Contents

Preface			
A	cknow	m red gments	xiv
N	otatio	${f n}$	xv
Ι	Bas	sic Concepts	1
1	Intr	oduction	3
	1.1	The structured nonconvex mixed integer nonlinear program	3
	1.2	Applications	4
	1.3	Outline of the solution approach	5
	1.4	An illustrative example	6
2	Pro	blem Formulations	9
	2.1	The condensed formulation	9
	2.2	Smooth and disjunctive reformulations	10
		2.2.1 Integrality constraints	10
		2.2.2 Disjunctive constraints	10
		2.2.3 Big-M constraints	11
		2.2.4 The smooth binary formulation	11
		2.2.5 Block-separability	12
	2.3	Block-separable splitting-schemes	12
		2.3.1 The sparsity graph	12
		2.3.2 MINLP splitting-schemes	12
		2.3.3 MIQQP splitting-schemes	14
	2.4	Separable reformulation of factorable programs	15
	2.5	Extended block-separable reformulation	17
	$^{2.6}$	Other formulations	18

vi Contents

3	Convex and Lagrangian Relaxations 21					
	3.1	Convexification of sets and functions				
	3.2	Convex underestimating-relaxations				
	3.3	Lagrangian relaxation				
	3.4	Dual-equivalent convex relaxations				
	3.5	Reducing the duality gap				
	3.6	Augmented Lagrangians				
4	Dec	Decomposition Methods 3				
	4.1	Lagrangian decomposition — dual methods				
		4.1.1 Subgradient methods				
		4.1.2 Dual cutting-plane methods				
		4.1.3 Proximal bundle methods				
	4.2	Primal cutting-plane methods				
	4.3	Column generation				
		4.3.1 A simple column generation method				
		4.3.2 Initializing the RMP				
		4.3.3 An improved column generation method 49				
	4.4	Benders decomposition				
5	Sem	idefinite Relaxations 55				
	5.1	Semidefinite and Lagrangian relaxations				
	5.2	Block-separable reformulation				
	5.3	Eigenvalue representation of the dual function				
	5.4	Duality results and convex relaxation				
		5.4.1 The trust region problem				
		5.4.2 Dual-equivalence 61				
		5.4.3 Modifications				
		5.4.4 Influence of decomposition on the dual function 64				
	5.5	Solving the Lagrangian dual problem (\tilde{D})				
	5.6	Numerical results				
		5.6.1 Block structure				
		5.6.2 Network structure				
	5.7	Computing relaxations of mixed linear quadratic programs 69				
6	Con	vex Underestimators 73				
	6.1	Interval arithmetic				
	6.2	Bézier polynomials				
	6.3	α -underestimators				
	6.4	CGU-underestimators				
	6.5	Convexified polynomial underestimators				
		6.5.1 Rigorous underestimators				
		6.5.2 Restricted sampling				

~	The state of the s
Contents	VII
0011001100	7 11

7	Cuts	, Lower	r Bounds and Box Reduction	83
	7.1	Valid	cuts	83
		7.1.1	Linearization cuts	84
		7.1.2	Knapsack cuts	84
		7.1.3	Interval-gradient cuts	85
		7.1.4	Lagrangian cuts	86
		7.1.5	Level cuts	87
		7.1.6	Other valid cuts	87
	7.2	Initiali	ization of polyhedral relaxations	88
	7.3	Lower	bounds	88
		7.3.1	NLP-bounds	89
		7.3.2	MINLP-bounds	90
		7.3.3	Dual bounds	90
		7.3.4	LP-bounds	90
	7.4	Box re	duction	91
	7.5	Numer	rical results	92
8	Loca	l and G	Global Optimality Criteria	99
	8.1		optimality conditions	99
	8.2		strong duality of nonconvex QQPs	101
	8.3		l optimality cuts	105
	8.4		global optimality criteria for QQPs	106
	8.5		optimality via interval-gradient cuts	110
9	Ada	otive D	iscretization of Infinite Dimensional MINLPs	113
	9.1		gated discretizations	113
		9.1.1	Multistage stochastic programs	113
		9.1.2	Optimal control problems	115
		9.1.3	Abstract formulation	116
	9.2	Optim	al mesh and scenario refinement	116
	9.3	. 877	ing and solving relaxations	117
II	Alş	gorith	ms	119
10	Over	view o	f Global Optimization Methods	121
	10.1	Sampl	ing heuristics	123
	10.2	Brancl	h-and-bound methods	125
	10.3	Succes	sive approximation methods	126
	10.4	Relaxa	ation-based heuristics	127

viii Contents

11	Defo	rmation Heuristics	129
	11.1	The algorithm of Moré and Wu	129
	11.2	A MaxCut deformation heuristic	130
		11.2.1 Problem formulation	130
		11.2.2 A MaxCut algorithm	132
		11.2.3 Sampling	134
		11.2.4 Numerical results	135
	11.3	Generalization to MINLP	138
		11.3.1 Parametric problem formulation	138
		11.3.2 A MINLP deformation algorithm	139
		11.3.3 Numerical results	140
12	Rou	nding, Partitioning and Lagrangian Heuristics	143
	12.1	A rounding heuristic	143
	12.2	A partitioning heuristic that uses central cuts	145
	12.3	Numerical results	147
		A Lagrangian heuristic	153
13	Bran	nch-Cut-and-Price Algorithms	155
		Branch-and-bound algorithms	155
		13.1.1 Preliminaries	155
		13.1.2 A generic branch-and-bound algorithm	156
	13.2	Convergence and finiteness	156
		13.2.1 Convergence	156
		13.2.2 Finiteness	157
	13.3	Consistent bounding operations	159
		13.3.1 NLP-bounds	159
		13.3.2 LP-bounds	160
		13.3.3 Dual bounds	161
	13.4	Branching	162
		13.4.1 Rectangular subdivision rules	162
		13.4.2 Updating lower bounds	163
	13.5	Numerical results	163
		13.5.1 Network MaxCut experiments	164
		13.5.2 MINLP experiments	169
		13.5.3 Cost-efficient design of energy conversion systems	175
	13.6	Nonconvex polyhedral inner and outer approximations	176
14	LaG	O — An Object-Oriented Library for Solving MINLPs	181
		Design philosophy	181
		Related work	182
		Structure	183

Contents	ix
----------	----

14.4 The modules 14.4.1 Reformulation 14.4.2 Relaxation 14.4.3 Solvers	183 185
Appendix	189
A Future Perspectives	189
B MINLP Problems B.1 Instances from the MINLPLIB	
Bibliography	195
Index	2 11