Contents

PA	RT I	I. FOUNDATIONS	j
I.1	Th	e Scope of Integer and Combinatorial Optimization	3
	1.	Introduction	3
	2.		5
	3.	Modeling with Binary Variables II: Facility Location, Fixed-Charge Network Flow, and Traveling Salesman	5
	4.	Modeling with Binary Variables III: Nonlinear Functions and Disjunctive Constraints	10
	5.	Choices in Model Formulation	14
	6.	Preprocessing	17
	7.		20
	8.	Exercises	22
I.2	Linear Programming		27
	1.	Introduction	27
	2.	Duality	28
	3.	The Primal and Dual Simplex Algorithms	30
	4.	Subgradient Optimization	41
	5.	Notes	49
1.3	Gr	aphs and Networks	50
	1.	Introduction	50
	2.	The Minimum-Weight or Shortest-Path Problem	55
	3.	The Minimum-Weight Spanning Tree Problem	60
	4.	The Maximum-Flow and Minimum-Cut Problems	62
	5.	The Transportation Problem: A Primal-Dual Algorithm	68
	6.	A Primal Simplex Algorithm for Network Flow Problems	76
	7.	Notes	82
I.4	Polyhedral Theory		
	l.	Introduction and Elementary Linear Algebra	83
	2.	Definitions of Polyhedra and Dimension	85
	3.	Describing Polyhedra by Facets	88
	4.	Describing Polyhedra by Extreme Points and Extreme Rays	92
	5.	Polarity	98

xii Contents	s
--------------	---

	6. 7. 8.	Polyhedral Ties Between Linear and Integer Programs Notes Exercises	104 109 109
1.5	1. 2. 3. 4. 5. 6. 7.	Introduction Measuring Algorithm Efficiency and Problem Complexity Some Problems Solvable in Polynomial Time Remarks on 0-1 and Pure-Integer Programming Nondeterministic Polynomial-Time Algorithms and NP Problems The Most Difficult NP Problems: The Class NPC Complexity and Polyhedra Notes Exercises	114 117 121 125 127 131 139 142 143
I.6	Pol	ynomial-Time Algorithms for Linear Programming	146
	2.	Introduction The Ellipsoid Algorithm The Polynomial Equivalence of Separation and Optimization A Projective Algorithm A Strongly Polynomial Algorithm for Combinatorial Linear Programs Notes	146 147 161 164 172 180
I.7	Inte	eger Lattices	182
	2. 3. 4. 5. 6.	Introduction The Euclidean Algorithm Continued Fractions Lattices and Hermite Normal Form Reduced Bases Notes Exercises	182 184 187 189 195 201 202
PART II. GENERAL INTEGER PROGRAMMING 203			
II.1	Th	e Theory of Valid Inequalities	205
	1. 2. 3. 4. 5. 6. 7. 8. 9.	Introduction Generating All Valid Inequalities Gomory's Fractional Cuts and Rounding Superadditive Functions and Valid Inequalities A Polyhedral Description of Superadditive Valid Inequalities for Independence Systems Valid Inequalities for Mixed-Integer Sets Superadditivity for Mixed-Integer Sets Notes Exercises	205 217 227 229 237 242 246 254 256

	144
Contents	XIII

II.2	Strong Valid Inequalities and Facets for Structured Integer Programs	
	1. Introduction	259
	2. Valid Inequalities for the 0-1 Knapsack Polytope	265
	3. Valid Inequalities for the Symmetric Traveling Salesman Polytope	270
	4. Valid Inequalities for Variable Upper-Bound Flow Models	281
	5. Notes	290
	6. Exercises	291
II.3	Duality and Relaxation	296
	1. Introduction	296
	2. Duality and the Value Function	300
	3. Superadditive Duality	304
	4. The Maximum-Weight Path Formulation and Superadditive Duality	308
	5. Modular Arithmetic and the Group Problem	312
	6. Lagrangian Relaxation and Duality	323
	7. Benders' Reformulation	337
	8. Notes	341
	9. Exercises	343
II.4	General Algorithms	349
	1. Introduction	349
	2. Branch-and-Bound Using Linear Programming Relaxations	355
	3. General Cutting-Plane Algorithms	367
	4. Notes	379
	5. Exercises	381
11.5	Special-Purpose Algorithms	383
	1. Introduction	383
	2. A Cutting-Plane Algorithm Using Strong Valid Inequalities	386
	3. Primal and Dual Heuristic Algorithms	393
	4. Decomposition Algorithms	409
	5. Dynamic Programming	417
	6. Notes	424
	7. Exercises	427
II.6	Applications of Special-Purpose Algorithms	433
	Knapsack and Group Problems	433
	2. 0-1 Integer Programming Problems	456
	3. The Symmetric Traveling Salesman Problem	469
	4. Fixed-Charge Network Flow Problems	495
	5. Applications of Basis Reduction	513
	6. Notes	520
	7. Exercises	526

xiy		Contents

PART III. COMBINATORIAL OPTIMIZATION		533
Ш.1	Integral Polyhedra	535
	 Introduction Totally Unimodular Matrices Network Matrices Balanced and Totally Balanced Matrices Node Packing and Perfect Graphs Blocking and Integral Polyhedra Notes Exercises 	535 540 546 562 573 586 598 602
III.2	Matching	608
	 Introduction Maximum-Cardinality Matching Maximum-Weight Matching Additional Results on Matching and Related Problems Notes Exercises 	608 611 627 636 654 655
III.3	Matroid and Submodular Function Optimization	659
	 Introduction Elementary Properties Maximum-Weight Independent Sets Matroid Intersection Weighted Matroid Intersection Polymatroids, Separation, and Submodular Function Minimization Algorithms To Minimize a Submodular Function Covering with Independent Sets and Matroid Partition Submodular Function Maximization Notes Exercises 	659 662 666 671 678 688 694 702 708 712 714
References		
Author Index		
Subject Index		