 or 1, selected from the elementary operations
specified in (3.16) and (3.17) and associated in whatever manner, we always
obtain binary functions.

Let us examine other elementary properties, first recalling the results
obtained from the three basic operations:

(3.21) 040 =0, 0.0=0, 0=1-0=1,

(3.22) 041 =1, 0.1=0,

(3.23) 140 =1, 1.0=0, T=1-1=0,
141 =1, 1.1=1.

Let us now see which are the principal properties or formulas of Boole’s
binary algebra, which the reader will wish to prove with the help of Egs.
(3.21)-(3.23).

(3.29) a.b=b.a, hence multiplication is commutative,

(3.25) (a.b).c=a.(b.c), itis also associative,

(3.26) a.a=a,

3.27) a.a=0,

(3.28) a.0=0,

(3.29) a.l=a.

(3.30) atb=>b+a, Boolean addition is therefore commutative,

(3.31) (a+b)+c=at(b+tc), itisalso associative,
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(3.32) ata=a,
(3.33) ata=1,
(3.349) at0=a,
(3.35) all=1.

(3.36) a.btc)=a.bta.c,
3.37) ajb.0)=(@+b).(ato).

The two last properties (3.36) and (3.37) are known, respectively, as dis-
tributivity of Boolean multiplication in relation to Boolean addition and
distributivity of Boolean addition in relation to Boolean multiplication. The
latter property differs from the corresponding property encountered in
common algebra.

It is true that in common algebra we have the identical formula

a.b+c)=a.b+a.c,
but we do not have the same
a+M.c)=(@+b).(a+o).
Wealso find
(3.38) @) = a,
which is evident from the given definition.
The following two important properties form De Morgan’s theorem:
(3.39) a-b=aib,
(3.40) atb=a-b.

Their proof is very simple: all that is required is to utilize the definitions of
the operations (4), (.), and (—). Using this method, the proof of (3.39) is
given in Fig. 3.5. .

Two other very useful properties can be proved just as easily.

(3.41) aia.b
(3.42) a.(a+b)

=ad+b,
=a.b.

w N — (=]
—Jol—-]10C
—~lolojo
ol—|{—=}—
—|{—]1OC|OC
Ll =2 ol i =]
ocloj~]|-—
ol-lol-
ol-j-|~-

Fi16. 3.5
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It is interesting to note how certain simplifications can be performed, for
which one example will suffice:

(3.43) a.b.(a+b).(@a+?o
=a.b.(a.adja.c+a.b+b.¢c) from (3.36)
=a.b.c, since a.b.(a+b)=a.b and a.a=0.
Finally, a frequently used property is ‘““absorption”’:
(3.49) atab=a and a.(@aib)=a.

6. The Plumber or the Tile Removal Problem

We shall now present a practical problem (evocative, even if it may appear
rather naive) of programming with bivalent variables, which, as we should
recall, involves the use of the values 0 and 1 only. For this purpose we shall
apply an algorithm that will demonstrate the properties of Boole’s algebra.
The derivation of this problem is from the printed circuits of electronic
appliances [K48], and the somewhat naive form in which it is presented here
retains all its essential characteristics. The algorithm used is given in our
reference [K50].

Let us, then, consider a plumber who has to fit a number of valves in a series
of pipes running beneath a floor covered with heavy square tiles (Fig. 3.6). He
can fit the valves anywhere he wishes in the pipes, but only one valve must be
fitted to each pipe. In order to minimize the effort required, he endeavors to
find the least number of tiles that must be moved so that there will be one
valve fitted to each pipe.

()1

(4)
FIG. 3.6

Let us number the tiles from 1 to 12 and the pipes from (1) to (5} (Fig. 3.6).
Let us postulate:
(3.45) x;=0 if, in the selected solution, tile i is not removed,
=1 if, in the solution, tile { is removed,
i=12,...,12.
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For each pipe there will be a corresponding constraint showing that at
least one tile must be removed to uncover it. Thus, for pipe (1) we shall have
(3.46) X1 +Xx,+x321
since, for every solution, at least one of the tiles that cover it must be removed,
that is to say x, = | and/or x, =1 and/or x; = 1. Hence, we shall have the

function to be minimized together with the five constraints that constitute the
linear program in bivalent variables:

IMIN] z = x; + X, + X3+ X3+ Xs+ X+ X7+ Xg+Xo+ X o+ X + X2,

X +x+%x3 21 (pipe 1),
Xi+x,+xs5+x¢ =21 (pipe 2),
3.47) X3+Xx7+xg+x,, 21 (pipe 3),
X1o+X 1 +%;, 2 1 (pipe 4),
Xg+x;, 2 1 (pipe 5),
x;=0o0r1 i=12,..,12.

By considering the Boolean condition x; =1, 2, ..., 12, instead of x; = 0 or
1, we should be confronted with an ordinary linear program that we could
solve, for example, with the help of one of the algorithms described in the
first volume, It is clear that, if the solution obtained by this means does not
include any number other than 0 or 1, our problem has been solved. It is
shown in [K48] and [K50] that this is a good method! for solving this
problem which is one of a class of problems referred to as the covering of a set
(see our reference [K76]).

Nonetheless, in solving this problem, we shall make use of a method
differing from ordinary linear programs and one that is typically Boolean,

(3.48) (ey x4 x3) - (g x4 %54 x6) - (x3 4 x7F x5+ x45)
o X1 x12) (et xy2) =1,

in its imposed condition of having a minimum of variables x; = 1 (since every
value x; =1 implies the removal of a tile). Equation (3.48) means that each
term within the bracket must be equal to 1, since each pipe must have one
valve.

We shall now simplify (3.48) by making use of various properties given in
this section.

Let us first notice that (xg4 x,,) is included in (x34x;4x5+x,,) and
that, in accordance with (3.44), we have

(3.49) (Gesdxqdxgdx1,). (s 4+x15) = (xg4+x15).

L 1t is useful to familiarize the reader with the basic concept of limits used in mathematical
programming. The conditions x; = 0, /=1 2, ..., 12, constitute less of a constraint than the
conditions x; =0or 1,i=1,2,...,12, to the extent that the common linear program assoc-
iated with (3.47) produces a smaller or equal minimum, that is to say a lower, nonstrict limit
for the minimal solution of (3.47).
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Thus we can suppress (x; +x; 4 xg + X, ,) in (3.48), and we then have

(3.50) (g Fx24%3). (g Fx2+ X5+ %6) . (X104 %11 +%12) . (X5 +%,5) = 1.

Let us expand (3.50) by considering the first term and by then applying the
property of (3.44) a second time. It follows successively that

(3.51) (ep Fx2) (g x4 %5 +x6) . (x 10+ %11 +%12) . (x5 +%12)
+ x3. (1 F X2 F x5+ %6) (X10+ %11 +X12) . (Ke+%12) = 1.

(3.52) (g Fx2) . (g0 x11+%12) . (xs+%12)
+ x3.00p Fx2F x5+ %6) (Xg0+ %11 F%12) . (xg+%42) = 1.

We shall proceed in the same manner until there is no common term left
among the terms within the brackets, and we then obtain

(3.53) (e x2) . (104 %11 +x12). x5 + (X1 +%2) . %45
+ x3.(ey %2+ x5+ x6) (*¥10+ %11 +%12) - X
+ x3(x; x4 x5+ %) %12 = 1.
Finally, after the simplifications have been completed, we have
3.549)
X1 X124 X3 X35+ X1 X10-Xg + X1 - X1 Xg + X2.X50-Xg + X3 Xy1 . Xg
FX3.X5.%X15 + X3.X6.X12 F X3.X5.X10-Xg F X3.X6.X10- X5
+ x3.%5.%71 . Xg+ X3.%X6.%7;.%g = 1.

We obtain a solution involving a minimal number of tiles by equating one
or other of the two monomials of the lowest degree of (3.54) with 1, namely, for

(3.55)

(@ x;,=1,x;,=1, x,=0, i=23,45,6,728,09,10,11,
or

) x,=1,x,,=1; x;, =0, i=1,34,56,78,9, 10, 11.

We now have two solutions involving the removal of not more than two
tiles, and we can verify that any other solution would involve a greater number.
Thus (3.55) provides two optimal solutions starting with the Boolean poly-
nomial (3.54). Unfortunately, the polynomial form of (3.54) obtained from
(3.50) is difficult to program with existing machines, easy though it is to
calculate mathematically. Nevertheless, if the number of tiles and of pipes
were substantially greater, it would be necessary to make use of an algorithm
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and program the results. We could, for example, replace the general condition
x;=0o0r1,i=1,2,...,12, by the condition 0 £ x; € 1 and employ a linear
program, although this would not necessarily provide an optimal solution in
integers. We could, however, round off in the result every x; < 1; this would
not, as a rule, produce an optimal solution, but the problem could then be
easily solved. Thus, a solution that is optimal for the linear program might
require, for 100 tiles and 30 pipes, only a few seconds calculation on a com-
puter of the third generation. However, we shall give some special algorithms
for these problems with integer solutions.

7. Some Remarks on the Subject of Problems with Integer Values Solved
by Ordinary Linear Programming

We note first that it is possible, in certain cases, to obtain a solution for
these problems by using the solution or solutions derived from the corre-
sponding linear program. This is an obvious procedure.

Let us consider an example:

[MAX] z = 3x,+3x,,
11x,+4x, < 44,

(3.56)
3%, +5%, < 30,

x, and x, nonnegative integers.

If we eliminate the condition requiring integer values, that is, if we consider
the same program with x; and x, only as nonnegative, we obtain as an optimal
solution

(3.57) X, =2 14/43, x, = 4 26/43, z = 894/43 = 20 34/43.

By rounding off x; and x, to the integer values immediately below x, = 2
and x, =4, we obtain a point [x,, x,] = [2, 4], which satisfies the con-
straints of (3.56) and gives z = 18. From all the evidence, this point gives a
lower limit for z, whereas z = 20 34/43 gives an upper limit, since it corresponds
to a program of maximization with less constraint. We can be certain that the
solution of (3.56) will be such that

(3.58)" 18 <z<20,

since the costs of x; and x, are integers and because, by accepting an error
less than or equal to 10%, we have obtained a solution of the given problem.
It is often possible and acceptable to find the solution of programs with
integer values by such means.

L By putting the sign < in front of 20 34/43 we agree to accept another solution giving the
same value 20.
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In general, if the values obtained for the variables are ““moderately” large,
we shall not commit too serious an error if we use the common linear program
and round off to the integer values (immediately below for a maximization
and immediately above for a minimization): this is, of course, on condition
that the procedure produces a possible solution and that the coefficients of the
economic function are positive.

Hence, programs with integer values are especially difficult to solve when
the variables have small optimal values, in other words, when we are dealing
with values closely approximating to the first whole numbers.

Let us also note that, if the solution of the linear program happened to be
integer, we should have obtained the optimal integer solution of the program.
This particularly applies to the problems of assignment and of transportation
given in Volume 1, for which we did not, nevertheless, use the method of the
simplex or of one of its variants but more specialized methods such as the
Hungarian method for the problem of assignment and that of the stepping-
stone for the problem of transportation. This is because the matrix of the con-
straints, in such problems, possesses a special property, total unimodularity.!

As a result, we shall not, in the present volume, further consider problems
of this nature, but shall instead turn our attention to problems that are less
specialized and also more frequently encountered in practice in operations
research.

Section 4. Methods of Solving Programs with Integer Values
by Enumeration

1. The Principle of Finding Solutions by Enumeration

For a problem with integer numbers, the solutions are usually denumerable
and finite. For instance, in a problem in which the variables are x, , x,, x5, X, ,
and in which

AN
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the total number of solutions is equal to 4x 2x 5x 6 = 240. It is therefore
possible to contemplate the enumeration of all the solutions and, in each case,

! The determinants of matrices with values of 0 and 1, extracted from the matrices of the
constraints, always possess values equal to —1, 0, or 1.
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to evaluate whether it belongs to the domain defined by the constraints and,
if the answer is affirmative, to calculate the corresponding value of the
economic function.

After enumerating all the solutions, we should retain from among those
that satisfy all the constraints, the solution or solutions that optimize the
economic function.

We shall, however, discover that partial and a priori knowledge concerning
the optimal solution or solutions will obviate the enumeration of all the
solutions. Thus, if it is required to minimize 3x;+2x,+ 10x;+15x, and it
is known that the minimum is less than 8, there is no need to consider points
such that x; > 0 and/or x, > 0, which would automatically give a higher
value than 8. In the methods that we shall demonstrate, enumeration will not
be complete but only implicit.

In another connection, we may consider that combinatorial analysis (what
is referred to by the terms combinatory or combinatorial) is also concerned
with all the problems of classification and rearrangement of subsets and, in
particular, with optimization.

Let us begin with some very elementary problems that have few variables
and few constraints.

Let us consider the following constraints and let us try to discover all the
solutions with integer values that satisfy them.

11x,+4x, < 4,

3x,+5x, < 30,
4.2) % <3,
x, 20, x,=0.

It is sufficient to draw Fig. 4.1 in order to obtain the 21 solutions (shown by
heavy dots on the diagram). As will be seen, enumeration is simple and
immediately productive in a case such as this.

Let us now turn to another and scarcely more complicated case, where we
have three variables and three constraints.

Let

18x; +18x,+14x; < 63,
T2x;+112x,+126x; < 252,
4.3) 2%, < 3,

x20,x,20,x320.

It is still possible to show by a diagram the domain defined by the six planes
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that can be considered if we employ the equals sign in these inequalities, as has
been done in Fig. 4.2. But it is very difficult, because of the perspective, to
determine whether some points with integer coordinates belong or do not
belong to the domain (it could be done by using plane geometry, but the process
would be needlessly lengthy). Let us therefore use enumeration to investigate
all the possible solutions; to do so, let us begin by limiting the values that are
acceptable for the variables. It is clear, from an examination of Fig. 4.2, that
we should have x; < 3.5, x, < 2.25, and x; < 1.5. Hence, we will consider
which are the points [x,, x,, x3]; x;,=0,1,2,3;x,=0,1,2,and x; =0, 1
that satisfy the three constraints. This has been done in the table shown in
Fig. 4.3. In column (1) we have enumerated all the points x,, x,, x3 with
x,=0,1,2,3,x,=0,1,2, and x3 =0, 1. The order in which the enumera-
tion has been performed is termed lexicographical, as we will shortly explain.
Columns (2), (3), and (4) contain the results of the evaluation of the first
members of the relations (4.2). In these columns the symbol J signifies com-
pared with. In column (5) we have introduced the symbol € if the point belongs
to the given domain and the symbol ¢ if the point does not belong to it. The
10 points that constitute solutions are shown by asterisks to the left of
column (1).

It would have been possible to restrict the enumeration by making use of
the fact that it is impossible to have both x; = 3 and x, = 0 and at the same
time to have x, =1, x, = 1, x5 = 1, or other constraints of this kind. Such
conclusions are clearly very useful in reducing the scope of the enumeration.

However, if there were more than three variables and several constraints,
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such enumeration by hand would be virtually impossible in practice and,
except in some special cases, might prove beyond the capacity of even the
most powerful computers, unless one were prepared to display a very great
degree of patience and to accept huge costs for the calculation.

To enumerate solutions for problems of a combinatorial nature it is appro-
priate to use procedures without omission or redundancy, of which we shall
now examine a few examples.

) (2) (3) (4) (©)]
18 xl 72 xl

+ 18 x + 112 x 2 x €
3 or
[ml,mz,ma] + 14 xa + 126 m3 ¢

e 63 ¢ 252 o3
* [0,0,0] 0 0 0 €
* fo,0,1] 14 126 2 €
* [o,1,0] 18 112 0 =
* [0,1,1] 32 238 2 e
* [0,2,0] 36 224 0 €
0,2,1] 50 2 ¢
* {1,0,0] 18 72 0 e
* [t1,0,1] 32 198 2 €
* i,1,0] 36 184 0 e
[1,1,1] 50 2 ¢
[1,2,0] 54 0 ¢
[1,2,1] 68 @22 2 ¢
* [2,0,0] 36 144 0 €
[2,0,1] 50 2. ¢
[2,1,0] 54 0 ¢
[2,1,1] (38D 2 ¢
[2,2,0] aD 0 ¢
[2,2,1] 2 ¢
* (3,0,0] 54 216 0 €
[3,0,1] <) 2 ¢
[3,1,0] a» 0 ¢
[3,1,1] &) 2 ¢
[3,2,0] 0 ¢
[3,2,1] 2 ¢

Fi1G. 4.3
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At | A2} Bl | B2 |cCt | C2

Ala |AIB) Aly| A18 [ A2a | A28 A2y

C28 | C2y | C26

2. Enumeration without Omission or Redundancy.
Lexicographical Procedure

The currently most accepted procedure is to construct a lexicographical
order similar, for instance, to that of a dictionary (as the adjective implies) or
to that of the number plates of automobiles. The procedure is very simple, and
one example will suffice to explain it. Let us suppose there are three variables,
numerical or otherwise, such that x;, =4, B,C; x,=1,2; xy=0a, 8,7, 6.
The first step is to allot an order of enumeration to the variables in relation to
each other. Let us suppose that x, is placed the furthest to the left followed
by x, and x;. We then associate the values of x; with those of x, in such a
manner as to arrange the first of x, with the first of x,, the first of x, with the
second of x, and so on; this will give us 41, 42, Bl, B2, C1, C2. The result
will then be arranged with the values of x5, which will give us Ala, 418, Aly,
AlS, A2q, ..., C2f, C2y, C26 (Fig. 4.4).

Two further examples are shown in Figs. 4.5 and 4.6. For Fig. 4.5 we have
x;=0,1;x,=0,1; x3=0,1; x, =0, 1. For Fig. 4.6 we have x, =0, 1, 2;
x,=0,1;x3=0,1,2,3.
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A little further on we shall return to the use of this procedure when con-
straints intervene, whether these are numerical relations or otherwise.

We must not conclude these explanations on lexicographical procedures
without making it clear that the selected orders are entirely arbitrary.

It is equally important to note that if x, can assume n, values, x, can assume
n,, x, can assume n,, so that there are exactly

4.9 R, Xn, X ... X n, grandeurs [x;, X,, ..., X,].

3. Arborescence

The concept of arborescence was introduced in Volume 2, Section 44.2, and
was used in Section 8.1, for automatic textual emendation. Nevertheless, we
intend to define it again, having regard to the importance that it will assume
further on.

An arborescence, then, is a finite graph in which the following properties
can be verified:

a. The graph does not include any circuit.

b. There is one and only one vertex, termed a root, that is not the terminal
extremity of any arc.

c. All the other vertices are the terminal extremities of a single arc.

Figure 4.7 represents an arborescence, in which vertex R is the root. A
vertex which is not the initial extremity of an arc is known as a hanging vertex.
Thus, vertices C, P, M, U, F, E, D, Q, T, L, V, N, G, H, K are hanging vertices.

In Figs. 4.8 and 4.9 we have shown two different procedures for investigating,
in a combinatorial manner and with the help of arborescences, the quantities
[x:, x5, X3, x4] where each of the terms is equal to O or 1.

Using the first method (Fig. 4.8), we fix the values of [x,, x,, x3, x4]
beginning with x,, then x,, and so on. With this method there is no redun-
dancy; each of the 16 solutions is obtained only once in the arborescence.

On the other hand, in Fig. 4.9, we start from the point [0, 0, 0, 0] and
replace each 0 by a 1. We perform the same operation for each 0 in the next
stage and proceed in the same manner.

The binary numbers thus obtained have been expressed in decimal form to
the right of the brackets. Hence it may be observed that this method of enumer-
ation without omission results in redundancies in contradiction to the first
method.

4, Hamming's Distance

This is a very simple and useful concept. Let us, for example, consider two
quantities, each containing seven variables, x,, ..., x;, that in the first have
the respective values 0, 1,0, 1, 1,0, 1 and in thesecond 1, 1,0, 1,0, 0, 0. Let us
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{0,0,0,0]¢ O (0,0,01¢
[0,0,0,t] ¢ ! [0,0,1]
[0,0,1,0]¢ 2 [0,0,21¢
{0,0,1,11¢ 3 £0,0,31 ¢
[0,1,0,0]¢ & [0,1,01¢
[0,1,0,1]¢ 5 [o,1,1]
[0,1,1,0]8 6 [0,1,2]
[0,t,1,1]¢ 7 [0,1,3]¢
[t,0,0,0]¢ 8 (t,0,0]
[1,0,0,1]¢ 9 [1,0,11¢
[1,0,1,0]¢ 10 [1,0,2] ¢
[1,0,1,1]¢ 1t [1,0,3]¢
[t,1,0,0]¢ 12 [1,1,0]¢
[1,1,0,11¢ 13 [t,1,1]¢
[t,1,1,0] ¢ 14 [1,1,2] ¢
[1,1,1,1]¢ 15 [1,1,3]4
[2,0,0]¢
[2,0,174 Fi1G. 4.7
[2,0,2] ¢
[2,0,3]¢
[2,1,0]4
[2,1,1]¢
[2,1,2]¢
[2,1,3]¢
F1G. 4.5 F1G. 4.6

place them one below the other.

(4.5)

=1+ + 1] =1+1+41 = 3.

Let us calculate the difference between each element in the first line and the
corresponding element in the second line and write the results under the second
line. If we now calculate the absolute values of these results we find that their
sum is equal to 3. We say that Hamming’s distance between the two quantities
or vectors is 3.
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In a more generalized way, let us consider two vectors (x

we term Hamming’s generalized distance' between these two

s

(xl y X2 <eey xn)

1 We are concerned here with an extension of the concept introduced by Hamming and

used, in particular, in the theory of codes. According to Hamming, the distances defined in
this manner can only be applied to vectors with components formed by bivalent variables.
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vectors the scalar
4.6) O = |x{—x| +|x5—xz] + .. + x5 — %] .

If we now examine the arborescence shown in Fig. 4.9, we see that the
vertices are situated at levels that are spaced at Hemming’s distances of 1.

5. Lattice

We are concerned here with a mathematical concept that is too complicated
to be presented in its theoretical aspects in this first part, although the reader
will find them fully explained in Part 2. We shall, however, give a very ele-
mentary and much less generalized explanation that will enable the reader to
understand those elements of the concept that are developed in the following
sections.

For this purpose let us consider a vector! with components that can assume
the following values: x; =0,1,2; x, =0, 1; x3 =0, 1, 2, 3. We shall classify
them according to the following concept of level. Let us begin with the vector
[0, 0,0] and let us allot it the arbitrary level 0. Now, let us place on the
following level 1 all the possible vectors for which Hamming’s distance from
the preceding level is 1 (Fig. 4.10), namely the vectors [0, 0, 1], [0, 1, 0], and

! The term vector is used here in the sense of a quantity with several components, or
n-tuple.
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rdinates of the lattice shown in Fig. 4.10.

2
Fig. 4.11. Representat
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[1, 0, 0]. Let us connect the vertex (0, 0, 0) with each of the other vertices of
level 1 by aline. Let us now place on level 2 all the vectors for which Hamming’s
distance is 1 in relation to one of the vectors of level 1; these are the vectors
[0, 0, 2], [0, 1,11, [1,0, 1], [1,1,0], and [2, 0, 0].

Connect the vertices of level 1 to the vertices of level 2 when they possess
a Hamming’s distance of 1. Thus we shall join [0, 0, 1] to [0, 0, 2] and to
[0,1,1]; [0,1,0] to [0,1,1] and to [1,1, 0], and so forth. We shall then
continue the same procedure until all the vertices have been exhausted. By
this means we produce a mathematical structure, termed a vectorial lattice,
that is shown in its entirety by Fig. 4.10. But, in the case of 1, 2, or 3 compo-
nents, it is possible to use a different representation of a vectorial lattice such,
for example, as that shown in Cartesian coordinates in Fig. 4.11, representing
the same example as that given in Fig. 4.10. With more than three components,
as is well-known, representation by means of Cartesian coordinates is no
longer possible.

In Fig. 4.12 we have shown a vectorial lattice with four components:
x,=0,1,2; x,=0,1,2,3; x3=0,1; and x, =0, 1. Figures 4.13 and 4.14
represent vectorial lattices in which the components are bivalent variables.
Such a lattice is termed a Boolean lattice. It will be seen that their representation
produces a cube in the case of Fig. 4.13 and a hypercube in that of Fig. 4.14.

These vectorial lattices show the structure of vectors with integer
components.!

O------- [0,000]

Fi1G. 4.13 FiG. 4.14

! And usually with a finite number of discrete values.
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A path that leads from a vertex A to a vertex B, while passing from one
level to a level of a higher number is called a chain of the lattice, and is not to
be confused with the chain of a graph. This term can also be used if the path
leads from a higher to a lower level. Thus in Fig. 4.12

[0,0,1,0],1[0,1,1,0] [1,1,1,0], [1, 2, 1,0], [2, 2, 1, 0]

is a chain.
We shall apply the term progression to a path that passes through vertices
separated by a Hemming’s distance of 1 without reference to the levels. Thus

(1,2,0,1], [1,1,0,1], [1,0,0, 1], [2,0,0, 1], [2, 1,0, 1], [2,2,0,1], [2,3,0, 1]

is a progression. A progression that never passes twice through the same
vertex is known as an elementary progression.

All these concepts will be utilized further on and, in particular, in the
algorithm for the solution of integer programs by direct search that will be
explained shortly.

It is convenient when dealing with lattices to select a particular element as
the point of origin; this is usually the point of which all the components are O,
for instance [0, 0, 0] in Fig. 4.13. We define as the level of an element of a
lattice, Hamming’s distance of this element from the point of origin. For
example, the elements [0, 1, 1], [1, 0, 1], [1, 1, 0] of the lattice in Fig. 4.13
are at level 2,

6. Algorithm for Solving Programs with Bivalent Variables
by Direct Search

At the beginning of the present section we outlined the principle of
algorithms used in direct search. All that was required, for instance, in the
example given in Figs. 4.2 and 4.3 was to find out whether a point [x,, x,, x3]
belonged or did not belong to the set of constraints. We shall now introduce
the economic function and confine ourselves to the case where the variables
are bivalent, remembering that any program with integer values can be
changed to a program with the binary values of 0 and 1 by a modification of the
constraints and variables, a procedure that may sometimes result in their
number being substantially increased.

Let us first examine by means of an example the procedure needed to
diminish the lexicographical enumeration.
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For this purpose let us take the program with bivalent variables! :

[MAX] zZ = 3x1—2x2+5X3,
(1) x;+2x,-x3 < 2,
@7 (2) x;+4x,+x3 < 4,

(3) x1+x, <3,

(4) 4x2+x3 < 65
X1, %3, X3 =0o0r1.

Let us suppose that we know a solution of (4.7). It is, for example, clear
that [x,, x5, x3] =[1, 0, 0] is one solution, and in this case the economic
function assumes the value z = 3.

We may affirm that every optimal solution will give a value for z greater
than or equal to 3 (we say that 3 is a lower limit of the optimal value). We can
therefore introduce a supplementary constraint

(4.8) ©0) 3x,—2x,+5x;3 = 3.

We thus obtain a system with five constraints to be satisfied. The supple-
mentary constraint (4.8) will be known as the filtering constraint.

With' the lexicographical method of enumeration we should have to cal-
culate the left-hand members of four constraints for 23 = 8 solutions, which
would require’32 operations. This number can be reduced by using the filter
constraint (4.8). We shall perform our operations in accordance with the
following table (Fig. 4.15) in which the columns are numbered like the con-
straints, In calculating the values assumed by the left-hand members of the
five constraints in their numerical order, we find that once a constraint is not
satisfied it is unnecessary to perform the calculations for the others, thereby
reducing the number of operations.

The results of the calculations are shown in Fig. 4.15, and it will be observed
that instead of 5x 8 = 40 calculations for x;, x,, and x3, there are only 24.
In other examples the reduction can be much greater.

We shall now explain by nieans of example (4.7) how this procedure can
be used in a sequential manner. In drawing up table 4.15 we observe almost
at the outset that there is a solution [0, 0, 1] for which z = 5. We shall
accordingly replace (4.8) by

4.9) 0) 3x,—2x,+5x; =5,
! The constraints (3) and (4) in Eq. (4.7) are verified a priori if x;, <1, /=1, 2, 3. They

were introduced with the instructional purpose of explaining a method intended for calcula-
tion by a computer, which does not usually effect an a priori simplification of this kind.
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which will provide a more constricting condition and consequently an im-
proved filter, continuing in the same manner if required.

Constraints Satisfies Value

Point 4.7 of

@O M [ @[ W and 2

(4.8)
[0,0,0] 0 no
[0,0,1] 5 -1 1 0 1 yes 5
f0,1,0] -2 no
[0,1,1] 3 1 5 no
[1,0,0] 3 1 1 1 0 yes 3
[1,0,1] 8 0 2 1 1 yes 8
[1,1,0] 1 no
[1,1,1] 6 2 6 no
Fic. 4.15

Several other methods of a more or less sophisticated nature are available
for reducing the number of operations, of which a few will be shown. But,
before doing so, we wish to give an explanation.

Note
Let us suppose that an economic function is in the form

(4.10) zZ=a,X,+a,X,+a;X3+0a,%,,

in which eacha, is a real number that is either positive, negative, or null. Let
us now arrange 4; in a nondecreasing set of values, for example, such as

a, <a,<a, <a;.

(If some of the a terms were equal, their respective positions in the order
would no longer be of importance.) It is now clear that if we perform the
lexicographical enumeration in the order considered, namely,

(4.11) [X3, X3, X4, x,] = [0, 0, 0, 0]
=[0,0,0,1]
= [0, 0, 1, 0]

we shall obtain the corresponding values of z, which will disclose almost the
same order

(412) 09 a,, as, a4+a19 a, a2+a19 a2+a4’ a2+a4+a19
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This will obviously not be a total order! (we could, for instance, have
a,+a, > a,), but this total order will often be observed by many of the terms.

To show the advantages of this procedure let us turn to example (4.7),
placing the variables in the order x,, x,, x3, since —2 < 3 < 5. By incorpora-
ting (4.8) in the constraints and by arranging the coefficients of the economic
function in nondecreasing order we then have

0) —2x,4+3x,+5x3 = 3,

(1) 2x,+x,—x3 <2,
(4.13) (2) 4x,+x,+x; <4,

) x+x, <3,

4) 4x,+x; <6.

Let us now form the table of enumeration (Fig. 4.16).

As will be observed, the values for the solutions greater than or equal to 3
have been obtained earlier and, by using a sequential method, the solution
would usually be found even sooner.

Constraints Satisfies | Value

Point (4.13) of
[Iz’xl’xz] @ [ (1) (2) 3) (4) z

[0,0,0] 0 no

[0,0,1] 5 |- 1 0 1 yes 5

fo,!,0] 3 1 1 1 ] yes

0,1,1] 8 | o 2 i ] yes 8

[1,0,0] -2 no

[l,O,l] 3 1 5 no

[1,1,0] ! no

[1,1,1] 6 2 ] 6 no

F16. 4.16

7. Balas's Enumeration? Procedure [K25]

Let us examine Fig. 4.16 in which the variables x; are arranged in the non-
decreasing order of their coefficients in the economic function as x,, x,, X3 in
order to define the point that each of them occupies in that order.

! A total order is one in which all the elements can be arranged in relation to each other
like real numbers:

A<B<C<...<L<M<... .

Mathematicians classify this as a strict total order.

2 Balas’s procedure is a method of enumeration that employs a filter constraint. Histori-
cally it is very important, since it demonstrated that algorithms that are effective for programs
with integers could make use of implicit enumeration.
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When we drew up this table we first calculated the constraint (0) of (4.13)
for the point [0, 0, 0] and we then proceeded to the point lexicographically
above it [0, 0, 1]. For the latter, all the constraints are satisfied, which provides
a yes with the value z = 5. In this table we proceeded without taking account
of this first result. In the procedure laid down by Balas, as soon as such a
result is obtained the table is no longer used, and the corresponding new
constraint is introduced.

Let us now continue with this modification in mind and observe how we
link up our calculations in Balas’s method, which can be summarized as
follows:

a. Reclassify the variables to define the point in such a manner that these
are in the nondecreasing order of their coefficients in the economic function
(we are speaking of a maximum, and for a minimum the order would be inverse).

b. Form a table similar to 4.16 but cease the enumeration performed on it
as soon as a point has been found that satisfies all the constraints, including the
filter. Alternatively, cease when the enumeration is completed, which means
that either the optimal solution has been found or that a solution does not
exist.

c. If a better solution has been found, and if the enumeration has not
been completed, the new filtering constraint (0') is included in place of the old
constraint (0). We then recommence from the lexicographical point above the
one obtained in the preceding table, a point that corresponded with a value
equal to or greater than the best solution discovered up to that stage. This
procedure is then continued until the enumeration is completed.

Constraints Satisfies | Value
Point (4.13) of
[x AT ST ] @M @ LW z
2 1 3
(0,0,0] 0 ~ no
[0,0,|] 5 | =1 1 0 1 yes 5
FiG. 4.17

We have just obtained a solution corresponding to the value z = 5; hence
we have a new filter constraint (0"):

(4.14) (0) " —2x,43%,+5x3 > 5.

Now let us construct the new table shown in Fig. 4.18. We enumerate
another solution [0, 1, 0] and then find a possible solution [0, 1, 1] corre-
sponding to an improved value of z, that is, z = 8.

Hence we now have a new filter constraint

(4.15) 0 —2x,+3x,+5x; = 8.
By the previous method of calculation we obtain the table of Fig. 4.19,
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Constraints Satisfies Value
Point (4.13) of
[-70 2T s X ] ((ADREED] (2) 3 (4) and z
213 (4.14)
{0,1,0)] 3 no
[0,1,1] 8 |0 2 ! 1 yes 8
FiG. 4.18

finding that no further improvement in z is possible and that z = 8 is the
maximal value.

Let us now compare the number of additions and comparisons carried out
by the method of complete enumeration, without using the filter constraint,
with the number when Balas’s procedure is used (Figs. 4.17-4.19).

Constraints Satisfies | value

Point (4.13) of
[.r JE ST ] omm 1 @] G| W and 2

271 3 (4.15)

[1,0,0] -2 no

[1,1,0] 1 no

[1,1,1] 6 no

Fic. 4.19

In the first case there are 8 x 5 = 40 calculations of linear functions; in the
second case the number is 24.

With so few variables the gain is only a moderate one, but as their number
increases the proportionate advantage of Balas’s method is equally accen-
tuated for the additions and for the comparisons, there being always at least
as many of the former as of the latter.

8. The Procedure of Lemke and Spielberg

With this procedure [K59] we can still further reduce the number of
additions and comparisons by introducing supplementary criteria of exclusion
that permit the a priori exclusion of points that we should have been obliged
to calculate with Balas’s method.

In addition, in accordance with these two authors and also with Balas,' we
can further apply a criterion that is one of preferential branching rather than
of exclusion, but this only provides the hope, rather than the certainty, of
reducing the number of operations in a heuristic manner.

In order to illustrate the procedure we shall use a didactic example. Let us

! Lemke and Spielberg as well as Balas made use, at about the same period, of these
additional criteria that make it possible to restrict the number of operations to be performed.
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examine a program with bivalent values:
[MIN]z=3x,+7x;—x3+X,,
(1) 2x;—x+x3—x,21,
4.16) 2) x;—x,—6x3;+4x, 28,
(3) Sx;+3x34+x,25,
X1, X2, X3, % =0o0r L.

To be able to use the procedure of Lemke and Spielberg, the coefficients of
the variables in the function of value must all be nonnegative. To effect this
we transform them as follows: let us suppose

x3=1-—x3,

In addition, so as to be able to apply this procedure, and also for reasons of
convenience, we shall transform the inequalities bearing the sign greater than
or equal to into inequalities carrying the sign less than or equal to. To obtain
this result for (4.16) it will suffice to multiply the two members of the in-
equalities (1), (2), and (3) by — 1. Finally, by introducing nonnegative deviation
variables, we obtain z,, z,, and z;, the new program that replaces (4.16) and
that is its equivalent!:

[MIN]z= —143x,+7x,+x3+x,,
1) —2x;+x;+x3+x,+2,=0,
4.17) (2) —x;+x,+6x3—4x,+z,=-2,
(B) —5x,—-3x,—x,+z3=-3,
X1,X3,X3,%X4=00r1, z,,2z,,2,20.

We observe that z, z,, z,, z; can only assume integer values, since the co-
efficients of the program in z and in (1), (2), and (3) are integers and also
because we have imposed the constraint that the variables x; must be integers.

The sequential investigation will start, as in Balas’s procedure, from the
point where all the variables are null, namely the point [x; =0, x, =0,
x5 = 0, x, = 0]. But we shall no longer follow a lexicographical method such
as that in (4.17)—(4.19) to pass from one point to another.

To begin with, let us define what we term a step forward and a step backward
in the following explanations.

Let us suppose that in the course of the investigation we have arrived at

! This is an instructional example intended to explain a method. By simple observation it
can be seen that (2) implies x4 = 1 and that (3) implies x; = 1. The method shown here does
not take those a priori evaluations into account.
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the point [x, =1, x, =0, x5 =0, x, = 1] starting from the point [x, =1,
x, =0, x3 =0, x, = 0]. To take a step forward from the point [1, 0, 0, 1] is
to go to one of the points of the higher level, at a Hamming’s distance of 1,
that is, to one of the points [1, 0,1, 1] or [1, 1, 0, 1]. To take a step backward
from the same point is to return to the preceding point, in this case [1, 0, 0, 0]
(see Fig. 4.20). A step backward is required in the investigation when we have
been able to decide by one of the criteria that will be defined shortly, that no
solution can be obtained either by one or by several steps forward or that no
better solution than the one already obtained can be found by such steps
forward. In the contrary case one step forward is required.

Let us observe that as soon as a solution is obtained (for instance
[x,=1,x,=0,xy=0, x, =1] in the case of (4.17)), a step forward would
increase the value of the function z’, that is, to z = 3, since in the transformed
program (4.17) all the coefficients of the function z are positive. Hence, as soon
as a solution has been found a step backward is required.

Lemke and Spielberg employ three criteria or tests to reduce thé enumera-
tion and we shall now proceed to explain them.

Projected Exclusion Test
“When we have found a solution we seek only solutions that will increase

the value of z by at least 1.”
Before proceeding further let us observe that in Balas’s procedure we could,
by contrast, discover several different solutions providing the same value for z.
To perform this projected exclusion test, we shall consider the four con-
straints, the first of which is obtained from the function of z to be minimized,
by stating that we shall look only for points for which z < 3, namely,

(4.18) —143x,+7x,+x3+x, < 3,
and constraints (1), (2), and (3) of (4.19).
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Let us transform (4.18) by adding a nonnegative deviation variable z, and
by observing that <3 can be replaced by <2, since only integer values are
being considered.

Summing up, the points [x,, x,, xj, Xx,] that may be solutions have to
satisfy the four constraints:

0) 3x,+7x,+x3+x,+2z5 = 3,
(1) —2x,+x,+x5+x,+2z, =0,
4.19) (2) —x;+x+6x3—dx,+z, = —2,
(B) —5x,-3x,—x,+z3 = —35.
X1, X3, X3,X,=00r1, z4,24,23,23=20.

Starting with this example, we shall now explain the projected exclusion
test. If, at one point, we have z; = 0, we can take a step forward provided that
at least one of the variables is equal to 0. But, for each variable the coefficient
of which strictly exceeds z,, the step forward obtained by increasing the value
of this variable from O to 1 is excluded. Indeed, this step forward would result
in z, becoming strictly negative.

Let us illustrate this situation in our example by means of Fig. 4.21. For the
point [1, 0, 0, 0] we have z; = 0. If we return from the point [1, 0, 0, 1], the
two possible steps forward that remain are those that lead to one of the points
[1,1,0,0] or [1, 0,1, 0]. But the coefficients of x, in (4.19), line (0), is 7,
which is strictly greater than z, = 0. Hence we exclude the step toward
[1,1,0,0]. Similarly, by this same test we can exclude the step toward
[1, 0,0, 1]. Accordingly, since we have already come from [1, 0,0, 1] and
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since it is impossible to go toward [1, 0, 1, 0] and [1, 1, 0, O], we are obliged
to take a step backward from [1, 0, O, 0], returning thereby to the point
[0, 0,0, 0]. ‘
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Infeasibility Test

Let us suppose we are at the point [0, 0, 1, 0]. This point is not a solution,
since it provides the value z, = — 8 in (4.19). There is now a choice of three
possible paths forward. But let us observe that in constraint (2) of Eq. (4.19)
the sum of the coefficients of the null variables (in this case x,, x,, and x,) of
which the coefficients are negative (that is, the coefficients —1 and —4 of x,
and x,) is equal to — 5. But — 5 is greater than — 8 and it will not be possible
by taking a step forward from [0, 0, 1, 0] to find a solution. In fact, the
highest value of z, to be obtained by steps forward from [0, 0, 1, 0] will be
z, = —8—(—5) = —3, a negative number; and none of these points therefore
provides a solution. Accordingly we exclude the points [0, 0, 1, 1], [0, 1, 1, 0],
and.[1, 0, 1, O] by this infeasibility test. Since no step forward will provide a
solution, a step backward is required and we return to [0, 0, 0, 0].

Preferred Variable Test

The two preceding tests were of a formal nature that provided a certain
indication that no solution could be found by forward steps. By contrast, the
preferred variable test provides a means of selecting, from several possible
choices, the step forward that seems likely to prove best. It is, therefore, a
heuristic test and will be used if the infeasibility test has not excluded all the
steps forward. In this case, the possible forward steps are those not excluded
by the projected exclusion test. We shall now explain the preferred variable
test with the aid of example (4.17). Let us suppose that we are starting the
sequential procedure at point [0, 0, 0, 0] to solve program (4.17). The infeasi-
bility test does not yield anything (except as showing the absence of a solution,
since [0, 0, 0, 0] is not a solution, and that any steps forward would not
provide one). As no solution has yet been found the projected exclusion test
does not apply, and four steps forward toward [O0,0,0,1], [O,0,1, 0],
[0,1,0,0], and [1,0,0, 0] are possible. At the point [0, 0, 0, 0] we have
zy,=0, z, =—2, and z; = — 5 and we now evaluate the total deviation from
the sum of the deviation variables z; that are negative, giving us —2—5 = —7.
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Preference from among the possible steps forward will be given to the one
" (unique or not) that has the greatest tendency to reduce this deviation. To
carry out this preferred variable test we shall calculate, in each line of (4.17)
for which z; is negative, the sum of the coefficients of the variables that corre-
spond to possible steps forward, in this case the coefficients of lines (2) and (3).
The preferred variable will be the one giving the minimum.

For x; we have —1—-5= —6,
(4.20) For x, wehave 1-3= -2,

For x;" we have 640 =6,

For x, we have —4—1= —§.

Hence we shall begin by a step forward toward [1, 0, 0, 0], then toward
[0, 0, 0, 1] if the projected exclusion test does not exclude it; next, toward
[0, 1,0, 0]. Finally, a step forward will be taken with the last preference
toward [0, O, 1, 0] (see Fig. 4.23). With such heuristic tests there is unfortu-
nately no mathematical certainty that their use in a particular program will
reduce the number of additions and comparisons; all that can be claimed is
that they generally reduce the number of such operations. We are now able to
apply the projected exclusion test that excludes a considerable number of steps
forward and can proceed to solve the program, thanks to the procedure of
Lemke and Spielberg. We denote by # the best value of the economic function
discovered in our sequential investigation and, at the start, ignore whether or
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not a solution exists. Since # is an upper limit of the minimum of z, accordingly
it possesses as great a value as we desire in order to begin our calculations.

Solving Program (4.17) by Lemke's and Spielberg's Procedure

We start from the point [0, 0, 0, 0] that is not a solution, since z, and z;
are negative. Let us therefore apply the infeasibility test to constraints (2) and
(3) in Eq. (4.17).

The sum of the negative coefficients of the null variables in (2) is equal to
—1—4 = —5, which is less than z, = —2. Hence the infeasibility test for line
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(2) authorizes steps forward. Similarly for line (3) we find —5—-3—1= -9,
which is less than z; = — 5. Here, too, the infeasibility test yields nothing, and
the projected exclusion test does not apply, since we have not yet obtained a
solution. Four forward steps are possible. Calculating the preferred variable
in(4.20) in the same way as before, we select the step forward toward [1, 0, 0, 0].

This point is not a solution, since z, = — 1, s0 we now apply the infeasibility
test to line (2) of Eq. (4.17). Of the null variables, x, alone has a negative
coefficient, —4. Hence, with —4 < — 1, the infeasibility test authorizes steps
forward. As we have not yet obtained a solution, the exclusion test cannot be
used, and we employ the preferred variable test to choose which of the three
possible steps forward toward [1, 0, 0, 1], [1, 0, 1, 0], or [1, 1, 0, 0] should be
taken. We now take the coefficients of the null variables in line (2) (in this case
a single equation, whereas for [0, 0, 0, 0] lines (2) and {(3) of (4.17) would give
z, and z; < 0).

For x, we have 1;
(4.21) for x’, we have 6;
for x, we have —4.

The step forward to [1, 0, 0, 1] is the preferred one. The second preference
leads to [1,1, 0, 0] and the third to [1, 0, 1, 0] (see Fig. 4.24). The point
[1, 0, 0,0] is a first solution with a value for the economic function of z = 3.
We do not make a further step forward from [1, 1, 0, 0], since the economic
function could not diminish, the coefficients being nonnegative.

Accordingly we take a step backward, returning to [1, 0, 0, 0]. In addition,
as in (4.18), we introduce a new filter constraint,

(4.22) —14+3x,+7x,+x5+x, < 3.

It shows that we are only looking for those points that improve the economic
function. Constraint (4.22) can be expressed as

(423) (O) 3x1+7x2+x(3+x“+20 = 3,

as we observed previously.
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Back at the point [1, 0, 0, 0] after a step backward from [1, 0, 0, 1], which
had first preference, we must still investigate the points that can be reached by
steps forward to [1, 0, 1, 0] or [1, 1, 0, 0]. Since a solution has been found we
can now employ the projected exclusion test. We have z, = 0, and the co-
efficients of x, and x5 in the economic function z, respectively, 7 and 1, are
greater than z,. The exclusion test therefore excludes the above steps. Since
no step forward is possible we accordingly return [0, 0, 0, 0]. From this last
point it remains for us to test our three remaining preferences (see Fig. 4.23).
We have z, = 3. Hence the step forward to [0, 0, 0, 1], which was our second
preference, is not excluded, since the coefficient of x, in the economic function
is 1, which is less than z, = 3. We therefore take a step forward to this point,
which is not, however, a solution since z; = —4, a negative number. The
possible steps forward from [0, 0, 0, 1] are shown in Fig. 4.25; we have z; = 2.
The step forward to [1, 0, 0, 1] is excluded since the coefficient of x; in func-
tion z is 3 > z,. Similarly, the step toward [0, 1, O, 1] is excluded since 7 > z;.
The step forward to [0, 0, 1, 1], on the other hand, is not excluded since
1 < zy=2.Point[0,0,1, 1]isnotasolutionsincez; = ~2,z, = —4,z; = —4.
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We now employ the infeasibility test on the first three lines of (4.17) to discover
whether one or more steps forward can provide a solution. In line (2) the sum
of the negative coefficients of the null variables x, , x, is — 1, a number that is
strictly greater than z, = —4. Hence a solution cannot be found by one or
more steps forward from this point. We therefore take a step backward to
[0, 0, 0, 1] (see Fig. 4.25). From this point any forward step is excluded and a
step backward returns us to [0, 0, 0, 0]. At this point we still have to employ
the third and fourth preferences. Here z, = 3. The projected exclusion test
excludes a forward step for the third preference toward [0, 1, 0, 0], since the
coefficient of x, in the z function is 7 > 3 (see Fig. 4.23). On the other hand,
the step forward for the fourth preference to [0, 0, 1, 0] is not excluded by this
test. This point, however, is not a solution since z; = —1, z, = —8, z; = —5.
We now perform the infeasibility test for the first three lines of (4.17). In (2)
the sum of the negative coefficients of the null variables is —5 > — 8. Since a
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step forward is not possible, we return to the point of origin, and since no other
step forward is possible from this point, the procedure is concluded. Hence
the optimum for program (4.17) is the best solution obtained, namely,

(4.24) x;=1, x,=0, x35=0, x,=1, with a value z =3.
This point provides the optimal solution for the initial program (4.16):
(4.25) xy =1, x, =0, x3=1, x, =1, with a value 2z =3,

In Fig. 4.26 we have shown the movements carried out in accordance with
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the Lemke-Spielberg procedure and have indicated the tests that authorize
the exclusion of a step forward. Using this procedure, which is more com-
plicated than that of Balas, we have investigated six points out of a possible
16. With more extensive programs, the saving is considerably greater and the
economy of the procedure correspondingly more important.

Practical Arrangement of the Calculations for the Lemke-Spielberg Procedure

We begin by transforming program (4.16) to give it the form of program
(4.17), which we resolve by the Lemke-Spielberg procedure. The solution of
program (4.16) is obtained from that of program (4.17) by making x5 = 1 —x3.
We construct a table (Fig. 4.27) for convenience of calculation. In line (0) of
the table we write the progressively decreasing values of Z, the best value of the
economic function discovered in the sequential investigation. In this example
only one value appears, since only one solution was obtained. In the top left-
hand corner we write — 1 since the z function is expressed as

(4.26) z= —143x+Tx,+x5+x,.
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In line (1) of the table we insert the coefficients 3, 7, 1, 1 of the economic
function, and then the successive values of z, obtained in the sequential
investigation. In lines (2), (3), and (4) we insert the coefficients of lines (1), (2),
and (3) of program (4.17). In these lines we also insert the values assumed by
z,, 2,, and z; for the different points in the sequential investigation. Thus,
when we investigate point [0, 0, 0, 1] in line (6'), we find in the corresponding
column the values of z,, z,, z,, z; for this point, namely, —1, —2, —4, —4.
In the first column of lines (0")-(10"), which represents the end of the investiga-
tion, we give a list of the points investigated in the sequential procedure; this
list gives the movements shown in Fig. 4.26. In the further columns of lines
(0N-(10") we show the results of the tests performed in the following order:

Is the point a solution giving z,, z,, z3 = 0?
Does the infeasibility test exclude every step forward?

For this purpose we calculate the sum of the coefficients in constraint ¢ of
the free variables (not marked by [X), considering only those that are negative.
If this sum is greater than z; < 0, the point is not a solution and cannot become
one by taking any step forward. If neither of these tests provides a result we
perform the projected exclusion test on the free nonnull variables.

x -
(0) 1 5% W12 3
1 -1 3 7 | | zo =1 0 -3 -2 ~1 -2 -3 -2 -3
(2) Valuest .,y iz fo a2 o2 fo]-]o
ole.
3 IList ot o6 s fE e afer 2|2 wf2]2]-8]-2
of points
4 1 : 5. - - st t-a]- -
@ investigated| > <3 0 -1}z -S| O |1 054 -af-af-5)0 ]S
(o9 | [0,0,0,0] -4 6 -3

(| [r,0,0,0] I D)

(29| [1,0,0,1] | Solution found

3" 1,0,0,0] PET PET [

| r0,0,0,01 | PET ¢

(5] £0,0,0,1] PET PET(®)

(6")] £0,0,1,1] Infeasibility

("] [0.0,0,11 JPET PET[X]

81 10,0,0,0] I PET & K

(9'3 1 {o,0,1,0] Infeasibility

a0y 0,0,0,0] [ PeT X X

Fi1G. 4.27



52 I. PROGRAMS WITH INTEGER AND MIXED VALUES

If the test excludes the corresponding step forward it is indicated by PET in
the column corresponding to the variable. Thus, in line (5") the steps toward
[1,0,0,1] and [0, 1, 0, 1] are excluded by the projected exclusion test.

In the case of the null variables that are not excluded, we insert in this line
the sum of the coefficients of lines (2), (3), or (4) for which z,, z,, or z; are
negative. This enables us to perform the preferred variable test by taking the
minimum of this sum, this being shown in a circle. Line (4") corresponds to the
point of origin. We have returned to this point by a step backward from the
preceding point in the list, namely, [1, 0, 0, 0], and the step forward to
[1, 0,0, 0] is now excluded, as indicated by the sign [J. We have z, = —2 and
z3 = —5; the sum of the coefficients of x; in lines (3) and (4) is 6 and that of
x4 is —5. Since — 5 is smaller than 6 we prefer the variable x, and circle —5.

With each step forward we fill in a new line and a new column. In the column
we calculate the z; values; in the line we insert the result of the tests. For each
step backward we also fill in a new line and a new column. Since the point
already appears in the list we look for it in order to insert the same values
of z,, z,, z; in the new column. However z, must be recalculated because in
the meanwhile a solution may have been found. We carry into the new line
the signs PET or [ of the preceding line in which the same point appears. A
further sign [X signifying already investigated is inserted in the column of the
variable that has been reduced to zero by the step backward.

The calculations are concluded when we return to the point of origin and
when any forward step is excluded because in that line the columns of the four
variables bear the sign PET or [X.

To be sure, we are dealing here with a purely instructive example accom-
panied by the lengthy and painstaking explanations that were requisite.
Indeed, in a case of simple enumeration the procedure would have proved a
great deal shorter. But these procedures are intended for programs with
integers in which a comparatively large number of variables is encountered
and for which treatment by a computer is needed.

Section 5. Some More Complicated Examples of Problems
with Integer Values

1. A Simple Example to Show the Pitfalls of Rounding Off

Before considering concrete problems we wish again to emphasize the fact
that the optimal solution of a linear program with integer solutions can be
very different from the optimal solution of the same program when integer
solutions are not mandatory. Let us consider the following linear program
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for which integer solutions are required:
[MAX] z = 4x,+x,,
(1) =3/7x,+x, <1,

CD ) x-x, < 113,

(3) x,,x, =0 and integers.

A geometrical solution is shown in Fig. 5.1. If we ignore the constraint that
x, and x, must be integers, we find as a solution x;, = 7 and x, = 2 with
z=114. It is evident from the figure (it would be sufficient to calculate the
value of z for each point marked with a o and such that 0< x; <2,
0 € x, < 2), that the maximum for z, given the constraint that x, and x, are
to be integers, occurs with x; =1 and x, =1, namely, z= 5. Hence the
optimum for the associated linear program gives 113/5 = 2% times (or 226%,)
the result of the program with integer values. Equally, if we round off each x,
to the nearest whole number above its value we find x; = 3 and x, = 2, which
no longer satisfies the constraints and would give z = 14 or 280% of the correct
result.
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2. Some Concrete Examples.
An Interesting Agricultural Problem!

This example will be of special interest to the reader because of the detailed
method by which the constraints and the economic function are constructed.
! This example is an adaptation and a variation of the one given by P. L. Hammer, and

S. Rudeanu, “Boolean Methods in Operations Research and Related Areas,” Springer
Publ., New York, 1970.
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We are again dealing with a problem in which the solutions are constituted by
the values O or 1 of the variables; but this problem assumes the form of a
nonlinear program.

With the exception of a few details, the practical programs for the selection
of crops appear in the form of the fairly general model described below.

An agricultural estate contains m lots, L, L,, ..., L. In these lots n types
of crop can be grown, C,, C,, ..., C,, with m > n, but in each lot only one
crop can be grown. When a crop C; is grown in a lot L;, a total expense of ;
is incurred, but supplementary work may be carried out for which the cost is
C;; for crop C; in lot L;. A fertilizer, but only one, may also be used, selected
from r types of product, £, F,, ..., F,, to fertilize lot L;. The supplementary
cost of using product F, in lot L;, in which C; is grown, is 4,;;. Finally, each
lot may or may not be irrigated. The cost of the irrigation of lot L; will be g;
and does not vary according to the crop.

We can now define the quantities a0, al}, !, and o)} in the following
manner: «y; is the average harvest when crop C; is grown on lot L; using
fertilizer F, but without additional work or irrigation; aj; represents the
same case with irrigation added; oz?j}‘ represents the first case with additional
work; finally a}j}c represents the first case with additional work and irriga-
tion.

With 7; representing the total average harvest from crop C;, we set a
production target p; for each crop and impose the restriction

5.2) T; = Pj, j=12 ..,n.
Let us define the following bivalent variables:

(5.3) x;; =1, ifcrop C;is grownonlotL,
i=12..,m; j=12,...,n,

= 0, in the contrary case.

54 yu = 1, if fertilizer F, is used on lot L_,
i=12...,m; k=1,2,...,r,

= 0, in the contrary case.

(5.5) z; = 1, if additional work is needed on lot L,,
i=12,..,m,

= 0, in the contrary case.
(5.6) t; =1, iflot L isirrigated,

= 0, in the contrary case.
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Let us now consider how to construct the model that is, because of the nature
of the problem, somewhat complicated.

In the first place we impose the restriction that in a lot L, there can only be
one crop C;. Thus for lot L, we write

.7 X11+Xgp + oo+ Xy, < 1.
The sign Jess than or equal to indicates that we cannot cultivate L,. For lot
L, we write
(5.8) X231+ X9y + .. + X3, <1.

And similarly for each of the lots. By grouping the results we are finally
able to write m equations
(59) xi1+x,-2+...+x,,,<1, i = 1, 2, ey ML

Similarly for the variables y; we write

(5.10) yi1+yi2+"'+yir= 1, i = 1, 2, [ (B

since we only employ one kind of fertilizer for each lot.

The relation (5.2) shows that the production must be greater than or equal
to a target set in advance for each crop. To determine the expression of r; it
is convenient to introduce the following subsidiary variables:

(5.11) Ve = 1=yu,
(5.12) Z, = 1—z,
(5.13) fo=1-1,.
The condition (5.2) can now be expressed as
(5.19) T = tfﬁ Xi; kz; y,-k(oz,-lj}‘.z, t; + ozilj(,".zii,- + oz?j}‘.iit,- + oz?j(,".f,i,-)
= Dj, j=12,..,n.

Using W to represent the total cost of production and taking this total cost
as the economic function to be optimized, we have

m m n r
(5.15) W = Z a,t, + Z Z x,-j(d,-j -+ C,-jzi + Z bijky,-k) .
i=1 i=1j=1 N =] N
initial cost works fertilizer
irrigation

Finally the model will be constituted by the following program with bivalent
variables

(5.16) [MIN] W = iz ait,- + iz Z x,j(d,j -+ C;J-z, + kzl bijkyik) s
=1 =1 j=1 =
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(5.17) Zl Xij kz_:l J’ik(“uk Zt; + “uk zit + “uk it + “uk Z;t) = p;,
j=12,....n,
(5.18) Z x” S 1, i= 1, 2, e, My,
=1
(5.19) Y yae=1, i=12...m,
k=1

in which all the variables x;;, yy, z;, t; can only assume the values of 0 and 1,
and in which the variables y,,, Z;, and 7, are defined by (5.11)~(5.13).

We might equally use other criteria to solve the problem. If we allocated a
profit v; to each unit of production C; we could then optimize the total value
V of the crops, namely,

(5.20) V= '21 v;.7;
i=

where 7; is expressed by (5.14). In this case we should aim at finding a solution
such that the total cost W given by (5.15) is lower than or equal to a threshold
W,. We should then obtain the program

(5.21) MAX]V = ¥ vj.[.zl Xij kzl Va0l ziti+ ol z;k;

i=1

01 -~ 00 =
+oz,-jk.z,-t,-+oz,-jk.ziii):| s

(5.22) i i i Xij (dij+cijzi+ i bijkyik> < W,
i=1 i=1 /=1 k=1

(5.23) il x; <1, i=12..,m,
=

(5.29) 121 Yu=1, i=1,2 ..,m

(5.25) Xy Vier 25 =008 1, i=1,2,...,mj=1,2 ..., n

k=1,2,..r

Other criteria, too, could be used: for instance, minimizing the proportion
V/W with constraints (5.17)-(5.19), maximizing this proportion with con-
straints (5.22)-(5.25), or introducing a constraint V' = ¥,. To be sure, with
different economic functions, the optimal solutions are usually different.

This initial example, easy enough to understand but complicated in its
expression, has only been offered to the reader with the aim of demonstrating
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the method of reasoning and of constructing models for programs with
bivalent variables. Should he feel intimidated by these somewhat complicated
summations we suggest that he proceed to expand them takingn =3, m = 2,
and so forth.

3. A Fresh Examination of the Problem
of the Traveling Salesman

In Volume 1 (page 72) and in Volume 2 (page 286) we have already con-
sidered this problem that is so well known in mathematical treatises on com-
binatorial problems, particularly those connected with the theory of graphs.
The theoretical solution of this celebrated problem depends on the programing
of bivalent variables, as we propose to recall. Nevertheless, the concrete
solution by the use of computers is obtained by means of a special method
termed “branch and bound” by the Anglo-Saxons and ‘“‘separation and
progressive evaluation” by the French (for this method the reader is referred
to [K18]).

It is useful, from a methodological standpoint, to explain how this problem
of optimization can be transformed into a program of bivalent variables.

For this purpose, let us consider a complete symmetrical graph of type »,
namely, a graph with n vertices, in which each pair of vertices (X;, X}) is
connected by an arc having a value C;; > 0. The problem of the traveling
salesman may now be enunciated in the following manner:

To find the Hamiltonian circuit (or circuits) such that the total value of the
arcs composing it is minimal.

This problem can be transformed into a program with bivalent variables of
different states.!
Let us arbitrarily select a vertex of the circuit, for instance X, and let us

introduce the following variables with three indices:
(5.26) Xy = 1, ifthertharc (r =1, 2, ..., n) of the circuit starting from

X is the arc (X, X)),

= (0, in the contrary case.

With this convention we still have:

(5.27) xijl = 0, i # 1,
and
(528) x,-j,, = 0, j -';é 1.

Thus in Fig. 5.2, which represents a complete graph containing six vertices,

! This concept is due to G. B. Dantzig, see [K8].
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Xs

F1G. 5.2

let us consider the circuit (X;, X3, X;, X5, X5, Xg, X1). For this circuit we
have

Are Value of r

(Xl ’ X3)
(X39 X4)
(5.29) (X4, X5)
(Xs X3)
Xy Xe)
(X69 Xl)

AN nh WD -~

Hence we have, for instance, x; 3, =1, X3 4, =1,...,X5,1,¢ = |, all the
other X;;, being null.

In our example there are 6x 6x6 =216 variables x;;; a solution will
include six variables equal to 1 and 210 equal to 0. For » vertices there would
be n* variables of which #n would be equal to 1 and n®—n = (n—1)n(n+1)
would be equal to 0.

To express the program with bivalent variables, let us introduce the con-
straints that ensure that the solution obtained will be a Hamiltonian circuit.

Let us indicate that if we arrive at vertex X; # X, after traversing r arcs
from the vertex of origin, we leave vertex X; when we traverse the (r+ I)th
arc. This can be expressed as

(530) Z xijr = Z xjk,r+ls
i=1 k=1
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Given that this constraint does not apply for j = 1, we leave vertex X, by
the first arc numbered r = 1 and we return to it by the arc numbered r = n. It
can easily be seen that a solution containing two unconnected circuits would
not satisfy this constraint.

Finally, let us clearly specify that we leave vertex X; by one and only one arc:

(5.31) ¥ z xip =1, i=1,2..,n.

ji=1r=

Let us now define the economic function:
(5.32) [MIN] zZ = Z Z Z Cij . xi_,-,..

Finally the program can be written

(5.33) [MIN] z = Z Zn: Zn: Cij - Xijrs

r=1 j=1 i=1
n r = 1, 2, s n_l’
(534) ;Z‘l Xijr = kgl Xjkor+1s j= 2,3, , n.
(5.35) Z Z xi 1 = 1, 23 s B,
=1
(5.36) Xyr=0or 1.

In this form, first formulated by M. M. Flood in 1956, the program in
bivalent variables for the problem of the traveling salesman includes n?
variables and 2n® constraints. Thus, for the limited case shown in Fig. 5.2,
where there are only six vertices, it would be necessary to solve a program
with 6 x 6 x 6 = 216 variables and 72 constraints. The enumeration for the
5.4.3.2 =120 circuits would be appreciably quicker. Indeed, the formula-
tion shown in (5.32)-(5.36) is of purely academic interest.

In 1960 another model for this problem containing fewer constraints and
variables than the preceding model was given by A. W. Tucker, and we now
propose to examine it.

To do so, let us consider a complete symmetrical graph with n+1 vertices
Xy, X1, X5, ..., X, and try to discover the Hamiltonian circuit with a total
minimal value, with its origin at X,. Let x;; be a bivalent variable such that its
value is 1 if the circuit passes along arc (X;, X;) and 0 in the contrary case,
i,j=0,1,2,...,n The program is now developed as follows, the quantities

! In Section 23 (page 378) we show Trubin’s method, which is very effective when applied
to a problem of this kind.
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u; being defined later:

5.37) [MIN]Jz= Y Y ¢j.xy,
i=0 j=0
(5.38) Y oxy=1, j=12,..,n,
i=0
(5.39) Y ox=1, i=1,2,..,n,
j=0
(5.40) u—u;+nx; < n—1 (I<i#j<n),
(5.41) x;=0o0r1, ihj=12,..,n,

u; € R (real numbers) i=12,..,n.

Any solution that satisfies (5.38) and (5.39) and that is a Hamiltonian
circuit will satisfy (5.40), and reciprocally. When (5.40) is not satisfied the
solution contains at least two elementary circuits with a number of arcs
k < n. In fact; if we add up all the inequalities (5.40) corresponding to x;; =1
for the arcs (X;, X;) that belong to an elementary and non-Hamiltonian
circuit and that do not pass through vertex X,, we annul the differences
u;—u; and obtain nk < (n—1)k; this is impossible, whence the contradiction
between the hypothesis and the conclusion. We need only demonstrate that,
for each Hamiltonian circuit starting from X, it is possible to find a value
that satisfies (5.40). Let us choose #; = r if vertex X; is the terminal extremity
of the rth arc when we traverse the path that runs from Xy to X;,r=1,2, .., a.
It is evident that u;,—u; < n—1 is satisfied for every arc (X;, X;). Hence the
conditions are satisfied for all the x;; = 0 and for x;; = 1, and we have

(5.42) w—u;j+nx; =r—(r+1)+n=n-1.

Using this model, for n vertices of the graph we have n? bivalent variables
and 2(n— 1)+ (n—1)*> = n* —1 constraints instead of n> and 2n?, respectively.
Hence in the small example of Fig. 5.1 there are 36 bivalent variables and 35
constraints, which is an appreciable reduction. Nevertheless the number of
constraints and of variables quickly increases with n® as n grows larger.

At the present time the branch and bound method is favored for the problem
of the traveling salesman. But the method of Gomory, which will be explained
in Section 19, also produces good results for this problem.*

4. Planning the Work of Teachers and Law Courts

This type of problem occurs in every school where there are a number of
classrooms and a number of teachers for the pupils. It has numerous varia-
tions, one of which has been selected as an example.

! See, for example, G. T. Martin, Solving Traveling Salesman Problem by Integer Linear
Programming, Control Data Corp., New York, May 1966.
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Let there be M groups of pupils, each group constituting a class, P teachers,
and § classrooms. Let us also introduce the following bivalent variables:

(5.43) X = 1,  when teacher j takes a class with group / in class-
room k on date ¢,

= 0, in the contrary case.

i=1,2 ... M;j=1,2...,P;k=12,..,8;t=1,2, ...

The work week is presumed to last for only g days (1 < g < 6) from Monday
to Saturday. The daily schedule contains a maximum of 4 hours study. Each
period may last one hour or two hours, the unit being an hour. Various con-
straints exist with respect to the use of classrooms for a group 7 and a teacher
J; for instance, a physical training instructor cannot, in principle, teach in a
room lacking the equipment that he needs. For a group 7/ and a teacher j we
provide a vector,

(5.44) [Oij] = [O;'jl N OijZ’ ceny OijS]9

of which the elements O;;; have a value of 1 if room & can be used by group i
for the lesson of teacher jand have a value of 0 in the contrary case. In addition,
for every teacher j, a vector exists,

(545 [d]=1[dp, dp, -oos dyal,

of which the elements d;, have a value of 1 if teacher j is available at hour ¢
and a value of 0 in the contrary case. In addition, let us specify the significance
of gh as the index of d; ,, in (5.45).

What is meant by hour ¢ is the position of an hour among the working
hours of the week. Hence a week contains gh periods of one hour resulting
from the 4 periods of the work day.

Let us now introduce various constraints representing the actual conditions
under which a school operates.

At hour ¢ a teacher who is available can only teach a single group of pupils
or not teach one:

M S ;
j=12,..., P,
. <
(5.46) i; kg,l Xipe < dges t=1,2,...,qh.
At hour ¢ a group i can only attend one course:
P s i
=12, .., M
5'4 < 1 9 Ly vevy )

At a given hour ¢ a classroom k can be used only by a group / attending a
course given by teacher j:

k=12, ..8,
1,2

M P
(5.48) Y X % <1, .2, ..., qh.

i=1 j=1

-
|
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With respect to the possible occupation of a room k by a group i with a
teacher j, we have

& i=12..,M,
(5.49) r=zl Xije < qh. Oijk . j — 1’ 2’ . P,
k=12..,8.

Finally we can obtain a matrix [C;;] giving the number of hours for the
course of teacher j with group i. We should have

5 gh - i=1,2,...,Ms

In some schools there is a restriction that a class never spends more than
two hours with the same teacher or in studying the same subject. A mathe-
matical constraint would then be added.

Of course many other constraints might be added, for instance, that any
teacher is limited to A hours teaching in one day; equally, that a group of
pupils must not study the same subject for more than g hoursin a day (namely,
with the same teacher), that certain subjects should be excluded on Mondays,
since it is a well-known fact of modern life that the so-called Sunday day of
rest is the most exhausting day of the week, especially for the young

Usually the planning of the occupation of the classrooms is not optimized ;
we are content with one or more solutions that satisfy the constraints. How-
ever we can imagine various criteria, each of which would correspond to a
particular need: arranging the largest possible number of lessons at certain
times, separating exhausting lessons, arranging for the maximum number of
lessons to last two hours (which might suit the consensus of teachers) or on
the contrary, to last only one hour (if such should be the desire of the teachers).
Let it be understood also that optimization cannot take place for several
criteria unless, of course, these can be merged, which rarely happens.

Let us now take a numerical example that should serve to remove the

P P P
1 2 3
E 2 0 2 4
1
E 2 5 0 7

Fi1G. 5.3
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theoretical aspect somewhat from our exposition; it has been expressly made
as simple as possible, and too much importance should not be attached to the
numbers in the data, which have, by intention, been fairly widely dispersed.
We imagine that there are five groups of pupils F,, E,, E;, E,, and Ej
and three teachers P,, P,, and P;. The length of each teacher’s course with
each group of pupils is given in hours in Fig. 5.2. In our example it is to be
understood that there are four hours study in a day and six days of study in a
week. Hence, in accordance with the general enunciation given above, we have

(5.51) M=S, P=3, S=3,h=4, q=6.

The obligations with respect to the classrooms are given in Fig. 5.4 where

0.. S S S
gk 1 2 3
E P 1 1 0
11

E P 0 0 0
12

E P 0 1 0
13

EP 1 1 0
21

E P 1 0 0
2 2

E P 0 0 0
2 3

E P 0 0 0
31

E P 1 0 1
32

E P 0 1 1
33

EP 1 1 0
Wl

E P 1 0 1
b2

E P 0 0 0
w3

E P 1 1 0
51

E P 0 0 0
5 2

E P 0 0 0
5 3

FI1G. 5.4

Monday Tuesday |Wednesday| Thursday Friday Saturday

[l l2]ala|sfel7]s]|ofpofsrfrzfiafrafis|ie]iz |8 ]ro]20]a1 {22123 |24
E ol fafololofofolojo]of sfr]rjr|a}ulafa]fr]1]s
Podopoarfafefaprfayrjryarfojojololojolojojrfr]|t]:
Pyojojofoqo[rfrjr{r[ofofofo[Cciofofofaj{1fri1gififl
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Number of variables not identically null

i,jt 1|23 4]ls|e|7]8]9liofitpzh3z]|ialisfisiz (181920421 [22 (23|24
1,1 j2(2}22to0 ojofojojojoy2t2i2y2t2fz2t2j2fj2}2]2)2
1,2 |o|ojo|o}o olo|ojolojojojlojlo]lojo|olololojo]o}o
1,3 |oloflojofr|1|1lt]ofojojolojlofojofsjrltlafrjrir|l
2,1 |2]2|2]2|oloflojo]ojojojo]2]|2]|2]2]2|2|2]2f2]2]|2)2
2,2 frqrfu ey frprprfrifi]ojojojeclojojojo]rlijy1
2,3 {0|0j0|{0f0j0{0j0j0j0]0j0f{0j0}j0j0}0|{0]0|0j0}{0C]O0}C
3,1 |ofoJojo]Jofojo|o|o]o|]ojo}jo|oflojOfjojojojCfjOjoOlOfO
3,2 |2f2f212]2)2t2|2|2|2{2}2|j0]ojo|lofjo|oflojol2j2]2]2
3,3 |ofojojo]2|2{2|2]ofofojojojofo|of2]|2f22f2j2i2]2
4,1 |212]212]o|ojoflojoloflojof2]2|2|2|2]2|2f2t2|2;2}2
4,2 123y2|2{212f2)2)2)212j2|240j0jclojojojojoj2|2}2]2
,3 Jojo|ofo]ofojololo|ofojofjolo|lojojo|oflofl0]0]0]O]O
5,0 J2f2]2|2]olojofojojoflo|of2|2|2]2)2]2[2])2])2]2|2]2
,2 |olojoflo]o|o|o|lojofo|lojo|jo|o|o]lojojo|OjOjO|jOfoO|O
5,3 Jo|loJoflo]Jolojolo]ololojofjojojojojo|o|lojojofojofoO
FiG. 5.6

each line corresponds to a vector [O;;]. The hourly availability of the teachers
is given in Fig. 5.5 in which each line corresponds to a vector [d;].

A possible solution is shown in Fig. 5.6. In this example it is easy to find a
solution given the availability of a place with the classes; this would not be the
case if the number of teachers were increased without a proportionate increase
in the number of classrooms.

It is instructive in this example to discover the number of variables x;;,, not
identically null. There are, to begin with, 5x3x3x24 =1080 variables
X;ye- Those that are, a priori, identically null in accordance with Fig. 5.4
number 4 x 6 x 29 = 696. But if we take Fig. 5.5 (the availability of teachers)
into account we can then construct Fig. 5.6 that gives the daily number of
variables that are not identically null, namely, 244. This can help us to draw
up a planning arrangement.

However, concrete problems of this type are, as we may well suspect, much
larger in scope, given the number of teachers, of groups, and of classrooms. It
then becomes necessary to divide the problem into sections and to employ
heuristic’ methods of a somewhat elaborate nature in the absence of analytic
solutions leading to optimization. Figure 5.7 shows a solution that can be
improved in relation to a selected criterion and, if it is advisable, in relation to
several criteria.

U A heuristic procedure is constituted by a set of rules that are intuitive and partial selec-
tions, enabling a solution and, in certain cases, a better solution to be obtained.
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5. The Problem of Selecting Masks in an Integrated Circuit

The methods of operations research can be used for problems far removed
from econometrics. The example given earlier in this section about the removal
of tiles showed that the plumbers’ union could more advantageously apply to
operational researchers than to the medical profession to prevent back strain!
The problem that we now present is concerned with the purely technological
problem of choosing the masks used for the production, by a vacuum or
diffusion process of deposit, of the integrated circuits used in the most advanced
machines for sifting information. The model and the special algorithm for its
solution that are given in Part 2 (see [K49] and [K55]) are here being used in
a practical context.

An integrated circuit is manufactured in a plate (perhaps square) composed
of silicon or germanion with its sides some millimeters in length. This plate is
itself divided into several dozen elementary cells which, after deposits of
metallic connections and the diffusion of impurities, allowing for the formation
of diodes and transistors, have special logical functions. Let us, however,
ignore the technological aspects of electronics and concern ourselves with the
elementary cells that are situated on these small plates of integrated circuits.
Our aim is to minimize the number of defective cells produced by the delicate
process of manufacture.

In Fig. 5.8 we show a plate with 16 numbered cells, though in practice there
are far more; 8 x 8 = 64 or even 32 x 32 = 1024. These plates may constitute
a complete element of memory for a bit or a more complex information entity
(octet, word) with its access circuits.

These integrated circuits are manufactured by the use of masks, metal plates
in which very delicate incisions are cut. These masks act as stencils that
enable various deposits or diffusions to flow in the same manner as in the
reproduction of a painting, and they are used in rotation. If there is a defect
in one of them in the area corresponding to a cell, this cell will in turn be
defective and will require further treatment that it is desired to avoid.

The sum of the defects is represented by Fig. 5.9, where the integrated circuit
contains nine cells and for the manufacture of which three types of mask
have to be superimposed. For each type of mask two versions are available,

Fic. 5.8. Plate of an integrated circuit with 16 numbered cells.



5. MORE COMPLICATED PROBLEMS WITH INTEGER VALUES 67

differing according to the position and number of defects, in the same way
that automobiles of the same type possess slight differences. Our aim is to
select from each of the three types of mask the version that will produce the
least number of defects for the total combination.

X X X X X X X
+ | x + x = x x
x x x
11213 Type 1 Type 2 Type 3
5}6
71819
X X X X x X x
i x + x x = x X
X X X
Type 1 Type 2 Type 3

Fic.5.9. The different number of defects that occur when using two versions of the same
type of mask.

Let us examine Fig. 5.9. The first version of the type 3 mask produces six
defects, whereas the second version using type 3’ produces only five. Allowing,
therefore, for the inefficient return from the process of manufacture, we are
obliged to construct a large number of masks (often as many as 50) of the
same type. In practice more than ten types of masks are normally used to
produce an integrated circuit with some 100 cells. At this level of combinatorial
complexity, the manual selection of masks to produce a minimal number of
defects is impractical. Mathematical programming enables us to construct a
model and to solve this problem.

Let
(5.52) x;;=1, if, for the optimal selection, we take version j of

type i mask,
=0, if we do not take it.

In our example (Fig. 5.9),i=1, 2, 3, and j = 1, 2, since, for the purpose of
simplification, we suppose that there are only two versions for each type of
mask, although in practice there would be far more.

We have to choose a mask of each type and only one version of each type
(if possible, the best), which provides the three constraints:

Xpt+x, 21,
(5.53) Xa1+Xa 21,
X31+X3, 2 1.

The inequalities >1 have been used to produce a certain homogeneity in
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the formulas, with the clear understanding that, when minimizing, only one
version of each type will be selected.

If the type 1 mask exists in two versions having, respectively, defects in
cells 1, 3, and 9 (as in Fig. 5.9) and in cells 2, 3, 4, and 7; if the type 2 mask has
two versions with defects, respectively, in cells 1, 4, and 9 and cells 1, 4, S, and
9; if the type 3 mask exists in two versions defective, respectively, in cells 2
and 6 and in cells 1, 3, 4, and 6 (type 3’ in Fig. 5.9), we can now state that
selecting a mask that has a defect in cell p results in a cell p in the inte-
grated circuit being defective. It should be noted that not more than three
masks, one of each type, will be chosen.

Let

(5.54) w,=1, if thereis a defect in cell p of the circuit,
=0, ifthere is no such defect.

We now have the following relations for this simple example:

X11+X;3 +X25+ %32 < 3wy,

X3+ X3 < 3w,,
X11t+Xg2+X32 < 3ws,
X12F X201+ X35+ X3; < 31y,
(5.55) X33 < 3ws,
X331+ X32 < 3w,
X12 < 3w,,
0 < 3wy,
X1t Xz +Xs2 < 3wy,

X115 X125 X215 X225, X371, X32, Wy, W3, W3, Wy, Ws, w6,w7,w8,w9€{0, 1}-

Let us explain the first of these relations. By hypothesis, only the masks of
type 1 version 1, type 2 versions 1 and 2, and type 3 version 2 have a defect in
cell 1. If we select one or more of these masks in an arbitrary manner we shall
obtain a first member greater than 0 and less than or equal to 3, since the total
number of masks chosen does not exceed 3. As w, is equal to 0 or 1 it must
have the value 1, thus indicating a defect in cell 1 of the circuit.

We propose to minimize the total number of defects, that is,

(5.56) [MIN] z = i w,,
p=1

with constraints (5.53) and (5.55).
This defines a model with bivalent variables. If we chose to ignore the
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particularities of the constraints, as for example that x;; does not appear in
(5.56), we could solve the problem by the use of the appropriate algorithms,
but with attendant difficulties that we must immediately stress. Thus, for a
problem of this type that includes 128 cells, 50 versions of each type and seven
types of mask, there would be 128 bivalent variables w,, 350 variables x;; and
7+ 128 = 135 constraints if a direct adaptative research algorithm DZLPI
were employed (see [K63] and [K64]), and with this method no solution was
obtained after 2 hours 30 minutes use of a large third-generation computer.
An attempt was also made with an older algorithm LIPI using the procedure
of Gomory (see Part 2, p. 301) on a very large second-generation computer,
but it proved impossible to program the problem owing to lack of memory
space.

This example underlines the difficulties encountered in the treatment of
certain problems with bivalent values that include a large number of variables
and constraints. We should not therefore be surprised at finding important
mathematical developments that are sometimes difficult to take account of;
as will be seen in certain sections of Part 2.

We are often obliged (and this is equally true for common linear program-
ming), to construct special algorithms designed to take advantage of the
particular structure of the problem. Thus, if we consider (5.55), we see that
only one integer variable w; appears in each inequality. This will be utilized in
Section 22 to develop a very effective algorithm.

Section 6. Arborescent and Cut Methods for Solving Programs
with Integer Values

1. Principle of Arborescent Methods

With arborescent methods an implicit enumeration of the solutions is
employed. This differs from the Lemke-Spielberg algorithm in so much that
with each iteration not only a solution but a subset of solutions must be
examined. On this account these methods are often termed multibranched!
or arborescent. They belong to a more general category termed branch and
bound, the theory of which has been studied by B. Roy and P. Bertier.2

We shall now make use of a very simple example to explain the general
procedure for these arborescent methods.

! See K. Spielberg, [K68], Enumerative Methods for Integer and Mixed Integer Program-
ming. IBM Rep. N.Y, Scientific Center, 320-2928, March 1968. See also the works of R.
Faure, and Y. Malgrange, who pioneered these methods some ten years ago (see [K10]).

2 P. Bertier, and B. Roy, “A Solution Procedure for a Class of Problems Raising Com-
binatorial Character,” Operations Research Center, Univ. of California, Berkeley, 1967.



70 I. PROGRAMS WITH INTEGER AND MIXED VALUES

Given
(1) [MAX] z=x,+x,,
@ x,+9/14 x,<51/14,
6.1) B) —2x+x,<1/3,
@ x,%,20,
(5 x4, x, integers.

The domain of the solutions that satisfy constraints (2), (3), and (4) of (6.1)
is shown in Fig. 6.1. The solutions corresponding to values x, and x, that
satisfy (4) and (5) are shown by heavy dots.

If we solve the program without taking account of (5), the point x, = 3/2,
x, = 10/3, namely A, for which z = 29/6, represents the maximum.

Now let us suppose that the optimal point with integer values is not too far
distant from 4. The integer values of x; nearest to 3 are 1 and 2.
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Let us then consider the two following programs with integer values:
1) [MAX]z = x;+x,,
2) x,+9/14 x, < 51/14,
62 () —2x+x <13,
@ 2<x, 0<x,,
(5) x;,x, integers,
and
(1)  MAX]z = x;+ x4,
2) x,+9/14 x, < 51/14,
(6.3) 3) —-2x,+x, <1/3,
4 0<x;, <1, 0<x,,
(5) x;, x, integers. '

By so doing, we have separated the set of solutions of program (6.1) into
two subsets of solutions, one obtained by (6.2) and the other by (6.3). These
two disjoint subsets have a union that gives all the solutions of (6.1), and in
this way no integer solution is lost. With this procedure we have passed from
the domain 8 shown in Fig. 6.1, which contains all the integer solutions of
(6.1), into the domain §,; U S, in Fig. 6.2, which also contains all the solutions
for program (6.1). Now, let us solve programs (6.2) and (6.3) without taking
into account their constraints (5), that is to say, as common linear programs.

A% A%

6 69
\ \

\ /\. NI/

N\

e . , No  \

Z /

Yy ‘ . = .
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We then obtain the following:
For the linear program (6.2) without (5),

6.9 x, =2, x, = 23/9, maxz = 41/9 (point B).
and for the linear program (6.3) without (5),
6.5 x, =1, x, =7/3, maxz = 10/3 (point C).

Neither of these solutions has integer values.

The reader will be able to follow the development of the calculations on
Figs. 6.2-6.5. Since point B gives a maximum upper value for z, the separation
procedure will be continued from subset S, of the solutions.

Let us separate subset §, into two disjoint subsets S,, and S, ,, the union
of which gives all the integer solutions for S, . In (6.4) we see that x, = 23/9,
that is to say 2 < x, < 3. Let us then take as supplementary constraints
x, > 3 on the one hand and x, < 2 on the other, which gives

(1) [MAX] z = x;+x,,

) x,+9/14 x, < 51/14,
(6.6) (3) —2x,+x, < 1/3,

@ 2<x;, 3<x,,

(5) x;,x, nonnegative integers,
and, on the other hand,

(1) [MAX]z = x,+x,,
@) x,+9/14x, < 51/14,
(6.7) (B) —2x,+x, < 1/3,

VAN

4 2<x, %<2,

(5) x,,x, nonnegative integers.
It is evident from Fig. 6.3 that program (6.6) is impossible as it does not
contain any integer or other solution, since x, > 3 is not compatible with S, .
On the other hand, point D of domain S, provides an optimal solution for
program (6.7) without (5), namely,

(6.8) x, = 33/14, X, =2, max z = 61/14.

But this solution is not integer and our procedure must be continued.
Comparing the solution at point D with that at point C, we have
6.9) point C : max z = 10/3; point D : max z = 61/14.

Given that 61/14 > 10/3 we shall continue with point D as our starting
point; otherwise we should have had to return to C and continue from there.
Let us now consider domain S,, and the optimal solution (6.7), which is
not integer. Since we have x, = 33/14 we separate S,, into two disjoint
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FI1G. 6.5. Branch and bound method of finding the solutions.
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domains, the union of which provides all the integer solutions of §,,. On the
one hand, this gives the constraint x; < 2 and, on the other hand x, > 3,
whence we obtain the following programs with which we shall associate
domains S,,, and S,,,:

1) [MAX] z = x;+x,,
Q) x,+9/14 x, < 51/14,
(6.10) (3) —2x;+x, <1/3,
@ 2<%, x<2, x <2.
(5) x,,x, nonnegative integers,
and
1) [MAX] z = x;+x,,
) x,+9/14 x, < 51/14,
6.11) (3) —2x,+x, =1/3,
@ 2<x;, x,<2, 3<x,,
(5) x;,x, nonnegative integers.

Domains S,,, and S,,, are shown in Fig. 6.4. For the linear program
(6.10) without (5) we find

(6.12) x, =2, x, =2, max z = 4.
For the linear program (6.11) without (5) we find
(6.12a) x, =3, x, =1, max z = 4.

Let these be the points E and F on Fig. 6.4, This time we have found an optimal
solution with integer values; indeed, we have found two, since points E and F
are both suitable. Nevertheless, we must still verify that the maximum value
obtained for z (namely, 4) is greater than the possible values obtained from the
other hanging vertices of the arborescence in Fig. 6.5; all we need do is to
compare it with the result obtained at C, and we then find 4 > 10/3. Thus the
points with integer values E and F are indeed optimal solutions of (6.1).

We have outlined the principle of arborescent methods (also called multi-
branch)' because by evaluating, for example, subset S,,, and by observing
that the associated linear program had an integer solution, we were able to
eliminate the elements of both set S, and set S, , apart from the two optimums
obtained. Using this method, the discovery of a solution in a subset often

! In mathematical works this method is termed branch and bound, and it should be noted
that it refers to a wide field of optimization. It can prove lengthy and troublesome owing to
the need to return to many new branchings.



6. ARBORESCENT AND CUT METHODS FOR SOLVING PROGRAMS 75

enables us to eliminate inspection, whence the separation of several other
subsets.

The procedure employed is an algorithm of optimization, even though we
have used heuristic criteria such as that of separating S, before §,. What is
essential is that the convergence must be a property associated with the
criterion employed and, as can be verified, such was the case in our procedure.
With other procedures, still using the branch and bound method, the choice
of a different criterion might have led us to select S, before S,, but this
change of order does not matter as long as the convergence toward an optimum
is assured.

Let us note that this algorithm is also valid for cases where only some of
the variables have integer values.

2. Difficulties of Utilization

The very simple instructional example above does not reveal the full diffi-
culties of the method. It is often observed that, for a given problem, in the
subsets obtained by separation the optimum is discovered fairly soon. In the
above example this optimum was found in 8,, and it was not necessary to
return to other branchings. Such an early result is far from always occurring,
and to complete the optimization it may prove necessary to perform a large
number of branchings and separations. To realize the truth of this we need
only consult the table (Fig. 6.6) that relates to the program OPHELIE
MIXTE! used by the METRA group and shows the characteristics of treat-
ment on one of the most powerful present-day computers.

In this table it will be observed that the number of iterations before stopping
(an iteration consists of the separation of a subset and the solution of the linear
program associated with it) is frequently greater than the number of the
iteration at which the optimum was discovered. To reduce the number (and
this method is employed in the majority of standard codes for mixed program-
ming), use is made of the following criterion of stoppage that will be illustrated
and explained by an example:

Given
1) MAX]z= —x;+x,,
) 2x,+x, €6,
(6.13) (3) —52x,+x, <0,

<
(4) xl > 0’ x2 > 0’
(5) x,, x, integers.

! Table taken from the article by R. Benayoun, B. Roy, and J. Tergny, Concerning the
S.E.P. procedure in the program OPHELIE MIXTE, METRA Rev. 4, (1), 1970.
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If we solve the associated linear program (Fig. 6.7), we find the optimum
for point 4: x; = 4/3, x, = 10/3, z= 2.

Let us propose to limit ourselves to an integer solution for which the
deviation from the optimum is less than or equal to 1.5. This means that we
shall end the separation procedure as soon as we are certain that the maximum
of the linear program, without the integer constraint, does not exceed the
best integer solution obtained by more than 1.5.

Hence, if we separate domain § into two subsets S, and S,, where S, is
such that x, > 2 and S, is such that x; <1, we find

() MAX] z= —x;+x,,
) 2x,+x, <6,

6.14) (3) —52x,+x, <0,
4 2<x;, 0<x,,
(5) x;, x, integers,

and
(1) MAX]}z= —x;+x,
) 2x;+x, <6,

(6.15) 3) —-52x,+x, <0,
@4 x;, <1, 0<x,,
(5) x;, x, integers.

The optimal solution of (6.14) without (5) is

(6.16) X, =x,=2, maxz=0, pointB.
And that of (6.15) without (5) is

6.17) x =1, x, =5/2, max z = 3/2, point C.

At this stage we have the arborescence of separation of Fig. 6.8.

We have found a solution with integer values in subset §,. We know that
the optimum with integer values in S, is less than or equal to 1.5, since this
optimum corresponds to a more constrained problem than the associated
linear problem that allows a maximum of 1.5. As we have already found an
integer solution, we are only interested in a solution greater than 0 (value
obtained) plus 1.5 (the exact optimum), namely 0+ 1.5 = 1.5. Hence we are
not concerned with the points of §, and we take as the optimum nearest to 1.5
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FiG. 6.7

Domain $§

10

x E IR

1 3

/\

4
=§,x2 s Max 3 = 2

Domain §,

with constraint x <

1

Domain §,

with constraint «

> 2

1

7 X

5
xl-z,x2=5,maxz-= =2,x2=2,maxz=0

Fic. 6.8

the solution x; = x, =2, z=0, It can be verified that the true optimum
corresponds to x; =1, x, =2,z=1.

Many other heuristic criteria for stopping are used to choose the subsets to
be separated and the separation variables. These criteria provide a funda-
mental contribution to the efficacy of present-day codes capable of solving
problems of large-scale dimensions. Since they use linear programming as a
subprogram for the computer, they should be combined with very productive
codes of linear programming.
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3. Principle of Cut Methods

These methods consist in replacing the conditions x; = a nonnegative
integer, i=1,2,...,n, where n is the number of variables, by x; > 0,
i=1,2,...,n. We then add linear- constraints termed cuts that are only
verified if a solution has integer values. Each of these cuts constitutes a neces-
sary condition for a solution to possess integer values.

We shall now explain the principle of these methods starting with a par-
ticular method of cut for which R. E. Gomory [K42] is responsible.

Let us consider the following example:

(1) [MAX]z=x;+x,,

2) —-x+x, <1,
(6.18) (3) 3x,+x, <4,

@ x>0, x, 20,

(5 x,,x, integers.

If we disregard (5) in (6.18) the maximum occurs at point 4 for which we
have (Fig. 6.9)

(6.19) x, =34, x,=7/4, maxz=10/4.

If we now add to inequalities (2) and (3) in (6.18) the deviation variables u,
and u,, we shall obtain the following equivalent program:

1) [MAX] z = x,+x,,
(2 —x,+x,+u; =1,

(6.20) () 3x,+x,4u, =4,
@) x5, x5, uy,uy; =0,
(5) x,, x, integers.

Let us now solve (2) and (3) of (6.20) to express x, and x, as functions of
u, and u,; it follows that
3 u;  u,

6.21 x,=>+2_ k2
(6.21) 1=t

(6.22) X, =——21_X2

In particular, if u; = u, = 0, we find x; = 3/4 and x, = 7/4, namely, point
A, the intersection of the straight lines —x;+x, =1 and 3x,+x, =4.
Let us consider lines (2) and (3) in Eq. (6.20) which have integer coefficients.
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» Straight line 2x, +x, =3
& corresponding
to Gomory's cut 2x; +x, <3

Stralght line x, +x, =2
corresponding
to Gomory's cut x, +x, <2

Fi1G. 6.9

If x, and x, are integers, since the second members | and 4 are integers, it
follows that u, and u, must also be integers. We shall now, starting from (6.21)
effect a Gomory cut.

x, integer gives 3/4+u,/4—u,/4 integer. Since u, must be an integer, we
must have '

3
(6.23) 7t % - % +u, integer.
That is,

3 u 3u
6.24 S+ 224+ 22 integer.
(6:24) 474" 4 ger

Since u, and u, are nonnegative, the first possible integer is 1. We therefore
have

: 3 u
6.25 -+ —=+
(6.25) 2732

u2>1,

3
4
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that is to say,

u; 3 1
6.26 —+=-uy =-.

This is the supplementary constraint sought and not verified at point A4
(u, =0, u, =0) that is optimal for program (6.20) without constraint (5).
Solving u, and u, as functons of x; and x, by means of lines (2) and (3) of
Eq. (6.20), we obtain another expression of the cut (6.26)

(6.27) 31 +x,—x) +3(4-3x,—x;) > 1,
namely,
(6.28) 2x,+x, €3 (Gomory’s cut).

In Fig. 6.9 it is apparent that point 4 does not satisfy constraint (6.28).
Hence, to the relations (6.18) we now add constraint (6.28), and this gives

(1) [MAX] zZ = xl +x2,

(2) _x1+x2 < 1,

3) 3x,+x, <4,
(6.29)
(6) 2x,+x, <3,
@ x 20, x; 20,
(5) x,,x, integers.

The maximum, if we ignore constraint (5), is reached at point B (Fig. 6.9)
for which we have x; = 2/3, x, = 5/3, max z = 7/3.

In the same manner as before we introduce the deviation variables u,, u,,
and u, into lines (2), (3), and (6) of Eq. (6.29). Thus (6.29) becomes

(1) [MAX] zZ = xl +x2,

2 —x;+x,+u;, =1,

(3) 3x1+x2+u2 = 4,
(6.30)

(6) 2x;+x,+u; =3,

(4) xy,%5,u;5,up,uy 20,

() x,,x, integers.

Let us express x, and x, as functions of 4, #,, and u; beginning at (2) and



82 I. PROGRAMS WITH INTEGER AND MIXED VALUES

(6). By elimination, we obtain

2 1 1
6.31 X, =—+-u; ——u,,
(6.31) 1=373%hT3%

5 2 1
6.32 Xy = ———U; ——Uj.
(6.32) 2=373M T34

Let us note that we might have used (3) and (6).

Beginning at (6.31), let us produce a Gomory cut. x; integer results in
2/3+u,/3—u,/3 integer. Since u, is integer (integer coefficients in (6) of (6.30)
we have

(6.33) % + ? - ? + u3 integer,
hence
(6.34) §+%—?+u3>1,

since u, and u, are nonnegative integers.
By expressing u; and u; as functions of x,, x, beginning with (2) and (6)
of Eq. (6.30), we discover a new Gomory cut,

(6.35) X, +x, <2.
By adding this new constraint to (6.29) it follows that

1) [MAX]z = x;+x,,
@ —-x+x <1,
(B) 3x,+x, <4,

(6.36) (6) 2x,+x, <3,
(T x1+x, <2,
@ x, 20, x, >0,
(5 x;,x, integers.

The maximum is now attained at point C for which x, =1, x; =1,
max z = 2, that is to say, a point corresponding to a solution with integer
values, which is indeed the optimum for the given program (6.18).

We should observe that, in the course of the different iterations, the denom-
inators of the different fractions 1/4, 1/3, ... that are encountered diminish in
the expressions such as (6.21)—(6.34). This is an interesting feature of Gomory’s
method and makes its convergence possible.
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4, Difficulties of Utilization

The theory of cut methods dates from 1958, and the brilliance of the alge-
braic procedure seemed to hold out great promise. Nevertheless, at the present
time no industrial code of programming in integers uses it in its complete
form, although some of the most popular arborescent methods utilize the cut
as a subsidiary aid. The reason for this neglect is the slowness with which
convergence takes place. Starting with the first point obtained as a solution
of the associated linear program by ignoring the condition x,, x,, ..., X,
integers, we may have to associate a considerable number of cuts to obtain
an optimal point, as we shall prove in Part 2, page 327. The reader can already
be convinced of this drawback from the example of Fig. 6.9 where two cuts
had to be added to obtain an optimal integer point. If one were to take
example (6.1), which was solved by arborescent methods, and if one attempted
to solve it by the cut method, a large number of cuts would be needed to find
a point corresponding to an integer solution.

However we have seen that this method can be very effective for problems
involving the covering of a set, such as that of the plumber in Section 3, where
all the coefficients of the initial matrix are 0, +1, or —1.

Cut methods leave room for important theoretical developments for finding
more effective cuts that eliminate a larger part of the domain of the constraints
and thereby overcome the difficulties of convergence.

Section 7. Programs with Mixed Numbers

1. Problems with Mixed Numbers

Both linear and integer programming are subject to a generalization that
is of importance in programming with mixed numbers.

Let S be the set of solutions for a linear program, and let us suppose that
every solution [s] € 8§ contains n+ p variables such that »n variables are con-
strained to take integer nonnegative values only, whereas the other p variables
are only constrained to take real nonnegative values:

(7>1) [s]=[xlyx29"~9xn;y1,y29"'9yp],

where the x;, i =1, 2, ..., n are nonnegative integers and the y;, j=1,2, ..., p
are nonnegative real numbers.

A program in which we impose the condition of only accepting solutions of
type (7.1) is a program with mixed numbers.

Hence a solution such as (7.1) may be shown in the following form, illus-
trated by an example where n =3 and p = 2:

(7.2) [s] = [x1 %25 X33 y15 ¥2] = [3, 0, 11; 1.27, 5.98].
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A solution such as
(7.3) [s] = [x1, x5, x3; ¥, ¥a] = [3.2; 0.4; 10.78; 2.08 ; 6.43]

could not be suitable.
Let us first consider a very elementary example, and let the program with
mixed numbers be

[MIN] z = x; +y1 + 2,
6.4x;,+3.2y, <6,
(7.9 2x,+3y,+3y, = 4,
y1 <3,
x, real, y,; and y, integers, Xx;, ¥;, ¥y, = 0.

Set T of all the solutions of program (7.4), without the constraint y, and y,
integers, can be represented in a three-dimensional space (Fig. 7.1) and is
formed by all the points inside or on the surface of the convex polyhedron
ABCDEFGH shown by heavy lines.

If we now impose the condition that y, and y, are integers, the subset of the
mixed solutions S = X will be given by

[$<x,<15/16, y, =1, y,=0],
[0<x,<7/16, y,=1,y,=1],
05 [0<x; <1516, y; =2, y,=0],
[0<x, <716, y1=2,y,=1],
[0<x, <15/16, y, =3, y,=0],
[0<x,<7/16, y,=3,y,=1],

as the reader can verify in Fig. 7.1.

The optimal solution of the linear program in which we are considering
solutions belonging to X is, as can be verified by using one of the methods
given in Volume 1,

(7.6) [s*] =[x, = 15/16, y, = 17/24, y, = 0], z* = 1.64,

that is to say, corresponds to point 4 in Fig. 7.1.
To obtain the optimal solution or solutions with the supplementary non-
negative integer constraints y, and y,, we consider the six subsets of solutions



7. PROGRAMS WITH MIXED NUMBERS 85

Fi1G. 7.1

given by (7.5). The domains of z are given opposite each corresponding subset.
B<x,<15/16, y,=1,y,=0] : 32 € z < 31/16,
[0<x, <716, y,=1,y,=1]: 32/16 < z < 39/16,

[0<x, <15/16, y, =2, y,=0] : 32/16 < z < 47/16,
7D [0<x, <716, y,=2,y,=1]: 3 <z < 55/16,
[0<x, <1516, y, =3, y,=0] : 3 < z < 63/16,
[0<x, <716, y,=3,y,=1]: 4 < z < 71/16.

From an examination of (7.7) it will be observed that there is one and only
one optimal solution corresponding to

(7°8) [S:,] = [xl = 1/2’ Y1 =‘17 Y2 = 0]7 Z,:= 3/2 = L5.

The method employed above can be generalized and used in cases where
the number of x; and y; variables both remain small; otherwise there are too
many domains such as (7.7) to examine in relation to each other. Hence it is
possible to define the following procedure.

If we know a priori all the vectors [y]=[y,, ¥z, ..., ] forming part of
the vectors [s] that constitute the solutions for set S, then with the constraints
of the given program as our starting point, we define the domain relating to
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the other variables x,, x,, ..., x,. Each domain thus defined appears in the
form of new constraints, and it is then necessary to optimize the economic
function z for this new set. This was the procedure used from (7.4) to (7.8).

This method consistutes a basic principle in certain algorithms and heuristic
procedures (see [K59]), although other procedures that are more difficult to
explain, but which produce a better convergence, are generally regarded as
preferable. These will be explained in Sections 21 and 23.

2. An Example: Factory Location

Let us consider the problem of a manufacturer who produces extensively
sold goods that are to be distributed from new factories for which he has to
decide the location and size. He knows the distribution of his retailers as well
as the particular requirements of each.

To simplify the problem let us suppose that only one product is manu-
factured and also that the problem does not apply to consecutive periods but
to a continuous one. The model that we shall construct could be generalized
for a sequential problem with several different products, although we should
then have to expect a considerable increase in the number of variables and of
constraints.

Let b,, b,, ..., b, represent the known requirements of the » retailers, and
let a,, a,, ..., a, be the productive capacities of the m factories of varying
size to be located. Each of these m factories has a unit cost of construction £,
i=1,2,..,m, and the cost of transporting a unit of merchandise from the
ith factory to the jth retailer is c;;. Let x;; be the number of units transported
between these two.

(7.9 y; = 1, if we build the ith factory,
0, if we do not build it.

Our aim is to minimize the total costs of construction and distribution
while satisfying the requirements of the retailers, namely,

m

(7.10) [MIN] z = ) [ﬁyi+ 3 ci,x,j],

i=1 i=

(7.11) Z xij ? bj, j = 1, 2, N ]

(7.12) Y xi; < apyy, i=1,2,...,m,
=1
»yy=0o0r1, i=12,..,m,
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With regard to (7.12) we must observe that if factory 7 is not built (y;, = 0),
no production and hence no delivery is possible from that factory and, if it
is built (y; = 1), only its production capacity a; can be delivered.

If the sites for the factories were arbitrarily fixed, we should be confronted
with a transport problem of a classic type (see Volume I, page 51). If, in
addition, the production capacity of the factories were taken as being un-
limited, the solution of this problem would be a simple one; each retailer
would obtain his supplies from the nearest factory, and this would produce
a model sometimes referred to as a simple siting problem.

To find an optimal solution for the program in mixed numbers (7.10)-
(7.12) we can solve the 2™ linear programs in x;; (transportation problems)
for each of the 2™ values of the vector [¥,, Y2, .-, Yul, i=1,2, ..., m, a fact
on which one of Spielberg’s algorithms is based. To diminish the number of
transportation problems to be solved, he employs expanded methods of
exclusion (see Section 4, page 47).

We now show some results that are given in [K67] when using a medium-
size computer of the third generation.

Number of
m n t in minutes iterations
20 35 2 229
30 80 10 2 129
60 80 > 60 > 10 300
Fic. 7.2

We note that the problems capable of solution by this first generation of
algorithms (1967) were of modest dimensions.

3. Optimization of Nonlinear Economic Functions
Separable for Addition

We shall now show that it is possible to transform a problem of optimization
(minimal or maximal) of any function, whatever its constraints, to a program
with mixed numbers (PMN) on condition that this function and its constraints
are separable in relation to addition.

This is an important fact, since it is now possible to solve PMN programs of
very large dimensions on powerful third-generation computers. The formula-
tion given below may certainly sometimes result in a considerable increase in
the number of variables but, with the advances that have been made in the
coding of these programs and their transmission through a computer, the
solution of nonlinear programs of large magnitude can be obtained in a
comparatively short time,

It is necessary to suppose that the economic function to be optimized is
separable for addition, that is to say, that it can be written as a sum of functions,
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each with one variable, that is,

(7.13) [OPT]Z =f1(x1)+f2(x2)+...+fk(xk).
Hence function z that follows is separable for addition:
(7.14) F1(e) + fa(xy) = sinx;/2+x3/2.

The basis of the principle is to transform each nonlinear function to be
optimized into another function, defined as by intervals, in such a manner
that a linear function is obtained in each interval.

S
N
'
i
L)
N —— e TS

Fic. 7.3

In this manner let us consider the function
(7.15) fa(xy) = x3/2, x, =0,

that is shown in Fig. 7:3.

The linear approximation by intervals consists in breaking up the interval
0 < x; < o0 or a smaller interval 0 < x, < a, the value of a being such that
the interval will cover all the possible values of x, in the program.

Let us consider, for example, (7.15) and let us suppose that we are restricted
to the case where 0 < x, < 2, a hypothesis we are fully justified in making
owing to the form of the program in which x, appears. Let us state that x, is
a linear combination of the values at the following points: x, =0, 1, or 2. Let
us NOW SUppose Uyg =0, uy; =1, uy, = 2, and state,

(7.16) X3 = X30.Uz0FT X3y .Uz +X22.Uz3z, X320, X215 X2z = 0.

Let us next consider how to define the variables x,4, X,;, X5, in such a
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manner that (7.16) can replace x,. We have
(717) x2 =0.x20+1.x21+2.x22.

If0 < x, < 1, let us suppose! x;04x,; = 1 and x,, = 0. To each value of x,
one and only one value for each of the variables x,, and x,; can be made to
correspond. Thus, for x, = 0.6, it follows that x,, = 0.4 and x,, = 0.6. If
1 € x, <2, let us suppose x,0 =0 and x5, +x,, =1. To each value of x,
one and only one value for each of the variables x,, and x,, can be made to
correspond. Thus, if x, = 1.7, it follows that x,, = 0.3 and x,, =0.7.

It must be understood that because of the condition x;4+x; 4, =1,
x,;=0, j# i, j# i+ that has been imposed, for each i we shall have
0<x;, <1,

Lastly, the variable x, will be replaced by the three variables x,¢, X3, X5,
such that

x2 = 0.x20+1.x21+2.x22,

0<x2<1: x20=1—x2, X317 = X3, x22=0,

(7.18) 1 < Xz < 2 : X209 = 0, X = 2—x2, X33 = x2—1.

With the same instructional intent, we shall now give similar explanations
concerning the variable x, , which intervenes in the function sin x,/2 of (7.14).

Let us suppose that this variable is only to be taken into account in the
interval 0 < x, < 4n. Let us take the values 0, n, 2x, 3w, and 47 in this interval
(see Fig. 7.4). Let us suppose uyo =0, uy, =7, 4y, =27, u;3 =37, uy, = 4n
and state
(7.19) Xy =Xy Ugot Xy Ui +X12-Uyp+Xy3-Uy3+X14-Upy,
which will give

xl = O.x10+7[.x11+27[.x12+37f.x13+47r-x14 )
(a) 0 s Xy <7 X190 = l—xl/ﬂ:, Xy = xl/ﬂ:,

Xi3 = X33 = X4 =03

(b) T S xl s 211: : xlo = 0, x“ = 2—x1/7f,
(7.20) X13 = X/m—1, X3 =x;4=0;
(C) 271: S xl s 37[ : xlo = x“ = 0, xlz = 3_x1/7f,

X3 =X/n=2, x;4=0;
(d) 37f<x1 <47f: xlo=x11=x12=0,
x13 = 4—x1/7f, x14 = xl/ﬂ:—3.
1In a more general manner we could state that ox,o+fx21 =1, x> 0, 8> 0, which

would be another method of approximation; but for theoretical reasons, we prefer to
take a-+f =1, and this will apply to what follows.
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The approximization of functions f;(x,) and f5(x,) will then be made by
means of the expressions

(7.21) J1(xy) = sinxy/2 = %10 f1(uy0) + X114 f1(uyy) + X132 f1(uy2)
+ X13-f1(U13) + X140 f1(114)
= X;0.5in0+x, .sin7w/2+x,,.5in 27/2
+ x43.5in 37/2+x,,4.5in 47/2

= Xy11— X135

with X10s X115 X125 X135 X14 deﬁned by (7.20).

(7.22) f2(%) = x3/2 = x50 f2(U30) + X241 f2(u2y) + X2 f2(u3,)

X20-0%/2 4+ x5, . 132 + x5,.232

= X3;/2+4x%;,,

with X205 X21s X22 defined by (7.18).

These are not linear constraints since, for 0 < x, < 1, we have x,, =1 —x,
and, for 1 < x, <2, we have x,, =0. We thus pass from the variables x,
and x, to the variables x4, X1y, X2, X135 X14, X20> X215 X22 for which we
shall use a program that is still nonlinear, but which we can present in the
form of a linear program containing integer variables.

(7.23) [MIN] zZ = x“—x13+x21/2+4x22,
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where x,,, X3, X21, X3, assume their values in the intervals defined by (7.18)
and (7.20).

Let us now return to example (7.14) and complete the economic function
with a constraint in order to study the program. We shall also impose the
condition that this constraint must be separable for addition. Let us, for
example, take a constraint such as

(7.24) x2-2x,<3,

that is not linear but is separable for addition (x* and — 2x, give x3+(—2x,)).
We shall now have the nonlinear program:

(1) [MIN] z = f;(x;)+f2(x2)
(7.25) = sinx,/2+x3/2,
() xi-2x,<3,
3) x;,x,20.
In passing to the variables x,q, ..., X4, X3¢, .--» X2, We shall have as the

approximation of the economic function
[MIN] z = x;; —x;3+3x, +4%5, .

We must add a constraint, since, for every x, included in the closed interval
(Ui, Uy;41] We have xy = uy; - xy+uye X0y With Xy+x4,4 =1, the
other x;; =0, j=1{, j=i+1. Hence, whatever the interval in which x, is
situated, we can state that we have

Xjo+Xy+Xx12+%3+%4 =1 and, in the same way,
(7.26)
x20+x21+x22 =1.

These equations do not completely express conditions (7.18) and (7.20).
Let us therefore introduce subsidiary integer bivalent variables y,o, ¥11, V12>

Y135 V205 Va1
Yio=1, if 0<x,<m, that is, if x4 and/or x,, are nonnull,
yiuu=1, if0<x,<n, that is, if x,, and/or x,, are nonnull,
7.27) Yi2=1, ifn<x,<2n, thatis,ifx,,and/or x,5 are nonnull,
yia=1, if2n<x,<3n, thatis, if x,5 and/or x,, are nonnull,
y2o=1, if0<x,<1, that is, if x, and/or x,, are nonnull,
yaa=1 ifl<x,<2, that is, if x,, and/or x,, are nonnull.

We observe that conditions (7.27) imply that a single y;, and a single y,,
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are equal to 1. We can therefore replace (7.27) by

X10 < V105

X1 €YotV - X20% V20>
(7.28) X12S< Y1 +Yi2, and  Xp € Yo+Yas

X13 < Y12t V13, X225 Va1
(7.29) X14 X V135 Y20ty =1.

YiotVii+yiz+tys = 1.

Now let us make the same type of approximation for constraint (7.24) that
we made for f1(x,) and f5(x,) with the help of (7.21) and (7.22). Let us suppose
©,(x;) = x? and @,(x,) = —2x, and state,

(7.30) ¢1(xy) = xlz = Xy0-@1(#10) + X11. @1(#11) + X12. @1 (412)
+ X13. 01 (U13) + X14- 01 (414)
xlo.o + x“.ﬂ: 2+ xlz. (27[)2
+ x13 .(37[)2 -+ x14.(47f)2
2

=n?. %, +47%. x5 + 9% . x5 + 167 . x4,

(7.31) @2(x2) = —2x; = X30.02(U20) + X321 ©2(U21) + X35 @5 (33)
= x20.0 + le .(—2.1) + xzz-(—2.2)

= —2x21—4x22 .
Constraint (7.24) can thus be expressed as

(7.32) 72y +4T X+ 972 x5+ 1677 x4 — 2%, — 4%, < 3,

which is a linear constraint.
Finally, the nonlinear program (7.25) can be represented by an approxima-
tion that reduces it to the program with mixed numbers.

(7.33) [MIN] zZ = x“—x13+x21/2+4x22,

7t2.x“ +47[2_ x12+9ﬂ:2.x13+16ﬂ:z. x14_2x21_4x22 < 3 s

X0 € Yio>
X311 € Yot Vi1
X132 € Y11+ Vi2s

X13 € Y12+ V13,
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X14 € Y13

N

X20 205

y
X21 € Y20+ Va1

/AN

X22 & Y21>

Xjo+Xy +X12HX3+%4 =1,

YiotYiityietyis=1,
X0t X2 +Xz =1,

Yaotya = 1.

X105 X115 X125 X135 X145 X205 X21, X22 2 0,

Vi1os Y115 Y125 Y13»> V20> Y21 = 0or 1.

We have thus shown by means of an example that a nonlinear program, of
which the economic function and the constraints are separable for addition,
can be reduced by approximation to a program with mixed numbers. The
method used permits us to generalize this property for all nonlinear programs
separable for addition.

This formulation for such a class of problem is extremely important now
that we possess computers with great capacity and central memory, able to
deal with the considerable increase in the number of variables and constraints.

It should be noted that, in cases where the separated functions of which we
are optimizing the sum are convex (see Section 14) in the economic function
and in all the constraints, it can be shown that it is no longer necessary to
introduce constraints such as x;; < y;, ;-1 +Y;; O even X, X y;, which
results in a very considerable simplification.

4. The Problem of the Prisoners-of-War Camp

We have already shown that practical and concrete problems frequently
take the form of programs in mixed numbers (PMN) rather than in integers.
Beginning with the following example we shall show that these PMN can be
used in the most diverse cases. The present example appears in a guise that
can be variously described as amusing or sinister.

Given a prisoners-of-war camp containing & barracks spread out over an
area bounded on the south by a river and on the west by one of its tributaries
(Figs. 7.5a, b, and c). These waterways are parallel to the axes Oa and Ob.
The commandant of the camp plans to have the camp enclosed by a barbed
wire fence, but intends to use only lengths of fencing parallel to the rivers
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without any slanting portions to connect them. At each angle of the fencing
he is obliged by regulations to install an observation post, and alongside the
fence bordering the river on the south side he is also compelled to leave a
patrol road that must be at least 6 m in width.

Further, the camp must have a fence bordering the river on the south side
that will permit easy access if troops are required. Also, the fencing must be
located at least 2 m distant from the barracks to render escape more difficult,
the barracks being square buildings 6 m x 6 m in size.

The camp has a stock of 2r (r > 2) observation posts, since the minimal
number required for a rectangular camp is four (Fig. 7.5a). For obvious

E] Barracks

O Observation
posts

a

(¢)

Fic. 7.5

reasons of security the commandant wishes to minimize the area of the camp
without exceeding his stock of observation posts. In Fig. 7.5a we have shown
the camp with a minimal number of observation posts used, in Fig. 7.5b the
camp with a minimal area, and in Fig. 7.5¢ the minimal area when only six
observation posts are used. The shape represented in Fig. 7.5b requires 16
observation posts.

It is clear from Fig. 7.5 that the fences erected to minimize the camp area,
however many observation posts are installed, must run as close to the



7. PROGRAMS WITH MIXED NUMBERS 95

buildings as possible, namely, at a distance of 2 m, and in Fig. 7.5b, the fences
must run at a distance of 6 m from the river, the minimal width required for the
patrol road. Once the number of barracks is substantially increased, the
minimal solution, if the specified number of observation posts is used, cannot
be found by simple inspection. All that we know a priori is that the abscissas
of the fences minimizing the area of the camp are of the form

(1.34) a+5, i=1,2, .., k.

Here a;, b; are the abscissa and the ordinate of the center of building / (which
are known). The number 5 appears in (7.34) because the fencing cannot
pass through barrack /, which has a half-width of 3 m and must have 2 m
space left alongside it. All the possible values of a;+5 are represented by
01,03, 03, ..., 0g in Fig. 7.5b. Let x; be the ordinate of the horizontal fence
between the abscissas J; and 6;, ;. For example, in Fig. 7.5¢ we have

(7.35) Xo=0,%x =x,=20m, X3=X4=X5=Xg=Xx;=38m,
xs = 0,
where xg is, by convention, equal to 0 since the fence ends at dg, and x, =0
since it begins at d, ; they are introduced to make the problem more general.
It must be understood that the q;, i =1, 2, ..., k, are data whereas the x;
terms are nonnegative variables that are also greater than or equal to 6 in

order to allow for the patrol road (see Fig. 7.5b). Our aim is to minimize the
area of the camp, which is expressed as

(0) [MIN]z = (8,—6,) x; + (63 —02) X5 + (8, —3) X3
+(05—04) x4 +(96—05) X5+ (07 —09) x¢
+ (85 —34) x4,
(1) %y 2 b,+5 =20, thatis, by =15and x; > 20,
@ x;
3 x;
(7.36) @ x,
(5) xs

\Y%

A\
o o o

-

2+5 =38, thatis, b,=33 and x; =38,

\

5

A\

max(b;+5, b,+5) = 38, that is, x5 > max(38,26)
=38,

A\

o o« &

(6) x¢
M) %72

() xg

bl

s+5 =32, thatis, x; > 32,
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Constraint (1) of (7.36) implies that the ordinate of the fencing between &,
and ¢, must run at least 5 m from the centerline of barrack 1 (half-width 3 m).
We now have to introduce constraints to indicate that the stock of observation
posts is limited. Let us note that if x; = x;, | there is a pair of observation posts
in the portion of fence parallel to Ob of the abscissa ;. We introduce integer
variables w; = Qor 1,i=1, 2, ..., 8, with w; = 0 if there is no vertical length
of fence of abscissa §; and w; = 1 if there is such a length. We then add the
following constraints:

(7.37) %, —%_ ;| < 38w, i=1,2..,8.

Indeed, in considering constraint (5) of (7.36) while trying to minimize the
area of the camp we still find x; < 38. Also, if x; = x;,— 1, we have w; =1 in
accordance with (7.37), corresponding to a fence along abscissa §;. We shall
now transform inequalities (7.37) into two inequalities without using absolute
values, giving,

(1) Xi—Xij—1 <38w,~, i= 1, 2, .-.,8,
(738) (2) xi_x,'..l 2 —38w,~, i= 1, 2, e e 8.
The reader can easily verify that (7.38) implies (7.37) and reciprocally. If
we have a fence with abscissa §;, namely, w; =1, this will require two
observation posts. Hence we have

(7.39) W twtwy+wa+ws+wg+wy+wg < 1,

with 2r as the number of available observation posts. The problem of
minimizing the camp area compatible with this number is therefore equivalent
to minimizing the economic function (0) of program (7.36). In addition, the
variables of this program are submitted to constraints (7.38) and (7.39) with
w; =0 or 1. The problem is, in fact, one of programming in mixed numbers
with continuous variables x; and integer variables w, that can be solved either
by Benders’s method (see Section 21) or by the branch and bound procedure
outlined in Section 6.

5. Production Scheduling with Machine Tools

In operations research the words problems of planning include a wide range
of problems from the evaluation of total time by the PERT method! to the
most diverse cases of assignment and allocation, as well as those involving
the order of precedence for factory-produced goods. We shall now show that
this latter type of problem can be reduced to linear programs with mixed

! See Volume 2, page 11, and also for more details, see A. Kaufmann and G. Desbazeille,
“The Critical Path Method,” Gordon & Breach, New York, 1969, page 23.
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variables. It will be illustrated by a very simple case, the production of two
articles on three machines, but the method is still valid if there are m products
and » machines.

The problem to be considered is the scheduling of production in a workshop
and, simple as it is, the reader should find generalizing it an easy matter. Let
us therefore take two products, a tube 4 and a sleeve B, and three machines,
alathe T,adraw plate F, and a milling machine M. The tube has to be process-
ed in the order T — F, and M is not used in its production; the sleeve is
subject to operations in the order F — T — M. Figure 7.6 gives the production
time for both products on each of the machines involved, a machine being
capable only of processing one article at the same time.

The graph in Fig. 7.7 shows the possible succession of operations, ignoring
the condition that each machine can only process one article at a time. From
point g, representing the start of operations, two arcs are drawn, one for 4
and another for B, enabling us to define a single starting point. The arc from
b to d shows the work carried out by 4 on T, the arc from dto g that performed
by 4 on F, and similarly for Bon T, F,and M. The production times are shown
on all the arcs.

T F M
10 2 X
2 3
FiG. 7.6. Lathe PDlraa:,e xiiiigg
Time of execution in minutes. Fic. 1.7

Now let us consider how we can introduce the condition ‘“‘each machine
can only process one article at the same time,” a type of condition that is
termed disjunctive. To do so we use dotted arrows in the graph to indicate the
production order for each article on each machine. Given that the milling
machine M only processes product B, there is no alternative for M. The four
alternatives of production are shown in Fig. 7.8; we have {(b, c), (d, )},
{(c, b), (e, d)}, {(b, ), e, d)}, {{c, b), (d, e)}. However the last case is impos-
sible, since it would entail 4 and B being processed on the lathe at the same
time. Alternatively, as can be observed from the diagram, product 4, before
it could pass through the lathe, would have to wait until B had passed through
it, while product B on the draw plate machine would have to wait until 4 had
been processed, in which case we should have a graph forming a circuit.
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If we take the total time as the criterion for the best solution, case 1 gives
19m, case 2 gives 16m and case 3, which is the best, gives 15m.

Case 1

Lathe

Draw

plate
Milling
Machine

Case 2

Lathe
Draw
plate
Milling
Machine

Case 3

Lathe
Draw
plate
Milling 3
Machine]| j 15m

Q)
i
=

Case 4

Lathe

Draw

plate Impossible

Milling 0
Machine

Fic. 7.8

For such problems of arrangement other criteria may be chosen, such as
the minimum dead time (idleness of the machines—this obviously being
calculated for the same predetermined time interval) or the minimum delay in
the delivery date for the product.

We shall now present in analytical form the problem defined by the graph
of Fig. 7.7. In this graph the vertices q, b, c, d, e, f, and g represent the con-
clusions of the operations, and we shall take ¢, ¢, ..., t, for the instants or
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dates (in minutes) when these operations end. We have ¢, = 0 and ¢, as the
date for the conclusion of all the operations.
This problem of arrangement can now be expressed

(0) [MIN]F =1,

(1) t,—t, >3,
Q) t,—t;=2,
(7.40) Q) t,—t, =2,

) t,—t, > 10,
(5) tc_te>2’
(6) tbytc>td5te>tf’ tGZO,

that is to say, in the form of a linear program if we do not introduce the dis-
junctive constraints implying that a machine can only process one article at
the same time.

Let us now introduce the disjunctive constraints.

(7.41) For the lathe:  t.—#,>10 or #—t.22 or exclusive.

(7.42) For the draw plate: ¢, —#,22 or t,—t.22 orexclusive.

The set of relations (7.40)—(7.42) no longer constitutes a linear program on
account of the or exclusive in the disjunctive constraints.

We shall now reduce these constraints to another form in which the whole
program will become one with mixed integer values.

Let us consider the graph of Fig. 7.7 together with the disjunctive constraints,
and state

(7.43) y, =1, if we impose an arc (b, ¢) of value 10, that is to
say, a linear constraint ¢t,—¢t, > 10;

(7.44) ¥, =0, if we impose an arc (c, b) of value 2, that is to
say, a linear constraint t,—¢, > 2;

(7.45) y2=1, if we impose an arc (d, ) of value 2, that is to
say, a linear constraint t,—t, > 2;

(7.46) y2=0, if we impose an arc (e, d) of value 2, that is to
say, a linear constraint t,—t,> 2.

Let us introduce a constant M large enough to be always a priori greater
than ¢, (for instance, M = 1000).
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Now let us replace (7.41) by
(7.47) t.—t, =2 10+ M(y,—1),

(7.48) ty—t. > 2—My,

and let us verify that we indeed obtain (7.41) if we take y, =0 or 1. In the
former case we have

(7.49) t.—t,=210—M (still verified),

(7.50) t,—t.22 (only the right-hand constraint in (7.41) remains).
If we take y, = 1, it follows that

(7.51) t.—t,210 (this is the left-hand constraint in (7.41)).

(7.52) t,—t,22—M (still verified).

Hence (7.47) and (7.48) replace (7.41).
Similarly (7.42) will be replaced by

(7.53) t—t; 2 2+M(y,—-1),
(7.54) ti—t, =2 2—My,.
Finally program (7.40)-(7.42) will be replaced by

©) [MIN]JF=1¢,,
(1 t,—t, =3,
Q@ -t >
Q) -t >
4) ti—1, > 10,
) t.—t, =2,
©6) t—t,—M(y,—1) > 10,
(M t—t+My, 22,
@) te—ts—M(y,—-1) > 2,
O ti—t.+My, =2,

(7.55)

(10) 1, 1., s, ., t;, t,eRY,
a1y y,, y,€{0, 1},

that is, a program with mixed variables, the ¢ terms being continuous and the
y terms bivalent.
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This method of treating such a type of scheduling problem can be general-
ized.! Of course the number of supplementary constraints and of bivalent
variables may increase somewhat quickly, but this is to be expected in com-
binatorial problems of this kind.

It should be noted that there are other methods of solving such problems.
In particular, where they are restricted to two machines and » products or m
machines and two products, there is a neat analytical procedure introduced
as long ago as 1954 by S. M. Johnson,? and in certain conditions this is also
valid if m = 3 and » is unlimited, and vice versa. As we have shown, the method
explained above can be used whatever the values of m and #, but a computer
of large dimensions is needed as soon as m and # undergo a substantial increase.

Section 8. Practical Cases

1. Observations Concerning Case Studies

From considerations of space we shall not give the full details of the three
practical cases for which we propose to explain the models, and we have
restricted ourselves to what is needed for the optimal calculations on a com-
puter. Each of these concrete problems is, in fact, a case study and deserves a
much longer presentation, but the references given should enable the more
curious reader to examine such studies in greater depth. While some non-
specialist readers may consider them somewhat esoteric, it must be remem-
bered that the most difficult tasks for an engineer are those practical problems
that it is very often impossible to treat fully by analytical methods on account
of their combinatorial complexity. It becomes necessary for the engineer to
separate them into a set of subproblems that are smaller and more clearly
defined and therefore easier to solve. It is by such means that the problem of
the assignment of air crews has been divided into two problems, one of gener-
ating rotations and the other of choosing the optimal rotation. The second
case is somewhat technical, but we have tried to render it comprehensible for
the reader who has already been introduced to a printed circuit card for a
computer.®> We have divided the problem of the conception of these cards into
a series of simpler subproblems that can be solved on a computer.

It may be observed that operations research uses methods that can be
applied to the problems of every science and technique, whether these prob-

! See the article by J. F. Raymond, An Algorithm for the Exact Solution of the Machine
Scheduling Problem, IBM New York Scientific Center, Rep. 320-2925, Jan. 1968.

2 See [K53] and also A. Kaufmann and R. Faure, “Introduction to Operations Research,”
Academic Press, New York, 1968, pages 264-274.

3 The majority of our readers have certainly visited a computer center together with the
maintenance workshop where dismantled circuit cards can often be seen.
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lems are of a normative character (that is to say, must result in choices), or of
a nonnormative one (that is to say, must provide solutions). Problems with
integer or mixed values are to be encountered wherever a solution has to be
found with denumerable means and discrete characteristics.

2. The Problem of Crew Assignment for a Commercial Airline!

The reader of Volume 1 has already been introduced to this problem in a
very simplified form (page 64) where it was used to illustrate possible methods
for solving problems of assignment. We now return to this problem in a form
more closely allied to the complex realities of industry and economics.

The restriction of the problem in Volume 1 to two cities meant that it bore
little relation to the complex networks of the major airlines. Indeed, such
companies make use of the latest computers and of teams using the most
advanced operations research techniques.

Before explaining all the practical and concrete details for this type of
problem, we propose to give an intermediate problem between the elementary
case in Volume 1 and the extremely diversified and highly combinatorial cases
that are encountered in practice.

Let us consider an airline with a transportation network comprising seven
cities: A, B, C, D, E, F, and G. Its air fleet includes two types of plane, a middle-
distance type and a long-distance one, and we will suppose that the aircrews
have specialized training for one of the two types (see Fig. 8.1). In our example
we shall concentrate on the middle-distance flights between cities 4, B, C, D,
and F.

We shall use the term connection or junction for a flight from city X to city ¥
on a given day with specified times of departure and arrival (example: flight
Xto Yleaves at 8:30, arriving 9:45). A connection may be formed from several
elementary connections with intermediate stages, and will then be termed
composite. A segment will designate the simplest connection taken into con-
sideration when planning flights. A rotation is a circuit that leaves one city and
returns to it after traversing several segments. The point of departure and of
return of a rotation is called the base. It is the place at which the crew making
the rotation on the same plane or on a different plane of the same type is
understood to be stationed.

After leaving the base assigned to it, an aircrew carries out a rotation that
fulfills the connections printed in the company’s time table. It sometimes
happens, for example, in order to complete a rotation or to take on passengers
at a further and later point, that a crew may traverse a section without anyone
but themselves on board.

1 The present study is indebted on various fundamental points to the works and thesis of
M. Hervé Thiriez [K24]. We warmly appreciate M. Thiriez’s permission to make use of it.
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e—>——e Middle-distance flights |/ / / // // ////
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The work of an aircrew can be divided into two parts: in flight and on the
ground, before and after flight. The period during which the crew is flying
without rest will be called the period of effective activity. By the period of
operational activity we mean the period of effective activity with the addition
of the briefing time lasting about an hour preceding take off, together with the
period of some 15 minutes for debriefing after landing. '

Let us now return to the small-scale problem illustrating these explanations
and let us suppose that the time table for the middle-distance flights shown on
the network of Fig. 8.1 is given in Fig. 8.2. The graph of Fig. 8.1 is, in accord-
ance with the terminology given in Volume 2, page 247, a three-mapped
graph, since there are never more than three arcs connecting any two vertices
(there are three arcs from D toward F and three from F toward D). Each arc
constitutes a segment, and here all the segments are connections. For each arc
or segment the departure and arrival times are given in Fig. 8.2 with a base
of § minutes.

! The rules for operational activity may vary according to the airline.
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(Number of Eff;r— ’Time of Arrival Time of ( Duration ?
flight point departure| point arrival of flight
[©) A 08.00 B 09.00 01.00
@ 4 15.35 ] 16.40 01.05
© B 10.20 4 11.15 00.55
O B 19.30 A 20.25 00.55
) B 10.30 c 11.55 01.25
® c 12.25 B 13.55 01.30
@ c 13.30 D 15,15 01.45
D 20,00 c 21.45 01.45
® B 10.15 D 12.05 01.50
D 13,50 B 15.50 02.00
@) D 07.10 b 08.10 01.00
(12 D 12.55 F 13.55 01.00
&) D 21.20 F 22.20 01.00
@) F 09.00 ) 09.55 00.55
(@ F 16.00 D 17.00 01.00
F 20.35 D 21.35 01.00

FiG. 8.2

The first problem for the planners is to determine all the possible circuits
or rotations in the p-mapped graph that forms the network. Numerous
methods exist for their enumeration or denumeration, of which we shall
summarize one, termed latin multiplication,® which was explained in Volume
2, page 271. To carry out the enumeration in this case we shall, while taking
into account the fact that 8.1 is a three-mapped and not a one-mapped graph,
enumerate the circuits as if it were a one-mapped graph in which all the arcs
between two vertices are merged. It is by this method that all the rotations
that do not include more than four segments or arcs have been enumerated,
the restriction to four arising from professional and not mathematical reasons.
The rotations containing only two segments have been set aside and the 44
rotations with three or four segments have been retained. In Fig. 8.4 we show
the segments belonging to each connection, and in this way we obtain a
Boolean matrix that enables us to discover the rotations that permit us to
carry out the segments of the time table. However, each rotation has a cost
that may include a large number of factors: salaries, displacement expenses,
hotel bills, compensation for absence, and so forth. In this way we obtain an

! In practice other methods are often used for such problems because of a large number of
professional or technical constraints that make it possible to reduce the enumeration. The
airline companies have, in fact, perfected special procedures for enumerating rotations.
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(a)
A B ¢ D F 4 B C D F A B C D F
ABA ABC| ABD
A AB B
BAB| BDC|BCD|BDF
BB BC | BD A clo BCB
BDB
cBA|cDBlCBC{CBD{CDF
c CB cD O B D = coc
DBA|DCB{DBC | DBD
D DB | DC DF B|c F Dep
DFD
FDB|FDC EDF
F FD D
A B ¢ D F
ABAB| ABDC| ABCD| ABDF
ABCB
(b) ABDB
A B C D F A B ¢ D F
ABA ABC|ABD BABA|BDCB|BABC | BABD| BCDF
B BCBA| BCDB | BCBC | BCBD
BDBA BDBC|BDBD
BAB| BDC|BCD| BDF BCDC |BDCD
BCB A c | BDFD
BDB CDBA|CBAB|CDBC|CDBD |CBDF
cBA|cpB|cBc|cBD| CDF CBCBlCBDC{CBCD
coc @) B D = CDCB cDCD
CBDB CDFD
DBA|DCB| DBC|DBD
Dco 2 lec P DCBA| DBAB{DCBC |pCBD | DBDF
DFD DBCB|DBDC | DBCD }DCDF
DBDB{DCDC DFDF
FDB|FDC FDF DCDB| DFDC
D DFDB
FDBA|FDCB|FDBC{FDBD
FDCD
FDFD

Fi1G. 8.3. Enumeration of the rotations without constraints. For simplification the set of
the segments has been reduced; for instance, between 4 and B where there should be two,

only one is shown.

(a) Rotations with two segments: (4BA), (BAB), (BCB), (BDB), (CBC), (CDC), (DBD),

(DCD), (DFD), (FDF), that is, ten rotations.

(b) Rotations with three segments: (BDCB), (BCDB), (CDBC), (CBDC), (DCBD),

(DBCD), namely, six rotations.
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D

ABAB}ABDC

ABCB
ABDB

ABCD

ABDF

A B

ABABA
A |ABCBA
ABDBA

BABAB
BCBAB
BDBAB
BABCB
BCBCB
BDBCB
A B ¢ D F BCDCB

BABA

BDCB

BCBA|BCDB

BDBA

BABC
BCBC
BDBC
BCDC

BABD
BCBD)/
BDBD
BDCD
BDFD

BCDF

BABDB
BCBDB
B BDBDB
BDCDB

CDBA|CBAB

CBCB
CDCB
CBDB

CDBC
CBDC

CDBD
CBCD
CDCD
CDFD

CBDF

BDFDB

DCBA}DBAB

DBCB
DBDB
DCDB
DFDB

DCBC
DBDC
DCDC
DFDC

DCBD
DBCD

DBDF
DCDF
DFDF

CBAEC
CBCBC
CDCBC
CBDBC
CDBDC
CBCDC
cpeoe
CDFDC

FDBA\FDCB

FDBC

FPBD
FDCD
FDFD

DBABD
DBCED
DBDBD
DCDBD
DFDBRD
DCBCD
DBDCD
DCDCD
DFDCD
DBDFD
DCDFD
DFDFD

FDBDF
FDCBF
FDFDF

Fic. 8.3 (continued)

(c) Rotations with four segments: (4BABA), (ABCBA), (ABDBA), (BABAB), (BCBAB),
(BDBAB), (BABCB), (BCBCB), (BDBCB), (BCDCB), (BABDB), (BCBDB), (BDBDB),
(BDCDB), (BDFDB), (CBABC), (CBCBC) (CDCBC), (CBDBC), (CDBDC), (CBCDC),
(CDCDC), (CDFDC), (DBABD), (DBCBC), (DBDBD), (DCDBD), (DFDBD), (DCBCD),
(DBDCD), (DCDCD), (DFDCD), (DBDFD), (DCDFD), (DFDFD), (FDBFD), (FDCBF),
(FDFDF), namely, 38 rotations.
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FiG. 8.4. Note. Certain rotations, such as (4BABA) for example, may borrow different segments; thus we can take (4B)= @ or (4B) = @),
and in like manner (BA) = (3 or (BA) = @, which gives four possible rotations. To have given all the variations would have required a much
larger figure exceeding the size of these pages. Hence we have eliminated those not compatible with professional rules, conditions of lodging,
and other restrictions. Only those marked with a star have been retained.
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economic function and a program with integer values:

[MIN] z = ¢;x; + ¢,%3 + ... + ¢, %,,
n = number of rotations,

Ay X3 +anx+ ... +ax, =1,

Az X1+a;% + ...+ a3,x, =1,

8.1) A1 X1+ 0uaXs + oo + QX = 1,
m = number of segments,
x;=0o0r1, i=4L2,...,n,
c;eR ™Y, j=12,..,n,
a;=0or1, i=12...,m,j=12,..,n.

It must be observed that the first and second members of the constraints must
be connected by the sign > and not by the sign =, since a crew may return to
their base as passengers in another plane if the planning program requires
this exceptional procedure.

Finding a solution to the system of constraints of (8.1) while ignoring the
economic function can be reduced to the very well-known problem in the
theory of graphs, that of finding the cover for a simple graph.! This is carried
out by means of a transportation network associated with the simple graph,
and an algorithm derived from that of Ford—Fulkerson is employed.

Thus a solution corresponding to Fig. 8.4 would be

rotation (BDCB) that ensures segments ®, ®,and @,
rotation (BCDB) that ensures segments @, @,and @,
rotation (4BABA) that ensures segments @, ®, ®,and @,
rotation (DFDFD) that ensures segments @, @, @, and @,
rotation (FDFDF) that ensures segments @, @, @, and @.
It will be observed that this solution duplicates flights 13 and 15, and rotation
FDFDF will obviously be reduced to FDF, since it is uneconomic to carry a
crew as passengers, although it may be necessary to do so with other solutions.
However, amoug all the covers some are better than others when compared

with the criterion provided by the economic function of the costs. As a result
we are faced with a problem based on a program with integer and even bivalent

! See, for example, [K18]. The concept of a minimal cover is derived from the search for a
cover that contains a minimal number in the simple graph.
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values for which various algorithms are available: implicit enumeration,
branch and bound, groups of Gomory cuts, and so on. Before giving some
fuller details on this subject, we shall examine all the practical operations that
the planning department must undertake by mental calculation, by computer,
and by more or less heuristic procedures to solve the very large combinatorial
problems that occur in every important airline.

Generating the Segments

Commencing with the connections, next considering the stages, and
eventually including the technical stages, the planner has to formulate the
list of segments, some of them formed by simple and others by composite
connections. In certain cases, as we have seen, a crew may be obliged to return
to its base as passengers instead of in an active capacity, for instance, if it has
accomplished a flight of 8-10 hours and has to wait several days to resume its
duties in the opposite direction. We mention this to show that a considerable
period of preparation is required to determine those segments that should be
included in the planning.

Generating the Rotations

This problem is that of enumerating all the circuits of a p-mapped graph in
which the arcs are the segments and the vertices represent the cities. There are
a number of algorithms available for such an enumeration, and we have
already explained, for example, how latin multiplication can be used. But in
the usual network of cities served by a large airline several million possible
rotations could be defined and it would be a tiresome, costly, and pointless
task to enumerate all of them. To reduce the number of rotations to be
enumerated and evaluated against a criterion of cost, we introduce a priori
conditions to determine whether a rotation is to be considered. These condi-
tions include very numerous and sometimes complicated constraints of a
technical, trade union, or other kind, and enable us to discard in advance
entire classes of rotations that do not satisfy them. In addition, the function of
cost attached to each rotation permits us to discard other classes that seem to
have little chance of forming part of an optimal solution, and by these means
the number of rotations included in the program of optimization can be
greatly reduced. To give an idea of the possible degree of reduction, an
American company was able to reduce the number of rotations to be considered
for optimization from 2.10° to 4.103. Certain airlines employ instruments to
effect this reduction. In addition, the complexity of the cost functions to be
introduced leads to the use of a program of evaluation starting with the com-
plex elements included in the cost.

Let us first examine the form in which the cost is commonly structured,
although different companies use varied methods to establish the cost, and
certain bonuses and indemnities must be added to the fixed salaries. Here, for
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example, is a formula used by several American airlines:
AFB(R NR)
82)  FC(R) = [1—(—) - FT(R)] v [z PG)| v 0
3.5 ) =1
where

(8.3) P(i) = [DTT(’) - FT(i)] v (40— FT(i) v 0

the symbol v signifying maximum of and meaning that among the three
terms of FC(R) and P(i) the largest term is taken.
The meaning of the other symbols is as follows:

FT(R) : total flight time of rotation R,
TAFB(R): time away from base of rotation R,
FC(R) : flight time credit of rotation R,
N(R) : number of days of rotation R,
FT(i) : flight time on day i of rotation R,
DT(i) : duty time on day i of rotation R.

All these periods are expressed in minutes.

The following conditions are associated with formulas (8.2) and (8.3):
a minimum daily credit of four hours flying that is at least half that of a period
of activity and a total time credited that is at least 2/7 of the periods of absence
from base.

It goes without saying that this formulation may have to be revised if a new
contract between the unions and the management is negotiated.

For many airlines the cost of a rotation is the sum of the costs fixed by con-
tract to which must be added hotel and transportation expenses if one or more
nights have to be spent away from base. Special regulations may also apply
to certain countries in which stages occur, but we do not propose to enter into
all such details.

With the aim of eliminating a large number of rotations that obviously have
little chance of appearing in an optimal solution, we use the criteria of elimina-
tion for the matrices [4] with elements a;;, i=1,2,...,m;j=1,2,...,nin
(8.1) of which Fig. 8.4 gives an example. Let us examine some of these criteria.

1. Ifarotation R, is contained in a rotation R; and if ¢, > ¢;, we eliminate
R, which cannot belong to an optimal solution. (This reduction is only valid
if we resolve the system [A4].[x] = [1].)

2. Ifthere is a set of rotations {R,, Ry;, ..., R} such that, for a rotation
R;, we have

r
R,UR,V..UR_<R, and ¢< ) ¢,
=1
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we can then eliminate the » columns R,,, Ry,, ..., R,, with the same proviso
as in criterion 1.
3. If the system of constraints

[4].[x] = [1]

mxn ax1 mx1
defined by (8.1) can be reduced to
[A]-[xg = [1]1 :

the following rule for elimination can be used: if a line S; of matrix [A4] is
contained by its coefficients of 1 in a line S, then all the columns belonging
to S, n S; may be suppressed. (S; is the complementary line of S;; if a;; in
S, has a value of [, then g;; has a value of 0,-and conversely).

4. In the case where [A].[x] = [1], if there is a set of p lines S;; and a
line S, such that {S;, Sis, ..., S;,} = Sy, then we can eliminate this set of
lines as well as the columns for which S, has a 1 and {S;;, S;;, ..., S,,} does
not have one.

These four procedures do not affect the search for an optimum, since none
of the rotations that are eliminated can belong to an optimal solution and the
lines discarded by criteria 3 and 4 represent redundant constraints.

It may happen that the eliminations thus effected do not reduce the columns
of matrix [A4] sufficiently for a computer to be used, and we are sometimes
obliged to introduce heuristic rules of reduction that do not guarantee that
an optimal solution has not been excluded. Such rules include the elimination
of all rotations for which the period of activity contains less than four hours
flight time or of those for which the ratio of flight time to time of activity is
less than a given number, and they vary according to the airline concerned.
Obviously we must also include the cost of the elimination procedures that
may result in prohibitive computer costs not compensated for by the operative
savings. As always, the evaluation of cost-efficiency must be considered in
the use of the computer.

Supplementary Constraints

In theory the crews could be required to stay wherever it would prove least
costly to the airline, but practical considerations usually prevent this. At each
base B, there are a number of available crews V,, and the problem of assign-
ment will be complicated in the following manner, To the m constraints for n
variables of the type [A].[x] = [1] or [4].[x] =[1], we must add r new
constraints called constraints for the availability of the bases.

[G].[x] < [4],

rxns nxl1 rx1
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where
—Gll G12 Gln )
Gzl G22 e ) Gzn
(8.4) [Gl=1. i ,
—Grl Gr2 Grn
-91
gz
® L=,
L9+
where G;;. i=1,2,...,r; j=1,2,..., n represents the potential in hours of
flight from base i to perform rotation j, while g;, i =1, 2, ..., r represents the

total potential available at base i in hours of flight. G;;€ N and g;e N (the
potential having been evaluated in minutes or, if necessary, in hours or any
other basic time). Hence matrices (8.4) and (8.5) are no longer Boolean.
Finally, the Boolean constraints on x;, i =1, 2, ..., n must not be forgotten.

It is obviously possible that no solution will be found with the crews remain-
ing at their bases and that they will have to be transferred with consequent
supplementary expense, another special case to be considered in this problem.

Planning Period

As we have stated, planning for the crews is formulated for intervals of a
week or a month or even for longer periods, the times for formation, recycling,
and rest being included, in addition to cases of replacement and so forth. We
must consider as distinct rotations those that contain the same number of
segments but that take place on different dates. The potential availability in
flight hours also intervenes in this larger and more concrete formulation. If
the combinatorial problem is extended, for instance, over a period of a month,
it must take account of the date on which a segment will be traversed. As a
result the potential in flight hours available at a base can be used on certain
days and not on others, depending on the solutions selected.

Daily Constraints

In the concrete problem it is necessary to add other constraints, one for
each base and for each day for the period of rotations being planned. Thus
with r bases and 30 days there will be 30 x r more constraints that will take
the form

(86) [H]sxn'[x]nxl < [h]sxl .
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where H;=1,i=1,2,...,5;7=1,2, ..., n, if on a specified day, a specified
base can provide an aircrew for rotation j, and H;; = 0 in the contrary case.
At this stage of the construction of a model for the assignment of crews we
proceed from (8.1) to the following program:
[MIN] zZ = Clx1+62x2 + wen + C,,x,,

ra11x1+a12x2 +..taux, =1,

A1%1+G22%; + . + agX, 2 1,

~am1x1+am2x2 * ...+ AmnXn = 13
G11%14+Gypx3+ ... + G, %, < g4,
JG21x1+G22x2 + ..o + GyuX, < g2,

8.7 F )
Gr1x1+Gr2x2 + ...+ Grnxn < s>
'H11x1+H12x2 + ...+ Hyx, < hy,

Hyyxy+Hypx; + ... + Hapx, < by,

(Hyy xy+Hgy x5 + ... + Hy X, < by

j=00r1’ j=1,2,...,n

a; €{0, 1}, i=12,..,m, j=12..,n,
G;eN, i=12,..,r, ji=12..,n,
H;; {0, 1}, i=12,..,s, j=1,2,..,n,
g:€N, i=1.2..,r,

h;eN, i=12,..,r.

The indices i of a;;, G;;, H;; do not apply to the same concepts. Hence the
above program in bivalent variables includes m-r-+s constraints for n
variables.

Availability of Crews at Their Bases

Obviously aricrews are not always available since account has to be taken
of their rest (activity days and rest days), vacations, recycling periods, and
training times with new planes. Aircrews have contracts with their companies
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that guarantee their conditions of work, salaries, and security. While con-
sidering the required number of rotations from each base, it is necessary to
ensure that these are compatible with the regulations in the contracts. This is
another combinatorial problem distinct from the one that we have explained,
though attempts have been made to treat them at the same time. The search
for the solution to the operations rotations can be performed mentally or by
means of appropriate softwares that are generally constituted by heuristic
programs. It has also been suggested that integer programs might be opti-
mized, but from practical experience the cost of treating these programs on a
computer is considered exorbitant in relation to the value obtained from their
optimization. Besides, these programs are multicriterion and optimization
does not always make sense under these considerations.

In addition, the problem of crew availability is complicated by other factors.
Members of a crew may become ill, and accidents or incidents of all kinds
may occur, so that there is scarcely a day on which the potential is assured. In
order, therefore, to ensure the orderly continuation of flights, it becomes
necessary to form a reserve of air crews. Finally, airlines are organizing an
increasing number of charter flights for which the reserve aircrews are often
used. The above are other factors that must be introduced into the model.

As we shall see and, as we may have already suspected, the general model
for this problem is far from a simple one. Nearly all the large airlines now plan
the rotation of crews with the help of models produced by operations research
and of computers, the latter being among the most powerful available in view
of the size of the programs and the fact that these are in integer values.

Finally, the number and nature of the crews vary from one cyclical rotation
to another, since place and circumstances impose many kinds of variation.
There are different regulations for the pilots, the navigators, the flight
engineers, and the stewards and stewardesses. Superimposed on the main
problem are other problems to be solved by common sense, intuition, and
experience. We are concerned with a question of organization in which all the
capacities of people and machines have to be integrated in order that the
vast system can operate and be adapted and readapted according to the
requirements of technological progress and the constant evolution of air
transportation.

Let us now consider some aspects of the methods of calculating programs
with integer values. We shall differentiate between two types of model.

1. Models of a theoretical type without the supplementary and daily
constraints:

(8.8) [MIN]z = [c]; xp- [X]ax1 5
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[A]mxn'[x]nXIZ[I]mxl;
[cleR*, a;=0o0r1, i=1,2,...m; j=12, .., m;

x;=0o0r 1, Jj=12, ..., n

2. Practical models that are noticeably more complicated, with the
supplementary and daily constraints:

[MIN]Z = [C]I xn-[x]nxl;
[A]mxn-[x]nxl = [l]mX1;

[Glxn-[Xlax: < [glixys
<

[Hgxn-[¥laxs < [Alsxys
[c]eR",

(8.9) a; €{0,1}, i=1,2, . m; j=1,2,..,n;
G;;eN, i=1,2,..,r; j=12,..,n;
H;e{0,1}, i=1,2,..,s5; j=1,2,..,n;
g: €N, i=12,..,r;
h;eN, i=1,2,...,s8.

The solution of the economic program of (8.8), with which we are less
concerned, can be found by methods that are well-established in the theory
of graphs:

a. The method termed covering a simple graph.

b. The knapsack method, that is, a procedure of Boolean optimization
suitable for bivalent programs of this type.

c. Optimization of the flood in a network.

d. Branch and bound method.

e. Heuristic methods that do not always produce an optimal solution.

Space is lacking for the detailed explanation of these methods, but we shall
refer the reader to a number of basic works. As an introduction, the general
study of the assignment of aircrews, including a comparative appraisal of the
results achieved by the different methods, is given in detail in [K70]. The
method known as seeking the optimal cover for a simple graph can be studied
in [K237], [K78], and [K18]; the knapsack method and its variations, as well
as the branch and bound method, are given in [K23], while some references
to heuristic procedures are made in [K70].
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The airplane planners will obviously be more interested in the practical
models in which the constraints are appreciably more complicated but which
more closely resemble concrete cases. Nevertheless, the simplified models such
as (8.1) are important from a methodological standpoint. These are problems
in which all the elements of the matrix of constraints are equal to 0 or 1 with
an increased percentage of zeros. It has been observed experimentally that
Gomory’s method (Section 19) rapidly produces a result in this case. This is
because the absolute value of any determinant taken from the matrix of con-
straints of (8.7) is a small one, and the reader may refer to the thesis of H.
Thiriez for a fuller explanation of this property. The acquired experience of
the last ten years shows, however, that the results obtained from the use of
Gomory’s method are completely satisfactory only for problems of this type.

Like Gomory’s method, that of Lemke-Spielberg, explained in Section 4,
yields good results for the problem of (8.1) but is distinctly less successful for
a more general problem of this type. Various other methods of enumeration
such as those of Balas [K26] or Geoffrion [K35] could be used, but all reveal
the above tendency.

Gomory’s method of asymptotic programming is given in Section 20; it
consists of finding an initial solution by not restricting the variables to integer
values and by replacing the constraints x; =0 or 1,j=1,2,...,n by

6100 0<x;<1, j=1,2..,n.
In this way we obtain a solution that does not necessarily possess integer
values. Starting from the simplex table representing this solution, the method
of asymptomatic programming produces a point with integer (but not neces-
sarily nonnegative) components. If they are nonnegative this is the optimal
solution, otherwise it is not a solution, since (8.10) is not verified.

Thiriez’s procedure [K71] known as the method of groups of cuts produces
excellent results for problems of this type. It consists of employing an asymp-
tomatic algorithm in two stages: finding the solution of a linear program and
then using the result to obtain an optimal solution with integer values. We
show the periods of calculation on a large computer of the third generation in
Fig. 8.5.

As this table shows, problems of considerable dimensions can be solved
very quickly. Trubin’s algorithm given in Section 23 is suitable for solving
problems such as (8.1) but has not been systematically tested. If the necessary
theoretical developments are carried out it could still further reduce the time
needed for a solution.

! Equation numbers (8.11) and (8.12) omitted in the French edition.
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Source of Dimen- Type Time of Time Total
the problem | sions linear after time
program-|{the first
ming stage
Axtaerlcan 104 x 8,7 15.6 s 9.6 s 25.2 s
Airlines 132
American 104 x 31.8 s 22.8 s 54.6 s
(8’1)
Airlines 236
Air France 67 x 28.2 s 40.8 s 69 s
(8,1)
536
Fic. 8.5

3. The Problem of Resistance Chips Placement!

This problem, encountered by every manufacturer of computers and printed
circuits, will show how far the techniques of operations research have pene-
trated the domain of the engineer. They are currently employed to optimize
various combinatorial problems that occur in the most diverse operations, and
it should not be a matter for surprise that a number of algorithms used in
CAD?2 closely resemble some with which the readers of the earlier volumes of
this work will have become familiar. Thus in the conception of electronic
circuits, it is necessary to calculate the length of the longest path between two
components of the same circuit. If this length exceeds a figure based on the
technology employed, the circuit will not function correctly. In this case we
are concerned with the conception of printed circuits using very rapid tech-
nology with integrated circuits. The latter are linked by connections traced on
printed circuits, and to illustrate the problem an example of an integrated
circuit is shown in Fig. 8.6. In this circuit there are 81 possible positions in
which chips could be sited, but as a rule they are not all used. These positions
are identified by a letter and a number, and to simplify the diagram only ten
chips are shown on the plate of the printed circuit. From each chip in our
example, eight pins appear, these being the feet that are used as connections,
but this number could be much larger where the chips are more complex
circuits.

L A chip is an integrated circuit in the form of a small flat case of parallelepiped shape from
which the connecting wires emerge.

2 Computer Aided Design or Design Automation (DA). This procedure can be used
equally to plan printed circuits or motorways or to calculate the shape of metal girders.
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We shall apply the term network to a set of pins and the printed wires that
link them together electrically.

In Fig. 8.6 only four networks marked (I}-(1V) have been shown, and in
general, for electrical reasons, the networks are restricted to some dozen pins.
A network requires a pin that represents a receiver of transistors, the other pins
in the network being either passive elements (resistances, capacities) or bases
for transistors.’ We have indicated by the letters C and B the receivers and the
bases of the four networks. When the receiver in a network changes polarity,
it transmits this change to the other pins of the network by means of the
printed connections. In the conception of very rapid circuits, it is important
to have short connections,? otherwise the speed with which the impulses are
propagated would restrict the speed of the computer. In addition, to ensure
their correct functioning, these circuits must be harmonized by placing in each
network a resistance that avoids the impulse reflections that occur in these
very rapid circuits. In effect, if receiver C of network (IT) switches, base B of
chip ¢5 switches after the time required to propagate this impulse. If this
impulse is not absorbed by adding a resistance at the end of the network (the
base furthest from the receiver), a part of it is reflected and could again cause
the bases of the network to switch. In Fig. 8.7 we have shown a plate on which
three special chips comprising resistances only have been added; heavy lines

! Specialists and radio “hams” will understand this terminology, but it is not essential for
what follows.

2 In a nanosecond (10~° sec), light theoretically travels 30 cm. In printed circuits, in fact,
the electric impulses travel more slowly (only 20 cm each nanosecond).
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indicate the connections needed to harmonize the four networks with these
special chips that are indicated by shading in their temporary arbitrary
location. With the chips in position we attempt to connect the end bases of the
network to the nearest resistance. But each network must have one with a
different harmony without which they would be electrically unified, and the
connections must not cross. As may be suspected, this problem includes
numerous parameters and an overall solution of the placement of all the
ordinary and resistance chips, together with the selection of a resistance for
each network and, finally, the tracing of the printed circuit is outside the scope
of even the largest and most advanced computer, so that the problem is often
divided into four parts:
a. Placement of the ordinary chips

We know the terminals that must be linked electrically and we attempt
to find a placement that will avoid those of the same network being too far
apart. To effect this, the criterion of the total minimal length of the networks is
often chosen. The length of the link between two pins, ultimately to be carried
out by a printed circuit containing zigzags, is estimated by the shortest distance
separating them, and the length of a network is estimated by the p(p—1)/2
distances between its pins.
b. Ordering of the networks

This is the determining of the p straight line connections of a network with
p terminals. In the placement stage we should consider that the network
included p(p—1)/2 connections, which is greater (as soon as p > 1) than the
minimal number p required to link p points without a loop. In this phase we
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also seek the base furthest from each receiver in the networks, distance being

the sum of the straight line distances between terminals from the receiver

to the last base.

¢. Placement of the resistance chips and selection of a resistance for each
network

d. Tracing the printed circuit

By now we have determined the placement of all the cases. For some ten
years, computer manufacturers have possessed satisfactory heuristic methods
for tracing the printed circuits. The exact solution is a problem of programming
in integers of immense dimensions, since a variable 0 or | corresponds to every
possible linkage on the plate.

Here we shall only consider the placement of the resistance chips. For this
the reader may consult [K75] and [K76], and for tracing printed circuits
[K57]. In Fig. 8.8 we have only traced the final bases of the networks and a
certain number of placements available for locating resistance chips. The
available placements (those not occupied by ordinary chips) are unshaded.
To convey the complexity of the problem we have imagined that there are more
final bases than the four shown in Figs. 8.6 and 8.7. In practice there may be
up to several thousand final bases, and the solution cannot then be obtained
by inspection as in our present example.

In Fig. 8.8 there 28 final bases of transistors represented by heavy dots.
Since the resistance chips are somewhat costly components, the aim is to use
as few of them as possible. As there are only eight resistances for each chip in
our example, we shall need four chips (4 x 8 > 28) that must occupy the avail-
able sites. These four chips are shown in Fig. 8.8, three of them (b2, a5, gl)
having already appeared in Fig. 8.7.

Usually the correct placement of these chips can be summarized as follows:
locating them in the available placements to effect a resistance in each final
base so that the wires do not cross and the total of the straight line distances
connecting them is as short as possible. Presented in this form the problem is
multicriterion, that is to say, it includes two aims that are not necessarily
compatible: to minimize the number of straight line connections that cross,
so that their final realization by printed circuit will be easier,! and to minimize
the total length. In Fig. 8.8 we have shown 20 straight line connections that
do not cross.

We can, however, simplify this multicriterion problem by using an old
theorem of Monge? who showed by purely geometric proof that, in the

! We may also treat the graph formed by straight line connections as being plane. In that
case the criterion of noncrossing becomes a constraint. See the concept of a plane graph in
Volume 2.

2 G. Monge, “Deblais et Remblais,” Mémoire de I’Académie des Sciences, 1787.
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Euclidian plane, for a figure such as Fig. 8.9, we always have
(8.13) a+b < ctd.

In other words, by minimizing the total length, we shall a fortiori eliminate any
crossing.

Hence we are faced with finding the placement of four chips with eight
resistances each, while minimizing the total length of the connections (meas-
ured “‘as the crow flies’”) between the final bases and the resistances. Let us
observe that, if the placement of the resistance chips is known, the problem
becomes a generalized problem of assignment ! that can be solved by means
of one of the algorithms given in the first two volumes of this work. Our aim
is to assign one and only one resistance to each final base in such a way as to
minimize the total length of the connections. The cost of assigning a resistance
to a final base is the distance between them.

However this problem can reach considerable proportions, since there may
be 2000 or more final bases of networks for a very small-scale technology. It
is not then possible to employ the Hungarian method in which the matrix of
costs would contain at least 2000 x 2000 elements that would exceed the

! In Volume 1, page 68, and Volume 2, page 265, the problem of assignment was discussed,
together with the Hungarian method for solving it. Here we are concerned with an extension
of the problem, in which a person can perform r tasks. In the present problem the people
are the resistance chips and the tasks are the final bases, so that we are confronted by a
transportation problem. This type of problem is discussed in Volume 1, page S1.
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FiG. 8.9

memory range of the very largest computer. In these cases a method adapted
to such large-scale problems is used; this will be explained, as well as some
results from its use on a computer. Let us first examine the principle of this
method.

Since the chips are very small there is little difference in the distance between
a final base and a resistance and that between the base and the center of the
chip containing the resistance. We consider the problem of assigning a chip
to each final base. The same resistance chip could be assigned to eight final
bases. In this manner the problem becomes one of assignment with a smaller
matrix, namely, 2000 x 2000/8, which could be retained in the memory bank
of a large computer, and the value of this optimal solution is not far removed
from that of the initial problem (see Figs. 8.10a and b, where the total length
of the connections is little different),

Next, we successively solve the assignment problems of reduced dimensions
(Fig. 8.10 shows the solution of two such problems). One after the other, each
resistance chip and the final bases to which it is assigned (eight at the most) are
considered. We solve the problem: to assign each resistance of a chip and one
only to each final base. At most the matrix for this problem contains 8 x 8
elements. In fact, a resistance chip can be assigned to less than eight resistances,
as shown in the case of the two chips in Fig. 8.10.

7 ]
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The solution obtained after solving all these small-scale problems closely
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resembles the one that would have been found if there had been a computer
large enough to avoid having to reduce the problem. It is nevertheless possible
(see [K78]) to verify whether the solution is optimal and, if not, to obtain this
from the approximate solution. We show in Fig. 8.10 the three stages of the
algorithm that presupposes the previous placement of the resistance chips.

Once these have been located we are faced with a sequence of assignment
problems. Some times required to reach an optimal solution such as that
shown in Fig. 8.10c on a powerful third-generation computer are shown in
Fig. 8.11.

Number of Number of Time in
bases chips with 8 seconds
resistances
45 10 3.33
88 15 4,97
350 46 41.05
1 000 130 110,5
6 000 190 450

Fi1G. 8.11. Note. Values on the bottom line correspond to chips with 32 resistances.

We shall now see how we can solve the preceding problem of locating the
resistance chips so as to minimize the total length of the connections, given
that the length of each connection is the straight line distance between a base
and the center of a chip. Let us suppose there are m available placements for
the chips and # final bases in the network.

Let there be m integer variables with values of 0 or 1:

(8.14) y;=0or 1, i=1,2..,m,

with the value y; = 1 we site a chip at placement { and for y, = 0 we do not site
one there. Let us now suppose

8.15) x;=0o0r1, i=12,...,m;, j=1,2,.., 4,

with x;; = 1, base j is connected to a chip in placement 7; for x,; = 0 it is the
contrary case. Also let

(8.16) Cij’ i= 1, 2,...,n; j=1, 2, ey my

be the distance between the final base j and the available placement /. We
define a positive value M that greatly exceeds the longest possible length of all
the connections. Mathematically, the problem of placing the chips is expressed
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as
(1) MIN]Jz =} [Myi+ ) cijxif]’
i=1 . j=1
(2) inf=1’ j=1,2,...,n,
i=1
(8.17) (3) Z xij S 8yi’ i = 1, 2, e My,
=1
4 x;=0o0r1l, i=1,2...,m; j=12,...,n,
5) y, =0o0r1, i=1,2, ..., m

Constraints (2) of (8.17) show that one resistance and one only must be
assigned to each final base of the network. Constraints (3) mean that no base
can be connected to a chip in placement 7 if there is no chip there (y; = 0).
They also indicate that if a chip is in this placement (y, = 1), not more than
eight final bases can be linked with it. Problem (8.17) is a special example of
programming in mixed numbers identical to the problem of locating factories
given on page 91. But here we should have a unit cost of construction M that
would be the same for all the factories. It is a problem that can be solved by
Benders’s method, described in Section 20.

When the chips have been placed in position we assign each of the final
bases to one and only one resistance by means of the special method already
described and illustrated in Fig. 8.10. In this we first explained the problem of
assigning the final bases to a resistance, and then that of placing the chips
containing these resistances. These procedures could have been reversed, but
the order was disregarded for instructional reasons.

Some readers may have concluded that, even in problems of substantial
dimensions, a good placement could have been obtained by a rapid visual
examination. But it should be noted that the procedures for placing the chips
and assigning the bases can be integrated in a CAD system; hence, it would
be uneconomic to interrupt the entire process of conception of a printed
circuit card by carrying out even such a simple operation as the above.

The type of problem described is of concern to all manufacturers of com-
puter components; hence they have studied a great variety of mathematical
models, including in them various constraints suitable for the particular
technology employed.

4. The Synthesis of Telecommunication Networks

Operations researchers should be called in at the first development stage of
a project in order to estimate its cost, to find the best solution, and to con-
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sider how the variations of the different parameters will affect this optimal
cost. Among the most difficult problems with which they have to contend we
may cite the synthesis of telecommunication networks. Given the amount of
information to be transmitted between different pairs of points, the require-
ment is to construct a network of minimal cost while taking the following
considerations into account: (1) the cost of the telephone lines used for trans-
mitting information, (2) the cost of the concentrators, (3) the fact that the
Post Office (especially in England) offers graded tariffs when lines are rented
for 6, 12, or 24 hours.

Another type of problem, involving the analysis of circuits, is where a
network is already established and the maximal volume of information that
it can transmit has to be calculated, or where it has to be calculated whether
this network is capable of satisfying the communication requirements for
several pairs of points. This latter problem may be treated as one of linear
programming of very large proportions that theoretically can be solved by
the algorithm of the simplex or by the algorithms of flows if there are not more
than three points between which communications are to be established.! The
very high costs for privative networks (more than half the operating costs) of
certain long distance services make it very important to find the optimal
solution.

Some of the different types of network encountered in practice are shown
in Fig. 8.12. We have confined ourselves to transmission networks connecting
terminals to a central computer in a question-and-answer system, the number
of terminals installed in each city being given in the figure. The conception of
the network implies the choice of equipment and of the outline and length of
the lines, so as to minimize the costs of loan charges (in the case of purchase)
or of renting the lines and equipment (modems, concentrators). In the present
concrete case only two types of concentrators have been considered; com-
puterized satellites that can be programmed, costing 150,000 F and capable
of handling the traffic from 180 terminals, and small cabled concentrators
costing 40,000 F, to which 24 terminals can be connected. We presuppose that
not more than four concentrators can be arranged in multipoint, that is to say,
that they can be attached to the same telephone line.

In our example the problem has been simplified since, in practice, the cost
of the given transmission equipment depends on the exact number of terminals,
each one having an adapter. To further simplify the example we will suppose
that the rental for a good quality telephone line is proportionate to its length
and costs 14 F per kilometer. In Fig. 8.12a we show a multipoint network

! For this problem of the analysis of networks the reader may consult the article by B.
Rothschild and A. Whinston, On Two-Commodity Network Flows, Journal de ’ORSA,
14 (3), 377-388, May 1966.
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OLabergement -
~les Seurrel!

Marseille

(b)

Fic. 8.12. (a) Number of terminals in each of the 20 cities. (Labergement-les-Seurre:
Cote-d’Or with 800 inhabitants. In a decentralized framework, this country retreat of a well-
known author might be connected to a telecommunication network. We have anticipated
this and have included it in the model.)

(b) Enumeration of the cabled concentrators from 1 to 22. There are no concentrators in
Paris and number 22 is used to number it.

(c) Key: O Central computer; & computerized satellite used as concentrator; @ cabled
concentrator.

using cabled concentrators, a solution that is clearly more profitable than the
point-to-point network illustrated in Fig. 8.12b. In practice, the fact that the
software administration of concentrators in multipoint is more costly than
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that of concentrators with point-to-point connections should be taken into
account. In Fig. 8.12c we show a network using computerized satellites with
less costin lines than that shown in Fig. 8.12a, but with more for the equipment.
We have shown only a fraction of the combinations available in practice, and
the combinatorial element in this problem is among the greatest. A universal
model taking account of every possibility would be altogether too complicated.

The solution of minimal cost is then evaluated for each type of network in
Fig. 8.12 or for other types. After examining other factors that cannot be
included in the model, such as the cost of the software and the progressiveness
of geographical extensions, it is possible to make a choice. The evaluation of
the cost of network (b) is obviously easy: enough cabled concentrators are
installed in each city to make it possible to connect each terminal to the city
(20 cities in Fig. 8.12a and 21 transmitters in Fig. 8.12b), and a line is rented
to connect each of these concentrators with Paris. Finding the minimal cost
of the multipoint network is considerably more complicated (see Fig. 8.12a).

t;, i=12,...,21, the number of terminals of concentrator /. This
number ¢, is determined by inspection: the
terminals are distributed to the cities where there
are several concentrators until the maximal
capacity of each concentrator is attained.

dy, i,j=1,2,...,22, the cost of a line between concentrators 7 and j
and the central system. If i and j are in the same
city, d,; is then very small.

i,j=1,2,...,22, integer values of 0 and 1. If x;=1, we use the
connection between concentrators  and j in the
optimal network where concentrator j is the
furthest away or upstream from the central
system in Paris. In the solution corresponding to
the optimal network, we still have x,; # x; . For
example, in Fig. 8.12a we have x;; ;, =1, with
the numeration given in Fig. 8.12b.

Xijs

Yi» i=1,2,...,22, the number of segments of circuits upstream
from concentrator { and connected to it. For
example, in Fig. 8.12a, y,, (Limoges) =2 and
Y22 (Paris) = 21.
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The problem of the synthesis with minimal cost of a multipoint network
using only cabled concentrators is

22 22
i=1 j=1
21
(8.19) Y ox; <1, i=1,2..,21,
i=1
22
(8.20) Y oxp=1, i=1,2,..,21,
j=1

Constraints (8.19) imply that exactly 21 segments of circuits are used in the
network. Constraints (8.20) imply that there cannot be any Y-shaped junction
of the lines in a city that has a cabled concentrator /.

We have also

21
(8.21) yi= 3 x;(y;+1), i=12,..,22.

=1
For example, in Fig. 8.12a, y,g=0 (Toulouse), x4 =1, and
Via = X4,8(¥g+1) =1 (Bordeaux); we also have x¢ 4 =1 and y;=
X6, 14-(¥14+1) = 2 (Limoges). We add the further constraint

(8.22) Y2, = 21 (Paris).

In effect (8.19) implies that there cannot be a Y-shaped connection, but
there could still be loops in the network. Constraint (8.22) implies that the
21 concentrators are connected to Paris.

We now have

(8.23) v <3, i=1,2,..,21.

This indicates that we cannot, for technical reasons (loss of power), have
more than four concentrators on the same line. We have y = 3 (Dijon, see
Fig. 8.12a) which means that when Dijon is connected to Paris there are four
concentrators in the line, the maximum permitted. Lastly, let us recall that

(8.24) x;=0o0r 1, ij=1,2,..,22,
(8.25) y;eN, i=1,2,..,22.

The problem of minimizing (8.18) subject to (8.19)-(8.25) is a nonlinear
program with integer values. Indeed, constraint (8.21) uses the nonlinear
terms x;;y;. There are 484 bivalent variables x;; and 22 integer variables y;.

This somewhat large-scale program can, however, be solved on the most
powerful computers by a variation of the branch and bound method in a time
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the cost of which will be amply repaid by the savings effected over a period of
several years. The reader will realize from this example that the synthesis of
circuits provides operations research with some of the best cost—efficiency
results. The special network (see Fig. 8.12b) satisfies the constraints of the
preceding program with integer values. Nevertheless the network is not one
of minimal cost.

We shall now present a mathematical model using an integer program that
will enable us to find the type of network shown in Fig. 8.12¢c; such a network
will permit the use of computerized satellites if they reduce the total cost of
the network.

For this model we shall define some supplementary variables. Let

w;, i=1,2..,21,
i #8,19,21,

be bivalent variables. If w; =1 we put a computerized satellite in i; if w, = 0
we install sufficient cabled concentrators at i to serve the terminals. Numbers
18, 19, 21 correspond to the locations of a second cabled concentrator situated
either at Brussels, Marseilles, or Nice where there are more than 24 terminals.
At Nice, either a computerized satellite (w,o = 0) or two cabled concentrators
can be placed. We shall never install several satellites at Nice or elsewhere
and we shall not consider w,, . The total cost of the network to be minimized is

22 22

(8.26) [MIN] zZ = Z Z dijxij
i=t j=1
20 20
+150,000 Y w +40000 Y (1-w)
i£8,19,21 i#8,19.21

+ 40,000 (1 —w7) + A —wg) + (1 —wsyy)).

The first term represents the total cost of the lines for the 5-year period of
redemption, the stock being presumed to have been purchased. The second
term is the purchase price of the computerized satellites, and it should be noted
that for cities such as Limoges a single cabled concentrator is sufficient and
that there are no satellites. In contrast, if there is no satellite (1—w, = 1) for
Brussels (i = 7), two cabled concentrators are needed, and during the calcula-
tions the term 40,000 (1—w,, the cost of a cabled concentrator) therefore
appears twice.

(8.27) Z in=1, i=1,2,...,21,
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showing that there is only one line leaving each concentrator or satellite.

On the other hand, (8.19) is transformed, since several segments of circuit
may be attached to a satellite. In Fig. 8.12¢c, 3 lines are connected to the
satellite at Lyons. We have

21

(8.28) Y x; < 1+20w, i=1,2 ..,21, i#8,19,2I,
=1
21

(8.29) Y xs; < 1+20w,,
=1
21t

(8.30) T X0, < 1+20wg,
=1
21

(8.31) Y Xz < 1420w,
=1

In fact, if there is no computerized satellite at i, constraint (8.28) repeats
(8.19) and, if there is one, it is without effect. The number 21 has been intro-
duced since there will not be more than 21 nonnull x;; in the optimum. Con-
straints (8.29)—(8.31) take account of the cities where two cabled concentrators
might be needed. We also have the same equation as in (8.21), but (8.23) is
transformed into

(8.32) v < 3+21w,, i=1,2,..,21; i#8,19,21.

Indeed, if there is no computerized satellite, we return to (8.23), otherwise
this constraint is inoperative (still verified). There are also the special cases:

(8.33) ys < 3+21w,,
8.34) Vis € 3+21w,,g,
(8.35) V21 < 3+21wy,.

Constraint (8.22) applies as before to Fig. 8.12¢; we have y,g =3 which
satisfies y;g < 3+21.0, with w;s =0. We also have y,; = 8 (Lyons) that
satisfies (8.32), since 8 < 3+21.

The problem of designing a network of minimal cost using satellites and/or
cabled concentrators is a program with integer values in which the con-
straints, with the exception of (8.21), are linear and, as in the preceding
example, its solution is obtained by the branch and bound procedure. Indeed,
we might only solve the last problem that could have as its solution (if the cost
of the computerized satellites is comparatively high) the network shown in
Fig. 8.12a.



Part 2. MATHEMATICAL THEORY

Chapter Il. ALGORITHMS AND HEURISTICS
FOR INTEGER OR MIXED PROGRAMS

Section 9. Introduction

This chapter will obviously prove more difficult to follow, since the principle
of operations researchers is to differentiate the motivating from the activating
parts. However, much care has been taken over the method of presentation,
and the most difficult parts of all have been included in a supplement.

Those engaged in operations research range from the practical industrial
user to the advanced university research worker. The concern of the former is
to discover whether (and, if so, how) a problem can be programmed; the
interest of the latter lies in improving the science and in extending objective
knowledge. More and more it becomes of importance that these two classes
should communicate with each other, which is what, in a modest degree, we
are aiming to achieve.

We shall review the algorithms and heuristics that have been accepted over
the last fifteen years as best fitted to solve that special and very important
class of combinatorial problems comprising integer or mixed programs.
Before doing so, however, it will be useful to consider the respective meanings
given to the terms algorithm and heuristic. The former is a set of rules that
enables us by a sequential and rigid method to calculate a solution proposed
in advance (to find, for example, the optimal solution or solutions of a
program). A heuristic is a set of rules sometimes introduced solely by intuition
that enables us to obtain what we consider a priori an acceptable result (other-
wise why use the rules?): to find, for example, a ““good” solution or solutions
to a program.
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These two procedures are supplementary rather than contradictory.
Numerous algorithms were heuristics before being improved until the rules
became a rigid procedure. Equally, some algorithms have led to heuristics
when the field of conception and of operations became too large for the original
rules to retain their validity.

The reader should also note that this second part of the work contains an
important recapitulation of basic Boolean properties that are so often needed.
This was not given in the earlier parts devoted to the theory of operations
research and will complete the mathematical equipment of some of our
readers.

And, of course, as always in these theoretical parts, simple but suggestive
examples of properties will precede or follow the methods that are suggested
and the models that are constructed.

Section 10. Mathematical Properties of Boole’s Binary Algebra

1. Introductory Remarks

The theory of sets, in its most elementary form, will certainly be familiar to
readers of the second volume of this work, but we propose to recall certain of
its properties as an introduction to Boole’s binary algebra. Even if these
concepts are well-known to every university or high school student studying
one of those sciences in which mathematics play a major role, even if they are
well-known to every young engineer, perhaps those of our readers who are
not equally young will be glad to find a résumé of the more common properties
of sets. it is, indeed, a principle of this series to provide recapitulations for the
benefit of those who did not in their time have the opportunity of acquiring
knowledge that has since become commonplace. This is, however, a very
condensed résumé, and we refer our readers to works dealing more fully with
the subject such as [K11], [K12], and [K14].

2. Characteristic Function of a Subset

Let us consider a subset A forming part of a referential E! (Fig. 10.1).
With each subset such that A < E we associate a characteristic function of the
form?

(10.1) fa(x)=F(A; x),

! For example, the set of all human beings is a referential, of which all those of male sex
form a subset.

2 We ought strictly to use a notation that recalls the defined set, for example, fa(x} =
F(A; x). To simplify the printing we shall henceforward use the notation f,(x), for which the
theoretical justification will be given later on.
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E
oy
Fic. 10.1
such that
if xeA: fax)=1,
(10.2) _
if x¢A, thatis xeA: fa(x)=0.

Hence, such a characteristic function can only assume the values 0 or 1.

We shall now show that, to each operation of complementation (~), union
(v), and intersection (n) of the theory of sets that constitute a Boolean type
algebra, there corresponds, respectively, an operation of complementation or
negation (~), Boolean sum (4 ), and Boolean product () in Boole’s binary
algebra.

The Negative Case

It is sufficient to revert to the definition of the characteristic function to
discover the relation between F(A; x) and F(A; x).

If we assume

(10.3) F(A; x)=f,(x),

either f,(x) = 1 and x does not belong to the negative complementary of A,
then:

(10.4) F(A;x)=0
or f,(x) = 0 and x belongs to A, then
(10.5) FA;x)=1.

Figure 10.2 confirms that
(10.6) F(A;x) = 1—-F(A;x).
or

Ja(x) = 1-£a(x).
We can equally well write £, (x) instead of f;(x).

The Case of Intersection
Let us consider two subsets A — E and B < E as well as the two character-
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F@R;x)=0,
S =1,
FA; x)=1-fi(x)
=1—F(A; ).

FI1G. 10.2

FA;x=1,
Sa(x)=0,
FA; ) =1—f,(x)
=1-F(A;x).

E
) >

2 .

&/ 4
F(ANB; x) =1, S(ANB; x)=0,
fix) =1, fr(x)=1, faX) =1, fo(x)=0,
Ja(x) . frlx)=1. Ja(X¥). fo(x)=0.

E

QL

*X

QD

F(ANB;x) =0,
Jax)=0, fr(x)=1,
Sa(x). fo(x) = 0.

Fi1G. 10.3

istic functions associated with them,

(10.7)

fu(x) = F(A;x)

F(ANnB;x)=0,
fa(¥) =0, f,(x)=0,
Jax). fo(x)=0.
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and
(10.8) Li(x) = F(B;x).
If xeAn B then we can state

(10.9) F(AnB;x) =1.

If x¢ AnB then we can state
(10.10) F(AnB;x) =0.

From an examination of Fig. 10.3 we can easily see that, with the values of
Jfa(x) and f(x) known, we can determine the value of F(A n B; x) by finding
their product. As a result we can state

(10.11) F(AnB;x) = F(A;x).F(B;x),
or again
(10.12) Ja.s(X) = fa(x) . fo(x).
The Case of Union
Having assumed
(10.13) fa(x) = F(A;x)
and
(10.14) Jo(x) = F(B;x)

in the same manner as above, let us try to express F(A n B; x) with the aid of
Fig. 10.4.

We establish that the arithmetical sign + cannot be used to calculate the
values of F(A v B; x) commencing with f;(x) and f;(x). On the other hand
we can state

(10.15) F(AUB) = f,(x) +/,(»)
on the condition it is agreed that

141=1, 140=1, 041=1, and 040 =0.

3. Canonical Forms

Let us consider the subsets A, A,, ..., A, = E and their characteristic
functions that we express as x;, 1, 2, ..., n; that is to say,

(10.16) Jao(¥) = %1, fo,(0) = X3, oy So,(0) = X,
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FAuUB;x)=1, fAAUB;x)=1,
A®=1, A=1, LE=1, £,(=0,
L@+ A =1. L@+ AG=T.

E E

°x
FAUB; x)=1, F(AuB;x)=0,
fa)=0, f()=1, fa() =0, f,(x)=0,
SaX) 4 f(x) = 1. Sa()+ fo(x) =0.

Fic. 10.4
Thus
x;=1 if xeh
=0 if x¢A,, i=12,..,n.

We can equally consider a Boolean function of the » subsets,
(10.17) DA, ,A,;, ..., A),
and its characteristic function,
(10.18) SJo(x)=1 if xe®(A,A,;,...,A)

=0 if x¢®A,A,,....,A).

We shall associate with the function ®(A,, A,, ..., A,) a function
with binary values ¢(x,, x,, ..., x,) depending on the binary variables
X1, X2, ..., X, TO effect this we need only replace the subsets A, A,, ..., A,

in @ by the variables x,, x,, ..., x,,, which will enter into ¢ and the operations
(V), (n), (7) by the operations (.), (+), (7).
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For instance, to
(10.19) QA LA, A)=(A,VA)VUA,
will correspond
Q(x;, X5, X3) =X . X+ X3,

We can easily see that

(10'20) (p(xl s x2 3 eves -xn) =f° (A1, Az, ..., A,.)(x) ’
since, by the inherent structure of ¢ (x,, x,, ..., X,), we shall have
(10.21) Q(x;, X2, e, xy)=1 if xe®A,, Ay, ... A).

Let us now take the function
(10.22) Y= Xy, X2, co0s Xp)
and let us assume
(10.23) y=x,.r+x%,.5,

where r and s are the Boolean functions to be determined.
If
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(10.24) x,=1, % =0, then y=0¢(, x5, ..., %) =70,
and if
(1025) X = 0, )_él =1, then y= (P(O, Xgs vees xn) =S5
Hence we can state
(10.26) Y=%1.0(1, X3, .0 X)) +X1. 00, X2, 00y Xp) .
Proceeding in the same manner for the other variables, x,, ..., x,, we see
that
(10.27)

e, X2, X35 00s X)) =%3.0(1L 1, X3, 0., %) +X,.0(1,0, X3, ..., %,) .
and

(10.28)

@0, %5, %X3,-.,%) =%2.00,1, %3, ..., %) + X%,.90(0,0, x5, ..., X,) .
Whence

(10.29) y=x.%.0(1,1, x5, ..., x) + x,.%.0(1, 0, x5, ..., X,)

+X%,.%,.00,1, x5, ..., x,) + X%,.%,.90(0, 0, x5, ..

oy X
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If we continue the same procedure for x,, ..., x,, we finally obtain
Y=0(X1, X2 X35 eoes Xp1 5 Xp)
= XpeXg.X3. 000 Xy X 0(1, 1,1, ..., 1, 1)
Fxy X X300 Xy Xy 0(1, 1,1, ..., 1,0)
Fxy.X2. X300 Koy %01, 1,1, ..,0, 1)
F+xy.X.%3.0... %21 .%,.0(1, 1, 1,...,0,0)

(10.30) +o.
Ry X Ry Xney %0 0(0,0,0, ..., 1, 1)
4Ry %y K X1 % 0(0,0,0, ..., 1,0)
F Xy Fy Ky Ky % @(0, 0,0, ..., 0, 1)

F Xy Ry Ky Ky % 0(0,0,0, ...,0,0).

Hence, assuming!

(1031) o
@Pan_y = (p(la 1’ 1: veey 1: O)a
Py =@(1,1,1,...,1,1).

and by naming as minterms the products represented in the following manner:

mg =X .X2.X3.0.0. X5 1-%,,
m, =X1.X2.X3. 000 Xy g - X
m, =X1.X3-X3.000 Xy g Xy,
(10.32) e e
Mon_g = X1.X2.X3 Xpe1+Xps
Man_y = Xy.X2.X3 Xpe1+Xn3

! 1t will be observed that for index we have used the decimal system of notation for the
number in the binary system corresponding to the succession of binary figures within the
parentheses.
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we can express (10.30) as follows:
(10.33) Y= 0(xy, X35 cn sy Xp)
=Mg. Qo+ M. @1+ . + Magn_3 . Qonz+Man_ g . Q2ny.

Form (10.33) is termed the canonical disjunctive form or first canonical form.
Let us now assume

(10.34) Y = U(X1, X25 eees Xp)
= (x;+7r).(X1+5),
where 7' and s’ are the Boolean functions to be determined.

Using the same procedure as before and taking x; =1 and x, = 0, then
x, =1 and x, = 0, and so on, we now obtain

Y=p(xy, Xay X35 ceny Xp1s Xp)
=[x, +x24x3 + .. + x5 1 +x,4200,0,0, ..., 0,0)]
xiFxadxs .+ xpm  +%,4200,0,0, ..., 0, D]
xidxadxs F o F Xe  Fx,420,0,0, ..., 1,0)]
x X xs o F X +%,4200,0,0, ... 1, 1)]
(10.35)
E AR %+t Xany X a1, L, 1, .., 0, 0)]
JF ARt o F x4 X, 1,1, .., 0, 1]
R A %y F o d Fun Xt u(, 1,1, ., 1,0)]
F 4R E R o F B E R du(, 1,1, ., 1, 1],

The following Boolean sums are called maxterms:

MO =)-Cl-}-552-}-553-}-...-'}-§,,_14-55,,,
Ml =21+§2+§34—...+f,‘-1+xn,
M, =X 4+X+X 4+ .+ X1 X5

...................................

10.36 -
( ) MZ"—Z =x1-}-x2-}-X3-'}-...-}-x,,_1-}-x,,,

MZ"—I = xl+x2+x3 -i'- oo -}-x,,_l-}-x,,.



140 1. ALGORITHMS AND HEURISTICS

We can then express (10.35) as

(10.37) y = p(x1, Xz, 00 Xp)
= Man_y+p0) (Man_z+ 1) ... (MyFpign_3). (Mo+pian—y).

This structure is called the canonical conjunctive form or second canonical
form,

It can be shown that expansions (10.30) and (10.35) are unique (see, for
example, [K12]).

Example
The detailed calculation is left to the reader.
Let

(10.38) =a.(b.d+b.c)+a.b.(ct+d).
We find successively that

(10.39)

©0=0, ,=1, ¢, =1, @3 =1, @, =0, o5 =0, 95 =0, ¢, =0,
0s=0, @9=1, 910=0, ¢;;,=1, @12=1, @13=1, ¢,4,=0, ¢,5=0.

Let us merely give the minterms with nonnull coefficients

m; =a.b.c.d, m, =a.b.c.d, my; =a.b.cd,
(10.40) my = a.b.é.d, m;;, = a.b.c.d, m;, =a.b.c.d,
m,;s =a.b.c.d,
and
(10.41) y=mi+mytmydtmgim, +m,4my;.

Let us now consider the expansion in maxterms (the calculation of which is
left to the reader), giving only the maxterms preceded by a null term:

(10.42)
M, =atbietd, M,

G+bicid, My =atbtcid,
M, =dtbtctd, My =atbictd, M, = atbicid,
M,,=a+b+c+d, M,, =atbtctd, M;s=atbictd.

We pass easily from a decomposition in minterms to one in maxterms:
(a) write down the junction of all the minterms not included in y; (b) replace
this junction by the intersection of the maxterms corresponding to the min-
terms in such a way that to the index / of a minterm there corresponds the
index 2"—1—1i of the maxterm obtained,
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The passage from a decomposition in maxterms to one in minterms
proceeds in the same manner, but the union is exchanged for the intersection
and the term minterm for that of maxterm.

Identity of Two Boolean Functions

An easy method of finding whether two Boolean functions are identical is
to draw up the table of values of each and to compare them. But we can also
employ the canonical forms, since two Boolean functions are identical if they
possess the same cononical form (first or second form),

Section 11. Lattice Theory

1. Observations

In this work we are concerned only with finished lattices, that is to say,
those possessing a finite number of elements or half-lattices that are denumer-
able, although the principal properties can be extended to nondenumerable
lattices.

The structure of the lattice that can also, for those that are denumerable, be
shown in the form of a graph is one of the most important in the whole field
of modern mathematics, whether pure or applied,! and we shall examine it in
considerable detail.

2. A Reminder of the Concept of an Ordered Set

In Volume 2 we dealt very briefly with the concept of an ordered set, since
it was only occasionally needed for our explanations. A fuller treatment of
this concept is now required for the study of lattices. Before providing this,
however, it is advisable to recall the nature of the properties of reflexivity,
transitivity, symmetry, and asymmetry.

Reflexivity

A binary relation defined by a graph G = E X E is reflexive if all the pairs
(x, x) belong to the graph.? In the terminology of modern mathematics this
is expressed

(11.1) VxeE: (x,x)e G <« ExE.

In Figs. 11.1 and 11.2 we have shown an identical relation. Figure 11.1, in

! To demonstrate our explanations we shall employ a set with five elements, but these
explanations apply equally to any finite set (or even to an infinite set, though we are not
generally concerned with such here).

2 In Volume 2 a graph was defined by the pair (E, I') or the pair (E, U) (see pp. 229-230),
A graph can also be defined by set U or G of the arcs, with the reservation of referring to the
referential E, as G < Ex E.
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E ¢—rt—b
D o @
C ) \\; Foul

Fic. 11.1 Fic. 11.2

the form of a grid, represents the binary relation, while Fig. 11.2 gives an
arrowed representation of it, the two diagrams being shown together for
instructional purposes. It is easy to verify that this binary relation is reflexive,

Transitivity
A binary relation defined by a graph G = Ex E is rransitive if, with two
pairs (x, y) and (y, z) belonging to the graph, (x, z) also belongs to it.

(11.2) (x,»)eG and (,2)e G = (x,2)eG.

The binary relation shown in Figs. 11.3 and 11.4 is transitive; if we verify
a few pairs the reader can check the remainder.

(E,A)eG, (4,B)eG; wefind (E,B)eG.
(11.3) (4,B)e G, (B,A)eG; wefind (4,4)eG.
(C,B)e G, (B,A)e G; wefind (C,4)eG.

E
o &
C D I')

FiG. 11.3 Fic. 114
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FiG. 11.5 Fi1c. 11.6

Symmetry
A binary relation® is symmetrical if, with a pair (x, y) belonging to the
graph, the pair (y, x) also belong to it. This is expressed as

(11.4) x,»eqG = (y,x)eG.
Or, better still as

L5 *,9)eG <« (y,x)eG

since the implication applies as much to (3, x) as to (x, y).
The binary relation shown in Figs. 11.5 and 11.6 is symmetrical.

E—dﬁ A
D 4 E
8
C &
B .o [}7 - 29
A D c
E A 8 C D E
\E
FiG. 11.7 FIG. 11.8

Nonsymmetry
For at least one pair this property exists if there is no symmetry and is

! We shall no longer repeat *“‘defined by a graph G < Ex E.”
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E A
D - b & £ B
C D D
B~
C
A Favd J, D

E/ /A B C D E
\E
F1G. 11.9 FiG. 11.10

expressed as
(11.6) 3({(x, )€ G and (y,x) ¢ G).

The binary relation shown in Figs. 11.7 and 11.8 is asymmetrical.

Asymmetry in the Broad Sense
If a pair (x, y) where y # x belong to the graph, then (y, x) do not belong
to it, This does not apply to pairs in which y = x. This property is expressed as

aLvn (x,y)eG and y#x = (,x)¢G.
Or, better still as
(11.8) ({(x,»)eG and (y,x) € G) = (x=y).

The binary relation shown in Figs, 11.9 and 11.10 is asymmetrical in the
broad sense.

Asymmetry in the Strict Sense
if a pair (x, y) belong to the graph, then (y, x) do not belong to it; this
implies that a pair (x, x) also do not belong. This is written as

(11.9) (x»)eG = (»x)¢G.

E & A
D L &
E_ 8
C N
B Vo
A & D c
E/A B ¢ D E

FiG, 11.11 FiG. 11.12
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The binary relation shown in Figs. 11.11 and 11.12 is asymmetrical in the
strict sense. This example corresponds to that of Figs. 11.9 and 11.10 in which
the pairs (4, A), (C, C), and (D, D) have been suppressed.

Relation of Preorder or Weak Order

A binary relation that is transitive and reflexive is a relation of preorder or
of weak order.

The binary relation shown in Figs. 11.13 and 11.14 represents one of
preorder.

E é— 4
D @ -
C —&
B—06—o0—0
A
E A 8 C D '3
\JE
FiG. 11.13 Fic. 11.14

Relation of Equivalence
A relation of preorder that is symmetrical is called a relation of equivalence
and an example of this is shown in Figs. 11.15 and 11.16.

Eb L&
D o o it 4
C ). Fai . 4
8 P

A2 4

Fig. 11.15 FiG. 11.16

Relation of Nonstrict Order
A relation of preorder that is asymmetric in the broad sense is called a

relation of nonstrict order, and an example of this is given in Figs. 11.17 and
11.18.

Relation of Strict Order

This implies a transitive and asymmetrical relation in the strict sense. To
every relation of a strict order there is one and only one corresponding relation
of a nonstrict order to which the property of reflexivity has been added. The
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Ed— b b4
D-& €
c4

LR

A

8 c D E

&

example given in Figs. 11.19 and 11.20 should be compared with that of Figs.
11.17 and 11.18.

Unless specified differently we shall always consider relations of a nonstrict
order in what follows.

Fic. 11.17 Fic. 11.18

4 4 A
E—€ r
D -
E 8
C&
8
C
A D
A 8 c D E
E
E
Fic. 11.19 Fig. 11.20

Relation of Total Order
When, for each pair (x, y)e Ex E we have (x, y)€ G and|or (y,x)eG
and the binary relation is one of order, we say that the order is total.

Fic. 11.21 Fic. 11.22 Fic. 11.23
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This is the case in the example shown in Figs. 11.21 and 11.22; in Fig. 11.23
we have permutated the elements of E in Fig. 11.21 in order to demonstrate an
important and fundamental property.

If the pair (x, y) € G and if we are concerned with a relation of order, we
can write '

(11.10) xX<xy.

We then say that the elements x and y are comparable. In a relation of total
order all the elements are comparable (see Fig. 11.23). This is the important
property referred to above.

Relation of Partial Order
An ordered set that is not totally ordered is said to be partially ordered.
Stated differently, this is a set in which all the elements are not comparable.
Figures 11.24-11.26 on the one hand and Figs. 11.27-11.29 on the other
hand provide two examples of partial order.

E 4 g 4 4
D —$ %4 g
C 4 >
N D 4
q}-
D E E A D C
FiG. 11.24 FiG. 11.25 Fg. 11.26

Let us now consider the three figures, 11.22, 11.25, and 11.28.

E &
o L

c

8 & b

FiG. 11.27 Fic. 11.28 Fic. 11.29



148 1. ALGORITHMS AND HEURISTICS

For Fig. 11.22 we can state,
(11.11) D<B<A<CSXE.

Since all the elements are comparable with each other we can place them in
a unique sequence that characterizes the total order.
For Fig. 11.25 we can say,

(11.12) E<A<DXB, C<B.

The order is partial since we cannot obtain a unique sequence. The same
applies to Fig. 11.28:

(11.13) D<XEXA, E< B, C<A.

Minimal and Maximal Element
An element a of an ordered set E is called the minimal element if no element
x other than a is such that x <\ a. In other words,

(11.14) (x < a) = (x=a).

In a similar manner, an element 4 of an ordered set E is called the maximal
element if no element other than b is such that x < 5. In other words,

(11.15) (x 3= b) = (x=b).

In Fig. 11.30 the reader can verify whether there are four maximal and two
minimal elements.

@ maximal element @ minimal element

Fig. 11.30
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We have
A<B<HKXC, A<BXI,
(11.16) DB<H<XC, D<BXI,
F<C(C, GxXC, GXE.

Smallest and Largest Element
Given a set E ordered by a relation of order, we say that an element ae E
is the smallest element of E if, for every x € E, we have

11.17) axx.
We say that b € E is the largest element of E if, for every b € E, we have
(11.18) b>xx.

Let us consider the examples shown in Figs. 11.31 to 11.33.

Fic. 11.31 Fig. 11.32 Fia. 11.33

In Fig. 11.31 we see that
FLA<B=<UZC,
(11.19)
FE<D<xC.

Hence this set contains a smallest element F and a largest element C.
In Fig. 11.32 we see that

BXF<A,
(11.20)
BXF<E<C<XD.

Hence this set contains a smallest element B but does not include a largest
element.
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In Fig. 11.33 we see that

B<AXF,
(11.21) B<XAXE,
C<XDXE.

This set possesses neither a smallest nor a largest element. The same applies
to the example in Fig. 11.30.

Observation
It is unnecessary to prove that when a smallest element (and also a largest
element) exists it is unique.

Minorant and Majorant

If E is an ordered set with E’ < E, we apply the term minorant of E’ to
every element a € E such that, for every element b € E’, we have a<x b. We
also say that a minors E’. In a similar manner we use the term majorant of
E' for every element a € E such that, for every element b € E’, we have a = b.

Fic. 11.34

Let us take as an example the graph of Fig. 11.34, and let

(11.22) E={4,B,C,D,E,F,G,H,I}
and
(11.23) E' = {4,G,I}.

It can be seen that D is a minorant of E' for DX A4, DI, D<XG.Gisa
minorant of E’ since G X G, GX I, G=<X A. I is a majorant of E’ since 7= I,
13=G, 1= A. The reader is left to discover other possible majorants and
minorants,
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Lower Bound and Upper Bound

Let F < E where E is an ordered set. Let us suppose that F is majored by
certain elements of E and let M be the set of these majorants. If M includes a
smallest element m, then m is called the upper bound of F.

Similarly, let us suppose F is minored by certain elements of E and let N
be the set of these minorants. If N includes a largest element #, then » is called
the lower bound of F.

The upper bound will be referred to as

sup F or supgF

if there is no chance of confusion.

1 (‘B AN Fany
H b P X
G < S S N .
F ) B &

£ &

D \) A4

C o060

8 ——é&

A DD ®

kE

Fic. 11.35
6 -9
H-o——o9-0-b | &
£ @
C 006 0O
! -
A b bH6—o
F ©
D 6o
8
BDFAICEHSG

£

FiG. 11.38.
Fig. 11.37 Note. Pairs (x, x) have not been shown.
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Similarly the lower bound will be referred to as
infg F
or
inf F.

It is clear from the definition that when a lower (or upper) bound exists it
must be unique.

Our first example is shown in Figs. 11.35 and 11.36. To make sets M and N
more easily distinguishable these figures have been redrawn and modified
(Figs. 11.37 and 11.38). We see that

(11.24) M={G,H} and N = {B,D}.

Fic. 11.39

Since D is the largest element of N it is the lower bound of F, and since H is
the smallest element of M it is the upper bound of F.

In this example F n M = ¢ and F n N = ¢, but such is not the case in
the following example.

Returning to Fig. 11.39, we have

(11.25) M={C} and N ={D,E}.
We see that
(11.26) supF = CeF and infF = DeF.

Chain. Maximal Chain

Every totally ordered subset of an ordered set is called a chain.
Let us take as an example the ordered set shown in Fig. 11.40.

! This concept has no resemblance to that of the same name that we defined in the theory
of graphs (sequence of links), Volume 2, pp. 9 and 242, It is unfortunate that the same term
should have been chosen for such different concepts, but so many names are required in
mathematics.
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{D, C, F, G} is a chain since D  C G F. {E, F} is a chain since EX F.
{4, B} is a chain since 4 < B.

Fic. 11.40

A chain is said to be maximal if it is not a subset of a chain, apart from
itself. Hence, still considering Fig. 11.40, {C, D, F, G, H}, {E, F}, {4, B, H}
are maximal chains. We have

H<XD<C<XGXF, EXF and H<AXB.

Sup Half-Lattice

Let us consider an ordered set. If each pair of elements in this set posses an
upper bound, we say that this ordered set is a sup half-lattice.

This is true of the ordered set shown in Fig. 11.41. We can verify that each
pair of elements has an upper bound: sup{d4, B} =F, sup{4,C} =4,
sup{A4, D} = F, and so forth.

The maximal chains of this ordered set are {4, C, F} and {B, D, E, F},
their upper bound being F.

We can verify that Fig. 11.42 does not represent a sup half-lattice but that
Fig. 11.43 does represent one.

Inf Half-Lattice

If every pair of an ordered set possesses a lower bound, we say that this
ordered set is an inf half-lattice.

Figure 11.41 does not represent such a half-lattice, but Figs. 11.42 and 11.43
do so.
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Fic. 11.41 Fi1G. 11.42 FiG. 11.43

3. Lattice!

An ordered set that is both a sup half-lattice and an inf half-lattice is a
lattice.

Stated differently, we say that a lattice is an ordered set in which every pair
of elements possesses an upper and a lower bound. A lattice may also be
called a trellis, a reticulated set or even an ordered network.

Figures 11.41 and 11.42 do not show lattices, but Fig. 11.43 shows one.

(11.27)
sup{4,B} =F, sup{d4,C}=F, sup{4,D}=4,.., sup{E,F}=F,
inf {4,B} =D, inf {4,C}=D, inf{4,D}=D,..., inf{EF}=E.

It is convenient and also very rewarding in the theory of mathematics to
employ an operative symbol to represent both the upper and lower bounds,
If X, is the upper bound of {X;, X;}, we shall express this as

(11.28) X,VX; = X,.
If X, is the lower bound of {X;, X;}, we shall write
(11.29) XiAXj = Xl'

In a lattice the following properties can be verified: given any three elements
A, B, and C belonging to the lattice, we always find
(11.30) AVB =BV A, ..
commutativity,
(11.31) AAB=BAA,

! Let us remember that here we are only considering finite-ordered sets. The lattice is a
configuration that can be concerned with both finite and infinite sets.
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(11.32) AV(BVC) =(4VB)VC,

associativity,
(11.33) AABAC)=(AAB)AC,

(11.34) AVd4 =4, idempotence,
(11.35) ANA =4,
(11.36) AVAVE) = 4,] psorption |
(11.37) AAN(AVB) = 4,

We shall find that with every formula that contains the symbols V and A
we can associate another formula in which these symbols are interchanged.
This property is often called duality.!

Diagram of Maximal Chains or ‘Hasse’s Diagram”'

For convenience in representing a finite lattice and, in general, a denumer-
able ordered set, we draw only the maximal chains by means of a nonoriented
line between the successive elements forming the total order of this maximal
chain.

F
8 A B
c E o
D
Fic. 11.44 Fi1G. 11.45 Fic. 11.46

Let us consider as an example the lattice of Fig. 11.44. The maximal chains
are

D<XE<AXF, D<XC<AXF, D<C<BXF.

We now pass from Fig. 11.44 to Fig. 11.45 where only the arrowed lines
representing the chains are shown. Finally we move on to Fig. 11.46 in which
the lower bound of the lattice is placed at the bottom and the upper bound at
the top.

! More details about these properties will be found in [K18] and [K20].
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Sublattice

A sublattice T' of a lattice T is a subset of T such that if A and V are the
symbols for the inferior and superior bounds in T, then for all x and y in
T:xAyeT and xVyeT.

Let us consider the example shown in Fig. 11.47 by means of Hasse’s
diagram. In Fig. 11.48 a sublattice of the lattice being considered is shown in
unbroken lines.

S s
-
t" l \\
£ Ex TN
c 1 “yC
‘ |
D D 8 :
1
F AF
A A ///
,/
I I
Fic. 11.47 FiG. 1148

It should be noted that every maximal chain of a lattice is a sublattice of

that lattice.
It is also to be noted that, in accordance with this definition, every subset

of a lattice T that would form a lattice is not always a sublattice of T.

4. Distributive Lattice

A lattice is said to be distributive if it conforms to the following conditions
that are dual in relation to each other (one is obtained from the other by
interchanging ¥V and A).

If X;, X;, X, are elements of the lattice,

(11.39) X AX; VXY = (XAX)V(XAXY.

Figure 11.49 shows an example of a distributive lattice. Starting with the
tables of relations for V and A given for this lattice in Figs. 11.50 and 11.51
we can easily verify that the relations (11.38 and 11.39) are true for any group
of three elements, for instance,

BA(DVE)=BAF =B,
(BAD)V(BAE)y=BVB=B.
It can easily be verified that every half-lattice of a distributive lattice is

itself distributive. Hence every maximal chain of a distributive lattice is a
distributive lattice.
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F
£ D
Cc B
A
Fic. 11.49
A A B c D E F v A B c D E F
A A A A A A A A A B c D E F
B A B A B B B B B B E D E F
c A A c A c c c c E c F E F
D A B A D A D D D D F D F F
E A B c A E E E E E E F E F
F A B c D E F F F F F F F F
Fi1G. 11.50 Fic. 11.51

Free Distributive Lattice with n Generators

Distributive lattices include a particularly important type generated by »
sets that do not possess any intersection empty 2 to 2, 3to 3, ..., n to n. They
are known as free distributive lattices with n generators. Figures 11.52-11.54
illustrate such lattices with 1, 2, and 3 generators, respectively.

The number of elements in these lattices increases very rapidly in proportion
to the number of generators.

n Number of elements

1
4
18
166
7579
7828532

These lattices play an important role in the theory of the availability of
systems,!

[« NNV T - PV R S

! See A. Kaufmann, R. Cruon, and D. Grouchko, “Modéles mathématiques pour I'étude
de la fiabilité des systémes,” Masson, Paris 1975.
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5. Complemented Lattice

Let us take O for the lower bound of a finite lattice T and U for its upper
bound. If for every X, e T there is a X; such that

(11.40) X,VX;=U and X,AX;=0,

we say that the lattice is complemented. X is then called the complement or
complementary of X, and is written as X ;.
Let us consider two examples, Figs. 11.55 and 11.56.

U
D D
A 5 A B
o o
Fi1c. 11.55 Fi1G. 11.56

The lattice of Fig. 11.55 is complemented. Indeed

0 =U since OVU=U and OAU=0;
A=B sinceAVB=U and AAB=0;
B=A4 or C or D
since BVA=U and BAA=0;
(11.41) BYC=U and BAC = 0;
BVYD=U and BAD=0;
C =B since CVB=U and CAB=0;
D=B since DVB=U and DAB=0;
U=0 since UAO=U and UVO=0.

As we see, the complement is not necessarily unique and we do not neces-
sarily have (X;) = X,.
Let us now consider Fig. 11.56.
O0=U since OVU=U and OAU=0, but:
(1142) AVO=A4, AVB=D, AVC=D, AVD=D, AVU=U,
AANO=0, AAB=0, AAC=0, AAD=A, AAU=A.
No element X can be associated with 4 to satisfy (11.40).

It can be proved (see [K18]) that in a distributive lattice the complement,
when it exists, is unique.
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6. Boole’s Lattice

A lattice that is both distributive and complemented is called a Boole’s
lattice or a Boolean lattice. .

Figure 11.57 shows an example of such a lattice and the reader is left to
determine whether relations (11.38)—(11.40) are verified.

U
D F
A c
0
Fic. 11.57

The four main properties of a Boolean trellis are as follows:

1. Every element X; possesses one and only one complement,
2. For every element X;: (X,) = X,.
3. Given two elements X; and Xj,

(11.43) X, VX, = X,AX;,

4. Every finite Boolean lattice is isomorphic to the lattice constructed
starting with the relation of inclusion of the parts of a finite set in that set.
In other words, lattices 7 (E) of the parts of a set with # elements, ordered by
inclusion, is a finite Boolean lattice, and conversely. Hence, for an ordered
finite set with # elements, there is one and only one Boolean lattice.

This last property explains why Boole’s algebra relating to the parts of a set
has the same configuration as a Boolean lattice.
Lastly, the following operations correspond to each other:

Boolean lattice Boolean algebra Boole’s binary algebra
v U (+)
A N ()

It should also be noted that the inverse of the correspondances is equally true,
Finally, in the three concepts shown above, the notion of complementation
may be considered to be the same.

Boolean Half-Lattice of a Boolean Lattice
Every half-lattice of a Boolean lattice T that itself forms a Boolean lattice
is called a Boolean half-lattice of T.
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Fic. 11.58 Fic. 11.59
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Fic. 11.60

In Figs. 11.62 and 11.63 we can observe an example. The subset
(11.45) A = {Z,{B}, {C}, {4,D}, {B,C}, {4,B,D}, {4,B,C,D}}

forms a Boolean subset constructed by inclusion.

Fia. 11.62 Fig. 11.63
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7. Vectorial Lattice
Let us consider n finite sets,
A={A4,,4,,..,4,},
(11.46) B = {B,, By, ..., Bg},
L={L,,L,, .. L,}.
Let us suppose these sets are totally and strictly ordered, that is to say,
A4, <A4,<..<A4,,
(11.47) B, < B, < .. < By,

...................

Li<L,<..<L,.

Let us define a relation of strict order that we will call the relation of domination
for the elements:
(11.48) [4;, B;, ..., LiJe AxB x ... xL,

j?
while stating,
(11.49) [4;, B;, ..., L]] <[4y, By, ..., L;].

If the n-tuple to the left has all its elements less than® or equal to those of the
n-tuple to the right, and at least one element that is smaller, then the product
of the set Ax B x... x L forms a lattice for this relation of domination.

In Fig. 11.64 we have shown the vectorial lattice obtained from the following
ordered sets:

(11.50) A={4,,4,} where A,<A4,;
(11.51) B = {Bl’ B2, B3}, Where B1<B2<B3 s
(11'52) C= {Cl’ Cz}, where C1'<C2.

Hasse’s diagram is shown in Fig. 11.64a while Fig. 11.64b shows a more
formal representation corresponding to the Cartesian coordinates.

A Boolean lattice is a vectorial lattice, a property that is evident from
Figs. 11.65-11.68.

Lexicagraphical Vectarial Lattice

This is a vectorial lattice that is reduced to a total order (for example, that
of a dictionary, whence the name is derived). We consider the following
relation of domination: an n-tuple [4;, Bj, ..., L;] will dominate an n-tuple

! A similar relation can also be defined by the words greater than.
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[4;, By, ..., L;/] if the first r elements (starting arbitrarily from the left) of
the two n-tuples are equal but the (r+ 1)th of the first is superior (in the relation
of order concerned) to the (#+ 1)th element of the second. In this way a total
order is obtained; for example, [3, 5, 7, 1, 5] dominates [3, 5, 7, 2, 9], and
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[110]

[1,0]

[0

[u,

I1,0,0]

(11,1,0 .
(1,01 Fonnl

[.1,0,0]
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o0

10,0,00] fooo]
Fig. 11,68 Fic. 11.69

[R, M, N] dominates [R, S, B] if the order selected places A before all the
other letters, B before the remainder, and so forth.

Figure 11.69 provides an example; others have already been given in Figs.
4.5 and 4.6.

Section 12.  Other Important Properties of Boole’s Binary Algebra

1. Boolean Inequalities

By defining the inequalities between two binary variables x and y in Boole’s
binary algebra we can, as will be shown later, obtain Boolean equations and
inequations. With this purpose we shall state various equivalences that the
reader can easily verify by giving the two variables their possible values of 0
orl.

We have

(12.1) (x<y) = (x+y=y) = (x.y=x).
To be certain that these three expressions are equivalent let us employ a
verification or true or false table.

x y x <y xty=y Ty =&
12.2 0 0 true true true
(122 0 0 true true true

1 0 false false false

1 1 true true true
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The following relations will be verified in the same manner:

(12.3) (x<z and y<2z) < (x+y) < z,

(12.4) (x>zand y2z) « x.y = z,

(125  (x<y) e Ffy=1<ex7=0,

(12.6) (x=y) « x.j+%.y=0< (X+)).(x+y) = 1.

Let us now add the following much less important relations:
(12.7) 0<x,
(12.8) x<1,
(12.9) (x<y) = (x.2<y.2)

(12.10) (x<y) = (x+2) < (+2)

A general roperty of duality exists between all relations connected with the
symbols +, ., and < by replacing + by -, - by 4, and < by >,0by 1,and 1
by 0. This property of duality is one of the important characteristics of Boole’s
binary algebra that also appears by isomorphism in Boolean algebra, in
certain lattices, and in the algebra of functional logic (see [K20]).

Thus, starting from (12.5),

(12.11) (x<y) < F+y=1< x5 =0,
we€ can say,
(12.12) (x=y) <> %y=0<xtj=1.

That can be verified by a different method by replacing x by y and conversely.
Taking (12.9) as a further example, we obtain

(12.13) (x=y) = (x+2) = (y+2),

and we can verify that the inverse implication is false.

2. Boolean Matrices

A Boolean matrix contains elements that cannot be equal except for O or 1.
The following matrix is, for example, Boolean:

o o 1 1 O

a4 =t ° ° L o

1 1 1 0 1
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itis a 4 x 5 Boolean matrix, the 4 showing that it contains four lines and the 5
showing that it has five columns.

Boolean matrices have particularly important properties that must be
examined.

Given two Boolean matrices [A4],,x, and [B], x, the respective elements
of which are represented by a;; and b,;, we shall define the Boolean sum of the
two matrices by a single matrix [C],, ., such that its elements C;; are

(12.15) ¢ = a;;+by;, i=12,...m; j=12,..,n.
Example
0 1 0 1 o 1 0 O
(12.16) 1 0 0 Oj4+f1 0 1 O}=]1 0 1 Of.
0 0 0 1 O 0 1 O

Let us now consider what is meant by the Boolean product of two Boolean
matrices. Given two such matrices [4],., and [B],x,, we define their
Boolean product by a matrix [C],,«, the elements C;; of which are such that
(12.17) cij = a“.blj-i-a{z.sz-i-...-i—ai,.b,j,

i=12,....m; j=12,..,n.

We shall indicate the Boolean product of two matrices by the symbol o,

Example
0 1 o0 1 1
0 1
1 0 1 0 1
(12.18) oll 1|=
0 1 1 1 1
0 1
0 0 O 0 0

We also define the complementation or negation of a Boolean matrix [A4],, .,
with elements g;; by a matrix [B],,, such that

(12.19) b; = a;, i=12,...,m; j=12,...,n.

Example

(12.20)

aofo o I
[]_1100’ []=[]—0011

We can also define the conjunction of two Boolean matrices [4],,«, and
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[B],,x» by a matrix [C],,«, of which the elements c;; are such that

(12.21) ¢ = a;. by, i=12,...,m; j=12,..,n.
We shall indicate this operation by the symbol .
Example '
0o 1 o0 1 0 1 0 O 0 1 0 O
(12.22) 1 0 0 O|¥ft o 1 of|=(1t 0o o0 o
0 0 0 1 0O 0 1 0 0 0 0 O

The disjunctive sum of two Boolean matrices [A4],,x, and [B],,«, is given
by a matrix [C],,«, of which the elements c;; are such that

(12.23) ¢ = a;®b; = a;;.b; + a;.by;,
i=1,2...,m; j=12,..,n.
Example
o 1 o0 1 O 1 0 o 0O 0 o0 1
(12.24) 1 0 0 Oj®llt 0 1 o0)J=|0 0 1 0}
0 0 o0 1 0O o0 1 o 0O 0 o0 1

The disjunctive product of two Boolean matrices [A],, and [Bl, ., is
given by a matrix [C],,«, of which the elements c;; are such that
(12.25) C,'j= ail.blj®a,-2.b2j®...@ai,.b,j,
i=12,....,m; j=12,..,n.
We shall indicate this operation by the sign ©.

Example
o 1 0 1 1
0 1
1 0 1 0 o
(12.26) o1 1} =
0o 1 1 1 0
0 1
0O o0 O 0 0
Finally, we say that a matrix [B],,, dominates a matrix [4],,, if we have
(12.27) bl] ? aij, i = 1, 2, saay m; j = 1, 2, ey R

We then state,

(12.28) [B] = [4].
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If for every i and j we have
(12.29) b;; > ay, i=12...,m; j=12,..,n,

we say that [B] strictly dominates [ A].

Example
0 1 1 O 0 1 0 O
(12.30) 1 1 0 1|=2]1
1 0 0 1 0 0 0 1

—_
(=]
(=]

In this example the symbol > could also be used.

It must be observed that two Boolean matrices m x n are not necessarily
comparable (one does not necessarily dominate the other). The reader should
not find it difficult to discover a contrary example.

The relation of domination between Boolean matrices m x n possesses the
following properties:

(12.31) [4] < [4],

(1232 ({4l < [B] and [B] < [4]) < (4] = [B]),
(1233)  ([4] < [B] and [B] <[C] = ([4] < [CD),
(1234) (4] < [B]) = ([41°[C] < [4]°[CD),

if these three matrices are square.

Of course, all the general properties of matrices are valid for Boolean
matrices and we shall not recapitulate them here since it would involve a
course in matrical calculation, but the reader is referred to works that have
already been mentioned. In the usual accounts of matrices we consider the
ordinary algebraic sum indicated by + and the product shown as . or x,
whereas here we are concerned with other operations that are defined by
(12.15), (12.17), (12.19), (12.21), and (12.25). It is possible to define many
others of a greater or lesser value, but we shall concern ourselves mainly with
the properties connected with the operations 4 and o:

< <
< <

(12.35) (A} +[BD+[C) =[A4]+(B]+I[CD associativity for +;
(12.36) ([A}e[B]) o [Cl=[A]e ((B]o[C)) associativity for o;
(12.37) [A] o ([B]4+[C]) =[A) e [B]+[A4)e[C] distributivity to the left;
(12.38) ([A]4+[B]) e [C]=[A] e [C]+[B]o[C] distributivity to the right.

The reader should try to discover similar properties that are verified for
suitable associations of the operations defined above.
Let us now consider other properties concerned with square Boolean
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matrices. In doing so let us employ the usual exponential symbol for the

Boolean product of two Boolean matrices, and if other operations give cause

for confusion we shall provide the necessary warning at the required time.
Hence, for a square Boolean matrix, we can state,

(12.39) 4] = [/i] o[A]o...0 [A]

r times

and it can easily be verified that we have
(1240) AT =[] o[4] = [A]o[4T™",
(1241) [T o [A] = [AT o [4] = [AT"",
(12.42) ([ATY = ([4]Y = [4]™.
An important special case concerns square Boolean matrices in which the
principal diagonal is composed of 1, that is to say, such that a; =1, i =

1,2, ..., n, where n is the order of the square matrix. In this case we find the
interesting property*

(12.43) <] <sMMP<..<MA]'=[M4]"=[4]""' =
Before giving the proof, let us take an example from our reference [K14].
1 0 O 1 0 O] 1 0 O
[A]=[0 1 1f, [A=[0 1 1foj0 1 1
1 0 1 1 0 141 L1 o0 1
1 0 0]
=|1 1 1],
L1 0 1]
(12.44)

o ojrt o0 0] 1 0 0]
[AP =[4)?o[4]=|1 1 1fej0 1 L{=|1 1 1},

it o 1J1t o 14 L1 o0 1
"m0 o011 0 01 1t 0 0
[A]‘*:[A]-"O[A]: 1 1 1lo]1 1 11=|1 1 11].

1 0 1411 0 1] Ll 0 1]

! We shall represent as 1 every unit matrix, that is to say, a matrix such that
a; =0, i#J,
=1, i=J
It is known that such matrices play a unit role in the matrical product.
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It can be seen that we have

1 o0 0] 1 0 0] 1 0 O

(12.45) 0 1 0l < |0 1 1< |1 1 1
0 0 1 1 0 1 1 0 1
[1] [4] [4]?
1 0 O 1 0 O
=1 1 1 =11 1 1| =
1 0 1 1 0 1
(AT [4]*

To prove property (12.43) let us first return to (12.17). By representing the
elements of [4]" as a{} we obtain

o
(12.46) a? = Y a4,

e}
where ) indicates that we perform the summation in accordance with formula
(12.17). Likewise

o o
(1247) ag]:'” = z Z aiau . au;az . aazj

Xz Ay

and, in a more general way,
o

(1248) ag:) = Z Aigy - Qayay s+ =gy, e

0Ly 02y eeey Ap

By the definition of [A4] it is clear that we first have

(12.49) [11< [4].
Because of (12.34) we can state,
(12.50) [AIS [APP< AP € .. <[A]" ' <[AT< [AT "' < ...

Let us now show that if r = n where n is the order of the square matrix [A4],
then

(12.51) [AT ' > [AT = [AT*' > ...

To do this let us consider one of the terms a;,,.ay,4,-+** .4, _,, ; of (12.48)
for r = n. Since there cannot be n+1 separate indices 7, oy, &y, ...y %y_1,J,
there must be an 4 < k such that «, = «,. Hence, we can write the right-hand
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expression of (12.48) thus:
(12.52) Qigy - Qgyay v+ @ a

N S a a

anansyt o Aoy a

ka1 T Fan=1, J

< a; .
S PR B Y S I

In the second member of (12.52) there are at most (n—1) factors. By supposing
that there are less than (n— 1) we can complete the product with factors of the

form a,,,, = Gy4, = Quya, = 1, in such a way that
(12.53)
Aoy - Agyaye oo Aoy,
K iy Ayiaye o Qo yan Capansr o Qe soic* Baoens o Vo yy 3

the right member of (12.53) having (n— 1) factors.

But this member is a term that belongs to the expansion, in accordance with
(12.48), of 4}~ ). Since the relation (12.53) is true for all the possible values
of the indices «;, &y, ..., %,_;, we conclude a{® < a{}~". Since this is true

for every / and j from 1 to n, we deduce that
(12.54) [AT"< [4]""

From the consideration of (12.50) and (12.54) we certainly obtain (12.43).
The first exponent & for which [4]F = [4]**! is known as the characteristic
exponent of [A]. Hence, in accordance with (12.43) we have k <n—1 and

[4]" < [41%, r<k,
(AT = [4T", rzk.

(12.55)

3. Boolean Determinants

For a square Boolean matrix [4] with elements g,
describe as the Boolean determinant of [A] the number

i i) ]= 1) 2) <y 1, WE

[ [
(12.56) det[A]l = Y Gya-G24peeee O,
Ay A2y veey An

where the dot over der indicates that we are not concerned with the vulgar
determinant, and the dot over the summation sign indicates that we are dealing
with a Boolean summation in accordance with (12.15). Finally, the
g5 0y, ..., &, Show that the summation must be performed for all the permu-
tations of the indices «,, r =1, 2, ..., n. This is the determinant that is so well-
known in classic matrical calculation, but here the operation + is replaced
by the operation 4.
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Example
Given
1 0 1
(12.57) [A]=(0 1 1
1 0 O
We have
1 0 1

(12.58) det|o 1 1 = (1).(1.040.1) 4 (0).(0.04+0.1)
1t 0 ol $(.0.141.1)=1.

If we employ M;; for the minor of a;;, defined as the Boolean determinant
of matrix [A] when deprived of its line / and its column j, we can then say,

[ ]
(12.59) det[A] =all.M11+021.M21-i—...-{—a,,l.M,,l,

an expansion that can be extended to any line or column, as occurs in
Laplace’s expansion in classic matricial calculation, although here the opera-
tion + would be used.

Let us now consider some properties of Boolean determinants.

1. The value of a Boolean determinant is unchanged if we permutate the
lines or the columns.

2. The value is unchanged if we permutate the lines with the columns.

3. Iftwo columns (or two lines) are identical the determinant is not neces-
sarily null, although in the case of a vulgar determinant we know that it is.
This requires a simple counterexample.

e« J1 1
(12.60) det [1 J =1).O+D.V=14+1=1.

4. Ifae{0, 1} and we multiply a line (or column) by «, then the Boolean
determinant is also multiplied by «.

5. A Boolean determinant that possesses a line (or column) in which all
the elements are 0 is equal to 0.

6. In a Boolean determinant if we multiply a line (or column) by
o e {0, 1} and if we add (4) this line (or column) to another line (or column)
we do not necessarily obtain the same determinant as occurs with vulgar
determinants. This can be shown by a counterexample.

e |0 1 e (041 1 e (1 1
(12.61) det =0, det = det =1,
0 1 041 1 1 1
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We define the conjugate Boolean matrix [A]* of a Boolean matrix [A4] as
follows, the elements a7 of [4]* being the Boolean minors M;; of [4]:

1 0 1 1 1
(12.62) [a1={o0 1 1f, [A3*={0 1 0f.
1 0 0 1 1 1

It can be proved (see [K14], p. 14) that if [4] is such that a; =1,
i=1,2,...,n then

(12.63) [4]* = [4]",

where k is the characteristic exponent.

4. Boolean Binary Functions

Given a function f(x,, x,,...,%, of n binary variables x;e{0,1},
i=1,2, ..., n, such that the operations that take place between the variables
can only be (.), (+), and (7) or can always be reduced to these operations, we
say that these functions are Boolean binary or more simply, where no con-
fusion is possible, Boolean functions.

Example
(12.64) F(x1, %5, X3, X4) = X1 . X34 %5.%3. %4+ X3

is a Boolean function.

It was shown in Section 10 that every function with binary values can be
expressed in a unique form known as canonical disjunctive and in another
unique form known as canonical conjunctive (see (10.33) and (10.37)).

Thus, let

‘(12-65) Sy, x5, X3) = x1. X4 %5.%5.

This function expressed in its canonical disjunctive form is, in accordance
with (10.30),

(12.66) F(xy, X, X3) = Xy . X5. X34 %, . %y . Xy b xy . Xy %34 %, .%5.%3

and, in its canonical conjunctive form,

(12.67) F (15 xa5 x3) = (x4 x3). (g x5+ %3). (61 + X2+ X3)
(X X4 x5).

We say that two Boolean binary functions are identical if they have the
same canonical disjunctive form and/or the same canonical conjunctive form,
that is to say, that they still possess the same minterms or the same maxterms.
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5. Pseudo-Boolean Functions!

The term pseudo-Boolean function is given to a function of binary variables
that takes its values from the set Z of the related integers. Here are two
examples:

(12.68) fxy, %2, X3) = 3%,%,—2x3,
(12.69) SCois X2, X3, Xg) = 8%, %3+ X, X, X3 g+ X2 %4

are pseudo-Boolean functions.

These functions possess an important characteristic property: they are
always linear in relation to each of the variables that occur in them. By re-
suming: the reasoning? established from (10.22) to (10.30), it can be seen that
formula (10.30) remains valid whatever the nature of ¢@(x;, x,, ..., X,).
Hence a pseudo-Boolean function can always be expressed in a canonical
disjunctive form.

Let us take an example. Let

(12.70) F(xy, x3) = 5x,%,—3x,.
We have successively

(12.71)

f0,0=0, f@OH=-3, [fQO0O=5, [f(OQ1D=-3.
Then, for the canonical disjunctive form,

(12.72) S(x1, %) = —=3%,%,4+5%x,%,—3x,x,.

Or again by taking x; =1—x;,

(12.73) Sy, %) =5x;—3x,—5x,x,.

We say that two pseudo-Boolean functions are identical if they have the
same canonical disjunctive form, that is to say, they possess the same terms
preceded by the same coefficients in this canonical form.

Owing to the very marked difference between the operations (+) and (+)
we can only obtain a canonical conjunctive form for pseudo-Boolean functions
at the expense of much greater complications.

! This term is due to P. Hammer [K 14].

2 We are concerned here with common and not Boolean addition, though the reasoning
remains the same.
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Section 13. Solutions for Boolean Equations and Inequations

1. Method of the Table of Binary Values.
Solution by Complete Enumeration

Given the equation,
(13'1) f(xl’xZ’ ""xn)= g(xl’xZ:--':xn);

a method for solving it is to complete the table of values for f and g for all
values of x; and to compare the results. This method can easily be explained
by means of an example. Let

Xy . Xo4Xy = X;.%3.X3+%,.

Let us draw up the following table:

(13.2)

(1) () 3) (&) (5 (6) (7) (8 9) (10)
ml x ma 52 ml'Ez mla_cz + ma El mzma Elmzma Elmzma i3 52
0] 0] 0] 1 0] 0] 1 0] 1 0]
0] 0] 1 1 0] 1 1 0] 1 0]
0] 1 0] 0] 0] 0 1 0 0] 0]
ol1]1}o0 0 1 1 1 1 1
1fojoj 1 1 0 0 1 0

1 o1 | 1 1 0 0 1 0

1 1 0] 0] 0 0] 0] 0] 0] 0]
1 i 1 0] g 1 0] 1 0] 0]

By comparing columns (6) and (10) we find that the solutions are given by
the following values of (x, x,, x3):

(13.3) 0,0,1), (0,1,0, (0,1,1), (1,0,0), (1,0,1), (1,1,0).
Let us consider another example. Let

(13.4) xl.fz.X3+x2.x4-FX3.f4=0-
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(13.5)
) @) 3 ) (5 (e) (7) (8) (9 (10)
x x z | x Z |zzx lzx |x zx |lzXdx +xzxz vz
1 2 3 4 2 123 2 04 4 34 1 23 2 4 34
o o 0] 1 0 o |1 0 0
0 00 {1 1 0 0o |o 0 0
ol o | O 0 0 |1 1 1
0| o [ 1 1 0 0o |0 0 0
0| 1 0o jo} o 0 0 |1 0 0
0|1 o |1 0 0 1 0 0 1
0| 1 1 o] o 0 0 |1 1 1
0| 1 1 1 0 0 1 0 0 1
1 ol ol o] 0 o |1 0 0
1 0 {0 |1 1 0 0o | o 0 0
1 0 | 1 o] 1 1 0 |1 1 1
1 0 |1 1 1 1 0o | o 0 1
1 1 0o | o] o0 0 0 ! 0 0
1 1 0} 0 0 1 0 0 1
1 1 1 o| o 0 o |1 1 1
1 1 1 1 0 0 1 0 0 1
The solutions are
(13.6) 0,0,0,0), (0,0,0,1), (0,0,1,1), (0,1,0,0,) (1,0,0,0),
(1,0,0,1), (1,1,0,0).
The inequations are solved in the same manner. Let
(13.7) XX, X34+X,x, < X, X5%5.
(13.8)
(L (2 3G @) (5) (6) (n (8) €] (10)
1 2 3 3 123 1 12 2 3 12 2 12
o |lof ol 0 1 0 0 1 0
o[ o0 1 0 0 1 0 0 1 0
0o | 1 o |1 0 1 1 1 0 0
o | 1 1 0 0 1 1 1 0 0
1 o | ol 0 0 0 0 1 0
1 0|1 0 0 0 0 0 1 1
1 1 0] 1 0 0 1 0
1 1 1 0 0 0 0 0 0
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By comparing columns (8) and (10) we find that the solutions are

(13.9) 0,0,0), (0,0,1), (1,0,0), (1,0,1), (1,1,1).

2. Systems of Boolean Equations
Let us consider a system of Boolean equations of the form
(13.10) filxy, %2, o0 x) =0, i=12,..,m.

It is clear that this system of equations has exactly the same solutions as the
equation

Mes

(13.11) fi(xys %35 .05 x,) =0.

i

]

1

For, if the Boolean sum is null all the elements of the sum must be null and
conversely.
Let us now examine a system of Boolean equations of the form

(13.12) gi(xy, %3, s x) =1, i=12..,m.

It is clear that this system has exactly the same solutions as the equation

[ ]
(1313) H gi(xl5 X293 <0 xn) =1.
i=1

for, if the product is equal to 1, all the elements of the product must be equal
to 1 and conversely.

If the system of equations contains equations of the form of (13.10) and
(13.11), we reduce them to (13.12) or (13.13) by stating

(13.14) fi=0=sf,=1 o g =1<g,=0.

Let us consider an example.

Let

(13.15) X1 X,x34-%;, =0,
(13.16) X x,4%; =1,
(13.17) X1X, %5 =1.

Let us take the complementary of (13.16) and (13.17) so as to have null second
members throughout. It follows that

(13.18) xle-i-i:; = X1 X3X3 = ()?1-{-)—(2) X3 = flx3-{-f2x3 = 0,

(13.19) xlex:; = x1x2+X3 = il-i-xz-i-x:; =0.
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Whence the equivalent system,

(13.20) X X3x34+%; =0,

(13.21) X x34X,%x3 =0,

(13.22) X, 4+X,4x5 =0.

Or again,

(13.23) X1 X X34 X F Xy x5+ X %34 X 4%, 4x3 =0,

1 @ @ (5 ® N
that we shall simplify as follows:

(13.24) Q+3)+G: X1 4X x3+%, = Xy,

(13.25) M+@D+O6):  x Xpx3FXx34X, = X35
(13.23) can then be expressed

(13.26) X 4%, 4x, = 0.

In accordance with the following table:

8
[
8
N
g
w
g
—
8
~
HHI
+
+
8
w

(13.27)

—|—=]—=]—|O|Cc|O]|O

—lol-lol-]lol=-|o
olo|—|—=|olo|—-|~-
clol=l=]==]={=

—|=|Oo]Oo|—]|—1C0| O
olojo|o|—=|—|—|—

the only solution is
(13.28) (1,1,0).

3. Systems of Boolean Equations and Inequations

Relations (12.5) and (12.6) enable us to reduce any equation or inequation
toaform f=0org=1.
If f and g are Boolean functions of the variables x,, x,, ..., x,, we have

(13.29) (fSg) = fig=1< f.3=0,

(1330) (f=g) = /f.G+/.9=0 J+9).(+D = L.
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Let us now see how a system of equations and inequations can be solved.
Let

(13.31) fle-{-fzx:; = 0,
(13.32) X1 X3 < %,
(1333) Xy iz-i-x:; = X5.

We have successively, by reduction to a form F=0;

for (13.32) :

(13.349) (xy%x3).x, =0, that is x;x,x, =0;
for (13.33):

(13.35) (31 %5+ x3) %5 + ey X2+ %3) X, = 0,

that is

(13.36) X Xy 4+Xx34x,%; =0.

From which finally

(13.37) X x4 X%,x3 =0,

(13.38) X, %2%3 =0,

(13.39) X X4 X,x34x,%; =0.

We leave the reader the task of discovering the solution (or solutions) if
one exists.
Let us now consider the case of a strict inequation of the form

(13.40) f<g.
Let us say that
(13.41) f<g<f=0and g=1,
or again,
(13.42) f<g<ef=1and g=0.

Hence we can now form two equations each of which is equivalent to
(13.40), namely,

(13.43) (f<g)efg=1,



180 1I. ALGORITHMS AND HEURISTICS

and

(13.44 (f<g)=f+7=0.

Lastly, let us consider the case of inequations with the following forms:
f<0 e f=0,
f < 0 impossible,

(13.45)
f=0 always true,

f>0ef=1.

Hence all the equations or inequations, all the systems composed of
equations and/or inequations can be reduced to an equation of the type of
(13.11) and/or of (13.13).

4. Arborescent Method (Method of Branchings)

Once the number of variables exceeds four it becomes difficult and laborious
to complete the enumeration table, so that it is desirable to avoid such
enumeration. The following method is designed to reduce it, and will be
explained by means of two examples. The first is of a purely instructional kind
concerned with an equation with four unknowns, for which the method of
complete enumeration might, in fact, prove easier.

First Example
Let us return to (13.4):

(13.46) x122x3+xZX4+X3i4 =0.

Let us arbitrarily commence with the variable that occurs most often,!
namely x, (we could equally have chosen x,). Let us suppose

(13.47) x; =1,
Substituting (13.47) in (13.46), we obtain
(13.48) Xodx3%g = 0.

The consideration of this equation at once shows us that we must have
x4 =0 and hence x; = 0. If we substitute these values and x, =1 in (13.46)
this equation is equally verified. Thus we can take x; =0 or x; = 1 and have
found two solutions,

(13.49) [0,1,0,0] and [1,1,0,0].

Beginning with R in the arborescence of Fig. (13.1) let us mark the vertices

! There is no formal reason for beginning in this way, but we judge that it will provide a
greater chance of progressing with increasingly simple formulas.
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FiG. 13.1

corresponding to x; =1 and x, =0. Let us proceed by taking x, =0 in

(13.46) and let us then choose another variable x, that occurs most frequently

(though this choice is not essential) and that we make equal to 1.
Substituting

(13.50) x, =0, x3=1,

in (13.46); it follows

(13.51) x, 4%, =0.

From which we conclude that x; =0 and x, = 1. This gives a fresh solution,
(13.52) [0,0,1,1].

Let us proceed by making x, = 0, x; = 0 in (13.46) and let us select another
variable x, to which we shall give the value of 1. Let us now substitute

(13.53) x, =0, x; =0, x, =1,

in (13.46) (this equation is verified whatever the value of x,). We now have
two further solutions,

(13.59) [1,0,0,0] and [1,0,0,1].
Lastly, let us make
(13.55) x,=0, x3=0, x,=0, x,=1.
We can verify that this is a solution, namely,
(13.56) [0,0 0,1].
And, lastly, let us make
(13.57) x,=0, x3=0, x, =0, x,=0.
This is also a solution,

(13.58) [0,0,0,0].
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It is not possible to find any more solutions since we have successively
evaluated, without omission or repetition,

the subset of solutions for which x, =1,

the subset of solutions for which x, =0, x; =1,

the subset of solutions for which x, =0, x;=0, x; =1,

the subset of solutions for which x, =0, x;=0, x, =0, x, =1,
the subset of solutions for which x,=0, x; =0, x; =0, x, =0.

The union of these five subsets gives the set of solutions.

The manner in which we constructed the arborescence was purely arbitrary,
and any other progression could have been chosen. In practice it is not always
necessary to calculate the solutions for an arborescence with complete
branches in order to obtain all the solutions; when a certain point has been
reached it can often be shown that it is not necessary to proceed further.

Second Example
Let us consider the system of five Boolean equations with seven variables:

(1) a+b=2¢.d+é.f.g,

(2) btd=a.c.e,
(13.59) (3) e=a.b.c+f,

4 f==>b.c.d+e.g,

(5) g=a.b.c.dte.

If we take an inventory of the variables and their complements we find that
they occur as follows: ¢ six times, b five times, a and e four times, f and g
three times. Let us decide to begin with c.

a. ¢=1. Then system (13.59) becomes

(1) a'i'b:é']‘g,

(2) b+d =0,
(13.60) (3) e=7F,

@ f=0,

G) g=c¢.

By considering (2) we find that (c = 1)= (b = 0) and (d = 0). By considering
(4) we see that (x =1)=(f=0). This result, when substituted in (3) of
(13.60), shows that (¢ = 1)=> (e = 1). This new result substituted in (5) gives
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(c=1)=(g=0). All these results when introduced into (1) give (c=1)=
{a = 0). Hence we have obtained a solution,

(13.61) [a,b,c,d,e,f,9] = [0,0,1,0,1,0,0].
b. ¢=0,b=1. The system becomes

() 1=4d+ef.3,

 1=a.e,
(13.62) B) e=7F,
@ f=3,
5) g=e.

Equation (2) gives a =0, e =0; from this, in accordance with (3), we have
f=1, and in accordance with (4) we have g =0 which would give e = 1.
Thus (3) and (5) are incompatible for ¢ =0 and d = 1. Hence at this vertex
of the branching there is no solution.

c. ¢=0,b=0,e=1. We have

(1) a=4d,
2 da=0,
(13.63) (B) 1 =a+f,
@4 f=4d4+37,
(5) g=a.b.

We find successively that from (2) d =1, from (5) g =0, from (4) f=1. But
by substituting @ =0 and f=0 in (3) we produce an impossibility, so that
there is no solution.

d ¢=0,6=0,c=0,a=1. We have

1 =d+f.g,

(2 d=0,
(13.64) 3 o0=71,

@ f=443,

6 g=1.

We find successively that from (2) d =0, from (3) f= 1, from (5) g = 1. If we
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now substitute these values in (1) and (4) we find that these equations are
verified. Hence we have a solution,

(13.65) [a,b,c.d,e.f,g9] = [1,0,0,0,0,1,1].
e. ¢=0,b=0,e=0,a=0,d=1. We have
(1 o0=fg,
(13.66) 2 1=1,
(3) 0=1 impossible.
And it is useless to proceed further since relation (3) cannot be satisfied

whatever the value of 4.
Hence there are only two solutions,

(13.67) [a,b,c,d, e,f,9] = [0,0,1,0,1,0,0],
(13.68) [a,b,c,d, e f,9] = [1,0,0,0,0,1,1].

Important Observatian

It is advisable to avoid complete enumeration and to use sifting procedures
(sequential or arborescent elimination) since the number of cases to be
examined increases exponentially as the powers of 2 with the number of
variables. Let us observe a few revealing figures,

21— 1024 = 1.024x 103
2190~ 1.2677x 10%° a number of 31 digits!
21000 ~ 10716 x 103°° a number of 301 digits!

These show the necessity of avoiding complete combinatorial enumeration.

The branching method can be employed for inequations, since these can be
transformed into equations by means of properties (13.29), (13.30), (13.43),
or (13.44). Let us take a brief look at the procedure, using example (13.7).

(13.69) X1 X X3+ X%, € X X5%5.
By making use of (13.29), we obtain
(13.70) (X X2 X3+ %, X, < X, %2%3) > (X%, %3 +%,%5). (X, %2%3) = 0.
The right member can be simplified:
(13.71) (g X3 %3+ %, X5) - (X, X2 %3)
= (XX X3 4%, x,). (X + x4 %3) = x,. (X, +%3) =0.

To solve (13.71) we now need only employ the branching method, but for
this very simple equation the five solutions (13.9) can be found by inspection.



13. SOLUTIONS FOR BOOLEAN EQUATIONS AND INEQUATIONS 185

5. Method of Families of Solutions
This method consists of two stages.

1. Reduce the equation, inequation, the system of equations and/or of
inequations to a single equation of the form

(13'72) f(xlax29 "'3xn) = 1’
and express f in a disjunctive form that is not necessarily canonical or sole.

(13.73) ¢1+o+ ...+, =1.

2. Consider every function ¢;, i=1,2,...,r. The condition ¢ =1
provides a family F; of solutions and their set is given by

(13.79) F=F,uvF,u...uF,.
Let us consider an example. Let

(13.75) Xy X4 X Xy X5+ X3 X+ Xy X3+ X3%54- % X4%5 = 0.
By taking the left and right complement, it follows that
(13.76)
(X34 x4) (31 + X2+ X5) (334 x4) (x2Fx3) (X3 X5) (X3 F x4+ %x5) = 1.
And after the multiplications, cancellations, and absorptions, we have
(13.77) X1X3X3+X3X3Xa+X3X3%5 X X3XqFXX4Xs5FX3%,%5 = 1.
From this we obtain
(13.78) ©1 = X1X3X3, @3 = X3X3X4, @3 = X2X3Xs,

P4 = X1X3X4, @5 = X3X4Xs5, Qg = X3X4Xs.
(13.79)
For ¢,, we have : F; = {[x,, X3, X3, X4, X5]Ix; = 1, x, = 0, x; = 1},
For ¢,, we have : F, = {[x,, X3, X3, X4, Xs]|xs =0, x3 = 1, x4, = 1},
For ¢,, we have : F; = {[x,, x5, X3, X4, X5]|x; =0 x5 =1, x5 = 1},
For ¢4, we have : F, = {[x;, x5, X3, X4, Xs]|x; =0, x3 = 1, x, = 1},
For @5, we have : Fs = {[x{, X2, X3, X4, Xxs]lx; = 1, x4 = 1, x5 = 0},

For (p6, w¢E haVe . F6 = {[xl, xZ, X3, X4, xS:HX3 = 1, X4 = 1, x5 = O}-
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We then construct a table:

x x z lx x
1 2 3 4 5
F i 0 Il | x
1 4 5
F x 0 1 1 x
2 1 5
(13.80) F3 x 0 I i
1 4
F 0 x 1 oz
4 2 5
F x i x i 0
5 1 3
F x x 1 ! 0
6 1 2

And from this table, by assigning to x; (( =1, 2, 3, 4, 5) the values of 0 and 1,
it follows that

x x x x x
1 2 3 4 5
| 0 1 0 0
| 0 | 0 |

F
1 | 0 | | 0
| 0 | | |
0 0 | 1 0
E 0 0 ] | |
2 1 0 ] 1 0
| 0 | 1 |
0 0 | 0 |
0 0 | | |

F3
| 0 1 0 |
(13.81) ] 5 1 " "
0 0 | ] 0
0 0 | 1 |

Fu
0 1 | | 0
0 1 | 1 |
0 1 0 | 0
E 0 | | 1 0
5 | i 0 | 0
1 1 | 1 0
0 0 ] | 0
0 | 1 1 0

F
6 1 0 H 1 0
1 1 1 1 0
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By effecting the union of these families we obtain the table of solutions:

xl x2 x3 x‘d xs
Lol o] o
vl ol | o]
v ol i |t o
I T AT T I
olo |11 ] o
(13.82) ool 1] 1|1
F
ol 1 |1l 1]o
ol 1| v 1
ol 1 {o|1{o
vl lof ] o
I I R T A
ol o 1] of

6. Pseudo-Boolean Linear Equations’

Given an equation
(13.83) A xy +BiXi +A,x, + ByX, + ...+ A,x,+ B,X, =K
where
x;e{0,1}, i=12,..,n, A;,B;eR, i=1,2,...,n,
and KeR.

We assume A4; # B;, i=1,2, ..., n, otherwise A;x;+ B;X; = A;(x;+ X)) = A;,
where the plus signs represent common algebra. An equation such as (13.83)
is known as a pseudo-Boolean linear equation.

To solve such an equation, we proceed as follows:

Let us first assume

(13.84) yi=x if A4, >B, and y, =3% if B> 4.

! This subsection, like the preceding one, has been inspired by the work of P. Hammer
and S. Rudeanu [K14]. .



188 II. ALGORITHMS AND HEURISTICS

From this we obtain

(13.85) Ax;+B;x;, = |[A;—Bj| y; + (A;AB), i=12..,n,
where |«| indicates the absolute value of &« and a A § means the minimum of
o and B.

Let us assume
(13.86) Ci = |4;—By,

then (13.83) can be expressed as

(13.87) Aixi+Bi% = ) Ciyi+ Y (4AB) =K.
=1 i=1 i=1

Let us assume further that

n

(13.88) D=K-Y (4AB),
i=1

then (13.83) will become
(13.89) Ciy1+Coys+...+Cy,=D.
Now let us arrange the C; in their total natural order, which gives the C;:
139090 Ci=Cyiz...=2C,
and let us make variables u; correspond to the y;. This finally gives
(13.91) Ciu, + Cyu,+ ...+ Chu, = D.
It can be proved! that eight distinct cases can emerge as follows:
(1392) (1) D < 0. There is no solution.
(13.93) (2) D =0. The sole solutionis u; = u, = ... = u, = 0.
(1394) (3) D>0,withCi 2Cy,2..2C,>D>Cpyy 2 ... >C,.

The solutions (if any) satisfy

u1=u2=...=up=0 and z C;..uj=D,
j=p+1
(1395) 49 D>0withC;=C,=...=C,=D2C,yy 2 ... 2C,.
Then, (a) for every k=1,2, .., pryy=1and u,=...=u_ =y, =...
= u, = 0 is a solution; (b) the other solutions (if any) satisfy
Uy =...=u,=0 and ) Cju;=D.
Jj=p+1

! See [K14], page 50 of the English edition of this work or page 59 of the French trans-
lation,
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(1396) (5 D>0, Ci;<D, i=12..,n and Y C;<D.
i=1
No solution.
(1397) (6) D>0, C;<D, i=1,2,..,n and Y C;=D.
i=1
The sole solution is u;, =u,=...=u,=1
(1398) (1) D>0, C;<D, i=1,2,....,n and >Ci>D
i=1
and Y Ci<D
i=2
The solutions (if any) satisfy
uy=1 and ) Cju; =D-Ci.
=2
(13990 (8 D>0, Ci<D, i=12,..,n and Y Ci>D
i=1
and ) C;=D.
=2
The solutions (if any) satisfy
given u; =1 and Y Cju;=D-Cj,
(13.100) =
given u; =0 and ) Cju;=D.
j=2

To enumerate without omission or repetition all the solutions of (13.89)
and then those of (13.83) we shall proceed by the method of forks or branchings.

One example will suffice to demonstrate the procedure. Let
(13.101) 3x,+2%,+7x,— X, +4x3+8%, = 10.

Let us first carry out the conversion given in (13.86) and (13.88).

(13.102) C, =|3-2| =1, C,=17+1] =8,
C,=4-0=4, C,=[0-8 =38.
(13.103) A AB, =3A2=2, AyAB, =TA(—-1)= -1,

A;ABy; =4A0=0, AsAB, =0A8=0.

Then (13.101) becomes

(13.104) Y1+8y,+4ys+8y, = 10— (2—14+0+0) = 9.
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Or again, by assuming

(13.105)
Uy =Yy = X3, Uy = Y4 =2X4, Uy =}Y3 =2X3, Ug= Y1 = Xg>
(13.106) 8u1+8u2+4u3+u4 =9.

We shall solve (13.106) by considering which case will provide the conditions
laid down in (13.92)-(13.99).
We find ourselves in case (8), that is to say (13.99), and we have

D=9>0, C, =8<D, C,=8<D, Cy =4<D, C, =1<D.
(13.107)
i=1

4 4
Y Ci=8+8+4+1=21>D, ,;2 C;=8+4+1=13>D.

Hence we shall state,

(13.108) u, =1,

whence

(13.109) 8us+4uztu, =1.
Or

(13.110) u; =0,

whence

(13.111) 8uy+4uz+u, = 9.

The successive branchings will be shown in Fig. 13.2.
Let us now consider (13.109) where we are in case (3), namely (13.94);
indeed,

(13.112) D' =1>0, C,>C,>D =C,.
Hence we shall state,
(13.113) u,=uy; =0 and u,=1.

Let us now consider (13.111) where we are in case (7), namely (13.98);
indeed,

D’=9>0, Cy<D’, Cy<D’, Ci<D’,

8+4+1 =13 < D",

(13.114) Z C

i=2

e

C,=44+1=5<D".

1l
w
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Hence we shall state,

(13.115) u, =1
and
(13.116) 4us+u, =1.

Fic, 13.2

Let us consider (13.116) where we are in case (3), namely (12.94), and indeed
(13.117) D" =4>0, Cy>D" = C;.
Hence we can state,

(13.118) u; =0 and wu,=1.

We have finally found two solutions,

(13'119) [ul s Uz, U3, u4] = [1a0,0, 1],
and
(13'120) [ul s Uz, Uz, u4] = [0: 1:0, 1] .

Passing to the initial variables x;, i = 1, 2, 3, 4, and making use of (13.105),
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we obtain as a solution of (13.101)

(13.121) [x1, X3, %3, x4] = [1,1,0,1],
and
(13.122) [x,, x5, x5, x,] = [1,0,0,0].

It must be observed that in such a simple example the solutions could have
been obtained by inspection, but the procedure becomes useful and indeed
indispensable, in the absence of a better one, as soon as the number of variables
increases. The corresponding table of enumeration is given in (13.123).

acl @, z, z 3 .7cl 2 .7_c'1 7 € —52 4 ac3 8 E‘; Total
0 0 0 0 0 2 0 -1 0 8 9
0 0 0 ) 0 2 0 ~1 0 0 1
0 0 1 0 0 2 0 -1 4 8 13
0 0 1 )] 0 2 0 -1 4 0 5
0 1 0 0 0 2 7 o 0 8 17
0 )] 0 i 0 2 7 0 0 0 9
0 1 1 0 0 2 7 0 4 8 21
(13'123) 0 1 )] | 0 2 7 0 4 0 13
)] 0 0 0 3 0 0 -1 0 8 10
)] 0 0 )] 3 0 0 -1 0 0 2
1 0 1 0 3 0 0 -1 4 8 14
1 0 1 )] 3 0 0 -1 4 0 6
1 1 0 0 3 0 7 0 0 8 18
)] )] 0 )] 3 0 7 0 0 0 10
1 1 1 0 3 0 7 0 4 8 22
1 )] 1 )] 3 0 7 0 4 0 14

Space is lacking in this work to treat pseudo-Boolean linear inequalities or,
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in a more general way, systems of Boolean linear equations and/or inequations,
but the reader is referred to the work by Hammer and Rudéanu [K14], so
often mentioned and utilized here, in which all the appropriate methods are
explained and developed with remarkable clarity and detail.

Section 14. Mathematical Properties of Programming with Integers

1. General Observations

In this and the following sections we shall pursue two objectives. First we
shall trace the historical development of the methods (the dual-simplex
method, Dantzig-Manne’s and Gomory’s procedures, asymptomatic pro-
gramming, and so on). Secondly we shall endeavor to improve the readers’
knowledge of the geometry of polyhedrons, linear programming, and group
theory, so that they will be better able to comprehend the more fundamental
aspects of the methods.

Nevertheless the knowledge acquired by the readers of the first two volumes
of this work, with respect to linear programming in Volume 1 and dynamic
programming in Volume 2 should enable them to understand what is discussed
in the present and subsequent sections. It is this instructional purpose that
has led us, for instance, to modify Gomory’s explanation of asymptotic
programming since it requires elements of modern algebra that would be new
to some of our older readers (such as the concepts of isomorphism, homo-
morphism, and the group), and so we reduce it to Smith’s less abstract form
presented in this chapter. We believe that what of a general nature will be lost
by this change will be made up for by the gain in simplicity.

The methods for solving integer programs by direct search have been given
in the first part, since they required only an elementary knowledge of mathe-
matics. Here we shall concentrate with strict formality on the methods needed
to produce cuts.

For lack of space a third group of recent methods, that of the cut and search,
to which the main contributors were Glover [K39] and Balas [K27], has not
been included, not because less importance was attributed to them but
because it would have been necessary to extract the essential elements of
instruction contained in them. Moreover, no sooner were the proofs of this
work corrected, than new methods appeared. Let us recall that the volumes
in this work are not intended as treatises but as a means of acquiring knowledge
and practical methods for readers absorbed in economic life.

Having first made clear the practical importance of problems of program-
ming in a cone, and having referred to integer programs, we shall devote
Sections 16-22 to original material concerned with the theory directlyinvolved.
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To be sure, some of the more difficult passages will demand a considerable
mental effort on the part of our readers, but any acquisition of knowledge,
even if facilitated by preliminary instruction, requires this. Qur aim has been
to reduce this effort as much as possible.

2. Convex Subsets and Polyhedrons

In this section we shall consider the set product R” having the well-known
properties of a vectorial space’:

(14.1) R"=RxRx..xR

where R is the set of real numbers.
A convex subset X of R” is a subset such that, if

‘x(llﬂ
(14.2) [xV] = | x4V

E
and

x
(14.3) [x®] = | x2

are any two elements of X, then every element or point such that

X1 x(ll) x(12)
2

(14.4) xg | = AP +0=2)|xP],
| L 4

that can also be expressed as
(14.5) [x] = 2IxP1 + (11— [x*1,

also belongs to X if 0 < A< 1.

We also state that if [x] belongs to the segment that joins [x(*] to [x®],
it belongs to X if X is convex for any pair of elements [x!)] and [x®]
belonging to X.

Let us first consider an example in R% = R x R (Figs. 14.1 and 14.2). The
subset A = R? shown in Fig. 14.1 is convex. Whichever pair of points [x‘!']
and [x®] is chosen in A, all the points of the segment connecting them
belong to A.

! See page 195.
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! Let us recall that a vectorial space such as R"is defined by the following properties. If

X1 Y1

X2 Y2
x1=1. and [yl =

" yll

are any two elements of R", it is usual to refer to them as vectors. The following properties
can then be verified :

xytys
X2t y2
Y] 1+l =] . = [x+yl.
'..+,v..
(2) If Aisascalar: AcR:
Axy

Axz
Alx] =1 . = [Ax].
Axy

Mathematicians, however, give a much more general sense to the concept of vectorial
space. We describe it for the benefit of readers with a more advanced knowledge of modern
mathematics, adding the necessary explanations.

Let us consider a set K with a bodily structure that satisfies the two internal laws repre-
sented by + and e, namely (K, +, ®). On this set, called the scalar body, it is possible to
perform operations similar to common addition and multiplication on the one hand and to
subtraction and division on the other, such as we carry out for the set R of real numbers, A
second set V provided with a structure having a commutative grouping for a law indicated
by %, namely (V, *) is also considered. We say that V is a vecrorial space if a law of external

arrangement exists for K indicated by o, that is to say that by means of o we arrange an
element g € K and an element ¥ € V that can be expressed

aoV="U, VaeK, YV, UeV.

This external law should verify the following axioms: V¥V, U € V, and Va, b € K,

() (@xb)oV=(@cN*poV)

(2) ao(VxU)=(@@oV)x(aol),

(3) ao(doV)=(@och)oV,

(4) e o V=V, where e is the unit of K—0 for the law indicated by o of K and 0 is the
unit of K for the law »*,

The elements of V are called vectors. It should be noted that, in practice, we use the same
symbol for + and = on the one hand and for e and o on the other, but this can lead to con-
fusion for certain vectorial spaces.

In the special case of vectorial space considered in this and the following sections we take
K =R and V= R" «x=+ and o = e; this permits some simplification and allows us to
define this special but most often used space without the need for being too axiomatic. Let
us also observe that this vectorial space defined in R" is termed an affinity if no metric is
introduced.

For fuller details the reader should consult one of our references such as [K45].
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N/

[x(l)]

Fic. 14.1

This is no longer

Y

4
C

true in the example given in Fig. 14.2, where [x®*’] and

Fic. 14.2

[x™] clearly belong to B, but there is at least one point [x'] situated on the
segment joining these two points of B that does not belong to B.

Let us consider another instructional example.

Let there be a straight line

146 b=

which therefore passes through the origin,

[0] =

Fx1 a;

Xy =pjaz|, peR, p20,
_);n du

[0 ay

0| and thepoint [a] =]a,{,

LO a,

in such a way that point [a] defines the direction of the straight line. Let us
verify that if we consider two points [xV’] = y, .[a] and [x®] = pu,.[a] of
this straight line, the points on the segment joining them belong to this straight

line, and it is therefore a convex subset. This is expressed
[x] = 4. [xV] + (1-2).[x*]
= Ay, .[a]l + Q=4 u,.[a]
(Apy + (1=2) py) . [a]
v.[a],

(14.7)



14. MATHEMATICAL PROPERTIES OF INTEGER PROGRAMMING 197

where
(14.8) v=Au, + (1= pu, 20,
Let us consider another example.
Given
o
(14.9) [a] = |a,
and

e

(14.10) Ix]=|x21,

L %n |
we have 1
(1411) [a]’IXn‘[x]nxl = a1x1+a2x2+“-+anxn .
Then

(14.12) [a]ixn- [x1axs = B,

where § € R, defines a plane (more accurately termed the hyperplane when it
is not specified that n = 3). It is clear that such a plane is a convex subset
demarcating two convex subsets,

(14.13) [a] . [x] < B

and
(14.14) fal . [x] > B.

Let us verify that (14.13), for example, is a convex subset.
Given

(14.15) [xV] and [x®]e {[x]|[a].[x] < B}
and

(14.16) x®] = 4. xXP1+ 1 =-2. x*7, 0< i< 1.

! As in the first two volumes, we use the notation [a]’ to indicate the transpose of [a].
Also, if a matrix has m lines and » columns, and if this is useful, we represent it as [@],nx,-
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It follows
(14.17)
[a] . [x®] = A[a] . [xP]+ 1 =4 .[a) . [x®P] < A8+ (1 =2 B,

that is to say,

(14.18) [a] . [x*] < 8,

which proves that every [x‘3’] such as (14.16) certainly belongs to the subset
of R" defined by (14.13).

Lemma 14.1
The intersection of several convex subsets of R" is convex.

Proof
Let us consider two subsets X, and X, of R” with [xV'], [x®] e X; n X,;
then

(14.19) [x] = A—-[x"1+1-2).[x?]

belongs to X, since [x*)] and [x®'] both belong to X,, which is convex.
For similar reasons [x] belongs to X,. Hence [x] belongs to the intersection
of X, and X,.

This can at once be expressed in a general form for the intersection of r
convex subsets of X;, X,, ..., X, and R*, r=1,2,3,4, ....

Corollary 14.11
The subset defined by the intersection of m half-spaces

A Xy + 12X+ ..+ ay,%, < by,

(14.20) A1 X1+ a%, + ...+ azx, < by,

amlxl + am2x2 + ...+ amnxns bm’
that can also be expressed as
(14.21) [4].[x]< [b],
where

all alz “aa al"

(14.22) [A] = |a;1822 .- G20 | s
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o]
(14.23) [ = | x|,
M
b,
(14.24) [6] = | b2 |,

is a convex subset. This results from Lemma 14.1. Each subset such as
(14.20) is convex.

Convex Polyhedron
The m inequations of (14.20) can be expressed as’

[4]; . [x] < by,

(14.25)

(4], [x] < bn»
where
(14.26) [A]; = [aiy Gz ... a,].

These define what is termed a convex polyhedron.

Figure 14.3 represents a convex polyhedron in R?,

Such a polyhedron can be reduced to a single element or even to no element
of R"; thus (¥ is a convex polyhedron of R".

3. Cones

We shall define what is meant by a cone and will afterward give some prop-
erties of cones. We shall discover that these properties play an important part
in various questions of optimization.

gy Ay ... gy
(14.27) [A] = (121 (122 e (12,,
Ap1 Qn2 Qpn

1 We indicate the /th line of a matrix [4] by [4];. It should not be confused with the
notation [4],,«n that indicates the number m of lines and # of columns.
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A

A1
0 N >x,
F1G. 14.3
and
by
(14.28) [b] ={b,{,
b,

then the set of points [x] € R” such that

(14.29) {[x]|[4] . [x] < [B1},

is called a convex polyhedral cone (CPC) if there is a point [x(®] such that
(14.30) [4].[x®] = [b].

Figure 14.4 pives an example of a convex polyhedral cone in R2. Let us take
another example, this time in R3. Let us take three half-spaces

(1) —-8x, —4x,—-3x;< —24,

(14.31) 2 —-20x,+12x,—9x3<0,
€)) x3 < 4.
Or, in matrical form,
-8 -4 -3 Ix —24
(14.32) —-20 12 -9|.|x|< | O

0 0 11 Lxg 4
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0 ,
Fic. 14.4
We can verify that a point exists
#M 0]
(14.33) X9 = | x| = (3],
o] L4l
that satisfies [A] [x] = [b], namely,
-8 -4 -37710 —24
(14.34) -20 12 -9(.[3]|=]| O
0 0 1] 141 4

In Fig. 14.5 the three straight lines that define the CPC corresponding to
(14.32) are shown by heavy lines.

There are other relations besides (14.29) and (14.30) for defining a CPC,
but they must be such as can be reduced to this form.

Ridge. Vertex. Edge. Ray

The point [x{%'] that satisfies (14.29) and (14.30) may or may not be the
sole solution, and we propose to consider this important question.

We give the term ridge of the CPC to the set of points

(14.35) {[x 4] . [x'] = [b]}.

By definition this set is not void since we are concerned with a CPC.
In particular, if the rank of matrix [4] is equal to m, that is to say, possesses
the order of [ 4], the solution of the matrical equation

(14.36) [4].[x“] = [b]
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F1G. 14.5

is the sole one (arising from the well-known conditions laid down by Cramer).
We shall then define [x‘’] by the name vertex of the CPC.,

Figures (14.4) and (14.5) show examples where the ridges of the respective
cones are vertices. Let us examine a case where the ridge cannot be reduced
to a vertex.

In R? let us consider the following example:

(1) 3x,+3x,+2x; < 18,
(14.36a) 2) 6x;+2x,+3x; <18,
B —-3x+x,—x3; <0, »
that in its matrical form is
3 3 27 [x 18
(14.37) 6 2 . 3 x| < |18].
-3 1 =14 Lx,s 0

The determinant of the matrix of coefficients has as its value

3 3 2
2 3 3 2 3 2
(14.38) [Al=] 6 2 3[=3 -6 -3
1 -1 1 -1 2 3
-3 1 -1

3(-2-3) - 6(=3-2) - 39—4)
~15+30-15 = 0.
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FiG. 14.6

Hence the rank of [ 4] is less than 3 and is equal to 2. It can easily be verified
that there is a point [x‘®] such that

(14.39) [4].[x] = [b],

but this is no longer the sole point. A straight line exists (see Fig. 14.6) that
runs through the points

3
(14.40) [x] =19/2
[ 0
and
- 0
(14.41) [x®] = | 18/5
[ 18/5

and that is a ridge of the CPC. This ridge is shown by a heavy line, whereas
the broken lines have only been included in order to visualize the cone without
delimiting it. The CPC is delimited by the planes

(14.42) 3x,4+3x,+2x, = 18,

6x,+2x,+3x, = 18,
and the plane
(14.43) —3x,+x,—x3 =0

that passes through their intersection and the point of origin of the coordinates.
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Let us now consider what is meant by edge and ray of a CPC. In fact these
concepts are the same if the CPC is nondegenerate, that is to say, if 4 is of
rank m; but these concepts usually differ where we are concerned with a poly-
hedron rather than with a cone. )

The term edge of a CPC is used for the set of points of the CPC forming
the intersection of n—1 of the n hyperplanes delimiting it. Thus in Fig. 14.5
the three half-lines in heavy type are the edges of the CPC shown in the figure.
In this example (14.32) the matrix is of rank », so that the intersection of any
two planes gives a straight line passing through the vertex. But owing to the
inequality between the left and the right members shown in (14.32) the set of
points belonging to the cone is limited to a half-line.

The ray of a CPC is an edge that includes an infinite point. It is evident that,
in the case of a nondegenerate CPC, all the edges are half-lines (we should
really say half-hyper lines) passing through the vertex. All the points on them
belong to the CPC, including the points in infinity. In the case of a CPC all the
edges are rays.

The edge of a convex polyhedron is the set of points of the polyhedron
forming the intersection of n—1 of the m hyperplanes delimiting it. Thus in
Fig. 14.3, the segments of straight lines shown in heavy type are the edges of
the convex polyhedron, in this case a polygon.

The term ray of a convex polyhedron is given to an edge that includes an
infinite point. If the polyhedron includes at least one ray we say that it is
nonbounded. We shall discover in Section 16 that a linear program containing,
as the convex polyhedron of the constraints, a nonbounded polyhedron, can
have, in certain cases, an economic function of infinite value.

We define the direction of the ray as a vector [V] that has the same direction
as the ray. This means that the points of the ray have the form

(1444) [x]nXI = [x(O)]nxl + G[V]nXI ] 9 > 0’

where [x‘©)] is an extreme point! of the convex polyhedron and @ is a non-
negative scalar. Let us note that if the convex polyhedron is a CPC, [x(®] is
the extreme point of the cone, that is to say, its vertex.

Nondegenerate Convex Polyhedral Cone
The set of elements or points that satisfy

(14.45) [4].[x] < [b]

is called a nondegenerate convex polyhedral cone, if and only if, the columns
of [A] are linearly independent or, which amounts to the same, the rank of
[4] is equal to the number of columns or lines of [4], that is to say, is of the
order of [4]. In this case, as we have seen, the ridge of the cone is reduced to
the vertex.

! This is defined in the following paragraph.



14. MATHEMATICAL PROPERTIES OF INTEGER PROGRAMMING 205

In the case of a nondegenerate CPC we can give the following explicit
expression for the cone:
Given a CPC defined by

(14.46) [Alnsxn- [XInx1 < [b]axy-

Let us transform this matrical inequation into a matrical equation by
introducing a deviation vector:

Uy
(14.47) [U]nxy = Uz, w20, i=1,2,...,n,
u,
in (14.46) which becomes
(14.48) [AJnxn-[¥]ax1 + [Ulaxs = [blaxy-
Since [A4],«, is by hypothesis a regular matrix, we have
(14.49) [xJax1 = [AJadn- [Baxs = [A17n- [udaxy -
If we make
(14.50) [4]ax1 = [0]axy, With w; =0, i=1,2,...,n,

in (14.49), we obtain the vertex of the cone.
Let us consider a very simple example. Let

(14.51) R R EY PR
1 21 1 x, 18

be a nondegenerate CPC (Fig. 14.7).

Fi1G. 14.7
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Since

-1 1-
(14.52) =] , L

we have

—2/3  1/3
(14.53) [A]"! = R

We first have

(0) _
(14.54) [x®] = |*1 | = [4]"1.[6] = | ~ 23
x$ 1/3
Hence

(14.55) ¥ =4 and xPX=7.

Let us express the relation corresponding to (14.49)

l:xljl [—2/3 1 /3} [3 } [—2/3
(14.56) = A7 =
X 13 13| |18 1/3

1/3
1/3

1/3
1/3

Il

1

2

Hal 1)

].

That is
14.57) x, =44%u;—%u,,
Uy, Uy = 0.
(14.58) X, =T—%u,—%u,.
If we make, for example, #, = 0 in (14.57) and (14.58), it follows that
(14.59) xy=4+%u,, 4, > 0.
(14.60) x; =T—%u,,

This is the parametral equation in relation to u, of the half-line of
X;+2x, = 18 beginning with x; =4, x, = 7 that delimits the cone; such a
half-line is a ray of the cone. In the same way, if we make u, =0 in (14.57)

and (14.58) we find
(14.61) X, =4—%u,, uy > 0.
(14.62) X, = 7—%u,,

We then find the parametral equations of the other half-line which is also a

ray of the cone.
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Relations (14.57) and (14.58) constitute the parametral expressions of the
nondegerate CPC.

4. Extreme Points of a Convex Subset
An extreme point of a convex subset X = R" is a point [x*] such that
VYIx®M], [xX*]e X, Vie[0,1]:
[x*] = ALxV1+ (1-2) [xP] = [x*] = [xV] = [x®].

This definition in general and applies equally to all convex subsets and to
polyhedral subsets,

Figures 14.8 and 14.9 represent convex subsets in which the points indicated
by [x*] are extreme points

EM!

(14.69)"

F1G. 14.8 Fi1G. 14.9

Let us consider in particular a convex polyhedron K — R" defined by the
matrical relation

(14'70) [A]m Xn-* [x]n x1 < [b]mx 1

where [A4],,«, Is a matrix m x n with m 2 n.
In choosing a submatrix n x n of [ 4], namely [ B], we are defining a convex
cone '

(1471) [B]nxn ‘ [x]nx 1 < [bB]nx 1>

where [b,] is a matrical column taken from [b] and corresponding to [B].
We will assume that all the C. (the number of combinations of m objects

!Equation numbers (14.63)~(14.68) omitted from the French edition.
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n x n) cones that can be defined in this manner are nondegenerate. Expressed
differently, the C, submatrices nxn are regular. Clearly, these cones C;,

i=1,2,...,C, are obtained by n hyperplanes from among the m defined by
(14.70) and each contains K, that is to say,

(14.72) C. o K, i=1,2..,C"

m*

For the theory of linear programming it is not necessary to assume that these
C, cones are nondegenerate, but we shall use this property here.

Let us show that the vertices of the cones C; are extreme points of K.
Indeed, these vertices give all solutions of the C,» equations that are assumed
to be sole and distinct:

(14'73) [B]nxn ‘ [x]nx 1= [bB]nx 1
taken from
(1474) [A]an ‘ [x]nx 1 = [b]mx 1-

Let us use a proof by absurdity.

If [x®'] is a vertex of a cone C; and is not an extreme point of K we produce
an absurdity. Indeed, let there be two other points [x®'] # [x®] and
[x®7] # [x‘9'] such that

(14.75) [x®] = A[xP] + Q=2 [x®], 0O<i<l.

(we have A#0 and A# 1, otherwise we could have [x(9]=[x"] or
[x'9] = [x®'].) Then there exists at least one of the inequalities (14.71) that
is strictly satisfied by [x(*)] since [x(®'], assumed to be the sole vertex, is the
only one that satisfies all of them, that is,

(14.76) ([B1p, wn XM ]axy < [bsJix1s
whereas

(14'77) [B]nxn 4 [x(O)]nX 1= [bB]n x1-
For the other point [x‘®’], we have

(14.78) ([B1)1xn- [xP ]y < [bg,Jix1-

By combining (14.76) and (14.78) and by taking into account that 4 > 0 and
1-4>0,

(14‘79) 2'([B]j)1 Xn-* [x(l)]nx 1 + (1 _2’) [Bf:]l Xn- [x(Z)]nX 1
< Albpdix1 + (1=4) [bg 1y x, = [bgJix1>

that is,

(14.80) ([B]j)l xn - [x(O)]nx 1 < [bB_,Jl x1s
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which contradicts (14.77) characterizing [x(®'].
To illustrate this proof let us consider the example in Fig. 14.10.

154

051

F1G. 14.10

Let there be a convex polyhedron in R2 defined by
A) —x, < —1/2,
(14.81) Q) —x,—2% < -2,
() 2x,+3x, < 4.

Let us consider these inequations. By solving (1) and (2) we find that
[x‘V] = [1/2 3/4]. By solving (1) and (3) we find [x(®] = [1/2 1]. By solving
(2) and (3) it follows that [x®'] = [2 0]. We see how the vertices of the three
cones form the three extreme points of K.

Important Observation
In practice there are generally less than C,, extreme points in a polyhedron
K since, when we choose any n inequations and solve

(14'82) [B]nxn . [x]nx 1= [bB]n x1>

there is no guarantee that the m— »n remaining inequations will be satisfied by
the solution of (14.82).

This equation is important because the optimum for certain problems of
mathematical programming occurs at an extremity, and we could eventually
enumerate all the extreme points of a convex polyhedron K, evaluate the
economic function for each, and then choose the optimal point (or points) for
this function,

However, if C; is very large, which is often the case, we are excluded from
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enumerating all the extremities even with the use of the most powerful com-
puters. Certain methods exist that avoid the need for this total enumeration
(see [K51]).

5. Geometrical Interpretation of Gauss-Jordan’s Pivoting

If we return to example (14.81) and introduce three deviation variables
u,, U, and u, this system of equations becomes

(€8] —x,4u, = —1/2,
(14.83) 2 —x;—2x,4u, = -2, Uy, Uy, Uy =0,
(3) 2x1+3x2+u3 = 4.

Let us examine Fig. 14.10. Vertex [x‘©] corresponds to u, =u, =0,
vertex [x(*] to u, = u, = 0, and vertex [x‘®] to u, = u; = 0.

In (14.83) if we express, for example, x,, x,, and u; in relation to u, and
u,, it follows that

(1) x1=%+u19
3 u u
14.84 2) x, ==-——2L42 u,u, =0,
(14.84) 2 x; 2213 1> Uy
(3) z3 =3—-2u,—3u,.

which, in its matrical form, is

X, 1/2 -1 0
uy u, 0
(14.85) x| =|(3/4|—|1/2-1)2 l: jl, l: ] = l:]
U, Uy 0
Z4 3/4 2 32

When u, and u, assume their values in the interval [0, co], the point [x] =
[x,.x,] traverses an edge of the cone

—-x, < —1/2,
(14.86) Cx —2x, < 2,
from [x‘'] to [x®].

Let us now consider the meaning of Gauss—Jordan’s pivoting method. This
consists in replacing one of the basic variables by one that is not in the basis.
This is precisely the same method as we used for the simplex method in Volume
1, Sections 58 and 59. In the theory of matrical calculation it bears the above
name.

Using example (14.83) we shall give another illustration of this method
adapted to the needs of the present volume.
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If we consider (14.85) we find that x,, x,, and u; belong to the basis,
whereas u, and u, do not. Let us remove u; from the basis to make room for
u,; to do this let us use (3) in (14.84) where u, will be expressed as a function
of u; and u5, the result then being substituted in (1) and (3) of (14.84). This
gives

(1) Xy %+ul,
(14.87) Q) x, = 1—%u,—4us, Ug, s = 0.

) uz =3—-3u;—%u;.

When u; and u, take their values in the interval [0, o] point [x] =[x, x;]
traverses an edge of the cone

(14.88) —'xl S _1/2, 2x1+3x2 S 4,

from [x(®] toward [x®].

Finally, if we made u, enter the basis to replace u;, we should obtain the
third edge that runs from [x)] to [x‘°'].

We thus have the three extremities:

[x®] corresponding to u; = u; =0,
(14.89) [x")] corresponding to u, = u, = 0,
[x®] corresponding to u, = u; = 0.

As we can see, as often as we include a ; in the basis in place of a u, (j # 1),
we pass from an extremity to another adjacent to it (in our rather slight
example, since there are only three extremities, thay are all adjacent, two by
two, but this would clearly not be the case for more complex polyhedrons).

The simplex method and that of some of its variants consists, as we should
recall, in passing from one extreme point to an adjacent one by improving the
economic function and by making sure at each step that the variables x; and
u; retain nonnegative values, As we have seen in Volume 1, this is achieved by
the use of two of Dantzig’s criteria. We shall return to certain aspects of these
considerations shortly.

Extreme Rays
Let us consider an example of a convex polyhedron in R? (Fig. 14.11) the
inequations of which are

(1) x2 S 29
(14.90) 2) —x;-2x,< -2,

(3) —-2x,—-x, < -2.
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Let us introduce the deviation variables u, u,, and u;, which gives
1) x3+uy =2,

(14.91) (2) —x;—2x34u, = -2, Uy, Uy, Uz = 0.
(3) —2x;—x5+u; = -2,

A*2
\
\
\
2 >V2
- Z /
\\H.\\
e
L [x @] A\
\
N N / >

Fi1G. 14.11

If we take in the basis x,, x,, and #,, it follows that
1) x; =%—3%u, + %u,,
(14.92) (2) x3 =%+ %u, —tu,, Uy, uy,u3 =0,

(3) uy =%+ %u; —du;.

In (14.92) if we take u, = 0 and u, — co, we see that the point [x] = [x; x,]
will traverse the half-line ¥, the equation of which is

(14.93) x1+2x2 = 2;

this from the extreme point [x'®'] = [2/3 2/3] to infinity, the length of this
half-line. Such a half-line of the convex polyhedron is termed the extreme ray.
We can see that another extreme ray ¥, exists corresponding to x, = 2.

We shall make use of these concepts in illustrating the dual-simplex method
and various methods of partition (Sections 16 and 21).

Finally, before concluding this section, let us define what is termed a convex
combination of points and set forth two important theorems.
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6. Convex Combination

Let there be r points [x®?] & X a convex subset of R*, i=1, 2, ..., r, such
that

A r
(14.94) A=20, i=1,2..,r, with ) A4 =1.
i=1

Then, the point [x] such that

(14.95) [x] = i; A [x®]

is called the convex combination of the points [x"], i=1,2,...,r.

Theorem 14.111
If [x] is a convex combination of r points [x®] of a convex set X, then [x]
belongs to X.

Proof

This is purely and simply the generalization of (14.5). We need only make
a convex combination of [x®], [x], then a convex combination of the
result with [x*’] and so on, with the requirement of taking the weight 4, for
[x(1], then a weight 4, for [x‘®’], and so forth,

Theorem 14.IV

Given a convex closed set X = R", that is to say, such that all its points have
finite components, then every point [x] € X is a convex combination of the
extreme points [x*®7],

The proof of this theorem is a long and difficult one. It is an important
theorem, but we have avoided having to use it for the logical procedure in the
questions that are treated here. The reader who wishes to learn this proof can
consult [K3], though it should be observed that its significance is of an
intuitive nature.

Section 15. Properties of the Optimums of Convex
and Concave Functions

1. Convex Functions and Concave Functions

It is now time to turn our attention, in an economic program, not only to
the domain in which the variables assume values corresponding to solutions,
but also to the economic function that enables us to select the optimal solutions
(or solutions).



214 II. ALGORITHMS AND HEURISTICS

If [x] is a point of X = R" we shall indicate the function taking its values in
X by f([x]). The distance between two points [x] and [x'] will be repre-
sented as |[x]—[x"]| and will be equal to

SO =X+ Gy — x5+ L+ (= x0)?.

Let us first consider the concept of a local minimum. A function f([x]) has
a local minimum for [x(®] if there is a ¢ > 0 such that /([x‘©]) < f([x]) for
each |[x]—[x®]| < e. In the same way we define a local maximum if there is
an ¢ > 0 such that f([x®]) > f([x]) for all [[x]—[x®]|<e.

If we have f([x®]) < f([x]) or, respectively, f([x®]) > f([x]), we say
that we have, respectively, a strict local minimum and a strict local maximum.

Let us now consider another concept, that of the global minimum. A function
S([x]), [x] € X has a global minimum for [a] € X, if f([a]) < f([x]) for every
[x] € X. We can similarly define a global maximum by changing the direction
of this inequality.

It should be observed that there may be more than one global minimum
Oor maximum,

M

A/
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Fic, 15.1 FiG. 15.2

In Fig. 15.1 we have shown an example where X = R. The function f([x]),
which can be expressed here as f(x) without ambiguity, assumes its values in
the interval [a, f]. Points x = «, x = x®, x = x* are local minimums,
Points x = x), x = x®®, x = B are local maximums. Point x = x® is a global
minimum and point x = x* a global maximum.

For convenience and to save space we shall henceforward generally refer
to the minimum, only transposing to the concept of the maximum when this
word is placed in parentheses after the other.

In general, a local minimum (maximum) is not always a global minimum
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(maximum). For convex functions a local minimum is a global minimum, the
same being true for the maximum,

In Fig. 15.2 we have shown a convex function; its sole local minimum in the
interval [«, f] is a global minimum that can easily be transposed for the
maximum.

Let us now leave this example in R to give a strict definition of the same
concepts in R*, n=1,2,3,4, ...,

A function f([x]) defined for a convex subset X = R" is convex if and only
if -

(15.1) VIxV1, xXP]e X :

FAPT+ A=) [xXP]) < Af [V + A= f([xPD),
01,
Let us give this formula a strict geometrical definition. Let us assume
(15.2) z = f([xD.

Let us then consider the point [x; x, --- x, z] in the space R"*!. In this
space, (15.2) represents a surface. If we take any two points in it
DM X0 oo x D 207 and [x2) 6 -+ x(2) 2], then relation (15.1) shows
that if we join them by a segment, every point in this segment is above the

surface.
Let us state,

(15.3) [x] = AIxV] + 1 -2) [x*7], xV1, x¥Te X,
(15.4) z = f([xD),
(15.5) 2D = f([xVD,
(15.6) z® = f([x]),
(15.7) w=AzV 4+ (1-2) 2.
Relation (15.1) shows

(15.8) z< w.

Figures 15.3 and 15.4, respectively, represent convex functions defined for
convex subsets, the first for X = R, the second for X = R2,

In the same way, let us define a concave function.

A function f([x]) defined for a convex subset X = R" is concave if and only if

VIxVT, [xP]e X :
(15.9) SO+ (=2 xXPD = Af [x DD+ Q-1 f [x>),

0<i<1,
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Ik z=f(x1'xz)
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that is to say, with the notation specified in (15.3)-(15.7),
(15.10) zZZW.

Figures 15.5 and 15.6, respectively, illustrate concave functions defined for
convex subsets, the first for X = R, the second for X = RZ.

A particularly important case concerns functions f([x]) that can be differ-
entiated. In this case, we can define the convexity and concavity in a more
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convenient form. Here we shall consider the case of a convex domain X < R

but, in a next volume, when studying an important theorem of Kuhn and

Tucker we shall extend these considerations to the case where X = R".
Given a convex function f(x), we can state in accordance with (15.1),

(15.11) fOx; + (A=) x3) < Af(xy) + (1=4) f(x2),
or again

(15.12) FA=2) x1+4x3) < (1-2) f(x0) + 4 (x3),
that is to say,

(15.13) SOy +A0x;—xy)) < f(xy) + A(f (x5) = f(x4)),
or

(15.14) f(xl+l(x2_lxl)) —f(x!)
Let us divide the two members of (15.14) by (x,— x,). It follows that
(15.15) S G+ A0 —x4)) = f(xy) Sf(xz)—f(xl).

Alxy—xy) (x3—x,)

< f(x3) —f(xy).

Assuming

(15.16) Ax, = A(x3—x,),

it follows that

(15.17) fOutax) —fGx) ) =f ()
Axl (xz_xl)

Let us make A — 0, that is, Ax, —0; we then have

(15.18) lim f(xl+Axl) _f(xl) = fl(xl)
4x1 =0 Ax,

and relation (15.17) can be expressed

(1519)  f(x) < LD =L&D

X3 =Xy

For a concave function, in the same conditions, we shall write

1520 fieny s G =SGD
X2 =Xy
In Fig. 15.7 we have illustrated (15.19) by an example. Function f(x) is
convex; if, from any point x, , we draw a straight line passing through another
point x,, the slope of this line is always greater than that of the derivative of
S(x) in x, . The concave property of (15.20) could be similarly shown.
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Let us now consider the important case of the linear functions f([x]).
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Theorem 15.1
If a function f([x]) is linear and is defined for a convex set X = R", then

vIx], [x*Ple X :
(15.21) FOAIXPT+ Q=2 [x®D = A [xOD + Q=1 F[x2D),
0gig,

which shows that every such linear function that is defined for a convex set
is both a convex and concave function defined for a convex domain.

Proof
If a function f([x]) is linear, we have, by hypothesis,

(15.22) fkDx]) = kf([x]),
(15.23) FO1+ XD = f[xD + £ >,
which enables us to state further that
(15.24) S(k[x] + K'[x]) = f(k[x]) + f(K'[x'])
= kf([x]+ K f([x'D.
By taking the special case where k+k' =1, k, k'’ =0 we shall discover
(15.21).
2. Optimum of a Convex Function in a Convex Domain

Let us state two theorems,

Theorem 15.11
If f([x]) is a convex function defined for a convex set X — R", then a local
minimum (maximum) of f(x) is a global minimum (maximum) of f(x).
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Proof

If we give the proof for the minimum this can at once be transposed for the
maximum,

If [x'] is a local minimum of f([x]) there is an adjacent area to [x(®]
such that f([x'® < f([x]). Let us therefore assume that there is a point [a] € X
such that

(15.25) f([a]) < f(x]).
All the points
(15.26) [x] = A[a] + A1 =4 [x*], 0<ixg1,

belong to X since it is convex, Let us take A small enough to be in the neighbor-
hood of [x(®] but differing from zero so that [¥] # [x‘®’]. We have

(15.27) f@ED = £,

since [x(¥] is a local minimum.
We can also state

(15.28) SR < Af ([al + Q=1 f([xD,

since f([x]) is convex. In addition, by starting from (15.27) and considering
(15.25), we can say after observing that f[x(9] = Af[xO7+(1—-1) f[x@]
and that 1 # 0,

(15.29) S > Af (a]) + A=4) £ (xD).

If we compare (15.28) and (15.29) we discover a contradiction, Hence, the
assumption that there is a point [a] € X differing from [x{®'], such that [a]
is a global minimum, leads to an absurdity. The theorem is thus proved by
contradiction,

Theorem 15.11 »

The set of local minimums (maximums) of a convex function that are also
global minimums (maximums) in accordance with Theorem 15.11 is a convex
set.

Proof

It is sufficient to show that the points of the segment joining two local
minimums (maximums), namely [a] and [b], are global minimums
(maximums).

Let
(15.30) [x] = Ala]l + (-2 [].
By hypothesis, we have

(15.31) f(la]) = f([bD),

since [a] and [b] are global minimums (maximums).
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In addition,

(15.32) S(xD) > f ([aD),

since [a] is a global minimum (or maximum if we replace > by <).
But we also have

(15.33) FxD< Af([[a]) + A=A f([6D) = f([aD).

(we replace < by > if we are considering a maximum),
From (15.32) and (15.33) we obtain

(15.34) S(@xD = f(LaD);

which shows that [x], situated on the segment joining [a] and [5] is also a
global minimum (maximum).

Figures 15.3-15.6 and 15.8 serve to illustrate Theorem 15.11, while Theorem
15.111 is.illustrated by Fig. 15.9.

ASf(x) AS (%)

N

b —

Q~b—---

0 [+ 4 X 0 a ?
f)=k;(@—x), k>0, x<a, &) =ki(@a—x)+h, k>0, x<a,
=k,(x—0), k>0, x=o. =h, asxsbh,
=k, (x—b)+h, k,>0, x=b.
Fi1c. 15.8 Fi1G. 15.9

3. Optimum of a Concave Function in a Convex Domain
Let us first enunciate a theorem.

Theorem 15.1V

A strict local minimum of a concave function f([x]) in a convex domain
X = R" corresponds to an extreme point of X,

This theorem is a fortiori true for a strict global minimum.

Proof
If [x(®] is not an extreme point of X we have [x(9] = A'[x|]+(1—=A)[x},],
with [x}] and/or {x}] differing from [x®] and A € [0, 1].
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Since domain X is convex we can find two points [x;] and [x,] on the
segment joining [x’] and [x3] such that

(15.35) [x®7 = A[x, 1+ (1=2) [x,], 0<A<g1,
with '

(15.36) Ix1 - [x,1< e, e=0,

and

(15.37) Ix91 =[xl < e, e>0,

in which [x,] and/or [x,] differ from [x{®], that is to say, A # 0 and/or
A#1in (15.35). Let us arbitrarily assume that this point is [x,]. Since f([x])
is concave, we have

(15.38) S@xD = Af ([x D) + A=2) £ ([x:])-

We now have

(15.39) S0 < f([x:D,s

since [x(?] is a strict local minimum and [x,] # [x‘®]. In addition we have
(15.40) F(x] < f 2D

By multiplying the two members of (15.39) by 1 and those of (15.40) by (1—4)
with 1 # 0, and by adding the resulting inequalities, we obtain a contradiction
with (15.38).

This proof by absurdity can easily be transposed for the case of the
maximum,

A

2

N
il

N

o] 12

(0,2]

-

FiG. 15.10
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Let us consider an example, and let us take the following program:
() MIN]z = —(x;—1)* = (x,—1)%,

(15.41) 2 0< x; <3)2,
@ 12<x<2.

It is evident that X defined by (2) and (3) is a convex set since it is a square in
R2, It is also evident that (1) represents a concave function. We shall use Fig.
15.10 for our explanations.

We can verify that points [x{? x{] = [3/2 1/2] and [x'{® x'®]=[02]
are local minimums. It can be shown that any point adjacent to them gives a
greater value than z. Point [3/21/2] is a local minimum but not a global
minimum; by contrast, [0 2] is a global minimum. For the former we have
z=—1/2 and for the latter z=—1. We can easily verify that [02] is an
extreme point of X.

We find here one of the peculiarities of the minimization (maximization) of
concave (convex) functions. While it is easy to obtain a local minimization
(maximization) we cannot affirm that it is global, as was the case for convex
(concave) functions. The difference between the value of z in a global optimum
and a local optimum may be considerable in relation to the value of z. We can
see how useful it is to find the global minimum.

4, Relation between Convex and Concave Functions.
Conversion of Maximums into Minimums and Conversely

Let us consider the program,

a4y O MINIz=f(@xD,
(2) [x]eX < R".

Let us suppose that X is any closed domain and that z has a global minimum
[a]. By definition, we have

(15.43) Vix]eX: f(xD = f(laD),

hence

(15.44) VixleX: —f({xD< —f([aD).

Hence, if [a] is a global minimum of f([x]), then it is also a global maximum
of —f([x]) in the same domain X. This is expressed

[MIN] f([x]) = —[MAX] (- f(IxD).

It is agreed that the symbols [MIN] and [MAX], respectively, represent the
search for global minimums and maximums,
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In addition, if f([x]) is convex, —f([x]) is concave, and hence we can
transpose the results of Theorem 15.11 for the case of convex functions. We
shall give the results obtained from these theorems in the form of table (15.49)
at the end of this section.

f(x)A

4 +

-
[N RN
w
»
x®

—f (%)

Fic. 15.11

Let us consider an example, Let

(1) [MIN) z = f(x) = 2+ (x=2)?,

(2) xeR.

Corresponding to it is

(1) MAX]z=—f(x) = —2-(x-2),
(2) xeR.

(15.45)

(15.46)

By elementary calculation we obtain
(15.47) min f(x) = f(2) = 2.
and
(15.48) max (—f(x)) = —f(2) = 2.

This maximum and this minimum are reached at the same point x = 2.
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The results previously obtained can be conveniently displayed in the form
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of table (15.49).
F(Ix1) is convex fx]) is concave
A local minimum A local maximum
is a global is a global
(15_49) minimum. maximum,

A strict local
maximum can only
be reached at an
extreme point.

A strict local
minimum can only
be reached at an
extreme point.

The results shown in table (15.49) are true for every convex domain and
hence they apply to the special case where X is a convex polyhedron.

Section 16. Complements on the Theory of Linear Programming

1. Complementary Properties of Primal and Dual Solutions

We propose to expand and complete various concepts introduced in the
second part of Volume ! concerning linear programming and, in particular,
the question of duality that was explained very briefly in Section 66 of that
volume.

Given a linear program

(1) [MAX]g = i CiXps
i=1
(16.1) 2 i a;.x; < by,
i=1

(3) x,eR, x
Or, in matrical notation,
(1) [MAX] g = [C]’lxn' [x]nxl ’
(2) [a]mxn‘[x]nxl S [b]mXI’
(3) [x]nxl € R“ L] [x]nxl 2 [O]nxl .

Let us then introduce m deviation variables v;, i = 1, 2, ..., m, to transform
the inequations (2) of (16.2) into equations; it follows that, by indicating the

(16.2)
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matrix column of u; as [u],,x 1,

(1) MAX1g = [cixn-[xlox1s
164" @ [lmxn-[¥Daxs + W [mxs = DBy s
() [¥lux1€R"  [ulnxs€R",
[x]nxl = [O]nxls [u]mxl = [O]mxl'

Let us suppose that we find ourselves, after iteration k of the simplex
method, at an extreme point of the convex polyhedron of the constraints (2)
and (3) of (16.4). This point is determined by choosing » of the n+m variables
x;and u; in such a manner that they are null. In effect, this corresponds to the
intersection of n of the n+m hyperplanes [al,xn-[x]sx1 = [6]nx: and
[x].x1 = [0],x 1. The n zero variables do not belong to the basis.

Let us indicate by [xg],,x ; the matrix column of the variables corresponding
to the basis, these variables being selected from the # variables x, and the m
variables u;, and [xy],x ; indicating those of the variables that do not belong
to the basis. Let us indicate by [B],, x; the columns of the matrix formed by
[al,x» and [1]mxm, namely [[a] [1]], which does not belong to the basis.
Let us specify by [N],,x, the matrix formed with the other columns. In the
same way, in function g, let us indicate by [Cgl; «, the coefficients of the
variables that belong to the basis and the remainder by [Cy]; xp-

Using the above notation, let us now express the set of relations (1) and (2)
of (16.4),

(16.5)
(911 x1
{mm —[ealixm —Lcnlixn [01“,"} [Xplmx1 [[0]1“}

[O]mx 1 [B]me [N]mxn [l]me [xN]nX 1 [b]mx 1

[‘P]m x1

where we have added matrices [0]; x,, [1]mx. (the unit matrix of order m)
and [¢],,x in order later to produce, in the corresponding simplex table that
will be used, at iteration k, the inverse [B],,+,, of the basis matrix [B]. This
notation does not in any way affect the set of the solutions of (16.4) but greatly
assists the explanations, as will appear. Mrtrix [¢],, ., Will have as its elements
@;,i=1,2, ..., m. We might interpret the ¢, terms as artificial variables that
should disappear as soon as we obtain a solution for (16.4).

Let us now consider the following square submatrix (m+ 1) (m+ 1), removed

! Equation number (16.3) omitted in the French edition.
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from the left member of (16.5):

(1]« —[ealixm
(16.6) 1x1 Bl1
[O]mxl [B]mxm (m+1) x (m+1)
This matrix is clearly regular and therefore possesses an inverse; indeed

[B],.xmis, by hypothesis, regular since it forms a basis.
The inverse matrix of (16.6) is

(16.7) [[1]1 x1 [calixm- [B];i,,} .
[0Tmx 1 [Bloim  |oms1)x mi1)

Let us then premultiply the two members of (16.5) by matrix (16.7); it follows
that

(16.8)
[1]1X1 [O]lxm _[cN],IXn+[cB]’lxm'[B]r;;m‘[N]mxn [cB]’lxm'[B]r;;m
[O]mx 1 [l]mxm [B]r;;m . [N]an [B]m_xlm

[g]lxl
[X5Tmx 1 [[csj’l s+ [BImim+ (DI 1
Dxvdaxs| | [Blaw-[Blmxs

[¢]mx 1

The matrical relation (16.8) will be called the simplex table corresponding
to the choice of basis [B],,x- Let us observe, finally consulting Section 14.3,
that we can obtain from it the relation

(169) [xB]mx 1= [B]r;;m . [b]mx 1= [B]r;:m . [N]mxn . [xN]nX 1

for [(D]mxl = [Omel’

which is the explicit equation of the polyhedral cone with vertex [x5] having
as edges the vector columns of the matrix [B]™.[N].
Let us now enunciate a theorem.

Theorem 16.1
The matrical relation (16.8) corresponds to the global maximum if

(16.10) (1) [Bluxm-[bImx1 = [Onx1,
(16.11) (2)  —[endixn + [ealixm-[Bluxm-[NJmxn = [011xn>
(16.12) () [eslixm-[Blaxm = [0]1xm-
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The optimal solution of (16.4) will be indicated by [E]p:mx1 =
[[£nx1[8],,x1] and [X z],.x 1 will indicate those variables the values of which
are given by the left member of (16.10) corresponding to the basis, and
[XnInxy Will indicate the others.

Proof
In every realizable solution we must have [¢],,x = [0],.x 1 and, expanding
(16.8), we then obtain for the point [¢]

(1613) [g]lxl = [CB]lem . [B]r;im . [b]mxl
+ ([CN]’lxm_ [CB]II Xm* [B]r:im . [N]me) . [-QN]nxl,
(16'14) ['QB]mXI = [B]r;im . [b]mxl - [B]mxm . [N]mxm . [xN]nxl'

To verify (16.10) note that [£5] must be a null vector (whose components
are not basis variables). Replacing [£,] in (16.14) by {0] (and as [£5] must
be nonnegative for the solution to be realizable), we obtain

(1615) [B]r;;m . [b]mxl 2 [O]mxly

which is none other than the sought condition (16.10).
To verify (16.11), we consider the relation (16.13).
As [®ynx1 = [0]nx1, We can have a maximum?! only if

(16'16) [CN]'lxn - [CB],lxm 4 [B]r;;m 4 [N]mxm . [O]l xXns

which gives the relation (16.11) by multiplying (16.16) by —1 and changing
the sense of the inequality.

To prove (16.12) is a little more complicated, and for that we are going to
use relation (16.11). Let u; be the slack variable in one of the inequalities
(16.4). Two cases are possible: u; is or is not a basis variable in the optimal
solution.

(i) First case: u; in the basis.
We suppose that u; has the index g, (which we can always obtain by re-
ordering the columns of [B]). Then the ith column of [B] is

0 0
0 0
1 and the ith column of [B] ™! is 1
0 0

! The expression 2+ 3x;— Sx; — 6x3 is not the maximum for x; = x; = x; = 0 since the
value increases when x,; has a positive value with x, and x5 equal to zero.

In contrast, 2—3x, — 5x,—6x3 has a global maximum equal to 2 for x; = x; = x3 =0,
when x,, x,, x3 can only take nonnegative values.
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With these conventions, we have cg, = 0 since the cost of u; is zero in the
economic function® of program (16.4). The ith component of the row vector
[cslixm-[B]n s, is written

(1617 [([cplixm- [Blaxm)] and also [cglixm- [B7'T,

or even cz—following the expression for the column [B~']%. The ith com-
ponent of the row vector [cp]yxm-[B ™ ],.xm is then zero in this case.

(if) Second case: u, is not in the basis.

Let us suppose that #; has index y, (which we may always obtain by re-
ordering the columns of the matrix [N],,x,). The ith component of the row
vector (16.11) may be written

(1618) [(_[CN]’I xXn + [CB]’lxm ’ [B]r;im - [N]mxn)]ia
and also
(16.19) —cy, 4 [ealixm - [Blmsm - [NTjuu1-

We have ¢y, = 0 (the cost of u; is zero), and [N 1] ,,, is a column vector of zeros
with a 1 in the ith row. We can then write (16.19): [([cp]i xm[B ™ mxm T
which must be greater than or equal to zero since (16.18) is a component of
the row vector (16.11), which is always greater than or equal to zero, according
to what we have previously shown.

Then [cglixm-[Bl;sm = [0];xm since all the components of this row
vector are nonnegative in all cases.

We shall now illustrate by means of a numerical example, as usual with an
instructional purpose, how the simplex table defined earlier is decomposed into
submatrices. Let us take the program

(1) [MAX]g = x,+3x,,
(16.20) 2) —x1+x2<3,
(3) x,+2x, <18,
X1,%x320.
This program is shown in Fig. 16.1.

If we add the deviation variables u; and u, to the linear program of (16.20),
constraints (2) and (3) become

(2,) —x1+x2+u1 = 3,

16.
(16.21) 3) xy+2x,+u, =18.

For the sake of an example, let us show how we obtain the simplex table
(16.8) in its matrical form relative to the extreme point P; of the polyhedron
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A,

F1G. 16.1

of the constraints. At this point we have
(16.22) Xy = Uy = O.

The nonnull variables of the basis are x; and u,; the corresponding basis
matrix [B]; x is

-1 1
(16.23) Bl=| | o

and the corresponding vectors [xglax1, [Xn]2x1, [€Bl2x1, [Cal2x1 are

-
(16.24) x5] = | ],
ul—‘

(16.25) Ix] = | 2],
| %2 |
My

(16.26) les] = |,
..OJ
]

(16.27) ey = |°

' 0]
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Whence, for this program, the corresponding initial program (16.5) is
(16.28)

[ 917
—[es]’ —Len [ %1]

r—t— A

[1] —[ t 0] —[3 0] [0 o] |Lu,l [0]

7 06 e
B N 0,

We easily obtain

(16.29) [B]":[O 1],
11

and thence the simplex table corresponding to basis [ 8], that is to say, to the
extremity P .

(16.30)

0 1911 © 0 1
[1] [0 0] -[3 O]+[1 0].[ :H:z ] [1 0].[
11 1 11
[0][10] [01-10 0 1
ol Lo 1 1 1:|_2 1] [1 1]
[ [9] 7
0 177 3
| u, ] [1 0].[ ][
1 1]L18
N
| u, | .
1 1018
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which gives, after all the calculations have been made,

" [g] 7

Xy

[11 [0 0] [-1 11 [0 177 {Lu,d 18

(16.31) 0:| [1 0:| [2 1:| [0 17l x| = 18].
ol Lo 1 3 1 L1l {Lu, 21

We verify that, for

(16.32) X =Uy =@ =@, =0,
table (16.31) gives
(16.33) x, =18, u, =21; g = 18.

Now let us consider the dual program of (16.2):
(1) [MIN]f = [b]i1xm-[V]mx1,

(1634) (2) [a])’lxm' [y]mx 1 > [c]nx 1
(3 [¥1eR", [Vlmx1 2 [01mx1-

231

Let [$]..x1 represent an optimal solution of (16.34). We shall prove that

(16.35) [9mxs = ((Bluxm)-[Calmx1-

The right member appears in the form of its transpose in (16.8) above and to
the right of the left member; it is also the vector of the marginal costs of the

m artificial variables ¢;.
First of all,

(16.36) ([BI mxm-[ealmx1 = [01mx1
in accordance with (16.12).

Again, (16.34) can be expressed as follows by introducing the matrix of the

deviation variables [v], "
(1) [MIN] f = [b]} xm-[¥Imx1,
(16.37) ) [adnxm-[yImx1 = [axn-[0]ax1 = [clax1,
(3 [YImx1€R", [v],x1€R",
Vlmx1 2 [0 mx1,  [vlaxs = [01axs-
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We recall how we obtained [B],,x, and [N],x, by a suitable choice of
columns in [[a] [/]]x m+n) (se€ What was done immediately before (16.16)).
Let us then calculate

(16.38)

LBY ATBI™ Y xm-[esles = Lesl -
[N] (n+m) x m [N]’-([B]_l)’-[cs] (n+m) x 1

In addition, by the use of (16.11) and by taking the transpose, we can say

(16.39) INTnxm-(CB] ™ Dxm-[eadmx1 = [ennxs -
By combining (16.39) with (16.38) we obtain (m+ #) inequalities

(16.40) [[B]' 9Tmxs = [[c"] :
[NT (nxm) x m Len] (m+n) x 1

from which we can again obtain m inequalities that we rearrange, recalling
- that [[B] [N1]] is obtained by a permutation of the columns of matrix
[[a] [17], and [[cg] [cx1] by the same permutation of the vector [[¢] [0]].
We obtain

(16.41) [a].[9] = [c].

This shows that, in accordance with (16.34) and (16.36), [¥],,., obtained
from (16.35) is a possible solution of the dual program.
In addition,

(16.42)* min f = [b]1xm [9Imx1 = (611 sm-([BI™ Dpuxm- [Calmx1
= ([cB],lxm[B]r;;m[b]);nxl

= ([cg] -[25])
(taking the transpose of the result),

where [£5] is the vector of the optimal base variables of program (16.1) in
accordance with Theorem 16.1. But

(16-43)1 ([cg]’ . [25]) = [cg) .[£5]

max ([c] .[x]) = max g.

Again, let us consider any possible solutions [ X7, of program (16.1) and

! Let us recall that the symbol [MAX] @ indicates the search for the maximum of ®,
whereas max ® means that we are concerned with the maximum itself. The same notation
applies to [MIN] and min.
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[Y1,nx, of (16.34). We can say

(16.44) [b]ixm-[VImx1 = ([@mxn-[¥Iax1) -[VImx1 from (16.2).
Or again,
(16‘45) [b]IIXm'[y]mxl > [x]{xn'[a]):Xm'[y]mxl'
But, from (16.34), we have
(1646)  [aTyemDVImxs = [clans -
Combining (16.46) with (16.45) we obtain
(16.47) (611 xm-[V]mx1 = [x]llxr[c]nxl >

that is to say again,

(16.48) f=zyg.
Two solutions ([£],x1, [#Imx1), Where [£] is the solution of program
(16.1) and [§] is that of (16.34), are such that

(16.49) f=y,

in accordance with (16.42) and (16.43).

Without making use on this occasion of Theorem 16.1, we have now proved
that [£] is an optimal solution of program (16.1), since function g is always
less than fin accordance with (16.48) and is only equal to f for this point [£]
(see (16.49)).

Observations
For every vector [x],«; and for every vector [y],.x1, and in particular
for [£],x1 and [$],x1, We have

(16.50) [blmx1 = [@Jmxn-[X¥]ax1 = [Olmx1,

(16.51) [adsxm-[YImx1 — [€lax1 = [0lpxy -

Since the vectors [x] and [ y] are nonnegative, we can state
(16.52) ([6] = [a].[xDixm-[V1Imx1 = O

and

(16.53) ([a]".[y] = [cDixn-[¥]ax1 = 0.
Hence we still have
(16.54) ([b]—[al.[xDixm-[¥Imx1 + ([a] - [y]1—[€])1 xn-[x]ax1 = 0.

But, as we shall now show, the expression (16.54) is identically null for

[x]=[#] and [y]=[].
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By expanding (16.54), it follows that
(16.55) (6] xm-[9Tmx1 — [£]1 xn-[aTnxm- [9mx1

+ 911 xm-[8Tmxn-[£]ax1 — []ixn-[R]ax1 = 0.
Let us observe that

(16.56) (211 xn-[adaxm-[9Imx1 = [911xm-[@Tmxn-[R]nx1
and that

(16.57) [6]ixm-[9]mx1 = min f = max g = [c]sxn-[£Tnx1-

Hence the left member of (16.55) is equal to 0. This enables us toprove Theorem
16.11 that follows.

Theorem 16.11
This theorem is generally known as the fundamental theorem of duality.
For a primal-dual optimal pair ([£], [§]), we have

(16.58) ([b1—[a].[£D1 xm-[$mx1 = O
and
(16.59) ([a] . [91-[cDixn -[#1ax1 = 0.

Proof

The expression (16.55), that is identically null for [x] = [£] and [y] =[],
is the sum of the two nonnegative terms (16.52) and (16.53) combined in
(16.54). These two terms must be nonnull, whence we have (16.58) and (16.59).

We shall now interpret this theorem so as to give the reader a better under-
standing of these important properties than we provided in Section 66 of the
first volume.

Let £; be a variable of positive basis in the primal program. To satisfy
(16.59) it is necessary that

(16.60) (1)t xm-[I1mxs — € = 0,

where [a]}, is the ith column of the matrix [a]. This means that the ith
constraint of the dual program (16.34) is strictly verified for the optimum.

Symmetrically, if the jth constraint of the primal program (16.1) is not
strictly verified for the optimum, that is to say, if

(16.61) b; — ([a])1xn-[£]ax1 > 0,

where ([a];); x, is the jth line of [a], «,, then, to have (16.58) it means that,
if §; is the jth variable of the dual program (16.34), §, = 0.
The above properties, often called the properties of complementation of
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primal and dual solutions are summarized as follows:

(16.62) X; is a basic variable of the primal =
([a]i ,IXm'[ﬁ]mxl - = 0.

(16.63) %, is not a basic variable of the primal =
([a1Y 1 xm:[Pmx1 — € = 0.
(16.64) by — ([a])1xn-[£]x1 > O =
9; =0 and 9, is not a basic variable of the dual.
(16.65) by — ([a1P1xn-[£]ax1 = 0 =

9;20 and §; is a basic variable of the dual.

2. Dual-Simplex Method [K58]

Let us summarize what we have proved by taking the two following
programs, each of which is the dual of the other:

(1) [MAX]g = [clixn-[xInx1s
(16.66) @) [almxn-[x]ax1 < [blmx1>
(3) [xlax1€R", [xX]axy = [0Inxs-
and
() [MIN]f = [b]1xm-[VImx1.
(16.67) @ [alaxm-[V1mx1 = [clax1s
(3) [VImx1€R", [YImx1 = [0Tmx1s

then g will be maximal and f minimal if the three following conditions are all
satisfied in table (16.8):

(16'68) [B]r;;m[b]mxl P [O]mxl,
(1669) [cB],lxm'[B]r;;m'[N]mxn - [cN],lxn > [O]l Xns
(16.70) [es]t xm-[Blmxm = [0]1 xm-

We shall now utilize these results in a method originated by Lemke [K58]
and called the dual-simplex method.

In the simplex method explained in Volume 1 the optimal solution of the
primal problem is reached by a path from extreme points to adjacent ones,
that is to say, that the right members of the different tables (16.8) obtained
during the iterations are nonnegative. By contrast, in the dual-simplex method
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this right member may be nonpositive (that is, it may include certain negative
components), but the first line of the rectangular matrices of (16.8) must
remain nonnegative, that is to say, if we will refer to (16.8), that we must have

(16.71) —Lendinn + [€alixm-[Blmnm-[INmxn = [01xn
and
(16.72) [cs)ixm-[Blpxm = [0]yxpm-

With the dual-simplex method the right member of (16.8) will only be
nonnegative for the optimum, whereas, in the classic simplex method (some-
times by analogy referred to as the primal-simplex method), (16.71) and (16.72)
are only satisfied for the optimum.

Let us assume

(16-73) 5:1 = ([B]i_ 1)1 xm'([N]j)mX 1>

where [B]; ! is the ith line of matrix [B]~* and [N}/ is the jth column of [N].
Let us also assume

(16.74)
[E]l x(2m+n+1) = [[l]lx 1 [O]lxm _[cN]ll Xn + [cB]llxm' [B];im[N]an
Le8] 1 xm-[Blmxn]
and take ¢; for the jth element of [£]; x2m+n+1)-
We shall now explain the dual-simplex method.
We assume that table (16.8) has been obtained after k iterations and (16.71)

and (16.72) are satisfied. In this case, we say that the table provides a solution
for the dual program (16.34) since, by taking

(16‘75) [y]mxl = ([B]_l)r,nxm'[cB] mxl> [O]mXI,

all the dual constraints are satisfied, as was proved in (16.41).
Let us now introduce a vector

(16.76) [Blmx1 = [Blaxm-[bmx1 -
If [5] = [0], then the table provides a solution,

(16.77) [xImx1 = [Bme 1

of the primal program (16.1). In this case, all the conditions of optimality of

(16.68)—(16.70) are satisfied. We have obtained the pair of optimal solutions

[£], [¥] of the primal and dual programs, and we now end the procedure.
Let us now suppose that the condition

(16.78) [blmx1 = [01mx1

is not satisfied. In that case, we shall carry out operations known as pivoting
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that are in all respects similar to those employed in Section 59 of Volume I.
The sole difference will consist in choosing the pivotal element to maintain
the first line as nonnegative, whereas in the classic simplex method the aim was
to keep the second member nonnegative.

Let r be an index such that

(16.79) 5, <0,

where b, is the element of the rth line of [5]. In practice, we shall take the
element b, that is the most negative of the negative elements of [5].
Now, let s be the index such that

(16.80) M a,<0,
where a,, is defined by means of (16.73)

Cs

(16.81) () MIN-Si = &
i _arj —a,

S

where min; is selected from the j’s such that g,; < 0.

Let us recall that the ¢,, i =1, 2, ..., m, are artificial variables that must
not enter the basis. As a result, the choice of r in (16.80) must be made from the
nonartificial variables, that is, r =1, 2, ..., m+n+1 (instead of 2m+n+1).
Similarly in (16.81), j cannot be chosen from the artificial variables and is
selected so that a,; <O withj=1,2, ...,m+n+1,

Choosing g, as a pivot, we then obtain

(16.82) bf = b,—a,.b,ja,,, i#r, i=12,..,m;

(16.83) b} = b,/a,;

(16.84) ay; = a,;—a,-a,a,, i#r, i=12..,m,
j=12,...,2m+n+1;

(16.85) ay = a,la,;

(16.86) ¢t = ¢;—c¢,.a,a,, j=1,2,..,2m+n+1.

We can at once verify that the choice of the above pivot a,,, as shown by
(16.80) and (16.81), results in

cr =0, j=1,2,...,2m+n+1.

The new table that is obtained also corresponds to a solution of the dual
problem that we have defined as beloning to a table for which [€]; x om+n+1,=
[0]1 x (2m+n+1) by taking the €T as elements of [¢].

This method of procedure justifies its name of dual-simplex.

There remains the case where a negative g,, cannot be found, and this will
be considered in Section 16.3.
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Let us now consider an example that requires for its treatment the use of
the results of Section 15.5 where the search for the maximum is transposed for
the minimum and conversely.

Let us solve the program

(1) [MIN] z = 2x,+3x5,

Q) x,-3x, > —4,
(16.87) B3) x,+x3 >3,

Xy, %y, %320,

Let us transform this into a program for maximization. Let us suppose

(16.88) g=—z.

It follows that

(16.89) [MIN] z = —[MAX] g,
that is,

(1) [MAX]g= —2x,—3x;,

(2) x1_3x2 2 _4,
(1690)  (3) xp4x; > 3,

4) xy,%3,%x320.

Let us express this program in its standard form (16.5) after adding the
deviation variables u; and u,. We shall take x; and u, as the initial basic
variables.

(16.91)

M L9177
(x,]

| Y2 |
(11 -0 0] —-[-2 -3 0] [0 0] - [0]

00 ey bl

r(Pl—

¢2J_

For convenience, the right member of (16.91) will be shown as the first
column of a table and the column of the variables will be given as a line above
the table. In a similar way the basic variables are shown to the left of the table
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so that we can recall which we must use in the iteration we are considering.

(16.92)
) @ @) W ) &) @) (8)

g x % x x |"u
1 2 2 3 1| 51 %
This line
| g 0 i 0 0 2 3 0 0 0 -« represents
[z]
M e -4 o] ]o]-3 oD | 1| o
(2) u2 -3 0 0 1 -1 -1 0 0 1
Column giving the point ® = - 4, z == 3, g=0.

Let us observe that line (0) of (16.92) is nonnegative as long as the con-
ditions of (16.71) and (16.72) are satisfied. Hence we can commence dual
iterations.

We have
—4
(16.93) (5] = .
-3
So x; = —4 and u, = — 3 does not provide a solution of the primal program

(16.90). We shall now perform a dual iteration taking line (1) as the line for
finding 4 pivot, since —4 is more negative than — 3. Let us next look for the
column of this pivot. In line (1) the elements a,, = —3 (column (4)) and
d,6 =— 1 (column (6)) are candidates since they are negative. If we look for
the pivot with the help of (16.81), we find

(16.94) min (—‘i_‘*— , —5_6—-> = min (2/3, 0/1) = 0,
—G14 —a16
and a,¢ will be chosen, being circled in table (16.92).
By applying rules (16.82)-(16.86) we obtain the following new table where
x, leaves the basis and u, enters it.

(M @ 3 G (5 (& () &

g xl uz xz xs u1 ‘p‘l ®,

jg | o ] ool 2}3|lof|o]o

(16.95) ) u1 4 0o | -1 0 3 0 1=l 0
@f w3100 -1 oot
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The point #, = 4, u, = —3, g = 0 is not a solution. We shall take line (2)
as the pivot line as it contains — 3 and, by applying rule (16.81), we find that
d,4 = —1 must be chosen as the pivot. Table (16.96) and (16.97) are given
below, and the reader can find the results as an exercise.

(H (2 ) @ By (& (1) (8)

g -731 uZ -732 x3 ul ‘pl ‘p2
@lgl-6s |1 loj2]o)1]o0o]o]2
(16.96) {5 o @3 o] = N
@|= {3 fofofrpvl|olo]
Column giTVing the point u1 = -5, x2 =3, g=-6,
(1) (2 () ) (5 (6 () (8
Il =] M %] % M A %
ON -6 1 0 2 0 1 0 o{ 2
(16.97) W= | sfo}r|s)olsfajr]= '
@j= ) 3lofofa b li]ojol

Column giving the point xl =35, xz =3,g=-6.
Table (16.97) shows the presence of a solution
(16.98) X, =95, x,=3, = —6,

which is the optimal solution of (16.90) in accordance with what we have just
proved.

Finally let us return to the initial program (16.87) where we have
(16.99) minz = —max g = 6
(16.100) x; =5, x,=3, x3=0, u;, =0, u, =0.

The reader can check that the vector of the marginal costs of the artificial
variables ¢, and ¢,, which is [0 2], appearing on the right of line (0) in (16.97),
is the optimum for the dual program of (16.90), namely,

(16.101) (1) [MIN]f=4y,~3y,,
2 -y:20,
3 3y1—y. = -2,
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(4) _y2> _3a
(5 y1,y220.

The solution of this dual program is
(16.102) ¥y, =0, Y, =2, min f = —6.

To obtain (16.101) the reader should transpose the inequalities of (16.90);
this will give the program

(1) MAX]g= —2x,—3x;,
(2) _x1+3x2< 4,
(16.103) B) —xy—x; < —3,

(4) X1, X2, X3 = O'

3. Observations on the Impossible Case for the Primal Problem

We shall now examine the case where, using the dual-simplex method, it
is not possible to find in the line of index r such that b, < 0, an element
a,, < 0. Our reason for dwelling on this aspect here is that we shall make use
of it in Section 21 when considering Benders’s method.

To prove that there is no primal solution in this case we shall remove the
rth line from table (16.8) and write the equivalent equation.

(16.104) 0.g+1.x5 + ([B], D1 wm- [(NImxn- D¥nlnx1
+ ([B]r—l)lxm‘[qo]mXI = ([B]:l)lxm‘[b]mxl

where xp_is the basis variable with index r of the vector [x5] and [B], ! is
the rth line of [B] L.

By observing that [¢] must be identically null, since the variables ¢, cannot
enter the basis, and by using the notation of (16.73), (16.79), and (16.80),
Eq. (16.104) is expressed

mtntl
(16.105) xg, =b,— Y a,.xy,,
j=m+1
where xy, is the variable outside the basis of index j of the vector [xy],x1-

If all the a@,; > 0, the xy ’ being positive or null and b, being negative, it
follows that x5 can never be nonnegative; hence the primal program (16.66)
has no solution since we can only obtain x5 > 0.

We shall now show that if we encounter the case where, beginning with
table (16.8) corresponding to the basis [B], there is no solution of the primal
program (16.66), this means that the convex polyhedron of the constraints of
the dual program (16.67) possesses a ray (see the definition on page 204) the
direction of which can be given by equation (16.104). Let us therefore enunciate
a theorem.
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Theorem 16.111

The vector [B] !, which, we should recall, represents the rth line of [B] ™!,
is a direction of a ray of the dual-convex polyhedron expressed by the con-
straints (2) and (3) of (16.67), provided b, < 0 and provided the primal program
is impossible. V

Proof

Let us consider table (16.8) and state,
(16.107)" [*lmx1 = (B Dmxm- [ealmx1 -
This point of R™ is a solution of the dual program (16.67).

Let us assume
(16.108) [V1ax1 = ([B]; Dpxs-

If [y]x 1 is any point of the half-line of R™ that passes through the point
[¥*]1,,x: having the direction of the vector [V'],,, we can then say,
(16.109) [Vdmx1 = [ Tmxs + 0. [VImx1s 6=0,

where 0 is therefore a nonnegative scalar.

We shall now show that all the points on the half-line (16.109) belong to the
dual-convex polyhedron formed by constraints (2) and (3) of (16.67).

Before proceeding further with the proof, let us observe that

(16.110) [Blmxm-[V1nx1 = [Blnxm-([B]; Dmx1
((B); . [BDmx1

0
=|:| (1 in position r).
1
_6_ mx1
Let us then assume
o
0
(16.111) [e] =]: (1 in position 7).
1
[0 fmxs

t Equation number (16.106) omitted from the French edition.
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By employing a method similar to (16.38) we obtain

(16.112)
= Dlaer = [Pl (0¥ Tr 40, [V I,
[N]I (m+n)yxm [N]::xm (m+n)yxm
By substituting (16.107) in the above and expanding it, we obtain
[B]'
(16.113) , [VImx1
[N] (m+n)yxm
= [cB]mXI+0'[B]r’nxm'[V]mx 1
[N]:lxm'[B]r;:m'[cB]mx1+0'[N]:IXm'[V]mx 1 |(m+n)yx1

By using (16.110), (16.111), and (16.71) we obtain

(16.114) [B], -[y]mx1> [cB]mxl
[NT (m +n) xm [endnxt (m+m)yx1

+0 [er]mxl
[N]:lxm'[V]mxl (m+n)x1

Thus the primal program (16.66) has no solution beginning with table
(16.8), since b, < 0 and a,, = 0for j=(m+1), ..., (m+n+1). As a result we
can say

[NT.[V] = [NT.([B], 'Y
arm+1 0
(16.115) =%z |5 0
arm+n+1 0
Hence, since
(16.116) e ]mx1 = [0lnx1 (from 16.111),
(16.117) [NDxm-[V1nx: = [0],x: (from 16.115),

(16.118) =0 (from 16.109),
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we can state by the use of (16.114),
(16.119)

’ B T
[B] -[y]mxl ? [cB]mxl ) + 0 [er]mxl
[N] (m+n)yxm _[Cu]nxu(mn)xl [Nlaxm-[V]1mx1 (m+x)x1

r[Clﬂm x 1—

=
_[Cu]nxu(mn)xl ’

Recalling that matrix [[B][N]] is obtained by a permutation of the
columns of matrix [[a] [Z]], and vector [[cz] [cx]] by the same permutation
of vector [[c] [0]], we deduce (from 16.119) that [a] .[y] = [c].

Hence [y],,«, satisfies the constraints of the dual problem whatever the
value of 8 = 0. As a result, the half-line (16.109) of R™ having the direction of
the vector [V],,«, is contained in the convex polyhedron of its constraints.

Now, the direction of [V],,«; is determined by the intersection of (m—1)
hyperplanes that delimit the convex polyhedron of the constraints of the dual
program in accordance with the definition of the ray of a convex polyhedron
given earlier.

Let us therefore consider the points [ y] of the ray (16.109) and let us express
the value of the economic function f of the dual program for these different
points. We have

(16.120) S =[]1 xm-[Vlmxs
= [b]1xm-((Bluxm-[¢8lmx1 + O[VImx1)
= [b]ixm- [Blyxm-[€almx1 + 0.[6]1 xm-[V1mx1
= [b]ixm-[Bluxm-[cplmx1 + 0.5,,

FI1G. 16.2
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where b, is defined by (16.76) and (16.79).

For 8 — oo, since b, < 0 in accordance with (16.79), f— (— o) for 6 — c0.
And so the dual program allows a minimum that can have as large negative
values as we desire.

To sum up, there are four possible cases for the respective solutions of primal
and dual programs, as shown in (16.121).

Program of

Program of

maximization | minimization
or or Observations
primal dual program
program

Both primal
and dual
programs

have
solutions

max g = min f min f = max g

(16.121)

no solution |min f+ —

max g + » no solution

This case can
occur even if]
it does not
have any
practical
interest

no solution no solution

In the case given in which the primal program has no solution, we can, by
using the definition of b, (16.79), say

(16.122) b, = ((B]; D1xm-[Blmx1 >
which, by the use of definition (16.108) and by transposing (16.122), becomes

(16.123) = [b]ixm-[VImx1
Hence, we have
(16.124) [b]ixm-[VImx1 <O.

Let us give a geometrical interpretation of (16.24) in R2. The slope [6]] x
of the economic function of the dual program has a negative scalar product
with the direction [V'],,x , of a ray of the convex polyhedron of the constraints
of (16.67). When we minimize the economic function that is shown by a thick
arrow, we obtain an infinite value, since there is a direction of ray [V'] that has
a negative scalar product with this slope.
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Section 17. Programming Method of Dantzig and Manne

1. Principle of the Method

To understand the principle of this method let us take the following integer
program:

(1) [MIN] f = [€]ixn-[xTux1>
17.1) (2) [admxn-[x)ax1 = [Blmx1>

(3 [xInx1 2= [0]nx1s

@' [x]ax1€2".

The vertices of the cones of R” that surround the polyhedron of the con-
straints are determined by the intersection of n separate hyperplanes taken
from the m+# that limit the domain of possible solutions, that is, m hyper-
planes given by [«].[x] = [b] and n given by [x] = [0]. We shall call

+ .
(17.2) 813552, v > SmsSma1s o> Smen, ;€RY, i=1,2,...,m+n,

the m+n deviation variables transforming the inequalities (2) and (3) of
(17.1) into equations.

Before proceeding further let us demonstrate this by an example intended
only to illustrate the procedure:

(1) [MIN]f=2x;— 3x,+11x5,
2) x,—2x,+8x; > 10,
(17.3) B) x1+x,-3x3 2> -2,
@ x;,x,x320,
(5) x1, %5, x3€2°.
By incorporating the deviation variables s, to s5, this program becomes
17.9 (1) MIN]f=2x,—-3x,+11x5,
(2) x,—2x,+8x3—s, =10,

(B) x;+x;-3x3—5, = -2,
(4) xl_s3 = 0,
(5) xZ_S4 = 0,

! Let us recall that in the usual notation R is the set of real numbers, Z that of the related
integers, and N that of the nonnegative natural or integer numbers. R* is the set of non-
negative real numbers and R¥ that of the positive real numbers.
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(6) X3—85=0,
(7) xy,x2,%x3€N, S1,82 S3,5%,85€RT.

Let us assume that the elements of [a],, x, and [#],, »; are integers. Since the
variables of [x],., are integers, the deviation variables of [s]=
(515525 ---» Smxn] must also be positive or null in accordance with (17.2), so
that

(17.5) s5; €N, i=1,2,..,m+n.

That is [x],x; = [0],x, Which satisfies constraint (2) of (17.1) and is an
extreme point of the convex polyhedron defined by

(176) [a]mxn . [x]nx 1 ? [b]m X1
17.7) [x]sxy = [0]ux1-

As we saw earlier, an extreme point in R is the intersection of n hyperplanes
in it. Hence, n of the n+m constraints (17.6) and (17.7) are fully satisfied by
[x]; that is to say, that » of the n+m variables s; are null. Let #,,4,, ...,
i, ..., I, be the indices of these n null s; variables.

If [x] includes at least one noninteger element, the extreme point [x] is not
a solution of (17.1). Hence another point of the convex polyhedron is needed,
and for this point at least one of the n inequations (17.6) and (17.7) that were
fully satisfied by [x] will no longer be so. At least one of the variables s,,,
«=1,2, ..., n that were null for this point [x] must be positive. Since the s;,
i=1,2,...,m+n are positive or null integers, we must have

(17.8) Spts,t+ .8, 21, 5, 20,a=12,..,n,

that is to say that there is at least one s;, > 0.

The new constraint (17.8) that we shall add to the constraints of the program,
if point [x],,; does not belong to N”, is called the Dantzig—Manne constraint.
We thus obtain a more constrained linear program that differs from (17.1) but
allows the same integer solutions.

The Dantzig—Manne method uses the simplex procedure to solve this new
program by removing constraint (4) of (17.1) and by including constraint
(17.8), and so on.

However, this method, of great historical importance in the solution of
integer programs, since it was the first introduced for this purpose in 1956,
has now been discarded for others, mainly because the algorithm attached to
it does not always lead to convergence.

Nevertheless, the two necessary (but unfortunately insufficient) conditions
have been proved by R. E. Gomory and A. J. Hoffmann [K43], and we shall
now examine them.
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For a point [x],x;, the solution of (17.6) and (17.7), there are m+n
deviation variables depending on [x], that is to say, for an [x] that satisfies
the above conditions; they can be called s;[x], i=1,2, ..., m+n, defining
in this way their dependence on [x].

In addition, for each new constraint such as (17.8) we must also add a
deviation variable depending on [x]; we shall use the notation' 7,[x],
p=1,2,... for the deviation variable of the pth Dantzig-Manne constraint
that we can therefore express as

(17.9) sPIx] + sP[x] + ... + sP[x] - t,[x] =

The upper index (p) in s{? shows that it is the Dantzig-Manne constraint
introduced at the pth iteration.

2. Conditions Needed for Convergence

Let us take a point [x],,, that satisfies constraints (17.6) and (17.7); for
this point we can calculate the value of the m+n deviation variables s;[x],
i=1,2,..,m+n Also let s{V[X], k=1,2,...,n=1,n,n+1,...,n+m, be
the same deviation variables reindexed so as to appear in their increasing
numerical order,

(17100 SPIE] < sPLE < < s IR < 850 [R] < s [
< s, %]

We then have

-1
(17.11) (z sﬁi’[i] = 1) (t,[x] = s [xD, p=123, ...
k=1
Proof

Let us suppose that in solving the linear program (17.1) in which we did not
take into account condition (4), we had obtained a noninteger solution
indicated by [X] (which is, let us remember, an extreme point of the convex
polyhedron defined by (17.6) and (17.7)). This point corresponds to the
intersection of n hyperplanes of which the deviation variables s{"[X],
a=1,2, ..., n are null for this point.

We shall add the first Dantzig-Manne constraint

17.12) t,[x]1= -1+ z siV[x], H[x]1 =0
a=1

In particular, for [x] = [X], we have
(17.13) t[x] = -1,

! In this section we shall indicate by s, and 7, the deviation variables of the inequalities in
order to abbreviate the notations and proofs. In the later sections we shall reintroduce the
notation u;.



17. PROGRAMMING METHOD OF DANTZIG AND MANNE 249

hence a negative number, which indicates that constraint (17.12) is not satisfied
by [%]. The value of #,[x] for another point [x] = [x] is

(17.14) t[X] = -1+ Z siD[x].
a=1

Let us now reindex the n deviation variables s{) [x] in such a way that their
total order is their natural increasing order, namely,
(17.15) sPx] < sP[x] < - < sE2 L [x] < sSPLE]

Jn 1
Let us observe that the ordered set (17.15) is a subset of set (17.10) the order

of which is induced by that set.
Hence we can deduce that

(17.16) s [x] = 850} [%]
and that:

n—1 n—1
(17.17)* ,,; sOIx] > k; s [x].

By using the reindexing j;, B=1,2, ..., n, we can express (17.14) in the
form

(17.18) t[x]= -1+ Z sV,
g=1
or again,
(17.19) t[x] = s [x]1-1+ Z G [x].

Substituting (17.16) in the first term of the right member of (17.17), and (17.19)
in the third term of the right member of (17.19), we obtain

(17.20) t,[x] > s [x]1-1+ Z sO[X].

! For the purpose of instruction let us take a numerical example to illustrate this. If
n= 5and n+ m = 8, the following table shows eight totally ordered numbers corresponding
s [71:
1 2 3 4 5 6 7 8

(1) {0.80]0.95|1.20|1.20[2.63]3.15} 6.44 | 9.06 | indices X

Let there be a subset with five elements of this ordered set.
1 2 3 4 5

¢)) / |o.95| / |1.20|2.63[3.15]|6.44 | / [indices j,

(17.16) indicates that the fifth element of (2), namely 6.44, is greater than or equal to the
fifth element of (1). Also, (17.17) indicates that the sum of the first four elements of (2),
namely 7.93, is greater than or equal to the sum of the first four elements of (1), namely 4.15.
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Let us suppose that we have

n—1
17.21) ; s$O[x] > 1.
If we substitute (17.21) we obtain
(17.22) t,[x] > i), [%],

which proves (17.11) for p = 1.

To the set of constraints (17.6) and (17.7), let us add the constraint (17.12)
of which the value of the deviation variable for [X] is ¢,[X].

From (17.22) the (n— 1) smallest values of the n+m+ 1 deviation variables
of the new polyhedron include the value of the right member of constraint
(17.12); they are the same as before. The property given by (17.22) will thus
apply by recurrence to p = 2, namely,

(17.23) t,[x] > s [x].
And by using a similar procedure for 3, 4, ..., p, the theorem is thus proved.

Theorem 17.1

If [X],« 1 is a point corresponding to an optimal integer solution of program
(17.1), then the Dantzig-Manne method can only converge if the (n—1)
smallest values of the deviation variables s;[X], i=1, 2, ..., n+m, are null.

Proof

If [X],x, is to be an optimal solution of the linear program obtained by
ignoring constraint (4) of (17.1) and by adding the Dantzig-Manne constraints
(17.12), then the point [X] must be a vertex of the convex polyhedron obtained
by cutting the convex polyhedron defined by (17.6) and (17.7) by the constraints
defined by (17.12). Let us take the following convex polyhedron:

(17.24) (almxn-[X1ax1 = [Blux1s
(17.25) [xTnx1 2= [0ax1>

(17.26) (z s§f)[x])— t,[x] =1, p=12..,r,
a=1
where r is the number of the Dantzig-Manne constraints.

A vertex of this polyhedron is defined by » null deviation variables.

By hypothesis, point [X] constitutes an optimal solution with integer
values, the values of the deviation variables s;,[X], i=1, 2, ..., n+m, being
integer. If the (n—1) smallest values of the deviation variables s{»[x],
k=1,2,...,n—1,are not null, we have

n—1

17.27) Y sPx1= 1.



17. PROGRAMMING METHOD OF DANTZIG AND MANNE 251

The largest of the (n— 1) smallest values of these deviation variables, s{!’ [%]
is greater than or equal to 1.
Using (17.27) and the lemma expressed by (17.11), we have

(17.28) t,[x] > s [x1=>1.°

As a result the value of the deviation variables of the r Dantzig—-Manne
constraints cannot be null, whatever the value of r. Hence we have
(17.29) x> = REI=D = .= 6P [x1=1).

And, in accordance with (17.18) and (17.29) only the value of the n—2
deviation variables s{’[X], k =1, 2, ..., n—2, can eventually be null. Hence
point [X] will never be the intersection of n hyperplanes among those defined
by (17.24)-(17.26).

We shall give an example further on.

It is possible to provide a more geometric illustration of this theorem. If
the Dantzig-Manne method is to produce convergence, the (n— 1) smallest
values of the deviation variables evaluated for the optimal point [X] must all
be null; that is to say, [x] must be at the intersection of (n— 1) hyperplanes of
the convex polyhedron defined by (17.6) and (17.7).

A special case of some importance occurs where the necessary condition
for this theorem is always satisfied, namely, when the n variables x; of [x] can
only assume the values of O or 1. In this case only the vertices of a hypercube
of R” can be solutions, that is to say, when we have the assurance that the
optimal point [X] is the intersection of n hyperplanes delimiting this cube and
must therefore, a fortiori, be at the intersection of (n— 1) of them.

Theorem 17 .11

Let us take a point [x*] belonging to the convex polyhedron,
(17.30) (@ mxn-[xTnx1 = [BImx1s
(17.31) [x]ax1 = [01axss

but where we make it an assumed condition that the components of this
point must contain at least one that is noninteger. We also assume that the
point is such that

17.32) [l .[x*] < []'.[*],

where [x*] corresponds to a minimal integer solution of program (17.1).
In that case another necessary condition for convergence with the Dantzig—
Manne method is

n—1
(17.33) Y s9Ox*] < 1.
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Proof

By hypothesis [x*] is not integer and includes at least one noninteger
component. Since the point corresponds to a value of the economic function
fin (1) of (17.1) that is less than the one taken for the optimal solution corre-
sponding to [X], and also by taking (17.32) into account, there must be at
least one of the Dantzig~-Manne constraints (17.26) not satisfied by [x*].
Hence there is a value p in (17.26) such that ¢,[x*] < 0.

Let us suppose that (17.33) is not satisfied and that we have

n—1

(17.34) Y SOx*1>1;

this results in 52 [x*] > 0, remembering that the s [x*] are indexed in
their increasing order of values.

In accordance with lemma (17.11) we have

(17.35) tp[x*] > sfli)_l[x*] R p=1L12 ..,r,
and since s{!) [x*] > 0, then:
(17.36) t,[x*]1 >0, p=12,..,r,

which contradicts the hypothesis formulated immediately before (17.34),
namely, that there is a value of p in (17.26) such that 7,[x*] < 0.

Observation

All our explanations so far in this section have been based on a program
such as (17.1) where we are seeking a minimization. All the considerations
mentioned can apply equally to a search for the maximum with the sole
proviso that we must invert condition (17.32) by

17.37) [c].[x*] > [c]'-[x]

and must replace minimal and smaller by maximal and greater at the appro-
priate place in the statements and proofs.

3. Examples

We shall now present two examples. The first will illustrate the Dantzig—
Manne method and make use of Theorem 17.1. The second will reveal the
presence of nonconvergence when the conditions of Theorem 17.11 are not
satisfied. On account of its small number of variables the first will be shown
graphically, the second by means of simplex tables.

First Example
(17.38) (1) [MAX]g = x,+x,,
2 2x, 3.
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(3) 2x, <3,
(4) x;,x,€eN.
Let us replace condition (4) of (17.38) by
(17.39) x, =20, x, 20, X, X €R,
and let us then consider the linear program:
(1) [MAX] g = x,+x,,
2) 2x;+s, =3,
3) 2x5+s, =3,
4 x,—-53 =0,

(17.40)

(5) X2—S84 = 0,
(6) xl’xz’sl’sz’ss’s‘t?o, X1 X2358;1582,83,8,€ R.

From a brief consideration of Fig. 17.l1a we can see that the point
[x*)] = [3/2 3/2] that gives the optimal solution is not an integer solution.
This point is the vertex corresponding to the deviation variables s, = s, = 0.
We now add the Dantzig—-Manne constraint,

(17.41) s;+s,—t; =1, 1, >0.
Substituting (2) and (3) of (17.40) in (17.41) we obtain
(17.42) 2x,+2x,+t, =5, t, 2 0.

This constraint has been added in Fig. 17.1b and produces a new con-
vex polyhedron.

With such a simple polyhedron we can easily see the minimum, observing
at the same time that all the points of the edge that connects points [1 3/2]
and [3/2 1] are also optimal solutions, since the straight lines 2x, +2x, =5
and g = x, + x, are parallel.

Point [x®] does not provide an integer solution and corresponds to the
deviation variables ¢; = s, = 0. We now add the Dantzig-Manne constraint,

(17.43) tl +s2—t2 = 1, t2 2 0.

If we substitute the relations (3) of (17.40) on the one hand and (17.41) on the
other, in (17.43), we obtain

(17.44) 2x1+4x2+t2 = 7, t2 > 0.

This constraint has been introduced in Fig. 17.1¢ and produces a new convex
polyhedron.

By inspection, we see that the minimum for g in this new polyhedron corre-
sponds to [x®] = [3/21]; this does not provide an integer solution and the
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following deviation variables are associated with it: ¢, = s, = 0. We now add
a new Dantzig-Manne constraint,

(17.45) t2+s1—t3 = 1, t3 > 0.
By referring to the variables x, and x, we obtain
(17.46) 4x,+6x,+t3 = 11, t; 0.

This fresh constraint has been introduced into Fig. 17.1d and gives a new
convex polyhedron for which we obtain a minimum for g corresponding to
[x] = [3/2 5/6] that is still not an integer solution.

Indeed, we could continue indefinitely in this way without obtaining an
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integer solution. In fact, from simple inspection, we see that the maximum of
function g of (17.38) is reached for the integer point [x] = [1 1] shown in
Fig. 17.1. By referring to (17.40) we have

(17.47)
s;[111=1, s,[1 11=1, s3[1 11=1, s[1 1]1=1.

Here [x] € R? and the (n—1) =2—1 =1 smallest values of the deviation
variables are all equal to 1 (it is sufficient to consider the smallest, whichever
it is). Hence none of them are null and, in accordance with Theorem 17.1, the
process does not converge.

Second Example
Let us consider the integer linear program:

(1) [MIN]f= —4x,—3x,—3x,,
(2) 3x,+4x,+4x; <6,

® 0<x <1,
(17.48)

(4) 0<x2<1,

(® 0<x3<1,

6) x;,x5,x3€N.

A complete enumeration of the eight vertices of the unit cube of R? easily
reveals that the minimum for this program is obtained for the point

(17.49) [x]=[1 2 0].

At this point the value of the economic function is f'= —4. Since the vari-
ables x,, x,, and x; are bivalent in accordance with conditions (3)—(6) the
necessary requirement for convergence with the Dantzlg—Manne procedure
given by Theorem 17.1 is satisfied.

Nevertheless convergence cannot occur if the method is used to solve this
program, since the necessary condition given by Theorem 17.11 is not satisfied,
as we shall now show.

Indeed, let us take the point [x*] = [1/2 1/2 1/2] of which all the coordi-
nates are not integers. The value of the economic function fat this point is — 5.

Let us rewrite constraints (2)—(5), adding to them the deviation variables
s, i=1,2,..., 7 It follows that

(17.50) (1) 3x,+4x,+4x3+s5, =6,
2) x;+s, =1,
(3) x2—s3 =1,
@ x3—s, =1,
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(5) x1+sS = 0,
(6) x2+s6 =0,
() x3+s7 = 0.

For the point [x*], we have
(17.51) s;[x*] = 1/2, s, [x*] = 1/2, s3[x*] = 1/2, s,[x*] = 1/2,
ss[x*] = 1/2, s¢[x*] = 1/2, s, [x*] = 1/2.

The sum of the n—1 = 3—1 = 2 smallest deviation variables s;[x*] that
are here all equal to 1/2 is 1, and by using the notation of (17.10) we have

n—1

(17.52) Y sSSP =1.
1

of g will take place for
(17.53) xX®?1=1[ 3/2],
Since — 5 < —4 and by the use of line (1) of (17.48), we have

17.54) [c].[x*] < ['].[X].

Conditions (17.53) and (17.54) imply that the necessary requirements for
convergence of Theorem 17.1I are not satisfied and that the Dantzig-Manne
method cannot produce it. We shall show this by carrying out a few iterations.

Let us suppose g=—f. Then, by adding the deviation variables
51,52, 53,54 = 0 and by considering the constraint x; = 0, i =1, 2, 3, instead
of x, € N, program (17.48) becomes (refer to what we performed in (16.88))

(1) [MAX]g =4x,+3x,+3x;.

(2) 3x,+4x,+4x3+s, =6,
(17.55) B) x,+s, =1,

4) x2ts3 =1,

() x3+s,=1,

6) Xy, X3,X3,8;,8,5;,84 =0,

A basic solution for program (17.55) is x, =x, =x3;=0 and s, =6,
s, =1,53=1,5, =1. We set out the calculations in successive tables such as
that of (16.95) to which the reader may refer. In these tables we do not include
the columns corresponding to the variables of the vector [¢], x; of which
the elements are null.
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(n @ @ & G ., O &

g s E s s x x x
1 2 3 4 1 2 3

oy g 0 1 0ol o 0 0 -4 -3 -3

(s 6o 1 jololfo @ | & | s

(17.56)

(2) s, 1 0 0 1 0 0 1 0 0

(3 s, | 0] o o 1 0 0 1 0

OIERE ol ol ofo 1 0 0 1

Column giving the point s = 6, s, = 1, s, = 1, s, = 1, g =0.

Table (17.56) does not contain an optimal solution since line (0) is not non-
negative (see Theorem 16.1). We shall now use the primal-simplex method
explained in Volume 1 and this wili provide an optimal solution in two itera-
tions; the reader is left to perform the calculations. The pivoting elements
have been circled. The element in column (6) of line (0) is the most negative
of this line, so that we have

min (6/3, 1/1, 1/1, 1/1)=1

and we take, for example, line (2) as the pivot line, although we could equally
well have chosen line (3) or (4). By effecting a simplex operation we obtain
table (17.57).

(@ 3 B B B, (1 (&

g 8 8 8 8 x x x
1 2 3 3 1 2 3
o[ g 4 1 0 4 0 0 0 -3 -3
s |3 o] ]ofo o | ® |
(17.57) ()| = 1 o | o 1 0| o 1 0 0
1
3| s 1 {o]lofol] 1 |o 0 1 0
3
@l s |1 ]ojofo ol 0 0 |

t

Column giving the point s =3, =1,5 =1,s =1, g=4.
1 1
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The solution provided by table (17.57) is not optimal, and a new table (17.58)
is obtained by taking the circled element as the pivot. In line (5) we have
circled the Dantzig~Manne constraint subsequently added.

(17.58)
(0 () (@ ) B B3 (B (1 B (9

g s s 8 s x x x t
1 2 3 4 1 2 3 1
1 g la2sza 1l 376 776l0 | 0 0 0 0 0
(N = 3/4 |0 174 {-3/4] 0 0 0 1 1 0
()} « 110 0 1{0 0 1 0 0 0
3! s /6 16| =174 3/41 1 0 0 0 -1 0
Dantzig-Manne
4)| s 110 0 0|0 1 0 0 1 0 constraint
added
)] ¢ -1]of -1 | -1]o | o 0 o |G 1 | < since the
1

solution is

41‘ not integer.

Column for the deviation variable
of the added Dantzig-Manne constraint.

Let us ignore line (5) and column (9) added here for convenience although
they only intervene subsequently. Then table (17.58) represents an optimal
solution of (17.55), since the elements of line (0) are nonnegative, as well as
the elements in the next four lines of column (0). This soultion is

(17.59) xz = 3/4;x1 = 1, S3 = 1/4, S4 = I,X3 = 0, Sl = 0, SZ = 0.

However this is not an integer solution. By reference to the constraints(17.50)
we see that this point corresponds to s; =5, =5, =0. We now add the
following Dantzig-Manne constraint to the program:

(17.60) SI+SZ+S4—t1 = 1, tl > 0.
That is, in accordance with (17.50),
(17.61) —8;—8;—X3+t; = —1, t; 2 0.

When this constraint is added to table (17.58) it still does not provide a solution
since #; < 0, but line (0) is nonnegative. We shall now use the dual-simplex
algorithm explained in Section 16.

For pivot we take the element — 1 circled in table (17.58), the choice of
which the reader can easily verify. We obtain table (17.62).
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(17.62)
@ () (2 (3 W G &) (1 &) (9
g s1 32 s3 sl+ xl xa tl
O g |25/4 f 1] 3/47 7/6 [0 | 0o | o 0| o
) z, ~1/4 | 0 @-7/4 o |lo o o |1
(2) = 1]o 0 1o | o 1 o] o
3 8, s/6 1 ot 3/4] 7/6 | 1 0| o o |-
OIS ool -1 -1]o 1 0 0 1
(5) . 1jo 1 1]o0 0 0 1 |1

Column corresponding to the point x2

f

s =5/4, 8
3 "

0, x

1.

==-1/4, x =1,
1

259

The point obtained is not a solution, since x, < 0, and we perform a new
iteration with the dual-simplex algorithm, taking —3/4 as pivot, although

—7/4 could equally well have been chosen. We give table (17.63) below.

(17.63)
0 (1 (@ (3 &) () (& (I (B (9
g sl 82 83 814 1 ¥ 3 tl
olg 61 qo oo of of 1 1
@ e js o[ 1] | oo ofus -4/3
@ |z 1o o 1 o | o |1 0 0
3 s, 1o o 0 1 0 0 1 0
OIES 173 1o [of4/3 { 0] 1 01-4/3 -1/3
(5 z, 2/3 1o [of4/3 1 0] 0] 0]|4/3 1/3

Column corresponding to the point s1 =

Table (17.63) provides a solution, but it is

8
IR

1/3, 2. =1, 8 =1,
1 3
1/3, xa =2/3, g=6.

not integer. We must now add
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the new Dantzig—-Manne constraint obtained in the same way as in (17.61),
(17.64) _SZ_xZ_tl+t2 = '—'1, t2> 0

This constraint is added to table (17.63) and we proceed by the use of
the algorithm, the calculations being left to the reader. However we have
sufficiently proved that the algorithm cannot converge for this example and
that an integer solution of program (17.48) will never be obtained by this
method.

Section 18. Solving Linear Equations with Integers!

1. Introduction and Definitions

One of the first problems to confront mathematicians was to solve equations
that appear opportunely. It was not until 1621 that Bachet de Mezinac, the
translator and commentator of Diophante? was able to solve the equation

(18.1) ax+by = ¢,
when x and y must be nonnegative integers. Thus, the equation
(18.2) 3x+2y =17,

has as its sole solution x =1, y = 2. However, more complicated cases may
occur and it is necessary to have appropriate methods available for dealing
with them.

Before explaining a general method of solution, we may mention that the
term Diophantian equations is often applied to equations or systems of equa-
tions the solution of which can only consist of natural numbers (nonnegative
integers).

Let us now consider the case of linear equations of the type

Ay Xy +Appx; + oo + Ap X, = by,
Ay Xy + Agp Xy + oo + Ay X, = by,

Amlxl + Am2x2 + ...+ Amnxn = bm,
A, b, x;€Z, i=12,...,m; j=12,..,n.
Or in matrical form,

(18'4) [A]an'[x]nXI = [b]mxl'

! Part of this section is adapted from the article by J. C. Fiorot and M. Gondron [K32].
2 He lived during the 4th century A.D.
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We intend to show that when a solution [x©],,; of (18.4) exists all the
solutions [x],; are expressed in the form
(185) [x]nXI = [xo]nXI + [w]nx(n—m)'[t](n—m)xla
where '
[Xolnx 1 is an integer solution of (18.4),

[W]yx m-m) 1 @ matrix with related integer elements
(wyeZ, i=12,...,n j=1,2,...,(n—m),

[£]n-myx1 1S @ vector with related integer elements
(€2, i=1,2,...,(n—m)).

. The results obtained in the present section will permit an easy transition
when we study Gomory’s methods of integer programming in Section 19.
Substitution Matrices!

Let us consider a matrix [II], ., of which the elementsIT;;, i,/ =1,2, ..., n,
are such that

(18.6) II; =0or 1, i,j=1,2,..,n,

(18.7) Z Hl'j = 1, j = 1, 2, sy Ny
i=1

(18.8) > II; =1, i=12,..,n,
/=1

then [IT] is called a substitution matrix.

Differently stated, this means that we are concerned with a Boolean square
in which each line and each column contains one and only one 1.

Thus the matrix [IT] given in (8.9) is a substitution matrix of order 8.

0 0 1 0 0 0 0 O]
1 0 0 0 0 0 0 O
0 0 0 1 0 0 O O
0 1 0 0 0 O O O
(18.9) Mlsxs=o o 0 0 1 0 0 0
6 0 0 0 0 0 O 1
0 0 0 0 0 1 0 O
0 0 0 0 0 0 1 O]

Let any [A4],,«, be the premultiplication of [A4] by a substitution matrix

t Also called commutative, permutative, or distributive matrices.
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[, xn, thatis to say [II ], xm- [A)m«» Will produce a permutation of the lines
of [A], whereas the postmultiplication of [A4] by a substitution matrix
[M],xm Will produce a permutation of the columns of [4]. An example is
given in (18.10) and (18.11).

(18.10)
00 0
010
100
00 1
(18.11)
on @
a, a,
;1 Qz2
a3y 43z
as1 Q42

o OoO ©

a33

A34

a12
az2
a3z

Qa2

C)
Q14
a4
Q3a

Qa4

Transposition Matrix
A substitution matrix in which two and only two 1’s do not belong to the

main diagonal is a transposition matrix.

a3
az3
a33

Qa3

(%)

Qs

o =

o O © O

ais

ais

Qss

o o © ©

)
@
3
@

—

o © ©

o o ©

—

Q42 Qa3
22 Q33
aiz 413
a3z 4as
& @
d15 411
dzs Q31
aszs a4z
Q45 Qa1

Qa4
az4
A14

LY

()

)
()
M
3)

Such a matrix premultiplying [A] permutates between them two lines of
[A] and postmultiplying [ B] permutates between them two columns of [B].
Thus the matrix [P] given in (18.12) is a transposition matrix.

(18.12)

0
0
[P]sxs = 0
0

1

L0

0
0
0
0
0

1

0
0
1
0
0
0

0
0
0
1

0
0

0
0
0
0
1
0

0
1

0
0
0

0_

6y
< Q)
A3)
4)
®)
« (6)

This matrix would permutate a line (2) with a line (6) or a column (2) with a
column (6), depending on whether it is a question of pre- or postmultiplication.

To define the transposition that has been carried out it is convenient to
express a transposition matrix as [P;;] if it permutates { with j (lines or columns
as the case may be). Thus (18.12) can be expressed as [ Py¢]6 x¢ -
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Unimodular Matrices. Definitions

The term unimodular matrix is given to a matrix n x n of which the deter-
minant! has the value (+1), (—1), or (0); that of regular unimodular matrix
is given to a matrix n x n of rank n, that is to say, one where the determinant
is(+1)or(—1). :

The product of two unimodular matrices gives a unimodular matrix.

A transposition matrix is a regular unimodular matrix and its determinant
is (— 1) since its parity? is always uneven.

A substitution matrix is always a regular unimodular matrix. If its parity
is even its determinant is (+ 1), and if it is odd its determinant has a value of
(—1).

By an abuse of terms, but for convenience, we shall sometimes use the term
unimodular for a matrix m xn (m # n) if it is of rank s = MIN (m, n) and if
its determinants of order s are equal to (+1), (— 1), or (0). Clearly, since the
matrix is of rank s, there must be at least one determinant of order s that is
nonnull.

Subtraction Matrix

Let us first consider a unit matrix # x # in which a 0 has been replaced by any
number (— o) where o is any real number. If (— o) is placed in the /th line and
Jth column, this matrix will have the notation [U; ; ,] to recall these facts.
An example of this is shown in (18.13).

lj
T 0 0 0 0 0]
0 1 0 0 0 0
0 0 1 0 —a Of«i
(18.13) Ussadsxs =g o0 0o 1 0 o
0 0 0 0 1 O
0 0o 0 0 0 1]

Matrices of this type are called elementary subtraction matrices. It is evident
that their determinant is equal to 1 and that they are therefore regular uni-

} Some writers insist that the minors must also have these values. As far as we are con-
cerned, these supplementary conditions define totally unimodular matrices which will not
be used here.

2 The substitutions can be divided into two classes, those having the same parity as the
unit substitution (unit matrix) and obtained by an even number of tranpositions, and,
secondly, those having a complementary parity obtained by an odd number of transpositions.
See, for example, [K18], p. 118.
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modular matrices. Such matrices possess the following properties. The

premultiplication of a matrix [4] by [U; ;] has the effect of reducing the

ith line of [4] by « times the jth line of [4]. The postmultiplication of a matrix

[B]by [U,,;,.] reduces the jth column of [ B] by « times the ith column of [ 4].
The following example illustrates this property:

(18.14)

1 0 O O} la;n a2 aqs aj, ag, ais

0 1 0 —ajla,y a,; a,; Q31— 0G4 Gy2—04; Ga3—0d43
0 0 1 0)lay; az, as; - asq a3, asy;

0 0 O 1] 1a4 a4 au; aqq Q4 Q43
(18.15)

biy b1z bis by 1 0 0 0 by b1z bys  bya—aby,
by ba; bay by |0 1 0 —ai={by; by; byz byu—aby,|.

bsy bi; bas byl (O O 1 0 by;  bsz bsz  bas—abs,

6 0 0 1

If we now take two elementary subtraction matrices [U; ; ,] and [U;, 4],
J # k, their product will give a matrix formed by 1 in the main diagonal and
elsewhere by 0, except in (i, j) where we find (—a) and in (i, &) where we find
(— B). Hence, by successive multiplications performed in any order we can
construct matrices that we call composite subtraction matrices. The following
example shows how such matrices are constructed or decomposed.

(18.16)

1 00 0]10 0 0][1 00 O 1 0 0 0O
—a; 1 0 0){0 1 —a, 0[]0 1 O —ay —a; 1 —oay —oy
0 ot1olloo 1 offoo1 o | 0 O 1t O
0 00 1/]{0o 0o o0 tjlooo0 1 0 0 0 O

It is clear that every composite subtraction matrix has a determinant equal
to 1and is therefore a regular unimodular matrix. It superimposes the prop-
erties of subtraction, both in pre- and postmultiplication, of the elementary
subtraction matrices that compose it by their products.

Theorem 18.1
The product of two subtraction matrices n x n gives a regular unimodular
matrix.
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This is obvious, since they are regular unimodular matrices.

The same conclusion applies to the product of a transposition matrix and
a subtraction matrix and in general to every product, whatever the order of
these matrices among themselves or with the others, since all of them are
regular unimodular matrices.

Arithmetically Equivalent Matrices
Two matrices [A4],, ., and [B],, «, are arithmetically equivalent if there are
two regular unimodular matrices [U],, x,, and [V'],«, such that

(18.17) LUTmxm-[ATmxn-LV]axn = [Blmxa-

Let us consider an example:

(18.18)

1 -2 3174 2 5 =33 1t 0 0 O 14 2 9 -23

0 1 0|0 9 -2 1{|]-1 1 0 3|=]-9 9 =2 28

0 0 1114 6 0 -8 0 0 1 O -2 6 0 10
0 0 0 1

(U] (4] V] [B]

The two matrices [A]; .4 and [ B]; « 4 are arithmetically equivalent.

2. Reducing a Linear System to Smith’s Normal Form [K32]

Let [4A] be a matrix m x n of rank r < min (m, n), the elements of which
are real numbers, and let [ D] be another matrix m x n of rank 7 of the following
form known as Smith’s normal form:

"d, 0 .0 |0..0]

(18.19) pl=|0 o0 4 i0..0| lm,

where a4.#0,k=1,2,...,r

Expressed differently, [D] contains a square submatrix, the principal
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diagonal of which is formed of nonnull numbers, the other elements being
0’s, and the other submatrices, formed from the square submatrix, that are
also formed of 0.

Theorem 18.11 :
With every matrix [A],, x, there can be associated a matrix [D],, «, such as
(18.19) and obtained by the transformation

(1820) [U]me‘[A]an'[V]an = [D]mxn’
where [U] and [V'] are regular unimodular matrices.
Proof

It must first be observed that the transformation expressed by (18.20) is
not that known as diagonalization in classic matrical calculation! which
enables us to obtain the values belonging to a square matrix. In the case
considered here, [A] is not necessarily a square matrix and [V] usually
differs from [U] L.

Let us begin by determining two matrices [U;] and [¥;] such that

d1 [0]1 x(n—1)
(18.21) [UJ.[A].[V)] = | - oo B — = [D1].
[O](m—l)xl ; [A,](m—l)x(n—l)

To do so we shall proceed as follows:

a. By a suitable permutation of lines and columns, we bring the smallest
term of [A] in absolute but not null value into the position (i, j) = (1, 1),
namely, into the first line and the first column. Let A*) represent this term. To
do this we shall employ a transposition matrix [P{}’] that, by premultiplying
[4], brings AV into the first line, and a transposition matrix [P{}’] that, by
postmultiplying [A], brings 4! into the first column.

b. Then, by using suitable subtraction matrices [U] and [V'] we shall
replace each term of the first line and of the first column by the remaining
p;; defined as follows:

(18.22) ay; = 0y;. 40 + py;,

(18.23) ay = oy AD + py,
with o, ; and a;; integer numbers.

This amounts to subtracting «;; times the first column from each of the
columns in which the first element is not null. This is obtained by postmulti-
plications with subtraction matrices [V, ;, a,;]. It is also equivalent to sub-
tracting o4, times the first line from each line in which the element is not null.
We obtain this by premultiplications with subtraction matrices [U, ;, ;;].

' The reader who may have forgotten the procedure should refer to M. Denis-Papine and
A. Kaufmann, “Cours de Calcul Matriciel Appliqué,” Albin Michel, Paris, 1969.
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If the remaining Py, and P;, are all null we have obtained [D’]. If not, we
repeat with the new matrix what was done with [A]. We shall finally and
definitely obtain the form [D’] in a finite number of iterations since, with each
iteration, we replace all the nonnull terms except A!) in the first line and column
by elements of strictly decreasing absolute value.

C.
(18.24) If [AI](m_l) x (m—1) — [O](m—l) X (m—1)>
lthen [U] =[U1] and [V] = [Vl] s

satisfy (18.20). If not, we shall perform on [A4’] the operations defined in (a)
and (b) to obtain the form:

(18.25)
[(U.1.[D'].[V2] = dy x‘ 0 [0)1 x (-1

0 | 4 | Oy
[U.].[U,1.[4).[V}].[V,] = | ’ oo

= [D"].

In this way we obtain a succession of matrices [A'], [4"], [4"], ..., the
dimensions of which decrease by a line and a column at each stage where (a)
and (b) are performed. Accordingly, we have »' < min(m,n) such that
[4¢7] =0 or void.

As for [D] = [U].[A4].[V], this is a matrix of rank #’ by construction. In
addition, [ D], obtained by multiplying [A4] by regular unimodular matrices,
is of the same rank r as [4], and r' = r.

3. Examples of Reduction
First Example

Let
1 1 —4 1

(18.26) [Alsxs =1 1 1 3 =2
2 0 2 -1 -1

One of the nonnull elements and the smallest in absolute value is 1 in position
(1, 1). Hence we need not permutate the lines and columns to bring it into this
position.

To carry out stage (b) we construct subtraction matrices [U;] and [V]].
Let us first see how we construct the former. In the new matrix 1 must be in
the position (1, 1) and 0 must be in (i, 1), i = 2, 3. To do this we must multiply
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the first line of [4] by (—1) and add it to the second, then multiply the first
line of [4] by (—2) and add it to the third, by which means we obtain the
matrix [U;] shown in (18.27).

(18.27)

1 0 oyt 1 1 -4 1 1 1 1 -4 1
-1 1 of|l1t 1 1 3 —2{=|0 0o o 7 -3
-2 0 12 0o 2 -1 -1 0 -2 0 7 -3

[U,] [4] [U,].[4]

Now, in [U,].[4], the first column is such as we require, so we consider how
[¥,] is to be obtained. To do this we must multiply the first column of
[U,].[4] by —1 and add it to the second column, multiply the first column
by (—1) and add it to the third column, multiply the first column by 4 and
add it to the fourth, multiply the first column by (—1) and add it to the fifth.
This procedure means determining the elements of the subtraction matrix
[V,]- We notice that since line 1 of [4] and of [U,].[A4] does not vary in the
premultiplication by [U,], the elements of [V/;] can be calculated on [A4]. It
follows that

(18.28) ~
1 -1 -1 4 -1
1 1 -4 1710 1 o0 0 O/ [1 0 0 0 O
0 0 7 =30 o 1 o0 oj=l0 0o 0o 7 -3
-2 0 7 -=3J]{o0 o o0 1 of 0 -2 0 7 -3
0 0 0 0 1]
[U,]1.[4] Vil [U,]1.[4].[V1]

We have thus obtained a matrix [D'] = [U,].[4].[V,] that conforms to
(18.21).

[di] [0]
1{, 0 0 0 0

(18.29) [D']= 0l 0o 0 7 -3
0 I -2 0 7 -3
[0] [47]

Let us now consider the smallest nonnull element in [4’]; this is (—2) in
position (3, 2). We must bring it to the position (2, 2) by a premultiplication
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of [D’] by a transposition matrix that will exchange the positions of lines 3
and 2.

(18.30)
t 0 Ojff1 0 0 0 O] 1L 0 0 0

o o 1/fo o o 7 -3|=|0 -2 0 7 -3
o 1 ollo -2 o 7 -3 [0 0 0 7 -3
LP23] D] [P23].[D]

We must now transform the right member of (18.30) so as to have a nonnull
number in position (2, 2) and 0’s in positions (2,/), j=1, 3,4, 5, and (i, 2),
i =1, 3. Since there is already a 0 in (3, 2) we need not premultiply but must
postmultiply by a subtraction matrix [V,] to obtain 0’s in (2, ), j = 3,4, 5.
To obtain this matrix let us consider the second member of (18.30). The
element (2, 3) is already O; that of (2, 4) is 7, and the quotient of 7 by —2
produces — 3. The element (2, 5) is — 3 and the quotient of —3 by — 2 produces
1. Hence we can now form matrix [V,] and, postmultiplying by it, we obtain

(18.31) _

1 0 0 0 O
1 0 0 0 ojlo 1t 0o 3 -1 1 0 0 0 0
0 -2 0 7 =3|lo o 1 0o of|l=l0 -2 0 1 -1
0o 0 0 7 =3Jlo o 0o 1 o 0o o o0 7 -3
o0 o 0 0 1]
[P,5].[D'] [V2] [P,5]1.[D].[V,]

The matrix of the right member of (18.31) is not yet such that all the elements
(2,7),j=3,4,5, are null. Let us therefore return to stage (a) of the algorithm
to seek the nonnull element with the least absolute value of lines 2 and 3; we
have the choice of 1in (2, 4) and —1 in (2, 5). If we arbitrarily select the 1 we
must permutate column 2 with column 4 by a transposition matrix [P,,]
that gives us

(18.32) 1 0 0 0 0

1 0 0 0 o]0 0 0 1 o[l [ 0 O 0 O

0 -2 0 1 —1|{0 0 1 0 o0j={0 1 0 —2 -1

o 0 0 7 -3]lo 1 o o0 o/ lo 7 o o -3
0 0 0 0 1

[P33].[D"].[V>] [P34] [P33]1.[D].[V2].[P24]
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Now let us replace the 7 in (3, 2) by a 0 by premultiplying the right member
of (18.32) by a subtraction matrix [U,]:

(18.33)

1 0 01
o 1 0|0
0 -7 1jlo
[U,]

0
1
7

0
0
0

0

-2

0

-1
-3

1
0

0
[P23].[D].[V2]1.[P24] [U.]1.[P231.[D'] [V2].[P24].

0 0 0
1 0 -2 -1f.
0 0 14 4

Next let us replace the —2 in (2, 4) and the —1 in (2, 5) by a postmulti-
plication by a subtraction matrix [V3]:

(18.34)

1 0 0 0
0 t 0 =2
0O 0 0 14

-1

4

1
0
0
0

[ 0

[U.].[P25].[D"].[V,].[P24]

0
1

0
0
0

0
0
1
0

0
V3]

o m= O N O

o O = O

1 0 O 0 O
0 1t 0 0 0j.
0O 0 0 14 4

[D"] = [U;].[P25].[D7]
x [V2].[P24].[V5]

The matrix [D”] thus obtained does not yet have the form of (18.19). The
element with the least absolute value that is nonnull is in position (3, 5); it will
be transferred to (3, 3) by a transposition matrix [Ps;]:

(18.35)

1 0 0 0

0 1 0 0

0 0 0 14
[D"]

0
|0
0
0

B!

0
1

0
0
0

0
0
0
0

1
LPss]

0
0
0
1
0

0

0
1
0
0

1 0 O 0
0 1 0 0 o0f.
0 0 4 14 O

[D"] = [D"].[Pss]

[D™] still does not have the form of (18.19) and we introduce a new sub-

traction matrix [¥,]:

(18.36)

1 0 O 0
0 1 0 0
0 0 4 14

IO o O© ©

[y

o O© ©

0
0
1
0

0
A

1 0 0 O
=0 1 0 0 O
0O 0 4 2 O

[DV] = [D"].[V4]
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Since the element (3, 4) is equal to 2 and is less in absolute value than the
element (3, 3) that is equal to 4, we permutate them by a transposition matrix

[Pl

(18.37) 1 0 0 0 O]
1 0 0 0 O0j(0 1 0 0 0O 1 0 0 O
0 1 0 0 of/j]o 0o 0o 1 of=|0 1 0 0 O
0 0 4 2 0J{o 0 1 0 O 0 0 2 4 0
0 0 0 0 1]
[p™] [P4s] [DY] = [D"V].[P4s]

We are now almost at the end of the road. One last subtraction matrix, and
we obtain

1838 M 0 0 0 0]
1 0 0 0 0 1.0 0 O 1 0 0 ©
0 1 0 0 Ofj0 0 1 -2 0|=|0 1 0 0 O
0 0 2 4 olfo o 0o 1 of O 0 2 0 o0
[0 0 0 o0 1]
[D"] [Vs] [DY] = [D"] [Vs]

We have finally obtained the form (18.19) ,that is [D] = [D"].
Let us see through which regular and global unimodular matrices we have
passed from [4] to [D]. Regrouping all the calculations, we have

(18.39)
[D] = [U,].[P;3].[U,].[41. [Vi].[V,].[P,,1.[V31. [P23]. [Val.[Pss]
[U] [V]
We have
(18.40)
[U,].[P51.[U,]
1 0O 0 0 O 1 0 O 1 0 0
={0 1 0f{40 O 1|.]-1 1 Of|=]-2 0 1

LU.] [P2;] LU.]
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272

(18.41)

[V11.0V21.[P24].[V3]. [Ps3]. [Va]. [P4s] . [Vs]

[P24]

[Vl

1]

0]

[Vl

[Pss]

RA

[P4s]

—17

0




18. SOLVING LINEAR EQUATIONS WITH INTEGERS 273

And finally we verify that

(18.42)
1 0 0{0 1 o ot 1 1 -4 1
010?0 of=|-2 0 1f|1 1 1 3 -2
0 0 2%0 0 13 1 -7 0 2 -1 -1
[D] [U} [4]

11 -2 5 -1

0 3 1 0 0

x[0o 0 0 0 1

0 1 -1 3 0

0 0 -3 7 0]

[v]

[U] and [V] are regular unimodular matrices since they were obtained by
the products of such matrices (see Theorem 18.1).

In our example, where [4] is a matrix 3 x 5, its rank is # = 3, which means
that [D] has no submatrices (m—r) x m and (m—r) x n.

First Observation

The matrical form (18.19) obtained by the above linear transformations is
not unique and depends on the matrices [U] and [VV] employed, and on the
choice of the smallest term in absolute value in [4] that becomes [4"]. If this
term is not the sole one, an arbitrary choice has to be made and, with a
different selection, other matrices [U], [], and [D] would eventually be
obtained.

Second Observation

Throughout our calculations we have assumed the elements of [4] to be
integers. The procedure can easily be applied to cases where these elements
are fractional: all that is needed is to multiply them by the least common
multiple p of the denominators to obtain a matrix

(18.43) [47] = p[4],

in which all the elements are integers. By premultiplying by the same matrix
[U] and postmultiplying by the same matrix [}'], we then obtain a matrix
[D] such that

(1844)  [D] = p[U].[4].[V1,
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or again
[D] = i [D] = [U].[A].[V].

But the elements of the main diagonal [D’] are composed of fractions, and
we later assume that the elements of [A4] belong to Z.
Let us now enunciate a theorem that will be of future assistance to us.

Theorem 18.111
A regular unimodular matrix formed of integers has as its inverse a similar
matrix.

The proof is obvious if we recall how the inverse of a matrix is formed: we
first take the transpose that is accordingly formed of integers, then the con-
jugate that has elements obtained in the first instance from the determinants
of the transpose, so that the conjugate must be formed of integers. And since
the given matrix is a regular unimodular matrix, its determinantis +1 or —1,
and since, finally, the inverse is the quotient of the conjugate divided by the
determinant, it must be formed of integers.

4, Using Reduction to Solve a Linear System
with Integer Solutions

We shall now use Smith’s normal form to solve linear equations with
integers.
Let

(18'45) [D]mxn = [U]mxm'[A]an‘[V]nxn’

where [A4],«, 1S a matrix with integer elements, [U],, x» and [V],., are
regular unimodular matrices each formed of integers and obtained as shown
above by the products of transposition and/or subtraction matrices, and
[D],, «» is @ matrix formed of integers having Smith’s normal form such as
(18.19). In addition, let us assume that [ 4], and hence [ D], are of rank r.

Theorem 18.1V
In order that the equation

(18-46) [A]mxn'[x]nxl = [b]mXI 4

in which the elements of [A] and [b] are integers, shall have a solution [x]
formed of integers, it is necessary and sufficient that, having reduced [4] to
Smith’s normal form [D] by unimodular matrices [U] and [V], there is a
matrix column [y]] such that

(18-47) [y:]rx 1= [D:]r—xlr- [([U]rxr . [b]rx 1):],
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that must be formed of integers and also
(18-48) [([U] . [b]):::](m—r)x 1= [0](m—r)x 1

where [D}] is the submatrix formed by the first r lines and columns of [D] in
(18.19), [([U].[b1)] is the submatrix of ([U].[#]) formed by its first r lines,
and [([U].[A1)Z7] is the submatrix of [U].[b] formed by its m—r last
lines. In (18.47), [¥;],x, is a vector formed by the first r lines of a vector
[y]n x1-

Proof
We start from (18.46) and say
(18.49) [Amxn-[V]nxn- [V]n—xln [xJax1 = [Blmx1s

(18‘50) [U]MXM'[A]an'[V]an'[V —l]nxn'[x]nxl = [U]mxm'[b]mx19
that is,

(1851) [D]mxn-[V—l]nxn-[x]nxl = [U]mxm'[b]mxl'

Let us assume

(18.52) lnxs = @V [xDnxs»

and [y] the vector formed by the first r lines of [y]. In accordance with
Theorem 18.111, [V~ !] is formed entirely of integers, hence (18.52) requires
that, if [x],« ¢ is formed of integers, [ ¥],, is also formed of integers. Let us
expand (18.51), using the explicit form of [D] given by (18.19). It follows that

(18.53)
1728 PRV [ (1 2 8 73 )4 POV 2 (1) MSPRONY [ 2t Y 3 ) i PR
= [([UT.[6D) /] x1»
(18.54) _
[0]meryxr- LV ™ 1. XD Tr w1 + [0 gmry xumry- [OV ™11 XD D nmry 1
= [([U].[bDm=im-rx1 -
That is, again using (18.61),

(1855) [D:]rXr' [y:]rx 1 = [([U] . [b]):]rx 1

(18.56) [0)m-nyx1 = [CUT.LEDR=F Jem=ryx 1.

If [x] is formed of integers, then [ y] obtained from (18.52) is also formed of
integers. If [x] satisfies (18.46), then [y] satisfies (18.55) and (18.56). Pre-
multiplying the two members of (18.55) by [D}] ™', we obtain (18.47). Equation
(18.56) is identical with (18.48). Hence equations (18.47) and (18.48) are
necessary if (18.46) is to have an integer solution.
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Now, if [ y] satisfies (18.47) and (18.48), it satisfies (18.55) and (18.56). We
now calculate [x] by

(1857) [x]nxl = [V]an'[y]nxl'

From the manner in which we obtained (18.55) and (18.56) beginning with
(18.46), [x], which is given by (18.57), satisfies (18.46). Hence Theorem 18.1V
provides sufficient conditions.

Example
Let us take the following linear system:
xl +x2+X3'—4X4+X5 = —6,
(18.58) x1+x2+X3+3x4—2x5 = 2,

2x,4+2x3—x4—x5 = 8.

The matrix of the coefficients of the left member is the one given in (18.26).
Examining (18.42), we see that

10
(18.59) [Dlsxs =|0 1 Of,
o o 2
that is
10
(18.60)" D, =10 1 0},
o 0o 12
1 0 ©
(18.61) [Ukxs=|-2 0 1],
13 1 -7
(18.62) 6] =| 2|.
8
vl 1 0 Oj[ 1 0 0][—6
(18.63 y.[=10 1 ofl]-2 o 1|| 2
J lo o 1y2Jliz 1 -7l 8
A D" ([U1.[b])
10 07 -6 -6
= —-2 0 1 . 2 = 20 .
132 12 —72) L 8 —66
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Since y,, y,, and y; have integer values, in accordance with Theorem 18.1V
the system possesses at least one integer solution.
From (18.57) we now have

(1864) [x]nxl = [V]nxn'[y]nxi'

] 1 1 =2 5 —17[ —6] [1464+5y,—ys]

x| o 3 1 o ofl 2 -6
(18.65) % ={0 0 0 o 1||-66|=]ys

X4 0 1 -1 3 0 Va 86+3y,

lxs] O 0 -3 7 0l ysd L 198+7y,
Or again,

xl b 146+5y4_y5,

X2=_6,
(18-66) X3=y5,

X4=86+3y4,

xs = 198+77,.

There are an infinity of integer solutions resulting from integer values for y,
and ys. For instance, let us make

(18.67) ya=1, ya=2,
whence we obtain
(18.68) x, =149, x,=-6, x3=2, x,=289, x;=205.
By substituting (18.66) in (18.58) we can confirm that (18.58) is identically
satisfied and, obviously, the particular case of it chosen as an example (18.68).
5. Smith's Reduced Form for an Integer Matrix

Matrix [D] of rank (18.19), obtained by reduction to Smith’s normal form
by transforming matrix [4] and such that

(1869) [U]mxm'[A]mxn“[V]an = [D]mxrn

where [U] and [V'] are unimodular and regular, is formed by elements

(18.70) d#0, k=12, ..,r, r<min(mn),

! In this example r = m. If ¥ < m, we take the submatrix [D], «» in [D]mxm-
2 In this example r = m, so that ([U].[b]); = [U].[b]. If r < m, we take the submatrix
formed by the r first lines of the vector column [U].[5].
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such that®
(18.71) d,l € 1d,] €, ..., €1d,].

This reduction to Smith’s normal form applies to matrices [ 4], the elements
of which belong to Z (see 18.3). Let us now enunciate a theorem that will
prove very useful later on for Gomory’s cuts and for asymptomatic program-
ming with integers.

Theorem 18.V

For every matrix [4],,«,, the elements of which are related integers and

which is of rank r, there are two regular unimodular matrices [U],,«,, and

[V]1.x» with integer coefficients that give a special case of Smith’s normal
form [A],, x, such that

(18.72) [U].[4].[V] = [4],

where
76, 0 .010 07
0 6, ... 010 0
. r
0 0 ...6,10 0
(18.73) [Alpxpy = | e
0 0 .00 0
. L m—r
L0 0 ...0 :0 ... 0]

r n—r
with the property
(18.74) o; divides d;,, i=12..,r—1.

Matrix [A] is called Smith’s reduced matrix of [A], and is unique.
The J; are called the elementary divisors of [A].

Proof

Let us now see how we can obtain Smith’s reduced form [A],, ., from
Smith’s normal form [D],, «,-

Letd;,i=1,2, ..., r, be the nonnull elements of [D], and let us now con-
sider a pair (d,, d) among the C? = r(r—1)/2 pairs of d; numbers. Let us
assume that k < /, that is, |d,| <|d)|.

Let us define as

(18.75) G.C.D. (d;,d;) the greatest common divisor of the absolute
values of d; and d},

1 If, at the end of the calculations, (18.71) has not been satisfied, it is sufficient to pre-
and/or postmultiply [ D] of the appropriate permutation matrices.
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(18.76) L.C.M. (d,,d) the least common multiple of the absolute
values of d;, and d.

Let us now make use of a very well-known arithmetical theorem known as
Bezout’s theorem: given two integers @ and b, then there are always two
integers 4 and u such that

(18.77) Aa+ub = G.C.D. (a, b).
Thus, if @ =10 and b = 15, giving a G.C.D. (10, 15) = 5, we have
(18.78) (-1.10+(1).15 = 5.

As another example, if a = — 14, b = 18, the G.C.D. is (— 14, 18) = 2, so that
we have

(18.79) (—4) (—14) +(—=3).18 = 2.

Applying this theorem we shall construct two matrices [G],,x,, and [H],«,
such that

(1880) [G]me'[D]an'[H]nxn = [A]mxn ’

where A has the properties of (18.73) and (18.74), that is to say, possesses
Smith’s reduced form.

Let us consider a pair (dy, d;) chosen from the d; of [D] and let us construct
a regular unimodular matrix [G],,x, as follows:

(18.81)
ud, Ad,

gu=1, gu=1, gy=-— s g = ,
e “ . G.CD.(d,,d) " GCD.(d,d)
where A and p are Bezout integers such as (18.77). While
and
(18.83) giy=1, i=j;i#k;j£lLi,j=12,..,m.
Let us observe that we have

Ik  Gu Ady+ pd,
(18.84) =9uw-9n—9u-9n=————"—_—=1L

I gu G.C.D.(d,, dy)

in accordance with (18.77); which implies that [G] is unimodular with a
determinant (+ 1). In a similar manner, let us construct a regular unimodular
matrix [ H],x, as follows:

(18.85)

hkk='1, hkl= _dl dk

 hp=p, hym—
G.CD.(4,, &) = %= H ™M=GCc D@, 4)
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While

(18.86) hi; =0, i#jitk,jEk;i,j=1,2,...,n,

and

(18.87) hy; =1, i=jii#k;j#k;i,j=12,..,n.

Let us observe that we have

(18.88) O ... 5 J L N
hye  hy G.C.D.(4,, d)

still because of (18.77), which implies that [ H] is equally regular unimodular
with a determinant of (+ 1).

Now, if we consider the submatrices contained in the lines and columns in
which the elements d, and d; appear, we can say

Gk Gu | | 0 b hy
(18.89) . .
Ik gu| {0 di| | hu hy
Gk M- A+ g - B - 4y Iuk- B e+ g by . d,
- G- Mg A+ 9u-hy- 4, Iu-hg-de+gy.hy.dy |
Substituting (18.81) and (18.85) in (18.89) we obtain

Ady + pd, 0

(18.90) 0 Ad?d,+pd, d}
{G.C.D.(d,, d)T*

The element (1, 1) of (18.90) is the G.C.D., in accordance with (18.77). Now
let us consider the element (2, 2). An elementary theorem gives
(18.91) L.CM.(a, b).G.C.D.(a, b)) = axb.

Hence we can say

(18.92 Midtpdydl _ Gdtpd)  dyd,
[G.CD.(d, d)]*  G.CD.(ds, d) G.C.D.(d, d))

LCM. (d,, dy).

Hence matrix (18.90) is expressed

(18.93) G.C.D.(d,, d) 0 ‘
0 L.C.M. (dy, d))
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And finally we can say

1 1 d,
18.94
( ) _ pd, . Ad d
G.C.D.(d,, d) G.C.D.(d,, d) :
. T
G.C.D.(d,, d)
x
di
u
G.CD.(d;, d) |
G.CD.(d,, d) 0
B 0 LCM.(d,,d)|

Thus, the transformation produced by a premultiplication by a matrix [G],
defined by (18.81)—(18.83), and by a postmultiplication by a matrix [H],
defined by (18.85)-(18.87), replaces d, by 6, = G.C.D. (d;,d) and d, by
d,=L.CM. (d,, d).

This procedure ensures that the sequences d,, d,, ..., d, can be replaced,
step by step, by sequences J,, d,, ..., §,. But, because of the property revealed
in (18.94), this sequence finally becomes such that

(18.95) I > k=9, is a multiple of J, in absolute value.!
Example

Let us take a matrix with Smith’s normal form [D], 5 obtained from a
matrix [A], x 3 and such that

2 0 0
0 -3 0
(18.96) Dl=ly o 4
0 0 0

We have d, =2, d,=-3, dy=4

Let us first consider the pair (d,, d,). The G.C.D. is (2, —3) = 1, so that we
can say

AQ)+u(—3)=1 issatisfiedby A=2 and u=1,

! Need we recall that the G.C.D. is always a submultiple of the L.C.M.? Our readers will
remember this from their school days.
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that is,
Q@+ (=3)=1.

Let us construct the matrices [G,,] and [H,,] in conformity with (18.81)-
(18.83), on the one hand, and with (18.85)-(18.87), on the other, that is to
say, for the submatrices formed by tne lines and columns 1 and 2, and by taking
account of (18.94),

(18.97)
1 1 0 O0l[2 0 0 1 0 O
2 3 0
3 4 0 ollo =3 o 0 -6 0
. 1 2 0|=
0 0 1 oflo o a4 0 0 4
0 0 1
0 0 0 1{{0 0 O 0 0 O

In the right member of (18.97), let us consider the pair (d,, d;). We have
G.CD.(—6,4) = 2.
And we can say
A(=6)+ (@) =2

Let us construct the matrices [G,3] and [H,3] in accordance with (18.94):

is satisfied by A= —1 and u= —1.

(18.98)
1 0 0 0]1 0 0 1 0 0
1 0 0
0 1 1 0j{0 -6 0 0 2 0
. 40 -1 =2|= .
0 2 3 0jj0 0 4 0 0 -12
0 -1 -3
0 0 0 1]i{0 0 o 0 o0 0

The result gives a Smith’s reduced form; d; is divisible by §, and J, by §,.
Let us now calculate matrices [G] and [ H], which allows the right number of
(18.98) to pass from (18.96):

(18.99)
0 ojf1 t 0 o] [1 1 o0 0
0 1 o[|3 4 0o o (3 4 1 o
[Gl1=1y offo o 1 o|T|6 8 3 of
0 0 11lo o o 1 [0 0 o0 1
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2 3 0 0 0 2 =3 =6
1 2 0|0 -1 =2]=]1

0O 0 1J10 -1 -3 0 -1 -3
And we can finally confirm that

(18.100) [H] = -2 -4.

1 1 0 O0][2 0 0
2 -3 —6
3 4 1 ollo =3 o0
(18.101) . 1 -2 -4
6 8 3 oflo o0 4
0 -1 -3
0 0 0 1{lo o0 o0
[G] (D] [H]
m 0 0]
0 2 0
“lo 0 -12
o o o
[4]

First Observation

In Smith’s reduced form every pair (4,, d;) is such that §, = G.C.D.
(04> 6p) and §; = L.C.M. (J,, ;). Let us note that, by construction, all the
d;,i=1,2,...,r—1, are positive, but §,, the last, can be positive or negative.

Second Observation
Since both determinants of [G] and [H] are equal to (+1), we have, in
accordance with (18.80),

(18.102) det [4] = det [D] = 8,.8; ... §,.

Third Observation

By considering (18.94) we see that if the elements d;, i =1, 2, ..., r, of [D]
are first, taken two by two, the method employed here to obtain Smith’s
reduced form gives

(18.103) §,=0,=..=06,_,=1 and & = det[D].

For instance, the elements of (18.96) are not all first, taken two by two (2
and 4 are not first between them), so that the method employed does not
satisfy (18.103). On the other hand, the reader can confirm that (18.103) is
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satisfied by the following example:

1 0 0 O]

0 3 0 O
(18.104) [D]=(0 O 7 O

0O 0 0 8

(10 0 0 O]
gives

1 0 O 07

0 1 0 0
(18.105) [41=]0 0 1 0f.

0O 0 0 168

10 0 O 0]

Section 19. Gomory’s Method for Solving Integer Programs

1. Introduction to the Method

In Section 17 we saw that the Dantzig-Manne method of integer program-
ming does not always lead to convergence. We have already introduced the
important concept of the cut into it, that is to say, supplementary constraints
that are not satisfied by a solution with real numbers. In 1959 R. E. Gomory
[K42] produced the basis of a method and theory that he has ever since
continued to improve (see [K40], [K41], [K44]). Nevertheless, it appears
that his method has not yet been able to achieve the results for computer
calculations obtained by methods of direct search for which widespread
commercial programs now exist. But, by using the concept of Gomory’s cut
as an exclusion criterion in direct methods, some very interesting variants
are obtained [K59]. In this section, therefore, we shall provide a suitably
instructional presentation of Gomory’s basic theory.

2. Description of the Method

Let us take for solution the following program:
(1) MAX] g=I[clixn-[X]x1 >
@ [@nxn-[xlnx1 < Bl »
Q) [xhx1 €2,
@ [xlax1 = [0lix1 -

(19.1)
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We assume, in addition, that the elements of [c¢], [a], and [b] are related
integers.

We shall now discover that the principle of Gomory’s method is similar to
that of Dantzig-Manne given in Section 17. Let us first, however, solve the
program while ignoring constraint (3). Two disjunctive cases can appear:

a. The solution [x*] is formed of integers, in which case the minimum
sought in the program has been found.

b. The solution [x*] does not contain only integers. We shall then add
new constraints or cuts that are not satisfied by the noninteger solutions.

The matrical relation or simplex table given in (16.8), which relates to [x*]
as the basic solution, has its first line composed of submatrices that are all
formed of nonnegative elements, since [x*] is an optimal solution of the linear
program (19.1) in which constraint (3) has been ignored. The new constraint
added to the last line of (16.8) is not satisfied by [x*]. This means that the
value of the basic variable in the last line is negative. We shall then proceed
by dual iterations (see Section 16.2). We shall give a fully instructional explana-
tion of the method, but before doing so we shall explain how Gomory’s cuts
are generated.

Let us use the notation of Section 16 and assume that at an iteration & the
table of the optimal linear program is

(19.5)* [X5lmx1 = [Blmxm-[Blmx 1= [Blosm-[NImxn-[Xndux1 »

where [B],,xm and [N],x» are, as in Section 16, matrices chosen from the
m+n columns of [[a],,xn[Z1mxm]- Let us say

(19.6) [ZLTmxn = [Blaxm:[Nlnxn »

and let us identify as @;;, i=1,2,...,m, j=1,2, ..., n, the element of line ;
and of column j of [#]; let us identify as x5, i=1, 2, ..., m, the element of
line i of [x;] and as xy,, j =1, 2, ..., n, the element of line j of [xy]. Finally

let us give the notation b, i =1, 2, ..., m, to the element of line / of matrix
[B]~!.[b]. Equation (19.5) can then be expressed as

19.7? xm=z;,—z1 ayxy, » i=12,..,m.
I=

Having stated this, let us now recall that we use the term equivalence or
congruence modulo p between two numbers ¥ € R and v € R, shown as =~ or
= modulo p, for the following property: # = v modulo p if u and v have the
same remainder by p, p € Ny, from their division by p, N, representing the
set of positive integers.

! Equation numbers (19.2)~(19.4) omitted in the French edition.

2 Let us recall the notation in Section 16. That of x5, means that we are considering the
ith component of the vector of the basic variables [x;]; xy, means that we are considering
the jth component of the vector of variables that do not belong to the basis [xy].
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In order that all the xp, of (19.7) are to be integers, we must have

(19.8) b— Y a;.xy, =0, modulo I, i=1,2,...m.
i=1
Let us use the notation
(19.9) {a;;» = largest integer less than &, i=12..,m,
j=1,2,..,n.

Again let us assume

(1910) iaij§=aij_<aij>a i=0; 15 2) s m,
i=1,2.un,

where, obviously, 0<{a;}<1.
Hence, to express these notations numerically,

If 5ij= 2.35 . <¢7U> = 2 and §¢7”§ =0.35
If ¢7”= —0.45 B (5“>= -1 and §6”§ =0.55

By considering (19.10) we can then express (19.8) in the following manner:

(19.11) $b3 +<b>— Y f{ay}. xn,— Zl {@;>.xy, = 0, modulo 1,
i=1 i=
i=12,...m.

But the {b,), the <{a,;> and the xy, are integers that can be eliminated from
(19.11), and we are left with

(19.12) tbi— Y. {a;}.xy, =0, modulo I, i=1,2..,m.
j=1

This constitutes a necessary and sufficient condition for all the xg,

i=1,2, ..., m, to be integers, but is difficult to satisfy. Let us see how we can

obtain one that is more easily satisfied but that will not, unfortunately, be

sufficient.

By definition
0< fagi<1, i=1,2 ..,m, i=12,..,n
and
xy, 20, j=12..,n.

From this we deduce
(19.13) 'Zl $a,;} Xy, = 0.
j=

Let us suppose that the component xp of [x;] is not integer, in other words,

(19.14) 1> {bi> 0.
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In that case the left member of (19.12) can only be a positive integer in accord-
ance with (19.13). We thus have the following necessary condition that is not
satisfied for xy,=0,j=1,2, ..., n, in accordance with (19.14):
(19.15) ibii — Y tayi.xy, <0, i=1,,..,m.

j=1

If this necessary condition still appears too difficult to obtain, we can take
a necessary subcondition, namely, a single line only of (19.15) or, in other
words, choose one i from thisi=1, 2, ..., m.

An inequation such as (19.15) for a value of 7, i =1, 2, ..., m, constitutes
what we call a Gomory cut.

It remains for us to show how, by a sequential addition of such Gomory
constraints or cuts to the given linear program, we converge toward an integer
solution of (19.1).

Before doing so, however, we shall give a numerical example that converges
toward an integer solution when it is solved by Gomory’s method.

3. Examples

Given the linear program in integers:

(1) [MAX]g = 3x;—x3,

2) 3x,—-2x,< 3,

(3) —5x,—4x, < -10,

(4 2x,+x; <5,

(5) x;,x,€Z,

®6) x;,x,=20.

(19.16)

Let us first solve this linear program without its constraint of integrity (5).
Let us assume that an optimum has been obtained by the dual-simplex method
described in Section 16.

If u,, u,, u; = 0 are the deviation variables of constraints (2), (3), and (4)
of (19.16), the initial table will be as follows:

Second Basic
x x u u u .
1 2 1 2 3 member |variables
| -3 1 0 0 0 g=0
(19'17) M| 3 [-2 1 0 0 3 u
1
(2)[-5 [~4 0 1 0 -10 u
2
3] 2 1 0 0 1 5 u3
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Let us observe that the determinant of the basis matrix is equal to 1.

In Fig. 19.1 we have shown the convex domain related to the above-
mentioned constraints.

The solution of the program without constraint (5) carried out by the dual-
simplex method provides the following table:

2 2 u u u Second Basic
1 2 1 2 3 member |variable
!l o of 5/7 of 3/7 g = 4_27
(19.18) (M) 1 | of 177 o| 2/7 12 2
@ | o | o]-3/7 1|3 1/7 43 u
2
®| o | 1]-2/7 o| 3/7 12 x
2

F1G. 19.1

The optimal solution of (19.16) ignoring constraint (5) gives
(19.19) x,=16/7, x,=12/7,
u, =0, u;=43/7, uy;=0, maxg=42/7.

The point [x; x,] =[16/7 1 2/7] is shown in Fig. 19.1; it does not rep-
resent an integer solution.
We shall now generate a Gomory cut, choosing for it in table (19.18) the
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expression of x; as a function of the variables that are not in the basis, that is,
u, and u3. We have

(19.20) x, =16/7T—1/Tu, —2/7Tu,.

With the notation used in (19.7)-(19.15) this gives

(19.21) 16/ =1, A1y =0, QT =0,
and

(19.22) §16/73 =16/7T—<16/Ty =16/T—1= 6/7,

$1/7 = 1/7-<1/7) = 1/71-0 = 1/7,
§2/7 = 2/1 = (2/7) =2/71—-0 = 2/7.
Hence we have as constraint,
(19.23) §1 6/7} — {1/73 u, — §2/7§ u; <0,
that is,
6/7—1/7Tu, —2/7Tu; <0,
or again,
(19.24) 6—u,—2u; <0,
or yet again,
(19.25) u;+2u; 2 6.

Let us transform this constraint into another in which the variables x; and
x, will appear, a procedure that is always possible, since any variable that is
not in a basis can always be expressed as a function of the variables in that
basis, this being implicit in the principle of the simplex method. From (19.17)
we obtain :

(19.26) ul = 3_3x1+2x2,
with
(19.27) Uy = 5-2x,—x,.

If we now substitute (19.26) and (19.27) in (19.25) we obtain

(19.28) u,4+2uy = 3-3x,+2x,+10—-4x,—2x, =13-7x, > 6,
and, finally,
(19.29) x; € 1.

This constraint is a Gomory cut that we shall add to the program. It is equiv-
alent to the constraint given below in which a new deviation variable v, = 0
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has been introduced. We shall use (19.29) to represent it in Fig. 19.2. But a
different expression of the same constraint given in (19.30) and also in (19.23)
will be used for the tables of the dual-simplex method.

(19.30) —1/Tuy = 2[Tus +uy, = —6/7.

Constraint (19.29) has been shown in Fig. 19.2 and reduces the domain of
possible solutions.

Let us, however, proceed with the use of the dual-simplex method that we
are combining here with Gomory’s cuts, Figs. 19.1 and 19.2 simply being
given to illustrate what is taking place.

Let us, accordingly, complete table (19.18) by introducing the new con-
straint (19.30) as well as its associated deviation variable u, . It follows

Second [Basic
1 2 1 2 3 4 member |variables

2
@[ o | ofls/7|of 3/7|0]| g=43

M1 ol 1/710] 277 ] 0 1€ x
(19.31) 1
@ o | of3/7{ 1317 |0 43 u
2
2
| o 1]|-2727 10| 3/7 10 1% z,
@\l o | o]-177] 0| -2/7 |1 ~6/7 u, -—
T

This table does not provide a possible solution, but its dual gives one. We
shall use the algorithms for the dual-simplex method explained in Section 16
and will pivot on element (—2/7) of the fifth line, since

(i) < (ﬂ)
-2/ -1/1)

Making the new basis clear, we now obtain

Second | Basic

z x, ¥ “, “, “, member | variables
(0) 0 0 1/2 0 0 3/2 g =3
(1) 1 0 0 0 0 1 1 Il
(19.32) (| o 0 @ 1 0 1 -5 " -—
(3) 0 1 -1/2 0 0 1/2 0 xz
(4) Q 0 1/2 0 1 -7/2 3 U
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1 2 \ 3 ; X,
- (4)
v
<) (3)

F1G. 19.2

Table (19.32) does not give a solution since u; = —5 < 0. The choice of
pivot for a dual-simplex iteration is —2 at the intersection of the line and
column indicated by arrows. We now obtain table (19.33).

x x u u u u Second Basic
1 2 1 2 3 4 member variables
1 3
(0)] o 0 0] 1/4 0 4; g =1y
(D] 1 0 0 0 0 1 : 1 x
(19.33) !
| o 0 1 |-2/4 | o] -5 22 u
| o 1 | olus | of i 11 x
4 2
w| o o | of1s 1] -3/4 12 “

We now have a possible optimal solution:
(1934) x, =1, x,=11/4,
u, =22/4, u, =0, u3;=13/4, u,=0; maxg=7/4.

This solution is represented in Fig. 19.2. The point [x; x,] =[111/4] is
not an integer solution.

We shall now generate a new Gomory cut choosing, in table (19.33), the
expression of u5 as a function of the variables that are not in the basis, namely,
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uy and u,.

(19.32) uy; =13/4—1/4 u; +3/4 u,,

which gives

(19.33) 13/4=1, {1/4) =0, (-3/4) = -1,

and

(19.34) §13/48 =13/4—-C13/4)=13/4—-1=23/4,
(19.35) §1/4f = 1/4 — (1/4> = 1/4 -0 = 1/4,

(19.36) §—3/4} = —3/4—(-3/4) = =3/4—(-1) = 1/4.

We have as a constraint
(19.37) {1 3/45 — §1/4} u, — {1/43 u, <0 or 3/4—1/4u, —14u, <0,

or again

(1938) 3—u2_u4 S 0,
or even
(19.39) u,+u, > 3.

To discover to which constraint in x, and x, this corresponds in Fig. 19.3
we have to express u, and u, as a function of these two variables. From (19.17)
we obtain first,

(19.40) uy = —1045x;+4x,.
From (19.32) we obtain

(19.41) uy = —7/3+1/3u; +4/3u;;
But from (19.17) we also have

(19.42) Uy =5-2x4—x,.

Let us substitute (19.42) in (19.41) and the result in (19.39); then (19.40) in
(19.39), and we obtain

(19.43) us+u, = —1045x,+4x,—7/3+1/3u,+4/3u,
= —10+5x,+4x,—7/34+1/3 (—10+5x,+4x,)
+4/3(5-2x,—x,)

= —9 +4x1 +4x2
Substituting this result in (19.39), it follows that
(19.44) &) x;+x; = 3.

This constraint is a Gomory cut and will be added to the program, being
indicated by (8) in Fig. 19.3.
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Let us now consider constraint (19.37) and let us introduce the deviation
variable us > 0. We have

(19.45)

that is,
(19.46)

—1/4u2 - 1/4“4 S _3/4,

/

—1/4u; — 1/4u, + us = —3/4.

/ (2)

1 2
@
7 (3)

FiG, 19.3

3 %
)
(8)

By introducing this new constraint and this new variable in table (19.33),

we obtain

(V]
0
(19.47) @
3
(4)

()

Second Basic
u u u u u .
1 2 3 4 5 member {variables
1 3
0 1/4 0 4: 0 g = 1:
0 0 0 1 0 1 x
1
- 52 2
1 2/4 0 SL+ 0 24 u1
- -1 1
0 1/4 0 lq 0 ll+ .'x:z
0 | 1/4 1] -3/ 0 12 u
3
0 [|-1/4 0 ~1/4 1 -3/4 u5
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The corresponding point in table (19.47) is not a solution, since —3/4is a
negative value in the column representing the second member. Let us now
pass to the following dual table by pivoting on —1/4 in line (5). We obtain

Second Basic
x x u u u u u 3
1 2 1 2 3 4 5 member |variables

(0) 0 0 0 0 0 1 4 g =1

(¢)] 1 0 0 0 0 0 1 1 .'x:]

(19.48)

(2) 0 0 1 0 0 2 {-5 4 ul
(3) 0 1 0 0 0 1| -1 2 .'x:z
(4) 0 0 0 0 1 (-1 | -1 1 u3
(5) 0 0 0 1 0 |-4 1 3 u,

As the optimal solution of this new program, we obtain
(19.48) x, =1, x,=2,
u, =4, u; =3, u;=1, u, =us =0;
maxg =1.

This time the optimal program corresponds to a solution in which all the x,
and x, variables are integers. Our calculations are completed.

In Fig. 19.4 we have indicated by heavy dots all the possible integer solutions
of the program. All these solutions lie in the interior of or on the periphery of
a convex polyhedron (in this particular case it is a polygon and there are none
in the interior). This convex polyhedron is sometimes called the convex shell
of the integer solutions and is obviously a subset of the convex domain of the
linear program given without the condition of integrity.

We shall now study the properties of cuts, and to do this a recapitulation of
various algebraic concepts is required, at least for some of our readers.

4. Concept of Algebraic Modulus and Recapitulation
of the Properties of Groups

We shall now recall some of the properties of the most important structures
in the theory of sets. The examples given will apply to finite sets, but the
properties are equally true of infinite sets.

Let us consider a set E and an operation * that, to every pair (x, y) € E X E,
makes correspond an element z € E; this operation * is then said to be an
internal operation.
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F1G. 19.4

Closure
The internal law = is said to be closed if to every pair (x, y) € E x E there
corresponds one and only one z € E.

Unit to the Left
A set E, for which an internal law * has been defined, possesses a unit to the
left if a particular element eg € E exists, such that

(19.49) VaeE : eg*a=a.

Unit to the Right
A set E, for which an internal law * has been defined, possesses a unit to the
right if a particular element ej, € E exists such that

(19.50) VaeE: axep,=a.
Unit Element

A set E, for which an internal law # has been defined, possesses a unit if a
particular element e € E exists that is both a unit to the left and a unit to the
right; that is to say, if we have
(19.51) VaecE: exa=axe=a,

It is easy to prove that if a unit exists it is always unique.
Associativity

A law * defined for a set E is associative if

(19.52) Va,b,ccE : (axby*e =ax(bxc).



296 II. ALGORITHMS AND HEURISTICS

Inverse
If a law * defined for a set E has a unit element e and if, for every a e E,
there is one and only one b € E such that

(19.53) axb=b*a=ce, .
we say that b is the inverse or symmetrical® of a often referring to it as @ or

a~!. We say that the law has an inverse for each of its elements if this property
is satisfied.

Commutativity or Abelian Property
A law # defined for E is said to be commutative or abelian if

(19.54) V(a,b)e ExE : axb=>b=*a.

The element b will not be called the symmetrical of @ unless (19.53) is applicable.
Let us now give a brief recapitulation of some important structures.

Groupoid
A set E defined throughout by a law « is called a groupoid. We can also say
that in this case the law is closed.

Modulus
A modulus of which the law is associative is called a monoid or semigroup.

Group
A monoid in which every element has an inverse is termed a group.

Abelian Group

A group that possesses the property of symmetry (19.54) is called abelian.

Figure 19.6, which follows, summarizes these properties.

Figures 19.7-19.11 provide examples of these structures in the form of
exceptions that will provide the reader with material for reflection.

Among the moduluses and groups we shall be particularly interested in
those concerned with sets of real numbers with operations = that constitute
modulus » additions. Let us, therefore, first describe such structures and begin
by considering the set of related integers:

(19.55) 2={.,-3,-2,-1,0,1,2,3,..}.
Let there then be
(19.56) neNg, reN, a,b,q,q €.

Two numbers a and b are called modulo n equivalents or modulo n congruents
if their difference is divisible by # or, which amounts to the same thing, if their
division by n produces the same nonnegative remainder r. Let

(19.57) a=n.q+r

! The term symmetrical is one of those most frequently used in mathematics with the most
diverse meanings that are sometimes ambiguous and even contradictory in relation to each
other.
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and

(19.58) b=n.q +r,

Groupoid closure

f

Modulus closure and unit

H

Monoid closure, unit, and associativity

Group closure, unit, associativity, and inverse

FNA
L]

Aziii:n closure, unit, associativity, inverse, and commutativity
FiG. 19.6

/ a b e d f /: € a b ¢ 4
a e e b d f e e a b ¢ d
pld|la|bp]|Db]a ajal|e | ecfayb
e b d d e b b b b b e b
dld|lfr|lbvtale efefe|d]|b)e
flFf| a b e b d d d b d a

Fic. 19.7. Groupoid that is not amodulus. F1G. 19.8. Modulus that is not a monoid.

/' e a b c d

e e c c e d

d d d d d d

FiG. 19.9. Monoid that is not a group.
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/: e a b e d f

e e a b e d f /:- e a b e d

a a b e d f c e e a b e d

b b e a f e d a a c e d b

c e f d e b a b b e d a e

d d e f a e b e e d a b e

fFlr]d e b a e d | d} b e e a
FiG. 19.10. Group that is not commutative. FiG. 19.11. Commutative group.

(It should be noted that there cannot be a
noncommutative finite group with less
than five elements.)

then
(19.59) a—b=n(g—-q).
We can say
(19.60) a ~ b (mod n).
+ (o} + {0} {1} + (o} {1} {2}
{0} ] {0} {0} { {0} | {1} {0} | {o} | {1} ] {2}
mod 1 SRR RS A R {1y | (13 | (23 | {0}
mod 2 {2} [ (23 | {0} | {1}
mod 3
+ (0} {1} {2} (3} + {0} (1} {2} {3} {4}
{0} ] {0} {1} | {2} ]| {3} {0} | {o} | {1} | {2} | {3} | {4}
{1} {1} | (2} | {3} {0} {1y Py [ {2y ] (3} {4} ] {0}
{2} | {2} | {3} | {0} | {1} {2} | {2} | (3} | (4} | (O} ] {1}
{3} [ {3} | Lo} | {1} ] {2} {3} | {3} | {4} [ {0} | {1} ] {2}
mod 4 (4} | (a3 [ L0} | 11} [ {2} | {3}
mod 5

FiG. 19.12
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We place in the same class called the moduio n residual class all the numbers
of the form a+ kn, where a, K € Z and # € N,. Hence there are # classes and
the set quotient Z/%, where £ is the modulo n relation of equivalence con-
sidered, is indicated by Z/n. These are

class0: a, =0 (mod n),

a;, =1 (mod n),

(19.61) a, =2 (mod n),
a,; =n—1 (mod n).

The set quotient Z/n includes n elements, each of which represents the set
of the elements of the same equivalence class. Thus, taking n = 7, for example,

o {1 ]2]3]4]s 6
k=-2 | -14[-13]-12]-11|-10| -9 | -8
k= -1 -7 -6 -5] =&| -3 -2 ] -
(19.62)
k=0 ol 1| 2f 3| 4| s| 6
k=1 71 8f of 10| 1| 12|13
k=2 16| 15| 16| 17] 18] 19| 20

The designation of a class by the choice of the representative corresponding
to the representative & = 0 is arbitrary; we can take. any value of &, but it
must obviously be the same for all the classes.

Each of the equivalence classes for the modulo »# addition forms a com-
mutative group and examples of these groups are given here forn =1, 2, 3, 4,
and 5. The representative of a class will be designated by a number enclosed
by braces { }.

Cyclic Group*
The term cyclic group of order n is used for a group (E, *) of which all the
elements x € E can be obtained as

(19.63) x, =0,
Xq =a*X, =4,

! Not to be confused with the concept of a cycle in a substitution class nor with that in the
theory of graphs.
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*®
w
]

axx, =ax*a,
Xyo1 = A%X,_, =a*xax..%a,
X, =a*X,.,=a*xax*..*xa=0,

Xpt1 = A %X, = 4.

The number a is called the generator and the unit element is 0.

Let us consider an example in which * is the operation +, that is say,
modulo 1 addition (Fig. 19.13), and another example, that of the nonnegative
integers less than 10 and divisible by 3, namely,

(19.63a) {0,3,6,9}.

+ 0 1/6 2/6 3/6 4/6 5/6

0 o|1/6|2/6)3/6]|4/6]|5/6

1/6 | 1/6]| 2/6]|3/6|4/6|5/6] O

2/6[2/6|3/6|4/6|5/6 011/6

3/6|3/6|4/6)5/6 0)1/62/6

4/6 | 4/6 | 5/6 o|1/6]2/6(3/6

5/6 |5/6 0|1/6]12/6|3/6|4/6

FiG. 19.13. Modulo 1 addition.

This is a cyclic group in relation to modulo 12 addition and is also a subgroup
of (E, »), where E={0,1,2,3,4,5,6,7,8,9,10, 11}, x = add. mod 12.

12
+ 0 3 6 9

6 6 9 0 3

9 9 0 3 6

Fic. 19.14. Modulo 12 addition.
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Figure 19.14 shows the cyclic group formed by (19.63) for the modulo
12 addition.

All cyclic groups are commutative, that is to say abelian, since they are
generated as shown in (19.62) and since we always have

‘ X; ¥ X; = X;3 5, mod n, i,j=0,1,2,...,n,
19.64
( ) xj*xi =xj+1,m0d n,
whence
(19.65) X;*X; = X;%X;.

Extension of Modulo n Equivalence Classes to Set R

What we have just shown for modulo n (n € N,) equivalence classes in set
2 is easily extended to set R. We say that two numbers a, b € R are modulo n
equivalents, that is to say,

(19.66) a ~ b modulo n (also expressed a = b modulo n)
if @ and b have the same remainder r when divided by #. Thus,

ceo —2.63 >~ —0,63 ~ 1.37 ~ 3.37 ~ 5.37 ~ ... modulo 2
. —1.518 >~ —0,518 = 0.482 ~ 1.482 ~ 2.482 =~ ... modulo 1.

All the properties enunciated for Z are to be found in R and, in particular, the
presence of the groups and especially the cyclic groups. We have used Z above
in order to provide a clearer illustration.

5. Gomory's Cuts

In the second subdivision of this section we explained how to obtain a
particular Gomory cut. We shall now give a general definition and proceed to
show that this definition of the set of cuts that have been obtained, starting
with a noninteger solution and employing (19.8), invests this set with the
structure of an abelian group. We shall also show that the number of separate
cuts in this group is (det[B] — 1) where det[B] is the determinant of the base
matrix of the simplex table corresponding to a noninteger solution. Thus,
there are 7— 1 = 6 cuts that can be obtained starting from table (19.18). It is
useful to know that the set of cuts forms a group so as to be able to choose
“good cuts” that will quickly produce an integer solution. The explanation
that we are giving differs from Gomory’s but is, we believe, more instructional.

We shall use the following notation, already introduced in (19.10) above:

(19.67) $k} = k— k),
and we shall say that two real numbers 4 and B are modulo 1 equivalents if
(19.68) {4} = {B},

which means that the remainders from their division by 1 are the same.
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With this notation retained, let us recall (19.5), which specifies that, for the
optimal table, we must have

(19‘69) [xB]mxl = [B];im[b]mxl _A [B];:m'[NJMXn‘[xN]nxl .

The element in line i of column [xg],.x; Will have the notation xp,, that of
line i of matrix [B],,x,, will be [B];?, so that a line i of (19.69) becomes

(19‘70) xB( = ([B]i_ 1)1 xXm:* [b]mx 1= ([B]i— 1)1 Xm- [N]mxn‘ [xN]nx 1-
If the optimal solution is to be integer we must have
(19.71) Vie{l,2,..,m}: xp, integer.

In particular, any linear combination formed by related integers as co-
efficients of equations such as (19.70), must give an integer. Thus,

(19.72) (6] 1 xms weZ; i=1,2..,m,

is a matrix line of coefficients. We must have

(19.73) [o); wm-[xslmx1 = a related integer.

If we consider, for example, table (19.18) we must have
(19.74) x, =16/7—1/Tu, — 2/7uy = an integer number,
(19.75) uy; = 43/7+ 3/7u; — 3 1/7u; = an integer number.

For instance, if we take the linear combination® of coefficients 4 and 10 we
should have

(19.76)

4%, +10u, = (4).(1 6/T—1/Tuy —2/Tuz) + (10) (4 3/7+3/Tu, -3 1/Tu;)
= (4).(1 6/T) + (10).(4 3/7)

+ [(@).(=1/7) + (10).3/T)] u, +

+ [(4).(=2/T) + (10).(=3 1/7)] u,

51 5/7 + 3 5/Tu, — 32 4/Tu,

= an integer,
If we generate a Gomory cut beginning with this, we must have
19.77)
4.1 6/7) + (10).(4 3/}
< {=(@-(=1/D+10).G3/D)f uy +§{(4). (—2/D)+(10).(=31/D}us,

! In this example 4 and 10 are positive integers, but we might equally have chosen any
other elements of Z such as (—2) and (18).
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or again,

(19.78) §51 5/7} < §=35/7} uy + §324/T} u,.
We have

19.7%) {5157y =51, (—-3 51> = —4, (3247 =32
and
§51 5/7% = 51 5/7—51 = 5/7,
(19.80) §—35/7} = -35/1T—(-4) =2/7,
§324/7} = 324/7-32 = 4/7.
Thus, (19.77) gives
(15.81) SIT<2[Tuy +4/7u,.
We must be able to say for any [«] that conforms to (19.72),
(19.82) (o)1 xm [¥8mx 1 = (€)1 xm- [Bloxm-[bImx1
— [6)s xm-[Blnxm-[NJmxn-[XxJax1 = an integer.

Hence
(19.83)

(0] 1 xm-[Blmxm-[blmx1 = [0 1 xm-[Blmxm-[NImxn-[¥nJax1 = an integer.
And again,

(19.84)

<[].0B17".[61> + §[«].[B]1™".[b]}

—([o].[B]I"*.[N1>.[xy] — §{[a].[B]"*.[N1}.[xx] = an integer.

Given that, by hypothesis, [xy], {[«].[B]~!.[b]) and {[«].[B]"'.[N])
the noninteger part of (19.84) must be such that

(19.85) §[«].[B]"*.[p]} — {[«].[B] *.[N1} .[xy] = an integer.
From the definition of the noninteger part of a real number, we have

(19.86) 0 < {[«].[B] '.[b]} < 1,

and also

(19.87) {[a].[B] " .[N1}.[xy] = O.

Given that (19.85) is an integer and that [xy] > 0, this can only be a non-
positive integer because of (19.85) and (19.86) and of the minus sign in front
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of {i[«].[B]~!.[NJi.[xy] in (19.85). Hence the general equation for a Gomory
cut is given by

(19.88) {[«].[B]1™".[61} — {[o].[B]™".[N1}.[xx] < O.

This formula generalizes (19.15).
Hence, to obtain (19.81) beginning with table (19.18), we can state

(19.89) [¢]=[4 10 0].

Two different Gomory cuts generally correspond to two different vectors
[«"] and [«¥].

As we noted above, for the example introduced in (19.76) we arbitrarily
selected nonnegative components of [a], but any integer, whether positive,
negative, or null, would have been suitable, as the reader can easily verify.
The same Gomory cut beginning with (19.81) would have been obtained if,
for example, we had chosen [a] = [4 —4 0]. Let us take, for instance, the
cut obtained in table (19.18) for [«’] = [1 0 0], namely (19.20),

(19.90) x, =16/7—1/7 uy —2/7 uy = an integer,

from which we obtained (19.29), namely,

(19.91) x, <1.

Let us now calculate the cut corresponding to [a®’] = [4 0 0], that is,
(19.92) 4x, = (4.1 6/T— @D.A/T uy — 4).(2/7) u3 = an integer.
Whence

1993  {@.(16/D} < §@.A/D} uy + {@).QD} us
and again,

(19.94) 37 < 4Tuy + 1/7usy;

finally,

(19.95) 4u,+uy = 3.

By making use of (19.26) and (19.27), which give 4, and u, explicitly as func-
tions of x, and x,, we obtain

(19.96) duy+uy = 12-12x,+8x,+5-2x,—x,
=17-14x,+7x, = 3,

and thus,

(19.97) 2x;—x; € 2.

We can verify in Fig. 19.15 that the optimal solution x, = 1, x, = 2 satisfies
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constraint (19.97), whereas the solution in table (19.18), namely, x, =1 6/7,
x5 =12/7 does not satisfy it,

Let us observe that [a‘Y] =[100] gives the cut x, <1 and [«*] =
[400] gives the cut 2x;—x, < 2. . ;

Still from Fig. 19.15, let us observe that the point x; = 1, x, = — 1 satisfies
x; € 1, whereas it does not satisfy 2x; —x, < 2 since this Goomory cut slices
off a different area of the original polyhedron of the constraints (the shaded
portion in the figure). It may seem surprising to the reader that with the same
constraints but with different [«] we can obtain different cuts, This will be
explained later in this section when we shall show that these Gomory cuts
forma group that is often cyclic. In such cases all the cuts of the same cyclic
group can be generated by one and the same constraint.

Observation

To prove several properties connected with the abelian group of Gomory
cuts it is necessary to employ various properties of modulo 1 operations. So
as not to interrupt the successive stages of the very important reasoning in
this section, we have given these properties in a supplement to which the
reader who is less conversant with the use of modulo 1 congruences is referred.

FiG, 19.15
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6. Abelian Group of Gomory Cuts

Let us show how the cuts, the definition of which is given in (19.88), form an
abelian group for an operation we shall now define.
Let us indicate as 7 a Gomory cut or inequality.

(19.98)

I: %[“]1 Xm'[B];}(m'[b]mxlz < %[“]1 Xm-[B];im-[N]anz-[xN]nx1

and let us define an operation * in the set | of Gomory cuts in the following
manner: Given

(19.99) I 0 {[«™W1.[B]7".[b]} < {[«V].[B] 7. [NT}.[xx],
(19.100) I, : §[®].[B]7 . [b1} < §{[«®].[B]"*.[N1}.[xxl-

we shall now define * as follows:
(19.101) Il (™1 + [«*)).[B].[b]}
< §([e™] + [«®]).[B] . [N} .[xa]-

Hence, to carry out the operation # is to construct a new cut or inequality by
introducing the common sum of [«(*)] and [a/®].

We shall now show that the set of cuts | forms an abelian group for the
operation * in which, that amounts to the same thing, the set of vectors [a]
indicated by A forms a group for the common addition of two vectors [a(}]
and [a®)]. Let us recall how the vectors [«] were defined by (19.72):

(19102) [O(] = [al s Xy oony am] ’
(19.103) ue2; i=1,2,..,m,

and let us show that the set A of such vectors forms a group for common
addition defined by

2 1 2 2
(19.104) [] + [®] = [af?, of?, o, 0] + [af?, a8 .., 2]
= [ +a®, iV +al?, ..., a+aP].

We shall now successively prove the following properties: closure, existence
of a unit, associativity, existence of the inverse, and commutativity. This will
enable us to say that (A, +) is a group® and thence that (I, *) is a group since
it is homomorphic to (A, +).2

L A reader who is sufficiently advanced in the new mathematics will not require the follow-
ing proofs; it will suffice to know that Z is a group for common addition and hence that the
vectors, the elements of which belong to Z, also form a group for the addition of the vectors.

2 1 is homomorphic to A since, for a vector of A there is only one corresponding cut, but
for a cut there is an infinity of correponding vectors of A. See [K11], Volume 1, p. 60.
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Closure

A is closed for common addition since the addition of two vectors [a(!]
and [«(®'], defined in accordance with (19.102)-(19.104), gives an element of
A. In effect,

(19.105) @V eZ and a®e2) = (P +a®)e2),
i=12,..,m.
As a result | is closed.

Existence of a Unit
The unit of A for common addition is

(19.106) [0];xm = [0,0, ..., 0].
The corresponding unit of | will be the cut
(19.107) 01x1 < [0y xn-[xnTnx1-
Associativity

If

oé”, a§2>, af”eZ, i=12,..,m,

we have
(19.108) @+ + o = of + @ +aP),
and thence,
(19109) ([P + [P + [¢] = [«®] + (2] + VD),

that is also to say,

(19.110) Uy *I) Iy =1, (I, +1,).
Existence of an Inverse
We have
(19.111)* Yalez: 31 BM e Z such that
O HBD = DD =0,  i=1,2,..,m.
Let
(19.112) BV = —aM,

Thus to every vector [a{!’] € A, there corresponds a vector [—a™] € A
that is its sole inverse.

! Let us recall the meaning of the symbols V, 3, 3!; V: for every; 3: there is one; 3!: there is
one and only one.
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The inverse of
(19.113) [] = [V, a, ..., ai]
is
(19.114) [—a®M] = [—a{V, —af?, ..., —alV].

We shall make I, ! correspond to [—a‘"’] to indicate the inverse cut of
cut /,. That is to say

(19.115) I : {[«™].[B]7'.[b]} < {[a™].[B1"'.[NT§. [xx]
(19.116) It {[—a™M].[B]7.[1}
< {[—a™1.[B]7 . [N1}. [xpd-

Commutativity

Wehave
(19.117) Vai, aPeZ2 :  aV+o® = aP+aV; i=1,2,...,m,
hence
(19.118) V[P, [eP]eA: [P] + [@P] = [«*] + [«M],
and thence,
(19.119) ILixl,=1,%1,.

Thus, (A, +) and (I, ¥) are homomorphic abelian groups.

Number of Elements Existing in the Group of the Cuts

Let us now consider how to find the number of elements of group | of
Gomory’s cuts, mainly because this will give us an idea of the degree of non-
integrity of the associated linear program at each stage of the process and
will also provide useful information about the difficulty of the problem to be
solved in integers. In this part we shall make use of the results given in Section
18 with regard to Smith’s reduced form.

Let us see the number of different cuts of type (19.88) that can be engendered
from all the vectors

(19.120) [e] = [, o, ..., o] € 2™,

We know that there are two regular unimodular matrices [U],,x,, and
[¥]1.xn» and a matrix [A],, x, of type (18.83) such that

(19.121) LUJmxm-[Blmxn-LVInxn = [Almxn-

Now, if we consider a matrix [B],, « ., the relation (19.121) can be expressed as

(19.122) LUmxm:[Blmxm:-LV]Imxm = [Almxm-
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Let us at once observe that if [B],, . is regular, that is to say if it permits of
an inverse, then [A], ., is also regular since [U]nxm and [¥],x. being
regular unimodular possess inverses, and the product of three regular
matrices gives a regular matrix, Hence, in this case, Smith’s reduced form will
give a matrix [A] such that

5, 0 .0
(19.123) Alxm=|0 6, ... 0|,
0 o0 F)

with the property
(19.129) o, divides ;4 4, i=12,...,m-1,
Premultiplying (19.122) by [U] ! and then postmultiplying the result by
[V]1~1, we obtain
(19.125) [B] = (U1 .[4].[V]".
Inverting the two members of (19.125), it follows that

(19.126) [B]™' = [V1.[4]7'.[U],

with
16, 0 .0
(19.127) (41,1, =0 16, ... O
0 0 .. 1/5,]
In accordance with (19.88) a Gomory cut is written
(19.128) {[001 xm-[Bluxm-[BJmx1}

< {[0)1xm-[Blaxm-INImxn}- D¥nduxs -

If we substitute (19.126) in (19.128) we obtain as the expression of a Gomory
cut

(19.129) §[001xm- [V Imxm: [Amxm- LU msm- [6]mx 1
S %[a]l xm'[V]mxm'[A];im'[U]mxm'[N]mxn; '[xN]nxl .

Now let us observe that, since [V7] is unimodular and formed of integers,
[V]~!is also formed of integers and

(19.130) (Blixm=[0]1xm:[V]mxm

is a matrix line formed of related integers. Substituting (19.130) in (19.129) we
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obtain
(19131) i[ﬁ]lxm'[d];:m'[U]mx'n'[b]m><1§
s i[ﬁ]l XM'[A];:M'[U]mxm'[N]mxni'[xN]nxl .

Again, let us assume

(19.132) (U] mxs = [l}]me.[b]mxl,

(19.133) [)mxn = [Ulnxm-[N]mxn-

and let us substitute (19.132) and (19.133) in (19.131)
(19.134) {811 xm-[Admsm [T 1}

s i[ﬁ]l Xm'[A]m_im'[E]mxn§ . [xN]nx 1-
Let us further assume

(19.135) (dixm = [Blixm-[A1mxm = [B1/015 B2z, - Bu/6um]-
Then (19.134) can be expressed

(19.136) {001 xm- [1mx} < )1 xm-[8dmxn§ Dxndaxs -

Let us observe that [#],,x, and [Z ],,x, are matrices composed of related
integers; in consequence, by using properties 6 and 8 given in the supplement !
under references (A1.30) and (A1.34), the inequation (19.36) can be written

(19.137) B0 xm - [0 1} < T s [0 [xn Tt -

The maximal number of cuts that can be obtained corresponds to the number
of different cuts (19.137) that we can obtain for each vector

(19~138) i[ull ><m§ = i[ﬁ]l Xm'[A]r;:mi’

Now, there are §, values of {1, = {8,/8,}, 0, values of {u,i = {8,/0,}, ..., O
values of {u,} = {B./0,;. Hence we have 8,.6,.....8,, possible values of the
vector {[B]; xm-[Almxmi and, if we exclude the vector {[0], « i, there are

[81.05.....0,]—1

separate nonnull vectors i[8]; x m-[Alr 1 mi-
Let us now return to (19.122). The matrix [A],,x is regular and diagonal
and its determinant

(19.139) det [4] = 8,.6,.....6,,
is equal to that of [B],,x, since [U] and [V7] are regular unimodular except
for the sign (since det[U] =1 or —1 and det{V] =1 or —1).

1 8o as not to overburden the text we have given various properties of modulo 1 operations
as a supplement.
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Thus the number of possible Gomory cuts is
(19.140)* A = |det [B]|-1,

Let us take an example and consider the solution obtained in table (19.31).
For this table we have '

1. 0 277
(19.141) (Bl '={-37 1 22/7].
-2/17 0 3/7
Thence,
3 0 -2
(19.142) [B]=|-5 1 -4 with det [B] = 7.
2 0 1

By using the method giving Smith’s normal form explained in Section 18,
and by noticing that [B] is a matrix composed of integers in consequence of
which the normal form becomes a reduced one, we find

(19.143)

0 1 O 3 0 =230 O 1 1 0 O
0 0 1}j4-5 1 —44.1 4 3= 1 0j.
1 0 2 2 0 1110 1 =2 o 7

Ul [B] vl [4]

If we continue to refer to (19.31) we see that

0
0

3
(19.144) [p] =] -10
5
and
1
(19.145) [NJ]=]0 O].
0 1

Matrix [b] is taken from table (19.17) (second column member). Matrix [B],
that forms the basis in table (19.31), is formed of the columns of the variables

LIf [M] is a square matrix we are free to use the symbols |M| or det[M] to represent its
determinant. But since the symbol |q| sometimes also represents the absolute value of the
number a, confusion may arise, and we have therefore given the necessary distinctions.
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Xy, 43, and x, in table (19.17), while [N] is composed of the columns of u,
and u, in that table.

It follows
o 1 - 3 -1
(19.146) [%] =[U].[h)] =10 O 1}.]-10}= 51,
1 0 2 S 13
0 1 1 0 0
(19.147) [] =[U]J.[N]=)0 0 1§.]0 Oy=(0 1].

1 0 2Jl0 1 1 2

By using the preceding notation and by considering Smith’s reduced matrix
[A] calculated in (19.143), we have

(19.148) 6, =1, o, =1, 0y, =17.
In this particular case, from (19.133) vector [y] is therefore expressed as
(19.149) [kl = [Bu/1, Bu/L, BalT].
And since §,, f,, B are integers,
(19.150) W] =00 0 {Bs/74].
Hence the six nonnull possible vectors {[u]} are
(19.151) [0 0 1/7], [0 0 2/7], [0 0 3/7],
[0 0 4/7], [0 0 5/7), and [0 O 6/7].

By replacing (19.146), (19.147), and (19.151) in the general equation (19.138)
of the Gomory cuts and by observing that xy, = u; and xy, = u; in table
(16.31), we obtain the group of six Gomory cuts relative to that table:

(19.152) $.138 < (1.1} .xy, + 5.2} .xy,, that is, § < Fuy + Zu,,
(19.153) 213} < {2.1} xy, + §%.2} .xy,,that is, 5 < 3uy + 3u,,
(9450) 13} < 1 Uoxw, + .2 ox,, that is # < Ju + S,
(19.155) §2.13} < (4.1} .xy, + §2.2} .xy,, that is, 2 < $u, + Fu,,
(19.156) 213} < §3.1} .xy, + 5.2} .xy,, that is, 2 < $uy + 2u,,
(19.157) $2.13F < {5.1} .xy, + §5.2} .xy,, that is, 3 < Su; + 3u,.

We observe that cut (19.152) is the one we obtained by direct methods in
(19.30).
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Cyclic Group of Gomory Cuts
If, in matrix (19.123), we have: §, =6, = --- = 8,,—; = 1, the |det[A]|—1
vectors {[u],.x 1} can be written as

(19.158) 1]} =[0 0.....0 {Bn/dmil.

This case was shown in (19.150). The general form (19.138) of Gomory cuts
is therefore expressed as

(19.159)

I $iBulOnd Ut < 3iBulOm} -Cmad-xn, + 4iBulOni -Gy} - Xny + ..

+§ {BlOm} -Comni - Xn,.
The cuts are all obtained by the operation * defined in (19.101) beginning with
the following cut:

(19.160) §%,,,/5,,,§ < §5m1/5m§ XNyt G2 [Omb XN, F -
+ {ComnlOm$ Xy, -

Hence the group of cuts defined in (19.159) forms a cyclic group (see the
definition in (19.62)) of which cut (19.160) is a generator. In our example cut
(19.152) was a generator of the cyclic group of six cuts obtained from table
(16.31) as starting point.

If we recall the definition in Smith’s reduced form of a matrix [B],y,
and if we remember that d,. , is always divisible by &,, the case §; = 6, = ---
= §,,, = | corresponds to the one where the §; are first among them. It should
be observed that this particular case frequently occurs.

We have not given the formal proof for the convergence of Gomory’s
fractional method, so called because in the course of the iterations the elements
in the simplex tables have fractional values. Although it does not require any
concepts besides those given here this proof is a somewhat cumbersome one,
and the reader is referred to the original article [K42].

7. Programming Called All-integer

This method of Gomory’s* enables us to obtain integers only in the different
simplex tables for the iterations. It has the advantage of eliminating the
difficulties of rounding off during the calculation on the computer.

Let us assume that a table such as (16.8) has a nonnegative first line and that
all its elements are integers. Let us further assume that the column for this
table given by (16.76) is not nonnegative. This means that the vector repre-
sented by this column is not a solution of the integer program (19.1). As we
saw in (16.79), there is at least one element b, of column [b], . ; that is negative.

! The reader is referred to [K40] for the proof of the convergence.
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Hence we can express the ith line as we did in (19.7),
N
(19.161) xBr = B’ - z ﬁ,j.xNI.
j=1
We shall express constraint (19.161) in another manner. To do so let us
assume, with the notation of (19.9),
(19.168)" foj = 8,;— 4@, [AY, i=1,2 ..,n,
A€N,.
Since a,; is a related integer, f,; is an integer such that
(19.169) 0</,;<4, i=12 ..,n
Let us also assume
(19.170) g, = b,—A.(b,|]A),

which results in 0 € g, < 4.
Then constraint (19.161) can be expressed

(19.171) Xp, + _él Sy xn, = g,+l.((b',/l) - él (&,i/b.xm).

If [xz] and [xy] are, by hypothesis, nonnegative integers, the left member
of (19.171) is a nonnegative integer, since f,;, j=1, 2, ..., n, is also a non-
negative integer. Hence the right member is also a nonnegative integer.
Accordingly we must have

(19.172) {b,|Ay — Z": a,;/A).xy, = a related integer,

since g, is a related integer.

If (19.172) were not nonnegative it would be less than or equal to —1.
Hence the right member of (19.171) would be less than or equal to g,— 4 since
A = 0. Like g, < A the right member would be negative. Hence we must have

(19.173) (B, JAy — Z (@A) .xy, 2 0
i=1

This constraint called an all-integer constraint? is not satisfied for xy, =0,
=12, ...,n

As in Gomory’s procedure explained above, we shall add this constraint to
the simplex table after choosing a suitable value for 4 that will ensure an all-

! Equation numbers (19.162)—(19.167) omitted in the French edition.
2 Let us observe that if A =1 in (19.173) constraint (19.171) has the form of constraint
(19.98), a fractional Gomory cut.
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integer simplex table at the next iteration. Let us now explain how to make
a suitable choice for 4.

On the one hand, in order that the first line of the simplex table will be non-
negative at the following iteration (see (16.8)), we must, when taking line r as
the pivoting line and column s as the pivoting column (see (16.81)), have

(19.174) min( J] )= 2
j _<ar1/'1> _<ars/'1>

where min; is chosen from the j’s such that (g,;/A) < 0.
On the other hand, in order that the simplex table remains integer at the
next iteration, a A must be chosen such that the pivoting element

(19.175) (a Ay = — 1.

We shall now refer to the transformation formulas (16.82)-(16.86) and
(19.174).
Hence, by substituting (19.175) in (19.174) we still have
(19.176) &, < —4— < ¢
—<a,;/4>
where j is such that ¢@,;/1> < 0.
Finally, the variation of the economic function at the next iteration is

(19.177) g,.<B,JA> .

In a problem of maximization solved by the dual-simplex method the value
of the economic function decreases at each iteration. Accordingly we seek,
at each iteration, to maximize the absolute value of this diminution expressed
by (19.177). We shall therefore take the smallest possible value for A com-
patible with (19.175) and (19.176).

(19.178) A = max (—a,s, <—_il—>) )
{c;lcsy

s and j such that &, <0 and @,;<0, j=1,2,..,n

Hence in the all-integer method we first choose column s of the pivot (see
(19.176)) taking s such that

¢;=min¢; and &,<0, a,; <0, i=12,..,n,
i
and finally choosing the value of A to calculate the all-integer constraint by
means of (19.178). Constraint (19.172), thus obtained, will be added to the
simplex table and we shall pivot on the element of column s relative to this
new line, an element that is always equal to (—1).
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Example
Given the program

- 1) [MIN]z=3x,+8x,,
2) 4x,+5%, =2,
(19.179)
3) 3x,+7x, =22,

4) x,,x,eN.

Let us change the direction of inequalities (2) and (3) and introduce devia-
tion variables u, > 0, u, > 0, and assume, as we did in (16.88),

(19.180) g=—2z,
it then follows that
1) [MAX] g = —3x1—8x2,
2) —4x,—5x,4+u, = -2,
(19.181)
3) —3x1—7x2+u2 = —2,
4) xl,xz,ul,uzeN.

The first simplex table, constructed in the same way as (16.92) but omitting
the columns of the artificial variables ¢, and ¢, (that are here of no use), will be

(L @) 3 W B (8

g u1 u2 xl x2 u3

| g o] ool 3|s8]o

(19.182) M fu t-2]0 1 | of-4-51]0
@ u | -2l0 [ o |13 f-7 |0

3| u | -1)o [ oo -2 |

where line (3) and column (6) will not be introduced until the next iteration,
(19.182) being the initial table.

Line (0) of table (19.182) composed of related integers is nonnegative, but
the arrowed column is not. nonnegative, in consequence of which the table
does not provide a solution of (19.181). Let us choose line (1), the element of
which in the arrowed column is negative, namely —2 < 0, as the line to
generate an all-integer constraint (with the notation of formula (16.79) this
will be b; = —2). In consequence of what was done in (19.76), columns (4)
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and (5) of (19.182) are candidates for the pivoting column, that is to say, for
entering the new basis, since —4 and — 51in line (1) are negative. As, in line (0),
the elements corresponding to these columns are 3 and 8 and as 3 is less than
8, we shall select column (4) corresponding to x, as pivot in accordance with
what was laid down in (19.176). We then choose A by means of (19.178) and

have
_ —(—5)>)
A= —(-4, (=22
max( (=9 <<8/3>

(19.183) = max (4, {5/2))

= max (4, 2) = 4.

Let us now express the all integer constraint of type (19.173), obtained
from line (1) of table (19.182), as follows:

(19.184) =2/ — {(—4[A).x; — {—=5[Ay.x3 = 0.

If we now introduce the value of A obtained in (19.183), that is, A =4, in
(19.184), we find

(19.185) (=2/4> — {—4[4>.x; — {(—=5/4).x, =2 0,
that is
(19.186) —14+x,;+2x, = 0.

To transform the latter into an equation we introduce a deviation variable u,
and bring the variables to the right-hand side:

(19.187) —1 = —x;—x,+u;.

This is the all-integer constraint introduced beforehand in table (19.182).

As we have explained, we shall therefore pivot on the element at the inter-
section of line (3) and column (4) that is always, as we mentioned earlier,
equal to —1.

(1) (2) (3) (&) (5) (6)

g lu Ju [z |z Ju
1 |2 1] 2}) 3

0) g |-3 1 0ojo0]o}] 2] 8
(19'188) (@) u1 210 1 0|0} 3)-4
)| u 1 0 0|1 0f-11-3

3| = 1 0 [V ] 1 21 -1
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Table (19.188) is optimal and represents the integer solution
Uy =2, uy=1,

(19.189) x;=1, x, =0,
u; =0, g= -3,

for which line (0) of the table is nonnegative.
The corresponding solution for program (19.179) is

(19.190) z =3, x, =1, xy, =0.



SUPPLEMENT. MIXED PROGRAMMING AND
RECENT METHODS OF INTEGER PROGRAMMING

Section 20. Asymptotic Programming in Integers

1. Nature of the Asymptotic Problem
Let us take the linear program in integers:
(1) [MAX]g = [c]ixn-[XTnx1,
(20.1) D [almxn-[xInx1 < [Blmx1s
(3 [x].x1€N".

In the second part of Volume | and in Section 14 of this volume we showed
that the solution of such a problem in linear programming was situated at a
vertex of the polyhedron of the constraints. By contrast, in the case of linear
programming in integer numbers, no theoretical a priori information is
available about a subset of solutions that might include the optimal solution
or solutions of (20.1). We shall show” that its solution has a periodic character
for different matrices [b],, 1 , and we shall give a precise meaning to this term.

Let us consider the linear program obtained if we replace constraint (3) by

(20'2) [x]nx 1 2 [0]n>< 1-

As we did in Section 16 immediately after formula (16.12), let us use
[25]mx1 for the vector of the variables belonging to the optimal basis of this

! R. E. Gomory is the originator of this theory [K41] that has been further developed by

Glover [K38], White [K73], and Gondran [K77]. For its practical application the reader
should consult Shapiro [K65] and Thiriez [K70].

319
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linear program, and [fy],«; for the vector corresponding to the variables
that do not belong to this basis. Let us take § for the maximal value of the
economic function g of the linear program composed by (1) and (2) of (20.1)
to which (20.2) has been added, giving the program the same form as (16.12).
By keeping [¢@)mx1 = [0]mx 1 in (16.13) and (16.14), we have

(20.3) g = max g = [z} xm-[Blnsm:[Blmx1
- (_ [CN]'I xn + [CB],Ixm’[B]r;}cm’[N]mxn)'[xN]nXl .
(20.9) [Xlmx1 = [Blmxm-[0Jmx1 — [Blmxm:-[NJmxn-[X¥]nx1-

For [xy]ax12 [0]sx1, (20.4) is the equation of a CPC (see (14.49)) the
vertex of which is [B]~1.[b].

If [xg]mx1 has integer elements it is the optimal solution of (20.1). If not,
the following method known as asymptotic programming in integers can be
used. However, this method does not guarantee an optimal solution in all
cases, and later in this section we shall give the sufficient but restrictive con-
ditions required if the asymptotic optimal solution is to be the solution of
(20.1). If it is a solution it will be optimal.

Let us therefore define as follows what is called an asymprotic program
associated with an integer program such as (20.1):

(1) IMIN]S = (= [en)ixn + [ca)1xm - [Blmxm-[NImxn)
Dxndaxts

) [xplmx1 + [Bluxm-[NImxn-[XnJax1 = [Blumxm:[Blmx1

(3) [xwlax1 €N,

(4 [xplmx1€2".

Program (20.5) differs from (20.1) by the fact that [xg],,« ; 1S not constrained
to be nonnegative. We shall now illustrate the relation existing between the
solution of program (20.1) and that of its associated asymptotic program (20.5).

In Fig. 20.1 we have shown an integer program of the type of (20.1). Point P
is the solution of the linear program obtained by replacing constraint (3) of
(20.1) by constraint (20.2). To solve the asymptotic program associated with
(20.1), namely, to solve (20.5), is to seek a point with integer values no longer
strictly belonging to the convex polyhedron K but to the cone C that contains
it. In Fig. 20.1 point Q, the optimal solution of the asymptotic program,
belongs to K and is therefore an optimal solution of (20.1). By contrast, as
shown in Fig. 20.2, point Q, which belongs to C but not to K, is not a solution.

Let us now express (20.5) in a different form by saying, to simplify the
notation,

(20.6) [ex)ixn = — [en)ixn + [ea)ixm - [Blnxm- [N]mxn-

(20.5)
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With this notation, (20.5) becomes
() MIN]f = [enlixn-DXNnx1s
(20.7) () [Blmxm-[1mx1 = [Blmxm-[NImxn-D¥nJnx1 = [0mx 1
modulo 1,

(3) [xnlax1€N".

Let [xy|b] be the optimal solution of (20.7); it will remain the same for all
the vectors [b] and [b’] such that

(20.8) {[B1™".[b1} = {[B1™".[b']}.

Accordingly we qualify it as periodic.!
We can then, after observing that

* [x:]m x1
(20.9) O Jmemx1 = * ’

_[xN]nx 1 _[m+myx1

express the optimal solution of the asymptotic program (20.5) as

[[x3nxt | [[Blaim-[blmx
[0]nx1

_[B];im[N]mxn
+ '[leb]nxl'

(20.10) [X*] mimx1 =

_[x;c]n x1 i

[1nxa

In Eq. (20.10) we observe that the solution [x*] of the asymptotic program
is the sum of the solution of the linear program obtained by replacing con-
straint (3) of (20.1) by constraint (20.2) and of a perlodlc term indicated by a
horizontal bracket,

2. Solution of the Asymptotic Problem by a Method
of Dynamic Programming?

We shall confine our explanations to the frequent case where the elements
of Smith’s reduced form [A],,xm Of (B xm are constituted by numbers that
are first when taken two by two. We saw in (19.158) and beyond in Section 19
that in this case the group of Gomory cuts is cyclic. Hence, in accordance with
(19.126), we can say

(20.11) [Blaxm = [V1mxm-[A1mxm-[Ulmxm-

! The reader can verify that [b']lm 1 = [Blwx1+([B])mx1 is a solution of (20.8) where
[B]! is any column of [Bluxm-

? Dynamic programming was sufficiently explained in Volume 2 to make a recapitulation
unnecessary here.
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Constraint (2) of (20.7) can be expressed

(20.12) {[Blmxm-[bImx1} = § {[Blmkm-[NImxnd-[xnlnx1}-

(Observe what was done for (19.137) where we used Properties 6 and 8 of
modulo 1 operations, given in the Appendix as formulas (A1.27) and (A1.34).)

By observing that [V] is formed of related integers and by using Property
8 and, finally, by substituting (20.11) in (20.12), we obtain

(20.13)

i[A];im'[U]mxm'[b]mXIi = ii[d];im[U]me[N]mxni '[xN]nxl§'

If we employ the notation defined in (19.132), (19.133), and (19.127) and
proceed as for (19.159), assuming

(20.14) %U;: elementofline i of [%]pnx1s
(20.15) [@]; : ithline of [&])nxns

it follows that
(20.16) = $1([81)1 xn}-Dxwdax1 i=12..,m—1.

(20.17) E % = 3{ —.([@1)1xn

[xnlax1 1 .

Given that matrices [%] and [@], as well as [xy], are composed of related
integers in accordance with formula (3) of (20.7), if we use Property 1 given in
the Appendix, we observe that constraints (20.16) are satisfied for every [xy]
that satisfies (3) of (20.7).

The asymptotic program can therefore be simplified and, where the group
of Gomory cuts is cyclic, can be expressed as

(1) [MIN] f = [ey]-[xa]>

(20.18) ) i%‘ - {E L e,

. NETIEE

(3 [x~leN".

Let us note that (20.18) has thus assumed a form resembling that of the
problem of the knapsack given in (2.20) of this volume and also treated from
a different aspect on page 86 of Volume 2. The method given here for solving
program (20.18) is described in the Appendix.

3. Examples

We shall first show that the solution of the asymptotic problem associated
with problem (19.16), already treated by the method of Gomory cuts, is not
a solution of (19.16).
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In accordance with (19.146)—(19.148) constraint (2) of (20.18) for this
problem can be expressed as

f6/73 = {41/7.[1  21}. -:‘ g
:ul:
(20.19) = g (7 20738 ;
usz
o ]
= $[1/7  2/7].
Us
or again
(20.20) $1/Tu, +2[Tus} = {6/7}.

Taking the value of the elements of line (0) of (19.18) in the columns of u,
and u,, the asymptotic program for this example is expressed as

(1) [MIN]f = 5/Tu, + 3/Tus,
(20.21) () §1/Tuy +2[Tus} = 6/7,

(3 u;,us;eN.
Line (2) in Eq. (20.21) is of a particular type that is called modulo 1 equation
of type
a, a, a, i b
— X +—=x;+...+—=X,§ = §{=% ,
é ) é é

for which one method of solution is given in the Appendix. Among the
infinitude of solutions that an equation of this type may possess we shall
select the one (or more) than minimizes (1) in (20.21). From the algorithm
given in the Appendix (A1.44), we obtain

(20.22) u; =0 and u; =3, with f =9/7.
By substituting (20.22) in (19.16), it follows that
(20.23) Xy = 1, x2=0, Uy =0, U, = —5, Us =3,

which is not a solution of (19.16) although it is integer for x; and x, since, the
deviation variable u, being negative, constraint (3) of (19.16) is not satisfied.

Let us now consider another example where, by contrast, the solution of
the associated asymptotic program solves the linear program in integers.
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Given the linear program in integer numbers

(1) [MAX] g = 2x1+x2+x3+3x4+x5 N

(D) 2x3+x3+4x,+2x5 < 47,

(20.24) pTTaTIMTAN B
(3) 3x1—4x2+4X3+X4—x5 S 41,
(4) X1s X3, X35 X4, X5 EN-

By replacing the constraint of integrity (4) by
(20.25) Xys X35 X3, X4, X5 2 0,

and by introducing the deviation variables u, > 0, u, > 0, we obtain as the
optimal solution of this linear program (as the reader should be able to verify)

Xy =45, x,=231/2, x;=x,=x5=0,

20.26
( ) “1 = 0’ U, = 0.

This solution corresponds to the following optimal simplex table:
(20.27)
N )] 3) (4) () ()] 0D (8)

g :c2 :cl :ca :cl' :cs u1 u2

3 3 s
Mg | n3g 1 0 0 3¢ 5 2 15 | 4/6
@z 23¢ o 1 0 3/6 | 2 1 3/6 | o
(3 < 45 0 0 1 2 3 1 4/6 | 2/6

The optimal basis matrix [B], ., is formed from the columns of x; and x,
of (20.24)

Xy X2

X [o 2]

(20.28) [B] = :
x, |3 -4

By proceeding as explained in Section 18 (Smith’s reduced form), the reader
can obtain the regular unimodular matrices [U] and [V] that enable us to
transform matrix [B] into Smith’s reduced form [A]. We find

o [T ]

R [B] vl [4]
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Let us now calculate [#], ., and [¢],«s. We have

, 0 -1} (47 -4
(20.30) [%]x: = [Ul2x2.L ]2"‘_=1 2| |a1| | 120

(20-31) [5]2x5 = [U]2x2-[N]2x5

X3 Xg4 X5 Uy Uy

[0 1]t 4 2 1 o
Tl o2llsa 1 =1 0 -1
x3 X4 x5 ul uz

[—4 -1 1 0 -1
9 6 0 1 2

where, as we learned in Section 19, [N] represents the matrix of the columns
that do not belong to the basis.

Let us consider the elements! in columns (4)—(8) of line (0) in (20.27) and
substitute §,, = 8, = 6, then %,, = %, =129, then [¢],=[6],=[96012]
in formula (2) of (20.18). The asymptotic program of type (20.18) corre-
sponding to (20.24) will then be

(1) [MIN]f = (33/6) x3+5x4+2xs5+ (1 5/6) u; +4/6u,,
]
X4
(20.32) (2) $129/6f =:§1/6 [9 6 0 1 21}. xs(§ >

uy

| 15|

(3) x3,X4,Xs,U;,Us€N.
Let us take as another example
(1) [MIN] f = (33/6) x3+5x4+2x5 + (1 5/6) u, + 4/6u,,
(20.33) (2) 3/6 = {3/6x3+1/6u; + 2/6u,},

(3) X35 X4, X5, ul’uZEN*
We shall again leave it to the reader to solve this problem, using the
algorithm given in the Appendix. We notice that the problem can be simplified

! For simplification we shall assume J,, = 0. If this were not the case J,, would be replaced
in all the calculations by its absolute value |6,].
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by observing that x, = 0, x5 = 0 for the optimum since x, and x, have non-
negative coefficients in (1) and do not appear in (2). We obtain the following
table:

(20.34)
n (2) (3) (4) (5) (6) (N
(0) £ A (8) z*(g) A (®) u¥(g) A (®) u* ()
1 3 2 1 3 2
(| o 0 0 0 0 0 0
| 1/6 > 12 1 12 0
(3} 2/6 = 32 2 4/6 1 )
1 1 1
(481 3/6 3y 1 35 0 2 1
(5)| /6 = 5% 1 8/6 2
1 1
6| 5/6 > 1% 2 33 2

Column (6) gives the minimal values of the economic function for 6 different
second members of the form {1/6} of (20.33). In particular for {£} = 3/6 we
find A5(3/6) =21/2 and, by calculating the optimal solution as we have
done in the Appendix, u%(3/6) =1, u¥(3/6) =1, x%(3/6) = 0. The optimal
solution of (20.34) can therefore be given as

xx=0, x¥=0, x¥=0,
uf=1, ur=1, f=21/2.
We could also calculate the optimal solutions for the five other possible

second members. As an exercise, the reader can check that the following
results are obtained:

(1) (2) (3 W & ©®&

0 x/6 x x x u
(© f 3 4 5 1 u2

(20.35)

| of o jo]olo]ofo

(2)| 1/6 18 |0 0 0 1 0

(20.36)

(3)| 2/6 4/6 {0 0 0 0 1 .

w| 36| 22 oo o] 1]

(5)| 4/6 8/6 |0 0 0 0 2

@|s/6] 3t jolo|of 1] 2
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We substitute the values given by (20.35) in equations (1), (2), and (3) of
(20.27) that now become

(1) Xy = 23 3/6 - 3[6X3 - ZX4 — X5 — 3/6“1 3

(20.37) (2) x; =45—2x3 — 3x4 — x5 — 4/6u; — 2/6u,,
(3) g =1133/6 —(33/6) x5 —5x,—2x5— (1 5/6)u,
— 4/6u,,

that is, with the values of (20.35),
(20.38) x3=23, xf=44, g=111.

Since x, and x; are nonnegative in (20.38), then (20.35) and (20.38) con-
stitute an optimal solution of (20.24).

4. Necessary Condition for Solving the Linear Problem in Integers
by the Solution of the Asymptotic Problem

Theorem 20.1
The optimal solution of (20.18) is such that
(20.39)* Y Xn, < 01, with &, = det [B].
i=1
Proof

We shall use a general theorem from the theory of graphs for this proof.
For this purpose we shall choose a problem of the shortest path, the solution
of which will allow us to obtain that of the asymptotic problem (20.18).

To begin with, we assume &,/4,, to be equal to the pth element of the vector
§1/6,,([&]m)nx 1} that appears in constraint (2) of (20.18). Let us construct a
graph with §,, vertices (0), (1), ..., (5, — 1). Each of these vertices will be made
to correspond with one of the values 0/3,,, 1/6,,, ..., 0,s— 1/6, Of @ group that
is cyclic for modulo 1 addition. We shall construct an oriented arc between
vertex (i) and another vertex () if there is a p, i € p < n such that

d, 3’"’ _ H _J.
Om Om é Om

Let us apportion a length ¢, (see line (1) of Eq. (20.18)) to this arc. As an
exercise the reader can construct the graph corresponding to the problem
(A1.56) the solution of which is given in the Appendix. This graph is shown
in Fig. 20.3.

The problem of asymptotic programming leads to the same optimal value
for the economic function as that of the shortest path between vertex (0) and

(20.40)

! See Volume 2, pages 256-264. See also [K18] pp. 347-377.
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6,77

Lok

FiG. 20.3

the vertex corresponding to the value {%,,/5,} of the first member of line (2)
of Eq. (20.18). For example in (A1.56) it is a question of finding the shortest
path between vertex (0) and vertex (1) which is the path starting from (0)
and passing through (2) and (1) shown by a heavy line in Fig. 20.3. Its length is

(20.41) f=¢+¢ =4.

It corresponds to the solution x% = 2, x¥ = 0, x% = 0 of program (A1.56).

In a graph where the arcs have nonnegative values, the shortest path
between two vertices does not include a loop, that is to say there are never
more than §,,— 1 arcs in a graph containing J,, vertices. By taking x; = 1 each
time that we employ an arc of length ¢; in the shortest path the theorem is
proved.

Corollary 20.11
Let us use |[x}]| for the length or distance in relation to the origin of the
vector constituting the optimal solution of program (20.18). We have

(20.42) I[x¥]ax1| < Idet[B]| —1.
Proof
The length of [x%] is explicitly expressed as
(20.43) IDx¥dnx ol = LGN + G D* + oo+ (x3)"1Y2.
We have
(20.44) [GR) + N> + oo + GR TV < Xy, + X8, + oo + x;",

since xy, 20, i=1,2,...,n

Hence this corollary is proved in accordance with (20.43) and (20.44) and
Theorem 20.1.
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Theorem 20,1111

A sufficient condition for the optimal solution of [x3] of the asymptotic
problem (20.18) to provide a solution for the problem in integers (20.1) if we
calculate [x5] by line (2) of Eq. (20.5) as a function of [x3] is

(20.45) [Bluxm-[BJmx1 2 lnax-(1det [BII=1).[11mx1,

where [, is the length of the longest of the 7 vectors forming the lines of the
matrix [B], ), .[N]mx» and [1],., is a vector all the elements of which are
equal to 1.

Proof
We expand the following expression:

([B1™'.[ND); - [xx]
(2046) (] D [NTn- D5y = | (CB1 " .IND - [3]
(B~ *.[ND).,. [x}]

For two vectors [p];x, and [¢],x; Schwartz’s inequality can always be
applied:

[P)ixn-La)axs < I[P]I-ILq]l,
and (20.46) becomes

CI(CB1™ [Nl - 1Dx]I
(20.47) ([B] mxm-[N1mxn-[X¥Jnx 1 < | I(CB1™ . LND,l - L]
LI(CBY ™! . [N D)l - DN dmx 1
By using the definition of /,,, and Corollary 20.II, (20.47) becomes

[ Tnax - (Idet [B]| —1)

(20.48) (LB™ D xm-[NImxn- [X8]nx1 S | Imax-(Idet [B]|=1) |.

L max - (1det [B]} — 1) b x 1
= Ingx-(Idet [B]|—1).[1]mx1
If we now assume condition (20.45) of the theorem is satisfied, then
(20.49) ([B”" Dmxm-[bImx1 = Iy - (1det [B]) —1).[1] s
2 ([B] Dmxm: [NTmxn- [XN]nx 15

1 We are indebted to Gomory [K41] for these theorems but, for the purpose of instruction,
their proofs are different here.
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in accordance with (20.48). We then have

[x51mx1 = [B]7'.[6] — [B1™*.[N].[xx] > [0Jmx1>

which proves that |[x3] [x¥]] is a solution of (20.1).

Geometric Interpretation

[B™ Tmxm-[7]mx 1 = lmax (|det[B]| = 1).[1 ]« is the equation of a cone
contained in the cone

((B™ Drmxm-[Vmx1 = [0y -

Theorem 20.IIT shows that a sufficient condition for the solution of the
asymptotic problem to give a solution of the problem in integers is for
[Bl.x1, the second member, to be a vector contained in this cone (see Fig.
20.4). The rays of the cone are the vector columns of the inverse of matrix [ B]
namely ([B]~ 'Y, ([B']™ ') in Fig. 20.4.

The cone is the set of points situated at a geometric distance! of more than
I ..« (|det[B]| —1) of the hyperplanes that delimit the cone [B]~'.[y] > [0].

(det [B])-1)

F1c. 20.4

Example
Let us take problem (19.16) and consider table (19.18). Let us use Theorem
20.1II to discover whether the asymptotic problem guarantees a solution. We

1 The geometric distance to a plane ([B]; !); xm-[¥]mx1 = 0 of a point [b] is [B]; *.[b];
the metric distance is [B]; *.[b)/|[B]i !|.
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have
(20.50)
16/7 . 1/7 2/
[Bl3s-[b1sxs = | 43/7], [Bl3xs-INIsx2 = | =3/7 31/7/,
12/7 -2/7 3/7
det [B]=1,

Inae = max (v (D2 +Q/D2, N (=3D*+G YD, V(=2/1*+3/DP)

= 49377,
that is e = 193.

We do not have 43/7 = (7—1) (19.3) and we cannot guarantee that the
optimum for the asymptotic problem will give a solution of the problem in
integer numbers (19.16).

Section 21. Partition of Linear Programs into Mixed Numbers

1. Solution of Linear Programs by Partition

We shall now explain a method that enables us to reduce the solution of a
problem of very large dimensions to the alternate solution of two smaller
associated problems that we refer to as master and slave. It will also enable us
to explain how other methods such as that of Benders [K29], which is given
later, can transform the solution of such programs into the alternate solution
of an integer and a linear program.

Let us consider the following linear program?:

(1) Z* = max(Z = [c]{xp [¥]an1 + []{xp-[W]px 1),

[x1, [w]
(21.1) @) [alnxn-Dxdwxs + [d]mxp : [w]px € [Blmx1s
(3 [x]eR", [w]eR?,

) [x] = [0], [w] > [0].

Let us take [w] as a parameter with [#] a value of it such that [#] = 0. Let
us assume successively

(21'2) g = [c],lxr[x]nxla

! The notation [MAX] signifies a search for the maximum of the function; that of
maXg., w1 Z indicates the value of that maximum in relation to the n elements of [x] and to
the p elements of [w]; max indicates the maximum in relation to the n elements of [x] only.
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(213) Zl ([w]) = m[a]x (g = [c]'l Xn* [x]nx ll[a]m><n . [x]nx 1

< [b]mxl '"[d]mxp'[w]pXI’ [x]nxl ? [0])’
(21.4) Z([@]) = (€] xp-[B]pxs + Z1([B]).

We can then say

(21.5) z* = max Z(@D)|[#]px1 = [01,x1)-

This provides an expression of recurring functions such that, by substituting
(21.3) in (21.4) and the result in (21.5), we discover the enunciation of program
(21.1) where Z* is the optimum.

Let us observe that (21.4) itself for a given [w] is a linear program in [x].
Its optimal value Z,([#]) is the same as the optimum of its dual program (see
16.121) with precited conditions for this table. We can express the dual
program of (21.3) as

(21.6) Z,([w]) = n:i? (f = [(b1mx1 = [@mx p- 81 x 1) - [V 1|

[a]:lxm'[y]mXI ? [c]nXI: [y]mxl ? [0]):

where we have assumed

(2L.7) f=(Blnx1 = [dlmxp-[0]px ) - [¥Imx1s

to express the economic function of the dual program.
Let us take Y for the set of solutions that satisfy the constraints of the dual
program so that

(21.8) Y = {[V1mx1|[@dnsm:[VImn s 2= [€dax 1> [Vdmna = [0}

Let us further take [V], i =1, 2, ..., T, for the rays of the convex polyhedron
(21.8). Eventually the set of [V;] may be empty. Finally, let us use [¥],
i=1.2...., 8, for the extreme points of the convex polyhedron (21.8).
Eventually the set of [Y;] may be empty, but we shall exclude this case since
the minimum of (21.3) would then be carried into infinity (see 16.121).

Let us consider linear program (21.3). If, for a vector [#], , this program
lacks a solution, then there is a ray [V,],x1, 7€ {1,2, ..., T} of the dual
convex polyhedron (21.8). The direction of this ray is obtained by the dual-
simplex method, as was shown by Theorem 16.III. We have also shown that
the scalar product of the vector slope of the economic function of the dual
program and of the vector [V,] gives a negative number (16.124). For the
vector [w] with which we are concerned, we have

(21.9) ([8)mx1 = [d1mxp-[BDpx 1-[ViImx1 < 0.

The same would be true of any vector [w], that satisfies (21.9) and where
[w] would take the place of [W].
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If the linear program (21.3), that depends on the value of the components of
vector [w], is to have a solution, [w] = [0] must satisfy the following
constraints:

(21.10)

([bJmx1 — [d]mxp'[w]px 1)’ V3mx 120, i=12..,T.

For every vector [w] that satisfies these, if the primal linear program has a
solution that gives an infinite value to g, we obtain, by solving (21.3) (for
example, by the dual-simplex method) a particular extreme point [¥],x,-
In (16.35) we explained how the coordinates of this point could be extracted.

Let us note that the optimum of the dual problem (21.6), if it possesses a
solution, is found in one of the extreme points of the dual convex polyhedron
(21.1). Hence we do not consider the solutions [ y],.x; of (21.8) that are not
extreme points. Therefore we can say, beginning with 21.6,

(21.11)
Z,([w]) = min (f = ([b] - [d].00D xm-[¥ilmxs]i = 1, 2, ..., S).

If we now return to (21.4) and consider a vector [w] that satisfies (21.10),
we can say

(21.12) Z([w]) = Lel .[w] + Z,([w]).
Let us again consider a vector that satisfies (21.10). By introducing a scalar
Z, e R satisfying

n z,
(21.13) Q 2z,

(6] — [d].[w]).[Y4],

(
< ([b] ~ [4].[w]).[ Y],

VA A

S) Z, < ([b] — [d].Twl) .[Y],

we can say that
(21.14) Z,([w]) = max (Z,|Z, < ([b] — [d].[w])".[Y],
' i=12,..,9.

Let there be another scalar wy,e R and let us add [e];«,.[w],x to the
right-hand members of the S inequalities. By considering (21.12) we obtain

(1) wo < [e]'-[w] + ([b] — [d].[w])".[Y1],
(21.15) @) wo < [e]’.[w] + ([b] — [d].[w])'.[Y2],

(S) wo < [e] . [w] + ([b] — [d3.[wly .[¥.].
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And (21.14) becomes
(21.16) [e'].[w] + Z,([w])

= max (wolwo < [e']-LWJ + ([b] - [d].[w]).[Y.]),
i=1,2..,5).

The left member of (21.16) above is no other than Z([w]) (see 21.12). If we
substitute (21.16) in (21.5), it follows that

1) Z* = max (2([w]) = w,) subject to

(21.17) (2 wo < [e]iwp-[Wlpx1 4+ ([blmx1 — [Amxp-[Wpx 1)’
LY dmx1s i=12..S8S,

(3) ([b]mxl - [d]mxp'[w]px l)l‘[I/i]mxl P 0$
i=1,2.. T, from (21.10),
(4) [w]pxl 2 [0]p><1'

If we take [[x*] [w*]] for the optimal solution of program (21.1), then, by
following the successive transformations we have made, [w*] is also the
optimal solution of program (21.17) in which vector [x] does not intervene.

If we knew in advance the list of extreme points [Y], i=1, 2, ..., S, and
that of the rays [V], =1, 2, ..., T, of (21.8), we could express all the con-
straints of (21.17) and solve the program for which the optimum is [w*]. It
would then be necessary only to solve the linear program (21.3) in [x] alone
to obtain the optimal solution [x*].

This procedure is clearly only theoretical since the number of extreme points
and of rays can be very large. Using Benders’s method, given below, we
progressively calculate the extreme points and rays of which we have need.
We shall show that (21.17) can be solved without finding them all.

2. The Case of Programs with Mixed Numbers. Benders’s Method

We shall now follow the procedure of Benders [K29] for the very general
method of decomposition explained above to solve programs with mixed
numbers such, for instance, as

(1) Z* = [n]la[x] (Z = [c],IXn'[x]nxl + [e]IIXp'[w]pX 1)’

(21.18) D [alnxn-[xTax1 + [mxp-[W]pxs < [blmx1s
(3) [x]eR%, [wleN?,
@ [x] = [0], [w] > [0].
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The method of decomposition for linear programs given above applies to
the MIP (21.18), since we used the theory of duality (see Section 16) to trans-
form the linear program (21.3) in [x]. By referring to (21.17) we obtain the
optimal solution of the MIP by solving the following problem in integers’:

(1) Z* = max (Z = w,), subject to

wo, [1]
(2) wo < [elinp-[Wlpns + ([B)mx1 = [d1mxp-[W]px 1)
(21.19) A dmx1s i=12 ..,8,
(3) ([b]mXI - [d]mxp'[w]);;xl'[Vi]mxl > 0’ i = 1’ 2a L] T’
(4) [wleN*,

the optimal solution of which is [w*],«, Z*. For this vector [w*] we solve
the linear program (21.3) in [x], «, only and obtain the optimal solution [x*].
As we have shown [[x*],x;[w*],«1], constitutes the optimal solution of
(21.18). Let S; < S and T, £ T, and let us now consider the following integer
problem that we shall call the master problem.

1) ZM = max (Z = wy),

wo, [w]
(21.20) (2) wo< [e].[w] +([b]—[d].[w])".[Y], i=1L2, ..,5,,
() ([b] —[d].[wD". [V = o, i=12..T,

(4) [wlyx, eN?.

If problem (21.19) has a solution? [w] = [Ww"], Z = ZM, then (21.20) also
has a solution since its constraints form a subset of those of (21.19), and we
have

(21.21) ZM > z*,

Let [wV],x1, ZV be the optimal solution of (21.20). For this [w®] we
solve the linear program (21.3) that we shall call the slave problem to underline
that it is solved after (21.20). Program (21.3) becomes

(21.22) Zl[w(”] = n':a:le (9 = [C]’IXn'[x]nX ll[a]an'[x]nXI
< [b]mXI - [d]mxp'[w(l)]pXIa [X] 2 [O]nx 1)'

! We assume that [e], 6], [d] are matrices with integer elements and that we multiply con-
straints (2) and (3) of (21.19) by an integer such that the coefficients of these constraints will
be integer. This means that w, will also be integer.

2 We use the notation Z to indicate that it is an upper bound of Z*, In the same way Z ([#])
denotes a lower bound of Z* since, if [#] is not an optimal solution of (21,19), we have

z* > 2 ([#)).
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Two cases may appear when we solve the slave program (21.11). We shall
discuss them in succession.

First Case
The slave program (21.22) has no solution for [w®]. We then obtain a ray
Vr,» with T, = Ty +1 that is such (see 21.9) that we have

(21.23) ([Bmx 1 = [T - [0 Tpx 1) - [Viydmxs < 0.

The point [w"] does not therefore satisfy one of the constraints of (21.9)
that we omitted when solving (21.20). Accordingly we add to (21.20) the

constraint
(21.24) ([B)mx1 — [Admxp-[WDpx1 -[Vrdmx1 = 0.

With this added, the point [w’] can no longer be obtained as the solution
of (21.20) since we should have both (21.23) and

(21.25) ([b] — [d].[wV]y . [W2,] = O,
which is a contradiction.

In the same way [Vr,] can no longer be obtained as a ray of (21.8) by solving
(21.3) since we should have as a vector [w®], which satisfies (21.24),

(21.26) ([6] - [d].[w®]y .[Vr,] < O,

since [Vy,] is a ray of (21.8) obtained by solving (21.3) for [w] = [w®],
which is a contradiction.

Second Case

The slave program (21.22) has an optimal solution [x")] for [w]. We
then obtain (see (16.35)) an extreme point [Y5,] of (21.8). Let Z,([w"]) be
the optimal value of the economic function of (21.22). We calculate Z([wV'])
by (21.12) and distinguish two cases (a) and (b):

(21.27) (a) ZYV = 2([w')).

In this case an upper bound of Z* (in accordance with (21.21)) is equal to
a lower bound of Z* (from (21.5)). Hence we have found the optimum of the
MIP (21.18),

@128) [y = B Vhers 07T = [P0,
zZ* = 7N = 2([w™).

(21.29) (b) Z® > 2([w]).

From (21.11) and (21.12), (21.29) can be expressed

(21.30)

Z(l) > [e]’IXp . [w(l)]pxl + ([b]mxl - [d]mXp'[w(l)]pX 1)’~[Ys2]mx1 .
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Hence there is a constraint (2) of (21.19) corresponding to i = S, omitted
from the constraints of (21.20) that is not satisfied by [w(")] since, if it were
satisfied, we should have

(21.31)

ZD = max (wolwo < [e] .[w™] + ([6] = [4]. [w]) . [¥,)),
which contradicts® (21.30). We therefore add to (21.20) the constraint
(21.32) wo < [e].[w] + ([b].[4].[w]) .[Ys,].

The point [w!)] can no longer be obtained as the solution of program (21.20)
to which we have added (21.32), since we should have both (21.30) and (21.31).
Similarly, constraint (2) of (21.19) corresponding to i{=.S, cannot be
added a second time to the constraints of the program when we obtain the
extreme point [Y5,] again for another solution [w™®], since we should have

(21.33) wo < [e]'.[w™] + ([b] — [d].[w]) .[Ys,]

from (21.31), as well as

(21.34) Z =27%® = max w,

greater than Z([w*]) since we assume that we do not have the optimum, with

(21.35) Z([w™]) = [e]:[w™] + ([b] — [d].[w™ ) .[Ys,],
and since we also assume that we again obtain this extreme point when we

solve (21.3) for [#] = [w®]. Relations (21.33)-(21.35) are contradictory.
We have therefore proved the following theorem:

Theorem 21.1 :

All the constraints (2) and (3) of (21.20) obtained with Benders’s method
are distinct.

This theorem enables us to prove another theorem.

Theorem 21.11

The optimal values Z®, Z®, .., Z® of the economic functions of the
various master programs (21.20) for Benders’s method are monotone non-
increasing.

Proof

Every time that we solve a slave program (21.3), if we do not obtain the
optimum, we then add a constraint to (21.20). In accordance with Theorem
21.1 these constraints are distinct. The different problems (21.20) allow of
more and more restrictive constraints and their maximal form a nonincreasing
sequence that can be expressed, if (21.18) has an optimal solution with Z*

! Need we recall that a = max(b | b < ¢) means that g < ¢?
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the maximum of the economic function, as

(21.36) ARI W AC T AL N A

3. A Numerical Example of Benders's Method

In this example we shall use a graphical method to solve the master problem
of Benders’s procedure, since [w],.; € R2. In the next section a more sophis-
ticated algorithm will be employed for its solution (see [K15] for fuller details).

Given the program

€)) Z" =  max (Z=—x,—-3x,—w,—4w,),

X1y X2, W1, W2

(2137) (2) 2x1+x2——w1 +2w2 < -1,
(3) —2x1—2x2+w1—3w2 < —1,
(4) xl’xZER+’ wl,WZEN.

The MIP above has the form of (21.1); the reader can easily verify that the
constraints (21.8) are expressed as

D 2y,-2y, 2 -1,
(21.38) (2 y1—2y, 2 -3,

3) y1,y2.=20.

The convex polyhedron delimited by these constraints is shown in Fig.
21.1. In it two rays [V;] and [V;,] of the convex polyhedron Y appear, which
means that w, and w, may possess values for which program (21.37) has no
solution.

+

%A ]

3

W

1493

)

N
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In Benders’s method we first solve a master problem for which the con-
straints are limited to [w];x, = [0],x; this means that program (21.20) is
reduced to

1) [MAX]Z = Wo,
2 w,,w,eN.

There is an infinitude of optimal solutions for (21.32), one, for example,
being

(21.40) wl = 4, wZ = 10, Z = wO

(21.39)

equal to a value that approaches the infinite. This infinite value for the economic
function is awkward. It is obtained, since there is no bound for w, in (21.39),
because we have not yet found any constraint such as (21.32). Let us observe
that, if in the polyhedron of the constraints of the dual program (21.8) we
have [c],x1 2 [0]sx1, then [Y;1,x1 = [0].x; is an extreme point of (21.8)
We can always transform the MIP (21.1) in such a way as to have

(21.41) ¢ >0, i=1,2,..,n.

Itis sufficient, if ¢, < 0, to assume x} = — x, (the reader will recall our procedure
for the method of direct search).

Therefore, after transforming (21.1) so as to have ¢; 2 0,i=1, 2, ..., n, we
consider the following initial master program:

1) ZDY = max(Z = wy),

w2, [w]
(2142) (2) wo s [e]’l Xp* [w]px 1 + ([b]m% 1= [d]mxp' [w]px 1)’ '[Ome 1
(3) [w]eNP”.
In the example being treated this program becomes

1) ZD = max (Z = wy),

wo, w1, w2
(21.43) Q) wo < —w;—4w,,

B) w,,w,eN.
This program is illustrated in Fig. 21.2a, and has an optimal solution:
(21.44) [w, w,]=[w" w®=[0 o], Z=7ZM=0.

By incorporating this in the slave program (21.22) and after adding the
deviation variables 4, and u;, the latter becomes

(21.45) (1) Z,([00) = max (g=—x,—3x,),

X1y X2, U1, U2

Q) 2x,+Xy+uy, = —1,
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(3) —2x1—2x2+u2 = —1,
(4) X149 X2, Uy, Uy = 0.

Let us now solve the above linear program. The initial table of the type of
(16.8) follows in (21.46) and does not provide a solution, since u, is negative.

)y (@ @) &) &) & (D

o) g l= q= |* |% |9 |°
(21.46) s ol 1 11300 o0ofo0 .

@ju |-i]ofp 2|l dofato

»fu, [-1]o @201 ]|o]n

Table (21.46) has nonnegative elements in the first line and we shall use the
dual-simplex method for the iterations, taking line (3) for the pivot. As an
exercise, the reader may choose suitable pivots for the dual-simplex method
and verify that the following table (21.47) is obtained in two dual operations.

)y (@ B3 W Gy B N

g .'c1 xz ul uz (Pl (Pz
™) g [-9/2}1 0 0 2]5/2 215/2
(21.47)
| = 20 0 1 -1}y -1 |1 =1
2
(2) xl ~3/2 10 1 0 11172 1]1/2

This table does not represent a solution since the value of x, is negative in the
column corresponding to the second member of (21.45), but we cannot find
a negative element among those for line (3) in columns (1)—(7). Using Theorem
16.IT1, we obtain the direction [¥;] of an extreme ray of the convex polyhedron
(21.35) in the columns of the variables ¢, and ¢, in line (1), namely,

(21.48) v =0 1/2].

We can verify from Fig. 21.1 that [V,] is the direction of an extreme ray of
(21.38).

Accordingly, program (21.45) has no solution for [w(!’]. The constraint
of the type of (21.24) is expressed

A (W e

[b] (4] wl [V]
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that is, after expansion,

(21.50) wy—wy = 3.

With this constraint added to the master. program (21.43), the latter
becomes (see (21.20))

1) Z% = max (Z = w,),

wg, W1, 102
< —w, —
(21.51) (2) wo < —wy—4w,,
3 wi—w, =3,
4 w,,w,eN,

This program in integers is shown in Fig. 21.2b.

[w"] w (0] [w"]
(a) (5)

FiG. 21.2

In Fig. 21.2b the optimal solution is
QL) [w, wl=[ wP1=[3 0], Z=2Z%=-3.
After substituting this in the slave program (21.22) the latter becomes
(1) Z([30D) = max (9= —x,—3x)),

X1, X2, 81, 42
(21.53) (2) 2x1 +x,4u, = 2,
(3) —2x1—2x2+u2 = —4’
(4) X145 X2, Uy, uz?O.

The reader can use the same method as we did to obtain table (21.47) and
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will find an optimal solution given by the following table:
() (@) @3) ) (5 &) D

(0) g xl xz ul uz (Pl (Pz
(21.59) |l g [-611 ol o 2§5/2 | 2%s5/2 .

(2) z 2]o 0 ) -1 -1 |-1} =1

@ = [ ofof1]o 112 | 1{1/72

The optimal solution is
(21.55) [xy x,]=[0 2], Z,([3 0]=—-6=g4.

By again using (21.12) we can calculate Z([w®])

3
(21.56) 203 0D =[-1 -4] I: ] +Z,([3 0],
1’ O
[w®]
or again
(21.57) 2(w®) =23 0]) = -9.
Returning to (21.29) we have Z® > 2([w®]) and have not found the
optimum for (21.47). From table (21.54) we obtain the extreme point [¥;] =
[2 5/2] of the convex polyhedron (21.38) in the columns of the artificial
variables ¢, and @, in line (1) of (21.54) (refer to Section 16). We then add to

the master program (21.51) a constraint of the same type as (21.32) in accord-
ance with our theoretical explanation of Benders’s method. We obtain

(21.58)

wl < - 1 - 1 2 wl >’ 2
wo < [-1 —47. + - . . ;
[e]’ [wz] -1 1 =3| |w, 5/2
[w] (5] [4] [wl [Ys]
that, by expansion, becomes

(21.59) wo < —9/2—132w, —1)2w,.

We add (21.59) to (21.51) after multiplying the two members by 2 in order
that w, shall be integer in the optimum for (21.60):

(21.60) Q) Z® = max (Z = wy),

wo, w1, W2
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(2) wo < —w,—4w,,

(3) w,—w, >3,

@ 2wy < -9 —-3w,—w,,
) w,,w,eN.

By using, for instance, the algorithm for all-integer programming the reader
will find that the optimal solution for the master program (21.60) is

(21.61) [w, w,] = [w® w(zs)] =[3 0], Z=2®= -9,

Let us observe that [w®] = [w®)], which means that by solving the slave
problem (21.22) for [w] = [w'®] we obtain the same problem as (21.53) and
that (see what was done to obtain (21.57)) we also have

(21.62) 2([w®) =23 0]) = —9.
We shall then, in accordance with (21.27), have shown that the solution
xt=0,x=2,wf=3,uw=0,2"=2%=2(w®]) = -9,

is an optimal solution of the MIP (21.37).

Section 22. Mixed Programming on a Cone
1. Proof of the Finite Character of the Algorithm
Used for the Selection of Masks!

We shall express this problem, given in Section 15, in a matrical form. It
can be expressed as

0 Z* = max (Z = [0]3xp-[x¥]ux1 + [€]ixp- [W]px1)s

[x1,[w]
(221) (1) [a]an-[x]nxl + [d]nAXp'[w]pXI \<'~ [b]mx 1-’
2 x,=0 or 1, i=12..,n,
(3) w,=0 or 1, i=12 ..,p.

Here [0],, is a vector of which all the components are null; in other words,
x;, i=1,2, ..., n, does not appear in the economic function (see (5.56)) and
we have
(22.2) [elix, =01 1 .. 1]},.

Program (22.1) is one with bivalent variables that can be solved by the
algorithm for direct search given in Section 4, but it is preferable to use a

! See [K15].
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special algorithm that is a modification of Benders’s method. We shall first
of all define a program that differs slightly from (22.1), namely,

(0) Z* = [I’l']la[x] (Z = [0]’1?<n'[x]nxl + [e]’IXp'[w])pXI’

(223) (1) [a]mxn~[x]nxl + [d]mXp'[w]pxl < [b]mx1’
(@ [xIax1 = [0]axy,
3 w,=0 orl, i=12..,p.

This program in mixed numbers permits the same set of solutions as those
of (22.1) but is less constrained owing to (2) being made less restrictive. As a
start, let us prove a theorem that will confirm the finite character of the
algorithm to be explained.

Theorem 22.
The first solution [[x™],,,[wM],«] of program (22.3) obtained by
Benders’s method is optimal.

Proof
Using Benders’s method, the polyhedron of the constraints of the dual
program (see (21.8)) is expressed

(224) [a]:le'[y]mxl ? [C]nXI’ [y]mxl > [O]mxl'
Here, since [¢] = [0], this is,

(1) [a]:lxm'[y]mXI ? [OJnXI’

@ lmx1 = [0Jmxy-

The convex polyhedron defined by the n+m hyperplanes (1) and (2) of (22.5)
only permits one vertex, the point [¥;],,x1 = [0]x1-

Indeed, whichever m hyperplanes are chosen, their intersection will give
[Y,] = [0]. Differently stated, the polyhedron of the constraints of the dual
program is a convex polyhedral cone! (by widening the definition given in
Section 14) and by assuming that there may be more than m hyperplanes
passing through the vertex [¥;] of R™,

This vertex is the sole extreme point of (22.5). Each extreme point of (22.4)
obtained by solving program (21.3) with Benders’s method represents a
solution of {22.3). Since there is only one extreme point the sole solution
[[x] [w]] is optimal.

This theorem applies to other problems of MIP differing from that of the
selection of masks but having the same structure of constraints.

Let us now give the detailed form of the program (22.1) that enables us to

(22.5)

! This explains the name mixed programming on a cone.
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solve the present problem by referring to Section 5. We have

[P

@260  [wa=]|
[g]pxn _an

[ 03—y |
(22.7) 1 i P

_[_M]pxp_
And also

[ [—1Tgmepyx1
(22.8) [Blmx1 = 7

N [0]px 1 mx1
The economic function to be minimized is
(22.9) [MIN] Z= [1]'1x,,.[w],,x‘.

By assuming Z = —Z we obtain a problem of maximization allowing the
same optimal solution, for which the economic function is expressed as

(22.10) [MAX] Z = —[1]{x,. [W]px1-

In (22.7), [-M],«, is a matrix in which all the elements are null except
for those of the diagonal that are equal to (—M); [—1]u-px; iS @ vector
in which all the elements are (—1); [#]ux px1 1S @ matrix in which all the
nonnull elements equal (—1); [g],x, is @ matrix in which all the nonnull
elements equal 1. Here p is equal to the number of cells, that is, nine for the
example in Section 5; (m— p) represents the number of different types of masks
(three in the example), and, finally, M must represent a very large positive
number greater than the number of nonnull variables x;, i=1,2, ..., n, in
the optimal solution, :

Let us now prove the following lemma that is required to prove the finite
character of the algorithm to be used.

Lemma 22.1!

We consider the case of an MIP in which the matrices [a], [d], [b] have
the forms of Eqgs. (22.6)-(22.8).

For any solution [[x],x1[%],x1Je+pyx1 Of (22.3) there is a corresponding
solution [[X],x1[wW],x 1](n+ pyx1 Of Program (22.1) with the same vector [w]
obtained by rounding off the elements of [x] by transformations (1), (2), and
(3) of (22.11).

Proof
Let us take modified values of x;, i= 1,2, ..., n. Then

(22.11) A) % =x if x;=1or0, i=1,2..,n,
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Q %=1 |if O0<x;<1, i=12,..,n,
(3) £i=1 if xi>1, i=1,2,...,n.
Let us give an explicit expression to the constraints of (22.1):
(22.12) (A1) 1 xn-[X]nx1 < —1, i=12,..,(m-p),
(22.13) ([91D1 - [XTnx1 < Muw;, i=12..,p.

Here ([#],) is a vector in which the nonnull elements equal —1 and ([¢];) has
its nonnull elements equal to 1. The form of constraints (22.12) and (22.13)
means that a vector [X], ., obtained from [x],,, which itself satisfies these
constraints through transformations (22.9)-(22.11) also satisfies the same
constraints. Since [X],., is a vector with components of 0 or 1, the vector
[[%]ax 1[w], x 1](n+ py x 1 18 @ solution of the program for the selection of masks.

Algorithm for the Selection of Masks

We solve the MIP (22.3) by Benders’s method, stopping as soon as a
solution [[x™®],,,[w®],x,] is obtained. The optimal solution of (22.1) is
obtained by applying the first three transformations of (22.11).

The finite character of this algorithm is ensured by (1) the finite character
of Benders’s method, (2) Theorem 22.1, and (3) Lemma 22.11.

Before employing this algorithm in an example we shall, however, first
explain how to solve the submaster program in integer numbers using
Benders’s method.

2. Solution of the Subprogram in Integers

The algorithm from which is derived the algorithm for solving the master
program in integers (see (21.20)) with Benders’s method is the dual-simplex
one of Lemke as well as Gomory.

At some stage in the iterations we solve the linear slave program (21.3) for
[w] = [w®] and if the solution is not optimal we add a Benders’s constraint
(21.24) or (21.32) to the integer program, a constraint that is not satisfied by
the last solution [w®], ., that was obtained.

In the simplex table used for solving the integer program (21.20) one or
more dual-simplex iterations are performed until a point [w] has been
obtained that satisfies Benders’s constraints. If all the coordinates of this
point are not integer, we add a Gomory constraint such as (19.15) and perform
dual-simplex iterations, finally adding further Gomory constraints until we
have obtained a point with integer coordinates. Except that we introduce
some of Benders’s constraints as well as those of Gomory, this algorithm is
identical with that described in Section 19.2.

We shall now illustrate the use of this algorithm by a very simple example.
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3. Example

Version 1 Version 2
x x x
Type 1
x x x

x
Type 2
F1G. 22.1

It is obvious that an optimal selection of two different types of mask will
include two masks, and we can therefore take M =2 in equation (22.13)
where we previously gave it a very large value with the object of proving
Lemma 22.1I1. Program (22.3) can thus be expressed as

(1) [MIN]Z = w; +w,+w;+10,,

@) xy+x, 21,

(3 x33+x3, 21,

4 Xz +X11+X12+X51 < 2wy,
(22.19) (5) xy3+x5, < 2w,,

(6) x3; < 2ws,

D wy,wy, wy, wy=0 or 1,

(8 X131, X412, Xa1, X322 2 0.

Lemma 22.11 shows that from a solution x,, X2, X3, X322 of this program
a solution %,,, %,,, X34, X3, can easily be obtained (see transformations
(22.9)-(22.11)).

Let us use Benders’s method to solve the above MIP, taking the algorithm
explained in the last section to solve the master program in integers such as
(21.19).

To begin with, the set of constraints for point [w] is empty and the first
master program in pure integer numbers that we solve (see what we showed
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in (21.42)) is the following:
1) ZM = max (Z = w,),
(22.15) (D) wy € —wy—wy—w3—wy,
3) wy,wy, w3, wy =0 or 1,
the solution of which is obviously
(w7 xq = [W Wi w®P w®P]=[0000] and wi® =0.

Using Benders’s method we now solve the following program, obtained from
(22.14), making [w] = [w¥]:

(22.15a)
¢)) Zl([w(l)]) = max (g =0.x;;+0.x,,+0.x,, +0.x35) ,

X11y X12, X21, ¥22

2 xy1+x2 2

L,
(3) x21tx221,

(4) xy3tx12+%5,+%35 <0,
(5) xy12+x%22 <0,

(6) x;, <0,

(M) x115 X125 X215 X22 € 0.

Let us add deviation variables u,, u;, u3, u,, s = 0 after changing the
direction of inequalities (2) and (3) above. It follows that

(22.16)
O Z, (W) = max (g = 0.x;;+0.x,,+0.%,,;+0.x5,),

X11, %12, ¥21, X22
@) —xyy—xpptu; = -1,

(3) —x31—xp2tu, = -1,

@ xp1+x12+X5+%,+u; =0,
(5) x12+x22+u, =0,

(6) x3;+us =0,

(D x11, %125 X21, X22, Uy, Uz, Uz, Uy, Us = 0.

As in (16.92), we construct the simplex table corresponding to program
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(22.16), observing that the columns of the five deviation variables form a
basis. This table is as follows:

(22.17)

1y (2 () (& (5) (6) () (8) (9 10) (1) (12) (13) (14) (15)

g 741 742 743 uh us Ill xlz 221 1'22 ¢1 (p2 (pa (p“ (05
(0) g o1 0 0 0 0 0 0 0 0 0 0 0 0| o 0
m R I I olo|ofo €] oo |1 1o]o]|ofo
(2) “ -1 |o 0 1 0 0 0 0 0 |-1 |-l 0 1 0 0 0
(3) u, oo 0 0 1 0 0 1 1 1 1 0 0 1 0 0
(%) ", ofo 0 0 0 1 0 0 I 0 I 0 0 0 1 0
) ", ofo 0 0 0 0 I 0 0 0 1 0 0 0 0 1

!

The first line of this table is nonnegative, but it does not correspond to a
solution, since the column indicated by an arrow contains negative elements.
The reader can verify that by performing a dual-simplex iteration with the
circled (— 1) as pivot (see (16.81)), line (1) being the pivoting line, we obtain
the following table:

(22.18)

1) (@ @) W ) 6 (7 & (9 oan 2y (13) (&) 03)

g ul u2 u3 ul& uS xll xu le -‘1222 (pl (pZ (93 (p’-) (pS
ol elefrjofolojofojofojojofojojojolo
e [r]ofr]olofjolofr i ]ofoi-1fofojoyo
@|u, |- oo jofofojofofafaoiafofoyo
oyfu, |t o joprjofojofolafafpofrjoyo
@lu |olojolofjor|ofofr o jojo]oli]o
efu |ofofofofofofrfofogojrfofofo]olfn

f

The above table does not represent a solution since the line indicated by
an arrow is not nonnegative. We could equally take line (2) but will choose
line (3) as pivot. In this line there is no negative element which means, as
shown in Section 16.3, that the program has no solution. In line (3) at the
intersection with columns (11)-(15) we obtain a direction [;] of the extreme
ray of the polyhedron of the constraints of a dual program such as (21.8),
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namely,
(22.19) [Vilixm=[1 0 1 0 Q].

In example (22.16) the matrix [d],x, and the vector [b], ., of program
(22.3) are the following:

"0 0 0 1]

o 0 o0 1

@20 [d=|-2 0 0|, [kl=| O
0 -2 0 0

Lo o -2 | o

The constraint of the integer program such as (21.24) generated by this
iteration will, after replacing (22.19) and (22.20) in (21.24) and after taking
the transpose, be

-1 0 0 0
-1 0 0 0| w,y
(22.21) [T 01 0 0] o= =2 0 Oflw, {=0
Y 0 0 -2 0w,
L 0] 0 0 -2
(4] [d] [w]
It follows that
(22.22) —142w, > 0.

We add constraint (22.22) to the constraints of (22.15). Program (22.15),
corresponding to (21.20) in the theoretical explanation of Section 21, is
expressed

QO Z® = max [Z = w,],

00, W1, W2, W3, W4
(2 wotw+wy+w;+w, <0,
G) 2w, =1,

(22.23)

(4) Wy, Wy, W3, Wy =0or 1.

In the integer program (22.23) let us observe that the variable w, is not
constrained to be nonnegative. Since the coefficients of the constraints are
integer, the form of constraint (2) and of the economic function (1) of (22.22)
ensures that w, will be integer for the optimum. To take account, in Gomory’s
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method for example, of the fact that w, is not constrained to be nonnegative,
it will be sufficient for a solution of (22.22) to consider a simplex table (16.8)
in which the basic variables, with the eventual exception of w,, are non-
negative.

If we add nonnegative deviation variables 7, and 7, to constraints (2) and
(3) of (22.23) the initial simplex table (see 16.8) becomes, after the trans-
formation of (22.23),

M (@ 3 & & &, O (&

(0) 7 w w w w w t t
0 1 2 3 4 1 2
. nl% -
(22‘24) N1z 0 1 1 0 0 0 0 0 0 .
@iz o]0 Olr 1o
(3) tz ~1 0 0)-2 0 0 0 0 1

This table does not correspond to a solution of (22.23) since ¢, < 0. In the
algorithm we are considering the first simplex iteration is always made by
taking as pivot the circled element (1) at the intersection of line (2) and column
(2) so as to bring w, into the basis. This table then becomes

(M @ 3 W (5) (B (1 (8

Vv
4 w w w w w t t
0 1 2 3 4 1 2
v
(2225) m| z 0 1 0 1 1 1 1 1 0 .
(2) W 0 0 ] ] 1 ] ] ] 0
@t |1 ] o]0 @|oflo|o]ojr:

As a result of this initial iteration line (1) is always nonnegative. This will
occur each time that the vector of cost [e],«, of the integer variables [w], .,
is nonpositive in an MIP having the general structure of (21.18). We now
perform a dual-simplex iteration, since ¢, < 0 and line (1) of the table is non-
negative, the reader being left to verify that the circled element (—2) is the
pivot. We obtain

(I (@ 3 W G & ) (©®

v
Z w w w w w t T
0 1 2 3 4 1 2
(22.26) Yy
. M| 2 {=-1/72]11 0 0 1 1 1 1 1/2 .
(2) wo -1/2}10 1 0 1 1 1 1 1/2
(3) wl 1/2]0 0 1 0 0 0 0 -1/2
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The solution given by the column corresponding to the second member of
this table is optimal for (22.23) in which we have replaced constraint (4) by
[Wlax1 = [0]s«,; indeed, as we have already said, w, is not constrained to
be nonnegative. We now add a Gomory cut that the reader can easily calculate,
in the same way as in (19.23), beginning with line (3) of (22.26). After a dual
iteration that the reader is left to perform, this table then becomes

(M (@ @) B &) B () &) 9

E w w w w w t t t
0 1 2 3 4 1 2 3
mi Z -1 0 1 1 1 1 1 0 2
22.27) .
(2) v, -1]o 1 0 1 1 1 1 0 2
3) v 1]o0 0 1 0 0 0 0 0 |-1
(%) tz 1] o0 0 0 0 0 0 0 1 {-2

The above table corresponds to an optimal solution, of (22.23), since line
(1) is nonnegative and the column corresponding to the second member is
composed of nonnegative integers, apart from w, that need not be nonnegative.
This optimal solution is

(2228) w1=1, w2=0, w3=0, w4=0, Z(2)=w0=—1.

The reader will continue the algorithm by solving the slave program (22.14),
replacing w,, w5, w;, w, by the values given by (22.28). The optimal solution
of this program is

(22.29) X11 = 1, X2 = 1, X12 = Os X22 = 0.

This solution has integer values of 0 or 1 and therefore constitutes an optimal
solution of the problem of the selection of masks without the need to apply
Lemma 22.I1. Hence we choose version 1 of both the first and second type of
mask, giving a total of (Z = —Z® = 1) defects.

Observation

The above problem represents particular structures of matrices [d], [al,
and [b] of program (22.1). In this case, Lemma 22.I1 shows how, from an
optimal solution [[x] [w]] of program (22.3) that is more easily solved, we
can obtain an optimal solution [[¥] [w]] of (22.1). Many other structures for
these matrices exist for which lemmas of the type of Lemma 22.11 are avail-
able, a fact justifying the interest taken in these methods for solving certain
combinatorial problems. The problem given above is only one of those to
which the theories explained in this section can be applied.
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Section 23. Trubin’s Algorithm

1. Introduction

In this section we shall explain the algorithm of V. A. Trubin [K72] that
can be applied to certain problems of programming in bivalent variables.
This little known algorithm is very neat since it enables us, for example, to
solve the problem of the assignment of air crews given in Section 8 in cases
where the constraints have the form [a].[x] = [1] with only a slight modifica-
tion of a standard simplex algorithm. It is given as a supplement because its
proof (though not, it should be noted, its use) requires a knowledge of com-
binatorics that lies outside the scope of this book. We shall, however, in due
course refer the reader to more advanced works for these proofs. In any
event, the understanding of this algorithm requires a grasp of various proper-
ties already explained in this part of the work.

2. Fundamental Theorem
Given the system of relations
(23.1) (@)mxn-[X]ax1 = [1mx1>
where [1] is a vector m x 1 with all its elements equal to 1,
(23.2) x;=0o0r1, i=12,..,n.

Matrix [a] is such that all its elements are O or 1. Let us observe that certain
assignment problems such as that in Section 8 have constraints of the form of
(23.1) and (23.2). Let g;; represent the element of line i and column j in [a].

Lemma 23.1
If there are two solutions represented by [x] and [x‘®] for (23.1) and
(23.2), such that

(23‘3) [x(l)]nx 1 + [x(2)],|x 1 = [l]nx 1»
then the matrix [a],, «, is unimodular (refer to the definition in Section 18).
Proof

Let us take x{!) for the ith component of the vector [x’] and x{® for that
of [x™®].

We can divide the set § of the columns of [a] into two sets S§; and S,. A
column [a]’ belongs to S, if x{V =1 and to S, if x{¥ = 1.

In accordance with (23.2) and (23.3) a column of [a] must belong to one or
other of the subsets §; or S,. Let us then say

(23.4) [x®] = $.[x] + 4.[x1],

a point of which the coordinates are a convex combination of those of [x{!)]
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and [x®]. Hence this point belongs to the convex polyhedron defined by
(23.1) and we have

(23.5) [al.[x®] = [1].
That is, by substituting (23.4) in (23.5),

(236) %'[a]mxn'[x(l)]nxl +%'[a]mxn'[x(2)]nxl = [l]mxl'

Or again, in accordance with (23.3),

(23.7) [@dmxn- ([xP] + [xPDpucs = Rlmx1s

where [2] is a vector in which all the components are equal to 2.
By substituting (23.3) in {23.7) we obtain

(23‘8) [a]mxn'[l]nx 1= [z]mxl’ that iS Z aij = 29
Jjx1

i=12,..,m.

In other words, since matrix [a] is formed by elements equal to 0 or 1, each
line contains exactly two elements equal to 1.

From this fact and because the set of columns can be divided into two
disjoint subsets, in the same way that if two columns have a 1 in the same line
they are in two different sets §; and S,, matrix [4] is unimodular. This is
proved by Heller-Tompkins’s’ theorem. The above lemma would be equally
true if, instead of being composed only of 1, there were 0’s in the right member
of (23.1).

Lemma 23.11

Let there be two points with integer coordinates [x)] # [x®], (that is to
say that they differ by at least one component). These points are both defined
by the intersection of k of the m+2n hyperplanes corresponding to the three
following constraints, There may be more than two hyperplanes passing
through these two points.

Let
(23.9) [almxn-[x]ax1 = [(Mmx1>
(23.10) [xJax1 = [OJnx1s
(23.11) [xIax1 < [1ax1.

We necessarily have k = m. If k = m, condition (23.2) is satisfied and matrix
[a] is unimodular. This case is of no consequence and from now on we shall
take k > m.

Let us assume that it is not possible to find £+ 1 hyperplanes with the three

! See the article by Heller and Tompkins, in “Linear Inequalities and Related Systems
(Kuhn and Tucker, eds.), Princeton Univ. Press, Princeton, New Jersey, 1956.
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given constraints passing through these points (we must have k£ > m, since the
planes (23.9) pass there and we exclude & = m). Then, all the vertices of the
polyhedron defined by these constraints and situated at the intersection of the
k hyperplanes of the constraints that pass through the two points are points
with integer coordinates. Therefore, a fortiori, they satisfy (23.1) and (23.2).

Proof

Let i, a=1,2, ..., k—m be the indices of the components of [x'V] and
[x‘®] that are identical, these points being at the intersection of X —m hyper-
planes such as (23.10) and (23.11) and m hyperplanes (23.9), that is, in all, k
hyperplanes. We can then say
(23.12) xD % xP, a=k—m+1,..,n.
All the vertices [x] that satisfy the three constraints and are situated on the
same k hyperplanes as the two points must be such that

(23.13) x, = x = x2, a=1,2 ..., k-m.
We can also say that relation (23.12) is expressed as
(23.14) D+ xP =1, a=k-m+1,..,n.

Let us return to Eq. (23.1) and consider the points that satisfy (23.13):
(23.15) [[a]ik'm“ [a]i"]mX(n—-m+k)- (% s 10 o0 Xi] (nem iy x 1

=[1],x1— [[a]h"'[a]ik-m]mx(k—m)' [x;,5ee ,x:,‘_m] (k—-m)x1-

The second member of (23.15) is a constant for all points that satisfy (23.1)
and (23.13) that are at the intersection of k of the 2n+ m hyperplanes defining
the polyhedron of the constraints. The above equation provides two solutions:
[x{"] and [x{?], « = k—m+1, ..., n, by hypothesis and such that

(23.16) xP+xP =1, a«=k-—m+1,..,n,
in accordance with (23.14). By using Lemma 23.1, the matrix

(23'17) [[a]f:;'il+‘ [a])i::;'i“*z ree [a]i’.‘x 1]mx(n—m+k)

is unimodular. All the extreme points [x; .., ..., ;] of the polyhedron
defined by Eq. (23.15) and 0< x; <1, a =k—m+1, ...,n, are therefore
integer, since the second member is integer. As all these points are situated
on the same k hyperplanes of the polyhedron of constraints (23.1) and (23.2),
the lemma is proved.

Let us give an interpretation of this lemma that will make it easy for us to
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prove the following fundamental theorem. We have just proved that all the
vertices-of the polyhedron defined by

[a]mxn‘[x]nxl = [l]mxl’
[x] > [0],
[x] < [11,

= Xi> a=1,2,..,k—m,

(23.18)

have integer coordinates. Let us observe that the initial polyhedron defined
by (23.9)-(23.11) contains the restricted polyhedron defined above, in par-
ticular its vertices, which all possess integer coordinates, and its edges. Hence
there is always a vertex of the initia]l polyhedron with integer coordinates
adjacent to a vertex [x(*)] with integer coordinates of this initial polyhedron.
Also, if [x®] is a vertex with integer coordinates there is always a path between
adjacent points from [x"] to [x®].

Theorem 23.11l (Fundamental Theorem)
Let us take the program with bivalent values defined by

0) [MAX]g = [c]'.[x],
(23.19) (1) [alaxn-[¥Jax1 = (Mmx1s
2 x;=0 or 1, i=12,..,n,

and let the polyhedron of the constraints be

(1) [a].[x] =T[1],

If [x™)] is a nonoptimal solution of this program then there is a vertex with
integer coordinates of (23.20) adjacent to [x(1] that gives a better solution.

Proof

This is directly derived from Lemma 22.1, which shows that there is always
at least one vertex with integer coordinates adjacent to [x{V]. If [x"’] is not
the optimal solution this is shown by a better value of the economic function
for one of the adjacent vertices with integer coordinates. And there is always
a path between adjacent points from [x(*)] to the optimal solution [£].

We shall now prove a theorem that shows the difficulty of obtaining an
optimal solution with Trubin’s algorithm, which will then be explained. A
solution of a linear program in R"is called degenerate if it is the intersection of
more than two hyperplanes delimiting the polyhedron of the constraints.
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Theorem 23.IV

Every solution with integer values of the program in bivalent variables
(23.19) is degenerate. Every solution is, in effect, situated at the intersection
of m+n hyperplanes of the polyhedron of the constraints (23.20).

Proof

There are m+2n constraints given by (23.20). Every vertex with integer
coordinates equal to 0 or | of this polyhedron satisfies the m constraints (1)
and the » constraints (2), making a total of m+#. Q.E.D.

In the simplex method a basis is associated with » hyperplanes, the inter-
section of which provides a basic solution. This is the equivalent of saying
that for a vertex with integer coordinates of a Trubin polyhedron such as
(23.20) there are several bases and finally a large number, since each solution
is degenerate. Theorem 23.1II shows that if a solution [x{*)] is not optimal
there is a better adjacent vertex with integer coordinates, but there is no
guarantee that this vertex is adjacent in the basis defining [x(*)] and that this
will not usually be the case. This will serve to explain Trubin’s algorithm that
follows.

2. Trubin's Algorithm
This solves a program such as (23.17) by a method derived from the simplex.

(a) Obtain a solution [x{1] of (23.19), for which it is sufficient to consider
the program:

(0) [MAX]g = [c]'.[x] + [M].[¢],

(23.21) (1) [almxn-[x]ax1 + (Mmxm-[@1mx1 = [Hmx1s
(2 x;,=0or1, j=1..,n,

(23.22) @;=0or 1, i=1,..,m.

This program gives the integer solution x{ =0, j=1,...,n and ¢{") =1,
i=1,...,m If Mis a very large cost this will not be an optimal solution. The
program defined above provides the same optimal solution as (23.19), namely,
[x] = [£] and [¢] = [0].

(b) A solution [x‘V] of (23.21) is obtained in a simplex table. Theorem
23.111 shows that if it is not optimal there is a better solution adjacent to it.
In accordance with Theorem 23.IV the solution [x‘V] is degenerate. To
consider all the points adjacent to it we should consider all the bases attached
to it, an extensive task that the simplex method does not perform. Indeed, a
simplex table such as (16.8) only enables us to consider the »n points in the
basis associated with [x{1)] of the table. In practice we are satisfied with the
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basis of the simplex method and seek an adjacent integer point in this basis
that improves the economic function. If one does not exist we stop. Hence
we shall have a local minimum (in relation to the basis of the simplex table

for this last stage). .
We shall now give an instructional example to illustrate the use of Trubin’s

algorithm.

Example
Given the program in bivalent variables

(0) [MAX] g = 4x1+3x2+ZX3,
(1) x1+x2 < 1,

(2323) (2) x2+x3 S 19

3) x;+x3 <1,

(4) 0<x1,x2,x3<19

(5) x1,%x3,x3eN.

This program! is shown in Fig. 23.1 and we can see that the vertices with

Fia. 23.1

! We can easily reproduce the case of program (23.1) and (23.2) by adding deviation
variables 4, i = 1, 2, 3, such that 0 < x; < 1 to constraints (1), (2), and (3) of (23.23).
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integer coordinates marked by heavy dots have at least one adjacent vertex
with integer coordinates. If constraint (5) of (23.23) were replaced by

(23.24) Xy, X5, X3 €RY,

the optimum would be point A(x,=1/2,x, =1/2,x3 =1/2,g=41/2).
Starting from point D, Trubin’s algorithm, that is a modification of an
ordinary simplex, does not lead to 4 (which is not integer) but to C.

At this point there is no adjacent point with integer coordinates that im-
proves the value of the economic function, and the algorithm is stopped. The
optimal solution of (23.23) is

(23.25) 2, =1, 2, =0, 2, =0;

«»
]
s



CONCLUSION

This third volume has dealt with a particularly difficult subject and we
hope that the majority of our readers will have grasped the material pro-
pounded without too great an effort, for the subject is well worth the labor.
Problems of a combinatorial or diophantine character, that is to say, those that
have integer solutions, occur in most planning and operations research
studies of the present day. We now possess the means to attack and to solve
these problems, and it is only to be hoped that engineers are ready to make
use of them.

We have made a very important effort in instruction, greater even than in
the previous volumes. To be sure, the mathematical theory of the second part
is at times difficult to grasp, but thanks to a number of examples the path
should have been relatively easy. Some readers of the first two volumes, both
in France and in the world generally, since these works have been translated
into numerous languages, have told us that the second volume was less easy
to understand than the first for those without the necessary mathematical
knowledge. This is true and is to some extent accentuated in the case of the
present volume. Volume 1 constituted a very elementary introduction,
Volume 2 introduced more complicated methods and models that were more
specifically based on the new mathematics, and so on. But we believe that the
reader of the first two volumes who has improved his knowledge in the interval
may reap advantage from the present one.

Volume 4 is now in course of preparation and our small team has been
augmented for it by D. Coster, Engineer 1. M.A.G., who has been given the

361
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responsibility for a number of important chapters. We have decided that this
volume will deal with nonlinear programming, a difficult subject for which
educational literature is not extensive despite the presence of nonlinear
problems in a great many economic phenomena. As in the first three volumes,
the first part will present problems in their actual context, while the second
part will be devoted to the difficulties, the proofs and the more complicated
calculations.

If possible we shall not end with Volume 4: there are so many new models
and attractive methods that make their appearance every year in operations
research.

A few years ago analysts, economists and informaticians were beginning to
say, ‘“Operations research is out of date.” In fact, it has never ceased to spread
under various guises and has remained the scientific basis for management
and administration. Informatics has not replaced operations research for
they are not competitors but constitute two different branches of research
and its application that should work together; from their combination
scientific management is born. Now that informatics has reached the stage of
systems, the arrangement of its methods and their utilization has become a
whole group of problems that can most frequently be solved by the most
advanced methods of operations research. Management, administration,
informatics, piloting of systems, regulation, bionics, and so forth, are domains
of cybernetics in an even wider sense than that envisaged by Norbert Wiener.
The use of mathematics is no passing fashion but the very essence of science.
Indeed, some very interesting efforts are being made to reconcile formal
reasoning with indistinct concepts from which there is derived the growing
success of the fuzzy sets theory. This has been used the better to express and
analyze human behavior, so difficult to specify and to measure, and also to
produce a fuller understanding of thought.

The critics of mathematics and especially of the new mathematics cannot
properly have understood them. Why else should they oppose the precision
and the ever increasing generalization and the economy of thought? To be
sure we must not exaggerate and regard mathematics as a language that would
have charmed the Sphinx, but should be ready to make use of its more precise
symbolism and its capacity to avoid omissions and redundancies.

It is the power of abstraction that constitutes the superiority of man over
the animal and this is derived from language and communication. A word
is already a mathematical formula and a phrase is a model. The progress of
thought depends on the quality of these formulas and these models. Now that
conversation has been extended from man with man to that of man with the
machine, thereby increasing the possibilities of communication, operations
research will multiply its means and its results. It is needed for our progress
toward a better moral and material existence.



Appendix. OPERATIONS ON MODULO 1 EQUATIONS

1. Modulo 1 Addition of Two Real Numbers

Definition
The modulo 1 addition of two real numbers a and b, expressed as a+ ;b
is the remainder of the division by 1 of their common addition a+b.

Examples

(A1.1) 3.57 +,1.86 = 0.43,
(A1.2) (—3.88) +,5.64 = 0.76,
(AL1.3) (—3.52) +,(-2.31) = 0.17,
(A14) (—6.15)+,6 = 0.85.

Notation

We give the notation {a) to the largest integer less than or equal to a real
number a. The noninteger part a— {a) will be indicated by {aj.

Thus

(AL.5) fa} = a —<a).
For a matrix
(AL6)  [al,n, = |92t %22 ;0 G2

we shall use the notation

[ fa;.3 {412 ... fag.
(AL7) §[a],,,x,,§=[???.‘?..%‘.’??%.:Z'..%‘.1?".; .
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Examples
(A18) (1) a =328, a) = 3, fa} = a—<(a) = 028,
(A19) (2) a= -3.63, {a) = —4, fa} =a—<a) =037,
(A1.10) (3 a= -2, {a) = -2, fa} =a—<a) =0.
(Al1.11) (49 [4]1=[53 -18 -2 0.1],
(Al1.12) A =[5 -2 -2 0],
(A1.13) {[4]1; =[03 02 0 0.1].
031 -2.353
(AL14)  (5) [B]= [ }
8.60 —-0,12
0 -3
(A1.15) Bl = { ]
8§ -1
031 047
(A1.16) {[Bl} = -
0.60 0.88
Property 1

If the real number a is an integer, we have {a} = 0.
This is obvious from the definition of the notation {aj.

(A1.17) fa+b} = ib} if a is an integer.
Property 2
(A1.18) fiafl = {a}
since the largest integer less than or equal to {a} = 0.
Property 3
(A1.19) §—a} = 1—{a}.
Indeed
(A1.20) —a =<{—a)+ {—a}
and also
(A1.21) —a = —<{a)— {a}.
Then
(A1.22) {(=a)=—{(a)-—-1 if a is a noninteger
(for instance, (—2,6> =—3=—-2,6)—1).
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Thus, by comparing (A1.20) and (A1.21) and by then taking account of
(A1.22), we can say

(AL23)  (—a)+ j—a} = —<a) — {a}
={—a)+1- {a}.

By eliminating { —a) in (A1.23) we find (A1.19).
Property 4
(Al.24) a+,b= {a+b}.
Indeed
(A1.25) a+b = <a+b) + f{a+b}.

Since (a+b) is an integer its remainder after division by 1 is O, which means
that the remainder of the division of @+ b is the equivalent of the remainder
of {a+ b}, since 0 < {a+b} < 1.

Property 5
(A1.26) a+,b= {{a} + {bif.
From Property 4 we have
a+;b = fa+b}=}<ad+ {a} + <b) + {bii.

But from Property 1, since {a+b) is an integer, the remainder is {a}+ {b}}.

Property 6

(A1.27) fad +, b} =a+,b.
From Property 4 we have

(A1.28) fa3 +, b} = t{a} + {bii,

by making a = {a} and b = {b}. Hence, in accordance with Property 5, we have
(A1.29) fa}+, {b} = {{a}+ {b}}{=a+,b.
We can sum up Properties 4-6 as
(A130)  a+,b= fa+b} = fia} + {b}} = ja}+, b}
Property 7
(A1.31) a+.b={fad+, {b}.
In fact, from (A1.30) we have

(AL32)  fa} +, (b3} = {ia+bi},

which is equal to {a+ b} in accordance with Property 2 and is also equal to
a+ b from (A1.30).
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To sum up,

(A1.33) a+,b= {a+b}=}{a} + {b}} = fa} +, {b}

Property 8
It can easily be proved, as the reader can do if he wishes, that if the real
number b is an integer, we have

(Al1.34) ta.b} = {a}.b} .

2. Associativity of Modulo 1 Addition
To prove
(A1.35) (a+1b)+16=a+1(b+lc),
it is sufficient to make use of the definition of modulo 1 addition.
3. Abelian Group of the Noninteger and Zero Parts

of Real Numbers for Modulo 1 Addition

To show that these parts form an abelian group for modulo 1 addition,
for any three noninteger parts {aj, (b}, and {c}, we must prove that we can
verify associativity, that a unit exists, that every noninteger part has an
inverse, and, finally, that there is commutativity.

The associativity

(A1.36) (fa} +, {b3) +, fc} = §a§+1(§b§+1§c§),

is verified for these three noninteger parts since this property is true for the
modulo 1 addition of every real number. At the same time we make the simple
check that there is commutativity:

(A1.37) taf +, {b} = {b} +, {a} .
The unit element is {0} = 0; indeed,
(A1.38) faj+, 0 = }ia
H

%
ai}

+ 0% from Property 4
= {a}  from Property 2.
Hence we have

(A1.39) fa} +,0 = {a,} =0+, {a,},

in accordance with the commutativity, Thus O is indeed the unit.
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The inverse of {a} is { —aj. Indeed,

(A1.40) faj +, {—a} = §§a§ + §—a§§ from Property 4

{{a}+1— {a}} from Property3
= {1 = 0  from Property 1.

Hence, by taking the commutativity into account, we have

(Al.41) fa} +, {—a} = {—a} +, {a} = 0.

4. Modulo 1 Addition of Matrices

This is defined in the same way as this operation for the real numbers that
form the elements of these matrices. Thus

(A142)  [12 13 —04]+,[06 02 1]=[08 0.5 0.],
12 13 24 1 06 03
(A1.43) +, = .
—04 06 0 23 06 09

5. Solution of Modulo 1 Equations
Let us consider the following equation where x, a, be R:
(Al.44) {x+ai= {b} .
From Property 1, the general solution of (A1.44) is
(A1.45) =b—a+k, with ke Z.

For example, the equation

(Al.46) fx+1.2% = {4.81,

has for its solutions x = 0.6 +k, that is also

(A1.47) x=..,—14, —-04, 0.6, 1.6, 2.6, ....

Solution of Optimization Problems in Modulo 1 Equations

We shall now give an algorithm for dynamic programming that enables us
to solve such problems as the asymptotic problem (see (20.18)) with the
following structure

(1) [MIN]f =2¢;%x; +C3Xy+ oo + CyXps
_ %éi
5 b
with

Ci=1,..,na,i=1,...,n;x;,i=1,...,n;8eN;AeZand a;<d,i=1,...,n.

(A1.48) . . .
2) x4+ 2x 4. +2x,
¥)) 5 Lt 5
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Let A,_;(£) be the optimal value of the economic function of the following
program:
1) 4,-,) = [MIN]f: €1Xy+ oo+ Cpo1Xp-1s
(A1.49)

@) %x1+...+a"7_l-x,,-l=%§§, x,eN,

In accordance with (A1.45), line (2) of Eq. (A1.48) can be expressed for any
second member {£}

(A1.50) x4 +Zmiy =Ty ik, keZ.
o o o
That is, by using Property 1,

a a
Al.51 Lo, 4+ 2,
( ) 5 1 5 1

= ié—%xn

Let us use A, (£) for the optimal value of the economic function of program
(A1.48) in which b/ in the second member of line (2) has been replaced by ¢.

Then by using Bellman’s' condition for optimality as well as (A1.51), the
program can be expressed

b _ b a,
(Al.51a) 1 4, (5) = [I\g"IN] < CoXy+ Apey (5 - -g x,,)),

(2) x,eN.

We can easily give a general form to this relation of recurrence, and we have

(ALS52)  A,(&) = [MIN] &,x, + 4,_; (5 —952 x,,), 1<p<n.

Let us observe that relation (A1.52) is identical except for a few minor
details with the one established for the problem given on page 86 of Volume 2
and also on page 86 of the present volume. We shall now determine the set of
the values of ¢ for which (A1.52) has to be evaluated. In the first place, £ must
be of the form

(A1:53) ¢ =a/d, cel,

in order that line (2) of Eq. (A1.49) may have a solution. Further, {£ =
{/8} can only take & values O, 1/3, 2/3, ..., (6—1)/8; we shall also take ¢

! See Volume 2, multistage optimization, page 331.
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having the form

(A1,54) ¢ =ajd, «a=01,2,..,6-1,
and '

(A1.55) x,=01,2,..,6—1.

Example
Let us take the optimization problem:

(1) [MIN]f = 5x,+2x,+7xs,
Q) §1/3x; +2/3x, +2/3x:} = §1/3} .

Using the notation x*(&) for the optimal solution of (A1.52), we successively
calculate A, (€), A, (&), A3(1/3) and group the calculations in tabular form:

(A1.56)

(A1.57)
¢)) (2) (3 (4) (5) (8) N
(0] ¢ A | exe)y | A @ | 2*E) | A @ | x*E
1 1 2 2 3 3
1) 0 0 0 0 0 0 0
(2) 1/3 5 1 4 2 4 0
(3) 2/3 10 2 2 | 2 0

For example, in table (A1.57) we have
(A1.58) A,(0) = MIN(A4,(0—-2/3.0) + 2.0, 4,(0-2/3.1) + 2.1,
A,(0-2/3.2) +2.2).
That is, by substituting the values of A,(¢) taken from column (2) of (A1.57),
(A1.59) 4,00 =0 for x,(0) = 0.

Lastly we obtain A4 (1/3) = 4 as the minimal value of the economic function
of (A1.56) for x%(1/3). For x;=0 we have A4,(1/3—2/3.0)=4 for
x3(1/3)=2 With x,=2 we have A4,(1/3—2/3.0—2/3.2) =A,(—3/3) =
A,(0/3) = 0 for x§(0/3) = 0.

Hence the optimal solution is

(A1.60) x, =0, x,=2, x3=.0, [f=4.

Let us observe that table (A1.57) will also give us the solution of problem
(A1.56) for other values {0/3} and §{2/3} of the second member of line (2) of
Eq. (A1.56).
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INDEX

Abelian group
defined, 296
of Gomory cuts, 306-313
of nonintegerand zero parts of realnum-

bers for modulo 1 addition, 366-367

Abelian property, 296
Affinity, defined, 195
Agricultural problem, as integer-value
problem, 53
Algebraic modulus, concept of, 294-301
Algorithm (s)
defined, 131-132
first generation of, 87
for integer or mixed programs, 131 #.
All-integer constraint, 314-317
All-integer programming, 313-318
Alternative, in binary algebra, 10
Arborescence, concept of, 31
Arborescent method, 180-184
in integer-value programs, 69-78
utilization difficulties in, 75-78
Arithmetically equivalent matrix, 265
Assignment problem, 8-9
Associativity, 295
of modulo 1 addition, 366
Asymmetry, in binary relation, 144
Asymptotic problem, and linear problem
solving in integers, 328-332
Asymptotic program, defined, 320
Asymptotic programming in integers,
319-332

B

Balas’s enumeration procedure, 4042
Benders’s constraint, 347

Benders’s method, 124

numerical example of, 337-344
Bezout’s theorem, 279
Binary enumeration, 12-14
Binary relation

see also Ordered set

asymmetry in, 144

lower and upper bounds in, 151

manual and maximal elementsin, 148-149

minorant and majorant in, 150
nonsymmetry in, 143-144
reflexive, 141-142

relation of equivalence in, 145
relation of nonstrict order in, 145
relation of partial order in, 147
relation of strict order in, 145-146
relation of total order in, 146

smallest and largest elements in, 149-150

symmetry in, 143
transitivity in, 142
Binary states, in Boolean algebra, 10-12
Binary variable, 15 .
Bivalent variable
algorithm for solving problems with,
37-40
operations with, 14-15
Boolean binary functions, 173
Boolean algebra, 10-26
mathematical properties of, 19-22,
132-141, 164-174
Boolean determinants, 171-173
Boolean equations
solutions for, 175-193
systems of, 177-178
Boolean functions, 15-19
Boolean half-lattice, 160
Boolean inequalities, 164-165, 178-180
solutions for, 175-193
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Boolean lattice, 36, 160,

Boolean matrices, 165-171

Boolean sum of matrices, 166

Boolean variable, 15

“Branch and bound” method, 57, 69,75
see also Arborescent method

C

Canonical conjunctive form, 140, 173
Canonical disjunctive form, 139, 173
Chain, in ordered set, 152-153
Closure law, 295
Combinatorial analysis, 27
Commercial airline, crew assignment
problem for, 102-117
Commutativity, 296
Commutative group, 298
Complementation, of primal-dual
solutions, 234-235
Complemented lattice, 159
Composite subtraction matrix, 264
Computer aided design, algorithms
used in, 117
Concave function, 213-218
optimum of in convex domain, 220-222
relationship to convex function, 222-224
Cone, mixed programming on, 344-354
Congruence, in Gomory’s method, 285
Convergence, in Dantzig-Manne method,
248-252
Convex combination of points, 212-213
Convex function, 213-218
optimum of in convex domain, 218-220
relationship with concave function,
222-224
Convex polyhedral cone, 200
nondegenerate, 204-205
Convex polyhedron, 199-201
edge of, 204
Convex subsets, 194-200
extreme points of, 207-210
Covering a simple graph, method of, 115
Crew-assignment problem, on commercial
airline, 102-117
Cut method
in integer-value programs, 79-82
utilization difficulties in, 83
Cyclic group, 299

INDEX

D

Dantzig-Manne constraint, 247, 258, 285
Dantzig-Manne programming method,
246-260
Degenerate solution, of linear program, 357
De Morgan’s theorem, 21
Deviation vector, 205
Diagonalization, in matrix calculation, 266
Diophantine equations, 260
Direct search, solving bivalent—variable
problems by, 37-40
Disjunctive condition or constraints, 97-99
Duality
fundamental theorem of, 234
in ordered set, 155
Dual-simplex method, 235
Dual solutions, vs. primal, 224-235
Dynamic programming, asymptotic
problem solution by, 322-323

E

Edge, defined, 204
Enumeration

finding solutions by, 26-30

without omission or redundancy, 30-31
Enumeration procedure of Balas, 40-42
Equivalence, in Gomory’s method, 285
Extreme rays, 211

F

Factoring location problem, 86-87
Families of solutions method, 185-187
Filtering constraint, 38
Free distributive lattices with n gener-
ators, 157
see also Lattice

G

Gauss—Jordan’s pivoting method, 210-212
Global maximum concept, 214
Global minimum concept, 214
Gomory cuts, 80-82, 287, 289-293, 301-305
abelian groups of, 306-313
cyclic, 323
number of elements in, 308"



INDEX

Gomory’s method, for integer programs,
284-318
Groups of cuts, method of, 116
Groupoid set, defined, 296
Groups
abelian, see Abelian group
properties of, 294-301

H

Half-hyper lines, 204

Hamiltonian circuit, 58--60

Hamming’s distance, 31-34, 37, 44
Hanging vertex, 31

Hasse’s diagram, 155-156

Heuristic, defined, 131

Heuristic procedure, defined, 64
Heuristics, for integer and mixed programs,

1314.

I

Infeasibility test, in Lemke-Spielberg
procedure, 46
Inf half-lattice, 153
see also Lattice
Integer and mixed values, see Integer
programs ; Integer-value problems
Integer matrix, Smith’s reduced form for,
277-284
Integer programs
see also Integer-value problems
arborescent methods of solving, 69-78
Gomory’s method for, 284-318
mathematical properties of, 193-213
practical cases in, 101-128
solving of by enumeration, 26-52
Integers
asymptotic programming in, 319-332
normal programming with, 193-213
solving linear equations with, 260-284
Integer solutions
characteristics related to, 2-5
problems with, 2-9
Integer-value problems
see also Integer programs
linear programming in solution of, 25-26
more complicated examples of, 52-69

377

Integrated circuit, selecting masks in,
66-69

Intersection, of subsets, 133-134

Inverse law, 296

K

Knapsack problem, 7, 323

L

Largest element, 149
Latin multiplication, 104
Lattice
Boolean, 160
complemented, 159
free distributive with n generators, 157
level of an element of, 37
lexicographical vertical, 162-164
as trellis, 154
Lattice theory, 141-164
Law Courts, planning work of, 60-65
Lemke-Spielberg procedure, 42-52, 166
arrangement of calculations in, 50-52
problem-solving with, 47-48
Lexicographical procedure, in enumeration
without omission or redundancy, 30-31
Lexicographical vectorial lattice, 162-164
Linear equations, solving of with integers,
260-284
degenerate solution of, 357
partitioning of into mixed numbers,
332-344
Linear programming
complements of theory of, 224-245
in integral-value problems, 25-26
with mixed numbers, 335-339
Linear system, reduction of to Smith’s
normal form, 265-274
Local minimum concept, 214
Lower bound, defined, 151

M
Machine tools, production scheduling with,

96-101
Majorant, defined, 150
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Masks problem
finite character of algorithm in, 344-347
integrated circuit and, 66-69
Master—slave problems, mixed numbers in,
336-340
Mathematical theory, 133 #.
Matrix (-ces)
arithmetically equivalent, 265
composite subtraction, 264
modulo 1 addition of, 367
substitution, 262
subtraction, 263-264
transposition, 262
unimodular, 263
Matrix reduction
to Smith’s normal form, 265-274, 278
in solution of linear system with
integral solution, 274-277
Maximal element, 148
Method of groups of cuts, 116
METRA program, 75
Minimal element, 148
Minorant, defined, 150
Minterms, in Boolean algebra, 138
Mixed-numbers programs, 83-87, 93,
335-339
Mixed programming, on cone, 344-354
see also Integer programs
MIXTE program, 75
Modulo 1 addition, 300
associativity of, 366
Modulo 1 equations, 324
operations on, 363-369
solution of, 367
Modulo n equivalents or congruents,
296, 301
Modulo n residual class, 299
Modulus, defined, 296
Monoid, defined, 296
Multibranched methods, see Arborescent
methods
Multicriterion problem, 120

N

Networks
production scheduling of, 119
resistance chips placement in, 118
Nontounded polyhedron, 204

INDEX

Nondegenerate convex polyhedral cone,
204
Nonsymmetry, in binary relation, 143-144

o

OPHELIE program, 75

Ordered network, 154

Ordered set
see also Binary relation
chain and maximal chain in, 152-153
concept of, 141153
Hasse’s diagram in, 155
inf half-lattice in, 153
lower and upper bounds of, 151
maximal chains and, 155
minimal and maximal elements of, 148
minorant and majorant of, 150
partially ordered state of, 147
smallest and largest element in, 149
sup half-lattice in, 153

P

Partition, solution of linear programs
by, 332-335

PERT method, 96

PET, see Projected exclusion test

Plumber problem, in Boolean alegebra,
22-25

PMN programs, see Mixed numbers
programs

Polyhedron

convex, 199-201
nonbounded, 204

Preferred variable test, in Lemke-Spiel berg
procedure, 46

Primal-dual solutions, complementation
of, 234-345

Primal problem, impossible case for,
241-245

Primal-simplex method, 236

Primal solution, vs. dual solution, 224-225

Prisoner-of-war-camp problem, 93-96

Problems of planning, 96

Problems with integer values, see
Integer-value problems
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INDEX

Programs
see also Linear programs
with integer values, see Integer programs
with mixed numbers, see Mixed-num-
bers programs
Progression, 37
Projected exclusion test, in Lemke-Spielberg
procedure, 44, 52
Pseudo-Boolean functions, 174
Pseudo-Boolean linear equations, 187-193
Pseudo-Boolean linear inequalities, 192

R

Ray

defined, 204

extreme, 211
Reflexivity, 141-142
Relation of equivalence, 145
Relation of nonstrict order, 145
Relation of strict order, 145-146
Relation of total order, 146147
Resistance chips placement problem,

117-124

Reticulated set, 154
Ridge, defined, 201-202
Root, in arborescence, 31
Rounding off, pitfalls in, 52-53

Scalar body, 195
Semigroup, defined, 296
Simple graph, cover for, 115
Simple siting problem, 87
Simplex table, 226
Slave problem, mixed numbers in, 336-340
Smallest element, 149
Smith’s normal form, 265-266, 311
for linear equations with integers, 274-277
Smith’s reduced form
Gomory cuts and, 309
for integer matrix, 277-284
Smith’s reduced matrix
defined, 278
Gomory cuts and, 312
Step forward-step backward terms, in
Lemke-Spielberg procedure, 43

379

Sublattice, 156
Subprogram, solution of in integers, 347
Subsets
characteristic function of, 132
convex, 194-200, 207-210
intersection of, 134-135
union of, 135
Substitution matrix, 261
Subtraction matrix, 263-264
Sup half-lattice, 153
Symmetry, in binary relation, 143

T

Teachers, planning work of, 60-65

Telecommunication networks, synthesis of,
124-128

Tile removal problem, in Boolean
algebra, 22-25

Total unimodularity, 26

Transportation of school children, integer-
value problem of, 5-8

Transposition matrix, 262

Transitivity, defined, 142

Traveling salesman problem, bivalent
variables in, 57-60

Trellis, lattice as, 154

Trubin algorithm, 354-360

Trubin polyhedron, 358

U

Unimodularity, total, 26
Unimodular matrix, 263
Union, of subsets, 135
Unit to left or right, 295
Upper bound, defined, 151

Vectorial lattice, 36
Vectorial space, 195
Vectors
defined, 195
deviation, 205
Vertex, defined, 202



