Contents | PA | RT I | I. FOUNDATIONS | j | |-----|--------------------|--|----| | I.1 | Th | e Scope of Integer and Combinatorial Optimization | 3 | | | 1. | Introduction | 3 | | | 2. | | 5 | | | 3. | Modeling with Binary Variables II: Facility Location, Fixed-Charge
Network Flow, and Traveling Salesman | 5 | | | 4. | Modeling with Binary Variables III: Nonlinear Functions and Disjunctive Constraints | 10 | | | 5. | Choices in Model Formulation | 14 | | | 6. | Preprocessing | 17 | | | 7. | | 20 | | | 8. | Exercises | 22 | | I.2 | Linear Programming | | 27 | | | 1. | Introduction | 27 | | | 2. | Duality | 28 | | | 3. | The Primal and Dual Simplex Algorithms | 30 | | | 4. | Subgradient Optimization | 41 | | | 5. | Notes | 49 | | 1.3 | Gr | aphs and Networks | 50 | | | 1. | Introduction | 50 | | | 2. | The Minimum-Weight or Shortest-Path Problem | 55 | | | 3. | The Minimum-Weight Spanning Tree Problem | 60 | | | 4. | The Maximum-Flow and Minimum-Cut Problems | 62 | | | 5. | The Transportation Problem: A Primal-Dual Algorithm | 68 | | | 6. | A Primal Simplex Algorithm for Network Flow Problems | 76 | | | 7. | Notes | 82 | | I.4 | Polyhedral Theory | | | | | l. | Introduction and Elementary Linear Algebra | 83 | | | 2. | Definitions of Polyhedra and Dimension | 85 | | | 3. | Describing Polyhedra by Facets | 88 | | | 4. | Describing Polyhedra by Extreme Points and Extreme Rays | 92 | | | 5. | Polarity | 98 | | | | | | | xii Contents | s | |--------------|---| |--------------|---| | | 6.
7.
8. | Polyhedral Ties Between Linear and Integer Programs
Notes
Exercises | 104
109
109 | |--|--|--|---| | 1.5 | 1.
2.
3.
4.
5.
6.
7. | Introduction Measuring Algorithm Efficiency and Problem Complexity Some Problems Solvable in Polynomial Time Remarks on 0-1 and Pure-Integer Programming Nondeterministic Polynomial-Time Algorithms and NP Problems The Most Difficult NP Problems: The Class NPC Complexity and Polyhedra Notes Exercises | 114
117
121
125
127
131
139
142
143 | | I.6 | Pol | ynomial-Time Algorithms for Linear Programming | 146 | | | 2. | Introduction The Ellipsoid Algorithm The Polynomial Equivalence of Separation and Optimization A Projective Algorithm A Strongly Polynomial Algorithm for Combinatorial Linear Programs Notes | 146
147
161
164
172
180 | | I.7 | Inte | eger Lattices | 182 | | | 2.
3.
4.
5.
6. | Introduction The Euclidean Algorithm Continued Fractions Lattices and Hermite Normal Form Reduced Bases Notes Exercises | 182
184
187
189
195
201
202 | | PART II. GENERAL INTEGER PROGRAMMING 203 | | | | | II.1 | Th | e Theory of Valid Inequalities | 205 | | | 1.
2.
3.
4.
5.
6.
7.
8.
9. | Introduction Generating All Valid Inequalities Gomory's Fractional Cuts and Rounding Superadditive Functions and Valid Inequalities A Polyhedral Description of Superadditive Valid Inequalities for Independence Systems Valid Inequalities for Mixed-Integer Sets Superadditivity for Mixed-Integer Sets Notes Exercises | 205
217
227
229
237
242
246
254
256 | | | 144 | |----------|------| | Contents | XIII | | | | | II.2 | Strong Valid Inequalities and Facets for Structured Integer Programs | | |------|--|-----| | | 1. Introduction | 259 | | | 2. Valid Inequalities for the 0-1 Knapsack Polytope | 265 | | | 3. Valid Inequalities for the Symmetric Traveling Salesman Polytope | 270 | | | 4. Valid Inequalities for Variable Upper-Bound Flow Models | 281 | | | 5. Notes | 290 | | | 6. Exercises | 291 | | II.3 | Duality and Relaxation | 296 | | | 1. Introduction | 296 | | | 2. Duality and the Value Function | 300 | | | 3. Superadditive Duality | 304 | | | 4. The Maximum-Weight Path Formulation and Superadditive Duality | 308 | | | 5. Modular Arithmetic and the Group Problem | 312 | | | 6. Lagrangian Relaxation and Duality | 323 | | | 7. Benders' Reformulation | 337 | | | 8. Notes | 341 | | | 9. Exercises | 343 | | II.4 | General Algorithms | 349 | | | 1. Introduction | 349 | | | 2. Branch-and-Bound Using Linear Programming Relaxations | 355 | | | 3. General Cutting-Plane Algorithms | 367 | | | 4. Notes | 379 | | | 5. Exercises | 381 | | 11.5 | Special-Purpose Algorithms | 383 | | | 1. Introduction | 383 | | | 2. A Cutting-Plane Algorithm Using Strong Valid Inequalities | 386 | | | 3. Primal and Dual Heuristic Algorithms | 393 | | | 4. Decomposition Algorithms | 409 | | | 5. Dynamic Programming | 417 | | | 6. Notes | 424 | | | 7. Exercises | 427 | | II.6 | Applications of Special-Purpose Algorithms | 433 | | | Knapsack and Group Problems | 433 | | | 2. 0-1 Integer Programming Problems | 456 | | | 3. The Symmetric Traveling Salesman Problem | 469 | | | 4. Fixed-Charge Network Flow Problems | 495 | | | 5. Applications of Basis Reduction | 513 | | | 6. Notes | 520 | | | 7. Exercises | 526 | | | | | | xiy | | Contents | |-----|--|----------| | PART III. COMBINATORIAL OPTIMIZATION | | 533 | |--------------------------------------|---|---| | Ш.1 | Integral Polyhedra | 535 | | | Introduction Totally Unimodular Matrices Network Matrices Balanced and Totally Balanced Matrices Node Packing and Perfect Graphs Blocking and Integral Polyhedra Notes Exercises | 535
540
546
562
573
586
598
602 | | III.2 | Matching | 608 | | | Introduction Maximum-Cardinality Matching Maximum-Weight Matching Additional Results on Matching and Related Problems Notes Exercises | 608
611
627
636
654
655 | | III.3 | Matroid and Submodular Function Optimization | 659 | | | Introduction Elementary Properties Maximum-Weight Independent Sets Matroid Intersection Weighted Matroid Intersection Polymatroids, Separation, and Submodular Function Minimization Algorithms To Minimize a Submodular Function Covering with Independent Sets and Matroid Partition Submodular Function Maximization Notes Exercises | 659
662
666
671
678
688
694
702
708
712
714 | | References | | | | Author Index | | | | Subject Index | | |