
Hamid
Sticky Note

LinearProgramming
and its Applications

H. A. Eiselt · C.-L. Sandblom

Linear Programming
and its Applications

With 71 Figures
and 36 Tables

123

Prof. Dr. H. A. Eiselt
University of New Brunswick
Faculty of Business Administration
P.O. Box 4400
Fredericton, NB E3B 5A3
Canada
haeiselt@unb.ca

Prof. Dr. C.-L. Sandblom
Dalhousie University
Department of Industrial Engineering
P.O. Box 1000
Halifax, NS B3J 2X4
Canada
carl-louis.sandblom@dal.ca

Library of Congress Control Number: 2007931630

ISBN 978-3-540-73670-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover-design: WMX Design GmbH, Heidelberg

SPIN 12092093 42/3180YL - 5 4 3 2 1 0 Printed on acid-free paper

“A problem well stated is a problem half solved.”

Charles Franklin Kettering

PREFACE

Based on earlier work by a variety of authors in the 1930s and 1940s, the simplex
method for solving linear programming problems was developed in 1947 by the
American mathematician George B. Dantzig. Helped by the computer revolution,
it has been described by some as the overwhelmingly most significant
mathematical development of the last century. Owing to the simplex method,
linear programming (or linear optimization, as some would have it) is pervasive in
modern society for the planning and control of activities that are constrained by
the availability of resources such as manpower, raw materials, budgets, and time.

The purpose of this book is to describe the field of linear programming. While we
aim to be reasonably complete in our treatment, we have given emphasis to the
modeling aspects of the field. Accordingly, a number of applications are provided,
where we guide the reader through the interactive process of mathematically
modeling a particular practical situation, analyzing the consequences of the model
formulated, and then revising the model in light of the results from the analysis.

Closely related to the issue of building models based on specific applications is
the art of reformulating problems. Some of these models may at first appear not to
be amenable to a linear representation, and we devote an entire chapter to this
topic. A properly balanced treatment of linear programming will necessarily
require a full discussion of both duality and postoptimality, and we dedicate one
chapter to each of these two topics. As far as solution methods are concerned, we
cover the simplex method as well as interior point techniques. During the last two
decades, the latter have become serious challengers to the simplex method for
solving large scale practical problems.

This book can be seen as the last part of a trilogy. The other two volumes have
already appeared in print. "Integer Programming and Network Models" was
published in 2000, and "Decision Analysis, Location Models, and Scheduling
Problems" saw the light of day in 2004. All three volumes are similar in style,
emphasizing models, applications and formulations/reformulations. We have also
given detailed numerical illustrations for all algorithms presented, and have relied,
whenever practical, on intuitive approaches. An interesting aspect is the longevity
of a book like the present volume. It appears that descriptions of models keep their
freshness longer than discussions of algorithms, and that references to
computational aspects quickly become outdated. A statement from 1824 gives a
poignant reminder of how short the life of a book may be:

 Preface VIII

“…One thousand books are published per annum in Great
Britain ... only do one hundred bring good profit ... seven
hundred are forgotten in one year, one hundred in two years,
not more than fifty survive seven years, and scarcely ten are
thought of after twenty years.

Of the 50,000 books published in the seventeenth century, not
fifty are now in estimation; and of the 80,000 published in the
eighteenth century not more than three hundred are considered
worth reprinting, and not more than five hundred are sought
after 1823. Since the first writings fourteen hundred years
before Christ, i.e., in thirty-two centuries, only about five
hundred works of writers of all nations have sustained
themselves against the devouring influence of time.”

(Collections, Historical and Miscellaneous; and Monthly
Literary Journal: edited by J. Farmer and J.B. Moore, Vol III,
Concord 1824)

It is our pleasure to thank all of the people who have, in one way or another,
helped to make this book a reality. Some of the typing was done by #13 (Benbin
Zhang) and the figures were produced by Dong Lin. Last, but certainly not least,
our sincere thanks go to Dr. Müller of Springer Publishers, whose gentle
reminders kept us on track and more or less on time. We are very grateful for the
assistance.

H.A. Eiselt
C.-L. Sandblom

CONTENTS

Symbols XIII

A. Linear Algebra 1
 A.1 Matrix Algebra 1
 A.2 Systems of Simultaneous Linear Equations 5
 A.3 Convexity 23

B. Computational Complexity 31
 B.1 Algorithms and Time Complexity Functions 31
 B.2 Examples of Time Complexity Functions 37
 B.3 Classes of Problems and Their Relations 41

1. Introduction 45
 1.1. A Short History of Linear Programming 45
 1.2 Assumptions and the Main Components

of Linear Programming Problems 48
 1.3 The Modeling Process 53
 1.4 The Three Phases in Optimization 57
 1.5 Solving the Model and Interpreting the Printout 60

2. Applications 67
 2.1 The Diet Problem 67
 2.2 Allocation Problems 71
 2.3 Cutting Stock Problems 75
 2.4 Employee Scheduling 80
 2.5 Data Envelopment Analysis 82
 2.6 Inventory Planning 85
 2.7 Blending Problems 89
 2.8 Transportation Problems 91
 2.9 Assignment Problems 102
 2.10 A Production – Inventory Model: A Case Study 107

 Contents X

3. The Simplex Method 129
 3.1 Graphical Concepts 129
 3.1.1 The Graphical Solution Technique 129
 3.1.2 Four Special Cases 138
 3.2 Algebraic Concepts 143
 3.2.1 The Algebraic Solution Technique 143
 3.2.2 Four Special Cases Revisited 158

4. Duality 167
 4.1 The Fundamental Theory of Duality 167
 4.2 Primal-Dual Relations 183
 4.3 Interpretations of the Dual Problem 198

5. Extensions of the Simplex Method 203
 5.1 The Dual Simplex Method 203
 5.2 The Upper Bounding Technique 212
 5.3 Column Generation 219

6. Postoptimality Analyses 225
 6.1 Graphical Sensitivity Analysis 227
 6.2 Changes of the Right-Hand Side Values 232
 6.3 Changes of the Objective Function Coefficients 240
 6.4 Sensitivity Analyses in the Presence of Degeneracy 245
 6.5 Addition of a Constraint 248
 6.6 Economic Analysis of an Optimal Solution 252

7. Non-Simplex Based Solution Methods 261
 7.1 Alternatives to the Simplex Method 262
 7.2 Interior Point Methods 273

8. Problem Reformulations 295
 8.1 Reformulations of Variables 295
 8.1.1 Lower Bounding Constraints 295
 8.1.2 Variables Unrestricted in Sign 296
 8.2 Reformulations of Constraints 298
 8.3. Reformulations of the Objective Function 301
 8.3.1. Minimize the Weighted Sum of Absolute Values 301
 8.3.2 Bottleneck Problems 306
 8.3.3 Minimax and Maximin Problems 313
 8.3.4 Fractional (Hyperbolic) Programming 320

Contents XI

9. Multiobjective Programming 325
9.1 Vector Optimization 327
9.2 Models with Exogenous Tradeoffs Between Objectives 337
 9.2.1 The Weighting Method 337
 9.2.2 The Constraint Method 339
9.3 Models with Exogenous Achievement Levels 341
 9.3.1 Reference Point Programming 342
 9.3.2 Fuzzy Programming 346
 9.3.3 Goal Programming 351
9.4 Bilevel Programming 359

References 363

Subject Index 377

SYMBOLS

This part introduces the reader to some of the support methodology used in this
book. We have made every possible attempt to keep the exposition as brief and
concise as possible. Readers who are interested in more in-depth coverage are
referred to the pertinent literature.

Notation
ù = {1, 2, ...}: Set of natural numbers
ù0 = {0, 1, 2, ...}: Set of natural numbers including zero
ú: Set of real numbers
ú+: Set of nonnegative real numbers
ún: n-dimensional real space

∈: Element of
⊆: Subset
⊂: Proper subset
∪: Union of sets
∩: Intersection of sets
∅: Empty set

→: Implies
∃: There exists at least one
∀: For all
|S|: Cardinality of the set S
inf: infimum
sup: supremum

 Symbols XIV

x ∈ [a, b]: a ≤ x ≤ b
x ∈ [a, b[: a ≤ x < b
x ∈]a, b]: a < x ≤ b
x ∈]a, b[: a < x < b

 x : Ceiling of x, the smallest integer greater or equal to x

 x : Floor of x, the largest integer smaller or equal to x

|x|: Absolute value of x

a:= a + b: Valuation, a is replaced by a + b

:)(
x
xf

∂
∂ partial derivative of the function f(x) with respect to x

A LINEAR ALGEBRA

The purpose of this chapter is to introduce to the reader the basic concepts of
linear algebra whose knowledge is mandatory for the understanding of the
material covered in the succeeding chapters. We have taken it out of the main part
of the book so as not to interrupt the flow of our arguments and to let those who
are familiar with the concepts discussed here, skip them and jump ahead to the
Introduction in Chapter 1. With some modifications, the material in this Chapter is
largely taken from Eiselt and Sandblom (2004). For a full treatment, see any text
on linear algebra, e.g., Bretscher (1997) or Nicholson (2006).

A.1 Matrix Algebra
Definition A.1: A matrix is a two-dimensional array of elements aij arranged in m
rows and n columns, so that aij is the element in row i and column j. If m = n, the
matrix is said to be square; if m = 1, it is called a row vector, if n = 1, it is a
column vector, and if m = n = 1, it is a scalar.

Typically, matrices are denoted by boldface capital letters, vectors are shown as
boldface small letters, and scalars are shown as italicized small letters. The i-th
row of a matrix A = (aij) is ai• and the j-th column of the matrix A is a•j.

Definition A.2: An [n × n]-dimensional matrix A = (aij) is called an identity
matrix, if aij = 1 if i = j, and zero otherwise.

An identity matrix is denoted by I. The i-th row of an identity matrix is called a
unit row vector ei• = [0, 0, …0, 1, 0, 0, …0] which has the “1” in the i-th position,
and zeroes otherwise. The definition of a unit column vector e•j is analogous.

Definition A.3: The sum of two [m × n]-dimensional matrices A and B is an [m ×
n]-dimensional matrix C, such that cij = aij + bij ∀ i=1, …, m; j=1, …, n. The
difference of two matrices is defined similarly.

 A Linear Algebra 2

Definition A.4: The product of an [m × n]-dimensional matrix A = (aij) and an [n
× p]-dimensional matrix B = (bjk) is an [m × p]-dimensional matrix C = (cik), such
that

kibac
n

j
jkijik ,

1
∀= ∑

=

.

Definition A.5: The transpose of an [m × n]-dimensional matrix A = (aij) is an [n
× m]-dimensional matrix AT = (), such that a . If A = AT

ija jia ji
T
ij ,∀= T, the A is

said to be symmetric. The trace of an [n × n]-dimensional matrix A is defined as
the sum

 tr A = . ∑
=

n

j
jja

1

Definition A.6: The inverse of an [n × n]-dimensional matrix A = (aij), provided it
exists, is a matrix A–1, such that AA–1 = A–1A = I.

Example: Let . Then .
















−−
=

201
230
240

A
















−
−

−−
=−

021½
011
143

1A

Proposition A.7: The following results hold when multiplying, transposing, and
inverting matrices A, B, and C:

• AI = IA = A
• A(BC) = (AB)C
• (AT)T = A
• (AB)T = BTAT
• (A–1)–1 = A
• (AB)–1 = B–1A–1
• (AT)–1 = (A–1)T

Definition A.8: The determinant of an [n × n]-dimensional matrix A is defined

recursively as det A = ∑ , where A
=

+−
n

j
ijij

ji deta
1

)1(A ij denotes the matrix that

results from the given matrix A by deleting the i-th row and the j-th column.

This development of the determinant via the i-th row is due to Laplace. As a
starting condition, the determinant of a [1 × 1]-dimensional matrix A is det A =

A.1 Matrix Algebra 3

a11. Applying Laplace’s formula to a [2 × 2]-dimensional matrix ,

we obtain det A = a









=

2221

1211

aa
aa

A

11a22 – a12a21. The inverse A–1 of a square matrix A exists if
and only if det A ≠ 0. A more efficient technique for the evaluation of
determinants is described in Procedure A.19 below and illustrated in Examples 4
and 5, following the algorithm.

Example: Let again

 .
















−−
=

201
230
240

A

Evaluating the determinant with respect to the first row, we obtain

,
21
20

,
20
23

1211 







−−

=







−

= AA and . 







−

=
01

30
13A

so that det A = (–1)1+1(0) det A11 + (–1)1+2(4) det A12 + (–1)1+3(2) det A13 =
(1)(0)(−6) + (–1)(4)(2) + (1)(2)(3) = −2. The determinant can be interpreted as the
volume of the n-dimensional parallelepiped spanned by the column vectors of the
matrix.

Definition A.9: An eigenvalue or characteristic value λ of a square matrix A is a
number, possibly complex, which solves the equation det (A – λI) = 0.

One can show that if λ is a real-valued eigenvalue of the square matrix A, then
there exists a corresponding vector x ≠ 0, such that Ax = λx. This vector is called
an eigenvector of A corresponding to the eigenvalue λ. It may happen that no real-
valued eigenvalue exists. Geometrically, an eigenvalue can be interpreted as some
form of “scaling” resulting from the linear transformation x → Ax. For instance, if
[1, 0] and [0, 1] are the eigenvectors for a [2×2]-dimensional matrix A, with
eigenvalues ½ and 3, respectively, then every transformed vector x will have its
first component halved and second component tripled.

Example: Using again the matrix A in the following examples of Definitions A.6
and A.8, the eigenvalues of A can be calculated as .47068, 2.34292, and
−1.81361, and the corresponding eigenvectors are [.88867, .28441, −.35969],
[.80472, .56400, −.18529], and [−.16963, −.37813, .91008], respectively.

Procedure A.10 (Newton Raphson method): The Newton-Raphson method is
designed to determine roots of polynomials.

 A Linear Algebra 4

Procedure: Given the polynomial functions f(x), the Newton-Raphson method for
finding a real root of the polynomial, i.e., a real solution to the equation f(x) = 0
proceeds as follows. Beginning with an initial estimate x1, subsequent estimates
are calculated iteratively by the relation

 xk+1 := xk – ...,2,1,
)('
)(

=k
xf
xf

k

k

Example: Consider the polynomial y = 2x3 – 4, whose derivative with respect to x
is f '(x) = 6x2. Starting with the initial guess x1 = 5 for a root of this polynomial, we

obtain x2 = 5 –
2

3

)5(6
4)5(2 −

 = 3.36. In the subsequent iterations we obtain x3 =

2.2990, x4 = 1.658, x5 = 1.3482, x6 = 1.2656, x7 = 1.2599 = x8, and the process has
converged.

Proposition A.11: The following rules apply to determinants of [n × n]-
dimensional matrices A and B:

 det I = 1
 det AB = det A det B
 det A = det AT
 det αA = αn det A

 det A–1 =
Adet

1 .

Procedure A.12: Define a simplex S in úd as a set of (d + 1) points xk, k=1, 2, …,
d+1, such that there exists no hyperplane H: ax = b with the property that axk = b
∀ k=1, 2, …, d+1. In other words, a simplex is a minimal independence structure
in the sense that all but one of its extreme points are located on a hyperplane. In
order to determine the volume of a d-dimensional polyhedron P, it is first
necessary to subdivide P into simplices. The volume of a simplex S with extreme
points xk, k = 1, 2, …, d+1 can then be expressed as

 .

1

1
1

)(

1

2

1

11





















==

+d

dd detdetSv

x

x
x

A
MM

A.2 Systems of Simultaneous Linear Equations 5

A.2 Systems of Simultaneous Linear Equations
The purpose of this section is to provide some of the tools which are necessary for
the topics in this book and thus establish a common background of knowledge. In
order to do so, we will introduce those elements of linear algebra that are
mandatory for the understanding of linear programming. For further details,
readers are referred to texts on linear algebra, e.g., Nicholson (2006) or Bretscher
(1997).

Throughout this section we assume that x1, x2, …, xn are variables or unknowns of
some given system, and a1, a2, …, an and b are given real numbers. The symbol R
defines a relation of the type =, ≤, ≥, <, or >, and f(x) is a function of the variables
x1, x2, …, xn.

Definition A.13: A relation f(x) R b is said to be linear, if f(x) = ∑ . We

will refer to f(x) as the left-hand side and b the right-hand side of this relation.
=

n

j
jj xa

1

Example: The relation

 13

28
321 2745 ≤−+ xxx (1)

is linear, while the relations

 13

28
321 2745 ≤−+ xxx , (2)

 13
28

3
2
21 2745 ≤−+ xxx , and (3)

 13
28

3421 2745 ≤−+ xxxx (4)

are not, as relation (2) includes the square root of a variable, (3) has the variable x2
raised to the second power, and (4) includes the product of two variables. Loosely
speaking, a function is linear if all variables are not multiplied by other variables
and appear only raised to the 0-th or first power.

For the time being, we will restrict ourselves to equations, i.e., R = {=}. Assume
now that we have m ≥ 1 linear equations and the problem is then to find a solution,
i.e., an assignment of values to the variables, that satisfies all of the equations.
This is referred to as a system of simultaneous linear equations. Consider a small
example. A gardener has $9 to spend on two types of fertilizer, Turf King and
Green Thumb Special, which retail for $1 and $1.50 per bag, respectively. It is
known that for each three bags of Turf King, four bags of Green Thumb Special
are needed to offset the detrimental effects of the former. Denoting by x1 and x2
the number of bags of the two respective fertilizers, the system can be written as

 A Linear Algebra 6

 1x1 + 1.5x2 = 9 (5)
 4x1 − 3x2 = 0, (6)

which, incidentally, has a solution x1 = 3 and x2 = 4, indicating to the gardener to
purchase three bags of Turf King and four bags of Green Thumb Special. As usual,
the solution of a system of simultaneous linear equations provides instructions to
the decision maker by way of assigning appropriate values to the variables. This is
the same for linear programming problems as we will see later on in this book.
Note that linearity also implies proportionality. The quantity of, say, Green
Thumb Special and the total amount of money spent on that product move up
together: for each unit increase in the product’s quantity, the total amount of
money spent on this fertilizer increases by $1.50. This property will be destroyed
if quantity discounts, economies to scale, and similar features are introduced.

It is also worthwhile to point out that often the equations specify whether the
products are substitutional or complementary. In the case of substitutional goods,
one product is able to more or less replace another good. Typical examples are
beef and pork, potatoes and rice, buses and trains in case of transportation, houses
and apartments, etc. Clearly, increased consumption of one of the goods will
result in reduced consumption of any of its substitutional goods. On the other
hand, in the case of complementary goods, the two products complement each
other in the sense that one product needs another to be complete the product. As a
result, the increased consumption of a complementary good will result in
increased consumption of the other good as well. Typical examples of
complementary goods are cameras and lenses, cars and fuel, guns and
ammunition, tables and chairs, etc. Note that some of the “increase implications”
are unidirectional, e.g., while more cars typically imply a higher fuel
consumption, a higher supply of fuel will not result in the purchase of more
vehicles (except in case the fuel gets cheaper as well, but even then the increase
implication is tenuous).

In general, we can view each variable as adding one degree of uncertainty, while,
at least in principle, each equation with its explanatory value reduces the degree of
uncertainty by one. The latter is, however, not always the case. Consider again the
above system of simultaneous linear equations (5) and (6), and add the equation
5x1 − 1.5x2 = 9 to the system. It can be shown that there is actually no new
information contained in this equation as it is generated as the sum of (5) and (6).
Below we will develop conditions that indicate when an equation adds new
information to the system and when this is not the case.

In order to formalize, consider the system of simultaneous linear equations Ax =
b, where A is an [m × n]-dimensional matrix, x is an n-dimensional column
vector, and b is an m-dimensional column vector. In terms of the above example,

, , and 







−

=
34
5.11

A [T,xx 21=x] []T0,9=b . Let now ai• denote the i-th row of

A.2 Systems of Simultaneous Linear Equations 7

the matrix A in accordance with Definition A.1, so that in our example, a1• = [1,
1.5] and a2• = [4, −3].

Definition A.14: A set of vectors a1•, a2•, …, am• is said to be linearly dependent,
if there exists a vector λ = [λ1, λ2, …, λm] ≠ 0 of real numbers, such that

 If the vectors a.0
1

=λ∑
=

•

m

i
iia 1•, a2•, …, am• are not linearly dependent, they are

said to be linearly independent.

It is not difficult to demonstrate that if the vectors a1•, a2•, …, am• are linearly
dependent, then there exists some number k, 1 ≤ k ≤ m and some real numbers λi,

such that a In other words, at least one of the vectors in the system

can be generated as a weighted sum of the others. It also follows that if the vectors

are linearly independent, then ∑ implies that λ

∑
≠
=

•• λ=
m

k
i

iik

1
1

.a

0
1

=λ
=

•

m

i
iia i = 0 ∀ i = 1, 2, …, m. A

similar definition and results can be developed for column vectors. As an
example, consider the matrix

 .


















−
−−

−

=

59
114
15
32

A

Here, the first row can be expressed as a1• = [2, −3] = λ2a2• + λ3a3• + λ4a4• = λ2[5,
1] + λ3 [−4, −11] + λ4 [9, −5] with λ2 = ⅔, λ3 = ⅓, and λ4 = 0. In other words, a
weighted combination of the second and third rows can generate the first row, so
that row 1 does not include any information beyond what is provided by rows 2, 3,
and 4. Using the same argument, the fourth row can be written as a4• = [9, −5] =
λ2 a2• + λ3 a3• = λ2 [5, 1] + λ3 [−4, −11] with λ2 = 3

7 and λ3 = 3
2 , so that the

second and third rows can be used to generate the fourth row, which, again, does
not provide any information beyond what is already included in rows 2 and 3.
While we have just shown that rows 2 and 3 contain as much information as the
four rows combined, it is also true that rows 1 and 2 can be used to generate rows
3 and 4, respectively, so they also contain all the information included in the
system. The message here is that different combinations of rows may include all
the information contained in the system. We will now formalize the discussion.

 A Linear Algebra 8

For that purpose, we can write

Definition A.15: The rank of a matrix A, written rk A, is the maximal number of
linearly independent rows and columns of A.

For instance, in the above example rk A = 2. It should be noted that in an [m × n]-
dimensional matrix the rank is not necessarily equal to min {m, n}, but we
certainly have rk A ≤ min {m, n}. If, however, rk A = min {m, n}, we say that the
matrix A has full rank.

Let now A be an [m × n]-dimensional matrix, so that m equations and n variables
are included in the system Ax = b, and let [A, b] denote the matrix that includes
all columns of A as well as the vector b. Clearly, rk [A, b] ≥ rk A. We can now
state the following

Theorem A.16: A system of simultaneous linear equations Ax = b has

 (i) no solution if rk A < rk [A, b],
 (ii) exactly one solution, if rk A = rk [A, b] = n, and
 (iii) an infinite number of solutions, if rk A = rk [A, b] < n.

A proof of Theorem A.16 can be found in many books on linear algebra; see, e.g.,
Nicholson (2006) or Bretscher (1997). The following examples may explain the
three cases outlined in the theorem.

Example 1: Let and b .















=

212211
673

1248
A
















=

20
5
8

Then rk A = 2, since a3• = ¼a1• + 3a2•, but there is no λ2, such that a1• = λ2a2•. On
the other hand,

 rk [A, b] = = 3,
















20212211
5673
81248

rk

since none of the three rows can be generated by the two other rows of the matrix.
Hence, the above system has no solution.

Example 2: Let and b . Here, rk A = 2 and 







=

72
31

A 







=

5
2

A.2 Systems of Simultaneous Linear Equations 9

 rk [A, b] = = 2, 







572
231

rk

so that the system will have exactly one solution, which, incidentally, is x1 = −1
and x2 = 1.

Example 3: Let A = and . Now rk A = 2 and 







172
431









=

5
2

b

 rk [A, b] = = 2 < 3 = n. 







5172
2431

rk

Thus, there are infinitely many solutions to this system, e.g., x = [−1, 1, 0]T,
x = [] , x = T

7
1

7
18 ,0, − []T75

4
75
47

3
1 ,, − , etc.

Definition A.17: Let A be an [m × n]-dimensional matrix with n ≥ m. Any
collection of m linearly independent columns of A is said to be a basis of A.

It follows that if a matrix A has full rank, i.e., if rk A = m, then A has at least one
basis. Consider now an [m × n]-dimensional matrix A with n ≥ m and full rank
and one of its bases. The columns forming this basis constitute an [m × m]-
dimensional submatrix B, which we will call a basis matrix. We can then partition
the original matrix A = [B, N], maybe after reordering the columns, where the [m
× (n−m)]-dimensional matrix N consists of all columns of A that are not in the
basis. The vector of variables x can be partitioned accordingly into xT = [.], TT

NB xx

The components of the m-dimensional vector xB are called basic variables,
whereas the components of the (n−m)-dimensional vector xN are called nonbasic
variables. Then the system Ax = b can be written BxB + NxN = b. Setting xN := 0,
we see that this system has a solution xB = B−1b, xN = 0. The concept of the basis
of a matrix is of fundamental importance in linear programming and it will be
discussed further below.

Looking at the graphical representation in two dimensions, it is well known that
each equation can be represented by a straight line. The combinations of all
coordinates (x1, x2) on the line satisfy this equation. Given two equations, the two
lines are either parallel (in which case there is no pair of coordinates that satisfies
both of them, i.e., there is no solution), they intersect at a single point (in which
case there is a unique solution), or they coincide (in which case any point on the
two identical lines is a solution, i.e., there is an infinite number of solutions).
These are exactly the three cases (i), (ii), and (iii) outlined in Theorem A.16
above.

 A Linear Algebra 10

In the following we will derive a method that is not only efficient in finding
solutions for systems of simultaneous linear equations, but it is also at the core of
the standard method for a solution technique for linear programming problems. In
fact, there are a number of solution methods for the solution of systems of
simultaneous linear equations, e.g., substitution, Gaussian elimination, or
Cramer’s rule, just to name a few. Let us first consider

Procedure A.18 (Cramer’s rule): Consider the system of simultaneous linear
equations Ax = b, where A is an [n × n]-dimensional nonsingular matrix, so that
det A ≠ 0. Then the unique solution to the system is obtained by the formula

A

A
det

det
x j

j = , where



















=

nnnnn

n

n

j

abaa

abaa
abaa

LL

MOMOMM

LL

LL

21

222221

111211

A ,

i.e., the matrix Aj is the matrix A with the j-th column a•j being replaced by the
right-hand side vector b.

Example: Consider the following system of simultaneous linear equations:

 x1 + 4x2 = 5
 −2x1 + 6x2 = −3.

With A and b , we obtain det A = 14, so that 







−

=
62
41









−

=
3

5

 3)42(
63
45

14
1

14
1

1 ==







−

= detx ,

 ½)7(
32

51
14
1

14
1

2 ==







−−

= detx ,

so that we obtain the solution . 







=

½
3

x

Procedure A.19 (Gauss-Jordan pivoting method): The Gauss-Jordan pivoting
method can be considered an “automated” implicit substitution method. To

A.2 Systems of Simultaneous Linear Equations 11

initialize, consider the system ∑ , i=1, 2, …, m. Choose now any

equation, say the r-th, and any variable, say the s-th, so that the coefficient of the
variable x

=

=
n

j
ijij bxa

1

∑
≠
=

+
n

sj
j

rjsrs xax
1

s in the r-th equation is ars, which we assume to be nonzero. The r-th

equation can then be written as a or as = rj b

 .
1
∑
≠
=

=+
n

sj
j rs

r
j

rs

rj
s a

b
x

a
a

x (7)

Rewriting (7) results in ∑
≠
=

−=
n

sj
j

j
rs

rj

rs

r
s x

a
a

a
b

x
1

. Substituting xs in all equations i ≠ r

results in

 , or ∑
≠
=

=+
n

sj
j

ijijsis bxaxa
1

∑∑
≠
=

≠
=

=+−
n

sj
j

ijij

n

sj
j

j
rs

rjis

rs

ris bxax
a

aa
a

ba

11
,

or simply

rs

ris
ij

n

sj
j rs

rjis
ij a

ba
bx

a
aa

a −=







−∑

≠
=1

 ∀ i ≠ r. (8)

The original system has now been transformed into a new system that consists of
the single equation (7) and the (m − 1) equations (8). Note that now the variable xs
appears with a column that has a coefficient of 1 in the r-th row and with
coefficients of 0 in all other rows. This means that at present, xs = br, where br
refers to the numerical value that is presently on the right-hand side in row r.
Repeated applications of the above procedure result in each row having only a
single “1” coefficient on the left-hand side of the equation while all other
coefficients are zero. This allows us to directly read the solution from the system.

This procedure can be performed in a systematic manner as described below. We
initialize the method by defining the two set of indices I:= {1, 2, …, m} and J :=
{1, 2, …, n}.

 A Linear Algebra 12

The Gauss-Jordan Pivoting Method

Step 1: Does there exist a row i ∈ I, such that ai• = 0?
 If yes: Go to Step 2.
 If no: Go to Step 3.

Step 2: Is bi = 0?
 If yes: Set I:= I \ {i}, delete the i-th row and go to Step 1.
 If no: Stop, the system has no solution.

Step 3: Is I = ∅?
 If yes: Go to Step 4.
 If no: Go to Step 5.

Step 4: Is J = ∅?
 If yes: Stop, the system has exactly one solution xj = bi for a•j = ei.
 If no: Stop, the system has an infinite number of solutions, one of which
 is xj = bi for a•j = ei and xj = 0 ∀ j ∈ J.

Step 5: Select a pivot element (also simply called a pivot) ars ≠ 0, such that r ∈ I
 and s ∈ J. Then calculate















≠≠−

≠=

=≠
==

=

sjri
a

aa
a

sjri
a
a

sjri
sjri

a

rs

isrj
ij

rs

ij
ij

andif,

andif,

andif0,
andif,1

:

elementsotherall

rowpivot

columnpivot




















≠−

=
=

ri
a

ab
b

ri
a
b

b

rs

isr
i

rs

r

i
if,

if,
:

and set I:= I \ {r} and J:= J \ {s}. Go to Step 1.

For manual calculations, it is useful to observe that if arj = 0 for some j ≠ s, then
a•j remains unchanged in the present iteration (i.e., the j-th column does not
change) and, equivalently, if ais = 0 for some i ≠ r, then ai• remains unchanged in
the present iteration (i.e., the i-th row remains unchanged).

A.2 Systems of Simultaneous Linear Equations 13

The following three examples may explain the Gauss-Jordan pivoting method. In
the tables, the circled elements denote the pivot elements.

Example 1: Consider the following system of simultaneous linear equations

 x1 + 2x2 + 3x3 = 1
 4x1 + 5x2 + 6x3 = 2
 7x1 + 8x2 + 9x3 = 4.

The system and the Gauss-Jordan iterations can then be shown in tabular form as
follows:
 T1:

x1 x2 x3 1
1 2 3 1
4 5 6 2
7 8 9 4

Initially, I = {1, 2, 3} and J = {1, 2, 3} and the table represents the original system
of simultaneous linear equations that are read by multiplying each element in a
row by its header, where the vertical line to the left of the rightmost column
represents the “=”. In the table above, each of the nine elements on the left-hand
side can be selected as a pivot. The selection of a11 leads to the second table below
and the modified sets I = {2, 3} and J = {2, 3}, so that in the next iteration, only
a22, a23, a32, and a33 can be selected as pivot.

 T2:

x1 x2 x3 1
1 2 3 1
0 3 −6 −2
0 −6 −12 −3

The selection of the element a22 as a pivot leads to the third table and the modified
sets I = {3} and J = {3}. Performing another iteration leads to the third table
below.

 T3:

x1 x2 x3 1
1 0 −1 −⅓
0 1 2 ⅔
0 0 0 1

At this point, row 3 contains only zeroes on the left-hand side and “1” on the
right-hand side, reading 0 = 1, an obvious contradiction. The conclusion is that the
system has no feasible solution.

 A Linear Algebra 14

Example 2: Consider the following system of simultaneous linear equations:

 x1 + 4x2 = 5
 3x1 − 2x2 = 8
 −2x1 + 6x2 = −3.

The Gauss-Jordan pivoting steps are shown below in a table with three parts
separated by horizontal lines; as usual, the pivots are shown as circled elements.

x1 x2 1
1 4 5
3 −2 8
−2 6 −3
1 4 5
0 −14 −7
0 14 7
1 0 3
0 1 ½
0 0 0

The pivots in the first two parts of the table are chosen according to the standard
criteria; in the third part, a3• = 0 and b3 = 0, so that the third row shows the
obvious identity 0 = 0. The algorithm terminates with the unique solution x1 = 3
and x2 = ½.

Example 3: Consider the following system of simultaneous linear equations

 3x1 − 7x2 + x3 = 3
 −2x1 + 5x2 = 6

Again, the table below shows the steps in tabular form with the pivots circled.

x1 x2 x3 1
3 −7 1 3
−2 5 0 6
1 3

7− 3
1 1

0 3
1 3

2 8
1 0 5 57
0 1 2 24

As can be seen in the above table, after two steps, I = ∅ but J ≠ ∅, so that the
system has an infinite number of solutions. One of these solutions is x1 = 57, x2 =
24 and x3 = 0. Other solutions can easily be generated by setting any one of the
variables to an arbitrary value and solving the system for the remaining ones. For

A.2 Systems of Simultaneous Linear Equations 15

instance, setting x3 := 10, the bottom two rows of the table read x1 + 5(10) = 57
and x2 + 2(10) = 24, so that x1 = 7 and x2 = 4.

It is also worth mentioning that in case m ≥ n, the system may have either none,
one, or an infinite number of solutions, while for m < n, the system has either no
solution or an infinite number of solutions, but never a unique solution.

Another possibility is to work with multiple right-hand sides. Such scenarios may
derive from the existence of potentially different capacities, demands, or similar
data, or the uncertainty surrounding these data. The use of multiple right-hand side
values can easily accommodated by pivoting on them as one would do with any
column in the tableau.

We should also point out that the Gauss-Jordan pivoting method described above
has other uses as well. One such use is the evaluation of determinants. For that
purpose, assume that the matrix A is of size [n × n]. The procedure will then pivot
on the matrix A (without the right-hand sides) as usual. When the algorithm
terminates after exactly n pivots have been selected and the matrix has been
transformed exactly n times, then det A equals the absolute value of the product of
the pivots used in the procedure. If the algorithm terminates earlier (e.g., by the
inability to find a nonzero pivot element), then det A = 0, which indicates that at
least one row or column is linearly dependent. The following two examples may
illustrate the procedure.

Example 4: Consider the matrix

 .















=

120
213
102

A

The procedure then determines the sequence of pivots shown by the circled
elements in the table below.

2 0 1
3 1 2
0 2 1
2 0 1
−1 1 0
−2 2 0
0 2 1
0 0 0
1 −1 0

The third and bottom part of the table indicates that the second row, which is the
only choice as pivot row at that time, consist of only zeroes, so that no pivot

 A Linear Algebra 16

selection is possible. Hence the algorithm terminates prematurely with the
message that det A = 0. Furthermore, since two steps have been performed, we
know that rk A = 2 and one of the rows/columns is linearly dependent on the
others.

Example 5: Consider the matrix

















−
=

710
213
102

A

Again, the Gauss-Jordan pivoting steps are shown in the table below.

2 0 1
3 1 2
0 1 −7
0 − 3

2 − 3
1

1 3
1 3

2
0 1 −7
0 7

5− 0

1 7
3 0

0 − 7
1 1

0 1 0
1 0 0
0 0 1

There were n = 3 pivot steps in this example, indicating that the matrix has full
rank and the determinant is |det A| = (3)(−7)(− 7

5) = 15. Since two rows of the
bottom part of the table have to be exchanged in order to obtain an identity matrix,
the sign of the determinant changes, so that det A = 15.

Finally, we will show how to employ Gauss-Jordan pivoting to determine the
inverse of a given matrix A (or to show that it does not exist). Suppose again that
A is an [n × n]-dimensional matrix with full rank, i.e., det A ≠ 0. (If this is not
originally the case, it will be detected during the execution of the algorithm by a
row of zeroes). Instead of just one right-hand side column, the right-hand side in
this case consists of an [n × n]-dimensional identity matrix I. The procedure will
sequentially select n pivot elements in the matrix A, one at a time, so that the
transformation rules in Step 5 of the algorithm are equally applied to the left-hand
side and the right-hand side. After n pivoting steps, the matrix A on the left-hand
side is transformed to an identity matrix (after possibly rearranging rows), while
the former identity matrix on the right-hand side is transformed to the inverse A−1.

A.2 Systems of Simultaneous Linear Equations 17

The procedure may be visualized as follows:

A I
. .
. .
. .
. .
. .
I A−1

Again, if not all pivots were selected on the main diagonal of A, it may be
necessary to exchange rows in the bottom table. clearly, if any two rows on the
left hand-side are exchanged, the same change has to be performed on the right-
hand side. A byproduct of this inversion is again the determinant of the matrix A
(and det A−1 = [det A]−1). The procedure may be explained by

Example 6: Consider the matrix

 .
















−
−=
023
105

243
A

The Gauss-Jordan pivoting steps are shown in the table below.

3 4 2 1 0 0
5 0 −1 0 1 0
−3 2 0 0 0 1
13 4 0 1 2 0
−5 0 1 0 −1 0
−3 2 0 0 0 1
19 0 0 1 2 −2
−5 0 1 0 −1 0
− 2

3 1 0 0 0 2
1

1 0 0 19
1 19

2 − 19
2

0 0 1 19
5 − 19

9 − 19
10

0 1 0 38
3 19

3 38
13

In order to obtain an identity matrix on the left side, the second and third row in
the bottom part of the table have to be exchanged. The result is then the inverse

 A Linear Algebra 18

















−−

−
=−

19
10

19
9

19
5

38
13

19
3

38
3

19
2

19
2

19
1

1A .

A byproduct is the determinant of the matrix A, which turns out to be det A = 38,
since the product of the pivots is (−1)(2)(19) = −38 and the last two rows have
been exchanged, thus changing the sign.

Below, we will introduce some new terminology which is necessary for our
discussion of linear relations in n dimensions.

Definition A.20: The set of points {x: ai•x R bi} defines

 (i) a hyperplane, if R = {= },
 (ii) a closed halfspace, if R ∈ {≤, ≥}, or
 (iii) an open halfspace, if R ∈ {<, >}.

In the case of a single dimension, i.e., if a single variable is given, a hyperplace is
a point (e.g., x = 4), while a halfspace is a halfline (e.g., x ≤ 4 or x ≥ 4). In two
dimensions a hyperplane defines a straight line and a halfspace half of a plane.
Finally, in three dimensions a hyperplane defines a plane and a halfspace half of
the three-dimensional space bordered by a hyperplane.

Generally speaking, a hyperplane in n-dimensional real space ún is (n−1)-
dimensional, while a halfspace in ún is n-dimensional. Note that every halfspace
ai•x R bi with R ∈ {≤, ≥, <, >}is bordered by the hyperplane ai•x = bi, where a
closed halfspace includes all points of its bordering hyperplane, while an open
halfspace includes none of them. Formally we can write

Definition A.21: A set S is called closed, if all points on the boundary of S belong
to the set as well. On the other hand, a set S is called open, if no point on the
boundary of S belongs to S.

As an example, the set {x ∈ ú: x ∈ [1, 5]} is closed, while the set {x ∈ ú: x ∈]1,
5[} is open. We should note here that linear programming exclusively deals with
closed sets. Hence, if we simply refer to halfspaces in linear programming, this
means closed halfspaces.

Consider now the case of more than one single inequality. Equivalent to the above
discussion regarding equations, a point that satisfies all inequalities will
graphically be located in the intersection of the halfspaces that are defined by the
given inequalities.

A.2 Systems of Simultaneous Linear Equations 19

As an illustration, consider the system of linear inequalities

 3x1 + 2x2 ≤ 6 (I)
 2½x1 − 1x2 ≥ 1. (II)

Figure A.1 shows the straight lines I and II representing the equations 3x1 + 2x2 =
6 and 2½x1 − 1x2 = 1, while the flags at the ends of the lines indicate the halfspace
defined by the relations. These halfspaces subdivide the two-dimensional plane
into the four sets A, B, C and D. All points in the set A violate constraint I and
satisfy constraint II, all points in B violate both constraints, all points in the set C
satisfy constraint I and violate constraint II, and all points in the set D (including
the boundaries) satisfy both constraints. This is why D would be called the
feasible set, or, equivalently, the set of feasible solutions.

x2

B

A
C

1

x1 1

D −1

I

 II
Figure A.1

Definition A.22: The nonnegative orthant ú is the set of all nonnegative points

in ú

n
+

n, i.e., or simply {x ∈ úI
n

j
jj xx

1
}0:{

=

≥ n: x ≥ 0}.

In ú2, the nonnegative orthant is the first quadrant including the positive axes and
the origin. If we were to add the relations III: x1 ≥ 0 and IV: x2 ≥ 0 to the above
system of simultaneous linear inequalities, then the set of solutions is the
intersection of the set D in Figure A.1 and the first quadrant, i.e. the triangle with
the vertices (2/5, 0), (2, 0), and (1, 1½).

 A Linear Algebra 20

Definition A.23: A set S is said to be bounded, if there exists a finite number c ∈
ú, so that ||x|| < c for every point x ∈ S. A set that is not bounded is said to
unbounded. A set S is called compact, if it is closed and bounded.

As an example, the set D in Figure A.1. is unbounded, while the set of points that
satisfies the constraints I, II, III, and IV is bounded and closed and hence compact.

Definition A.24: The intersection of a finite number of hyperplanes and/or closed
halfspaces in ún is called a polytope. A bounded polytope is called a polyhedron.

In general, we will refer to the set that is defined by a system of simultaneous
linear inequalities of type ≤ and/or ≥ as a polytope since it is not obvious whether
or not the set is bounded. Also, a polytope and a polyhedron may degenerate to
the empty set or a single point in ún. Again, the set D in Figure A.1 is a polytope
since it is generated by the halfspaces of constraints I and II, but it is not a
polyhedron, since it is unbounded from below. On the other hand, the set of point
in the triangle with vertices (2/5, 0), (2, 0), and (1, 1½) is a polytope since it is
generated by the halfspaces of constraints I, II, III, and IV, and since it is bounded,
it is also a polyhedron. We wish to point out that the terms polytope and
polyhedron are sometimes defined differently by other authors.

Let now Hi denote the set of points that satisfy the i-th linear relation

, i = 1, 2, …, m; then S is the set of points that satisfy all

m relations simultaneously.

∑
=

n

j
iijij bRxa

1
I
m

i
iH

1=
=

Definition A.25: The k-th relation is said to be redundant, if I If the
m

ki
i

i SH

≠
=

=
1

.

k-th relation is not redundant, i.e., if , it is called essential. I I
m

ki
i

m

i
ii SHH

≠
= =

≠
=⊃

1 1

Moreover, we can state

Definition A.26: If for some point S∈x~ the i-th linear relation is satisfied as an
equation, i.e., if ,~

ii b=•xa then the i-th relation is said to be tight or binding at x~ .

Figures A.2a and A.2b may explain the concept.

A.2 Systems of Simultaneous Linear Equations 21

2x

1x

I

VI
IV

V

B

C

III

O

D

A

•E

VII

II

Figure A.2a

In Figure A.2a, the polytope generated by the halfspaces I, II, …, VII is the shaded
area with corner points 0, A, B, C, and D. Clearly, inequality II is redundant since
its inclusion (or removal) does not change the shape of the polytope. The same
argument can be applied to inequality IV, which therefore is also redundant. Note,
however, that inequality IV is binding at point B, whereas inequality II is not
binding at any point of the polytope, which makes constraint II strongly
redundant, whereas constraint IV is weakly redundant. At point C in Figure A.2a,
relations I and III are binding, at point 0 it is relations VI and VII that are binding,
whereas at the interior point E none of the relations is binding.

In Figure A.2b, relations I and II are inequalities while relation III is an equation,
thus the polytope defined by the relations is the set of points on the straight line
between the points A and B. This implies that relations I and V are redundant and
could be deleted without changing the polytope.

Definition A.27: A point y ∈ ún is said to be a linear combination of a given set
of points x1, x2, …, xr if there exist real numbers λ1, λ2, …, λr, such that

The linear combination y is said to be a nonnegative

linear combination, if λ

∑
=

λ=
r

k

k
k

1
.xy ∑

=

λ=
r

k

k
k

1
x

k ≥ 0 ∀ k = 1, …, r; it is called an affine linear

 A Linear Algebra 22

combination, if ∑ and it is called a linear convex combination (lcc) if λ,1
1=

=λ
r

k
k

1
∑
=

λ
r

k

k

≥ 0 ∀ k = 1, …, r, and .1=k

2x

1x

IV

I

V

B
III

O

A

II

Figure A.2b

As an illustration, consider the five points x1 = (0, 0), x2 = (3, 0), x3 = (0, 2), x4 =
(3, 2), and y = (1½, ½). Inspection reveals that λ1 = λ2 = 0, λ3 = −¼, and λ4 = ½
generate point y, which is therefore a linear combination of the other points.
However, λ1 = 0, λ2 = ½, λ3 = ¼, and λ4 = 0 also generate point y which makes it a
nonnegative linear combination as well. In order to find out whether or not y is an
affine linear combination or even a linear convex combination of x1, x2, x3, and x4,
we have to find a set of solutions to the system

 0λ1 + 3λ2 + 0λ3 + 3λ4 = 1½
 0λ1 + 0λ2 + 2λ3 + 2λ4 = ½
 λ1 + λ2 + λ3 + λ4 = 1

A.3 Convexity 23

Ignoring the nonnegativity conditions for the time being (which are required for
linear convex combinations), we apply the Gauss-Jordan pivoting algorithm. The
table below shows the details of the calculations with the pivots, as usual, shown
by the circled elements.

λ1 λ2 λ3 λ4 1
0 3 0 3 1½
0 0 2 2 ½
1 1 1 1 1
0 1 0 1 ½
0 −2 2 0 −½
1 0 1 0 ½
0 1 0 1 ½
0 −1 1 0 −¼
1 1 0 0 ¾

One of the solutions to this system is λ1 = ¾, λ2 = 0, λ3 = ¼, and λ4 = 0, indicating
that y is indeed an affine linear combination of x1, x2, x3, and x4. Finally, for y to
be a linear convex combination of the given points x1, x2, x3, and x4, the following
conditions must be satisfied: λ1 = ¾ − λ2 ≥ 0, λ3 = −¼ + λ2 ≥ 0, and λ4 = ½ − λ2 ≥
0, implying that λ2 ≤ ¾, λ2 ≥¼, and λ2 ≤ ½. It follows that for any λ2 ∈ [¼, ½], the
resulting multipliers λ1, λ3, λ4 ≥ 0 and y is therefore also a linear convex
combination of the given points.

As another example, consider the same given points x1, x2, x3, and x4 and let z =
(1, 3) be an additional point. The reader will then be able to verify that z is both a
nonnegative and an affine linear combination of the given points, but it is not a
linear convex combination of these points.

A.3 Convexity
Definition A.28: A set S is said to be convex, if the linear combination of any two
elements of S is also an element of S, i.e., if x, y ∈ S and λ ∈ [0, 1], then λx +
(1−λ)y ∈ S. Geometrically speaking, a set is convex, if all points on a straight line
segment that joins any pair of arbitrary elements of S are also elements of S.

Figures A.3a – A.3f are examples for convex and nonconvex sets, where the
shaded areas denote the sets defined by the relations shown below the respective
figures.

 A Linear Algebra 24

x2

1

x1 1

Figure A.3a

Figure A.3a shows a disk that is described by the inequality . It
is apparent that the set is convex.

02 1
2
2

2
1 ≤−+ xxx

x2

x1 21

Figure A.3b

A.3 Convexity 25

The shaded set in Figure A.3b is the difference of two disks. The inequalities that

describe the set are and . The set is not convex. 42
2

2
1 ≤+ xx 12

2
2
1 ≥+ xx

x2 2

5

–1 1 x1

Figure A.3c

The area above in parabola in Figure A3c is described by the inequality

. It is a convex set. 02
2
1 ≤− xx

x2

5

x1 −1 1

Figure A.3d

 A Linear Algebra 26

The shaded set in Figure A.3d is the complement of the set of Figure A.3c. It is
described by the nonlinear inequality and it is not convex. 02

2
1 ≥− xx

x2

2

1

x1 ½

Figure A.3e

The shaded area in Figure A.3e is the area below the fractional function

21
2

1
≤+ x

x
, coupled with the nonnegativity constraint . It is convex. 01 ≥x

Figure A.3f

x2

4

x1 –1 1

A.3 Convexity 27

The set shown in Figure A.3f is the difference between two parabolas. The set
satisfies the conditions and 02

2
1 ≤− xx 12

2
12

1 ≤+− xx , and it is not convex.

Other examples are x2 ≤ sin x1 (not convex), x (not convex, since the
origin in the (x

02
2

2
1 >+ x

1, x2) plane is not included in the set), and so forth.

The following example may provide an illustration of an algebraic proof of the
convexity of a set.

Example: Consider the set given by x as shown in Figure A.3c. Let x02

2
1 ≤− x ~

and denote any two points that satisfy the relation, i.e., x̂ 0~~
2

2
1 ≤− xx and

 Let now .0ˆ 2
1 ≤x ˆ2− x x be any linear convex combination of x~ and , i.e., x̂

.2,1,ˆ)1(~ =λ− jx j+xx jj λ=

Then =λ−+λ−λ−+λ=−]ˆ)1(~[]ˆ)1(~[22

2
112

2
1 xxxxxx

() () ()

4342132143421
0

2
11

00
2

2
1 ˆ~1ˆˆ

≥≤≤

−+λ−−= xxxx {
0≥
λ ()321

0

1
≤

−λ + ()
43421

0
2

2
1

~~

≤

− xx {
0≥
λ ≤ 0,

which proves that the set {x1, x2 ∈ ú: } is convex. Returning to linear
relations, we can now state

02
2
1 ≤− xx

Lemma A.29: Every linear relation defines a convex set.

Proof: Consider a linear relation ax R b and suppose that x1 and x2 both solve this
relation, i.e., ax1 − b R 0 and ax2 − b R 0. Let now x be a linear convex
combination of x1 and x2, i.e., ,)1(21 xxx λ−+λ= then

 bb −λ−+λ=−])1([21 xxaxa =

 for R ∈ {≤, +, ≥}. 0))(1()(21 Rbb −λ−+−λ axax
 ≥ 0 R 0 ≥ 0 R 0

A similar argument applies to the cases in which R ∈ <, >}. �

Now that we have proved that hyperplanes and halfspaces are convex sets, we can
also prove the following

Lemma A.30: The intersection of a finite number of convex sets is a convex set.

Proof: First consider two sets. Let A and B be two convex sets and define C = A ∩
B. For any two points x and y with x, y ∈ A ∩ B = C, we can conclude that since

 A Linear Algebra 28

C is a subset of A as well as of B, x and y are both in A as well as in B. Define now
a point z = λx + (1-λ)y, since the set A is convex by assumption, z ∈ A, and since
the set B is convex, z ∈ B follows, and hence z ∈ A ∩ B = C. Repeating this
procedure, this proves the lemma for any finite number of sets. �

Since each polytope is, by definition, the intersection of hyperplanes and/or
halfspaces, we can conclude that

Corollary A.31: A polytope is a convex set.

By definition, the empty set as well as a single point are also convex sets. With
respect to linear relations, we will also need the following

Definition A.32: A basic point in ún is the intersection of at least n hyperplanes at
one single point; a basic feasible point is a basic point that satisfies all given linear
relations. A basic feasible point is also called an extreme point of the set described
by the linear relations.

As an illustration, consider Figure A.4.

O

D

B

C

F

A

E

H

x2

G

x1

Figure A.4

The shaded area in Figure A.4 is the polytope; the points 0, A, B, C, D, E, F, G,
and H are basic points, whereas only 0, A, C, and F are extreme points of the
polytope.

A.3 Convexity 29

We will conclude this section by stating

Lemma A.33: An extreme point cannot be expressed as a linear convex
combination of other points in a polytope. In a polyhedron, each point can be
expressed as linear convex combinations of extreme points. This property does not
hold for polytopes that are not polyhedra.

A few examples may explain the ramifications of Lemma A.33. Consider a two-
dimensional space. The only polytopes that have no extreme points at all consist
of either the empty set, a single hyperplane or halfspace, or the intersection of any
number of parallel halfspaces, whose gradients belong to a single hyperplane. The
last object may be difficult to visualize; as an example, one could imagine an
infinitely long pencil with flat surfaces. Polytopes with a single extreme point are
either a point or a polyhedral cone as defined in Definition A.35 below. None of
these polytopes are polyhedra and in none of these cases will it be possible to
generate any point from the existing extreme points (if any) other than the extreme
point itself.

Definition A.34: The set of all points that can be expressed as linear convex
combinations of extreme points is called the convex hull of the given extreme
points.

One can then prove

Proposition A.35: A polyhedron is the convex hull of its extreme points.

Definition A.36: A convex polyhedral cone is the intersection of any number of
closed halfspaces whose bordering hyperplanes intersect at a single point.

Hence, each convex polyhedral cone is an unbounded polytope with just one
extreme point, called its vertex. One can show that each convex polyhedral cone
with its vertex at the origin can be generated as the set of all nonnegative linear
combinations of a finite number of given points.

Definition A.37: A simplex S ∈ ún is the convex hull of (n + 1) given points, such
that there exists no hyperplane in ún that includes all of these (n + 1) points.

As an example, a simplex in ú2 is a triangle, and in ú3 it is a tetrahedron. Figure
A.5 shows simplices in 0-, 1-, 2-, and 3-dimensional real space.

 A Linear Algebra 30

•

•

•

•

•

•
•

•
•

•
ú1

ú0

ú2
ú3

Figure A.5

B COMPUTATIONAL COMPLEXITY

B.1 Algorithms and Time Complexity Functions
Solving a mathematical problem will require calculations. Whether such
calculations are performed manually or on a computer, we will be interested in the
effort it will take to perform these calculations. Since the days of the abacus, the
slide rule, and the mechanical calculating machine, our ability to handle vast
amounts of calculations has developed to an extraordinary extent. However, at the
same time, the need for ever more complex and large-scale computations has
soared, at times outperforming the increase of computational capability. It is
therefore interesting to study the science of how much calculation effort our
numerical problems require. This is the topic of this chapter. The treatment in this
chapter is based on material from Eiselt and Sandblom (2000). For an original and
comprehensive treatment of computational complexity, readers are referred to the
classical book by Garey and Johnson (1979).

In order to avoid confusion, we will use the term problem to denote a general
mathematical formulation such as a linear, nonlinear, integer etc., programming
model, whereas an instance of a problem will be any specific numerical case or
realization of this problem; the size of the instance is typically expressed in terms
of the number of variables, constraints, criteria, or similar measures.

Solutions can appear in two different guises: there are closed-form solutions and
solutions that are not available in closed form. Simply speaking, closed-form
solutions are formulas into which known numbers are inserted and the unknowns
are then calculated. For instance, a quadratic equation ax2 + bx + c = 0 has the
closed-form solution a

c
a
b

a
b −±−= 242x . Knowing the numbers a, b, and c, we

simply insert them into the formula and solve for x. Clearly, most problems are
much more complicated than that and they do not have closed-form solutions. In
those cases, we typically have the need for a method that starts with some initial
trial or estimated solution, from which it iteratively creates a succession of
solutions whose quality improves as the method progresses. Such a technique is

 B Computational Complexity 32

called an iterative algorithm (named after the Arab mathematician Mohammed
ibn-Musa al-Khwarizmi in the 9th century). For a detailed account, see the
website by Overbay et al. At each iteration, the current solution is checked for a
desired set of properties Π, such as optimality or feasibility. If the current solution
satisfies the properties in Π, then the procedure stops; otherwise a new and
improved solution is generated and the procedure is repeated. In order to
formalize matters, let k be an iteration counter and denote by x1 the initial
solution. We will write xk ∈ Π if the solution xk satisfies the properties included in
Π. Finally, let τ (xk) be a transformation that generates a new solution xk+1 from
the given solution xk. The basic structure of an iterative algorithm is outlined in
Figure B.1.

No

Yes
Is xk ∈ Π?

STOP,
xk solves the problem

START
Set k:= 1

Generate
xk+1:= τ(xk)

and set k:= k + 1

Figure B.1

As a simple example, consider bisection search, a technique that finds an item
with a requested number in an ordered list, and apply it to the problem of finding a
certain page in a book. For this purpose, it is immaterial whether or not there are
some pages missing, but it is required that the pages (or, in general, documents)
are in increasing or decreasing order. As an example, assume that the book has
480 pages and we would like to find page 293. Our search will always lead us
from one guess to the next by searching between the low end (indicated by, say, a
red bookmark) and the high end (indicated by a blue bookmark). In particular, the
next guess will always lead us into the middle of an interval of uncertainty marked
by its low and high ends. In our example, assume that our initial guess, i.e., the
page we have presently opened, is page 120. As 293 > 120, we put the red
bookmark on page 120 and insert the blue bookmark at the end of the book on
page 480. Our next guess will then lead us to page 120 + ½(480 − 120) = 300. As

B.1 Algorithms and Time Complexity Functions 33

300 > 293, we keep the red bookmark at 120 and change the blue bookmark to
page 300, knowing that the desired page will be located between the two
bookmarks. The next guess is halfway between pages 120 and 300, i.e., at page
120 + ½(300 − 120) = 210. As 210 < 293, the red bookmark is moved from page
120 to page 210 and the search continues. The next search points are at pages 255,
278 (rounded up), 289 (rounded up), 295 (rounded up), 292, 294, and 293. At this
point the algorithm has converged and the problems is solved.

In formal terms, x1 would be the initial page 120, the property Π would be “the
page number is 293,” and the iteration formula is the bisection search as described
above.

Some algorithms do not need an initial solution to start with, as is the case with
the Gauss-Jordan pivoting method which was described as Procedure A.19 in
Chapter A.2 of this volume. The stop criterion was then Π: I = ∅ = J, and the
algorithm could stop with either a solution xk in Step 4, or with the message in
Step 2, indicating that no feasible solution exists. In general, stop criteria are
typically associated with the two major properties of solutions to mathematical
optimization problems: feasibility and optimality. These issues will frequently
appear in the remainder of this book.

In principle, after an algorithm is designed, two properties will have to be verified,
viz.,

• the validity of the procedure, and
• its convergence.

As far as the validity is concerned, we must prove that the solution produced by
the procedure satisfies the properties in Π, and that, if such a solution does exist, it
is found by the algorithm. The proof of convergence for exact methods is usually
a proof of finiteness of the procedure, something that may not be required for
certain approximation algorithms. As an example, consider the Newton-Raphson
method (Procedure A.10 in Section A.2) for solving the equation f(x) = 0.
Applying this algorithm to the function f(x) = x⅓, we find xk+1 = −2xk, which will
not converge for any initial solution x1 ≠ 0. On the other hand, with f(x) = x2 − 2,
the procedure will converge to the solution 2=x , no matter what the initial
solution x1 is. However, this convergence is not finite, so that the stopping
criterion for a finite conclusion of the algorithm needs to include one or more of
the requirements |xk+1 − xk| ≤ ε1, |f(xk+1) − f(xk)| ≤ ε2, and k ≥ M, for some
preselected (small) values of ε1 and ε2 and (large) value of M.

Once validity and finiteness are proved, the method can be implemented and
applied. Over the years, however, scientists and practitioners alike have found that
requiring finiteness of a procedure is not sufficient. For example, what good does
it do if one can prove that an algorithm is finite if, even when applied to relatively

 B Computational Complexity 34

small models, it would take hours, days or even years of time to solve a given
instance of the problem on a computer? This argument may seem far-fetched at
first sight, but we will see in this chapter that problems of this type do indeed
exist. Consequently, we need a better criterion than finite convergence and, in
general, parameters that evaluate or classify an algorithm with respect to its
performance.

Since all real world models will be solved on computers, we will focus on the
requirements of algorithms as they are implemented on a computer. Typically,
two criteria are used as performance criteria for algorithms: the amount of time
required for the solution of a given model and the storage space requirements in
the solution process. Clearly, the time requirement does not exclusively depend on
the algorithm and the model itself but also on the specific computational
equipment used, just as the required storage space for a model also depends on the
way in which the model is coded. Since it is rather obvious that there is no general
and definite answer to questions like: “How long will it take to solve any linear
programming problem with the primal simplex algorithm?” even if the type of
computational equipment were specified, the analyst may rephrase the question
and either ask: “What is the expected time (or storage space) requirement?” or:
“How much time (or storage space) will be required in the worst case?” if a
specific problem is to be solved. The various types of analyses of an algorithm can
be visualized in Figure B.2.

ALGORITHM

Storage space
requirement Time requirement

Average case
analysis

Worst case
analysis

Average case
analysis

Worst case
analysis

Figure B.2

In order to avoid discussing many details concerning the implementation of a
model on a computer, we will restrict ourselves mostly to the worst case time
analysis of an algorithm. In general, while it is generally possible to develop a
theoretical upper bound for the time requirement in the worst case, an analysis of
the average case either requires a probabilistic analysis using some statistical
distribution for the numerical values of the problem coefficients, or an empirical
study that involves solving a test series of either collected practical or random-
generated instances of a problem. Examples for worst-case as well as probabilistic
analyses are provided below.

B.1 Algorithms and Time Complexity Functions 35

In order to calculate the time requirements, it is usually beneficial to decompose
the term “time” as

[time] = 







operations elementary

time






iterations
operations elementary [iterations]

The above term “elementary operation” is used for addition, subtraction,
multiplication, division and comparison (i.e., finding the maximum or minimum
of any two given numbers), and it is assumed that all elementary operations
require the same constant time on a given computer, regardless of the magnitude
of the numbers involved. This is obviously a simplification since a multiplication
takes considerably longer than an addition or a comparison but this simplification
does not change the principle of the argument. The time requirement for one
elementary operation clearly depends on the specific computer model; currently it
lies in the vicinity of a nanosecond, i.e., a modern computer is able to perform
about a billion elementary operations per second. As the time requirement per
iteration has nothing to do with the algorithm but rather with the state-of-the-art
technology, we will just count the operations required for an algorithm and the
number of iterations. If need be, the speed of the computer will be specified on an
ad hoc basis geared towards the specific argument being pursued.

The last two factors in the above time function do not represent any fixed numbers
that can be associated with a specific algorithm. They are functions depending on
the size of the model or, in the above terms, the size of the instance of the
problem. Since it is assumed that a digital computer is used for the solution of the
model, the length of a binary encoding of the given instance is a reasonable
measure of the size of the model. This yardstick does, however, sometimes prove
to be rather awkward, so that we will usually resort to other “natural”
measurements of size. As an example, consider a system of simultaneous linear
equations. Here, the number of variables provides a reasonable description of the
size of the model. If a string of n numbers is given that are to be sorted or
otherwise manipulated, n is again used as a description of the size of the instance
of the problem.

On the other hand, the magnitude of the numbers in the model is not a reasonable
measurement of the size, at least not as far as digital computers are concerned.
Such machines use binary encodings in which any given number b, e.g., the
largest number in the model, is represented by log2b rather than b digits; for an
introduction, see Lenstra and Rinnooy Kan (1979). Often, the number of
elementary operations per iteration is easy to determine whereas the required
number of iterations is either more difficult to compute or its only known bound
may be exceedingly large.

 B Computational Complexity 36

Suppose now that the size of any instance of a problem can be described by n, and
let f(n) denote the maximal number of elementary operations required to solve any
instance of the problem using the algorithm concerned. Then the function f(n) is
called the time complexity function of the algorithm. As an example, let the time
complexity function of some algorithm be f(n) = ½n5 + 20n4 + 2,000 n. We are
specifically interested in the behavior of an algorithm applied to large-scale
problems, i.e., problems with n >> 0, and observe that the term ½n5 then
dominates the other terms in the sense that f(n)/n5 tends to ½, the coefficient for
the n5 term, when n increases to infinity. Therefore an algorithm with the above
time complexity function will be called of order n5 or O(n5) for short. Loosely
speaking, O(f(n)) includes only the fastest growing term of f(n). As will be seen
below, O(f(n)) is frequently much easier to determine than f(n) itself.

We will call any algorithm for which f(n) is bounded from above by a polynomial
function in n a polynomially bounded algorithm or simply polynomial algorithm,
whereas all other algorithms are termed nonpolynomial. Some authors use the
exponentially bounded algorithms as a synonym for nonpolynomial algorithms, in
which case the term “exponential” is used in the wide sense, regardless whether
f(n) is an exponential function in the strong sense or not. Edmonds (1965) was the
first to use the term “good” for polynomially bounded algorithms. The reason to
consider polynomial algorithms good and nonpolynomial algorithms poor
performers (in the worst case) becomes clear considering Table B.1.

Table B.1

O(•)

Time to solve a problem of size
n = 10 n = 20 n = 50 n = 100

nhour

N

O(n2) (1)10–7
sec

(4)10–7
sec

(2.5)10–6
sec

(1)10–5
sec

n ≈ 1.9
million

31.6n

O(n3) (1)10–6
sec

(8)10–6
sec

(1.3)10–4
sec

(1)10–3
sec

n ≈
15,326

10n

O(n5) (1)10–4
sec

(3.2)10–3
sec

0.31
sec

10
sec

n ≈ 325 3.98n

O(2n) (1)10–6
sec

(1)10–3
sec

13
days

(4.0)1013
years

n < 41 n + 9.97

O(3n) (5.9)10–5
sec

3.5 sec 22.8
million
years

(1.6)1031
years

n = 26

n + 6.29

O(n!) (3.61)10–3
sec

77
years

(9.6)1047
years

(3.0)10141
years

n = 15

100,50
 20,10

for
2
3

=
=

+
+

n
n

n
n

O(nn) 10
sec

(3.3)109
years

(2.8)1068
years

(3.2)10183
years

n = 11

100
50
20
10

for

2.1
4.1
7.1
0.2

=
=
=
=

+
+
+
+

n
n
n
n

n
n
n
n

B.2 Examples of Time Complexity Functions 37

Here we assume that the given computer requires one nanosecond (10–9 seconds)
to perform an elementary operation. Table B.1 shows the computation times for a
variety of polynomial and nonpolynomial algorithms when applied to problems of
various sizes, and also provides values of nhour, defined as the largest problem size
n that can be solved within one hour by the algorithm under consideration.
Finally, N denotes the size of problems that can be solved in the same time as a
problem of size n, given a computer that is 1,000 times as fast.

With the unacceptably long computation times below the bold line in Table B.1, it
is clear why polynomial algorithms can be labeled “good” and why nonpolyno-
mial algorithms must be considered inefficient.

So far, we have discussed complexity functions which are assigned to specific
algorithms. It is also possible to associate a worst case complexity function with
every given problem. The complexity of a problem is then simply the complexity
function of the best known algorithm that solves the problem.

B.2 Examples of Time Complexity Functions
In this section we will provide some simple algorithms whose worst case
complexity can easily be determined. The principle in selecting these algorithms
has been that they should be simple and not anticipate concepts to be described
later in this volume. This may make the exposition fairly elementary, but it should
make the principle sufficiently clear. The methods are mostly chosen from the
areas of linear algebra and file organization in data processing.

Example 1: Solution of systems of simultaneous linear equations.

Problem: Given a matrix A ∈ ún × ún and a vector b ∈ ún, find a solution x to the
system Ax = b by applying the Gauss-Jordan pivoting method, described as
Procedure A.19.

Complexity: In each iteration the transformation of a single element takes constant
time; given that there are n2 elements in the matrix, each iteration has a
complexity of O(n2) and the fact that n iterations are needed leads to an overall
complexity of O(n3). Note that since each of the n2 elements given in the problem
has to be considered and used at least once in an elementary operation during any
solution method, an obvious lower bound for the complexity function of the
problem is O(n2).

Example 2: Evaluation of a determinant.
Problem: Given a matrix A ∈ ún × ún, evaluate the determinant of A.

 B Computational Complexity 38

Complexity: We will apply two different methods to solve this problem. First
consider Gauss-Jordan pivoting. In this method we pivot in each row and in each
column no more than once, and then the product of the pivots is det A. As in
Example 1, O(n2) elementary operations are required in each Gauss-Jordan
iteration, and since no more than n iterations (and less if A is singular) are needed,
we obtain a computational complexity of O(n3). In addition, the product of the
pivots is calculated in O(n) multiplications, yielding an overall complexity of
O(n3) + O(n) = O(n3).

The second method is the Laplace expansion, see Definition A.8. It evaluates the
determinant by the i-th row, by computing

 det A = ∑ det A
=

+−
n

j

ji

1
)1(ij ,

where Aij denotes the submatrix of A obtained from A by deleting its i-th row and
its j-th column. In the worst case aij ≠ 0 ∀ j = 1, ..., n so that det A is now
expressed as the sum of determinants of n matrices of dimension [(n – 1) × (n –
1)] each of which, in turn, can be expressed as the sum of determinants of (n – 1)
matrices of dimension [(n – 2) × (n – 2)] and so forth. The procedure continues
until the determinant is expressed in terms of determinants of [2 × 2] matrices,
which can be evaluated in three elementary operations each. The total number of

elementary operations is roughly 3 ∏ which is O(n!). Hence this technique has

a nonpolynomial complexity and is therefore computationally inferior to the
pivoting method above, at least as far as the worst case is concerned. However,
this method is still quite instructional and useful for some proofs.

=

n

k
k

2

Example 3: Multiplication of two matrices.

Problem: Given two matrices A, B ∈ ún × ún, determine the product C = AB,
using

 ∀ i, j = 1, ..., n. ∑
=

=
n

k
kjikij bac

1

Complexity: Each element cij is the inner (or scalar) product of the n-vector ai• and
the n-vector b•j. The calculation of each element cij thus requires n multiplications
and (n – 1) additions, i.e., O(n) elementary operations. Since C includes n2
elements, n2 inner products have to be calculated resulting in a complexity of
O(n3). Note that since each of the 2n2 elements of A and B is used in at least one
operation, a lower bound of O(n2) exists for the complexity. The reader is referred
to the decomposition principle of Strassen (1969) with improved complexity for
this problem.

B.2 Examples of Time Complexity Functions 39

Example 4: Search methods.

Problem: Given an ordered file with n numbers aj, j = 1, ..., n such that a1 ≤ a2 ≤
...≤ an and each number is allocated the same amount of space on the file. Given
some number a* (the search argument), find j, such that aj = a*.

Complexity: The Sequential Scanning Method compares a* with a1, if a* = a1,
stop; otherwise compare a* with a2 and so forth. Clearly, in the worst case a* = an
and n comparisons are necessary; hence the complexity is O(n). Let P(aj) now
denote the probability that a* = aj. If P(aj) = 1/n ∀ j, then the expected number of
comparisons (the average case analysis) is

 2)/1+(=)(
1

njaP
n

j
j∑

=

which is still O(n). However, if numbers that are frequently requested are placed
at the beginning of the file, the average time savings can be significant.

For the so-called Bisection Search Method that was illustrated in the book
example at the beginning of Section B.1, suppose that n = 2k for some k ∈ ù0.
Compare a* with an/2; if a* ≤ an/2 then discard all aj with j > n/2 and if a* > an/2,
discard all aj with j ≤ n/2. Then the process is repeated in the remaining interval. It
can be seen that in each iteration the relevant file length is cut in half; since only
one comparison is required per iteration, it follows that the complexity is of order
O(log2 n). As an illustration of the above, let n = 16 and suppose that a* = a11.
Then the arrows in Figure B.3 show the steps in the bisection search procedure.

 Start a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

Figure B.3

The bisection search procedure is extremely efficient; even files with one billion
numbers require no more than thirty comparisons. It should also be mentioned that
with P(aj) = 1/n ∀ j, the average case complexity is almost identical to the worst
case complexity.

Using the Matrix Search Method, suppose that the numbers aj, j = 1, ..., n are
arranged in a []nn × -dimensional matrix so that a11 ≤ a21 ≤ ...≤ am1 ≤ a12 ≤ a22

≤ ...≤ am2 ≤ a13 ≤ ... where m = n , i.e., the ordered file is broken down into n -
dimensional subfiles which are the columns of the matrix. The procedure is to
scan the elements a11, a12, ..., na1 (i.e., the first row of the matrix) until for some

k, a* > a1k for the first time or na1 has been reached, in which case we set

 B Computational Complexity 40

k:=1+ n . Then sequential scanning continues in the (k – 1)-st column. In the

worst case all n elements in the first row and the n elements in column (k –

1) have to be scanned yielding a worst case complexity of 2 n = ()nO , which
equals the average complexity. A possible improvement is to conduct a binary,
rather than sequential, search in the row and later the column of the matrix.

Search in an unordered set. Although sequential scanning is by far inferior to the
two other search methods described above, it is the only one which can also be
used for a search in an unordered file. Its complexity does not change whether the
file is ordered or not. In many applications, however, the probabilities P(aj) are
not uniformly distributed. Consider, for example, a file of customer numbers.
Each time a customer places an order, its number has to be sought, and from there
a pointer leads to a customer’s file, e.g., his address, most recent orders, etc.
Clearly, there will be customers who order frequently, as well as customers whose
orders come in infrequently. Since the numbers of “good” customers have to be
sought much more frequently, it seems sensible enough to order the file, such that
P(a1) ≥ P(a2) ≥ ... ≥ P(an). This may dramatically reduce the average number of
necessary comparisons, although it does not change the worst case complexity, as
the following example may illustrate.

Let the customers of a company be divided into three groups in such a way that
group one comprises ten percent of the customers, group two consists of twenty
percent of the customers and group three includes the remaining seventy percent.
On average, each customer in group one orders five times as often as any
customer in group two who, in turn, places ten times as many orders as a customer
in the third group. Assume that a1, ..., an/10 are the customer numbers for group
one; an/10 + 1, ..., a3n/10 are the numbers for members of group two and the last
(3n/10)-1 numbers are associated with customers from group three. Then the
probability distribution is

 P(aj) =






 77/10
77/100
77/500

n
n
n

10
3

10
3

10
10

for
];]

for

n
nn

n

j
j
j

>
∈
≤

for

The expected number of comparisons is then

∑ ∑ ∑
10/

1=

10/3

1+10/= 1+10/3=
540,1770)/- (221 =)77/10(+)77/100(+)77/500(

n

j

n

nj

n

nj
njnjnjn

which approaches 0.1435n for large values of n. For n = 1,000 customers, rather
than an average of 500.5 comparisons for a completely unordered file, only 143
comparisons are needed.

B.3 Classes of Problems and their Relations 41

Example 5: Sorting methods.

Problem: Order a file of n numbers a1, a2, ..., an , so that a1 ≤ a2 ≤ ...≤ an.

Complexity: The simplest technique is Sorting by Selection. Find the minimum
among all elements on the file (requiring O(n) comparisons), replace it by some
very large number M >> 0, and write it on a separate file. After repeating this
procedure n times, the new file includes all numbers in nondecreasing sequence as
desired, whereas the original file consists of only M's. Hence the overall
complexity is O(n2).

The Pairwise Exchange Method first compares the first and second, the third and
fourth, the fifth and sixth, etc. numbers with each other and exchange them if they
are not in nondecreasing order. In the next step, compare the second with the
third, the fourth with the fifth, the sixth with the seventh element, etc. and
rearrange again if necessary. All odd-numbered iterations are identical to the first,
and all even-numbered iterations are the same as the second iteration. The
procedure terminates as soon as no two numbers are exchanged in two successive
iterations. In each iteration, ½n comparisons are required, and no more than O(n)
iterations are necessary. This becomes intuitively clear by considering the worst
case in which the smallest number which should appear in the first position on the
file is currently at the very end of the file. In each iteration, this number moves
one step towards the beginning of the file. This yields an overall complexity of
O(n2) of the procedure. As an illustration, consider the following example in
Figure B.4 where the brackets indicate the pairs of numbers that are considered for
a possible change, and an asterisk next to the bracket shows that a pairwise
exchange was made.

5 3 3 3 3 2 2 1 1 1
3 5 4 4 2 3 1 2 2 2
4 4 5 2 4 1 3 3 3 3
7 7 2 5 1 4 4 4 4 4
2 2 7 1 5 5 5 5 5 5
6 6 1 7 6 6 6 6 6 6
1 1 6 6 7 7 7 7 7 7

*
*

*

*

*

*

*

*

*

*

*
*

*

Figure B.4

B.3 Classes of Problems and Their Relations
In this section we will define classes of problems and explore some of the
relations between them. In order to do so, it is necessary to rephrase the known
optimization problems as recognition or decision problems for which the result is

 B Computational Complexity 42

a “yes” or “no” answer to the question: Is x* a solution to the instance of a
problem? Our treatment here only covers material needed for the rest of this book.
For a comprehensive account, see Garey and Johnson (1979).

Given the complexity function O(f(n)) defined in the previous section, we write

Definition B.1: The class P is the class of problems for which there exists an
algorithm with a complexity function O(f(n)) that is polynomial in the problem’s
input parameter(s).

Similarly, we can write

Definiton B.2: The class NP is the class of decision problems for which a guessed
solution can be verified in polynomial time.

As an example, consider the problem of finding a feasible solution to a system of
simultaneous linear inequalities. Any guessed solution could be verified in
polynomial time, thus the problem is in NP.

The above definition immediately leads to

Lemma B.3: P ⊂ NP.

A very important unsolved problem is whether the above inclusion is a proper one
or not.

Definition B.4 A problem M ∈ NP is called NP-complete, if each instance of
every problem in NP can be transformed into an instance of M in polynomial
time. The class of all NP-complete problems is called NPC.

It follows from Definition B.4 that an NP-complete problem is at least as difficult
to solve as any problem in NP.

NPC
NP

P

Figure B.5

B.3 Classes of Problems and their Relations 43

If any decision problem is in NPC, then the corresponding optimization problem
is NP-hard because the existence of a polynomial algorithm for the optimization
problem would imply that the decision problem can also be solved in polynomial
time. The relations between P, NP, and NPC can be visualized in Figure B.5
(assuming that P ≠ NP).

As already mentioned above, the fundamental question today is the relation
between P and NP, i.e., P = NP or P

≠
⊂ NP? It is believed that P is a proper

subset of NP, but it seems that the existing mathematical tools are not sufficient to
prove or disprove this claim. Since it has been shown that all problems in NPC are
polynomially equivalent, the existence of a polynomial algorithm for any problem
in NPC would imply that P = NP. On the other hand, Ladner (1977) has shown
that P ≠ NP implies that there exists at least one problem M, such that M ∉ P and
M ∉ NPC, i.e.: NP P ∪ NPC.

≠
⊃

In general, one can distinguish between four classes of problems.

• Easy problems, i.e., problems for which polynomially bounded algorithms

exist. Problems in this category are in class P and examples of problems in this
class are provided in the previous section.

• Probably difficult problems, i.e., problems for which at this point only

exponentially bounded algorithms exist, but it is not known whether or not
polynomial algorithms exist for these problems. This is the class NPC.

• Intractable problems are provably difficult problems, i.e., problems for which

proof exists that no polynomial algorithms can possibly exist for any problem
in this class.

• Undecidable problems, i.e., problems for which we have proof that no

algorithm can possibly exist to solve them. Examples for problems in this class
are the question whether or not a computer comes to a halt after a finite
number of steps for any given program and any given input string, the problem
of finding integer solutions to a set of polynomial equations (Hilbert’s tenth
problem), or nonlinear integer programming, see Jeroslow (1973).

Finally a word with respect to the average and worst-case time analysis discussed
earlier in this chapter. It was shown at the beginning of this chapter that a good
worst case time complexity is a crucial feature of a successful algorithm.
Consider, however, any of the simplex algorithms on the one hand and the
ellipsoid method on the other. Both methods solve linear programming problems
and are described in detail in Chapters 3 and 7, respectively. With respect to worst
case time analysis, the simplex methods are poor performers whereas the ellipsoid
method performs well. Still, most linear programming problems in practice are

 B Computational Complexity 44

solved by one of the simplex methods because their average performance is much
better than that of the other approaches for linear programming problems.
Moreover, the simplex methods have a distinct advantage over the other technique
as far as storage space requirement is concerned. But even a combination of all
four criteria, worst case, and average case analysis in terms of time and storage
space requirement is not sufficient to evaluate an algorithm. It must also be
possible to easily take advantage of special structures (such as block-angular or
staircase structures or transportation and assignment-type structures in the simplex
methods) and, very important, the method should allow the user to perform
sensitivity analyses efficiently, a factor which certainly is one of the deciding
factors that has contributed to the success of the simplex methods.

1 INTRODUCTION

This chapter will first outline some of the major developments that have led to the
field that is now known as linear programming. We will then summarize the
structure and the main assumptions made in linear programming. The third section
describes the modeling process in some detail. Section 4 discusses the main three
phases in optimization, and the last section in this chapter solves a small linear
programming problem and interprets a computer printout.

1.1 A Short History of Linear Programming
The subject of this book, Linear Programming, is a subset of mathematical
programming which, in turn, is a part of operations (or operational) research.
Operations research, also referred to as management science, is a discipline that
deals with the optimization and control of systems. The term “programming” is
used here as a synonym for optimization. Interestingly enough, optimization
problems are nothing but formalized versions of the fundamental economic
principle: they either maximize the output for some given input, or minimize the
input for some required output. Which of the two versions applies to any given
problem depends on the specific scenario or the viewpoint of the decision maker.

The history of linear programming can be traced back to the 1930s and 1940s. The
earlier part of the history is described by McCloskey (1987), while a recent
authoritative account is provided by Gass and Assad (2005). Here, we provide
only a few of the highlights that have directly impacted the field of linear
programming. An interesting collection of personal reminiscences is found in
Lenstra et al. (1991), including Dantzig’s (1991) contribution; for an earlier
account see also Dantzig (1982).

After early precursors that mostly dealt with linear (in-) equalities by Fourier
(1826) (for his contribution, see also Grattan-Guinness (1970)), Gauss (1826),
Gordan (1873) and Pareto (1906) as well as contributions in game theory (a part
of which was later shown to be closely related to linear programming), more

 1 Introduction 46

closely related work on the subject began in the mid-1930s. Motzkin’s (1936)
solutions of systems of linear inequalities, Leontief’s (1936) work on input-output
models, Kantorovich’s (1939) production assignments, and Hitchcock’s (1941)
transportation problem are the main contributions that dealt with still isolated
attempts to quantify and solve practical problems that could be reduced to linear
systems.

While operations research and linear programming had not been formally
described, the theory of games had already reached a peak with the publication of
von Neumann and Morgenstern’s (1944) tome “The Theory of Games and
Economic Behavior.” It was in 1947 that Dantzig first devised an automated
technique that allowed problems with linear constraints and a linear objective to
be solved—in theory, at least. The explosive development of operations research
after that description is in large part due to advances in computational technology.
Among the first computer implementations of the simplex method is a model with
71 variables and 48 constraints that took no less than 18 hours to solve. This may
be a small problem by today’s standards, something that any pertinent software
could solve within a fraction of a second, but at that time, it was a breakthrough
that, more or less for the first time, allowed a practical problem to be solved with
Dantzig’s newly developed method.

Dantzig’s findings were presented at a conference organized by the Cowles
commission in 1949 and the proceedings of this conference were published two
years later in a book edited by Koopmans (1951). Already in 1950 the first
operations research journal, the British “Operational Research Quarterly,” was put
out. Two years later the journal “Operations Research,” the publication of the
Operations Research Society of America, followed.

After the initial groundwork was laid, improvements to existing methods were
made, new mathematical structures were found useful and were described, and
new fields were discovered and developed. In linear programming, Manne (1953)
and Orchard-Hays (1955) dealt with parametric programming (the latter author’s
results were based on his unpublished Master’s Thesis three years prior), while
Orden (1952) described the product form of the inverse. Charnes (1952) dealt with
an aberration of linear programming called degeneracy, and 1953 saw the
emergence of the computationally efficient revised simplex method by Dantzig
and Orchard-Hays (1953). The same year also saw one of the first texts on linear
programming written by Charnes et al. (1953). Other groundbreaking
developments were the development of the dual simplex method by Lemke
(1954), the design of cutting planes for integer programming problems by Dantzig
et al. (1954) and the use of branch and bound by Land and Doig (1960), also for
integer programming problems, seemingly straightforward extensions of standard
linear programming problems.

Progress was, however, not confined to improvements of the existing tools. New
applications were developed as well. Markowitz (1952) applied mathematical

1.1 A Short History of Linear Programming 47

(albeit nonlinear) programming to portfolio selection in finance, Charnes et al.
(1952) dealt with an application of linear programming in the blending of aviation
fuels, Ford and Fulkerson (1954) described a linear programming problem that
would enable a planner to ship as many units as possible from an origin to a
destination through a network, and Koopmans and Beckmann (1957) were the
first to describe the quadratic assignment problem, again a nonlinear structure,
that was found to be applicable to facility layout problems.

The 1960s saw more developments in many fields related to linear programming,
particularly integer programming, nonlinear programming, and flow problems. In
addition, computers were beginning to make their mark in the increase of problem
sizes that could be solved. This was one of the driving forces of progress for linear
programming models and applications as well as for operations research in
general. Edmonds (1965) introduced the notion that algorithms that require a
number of operations that is some polynomial function in the length of the input in
the worst case should be considered efficient. This development anticipated
complexity theory and the analysis of algorithms that became a major issue in the
next decade.

In the 1970s, the issue of algorithmic efficiency began to be taken very seriously
with the contributions by Cook (1971) and Karp (1972). Starting with automata
theory, the first author described a provably difficult problem called
“Satisfiability” or SAT for short, and the second author described a reduction
theme, according to which problems may be reduced to Satisfiability. In case such
a reduction exists, the problem under consideration is proved to be at least as
difficult as SAT. This allowed scientists to classify some problems as difficult or
hard, while others would be easy even in the worst case. Given that distinction, it
was of special interest to researchers in and users of linear programming when
Klee and Minty (1972) determined that at least one version of the simplex method
was not efficient in the worst case.

Based on earlier work by Shor (1970), Khachian (1979) described an “ellipsoid
method” that was able to solve linear programming problems efficiently in the
worst case. The method turned out to be painfully slow in practice, so the
achievement was largely theoretical. This changed with the work by Karmarkar
(1984), whose “interior point methods” had the property that the computational
effort they required would increase only marginally as the size of the problem
increased. This makes them uniquely suited to large-scale practical problems.
Work on improvements to methods in this class and the search for more efficient
implementations of interior point methods continues to this day.

Other advances have been the proliferations of user-friendly software including
the use of spreadsheets in optimization, and the hardware to go along with it,
whose ever-increasing speed and memory and decreasing costs have greatly
advanced the use of optimization techniques in general and linear programming in
particular.

48 1 Introduction

1.2 Assumptions and the Main Components of Linear
 Programming Problems

Mathematical programming problems are mathematical models that attempt to
model a real-life situation. They do so by using variables and parameters. Both
represent numbers, but while parameters are numbers that are known to the
decision maker and have to be taken as a fixed datum, variables are numbers
whose values will be determined in the process. In general, parameters are not
within the jurisdiction of the decision maker, while variables are. This concept
may be best explained by a small example. Suppose that an individual wants to
plan his diet in a way, so that the nutritional content of the diet satisfies generally
accepted standards, while the costs are minimized. (This is the famed diet problem
which is formally modeled in the next chapter). Here, the content of nutrients in
the foodstuffs under consideration are parameters, and so are the prices of the
foodstuffs and the quantities of nutrients that should be included in the diet. On
the other hand, the quantities of foodstuffs that are included in the diet are within
the jurisdiction of the decision maker and hence they are decision variables, while
the quantities of nutrients in the diet, while determined by the decision maker
through the food intake, are not directly controlled by him. These are endogenous
variables, but not decision variables in the narrow sense. In this book the
distinction between parameters (sometimes called exogenous variables) and
variables is sufficient.

Some decision makers prefer to further subdivide the variables into two classes
based on causality. Consider a simple example: in a model of a national economy,
the supply of money and the unemployment rate are both unknown, i.e., they are
not parameters. However, while the supply of money can be determined directly
by the federal government (or, more specifically, by the Federal Reserve), the rate
of unemployment will be a result of the government’s policy. By changing the
variables under its jurisdiction, the national planners can influence the
unemployment rate, but only indirectly by setting the variables under their
jurisdiction to the desired values. This distinction is not relevant in the models
under consideration here: all variables are included in the model, and the solver
will determine their optimal values, regardless if they can be influenced directly
by the decision maker or not. Actually, in order to distinguish the variables
included in the model by the decision maker from those added by the solver in the
solution process, we will call all these variables “decision variables,” regardless if
the decision maker can directly choose their value or not.

All mathematical programming problems consist of two components, viz.,
constraints and objectives. Constraints are imposed by the system, meaning they
are not within the jurisdiction of the decision maker and all he can do is realize
their existence and respect them. Typical examples are constraints that limit
resources (e.g., budget constraints), existing contractual agreements that require
that certain quantities of products are delivered, certain manpower assignments
are not made (due to collective agreements), physical and/or chemical limits, etc.

1.2 Assumptions and the Main Components of Linear Programming Problems 49

It should be noted that constraints in mathematical programming cannot be
violated. For instance, if only ten units of a resource such as machine time are
available, then no schedule will be considered that uses more than ten units,
regardless how many more units. This may very well be in conflict with reality:
for instance, a budget constraint that limits weekly expenditures to, say, $1,000,
may very well be violated in practice by taking out a loan.

Most beginners will be only too eager to formulate constraints, even if the
restrictions are not at all hard. Some examples are provided by Eiselt and Laporte
(1987). Among them are problems that schedule students’ final exams. The
softness of constraints can nicely be shown in such a context: having a student
write two exams at the same time: impossible, i.e., a hard constraint; having a
student write two exams in a row on the same day: highly undesirable, so a high
penalty is added to such a case; having a student write two exams on the same
day, one early in the morning and the other late in the afternoon: quite
undesirable, so there is some penalty; having a student write his first exams very
early in the exam period and his last exam very late in the exam period: somewhat
undesirable, so that a small penalty is added to such a case. As can be seen from
the above example, only in the case of an impossibility should a constraint be
formulated that prohibits that particular instance; in all other cases of
undesirability, penalties should be defined which are subsequently incorporated in
the objective function rather than the constraints. For some pertinent comments,
see also Moore and Weatherford (2001). Some authors have approached the
modeling of soft constraints by using fuzzy programming. Some details are found
in Chapter 9 of this volume.

On the other hand, there are objectives that express the wishes of the decision
maker. Most optimization models employ a single objective function. Again,
Chapter 9 in this volume examines models that have more than a single objective.
As a matter of fact, whenever more than one objective is present, the concept of
optimality—a key concept in optimization—loses its meaning and has to be
replaced by other, conceptually weaker, concepts. One can think of an
optimization as a pasture, whose boundaries are the fences (our constraints), while
the objective function points into a direction, in which the grass is greener and we
would like to go as far as possible, and that is exactly the function of the solver
that is applied to the optimization problem.

We will now investigate the two problem components, constraints and objectives,
in more detail. First consider the objective function. There are two ways an
objective function can be written, viz., Max zf = f(x) or Min zg = g(x). To the solver
it is completely irrelevant if the objective measures profit, revenue, sales, or some
other utility. All such measures have in common that they maximize the objective.
Similarly, it is irrelevant if our objective expresses costs, distances, or any other
disutility, as all such measures are going to be minimized. As a matter of fact,
since each maximization objective Max zf = f(x) can be written as an equivalent
minimization objective Min zg = g(x) with zg = −zf and g(x) = − f(x), there is no

 1 Introduction 50

need to devise methods for both types of problems, since each minimization
problem can easily be transformed into an equivalent maximization problem and
vice versa. Also, fixed costs may or may not be included in the objective function
as they do not influence the optimization.

What is by no means obvious or easy to state is the actual expression of the
objective. Typically, the true objective of the decision maker will remain elusive.
It is often a very general statement such as “improve the firm’s efficiency,”
“satisfy our customers as best as possible to generate repeat business,” “distribute
our products as quickly as possible,” or a similar statement that will have to be
quantified. Typically, the analyst will determine a proxy or surrogate criterion
that, at least hopefully, will measure roughly what the decision maker has in mind.
The proxy objective, while it may not be exactly what the decision maker wants,
will have the advantage of being quantifiable.

This process does sound easier than it normally is. “Distributing products
quickly,” for instance, can mean many different things. If there were just two
customers and two solutions were possible: one that distributes the products to our
two customers in three days each, and another that delivers the goods to customer
one in a single day and to customer two in four days, which of the two solutions
would the decision maker prefer? In other words, is the average or the longest
delivery time the appropriate yardstick?

Problems such as these occur even in business situations, where normally most
measures finally are reducible to the common denominator of dollars. This is true
even in cases in which the decision maker wants to apply objectives that appear
very difficult to quantify, e.g., the damage of an oil spill or the risk of a fatality in
the airline industry. After all, it is always possible to take out insurance for such
cases which will reduce these risks and environmental damages to costs.
However, customer satisfaction and high levels of employee satisfaction, both
long-term objectives that ensure repeat business and good labor relations, even
though ultimately they will result in higher profits, remain elusive as far as their
quantification is concerned.

Similarly, the simple objective “maximize profits” may be achieved by different
means. In the short run, this objective may be achieved by increasing prices of
some goods. The long term implications may, however, be stagnating growth,
shrinking market shares and finally decreasing profits; the maximization of profits
in the long run may be achieved by a completely different strategy. In the public
sector things are still more complicated. “Maximize the quality of services” could
be substituted by maximizing the number of civil servants; a highly questionable
proxy expression, as pointed out by Parkinson (1957). For a hospital
administration, the objective may be to maximize the quality of hospital service.
An analyst attempting to quantify the real criterion “hospital service” may apply
the proxy z = the average number of days a patient stays in a hospital. Minimizing
z could imply discharging patients not completely cured, while maximizing z may

1.2 Assumptions and the Main Components of Linear Programming Problems 51

have the effect of the hospital not admitting new patients with serious diseases and
in need of a hospital bed.

There are also other aspects that make decision making in the public sector more
complicated than in the private sector. For one, there are typically multiple
decision makers or stakeholders in public decision making scenarios, coupled with
a large number of objectives. Worse yet, many of the model’s parameters will not
be agreed upon: the evaluation of risk will widely vary among those involved
(typically the risk is considered much higher by those directly involved), leaving
the door open to “junk science” and similar abuses.

Next, consider the constraints of a model. The structure of all constraints,
regardless what model they belong to, is the same. A constraint can be written as

 LHS R RHS,

where LHS denotes “left-hand side”, R denotes a (mathematical) relationship, and
RHS symbolizes the right-hand side of the relation. In particular, the left-hand side
always measures the value associated with a real situation, the relation R ∈ {≤, =,
≥}, and the right-hand side is a single number that provides the yardstick with
which the value on the left-hand side is compared. In that sense, a constraint is not
unlike a typical statistical hypothesis test, in which a test statistic is compared with
a benchmark value. Based on the relationship between these two values, the
hypothesis test is either accepted or rejected. As an example, consider a typical
resource constraint, such as a budget constraint. On the left-hand side LHS we will
formulate an expression for the amount of money that is actually spent, the right-
hand side RHS will express how much money we are allowed to spend, and the
relation R in this case will be “≤.” Note that from a technical point of view, it is
always possible to convert a ≤ constraint to a ≥ constraint and vice versa by
multiplying the constraint by any negative number, so that it is not limiting when
we consider only ≤ constraints here.

When formulating constraints, it is always beneficial to first formulate the
requirement as a sentence of the English language, which then can be translated
into a mathematical structure. It should be ensured that the analyst is able to
interpret each single term of the expression. As an example, consider again a
budget constraint. Let there be two products, whose unit prices are $5 and $8,
respectively, and whose quantities we denote by x1 and x2, respectively. Assuming
that $60 are available to us during the planning period, we can then require that
our actual expenditures should not exceed the amount of money that we have. The
actual expenditure can be decomposed into two components, one that expresses
the amount of money we spend on the first product and another that measure the
amount that we spend on product two. Given that each unit of product one costs
$5 and we purchase a total of x1 units of it, we will spend 5x1 on product one.

52 1 Introduction

Similarly, we will spend 8x2 on product two. This will then lead to the budget
constraint 5x1 + 8x2 ≤ 60.

Before we further discuss model formulations, it is mandatory that we familiarize
ourselves with the basic assumptions of linear programming. In particular, there
are three assumptions:

 (1) deterministic property,
 (2) divisibility, and
 (3) proportionality (resulting in linearity).

First consider the deterministic property. Deterministic means that we assume that
the structure of the problem as well as all parameters of the problem are assumed
to be known with certainty. (The antonym of deterministic is probabilistic or
stochastic). Clearly, it is not very realistic to assume that a model is deterministic
when it, almost by definition and without very few exceptions, deals with future
events and hence includes parameters that also relate to future events. However,
while the original problem may be stochastic, our model could still be
deterministic—just one of the many examples where a model is indeed a
simplification of reality. We may get away with this simplification by using the
trick of sensitivity analyses. As an example, if we can reasonably well estimate
the future demand for a product to be between, say, 12 and 17, we may—at least
for now—assume the demand to be known with certainty at the level of, say, 14
and solve the problem. Once that is accomplished, we employ sensitivity analysis
to examine what happens to the solution if the demand were to decrease by one or
two units. We would then continue to examine how the solution were to behave if
the demand were to increase to 15, 16, or even 17. That way, we stay within the
confines of deterministic models that are much easier to solve and still obtain
information in case the demand is not at the level we first assumed.

The second assumption of linear programming deals with divisibility. It simply
states that each variable, typically a quantity of some sort, can be expressed as any
real number rather than an integer. Often, this is not satisfied. For instance, if we
are in the business of making cans of beans, then the number of cans of beans,
typically a variable in our planning model, will have to be an integer, as there is
not much use in partial cans of beans that can obviously not be sold. However, it
is very well known that dropping the assumption of divisibility creates major
problems. In particular, if a linear program requires that variables can only assume
integer values, we obtain an integer linear programming problem, which can be
shown to be many times more difficult to solve as compared to a standard linear
programming problem. Hence, the general rule is to assume divisibility as long as
that can be justified. In the case of the cans of beans, we may assume divisibility
and then simply round the solution, even though such procedure is well known to
not necessarily result in an optimal solution. However, the potential loss of a part
of a can of beans is so minuscule that it is not worth the effort to spend any time to
find exact solutions. On the other hand, if we are planning the sale of houses, then

1.3 The Modeling Process 53

it may very well make a significant difference if we construct one house more or
one house less. In summary, if the products we are dealing with are given in small
numbers and are very valuable, we may have to drop the assumption of divisibility
and solve a more difficult integer problem, while for low-value products in large
numbers such an effort will not be required.

Finally, linear programming requires that all functions, objective functions as well
as left-hand sides of constraints, are linear. The formal definition of linearity has
already been discussed in Definition A.13 of this volume. The question here is
whether or not the assumption of linearity is realistic in any given instance. Again,
that will depend on the practical situation at hand. If, for instance, there are no
quantity discounts for a product, i.e., the cost of a product is proportional to the
quantity that we purchase, then the assumption of linearity is justified. If there are
no economies of scale, it is. But clearly, many functions in real life are not linear.
However, often—albeit not always—linearity is a reasonable approximation of
reality. If it is not, then there is an old adage that applies to all of modeling: if the
model is not sufficiently close to reality to make sense, then don’t use it.

1.3 The Modeling Process
This section will guide readers through some of the intricacies of the modeling
process, i.e., the process that starts at the present situation and ends with a fully
implemented optimized solution. The main steps in the modeling process are as
follows:

Step 1: Problem recognition
As straightforward as this step may sound, it is essential in the process. It requires
that somebody in the organization realizes that it is not “business as usual,”
“we’ve always done it like that,” and “we’ve never done it like that,” but that it
may be possible to improve the present situation. In addition to realizing that there
is always room for improvement, it is necessary for the individual responsible for
the firm or department under consideration to not only understand the workings of
the department, but also the potential for improvement by the appropriate
techniques. In other words, even if the manager of the department does not know
exactly how to improve or optimize the system relating to his department, it is
mandatory for the manager to be able to gauge as to whether or not there is some
potential for improvement and what the possibilities of implementing any kinds of
improvements really are.

Step 2: Convince the administration to model
As much as any one individual or group is convinced that improvements in the
workings of a department are necessary, it is mandatory to obtain not just
departmental approval or sanction, but also active support by superiors as well as
departmental employees. In both cases, it will be necessary to “sell” the idea of
optimization and the change that will result from the implementation of the new

 1 Introduction 54

solution. Selling modeling to superiors will require some reasonably clear ideas
about the resources required in the process, as this will have a direct bearing on
the costs of the undertaking. On the other hand, without active support of the
people in the department that will be directly affected by the change, results will
be boycotted and nothing will be accomplished (other than a waste of resources
and a lot of bad blood).

Step 3: Collect information: stakeholders, structure, data
Once the modeling process has been approved, the modeler can go to work.
Among the first steps will be to determine who will be the major stakeholders in
the process are and what their objectives are. These do not have to be well-defined
quantitative measures (and more often than not, they will not be), but general
statements of utility functions. It will be one of the modeler’s many tasks to
quantify these utilities, determine surrogate or proxy criteria and obtain some
agreement among the major stakeholders regarding the overall objective. In case
the main decision makers cannot agree on a single objective, the modeler will
have to resort to multiobjective optimization. Some of the appropriate tools for
this case are discussed in Chapter 9 of this volume.

Once the objective has been determined at least in its general form, we need to
define the structure of the model. By this we refer to the determination of the
scope of the model, i.e., all of the subdepartments and issues to be included or
excluded in the model. For instance, when optimizing a transportation system, one
of the questions would be in how far the related inventory system will have to be
included. Clearly, while it is desirable to include as many departments as possible
in the model so as to avoid obtaining suboptima that may be good for one
department but poor for another, such comprehensive models will make the
system more expensive to model and more difficult to solve. What is appropriate
in the specific case will depend on the judgment of the modeler.

The last step in this process is the collection of the data. This frequently
underestimated task will, according to practitioners, always take longer than
expected. Often, necessary data are hard to come by, due to the protective nature
of subordinate managers or other employees who would like to guard their local
fiefdoms or avoid having to change their habits. As an example, suppose that a
modeler wants to determine the throughput of products at a workstation. He will
ask the employee who operates the workstation for the appropriate figure and the
reply may very well include the employee’s fear to be forced to work harder, so
that he may provide a number that is believable, but lower than it is in reality.
Similarly, department managers asked about the performance of their department
in terms of output or other measures may provide exaggerated numbers in order to
look good. It is the modeler’s duty to double-check and separate the fluff from
reality. Other problems related to the task of data collection may relate to the
unavailability of the type of data needed. For instance, census data may not cover
the same region that a school district does, and customer surveys may not indicate
the reasons for customer purchases or why they did not purchase a product.

1.3 The Modeling Process 55

Step 4: Build the model
This step (and the next) are what this book is all about. In particular, this step
includes the definition of the variables, formulation of the objective(s) and the
constraints. Chapter 2 of this volume will provide a number of typical scenarios
that, by themselves, may be overly simplistic in their structure and size, but are
indicative of some of the models encountered in practice. While there are usually
multiple ways to formulate a model and as many ways to approach a problem as
there are modelers, it is usually a good idea to start the formulation with the
definition of the variables, i.e., those quantitative measures which can be
influenced by the decision maker(s). Typical examples for variables are the
number of items of a product manufactured, the amount of money allocated to a
certain activity, the quantity shipped to a destination, and so forth. Sometimes,
there are also so-called “logical variables,” i.e., variables that indicate whether or
not an activity is carried out or not. Such variables can assume only a value of
zero or one; one, if we do engage in an activity, and zero if we do not. Such
variables are not quantitative in the narrow sense, and we have dealt with them at
length in Eiselt and Sandblom (2000). Whenever formulating an objective or a
constraint, it is always useful to express the meaning of the expression first in
terms of a regular sentence, which is subsequently (literally) translated into a
mathematical function.

Step 5: Solve the model
This step appears straightforward. It includes the choice of the appropriate
software, the inputting of the model, and its solution. Many of the remaining
chapters in this book deal with this issue.

Step 6: Model validation
This important step will entail the examination of the solution obtained in the
previous step. Are there outright errors to the model? Does the solution make
sense? Could such a solution actually be implemented regarding potential internal
and external resistance from individuals or organizations affected by the solution?
In case the modeler is satisfied that the model is actually usable in the situation
under consideration, we may move on to the next step. Otherwise, it is back to
Step 4, in which the model can be revised. Note that this may include the
collection of additional data or changes in the structure as shown in Step 3. The
loop that consists of Steps 3 (or 4) to 6 may have to (and usually will) be repeated
many times. This is what some authors mean when they refer to modeling being
an interactive process.

Step 7: Model implementation
This is the final step in the process. It involves the modeler presenting his findings
to the decision makers and those who have the power to approve the use of the
solution. In order to ensure that the solution is actually used in practice, it is
important that the modeler properly presents his findings. On the operational level
it may be sufficient to simply write up a report with the findings, state the
anticipated benefits of the new solution coupled with some thoughts regarding the

56 1 Introduction

implementation of the solution, i.e., the changeover from the existing to the
optimized solution, and that is it. However, this is definitely not sufficient in case
of decisions to be made on the tactical or even strategic level. Here, it is again
required that the modeler “sell” his solution to the stakeholders. The importance
of this job is highlighted by the findings that even among those studies that were
commissioned by the decision makers, i.e., for which they did put money and
other resources up front, only a small fraction was ever implemented. One of the
ways to make the selling of these findings more palatable is to present the
“optimal” solution as one of the many possibilities to improve the situation,
coupled with a thorough discussion of the assumptions that led to the solution, the
changes that will result from changes in the data, and the robustness of the
solution. After all, it is mandatory that the modeler do not take the position of the
decision maker (if he is not the decision maker himself).

Having outlined some of the major steps of the process typically used in
operations research, it becomes apparent that while there are many different foci
in operations research (applications, theory, algorithms, and structures of models),
it is modeling that sets operations research apart from other disciplines. As we
have seen in the 7-step procedure above, modeling in this context refers to the
translation of a real problem (referred to as “messes” by Ackoff (1974), one of the
pioneers of the profession) into a well structured mathematical formulation. For a
number of entertaining and instructive cases, see also Ackoff (1978).

As shown above, modeling is an interactive process. Of particular interest here is
the loop that includes Steps 4-6. In order to explain the process, we refer again to
the diet problem introduced at the beginning of the previous section. Suppose that
the problem has been formulated and solved, and that we are now in the process of
validating the solution.

For the sake of argument, assume that the solution suggests that the “optimal”
daily food intake include three stalks of celery, four bunches of broccoli, two
pounds of yoghurt, and five hamburgers (the latter as they provide cheap bulk).
Two pounds of yoghurt are probably more than most people are willing to eat in a
day, so the planner will have to include upper bounds on the quantity of that
particular foodstuff. Once the model has been revised, the new model will be
solved again.

What happens in the new solution is fairly easy to imagine: as the quantity of one
type of food is reduced, the quantities of other types of food will have to increase
in order to guarantee that sufficient amounts of nutrients are included in the diet.
The new solution may include more celery, more broccoli, and possibly even
more hamburgers. Such a solution is still not acceptable, so new constraints will
have to be included, e.g., on the number of hamburgers in the diet. The process
will circle until a diet has been created that is acceptable to both, the planner’s
budget and palate. It is clear that each time that additional constraints are
introduced, the resulting optimal diet will not be cheaper (but typically more

1.4 The Three Phases in Optimization 57

expensive) than the previous diet. The planner will have to weigh the tastiness of
his diet as it evolves, against its increasing price. Also note that it is very much in
the planner’s interest to enlarge his decision space by including additional foods
that were not included previously. This process is shown in more detail in Chapter
2 of this book.

In general, we would like to comment on the changes that have occurred over the
last decades as far as modeling is concerned. Given the lack of ubiquitous and fast
computing some decades ago, it was mandatory for the modeler to think through
the model as far as possible, anticipate potential problems and glitches, and
basically try to present a model that would hopefully be as close as possible to
what was desired. Since most realistic models are not formulated correctly the
first time around, regardless how much care is taken to avoid errors, a lengthy
error-finding, error-correcting, and re-solving process would ensue. In contrast,
computing power is readily available today, which allows the user to start
formulating a small model at first, that can easily be solved and corrected, if
necessary. Then the modeler will add features to the model, re-solving the model
frequently so as to keep errors confined to the smaller portions that were recently
added. This simplifies the error-finding and error-correction tasks faced by the
modeler. This process continues until the desired level of model sophistication has
been reached.

As far as terminology is concerned, by a “solution” we mean a set of instructions
or, if you will, an “action plan.” In the context of the above diet example, a
solution will include instructions of how much of each of the foodstuffs is
included in the diet. These are then clear instructions of the type “eat one can of
clam chowder per day.” Associated with each solution is a consequence. Such a
consequence is the value that the objective function takes when the set of
instructions is followed. Again in the context of the diet problem, the consequence
of a solution, i.e., eating a specific set of foods, will bear a consequence, i.e., a
certain cost.

1.4 The Three Phases in Optimization
There are three major issues as far as any mathematical programming problem are
concerned. They are usually arranged into three phases. They are feasibility,
optimality, and sensitivity. In simple words, feasibility deals with the question
whether or not the requirements, i.e., the constraints can be satisfied. If not, the
modeler has to go back to the drawing board and rewrite the model, as no further
processing is meaningful. Once a feasible solution has been found, we enter the
second phase, which attempts to find an optimal solution. Since at least one
feasible solution exists by assumption (otherwise we would not be in the second
phase), there also exists at least one optimal solution. The second phase terminates
with one such solution. Finally, the third phase examines what happens, if some of
the parameters of the model change their values. Sensitivity analyses are also

 1 Introduction 58

referred to as postoptimality analyses and they can be recognized by their
wording: they always include the terms “what – if.”

Whenever a new model is formulated, it is usually a good idea to first determine
roughly what the solution is going to be. In other words, we typically like to know
what “ballpark” we are in. One way to do so is to perform a break-even analysis
first. In terms of a profit-maximizing model, the break-even point is the point that
separates a positive from a negative profit. Since profit P is defined as

 Profit = Revenue − Costs,

where the revenue R is defined as unit price p times quantity q, and costs C are
usually expressed as the sum of fixed costs Cf and variable costs Cv, and the latter
of which are defined as unit costs c times quantity q, we can write

 P = R − C = R − Cf − Cv = pq − cq − Cf = (p−c) q − Cf.

Assuming that the prices are parameters (i.e., fixed and known numbers) while the
quantities are the variables, the break-even point can then formally be expressed
as the quantity at which the profit equals zero or, equivalently, revenue equals
cost. This results in the break-even quantity

cp

C
q f

−
= .

As an example, if it costs $500 to set up the production and $3 to make one unit
(assuming there are no economies of scale), and units of the product that we make
sells for $5 (the demand is sufficiently high), then the break-even point is
achieved where q = 500/(5 − 3) = 250 units. In other words, if we make and sell
less than 250 units, we will lose money, while in case more than 250 units of the
product are made and sold, we make a positive profit. This enables the decision
maker to have a rough idea what his production figures have to be in order to
make a profit.

In order to illustrate break-even analyses on a somewhat more elaborate example,
consider the following

Example: The task at hand is to organize a scientific conference, which is assumed
to be an annual event. In order to participate, conference registrants will have to
pay a registration fee that is to be determined by the organizer. As customary,
there will be different categories: regular attendees who register late (i.e., after a
cutoff date or on-site), student and retired attendees who register late, regular
attendees who register early, and student and retired attendees who register early.
The charges for these four groups are to be determined and they are denoted by as
prl, pre, psl, and pse, respectively. The number of attendees is, of course, also

1.4 The Three Phases in Optimization 59

unknown and the respective numbers are xrl, xre, xsl, and xse, respectively. The
number of attendees replace the quantities in our general discussion above.

At past conferences of this type, the registration fees for the four categories were
$350, $80, $250, and $50, respectively. The average attendance throughout the
last few years has also been observed (we are taking an average so as to eliminate
annual fluctuations, e.g., due to particularly attractive or unattractive conference
venues). As we cannot assume that past attendance is a good guide to attendance
figures at the planned conference, we use only the ratios of the past attendances
between the four groups. Suppose that in the past, there were seven times as many
regular attendees who registered late in relation to student and retired attendees
who registered late, i.e., xsl = xrl/7. Similarly, we have observed that xre = xrl/2,
and xse = xrl/6. Given that we want to keep the registration fees between the groups
also at the same ratio, we have psl/prl = 80/350, pre/prl = 250/350, and pse/prl =
50/350.

As far as costs are concerned, we have to pay $15,000 for the rental of the rooms,
audio-visual equipment, and entertainment at the banquet. All of these costs will
be incurred regardless of the number of conference participants. In addition, we
will need $25 for the conference kit (e.g., bag or binder, tag, CD with
Proceedings, etc.) and $60 for the reception, luncheon, and banquet.

At this point, we have eight unknowns (with the registration fees as variables and
the attendance figures as unknown parameters) and a total of seven equations, viz.,
six ratios as outlined above and the break-even equation that requires that the
revenue equals the cost, i.e.,

 prlxrl + prexre + pslxsl + psexse = 15,000 + 85(xrl + xre + xsl + xse).

Expressing all fees and attendance figures in terms of prl and xrl and solving for xrl
results in the equation

 xrl =
8095.1534136.1

000,15
−lrp

.

This makes it possible to construct a two-dimensional graph shown in Figure 1.1,
in which we plot prl against xrl.

For instance, we can see that in order to break even, charging $200 will require
the attendance of 116.36 regular participants who register late (and, calculating
the attendance figures of the other groups by using the above relations, requires a
total of 211 participants). Such a requirement may be too optimistic, so that we
examine the total number of required participants for a registration fee of $250 for
regular attendees who pay late. Similar calculations reveal that the total number of
attendees now drops to 136, which may be more realistic. Similar figures for $300

60 1 Introduction

are 100 participants, for $400 there must be at least 66 participants, etc. If
conservative estimates indicate that about 80 participants can be expected, we
could therefore decide to charge between $350 and $400 with a reasonable
expectation to (at least) break even.

xrl

prl
108.8

Figure 1.1

1.5 Solving the Model and Interpreting the Printout

This section will provide a simple scenario that is first formulated, and
subsequently solved. We then provide a typical computer printout and we will
demonstrate what information can be gleaned from it.

As a simple illustration of a formulation, consider the following

Example: Assume that in the context of a production problem there are two
products, P1 and P2, that are manufactured on three machines, M1, M2, and M3.
Each product has to be processed on each of the three machines, but the order in
which the products are processed on the machines is assumed to be immaterial.
The two products sell for the (fixed) unit price of $12 and $27, respectively, while
the capacities of the three machines are 15, 14, and 12 hours, respectively. Note
that the capacities are expressed for the planning period, e.g., one day. It is
important that all other capacity uses are then also expressed in the same units for
the same planning period. The different capacities may result from different
expected maintenance requirements. Assume now that it takes 9 minutes to
process one unit of unit of P1 on M1, 6 minutes to process one unit of P1 on M2,
and 10 minutes to process one unit of P1 on M3. The corresponding data for P2 are
12, 14, and 18. Finally, it is required that at least 70 product units are made and
sold.

1.5 Solving the Model and Interpreting the Printout 61

The first step in the formulation is the definition of the variables. Here, the
decision maker can only determine the quantities of the two products that he will
produce. This leads to the definition of xj as the number of units of product Pj that
will be produced and sold, j = 1, 2. Note that the prices are parametric in this case,
meaning that we either assume the firm to be a price follower, or assume that the
firm does not feel that it can, at least not temporarily, change its prices. It is very
important to define the variables carefully. For instance, had we defined xj only as
the number of units of Pj that is produced (rather than produced and sold), a
number of important assumptions would have escaped us. Among them is the
assumption that we will be able to sell everything that we make in the same
period, i.e., there is no inventory buildup of unsold units and our customers are
willing to purchase any amount at the specified price.

Start now with the objective function. In order to simplify matters, we will employ
the decomposition principle. Simply stated, this principle takes a given expression
that is deemed difficult to handle and subdivides it into smaller, more easily
manageable, components. A reasonable objective in this example is to maximize
the revenue. This can be decomposed into its two components (revenue that
derives from P1) and (revenue that derives from P2). Since we know that revenue
equals price times quantity, we can express the revenue from P1 as the unit price
of P1 (which is known to be 12) multiplied by the quantity of P1 that is made
(which was formally defined as x1). A similar argument can be made for product
P2, so that the profit which derives from P2 can be written as 27x2. Once all
individual parts have been determined, we enter the composition phase, in which
the parts are put together into a single expression. In our example, the overall
revenue equals the sums of the revenues that derive from the manufacturing and
sales of both products, so that we obtain the objective

 Max z = 12x1 + 27x2.

The constraints can be formulated in a similar fashion. First, we have to decide
what type of constraints the model will have. In this example, it is easy to see that
the first requirements deal with machine capacities, while the last demand
constraint will require that a certain number of units is made. First consider the
capacity constraints. Constraints of this type are always of the type “the capacity
actually used cannot exceed the capacity that is available.” Such a statement fits
nicely into the mold of the constraint structure “left-hand side in relation to right-
hand side” discussed above. The available capacities (formally, the right-hand side
values) are the given parameters 15, 14, and 12 hours. The left-hand side values
will express the capacities that are actually used in the production process.
Consider one machine at a time and apply again the decomposition principle. On
any machine, the capacity that is actually used is used for making products P1 and
P2, there is no other use for the machine capacity. Considering M1, we obtain the
used capacity on that machine as the “capacity of M1 used for making P1 plus the
capacity of M1 used for making P2.” Since it takes 9 minutes to process one unit of
P1 on M1, the time on M1 that is used for the processing of P1 is 9x1. Similarly, the

 1 Introduction 62

time on M1 that is used for the processing of P2 is 12x2, so that the capacity
constraint of the first machine can be written as

 9x1 + 12x2 ≤ (15)(60),

where the right-hand side capacity must be expressed in the same units as the left-
hand side (here: minutes). The other two capacity constraints are dealt with
similarly.

It is very important to realize what the capacities actually mean. A capacity of,
say, twenty-four hours means that each time a product is processed on the
machine, a clock is turned on which runs until the processing is completed, at
which time the clock is turned off. Once the total processing time has reached
twenty-four hours, the capacity on this machine is exhausted and no further
processing is possible within the planning period. While it may be tempting to
interpret capacities as “hours of the day that a machine is available for
processing,” this is not true. Such interpretation would require the solution of an
embedded scheduling problem, which is typically not done.

Finally, consider the demand constraint according to which at least 70 units of
both products combined should be made. As the total number of products made
and sold is x1 + x2, the requirement can be written as

 x1 + x2 ≥ 70.

The formulation of the entire problem is then

 P: Max z = 12x1 + 27x2

 s.t. 9x1 + 12x2 ≤ (15)(60) (Machine 1)
 6x1 + 14x2 ≤ (14)(60) (Machine 2)
 10x1 + 18x2 ≤ (12)(60) (Machine 3)
 x1 + x2 ≥ 70 (Demand constraint)
 x1, x2 ≥ 0 (Nonnegativity constraints)

Note that we have added so-called nonnegativity constraints to the formulation.
As their name suggests, these constraints restrict the variables in the formulation
to be nonnegative numbers. In most applications, such constraints are meaningful,
so that they are typically added automatically by many software programs.
Typical examples are variables that denote units to be manufactured, raw
materials to be blended, inventory levels, and many others. All of these variables
are naturally required to be nonnegative. On the other hand, variables that measure
the throughput of an inventory may be positive (in case the inflow is larger than
the outflow) or negative (if the inflow is less than the outflow). When constraints
have been formulated, it is useful to briefly comment on the meaning of the
constraints. This enables the user to know immediately what the constraints do

1.5 Solving the Model and Interpreting the Printout 63

rather than having to go through the entire logic again, when it becomes necessary
at a later stage to reconsider part of the formulation.

Before attempting to solve any given formulation, the modeler (in case the
problem is solved manually) or the software may have to transform the
formulation into a representation in normal form, i.e., in a form in which all
constraints are written as equations. This requirement will depends on the type of
software that is actually used. In order to write a problem in normal form, we first
transform all constraints, so that their right-hand side values are nonnegative. We
then add or subtract additional variables to and from the left-hand sides of the
given constraints. More specifically, let the constraint be given again in its general
form LHS R RHS. The additional variables are then slack variables S, excess
(surplus) variables E, and artificial variables A, which are added to/subtracted
from the left hand sides of the constraints according to Table 1.1.

Table 1.1

Type of constraint
(Relation R)

Additional variable(s) Constraint

≤ Slack variable S LHS + S = RHS

≥ Excess (or surplus) variable E
and artificial variable A LHS – E + A = RHS

= Artificial variable A LHS + A = RHS

The meanings of the new variables can best be asserted by considering a ≤
constraint that restricts the use of a resource (i.e., a capacity constraint), and a ≥
constraint that provides a lower bound on the production of some good. Here, we
will only discuss slack and excess variables, as artificial variables exist only for
technical reasons. Their use is discussed in Chapter 3.

In a capacity constraint, a slack variable measures the difference between the
actual use of a resource (the left-hand side) and the availability of the resource
(the right-hand side value). As such it expresses the underuse of the capacity or,
more precisely, the number of units of the resource that are left unused. Resources
with zero slacks in the optimal solution identify bottlenecks in the schedule. On
the other hand, given a constraint that expresses a production requirement, excess
variables measure by how many units the actual production (the left-hand side)
surpasses the requirement on the right-hand side.

In addition, we can assign values to each of the variables that provide a pricing
system associated with all of the variables. To be more specific, we will consider a
specific scenario similar to the production planning example above, in which we
have a profit-maximizing objective coupled with resource constraints and demand
constraints. The decision variables xj denote the activity levels, i.e., the numbers
of units of the products manufactured and sold, the slack variables Si indicate the
quantity of unused resources, and the excess variables Ek specify the quantity of

 1 Introduction 64

excess sales, i.e., the number of units that are delivered to the customers in excess
of their demand. The costs or prices we associate with these variables will be
referred to as cx, cS, and cE.

The reduced cost or opportunity cost cx can then be interpreted as the amount of
money by which the price of the product will have to increase in order to make it
profitable (and ensure its inclusion in the optimal production plan). Similarly, in a
cost-minimization problem the dual prices will indicate the dollar amount by
which the price of the product would have to decrease, so that it can be included
in the optimal solution. Hence, in general the shadow prices state by how much
money the given price will have to change, so that the activity in question will be
included in the optimal solution. Given this definition, we can assert that the
product of the optimal value of a decision variable and its opportunity cost will be
zero. If the decision variable assumes a value of zero, the condition is naturally
satisfied. If the value of the decision variable is positive, it is already included in
the solution and no further price increase or cost decrease is required.

The shadow prices or dual prices cS specify the value of one additional unit of the
resource, i.e., the profit increase if one additional unit of the resource were
available. Similarly, they indicate the profit decrease if one less resource unit were
available.

Furthermore, the shadow prices or dual prices cE indicate the value of one
additional unit of production requirement, i.e., the profit decrease if the production
requirement were to increase by one unit. Again, they also show the profit
increase if the production requirement were to drop by one unit.

Similar to opportunity costs, the product of the value of a slack or excess variable
and its associated shadow price must be zero. If a slack variable has a positive
value, then the planner will not be prepared to pay additional funds to acquire
more resources that are already available in (more than) sufficient quantities.
Similarly, if an excess variable is positive, i.e., the present production level
already exceeds the required level, then a modification of that level will not result
in a change of profit.

Some authors, when referring to any of cx, cS, cE, cA call them indicators or
simplex multipliers. Both terms are intimately related to the simplex method and
its tableaus. This will be discussed in detail in Chapters 3 and 4.

We can now interpret the results of standard printout of the solution of a linear
programming problem. For that purpose, we will use again as an example the
production problem formulated above. In order to not tie our discussion to a
specific solver, we show below a simulated printout that is similar to those found
in many of today’s packages. To facilitate a proper interpretation of the shadow
prices, the printout specifies the type of constraint the individual shadow prices
are attached to. Here, the abbreviation LE refers to a “≤” constraint, GE indicates

1.5 Solving the Model and Interpreting the Printout 65

a “≥” constraint, and EQ denotes an equation. (Some printouts will use “<” to
mean “≤” and “>” to refer to “≥”.)

As an illustration, we use again the example discussed and formulated earlier in
this chapter. For convenience, we restate the problem here.

 P: Max z = 12x1 + 27x2

 s.t. 9x1 + 12x2 ≤ (15)(60) (Machine 1)
 6x1 + 14x2 ≤ (14)(60) (Machine 2)
 10x1 + 18x2 ≤ (12)(60) (Machine 3)
 x1 + x2 ≥ 70 (Demand constraint)
 x1, x2 ≥ 0 (Nonnegativity constraints)

A simulated printout will have the information shown in the box below.

VALUE OF THE OBJECTIVE FUNCTION: 877.50

DECISION OPTIMAL OPPORTUNITY
VARIABLES VALUE COST

X1 67.5000 0.0000
X2 2.5000 0.0000

SLACK/EXCESS CONSTRAINT OPTIMAL SHADOW
VARIABLES TYPE VALUE PRICE

ROW 1 LE 262.5000 0.0000
ROW 2 LE 400.0000 0.0000
ROW 3 LE 0.0000 1.8750
ROW 4 GE 0.0000 6.7500

First the obvious. The values of the decision variables at optimum are 67.5 and
2.5, respectively, meaning that we should make and sell 67.5 units of our first
product and 2.5 units of our second product. As both products have positive
values in the optimal solution, i.e., they are manufactured in positive amounts,
their opportunity costs are zero. This is hardly surprising as the opportunity costs
measure by how much the prices of the products would have to be increased for
the products to be manufactured. The value of the objective function specifies a
profit of $877.50 for the production problem.

Equally important are the values of the slack and excess variables. Recall that the
first three constraints were limiting the use of the three machines, meaning they
are resource constraints. Hence the solver added slack variables to the left-hand

 1 Introduction 66

sides of these constraints, and the values of these slack variables indicate the
number of unused machine hours. Here, we have a spare capacity of 262.5 hours
for machine M1 and 400 hours of unused time on machine M2. There are, however,
no hours left unused on machine M3, indicating that M3 constitutes a bottleneck in
the production process. The identification of bottlenecks in the production process
is crucial, as it will lead to the acquisition of additional capacities or the sale of
existing capacities in the future. Whenever a constraint has a zero slack or excess
variable that has a value of zero at optimum, we say that this constraint is binding
at optimum. Finally, the demand constraint in row 4 is also binding, indicating
that the customer demand is satisfied, but not additional units are delivered.

Consider now the shadow prices. The shadow prices associated with the first two
constraints (i.e., machines) are zero. This indicates that the profit would increase
by zero if additional units of the first two resources, i.e., additional machine hours,
were available. This is reasonable considering the fact that there exist unused
capacities on these machines at optimum. On the other hand, the shadow price
associated with row 3, the row that corresponds to machine M3, is $1.875,
showing that each additional hour of time on M3 (within reason, a concept further
elaborated upon in Chapter 6), will increase the profit by $1.875. On the other
hand, the shadow price of constraint 4 (the demand constraint) indicates that
increasing (decreasing) the lowest acceptable demand from its present value of 70
will reduce (increase) the profit by $6.75. In other words, if our customers could
agree to reduce their demand for at least 70 units to 69, we would deliver a
different mix of products (more specifically, 65.25 units of product P1 and 3.75
units of product P2) and save $6.75 in the process. On the other hand, if the
customer were to demand a total of 71 units instead of 70, we should charge $6.75
in addition to the price of the products.

2 APPLICATIONS

This chapter will provide a number of classes of applications of linear
programming problems. We should note that these are mere sample problems that
are designed to give readers a flavor of the application, rather than a model that
includes all of the bells and whistles usually found in real applications. We have
already discussed an example of the first large class of applications in the
Introduction, viz., production problems. Readers may recall that the simple model
formulated in the introduction has its decision variables defined in terms of the
number of quantity units of a product that are made and sold. Much more
frequently, such variables will have to be decomposed into variables that measure
the number of units that are made, while other variables express the number of
units that are sold, with the unsold units being left in inventory. A sizeable
production – inventory problem is presented as a mini case study in Section 10 of
this Chapter.

2.1 The Diet Problem
The first known instance of the diet problem actually predated the formal
development of linear programming. A solution to a small problem was first
calculated without linear programming by (later Nobel laureate) George Stigler
(1945), whose guess was shown to be very close to optimal. An interesting
account is provided by Garner Garille and Gass (1981). The basic idea behind the
problem is simple: choose quantities of foods so as to satisfy nutritional
requirements and ensure that the price of the resulting diet is within reason. Two
versions of the problem can, at least in theory, be thought of: either we minimize
the cost of the diet and ensure by way of the constraints that some nutritional
constraints are satisfied, or we maximize the nutritional content of the diet subject
to a budget constraint. While the latter approach appears appealing, it is
impractical, as it requires the user to find an expression for the nutritional content,
which is a blend of many different nutrients whose quantities are measured in
different units and cannot be added.

 2 Applications 68

Formally, the cost-minimization version of the problem can be defined as follows.
Define xj as the quantity (e.g., the number of servings, ounces, pounds, or any
other measure) of the j-th food in the diet, let aij denote the amount of nutrients of
type i in one unit of food j, define cj as the cost for one serving of food j, and
denote by)(ii bb the largest (smallest) acceptable quantity of nutrients of type i in
the diet. The problem can then be formulated as

 P: Min z = ∑

j
jj xc

 s.t. ibxa
j

ijiji ∀≤b ≤∑

 xj ≥ 0 ∀ j.

Some of the nutrients may not have an upper or a lower bound, in which case we
set the appropriate parameters ib and ib to a sufficiently large and a zero value,
respectively. Also note the necessity of the nonnegativity constraints in this
formulation as we can ingest only positive quantities of food.

In the remainder of this section, we will first formulate a small version of the
problem with some real data and then demonstrate the interactive modeling
process. This may serve as an example for modeling in general, as it is by no
means restricted to the diet problem. Table 2.1 shows the nutritional contents of
six foods, three of which were taken from different fast food chains, two are
beverages, and the remaining food are bagels. We also consider nine nutrients that
are among the standard nutritional components typically considered in diets. The
nutritional information has been obtained from the appropriate websites and
Walford (2007) for the nutritional content of foods.

The prices have been obtained directly at fast food outlets and a supermarket. The
cost-minimizing model was then solved. Its solution included 0 hamburgers, 0
banana splits, 2.66 cups of broccoli, 4.28 bagels, 0.98 cups of milk, and 9.16 cups
of orange juice for a total cost of $5.93.

The meal plan is certainly cheap. Notice that the protein, fiber, the lower bound on
the calorie constraints, and the vitamin A constraint are binding at optimum,
meaning that the present solution includes just about enough protein, fiber,
calories, and vitamin A.

The plan does not look bad, but includes excessive amounts of orange juice, so
that we may now try to limit ourselves to no more than four cups of orange juice.
Hence we add the constraint x6 ≤ 4 to the above model and resolve the problem.

2.1 The Diet Problem 69

 2 Applications 70

The solution now includes 0 hamburgers, 0 banana splits, 2.25 cups of broccoli,
6.41 bagels, 3.12 cups of milk, and 4 cups of orange juice for a total cost of $6.34.

The modified requirements that led to this new solution have increased the price
somewhat, but not much. In this solution, the fiber constraint, the lower bound on
the calories, and the vitamin A constraint are binding. While the quantity of
orange juice is now reasonable, there are now too many bagels in the solution. We
now add the constraint that the solution should not include more than four bagels,
i.e., x4 ≤ 4.

The new optimal solution then includes 0 hamburgers, 0 banana splits, 4.67 cups
of broccoli, 4 bagels, 5.26 cups of milk, and 4 cups of orange juice for a total cost
of $7.12.

Again, we notice a slight increase in price, but the diet is still cheap. The fiber
constraint is still binding and so is the lower bound on the calories. Also, we may
feel that nine cups of liquid are excessive, so that we add a constraint that limits
our intake of liquids to no more than six cups per day. This constraint is
formulated as x5 + x6 ≤ 6.

The new optimal solution then includes 0.84 hamburgers, 0 banana splits, 3.83
cups of broccoli, 4 bagels, 2 cups of milk, and 4 cups of orange juice for a total
price of $8.20.

The fiber constraint is still binding, as is the lower bound on the calories. At this
point we may feel quite satisfied with the diet, but may wish to limit the quantity
of broccoli in the diet. In order to do so, we add a constraint that limits our intake
of broccoli to two cups, i.e., we add the constraint x3 ≤ 2 to the model . Solving the
revised problem does, however, not result in a feasible solution (the lack of fiber
content in the other foods is the major problem). In order to restore feasibility, we
relax the new constraint and only require that the diet not include more than three,
rather than two, cups of broccoli, i.e., we replace the constraint x3 ≤ 2 by x3 ≤ 3.

The new optimal solution then includes 1.12 hamburgers, 0.53 banana splits, 3
cups of broccoli, 4 bagels, 0 cups of milk, and 4 cups of orange juice for a total
cost of $10.13. In this solution, fiber and sodium are now at their allowable
bounds. This diet appears to be reasonable: one hamburger, one banana split every
other day, three cups of broccoli, and four glasses of orange juice. The price of
$10.13 also appears to be reasonable (even though adding the restriction on
broccoli increased the price by 23½%). We also notice in the process that the fiber
constraint has been tight all along, suggesting that we add some other, fiber-rich,
food items to our selection.

The discussion above was meant to not only introduce the diet problem, one of the
earliest and still important applications of linear programming, but also provide
some insight into the modeling process.

2.2 Allocation Problems 71

2.2 Allocation Problems
Allocation models belong to the class of linear programming problems that
includes arguably the most practical applications. All allocation models have in
common that they attempt to allocate a scarce resource so as to optimize the
consequence of that allocation. More specifically, we may have to allocate money
to different types of investments in order to establish a retirement fund, (machine)
time to individual goods in the manufacturing of products, manpower to sales and
administrative positions, fuel, or other resources to different economic activities,
and so forth. These allocations are to be performed so as to maximize their profit,
minimize their cost, or optimize other efficiency criteria specified by the decision
maker.

As an illustration, consider the following

Example 1 (an agricultural allocation model): A farmer owns 1,000 acres of more
or less homogeneous farmland. His options are to breed cattle, or plant wheat,
corn, or tomatoes. It takes four acres to support one head of cattle. Annually,
12,000 hours of labor are available. (For simplicity, we will assume here that these
12,000 hours could be used at any time during the year, i.e., through hiring casual
labor during seasons of high need, e.g., for harvesting). Table 2.2 provides
information regarding the profit, yield, and labor needs for the four economic
activities.

Table 2.2

 cattle wheat corn tomatoes
Profit $1,600 /head $5/bushel $6/bushel 50¢/lb

Yield per acre ¼ heads/acre 50 bushels 80 bushels 1,000 lbs
Annual labor
requirement 40 hrs/head 10 hrs/acre 12 hrs/acre 25 hrs/acre

Furthermore, it is required that at least 20% of the farmland that is cultivated in
the process must be used for the purpose of cattle breeding, at most 30% of the
available farmland can be used for growing tomatoes, and the ratio between the
amount of farmland assigned to growing wheat and that left uncultivated should
not exceed 2 to 1.

As usual, the first step in formulating the problem is to define variables. In
allocation problems, we typically formulate variables xj as the quantity of the
scarce resource allocated to the j-th activity. In case of multiple scarce resources,
there are different ways to formulate the problem. In this example, we have two
scarce resources, viz., land and labor. We choose land for our formulation, so that
the variables will be defined as the amount of farmland that is devoted to the j-th
activity. The model is then

 2 Applications 72

 P: Max z = 1,600(¼)x1 + 5(50)x2 + 6(80)x3 + ½(1,000)x4

whose units are

 [$] = [$/head][heads/acre][acres] + [$/bushel][bushel/acre][acres] +
 [$/bushel][bushel/acre][acres] + [$/lbs][lbs/acre][acres]

 s.t. x1 + x2 + x3 + x4 ≤ 1,000 (1)
 40(¼)x1 + 10x2 + 12x3 + 25 x4 ≤ 12,000 (2)
 x1 ≥ 0.2(x1 + x2 + x3 + x4) (3)
 x4 ≤ 0.3(1,000) (4)
 x2/(1,000–x1 − x2 − x3 − x4) ≤ 2/1 (5)
 x1, x2, x3, x4 ≥ 0.

Constraint (1) ensures that we do not use more farmland than is actually available,
constraint (2) restricts the use of labor, constraint (3) guarantees that at least 20%
of the land that is used is actually used for cattle breeding, constraint (4) restricts
the land for tomato planting to no more than 30% of the available land, and
constraint (5) restricts the required 2 to 1 ratio.

Notice that we have to pay close attention to the different units in which the items
in this formulation are expressed, which is why we have shown the units of the
parameters and variables used in the objective function. Also note that the ratio
constraint is actually nonlinear in its current formulation. However, a few routine
transformations result in a linear constraint. Cleaning up the model results in

 P: Max z = 400x1 + 250x2 + 480x3 + 500x4

 s.t. x1 + x2 + x3 + x4 ≤ 1,000
 10x1 + 10x2 + 12x3 + 25x4 ≤ 12,000
 .8x1 − .2x2 − .2x3 − .2x4 ≥ 0
 x4 ≤ 300
 2x1 + 3x2 + 2x3 + 2x4 ≤ 2,000
 x1, x2, x3, x4 ≥ 0.

The optimal solution is 1x = 200, 2x = 0, 3x = 769.2308, 4x = 30.7692 acres
with an optimal profit of z = 464,615.4.

It is also worth mentioning that the variable x1 would in reality be constrained to
be integer multiples of 4, as the number cows must be integer and each cow
requires four acres. For simplicity, we have deleted such considerations here. If
this were a concern, then we would redefine x1 as the number of heads of cattle. In
the above formulation, the only change is that x1 is replaced by 4x1 (with the
specification that x1 be integer).

2.2 Allocation Problems 73

Another possibility is to define the variables in terms of labor, the other scarce
resource. In particular, we can define xj as the hours of labor devoted to activity j.
The (cleaned up) formulation is then

 P: Max z = 40x1 + 25x2 + 40x3 + 20x4

 s.t. .1x1 + .1x2 + .0833x3 + .04x4 ≤ 1,000
 x1 + x2 + x3 + x4 ≤ 12,000
 .08x1 − .02x2 − .0167x3 − .008x4 ≥ 0
 .04x4 ≤ 300
 .2x1 + .3x2 + .1667x3 + .08x4 ≤ 2,000
 x1, x2, x3, x4 ≥ 0.

It is apparent that the two formulations are simple transformations from each
other. In particular, there are ratios of 10:1, 10: 1, 12:1, and 25:1 between the
variables in the two formulations. This results from the conversion from
[hours/acre], which are 10, 10, 12, and 25. The solution does, of course, reflect
this as well with 1x = 2,000, 2x = 0, 3x = 9,230.7656, 4x = 769.2344 hours with
an optimal profit of z = 464,615.3, the same as in the previous formulation.

Due to their widespread occurrence, we will provide another allocation model
from portfolio analysis.

Example 2 (a portfolio selection problem): An investor has $1 million to invest in
any combination of bonds, stocks, term deposits, a savings account, real estate,
and gold. The anticipated (or known) interest rates, the risk factors (where a high
number indicates a high risk) and the expected increase in the value of the
investment are shown in Table 2.3:

Table 2.3

Type of
investment

Interest
(in %, annually)

Risk factor Expected annual
increase in value

Bonds 5% 3 0%
Stocks 2% 10 7%

Term deposits 4% 2 0%
Savings account 3% 1 0%

Real estate 0 5 7%
Gold 0 20 11%

For instance, real estate does not yield any interest (the projects are not rental
properties), but its value is expected to increase by 7% per year. On the other
hand, stocks yield an average of 2% in interest, and in addition to that, they are
expected to increase in value by 7% for a total of 9% p.a. The other numbers are
to be interpreted similarly.

 2 Applications 74

The objective is to maximize the amount that is expected to be available in a
year’s time subject to the following restrictions:

• Of the total amount of money invested, at least 30% must be invested in

bonds, not more than 10% in stocks, and at least 10% in term deposits and/or
savings accounts.

• Up to 50% of the total money invested in real estate may be borrowed against
in the form of a mortgage at an interest rate of 6%. The amount borrowed
cannot exceed $150,000.

• The average risk factor of the investment cannot exceed 4.5.
• The average annual interest should be at least 2.5%.
• The amount of money invested in gold cannot exceed $100,000 or 8% of the

total amount of money available, whichever is smaller.

In this case, money is the only scarce resource. Defining xj as the amount of
money allocated to the j-th investment and x7 as the amount borrowed, we can
write

 P: Max z = 1.05x1 + 1.09x2 + 1.04x3 + 1.03x4 + 1.07x5 + 1.11x6 − 1.06x7
 s.t. x1 + x2 + x3 + x4 + x5 + x6 ≤ 1,000,000 + x7
 x1 ≥ 0.3(x1 + x2 + x3 + x4 + x5 + x6)
 x2 ≤ 0.1(x1 + x2 + x3 + x4 + x5 + x6)
 x3 + x4 ≥ 0.1(x1 + x2 + x3 + x4 + x5 + x6)
 x7 ≤ 0.5x5
 x7 ≤ 150,000

 5.4
20512103

654321

654321 ≤
+++++

+++++
xxxxxx

xxxxxx

 5.2
3425

654321

4321 ≥
+++++

+++
xxxxxx

xxxx

 x6 ≤ 100,000
 x6 ≤ 0.08(1,000,000 + x7)
 x1, x2, x3, x4, x5, x6, x7 ≥ 0.

The optimal solution of this problem is:

 Bonds $437,000
 Stocks $115,000
 Term deposits $115,000
 Savings account $0
 Real estate $478,400
 Gold $4,600
 Loan $150,000,

2.3 Cutting Stock Problems 75

so that the total return is $1,061,794. If the interest for the loan were to increase
by at least 0.1560 percentage points, the solution would change. (The information
that leads to this number is discussed in Chapter 6). For instance, if the mortgage
rate were to increase to 6.5%, we would no longer take out any loan, and the total
return would be $1,061,560, a decrease of only 0.022%. More specifically, the
solution would be

 Bonds $380,000 (−13%)
 Stocks $100,000 (−13%)
 Term deposits $100,000 (−13%)
 Savings account $0 ("0%)
 Real estate $416,000 (−13%)
 Gold $4,000 (−13%)
 Loan $0 (−100%),

where the numbers in parentheses indicate the changes of the new solution as
compared to those of the previous solution. It is apparent that while the changes in
the individual investments are significant, the return hardly changes at all.

2.3 Cutting Stock Problems
Cutting stock problems were first described in the early days of linear
programming. Gilmore and Gomory (1961) were the first to formulate cutting
stock problems (or, equivalently, stock cutting or trim loss problems). The
problem in its simplest form can be described as follows. Given materials that are
available in certain shapes and sizes, cut them in order to generate certain desired
shapes and sizes, so as to minimize some objective such as cost. Depending on the
type of material and cutting under consideration, we distinguish between one-,
two-, and three-dimensional cutting problems. For instance, if we want to cut
newsprint to different lengths, then—although the paper is certainly two-
dimensional—this is a one-dimensional cutting problem, as the width of the paper
remains the same, while only its length varies. Here, we first formulate a one-
dimensional cutting stock problem and later generalize to two dimensions.

In order to simplify the terminology, assume that we are cutting rods to desired
lengths. Being a one-dimensional problem, all rods are of the same diameter and
only their respective lengths differ. On the one hand, there are different lengths of
available rods that we have in stock, while on the other hand, there are lengths of
desired rods that we or our customers demand. A cutting plan, consisting of
cutting patterns, will determine how to generate the desired rods from the
available rods. In order to formalize, suppose that there are m available lengths for
which there are supplies of si, i=1, …, m. On the other hand, there are p desired
lengths for which the demands are dk, k=1, …, p. The cutting plan is assumed to
consist of n distinct cutting patterns that are enumerated from j=1 to n.

 2 Applications 76

Furthermore, akj denotes the number of desired lengths k that are generated by
cutting according to pattern j, cj denotes the cost of cutting pattern j, and the set Ti
includes all patterns j that use the available length i. In addition to cutting
available stock in order to generated the desired lengths, it may also be possible to
purchase desired lengths directly. The cost per unit of length k is then . *

kc

We can then define the required variables. The first set of variables determines
how the cutting is going to take place. In particular, define xj as the number of
times we cut the j-th pattern. The variables yk are defined as the number of desired
lengths k that will be purchased in addition to those being cut. We can then
formulate the cutting stock model as follows.

 P: Min z = ∑ ∑+

j k
kkjj ycxc *

 s.t. =1, …, m ∑
∈

∀≤
iTj

ij isx

 ∀ k=1, …, p k
j

kjkj dyxa ≥+∑
 xj, yk ∈ ù0 ∀ j = 1, …, n; k = 1, …, p.

In this formulation, the objective function minimizes the sum of cutting and
purchasing costs. The first set of constraints guarantees that the number of
available rods that are cut will not exceed the number of rods of that length that
are actually in stock. The second set of constraints ensures that the number of
desired rods that are cut from stock plus those that are purchased, will satisfy the
demand.

In order to further explain the formulation, consider the following

Example: A firm has an inventory of one hundred and twenty 20-ft rods, one
hundred and sixty 15ft rods, and forty 8-ft rods. Their customers demand two
hundred 10-ft rods, and two hundred and fifty 6-ft rods. Each cut costs 30¢, while
buying the rods costs 50¢ and 25¢, respectively, for the 10-ft and 6-ft rods. Given
the above information, we can now determine the cutting plan shown in Figure
2.1.

This cutting plan includes only patterns that cut as many of the desired lengths as
possible out of each of the given lengths. This appears intuitively appealing, as,
for instance, it would seem meaningless to include a pattern that cuts one 20' rod
to just a single 6' rod. Such patterns may, however, be meaningful as the 14' rod
that is left over, may be a useful input in the future when different lengths are in
demand, whereas the 2' length that results from pattern 3 will almost certainly be
waste.

2.3 Cutting Stock Problems 77

 Given: Desired: Cutting pattern #

6'

6' 6'

10'

6' 6' 6'

6' 10'

10' 10'

8'

15'

20'

#1

#2

#3

#4

 #5

 #6

Figure 2.1

Define now xj, j = 1, …, 6 as the number of times a given rod is cut according to
the j-th pattern. Furthermore, let y1 and y2 denote the number of 10 ft & 6 ft rods
that are purchased in addition to those cut. As far as cutting costs are concerned,
pattern 1 uses one cut and hence costs 30¢, pattern 2 requires two cuts and
therefore costs 60¢, and so forth. The problem can then be formulated as follows.

 P: Min z = 0.3x1 + 0.6x2 + 0.9x3 + 0.3x4 + 0.6x5 + 0.3x6 + .5y1 + .25y2

 s.t. x1 + x2 + x3 ≤ 120
 x4 + x5 ≤ 160
 x6 ≤ 40
 2x1 + x2 + x4 + y1 ≥ 200
 x2 + 3x3 + 2x5 + x6 + y2 ≥ 250
 x1, x2, x3, x4, x5, x6, y1, y2 ≥ 0

The optimal solution to this problem suggests that we cut the first pattern hundred
times (thus generating the required two hundred 10 ft rods) and purchase the
remaining two hundred and fifty 6 ft rods for a total cost of $92.50. This leaves us
with twenty 20 ft rods, hundred and sixty 15 ft rods, and forty 8 ft rods, all uncut
and usable as possible inputs in the future. Notice that this solution results in no
waste at all. The reason for the purchase of the 6 ft rods can easily be seen:
patterns 3, 5, and 6 generate three, two, and one 6 ft rods, respectively, with three,
two, and one cuts, while pattern 2 produces one 6 ft rod and one 10 ft rod. The
prices for cutting the rods are then 30¢ per rod in each case (assuming that the
cutting costs for pattern 2 are equally attributed to the 6 ft rod and the 10 ft rod),
while a purchasing price of a 6 ft rod is only 25¢.

 2 Applications 78

Ignore now the option of purchasing rods. In the model this means simply that the
variables y1 and y2 are deleted, i.e., set equal to zero. Solving the remaining model
results in cutting the first pattern 100 times, the third 20 times, the fifth 75 times,
and the sixth 40 times. The total cost are now $105, indicating that the option that
allows us to purchase rods is worth $12.50.

Consider now the same problem, where, again, we do not allow the option of
purchasing additional rods, and furthermore, let the objective be the minimization
of waste, which is defined as the simple leftovers. Notice that this poses the
question of measuring waste. While this appears quite straightforward in that
individual lengths of waste can simply be added up, this may not be a proper
procedure. While a 1-ft piece that is left by the cutting process may indeed by
waste, a 5-ft piece that cannot be cut into any length that is in demand right now,
could potentially become useful input in the future and should therefore not be
properly counted as five times the waste of a single 1-ft piece. In such a case, the
counting of the waste would be adjusted accordingly by setting it to zero in the
formulation, whenever it has been decided that the pieces that are not used in this
period may be usable later. However, if the decision maker deems a pattern that
generates large pieces that will remain unused in this planning period as
unacceptable, then such patters will simply be ignored and deleted from the
cutting plan.

In the numerical example below, we ignore this argument and determine total
waste as the sum of all pieces that remain unused in the cutting process. Hence,
the six patterns in our example generate 0, 4, 2, 5, 3, and 2 ft of waste,
respectively. The problem without the option of purchasing rods and with the
minimization of waste then simply deletes the variables y1 and y2, and the new
objective function is

 Min z = 4x2 + 2x3 + 5x4 + 3x5 + 2x6.

The optimal solution of this problem is quite different to the original one. While
we still cut the first pattern 100 times (generating two hundred 10 ft rods), we now
cut the third pattern 20 times (thus generating sixty 6 ft rods), and the fifth pattern
95 times (thus generating hundred and ninety 6 ft rods), so that the required 200
and 250 rods result. The total waste is 325 ft which will cost $105, the same
amount as the solution that minimizes the costs.

The main difficulty related to the cutting stock problem is not the formulation by
itself, but the setting up of the cutting plan. In most practical applications, the
number of cutting patterns is astronomical. The reason for this are not only the
number of different lengths that are either available or in demand, but also the
relation between the lengths of available and demanded lengths. Consider, for
instance, the same example as above, but assume that the longest available length
were not 20 ft, but 200 ft instead. The number of cutting patterns would increase
tremendously on account of this change.

2.3 Cutting Stock Problems 79

Consider now two-dimensional cutting stock problems. Interestingly enough, the
formulation does not change at all. The only difference is that it is now much
more difficult to enumerate the possible cutting patterns. Even if we were to
ignore arrangement of desired shapes that are crooked or somewhat irregular, the
problem remains difficult. As an illustration, consider the following

Example: A firm has 10-ft by 10-ft sheets of metal that are to be cut into 3-ft by 5-
ft and 2-ft by 6-ft pieces. Given only a single two-dimensional shape and two
desired shapes (which, for simplicity, we will refer to as types T1 and T2), the
problem would appear to be easy. A few simple patterns are shown in Figure2.2.
All patterns shown here have the desired pieces arranged with their edges parallel
to the edges of the available piece.

 5' 5' 5' 3' 2'

T1

T1

T1

T1 T2

T2

T2

5' 3' 2'

Pattern 3

T1

T1 T1

T2 T2
T2
T2

T1

T1

T1

T1

T1

T1 3'

3'

3' T1

T1

T1

T1

T1

T2

Pattern 2Pattern 1

Pattern 4

6'

3'

3'

2' 2'

2'
2'

3'

3'

 3'

3'

3'

2'

2'

Figure 2.2

One possibility to evaluate the patterns and their respective efficiencies is the
usage of the available material. The available material is 100 sq. ft., while the four
patterns use 90, 87, 96, and 93 sq. ft., respectively. So it would appear that the
third pattern were the most efficient. While this may be true theoretically, that

 2 Applications 80

pattern is very difficult to cut. For that purpose, we would like to introduce the
concept of guillotine cuts. These cuts have the property that they cut a given piece
right through without stopping somewhere in the middle. Most practical
applications use guillotine cuts exclusively. So, the first question is whether or not
a given pattern can actually be cut by using guillotine cuts. While this does not
appear to be the case of pattern 3, it is, albeit in a tedious way. At first, we would
cut the original piece into a 10' × 7' and a 10' × 3' piece. The latter piece can then
easily be cut into two T1 pieces and that part is done. The 10' × 7' piece can then
be cut into 4' × 7' and 6' × 7' pieces, which then can easily be cut further into the
desired pieces. As a result, we have determined that Pattern 3 can indeed be
generated by guillotine cuts. Note that Pattern 4 can also be cut by guillotine cuts.
However, the cutting width has to be adjusted often with the strong possibility of
operator error. Therefore, simple patterns such as Patterns 1 and 2 are strongly
preferred, even if their theoretical efficiency, as measured by their usage of
material, make them appear inferior.

2.4 Employee Scheduling
This section presents an admittedly simplistic scheduling problem that assigns
employees to shifts. Typical examples would be bus drivers, hospital nurses, or
other shift workers. It must be noted that the formulation presented below does not
distinguish between individuals: it only states that, for instance, five drivers are
assigned to a specific shift, but it does not indicate who these drivers are and if
their allocation would cause a violation of rules set out in their collective
agreement (e.g., working shifts too close together, working to many hours, or
similar regulations). It also does not take into consideration the possibility of
different abilities of the employees. This problem can be seen as the first stage in
an employee scheduling systems. The second phase would then be the allocation
of individual employees to shifts. This can, of course, also be done in a single
stage as shown below.

To formalize, assume that the relevant time slots have been numbered j = 1, 2, …,
n, and that the smallest number of employees that have to be present during time
slot j is denoted by bj. For notational convenience, we define bn+1 := b1. We can
then define variables xj that denote the number of employees that start working in
time slot j. Again, for convenience we define xn+1 = x1. It now depends how the
time slots are defined in relation to the length of the shifts that employees have to
work. For instance, if the time slots are defined as four hours (as the need for
employees is constant during any 4-hour period) and each shift is 8 hours, then we
note that an employee who starts work at the beginning of time slot j will then be
available during time slots j and j+1. If the time slots are defined on a two-hour
basis, then an employee who starts to work in time slot j will work during time
slots j, j+1, j+2, and j+3. Assuming that time slots are four hours and shifts last
eight hours and given the objective to minimize the number of employees that will
be needed, we can formulate the problem as

2.4 Employee Scheduling 81

 P: Min z = ∑
j

jx

 s.t. xj + xj+1 ≥ bj+1 ∀ j=1,…, n
 xj ≥ 0 ∀ j.

Notice the special structure of the matrix of coefficients. It is a so-called Hoffman-
Kruskal matrix (see Hoffman and Kruskal, 1956)

 A = (aij) with .











==
+=

=

=

otherwise0
and1if,1

1if1,
if,1

nji
ji
ji

aij

It is easy to demonstrate (e.g., by way of evaluating the determinant with respect
to the first row) that A has a determinant of two, if n is odd and a determinant of
zero, if n is even. With four-hour time slots, a day has six time slots, so that n is
even if we plan for one or multiple full days. This ensures integrality for all
integer requirements bj without us specifically requiring it.

In order to illustrate the basic ideas, consider the following numerical

Example: A regional health clinic intends to plan a schedule for its nurses. The
estimated requirements are shown in Table 2.4.

Table 2.4

 Midnight –

4 a.m.
4 a.m. −
8 a.m.

8 a.m. −
12 noon

12 noon −
4 p.m.

4 p.m. −
8 p.m.

8 p.m. −
midnight

Time slot # 1 2 3 4 5 6
Nurses
needed 6 8 11 9 18 11

Defining a variable for each of the six time slots and assuming 8-hour shifts, we
can formulate the problem as follows.

 Min z = x1 + x2 + x3 + x4 + x5 + x6

 s.t. x1 + x6 + ≥ 6
 x1 + x2 ≥ 8
 x2 + x3 ≥ 11
 x3 + x4 ≥ 9
 x4 + x5 ≥ 18
 x5 + x6 ≥ 11
 x1, …, x6 ≥ 0.

 2 Applications 82

One optimal solution to this problem has x = [0, 8, 3, 6, 12, 6], so that a total of 35
nurses will be needed. In this solution, all constraints are tight, except for the 6th
time slot, where we have an excess of seven nurses. Note that there are many
alternative optimal solutions.

Suppose now that the second time slot requires 12, rather than 8, nurses, so that b2
= 12. The new solution is then x = [1, 11, 0, 9, 9, 5], so that there is still a
requirement for 35 nurses. Note that this solution is one of the many alternative
optima for the original problem where it produced four excess nurses in time slot
2 and three excess nurses in time slot 6. Now the four excess nurses in time slot 2
are used up by the increased requirement (from 8 to 12), leaving the three excess
nurses in time slot 6 as the only constraint that is not tight.

Various refinements of this basic model can be introduced. For instance, we can
consider the assignments of individual employees to shifts. Appropriate variables
can then be defined as xij which assume a value of one, if employee i is assigned
to start work in shift j, and zero otherwise. We can then include constraints that
require a minimal rest period between two shifts for each individual. However,
this formulation is a model in integers which is beyond the scope of this volume.
Instead, we refer interested readers to Eiselt and Sandblom (2000).

2.5 Data Envelopment Analysis
Data Envelopment Analysis (DEA) is an application of linear programming that
deals with the comparison of different decision making units (DMEs), such as
branches of a fast-food chain, comparable regional health clinics, automobile
dealerships selling the same brand, and similar units. The comparison is done with
the help of input and output factors. In particular, for each unit (e.g., branch of a
company) j, the method will construct a fictitious decision making unit as a linear
combination of all other branches and compare its inputs and outputs with that of
the j-th branch. If the fictitious unit can produce at least as much output with no
more input than branch j, then branch j is not efficient. The active field of data
envelopment analysis is based on the work by Charnes et al. (1978) who expanded
upon ideas on efficiency put forward by Farrell (1957).

Formally, define the parameters a and as the output of good i produced by
branch l and the input of factor k required by branch l, respectively. Define then
variables w

+
li

−
lka

D
jE

l as the weights of branches l = 1, … that compose the fictitious unit,
and denote the efficiency of branch j by . The problem can then be formulated
as follows.

2.5 Data Envelopment Analysis 83

 P: Min jE D

 s.t. a∑ (1) iaw iji ∀≥ ++

l
ll

 (2) ∑ ∀≤ −−

l
ll kEawa D

jkjk

 wl ≥ 0 ∀ l, ∈ ú. D
jE

The hypothetical branch mentioned above is constructed as a linear convex
combination of the existing branches by means of the weights wl, l = 1, …, n. The
purpose is now to make this hypothetical branch as efficient (or even more
efficient) than branch j, i.e., the branch whose efficiency is under investigation.
This is accomplished by ensuring that the hypothetical unit produces as least as
much output as unit j (via constraints (1)) and that the hypothetical unit uses no
more input than unit j. The left-hand side of constraints (2) denotes the resource
consumption of the hypothetical unit , whereas the right-hand side is the resource
consumption of unit j weighted by its efficiency. For instance, if the efficiency of
branch j is 0.8 (i.e., 80%), then constraints (2) guarantee that the hypothetical
branch uses no more than 80% of the resources that are used by branch j, the
branch whose efficiency is investigated. If the smallest value of is 1, then the
hypothetical branch cannot be more efficient as branch j which can then be
considered (100%) efficient. If, on the other hand, the optimal value of = 0.8,
then the hypothetical branch can output as much as branch j with no more than
80% of its input; consequently, branch j can be said to be only 80% efficient.

D
jE

D
jE

Here we just state the basic problem of data envelopment analysis as shown
above. In Section 8.3.4 we will demonstrate that the above problem P can be
derived from some fundamental measure of efficiency.

The basic model as described here has many limitations. One such limitation is the
difficulty of devising a quantitative measure for input and output factors. For
instance, if hospitals are to be compared, the “quality of patient care” is certainly
one of the more relevant features. It certainly is an output factor, but we will need
some proxy expression in order to measure it. And therein lies the problem.
Proxies never measure quite the same thing that they replace. For instance,
measuring the quality of the care in terms of patient days spent in the hospital is
not a good substitute for quality: long hospital stays may be safe for the patient,
but they prevent patients to get on with their lives, not to mention those patients
who are waiting for hospital beds to get the surgery they need. Much worse are
other situations, e.g., when measuring the quality of educational institutions, often
the amount of money spent on them, obviously an input factor, is used as output.
Another serious shortcoming is the autocorrelation between different input and

 2 Applications 84

output factors. For instance, sales, market share and revenue are all valid output
factors, but they are obviously highly correlated.

Another shortcoming is the following. Suppose there is only a single input and a
single output factor. There are three branches with outputs of 10, 6, and 8,
respectively, while they require inputs of 8, 4, and 7, respectively. The third
branch is not efficient, as a hypothetical branch that is a combination of the first
two branches with weights 0.5 and 0.5 produces an output of 8, identical to that of
branch 3, while it uses only 6 units of input, less than the 7 units required by
branch 3. However, the hypothetical branch is just that—hypothetical. Maybe the
decision maker finds that an output of 8 is exactly what is needed for his market
niche and is satisfied with an input of 7.

Finally, note that data envelopment analysis will determine only relative
efficiency in the sense that a branch will be considered efficient, whenever it
compares favorably (by way of hypothetical units as explained above) with other
existing branches. In case all branches perform terribly and one performs
somewhat better than the rest, then the latter branch will be found “efficient.”

Example: Consider four gas stations that belong to the same company and that are
to be evaluated. The relevant input factors are the costs to run the station, the
number of employees, and the square footage of the store that is attached to the
station. The output factors are the revenues and the number of customers. The
numerical information that was provided is shown in Table 2.5.

Table 2.5

 Costs

(per day)
Employees Square

footage
Revenue
(per day)

Customers
(per day)

Branch 1 25 2 1,300 65 123
Branch 2 33 3 1,800 83 135
Branch 3 28 2 1,300 61 92
Branch 4 29 2 1,200 81 110

Notice the (at least partial) correlation between some of the factors, e.g., costs and
the number of employees, and the number of customers per day and the revenue.
For a proper analysis, it would be beneficial if such correlations were to be
removed before the analysis commences, e.g., by way of cluster analysis that
suggests to combine input or output criteria that are in some way correlated with
each other.

Suppose now that we want to determine the efficiency of branch 3. The linear
programming formulation of the problem is then as follows.

2.6 Inventory Planning 85

 P: Min E D
3

 s.t. 65w1 + 83w2 + 61w3+ 81w4 ≥ 61
 123w1 + 135w2 + 92w3 + 110w4 ≥ 92
 25w1 + 33w2 + 28w3 + 29w4 ≤ 28 DE3

 2w1 + 3w2 + 2w3 + 2w4 ≤ 2 DE3

 1,300w1 + 1,800w2 + 1,300w3 + 1,200w4 ≤ 1,300 DE3

 w1, w2, w3, w4 ≥ 0,
 ∈ ú DE3

Solving the problem, we find that 1w = 0.2638, 2w = 0, 3w = 0, 4w = 0.5414,

and DE3 = 0.8052, indicating that branch 3 is only about 80% efficient. This

means that a hypothetical branch that consists of
∑
k

kw
w1 = 32.76% of branch 1

and 67.24% of branch 4 will use only 80% of the input required by branch 4 to
produce at least as much output as branch 3 does.

This is not really a surprise, as branch 3 is actually dominated by branch 1 in that
it requires the same or more inputs than branch 1 and it produces lower output
than branch 1. Some further details in the context of discrete data envelopment
analysis are found in Eiselt and Sandblom (2004).

2.6 Inventory Planning
This section introduces a simple model that illustrates how inventories can be
incorporated in a production problem similar to that introduced in Chapter 1 of
this book. The basic reasons for inventories are manifold. The main reason is to
avoid high costs of overtime, contracting out, and other stopgap measures in order
to satisfy unexpected peaks in demand. The obvious drawback are the costs
related to keeping inventories, such as warehouse operating costs, e.g., rent,
heating/cooling, lighting, security, etc., but, most importantly, costs related to
capital that is tied up in inventory. Hence, interest on capital tied up in inventories
will make up most of the inventory costs.

By their very nature, problems involving inventories are dynamic. Each period,
often a month, can be planned individually, and the inventory balancing
constraints will serve as connecting links between the individual planning periods.
Inventories can be visualized as holding tanks with the production serving as the
inflow of goods and the demand as the outflow.

Hamid
Highlight

 2 Applications 86

To formalize matters, first define dt as the known demand in period t, where, for
simplicity, we assume that the demand occurs at the end of the month. Next define
the production variables xt that denote the production of the good some time in
period t, and define inventory variables It that denote the level of inventory at the
beginning of period t. (Alternatively, we can define the inventory variables at the
end of the period). We also have production capacities κt that may differ between
the periods, production costs c that indicate the per-unit production costs in

period t, and inventory holding costs c that express the cost of holding one unit
in stock from the beginning of period t to the beginning of period t+1. The
problem can then be formulated as

p
t

I
t

 P: Min z = ∑ +

t
t

P
t xc ∑

t
t

I
t Ic

 s.t. xt ≤ κt ∀ t
 xt + It ≥ dt ∀ t (1)
 It+1 = It + xt – dt ∀ t
 xt, It ≥ 0 ∀ t.

The objective function minimizes the sum of production and inventory costs,
while the constraints are the capacity constraints, the demand constraints (that
require that the inventory available at the beginning of month t plus whatever is
manufactured within month t is sufficient to satisfy the demand), and the typical
inventory balancing constraints that specify that the inventory available at the
beginning of month t+1 equals the inventory available at the beginning of the
previous month t, plus whatever is produced in month t minus what is consumed
(i.e., the demand) in month t. Clearly, all variables have to satisfy the usual
nonnegativity constraints.

The problem can be simplified, though. Due to the nonnegativity constraints of the
inventory constraints, we know that the inventory balancing constraints are It+1 = It
+ xt – dt ≥ 0 ∀ t or, simply, xt + It ≥ dt ∀ t as required by the demand constraints
(1), making them redundant and therefore they can be deleted.

As an illustration, consider the following

Example: A company wants to plan its production for one of its products for the
next four months. Table 2.6. shows the anticipated demand, the production
capacities, and the unit production costs for the individual months, as well as the
inventory holding costs that are incurred carrying over one unit from one month to
the next.

Hamid
Highlight

Hamid
Highlight

Hamid
Highlight

Hamid
Highlight

Hamid
Highlight

2.6 Inventory Planning 87

Table 2.6

 Periods
 Month 1 Month 2 Month 3 Month 4
Demand 50 120 150 160
Production capacity 100 100 160 150
Unit production cost $1 $1.1 $1.2 $1.2
Inventory cost $.3 $.2 $.2

At present, no units are in stock and after the four months, it is not desired to have
any stock left. The problem can then be written as

 P: Min z = 1x1 + 1.1x2 + 1.2x3 + 1.2x4 + .3I2 + .2I3 + .2I4

 s.t. x1 ≤ 100
 x2 ≤ 100
 x3 ≤ 160
 x4 ≤ 150

 I1 = 0
 I2 = 0 + x1 − 50
 I3 = I2 + x2 − 120
 I4 = I3 + x3 − 150
 I5 = 0 = I4 + x4 − 160

 xj, Ij ≥ 0 ∀ j

The optimal solution to this problem is x = [70, 100, 160, 150] and I = [0, 20, 0,
10] with associated costs of z = 560.

As often, there are other ways of formulating the same problem. Rather than
defining production and inventory variables separately as above, we can merge
them and consider inventories implicitly. This is done by defining variables xij as
the quantity that is made in period i and taken out of inventory in period j. Given
this definition, inventory variables are no longer needed, but it is required to

calculate the coefficients of the variables as cij = c . The problem can

then be formulated as

∑
−

=

+
1j

it

I
t

P
i c

 P: Min z = ∑∑

≥i ij
ijij xc

 s.t. x κ≤∑ ii
ij
ij ∀

≥

88 2 Applications

 ∑
≤

∀≥
ji

jij jdx

 xij ≥ 0 ∀ i, j.

It is noteworthy that given n planning periods, this formulation has n2 decision
variables as opposed to 2n variables in the formulation introduced in the
beginning of this section. However, for a realistic number of planning periods, this
should not pose a problem, given the efficiency of modern optimization codes.
Furthermore, the latter formulation, while larger in size, does exhibit a very nice
structure. In particular, its structure is one that equals that of so-called
transportation problems that will be discussed in Section 2.8. In order to illustrate
the concept, we will formulate the numerical example above again using this
concept. This results in

 P: Min z = 1x11 + 1.3x12 + 1.5x13 + 1.7x14 + 1.1x22 + 1.3x23 + 1.5x24 +
 1.2x33 + 1.4x34 + 1.2x44

 s.t. production capacities











≤
≤+
≤++
≤+++

150
160
100
100

44

3433

242322

14131211

x
xx
xxx
xxxx

 demand constraints











≥+++
≥++
≥+
≥

160
150
120
50

44342414

332313

2212

11

xxxx
xxx
xx
x

 xij ≥ 0 ∀ i, j.

The optimal solution in terms of the optimal values of the variables xij is shown in
Table 2.7, where the rows refer to the production period, while the columns refer
to the period, in which the units are taken out of stock.

 Table 2.7

 Period
1

Period
2

Period
3

Period
4

Period 1 50 20 0 0
Period 2 − 100 0 0
Period 3 − − 150 10
Period 4 − − − 150

2.7 Blending Problems 89

The total cost at optimum are 560. Note that the production quantities in the
individual periods are the sums of production quantities in the rows in the matrix
above. For instance, in Period 1 we make 50 + 20 + 0 + 0 = 70 units.

In this formulation, it is very useful to draw up a time line in order to visualize the
in- and outflows into the inventory. For the example above, such a time line would
look as shown in Figure 2.3

 Period 1 Period 2 Period 3 Period 4

 0 + 70 − 50 = 20 + 100 − 120 = 0 + 160 − 50 = 10 + 150 − 160 = 0

t

Figure 2.3

Here, it becomes apparent that the inventory levels at the beginning of the four
periods are 0, 20, 0, and 10, respectively. This is exactly the same solution as that
obtained by the other formulation above.

2.7 Blending Problems
Blending problems have a long history in the applications of linear programming.
One of the first descriptions of blending problems deals with the blending of
gasolines, see Charnes et al. (1952). Their paper describes a linear programming
problem that blends airline fuels and adds chemicals, so as to ensure that
prespecified performance levels are attained, e.g., vapor pressure, lead and sulfur
content and other specifications. The objective function is to maximize the profit.
Other popular examples of blending problems comprise tees, coffees, tobacco, or
similar products. The general structure can be described as follows. One set of
subscripts includes all of the m available raw materials, while another includes all
of the n desired final products. As usual, only limited quantities of the raw
materials are available, and certain amounts of the final products have to be
blended. Here, we assume that raw materials blend linearly, meaning that taking,
say, α units of raw material A and β units of raw material B, then the resulting
blend C has features that are proportional to the quantities of A and B that C is
made of. As an example, take 3 gallons of 80º water and 2 gallons of 100º water,
then the result would be 5 gallons of water, whose temperature is [3(80) +
2(100)]/5 = 88º. Assume now that we have a supply of si units of the i-the raw
material while dj units of the j-the product are in demand. The unit costs of the i-th
raw material is ci, whereas the unit price of the j-th final product is pj. In order to
ensure a consistent quality of the blend, some restrictions apply. The parameters

ija and ija indicate the smallest and largest proportion of raw material i that is
allowed in the final product j. For instance, if the two values are 0.3 and 0.5,
respectively, then the content of raw material i in product j must be at least 30%

Hamid
Highlight

90 2 Applications

and cannot exceed 50%. It is apparent that for cheaper products, the range
between ija and ija will typically be allowed to be quite large, while high-quality
products will have to be manufactured within very tight tolerances.

In order to formulate the problem, define variables xij that denote the quantity of
raw material i in product j. Then we obtain the problem

 P: Max z = ∑ ∑

j i
ijj xp − ∑∑

j
ij

i
i xc

 s.t. ∑ ≤ sx ∀
j

iij i

 ∑ ∀=
i

jij jdx

 xij ≥ ∑
k

kjij xa ∀ i, j

 xij ≤ ∑
k

kjij xa ∀ i, j

 xij ≥ 0 ∀ i, j.

As an illustration, consider the following

Example: A firm faces the problem of blending three raw materials into two final
products. The required numerical information is provided in Table 2.8.

 Table 2.8

 Products

Raw Materials

1 2

Amount
available
(in tons)

Unit
Cost
($)

 1
 2
 3

[.4; .6] [.5; .6]
[.1; .2] [.1; .4]
[.2; .5] [.2; .3]

2,000
1,000
500

1.00
1.50
3.00

Quantity required in tons 600 700
Unit selling price ($) 10 8

Define variables xij as the quantity of raw material i in product j. The formulation
is then

 P: Max z = 10(x11 + x21 + x31) + 8(x12 + x22 + x32)
 − [1(x11 + x12) + 1.5 (x21 + x22) + 3(x31 + x32)]

 s.t. x11 + x12 ≤ 2,000
 x21 + x22 ≤ 1,000

2.8 Transportation Problems 91

 x31 + x32 ≤ 500

 x11 + x21 + x31 = 600
 x12 + x22 + x32 = 700

 x11 ≥ 0.4(x11 + x21 + x31) x11 ≤ 0.6(x11 + x21 + x31)
 x21 ≥ 0.1(x11 + x21 + x31) x21 ≤ 0.2(x11 + x21 + x31)
 x31 ≥ 0.2(x11 + x21 + x31) x31 ≤ 0.5(x11 + x21 + x31)
 x12 ≥ 0.5(x12 + x22 + x32) x12 ≤ 0.6(x12 + x22 + x32)
 x22 ≥ 0.1(x12 + x22 + x32) x22 ≤ 0.4(x12 + x22 + x32)
 x32 ≥ 0.2(x12 + x22 + x32) x32 ≤ 0.3(x12 + x22 + x32)

 xij ≥ 0 ∀ i, j.

The optimal solution includes the quantities shown in the following matrix, whose
components are the optimal values of the variables xij. The transportation plan is

















140120
140120
420360

and the profit is $9,650. It will be interesting—albeit predictable—to see what
happens if the blending requirements are tightened. In particular, reduce the upper
bounds of the ranges relating to product 1 from .6, .2, and .5 to .5, .1, and .4. The
new optimal solution then includes the quantities

















140240
14060
420300

with a total profit of $9,440. In other words, the more tightly controlled product 1
causes rather significant changes in the blending schedule and reduces the profit
by $210 or 2.2%, i.e., by 35¢ for each unit of product 1 that is sold. If the buyers
are prepared to pay that much more for an improved product 1 with tighter quality
controls, this is certainly an option to consider.

2.8 Transportation Problems
Transportation costs are a significant expense in the total cost of the product that
range on average at about 5% of the total price of manufactured products. It is
therefore imperative that the planner attempt to keep these costs at as low a level
as possible.

 2 Applications 92

Attempts of this nature are certainly not new. As a matter of fact, Hitchcock’s
(1941) work predates the emergence of linear programming, but was later shown
to be a special case of it.

In this section, we will refer to “the” transportation problem as a specific structure
while we acknowledge that it is but one of a large number of transportation
scenarios that may apply in any given situation. The basic structure of the
transportation problem is as follows. On the one hand we have origins Oi, i=1, …,
m at which supplies si of a single product are available. On the other side are
destinations Dj, j=1, …, n at which customers demand goods in quantities of dj.
Shipments of the good are possible only directly from an origin to a destination,
detours are not permitted and deliveries cannot be combined. Transporting a
single unit from origin Oi to destination Dj is assumed to cost cij. The
transportation costs are assumed to be linear. This situation can be visualized as
shown in Figure 2.4.

s1 d1 O1 D1…

s2 d2 O2 D2…

…

cij

…

…

 …
 si dj Oi Dj

…

…

sm Om Dn dn

Figure 2.4

While the assumption of known supply is reasonable, the assumption of known
demand may be justified in instances, in which the system fulfills given orders.
The lack of economies of scale that is required to justify linear transportation costs
is somewhat harder to defend. Even in the absence of nonlinearities, transportation
cost functions are typically nonlinear. Consider the case of simple deliveries. The
first case is the transportation of, say, snowblowers with a pickup truck. Assume
that a single trip from the warehouse to the customer costs $20, then the shipment
of no snowblowers costs $0, hauling one snowblower (requiring one trip) costs
$20, hauling two snowblowers (requiring two separate trips) costs $40, and so
forth. The result is a function that is defined only for integers, but if these were

2.8 Transportation Problems 93

connected, this would be a linear function. The second scenario is the shipment of
small boxes by pickup truck. Again, no deliveries cost $0 and hauling a single box
requires one trip and hence costs $20. However, transportation of the second box
costs nothing extra (other than loading and unloading fees). The same argument
applies to the third, fourth box, and so forth. However, once the capacity κ of the
truck has been reached, a second trip will be required, so that the costs jump by
$20. The resulting piecewise linear step function is shown in Figure 2.5 The
broken line in this figure indicates a linear function that may approximate the step
function, which is very awkward to handle. Whether the linear cost function in our
transportation problem is originally linear as in the case of the snowblowers or is
an approximation as in the case of the boxes, is irrelevant for its application.

For now, we will also assume that the transportation is balanced, i.e., the total

supply equals the total demand. More formally, we require that ∑ .

With the assumptions above, we now wish to minimize the total transportation
costs, given that all demands are satisfied. In order to formulate the problem, we
first define variables x

∑
==

=
n

j
j

m

i
i ds

11

ij as the quantity shipped (directly) from origin Oi to
destination Dj. The problem can then be written as

 Min z = ∑∑
= =

m

i

n

j
ijij xc

1 1

 s.t. sx =∑ mii

n

j
ij ,...,1

1
=∀

=

 njdx j

m

i
ij ,...,1

1
=∀=∑

=

 xij ≥ 0 ∀ i=1, …, m; j=1, …, n.

It should be noted that the standard transportation problem as shown in the above
formulation has mn variables and (m+n) structural constraints. However, one
constraint is redundant, which can easily be seen by adding the first m constraints
as well as the next n constraints. The results will be the total supply and demand,
respectively. The assumption of a balanced problem then requires these two to be
equal, so that any one of the (m+n) constraints can be expressed in terms of the
remaining (m+n−1) constraints. In other words, the matrix of constraints does not
have full rank and any basis (see Definition A.17) will include (m+n−1) rows and
columns. This issue is further explored in Chapter 3, where the simplex method is
described.

 2 Applications 94

Cost

Quantity 4κ3κ2κκ

Figure 2.5

Example: Consider a problem with three origins and four destinations. The
supplies at the origins are 30, 60 and 50, respectively, while the demands at the
destinations are 20, 40, 50, and 30, respectively. Note that as the total supply and
the total demand both equal 140, the transportation problem is balanced. Let the
unit transportation costs be shown in the cost matrix

 .















=

8672
2343
5465

C

The problem can then be formulated as follows.

P: Min z = 5x11+6x12+4x13+5x14+3x21+4x22+3x23+2x24+2x31+7x32+6x33+8x34

 s.t. x11 + x12 + x13 + x14 = 30
 x21 + x22 + x23 + x24 = 60
 x31 + x32 + x33 + x34 = 50
 x11 + x21 + x31 = 20
 x12 + x22 + x32 = 50
 x13 + x23 + x33 = 40
 x14 + x24 + x34 = 30
 x11, x12, x13, x14, x21, x22, x23, x24, x31 x32, x33, x34 ≥ 0

2.8 Transportation Problems 95

Notice the special (block-angular) structure. It is shown again in Figure 2.6 where
the shaded areas are the parts in the formulation that have coefficients of “1”,
while the remaining coefficients are all zero.

x11 x12 … x1n x21 x22 … x2n xm1 xm2 … xmn

C C C

C C C

Figure 2.6

This structure does two things: first it allows the design of very fast specialized
algorithms. Given the advances in software codes, this issue is no longer as
relevant as it was twenty or thirty years ago. Very large transportation problems
can be solved today without difficulty, so that we have decided not to describe any
of those specialized techniques, commonly referred to as modified distribution
(MODI = modified distribution technique) and/or stepping stone method. For a
detailed description of the method, see, e.g., Dantzig and Thapa (1997, 2003) or
Eiselt et al. (1987). Secondly, the special structure implies that the matrix of
coefficients is totally unimodular, meaning that each of its square nonsingular
submatrices has a determinant of +1 or −1. By way of Cramer’s rule (see
Procedure A.18), this implies that whenever all right-hand side values, i.e., the
supplies and demands, are integers, then at least one optimal solution will also be
integer.

The solution of transportation problems can be displayed in a figure similar to that
of Figure 2.4. However, with increasing problem size this gets very messy and it
is preferable to display the solution in the form of a transportation plan T, which is
a matrix whose element (i, j) indicates the number of units shipped from origin Oi
to destination Dj, i.e., the optimal value of the variable xij. The optimal trans-

 2 Applications 96

portation plan of the above problem is
















=

0201020
300300
03000

T

and the associated value of the objective function is z = 530.

Consider now a transportation problem that is not balanced. In such a case, the
above formulation can no longer be used as it includes a contradiction: The first n
constraints force all available supplies out of the origins and into the network,
while the second m constraints force all units in the network to the destinations. If,
as is the case in all unbalanced problems, those two quantities are not equal, no
feasible solution will exist because of this contradiction.

Suppose first that the total supplies are less than the total demand. This means that
the total quantity that is hauled out of the origins and into the network is less than
what the customers would want. This can be modeled by keeping the supply
constraints as equations, while writing the demand constraints as ≤ inequalities. In
this case, some demand will not be met. On the other hand, if more supplies are
available than are demanded by the customers, not all supplies can be shipped out
of the origins, as it will not be accepted at the destinations. Hence, in such a case
the supply constraints will be written as ≤ inequalities, while the demand
constraints may remain as equations.

Consider now the following linear programming problem:

 P: Min z = 5x1 + 3x2
 s.t. x1 ≤ 10
 x2 ≤ 20
 x1+ x2 = 25
 x1, x2 ≥ 0.

This could be the formulation of a transportation problem with two origins and
one warehouse, where the supplies are 10 and 20 units, respectively, while the
demand is 25, and the unit transportation costs from the origins to the destination
are $5 and $3, respectively. However, the very same problem could alternatively
model a blending problem with two raw materials and one finished product with
appropriate supplies and demand as well as blending costs of 5 and 3,
respectively. The important point here is that the mathematical optimizer, i.e., the
software, only knows the formulation above and not what is behind it. Hence it
will not be able to eliminate solutions that may make sense for one problem but
not the other.

2.8 Transportation Problems 97

There are a number of formulations other than blending problems that have
apparently nothing to do with transportation, yet can be reduced to the same
structure. The second formulation in Section 2.6 on Inventory Planning is one
such example.

Another such example concerns the assignment of workers to shifts. The simplest
version of this worker-job assignment can be described by the following

Example: The set of workers can be divided into different groups with wages w1,
w2, w3, and w4, respectively. These classifications may be based on abilities,
seniority, or a combination of both or any other factors deemed relevant. Suppose
that the hourly base wages are $8, $11, $13, and $16, respectively. We assume
that all workers have the ability to perform any of the tasks in question. Assume
that the four wage groups comprise 10, 20, 15, and 15 workers, respectively. The
tasks at hand have to be performed in three shifts, day, evening, and night. In
order to ensure continuity in production, 20 workers are required in each shift.
The day shift pays base salaries, the evening shift pays a premium of 20%, and the
night shift pays a premium of 50%. Denoting by pi the hourly wage of group i and
by qj the multiplier applied to shift j, a member of the i-th group working in shift j
will then be paid cij = piqj. Eiselt and Gerchak (1984) have referred to such cost-
coefficients as “scalar-generated.” Applied to our example, the cost matrix is then



















=

00.2420.1900.16
50.1960.1500.13
50.1620.1300.11
00.1260.900.8

C

Define variables xij as the number of workers in wage group i that are assigned to
work in shift j, and assume that the problem is to assign workers to shifts so as to
minimize the total costs. It then becomes apparent that the problem is nothing but
a transportation problem (or, rather, has the same structure as the standard
transportation problem). Here, the sum of assignments per wage group must equal
(or, at least, not exceed) the number of workers in that group and the sum of
assignments in each shift must equal (or, at least, be no less) than the number of
workers required in that shift. In our example, the problem happens to be
balanced.

The solution of this problem is particularly simple on account of the special
structure of the cost coefficients. As a matter of fact, a so-called “northeast corner
rule” can be shown to always find at least one optimal solution. This rule will
assign as many workers to the element in the northeast corner (here 10, as there
are only 10 workers available in that wage group). Formally, we set 1013 =x .
Since this assignment leaves no workers in the first wage group, we must also set

01112 == xx . Furthermore, we need to update the number of required workers in

 2 Applications 98

the third shift which is now only 10, as 10 workers have just been assigned to that
shift. The next unassigned element in the northeast corner is x23. The second wage
group still has its original 20 members unassigned, while the third shift only
requires 10 more workers, so that we will set 1023 =x . Again, we update the
number of workers in wage group 2 that are still available (which is now10) as
well as the number of additional workers required in the third shift (which is now
0). In order to ensure that no further workers are assigned to the third shift, we
will set 04333 == xx . The northwest corner is now at wage group 2 and shift 2. In
this wage group, there are still 10 workers unassigned, while 20 are needed in shift
2. Consequently, we will assign 22x = 10 workers and update the number of
unassigned workers in wage group 2 (which is now 0) and the number of workers
still missing in shift 2 (which is now 10). In order to avoid assigning more
workers of wage group 2 to other assignments, we will set 021 =x . The northwest
corner is now reached at element (3, 2), for which 15 workers of wage group 3 are
available, while 10 workers are still needed in shift 2. We assign 32x = 10
workers and by setting 042 =x , we avoid assigning more workers to shift 2 than
are actually needed. Updating supply and demand results in 5 workers still
unassigned in wage group 3, while no more workers are needed in shift 2. The
remaining assignments are now uniquely determined, so that we can set 531 =x
and 1541 =x

=T

.

An optimal solution is therefore

 with costs


















0015
0105

10100
1000

878=z .

The fact that the northeast rule results in an optimal solution implies that an
optimal solution will assign as many members as possible of the lowest wage
group to the highest paying shift (here: the night shift) while it will assign as many
members as possible of the highest wage group to the lowest paying shift (here:
the day shift). Actually, this assignment remains optimal as long as (a) night shift
pays not less than evening-shift and evening-shift pays no less than day shift and
(b) a member of a higher wage group is not paid less than a member of a lower
wage group. Both assumptions are highly unlikely to be violated. Therefore the
solution for this type of model is extremely stable. It should be noted, however,
that it is not too realistic to consistently assign members of lower wage groups to
night shifts. On the other hand, an optimal solution for the above problem will
also result in relatively small differences in the wages (since low-paid workers are
preferably assigned to the higher-paying shifts and high-paid workers preferably
to the low-paying shifts).

2.8 Transportation Problems 99

Transportation problems have a variety of extensions. In case capacities are
imposed upon the transportation links, appropriate capacity constraints xij ≤ κij ∀ i,
j with capacities κij can easily be added to the formulation. Another extension
includes transshipment points. Such points may facilitate the transfer of goods
from large trucks used for long-distance hauls to smaller local delivery trucks in a
multimodal transportation system.

Similarly, transportation systems that allow shipments on road and rail will use
transshipment points, as does municipal solid waste at transfer points. The
existence of such transshipment points does, surprisingly enough, not destroy the
structure of the transportation problem as introduced above. As a matter of fact,
transshipment problems can be reformulated, so that they appear exactly like
transportation problems.

This is accomplished by the inclusion of a preprocessing phase in the algorithm, in
which the shortest paths between all origins and destinations are determined, and
the unit transportation costs then denote the sum of unit costs that are incurred on
that path. The transportation problem is then solved disregarding the transship-
ment points. A shipment of xij units from origin Oi to destination Dj must then be
interpreted as a shipment of xij units on all connections on the path from Oi to Dj.
For further details, readers are referred to Eiselt and Sandblom (2000).

Another extension concerns capacities associated with the routes. Again, it is
possible to reformulate capacitated transportation problems as regular
transportation problems, albeit at the expense of a fairly dramatic increase in size.

Much more difficult is the relaxation of the assumption that each unit of the
products is shipped on a single trip. If trips are combined, the result is a routing
problem. Such problems are typically NP-hard. Some routing problems are
discussed in Eiselt and Sandblom (2000).

Consider now the assumption that goods have to be shipped directly from origin
to destination without rerouting. Relaxing this assumption results in a
transportation problem with reshipments. In simple words, reshipments allow
goods to be shipped back and forth between origins and destinations so as to avoid
the use of costly direct connections. Transportation problems with reshipments
were first introduced by Dwyer (1975) and have subsequently been discussed by
Finke (1977)

In order to solve reshipment problems, we define again variables xij as the quantity
shipped from origin Oi to destination Dj, where a negative value of a variable
indicates that the shipment is directed from a destination to an origin. The problem
can then be formulated as follows:

 2 Applications 100

 P: Min z = ∑∑
= =

m

i

n

j
ijij xc

1 1
||

 s.t. sx =∑ mii

n

j
ij ...,,1

1
=∀

=

 njdx j

m

i
ij ...,,1

1
=∀=∑

=

 xij ∈ ú ∀ i=1, …, m; j=1, …, n.

It is apparent that the only difference of the transportation problem with
reshipments and the standard problem is the existence of unrestricted variables in
the former and the use of absolute values in the objective function. Both features
can be transformed, so that the problem appears again as a standard linear
programming problem. For details concerning this type of transformation, see
Section 8.3.1 of this volume.

As an illustration, consider the following

Example: Supplies of 10 and 10 units are available at the two origins, while the
demands at the two destinations are 5 and 15, respectively. The unit transportation

costs are summarized in the cost matrix C . The optimal transportation

plan without reshipments is T , while the optimal transportation plan

with reshipments is T . The latter plan clearly shows a reshipment

from destination D









=

21
62









=

100
55





155
0





−

=
10

1 back to origin O2. The interesting is though, that the optimal
solution of the standard problem costs $60, while reshipments reduced these costs
to $55. The reason for this cost reduction become apparent upon closer inspection.
While the solution of the standard transportation problem ships 5 units on the very
expensive route from O1 to D2, the reshipment version does not (thus saving $6
per unit). Instead, it ships 5 additional units from O1 to D1 (at additional costs of
$2 per unit), hauls them back from D1 to O2 (at additional costs of $1 per unit),
and finally ships them from O2 to their final destination at D2 (at an additional cost
of $2 per unit). Adding up the additional costs yields $5 per unit, which must be
contrasted with savings of $6 per unit, resulting in net savings of $1 per unit.
Since 5 units were rerouted in this fashion, the savings are $5, which explains the
decrease of the total costs from $60 to $55.

Finke (1983) has outlined conditions under which reshipments yield savings
beyond the optimal solution of the standard transportation problem. The simple
existence conditions derived by the author require dual variables as discussed in

2.8 Transportation Problems 101

Chapter 4 in this volume. The solutions of randomly generated test problems
could be improved significantly by allowing reshipments.

Another extension of the standard transportation problem is referred to as a
problem with overshipments. Simply speaking, it allows additional units to flow
through the network beyond those presently available at the origins and those
demanded at the destinations. Surprisingly, such overshipments may actually
result in cost savings, something dubbed the more-for-less paradox. The paradox
is due to Swarc (1971), Charnes and Klingman (1971). The formulation of the
problem is very simple: all constraints are of the type “≥”, as it is allowed to ship
more units than currently available, and the customers are assumed to be willing
to accept more units than they originally asked for.
As a numerical illustration of overshipments, consider the following

Example: Supplies of 10 units are available at each of the two origins, while
demands at the two destinations are 15 and 5 units, respectively. The unit

transportations costs are summarized in the cost matrix C . The optimal

transportation plan of the standard problem is then









=

14
41









=

55
010

T with a value of

the objective function of z = 35. Suppose now that is were possible to obtain an
additional unit of the good at origin O1 and to convince the customer at destination
D2 to accept an extra unit of the product. Solving the new transportation problem

results in an optimal transportation plan 







=′

64
011

T whose costs are now only

z′ = 33.

The reason for the savings is the same as in case of reshipments: replacing the use
of expensive links by cheaper connections. In this example, one less unit is
shipped from origin O2 to destination D1, a move that results in savings of $4.
Instead, additional units are shipped from O1 to D1 (additional cost: $1) and from
O2 to D2 (additional cost: $1) for net savings of $2, which explains the reduction
of total costs from $35 to $33. So again, there are potential savings beyond the
standard transportation solution. However, this case is much more difficult than
that of reshipments: in this case, additional supplies have to be obtained and
customers have to be convinced (presumably by using monetary incentives) to
accept larger quantities than originally planned. Again, existence conditions based
on duality theory are available, see Finke (1977).

Sensitivity analyses on transportation problems can be performed similar to those
applied to standard linear programming. Clearly, if we start with a balanced
transportation problem and change a single right-hand side value, the problem will
become unbalanced, thus potentially requiring a modified formulation. Similarly,
whenever the change changes the balance (i.e., changing a net demand surplus to a

102 2 Applications

net supply surplus or vice versa), the formulation will have to change. In those
cases it is probably easiest to resolve the problem.

It must be stressed that it is crucial to apply the classical transportation problem
only to scenarios that satisfy all assumptions, most prominently the assumption
that we are dealing with a homogeneous commodity that is transported. This
means that, for instance, the classical transportation model is not suitable to deal
with, say, traffic problems which are highly heterogeneous, in that each origin-
destination pair represents one individual and thus one “commodity.”

Furthermore, most transportation scenarios are, of course, more complex than the
simple structure described here. So in general, it is best to put models that deal
with transportation in the context of network flow models. Readers are referred to
Eiselt and Sandblom (2000), Ahuja et al. (1993), or Murty (1992).

2.9 Assignment Problems
The problem described in this section is a close relative of the Transportation
Problem discussed in the previous section. It can briefly be described as follows.
Suppose there are n employees and n tasks. The goal is now to assign employees
to tasks, so that each employee works on exactly one task, each task is worked on
by exactly one employee, and the cost of assigning employees to tasks is
minimized. Early work on the problem started with Egerváry’s (1931)
combinatorial theorem and Kuhn’s (1955) “Hungarian algorithm,” so called in
honor of Egerváry’s contribution.

A story that was used to sell the problem soon after its appearance in the 1950s is
the “Marriage Problem.” The idea is to match the offspring of a family, e.g., the
daughters, and marry them to a set of eligible bachelors. Each match requires a
certain amount of dowry to be paid, and the objective of the brides’ father, who
presumably foots the bill, is to minimize the total amount of dowry. If it were
permitted that the individuals spend partial time with the various partners of the
other sex, an assignment problem results of the type described above. Using the
above arguments, it can then be shown that monogamy i.e., the fact that at least
one optimal solution is in integers, i.e., has assignments in which partners do not
share time, is optimal. It remains optimal, even if the central planner changes the
objective from cost minimization to the maximization of overall happiness (or
compatibility), an objective, whose coefficients cij measure the degree of
happiness if girl i is matched with boy j.

This is the problem statement found in most textbooks. Here, we would like to
start the discussion with a slightly different description. In particular, we assume
that all employees, once properly trained, work on tasks at about the same speed.
All employees start with the same amount of time (e.g., one hour, one day, or a
similar measure), and each task requires the full amount of time each employee

2.9 Assignment Problems 103

has available (or the equivalent of multiple employees). The cost of assigning an
employee to a job includes the (re-) training cost required to enable to employee to
properly work on the task. The employer’s task is then to minimize the total
training costs.

In order to formulate this problem, define variables xij as the proportion of
employee i’s time that is allocated to task j. Given cij as the cost to train employee
for task j, we can write the problem as follows.

 P: Min z = ∑∑
= =

n

i

n

j
ijij xc

1 1

 s.t. ∑ =x
=

=∀
n

i
ij nj

1
...,,11

 ∑
=

=∀=
n

j
ij nix

1
...,,11

 xij ≥ 0 ∀ i, j =1, …, n.

It is apparent that the assignment problem is nothing but a transportation problem
with all supplies and demands equal to one. However, not only can an assignment
problem be seen as a special case of a transportation problem, it is also possible to
formulate each balanced transportation problem as an assignment problem. This
can be accomplished by splitting up the supply si (and, similarly, the demand dj) at
origin i (destination j) into si (dj) supply (demand) points, each with a demand of
one. That way, all supplies and demands equal one, which is the situation in the
assignment problem. There is a tremendous cost, though, in terms of a greatly
increased problem size. Unbalanced problems are dealt with similarly as in
transportation problems.

Since the structure of assignment problems is identical to that of transportation
problem (only the right-hand side values differ), their properties are also the same.
In particular, the matrix of coefficients is totally unimodular, so that for integer
right-hand side values (and in assignment problems they are naturally integer),
each solution will be integer. This implies that all variables will assume values of
zero or one, since if a variable had a larger integer value, another variable would
have to be negative which is prohibited by the nonnegativity constraints. This, in
turn, implies that each employee will be assigned to work on exactly one task and
each task will be performed by exactly one employee. This is, of course, the
original problem definition at the beginning of this section. The difference here is
that we have started with a more general problem statement and the “one
employee for one task” property is not a requirement formulated in the constraints
but a feature that happens to occur.

 2 Applications 104

If some assignments are prohibited, e.g., an employee is not allowed to work on a
task (e.g., due to inability, lack of security clearance, or similar reasons), the
assignment variable should assume a value of zero. The easiest way to ensure that
this is satisfied is to simply not include the variable in the problem.

In addition to the aforementioned employee-to-task assignments, there are various
other applications of assignment problems. Assigning police patrol cars to districts
(with the costs indicating the effectiveness of a certain team to work a district),
assigning salesmen to districts (with the likely sales as cost coefficients), and
similar assignments suggest themselves. Another popular application concerns an
assignment of athletes to teams. Here, we will consider eight boxers from two
teams that are supposed to be paired up for an upcoming event. The two teams
include fighters F1, F2, F3, and F4, and their opponents are O1, O2, O3, and O4.
Clearly, the way the boxers are teamed up will determine the attractiveness of the
event and with it the revenue. It has been estimated that the attractiveness of a
pairing (Fi, Oj) can be measured by an exponential function 50,000 e ,
where f

)1|(| +−− ji of

i and oj are the abilities of fighters Fi and Oj, respectively. However, we
cap the attractiveness at 10,000. (The idea here is that pairing fighters with similar
abilities will result in more interesting fights). The promoter’s objective is then to
maximize the overall attractiveness of the pairings. Consider the following
numerical

Example: The first teams consists of four fighters with abilities 7, 3, 6, and 5,
respectively, while the opposing team has individuals with abilities 8, 2, 4, and 5.
The matrix

 M =


















000,10766,6916916
766,6489,2337489,2
489,2766,6766,6124
489,2916124766,6

includes the utilities for all pairings (Fi, Oj). Solving the assignment problem (with
maximization objective) results in the pairings (F1, O1), (F2, O2), (F3, O4), and (F4,
O3) with a total attractiveness of z = 27,064.

In order to compute the “value added” of each fighter, we can now proceed as
follows. We first calculate the total attractiveness without a single fighter Fi, or Oj,
for all i and j. For fighter Fk, this problem is identical to the previous problem,
except that we set the variables xkj := 0 ∀ j and write the first set of constraints as

. In our example, calculating the value of fighter F∑
=

=∀≤
n

i
ij njx

1
...,,11 1 in the

event is determined by solving the problem

2.9 Assignment Problems 105

 P: Max z = 124x
iF 21 + 6,766x22 + 6,766x23 + 2,489x24 + 2,489x31 + 337x32

 + 2,489x33 + 6,766x34 + 916x41 + 916x42 + 6,766x43 + 10,000x44

 s.t. x21 + x22 + x23 + x24 = 1
 x31 + x32 + x33 + x34 = 1
 x41 + x42 + x43 + x44 = 1
 x21 + x31 + x41 ≤ 1
 x22 + x32 + x42 ≤ 1
 x23 + x33 + x43 ≤ 1
 x24 + x34 + x44 ≤ 1
 xij ≥ 0 ∀ i=2, 3, 4; j=1, 2, 3, 4.

The optimal solution has a value of the objective function of

1Fz = 20,298, so that

the effect of not having fighter F1 available is a drop in attractiveness by 27,064 −
20,298 = 6,766. Similar values can be calculated for the other three fighters as
6,766, 3,532, and 6,766 as well as for the opponents as 6,766, 3,532, 3,532, and
6,766 for a sum of 44,426. If the event were to net $88,852, this amount could be
distributed to the boxers according to their respective values. As the available
dollar amount is $2 = 88,852/44,426 per unit attractiveness value, the fighters
would receive $13,532, $13,532, $7,064, and $13,532 and their opponents would
receive $13,532, $7,064, $7,064, and $13,532, respectively. (These values have to
be understood as guarantees, winning bonuses are extra). Note that such a
procedure pays the fighters and their opponents not necessarily according to their
abilities. For instance, fighter F3 receives less than any of the other fighters, even
though he has the second-highest ability. The pay in this system depends on how
well the individual fighters can be paired with opponents. For example, if the
roster of boxers were mediocre with a single exception of a fighter whose is
outstanding, then the outstanding fighter would not receive much, as his inclusion
in the event will necessarily pair him with a mediocre fighter, which is not
attractive, so his inclusion does not add much to the attractiveness of the event.

Three comments are in order before we discuss generalizations of the basic
assignment problem. First, the most important applications of assignment
problems are found in much more complex problems, in which assignment
problems appear as subproblems. For instance, the famous traveling salesman
problems (see, e.g., Lawler et al. (1985) or Gutin and Punnen (2002), Eiselt and
Sandblom, 2000) is nothing but an assignment problem with a set of additional
constraints that make the problem much more difficult. Some solution methods
that solve these difficult problems require the repeated solution of assignment
problems. Since this may have to be repeated thousands or even millions of times,
a fast algorithm that solves assignment problems, is essential.

Secondly, the Hungarian Method (a solution technique first described by Kuhn
(1955) and given its name as it is based on combinatorial theorems by the
Hungarian mathematicians König (1931) and Egerváry (1931) has long been the

 2 Applications 106

standard solution method for assignment problems. It exploits the special structure
of the formulation and is highly efficient. For a description of the method, we
refer to the pertinent literature; see, e.g., Eiselt et al. (1987) or Dantzig and Thapa
(2003). Historical accounts can be found in Kuhn (1991) and Frank (2005).

A generalization of the standard assignment problem discussed above is what is
known as the generalized assignment problem (GAP). It has the same structure as
the standard assignment problem, but allows some parameters in the constraints to
assume values other than zero or one. The generalized assignment problem can be
formulated as follows:

 P: Min z = ∑∑
= =

n

i

n

j
ijij xc

1 1

 s.t. ∑ =x
=

=∀
n

i
ij nj

1
,...,11

 ∑ x
=

=∀=
n

j
ijij nia

1
,...,11

 xij = 0 ∨ 1 ∀ i, j =1, …, n.

It is apparent from the second set of constraints that the unimodularity property is
lost and hence it is no longer true that all extreme points of the feasible set have
integer coordinates.

The use of this problem can best be explained by use of an

Example: The public works department of a region is in the process of issuing
contracts for (1) a health clinic, (2) a new sewage lagoon, (3) a local school, (4) a
community center, and (5) tourist information center. Each of the three contractors
who have shown interest in the projects has submitted bids for those projects he is
interested in based on his abilities and costs. The matrix C below shows the bids
that the three contractors have made on the five projects (a “−” indicates that a
contractor did not bid on a project or that the agency finds the contractor
unsuitable to perform this project), and the matrix A specifies the resource
requirements of the contractors if they were to work on the projects. They may
differ between contractors, based on their different uses of machines. Finally, the
vector b shows the amount of resources available to the contractors.

 A = 
 , C = , b = .













−

−

50403545
5535404065
50304070

















−

−

1771211
168131218
1591020

















70
100
120

2.10 A Production – Inventory Model: A Case Study 107

It is assumed that the government agency that awards the projects to the
contractors knows A, C, and b and that the agency’s objective is to minimize the
total cost.

At optimum, the agency will award projects 3 and 5 to contractor 1, projects 1 and
4 to contractor 2, and project 2 to contractor 3. The total cost to the government
(without the expected cost overruns, of course) is z = 62. The contractors will
then use 90, 100, and 45 units of their resources, i.e., 75%, 100%, and 64.3% of
their available resources, respectively.

Finally, we should mention applications, in which the purpose is to assign items to
empty positions or slots, such as companies to stores in a mall, offices in an office
building, and others. The problem is that the standard assignment as it is discussed
here does not allow interaction between the individual items or the positions. In
most cases that is unrealistic: people walk from one store or office to another, and
these movements have to be captured by the model. This can be done by what is
known as the quadratic assignment problem (QAP), which is discussed in detail
in, e.g., Eiselt and Sandblom (2004).

2.10 A Production – Inventory Model: A Case Study
To conclude this section, a semi-realistic production-inventory model will first be
described and then formulated. Since it is a multiperiod model with two raw
materials, five semi-finished goods and two finished products, quite a few
variables and constraints will have to be defined. In order to keep the problem size
reasonable, many simplifications have been introduced. In this manufacturing
process of two types of windows we assume that the final products consist of just
glass panes and wooden frames. Glue, putty, etc., will not be considered, and
manpower requirements are also neglected.

The formulation of this model will shed some light on the intricacies and
difficulties encountered in modeling of real world problems. First consider the
main aspects of the problem.

(1) General Structure:

Glass sheets of size 10' × 10' and wooden boards of length 20' are purchased and
stored in a warehouse (INV 1). The glass is processed on machine M1a where
each 10' × 10' sheet is cut into either four 4' × 5' sheets or nine 3' × 3' sheets; while
the wood is processed on machine M1b, which cuts each 20' piece into six 3'
lengths, five 4' lengths, or four 5' lengths. The resulting semi-finished products are
stored in the second warehouse (INV 2). From there, the materials are taken to
machine M2, on which the two finished products, i.e. the 5' × 4' and 3' × 3'
windows are assembled by using the glass and wood available. These two types of
windows are stored in the third warehouse (INV 3) and from there they are sold.

 2 Applications 108

The planning horizon is two periods.

Glass
10' × 10'

Wood
20'

INV1

M1a

M1b

INV2 M2 INV3

Windows
3' × 3'

Windows
5' × 4'

 Raw materials Semi-finished products Finished products

Figure 2.7

(2) The Materials:

Table 2.9 shows the availability of the two raw materials, their expected prices,
and their respective weights.

Table 2.9

Availability
(both periods) in

units

Expected price
per unit

Item
Lower
Bound

Upper
Bound

Period
1

Period
2

Weight

Glass 10' × 10'
(× 50

1 ') 100 500 $20 $22 4 ounces per ft2

Wood 20' × 4
1 '

× 20
1 ')

0 2000 $6 $7 3 ounces per ft2

The volume of the materials can be calculated from the above parameters.

(3) The Machines:

As shown in figure 2.7, there are two types of machines: while M1a and M1b cut
the raw materials to their appropriate sizes, M2 assembles the semi-finished
products to the final products. The operating costs, processing times, and
capacities of the machines are shown in Table 2.10. The data in the table are valid
for both periods. There are no losses (damages) in the production process.

2.10 A Production – Inventory Model: A Case Study 109

Table 2.10

 Operating costs Processing times Capacities

M1a $100 per hour 1 cut (any length)
in 20 seconds 60

2013 hours per period

M1b $50 per hour 1 cut (any length)
in 8 seconds 15 hours per period

M2 $4.50 per
window

1 minute per
window 15 hours per period

M1a: The glass-cutting machine

'' 45 × '' 45 ×

'' 45 × '' 45 ×

'' 33 × '' 33 × '' 33 ×

'' 33 × '' 33 × '' 33 ×

'' 33 × '' 33 × '' 33 ×

or

 4 cuts are necessary 10 cuts are necessary

Figure 2.8

The reason for the number of cuts required to produce the above patterns is the
assumption that we can only cut one sheet at a time.

M1b:
 Either (6 cuts)

3'

3'

3'

3'

3'

3'

 or (4 cuts)

4'

4'

4'

4'

4'

 or (3 cuts)

5'

5'

5'

5'

Figure 2.9

 2 Applications 110

(4) The Warehouses:

Table 2.11

Capacities

Weight Volume
oz. ft3

Losses
(when taken out)

Initial inventory
(at the beginning
of period 1)

Final inventory
(at the end of
period 2)

INV1

40,000 200

5% of glass
(complete loss)

50 sheets of
10' × 10' glass

40 sheets of
10' × 10' glass
20 boards of
20' wood

INV2

10,000 300

none

none

20 sheets of
3' × 3' glass
10 boards of 3' wood
10 boards of 4 ' wood
10 boards of 5' wood

INV 3

20,000 100

3% of windows
(complete loss)

20 units of 5' × 4'
windows

50 units of 5' × 4'
windows
30 units of 3'× 3'
windows

Inventory costs (between periods 1 and 2 only): 1% of the value of the raw
material, semi-finished, or finished product stored in period 1. No costs are
incurred for items in stock at the end of period 2.

(5) The Finished Products:

The demands and unit prices of the two types of windows in the two periods are
shown in Table 2.12.

Table 2.12

Demand (Upper bound) in units

Unit prices ($)

Products

Period 1

Period 2

Period 1

Period 2

Windows 5' × 4'

1500

2000

75

80

Windows 3' × 3'

2000

2000

45

51

2.10 A Production – Inventory Model: A Case Study 111

(6) The Objective:

Maximize total profit and report an optimal solution to management.

In order to formulate the above problem we will examine the input of materials
into warehouses and machines, the output of materials of warehouses and
machines, the levels of inventories, and the use of the machines separately. The
formulation offered below follows the flow of materials through the system. As
everywhere in practice, a mnemonic code for the variables will be used. In each of
the following eight parts, the variables will be defined, the constraints will be set
up and the corresponding costs or revenues (denoted by “profit contribution” and
later to be put together in the objective function) will be formulated. The
nonnegativity of all variables is assumed but not explicitly stated.

Part 1: The Supplies

Define IG1 and IG2 as the input of glass into the system in period 1 and 2,
respectively, and let IW1 and IW2 be the corresponding variables for the input of
wood in the two periods. The constraints for glass and wood are then formulated
as:

 IG1 ≥ 100 (1)
 IG1 ≤ 500 (2)
 IG2 ≥ 100 (3)
 IG2 ≤ 500 (4)

for glass and

 IW1 ≤ 2000 (5)
 IW2 ≤ 2000 (6)

for wood.

Since all purchased units are put into inventory 1 right away, we can define IGI11
and IGI12 as the input of glass into inventory 1 in period 1 and 2, respectively,
and IWI11 and IWI12 as the input of wood in the two periods. Hence

 IGI = IGI11 (7)
 IW1 = IWI11 (8)

and

 IG2 = IGI12 (9)
 IW2 = IWI12 (10)

 2 Applications 112

The total costs for the supplies in both periods are

 (20)IG1 + (22)IG2 + (6)IW1 + (7)IW2 (Profit contribution)

Part 2: Inventory 1

Let OGI11 (OGI12) and OWI11 (OWI12) denote the output of glass and wood of
inventory 1 in the first (second) period respectively. Define LI1G12 and LI1W12
as the level of inventory 1 concerning glass between period 1 and 2 (the number
of 10' × 10' sheets of glass in INV1 between the periods) and the inventory 1 level
concerning wood (the number of 20' boards of wood) between the periods and let
LI1G23 and LI1W23 be the respective inventories—between the second and third
period, i.e., the end of the planning horizon—of glass and wood. Note that LI1G12
and LI1W12 can be expressed as the beginning inventory plus the input into INV1
in period 1 minus the output of INV1 in period 1, and hence we can write

 LI1G12 = 50 + IGI11 − OGI11 (11)
 LI1W12 = 0 + IWI11 − OWI11 (12)

In the second period, the beginning inventories are LI1G12 and LI1W12
respectively, so that the inventory levels at the end of the second period (or,
equivalently, between the second and third period) are

 LI1G23 = LI1G12 + IGI12 − OGI12 (13)
 LI1W23 = LI1W12 + IWI12 − OWI12 (14)

Moreover, the requirements for the final inventories can be written as

 LI1G23 ≥ 40 (15)
 LI1W23 ≥ 20 (16)

In order to establish the capacity constraints for the warehouses, we will consider
the weight constraints first and the volume constraints later. Considering the fact
that 1ft 2 of glass weighs 4 ounces, each 10' × 10' sheet of glass has a weight of
400 ounces and since 1 ft of wood weighs 3 ounces, each 20' board of wood has a
weight of 60 ounces. Using the weight constraint of 40,000 ounces of INV1, we
can write

 (400)LI1G12 + (60)LI1W12 ≤ 40,000 (17)

for period 1 and

 (400)LI1G23 + (60)LI1W23 ≤ 40,000 (18)

for period 2.

2.10 A Production – Inventory Model: A Case Study 113

Since each sheet of glass has dimensions 10' × 10' × 50
1 ', it has a volume of 2 ft3;

each board of 20' × 4
1 ' × 20

1 ' wood has a volume of 4
1 ft3, and therefore using the

allowed volume of 200 ft3 for INV1, we state

 (2)LI1G12 + 4

1 LI1W12 ≤ 200 (19)

for period 1, and
 (2)LI1G23 + 4

1 LI1W23 ≤ 200 (20)

for period 2.

Finally, since the inventory costs are 1% of the price of the stored material and the
prices were $20 and $6 in period 1, the costs for INV1 are

 100

20 LI1G12 + 100
6 LI1W12. (Profit contribution)

Part 3: Machines 1a and 1b: The Transformations

Since 5% of the glass taken out of the inventory is lost (e.g. broken), we have to
distinguish between the output of INV1 and the input into machine M1a. Defining
IM1a1 (IM1a2) and IM1b1 (IM1b2) as the input of glass and wood into machines
M1a and M1b, respectively, in the first (second) period, we obtain

 IM1a1 = 100

95 OGI11 (21)

(the constraint that governs the loss of glass in period 1), and

 IM1a2 = 100

95 OGI12 (22)

(the constraint the models the loss of glass in period 2).

Since there is no loss of wood, we have

 IM1b1 = OWI11 (23)
and

 IM1b2 = OWI12. (24)

In order to discuss the qualitative transformations in the cutting operations on
machines M1a and M1b, we define OM1a541 (OM1a331) and OM1a331
(OM1a332) as the output of 5' × 4' and 3' × 3' glass sheets of machine M1a in
period 1 (period 2) respectively. For machine M1b, we define OM1b31

 2 Applications 114

(OM1b32), OM1b41, (OM1b42), and OM1b51 (OMb152) as the output of 3ft, 4 ft
and 5ft boards of machine M1b in period 1 (period 2) respectively. Since each
transformation of a 10' × 10' sheet of glass results in either four 5' × 4' sheets or in
nine 3' × 3'sheets, we can write

 4

1 OM1a541 + 9
1 OM1a331 = IM1a1 (25)

for period 1, and

 4

1 OM1a542 + 9
1 OM1a332 = IM1a2 (26)

for period 2.

Consider now machine M1b on which the wood is cut; each 20 ft board is either
cut into six 3 ft pieces, five 4 ft pieces, or four 5 ft pieces. Hence

 6

1 OM1b31 + 5
1 OM1b41 + 4

1 OM1b51 = IM1b1 (27)

for period 1, and

 6

1 OM1b32 + 5
1 OM1b42 + 4

1 OM1b52 = IM1b2 (28)

for period 2.

Since between machines M1a and M1b and inventory 2 there are assumed to be
no losses, the output of M1a and M1b equals the input into INV2. Let IG54I21
(IG54I22), IG33I21 (IG33I22), IW3I21 (IW3I22), IW4I21 (IW4I22) and IW5I21
(IW5I22) denote the input into INV2 of glass 5' × 4', glass 3' × 3', wood 3', wood
4', and wood 5' in period 1 (period 2) respectively. The nonexistence of losses of
the two sizes of glass is then written as

 IG54I21 = OM1a541 (29)
 IG33I21 = OM1a331 (30)

for period 1 and

 IG54I22 = OM1a542 (31)
 IG33I22 = OM1a332 (32)

for period 2, respectively. For the three lengths of boards, we obtain the conditions

 IW3I21 = OM1b31 (33)
 IW4I21 = OM1b41 (34)
 IW5I21 = OM1b51 (35)

2.10 A Production – Inventory Model: A Case Study 115

for period 1, and

 IW3I22 = OM1b32 (36)
 IW4I22 = OM1b42 (37)
 IW5I22 = OM1b52 (38)

for period 2, respectively.

Part 4: Machines 1a and 1b: The Utilization

For this part, the only new variables needed are HM1a1 (HM1a2) and HM1b1
(HM1b2) which denote the number of hours of used time on the machines M1a
and M1b in period 1 (period 2), respectively. Consider machine M1a first. Note
that HM1a1 and HM1a2 have to be expressed in terms of the output and not the
input of machine M1a, since from the input one cannot tell how the glass is cut
and how many cuts are needed. Since for each 10' × 10' sheet of glass which is cut
into four 5' × 4' sheets, exactly four cuts are required, the number of cuts for this
transformation equals OM1a541 (and OM1a542 for period 2). Each cut requires

3
1 of a minute, so that the time needed to transform 10' × 10' glass into 5' × 4'

sheets equals 3
1 OM1a541 for each period 1, and similarly for period 2. On the

other hand, for the transformation of each 10' × 10' sheet of glass into nine 3' × 3'
sheets, 10 cuts are needed so that the total number of cuts for this type of
transformation is 9

10 OM1a331 (or 9
10 OM1a332 for period 2). Again, 3

1 of a
minute is required per cut so that the total time for the transformation of a 10' ×
10' sheet of glass into 3' × 3' glass is 9

10
3
1 OM1a331 for period 1, and similarly for

period 2. Hence we can write

 HM1a1 = 3

1 OM1a541 + 27
10 OM1a331 (39)

for period 1, and

 HM1a2 = 3

1 OM1a542 + 27
10 OM1a332 (40)

for period 2.

Since the capacity of machine M1a is 60

2013 hours or 800 minutes in both periods,
we obtain

 HM1a1 800 (41) ≤

 HM1a2 800. (42) ≤

 2 Applications 116

Similar considerations have to be made for machine M1b. Consider the
transformation of a 20ft board into six 3 ft boards. Since exactly six cuts are
needed, the number of cuts for this transformation equals the number of 3 ft
boards produced, i.e., OM1b31 for period 1 and OM1b32 for period 2. Since 60

8
minutes are needed per cut, the total time required to cut 20 ft boards into 3 ft
boards is 60

8 OM1b31 for period 1, and similarly for period 2.

For the transformation of a 20 ft board into five 4 ft boards, four cuts are needed,
hence the total number of cuts required for this type of transformation is

5
4 OM1b41 (and 5

4 OM1b42 for period 2). Each cut takes 60
8 minutes, so the total

time required for the transformation of 20 ft boards into 4 ft boards is 60
8

5
4

OM1b41 for period 1 and 60
8

5
4 OM1b42 for period 2. Finally, we need three cuts

to transform one 20 ft board into four 5 ft boards, and hence a total of 4
3 OM1b51

(and 4
3 OM1b52 for period 2) cuts are needed, so that the total time required for

making this kind of transformation is 60
8

4
3 OM1b51 for period 1 and

60
8

4
3 OM1b52 for period 2. Consequently, the utilization time of machine M1b is

 HM1b1 = 60

8 OM1b31 + 60
8

5
4 OM1b41 + 60

8
4
3 OM1b51 (43)

for period 1, and

 HM1b2 = 60

8 OM1b32 + 60
8

5
4 OM1b42 + 60

8
4
3 OM1b52 (44)

for period 2.

Since machine M1b has a capacity of 15 hours or 900 minutes in each period, we
can formulate

 HM1b1 900 (45)≤

 HM1b2 900 (46) ≤

The machine operating costs are

 60

100 HM1a1 + 60
100 HM1b2 (Profit contribution)

for machine M1a, and

 60

50 HM1b1 + 60
50 HM1b2. (Profit contribution)

for machine M1b.

2.10 A Production – Inventory Model: A Case Study 117

Part 5: Inventory 2

Let OG54I21 (OG54I22) be the output of 5' × 4' glass out of inventory 2 in period
1 (period 2), let OG33I21 (OG33I22) be the output of 3' × 3' glass out of inventory
2 in period 1, and let OW3I21 (OW3I22), OW4I21 (OW4I22) and OW5I21
(OW5I22) be the output of 3 ft, 4 ft and 5 ft wood out of INV2 in period 1 (period
2), respectively. Moreover, let LI2G5412 (LI2G5423), LI2G3312, (LI2G3323),
LI2W312, (LI2W323), LI2W412 (LI2W423) and LI2W512 (LI2W523) denote the
level of inventory 2 of 5' × 4' glass, 3' × 3' glass, 3 ft wood, 4 ft wood, and 5 ft
wood between periods 1 and 2 (between periods 2 and 3 or at the end of period 2).
Since no beginning inventory is given, we can state that the level of INV2
between periods 1 and 2 equals the input into INV2 in period 1 minus the output
out of INV2 in period 1 for all semi-finished products, i.e.

 LI2G5412 = IG54I21 − OG54I21 (47)
 LI2G3312 = IG33I21 − OG33I21 (48)
 LI2W312 = IW3I21 − OW3I21 (49)
 LI2W412 = IW4I21 − OW4I21 (50)
 LI2W512 = IW5I21 − OW5I21 (51)

The level of inventory 2 at the end of period 2 equals the beginning inventory in
period 2—which is LI2G5412, LI2G3312, etc.—plus the input into INV2 in
period 2 minus the output out of INV2 in period 2, i.e.,

 LI2G5423 = LI2G5412 + IG54I22 − OG54I22 (52)
 LI2G3323 = LI2G3312 + IG33I22 − OG33I22 (53)
 LI2W323 = LI2W312 + IW3I22 − OW3I22 (54)
 LI2W423 = LI2W412 + IW4I22 − OW4I22 (55)
 LI2W523 = LI2W512 + IW5I22 − OW5I22 (56)

In order to satisfy the requirements for the final inventory, we must have

 LI2G3323 ≥ 20 (57)
 LI2W323 ≥ 10 (58)
 LI2W423 ≥ 10 (59)
 LI2W523 ≥ 10 (60)

Below, we formulate the capacity constraints related to INV2. For that purpose,
we first express the total weight of all items in INV2. Each 5' × 4' sheet of glass
covers an area of 20 ft2, each ft2 of glass has a weight of four ounces, and hence
each of these 5' × 4' sheets has a weight of 80 ounces; accordingly, each 3' × 3'
sheet of glass (i.e., 9 ft2) weighs (9)(4) = 36 ounces. Similarly, since each linear
foot of wood weighs 3 ounces, each 3, 4 and 5 ft board has a weight of 9, 12 and
15 ounces, respectively. Considering the 10,000 ounce capacity of INV2, we can
state that

 2 Applications 118

 (80)LI2G5412 + (36)LI2G3312 + (9)LI2W312
 + (12)LI2W412 + (15)LI2W512 ≤ 10,000 (61)

for period 1, and

 (80)LI2G5423 + (36)LI2G3323 + (9)LI12W323 +
 (12)LI2W423 + (15)LI2W523 ≤ 10,000 (62)

for period 2.

As far as volume is concerned, each 5' × 4' sheet of glass has a volume of
(5)(4) 50

1 = 5
2 ft3; the volume of each 3' × 3' sheet of glass is (3)(3) 50

1 = 50
9 ft3.

The corresponding volumes of the 3 ft, 4 ft and 5 ft wood are (3) 4
1

20
1 = 80

3 ft3,

(4) 4
1

20
1 = 20

1 ft3 and (5) 4
1

20
1 = 16

1 ft3 respectively. Considering the capacity of
INV2 of 300 ft3, we state

 5

2 LI2G5412 + 50
9 LI2G3312 + 80

3 LI2W312

 + 20
1 LI2W412 + 16

1 LI2W512 ≤ 300 (63)

for period 1 and

 5

2 LI2G5423 + 50
9 LI2G3323 + 80

3 LI2W323

 + 20
1 LI2W423 + 16

1 LI2W523 ≤ 300 (64)

for period 2.

Finally, we establish the costs for INV2, based on the inventory level between
period 1 and 2, as well as the costs of materials in period 1. Since one 10' × 10'
sheet of glass has a price of $20 in period 1 and four 5' × 4' sheets were made out
of each, the cost of a 5' × 4' sheet is $5, and that of a 3' × 3' sheet is $ 9

20 . Note that
the cost for the waste is included in these pieces. Since one 20 ft board of wood
costs $6 in period 1, one 3 ft board costs $1, one 4 ft board costs $ 5

6 and one 5 ft

board costs $ 4
6 . In addition to the costs of the materials, the proportional

production costs for the various types of materials on M1a and M1b have to be
considered. First M1a will be discussed. Since one cut takes 20 seconds and one
machine hour costs $100, we have to consider $ 9

5 per cut.

• Cutting 10' × 10' sheets of glass into 5' × 4' sheets: Result: 4 sheets (of 5' ×

4'), using 4 cuts. Hence 9
5 [$/sheet] are the proportional machine costs.

2.10 A Production – Inventory Model: A Case Study 119

• Cutting 10' × 10' sheets of glass into 3' × 3' sheets: Result: 9 sheets of size 3' ×
3', using 10 cuts. Hence 9

10
9
5 = 81

50 [$/sheet] are the proportional machine
costs.

• Machine M1b: Each cut takes 8 seconds and a machine-hour costs $50, hence

9
1 [$/cut] has to be considered.

• Cutting 20 ft boards of wood into 3 ft boards: Result: 6 boards of 3 ft wood,

requiring 6 cuts. Hence 9
1 [$/board] are the proportional machine costs.

• Cutting 20 ft boards of wood into 4 foot boards: Result: 5 boards of length 4

ft), requiring 4 cuts. Hence 5
4

9
1 = 45

4 [$/board] are the proportional machine
costs.

• Cutting 20 ft boards of wood into 5 ft boards: Result: 4 boards of 5 ft wood,

requiring 3 cuts. Hence 4
3

9
1 = 12

1 [$/board] are the proportional machine costs.

Hence the values of the semi-finished products (including purchase price and
production costs) are:

• For 5' × 4' glass: $ 9

55

• for 3' × 3' glass: $ 81
682

• for 3 ft wood: $ 9
11

• for 4 ft wood: $ 45
131 , and

• for 5 ft wood: $ 12
71

One percent of these costs is incurred for each item in store between period 1 and
2. We then obtain the costs for INV2 as follows:

 100

1
9
50 LI2G5412 + 100

1
81

230 LI2G3312 + 100
1

9
10 LI2W312 + 100

1
45
58 LI2W412

 + 100
1

12
19 LI2W512 (Profit contribution)

Part 6: Machine 2

Let IG54M21 (IG54M22), IG33M21 (IG33M22), IW3M21 (IW3M22), IW4M21
(IW4M22) and IW5M21 (IW5M22) be defined as the input of 5' × 4' glass, 3' × 3'
glass, 3 ft, 4 ft and 5 ft wood into machine M2 in period 1 (period 2), respectively.
Since there are no losses between INV2 and M2, the following equalities hold:

 2 Applications 120

 IG54M21 = OG54I21 (65)
 IG33M21 = OG33I21 (66)
 IW3M21 = OW3I21 (67)
 IW4M21 = OW4I21 (68)
 IW5M21 = OW5I21 (69)

for period 1, and

 IG54M22 = OG54I22 (70)
 IG33M22 = OG33I22 (71)
 IG33M22 = OG33I22 (72)
 IW3M22 = OW3I22 (73)
 IW4M22 = OW4I22 (74)
 IW5M22 = OW5I22 (75)

In order to describe the output of machine M2, we define OWI54M21
(OWI54M22) and OWI33M21 (OWI33M22) as the output of 5' × 4' and 3' × 3'
windows out of machine M2 in period 1 (period 2) respectively. Since there are no
losses during the assembly of the windows on machine M2, the number of 5' × 4'
(3' × 3') windows leaving M2 equals the number of 5' × 4' (3' × 3') units of glass,
sent into M2, i.e.,

 OWI54M21 = IG54M21 and (76)
 OWI33M21 = IG33M21 (77)

for period 1, and

 OWI54M22 = IG54M22 and (78)
 OWI33M22 = IG33M22 (79)

for period 2.

On the other hand, since each 5' × 4' window requires—in addition to one 5' × 4'
sheet of glass—exactly two boards of 4 ft wood and two boards of 5 ft wood, we
can write

 (2)OWI54M21 = IW4M21 and (80)
 (2)OWI54M21 = IW5M21 (81)

for period 1, and

 (2)OWI54M22 = IW4M22 and (82)
 (2)OWI54M22 = IW5M22 (83)

for period 2.

2.10 A Production – Inventory Model: A Case Study 121

For each 3' × 3' window we need—in addition to one 3' × 3' sheet of glass—four
boards of 3 ft wood, and so we can state:

 (4)OWI33M21 = IW3M21 (84)

for period 1, and

 (4)OWI33M22 = IW3M22 (85)

for period 2.

Moreover, since one minute is required for the assembly of each type of window
on M2, the total time used for the assembly of windows (in minutes) equals the
number of windows assembled in the corresponding period. Defining HM21 and
HM22 as the utilization of machine M2 in period 1 and 2 respectively, we can
write

 HM21 = OWI54M21 + OWI33M21 (86)

for period 1, and

 HM22 = OWI54M22 + OWI33M22 (87)

for period 2.

The capacity of M2, viz., 15 hours, can be incorporated in the problem as

 HM21 ≤ 900 (88)
 HM22 ≤ 900 (89)

The costs for the operation of machine M2 are easily formulated since they are
expressed in terms of "$ per window"; hence they are

 4½ OWI54M21 + 4½ OWI54M22 + 4½ OWI33M21
 + 4½ OWI33M22 (Profit contribution)

Part 7: Inventory 3

Define IWI54I31 (IWI54I32) and IWI33I31 (IWI33I32) as the input of 5' × 4' and
3' × 3' windows into INV3 in period 1 (period 2) respectively. Since no losses
occur between M2 and INV3, we can state

 IWI54I31 = OWI54M21 (90)
 IWI33I31 = OWI33M21 (91)

 2 Applications 122

in period 1, and

 IWI54I32 = OWI54M22 (92)
 IWI33I32 = OWI33M22 (93)

in period 2, respectively.

Let OWI54I31 (OWI54I32) and OWI33I31 (OWI33I32)denote the output of 5' × 4'
and 3' × 3' windows of inventory INV3 in period 1 (period 2) respectively;
furthermore, define LI3WI5412 (LI3WI5423) and LI3WI3312 (LI3WI3323) as the
level of inventory 3 of 5' × 4' and 3' × 3' windows between periods 1 and 2
(between periods 2 and 3) respectively. Considering the beginning inventory of
twenty 5' × 4' and no 3' × 3' windows, the inventory levels between periods 1 and
2 are

 LI3W5412 = 20 + IWI54I31 − OWI54I31, and (94)

and

 LI3WI3312 = 0 + IWI33I31 − OWI33I31. (95)

Considering the fact that LI3WI5412 and LI3WI3312 are the beginning inventories
for period 2, we can write the ending inventories of period 2 as

 LI3WI5423 = LI3WI5412 + IWI54I32 − OWI54I32, and (96)
 LI3WI3323 = LI3WI3312 + IWI33I32 − OWI33I32. (97)

Since the required final inventory of 5' × 4' and 3' × 3' windows are 50 and 30
units respectively, we obtain

 LI3WI5423 ≥ 50 and (98)
 LI3WI3323 ≥ 30. (99)

Now the constraints for the capacity of INV3 will be established. First the weights
of the types of windows will be discussed. Each 5' × 4' window consists of a 5' ×
4' sheet of glass—weight 80 ounces—as well as two boards of 5 ft wood and two
boards of 4 ft wood, i.e. a total of 18 ft wood which weighs (18)(3) = 54 ounces.
Hence each 5' × 4' window has a weight of 134 ounces. Each 3' × 3' window
consists of a 3' × 3' sheet of glass—weight 36 ounces—and four boards of 3 ft
wood, totaling 12 ft of wood which has a weight of 36 ounces: hence each 3' × 3'
window weighs 72 ounces. Since INV3 has a capacity of 20,000 ounces, we can
state

 (134)LI3WI5412 + (72)LI3WI3312 ≤ 20,000 (100)

for period 1 and

2.10 A Production – Inventory Model: A Case Study 123

 (134)LI3WI5423 + (72)LI3WI3323 ≤ 20,000 (101)

for period 2.

The volume of the two types of windows can be calculated as follows. Each 5' × 4'

window includes a 5' × 4' × 50
1 ' sheet of glass which has a volume of 5

2 ft3 as well

as (2)(5) + (2)(4) = 18ft of wood, i.e., 18' × 1/4' × 20
1 ', hence a volume of 40

9 ft3,

so the total volume is 8
5 ft3. Similarly, each 3' × 3' window consists of 3' × 3' × 50

1 '

= 50
9 ft3 of glass and 12' × 1/4' × 20 ' = 1

20
3 ft3 of wood, so the total volume is

100
33 ft3. Since INV3 has a capacity of 100 ft 3, the volume constraints are

 8
5 LI3WI5412 + 100

33 LI3WI3312 ≤ 100 (102)

for period 1, and

 8

5 LI3WI5423 + 100
33 LI3WI3323 ≤ 100 (103)

for period 2.

Here the volume of a window is regarded to be equal to the sum of the volumes of
its parts, although this is a simplification which might not be true in practice.

The costs for the items in INV3 are based on the purchase price and the
production costs of the finished products. Using the costs of the2 semi-finished
products (see part 5), we obtain the following values:
• 5' × 4' windows: one 5' × 4' sheet of glass: $5 9

5

 2 boards of 4 ft wood: (2)$1 45
13

 2 boards of 5 ft wood: (2)$1 12
7

 Assembly of one window: $ 2
14

 Total costs: $ 5
415

• 3' × 3' window: one 3' × 3' sheet of glass: $ 81

682

 4 boards of 3 ft wood (4)$ 9
11

 Assembly of 1 window: $ 2
14

 Total costs: $ 162
12711

 2 Applications 124

Hence the inventory costs in INV3 are

 100

1
5
79 LI3WI5412 + 100

1
162

1909 LI3WI3312 (Profit contribution)

Part 8: The Sales

Define SWI541 (SWI542) and SWI331 (SWI332) as the sales of 5' × 4' and 3' × 3'
windows in period 1 (period 2) respectively. The fact that 3% of the windows are
lost if they leave INV3 is expressed as

 SWI541 = 100

97 OWI54I31 and (104)

 SWI331 = 100
97 OWI33I31 (105)

for period 1, and

 SWI542 = 100

97 OWI54I32 and (106)

 SWI332 = 100
97 OWI33I32 (107)

for period 2.

Moreover, the upper bounds for the demand have to be respected, i.e.,

 SWI541 ≤ 1,500 (108)
 SWI331 ≤ 2,000 (109)
 SWI542 ≤ 2,000 (110)
 SWI332 ≤ 2,000 (111)

Finally, the revenue from these sales is

 (75)SWI541 + (45)WI331+ (80)WI542+ (51)WI332

 (Profit contribution)

The above problem has a total of 62 variables and just over 100 structural
constraints, making it a small problem by today’s standard, at least from a
computational point of view. The solution is displayed in the following figures,
showing the material flows in the two periods. Note that the value of the objective
function—the total profit—is $101,909.27 for both periods combined.

The solution is displayed in Figures 2.10 – 2.12.

2.10 A Production – Inventory Model: A Case Study 125

 2 Applications 126

2.10 A Production – Inventory Model: A Case Study 127

128 2 Applications

Without discussing the solution in greater detail, some comments should be made:

 (a) All three warehouses are filled up to capacity (concerning weight)
 between periods 1 and 2.

 (b) Machine M2 works at capacity in both periods.

 (c) 3' × 3' windows are not produced for sale in any of the two periods.

Note that observations (a) and (b) indicate bottlenecks in the production-inventory
model; in future planning one may consider increasing the pertinent capacities,
given that expansion is possible and the other parameters remain unchanged.
Moreover, as the above observation (c) indicates that the price ratio for 5' × 4' and
3' × 3' windows is in favor of the 5' × 4' type, a price increase for 3' × 3' windows
may be considered, provided the market is willing to accept it.

One more general note seems to be in order here. Usually, there is more than one
way to formulate a given problem and one might try to find an “optimal”
formulation. In order to find this “optimum,” the objective has to be stated first.
Basically, two objectives can be thought of: One is to make the model as small as
possible by including the least number of constraints and variables; another one is
to formulate the problem so that the solution provides the best documentation
possible. Unfortunately, a good documentation will almost always require a larger
number of variables, so that both objectives are not likely to be optimized with a
single formulation. For instance, the variables HM1a1 and HM1a2 could be
replaced by the expression on the right-hand sides of constraints (39) and (40),
thus making the variables HM1a1 and HM1a2 as well as the constraints (39) and
(40) obsolete. In the above formulation a good documentation was favored, which
makes the problem size bigger than it has to be.

3 THE SIMPLEX METHOD

Being not only the traditional and best-known method but also the standard
solution technique for the solution of linear programming problems, we devote
this chapter entirely to the simplex method.

The chapter is subdivided into two sections. The first section introduces the
graphical solution method and discusses some resulting properties and special
cases. The second section derives the simplex method, the standard technique for
the solution of linear programming problems. It then returns to the special cases
and examines them algebraically.

3.1 Graphical Concepts
This section first describes how to plot the feasible set as well as the objective
function of a linear programming problem with two variables, before putting
things together in the graphical solution method. The section ends with a
discussion of some special cases that may occur during the execution of the
solution technique. While any graphical approach is limited to no more than three
variables, its discussion is nonetheless valuable, as it provides insight into the
problem and allow us to estimate the effects of changes in the individual
parameters in the context of postoptimality analyses of the type to be discussed in
detail in Chapter 6.

3.1.1 The Graphical Solution Technique

The graphing of the feasible set on the basis of any number of given ≤, =, and ≥
constraints has already been discussed in Section A.2. Consider now the objective
function and, without loss of generality, assume that the given objective function

is Max z =∑ . For any given value of z, e.g., z = z
=

n

j
jj xc

1
0, this function can be

 3 The Simplex Method 130

written as ∑ = z
=

n

j
jj xc

1
0, which is a constraint with a right-hand side value of z0,

which can be represented by a hyperplane in ún. For any value of the objective
function z1 ≠ z0, we obtain a different hyperplane, which is parallel to the one
obtained for z0. Each of these hyperplanes consists of points that are all equally
good in the sense that they have the same value of the objective function. For that
reason, they are frequently referred to as isoprofit lines or isocost lines, depending
on the objective function, or sometimes as contour lines. (Since the term “lines” is
only valid in two-dimensional problems, it might be replaced by “hyperplanes” in
a more general treatment.) Given a maximization problem, the objective function
will then attempt to find points on the contour line that belongs to the highest
possible objective value. (For minimization problems, “highest possible” is
replaced by “lowest possible.”) The only feature that restricts choosing points with
arbitrary high objective values are the constraints. The objective is then to find a
point in the feasible set that is located on the contour line with the highest (lowest
for minimization) possible value of the objective function.

2x

1x

Gradient

1

−1 1

−1 z = 6

z = 3

z = 0

z = −6

Figure 3.1

This search can be accommodated by plotting the unique unidimensional ray x =
λc, λ ∈ ú, which is orthogonal to the isoprofit hyperplanes cx = z, z ∈ ú. This ray

3.1 Graphical Concepts 131

is called the direction or the gradient of the objective function and it indicates in
which direction the hyperplanes cx = z have to be shifted, in order to achieve a
better (higher for maximization and lower for minimization problems) value of the
objective function. Notice that the gradients of Max z1 = cx and Min z2 = cx are
diametrically opposed. As an illustration, consider the following

Example: Consider the objective function Max z = 3x1 + 2x2. The graph in Figure
3.1 displays the gradient of this objective function as well as isoprofit lines for z =
−6, 0, 3 and 6, respectively. The arrow points in the direction in which the
objective function values improve.

Example 2: Consider the task of plotting the gradients of the following objective
functions:
 (1) Max z = x1 + 2x2 or, equivalently, Min −z = −x1 − 2x2
 (2) Max z = −3x1 + x2 or, equivalently, Min −z = 3x1 − x2
 (3) Max z = −3x1 − 2x2 or, equivalently, Min −z = 3x1 + x2, and
 (4) Max z = x1 − x2 or, equivalently, Min −z = −x1 + x2.

Figure 3.2 shows the gradients of all four objective functions.

1x

2

1

(1)

(4)

(3)

 1

x

(2)

Figure 3.2

At this point, we will introduce the constraints and describe the graphical solution
technique. Consider the graph in Figure 3.3 where the shaded area denotes the
polytope given by the constraints I, II and III and in which the gradient of the
objective function as well as the contour lines for some objective function values
are also displayed.

 3 The Simplex Method 132

Figure 3.3

ΙΙΙ

Ι

1x

ΙΙ

0z 1z 2z 3z 4z

2x

D

C

B

E

A

O

Gradient

According to the gradient of the objective function, z4 > z3 > z2 > z1 > z0. Suppose
the objective is to maximize profit and start with a profit level of z0. All points on
the z0 contour line represent an equal profit but none of these points is feasible.
Increasing the profit level to z1 we find that A is the only feasible point on this
level. A further increase to z2 indicates that points B and E as well as all points on
the line segment between B and E are not only feasible but are also all on the same
profit level, i.e., all of the points are considered equally good. Increasing the profit
level even further to z3, we see that only one point, namely C, is feasible on this
level. Any further increase in the profit level results in a set of points on a
hyperplane with a profit level of, say, z4, all of whose points have a higher profit
level than point C, but none of those points is feasible. We can conclude that point
C represents the unique optimal solution. In simple words, the contour
hyperplanes are shifted in the direction of the objective function, until one of them
touches the last point of the given polytope; this point is optimal. In the above
example we have seen that point C is optimal, and it is now our task to determine
the exact coordinates of that optimal point.

Since C is uniquely determined by the intersection of the hyperplanes bordering
the halfspaces of constraints I and II, we have a system of two equations (I and II)
in the two variables x1 and x2 which has a unique solution, consisting of the exact
(21, xx) coordinates of the optimal point C. Replacing x1 and x2 by the
values 21 and xx in the objective function results in the optimal z-value z and the
problem is completely solved. This procedure can be summarized as follows:

3.1 Graphical Concepts 133

The Graphical Solution Technique

Step 1: Graph all constraints and determine the feasible set.

Step 2: Graph the gradient of the objective function.

Step 3: Shift the contour lines into the direction of the gradient of the objective

function until the last feasible point is reached. This point x is optimal.

Step 4: The constraints of the set of hyperplanes that intersect at x are satisfied as

equations at optimum. Solve that system of simultaneous linear
equations, e.g., with the Gauss-Jordan pivoting method (see Procedure
A.19 in Section A.2). The coordinates of x constitute an optimal
solution.

Step 5: Determine the value of the objective function at optimum as xc=z .

The graphical solution method described above clearly indicates that no interior
point can be optimal, so that any optimal solution must be located on the boundary
of the feasible set. We can then prove

Lemma 3.1: (Dantzig, 1951): Assume that the feasible set is nonempty and
bounded. Then at least one optimal solution is located at an extreme point.

Proof: Assume for now that x is a unique optimal solution and suppose that x is
not at an extreme point. Due to the compactness and convexity of the feasible set,
there will then exist feasible extreme points x1, x2, so that x can be expressed as a
linear convex combination of x1 and x2 neither of which is optimal, i.e.,

[.1,0],)1(21 ∈λλ−+λ= xxx Since x is by assumption optimal while x1 and x2

are not, 21 and cxxccxxc >> . Now 1cxxc > can be written as c[λx1 + x2 − λx2] −
cx1 > 0; which, in conjunction with the assumption that λ < 1 (if λ = 1, then x
coincides with the extreme point x1, thus violating the assumption that it is not an
extreme point), result in cx1 < cx2. An equivalent argument can be applied
to 2cxx >c which results in cx1 > cx2, an obvious contradiction. This process can
now be repeated for all optimal points. It is impossible that all of these points are
non-extreme points, as that would lead to a contradiction in all cases. This proves
the lemma. �

Example: Consider the following linear programming problem.

 P: Max z = 2x1 + x2

 s.t. x1 + x2 ≥ 1 (I)
 3x1 +4x2 ≥ 12 (II)

 3 The Simplex Method 134

 x1 − x2 ≤ 2 (III)
 −2x1 + x2 ≤ 2 (IV)
 x1 ≥ 0 (V)
 x2 ≥ 0 (VI)

The graph of this problem is shown in Figure 3.4, where, as usual, the shaded area
represents the polytope and the dashed lines indicate contour hyperplanes. Using
the graphical solution technique we find that point C is optimal. Since C is
determined by the intersection of the bordering hyperplanes of halfspaces II and
III, the system of simultaneous linear equations to be solved is 3x1 + 4x2 = 12 and
x1 − x2 = 2. The result is the optimal solution ()7

6
7
6 ,2=x with the objective value

7
46=z .

Figure 3.4

ΙΙ

11
53

1x

7
46

Ι

ΙΙΙ

ΙV

2x

D

E
 Gradient

F C

−1 O A B 5

−1

z = z = z = 4 z = 2 z =1 z = 0

At this point it is beneficial to look at techniques that allow us to determine an
optimal solution, even if a graphical representation of the given problem is not
available. At any given feasible point, we define an improving feasible direction
as a direction, in which

 (1) a move with a short step length will preserve feasibility, and
 (2) the value of the objective function improves (i.e., increases for
 maximization and decreases for minimization problems).

3.1 Graphical Concepts 135

An improving feasible direction method that starts at an extreme point of a
polytope and moves along an improving feasible direction along the boundary of
the polytope to an adjacent extreme point, is called a (phase 2) simplex path.

We will demonstrate a simplex path by virtue of the example shown in Figure 3.4.
Arbitrarily start with F as the first feasible point.

From F, we can move to either A or E, since both are adjacent to the present
solution F, both are feasible, and both are located on higher contour lines than F.
Here, we arbitrarily choose point E, which, again, has two neighbors, viz., F and
D. We cannot move back to F since it is located on a lower profit level; hence we
move to D which, in turn, has the two neighbors E and C. From point D we must
move to C, as the only other alternative, E, is located at a lower contour line.
Consider now the situation at point C. Both of point C’s neighboring extreme
points B and D are located at lower profit levels. Even if we were not restricted to
extreme points, it is apparent that there exists no feasible point anywhere in the
neighborhood of point C that has a higher objective function value than C. We can
therefore conclude that point C is optimal. This is the way the simplex method
proceeds.

In the above example, there are two possible simplex paths from point F, viz., F –
E – D − C and F – A – B – C. Which of the two paths the simplex method chooses
will depend on the finetuning of its parameters. Many attempts were made in the
1960s and 1970s to find one of the shortest paths, as this will certainly minimize
the computational effort. However, none of these attempts proved successful. One
of the reasons is that none of the methods has foresight much beyond what
happens when moving from one extreme point to an adjacent extreme point (other
than actually making the moves), a feature required to find short paths between
the present solution and the optimal point.

Another set of simplex paths will be described in the following three-dimensional

Example: Consider the following linear programming problem:

 P: Max z = 4x1 + x2 + 3x3
 s.t. x1 ≤ 3
 x2 ≤ 5
 x3 ≤ 2
 x1 + x2 + 2x3 ≤ 10
 x1 , x2 , x3 ≥ 0.

 3 The Simplex Method 136

x3

E, 18
D, 6

0, 0
x1 • F, 21 A, 12

H, 15
I, 11

G, 20

C, 5 B, 17

x2

Figure 3.5

The problem describes a polyhedron with the ten extreme points O = (0, 0, 0), A =
(3, 0, 0), B = (3, 5, 0), C = (0, 5, 0) D = (0, 0, 2), E = (3, 0, 2), F = (3, 3, 2), G =
(3, 5, 1), H = (1, 5, 2) and I = (0, 5, 2). The feasible set of the problem is shown
in Figure 3.5 in which the numbers next to the extreme points are their values of
the objective function. Starting with point O, we can move to one of its three
neighbors A, C or D. Suppose we move to D whose neighboring extreme points
are O, E and I; however, since the objective value must increase, we can only
move to E or I. Arbitrarily select I as the next point. Among point I’s three
neighbors C, D and H, only a move to H is possible. From H, a move to F or G is
possible, moving back to I is “illegal” as it decreases the value of the objective
function. Suppose that a move to point F is selected and, since none of its
neighbors E, H and G has a better z-value, F is optimal. Even in this small model,
there are already eight “legal” simplex paths form O to F, viz., (O, A, B, G, F), (O,
A, E, F), (O, C, B, G, F), (O, C, I, H, G, F), (O, C, I, H, F), (O, D, E, F), (O, D, I,
H, G, F), and (O, D, I, H, F). These paths include between four and six extreme
points. In practice, it would be very beneficial to know beforehand which path
from the starting point to the optimal solution includes the smallest number of
intermediate extreme points, as this would minimize the computational effort
required to solve the problem. Since, however, only local information is available
at the individual extreme points, such information is not available.

Consider now the example in Figure 3.6. Assume that the initial point is B at a
level of the objective function of z0. Point B has the two neighbors A and D. Both
are feasible and both have higher values of the objective function, making either
move feasible. Suppose now that we choose to move to point A. Here, both

3.1 Graphical Concepts 137

adjacent points B and C have lower values of the objective function than A,
leading us to the conclusion that A must indeed be an optimal solution. However,
simple inspection reveals that point D represents a unique optimal solution.

0z

1z
2z

3z

A

C

B

Gradient

D

O

2x

1x

Figure 3.6

This difficulty requires us to define the type of problems for which the feasible
direction approach works properly.

Definition 3.2: A local optimum for a maximization problem on a set S is defined
as a point ∈ S, such that for some arbitrarily small ε > 0 and all x̂ x~ ∈ S,

ε≤− xx ~ˆ implies that xcxc ˆ~ ≤ . A global optimum x ∈ S is a point, such that
xcxc ~≥ .~ S∀ ∈x

Using this definition, it is possible to prove

Lemma 3.3: In a problem with a convex feasible set and a linear objective, each
local optimum is a global optimum.

We can also state (here without proof)

Lemma 3.4: An improving feasible direction search that moves from one extreme
point to an adjacent extreme point of a closed polyhedron finds a local optimum.

Lemmas 3.3 and 3.4 imply that the neighborhood search technique that results in

 3 The Simplex Method 138

what we call a simplex path will indeed find a global optimum of a linear
programming problem. This is not a contradiction to the example in Figure 3.6, as
the feasible set shown therein is not convex; that set could not be generated as the
intersection of linear halfspaces and hyperplanes as is the case in linear
programming.

In this context we would like to mention the Hirsch conjecture of 1957, which
states that it is generally possible to move from any extreme point to any other in
at most m steps, where m is the number of constraints. Klee und Walkup (1967)
proved the Hirsch conjecture (Hirsch, 1957) for problems with n − m ≤ 5, where n
is the number of variables, and disproved it for problems with unbounded
polytopes.

3.1.2 Four Special Cases

Below, we will discuss four special cases that may occur in the optimization
process. The first two cases are related to issues related to the formulation of the
model, meaning that the model has to go back to the drawing board. We will offer
further comments when we discuss these cases in some detail. The last two cases
are of a technical nature. They may be of only passing interest, or they may cause
problems in the workings of the algorithm. Again, more details are offered below.

Case 1: No feasible solutions exist, if the intersection of all given halfspaces
and/or hyperplanes is empty. Clearly, this depends exclusively on the constraints
and indicates that some constraints are too tight, and the model has to be
reformulated before any optimization can resume.

Example: Consider the following set of constraints:

 x1 ≤ 2 (I)
 x2 ≤ 1 (II)

2x1 + 5x2 ≥ 10 (III)
x1 , x2 ≥ 0.

As Figure 3.7 clearly indicates, the feasible set is empty. In this small example,
this could also be seen in the set of constraints where constraint (I) implies that
2x1 ≤ 4, constraint (II) implies that 5x2 ≤ 5, so that constraints (I) and (II) together
have to satisfy 2x1 + 5x2 ≤ 9, which is a direct contradiction to constraint (III). One
question is then which of the constraints causes the infeasibility. However, this is
the wrong question. In the above example, it is apparent that any two of the three
constraints allow an infinite number of feasible solutions, while adding the
remaining constraint causes the infeasibility. In other words, the nonexistence of
feasible solutions is caused by the incompatibility of a group of constraints. Most
software codes will display the group of constraints that cause the infeasibility,
which is a great help to modelers when redesigning the model.

3.1 Graphical Concepts 139

ΙΙΙ
Ι

2

51

2x

1x

Figure 3.7

In order to restore feasibility, it is necessary for the modeler to loosen up some of
the constraints that are involved in causing the infeasibility (such a set is often
identified by the optimizer). Loosening up constraints means allowing a greater
degree of leeway. For instance, a resource constraint may be loosened up by
trying to find ways of acquiring more resources, while a demand constraint that
requires a certain minimum amount to be shipped to a customer may be loosened
up by requesting from the customer a smaller required quantity. Simply speaking,
≤ constraints are loosened by increasing the right-hand side value, while ≥
constraints are loosened by decreasing the right-hand side value. Equationsthis
holds for formulations in general and not just cases in which feasible solutions do
not existshould be avoided whenever possible, as they dramatically restrict the
set of feasible solutions. When loosening up constraints, it is usually advantageous
to modify some, rather than a single, right-hand side values of the constraints that
cause the infeasibility. The reason is that restricting ourselves to changing only a
single right-hand side value may require a massive change, which could be
difficult to implement, while working on multiple constraints it may be possible to
restore feasibility by a number of smaller changes to the existing parameters.

Case 2: Unbounded “optimal” solutions exist, if the polytope is unbounded and
the gradient of the objective function is directed into the cone given by rays that
are orthogonal to the diverging hyperplanes.

Example: Consider the polytope given by the constraints

 −2x1 + x2 ≤ 2 (I)
 x1 −3x2 ≤ 3 (II)
 x1, x2 ≥ 0

 3 The Simplex Method 140

Ι

ΙΙ

α

2x

1

1

()

(β)

 2
1

5
1x

Figure 3.8

Every objective function between (α): Max z = −2x1 + x2 and (β): Max z = x1 − 3x2
pointing in the northeast direction results in unbounded optimal solutions, whereas
every objective function between (α) and (β) pointing in the southwest direction
results in a finite optimal solution (either (0, 2), (0, 0) or (3, 0)). If the objective
function is (α), then there are alternative optimal solutions x = (M, 2M + 2) for
any M ≥ 0, all have a value of the objective function z = −2M + 2M + 2 = 2.
Although the values of both variables may be unrestricted, the z-values is bounded
and we do not speak of unbounded optimal solutions. The same is true for
objective (β) where x = (3M + 3, M) produces z = 3 for all M ≥ 0. The above
discussion reveals that the existence of unbounded optimal solutions depends on
the constraints as well as on the objective function. Whenever unbounded
“optimal” solutions are encountered, an error has been made in the formulation. In
particular, some of the relevant constraints of the model may have been forgotten,
so that the existing formulation is “too loose.”

Case 3: Dual degeneracy occurs at an extreme point, if at least one of its adjacent
extreme points has the same value of the objective function. If dual degeneracy
occurs at optimal extreme point, then at least one alternative optimal solution
exists. For the occurrence of dual degeneracy it is necessary and sufficient that the

3.1 Graphical Concepts 141

gradient of the objective function is orthogonal to the (boundary) hyperplane of a
nonredundant constraint. The occurrence of dual degeneracy depends on the
constraints as well as on the gradient (or direction) of the objective function.

Example: Consider the following linear programming problem

 P: Max z = x1 + x2
 s.t. x1 + x2 ≥ 1 (I)
 x1 + x2 ≤ 2 (II)
 x1 , x2 ≥ 0.

Figure 3.9 indicates that all four extreme points are dual degenerate: Points A and
D are neighbors and have the same value of the objective function, and points B
and C are also neighbors with the same z-value. Furthermore, since the extreme
points B and C are both optimal, both are alternative optimal solutions. In
addition, all points on the line segment between B and C are also optimal.

Figure 3.9

Ι ΙΙ
1x

2x

2

D 1

BA
O

1 2

 3 The Simplex Method 142

Case 4: Primal degeneracy occurs if more than n hyperplanes intersect at one
point of ún (which makes the point “overdetermined”). Primal degeneracy
depends exclusively on the constraints and not on the objective function.
Example: Consider the polytope defined by the following constraints:

 4x1 + 2x2 ≤ 9 (I)
 2x1 + 3x2 ≤ 6 (II)
 6x1 + 5x2 ≤ 15 (III)
 x1 , x2 ≥ 0

2x

1 A

O x2 1
I III II

Figure 3.10

The graph in Figure 3.10 reveals that primal degeneracy occurs at the point A
=),1(4

3
8
7 at which all three constraints are satisfied as equalities. (Note that

constraint III is redundant. In general, however, primal degeneracy can exist in the
absence of redundancy as well, as exemplified by a pyramid with four sloping
sides. Its apex is primal degenerate, but there is no redundancy).

3.2 Algebraic Concepts 143

3.2 Algebraic Concepts
In this section we will describe an algebraic technique which can be used for the
solution of any mathematical programming problem that has been reduced to a
linear programming problem, e.g., by virtue of one of the transformations to be
described in Chapter 8. Once the general technique is described an illustrated by
an example, we will revisit the four special cases that have been discussed above
from a graphical point of view.

3.2.1 The Algebraic Solution Technique

For the time being, we will restrict ourselves to problems in canonical form with
nonnegative right-hand sides, i.e., problems of the type

 P: Max z =∑ j
=

n

j
jxc

1

 s.t. a j∑ , mibx i

n

j
ij ...,,1,

1
=≤

=

 xj ≥ 0, j = 1,…,n

or, in matrix notation

 P: Max z = cx

 s.t. Ax ≤ b
 x ≥ 0,

where bi ≥ 0 ∀ i = 1, …, m, or b ≥ 0 in matrix notation. This formulation does not
include constraints such as ai•x ≥ bi and/or ai•x = bi. For any of these problems, the
origin x = (0, 0, …, 0)T is feasible, so that the existence of at least one optimal
solution is assured. In other words, for now, we are dealing only with the second
phase of a general optimization problem.

Adding slack variables S1, S2, …, Sm as prescribed in Chapter 1 leads to the
formulation in standard form

 P: Max z =∑ j
=

n

j
jxc

1

 s.t. ∑ mibSxa ii

n

j
jij ...,,1,

1
==+

=

 xj ≥ 0, j = 1, …,n
 Si ≥ 0, i = 1, …,n,

 3 The Simplex Method 144

or in matrix form as

 P: Max z = cx
 s.t. Ax + IS = b
 x ≥ 0
 S ≥ 0.

Since exactly one slack variable has been added to each of the m constraints, we
now have a total of (n + m) variables, m constraints and (n + m) nonnegativity
constraints for a total of 2m + n constraints. A simplex tableau that includes all
constraints (except for the nonnegativity constraints that are handled implicitly) is
shown below. Note that the scalar z0 on the right-hand side of the objective
function denotes the constant associated with the solution, in which all decision
variables assume a value of zero. For example, z0 would be a fixed cost or a basic
revenue that is obtained regardless of the actual solution. The general appearance
of a simplex tableau is shown in Table 3.1.

Table 3.1

T: x S 1
m rows A I b constraints

1 row 44 344 21
columnsn

c−
44 344 21

columnsn

0
44 344 21

column1
0z

objective

Definition 3.5: A tableau is said to include a basic solution if it contains the m
unit column vectors e•i, i = 1,…, m. The variables heading these m columns are
called the basic variables. The other variables are called nonbasic variables.

Definition 3.6: A basic solution is called a basic feasible solution (BFS) if the
current values of all variables are nonnegative. A basic variable xj under which
appears a unit vector e•i is said to be in the basis in the i-th row, and its current
value is xj = bi. All nonbasic variables have a current value of zero.

The initial basis shown in the tableau above consists of all m slack variables,
while the remaining n decision variables are nonbasic. The present values of the
variables are xj = 0, j=1, …, n and Si = bi, i = 1, …, m, and the value of the
objective function is presently z0. This value may include any fixed costs or profits
as such a constant will not influence the optimization and the optimal solution.

The simplex method by Dantzig has been the method of choice for the last sixty
years and is still (by far) the method used for most optimization purposes, and it
proceeds as follows. The method first determines whether or not the current
solution is optimal. If it is, the procedure terminates; if not, it selects a nonbasic

3.2 Algebraic Concepts 145

variable xj, which, by definition, is currently at the zero level, and which increases
the value of the objective function if its own value increases. Every nonbasic
variable with a negative entry in the objective function row has this property.

If not, we will change the present basis by designating the column of a present
nonbasic variable as the entering variable, which will enter the basis in this step,
and the column of a variable that is presently in the basis as the leaving variable,
i.e., the variable that will leave the basis in this step. Given that basis change, the
next basis will be a neighbor of the present basis in the sense that the two bases
are identical except for a single variable.

For simplicity of the exposition, assume now that the variables are x1, x2, …, xn,
xn+1, xn+2, …, xn+m, i.e., they include the problem variables as well as the slack
variables. The negative value of the indicator or reduced cost −cj of a variable xj
will then indicate by how many units the value of the objective function will
increase if the value of the variable xj were to increase by one. It is apparent that if
−cj ≥ 0 ∀ j, then the present solution is optimal as no further increase in the
objective function is possible.

Assume now that the present solution is not yet optimal. Then there exists at least
one −cs < 0 and we will attempt to increase the value of the variable xs which is
only possible if we introduce the variable into the basis. Clearly, the increase of
any variable cannot be done in an isolated way, but will require changes to a
number of other variables. To simplify matters, assume that xi = bi, i = 1,…, m,
i.e., xi is a basic variable in the i-th row. The column vector under the variable xs is
[a1s, a2s,…, ais,…, ams]T, which indicates that if xs were to be increased by some ε
> 0, the right-hand side values will change to [b1−ε a1s, b2−ε a2s,…, bi−ε ais,…,
bm−ε ams]T, i.e., the values of the basic variables change to xi = bi − ε ais, i = 1,…,
m. Since the values of all variables have to remain nonnegative, we require that bi
− εais ≥ 0 ∀ i = 1, …, m with ais > 0 (as for ais ≤ 0 the new values can never

become negative). Simple algebra leads to the condition mi
a
b

is

i ,..,1, =≤ε with

ais > 0 or simply








>≤ε
=

0:min
,...,,1 is

is

i
mi

a
a
b

. Suppose now that bi > 0, i = 1,…, m

and








>
=

0:min
,,...,1 is

is

i
mi

a
a
b is uniquely determined by, say,

rs

r

a
b . If we were to

choose some 







∈

rs

r

a
b

;0ε , then xs > 0 and xi > 0, i = 1,…, m; hence a total of (m

+ 1) variables out of the total m + n variables would have a strictly positive value.
Following Definition 3.5, this is not a basic solution, since in order for the (m+1)
variables to be positive, they have to be basic variables, and a basic solution
cannot include more than m basic variables. However, if we were to

 3 The Simplex Method 146

choose
rs

r

a
b

=ε , then again xs > 0 but xi > 0, i = 1,…, m ∀ i ≠ r since xr = br − εars

= br − rs
rs

r a
a
b = 0, so that now no more than m variables have a positive value.

Now all n nonnegativity constraints as well as the given m constraints are
satisfied, making the new solution a basic feasible solution.

Figure 3.11a

H

G

F

J
III

II

I

D

E

C B A O

x2

x1

Let us now briefly clarify the relationships between the algebraic concepts of
basic solutions and basic feasible solutions, see Definitions 3.5 and 3.6, and their
respective geometric counterparts. Every basic solution is represented by one and
only one basic point; however, the same basic point may be the representation of
more than one basic solution. Similarly, every basic feasible solution is
represented by one and only one extreme point; however, the same extreme point
may be the representation of more than one basic feasible solution. This implies
that the number of basic solutions is never less than the number of basic points;
similarly, the number of basic feasible solutions is never less than the number of
extreme points. The number of basic points is however unrelated to the number of
basic feasible solutions. This is illustrated in Figures 3.11a and b.

3.2 Algebraic Concepts 147

x2

x1

C

III
I

II

D A O

B

Figure 3.11b

The problems graphed in Figures 3.11a and 3.11b each consist of n = 2
nonnegative variables and m = 3 structural constraints I, II, III. In Figure 3.11a
there are ten basic points corresponding to ten basic solutions and five basic
feasible points corresponding to five basic feasible solutions. In contrast, the
problem in Figure 3.11b includes five basic points corresponding to as many as
nine basic solutions (this can be seen by shifting the hyperplane II slightly to the
northeast, resulting in the decomposition of points A and C into three distinct
points each). Figure 3.11b also contains three basic feasible points. By the same
argument, there are five basic feasible solutions.

Consider now the following: a basis in the [m × (n + m)]-dimensional tableau is an
[m × m]-dimensional submatrix, i.e., a collection of m out of (n + m) columns.

Clearly, there exist  of these [m × m]-dimensional submatrices, while the

number of bases may be less since not every [m × m]-dimensional submatrix has
full rank as required by a basis. Knowing that at least one of the optimal solutions
must be located at an extreme point, we could enumerate all [m × m]-dimensional

submatrices B and solve the resulting 


systems of simultaneous linear

equations x








 +
m

mn








+
m

mn

B = B−1b. All submatrices for which either B−1 does not exist or for
which xB is not nonnegative are discarded; for all remaining bases z = cxB is

 3 The Simplex Method 148

calculated and the basis with the highest c value determines the optimal

solution. While valid, this procedure is not practical, because even for small

problems, say n = 10 problem variables and 10 constraints, as many as =

184,756 systems of simultaneous linear equations may have to be set up and
solved. With this in mind, we can now fully appreciate the much more efficient
simplex algorithm which, following simplex folklore, requires an average of










N

B

x
x








 +
10

1010

m2
3

iterations, where m is the number of constraints. A formal description of Phase 2
is provided below. If not otherwise stated, cj refers to the objective function
coefficient of the j-th variable as it appears in the tableau, the vector x includes
all variables, and aij is the coefficient of xj in the i-th row, no matter if it belongs
to a decision, slack or any other variable. Note that all coefficients cj, aij and bi are
redefined in every iteration; if we refer to one of them we always refer to its
current value.

The Primal Simplex Algorithm: Phase 2

Step 1: Is cj ≥ 0, j = 1,…, n ?
 If yes: Stop, the current solution is optimal.
 If no: Go to Step 2.
Step 2: Select any nonbasic variable xs with cs < 0 as entering variable. The s-th

column is called the pivot column.

Step 3: Is there any positive element ais > 0, i = 1,…,m in the pivot column?
 If yes: Go to Step 4.
 If no: Stop, there are unbounded “optimal” solutions.

Step 4: Select the r-th row as pivot row, such that









>=
=

0:min
,...,1

is
is

i

mirs

r a
a
b

a
b

 The variable which is in the basis in the r-th row leaves the basis. The
element ars > 0 is the pivot.

Step 5: Perform one tableau transformation with the pivot element ars by using the
 Gauss-Jordan pivoting method described as Procedure A.19. The
 pivoting rules are applied to all elements of the tableau. Go to Step 1.

Note that the pivot column selection rule in Step 2 of this algorithm allows the
user a large degree of freedom. Frequently the column with the smallest cj (the
“most negative” or “steepest unit ascent” rule) is chosen as pivot column since it
results in the largest increase of the value of the objective function per unit
increase of the entering variable; this is the rule applied throughout this book. A

3.2 Algebraic Concepts 149

large number of alternative rules exist, a good collection is found in Eiselt et al.
(1987). One popular alternative is the “greatest change method,” which
determines pivot elements for each pivot-eligible column (i.e., each nonbasic
column j with a negative indicator) and chooses the pivot that results in the largest
increase of the value of the objective function. Extensive test have revealed that
some pivot column selection rules result in savings in terms of iterations; such
savings are, however, achieved at the cost of additional computations required to
apply the rule. Overall, it does not appear to be worthwhile to invest too much
time in different rules, especially as the information at any extreme point is only
local at the present extreme point, while the optimality of a solution depends on
local criteria at the optimal point, something now known during intermediate
calculations.

As an illustration of the primal simplex method, consider the following numerical

Example (Phase 2 of the Simplex Method): Consider the following linear
programming problem

 P: Max z = 40x1 + 50x2 +100
 s.t. 2x1 + x2 ≤ 12 (I)
 −4x1 + 5x2 ≤ 20 (II)
 x1 + 3x2 ≤ 15 (III)
 x1, x2 ≥ 0.

After the addition of slack variables S1, S2 and S3, the initial tableau can be written
as

T1: basis x1 x2 S1 S2 S3 1
 S1 2 1 1 0 0 12
 S2 −4 5 0 1 0 20
 S3 1 3 0 0 1 15

 −40 −50 0 0 0 100
 ↑

In tableau T1, the basis consists of variable S1 (the basic variable in the first row)
whose present value equals 12, S2 (in second row) with value 20, and S3 (in third
row) with value 15. Currently, x1 and x2 are nonbasic variables with values of
zero. For this feasible solution, the value of the objective function is z = 100.
Since both nonbasic variables have a negative entry in the objective function,
either one could be chosen for introduction into the basis; here, we follow the
“most negative” criterion and choose x2. The pivot row is found by determination
of min { } 4;; 5

20
3

15
5

20
1

12 == , hence the second row is the pivot row with the
pivot element a22 = 5, which is shown in the tableau. Thus the variable x2 will
enter the basis, while S2 will leave the basis. Now the tableau is transformed and
we obtain

 3 The Simplex Method 150

T2: basis x1 x2 S1 S2 S3 1
 S1 5

14 0 1 5
1− 0 8

 x2 − 5
4 1 0 5

1 0 4

 S3 5
17 0 0 − 5

3 1 3
 −80 0 0 10 0 300
 ↑

with basic variables S1 = 8, x2 = 4, S3 = 3 and nonbasic variables x1 = S2 = 0 and a
value of the objective function of z = 300.

In tableau T2, the only eligible pivot column is the x1 column. The third row is the

pivot row since
17
153;8min,min

5
17

5
14

31

3

11

1

31

3 =












=








=
a
b

a
b

a
b

(the second row is not

pivot eligible, as it has a negative entry in the pivot column), i.e. the pivot element
is a31, meaning that x1 enters and S3 leaves the basis. After one tableau
transformation we obtain the tableau T3 with basic variables S1 = 17

94 , x2 = 17
80 , x1

= 17
15 , nonbasic variables S2 = S3 = 0 and a value of the objective function z =

17
300,6 .

T3: basis x1 x2 S1 S2 S3 1

 S1 0 0 1 17
5 17

14− 17
94

 x2 0 1 0 17
1 17

4 17
80

 x1 1 0 0 17
3− 17

5 17
15

 0 0 0 17
70 17

400 17
300,6

Since S2 has a negative element in the objective function, the solution in T3 is still
not optimal. The S2 column is now chosen as pivot column; the first row is the

pivot row since
5

94,min
17
1

17
80

17
5

17
94

14

1 =












=
a
b

 and a14 is the pivot, indicating that S2

enters and S1 leaves the basis. After one tableau transformation we obtain

T4: basis x1 x2 S1 S2 S3 1
 S2 0 0 5

17 1 − 5
14 5

94

 x2 0 1 − 5
1 0 5

2 5
18

 x1 1 0 5
3 0 − 5

1 5
21

 0 0 14 0 12 448

3.2 Algebraic Concepts 151

Now all indicators in the objective function are nonnegative, thus the current basis
is xB = (S2, x2, x1) and the corresponding solution ,5

21
1 =x ,5

18
2 =x ,01 =S

,5
94

2 =S 03 =S is optimal with the associated value of the objective function
448=z .

From now on we will delete the “basis” column in tableaus to simplify matters.
This information can be recovered by identifying the basic columns in the tableau
(they are the columns that are unit vectors) and the variables they are associated
with. We should also point out that the basic matrix B consists of the original
coefficients in the S2, x2 and x1 columns, i.e.,
















−=
130
451

210
B

and its inverse is found under the variables that were in the basis in the initial
tableau, viz., (S1, S2, S3), so that

















−
−

−
=−

5
1

5
3

5
2

5
1

5
14

5
17

1

0
0
1

B ,

so that the optimal solution is TxxS],,[122=Bx

 = =B− b1

















−
−

−

5
1

5
3

5
2

5
1

5
14

5
17

0
0
1

















=
















5
21
5

18
5

94

15
20
12

as indicated in the optimal tableau T4. The graphical representation of the above
problem is shown in Figure 3.12:

In Figure 3.12, the simplex procedure starts at point O (tableau T1), moves to
point A (tableau T2), continues to point B (tableau T3), and finally reaches point C
(tableau T4). Had we selected x1 as entering variable in T1, the simplex path would
have been O, D, C instead.

At this point we would like to demonstrate how the changes of the basis can be
observed in a graph. Note that the problem under consideration has n = 2 decision
variables and m = 3 structural constraints, so that any basis will include exactly 3
variables. In order to identify them, it is useful to note that all variables that
assume a positive value at some point must be basic.

 3 The Simplex Method 152

x2

10

B
5 C

A
D

x1 15 5 10 0
III II

I

Figure 3.12

Start at the origin, at which the slack variables S1, S2, and S3 are in the basis. The
first move leads to point A. Here, x2 is positive, so that it must be in the basis.
(Observe that x1 assumes a value of zero at point A, so that we cannot decide upon
its status re: basic or nonbasic variable). Since the point A is located on
hyperplane II, the slack variable S2 will be zero, making it again impossible to
decide its status. However, point A is not located on either of the other two
hyperplanes, so that the slack variables S1 and S3 are positive, so that they must be
basic variables. As a result, at point A, the variables x2, S1, and S3 form the basis.
As a result, the move from 0 to A was made by having x2 enter the basis and
having S2 leave the basis.

Consider now the next move from point A to point B At point B, both decision
variables x1 and x2 are positive, so that they are in the basis. Point B is not located
on hyperplane I, so that the slack variable S1 must be positive, so that it is the third
basic variable. Thus the move from A to B constitutes a basis change in which S1
enters the basis, while S3 leaves the basis.

At the optimum point C, the basis consists of x1, x2, and S2 (as point C is not
located on hyperplane II, so that S2 must be positive), meaning that the move from
B to C was achieved by introducing S2 into the basis and have S1 leave the basis.

In the following we will drop the restriction bi > 0 and Ri = {≤} and allow all
relations of the type ≤, = and ≥. The first preparatory step is to multiply all
relations ai•x Ri bi with bi < 0 by some negative number, leading to constraints that
all have nonnegative right-hand side values. At this point we will add slack

3.2 Algebraic Concepts 153

variables, subtract excess variables, and add artificial variables wherever needed,
as shown in Chapter 1.

As a result, the initial basis includes all slack and artificial variables but none of
the decision and excess variables. Suppose now that at some stage during the
calculations there is at least one artificial variable Ai > 0. If Ai were added to an
original equality, then the assumption that Ai > 0 and the fact that ai•x + Ai = bi is
always satisfied implies ai•x ≤ bi which violates the original constraint ai•x = bi.

Consider now an inequality ai•x ≥ bi which is transformed to ai•x − Ei + Ai = bi.
The columns under Ei and Ai are −ei and ei, respectively, and thus linearly
dependent which implies that they cannot both be in the basis at the same time. If,
by assumption, Ai > 0, then it must be a basic variable and Ei must be nonbasic
with a value of zero which implies that ai•x < bi, again a violation of the original
constraint.

Summarizing we can state that the solution is not feasible, as long as there exists
at least one Ai > 0. The purpose of the first phase of the simplex method is to
reduce the values of all artificial variables to zero by driving them out of the basis.
Since the nonnegativity constraints apply to all variables including artificial
variables, we have Ai ≥ 0 ∀ i, so that ∑

i
iA achieves a value of zero only if all

artificial variables assume a value of zero (which is the desired situation), whereas
> 0 implies that at least A∑

i
iA i > 0 is left and the current solution is not yet

feasible. In order to drive all artificial variables out of the basis, we will use the
artificial objective function (aof) Min w = ∑

i
iA throughout the first phase. Since

all artificial variables are in the initial basis, they have to be expressed in terms of
nonbasic variables. Suppose that the constraints have been reordered, such that the
first k rows belong to former ≤ relations and the remaining (m − k) rows belong to
original equations and ≥ relations, in which artificial variables are needed.

Furthermore, assume that the vector of variables x includes all variables except for
the artificial variables. Then ai•x + Ai = bi ∀ i = k + 1,…, m, or, equivalently, Ai =
bi − ai•x ∀ i = k + 1,…, m, so that the artificial objective function can now be

written as Min Let now the parameters w∑∑∑
+=

•
+=+=

−=
m

ki
i

m

ki
i

m

ki
i xabA

111
.Min

∑
+=

−
m

ki
ija

1
w0

j be

defined as , j = 1,…, n and ; then the initial tableau

can be written as shown in Table 3.2.

=jw ∑
+=

−=
m

ki
ib

1

 3 The Simplex Method 154

Table 3.2

original ≤ constraints

original ≥ constraints

original equalities

gof: given objective function

aof: artificial objective function

We can now formally state the

The Primal Simplex Algorithm: Phase 1

Step 1: Is wj ≥ 0 ∀ j?
 If yes: Go to Step 3.
 If no: Go to Step 2.

Step 2: Select some ws < 0; the s-th column is then the pivot column.

 Select the pivot row r, so that








>
=

= 0:
min

,...,1 isis

i
mirs

r

aa
b

a
b . The element

 ars > 0 is the pivot. Perform a tableau transformation, using the
 Gauss-Jordan pivoting method described as Procedure A.19 Go to Step 1.

Step 3: Are all artificial variables nonbasic?
 If yes: Drop the artificial objective function as well as all artificial
 variables and their columns from the tableau and go to Phase 2
 of the primal simplex algorithm.
 If no: Go to Step 4.

Step 4: Is w0 = 0?
 If yes: The current solution is feasible. Select any pivot ars ≠ 0, so that br

 = 0 and some artificial variable Ai is basic in row r. Perform a
tableau transformation with the Gauss-Jordan pivoting
technique. Repeat this procedure until all artificial variables are

3.2 Algebraic Concepts 155

nonbasic. (If at some point br = 0, As is basic in row r, and all
elements in row r except ars = 1 are zero, drop row r and column
s from the tableau.) Delete all artificial variables and their
columns and the artificial objective function from the tableau
and go to Phase 2 of the primal simplex algorithm.

 If no: Stop, the problem has no feasible solution.

In the above algorithm it is possible to drop an artificial variable and its column
from a tableau as soon as it becomes nonbasic. This column drop rule should not
be used for artificial variables associated with equation constraints, if
postoptimality analyses (see Chapter 6 in this volume) are to be performed. Phases
1 and 2 are usually bundled and referred to collectively as the Two Phase Method.

We will now illustrate the two-phase method by means of the following

Example (The Two-Phase Simplex Method): Consider the following linear
programming problem

 P: Max z = 3x1 + x2
 s.t. 3x1 +2x2 ≤ 24 (I)
 4x1 − x2 ≥ 8 (II)
 x1 −2x2 = 0 (III)
 x1 , x2 ≥ 0.

Adding a slack S1 to the first constraint, subtracting an excess variable E2 and
adding an artificial variable A2 to the second constraint, and adding an artificial
variable A3 to the third constraint, we obtain the initial tableau T1.

Again, the artificial objective function coefficients are obtained by adding the
coefficients in the columns in all rows, in which artificial variables are in the
basis. In this example, these are the second and third rows. The meaning of this
procedure becomes apparent when we rewrite the artificial variables in terms of
nonbasic variables as A2 = 8 − 4x1 + x2 + E2 and A3 = − x1 + 2x2, so that the
artificial objective function Min w = A2 + A3 or Min w − 8 = − 5x1 + 3x2 + E2
which is exactly the artificial objective function in the above tableau.

T1: x1 x2 S1 E2 A2 A3 1
 3 2 1 0 0 0 24
 4 −1 0 −1 1 0 8
 1 −2 0 0 0 1 0

gof −3 −1 0 0 0 0 0
aof −5 3 0 1 0 0 −8

 ↑

 3 The Simplex Method 156

Since w1 is the only negative entry in the artificial objective function, the x1
column must be selected as pivot column and is thus the entering variable (the fact
that c1 and c2 < 0 does not matter at this stage). The minimum ratio rule then
determines a31 as the pivot. Since x1 enters the basis in the third row, A3 leaves the
basis and is immediately deleted. After one iteration, the new tableau is

T2: x1 x2 S1 E2 A2 1
 0 8 1 0 0 24
 0 7 0 −1 1 8
 1 −2 0 0 0 0
gof 0 −7 0 0 0 0
aof 0 −7 0 1 0 −8
 ↑

Now w2 is the only negative entry in the artificial objective function, and thus x2 is
introduced into the basis with a22 as pivot. This means that A2 leaves the basis and
at this point, no more artificial variables are in the basis; Phase 1 has now been
terminated successfully (i.e., with a feasible solution), and the artificial objective
function can be dropped form the tableau. (If we had kept the A2 and A3 columns
as well as the artificial objective function, all coefficients in the artificial objective
function would be zero except those under A2 and A3 which would be one.)

T3: x1 x2 S1 E2 1
 0 0 1 7

8 7
104

 0 1 0 − 7
1 7

8

 1 0 0 7
2− 7

16
gof 0 0 0 −1 8
 ↑

T3 is also the first tableau in Phase 2 and the optimization proceeds with the usual
optimality test that investigates the signs of the indicators in the given objective
function row. Since c4 = −1 < 0, the solution in T3 is not yet optimal and the
variable E2 has to enter the basis. The variable enters the basis in the first row, so
that the slack variable S1 will leave the basis. After one more iteration we obtain
tableau T4 which is optimal with ,)3,6(=x ,01 =S 132 =E , and 21=z .

T4: x1 x2 S1 E2 1
 0 0 7

8 1 13

 0 1 8
1 0 3

 1 0 4
1 0 6

gof 0 0 8
7 0 21

3.2 Algebraic Concepts 157

Notice that in the solution process in Phase 1 it is not necessarily the case that an
artificial variable leaves the basis in each iteration. It is also worth mentioning that
an artificial variable that is a nonbasic variable but has been kept in the tableau for
some reason, should never be introduced into the basis, even if it has a negative
indicator. Furthermore, a tableau can be optimal even if it has negative indicators
under artificial variables. Steps 1 and 2 of the primal simplex algorithm have to be
amended accordingly.

Figure 3.13 is a graphical representation of the above numerical example and it
allows us to follow the simplex procedure. All feasible points are located on the
line segment between points A and B. The procedure commences at point O
(tableau T1) with an infeasible solution, changes the basis but stays at point O
(tableau T2). This phenomenon is called primal degeneracy and is discussed in
more detail below. The method then moves on to point A (tableau T3) which
terminates Phase 1, as point A is the first feasible solution encountered along the
path. From there the method moves to the optimal solution at point B (tableau T4).

In the literature and particularly in textbooks we frequently find the so-called Big
M Method instead of the Two Phase Method. While their appearance is different,
these two approaches are identical in principle. Rather than having a given
objective function cx and an artificial objective function wx + eE, the Big M
Method combines these two into one cx + MA = cx + Mwx + MeE with M >> 0
some unspecified, but sufficiently large, number. As an example, in tableau T1
above, we have the two objective rows

 , 







−−

−−
8;0,0,1,0,3,5

0;0,0,0,0,1,3

whereas the Big M Method combines them into the objective row [−3 − 5M, −1 +
3M, 0, M, 0, 0; −8M]. Since M is assumed to be sufficiently large, it dominates all
other numbers and hence the pivot selection is identical to the one in the two
phase method. We mention the Big M method here not because of its theoretical
or computational merit. Instead, we believe that its philosophical background is
rather interesting. While the two-phase method prohibits violations of feasibility,
the Big M method allows them, but penalizes them by assigning a very high
penalty to them. In particular, the Big M method as applied to a maximization
problem will assign large negative objective function coefficients to all those
variables which are to be driven out of the basis. In other words, every feasible
solution that includes some Ai > 0 will have an unacceptably small value of the
objective function. Penalty methods are quite applied to many different
mathematical programming techniques, most frequently in the context of
nonlinear programming.

 3 The Simplex Method 158

x2

II

A

B

III

10

x1
10 5

0

5

I

Figure 3.13

3.2.2 Four Special Cases Revisited

The remainder of this Chapter is dedicated to the discussion of the four special
cases in linear programming, how they are recognized in the simplex tableau, and
how to deal with them. In order to make transparent the relations between the
graphical and algebraic representations of the problems, we use the same
numerical examples here that we have used in the previous section when
discussing the four special cases in the graphical context.

3.2 Algebraic Concepts 159

Case 1: No feasible solutions exist, if w0 < 0 but wj ≥ 0 ∀ j, i.e., at least one
artificial variable Ai > 0 but no pivot column in the artificial objective function can
be found.

Example: Consider the following linear programming problem example

 P: Max z = x1 + x2
 s.t. x1 ≤ 2
 x2 ≤ 1
 2x1 +5x2 ≥ 10
 x1 , x2 ≥ 0.

The simplex tableaus for this problem are:

T1: x1 x2 S1 S2 E3 A3 1
 1 0 1 0 0 0 2
 0 1 0 1 0 0 1
 2 5 0 0 −1 1 10

gof −1 −1 0 0 0 0 0
aof −2 −5 0 0 1 0 −10

 ↑

T2: x1 x2 S1 S2 E3 A3 1
 1 0 1 0 0 0 2
 0 1 0 1 0 0 1
 2 0 0 −5 −1 1 5

gof −1 0 0 1 0 0 1
aof −2 0 0 5 1 0 −5

 ↑

T3: x1 x2 S1 S2 E3 A3 1
 1 0 1 0 0 0 2
 0 1 0 1 0 0 1
 0 0 −2 −5 −1 1 1

gof 0 0 1 1 0 0 3
aof 0 0 2 5 1 0 −1

In tableau T3, no pivot column can be found with respect to the artificial objective
function, but A3 = 1 > 0, hence no feasible solutions exist.

Case 2: Unbounded optimal solutions are encountered if there exists at least one j,
such that cj < 0 (i.e., a pivot-eligible column), and aij ≤ 0, i = 1,…, m.

Example: Consider the linear programming problem

 3 The Simplex Method 160

 P: Max z = x1 − 2x2
 s.t. −2x1 + x2 ≤ 2
 x1 −3x2 ≤ 3
 x1 , x2 ≥ 0

The tableaus, generated during the simplex procedure, are:

T1: x1 x2 S1 S2 1 T2: x1 x2 S1 S2 1
 −2 1 1 0 2 0 −5 1 2 8
 1 −3 0 1 3 1 −3 0 1 3
 −1 2 0 0 0 0 −1 0 1 3
 ↑ ↑

In tableau T2, the x2 column is pivot eligible due to c2 < 0 but no positive pivot can
be found, hence unbounded optimal solutions exist. Even if many columns can be
selected as pivot columns (all with cj < 0), if only one among those does not
include a possible pivot, i.e., a positive component, one can immediately abort the
procedure with the conclusion that unbounded optimal solutions exist.

Case 3: Dual degeneracy occurs if a nonbasic variable has a zero coefficient in
the objective function row. It indicates that the present solution has a neighboring
extreme point that has the same value of the objective function as the current
solution. If the current solution is optimal, then dual degeneracy indicates the
existence of alternative optimal solutions. These adjacent solutions with identical
values of the objective function are generated by selecting the nonbasic variable xs
for which cs = 0 as entering variable and performing a regular tableau
transformation.

Example 1: Consider the linear programming problem

 P: Max z = x1 + x2
 s.t. x1 + x2 ≥ 1
 x1 + x2 ≤ 2
 x1 , x2 ≥ 0.

The sequence of tableaus, leading to the solution, is:

T1: x1 x2 E1 A1 S2 1 T2: x1 x2 E1 S2 1
 1 1 −1 1 0 1 1 1 −1 0 1
 1 1 0 0 1 2 0 0 1 1 1

gof −1 −1 0 0 0 0 gof 0 0 −1 0 1
aof −1 −1 1 0 0 −1 ↑

 ↑

3.2 Algebraic Concepts 161

T3: x1 x2 E1 S2 1
 1 1 0 1 2
 0 0 1 1 1

gof 0 0 0 1 2

Note that T2 marks the end of Phase 1; in T2 the variables x1 and S2 are basic and
x2 is nonbasic although its column is identical to the one of x1, but x1 was
introduced into the basis in the previous step. Since x2 is nonbasic and c2 = 0, an
alternative solution to the one in T2, where x= [1, 0]T and z= 1, is generated by
introducing x2 into the basis; a12 is the only eligible pivot and the next tableau is
identical to T2 except the fact that the basis now includes x2 and S2, so that x = [0,
1]T and z = 1. The same operation is possible in the optimal tableau T3 where the
basis includes x1 and E1 and T]0,2[=x with 2=z ; again c2 = 0 and x2 could be

introduced into the basis leading to the alternative optimal solution T]2,0[=x
with 2=z .

Example 2: Consider the linear programming problem

 P: Max z = x1 + x2 + 2x3
 s.t. x1 ≤ 3
 x2 ≤ 5
 x3 ≤ 2
 x1 + x2 + 2x3 ≤ 10
 x1 , x2 , x3 ≥ 0.

This formulation has the same constraints as the example of Figure 3.5, but has a
different objective function. One of the optimal bases of the problem is:

T1: x1 x2 x3 S1 S2 S3 S4 1
 1 0 0 1 0 0 0 3
 0 0 0 1 1 2 −1 2
 0 0 1 0 0 1 0 2
 0 1 0 −1 0 −2 1 3
 0 0 0 0 0 0 1 10

The above tableau is clearly optimal with 1x = [3, 3, 2]T and 10=z , but the zero
elements in the objective function under the nonbasic variables S1 and S3 indicate
the existence of at least two other optimal solutions. In particular, the introduction
of S1 into the basis leads to T2:

 3 The Simplex Method 162

T2: x1 x2 x3 S1 S2 S3 S4 1

 1 0 0 0 −1 −2 1 1
 0 0 0 1 1 2 −1 2
 0 0 1 0 0 1 0 2
 0 1 0 0 1 0 0 5
 0 0 0 0 0 0 1 10

with the optimal solution 2x =[1, 5, 2]T and 10=z . Introducing the slack variable
S3 into the basis then leads to T3:

T3: x1 x2 x3 S1 S2 S3 S4 1

 1 0 0 1 0 0 0 3
 0 0 0 2

1 2
1 1 − 2

1 1

 0 0 1 − 2
1 − 2

1 0 2
1 1

 0 1 0 0 1 0 0 5
 0 0 0 0 0 0 1 10

with 3x =[3, 5, 1]T and 10=z . Note that c5 = 0 and c6 = 0 in T2 again indicate
alternative optimal solutions (introduction of S2 into the basis leads back to T1
whereas introduction of S3 into the basis leads to T3), and c4 = c5 = 0 in T3 also
indicate the existence of alternative optimal solutions (found in T2 and T1,
respectively). Hence 2 andx, xx are all optimal basic solutions. Now every linear

convex combination of 321 and, xx x is also optimal (but not a basic solution), i.e.,
3

3x21 λ+λ+λ= 21 xxx is optimal for every λ1 + λ2 + λ3 = 1 and λ1, λ2, λ3 ≥ 0. For

instance, λ =],, 3
1

3
1

3
1[generates the solution 343 1,4,2=x , while λ = [2

1 ,

2
1 , 0] generates the solution []T2,4,2=x and so forth, which are all optimal with

.

31

[]T211

10=z

Example 3: An interesting situation is given if a tableau indicates unboundedness
of optimal solutions and dual degeneracy simultaneously. Consider the linear
programming problem

 P: Max z = −2x1 + x2
 s.t. −2x1 + x2 ≤ 2
 x1 −3x2 ≤ 3
 x1 , x2 ≥ 0.

3.2 Algebraic Concepts 163

The simplex tableaus are then

T1: x1 x2 S1 S2 1 T2: x1 x2 S1 S2 1
 −2 1 1 0 2 −2 1 1 0 2
 1 −3 0 1 3 −5 0 3 1 9
 2 −1 0 0 0 0 0 1 0 2
 ↑ ↑

indicating that the solution in T2 is optimal but alternative optimal solutions exist
due to c1 = 0. If x1 were to be increased by some ε >0, the right-hand side would

change to 







ε
ε

=







ε+
ε+

)(
)(

59
22

2

1

S
x

 . For instance, if ε = 10, we obtain x = [10, 22]T

which is optimal with 2=z but not an extreme point. Dual degeneracy turns out
to be a necessary, but not sufficient, condition for problems with unbounded
optimal solutions that have a finite value of the objective function at optimum.

Case 4: Primal Degeneracy occurs, if one or more right-hand side values equal
zero. If primal degeneracy is not built into the model right from the start (as in the
example for the two-phase method in which primal degeneracy occurs at the
origin) it is possible to anticipate its occurrence in the tableau that precedes primal
degeneracy. In particular, if for any given pivot column, there are two or more
rows that can alternatively be selected as pivot rows. Suppose that the s-th column
has been selected as pivot column and the r-th and the t-th rows are tied for pivot
row, i.e.,









>
==

= 0:
min

,...,1 isis

i
mits

t

rs

r

aa
b

a
b

a
b

.

Choosing ars as the pivot element, the t-th right-hand side in the next tableau will

be
rs

tsr
tt a

ab
bb −=: ts

rs

r
t a

a
bb −= 0=−= ts

ts

t
t a

a
b

b . A similar argument can be

made if ats is chosen as the pivot. Primal degeneracy can occur at any basis, be it
optimal, feasible, or infeasible. If primal degeneracy occurs at some stage during
the iterations, it may remain in the tableau or it may vanish during the iterations
that follow.

Example: Consider the linear programming problem

 P: Max z = x1 + x2
 s.t. 4x1 +2x2 ≤ 9
 2x1 +3x2 ≤ 6
 6x1 +5x2 ≤ 15
 x1 , x2 ≥ 0.

 3 The Simplex Method 164

The three tableaus, leading to the optimal solution of the problem, are shown
below.

T1: x1 x2 S1 S2 S3 1 T2: x1 x2 S1 S2 S3 1
 4 2 1 0 0 9 1 2

1 4
1 0 0 4

9

 2 3 0 1 0 6 0 2 − 2
1 1 0 2

3

 6 5 0 0 1 15 0 2 − 2
3 0 1 2

3

 −1 −1 0 0 0 0 0 − 2
1 4

1 0 0 4
9

 ↑ ↑

T3: x1 x2 S1 S2 S3 1
 1 0 8

3 − 4
1 0 8

15

 0 1 − 4
1 2

1 0 4
3

 0 0 −1 −1 1 0
 0 0 8

1 4
1 0 8

21

It is apparent that in tableau T2, the elements a22 and a32 are tied for pivot

since 4
3

32

3

22

2 ==
a
b

a
b

, resulting in the optimal tableau T3 that is primal degenerate.

The presence of primal degeneracy at any point of the computations may have
serious computational consequences. As long as primal degeneracy is absent, bi >

0 ∀ i. With some pivot ars > 0, the new objective function value is z: = z −
rs

sr

a
cb ,

so that, given br > 0 and cs < 0, the objective function values are strictly increasing
during the procedure. Since every basis is associated with exactly one z-value, it is
not possible that a basis and/or a solution is repeated during the calculations. The
fact that there is only a finite—albeit usually astronomically finite—number of
bases proves the finiteness of the simplex procedure. This proof does, however,
depend on the nonexistence of primal degeneracy.

Suppose now that primal degeneracy occurs at some stage during the iterations.
Given that a row with a zero right-hand side value is chosen as a pivot row, we
may generate a sequence of tableaus Tv, Tv+1,…, Tµ with bases with
values of the objective function of z

µ+
B

v
B

v
B xxx ,...,, 1

v= zv+1=…= zµ. In other words, for a number of
iterations the value of the objective function does not change. This is called
stalling. Stalling may resolve itself if eventually a pivot in a nondegenerate row is
chosen. However, it may happen that , i.e., a basis, obtained somewhere in
the process is again generated at a later stage, after which the procedure keeps
repeating itself. Dantzig (1963) referred to this phenomenon as circling, but most

µ= B
v
B xx

3.2 Algebraic Concepts 165

authors nowadays call it cycling. Cycling, if not avoided or properly dealt with,
will prevent the simplex algorithm from being finite. The above discussion
immediate leads to the following

Rule: Cycling can only occur in the presence of primal degeneracy; the presence
of primal degeneracy, however, does not necessarily imply cycling.

The first occurrence of cycling was reported by Hoffman (1953). The smallest
linear programming problem known to us in which cycling occurs was described
by Beale (1955) and restated by Dantzig (1963). Its formulation is as follows:

 P: Max z = 4350

1
21 6150 xxx −+4

3 x −

 s.t. 0960 4325
1

214
1 ≤+−− xxxx

 0390 4350
1

212
1 ≤+−− xxxx

 x3 ≤ 1
 x1, x2, x3, x4 ≥ 0.

Given that the method always chooses the column with the most negative
objective function coefficient as pivot column and the pivot row (if there are ties)
as the highest row in the tableau, then tableau T7 will include the same basis as T1.
For different pivot selection rules, primal degeneracy will still occur, but this will
not necessarily result in cycling. One of the first techniques devised to prevent
cycling was the lexicographic selection rule or perturbation technique. However,
nowadays most authors suggest the use of Bland’s (1977) rule, which is simple
and straightforward to implement. Simply speaking, the rule chooses the entering
variable as the pivot-eligible variable with the smallest subscript, and in case of a
tie for the variable that leaves the basis, it selects the one with the smallest
subscript as well. Another well-known simple rule is the LIFO (Last In, First Out)
rule due to Zhang (1991). This rule selects as entering variable the pivot-eligible
variable that most recently left the basis. A tie for the leaving variable is broken
by choosing the variable that entered the basis most recently. For some further
details on the subject, readers are referred to Dantzig and Thapa (1997).

Primal degeneracy occurs frequently in practice, e.g., in network flow problems,
transportation problems, etc. It is of the utmost importance that commercial
software codes for linear programming that are based on the simplex method
properly treat degeneracy.

Chapter 4 DUALITY

Linear programming is based on the theory of duality. In essence, to each primal
linear programming problem P, we can assign a dual linear programming problem
PD. This chapter formulates and discusses number of relations between the primal
and dual problems that are not only essential to establish optimality conditions,
but also provide insight into the problems and a meaningful economic
interpretation of the optimization model. In particular, post optimality analyses
depend almost entirely on the understanding of duality.

Far from being confined only to linear programming, duality theory has
contributed considerably to the development of other mathematical optimization
techniques. Intimately associated with Lagrangean functions and Lagrange
multipliers, it has important applications in integer and nonlinear programming.

The origins of duality date back to John von Neumann (1947) and, independently,
by Gale et al. (1951), followed by the contribution due to Dantzig and Orden
(1953). The “optimale Geltungszahl” of Schmalenbach (1948) represents yet
another independent development of the theory of duality in a managerial context.
For a historical perspective, see Dantzig (1982).

This chapter is organized as follows. The first section presents all the necessary
and preliminary results that lead to the statements and proofs of the weak and
strong duality theorems as well as those of weak and strong complementary
slackness. The next section considers primal-dual relations from a computational
point of view in the context of the simplex method. The last section is devoted to
economic interpretations of duality.

4.1 The Fundamental Theory of Duality
This section derives the fundamental theory of duality. We have attempted to rely
as little as possible on references outside the domain of this book. The following
exposition is a sequence of theorems and proofs, the first three of which belong to

 4 Duality 168

a class called “Theorems of the Alternative.” All these theorems include two
related systems I and II of simultaneous linear equalities and/or inequalities, and
the theorems state that either system I or system II has a solution, but never both.
The proof is typically performed in two steps: first, we assume that system I has a
solution and then show that system II cannot have a solution (in symbols: III →
or “I implies not II”), and the second part assumes that system I has no solution
and proves that system II must have a solution (→I II). Usually the first part is
fairly simple whereas the second part may be rather lengthy. Mangasarian (1969)
includes an extensive treatment of theorems of the alternative.

In the following we will assume that A is an [m× n]-dimensional matrix with rank
rk A = r, x is an [n × 1]-vector of variables, b is an [m × 1]-vector of parameters, u
is a [1 × m] vector of variables and ε is a scalar. Then we can state

Lemma 4.1 (Gale, 1960): Either the system I: Ax= b has a solution x∈ún, or the
system II: uA = 0, ub = ε ≠ 0 has a solution u ∈ úm, but never both.

Proof: (I II→). Multiplication of Ax = b by u from the left and multiplication of
uA = 0 by x from the right results in uAx = ub and uAx = 0, respectively, hence
ub = 0 which contradicts that u solves system II.

(III →





ε0
bA

). System II can be written as [A, b]T uT = 


, u ∈ú




ε
0





0
A

m. Since, by

assumption, system I has no solution, Theorem A.16 implies that rk [A, b] > rk
[A] and since only column b is added to matrix A to form [A, b], rk [A, b] = rk

[A, b]T = r+1. Hence rk ≥ r+1. Since adding a zero vector to a matrix

does not change its rank, rk = r whereas the addition of any vector to a

matrix can increase its rank by at most one, i.e., rk ≤ r+1, so that

rk = r+1 = rk [A, b]

T









ε0
bA

T









0
A

T





ε
b

T




 T and, according to Theorem A.16, system II must

have at least one solution. �

Lemma 4.2 (Farkas’ Lemma): Either the system I: Ax = b, b ≠ 0 has a solution x
≥ 0, or the system II: uA ≥ 0, ub < 0 has a solution u ∈úm, but never both.

Proof: (I II→): Multiplication of Ax= b by u from the left and multiplication of
uA ≥ 0 by x ≥ 0 from the right results in uAx = ub and uAx ≥ 0, respectively, so
that ub ≥ 0 which contradicts the second part of system II.

4.1 The Fundamental Theory of Duality 169

)(III → . Case 1: System I has no solution at all. Then Lemma 4.1 implies that
uA = 0, ub = ε ≠ 0 has a solution u ∈ úm and the selection of any ε < 0 results in
a feasible solution for system II.

Case 2: System I has a solution x ∈ ún but not x ≥ 0. This portion of the proof will
be carried out by induction on the columns of A. Consider a•j, the j-th column of
A, the variable xj, and the right-hand side b. The fact that a•jxj = b has no solution

xj ≥ 0 but a solution xj ∈ ú implies that xj < 0. Division by xj yields a•j =
jx

b and

in this case u = −bT is a solution to system II since ua•j =
j

T

x
bb− > 0 (because

b 0 and x≠ j < 0) as well as ub = −bTb < 0.

Suppose now that the above result is true for n − 1 columns of A. By assumption,

= b has no solution x∑
=

•

n

j
jj x

1
a j ≥ 0, j = 1,…, n, which implies that ∑ = b

has no solution x

−

=
•

1

1

n

j
jj xa

j ≥ 0, j = 1,…, n−1, otherwise one could simply set xn = 0. Also
by assumption, there exists a vector u , such that j•au ≥ 0 for j = 1, …, n−1 and

bu < 0. Then either n•au ≥ 0 in which case u solves the system and the lemma
is proved, or 0<•nau . In this case, define

 :~
j•a = a•j + λja•n, with λj := − nj

n

j ...,,1,0 =≥
•

•

au
au

 and

 ,:~
0 n•λ+= abb with λ0: = − .0<

•nau
bu

Then the system can be rewritten as ∑
−

=
• =

1

1

~~~
n

j
jj xa b

    (1) baa =











λ−λ+ ∑∑

−

=
•

−

=
•

1

1
0

1

1

~~
n

j
jjnj

n

j
j xx

 
This system has no solution jx~  ≥ 0, j=1,…, n − 1, because otherwise one could 

set xj:= jx~  ≥ 0, j=1,…, n−1, and xn:= − λ∑
−

=

λ
1

1

~
n

j
jj x 0 > 0 which contradicts the 

assumption that Ax  has no nonnegative solution x. If relation (1) has no 
solution 

b=
,...,1 1,0~ −≥ = njx j , then—by assumption—there exists a vector u~ , 



                                                                                                                          4   Duality 170

such that 1,...,1,0~~ −=≥• njjau  and u 0b <
~~ . Defining 

u
au
auuu

n

n

•

•−=
~~:*

~~~* −=
•

•
••

n

n
jj au

au
auauau λ+• jau

0
~~* −=

•

•
••

n

n
nn au

au
auauau

auλ •
~bu

au
au

bubu =−=
•

•
~

~*

n

n

0b <

0 n

*

uA ≥

[A=
0bBz = ,

0x ≥ 0xxD <−

≤− k
k

k x

− kk

 , we obtain

 0~~)(~~ ≥=λ+== ••••• jnjjnjj auaauau

and

 =•n , which imply that . Moreover 0Au ≥*

 0buabubu <=λ+=+ •
~~)(~~

0 n ,

hence u which implies that u is a solution to system II. This proves the
lemma. �

*

Corollary 4.3 (Minkowski-Farkas lemma): Either the system I:
has a solution x ≥ 0, or the system II:

0bbAx ≠≤ ,
0ub0 <, has a solution u ≥ 0, but

never both.

Proof: Defining a matrix]B I, and a vector of variables z],[yx= , Lemma
4.2 states that either I: b ≠ has a solution or II:
has a solution u 0 ú

0z ≥ 0, <ub≥ 0uB
m. This can be rewritten as I: Ax + Iy = b, b ≠ 0 and x, y ≥ 0

or, since y ≥ 0, as Ax # b, b ≠ 0, x ≥ 0 and II: uA ≥ 0, uI ≥ 0, ub < 0, u 0 úm or
simply uA ≥ 0, ub < 0, u ≥ 0. �

Definition 4.4: A square matrix D = (dij) is said to be antisymmetric (or skew
symmetric), if dij = −dji ∀ i, j, i.e., D = −DT.

Then we can prove the following

Lemma 4.5: If D is an antisymmetric matrix, then the system Dx ≤ 0, x ≥ 0 has at
least one solution , such that .

Proof: The proof is based on Corollary 4.3. Setting A:= D and b:= ek, Corollary
4.3 states that either system I: Dx ≤ −ek has a solution x ≥ 0, or system II: uD ≥ 0,
−uek = −uk < 0 (or uk > 0) has a solution u ≥ 0 but never both.

Case 1: Suppose that system I has a solution xk and let be the j-th component
of that solution. Hence Dx

k
jx

k ≤ −ek and xk ≥ 0 and, in particular, the k-th row is
; since x follows. For any other row

, d ; since follows.

1−≤•
k

k xd

ki ≠ •
k

i x

01,0 <−∀≥ •k
k
j j xd

0,0 ≤∀≥ • ii
k
j jx xxd0≤

4.1 The Fundamental Theory of Duality 171

Case 2: Suppose that system II has a solution uk, then ukD ≥ 0, and

. Note that d , and set . Since u is satisfied，

， or follows. By definition x , and hence

 . Repeated application of the above
procedure, i.e., b = −e

0>k
ku

0u ≥k

− •
k

i xd

−•
k

k xd

T
ii •• −= d

0≤•
k

i xd
k

i −•and xxd

Tkk][: ux =

ki ≠

0≥•i
k d

0: >= k
ku0≥

<k
kx

k
k

0 k
i ∀≤ 0

k, k = 1,…, n results in n solutions xk. Define

 ∑∑∑
==

••
=

−=−=
n

k

k
i

n

k

k
iii

n

k

k xx
111

then,: xdxdxx =

 [] nix
ik ik

k
i

k
i

i
i

i
i ,...,1,0

0
0

=<











−+−=

≤

≠ ≠
•

<

• ∑ ∑
444 3444 21

43421
xxdxd

which proves the lemma. �

Corollary 4.6: The system of simultaneous linear inequalities Ax − λb ≤ 0, −uA
+ λc ≤ 0, ub – cx ≤ 0 with x ≥ 0, u ≥ 0, λ ≥ 0 has at least one solution ,

such that ,

λ̂,ˆ,ˆ ux

0ubxA T <−λ− ˆˆˆ .0ˆˆˆ,ˆˆˆ <λ−−<−λ+− xcbu0xcAu T

Proof: In matrix notation, the above system can be written as Dx ≤ 0, x ≥ 0, where

















λ
=

















−
−

−
= x

u
x

cb
c0A

bA0
:D

T

T

TT :and
0

The application of Lemma 4.5 yields the desired result.�

In the following we will refer to the primal linear programming problem P and its
associated dual PD, defined as:

 P: Max z = cx PD: Min zD = ub
 s.t. Ax ≤ b and s.t. uA ≥ c
 x ≥ 0 u ≥ 0

The we can prove the following

Theorem 4.7 (The Weak Duality Theorem): If x~ and u~ are feasible solutions
for P and PD, respectively, then .~~ buxc ≤

 4 Duality 172

Proof: Since x~ is assumed to be feasible for P, A bx ≤~ and multiplication by
0u ≥~ from the left results in u buxA ~~~ ≤ , and since u~ is assumed to be feasible

for PD, cAu ≥~ and multiplication by x~ from the right results in u xcxA ~~~ ≥ ; hence
buxc ~~ ≤ . �

Now we are able to state the fundamental

Theorem 4.8 (The Strong Duality Theorem): Let a pair of primal and dual
problems (P, PD) be given. Then exactly one of the following three cases holds
true:

 (1) P and PD have finite optimal solutions x and u , respectively, such
 that bx uc = .
 (2) Neither P nor PD has a feasible solution.
 (3) One of the problems has no feasible solution and the other has
 feasible, but no finite optimal solutions.

Proof: From Corollary 4.6, two distinct cases have to be considered, viz.,

 .0ˆand0ˆ =λ>λ

Case 1: Suppose that λ . Define 0ˆ > 1ˆ
ˆ

:~andˆ
ˆ

:~,ˆ
ˆ

: =
λ

λ
=λ

λ
=

λ
=

uuxx~ . According to

Corollary 4.6, x~ , u~ is a feasible solution to ,~ bxA ≤ cAu ≥~ , and u xcb ~~ ≤ with
.~,~ 0ux ≥ Then 0xb, ≥xA ≤ ~~ implies that x~ is also a feasible solution for the

primal problem P, whereas u 0u ≥cA ≥ ~and~ imply that u~ is a feasible solution
for the dual problem PD, so that Theorem 4.7 applies and c bux ~~ ≤ ; hence

.~~ buxc = Since cx is to be maximized but bounded by bu~ from above and ub is to
be minimized but bounded by cx~ from below and case (1) in the theorem holds
true, so that x~ and u~ must be optimal solutions for the respective problems.

Case 2: λ . According to Corollary 4.6, the system Ax0ˆ = 0≤ ， uA ，and

 with has at least one solution x that satisfies c . Let
0≥

bux ˆˆ >cxub ≤
x

0u ≥,x 0ˆ,ˆ ≥u
~ and be feasible solution for P and Pu~ D respectively, i.e., A 0x xb ≥≤ ~,~ as
well as u 0u ≥cA ≥ ~,~ . Multiplication of A 0ub ≥x ≤ ˆby~ from the left results in

bûxAu ~ˆ0 ≤ ≤ , multiplication of u 0x ≥ˆc≥ byA~ from the right results in
bûxcˆhencexc ,ˆxAu ˆ~0 ≥

0ˆ =λ

≤≥ which contradicts . Thus, in the case of

, it is not possible for both problems P and P

buxc ˆˆ >

D to have at least one feasible
solution each and case (2) or (3) in the theorem holds true.

4.1 The Fundamental Theory of Duality 173

Suppose now that P has a feasible solution x~ , i.e., A 0xbx ≥≤ ~and~ . Let x be
again one of the solutions of Corollary 4.6, then x

ˆ
0x >εε+ ,ˆ~ is also a feasible

solution for P, since 0xx ≥ˆ,~ , the parameter 0>ε implies that ,ˆ~ 0ε+ x ≥x
and () xAxxA bxA ≤ε ˆ+=ε+ ~ˆ~ as bxA ≤~ and .ε,ˆ 00xA >≤ According to
Corollary 4.6, u 0≥xAu0Au ≥0≥ ~ˆthatso,ˆandˆ . On the other hand, feasibility of
x~ for P implies bxA ≤~ and thus u buxA ˆ~ˆ ≤ . A combination of the results then
yields . This, together with c results in c , so that the new
solution

0bu ≥ˆ
0,ˆ

bux ˆˆ > 0x >ˆ
~ >εε+ xx

() ,ˆ
 has a value of the objective function of P which is

0ˆ,0~ˆ~ >> xcεε+=ε+ xcxcxxc . Since ε can be increased arbitrarily, problem P
has no finite optimum and case (3) in the theorem applies. A similar argument can
be applied if PD has at least one feasible solution. This proves the theorem. �

For additional reading, see Gale et al. (1951), Dantzig and Orden (1953), and
Kuhn and Tucker (1956) who present some of the original developments of this
material.

According to Theorem 4.8, a pair), ux(of solutions for P and PD respectively, is
optimal if and only if buxc = . An alternative optimality criterion is given in

Theorem 4.9 (Weak Complementary Slackness Theorem): If x~ and are
feasible solutions for P and P

u~

D, respectively, and satisfy

 () and0=−bxAu (2)
 () 0=− xcAu (3)

then), ux(is a pair of optimal solutions, and vice versa.

Proof: Owing to the strong duality theorem, it is sufficient to show that the above
two conditions are equivalent to buxc = . Rewriting them as buxA =u and

xcxAu = , sufficiency follows. Then necessity condition can be demonstrated by
multiplying buxc = by (−1) and adding xAu to both sides, resulting in

() ()xcAubxAuxAubu −=−+− or . Since both x and u are assumed to be
feasible for their respective problems, 0≥u and () 0or ≤−≤− bxAu0bxA ,
whereas () 0cAu ≥− and 0x ≥ , so that () 0≥− xcAu . The above equality forces
both terms to zero which yields the desired result. �

It should be pointed out that condition (2) in Theorem 4.9 can be written

as ()∑
=

• =−
m

i
iii bu

1
0xa . Since mibiii ...,,1,0and0u =≤−≥ •xa due to primal

 4 Duality 174

and dual feasibility, every single term of the sum has to equal zero. An equivalent
argument can be applied to condition (3), so that (2) and (3) can be written as

 mibu iii ,...,1,0)(==−•xa (2')
 njxc jjj ,...,1,0)(==−•au (3')

An immediate consequence of conditions (2) and (3) is the following

Corollary 4.10: Satisfying conditions (2') and (3') is equivalent to

 iii bu =→> •xa0 (4)
 0=→<• iii ubxa (5)
 jjj cx =→> •au0 (6)

 0=→>• jjj xcau (7)

Finally, we will prove

Theorem 4.11 (Strong Complementary Slackness Theorem): If problems P and
PD have at least one feasible solution each, then there exists at least one pair of
optimal solutions), ux(, such that

 () 0uxAb >+− T (8)

and

 () 0xcAu >+− T . (9)

Proof: Since both problems are assumed to possess feasible solutions, we are
dealing with case 1 in Theorem 4.8, where λ . Let x denote a

solution to the system in Corollary 4.6, then A and

. Defining

0ˆ > λ̂andˆ,ˆ u

ub −λ− Tˆˆ 0x <ˆ

0xcAu <−λ+− Tˆˆˆ
λ

=
λ

= ˆ
ˆ

:,ˆ
ˆ

: uuxx , we obtain 0<u− Tbx −A

0xcAu <−+− Tand which is the desired result. �

Complementary slackness conditions are of major importance in primal-dual
algorithms.

For a geometric representation of optimality, consider the following pair of primal
and dual problems:

4.1 The Fundamental Theory of Duality 175

 P : Max z = cx PD : Min zD = ub
 s.t. Ax ≤ b and s.t. uA ≥ c
 x ≥ 0 u ≥ 0.

Furthermore, consider some extreme point x . It is now possible to demonstrate
that x is optimal only if the gradient of the objective function at x can be
represented as a nonnegative linear combination of the gradients of all
hyperplanes which are binding at x . Formally, let }{: ii bI == •xa denote the set
of hyperplanes that are binding at x . Their respective gradients are a and a
nonnegative linear combination is

•i

0ua ≥u ∈• with, Iii

Iii

. Since the gradient of the
objective function is c, we set u ∉∀= 0: and the above condition reads

∑
∈

==
Ii

jiji njcau,,1, If this holds, then

{

∑∑ ∑∑ ∑∑ ∑ ∑ ∑
=∈

=

== ∉

=

= = = ∈

===+==
m

i
ii

Ii

b

n

j
jijijij

n

j Ii
i

n

j

m

i

n

j Ii
jijijj buxauxauxauxc

i

111

0

1 1 1
buxc

43421

which must hold at optimum.

a1C
 c

E

a2C
 c

D

c
a5C

B
c c

O A x1

a3C

a4C

Figure 4.1a

 4 Duality 176

A graphical representation of the above relation is shown in Figure 4.1a, where
the gradient of the objective function is shown by solid lines at each extreme
point, while the gradients of the constraints are displayed by broken lines.

Take, for instance, point A. The third and fourth hyperplanes are binding at A, but
c can not be expressed as a nonnegative linear combination of a3, and a4•, i.e. a
vector pointed toward the cone given by a3• and a4•. The same can be said for
points O, D and E. Only for point B, there are values 0, 32 ≥uu such that

caa 32 =+ •• 32 uu and therefore B must be optimal.

Note also that since 0, 32 >uu at point B, setting 0541 === uuu the
complementary slackness conditions are also fulfilled. However, this is not
necessarily always the case. Take the same example but with a different objective
function as shown in Figure 4.1b.

x~

c

c a1C

c
E

a2C
c D

a5C

O

c

c
B

A x1

a3C

a4C

Figure 4.1b

Clearly, both points D and E are optimal solutions. Consider, for instance, point
D. The first and second constraints are binding (and immediately

0543 === uuu) and the gradient of the objective function can be expressed as

•• += 2211 aac uu . However, 02 =u and the strong complementary slackness

4.1 The Fundamental Theory of Duality 177

condition 0)(iii >+− • ub xa is not satisfied for i = 2 because 02 =− •xa2b
0and 2 =u

x

. A similar line of reasoning can be applied to E. Again, the strong
complementary slackness condition is violated.

~

Consider now some nonnegative linear combination of points D and E, such as the
point , then 0~

ii >− •xab , i = 2, 3, 4, 5 and 0~
11 =− •xab . Setting 11 =u and

0i =u , i = 2, 3, 4, 5 satisfies the strong complementary slackness condition and
this is sufficient since it need only be satisfied for at least one optimal solution.

The remainder of this section will summarize and apply at least some of the
theoretical results established above. According to the strong duality theorem, a
pair of solutions),(ux is optimal if and only if

 (a) x is feasible of P (primal feasibility)
 (b) u is feasible of PD (dual feasibility)
 (c) bx uc = (complementary slackness)

Considering the following three systems P, PD and P*:

 P: Max z = cx PD: Min zD = ub P*: Ax ≤ b
 s.t. Ax ≤ b s.t. uA ≥ c x ≥ 0
 x ≥ 0 u ≥ 0 uA ≥ c
 u ≥ 0
 cx – ub = 0,
then the following corollary is an immediate consequence of the results derived
above.

Corollary 4.12: The following two statements are equivalent:

 (i) x is an optimal solution for P and u is an optimal solution for PD.
 (ii)),x(u is a feasible solution for P*.

In other words, rather than to optimize problem P or PD, one could attempt to find
feasible solutions for P*; a concept which is important for some non-simplex
based solution techniques, a collection of which is described in Chapter 7 of this
part of the book. It should also be mentioned that it is possible to derive the
optimality conditions stated and proved above by way of Lagrangean functions
and derivatives. For details, readers are referred to Eiselt et al. (1987).

Below we will describe specific rules, which may be used to set up the dual
problem, associated with a given primal. To simplify matters, we assume without
loss of generality that the primal is a maximization problem and there are only
constraints of types ≤ and =. If either of the conditions were violated originally,

 4 Duality 178

simple transformations as those described in Chapter 8 of this volume can help to
reduce the problem to the desired form. The rules to establish a dual problem PD
associated with a given primal problem P are then summarized in Table 4.1.

Table 4.1

 Primal problem P
(variables xj, j = 1,…, n)

Dual problem PD
(variables ui, i = 1,…, m)

(1)
(2)
(3)
(4)
(5)

ai•x ≤ bi

ai•x = bi
xj ≥ 0
xj 0 ú

Max z = cx

uj ≥ 0
uj 0 ú

ua•j ≥ cj
ua•j = cj

Min zD = ub

The application of these rules can be illustrated by the following

Example: Consider the following linear programming problem:

 P: Min z = 3x1 + x2
 s.t. 3x1 +2x2 ≤ 24
 4x1 – x2 ≥ 8
 x1 = 2x2
 x1 ≥ 0
 x2 ∈ ú.

Transforming the problem into an equivalent problem that satisfies the above
assumption results in

 P': Max -z = −3x1 − x2
 s.t. 3x1 +2x2 ≤ 24
 −4x1 + x2 ≤ −8
 x1 − 2x2 = 0
 x1 ≥ 0
 x2 ∈ ú.

Assigning dual variables u1 ≥ 0 and u2 ≥ 0 to the first two primal constraints
respectively (Rule 1) as well as a dual variable u3 ∈ ú to the third primal
constraint (Rule 2), the dual is

 PD: Min – zD = 24u1 – 8u2 (Rule 5)
 s.t. 3u1 – 4u2 + u3 ≥ −3 (Rule 3)
 2u1 + u2 –2u3 = −1 (Rule 4)
 u1, u2 ≥ 0 (Rule 1)
 u3 ∈ ú (Rule 2).

4.1 The Fundamental Theory of Duality 179

A more general illustration is provided in the following

Example: Consider the following linear programming problem

 P: Min z = cx – dy
 s.t. Ax + By ≤ b1

 Dx + Ey = b2
 Fx + Gy ≥ b3
 X ≥ 0
 y ∈úr,

where x and y are n- and r-dimensional vectors, respectively, A, B, D, E, F and G
are matrices of technological coefficients, c and d are n and r-dimensional vectors
of the objective function coefficients and b1, b2, b3 are l1-, l2-, and l3-dimensional
right-hand side vectors. All vectors and matrices of coefficients are of appropriate
dimension. An equivalent formulation of the above problem is

 P': Max −z = −cx + dy
 s.t. Ax + By ≤ b1
 Dx + Ey = b2
 −Fx − Gy ≤ −b3
 x ≥ 0
 y ∈ úr

Assigning vectors of dual variables u, v and w to the respective sets of primal
constraints, the associated dual problem is:

 PD: Min – zD = ub1 + vb2 – wb3 (Rule 5)
 s.t. uA + vD – wF ≥ −c (Rule 3)
 uB + vE – wG = d (Rule 4)
 u, w ≥ 0 (Rule 1)
 v ∈ ú l (Rule 2) 2

The primal-dual relationships that were derived in Theorem 4.8 are now displayed
in the synopsis in Table 4.2:

Table 4.2

P PD
finite optimal solution
unbounded “optimal” solutions
no feasible solution

finite optimal solution
no feasible solution
either unbounded “optimal” solutions
or no feasible solutions

 4 Duality 180

Furthermore, note that the dual of the dual problem is the primal problem, i.e.,
(PD)D = P. Examples for the primal-dual relations in the above synopsis are shown
below.

Example 1: Both problems have finite optimal solutions.

 P: Max z = 2x1 + x2 PD: Min zD = u1 + u2
 s.t. x1 ≤ 1 s.t. u1 ≥ 2
 x2 ≤ 1 u2 ≥ 1
 x1, x2 ≥ 0 u1, u2 ≥ 0

x

x2

x1

1

1

Figure 4.2a

u

u2

1 •

1−1 u1

−1

Figure 4.2b

The graphical representations of the problems P and PD are shown in Figures 4.2a
and 4.2b, respectively. The optimal solutions are indicated as x and u ,
respectively. The optimal solutions are T]1,1[=x with 3== xcz and

]1,2[=u with 3== buDz , respectively.

4.1 The Fundamental Theory of Duality 181

Example 2: P has no feasible solution and PD has unbounded “optimal” solutions.

 P: Max z = x1 + x2 PD: Min zD = u1 + u2
 s.t. −x1 + x2 ≥ 1 s.t. −u1 + u2 ≤ 1
 x1 − x2 ≥ 1 u1 − u2 ≤ 1
 x1, x2 ≥ 0 u1, u2 ≥ 0.

x2

1

−1 1 x1

−1

Figure 4.3a

u2

1

1 u1
Figure 4.3b

The graphical representations of the problems in Figures 4.3a and 4.3b indicate
that the primal problem has not feasible solution, while the dual problem has
unbounded “optimal” solutions.

 4 Duality 182

Example 3: Both problems have no feasible solutions.

 P: Max z = x1 + x2 PD: Min zD = u1 − 2u2
 s.t. x1 − x2 ≤ 1 s.t. u1 − u2 ≥ 1
 x1 − x2 ≥ 2 −u1 + u2 ≥ 1
 x1, x2 ≥ 0 u1, u2 ≥ 0

Figure 4.4a

−1

−1

x2

x1

1

1

x2 x2 u2

1

–1 u1 1

–1

Figure 4.4b

Figures 4.4a and 4.4b represent the respective primal and dual problem
formulation above. It is apparent that neither has a feasible solution.

4.2 Primal-Dual Relations 183

4.2 Primal-Dual Relations
Although primal-dual relationships were theoretically developed in the first
section of this chapter, the following paragraphs will take a close look at these
relations from a computational point of view. In particular, we will show that if
any primal problem has been solved with the simplex method, the dual solution,
i.e., the values of the dual variables, can be found in the primal tableau. At this
point, we will restrict ourselves to optimal primal and dual solutions, this
restriction will be dropped at the end of this section.

Recall that at least one variable was added to every primal constraint, viz., a slack,
excess and/or artificial variable, depending upon the type of the constraint. Now a
pair of variables can be assigned to every primal constraint; the dual variable
assigned to this constraint and the slack, excess or artificial variable added to the
left-hand side of the primal constraint. The assignment of these pairs to the
various constraint is summarized in Table 4.3:

 Table 4.3

Primal constraint/variable Variable pair
ai•x ≤ bi
ai•x ≥ bi
ai•x = bi
xj ≥ 0

(ui, Si)
(ui, Ei)
(ui, Ai)

),(or),(j
D
jj

D
j xExS

These pairs indicate exactly where the value of a dual variable will be found in the
optimal primal tableau: In case of a ≤ inequality, the optimal value of the dual
variable iu is found in the objective function row under the primal slack variable
Si; in case of a ≥ inequality, the optimal value of the dual variable iu is found
under the primal excess variable Ei, and in case of an equality, the value of ju
(which is clearly unrestricted since it was assigned to a primal equality) is found
under the primal artificial variable Ai in the objective function row. Moreover, the
dual slack and excess variables S will be found in the primal tableau
under the primal decision variable x

D
j

D
j Eand

j. For the sake of simplicity, assume that the
given primal problem is in canonical form, i.e.,

 P: Max z = cx PD: Min zD = ub
 s.t. Ax R b s.t. uA R c
 x R 0 u R 0

Here, R denotes any relation of the type ≤, ≥, or =. The optimal values of the
primal variables x, S, E, and A are then found on the right-hand side value of the
primal tableau (in case they are basic; nonbasic variables are zero by definition) as
well as in the objective function row of the optimal dual tableau. The optimal

 4 Duality 184

values of the primal decision variables are found under the dual slack, excess, and
artificial variables, while the optimal values of the primal slack, excess, and
artificial variables are found under the dual decision variables. Similarly, the
optimal values of the dual decision variables are found in the objective row of the
optimal primal tableau under the primal slack, excess, and artificial variables,
while the optimal values of the dual slack, excess, and artificial variables are
found in the objective row of the primal tableau under the primal decision
variables. This situation is summarized in Table 4.4 for the primal and dual
tableaus, respectively.

Table 4.4

Optimal primal tableau: Optimal dual tableau:

Example: Consider the following (primal) linear programming problem.

P: Max z = 2x1 + x2
s.t. 5x1 + 2x2 ≤ 10 (u1, S1)
 4x1 + x2 ≥ 4 (u2, E2)
 −x1 + 2x2 = 1 (u3, A3)
 x1, x2 ≥ 0,

where the pair of variables on the right indicate the dual variable that is associated
with the constraint and the primal slack/excess/artificial variable, under which its
value is found in the primal tableau. (In case the artificial variables were dropped
from the tableau, the value of −u3 would be found in the objective row of the
primal problem under E3). Similarly, the optimal values of x1 and x2 will be found
in the optimal dual tableau under the dual excess variables and . DE1

DE2

The optimal tableau for the primal problem above is

 : opt

primalT

x1 x2 S1 E2 A2 A3 1
0 0 4

3 1 −1 4
1− 3¼

1 0 6
1 0 0 6

1− 1½

0 1 12
1 0 0 12

5 1¼

0 0 12
5 0 0 12

1 4¼

4.2 Primal-Dual Relations 185

The optimal primal solution is .4with)1,1(4
1

4
1

2
1 == zTx (1½, 1¼)T According

to the above pairs of variables, the dual solution is .4with),0,(4
1

12
1

12
5 == Dzu

Furthermore, we note that 021 == DD EE , indicating that both dual constraints are
satisfied as equations at optimum.

The dual problem of the above linear programming problem P can be formulated
as

 PD: Min zD = 10u1 − 4u2 + u3
 s.t. 5u1 − 4u2 – u3 ≥ 2),(11 xE D

 2u1 – u2 + 2u3 ≥ 1),(22 xE D

 u1, u2 ≥ 0
 u3 ∈ ú,

where the pairs on the right indicate where to find the values of the primal
variables x1 and x2 in the dual tableau (viz., underneath the variables).
After replacing the unrestricted variable u

DD EE 21 and
3 by the difference of two nonnegative

variables u and solving the problem, we obtain the optimal dual tableau −+
33 and u

opt
dualT :

u1 u2 +
3u −

3u DE1 DE2 DA1 DA2 1

1 4
3− 0 0 6

1− 12
1− 6

1
12
1 12

5

0 4
1 1 −1 6

1
12
5− 6

1− 12
5 12

1

0 3¼ 0 0 1½ 1¼ −1½ −1¼ −4¼

which contains exactly the same information as the optimal primal tableau. The
above pairs of variables can be used again to find the optimal primal solution; e.g.,
the optimal value of S1 is found under u1, the optimal value of E2 is found under u2
and so forth, and finally the optimal values of x1 and x2 are found under

, respectively. Loosely speaking, the information on the right-hand
side of the primal tableau is found in the objective function row in the dual tableau
and vice versa. This also explains the term dual degeneracy, which occurs if a zero
appears on the right-hand side of a dual tableau, corresponding to a zero under a
primal nonbasic variable in a primal tableau.

DD EE 21 and

Clearly, if artificial variables are dropped from the tableau whenever they become
nonbasic, the information concerning dual variables gets lost. The values of the
dual variables may be reconstructed, though, based on duality relations.

 4 Duality 186

Suppose now that, as is usually the case, the artificial variables are dropped form
the tableau as soon as they leave the basis; i.e. if at least one primal feasible
solution exists and the optimal primal tableau is nondegenerate, then no artificial
variables are left in the tableau. In those cases, the optimal values of the dual
variables, assigned to primal equalities, can not be read directly form the optimal
primal tableau, but it is possible to reconstruct these values by using the values of
the dual slack and excess variables. As an example, assume that the optimal
primal tableau for the above problem dose not include the A2 and A3 columns.
Hence it is only known that 12

5
1=u and 02=u . Since, however, 01 =DE , we

know that the first dual constraint if fulfilled as equality, i.e., 5u1 – 4u2 – u3 = 2;
using the optimal values of u1 and u2 yields 12

1
3 =u which is the desired result.

(Note that the equality buxc = can also be used to reconstruct the value of one
dual variable).

Finally, one more remark in this context: Since optimal primal and dual tableaus
contain the same information, either problem could be solved. For manual
computations, it is usually easier to solve the primal problem if n > m, while the
dual problem has a smaller tableau, if n < m. These considerations are, however,
irrelevant for automatic computations.

In some instances, it is more advantageous to solve the dual problem rather than
the primal. Consider a primal problem in canonical form with n variables and m
constraints. After adding slack variables, each primal tableau includes a total of m
+ n variables (columns) and m constraints (rows), not counting right-hand sides
and objective function, for a total of m(m + n) elements. The dual, however, has m
problem variables and n constraints (in the worst case all dual variables are
unrestricted and each of those variables has to be replaced by two nonnegative
variables and all constraints are of type ≥) so the dual has no more than 2(m + n)
variables and n constraints.

In the following we will have another look at the primal simplex method in view
of the optimality criteria developed in this chapter, i.e., primal feasibility, dual
feasibility, and (weak) complementary slackness conditions. Primal feasibility is
achieved in a primal simplex tableau, if no artificial variable with a value greater
than zero is left. On the other hand, dual feasibility is obtained, if all entries in the
given objective function of the primal tableau are nonnegative. If, say, cj < 0, for
some primal variable xj, then currently the dual variable E ; if c0<D

j i < 0 in a
primal simplex tableau under some variable Si, then ui < 0; both cases violate
feasibility of the dual solution. For the complementary slackness conditions,
consider the following pair of primal and dual problems:

 P: Max z = cx PD: Min zD = ub
 s.t. Ax ≤ b s.t. uA ≥ c
 x ≥ 0 u ≥ 0

4.2 Primal-Dual Relations 187

Adding a slack variable to the left-hand side of the i-th primal constraint results in
ai•x + Si =bi or, equivalently, Si = bi − ai•x; subtraction of an excess variable from
the left-hand side of the j-th dual constraint yields ua or

. Then the two complementary slackness conditions u
j

D
jj cE =−•

0=jx

D
jE

jj c−= •ua i(ai•x – bi) = 0

and (ua•j – cj) xj = 0 can be rewritten as uiSi = 0 and , respectively. D
jE

These two conditions are satisfied if at least one of the two variables in each
condition equals zero. Consider uiSi = 0. Clearly, if Si = 0, this condition is
satisfied. Suppose now that Si > 0. This is only possible if Si a basic variable
which—by definition—has a zero coefficient in the objective function; that is
exactly the current value of ui and so ui = 0. An equivalent argument can be
applied to the second complementary slackness condition. In other words: during
the iterations with the primal simplex method, the complementary slackness

solutionoptimalsolutionfeasibleprimal 2phase1phase  → →O

Figure 4.5

condition is always fulfilled. Now the simplex method can be seen as a algorithm
which generates points (solutions), the first one being the origin 0 in the x1, x2, …,
xn space of the original nonbasic variables; after some iterations the first feasible
solution is reached and after some more iterations the optimal solution is obtained.
This can be visualized in Figure 4.5.

Table 4.5

 Primal feasibility Dual feasibility Complementary
slackness

Phase 1
Phase 2

Optimal solution

No
Yes
Yes

(usually) No
No
Yes

Yes
Yes
Yes

Table 4.5 summarizes which of the three conditions are fulfilled in Phase 1
(including initial solutions 0 but excluding the first feasible solution), Phase 2
(including the first feasible solution but not the optimal solution), and at the
optimal solution.

We have seen that every simplex tableau displays one primal and its
corresponding dual solution. Moreover, in the absence of primal and dual
degeneracy, a unique optimal solution exists for both problems with primal and
dual objective function values being equal, all other primal feasible solutions will
have a smaller z-value whereas all dual feasible solutions will have a larger zD-
value. This is displayed in Figure 4.6.

 4 Duality 188

Optimal
solution

z, zD

primal feasible
solutions

dual feasible
solutions

Figure 4.6

Example: Consider the following pair of primal and dual linear programming
problems:

 P: Max z = x1 + x2 PD: Min zD = 4u1 + 6u2
 s.t. 2x1 + x2 ≤ 4 s.t. 2u1 + 2u2 ≥ 1
 2x1 + 3x2 ≤ 6 u1 + 3u2 ≥ 1
 x1, x2 ≥ 0 u1, u2 ≥ 0

Table 4.6

Primal
solution

(x, S)

Primal
basis

Primal
feasible?

Dual solution
(u,) DE

Dual basis Dual
feasible?

Dzz =

(0, 0, 4, 6) S1, S2 Yes (0, 0, −1, −1) DD EE 21 , No 0

(0, 2, 2, 0) x2, S1 Yes (0, ⅓, −⅓, 0) DEu 12, No 2

(2, 0, 0, 2) x1, S2 Yes (½, 0, 0, −½) DEu 21, No 2

(1½, 1, 0, 0) x1, x2 Yes)0,0,,(4
1

4
1 u1, u2 Yes 2½

(3, 0, −2, 0) x1, S1 No (0, ½, 0, ½) DEu 22, Yes 3

(0, 4, 0, −6) x2, S2 No (1, 0, 1, 0) u1, DE1 Yes 4

Table 4.6 displays all primal basic solutions and their dual counterparts, along
with information regarding primal and dual feasibility as well as the values of the
objective function.

The primal-dual relationships can also be given an interesting graphical
visualization. Suppose that a primal linear programming problem with n decision
variables and m constraints is given; including the necessary m slack variables
leads to a total of n + m variables and m equalities. Every basis then includes m
basic variables and hence n nonbasic variables; therefore a total of at most

4.2 Primal-Dual Relations 189








 +
m

nm
 different bases (if not all [m × m]-dimensional submatrices have full

rank, there will be less). Suppose all  bases exist; then we could select

any m variables, designate them as basic variables and obtain the solution for this
basis by setting the remaining n (nonbasic) variables equal to zero and solving the
system of simultaneous linear equations with the m basic variables only. This may
result in a feasible solution or not. At the same time one could represent all basic
variables in terms of the nonbasic variables and then the solution is always the
origin in the nonbasic space. Depending on the status of the origin, we can
distinguish between the four cases shown in Table 4.7.








 +
m

mn

Table 4.7

The current solution is The origin is
Primal feasible? Dual feasible?

(1) Feasible but not optimal Yes No
(2) Not feasible, but has better

z-value than any feasible
point

No Yes

(3) Not feasible, feasible points
with better z-value exist No No

(4) Feasible and optimal Yes Yes

Note that in case 4, the gradient in primal and dual nonbasic spaces are directed
into the negative orthant. A similar synopsis can be set up for the dual problem.
This can be illustrated by the following

Example: Consider the following pair of dual linear programs, in which the
necessary slack and excess variables have already been added:

 P: Max z = 2x1 + x2
 s.t. 2x1 + 3x2 + S1 = 12
 4x1 + x2 + S2 = 8
 x1, x2, S1, S2 ≥ 0
and

 PD: Min zD = 12u1 + 8u2
 s.t. 2u1 + 4u2 − = 2 DE1

 3u1 + u2 − = 1 DE2

 u1, u2, , ≥ 0. DE1
DE2

 4 Duality 190

Each of the above problems has a total of four variables and two equations and the

 bases do exist. In the graphs below, every possible primal and its

corresponding dual basis is enumerated; primal and dual problems are rewritten in
terms of nonbasic variables and graphed, and the corresponding primal tableau is
displayed.

6
2

22
=







 +

 Primal basis: (S1, S2) Dual basis : (E), 21

DDE
 Primal nonbasis: (x1, x2) Dual nonbasis: (u1, u2)

 P: Max z = 2x1 + x2 PD: Min zD = 12u1 + 8u2
 s.t. 2x1 + 3x2 ≤ 12 s.t. 2u1 + 4u2 ≥ 2
 4x1 + x2 ≤ 8 3u1 + u2 ≥ 1
 x1, x2 ≥ 0 u1, u2 ≥ 0

x2

5

opt C

1

x1 1 5

Figure 4.7a

Figures 4.7a and 4.7b show the primal and the dual problem at this point.

4.2 Primal-Dual Relations 191

u2

1

C
opt

u1 1–

Figure 4.7b

The graphs in Figures 4.7a and 4.7b indicate that the current solution is primal
feasible but not dual feasible. This is case (1). Another basis is:

 Primal basis: (x2, S2) Dual basis : (u1,) DE1

 Primal nonbasis: (x1, S1) Dual nonbasis: (u2,
DE2)

 P: Max z = 413

1
1 +S3

4 −x PD: Min zD = 444 22 ++ DEu

 s.t. 413
1

13
2 ≤+ Sx s.t. 3

1
23

1
23

1 −≥+ DEu−

 413
1

13
10 ≤− Sx 3

4
23

2
23

10 ≥+ DEu

 x1, S1 ≥ 0 u2, ≥ 0 DE2

x1

10

5
opt

C
−10 −5 −1 1051 S1

Figure 4.7c

 4 Duality 192

The graph in Figure 4.7c displays the primal problem at this point, while Figure
4.7d shows the dual problem.

DE2

u2

1

•Copt

−1 1

−1

Figure 4.7d

Clearly, the origin in the “primal graph” in Figure 4.7c is (primal) feasible but not
optimal (case 1). The dual graph in Figure 4.7d indicates that the origin is not
(dual) feasible but has a lower z-value than any feasible dual point, hence the
primal solution must be feasible.

The next basis to be examined is as follows.

 Primal basis: (x2, S1) Dual basis : (u2,) DE1

 Primal nonbasis: (x1, S2) Dual nonbasis: (u1,
DE2)

 P: Max z = −2x1 − S2 + 8 PD: Min zD = −12u1 + 8 + 8 DE2

 s.t. −10x1 − 3S2 ≤ −12 s.t. −3u1 + ≥ −1 DE2

 4x1 + S2 ≤ 8 −10u1 + ≥ −2 DE24

 x1, S2 ≥ 0 u1, ≥ 0 DE2

Figure 4.7e is the primal problem at this basis, while Figure 4.7f shows the dual
problem.

The primal graph in Figure 4.7e indicates that the current solution is not primal
feasible but since the origin has a higher z-value than any primal feasible point, it
is dual feasible. The present dual solution shown in Figure 4.7f indicates that
while the present solution is feasible, it is not yet optimal.

4.2 Primal-Dual Relations 193

S2

5

1

C− 5 x1

opt

Figure 4.7e

E2

1
opt

• u1− 1

−

Figure 4.7f

 4 Duality 194

The next pair of dual bases is given as

 Primal basis: (x1, S2) Dual basis : (u1,) DE2

 Primal nonbasis: (x2, S1) Dual nonbasis: (u2,
DE1)

 P: Max z = −2x2 – S1 + 12 PD: Min zD = −16u2 + 6 + 12 DE1

 s.t 612
1

22
3 ≤+ Sx s.t. 25 12

3
2 −≥+ DEu−

 −5x2 – 2S1 ≤ −16 12 12
1

2 −≥+ DEu−

 x2, S1 ≥ 0 u2, ≥ 0 DE1

x2

5

Figure 4.7g

DE1

opt

•C

1

−1
51 10

opt

u2

–2 –1

1

1

•

S1 15

Figure 4.7h

4.2 Primal-Dual Relations 195

Again, Figure 4.7g represents the primal problem at the present basis, while
Figure 4.7h is the dual problem at this point. Figure 4.7g indicates primal
infeasibility of the current solution but also shows that the origin has a higher z-
value than any primal feasible point (case 2). Hence the corresponding dual
solution in Figure 4.7h is feasible.

The next basis is as follows.

 Primal basis: (x1, S1) Dual basis : (u2, E) D

2

 Primal nonbasis: (x2, S2) Dual nonbasis: (u1,
DE) 1

 P: Max z = 422

1
2 +S2

1 −x PD: Min zD = 428 11 ++ DEu

 s.t. 822
1

22
5 ≤− Sx s.t. 2

1
14

1
12

5 ≥+ DEu

 224
1

24
1 ≤+ Sx 2

1
14

1
12

1 −≥+− DEu

 x2, S2 ≥ 0 u1, ≥ 0 DE1

x2

10

opt

C
5

1

S2 10−10 −15 1–5 5–1

Figure 4.7i

Figure 4.7i shows the primal problem at the present basis. Figure 4.7j represents
the dual solution at the present basis.

 4 Duality 196

DE1

u1

1

• Copt
2 1 −1

−1

Figure 4.7j

The graphs in Figures 4.7i and 4.7j exhibit primal feasibility as well as dual
infeasibility.

Finally, the last possible basis is:

 Primal basis: (x1, x2) Dual basis : (u1, u2)
 Primal nonbasis: (S1, S2) Dual nonbasis: (), 21

DD EE

 P: Max z = 5

3
25

2
1 5+− SS5

1− PD: Min zD = 5
3

25
16

15
6 5++ DD EE

 s.t. 5
16

25
1

15
2 ≤− SS s.t. 5

1
25

2
110

1 −≥+− DD EE

 5
6

210
3

110
1 ≤+− SS 5

2
25

1
110

3 −≥− DD EE

 S1, S2 ≥ 0 , ≥ 0 DE1
DE2

Figure 4.7k shows the primal problem at the present basis, while Figure 4.7l
displays the dual problem.

In the situation shown in Figures 4.7k and 4.7l, both gradients of the objective
functions are directed into the negative quadrant. At both origins primal
feasibility, dual feasibility and complementary slackness is fulfilled, so that an
optimal solution has been found, which is Case 4 in Table 4.7.

4.2 Primal-Dual Relations 197

Figure 4.7k −15

−10

−5

1
−15 −10 −5 −1

5

10

105

S2

C

opt

S1

DE2

DE1

1

opt

C−1 1 2

−1

Figure 4.7l

 4 Duality 198

4.3 Interpretations of the Dual Problem
This section will describe interpretations of the dual variables in some standard
problems that have been formulated in Chapter 2 of this volume. For this purpose,
we will consider three examples. The first is a single-variable production problem
that may provide the general flavor of the interpretation of the dual problem, the
second is a small diet problem, and the last model we formulate, dualize, and
discuss in this section is a standard transportation problem.

Example 1: Consider a company that manufactures a single product by means of a
single machine. The unit selling price of the product is $5, all units that are made
can also be sold, it takes 2 hours on the machine to manufacture one unit of the
product, and the capacity of the machine is 8 hours. Denoting by x the number of
units of the product that we will manufacture and sell, we can then formulate the
revenue-maximizing problem as

 P: Max z = 5x
 s.t. 2x ≤ 8
 x ≥ 0.

The parameters and the variable are then measured in the following units: The
price 5 is expressed in [$/hour], the machine capacity 8 is measured in [hours], the
time consumption for the manufacturing of the product is 2 [hour/quantity unit],
and the variable x is measured in [quantity units].

The optimal solution of this primal problem is 4=x with a revenue of 20=z .
The dual of the above problem can be formulated as

 PD: Min zD = 8u
 s.t. 2u ≥ 5
 u ≥ 0,

where the dual variable u is measured in [$/hour]. The optimal dual solution is
u = 2½ with 20=Dz . Knowledge of the optimal values for the dual variables
provides an “automatic” break-even analysis. In fact, the optimal value of the dual
variable associated with the i-th constraint (resource) denotes the maximal price
we should be prepared to pay for one unit of this resource. In this problem, we
should not pay more than $2.50 for every machine hour. In fact, if we pay exactly
that amount for every respective unit of resource as indicated by the optimal value
of its dual variable, then no losses and no profits would result. Here, paying $2.50
per machine hour results in the return of z = $20 being completely absorbed by
the total cost of Dz = $20.

Because of this interpretation, the optimal values of the dual variables are
frequently called shadow prices or opportunity costs, depending on the particular

4.3 Interpretations of the Dual Problem 199

application. One of the early contributors to use shadow prices (albeit not in the
context of linear programming) was Schmalenbach (1947).

Example 2: An individual wants to plan his diet, which consists of only pork and
beans. The three nutrients that are considered in this problem are protein, vitamin
E, and carbohydrates. Details concerning the nutritional content of the foodstuffs,
their prices, and the required nutritional content are shown in Table 4.8:

Table 4.8

 Pork Beans Nutrients needed
(at least)

Protein 5 2 300
Vitamin E 9 1 60

Carbohydrates 7 2 800
Unit selling price $2.50 $0.30

By denoting with x1 and x2 the respective number of servings of pork and beans,
respectively, a cost-minimizing diet problem can be formulated as a linear
programming problem as follows.

 P: Min z = 2.5x1 + 0.3x2

 s.t. 5x1 + 2x2 ≥ 300 (protein)
 9x1 + 1x2 ≥ 510 (Vitamin E)
 7x1 + 2x2 ≥ 800 (carbohydrates)
 x1, x2 ≥ 0.

The optimal tableau of this problem is

Topt:

x1 x2 S1 S2 S3 1
0 1 0 11

7− 11
9− 330

1 0 0 11
2− 11

1 20

0 0 1 11
4− 11

13− 460

0 0 0 110
29 110

2 −149

The optimal primal solution is then to buy (and eat) 20 servings of pork and 330
servings of beans. The total cost of this diet are $149.

Consider now the units of the variables and parameters used in the primal model.
The variables xj are expressed in the number of servings in the diet, the parameters
cj express the cost per serving, the right-hand side values bi denote the quantity of
nutrients included in the diet, and the technological coefficients aij denote the

 4 Duality 200

quantity of nutrient i per serving of food j. The primal problem P was then the
usual cost-minimizing problem that ensures that the planner has sufficient
nutrients in the diet.

 P: Min z = cx
 s.t. Ax ≥ b
 x ≥ 0.

Consider now the dual problem. Formally, we have

 PD: Max zD = ub
 s.t. uA ≤ c
 u ≥ 0.

The dual variables are now measured in cost per unit of nutrient. Suppose now
that a firm contacts the planner with the following offer. The firm is in the
business of manufacturing pills that include some essential nutrients. This pill
manufacturer is now determining a pricing system u for his business, where ui
denotes the amount he will charge for one unit of nutrient i that is included in his
pills.

The pill manufacturer now makes the following offer to the diet planner. Instead
of eating the foods under consideration, the suggestion is to buy pills instead. In
order to make the offer “palatable,” the pill manufacturer ensures with the dual
constraints that each combination of nutrients in a pill are never more expensive
than the food that includes the same quantity of nutrients. Given that, the
manufacturer will attempt to maximize his profit.

This “competitive” system also allows a glimpse at the strong connection between
linear programming in general (and duality in particular) on the one hand, and
game theory on the other. For further details, readers are referred to Eiselt and
Sandblom (2004).

Example 3: Consider a standard transportation problem (see Chapter 2) that can be
formulated as

 P: Min z = ∑∑
= =

m

i

n

j
ijij xc

1 1

 s.t. ∑ misx i

n

j
ij ,...,1

1
=∀=

=

 njdx j

m

i
ij ,...,1

1
=∀=∑

=

 xij ≥ 0 ∀ i=1, …, m; j=1, …, n.

4.3 Interpretations of the Dual Problem 201

Assigning dual variables ui to the first m constraints and dual variables vj to the
last n constraints, the dual problem can be formulated as

 PD: Max zD = ∑ ∑
==

+
n

j
jj

m

i
ii vdus

11

 s.t. ui + vj ≤ cij ∀ i=1, …, m; j=1, …, n
 ui, vj ∈ ú ∀ i=1, …, m; j=1, …, n.

As usual, the primal problem has the parameters si and dj as well as the variables
xij measured in quantity units, and the unit costs cij expressed in [$/quantity units],
so that the decision maker wants to minimize his costs subject to the constraints
that all units in the warehouses are shipped out, and all customer demands at the
destinations are satisfied (we assume that the transportation problem is balanced).

The dual problem relates to a carrier who offers to our decision maker to perform
the transportation task for our decision maker. The carrier will devise a pricing
system by which he charges a per-unit price of ui at the point of departure and a
per-unit price of vj at the destination. The dual constraints ensure that the per-unit
costs on each route do not exceed the cost to the decision maker if he were to
transport the units himself, and the carrier’s objective is to maximize his profits.

It is now also possible to establish the formal conditions that govern the existence
of reshipments and overshipments as defined in Section 2.8 For that purpose, let

ijx i = 1, …, m; j = 1, …, n denote optimal solutions to a primal transportation

problem, and let the associated optimal dual solution be u mii ,...,1, = and
. Finke (1977) has then proved nj ,...,1=vn ,

Theorem 4.13: Reshipments can improve the optimal solution if and only if there
exists at least one pair (i, j), such that. ui + vj < −cij. Overshipments can improve
an optimal solution if and only if there exists at least one pair (i, j), such that ui +
vj < 0.

As a numerical illustration, consider again the pertinent examples of Section 2.8.

Example 4: The problem has two origins with supplies of 10 units each, while the
two destinations have demands of 5 and 10 units, respectively. The transportation

costs are displayed in the matrix C and the optimal transportation plan

without reshipments is T , and the optimal dual solution is









=

21
62





10
5





=

0
5

u = [2, −2]

and v = [0, 4]. Here, 21c12 v 12u −=−<−=+ , indicating the possibility of
improving the solution by means of reshipments.

 4 Duality 202

Example 5: The two origins have supplies of 10 units each, while there are
demands of 15 and 5 at the two destinations. The transportation costs are shown in

the matrix C , and the optimal transportation plan of the model without

overshipments is









=

14
41





55
010





=T . The associated solution of the dual problem is u

= [1, 4] and v = [0, −3]. It is apparent that 023121 <−=−=+ vu , so that
Theorem 4.13 indicates that overshipments will be able to improve the solution.

5 EXTENSIONS OF THE SIMPLEX METHOD

This chapter will introduce a number of extensions to the standard (primal)
simplex method discussed in Chapter 3 of this volume. The first section
introduces a technique that allows variables to be constraint by upper bounds
without introducing these bounds in the tableau explicitly, thus keeping the
tableaus small. The second section describes the column-generation technique,
another method that has proven to be an invaluable tool for large-scale problem.
Finally, the chapter concludes with the description of the dual simplex method, a
technique that works on the primal problem but proceeds differently from the
primal simplex method, in that it retains dual feasibility at all times, while trying
to achieve primal feasibility. This technique is used extensively in integer
programming as well as in methods that add constraints during the solution
process.

5.1 The Dual Simplex Method
The roots of the dual simplex method date back to the work by Lemke (1954).
Recall that the primal simplex method described in Chapter 3 of this volume
maintains primal feasibility and complementary slackness throughout its
execution of Phase 2, the method will terminate once dual feasibility is reached. In
contrast, the dual simplex method described in this section maintains dual
feasibility and complementary slackness throughout the computations, and it will
terminate once primal feasibility has been reached.

The obvious drawback of such a procedure is that while the primal simplex
method can be interrupted at any point in time (at least in phase 2) with a primal
feasible solution, i.e., a solution that, while not optimal, can actually be
implemented, this is not possible with the dual simplex method. This technique
has to be fully completed before a feasible (and optimal) solution becomes
available.

 5 Extensions of the Simplex Method 204

On the other hand, the dual simplex method allows the user to solve parts of the
model and then add variables as they become available.

In order to describe the method, assume again that the original problem in
canonical form is described as

 P: Max z = cx
 s.t. Ax ≤ b
 x ≥ 0.

This formulation does not include slack, excess, or artificial variables and may
also, as opposed to the primal simplex method, contain negative right-hand side
values. In case an equation ai•x = bi is present, it can be replaced by two
inequalities ai•x ≤ bi and ai•x ≥ bi, so that now all constraints are of type “≤”. In
case of multiple equations, it is not necessary to replace each equation by two
“opposing” inequalities, but rather change all existing equations to inequalities of
one type and add a single inequality of the other type to the system. Details are
provided in Chapter 8.2 of this volume. If the objective function

satisfies c∑
=

n

j
jj xc

1
max

∑
=

∗ =+
n

1j
j Sx

j ≤ 0 ∀ j = 1,…, n, only slack variables have to be added to

the left-hand sides of all constraints and we are ready to begin with the procedure.
If, however, one or more positive objective function coefficients are given, we

have to add the redundant constraint with M >> 0 (or, equivalently,

with slack variable S* ≥ 0) to the system, which can now be

written as:

∑
=

≤
n

j
j Mx

1

M

 P: Max ∑=z
=

n

j
jj xc

1

 s.t. ∑
=

==+
n

j
iijij mibSxa

1
,...,1,

 (*) ∑
=

=+
n

j
j MSx

1

*

 xj ≥ 0 ∀ j = 1,…, n
 S*, Si ≥ 0 ∀ i = 1,…, m.

This problem has a dual feasible solution , where

ties are broken arbitrarily. This can be seen by assigning variables u




 =

= =
otherwise0

}{maxif,
,...,1

k
nk

j
j

ccM
x

i, i = 1,…, m

5.1 The Dual Simplex Method 205

to the first m primal constraints and a dual variable u0 to the additional constraint.
We then obtain the dual formulation

 PD: Min z ∑
=

+=
m

i
ii Mubu

1
0

 s.t. s.t. ∑
=

=≥+
m

i
jiij njcuua

1
0 ,...,1,∑

=

=≥+
m

i
jiij njcuua

1
0 ,...,1,

 ui ≥ 0 ∀ i = 1,…, m, ui ≥ 0 ∀ i = 1,…, m,

for which u0 = and u}{max

,...,1
k

nk
c

=
}{max

,...,1
k

nk
c

=
i = 0 ∀ i = 1,…, m is the feasible dual counterpart

of the above primal solution. If cj ≤ 0 ∀ j = 1,…, n, then the origin xj = 0 ∀ j =
1,…, n (and its corresponding dual solution ui = 0 ∀ i = 1,…, m) represent a dual
feasible solution. If this initial solution also happens to be primal feasible, then the
current solution is optimal and the procedure terminates. Suppose now that in the
present solution, given by its vector of basic variables xB and nonbasic variables

for which u0 = and ui = 0 ∀ i = 1,…, m is the feasible dual counterpart

of the above primal solution. If cj ≤ 0 ∀ j = 1,…, n, then the origin xj = 0 ∀ j =
1,…, n (and its corresponding dual solution ui = 0 ∀ i = 1,…, m) represent a dual
feasible solution. If this initial solution also happens to be primal feasible, then the
current solution is optimal and the procedure terminates. Suppose now that in the
present solution, given by its vector of basic variables xB and nonbasic variables

T(*) (5)
x2 (3) S

JK

L

M
N

I
P

(4)
R

H

F
Q

x1 O B D E G
C U

(2)A

(1)

Figure 5.1 Figure 5.1

 5 Extensions of the Simplex Method 206

xN, at least one primal constraint is violated. Select one of these violated
constraints, say the r-th. (Note that algebraically Sr < 0 in the current solution.) A
new basic solution is now determined by dropping xr from the set of basic
variables xB and introducing a former nonbasic variable, say xs, into the basis, so
that the new basis xB \ {xr} ∪ {xs} is the one among all bases xB \ {xr} ∪ {xj, xj ∈
xN} for which the value of the objective function decreases by the least amount.

This basis change is repeated until a primal feasible solution has been obtained for
the first time; this solution is optimal. Note that in this procedure we still move
along the hyperplanes as in the primal algorithm but not necessarily to basic
points that are neighbors in the corresponding graph. The above method may be
explained by the example in Figure 5.1 where the polytope is the shaded area and
the broken line is the additional constraint for which M has been selected
reasonably small.

Assuming that a slack Si has been added to the i-th constraint and S* belongs to
the artificial constraint (*), the Table 5.1 indicates the basic and nonbasic
variables as well as all variables with negative values for each of the above basic
points A,…, U:

Table 5.1

Point xB xN xj < 0
O
A
B
C
D
E
F
G
H
I
J

S1, S2, S3, S4, S5, S*
x2, S1, S2, S3, S5, S*
x1, S2, S3, S4, S5, S*
x1, x2, S2, S3, S5, S*
x1, S1, S2, S3, S5, S*
x1, S1, S3, S4, S5, S*
x1, x2, S1, S3, S5, S*
x1, S1, S2, S4, S5, S*
x1, x2, S1, S2, S5, S*
x1, x2, S1, S4, S5, S*
x1, x2, S1, S3, S4, S*

x1, x2
x1, S4
x2, S1
S1, S4
x2, S4
x2, S2
S2, S4
x2, S3
S3, S4
S2, S3
S2, S5

S1
x2, S1
none

x2
none

S4
none
S2, S4

S2
none

S3
K
L
M
N
P
Q
R
S
T
U

x2, S1, S2, S4, S5, S*
x1, x2, S1, S2, S4, S*
x2, S1, S2, S3, S4, S*
x1, x2, S2, S3, S4, S*
x2, S2, S3, S4, S5, S*
x1, S1, S2, S3, S4, S5
x1, x2, S1, S2, S3, S5
x1, x2, S1, S2, S3, S4
x1, x2, S1, S3, S4, S5
x1, x2, S1, S2, S4, S5

x1, S3
S3, S5
x1, S5
S1, S5
x1, S1
x2, S*
S4, S*
S5, S*
S2, S*
S3, S*

S5
none
none

x1
none

S2, S3, S4
S2, S3
S2, S3
S3, S5

x2, S2, S4

5.1 The Dual Simplex Method 207

In the above example c1, c2 > 0 and c1 > c2. In the first step, the method moves
from the origin O to the point Q =(M, 0), where S2, S3 and S4 are negative. Any
one of these three variables can be chosen to leave the basis; here we choose S4. If
S4 is dropped form the basis, its value is reduced to zero, which means
geometrically that the next basic point must lie on hyperplane (4). Moving on a
single hyperplane form point Q to hyperplane (4) leads either point R or to point
D. Since the move from Q to R reduces the value of the objective function by a
much smaller margin than would the move from Q to D, the method will move to
point R. (Note that as soon as constraint (4) was selected among the violated
constraints, the move to R was mandatory: Moving to D would destroy dual
feasibility although in this case primal feasibility would be obtained.) At point R,
the second and third constraints are violated, and for our procedure we select (2).
Only two moves from R to hyperplane (2) are possible; either to point F or to
point T. The reduction in the value of the objective function is smaller if we move
to T, and hence this move is made. Note that point S is adjacent to R but was
skipped in that move. At point T, constraints (3) and (5) are violated; we select
(3). The move from point T to hyperplane (3) leads to either I or U. Point U can
not be selected since it would increase the z-value, I is selected. Since point I is
also primal feasible, it must be optimal. Various other point sequences of the dual
simplex method are possible; the longest is Q − R − T − J − I and the shortest is Q
− T − I.

We are now able to formally describe the algorithm. The algorithm is initialized
with a dual feasible tableau T0. If this is not initially available, we add the

constraint as the (m + 1)-st row in the tableau T∑
=

=+
n

j
j MSx

1

*

min
0:cj j <

0, select am+1,s = 1

as pivot, where cs = and perform a tableau transformation. This step

guarantees dual feasibility.

}{ jc

The Dual Simplex Algorithm

Step 1: Is bi ≥ 0?
 If yes: Go to Step 2.
 If no: Go to Step 3.

Step 2: Is the value of the objective function z a function of M?
 If yes: Stop, unbounded “optimal” solutions exist.
 If no: Stop, the current solution is optimal.

Step 3: Select the r-th row as the pivot row, such that br < 0.

Step 4: Is there at least one element arj < 0, j = 1,…m + n?
 If yes: Go to Step 5.
 If no: Stop, the problem has no feasible solution.

 5 Extensions of the Simplex Method 208

Step 5: Select the s-th column as pivot column,

 where












<= 0:
||

min
|| rj

rj

j

rs

s a
a
c

a
c

.Perform one tableau transformation

 with the pivot ars < 0 and go to Step 1.

As opposed to the primal simplex algorithm, the pivot row is selected first and
then the pivot column is determined. The same degree of freedom is given for the
selection of the pivot row in the dual simplex method as in the primal simplex
method for the pivot column; different rules, similar to those described in Section
3.2 can be applied.

then the pivot column is determined. The same degree of freedom is given for the
selection of the pivot row in the dual simplex method as in the primal simplex
method for the pivot column; different rules, similar to those described in Section
3.2 can be applied.

In order to illustrate the procedure, consider the following In order to illustrate the procedure, consider the following

Example: Let the following linear programming problem be given. Example: Let the following linear programming problem be given.

 P: Max z = −x1 + 2x2 P: Max z = −x1 + 2x2
 s.t. 5x1 + 4x2 ≥ 20 s.t. 5x1 + 4x2 ≥ 20
 x1 + 5x2 = 10 x1 + 5x2 = 10
 x1, x2 ≥ 0 x1, x2 ≥ 0

This problem can be written in canonical form as follows: This problem can be written in canonical form as follows:

 P: Max z = −x1 + 2x2 P: Max z = −x1 + 2x2
 s.t. −5x1 − 4x2 ≤ −20 (I) s.t. −5x1 − 4x2 ≤ −20 (I)
 x1 + 5x2 ≤ 10 (II) x1 + 5x2 ≤ 10 (II)
 −x1 − 5x2 ≤ −10 (III) −x1 − 5x2 ≤ −10 (III)
 x1, x2 ≥ 0 x1, x2 ≥ 0

After adding slacks S1, S2 and S3 and setting up the initial tableau, we notice that
the x2 coefficient in the objective function row is negative. Hence we add the
(m+1)-st row x1 + x2 +S* = M and obtain the tableau:

After adding slacks S1, S2 and S3 and setting up the initial tableau, we notice that
the x2 coefficient in the objective function row is negative. Hence we add the
(m+1)-st row x1 + x2 +S* = M and obtain the tableau:

T0: T x1 x x2 x S1 S S2 S S3 S S* S* 1 1 0: 1 2 1 2 3

 −5
1
−1
1

−4
5
−5
1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

−20
10
−10
M

←

 1 −2 0 0 0 0 0

In the initialization of the algorithm, the artificial row is used as pivot row and the
x2 row is pivot column since c2 is the only negative element in the objective
function row. After one tableau transformation we obtain a dual feasible basic
solution in the tableau

5.1 The Dual Simplex Method 209

T1: x1 x2 S1 S2 S3 S* 1
 −1

−4
4
1

0
0
0
1

1
0
0
0

0
1
0
0

0
0
1
0

4
−5
5
1

−20+4M
10−5M
−10+5M

M

←

 3 0 0 0 0 2 2M

Due to the fact the M is very large, the second row is the only row with a negative
right hand side; hence it becomes the pivot row. The x1 and S* columns are the
eligible pivot columns and S* is selected as entering variable, since









−−
=

− |5|
2,

|4|
3min

|5|
2 . After one tableau transformation we obtain

T2: x1 x2 S1 S2 S3 S* 1
− 5

21 0 1 5
4 0 0 −12

5
4 0 0 − 5

1 0 1 M−2
0 0 0 1 1 0 0

5
1 1 0 5

1 0 0 2

←

 5
7 0 0 5

2 0 0 4

The first row is the only pivot eligible row and the x1 column must be chosen as
pivot column. Hence 5

21
11 −=a is the pivot and one iteration results in

T3: x1 x2 S1 S2 S3 S* 1

1 0 21
5− − 21

4 0 0 7
20

0 0 21
4 21

1 0 1 M− 7
30

0 0 0 1 1 0 0

0 1 21
1 21

5 0 0 7
10

 0 0 3
1 3

2 0 0 0

The solution in tableau T3 is primal feasible, so that 0with),(7

10
7
20 == zTx is

optimal.

Note that after the artificial slack variable S* has left and re-entered the basis in
tableau T2, it will from then on remain in the basis, and therefore its column as
well as the row in which it is basic can be deleted. In graphical terms, once the
artificial hyperplane that is introduced in the first step, has been left, it is never
reached again.

 5 Extensions of the Simplex Method 210

The above procedure can be visualized in Figure 5.2 where the polytope includes
all points on the line segment between the points P and Q. Again, the artificial
constraint is the broken line for which a sufficiently large value for M was chosen.
The solution points generated by the dual simplex method are indicated in the
graph by T0, T1, T2 and T3.

x2

IV
T1

10

Q
•

P
•

T2

I

T0

5

1

5 10

T3

II, III

x1

Figure. 5.2

Consider now the four special cases addressed already in Chapter 3. Primal and
dual degeneracy in tableaus of the dual simplex method are recognized in exactly
the same way as in tableaus of the two phase method.

Unbounded “optimal” solutions exist if a primal feasible solution has been
obtained and z is a function of M. As an example, consider the following problem.

 P: Max z = 2x1 + x2
 s.t. −x1 + x2 ≤ 2
 x1 − x2 ≤ 2
 x1, x2 ≥ 0

•

5.1 The Dual Simplex Method 211

Using the dual simplex method to solve the problem, the (formally) optimal
tableau is shown below.

Topt: x1 x2 S1 S2 S* 1
0 0 1 1 0 4
0 1 0 2

1 2
1 M2

11+−
1 0 0 2

1 2
1 M2

11+

 0 0 0 2
1 2

3 M2
31 +−

By increasing the value of M as much as desired, the value of the objective
function also increases as much as desired without destroying primal feasibility.

No feasible solution exists in the dual simplex method, if a pivot row but no pivot
column can be found. In other words, there exists at least one row in the tableau

with with a∑
+

=

=
nm

j
ijij bxa

1
ij ≥ 0, j = 1,…, m + n and bi < 0, where the vector x =

(x1,…, xm+n) is assumed to include all decision and slack variables. Since xj ≥ 0 ∀ j
= 1,..., m + n; this constraint clearly cannot be fulfilled. Note that the existence of
one such row justifies the immediate abortion of the problem, even if other
eligible pivot rows exist, in which negative pivots can be found. Note the
similarity of this argument with that applied to the case of unbounded “optimal”
solutions when the primal two phase method is applied.

This case may be illustrated by the following

Example: Consider the linear programming problem

 P: Max z = 2x1 + x2
 s.t. x2 ≥ 3
 x1 + x2 ≥ 2
 x1 + x2 ≤ 1
 x1, x2 ≥ 0

with a tableau representing the initial dual feasible solution

T1: x1 x2 S1 S2 S3 1
 0

−1
1

−1
−1
1

1
0
0

0
1
0

0
0
1

−3
−2
1

 2 1 0 0 0 0

After one tableau transformation, we obtain

212 5 Extensions of the Simplex Method

T1: x1 x2 S1 S2 S3 1
 1

1
0

0
1
0

1
0
0

−1
−1
1

0
0
1

−1
2
−1

 1 0 0 1 0 −2

Although in the pivot-eligible first row, a pivot element, namely a14 < 0 exists, the
third row is also pivot-eligible and no pivot element exists; hence the procedure
terminates with the conclusion that the problem has no feasible solution.

In addition to the dual simplex method described above, many other simplex-
based methods exist. Most prominently, there are the primal dual simplex method
first described by Dantzig et al. (1956), the popular revised simplex method with
the added and space-saving feature of the product form of the inverse, Ziont’s
(1969) criss-cross method and many others. They are of mostly technical interest
and we refer reader to the appropriate literature, e.g., Eiselt et al. (1987), Rardin
(1998). Sierksma (2002), and Dantzig and Thapa (1997, 2003).

5.2 The Upper Bounding Technique
In most linear programming problems, many of the variables are bounded from
below or from above. Such additional restrictions are also referred to as secondary
constraints, as opposed to the “regular,” or primary, constraints. For instance,
lower bounds on variables may indicate that production should be at least some
minimal level and/or that it should not violate some capacity output.

Clearly, lower and upper bounding constraints can be included in a linear
programming as any other constraints. However, upper and lower bounding
constraints do not have to be included explicitly in the tableau. Instead, they can
be considered implicitly without increasing the size of the simplex tableau. This
chapter will concentrate on upper bounding techniques, as nonzero lower bounds
on variables can be dealt with by a simple variable transformation shown in
Chapter 8. We would also like to point out that much more elaborate schemes
exist for dealing with what are known as generalized upper bounding techniques
that were originally suggested by Dantzig and Van Slyke (1967) and elaborated
upon by Cooper and Steinberg (1974). Summaries can be found in Eiselt et al.
(1987) and Dantzig and Thapa (2003).

The upper bounding technique described here is based on work by Charnes and
Lemke (1954) and Dantzig (1954). To facilitate the discussion, assume that each
variable xj has an upper bound uj assigned to it, where uj := ∞ if no explicit upper
bound is known for a variable. The linear programming problem under
consideration is then

5.1 The Upper Bounding Technique 213

 P: Max z = cx
 s.t. Ax ≤ b
 x ≤ u
 x ≥ 0.

Suppose now that at some point during the calculations there is an indicator cs < 0
(if that does not exist, the tableau would represent an optimal solution and we are
done). We now choose the s-th column as the pivot column and have to ensure
that the entering variable xs does not exceed its upper bound and that all other
basic variables assume values between zero and their respective upper bounds. To
facilitate our discussion, all variables and parameters in the present tableau are
shown without, while those in the next tableau are shown with an asterisk.
Suppose now that the variable xk is presently in the basis in the i-th row of the
current tableau, i.e., xk = bi. We can then define

 q+ :=








> 0:min is
is

i
i

a
a
b , where q+ := +∞, if ais ≤ 0 ∀ i,

 q− :=








<
−
− 0:min is

is

ik
i

a
a

bu , where q− := +∞ if ais ≥ 0 ∀ i, and

 ε := min {us, q+, q−}.

Note that us, q+, q− ≥0, which implies that ε ≥ 0. We now have to consider four
cases.

Case 1: ε = +∞, i.e., us = q+ = q− = +∞. As us = +∞, the entering basic variable
does not have a finite upper bound, and as q+ = q− = +∞, we can conclude that ais
= 0 ∀ i. Therefore, increasing the value of the entering variable as much as desired
will not affect the other basic variables, so that unbounded “optimal” solutions
exist.

Case 2: ε = us < +∞. Define sx′ as the slack in the upper bound constraint xs ≤ us,
so that x := us′ s − xs, or, equivalently, xs = us − sx′ . The solution in the current

tableau can then be expressed as ∑ =•
j

jj x ba or ∑
≠

• =+
sj

jjs xx ba•sa , such that

 , or baa =+′− ∑
≠

••
sj

jjsss xxu)(

 . ∑
≠

••• −=+′−
sj

ssjjss uxx abaa

The above transformation increases the value of xs to its upper bound, while
leaving the basis formally unchanged. We will now show that all new right-hand
side values b , i = 1, …, m, are nonnegative and that none of these sisii uab −=*

 5 Extensions of the Simplex Method 214

values exceeds its respective upper bound. Recall that xk = bi, i.e., xk is basic in the
i-th row. Then there are three possibilities: the parameter ais is either positive,
negative, or zero. We consider each possibility in turn.

 (i) ais > 0. Since us = ε ≤ q+ ≤
is

i

a
b , it follows that

 b = b*
i i − aisus ≥ bi − ais 0=

is

i

a
b and that

 b = b*
i i − aisus ≤ bi ≤ uk, and hence 0 ≤ b ≤ u*

i k.

 (ii) ais < 0. Since us = ε ≤ q− ≤
is

ik

a
bu

−
− , it follows that

 b = b*
i i − aisus ≤ bi − ais k

is

ik u
a

bu
=

−
− and that

 b = b*
i i − aisus ≥ bi ≥ 0, and hence 0 ≤ b ≤ u*

i k.

 (iii) ais = 0. Then = b*

ib i − aisus = bi ∈ [0, uk] and hence 0 ≤ ≤ u*
ib k.

Due to the fact that cs < 0, the new objective function value is z* = z − csus ≥ z
(and z* > z for us > 0).

Case 3: ε = q+ < +∞. The case corresponds to the regular primal simplex method.

Assume that the minimum ratio is obtained for i = r, i.e., q+ =
rs

r
a
b

is

i

a
b

≤

with , so that a

i∀

0>isa rs is the pivot element. We now perform a regular tableau
transformation. The new tableau will then contain a basic solution and its r-th

right-hand side value is . On the other hand, 0* ≥=
rs

r
r a

bb +== q
a
b

rs

r
r
*b ≤ uε= s,

so that 0 ≤ b ≤ u*
r s. Consider now the i-th row, i ≠ r, in which xk is basic. As in

Case 2, there are three possibilities.

 (i) ais > 0. In this case,
rs

r
isii a

bab −=*b ≤ bi ≤ uk, since ais, br, and ars are

all nonnegative. Furthermore, since
rs

r

a
b = q+ ≤

is

i

a
b , it follows that

rs

r
isii a

babb −=* ≥
is

i
isi a

bab − = 0, and hence 0 ≤ ≤ u*
ib k.

5.1 The Upper Bounding Technique 215

 (ii) ais < 0. In this case,
rs

r
isii a

bab −=*b ≥ bi ≥ 0, since ais < 0, ars > 0,

and br ≥ 0. Due to the fact that
rs

r

a
b = q+ = ε ≤ q− ≤

is

ik

a
bu

−
− , we obtain

rs

r
isii a

babb −=* ≤ ku
is

ik
isi a

buab =
−
−

− , and hence 0 ≤ b ≤ u*
i k.

 (iii) ais = 0. Then
rs

r
isii a

babb −=* = bi ∈ [0, uk] and hence 0 ≤ ≤ u*
ib k.

Since cs < 0, we can conclude that z* = z −
rs

r
s a

bc ≥ z (and z* > z if br > 0, i.e., in

the case of primal nondegeneracy).

Case 4: ε = q− < +∞. Assume that the minimum ratio is obtained for i = ν and that

xµ is basic in the ν-th row, i.e., q− = 0: <∀
−
−

≤
−

−

ν

νµ
is

is

ik

s
ai

a
bu

a
bu

µ

 and xµ = bν. Set

now , so that xµµµ −=′ xux µ = uµ – ′x . The solution in the current tableau can

then be expressed as or ∑ =•
j

jj x ba ∑
µ≠

•µµ• =+
j

jj xx baa , so that

 or baa =+′− ∑

µ≠
•µµµ•

j
jj xxu)(∑

µ≠
µµ••µµ• −=+′−

j
jj uxx abaa .

Since xµ was in the basis in the ν-th row, it follows that aνµ = 1. After replacing xµ
by , we find that the column that belongs to µ′x µ′x is −eν, i.e., there is presently no
basic variable in the ν-th row. Now aνs < 0 is selected as pivot, so that xs enters the
basis and xν leaves, so that the new tableau still contains a full basis. Consider now
the ν-th row, in which xs is basic. Its right-hand side value is

ss a
ub

a
ua

b
ν

µν

ν

µνµν
ν

−
=

−* b
= = q− = ε ≤ us. On the other hand,

sa
ub

ν

µν
ν

−
=*b =

sa
u

ν

−x µµ ≥ 0, so that 0 ≤ ≤ u*
νb s. Consider now the i-th row with i ≠ ν, in which xk

is basic. As before, there are three possibilities that are treated separately.

 (i) ais > 0. Since ,
is

i

s a
bqq

a
b

≤≤==
−

u − +− ε
ν

νµ it follows that b *
i ib=

0≥−≥
−

−
is

i
isi

s
is a

bab
a

ub
a

ν

µν and = b*
ib i − aisq− ≤ bi ≤ uk, hence 0 ≤ ≤ u*

ib k.

 5 Extensions of the Simplex Method 216

 (ii) ais < 0. Since b and as 0* ≥≥−= −
iisii bqab

is

ik

s a
bu

a
bu

−
−

≤
−

−

ν

νµ , we

obtain k
is

ki
isi u

a
ubab ≤

−
−≤

s
isii a

ub
abb

−
−=

ν

µν* , and hence 0 ≤ b ≤ u*
i k.

 (iii) ais = 0. Now b = b−−= qab isii

*
i ∈ [0, uk], and hence 0 ≤ b ≤ u*

i k..
Since cs < 0, we can conclude that the new value of the objective function is z* = z

− cs
sa
ub

ν

µν − = z −csq− ≥ z (and z* > z for bν < uµ).

Now all possible cases have been examined and the solution procedure can be
stated in algorithmic form. Only those steps that relate directly the upper bounding
technique will be described, all other steps are carried out according to the primal
simplex method. We also assume that all lower bounds have been transformed to
zero and that the s-th column has been chosen as the pivot column, so that cs < 0.

The Upper Bounding Technique
Step 1: Define

 q+ :=








> 0:min is
is

i
i

a
a
b , where q+ := +∞, if ais ≤ 0 ∀ i,

 q− :=








<
−
− 0: is

is

ik
i

a
a

bumin , where xk = bi (i.e., xk is basic in row i), and

where
 q− := +∞ if ais ≥ 0 ∀ i, and ε := min {us, q+, q−}.

Step 2: Is ε = +∞?
 If yes: Stop, unbounded “optimal” solutions exist (Case 1).
 If no: Go to Step 3.

Step 3: Is ε = us?
 If yes: Set sx′ = us − xs and proceed with the primal simplex method.
 If no: Go to Step 4.

Step 4: Is ε = q+?

 If yes: Assuming that q+ =
rs

r

a
b , choose ars as the pivot element, perform

 a tableau transformation, and proceed with the primal simplex
 method.
 If no: Go to Step 5.

5.1 The Upper Bounding Technique 217

Step 5: Assume that q− =
sa
bu

ν

νµ

−

−
, where xµ = bν (i.e., xµ is basic in row ν). Set

 µ′x = uµ − xµ. choose aνs as the pivot element, perform a tableau
 transformation, and proceed with the primal simplex method.

In order to illustrate the upper bounding technique, consider the following

Example: Let the following linear programming problem be given:

 P: Max z = 3x1 + 2x2 + 9

 s.t. 15x1 + 5x2 ≤ 40
 6x1 + 6x2 ≤ 18
 10x1 + 5x2 ≤ 25½
 x1 ≤ 2
 x2 ≤ 2½
 x1, x2 ≥ 0.

The initial tableau is shown in

 T1:

x1 x2 S1 S2 S3 1
15 5 1 0 0 40
6 6 0 1 0 18

10 5 0 0 1 25½
−3 −2 0 0 0 9

For expository reasons we choose the x2 column as the pivot column. Now u2 =
2½, q+ = min { 5

½25
6

18
5
40 ,, }, q− = ∞, so that ε = min {2½, 3, ∞} = 2½. As ε = u2

(Step 3 in the algorithm), we perform the variable transformation 2x′ = u2 − x2 =
2½ − x2, and obtain the second tableau

 T2:

x1 2x′ S1 S2 S3 1
15 −5 1 0 0 27½
6 −6 0 1 0 3

10 −5 0 0 1 13
−3 2 0 0 0 14

Now u1 = 2, q+ = min { 10

13
6
3

15
½27 ,, } = ½, q− = ∞, and hence ε = {2, ½, ∞} = ½. As

q+ determines ε, a regular simplex step will be carried out. Pivoting is performed
on the circled element in the tableau T2, resulting in tableau

218 5 Extensions of the Simplex Method

 T3:
x1 2x′ S1 S2 S3 1

0 10 1 − 2
5 0 20

1 −1 0 6
1 0 2

1

0 5 0 − 3
5 1 8

0 −1 0 2
1 0 15½

At this point, u2 = 2½, q+ = min { } 5
8

5
8

10
20 , = , q− = min = 1½, thus ε =

min { }2
1

5
3

2
1 1,1,2 = 1½. Since ε is determined by q−, we first have to make an

upper bound substitution for x1, so that 1x′ = u1 − x1, i.e., 1x′ = 2 − x1. As a result
we obtain the incomplete tableau









−−
−

1))(
½2

 T4:

1x′ 2x′ S1 S2 S3 1

0 10 1 − 2
5 0 20

−1 −1 0 6
1 0 − 2

3

0 5 0 − 3
5 1 8

0 −1 0 2
1 0 15½

After one standard simplex iteration with the pivot circled in the tableau T4 we
obtain tableau

 T5:

1x′ 2x′ S1 S2 S3 1

−10 0 1 − 6
5 0 5

1 1 0 − 6
1 0 1½

−5 0 0 − 6
5 1 ½

1 0 0 3
1 0 17

It is apparent that the tableau T5 satisfies the criterion for optimality. However,
since its solution is expressed in terms of the variables x1′ and 2x′ , we have to
recreate the values of the original variables, which results in 1x = 2 − = 2 and 1x′

2x = 2½ − = 1, so that 2x′ z = 17.

5.3 Column Generation 219

5.3 Column Generation
Many practical problems lead to linear programming models of a large scale with
thousands or even tens of thousands of rows. Worse, the number of columns (i.e.,
variables) may easily reach millions or even billions, as we will demonstrate in the
examples below. Invariably, larger scale problems possess special structures and
have coefficient matrices with a sparsity of only a few percent, often just a
fraction of a percent. The revised simplex method is then preferable to the regular
simplex methods since it has lower storage requirements and is computationally
more efficient. However, for really large-scale problems, this is not sufficient and
more specialized techniques are needed.

Considering the computational capability at the time, the decomposition method
by Dantzig and Wolfe (1960, 1961) held the promise of being able to solve quite
large linear programming problems quickly and efficiently. But the method turned
out to be less successful numerically than had first been hoped, while at the same
time the simplex method had been improved (e.g., by virtue of the inverse in
product form, LU decomposition, etc.) and the major linear programming software
packages refined to such an extent that the Dantzig-Wolfe decomposition method
was never really able to compete. The decomposition or partitioning method of
Benders (1962), which can be seen as a dual to the Dantzig-Wolfe method, met
with the same fate. Although interesting in themselves due to their theoretical
properties and economic interpretation, we will not describe these methods here
and instead refer to the original contributions or Eiselt et al. (1987) for a full
treatment.

A method that has withstood the test of time and which appears to be the only
workable strategy for very large scale problems with millions or even billions of
columns is the column-generation technique which we describe below.

Consider a linear programming problem in canonical form as

 P: Max z = cx
 s.t. Ax ≤ b
 x ≥ 0,

where the number m of rows is moderately large, while the number n of columns
may be astronomical. Assume now that k > m (for some k << n) of the columns of
the matrix A have “somehow” been generated or are already known, forming the
[m × k]-dimensional submatrix Ak of A. We denote the corresponding subvectors
of c and x by ck and xk, respectively. We can then solve the simplified problem

 Pk: zMax kkk

k
xc

x
=

 s.t. Akxk ≤ b
 xk ≥ 0,

 5 Extensions of the Simplex Method 220

i.e., problem P restricted to the k columns under consideration. The result will be a
basic (feasible and) optimal solution .kx Note that at most m of the components of

kx are nonzero and that kx will yield a feasible, but potentially nonoptimal,
solution to the original problem P. Let now the m-dimensional row vector ku
denote an optimal solution to the dual of Pk; this can be found in the optimal
simplex tableau for Pk. Since kx is optimal for Pk, we know that the reduced cost
coefficients k

j
kk

jc •− au ≥ 0, where a denotes the j-th column vector of Ak
j•

k. If in

addition, j
k

j •− auc ≥ 0 for all columns j in the original matrix A, then kx
constitutes an optimal solution to the original problem P as well. The basic idea of
column generation is now to consider the subproblem

 :PSUB

k j
k

j
SUB
kj

cz •−= auMin

where j ranges over all columns of the original problem P. If the optimal objective
function value SUB

kz of this subproblem is nonnegative, an optimal solution for P

has been found, otherwise SUB
kz < 0 and the corresponding variable xj can be

brought into the basis of the simplified problem Pk+1, having the variable xj in
addition to the variables of Pk. The procedure then continues with Pk+1 replacing Pk
and so forth, until an optimal solution to the original problem P has been found. It
is the generation of columns occurring when solving the problem P that has

given the procedure its name; a variety of techniques may be applied to

SUB
k

SUB
kz ,

depending on the particular problem at hand.

We will now describe the column generation procedure in algorithmic form. The
special technique for solving the subproblem P will vary, depending on the
particular application at hand. We initialize the method having selected k > m out
of the n >> k columns of the matrix A.

SUB
k

The Column Generation Technique

Step 1: Solve the simplified problem

 Pk: zMax kkk

xk
xc=

 s.t. Akxk ≤ b
 xk ≥ 0,

from which we obtain the optimal solution ., kk ux

5.3 Column Generation 221

Step 2: Solve the subproblem

 :PSUB

k j
k

j
SUB
knj

cz •
=

−= au
1,...,

Min ,

from which we obtain an optimal solution j with an optimal objective function

value SUB
kz .

Step 3: Is SUB

kz ≥ 0?

 If yes: Stop, k= xx : is an optimal solution to the original problem P.
 If no: Form an [m × (k+1)]-dimensional matrix Ak+1 by augmenting the
 [m × k]-dimensional matrix Ak with the row column j•a . Set
 k:= k+1 and go to Step 1.

We will illustrate the technique by solving a simple example of the celebrated
cutting stock problem that was first described by Gilmore and Gomory (1961,
1963). Detailed accounts are provided in Chapter 2 of this volume, further details
are can be found in Sierksma (2002) and Eiselt et al. (1987).

Example: Assume that a company produces and sells metal rods of three different
lengths, viz., 3, 4, and 5 feet. These rods are obtained by cutting 15-foot rods
which the company has in stock. The cutting can be accomplished by cutting
according to nine different cutting patterns as shown in Table 5.2. These patterns
have been chosen according to some rule, e.g., their property not to produce
inordinate amounts of waste. The table indicates the number of rods produced by a
pattern.

Table 5.2

Pattern
number 1 2 3 4 5 6 7 8 9

3-foot rods in
pattern 5 3 3 2 2 1 1 0 0

4-foot rods in
pattern 0 1 0 2 1 3 0 2 0

5-foot rods in
pattern 0 0 1 0 1 0 2 1 3

In real life, the number of patterns will be very large (millions of numbers of
patterns even for modest numbers of different rod sizes), especially as the size of
the raw material gets large. Assume now that the customers demand twenty 3 ft
rods, thirty 4 ft rods, and ten 5 ft rods. The objective is now to cut the existing
rods so as to satisfy customer demand while, at the same time, cut as few existing
rods as possible.

 5 Extensions of the Simplex Method 222

Denoting by xj the number of 15 ft rods that will be cut according to pattern j, j =
1, …, 9, the problem can then be formulated as

 P: Min z = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
 s.t. 5x1 +3x2 + 3x3 + 2x4 + 2x5 + x6 + x7 ≥ 20
 x2 +2x4 +x5 +3x6 +2x8 ≥ 30
 x3 +x5 +2x7 + x8 +3x9 ≥ 10
 xj ≥ 0 ∀ j = 1, …, 9,

where the objective function minimizes the usage of 15 ft. rods, and the three
structural constraints express the demand for 3 ft, 4 ft, and 5 ft rods.

Due to the nature of the problem, the variables xj need to be integer, a requirement
that we will ignore in order to simplify our discussion. In their original
contribution, Gilmore and Gomory deal with the cutting of paper rolls and their
contribution includes a discussion concerning how fractional rolls could be cut.
Here, we simply round our variables up to the nearest integer.

Assume now that the patterns 1, 2, 3, and 4 have been chosen to be included in the
solution, so that k = 4. The simplified problem is then

 P4: Min z4 = x1 + x2 + x3 + x4
 s.t. 5x1 + 3x2 + 3x3 + 2x4 ≥ 20
 x2 +2x4 ≥ 30
 x3 ≥ 10
 x1, x2, x3, x4 ≥ 0.

Solving P4 results in the optimal solution 04

2
4

1 == xx , 104
3 =x , and 154

4 =x ,

and the optimal dual solution is 1½,,0 4
3

4
2

4
1 === uuu , with 254 =z , so that

twenty-five 15 ft rods need to be cut, ten by using pattern 3 and fifteen by using
pattern 4.

The subproblem is then

 PSUB: j

SUB
j

z •
=

−= au4
9,...,1

1Min .

It is apparent that the only requirement of a cutting pattern is that the total length
of the rods in the pattern cannot exceed 15 ft. Hence, any column a• = [a1, a2, a3]
must therefore satisfy 3a1 + 4a2 + 5a3 ≤ 15 (where a1 denotes the number of 3 ft
lengths cut from the available 15 ft rod, and similar for a2 and a3), so that the
subproblem can be reformulated as

5.3 Column Generation 223

 : SUBPa 32,,
½1Min

321

aazSUB
aaa

−−=

 s.t. 3a1 + 4a2 + 5a3 ≤ 15
 a1, a2, a3 ≥ 0 and integer.

The problem P is a so-called knapsack problem, i.e., an integer programming
problem with a single constraint, that has positive coefficients in the constraint.
Here, the unique solution to the problem P is [

SUB
a

SUB
a 321 ,, aaa] = [0, 0, 3], so that

SUBz = −2 < 0, generating the corresponding column a•9 = [0, 0, 3]T. Hence, the
new problem P5 is then

 P5: Min z = x1 + x2 + x3 + x4 + x9

 s.t. 5x1 + 3x2 + 3x3 + 2x4 ≥ 20
 x2 +2x4 ≥ 30
 x3 +3x9 ≥ 10
 x1, x2, x3, x4, x9 ≥ 0.

The solution to P5 is 05

3
5
2

5
1 === xxx , 155

4 =x , and 3
105

9 =x , while the dual

solution is === 5
3

5
2

5
1 and ½,,0 uuu ⅓, so that 5z = 18⅓ and nineteen 15-foot rods

need to be cut; fifteen by using pattern 4 and four by using pattern 9.

The subproblem is now

 : zSUBPa

321 ,,
Min

aaa
SUB = 1 − ½a2 − ⅓a3

 s.t. 3a1 + 4a2 + 5a3 ≤ 15
 a1, a2, a3 ≥ 0 and integer

and an optimal solution is],, 321 aaa[= [1, 3, 0] with SUBz = −½ < 0. The
corresponding column generated is therefore a•6 = [1, 3, 0]T, so that the new
problem P6 is

 P6: Min z = x1 + x2 + x3 + x4 + x6 + x9

 s.t. 5x1 + 3x2 + 3x3 + 2x4 + x6 ≥ 20
 x2 + 2x4 + 3x6 ≥ 30
 x3 +3x9 ≥ 10
 x1, x2, x3, x4, x6, x9 ≥ 0.

 5 Extensions of the Simplex Method 224

The solution to the problem P6 is 0,2 6
4

6
3

6
2

6
1 ==== xxxx , 3

106
9

6
6 ,10 == xx with

3
16 15=z . The dual solution is 3

16
315

46
25

16
1 ,, === uuu , and sixteen 15-foot rods

need to be cut, two using pattern 2, ten using pattern 6, and four using pattern 9.

Now the subproblem is

 z:PSUB

a
321 ,,

Min
aaa

SUB = 1 − 33
1

215
4

15
1 aaa −−

 s.t. 3a1 + 4a2 + 5a3 ≤ 15
 a1, a2, a3 ≥ 0 and integer

that has, among others, an optimal solution],, 321 aaa[= [2, 1, 1], so that SUBz =
0, therefore an optimal solution to the original problem has been found. The
optimal solution is the one stated above with sixteen 15-foot rods to be cut, two
using pattern 2, ten using pattern 3, and four using pattern 9. The total trim loss is
then 22 feet of rods (i.e., six 2-ft pieces and ten 1-ft pieces).

The best-known successful application of column generation is in the airline
industry, where airplane flight crews are assigned to sequences of flights. Savings
in the order of $13 million per year were reported by one major airline when
improved schedules were computed; for details, see Anbil et al. (1991). In
general, column generation procedures have found widespread applications in
software for solving large-scale linear programming problems in the area of
vehicle routing and scheduling.

6 POSTOPTIMALITY ANALYSES

As discussed in Chapter 1 of this volume, one of the assumptions in linear
programming is that all parameters are deterministic, i.e., assumed to be known
with certainty. Clearly, this assumption will rarely be satisfied in practice. One
popular way to get around the problem, i.e., dealing with uncertainty while
keeping the simple structure and efficient solution methods of linear
programming, are sensitivity analyses. In essence, sensitivity (sometimes also
called “what…if?”) analyses deal with the effects of parameter changes on the
optimal solution. Typical examples include analyses regarding the effects of price
changes on a cutting plan, changes in the demand structure on the allocation of
resources, and technological changes (such as faster throughputs in some
machines) on a production schedule.

Depending on the magnitude of the changes, some of these questions can be
answered on the basis of the information provided in the final tableau (or,
similarly, in the summary of results and the sensitivity analyses provided by the
solver). This information is, however, only available for relatively minor changes,
i.e., changes in the vicinity of the present solution. Major changes will require
sensitivity analyses that essentially necessitate to resolve the problem with the
new parameters. In case of sensitivity analyses that are based on the information
provided in an optimal tableau, it is essential that—with one exception that is
clearly labeled below—all analyses investigate the changes of the solution based
on the change of a single parameter. For instance, if the demand for a product may
be somewhat lower than expected, then we can analyze the change of such a drop
in demand, but not a simultaneous change of, say, the price of one of the products.

From a technical point of view, if there are a number of simultaneous changes that
are to be investigated and it has been decided to resolve the problem, it may be
beneficial to start the new optimization run not with a “cold start,” i.e., at the
origin as we would with a new and yet unsolved problem, but to use a “warm” or
“hot start,” defined as an optimization run that commences with the solution that
was optimal before the parameter changes were made. Such considerations are, of
course, only meaningful for models that are of very large size and take a very long
time to solve.

 6 Postoptimality Analyses 226

Investigations that deal with the changes in the optimal solution due to variation in
the data, are known by the name postoptimality analysis. Form the original work
of Manne (1953), other important contributions have been made by Gass and
Saaty (1955), Dinkelbach (1969), Gal (1979, 1984) and others. As we will see
from the discussions in this section, many important postoptimality questions can
be fully answered from the numerical information available in the final tableau of
the simplex procedure. Implicitly, these techniques make use of the relationships
between the primal and the dual as explained in Chapter 4.

Before discussing any of the many aspects of postoptimality analysis, some
important points should be made clear. Recall that, if not explicitly stated
otherwise, only one change at a time will be considered. The various cases which
we will discuss are those which appear in Figure 6.1.

Problem

Change of
coefficients

Structural
changes

Change of
right-hand

side bi

Change of
cost/profit

coefficient cj

Change of
technological
coefficient aij

Addition/
deletion of
a variable

Addition/
deletion of
a constraint

Figure 6.1

Note, however, that things are not as clear cut as Figure 6.1 may suggest. For
example, the removal of a constraint (a structural change) is equivalent to
changing the right-hand side value of that constraint so as to render it redundant (a
coefficient change). Still, the distinction is useful for most practical purposes.
Generally speaking, except for maybe the addition or deletion of individual
constraints, structural changes are best dealt with by re-solving the problem.

It is also important to distinguish between two types of postoptimality analysis,
namely sensitivity analysis and parametric programming. In sensitivity analysis,
the question is: what is the range over which a given parameter can change
without changing the optimal basis?, whereas in parametric programming the
question is: what happens if an actual change is such that it does not fall within the
above range? As an example, consider a production plan that includes a particular
item for which the given price was $5. Then, sensitivity analysis could indicate

6.1 Graphical Sensitivity Analysis 227

that for a price between, say, $3 and $6, the optimal basis and the production plan
would not change. Furthermore, it will determine what the solution is, given that
the new price falls within this interval. Parametric programming, on the other
hand, will answer questions such as: what happens if the price for the above
product is $13? What if it is $1?

Depending on the given parameters, a solution may be sensitive or insensitive to
changes. If the addition or subtraction of a few cents to the unit cost or price (or
the addition/subtraction of a few units to the right-hand side) does already make
the current optimal solution infeasible or not optimal, the model has a very
sensitive solution. On the other hand, if substantial changes can be made to the
input parameters with only small, if any, changes resulting—such as in the above
numerical example—then the solution is said to be insensitive to changes. Such
models are frequently referred to as robust or sometimes as stable.

6.1 Graphical Sensitivity Analysis
In this section we will introduce changes to the parameters bi and cj and
demonstrate what happens to the optimal solution if the right-hand side values and
the coefficients of the objective function increase and decrease.

Throughout this chapter, we will use ∆cj and ∆bi to denote the change of the j-th
unit cost/profit coefficient and the i-th right-hand side value, respectively.

First, consider changes of the right-hand side values given a set of constraints as
shown in Figure 6.2.

Given the above constraints I, II, and III, where constraint III presently has a
right-hand side value of b0, the shaded area indicates the set of feasible solution.
Applying the graphical solution technique, it is apparent that point B represents
the unique optimal solution. The optimal basis at point B includes the variables x1,
x2, and S1, the slack of constraint I.

If the right-hand side b0 were to be increased to b1, the hyperplane belonging to
this constraint would shift in parallel fashion and the new polytope has the
extreme points OAB1D1E with B1 as the new optimal solution. Note that the
optimal basis is still the same, namely x1, x2, S1, but the optimal solution has
moved form B to B1 so that the basic variables x1, x2, and S1 now have different
values. Increasing the right-hand side further to b2, the polytope is OACE and
point C is now the optimal solution. At this point we encounter primal
degeneracy, as the constraints I, II, and III all intersect at point C. The basis at this
point includes x1 and x2 as well as exactly one of the slacks S1, S2, and S3 with a
value of zero. Increasing the right-hand side further to b3 will render constraint III
redundant, so that the polytope remains OACE with the now nondegenerate
optimal solution C and basis x1, x2, S3.

 6 Postoptimality Analyses 228

Figure 6.2

7b

3b
2b

0b

4b

6b
5b

5A

5E

4E

1B

1D

1x
1b

2x

III

II

I E D
C

B

O A

On the other hand, starting with the original right-hand side b0 and decreasing it to
b4, the polytope changes to OAE4 with an optimal solution at the degenerate point
A and the basis x1, S1 and exactly one of the variable x2, S2 and S3. Further
reduction of the right–hand side value to b5 results in the polytope OA5B5 with the
optimal solution A5 and basis x1, S1, S2 (note that the constraints I and II have now
become redundant) while reducing b0 further to b6 has the feasible set degenerate
to the origin O, which, if course, is then also optimal. The basis at this point
includes S1, S2 and exactly one of the variables x1, x2, S3. Further reducing the
value of b0 to b7 generates a feasible set that is empty.

The above discussion suggests that in case of changes of a right-hand side value,
two cases have to be considered.

Case 1: If the i-th slack (or excess) variable Si (or Ei) is not binding at the present
optimal solution (i.e., the variable is in the optimal basis with a nonzero value),
then an increase (or decrease) of bi by some small increment ε will result in he
change of the value of the slack (excess) variable, while the values of the other
variables will remain unchanged.

6.1 Graphical Sensitivity Analysis 229

Case 2: If the i-th slack (or excess) variable is binding at the present optimal
solution, then, assuming nondegeneracy, any change of bi, regardless how small,
will result in a change of the solution. The basis, however, will not change within
a certain range. Since the polytope is modified by such a change, the existence of
feasible solutions is no longer guaranteed.

Consider now the change of the j-th unit cost or profit coefficient cj. Variations in
the value of cj will be illustrated by the diagram in Figure 6.3. the value of cj will be illustrated by the diagram in Figure 6.3.

()2
2

0
1 ,cc

()0
2

1
1 ,cc ()0

2
0
1 ,cc()0

2
2
1 ,cc

()1
2

0
1 , cc

III

D

C

O

B

A

x2

I

II

x1

Figure 6.3 Figure 6.3

The feasible set is shown in Figure 6.3 as the shaded area with the extreme points
O, A, B, C and D, given by the constraints I, II, III in addition to the nonnegativity
constraints. Observe that any change in an objective coefficient, regardless how
large, does not change the feasible set.

The feasible set is shown in Figure 6.3 as the shaded area with the extreme points
O, A, B, C and D, given by the constraints I, II, III in addition to the nonnegativity
constraints. Observe that any change in an objective coefficient, regardless how
large, does not change the feasible set.

Starting with the objective function Max z = c1x1 + c2x2, the initial the direction of
the objective function is (c1, c2) = . The unique optimal

solution point is B. Keeping c

0,with),,(0
2

0
1

0
2

0
1 >cccc

0
2

0,with),,(0
2

0
1

0
2

0
1 >cccc

0
22 constant at c and gradually decreasing the value

of c1, the gradient of the objective function moves in a counterclockwise direction.
At a gradient of (, the gradient is perpendicular to constraint II, so that all

Starting with the objective function Max z = c

), 0
2

1
1 cc), 0

2
1
1 cc

1x1 + c2x2, the initial the direction of
the objective function is (c1, c2) = . The unique optimal

solution point is B. Keeping c2 constant at c and gradually decreasing the value
of c1, the gradient of the objective function moves in a counterclockwise direction.
At a gradient of (, the gradient is perpendicular to constraint II, so that all

 6 Postoptimality Analyses 230

points on the line segment between the extreme points B and C are optimal. Any
further change will result in the optimal solution jumping to point C as the unique
optimal solution. Once the coefficient c1 reaches c , all points on the line segment
between the extreme points C and D are optimal. If the coefficient c

2
1

1 decreases
further, the solution D will remain the unique optimal solution for all finite values
of c1.

Suppose now that we keep the value of c1 constant at a value of c and reduce the
value of c

0
1

2
2

2. For smaller changes, point B remains the unique optimal point until c2
reaches a value of c , at which point A and B are alternative optima. Any further

reduction of c

1
2

2 makes A the unique optimum. Starting from the original and

increasing c

0
2c

2, B remains the unique optimum until c2 reaches , where B and C
are both optimal. Any further increase of c

c
2 makes C the unique optimum.

Note that by changing only c1, A and O can never become optimal, while if we
change only c2, the points D and O an never be optimal.

Assume now that the objective function of the problem is of the maximization
type. We also assume that the model has been optimized and the solution is
displayed in the space of variables that are nonbasic at optimum. Note that at this
point, the nonnegativity constraints restrict the feasible set to a subset of the
nonnegative orthant, while the gradient of the objective functions will always
point into the nonpositive orthant. We now distinguish between two cases.

Case 1: If the objective function coefficient of a nonbasic variable decreases, the
optimal solution will not change. To see that this result is intuitively obvious,
consider a production problem, in which the variables denote the quantities of
goods that we manufacture and sell. The decrease of a coefficient cj then indicates
that the profitability of the j-th item has decreased. Since the variable xj is, by
assumption, nonbasic and thus assumes a value of zero, the item was not
profitable to begin with and a further decrease in its unit profit will not result in
any changes.

If the objective function coefficient of a nonbasic variable xj increases, there is a
certain point where dual degeneracy occurs and thus an alternative optimal
production plan including xj exists. Any further increase in cj requires xj to be in
the basis and hence increases its production level from the original zero value.

Case 2: If the objective function coefficient of a basic variable increases by a
small amount, the basis and solution remain unchanged, while the value of the
objective function will increase. If the unit profit cj increases by more units than
specified in the range, the basis will change and, in the absence of primal
degeneracy, the solution will also change. More specifically, the value of the basis
variable xj will never decrease; if no primal degeneracy is present in the current

6.1 Graphical Sensitivity Analysis 231

optimal solution, its value will increase. Again, this result is intuitively clear if we
consider our production problem: if the price increase of a basic variable, i.e., a
variable that is sufficiently profitable to be included in the solution, the product
becomes even more profitable and its production level will never decrease. In fact,
it will usually increase at the expense of other, less profitable, items.

A sufficiently small decrease of an objective function coefficient of a basic
variable xj will not change the basis or the solution, but reduce the value of the
objective function. However, if the change is substantial enough, then the variable
xj will leave the basis, so that the value of the variable decreases to zero.

Having discussed the effects of changing right-hand side values and objective
coefficients graphically, the next two sections will examine the algebraic
calculations required to obtain exact numerical results for the case of changing
parameters. In general, sensitivity analyses are performed in two steps after the
optimal tableau has been obtained. In Step 1, we update the parameters with
respect to the given changes, and in Step 2, we determine the range of those
changes for which the current optimal tableau remains feasible and/or optimal. If a
parameter is changed to a value outside its range, we may use parametric
programming to determine the new optimal solution for some or all values of cj,
bi, or aij between –∞ and +∞. This will be Step 3.

x

I

II

x2

1

−1

5

1

III

x1 5

Figure 6.4

232 6 Postoptimality Analyses

Throughout the next sections, we will analyze the following linear programming
problem:

 P: Max z = −3x1 + 1x2
 s.t. −2x1 + 1x2 ≤ 4 (I)
 7x1 + 3x2 ≥ 21 (II)
 x1 ≤ 4 (III)
 x1, x2 ≥ 0.

A graphical representation of the problem is shown in Figure 6.4.

Assigning slack, excess, and artificial variables to the left-hand sides of the
constraints, so that their subscripts indicate the number of the constraint they are
associated with, the initial and final tableaus of the problem are then as follows.

Tinitial: x1 x2 S1 E2 A2 S3 1
 −2 1 1 0 0 0 4
 7 3 0 −1 1 0 21
 1 0 0 0 0 1 4

gof 3 −1 0 0 0 0 0
aof −7 −3 0 1 0 0 −21

Toptimal: x1 x2 S1 E2 S3 1

 0 1 13
7 13

2− 0 13
55

 1 0 13
3− 13

1− 0 13
9

 0 0 13
3 13

1 1 13
43

gof 0 0 13
16 13

1 0 13
43

6.2 Changes of the Right-Hand Side Values
This section illustrates how we can obtain information regarding the effects of
changes of the right-hand side values on the optimal solution, with no more
information than the original problem formulation and optimal tableau. For most
of this section, we assume that only a single right-hand side, the i-th, changes. As
usual, let the original right-hand values be [b1,…,bm]T and denote by ∆bi the
change of the i-th right-hand side, where ∆bi can be positive or negative.

If the change of the i-th right hand side value has been anticipated, we could
include an unspecified change ∆bi already in the initial tableau and carry this
change through the simplex iterations in the same way as all other elements are;
they are, however, not considered (i.e., assumed to be zero) for the selection of

6.2 Changes of the Right-Hand Side Values 233

pivot row and/or column. The final tableau is then optimal for the unperturbed
problem where ∆bi = 0. At his point it is then possible to determine the ranges for
the change. While such a procedure is certainly legitimate, it is also unnecessary,
as all the important information can be gleaned from the final tableau, even if the
changes were not anticipated.

If the anticipated change of the i-th right-hand side value ∆bi were to be included
in the initial tableau, the right-hand side would be as shown in Table 6.1

Table 6.1

1 1 ∆bi
b1
b2

.

.
bi–1

bi + ∆bi
bi+1

.

.

.
bm

or, writing it as two right-hand sides,

b1
b2

.

.
bi–1
bi
bi+1

.

.

.
bm

0
0
.
.
0
1
0
.
.
.
0

Notice that the right-hand side of the changes, i.e., the column under ∆bi, is a unit
vector. In particular, it is the same unit vector we can find in the slack, artificial,
or excess variable that was added to the i-th constraint (in case of an excess
variable, it is the negative of that vector). For simplicity, assume that the right-
hand side of the changes equals that of a slack variable. Denote the column under
that slack variable by a•n+i. In general, if two columns in a tableau are identical in
any one tableau, then they will stay identical after any number of iterations. This
means that the second right-hand side column for ∆bi does not have to be added to
the tableau explicitly since its entries are identical to the ones in column a•n+i.
Note that in case of the i-th constraint being an equation, the artificial variable Ai
must be kept in the tableau, otherwise sensitivity analyses on bi cannot be
performed without recalculating the appropriate information.

In order to formalize our discussion, we will define the following parameters:

 bi denotes the i-th component of the original right-hand side,
 is the i-th component of the right–hand side value in the optimal
 tableau,

*
ib

 a•n+i = ei is the column under the i-th slack or artificial variable in the
 original tableau, and

 6 Postoptimality Analyses 234

 denotes the column in the optimal tableau under the i-th slack or
 artificial variable (or the column under the excess variable with the signs
 exchanged).

*
in+•a

 ib∆ is the largest value of ∆bi, for which 0*
,

* ≥∆+ + iinkk bab ∀ k=1, …, m,
and
 ib∆ is the smallest value of ∆bi for which 0*

,
* ≥∆+ + iinkk bab ∀ k = 1, …, m.

Sensitivity Analysis: Right-Hand Side Values

Step 1: (Updating of the right-hand side column): The updated right-hand side is
 b*(∆bi) = b* + a ∆b*

in+• i.

Step 2: Determine the range];[ii bb ∆∆

0≥

for the changes by using the set of

 inequalities , k = 1,..., m, as well as the range*
,

* ∆+ + iinkk bab]; ii bb[, such

 that ib∆+*
ii bb = and .ib∆*

ii bb +=

If any specific change is given, we proceed as follows. If ib∆̂];[ˆ

iii bbb ∆∆∈∆ , then

the optimal basis remains optimal; set in the updated right-hand side
and the new optimal solution has been obtained. Otherwise, the former optimal
basis is no longer optimal. Setting in the updated right-hand side results
in at least one negative value. A step with the dual simplex method see Section
5.1) must be carried out to reoptimize the problem.

ii bb ∆=∆ ˆ:

ib∆= ˆ
ib∆ :

Example 1: Consider the problem introduced at the end of the previous section
and perform a sensitivity analysis on the first right-hand side. The slack variable
S1 was added to the first constraint, so that a = [1, 0, 0]*

1+•n
T and the updated

right-hand side vector is

 b .

13/1613/43

13/313/43
13/313/9
13/713/70

)(*

1

1

1

1

1























∆+
−−−−−
∆+
∆−
∆+

=∆

b

b
b
b

b

Feasibility now requires that all right-hand side values remain nonnegative, so that
the requirements are 70/13 + 7/13 ∆b1 ≥ 0, 9/13 − 3/13∆b1 ≥ 0, and 43/13 +
3/13∆b1 ≥ 0, or ∆b1 ≥ −10, ∆b1 ≤ 3, and ∆b1 ≥ −14⅓, so that ∆b1 ∈ [−10, 3] and
thus b1 ∈ [−6, 7]. In other words, as long as the first right-hand side value assumes

6.2 Changes of the Right-Hand Side Values 235

a value between −6 and 7, the basis shown in the optimal tableau, i.e., the basis
that consists of x1, x2, and S3, remains optimal. If it has been determined that the
first right-hand side value increases by, say, 2 units, then ∆ and the
updated right-hand side is

,21̂ =b























−
=























+
−−−

+
−
+

==∆

13
10

13
10

13
3
13
6

1

5

3

6

)2(13/1613/43

)2(13/313/43
)2(13/313/9
)2(13/713/70

)2(*)(* bbb ,

so that 13

10
313

6
213

3
1 3,6, === Sxx , and all other variables equal zero. The new

value of the objective function is .5 13
10=z

Suppose now that the change of the first right-hand side value is ∆b1 > 3. In that
case, the second right-hand side value becomes negative and we have to perform
an iteration with the dual simplex method. The pivot in the second row is in the E2
column and after one iteration we obtain tableau T1,

T1: x1 x2 S1 E2 S3 1
 −2 1 1 0 0 4
 −13 0 3 1 0 −9
 1 0 0 0 1 4
 1 0 1 0 0 4

Updating the right-hand side again with the S1 column we obtain

 b .























∆+
−−−−

∆+−
∆+

=∆

1

1

1

1

4

4
39

14

)(*

b

b
b

b

Requiring nonnegativity of all right-hand sides (but not the value of the objective
function, of course) results in 4 + ∆b1 ≥ 0 and −9+3∆b1 ≥ 0 or ∆b1 ≥ −4 and ∆b1 ≥
3, so that tableau T1 is optimal as long as ∆b1 ∈ [3, ∞ [, or, equivalently, as long
as b1 ∈ [7, ∞ [. Again, the optimal solution for any specific change of the first
right-hand side value within this range can easily be calculated by setting ∆b1 to
the appropriate value.

 6 Postoptimality Analyses 236

Back now to the optimal tableau Toptimal and the associated range ∆b1 ∈ [−10, 3].
Suppose now that the change is ∆b1 < −10. In that case, the first right-hand side
value in Toptimal will be negative and again, a dual simplex step is required.
Performing the step leads to the tableau

T2: x1 x2 S1 E2 S3 1
 0 − 2

13 − 2
7 1 0 −35

 1 − 2
1 − 2

1 0 0 −2

 0 2
1 2

1 0 1 6

 0 2
1 2

3 0 0 6

Again, the S1 column is used to update the right-hand side value, so that we obtain























∆+
−−−−
∆+
∆−−
∆−−

=∆

12
3

12
1

12
1

12
7

1

6

6
2

35

)(*

b

b
b
b

bb .

Applying the nonnegativity constraints to the right-hand sides results in −35 −

12
7 b∆ ≥ 0, −2 −½∆b1 ≥ 0, and 6 + ½∆b1 ≥ 0, resulting in ∆b1 ≤ −10, ∆b1 ≤ −4, and

∆b1 ≥−12, so that T2 is optimal within the range ∆b1 ∈ [−12, −10], or,
equivalently, as long as b1 ∈ [−8, −6]. For b1 < −8, the problem has no feasible
solution.

We can now summarize our findings in Table 6.2, where the original value of b1 =
4 corresponds to ∆b1 = 0.

The information in Table 6.2 can be used to plot the so-called perturbation
function as shown in Figure 6.5, where the optimal value of the objective function
is plotted as a function of the right-hand side value b1.

The slopes of the perturbation function in Figure 6.5 in the three intervals, in
which feasible solutions exists, are 2

11 , 13
31 , and 1, respectively (from left to

right). It can be shown in general that perturbation functions ()1bz are piecewise
linear and concave for maximization problems and piecewise linear and convex
for minimization problems.

6.2 Changes of the Right-Hand Side Values 237

Table 6.2

Range of ∆b1 Range of b1 Optimal solution
(basic variables

only)

Value of the
objective function

∆b1 ∈]−∞, −12]]−∞, −8] There exists no feasible solution
∆b1 ∈ [−12, −10] [−8, −6] 11 b½2 ∆−−=x

12
7

2 35 bE ∆+−=

13 b½6 ∆+=S

12
36 bz ∆+=

∆b1 ∈ [−10, 3] [−6, 7] 113
3

13
9

1 bx ∆−=

113
7

13
70

2 bx ∆+=

113
3

13
43

3 bS ∆+=

113
16

13
43 bz ∆+=

∆b1 ∈ [3, ∞ [[7, ∞ [12 4 bx ∆+=

12 39 bE ∆+−=

43 =S

14 bz ∆+=

()1bz

•

•

−6−8 0 7

7

−9

−12

•

b1

Figure 6.5

 6 Postoptimality Analyses 238

Also notice that the shadow price of the first constraint (i.e., the indicator under
the S1 column) equals the slope of the perturbation function in each of the
intervals. In other words, as long as the change is strictly within any of the
intervals, there is a unique shadow price associated with each resource. Consider
now any of the boundaries between two intervals. At any such point, the change
off the right-hand side value is such that it results in primal degeneracy, so that
there are two different bases with the same numerical solution that belong to the
solution. At that point, there are a right and a left shadow price for the resource
under consideration. In the above example, for ∆b1 = −10, we have the two
optimal bases (x1, E2, S3) and (x1, x2, S3), both with 31 =x and 2x = 0 with z =
−9. The left shadow price of the first resource at that point is 1½, while the right
shadow price equals 13

31 .

Example 2: A similar analysis can be performed when considering changes in the
second right-hand side value b2. Using the E2-column (as the artificial variable A2
is basic in the second row in the initial tableau and the E2 column is identical to it,
except for the signs), the updated right-hand side column is now

 b ,

13/113/43

13/113/43
13/113/9
13/213/70

)(*

2

2

2

2

2























∆−
−−−−−
∆−
∆+
∆+

=∆

b

b
b
b

b

from which we find that the feasibility conditions are ∆b2 ≥ −35, ∆b2 ≥ −9, and
∆b2 ≤ 43, resulting in ∆b2 ∈ [−9, 43] and b2 ∈ [12, 64]. For a specific change of
b2, e.g., a decrease of the second right-hand side value from the original 21 to, say,
15 (i.e., ∆b2 = −6), the original optimal basis remains optimal. The updated right-
hand side vector is then

 b =

)6(13/113/43

)6(13/113/43
)6(13/113/9
)6(13/213/70

)6(*)(* 2























−−
−−−−−
−−
−+
−+

−=∆ bb























−

13
10

13
10

13
3
13
6

3

3

4

,

so that the new optimal solution is 13

3
21)15(==bx , 13

6
22 4)15(==bx ,

13
10

23 2)15(==bS and all other variables equal zero, so that the new value of the

objective function is)15(2 =bz = 13
103 .

6.2 Changes of the Right-Hand Side Values 239

Using parametric programming, it is again possible to establish optimal solutions
for all values of b2 ∈]−∞, ∞ [. They are shown here in Table 6.3, where ∆b2 = 0
corresponds to the original value b2 = 21.

Table 6.3

Range of ∆b2 Range of b2 Optimal solution z-value
∆b2 ∈]−∞, −9]]−∞, 12] 42 =x

22 9 bE ∆−−=

43 =S

4=z

∆b2 ∈ [−9, 43] [12, 64]
213

1
13
9

1 bx ∆+=

213
2

13
5

2 5 bx ∆+=

213
1

13
4

3 3 bS ∆−=

213
1

13
43 bz ∆−=

∆b2 ∈ [43, ∞ [[51, ∞ [There exists no
feasible solution

—

Example 3: Perform a sensitivity analysis on the third right-hand side value b3.
The slack variable S3 was originally added to the third constraint and it is used to
evaluate the changes of the right-hand side column. The updated right-hand side
column is























−−−−−
∆+=∆

13
4

33

3

13/43
13/9
13/70

)(* bbb ,

so that feasibility is guaranteed as long as 43/13 + ∆b3 ≥ 0 or, equivalently, ∆b3 ≥
−43/13, so that ∆b3 ∈ [−43/13, ∞ [and b3 ∈ [9/13, ∞ [.

Another possibility to perform sensitivity analyses was described by Bradley et al.
(1977). In contrast to the standard sensitivity analyses performed above, it allows
simultaneous changes of the right-hand side values (or, similarly, of the objective
function coefficient, see the succeeding section). In order to initialize their 100
percent rule, we have to calculate the intervals of the allowable changes first, i.e.,
we have to compute], ii bb ∆∆[∀ i. This information is typically provided by the
computer program whenever we choose the “Sensitivity Analysis” option. Let
then B+ denote the set of right-hand sides that are to increase and B− as the set of
right-hand sides that are to decrease. Formally, we define B+ = {i: } and 0ˆ >∆ ib

240 6 Postoptimality Analyses

B− = {i: }. The proportion of the actual change to the allowable change in

that direction is then

0ˆ <∆ ib

i

i

b
b∆̂

∆
 for i ∈ B+ and

i

i

b
b

∆
∆̂ for i ∈B−. The requirement can

then be stated as follows:

Lemma 6.1: The optimal basis of a linear program will remain optimal as long as
the sum of percentage changes does not exceed 100%, i.e.,

 1
ˆˆ

≤
∆
∆

+
∆
∆ ∑∑

−+ ∈∈ Bi i

i

Bi i

i

b
b

b
b .

Example 4: Consider again the example above and suppose that the first right-
hand side may increase from the original 4 to 6, while the second right-hand side
may assume a value of 18 rather than the original 21. This means that and

, so that 1 ∈ B

2ˆ
1 =∆b

3ˆ
2 −=∆b +, while 2 ∈ B−. We then obtain 19

3
3
2 =+ −

− = 100%, so
that the conditions is satisfied and the optimal basis (but not the optional solution)
remains unchanged. If instead the first two right-hand sides were to change to 5
and 17, respectively, we obtain ∆ and , resulting in a sum of

percentage changes of

1ˆ
1 =b 4ˆ

2 −=∆b

9
7

9
4 =+ −
−

3
1 < 1, so that again, the optimal basis remains

unchanged. If, however, the first two right-hand side values were to change to 5½
and 16, respectively, we obtain ∆ and , so that the sum of

percentage changes is

½1ˆ
1 =b 5ˆ

2 −=∆b

118
19 >9

5
3

1 2
1

=+ −
− , so that the optimal basis will no longer be

optimal and the problem has to be reoptimized with the new right-hand side
values.

6.3 Changes of the Objective Function Coefficients
The question posed in this section and the procedure leading to its answer is
similar to that discussed in the previous section. Here, we examine the effects of
changes of the coefficients in the objective function on the optimal solution. For
simplicity, assume that we have a problem in which we are to maximize the

objective function ∑ . If we were to anticipate changes in one of the

objective function coefficients, say, the j-th, we could again use the slightly

modified objective Max ∑ , i.e., introducing a

slightly perturbed cost coefficient for the j-th variable.

=

n

k
kk xc

1

−

=

j

k

1

1
∑

+=

+∆++
n

jk
kkjjjkk xcxccxc

1
)(

6.3 Changes of the Objective Function Coefficients 241

Again, it is not necessary to introduce ∆cj in the initial tableau and carry it through
all the iterations. Instead, we can recreate the updated objective function from the
information obtained in the final tableau without adding anything to it. In order to
formalize matters along the lines of the previous section, we introduce the
following notation:

 cj denotes the coefficient of the variable xj, and
 is the value under x*

jc j in the final tableau (i.e., the opportunity cost of xj)

We can then update the objective function of the optimal tableau by the following
simple steps. First, we add the missing term ∆cj to the appropriate opportunity
cost in the final tableau. (Note that adding ∆cj in a tableau with a maximization
function means adding −∆cj to the opportunity cost, while in a tableau with a
minimization objective, we will add ∆cj to the expression). We now have to
distinguish between two cases.

Case 1: xj is a nonbasic variable. In this case c (required for

dual feasibility) and an interval for can be determined which
completes the sensitivity analysis.

0)(** ≥∆−=∆ jjjj ccc

];] *
jc∞−jc ∈∆

Case 2: xj is a basic variable that is in the basis in, say, the i–th row which
currently includes the elements . Adding ∆c*

•ia

1=

(*c

j to the j-th component in the
objective function destroys the formal definition of a basic variable, which
requires that c = 0 for all basic variables x*

k

+*

c∆(

k. In order to restore a complete basis,

we can pivot on the element . Note that the only changes from this tableau
to the next occur in the row for the objective function; in particular we obtain

. Again is the updated objective function and

requiring results in an interval

*
ija

jij caccc ∆=∆ •
)(

c jk ∀≥ 0)*

)jc∆

k];[jjj ccc ∆∆∈∆ , which completes
the sensitivity analysis for this case.

The above discussion can be summarized in the following procedure:

Sensitivity Analysis: Objective Function Coefficients
(Maximization function)

Step 1: Is xj a basic variable?
 If yes: Go to Step 2.
 If no: Subtract ∆cj from c and determine the interval ∆ . *

j];] *
jj cc ∞−∈

 6 Postoptimality Analyses 242

Step 2: Determine the updated objective function , where xjij caccc ∆+=∆ •
**)(* j

 is in the basis in row i. Compute the interval];[jjj ccc ∆∆∈∆ by using

 the set of inequalities c as well as the interval kc jk ∀≥∆ 0)(*]; jj cc[,

 where jj cc ∆+*
jc = and jjj ccc ∆+= * .

This procedure will be illustrated by means of the example introduced at the
beginning of the previous section. For convenience, the optimal tableau Toptimal is
shown again below.

Toptimal: x1 x2 S1 E2 S3 1
 0 1 13

7 − 13
2 0 13

55

 1 0 − 13
3 − 13

1 0 9/13

 0 0 13
3 13

1 1 13
43

 0 0 13
16 13

1 0 13
43

Example 5: Given the same example as before, perform a sensitivity analysis on
the variable x1. In order to do so, we first have to update the objective function by
subtracting ∆c1 in the c1 column in the tableau, followed by a simplex iteration
with the pivot element . The result is the objective function row 1*

21 =a

x1 x2 S1 E2 S3 1
0 0 113

3
13
16 c∆− 113

1
13
1 c∆− 0 113

9
13
43 c∆+

The optimality conditions are then 113

3 c∆−13
16 ≥ 0 and 113

11 c∆−13 ≥ 0, or simply

∆c1 ≤ 3
15 and ∆c1 ≤ 1, so that the solution in Toptimal, i.e., 13

5
213

9
1 5, == xx and

13
4

3 3=S with a value of the objective function of 13
43=z remains optimal as

long as ∆c1 ∈] −∞, 1] and hence c1 ∈]−∞, −2]. If ∆c1 > 1, then the indicator in
the objective function in the E2 column becomes negative and the variable E2 has
to be introduced into the basis. The only pivot-eligible element is in the third row,
so that the slack variable S3 leaves the basis. After one pivoting step we obtain the
tableau T3:

T3: x1 x2 S1 E2 S3 1
 0 1 1 0 2 12
 1 0 0 0 1 4
 0 0 3 1 13 43

 0 0 1 0 −1+∆c1 4∆c1

6.3 Changes of the Objective Function Coefficients 243

The optimal solution is now 12,4 21 == xx , so that z = 4∆c1. This tableau is
optimal as long as −1+∆c1 ≥ 0, i.e., T3 and its solution are optimal for ∆c1 ∈ [1, ∞
[or, equivalently, c1 ∈ [−2, ∞ [. This establishes optimal solutions for the entire
range of ∆c1.

Example 6: Performing a sensitivity analysis for c2, we update the objective
function by using the first row of the tableau, as x2 is in the basis in row 1. The
updated objective function row is then

x1 x2 S1 E2 S3 1
0 0 213

7
13
16 c∆+ 213

2
13
1 c∆− 0 13

5
13
4 53 + ∆c2

The optimality conditions are then 213

7
13 c∆+16 ≥ 0 and 213

21 c∆−13 ≥ 0, which lead

to ∆c2 ≥ −16/7 and ∆c2 ≤ ½, i.e., ∆c2 ∈ [− 7
22 , ½], so that and c2 ∈ [− ½1,7

21]. As
long as these conditions are satisfied, Toptimal and the solution therein remains
optimal.

Suppose now that ∆c2 < − 7

16 . In this case, the shadow price of S1 is negative and
S1 must be introduced into the basis in order to restore optimality. The unique
pivot in the S1 column is in the first row and one simplex iteration leads to tableau
T4.

T4: x1 x2 S1 E2 S3 1
 0 7

13 1 − 7
2 0 10

 1 7
3 0 − 7

1 0 3

 0 − 7
3 0 7

1 1 1

 0 27
16 c∆−− 0 7

3 0 −9

Tableau T4 will remain optimal, as long as 27

16 c∆−− ≥ 0, i.e., for all ∆c2 ≤ 7
22 .

In other words, tableau T4 with the solution ,0,3 21 == xx ,101 =S 02 =E and

13 =S , so that 9−=z as long as ∆c2 ∈]−∞, − 7
22], or, equivalently, c2 ∈] −∞,

− 7
21].

Back now to tableau Toptimal, which was optimal as long as ∆c2 ∈ [− 7

22 , ½]. If ∆c2
> ½, then the shadow price of E2 is negative and the variable E2 must be
introduced into the basis to restore optimality. The pivot element is in the third
row and one simplex iteration leads to tableau T3, except that the objective
function row is now

244 6 Postoptimality Analyses

x1 x2 S1 E2 S3 1
0 0 1+∆c2 0 221 c∆+− 0

which remains optimal as long as 1 + ∆c2 ≥ 0 and −1 + 2∆c2 ≥ 0, or, equivalently,
∆c2 ≥ −1 and ∆c2 ≥ ½, so that the tableau and its basis remains optimal as long as
∆c2 ∈ [½, ∞ [.

These results are summarized in Table 6.4, where ∆c2 = 0 corresponds to the
original value c2 = 1.

Table 6.4

Range of ∆c2 Range of c2 Optimal solution Value of the
objective function

∆c2 ∈
]−∞, − 7

22]]−∞, − 7
21]

,31 =x

,101 =S 13 =S
=z −9

∆c2 ∈ [− 7
22 , 2

1] [− 7
21 , 1 2

1] 13
5

213
9

1 5, == xx

=3S 13
43

=z 13
5

13
4 53 + ∆c2

∆c2 ∈ [2
1 , ∞ [[2

11 , ∞ [
12,4 21 == xx ,

433 =E
=z 12∆c2

7
21−

2
11

)(2cz

C6

c2

C −9

Figure 6.6

6.4 Sensitivity Analyses in the Presence of Degeneracy 245

Given this information, we could again construct the perturbation graph as shown
in Figure 6.6. The perturbation function has slopes of 0, 13

55 , and 12 in its three
linear pieces (from left to right) and it is thus convex.

With the help of Table 6.4 and Figure 6.6, we can now easily determine a solution
and its associated value of the objective function for any finite value of ∆c2 or c2.

For instance, if c2 were to equal −1, the first row of Table 6.4 applies, ∆c2 = −2
and the optimal solution is 0,3 21 == xx with z = −9. If c2 were to equal 3 (or,
equivalently, ∆c2 = 2), then the third row in Table 6.4 applies and the optimal
solution is 12,4 21 == xx with z = 12∆c2 = 24.

We conclude this section by applying the “100% rule” which is handled similarly
as the same rule applied to changes of the right-hand side values discussed in the
previous section. Define sets C+ = {j: } and C0ˆ >∆ jc − = {j: }. The
proportion of the actual change to the allowable change in that direction is then

0ˆ <∆ jc

j

j

c
c

∆

∆̂
 for j ∈ C+ and

j

j

c
c

∆

∆̂
 for j ∈C−. The requirement is then

Lemma 6.2: The optimal basis of a linear program will remain optimal as long as
the sum of percentage changes does not exceed 100%, i.e.,

 1
ˆˆ

≤
∆

∆
+

∆

∆
∑∑

−+ ∈∈ Cj j

j

Cj j

j

c
c

c
c

.

Example: Apply the 100% rule to the example above. Recall that the tableau
Toptimal remains optimal as long as ∆c1 ∈]−∞, 1] and ∆c2 ∈ [− ,2 7

2 ½]. Assume

now that the expected changes are ∆ and , so that C0ˆ
1 >c 0ˆ

2 <∆c + = {1} and C−

= {2}. Hence, in our example we obtain the feasibility condition 1
2

ˆ

1

ˆ

7
2

21 ≤
−
∆

+
∆ cc .

For instance, if ∆ ½ and −1. we obtain ½ + =1
ˆ c =∆ 2

ˆ c
7

16
1 = 15/16 < 1, so that the

change will leave the optimal basis unchanged.

6.4 Sensitivity Analyses in the Presence of Degeneracy
This section will address the issue of performing sensitivity analyses in the
presence of primal and dual degeneracy. We will conduct our discussion by means

 6 Postoptimality Analyses 246

of a numerical example. Throughout this section, we will be considering the
model

 P: Max z = 6x1 + 4x2
 s.t. 4x1 + 6x2 ≤ 24
 5x1 + 5x2 ≤ 24
 6x1 + 4x2 ≤ 24
 x1, x2 ≥ 0,

whose optimal simplex tableaus are

Topt1: x1 x2 S1 S2 S3 1
 0 3

10 1 0 − 3
2 8

 0 3
5 0 1 6

5− 4

 1 3
2 0 0 6

1 4
 0 0 0 0 1 24

and an alternative optimal solution is

Topt2: x1 x2 S1 S2 S3 1
 0 0 1 –2 1 0
 0 1 0 5

3 − 2
1 5

12

 1 0 0 5
2− 2

1 5
12

 0 0 0 0 1 24

as well as the same solution with a different basis shown in the tableau

Topt3: x1 x2 S1 S2 S3 1
 0 1 10

3 0 5
1− 5

12

 0 0 − 2
1 1 − 2

1 0

 1 0 5
1− 0 10

3 5
12

 0 0 0 0 1 24

It is apparent that the problem exhibits primal as well as dual degeneracy. We can
now perform sensitivity analyses as usual.

Example 7: Perform a sensitivity analysis on the objective function coefficient c1.

Using the standard updating techniques as discussed in Sections 6.2 and 6.3, we
obtain the following ranges:

6.4 Sensitivity Analyses in the Presence of Degeneracy 247

• The basis x1, S1, S2 with 0,4 21 == xx and z = 24 is optimal for
 ∆c1 ∈ [0, ∞[(via Topt1),

• the basis x1, x2, S1 with

5
12

25
12

1 , == xx and z = 24 is optimal for
 ∆c1 ∈ [–2, 0] (Topt2), and

• the basis x1, x2, S2 with

5
12

25
12

1 , == xx and z = 24 is optimal for

 ∆c1 ∈]0;3
10−[(via Topt3).

Worse, consider the tableau we obtain from Topt2 with ∆c2 < −2. It is shown as T1.

T1: x1 x2 S1 S2 S3 1
 0 0 1 –2 1 0
 0 1 2

1 5
2− 0 5

12

 1 0 − 2
1 5

3 0 5
12

 0 0 –1 2 0 24

which remains optimal for ∆c1 ∈]2,3

10 −−[. Finally, the tableau obtained from

Topt3 with ∆c1 < 3
10 is shown as T2.

T2: x1 x2 S1 S2 S3 1

 3
10 0 − 3

2 0 1 8

 3
2 1 6

1 0 0 4

 3
5 0 − 6

5 1 0 4

 − 3
10 0 3

2 0 0 16

The tableau T2 is optimal for ∆c1 ∈ [−∞, 3

10−]. The perturbation function is

shown in Figure 6.7 Part of that function, viz., the pieces between 3
10− and −2

and the piece between −2 and 0, are determined by two tableaus and bases each.

It is interesting to note that, as far as solutions are concerned,

• the solution 4and0 21 == xx with z = 16 is optimal for

 ∆c1 ∈] −∞, − 3
10],

• the solution 5
12

21 == xx with 15
1224 cz ∆+= is optimal for

 ∆c1 ∈]0,3
10−[, and

248 6 Postoptimality Analyses

• the solution 0and4 21 == xx with 1424 cz ∆+= is optimal for
 ∆c1 ∈ [0, ∞ [.

)(1cz

3
22

C24

C 16

c1 O 4 6

Figure 6.7

Information that stresses optimal solutions rather than optimal bases will be
somewhat harder to obtain from the sensitivity analyses provided by computer
packages, but it is much more useful to the decision maker, so that the extra effort
will be very much worthwhile.

6.5 Addition of a Constraint
This section will describe the addition of a constraint to an optimal tableau. In
fact, the same procedure could be applied to add a constraint to any tableau, but
almost all applications of this procedure start with an optimal tableau and solution.
Most applications are found when a model is built gradually from a simple
formulation with few variables and constraints to a highly complex structure with,
typically, thousands or even hundreds of thousands of variables. As long as the
model is small, analysts will simply re-solve the modified model. However, when
the model is very large, it may be worthwhile to add a constraint to the present
optimal tableau and continue with a “warm start.” Another application occurs in
integer programming, when constraints (so-called cutting planes) are gradually
added to the problem in the solution process.

6.5 Addition of a Constraint 249

Before discussing specifics concerning the addition of a constraint, we would like
to offer some general comments regarding the addition or deletion of constraints
and variables. If a constraint is deleted, the formulation gets “looser,” so that the
new optimal solution may be better than the present solution. A similar effect is
obtained when adding another variable to the model. A new variable provides the
possibility of new activities or courses of action (if this is not desired, we can
simply set the new variable to zero and are left with the previous solution), so that
the value of the objective function will either remain unchanged or will improve.
On the other hand, deleting a variable will eliminate possibilities and may result in
a deterioration of the objective function. Similarly, adding a constraint will
impose new restrictions on the model that may deteriorate the objective function.

The first step when adding a constraint is to determine whether or not the present
(optimal) solution satisfies this new constraint. If so, the solution remains optimal
and the process terminates. Suppose now that the present solution does not satisfy
the new constraint. The first task is then to add the constraint to the simplex
tableau, which will require to express the basic variables in the new constraint in
terms of nonbasic variables. This will result in a new row in the simplex tableau
that has a negative right-hand side value. Note that this will always be the case,
since, by assumption, the present solution violates the new constraint.

Once this is accomplished, we add the new constraint to our optimal tableau and
perform dual simplex iterations with the first pivot being chosen in the row that
belongs to the new constraint, which is the only pivot-eligible row.

This process will be illustrated by the following

Example: Consider again the linear programming problem at the end of Section
6.1. For convenience, the problem and its final tableau are restated here.

 P: Max z = −3x1 + 1x2
 s.t. −2x1 + 1x2 ≤ 4
 7x1 + 3x2 ≥ 21
 x1 ≤ 4
 x1, x2 ≥ 0.

The optimal tableau of the problem is then

Toptimal: x1 x2 S1 E2 S3 1
 0 1 13

7 − 13
2 0 13

55

 1 0 − 13
3 − 13

1 0 13
9

 0 0 13
3 13

1 1 13
43

 0 0 13
16 13

1 0 13
43

 6 Postoptimality Analyses 250

Suppose now that we are to add the constraint 3x1 + 2x2 ≤ 15 to the system. A
quick check reveals that the present solution does, indeed, satisfy this constraint,
so that Toptimal remains optimal and no further action is necessary.

Let now the new constraint be 3x1 + 2x2 ≤ 10. This constraint is violated by the
present optimal solution, so that we have to add it to Toptimal. In order to do so, it is
required that we express the basic variables x1 and x2 in terms of nonbasic
variables, as simply adding the constraint to the tableau would result in nonzero
elements under basic variables, thus destroying the unit vectors that must be found
in these columns. In this example, the second and first rows of the tableau read

 x1 − 13

9
213

1
213

1
113

3 =+− AES and 13
70

213
2

213
2

113
7

2 =+−+ AESx ,

where the artificial variable has been added for completeness. Solving the two
equations for x1 and x2, respectively, the new constraint can be written as

 10)(2)(213

2
113

7
13
70

213
1

113
3

13
9 ≤+−+++ ESES3 ,

which can be written as 13

37
213

7
113

5 −≤+ ES− . Adding a column with the new
slack variable S4 and this new constraint to the tableau Toptimal results in

T1: x1 x2 S1 E2 S3 S4 1
 0 1 13

7 − 13
2 0 0 13

55

 1 0 − 13
3 − 13

1 0 0 13
9

 0 0 13
3 13

1 1 0 13
43

 0 0 13
5− 13

7 0 1 − 13
37

 0 0 13
16 13

1 0 0 13
43

As the solution is no longer feasible, we perform one dual simplex step with the
new row as the pivot row, resulting in tableau T2.

T2: x1 x2 S1 E2 S3 S4 1
 0 1 0 5

3 0 0 5
7

 1 0 0 5
2− 0 0 5

12

 0 0 0 5
2 1 0 5

8

 0 0 1 − 5
7 0 1 5

37

 0 0 0 5
9 0 0 − 5

29

6.5 Addition of a Constraint 251

The new solution is 0and,6.1,0,4.7,4.1,4.2 432121 ====== SSESxx , so
that z = −5.8. Notice the dramatic deterioration of the value of the objective
function from about 3.3 to −5.8, even though the left-hand side of the new
constraint was 12.85 with the old optimal solution and only a minor decrease to no
more than ten was required.

While the above updating procedure was correct, it was nonetheless awkward. We
can, however, use simple pivoting to update the optimal tableau. Simply adding
the new constraint and the new slack variable S4 to Toptimal results in tableau T3
below.

T3: x1 x2 S1 E2 S3 S4 1
 0 1 13

7 13
2− 0 0 13

55

 1 0 13
3− 13

1− 0 0 13
9

 0 0 13
3 13

1 1 0 13
43

 3 2 0 0 0 1 10
 0 0 13

16 13
1 0 0 13

43

Notice that the columns of the basic variables x1 and x2 no longer are the required
unit vectors. In order to restore a proper tableau, we carry out two standard
simplex iterations with the pivots being the “1” elements in the basic columns.
Note that in each of these simplex iterations, only the coefficients in the new row
will change, thus allowing for easier calculations. In our example, the tableau that
results after two simplex iterations is the same as T1.

While the above procedure is certainly valid, the updating of the tableau is not
practical. Recall that the system of equations in standard form can be written as

 BxB+ NxN = b

with the basic and nonbasic matrices B and N and the vector of basic and nonbasic
variables, respectively. (For details, readers are again referred to the discussion in
Chapter 3 of this volume. The present solution is then obtained by premultiplying
the system of linear equations by B−1, the inverse of the basis matrix B, and
solving for xB, resulting in

 xB = B−1b − B−1NxN. (1)

Suppose now that the constraint to be added is ai•x = bi, which can be written as

 , (2) iii b=+ •• N

N
B

B xaxa

252 6 Postoptimality Analyses

where and are the appropriate parts of the left-hand side of the new
constraint. Replacing (1) in (2) results in

Ba •i
Na •i

 , bBaxaNBa B

N
NB 11)(−

••
−

• −=+− iiii b

where the term in brackets on the left-hand side indicates the new coefficients of
the nonbasic variables in the present tableau, and the updated right-hand side is
also available.

In our example, xB = [x2, x1, S3]T, xN = [S1, E2]T, B = ,














 −

110
073
021

B−1 =
















−
−

1
0
0

13
1

13
3

13
1

13
3

13
2

13
7

, = [2, 3, 0], = [0, 0], and bBa •i
Na •i i = 10. The coefficients

of the nonbasic variables in the tableau are then

 = NB aNBa •

−
• +− ii

1], 13
7

13
5−[, and the right-hand side value is

 b = bBaB 1−

•− ii 13
37− . This is the desired result. Now the row can be

added and simplex iterations can be performed as required.

6.6 Economic Analysis of an Optimal Solution
To put the sensitivity analyses concepts to use, we will formulate a small
numerical example and provide a variety of managerial answers, indicating where
on the printout (with sensitivity option) can be found.

The model involves the manufacture of perfumes. In particular, there are three
types of perfumes that we may blend, viz., ODOOR, ODDHEUR, and
McSMELL. Each of the perfumes is sold in its own 1 fl.oz. bottle, and all of them
are blended from bergamot essence and musk, while oil is used as base. The
ingredients are available in certain quantities and at certain (predetermined) costs,
while the prices of the three products have been set at levels determined by the
marketing department. We assume that at the given prices, customers will
purchase any quantity we can manufacture. Detailed numerical information is
found in Table 6.5.

6.6 Economic Analysis of an Optimal Solution 253

Table 6.5

 ODOOR ODDHEUR McSMELL Availability
(fl.oz.)

Price
per

fl.oz.
Bergamot
essence .3 .2 .05 at most 2,400

fl.oz. $50

Musk .1 .4 .05 at most 600 fl.
oz. $80

Oil .6 .4 .9 unlimited
quantities $5

Sales price
per 1 fl.oz.

bottle
$40 $75 $15

In addition, it has been determined that we should at least make 200 bottles of the
prestigious perfume ODDHEUR in order to be mentioned in the appropriate
magazines. Furthermore, we should make a total of at least 4,000 bottles in order
to show presence in the market.

In order to formulate the problem, we define ODOOR, ODDHEUR, and
MCSMELL as the number of bottles of the respective perfumes that are made and
sold. Before formulating the model, we have to compute the unit profit
contributions of the three perfumes. Consider ODOOR. The sales price is $40 per
fl.oz., while the costs are calculated on the basis of its ingredients: 0.3 fl.oz.
bergamot essence at $50 per fl.oz. costing $15, .1 fl.oz. of musk at $ 80 per fl.oz.
costs $8, and .6 fl.oz. oil for $5 per unit, costing $3 for total unit costs of $26;
hence a unit profit of $14. The profit contributions of the other perfumes are
calculated similarly.

The model can then be formulated as

 P: Max z = 14ODOOR + 31ODDHEUR + 4MCSMELL

 s.t. .3ODOOR + .2ODDHEUR + .05MCSMELL ≤ 2,400
 .1ODOOR + .4ODDHEUR + .05MCSMELL ≤ 600
 ODDHEUR ≥ 200
 ODOOR + ODDHEUR + MCSMELL ≥ 4,000
 ODOOR, ODDHEUR, MCSMELL ≥ 0.

In this model, the first constraint restricts the total use of bergamot, the second
constraint limits the use of musk, the third models the bound on the second
perfume, and the fourth constrain ensures that the total output exceeds the
specified value.

 6 Postoptimality Analyses 254

The optimal solution with the options “Display the Optimal Tableau” and
“Provide Sensitivity Analyses” is shown below in a simulated printout that is
similar to that provided by many commercial packages.

SUMMARY OF RESULTS

VALUE OF THE OBJECTIVE FUNCTION 79,000.00

 DECISION VALUE AT OPPORTUNITY
 VARIABLE OPTIMUM COST

 ODOOR 5,200.0000 0.0000
 ODDHEUR 300.0000 0.0000
 MCSMELL 0.0000 3.0000

 SLACK/EXCESS CONSTRAINT VALUE AT SHADOW PRICE
 VARIABLE TYPE OPTIMUM
 CONSTRAINT 1: LE 800.0000 0.0000
 CONSTRAINT 2 LE 0.0000 140.0000
 CONSTRAINT 3 GE 0.0000 25.0000
 CONSTRAINT 4 GE 1,400.0000 0.0000

SENSITIVITY ANALYSES

COEFFICIENTS OF THE OBJECTIVE FUNCTION

VARIABLE LOWEST ORIGINAL HIGHEST
 ALLOWABLE ALLOWABLE
 VALUE VALUE VALUE

ODOOR 8.0000 14.0000 INFINITY
ODDHEUR −INF 31.0000 56.0000
MCSMELL − INF 4.0000 7.0000

RIGHT-HAND SIDE VALUES

CONSTRAINT LOWEST ORIGINAL HIGHEST
NUMBER ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

CONSTRAINT 1 1,600.0000 2,400.0000 INFINITY
CONSTRAINT 2 460.0000 600.0000 866.6667
CONSTRAINT 3 0.0000 200.0000 666.6667
CONSTRAINT 4 -INFINITY 4,000.0000 5,400.0000

6.6 Economic Analysis of an Optimal Solution 255

FINAL TABLEAU

VARIABLE ODOOR ODDHEUR MCSMELL S1 S2 S3 S4 RHS

CONSTRAINT 1 1.00 0.00 0.50 0.00 10.00 4.00 0.00 5,200
CONSTRAINT 2 0.00 1.00 0.00 0.00 0.00 -1.00 0.00 200
CONSTRAINT 3 0.00 0.00 -0.10 1.00 -3.00 -1.00 0.00 800
CONSTRAINT 4 0.00 0.00 -0.50 0.00 10.00 3.00 1.00 1,400

OBJECTIVE 0.00 0.00 3.00 0.00 140.00 25.00 0.00 79,000
FUNCTION

We will now discuss some of the many issues that can be addressed based on the
information provided in the printout. In particular, we will state the question
followed by two answers: one to an analyst, who is interested in where to find and
how to calculate the information, and the decision maker, whose interest concerns
the managerial implications.

Q1: What is the solution and how much will it net us?

A1 (to the analyst): We are looking for the values of the decision
variables and the value of the objective function. The required
information is found in the SUMMARY OF RESULTS as well as
in the final tableau. Since the latter is typically very large and
only supplied on demand, the concise summary of results is an
easier source.

A1 (to the decision maker): The optimal solution calls for the
manufacture and sales of 5,200 bottles of ODOOR, 200 bottles
of ODDHEUR, but no bottles of MCSMELL. Associated with
this solution is a profit of $79,000.

Q2: How much of each of the ingredients is used and where are the bottlenecks in
our production?

A2 (to the analyst): The usage of the first two ingredients—the
third resource is assumed to be ubiquitous—is expressed by the
first two constraints. All pertinent information can be found in
the summary of results. We can either take the values of the
three decision variables, insert them into the left-hand sides of
the first two constraints and calculate the resource usages that
way, or we simply subtract the number of unsused units (the
appropriate slack) from the number of units that are available.
For bergamot essence, we have originally 2,400 units and the

 6 Postoptimality Analyses 256

slack in the first constraint equals 800, so that we have used
1,600 fl. oz. in the process. Similarly, we start out with 600 fl.
oz. of musk and none of it is left over. This makes musk a
bottleneck in the process. We also notice that the excess
variable of constraint 3 equals zero, indicating that this
constraint is also tight, while constraint 4 shows an excess of
1,400 units.

A2 (to the decision maker): We are presently using all of the
musk and we are making the exact number of bottles of
ODDHEUR that are requested. Hence the limitations on the
availability of musk and the requirement to make at least 200
bottles of ODDHEUR are holding us back.

Q3: Let’s talk bergamot essence. If we could get some more, how much more
would we pay per fl. oz. of additional bergamot essence?

A3 (to the analyst): The question concerns a sensitivity analysis
on a right-hand side value. Since the slack variable associated
with this resource is positive, it is not a bottleneck (as already
elaborated in the previous question) and thus we would not buy
any additional quantities. Formally, the same answer is
provided by the shadow price, which, for the fist constraint,
equals zero.

A3 (to the decision maker): Presently, we have 800 fl. oz. of
bergamot left over, so there is no need to purchase any more.
However, if we can get a good deal on bergamot today, we may
use it in our production in the next planning period.

Q4: How about the musk? Is it worth getting any more of it? And if so, how much
would we be prepared to pay for additional quantities? You know, I have this
offer for 200 fl. oz. of musk, but they are asking for $110 per fl. oz. It sounds
outrageous to me, but hey, that’s the spot market. What should I do?

A4 (to the analyst): Again, the question deals with a sensitivity
analysis on a right-hand side value. However, in contrast to the
previous question, the slack variable that belongs to this
resource equals zero, indicating that it is fully used up. The
shadow price of this resource is $140, meaning that for each
additional fl. oz. of musk that were to be available to us, the
profit would increase by $140. The part of the printout that is
labeled “Right-hand side values” under the header “Sensitivity
Analyses” shows that this result holds true as long as musk is
available in quantities between 460 and 866.67 fl. oz. Outside of
these bounds, the basis will change and additional calculations

6.6 Economic Analysis of an Optimal Solution 257

are required to determine the new optimal solution and its
profit. Having originally 600 fl. oz. of musk available, an
additional 200 fl. oz. will not change the basis and each ounce
will result in a profit increase of (shadow price of musk) −
(money demanded per ounce) = 140 − 110 = $30. However,
since the constraint is binding at optimum, while the basis may
not change, the (managerial) solution will change for any
change of the availability of musk, regardless how small.
 In order to determine what happens if some additional ∆b2
= 200 fl. oz. of musk were offered to us, we either resolve the
problem with the new parameters or reconstruct the solution
with the help of the final tableau provided (as an option) on the
printout. Updating the right-hand side in the final tableau by the
column under the slack variable associated with the resource
called musk (i.e., S2), we obtain

 =  = .























2

1

E
S

ODDHEUR
ODOOR

z























∆+
∆−
∆+
∆+
∆+

2

2

2

2

2

10400,1
3800
0200
10200,5
140000,79

b
b
b

b
b























400,3
200
200
200,7
000,107

In other words, the new solution includes an additional 2,000
bottles of ODOOR, while the number of bottles of ODDHEUR
and MCSMELL does not change. Given this change, we have
now reduced our resources of bergamot essence to 200 fl. oz.,
while musk is still a bottleneck. The new profit is $107,000 −
(200) (110) = 85,000.

A4 (to decision maker): Musk is one of the bottlenecks in our
production. Actually, you could pay up to $140 per fl. oz. and
still come out ahead. As a matter of fact, you could get up to
266⅔ fl. oz. for that price, each ounce netting you an extra $30.
Beyond that, I’d have to do some more number crunching. In the
long run, though, we should stock up on musk oil, as it is usually
available for $80 per fl. oz.

Q5: All right, forget about the ingredients. Instead, I want you to focus on our
mass product MCSMELL. We are favoring the idea of possibly not making much
profit per unit, but having mass appeal and make our profit by selling as many
units as possible and MCSMELL is appealing in that context. It is disappointing
that it is not included in the solution. What would it take—as far as its price is
concerned—to include the product in the solution?

 6 Postoptimality Analyses 258

A5 (to the analyst): The question concerns the sensitivity
analysis of on the objective function coefficient of a variable
that is nonbasic in the optimal solution. There are two ways to
find the answer. The first is to look in the summary of results
and determine the opportunity cost of MCSMELL, which
happens to be $3. This means that the present price of the bottle
of $15 is too low to include the perfume in our production. More
specifically, its price is $3 short of the product becoming
profitable. The same result can be found in the sensitivity
analyses on the objective function coefficients on the printout.
There, the unit profit range is from −∞ to 7, which is a $3
increase over the present per-unit profit contribution of $4.

A5 (to the decision maker): At present, MCSMELL is not
profitable. however, if we were to raise its price by 20% from
$15 to $18 (or more), it will become profitable. Whether or not
our customers are prepared to pay that much is something I
don’t know. If you are serious about this possibility, let me know
and I will do some more calculations.

Q6: I wonder what would happen if we were to change the price of our popular
brand ODOOR. Can you tell me something about that?

A6 (to the analyst): We are talking about the sensitivity analysis
of an objective function coefficient. This time, however, the
corresponding decision variable is in the basis. Checking the
sensitivity analyses in case of changes of coefficients of the
objective function, we see that the original optimal solution
remains unchanged as long as the unit profit, which is originally
$14, remains between $8 and ∞. The upper bound is easily
explained: Given the original unit profit contribution of $14, we
are making 5,200 bottles. In other words, $14 makes it worth
our while to manufacture the product. If its profitability
increases, there is no reason for us to change making it.
However, if its profitability were to decrease, there comes a
point, at which it is no longer worthwhile to make the product
and our production plan would change. This happens when the
unit profit equals $8, i.e., a decrease of $6 from the original
$14.

A6 (to the decision maker): As far as increasing the price of
ODOOR is concerned, it will remain profitable. Whether or not
our customers will continue to demand ODOOR in the
quantities they have until now is something the marketing
department will have to find out. As far as price decreases are
concerned I can tell you that we should not change our

6.6 Economic Analysis of an Optimal Solution 259

production plan as long as the prices decreases by no more than
$6, i.e., as long as the sales price is $34 or above.

Q7: I have long since been toying with the idea to drop the requirement to make at
least 200 bottles of ODDHEUR. This will get us out of the specialty market, but
maybe that’s where we are headed anyway. What happens if we drop this
requirement?

A7 (to the analyst): It is apparent that if we drop a constraint,
the objective value cannot get worse and it usually improves.
From a technical point of view, dropping a constraint can be
accomplished by making it redundant. In this model, we achieve
this by reducing the right-hand side value of the third constraint
to zero, i.e., ∆b3 = −200. From the tableau we obtain the
updated right-hand side value as

 =  = ,























2

1

E
S

ODDHEUR
ODOOR

z























∆−
∆+
∆+
∆−
∆−

3

3

3

3

3

3400,1
1800
1200
4200,5
25000,79

b
b
b
b
b























000,2
600

0
000,6
000,84

meaning that without the lower bound on the number of bottles
of ODDHEUR, we will be making 6,000 bottles of ODOOR and
nothing of the others for a total profit of $84,000, up from the
$79,000 that we had originally.

A7 (to the decision maker): As you suspected, without the
requirement to make at least 200 bottles of ODDHEUR, we will
not make that perfume at all. Actually, we will make only
ODOOR, and 6,000 bottles of it. The profit is then $84,000, up
by $5,000. That means that each bottle of ODDHEUR that we
make decreases our profit by $25. We’d be much better off
without it. However, we do have to consider the dangers
involved in being a one-perfume company.

Q8: I understand that. Let’s get back to MCSMELL. As you know it is a mass
market product and I would like to make it even more so. Right now it consists of
5% bergamot essence, 5% musk oil, and 90% fill, i.e., oil. As you know, bergamot
and musk are expensive and oil is cheap. Can we get away with reducing the
content of bergamot and musk? In order for the perfume to maintain its distinctive
smell, we have to have equal quantities of bergamot and musk. I don’t want to
change the price of the product, so how can we change the composition of
MCSMELL so as to make it profitable?

 6 Postoptimality Analyses 260

A8 (to the analyst): Denote by y the quantity of each, bergamot
and musk, in each ounce of MCSMELL. The unit profit is then
the sales price minus the costs, i.e., 15 − 50y − 80y − 5(1 − 2y) =
10 − 120y. The opportunity costs of MCSMELL are $3,
meaning that the unit profit that is presently $4, has to be at
least $3 higher, i.e., $7. In other words, it is necessary that 10 −
120y ≥ 7 or y ≤ 0.025, i.e., half of the present content of
bergamot and musk. If the content of the perfume drops below
that level, the solution changes. For instance, if we include
0.024 fl. oz. of each, bergamot and musk, in MCSMELL and top
it up with oil, the unit cost of a bottle of MCSMELL are $7.88,
so that its unit profit is $7.12. Also, the coefficients of
MCSMELL in the first two constraints change from 0.05 to
0.024 and the new solution is obtained by resolving the
problem. The new solution includes no bottles of ODOOR, 200
bottles of ODDHEUR, and 21,666.67 bottles of MCSMELL with
a profit of $160,466.70. We can now delete the lower bound on
ODDHEUR and resolve the problem again, which will improve
the solution to no ODOOR, no ODDHEUR, and 25,000 bottles
of MCSMELL. The profit in this case is $178,000.

A8 (to the decision maker): If we cut the present content of
bergamot and musk in half (or even more), MCSMELL becomes
profitable. As an example, if we were to use 0.024, 0.024, and
0.952 fl. oz. of bergamot, musk, and oil, respectively, the unit
profit of MCSMELL is $7.12. If we do that, our production plan
will include no ODOOR, the mandatory 200 bottles of
ODDHEUR, and 21,666.67 bottles of MCSMELL, a dramatic
change from the previous solution. Also, the new profit has
increased by more than 100% to $160,466.70, certainly a strong
incentive to cheapen MCSMELL by changing its composition as
indicated. As a matter of fact, if we were to drop the restriction
that we have to make at least 200 bottles of ODDHEUR, the
optimal plan is to make 25,000 bottles of MCSMELL and
nothing else, thus having completely entered the budget market
and left the specialty niche. The profit would then be $178,000,
another 11% increase.

Final words by the decision maker: Thanks so much, Mr. Operations Researcher. I
think you have given great decision support, for which I will recommend you for a
promotion.

7 NON-SIMPLEX BASED SOLUTION METHODS

So far, we have concentrated on the simplex method as the solution technique of
choice for linear programming problems. While being extremely successful in
practice for the last half century, the simplex method is by no means the only
solution method for linear programming. Interestingly enough, the first alternative
solution technique to the simplex method, a method by Brown and Koopmans
(1951), was published in the same volume in which Dantzig presented his simplex
method in 1951.

Since then, a variety of methods have been suggested, none of which were able to
compete with the simplex method as far as computational speed and general
practicability was concerned. This changed in 1984, when Karmarkar (1984)
proposed a technique that has turned out efficient not only in the worst case, but is
also able to solve large-scale methods within a reasonable amount of time. This
section will review some of the non-simplex techniques that have been put
forward over the last 70 years.

From a formal point of view, consider a linear programming problem in canonical
form, which is, as usual, written in matrix notation as

 P: Max z = cx
 s.t. Ax ≤ b
 x ≥ 0.

The dual of problem P is then

 PD: Min zD = ub
 s.t. uA ≥ c
 u ≥ 0.

Results from duality theory (see Corollary 4.12) then assert that any optimal
solution (x, u) will satisfy the system of linear (in-) equalities

 7 Non-Simplex Based Solution Methods 262

 P*: Ax ≤ b
 x ≥ 0
 uA ≥ c
 u ≥ 0
 cx = ub

Any solution method can then either solve the problem P, its dual PD, or the
system P*. Whatever strategy the solution method uses, the primal and dual
solutions are either available directly or can easily be computed via
complementary slackness results.

7.1 Alternatives to the Simplex Method
The idea of the traversal method by Brown and Koopmans (1951) is fairly simple.
It works directly on the (primal) problem. It starts with some interior point x0 and
moves in the direction of c, i.e., the gradient of the objective function, through the
interior of the feasible set until it reaches its boundary at some point x' on some
hyperplane Hi. The method then determines a point x" with cx" = cx', such that x"
is located on a different hyperplane Hk, k ≠ i. If the points x' and x" are not already
optimal, such a point always exists. It is apparent that in three or more
dimensions, the point x" will not be unique. A new interior point x1 is then
determined as a linear convex combination of x' and x", i.e., x1 = λ x' + (1−λ) x".
The search then continues with this point and the procedure is repeated.

The procedure will be illustrated by the following

Example: Consider the linear programming problem

 P: Max 3x1 + x2

 s.t. 2x1 + x2 ≤ 5 (I)
 x2 ≤ 3 (II)
 x1 − x2 ≤ 1 (III)
 x1, x2 ≥ 0.

Suppose that the initial feasible solution is x0 = (⅔, 2) with cx0 = 4. Moving along
the gradient of the objective function leads to the point

 x' = x0 + sc = (⅔, 2)T + s(3, 1)T = 








+
+

s
s

12
33

2

with step length s. Since the new point must be feasible, we require that

7.1 Alternatives to the Simplex Method 263

 2(⅔+3s) + (2 + s) ≤ 5 or s ≤ 5/21 (via constraint I)
 2 + s ≤ 3 or s ≤ 1 (via constraint II)
 (⅔ + 3s) − (2 + s) ≤ 1 or s ≤ 7/6 (via constraint III)
 (⅔ + 3s) ≥ 0 or s ≥ − 2/9 (via x1 ≥ 0), and
 (2 + s) ≥ 0 or s ≥ −2 (via x2 ≥ 0).

x

x2

1

III I

5

1

5

0
•

x'

x1 •

• x''
c

II

x1

Figure 7.1 Figure 7.1

The largest possible value of s is then The largest possible value of s is then 21
5 , so that the point x' = 









+
+

s
s

12
33

2

 =












21
47
21
29

≈ is located on hyperplane I, i.e., constraint I is binding at x'. The

objective value at this point is cx' =









2381.2
3810.1

21
86 . Determining the point x" usually allows

many degrees of freedom. However, in two dimensions, this point is uniquely
determined as x" = ()84

71
84

155 , ≈ (1.8452, .8452), at which point the constraint III is
binding. The next interior point is then some linear convex combination of x' and
x", e.g., x1 = ½ x' + ½ x" = (271/168, 259/168)T ≈ (1.6131, 1.5417)T. The method

 7 Non-Simplex Based Solution Methods 264

will then proceed at this point. The first step is shown in Figure 7.1. Like many of
its successors, the method is plagued by slow convergence, particularly when the
shapes of the feasible sets are “long and narrow.” In such cases, successive points
will be located on a path that is zigzagging in a narrow cone that is part of the
feasible set.

Another attempt that allows movements through the interior of the feasible set was
first suggested by DeMarr (1983) and later elaborated upon by Eiselt and
Sandblom (1985, 1990). Interestingly, the external pivoting method “tricks” the
simplex method into moving through the interior even though the method is
designed to follow the boundary of the feasible set. As such, it can either be
applied to the primal or the dual problem. This is achieved by introducing an
additional “external” variable xext into the problem and create new “internal”
variables , so that the original variables are expressed as the sum of the new

internal and the external variable. In particular, we let x , with

weights w

jx′
ext

jjj xwx +′=

j ≥ 0 ∀ j. Clearly, there is a large degree of freedom for choosing the
weights. Observe that by introducing the external variable into the basis, all
variables xj for which the weight wj > 0, will have their values increased
simultaneously. More specifically, if the external variable were to increase from
its present value of zero to, say, one, then all variables whose columns were used
to generate the external column increase by wj. In other words, this method allows
us to increase the value of the variables for which positive weights have been
chosen simultaneously, so that their values increase in the same ratio to each other
as their weights. Since the ratios between the optimal values are unknown (if they
were known, we could move to the optimal solution in a single step), one
possibility is to approximate them by using wj = cj ∀ j, i.e., in the direction of the
gradient.

Formally, the linear programming in canonical form

 P: Max z = cx
 s.t. Ax ≤ b
 x ≥ 0

has been transformed into the problem

 P': Max z' = c(x' + wxext)
 s.t. A(x' + wxext) ≤ b
 x' + wxext ≥ 0,

or simply

 P': Max z' = cx' + cwxext
 s.t. Ax' + Awxext ≤ b
 x' + wxext ≥ 0.

7.1 Alternatives to the Simplex Method 265

Clearly, the column of the external variable is a linear combinations of the
generating internal columns, i.e., those that belong to variables with positive
weights. For simplicity, we replace the nonnegativity constraints in the problem P'
by the stronger individual constraints x' ≥ 0 and xext ≥ 0. This does not cause
problems, as each solution—including the optimal solution—can be expressed by
at least one solution that satisfies these stronger constraints as well.

The advantage of this approach is that it enables the user to move through the
interior of the feasible set to its boundary, rather than move along its boundaries,
thus potentially saving computational effort. Furthermore, the method can very
easily be incorporated in the existing software that uses the simplex method. The
disadvantage is that, due to its construction, the external column will create some
degree of dual degeneracy.

Example: Consider the same linear programming problem that was used to
illustrate the Brown-Koopmans approach. Its first tableau is

 T1:

x1 x2 S1 S2 S3 1
2 1 1 0 0 5
0 2 0 1 0 3
1 −1 0 0 1 1
−3 −1 0 0 0 0

Generating the external column with arbitrarily chosen weights w = (4, 1), we
obtain the augmented tableau

 T1':

1x′ 2x′ xext S1 S2 S3 1
2 1 9 1 0 0 5
0 2 2 0 1 0 3
1 −1 3 0 0 1 1
−3 −1 −13 0 0 0 0

Introducing the external column into the basis results in tableau

 T2:

1x′ 2x′ extx S1 S2 S3 1
−1 4 0 1 0 −3 2
− 3

2 3
8 0 0 1 − 3

2 2⅓

3
1 − 3

1 1 0 0 3
1 3

1

3
4 − 3

16 0 0 0 3
13 4⅓

 7 Non-Simplex Based Solution Methods 266

If desired, we could reconstruct the values of the original variables as x1 = x +
4x

1′
ext = 0 + 4(3

1) = 3
4 and x2 = x2′ + 1xext = 0 + 3

1 = 3
1 . As T2 is not yet optimal,

another iteration introduces 2x′ into the basis. The tableau is then

 T3:

1x′ 2x′ extx S1 S2 S3 1
− 4

1 1 0 4
1 0 − 4

3 2
1

0 0 0 − 3
2 1 3

4 1

4
1 0 1 12

1 0 12
1 2

1

0 0 0 3
4 0 3

1 7

This tableau is optimal, and the optimal solution can be determined as

2½)(40411 =+=+′= extxxx and 1½½122 =+=+′= extxxx , so that xc=z = 7.

x2

5

II

•
x2 1 c

•x
1

x1 x0 5 1

III
I

Figure 7.2

Note the dual degeneracy shown by the zero indicator under the variable . This
signifies that alternative optimal solutions exist. Introducing the variable x into

1x′

1′

7.1 Alternatives to the Simplex Method 267

the basis, the next tableau shows that x1′ = 2, x2′ = 1, and xext = 0, so that =1x 2
and 2x = 1, formally a different solution, even though the values of the original
variables are the same. Figure 7.2 shows the progression of the solutions from the
original solution to the optimum.

A different approach was taken by Murty (1986). His gravitational method is
modeled after a physical equivalent, using an idea from Fourier in the 1820s.
Again, the method works directly on the primal problem under consideration. In
particular, it first rotates the space of decision variables, so that the gradient points
directly downwards. (Actually, it is not necessary to perform such a rotation, it is
useful only for explanatory purposes). The method starts with an interior solution,
which is thought of as a ball of a liquid that follows the path of gravity. This
means that the ball will first fall onto one of the hyperplanes that bounds the
feasible set, and from that point on, it will follow a path along the hyperplanes that
define the feasible set to the lowest point. This point is the optimal solution.
Testing of this method on real-world problems is not available.

A graphical representation of the gravitational method is shown in Figure 7.3. The
initial solution is again x0, from where the ball of liquid drops to x1, from where it
follows the boundary of the feasible set down to the optimal solution at x2.

III

1 x0 5 C

x2

x2
C x1

I
c 5

x1 II

Figure 7.3

Another technique that is also based on a physical equivalent was proposed by
Eiselt and Sandblom (2000a). Their bounce method mimics the path of a ball that
bounces off the inside of the surfaces that define the feasible set. Ignoring friction,
the ball will also come to rest at the lowest point of the feasible set, which is the
optimum. One may view this as an extension of Murty’s gravitation method, given
that the ball does not bounce but only slides down the surfaces.

 7 Non-Simplex Based Solution Methods 268

The ellipsoid method, proposed by Khachian (1979) made quite a stir in the
scientific community. Its major contribution was that, for the first time, it was
proved that it was possible to solve linear programming problems in polynomial
time in the worst case. However, once it became implemented, it soon turned out
that the method, while making a significant theoretical contribution by performing
efficiently in the worst case, did not perform well on average and thus was not
suitable for the solution of linear programming problems in practice. Still, based
on its landmark contribution, we will briefly describe how the ellipsoid method
works. The ellipsoid method is designed to find feasible solutions to a set of
simultaneous linear equations efficiently, so it will have to be applied to the
problem P* as defined at the beginning of this chapter. Note that P* has either at
least one feasible solution, or no feasible solutions. If, say, the primal problem P
has unbounded “optimal” solutions, then the dual PD will have no feasible
solutions, so that P* will also have no feasible solutions.

This system can be suitably modified, so that it is equivalent to solving a system
of strict linear inequalities. For simplicity of notation, this system will be referred
to as Ax < b and the problem is solved, if a solution is found to this system.
Assume that A is an [m × n]-dimensional matrix and let all parameters aij and bi be
integers. We initialize the method with the point x0 = [0, 0, …, 0]T and a
hypersphere centered at x0 that is sufficiently large so as to include at least one of
the feasible points of the system (if at least one feasible point exists). Suppose
now that the initial point x0 is not feasible, otherwise the task of finding a feasible
solution has been accomplished and the algorithm terminates. Set now the
iteration counter k:= 0 and let the present ellipsoid—initially the hypersphere—be
Ek.

Since the present solution xk is not feasible by assumption, there exists at least one
violated constraint, say ai•xk ≥ bi, meaning that xk is located on the “wrong side”
of hyperplane Hi. We now shift the hyperplane in parallel fashion, so that it leads
through xk. This process results in the hyperplane Hi′ , which cuts the current

ellipsoid Ek into two parts: one part, say, that includes all feasible points in EkE+
k

(if any), and the other part is E , which does not include any feasible points. Let

now be a hyperplane that is parallel to H

k
−

iH ′′ i, which is tangent to kE . Then a new
ellipsoid Ek+1 with center xk+1 is constructed, such that the hull of Ek+1 includes the
intersection of H with Ei′

k and the intersection of Hi′′ with (note that EkE+
k+1 ⊃

). Then xkE+
k+1 is the new point, and the procedure is repeated if necessary. Figure

7.4 may explain the procedure.

The shaded area in Figure 7.4, bounded by the hyperplanes H1, H2, and H3
represents the set of feasible solutions, the origin is the initial point x0, and the
circle E0 is the initial ellipsoid. Since x0 satisfies the constraints that belong to H2
and H3, but violates the constraint represented by H1, the hyperplane H1 is shifted

7.1 Alternatives to the Simplex Method 269

in parallel fashion through x0, thus cutting E0 into two semicircles; E northeast

of and southwest of

0
+

1H ′ 0
−E 1H ′ . The intersections of 1H ′ and E0 are the points A

and B. We now shift the hyperplane H1 in parallel fashion in a northeasterly
direction until it is tangent to E0, this hyperplane is H1′′ and it touches the
ellipsoid E0 at the point C. The new ellipsoid E1 with its center at x1 is then
constructed, so that it includes the points A, B, and C on its hull and it completely
circumscribes the ellipsoid . 0

+E

''
1H

'
1H

x2

C
·

E1

x1

· H3A
·

H2H1x0

C x1

·
 B

E0

Figure 7.4

The next step will examine the point x1. Since this point satisfies the first two
constraints but violates the third, the hyperplane H3 will be shifted through x1,
cutting the ellipsoid E1 into two half ellipsoids and the procedure is repeated.

The main two issues are the size of the initial ellipsoid and the rate at which the
ellipsoids are shrinking. Clearly, while the initial ellipsoid must be sufficiently
large so as to include at least one feasible solution, it is desirable that it is as small
as possible, so as to speed up convergence. In order to determine the size of the
initial hypersphere, we need to determine the size of the binary encoding of the
problem. Given the [m × n]-dimensional matrix A and the m-dimensional column
vector b, the length of the encoding is

 7 Non-Simplex Based Solution Methods 270

L = .         4)1(2loglog||log||log 22
1

2
1 1

2 ++++++∑∑∑
== =

nmmnba
m

i
i

m

i

n

j
ij

This expression derives from the need to encode the size of the problem, all
coefficients in the matrix A including the signs, and the right-hand side vector b.
All coefficients are separated by signs. Specifically, let each symbol be either +,
−, 0, or 1. Consider now some given integer α. If α = 0, then a single symbol is
required for its encoding. Otherwise, we need  α2log symbols to express the
number plus an extra symbol for the sign. The problem P* can then be encoded by
first stating the numbers m and n (requiring   2log2 +m and   2log2 +n
symbols including the signs, respectively), the coefficients of the matrix A require

 ∑∑
i j

ija ||log2

∑ +
i

ib ||log1 2

 symbols (excluding the signs), and the vector b necessitates

 symbols, again, excluding the signs. 

It is then possible to prove that a hypersphere centered at the origin and with
radius 2L includes at least one feasible point, provided such a point exists. For
details, see Khachian (1979), or Nemhauser and Wolsey (1988). Unfortunately,
this initial ellipsoid is extremely large even for small problems. This feature,
coupled with a slow rate of shrinkage of the ellipsoids, is responsible for the
exceedingly slow rate of convergence of the ellipsoid method.

However, the method will converge in a number of steps that is polynomial in the
size of the problem, making it an efficient method in the worst case. Formally, we
can state

Lemma 7.1: The ellipsoid method terminates after at most 6n(n+1)L iterations
with either a feasible solution to the problem P or with an indication that no
feasible solution exists.

This lemma is used as a stop criterion in the formal description of the method
below. We initialize the method by setting x0 := [0, 0, …, 0]T, k:= 0, and defining
an [n × n]-dimensional matrix D0 = 2LI. Furthermore, we assume that all
calculations can be carried out with infinite precision, i.e., given exact
calculations. We can then formally state the ellipsoid method.

The Ellipsoid Method

Step 1: Is xk a feasible solution to the problem P*?

 If yes: Stop, xk is a solution to the problem P*.
 If no: Go to Step 2.

7.1 Alternatives to the Simplex Method 271

Step 2: Is k > 6n(n+1)L?
 If yes: Stop, no feasible solution to the problem P exists.
 If no: Go to Step 3.

Step 3: Suppose that the i-th constraint is violated, i.e., ai•xk ≥ bi. Then determine

T
i

k
i

T
i

k

n
kk

••

•
+

+ −=
aDa

aDxx 1
11 and

 [] []











−=

••

••
+−

+
T
i

k
i

TT
i

kT
i

k

n
k

n
nk

aDa
aDaDDD 1

2
1

1
2

2
.

 Set k:= k + 1 and go to Step 1.

Note that the numerator in the last ratio of the second formula is the product of a
column vector and a row vector, i.e., a matrix.

The ellipsoid method can now be illustrated in the following

Example: Consider the system of simultaneous strict inequalities

 P: x1 − x2 < −1
 −x1 < −1,

i.e., a1• = [1, −1], a2• = [−1, 0], b1 = −1, b2 = −1, n = 2, m = 2, and L = 18. To
accelerate the procedure, we set L := 5, knowing that the circle with center at the
origin and with radius 2L = 32 still includes feasible points, e.g., x1 = 2 and x2 = 4.

The initial solution is x0 = [0, 0]T and D . It is apparent that the initial

solution violates both constraints, and we arbitrarily select constraint 1. Then









=

320
0320

[] 









−
=









−








−









−









−







=

3
4

3
4

3
11

1
1

320
032

1,1

1
1

320
032

0
0

x and

272 7 Non Simplex Based Solution Methods

[]

































−








−


































−
















−









−







=

1
1

320
032

11

1
1

320
032

1
1

320
032

320
032

3
2

3
41

T

D

 =










9
256

9
128

9
128256

 9 .

The solution x1 now satisfies the first constraint but still violates the second
constraint, so that we calculate

[]











=








−












−








−













−










−
=

9
20
9
4

9
256

9
128

9
128

9
256

9
256

9
128

9
128

9
256

3
1

3
4

3
4

2

0
1

0,1

0
1

x and

[]































−












−



































−



















−













−











=

0
1

0,1

0
1

0
1

9
256

9
128

9
128

9
256

9
256

9
128

9
128

9
256

9
256

9
128

9
128

9
256

3
2

9
256

9
128

9
128

9
256

3
42

T

D

 =










81
560,2

81

81
512024,1


512
81 .

The new solution x2 still violates the second constraint, hence we compute

[]











=








−












−








−













−











=

27
76
27
44

81
560,2

81
512

81
512

81
024,1

81
560,2

81
512

81
512

81
024,1

3
1

9
20
9
4

3

0
1

0,1

0
1

x ≈ , 







815.2
630.1

which is a feasible solution, so that D3 does not have to be computed and the
procedure terminates.

7.2 Interior Point Methods 273

7.2 Interior Point Methods
Although the simplex method is still the dominant procedure for solving linear
programming problems, it has a major shortcoming: it cannot be guaranteed to
find an optimal solution in polynomial time. On average, a problem with m
structural constraints will require ½(3m) iterations until an optimal solution is
reached. For a discussion and references, see Vanderbei (2001), who specifies the
number as ½(m + n), which for a square problem with m = n and with slack
variables amounts to ½(3m). Further details can be found in Dantzig and Thapa
(2003). While this number may apply on average, there are problems for which
many more iterations are required. For example, the examples provided by Klee
and Minty (1972), in which the feasible region is a distorted hypercube in ún, will
force the simplex method to visit all 2n extreme points of the feasible region
before reaching optimum. This is the reason why researchers have been trying to
find methods that can be proved to exhibit polynomial behavior. Apparently, this
was already accomplished by the logarithmic potential method of Frisch (1956),
which was further developed by Parisot (1961); the simplex splitting technique
due to Levin (1965), as well as the center method of Huard (1967), which was
fully developed by Renegar (1988). However, it was the ellipsoid method by
Khachian (1979) that was the first widely known polynomial-time algorithm for
general linear programming problems.

The simplex method was thus unrivalled for the solution of practical linear
programming problem, until the modern development of interior point methods.
They were first rediscovered by Karmarkar (1984), whose projective scaling
method was able to compete with the simplex method as applied to realistic
problems. A remarkable feature of computer implementations of interior point
methods is that the number of iterations required by the method does not increase
very rapidly with the size of the problem. As a matter of fact, it appears that less
than one hundred iterations are sufficient even for the solution of very large
problems with millions of variables (realizing, of course, that one iteration with an
interior point method is much more complex than one iteration with any of the
simplex methods). This is in stark contrast to the number of iterations required by
the simplex method. Recall that the simplex method moves along the boundary of
the feasible region from one extreme point to an adjacent extreme point.
Typically, real-life problems include an astronomical number of extreme points.
McMullen (1970) has shown that for a linear programming problem with n

variables and m constraints, there could be as many as    









−
−

+








−
− ++

nm
m

nm
m nn

2
2

2
1



extreme points. Even for small problems with n and m in the hundreds, this
number can easily surpass 10100, a number of extreme points that is far too large to
be examined, even if only a tiny fraction would have to be dealt with. It is one of
the great achievements of the simplex method that, on average, it is generally
agreed that it needs to explore no more than about 2

3 m of the existing extreme
points.

 7 Non-Simplex Based Solution Methods 274

Since that time, the class of interior point methods has been developed to the
extent that some commercial software packages for large-scale linear
programming now offer interior point methods as alternatives to the simplex
method. Interior point methods are treated in a number of books on linear
programming. Useful pertinent references are Padberg (1995), Saigal (1995),
Rardin (1998), Bhatti (2000), Vanderbei (2001), Sierksma (2002), Dantzig and
Thapa (2003), and Roos et al. (2006).

As the name suggests, interior point methods approach an optimal point (which
we know must always be positioned on the boundary of the feasible set) through a
sequence of interior points. Starting with some initial interior point, the method
moves through the interior of the feasible set along some improving direction to
another interior point. There, a new improving direction is found, along which a
move is made to yet another interior point. This process is repeated, resulting in a
sequence of interior points that converge to an optimal boundary point. The
question is now how to stop short of hitting the boundary when we move in an
improving direction. Since we are always staying in the (relative) interior of the
feasible region, we can easily at each point recompute the direction for the next
move; this would not have been easy to do for boundary and extreme points.

There are essentially two different approaches. One is to rescale the problem in
order to make the current point stay some distance away from any boundary
constraint and then restrict the step length, so that the next move will not reach the
boundary. This approach is used in the affine scaling method due to Dikin (1967),
which we will describe below. The other possibility is to add a (logarithmic)
boundary repulsion term to the objective function which prevents the move from
reaching the boundary. This technique is used in what is known as the Newton
step barrier method, which we will also describe.

Below, we will describe the affine scaling method, which assumes that the linear
programming problem P is stated in standard form

 P: Max z = cx
 s.t. Ax = b
 x ≥ 0.

Suppose that in some iteration k, we have an interior point xk, i.e. a point at which
Axk = b and xk > 0 (or > 0 ∀ j = 1, …, n). The first step of the method is to
rescale the problem to make the current point equal to the summation vector e =
[1, 1, …, 1]

k
jx

k
j

T. This is accomplished by defining a diagonal matrix Tk, whose
diagonal elements are , i.e., x

7.2 Interior Point Methods 275

 Tk = diag (xk) = .





















k
n

k

k

x

x
x

L

MM

00
......

0...0
0...0

2

1

Then we define the scaled variable x~ as

 , i.e.,





















== −

k
nn

k

k

k

xx

xx
xx

/

/
/

:~ 22

11

1

M
xTx xTx ~

k= , so that . exTx =



















== −

1

1
1

~ 1

M
k

k
k

We then have xcxcTcx ~:~ k

kz ===
bx =

, where ck:= cTk. Then the system Ax = b can
be written as AT ~

k x, or A b=~
k , where Ak := ATk. Since the diagonal

elements of Tk are all strictly positive, x ≥ 0 is equivalent to x~ ≥ 0. We can now
write the linear programming P in its equivalent scaled form

 P~ : Max z = c x~k

~ s.t. bxA =k
~ 0x ≥ ,

where we know the current interior feasible point .~ ex =k

The next step is to move from the current point xk~ in an improving feasible
direction. It turns out that this task can be accomplished by projecting the gradient
of the objective function (ck)T onto the set A bx =~

k by means of the projection

matrix , where we assume that the matrix A() k
T
kk

T
kk AAAAIP

1
:

−
−=

T
kk A

kx

k has full

rank, so that A is nonsingular. To realize this, we consider what happens

once we start from ~ , which belongs to the set A bx =~ (since bxA =k~) and
move along the projected gradient P . Let α > 0 be some given scalar and

consider a move from

Tk
k)(c

kx~ to Tk
k)(k~ cPαx + . We then obtain for the new point

()Tk
k)(k

k
~ cPα+ k

kxA = Tk
kk)(~ cPAxA α+

() 

−

−
k

T
kk

T
k AAAA

1

 = Now =

 = A

.)Tkc(kPkAαb + kPkA





k IA k – Ak = 0, so that () b=TcP k
k)(xkA α+k

~ , proving

that the new point kx~ is still in the set .~ bxA =k It can also be shown that for α >
0, the new point has an improved value of the objective function. In order to show
this, we need the following two properties that define the matrix Pk as a projection
matrix:

 7 Non-Simplex Based Solution Methods 276

• (symmetry), and k
T
k PP =

• (idempotence), which are shown in the Appendix at the end of this
chapter.

kk PP =2

Using these properties, we find that ()Tk

k
kk)(~ cPx α+c = Tk

k
kkk)(~ cPcxc α+ , but

 c = Tk

k
k)(cP

 = c (due to the idempotence of PTk
kk

k)(cPP k)

 = c (due to the symmetry of PTkT
kk

k)(cPP k)

 = 0))(
2

≥= k
kT

k
k

k
k PcPcPc(,

where k

k Pc is the length of the row vector ckPk.

Having thus shown that d is an improving direction, we now have to
determine the step length α that guarantees that the next solution is still feasible.
In order to preserve nonnegativity it is necessary that

Tk
k

k)(: cP=

.~ 0dx ≥α+ kk As ex =k~ ,
we must have 1+α ≥ 0, or, equivalently, α ≥ −1 ∀ j. For any nonnegative

component this is trivially true, and we therefore consider only elements <

0, for which the above condition reduces to

k
jd k

jd
k
jd k

jd

k
jd

1
−≤α for all negative d . (In

case d ≥ 0 ∀ j, we realize that the problem has unbounded “optimal” solutions).
The largest possible value of α, here denoted by α

k
j

k
j

max, will therefore be













=<−=α njd
d

k
jk

jj
,...,1,0:1minmax .

Since the next point should remain in the interior of the feasible set, we may
decide to move only some fraction β < 1 of the full distance to the boundary, i.e.,
αk := βαmax, so that the next interior point 1~ +kx is determined as

 k

k
kk dxx α+=+ ~:~ 1 .

For instance, we may choose β = 0.99. In terms of the original variables and
before the scaling operation, we obtain

7.2 Interior Point Methods 277

 ()k
k

k
k

k
k

k dxTxTx α+== ++ ~~ 11 = x , k
kk

k dTα+

and the next iteration can commence.

Before we summarize the above discussion in algorithmic form, we will consider
how the calculations involving the projection matrix Pk can conveniently be

handled. Setting , we obtain for the feasible direction () Tk
k

T
kk

k)(:
1

cAAAr
−

=

 () =




 −==

− Tk
k

T
kk

T
k

Tk
k

k)()(
1

cAAAAIcPd

 = (() =−
− Tk

k
T
kk

T
k

Tk)()
1

cAAAAc

 = ()kTT
k

kT
k

Tk rAcTrAc −=−)(,

where , i.e., A or ;
this is the equation for solving r

() Tk
k

T
kk

k)(
1

cAAAr
−

= Tk
k

kT
kk)(cArA = T

k
kT

k cATrAAT 22 =
k. Therefore, we need not compute the matrix Pk

itself.

We are now ready to formally state the interior point affine scaling method in
algorithmic form. We assume that in a Phase 1 version of the method (to be
described below), an interior point x1 > 0 has been found, so that Phase 2 can now
commence. Recall that the problem is

 P: Max z = cx
 s.t. Ax = b
 x ≥ 0,

where the constraint matrix A is assumed to have full rank. The algorithm is
initialized with x1 > 0, such that Ax1 = b and the iteration counter is set to k := 1.
The constant β in Step 4 below is preselected as a value less than one, e.g., β =
0.99.

Interior Point Affine Scaling Method:
Phase 2

Step 1 (Scaling): Define the scaling matrix

 Tk = diag (xk) = .





















k
n

k

k

x

x
x

000
......

0...0
0...0

2

1

MM

 7 Non-Simplex Based Solution Methods 278

Step 2: Find the solution rk to the system of equations

 T

k
kT

k cATrAAT 22 =

 and determine the improving feasible direction dk as

 ()kTT

k
k rAcT −=:d .

Step 3: Is dk ≥ 0?
 If yes: Stop, unbounded “optimal” solutions exist.
 If no: Go to Step 4.

Step 4: Determine the step length

 αk = β












=<− njd
d

k
jk

jj
,...,1,0:1min

 and compute the next interior point as xk+1 = xk + αkTkdk.

Step 5: Is some stop criterion satisfied?
 If yes: Stop with the solution xk+1.
 If no: Set k := k+1 and go to Step 1.

In the above algorithm, the stop criterion could simply be the number of iterations
that are carried out. Another possibility is to stop, if kk xx −+1 < ε1 for some

sufficiently small value ε1 > 0. Yet another possibility is to terminate the
algorithm if zk+1 − zk < ε2, i.e., if the improvement of the objective function falls
short of some preset value ε2 > 0. Since the algorithm terminates with an interior
point, the task is now to determine a “nearby” extreme point. There are various
ways to achieve this goal. One obvious way is to set up a simplex tableau for the
problem and pivot in the variables in decreasing order of magnitude in the
solution xk+1 that was obtained at the exit of the affine scaling method.
Alternatively, we may use some method for finding the nearest extreme point and
pivot as required. For details, see Dantzig and Thapa (2003). If the resulting point
happens to be nonoptimal (which could happen in case the stop criterion caused
the affine scaling method to stop prematurely), one or more pivot steps with the
simplex method might be required. Yet another method would be to use xk+1 as a
direction for the external column in external pivoting, see the discussion in
Section 7.1 of this volume.

Assume now that an initial interior point x1 is not readily available. In such a case,
some Phase 1 procedure of the affine scaling method is required. The idea for
such a method is to consider the following problem with an initial point x0 > 0,
which could, e.g., be the summation column vector e = [1, 1, …, 1]T. Denote by A
an artificial variable and note that unlike the Phase 1 method of the simplex

7.2 Interior Point Methods 279

method, we will never need more than a single artificial variable in this method. If
the positive initial point x0 satisfies the constraints, i.e., if Ax0 = b, we can directly
move to Phase 2 with x1 := x0. If this is not the case, then b − Ax0 ≠ 0 and we
consider the problem

 P1: Min A

A x,

 s.t. Ax + A(b − Ax0) = b
 x ≥ 0
 A ≥ 0.

It is easy to verify that x = x0, A = 1 is an interior and feasible solution to problem
P1. However, as by assumption Ax0 ≠ b, we obtain Ax ≠ b as well which violates
feasibility of the original problem. On the other hand, if A ≈ 0, then Ax = b is
required, which indicates that x is indeed a feasible solution. This shows the
validity of the above approach. Note that since we only deal with interior points, x
> 0 and A > 0 will always hold. We can then formally describe Phase 1 of the
method. The method is initialized with a point x > 0, e.g., x0 = e.

Interior Point Affine Scaling Method:
Phase 1

Step 1: Is Ax0 = b?
 If yes: Stop, set x1 := x0 and commence with Phase 2.
 If no: Go to Step 2.

Step 2: Using the Phase 2 version of the affine scaling method, solve the problem

 P1: Min A

A x,

 s.t. Ax + A(b − Ax0) = b
 x ≥ 0
 A ≥ 0.

As an initial feasible solution we can use x := x0, A := 1. Denote an
optimal solution to the problem P1 by).,(1 Ax

Step 3: Is A > 0?
 If yes: Stop, the problem P has no feasible solution.
 If no: The point x1 is an interior feasible point that can be used as a
 feasible starting point in Phase 2.

In order to illustrate the above method, we will employ the same example that was
used to demonstrate the two-phase simplex method in Chapter 3 of this volume.
For convenience, we restate the problem here.

 7 Non-Simplex Based Solution Methods 280

Example: Consider the following linear programming problem

 P: Max z = 3x1 + x2

 s.t. 3x1 + 2x2 ≤ 24
 4x1 − x2 ≥ 8
 x1 − 2x2 = 0
 x1, x2 ≥ 0.

In order to initialize Phase 1 of the Interior Point Affine Scaling Method, we first
have to transform all structural equations into equations by adding a slack variable
x3 to the left-hand side of the first constraint and subtracting an excess variable x4
from the left-hand side of the second equation (artificial variables are not needed
here). The constraints are then

 3x1 + 2x2 + x3 = 24
 4x1 − x2 − x4 = 8
 x1 − 2x2 = 0,

so that

 A = , b = ,
















−
−−
0021
1014

0123

















0
8
24

and the objective function gradient vector c = [. Since no initial strictly
positive solution x is readily available, we will start with Phase 1 of the affine
scaling method, setting x

]0,0,1,3

0 = e = [1, 1, 1, 1]T > 0. The algorithm then proceeds as
follows. In Step 1, we find that Ax0 = [6, 2, −1]T ≠ [24, 8, 0]T = b, and we go to
Step 2.

Here, we maximize −A instead of minimizing A and obtain the problem

 P1: Max −A

 s.t. 
 x + A = 














−
−−
0021
1014

0123

















1
6

18













0
8
24

 xj ≥ 0, j=1, …, 4; A ≥ 0.

Writing this system in augmented form, we have an initial positive feasible

7.2 Interior Point Methods 281

solution x0 = [1, 1, 1, 1, 1]T, c = [0, 0, 0, 0, −1] and A = .
















−
−−

10021
61014

180123

Now T0 = diag(x0) = , so that , and























10000
01000
00100
00010
00001

ITT ==2
0

 = , . With TAAT2
0

















61217
1254118
17118338

















−
−
−

=
1
6

18
2
0

TcAT

 = , we then find 12
0)(−TAAT

















−
−−

−

440106.0208460.0050641.0
208460.0176835.0051251.0

050641.0051251.0018304.0

 r = 
 , and then TT cATAAT 2

0
12

0
0)(−=













−

−

1008745.0
0699614.0
0726052.0

 d = .)(0
0

0 rAcT TT −=























− 0119992.0
0699614.0
0726052.0
0134228.0
0388448.0

The only negative element of this search direction is d = -0.0119992, so that
with β = 0.99, the step length is α

0
5

0 = 0.99/0.0119992 = 82.5056.

We then find x1 = x0 + α0T0d0 = + 82.5056d























1
1
1
1
1

0 = .























01.0
7722.6
9903.6
1075.2
2049.4

 7 Non-Simplex Based Solution Methods 282

With the artificial variable A = 0.01, we consider feasibility to be achieved, since
we have deliberately avoided reaching zero. Rounding off, for ease of exposition,
we find x and therefore and . Summarizing, x,2,4 1

2
1
1 == x 81

3 =x 61
4 =x 1 = [4, 2,

8, 6]T > 0, and Phase 1 is completed.

Phase 2 is then initialized with x1. In Step 1, we have T , and


















=

6000
0800
0020
0004

1

 with =A and c = [3, 1, 0, 0], we obtain
















−
−−
0021
1014

0123

 = 
 and = . With TAAT2

1













327232
72296184
32184224

TcAT2
1

















40
188
152

 = 
 , 12

1)(−TAAT












−
−−

−

07691141.002427184.000895024.0
02427184.001456311.000849515.0

00895024.000849515.001016383.0

we then find in Step 2

 r1 = (= . Next, TT cATAAT 2
1

12
1)−

















− 1262136.0
4757282.0
3058252.0

 d1 = T1(cT−ATr1) = T1 


















−
4757282.0
3058252.0

6116505.0
3058252.0

 = .


















−
854369.2
446602.2

223301.1
223301.1

Here, only d = −2.446602 is negative, so that with β = 0.99 the step length in
Step 4 is α

1
3

1 = 0.99/2.446602 = 0.404643, and

7.2 Interior Point Methods 283

 x2 = x1 + α1T1d1 =

 + 0.404643 = .


















6
8
2
4



















−
12622.17
57282.19

446602.2
893204.4



















93.12
08.0
99.2
98.5

Here, we see that = 5.98 and = 2.99 and we terminate the procedure. It so
happens that we are already quite close to the true optimal point

2
1x 2

2x
3,6 21 == xx .

The progress of the method is shown in Figure 7.5.

I II
10

III

x2
•

x•1
x
•

0

1

c 5

x1 10 5

1

Figure 7.5

To demonstrate the effects of scaling graphically, we transform the point (

= (4, 2) into the point

), 1
2

1
1 xx

)~,~(= (1, 1), and show how the constraints I, II, and III
appear in the scaled

1
2

1
1 xx

)~,~(-space. The problem is then 21 xx

 :~P Max 21

~2~12~ xxz +=

 s.t. 24~4~12 21 ≤+ xx I′

 7 Non-Simplex Based Solution Methods 284

 8~2~16 21 ≥− xx II″
~~ 044 21 =− xx III′″

~ ~ 1x , 2x ≥ 0.

which can be visualized in Figure 7.6.

0~x 1~x•

2
~x

'I

1
~x

'II

'III5

C opt

1
C

1

Figure 7.6

Although the affine scaling method in the above version does not have a
polynomial worst-case bound, the similar method of Karmarkar (1984) does. With
that method, versions have been described with a complexity of O(n3.5L), where L
is the length of a binary encoding of the problem. For details, readers are referred
to Roos et al. (2006).

The affine scaling method described above moves towards an optimal point in
steps, always making sure that solutions remain in the relative interior of the
feasible region. This property was guaranteed by deliberately stopping short of the
boundary, even though we know by way of Dantzig’s corner point theorem (see
Lemma 3.1) that at least one optimal solution will be located at an extreme point
(and it is certain that no optimal solution will be in the interior of the feasible set).

7.2 Interior Point Methods 285

Another way to ensure that we stay away from the boundary of the feasible set is
to use a barrier method, which introduces boundary repulsion terms. For an
instructive survey regarding barrier methods, see, e.g., Fiacco (1979). Here, we
will use the logarithmic barrier method for the purpose. More specifically, we add

logarithmic barrier terms ln xj to the objective function cx = ∑ , so that we

obtain , where µ is some prespecified positive constant.

Since ln x

=

n

j
jj xc

1

∑ ∑
= =

µ+=
n

j

n

j
jjj xxcz

1 1
ln

j approaches −∞ as xj approaches 0 and since it is assumed that the
objective function is of the maximization type, the effect of the barrier term is to
force an optimal solution away from xj = 0 for any variable xj. Fiacco and
McCormick (1968) have shown that the resulting maximal point will depend on
the choice of µ, and if µ were to be allowed to parametrically approach zero, the
optimal point would tend to the true optimum for the original objective function z
= cx. The problem, formulated with the barrier term is then

 PBarrier: Max z = cx + µ ∑
=

n

j
jx

1
ln

 s.t. Ax = b
 x ≥ 0,

where the nonnegativity constraints x ≥ 0 can now be dropped, since the barrier
terms will force x to have strictly positive components. As its objective function is
concave and the constraints are linear, the problem PBarrier is a concave
maximization problem. Results from the theory of nonlinear optimization (see,
e.g., Eiselt et al., 1987 or Bazaraa et al. (1993) assert that necessary and sufficient
conditions for the optimality of x for PBarrier is the existence of a multiplier row
vector u ∈ úm such that

 bxA = (1)
 jjj cx =µ− /)(Au (2)
 0x > . (3)

Defining jj xs /µ= ∀ j, we can then write the problem (1), (2), and (3) as

 0xbxA >= ,
 0scsAu >=− ,
 µ=jj xs ∀ j.

Since µ is a preselected positive number, we can drop the conditions 0>x and

0s > . For notational ease, we drop the bar over x and s . Furthermore, we

 7 Non-Simplex Based Solution Methods 286

introduce the diagonal matrices X and S which are defined as

 and .


















=

nx

x
x

L

MOM

L

L

00

00
00

: 2

1

X


















=

ns

s
s

000

000
000

: 2

1

MOMM
S

The optimality conditions (1), (2), and (3) can then be written as the system

 (4) bAx =
 uA (5) cs = −
 SXe eµ= (6)

It is interesting to note that the original problem

 P: Max z = cx
 s.t. Ax = b
 x ≥ 0

has the dual

 PD: Min zD = ub
 s.t. uA ≥ c
 u ∈ úm

and the optimality conditions for the primal-dual pair (P, PD) are

 Ax = b, x ≥ 0 (primal feasibility) (7)
 uA ≥ c, u ∈ úm (dual feasibility) (8)
 (uA−c)x = 0 (complementary slackness) (9)

Introducing the vector of surplus variables s:= uA − c, we can see that the
conditions (4), (5), and (6) and the optimality conditions (7), (8), and (9) are
identical if µ = 0, with the exception that x > 0 in the former is replaced by x ≥ 0
in the latter. Intuitively, if µ > 0 is decreasing to zero, the solution of (4), (5), and
(6) should tend to that of the optimality conditions (7), (8), and (9). For any
positive value of µ, the solution to (4), (5), and (6) will be interior in the sense that
x > 0 and s > 0, and the idea is to solve the system (4), (5), (6) of nonlinear
equations with, e.g., the Newton-Raphson method and then successively let µ
decrease to zero. We will actually reduce the value of µ at each step with the
Newton-Raphson method.

Recall Procedure A.10 that describes the Newton-Raphson method for solving an
equation f(x) = 0 by means of the iteration formula xk+1 = xk – f(xk)/f '(xk) for k = 1,

7.2 Interior Point Methods 287

2, … . For the vector-valued version where we solve the system of nonlinear

equations fi(x) = 0 for i=1, 2, …, m, with x ∈ ún, we define f and

the Jacobian matrix



















=

)(

)(
)(

)(2

1

x

x
x

x

mf

f
f

M













∂
∂

=
∂
∂

j

i

x
f)(x

x
f . Then the iteration formula is

 xk+1 = xk − () ...,2,1),(
1

=



 ∂
∂ −

kkk xfx
x
f


 ,

which we will use in the form

 ()(kkk xxx
x
f

−
∂
∂ +1) = −f(xk), k=1, 2, … .

We begin by rewriting the optimality conditions (4), (5), and (6) as

 Ax − b = 0 (m equations)
 ATuT − sT − cT = 0 (n equations)
 SXe − µe = 0 (n equations)

and we consider the (column) vector of variables to be [xT, u, s]T ∈ ún+m+n. The
Jacobian (first derivative) matrix for the left-hand side of this system becomes
















−
X0S

IA0
00A

T

with m + n + n rows and n + m + n columns, respectively, and the Newton
iteration formulation is then

 = −  .















−

kk

T

X0S
IA0

00A

















−
−
−

+

+

+

TkTk

TkTk

kk

)()(
)()(

1

1

1

ss
uu

xx

















µ−
−−

−

eeXS
csuA

bAx

kk

TTkTkT

k

)()(

Given the current solution xk, uk, sk, we will now solve the above system to obtain
the new solution xk+1, uk+1, sk+1 and introduce the notation ∆xk = xk+1 − xk, ∆uk =
uk+1 − uk, and ∆sk = sk+1 − sk. In order to keep the notation simple, we will write ∆x
instead of ∆xk, and similarly ∆u, and ∆s. Furthermore, let ∆P := Axk − b and ∆D

 7 Non-Simplex Based Solution Methods 288

:= AT(uk)T − (sk)T −eT, again without superscript to keep the notation simple.

Then, with S instead of Sk and X instead of Xk, Newton’s formula can be written
as

 A∆x = −∆P (10)
 AT∆uT − ∆sT = −∆D (11)
 S∆x + X∆sT = µe − SXe (12)

The task is now to solve the equations (10), (11), and (12) for ∆x, ∆u, and ∆s. In
order to do so, premultiplying relation (11) by X and adding relation (12) yields
XAT∆uT + S∆x = −X∆D + µe − SXe. Premultiplying this relation by AS−1 results
in AS−1XAT∆uT + A∆x = −AS−1X∆D + µAS−1e − AXe. Relation (10) and the
definition of ∆P imply that A∆x = −∆P = b − Ax, so that

 AS−1XAT∆uT = −b − AS−1X∆D + µAS−1e

(note that AXe = Ax), from which ∆uT can be computed. From relation (11) we
obtain

 ∆sT = AT∆uT + ∆D,

and finally, by premultiplying relation (12) by S−1, we can solve for ∆x via

 ∆x = S−1(µe − SXe − X∆sT) = S−1(µe − X∆sT) − x.

Having now computed the Newton step directions ∆x, ∆u, and ∆s, we must ensure
that x > 0 and s > 0. For x, we use the step length αP which must satisfy

, or, equivalently, α ∀ j=1, …, n. Here, only ∆x0>∆α+ jP
k
j xx k

jjP xx −>∆ j < 0

is of concern, so that we have to require that












<∆
∆

−
< 0:min j

j

k
j

j
x

x
x

α . In order

to achieve the desired result, we set

P













<∆
∆

−
0:min j

j

k
j

j
x

x
x

β=Pα with some

preselected β < 1. In this chapter, we typically use β = 0.99. Similarly, for the
calculation of s we use the step length αD determined by













<∆
∆

−
β=α 0:min j

j

k
j

jD s
s
s

.

Here, we assume that ∆xj < 0 and ∆sj < 0 exist, avoiding difficulties with
unboundedness and infeasibility. It is also possible to show that the duality gap

7.2 Interior Point Methods 289

ukb − cxk decreases in each Newton step; for details readers are referred to
Marsten et al. (1990) or Roos et al. (2006) for an in-depth treatment.

It is also common practice to reduce the value of µ at each step of the algorithm.
One way to accomplish this is to set the value of µ equal to some fraction of the
current duality gap. For simplicity, we will follow Dantzig and Thapa (2003) and
set µ := 101−k; for a full discussion of more sophisticated updating of µ, see Roos
et al. (2006).

We are now able to summarize the above discussion in algorithmic form. Recall
that the problem under consideration is

 P: Max z = cx
 s.t. Ax = b
 x ≥ 0.

The associated dual problem is

 PD: Min zD = ub
 s.t. uA ≥ c
 u ∈ úm.

For simplicity of the exposition, we assume here that an initial interior feasible
solution is available that satisfies x1 > 0 and Ax1 = b, and that an interior dual
feasible solution u1 is also available with u1A − c = s1 > 0. Let µ := 1 and set the
iteration counter k:= 1.

The Primal-Dual Newton Step Interior Point Method

Step 1: Is the scaled duality gap ε<
+

−
||1 1cx

cxbu kk
 for some preselected ε > 0?

 If yes: Stop with the near-optimal solution (xk, uk).
 If no: Go to Step 2.

Step 2: Compute the Newton step direction (∆x, ∆u, ∆s) as

 ∆uT = (AS−1XAT)−1(−b−AS−1X∆D + µAS−1e), where

 , S ,





















=

k
n

k

k

x

x
x

L

MOMM

L

L

00

00
00

2

1

X





















=

k
n

k

k

s

s
s

L

MOMM

L

L

00

00
00

2

1

 7 Non-Simplex Based Solution Methods 290

 and ∆D = AT(uk)T − (sk)T − cT. Also, determine
 ∆sT = AT∆uT + ∆D and
 ∆x = S−1(µe − X∆sT) − x.

Step 3: Compute the step lengths













<∆
∆

−
β=α 0:min j

j

k
j

jP x
x
x

 and













<∆
∆

−
β=α 0:min j

j

k
j

jD s
s
s

, the new point

 , j=1, 2, …, n, x∆α+=+
p

k
j

k
j xx :1

 u , i=1, 2, …, m, u∆α+=+
D

k
i

k
i u:1

 , j=1, 2, …, n, as well as the new barrier multiplier s∆α+=+
D

k
j

k
j ss :1

 µ := µ/10. Set k := k + 1 and go to Step 1.

We will now illustrate the primal-dual interior point method by solving the same
example as in the affine scaling method above.

Example: Consider the linear programming problem

 P: Max z = 3x1 + x2
 s.t. 3x1 + 2x2 ≤ 24
 4x1 − x2 ≥ 8
 x1 − 2x2 = 0
 x1, x2 ≥ 0.

Adding slack variables x3 and x4 to the two constraints of the primal problem P,
we obtain the linear programming problem in standard form

 P': Max z' = 3x1 + x2
 s.t. 3x1 + 2x2 +x3 = 24
 4x1 − x2 − x4 = 8
 x1 − 2x2 = 0
 xj ≥ 0, j = 1, …, 4.

Given the problem P', we can now determine its dual problem

 Min z:DP′ D = 24u1 − 8u2
 s.t. 3u1 − 4u2 + u3 ≥ 3
 2u1 + u2 − 2u3 ≥ 1
 u1 ≥ 0

7.2 Interior Point Methods 291

 u2 ≥ 0
 u3 ∈ ú.

Subtracting excess variables E from all of the constraints of

 (including the two nonnegativity constraints), we obtain the dual problem in
standard form as

DDDD EEE 4321 and,,,

DP′

 Min z:DP′ D' = 24u1 − 8u2

 s.t. 3u1 − 4u2 + u3 − = 3 DE1

 2u1 + u2 − 2u3 − = 1 DE2

 u1 − = 0 DE3

 u2 − = 0 DE4

 ui ∈ ú ∀ i = 1, …, 4
 ≥ 0 ∀ j = 1, …, 4. D

jE

Here, we do not concern ourselves with the issue of finding an initial solution x1,
u1, E with x1D 1, > 0. As before, using the initial solution x1DE 1 = [4, 2, 8, 6]T >
0, we find that setting u1 = [2, ½, 0] results in E = [1, 3½, 2, ½] as a feasible
interior starting solution for

1D

DP′ . Set µ := 1 and β := 0.99, and we can calculate the
scaled duality gap as

||1 1

11

cx
cxbu

+
− =

141
1444

+
− = 2,

which is not small enough to stop, so we proceed to Step 2 of the algorithm. Now

 c = [3, 1, 0, 0], , b ,
















−
−−=
0021
1014

0123
A
















=

0
8
24

 as well as =X , and .


















6000
0800
0020
0004



















==

½000
0200
00½30
0001

)(diag: DES

We then find

 7 Non-Simplex Based Solution Methods 292

















=−

7
2

7
1

7
5

7
1

7
4

7
6

7
5

7
6

7
2

1

6179
177646
94642

TXAAS , from which we can calculate

 [.
















−
−−

−
=−−

4160584.01076642.00237226.0
1076642.00684307.00510949.0

0237226.00510949.00748175.0
] 11 TXAAS

With dual feasibility ∆D = 0, so that

 = 
 ,][][111 eASbXAASu −−− µ+−=∆ TT











−

382299.0
541971.0
159672.1

 , and


















−
−
−
−

=∆=∆

541971.0
159672.1
625912.3
928832.0

TTT uAs

 .


















−
=−∆−µ=∆ −

503650.2
861314.2

357664.0
715328.0

)(1 xsXeSx T

Step 3 of the algorithm then determines αP = 0.99 



 −
−
861314.2

8

 = 2.767959 and







 −

−
−−

−
−

=α
0.541971-

½,
159672.1

2,
3.625912-

½3,
928832.0

1min99.0D = 0.913333,

and finally the new solution

 ,


















=∆α+=

93.12
08.0
99.2
98.5

12 xxx P

7.2 Interior Point Methods 293

 u ,]3492.0,0050.0,9408.0[12 −=∆α+= uu D

and

 ,]0050.0,9408.0,1882.0,1516.0[12 =∆α+= sEE D

DD

and then x2 is primal feasible and (u2, ED2) is dual feasible and the first iteration is
now complete. It is now apparent that the primal solution x2 is the same that was
obtained with the affine scaling method discussed earlier. The scaled duality gap

is
||1 2

22

cx
cxbu

+
− =

93.201
93.205392.22

+
− = 0.0734, much less than the duality gap of 2

that we achieved in the previous (initial) solution. At this point, we terminate the
algorithm.

A few comments on computational aspects are in order. Although our discussion
has presented the affine scaling and primal-dual interior point methods by using
matrix inversion, this will be avoided in practice by solving the related set of
simultaneous linear equations by using efficient numerical techniques known from
linear algebra, most prominently the Choleski and Bunch Parlett (1971)
factorizations of the matrices involved. For details, readers are referred to Dantzig
and Thapa (2003) and Roos et al. (2006).

It appears that variants of the above primal-dual interior point method are the most
successful of the interior point methods. Their computational complexity is about
O(n3L), where L is the length of a binary encoding of the problem. It is reported
that implementations of such methods rarely use more than 50 and mostly around
20 iterations for convergence to optimal solutions with 8-digit accuracy, see. e.g.,
Roos et al. (2006).

Finally some words regarding new developments of methods and software for
linear (as well as integer and nonlinear) programming problems. An unfortunate
side effect of the commercialization of algorithms has been the increasing
tendency of research organizations to keep their findings on new methods and
their implementation confidential, for competitive reasons. Whereas in the past
new results were disseminated to the scientific community at large, today,
methods that will enhance the performance of commercial software packages have
a tendency to become proprietary and only gradually, if at all, becoming part of
common scientific knowledge. Many statements regarding computational speed
and accuracy will therefore have to be taken with a grain of salt if these statements
are based on only partially disclosed information. It appears that the scientific
community will have to live with this state of affairs for some time to come. A
bright side of the story is that there is today a whole lot of research done that
would not have been financially supported, were it not for profit-oriented
organizations.

 7 Non-Simplex Based Solution Methods 294

Appendix

Definition 7.2: A projection matrix P is a square matrix which is symmetric, i.e.,
PT = P, and idempotent, i.e., P2 = P.

Lemma 7.3: Let P = I − AT(AAT)−1A be a matrix, where the matrix A is assumed
to have full rank, so that AAT isnonsingular. Then P is a projection matrix.

Proof: Using elementary rules for operations on matrices (see Proposition A.7),
we obtain

()TTTT AAAAIP 1)(−−= = ()TTT AAAAI 1)(−− =

PAAAAI =− −1)(TT , so that P is symmetric. Furthermore,

()()AAAAIAAAAIPPP 112)()(−− −−== TTTT =

AAAAAAAAAAAAI 111)()()(2 −−− +− TTTTTT =

AAAAAAAAI 11)()(2 −− +− TTTT = I , PAAAA =− −1)(TT

so that the matrix P is idempotent.�

8 PROBLEM REFORMULATIONS

This section investigates a number of scenarios that do not obviously fall into the
realm of linear programming. These include specifications of variables, types of
constraints, and objective functions that differ from the linear programming
formulations in standard and canonical form as defined in Chapter 3.2. This
chapter is divided into three sections. The first (short) section discusses variables
that do not fit into the standard and canonical forms, the second section deals with
constraints, and the third, and arguably most important, section considers a
number of objectives that do not appear to lend themselves to linear programming.

8.1 Reformulations of Variables
This section will look at variables and how to deal with them if variables have
simple bounds or are unrestricted.

8.1.1 Lower Bounding Constraints

First consider the case in which variables have simple upper or lower bounds
attached with them. Such instances frequently occur in many practical settings,
e.g., when refining the diet problem and in the process restricting the number of
servings of individual foods that are considered “manageable.” Clearly, lower
bound constraints of the type xj ≥ lj and upper bound constraints xj ≤ uj can be
written as regular constraints and included as such in a linear programming
problem. On the other hand, there are more convenient ways to include such
simple constraints in a formulation. First consider lower bounds on a variable xj.
We now have the lower bound constraints xj ≥ lj as well as the usual nonnegativity
constraints xj ≥ 0. Defining a new variable x j′ = xj − lj, we can then replace the

old variable xj wherever it appears in the model by the new variable x . The

lower bound constraints x
j′

j ≥ lj can then be written as jx′ + lj ≥ lj or simply ≥ 0,
which are the new nonnegativity constraints that are considered implicitly without
being written as a formal (or structural) constraint. This variable transformation

j′x

 8 Problem Reformulations 296

can be applied to all variables with lower bounds, thus limiting the size of the
problem under consideration. Clearly, when the optimal solution of the model
(with the new variables x) has been obtained, we have to recalculate the values
of the original variables x

j′

j.

∑ ∑
=

+
j

Unfortunately, there is no similar way to deal with upper bounding constraints.
Instead, the simplex algorithm is slightly modified to consider the upper bounding
constraints without explicitly including them in the model. A description of this
technique is provided in Chapter 5.2 of this volume. A similar, but much more
complex, modification is possible for generalized upper bounding constraints of
the type ∑ with the summation taken over some subset of the set of
variables. For details, reader are referred to Eiselt et al. (1987) and Cooper and
Steinberg (1970).

=1jx

8.1.2 Variables Unrestricted in Sign

Here, we deal with variables which are not restricted to be nonnegative, i.e., we
have xj ∈ ú rather than xj ≥ 0. The simplest method to transform an unrestricted
variable xj ∈ ú so that it fits into a problem in standard or canonical form is to
decompose it into its positive part x and its negative part , respectively, and

then to replace the original variable x

+
j

−
jx

−
jx
+
jx

+
jx

j ∈ ú by x . In

other words, the variable x

0,and: ≥−= −++
jjjj xxx

−
jxand

−
jxand

+
j and

j is replaced by the difference of wherever it
appears in the model, in the objective function as well as in all constraints. The
new model is then solved and then the optimal values of are used to
reconstruct the optimal value of xj. We also would like to point out that this
procedure is used in goal programming (see Chapter 9.3.3), where x
have interesting interpretations.

−
jx

The obvious drawback of this transformation is that it doubles the number of
variables. An alternative is, however, available. First rearrange the variables, so
that the first r variables are unrestricted in sign and the last (n – r) variables are
nonnegative, i.e., xj ∈ ú, j = 1, …, r and xj ≥ 0, j = r + 1, …, n. Now one new
variable y ≥ 0 as well as r new variables jx′ , j = 1, …, r are created so that xj :=

 − y ∀ j = 1, …, r. Then any given constraint can be written as jx′ ∑
=

n

j
iijij bRxa

1

= +

−′
r

j

n

r
iijijjij bRxayxa

1 1
)(

8.1 Reformulations of Variables 297

or, equivalently,

 . ∑ ∑∑
+= ==

−+′
n

rj

r

j
iiijjij

r

j
jij bRayxaxa

1 11

A similar transformation is used in the objective function. The following example
may illustrate the transformation.

Example: Consider the following linear programming problem:

 P: Min z = 5x1 − 4x2 + x3
 s.t. −x1+ x2 + x3 ≤ 12
 x1 − 2x2 + 2x3 ≥ 4
 x2 ≥ 2
 x1, x2 ∈ ú
 x3 ≥ 0

Applying the naïve transformation, we obtain the equivalent problem

 P': Min z = 5 32211 445 xxxxx ++−− −+−+

 s.t. +− xx 1232211 ≤+−+ −+−+ xxx

 4222 32211 ≥++−− −+−+ xxxxx

 222 ≥− −+ xx

 , 0,,,, 32211 ≥−+−+ xxxxx

which has the optimal solution +

1x = 0, −
1x = 4, +

2x = 2, −
2x = 0, and 3x = 6, so

that z = −22. The second transformation results in the problem

 P": Min z = 5 x − 1′ 24x′ + x3 −y
 s.t. 12321 ≤+′+′− x xx
 − 21x′ 2x′ + 2x3 +y ≥ 4
 , 1x′ 2x′ , x3, y ≥ 0,

which has an optimal solution 1x′ = 0, 2x′ = 6, 3x = 6 and y = 4, so that again z
= −22. In both cases, we can reconstruct the solution to the original problem as

2,4 11 =−= xx , and 63 =x with z = −22.

The obvious advantage of the second method is that, no matter how many
unrestricted variables exist, the problem size increases by only one variable.

298 8 Problem Reformulations

Another possibility exists if the problem includes at least one equation and a
variable that is unrestricted in sign and which has a nonzero coefficient in the
column of the unrestricted variable. Let again xj ∈ ú and let the i-th constraint be

an equality, so that Given that a.
1

∑
=

=
n

k
ikik bxa ij ≠ 0, that equality can be rewritten

as








j

kik xa
1








−= ∑
≠
=

n

k
k

i
ij

j b
a

x 1 and xj can be replaced by this expression wherever it

appears in the model. This procedure may be repeated as often as necessary if
more than one unrestricted variable exists. Note, however, that this transformation
can only be used for unrestricted variables. Eliminating variables xj ≥ 0 without
considering their nonnegativity constraints may lead to wrong results as shown in
the following

Example: Let the following linear programming problem be given:

 P: Max z = 3x1 + 5x2
 s.t. x1 + 2x2 ≤ 10
 2x1 + 3x2 = 6
 x1, x2 ≥ 0

The optimal solution of the problem is 2,0 21 == xx , with z = 10. If we falsely
use the equality to eliminate one of the variables, say x1 = 3 – 2

3 x2, we would
obtain the single-variable problem

 P': Max z' = ½x2 + 9
 s.t. ½x2 ≤ 7
 x2 ≥ 0,

which has the unique optimal solution 142 =x with 16' =z . Reconstruction of the
value of x1 results in 183 22

3
1 −=−= xx , which clearly violates the nonnegative

constraint for x1, i.e., P' would be equivalent to P only if the constraint x1 ≥ 0 or,
equivalently, 3 − 2

3 x2 ≥ 0 or 2
3 x2 ≤ 3 were added to P', resulting in the optimal

solution 22 =x and hence 01 =x . If, however, the variable x1 were unrestricted in
sign, the above procedure would be correct.

8.2 Reformulations of Constraints
Similar to replacing a variable that is unrestricted in sign by two nonnegative
variables, it is possible to convert an equation into two inequalities. In many ways,

8.2 Reformulations of Constraints 299

our discussion here is dual to what was said above about variables. Formally
consider an equation ai•x = bi which is represented by a hyperplane in ún. We can
then replace this equality by the two inequalities ai•x ≤ bi and ai•x ≥ bi, each
defining a closed halfspace, so that their intersection is nothing but their dividing
hyperplane. When such a conversion is applied, it is useful to include some
leeway for rounding errors, i.e., replace the equality ai•x = bi by the inequalities
ai•x ≤ bi + ε and ai•x ≥ bi – ε for a small ε > 0. Graphically speaking, we would not
only consider points on the hyperplane but also points in a narrow “corridor”
surrounding the hyperplane. Notwithstanding the validity of the above
transformation, the serious drawback is that its application doubles the number of
linear relations.

Analogous to the above discussion concerning variables, it is possible to transform
a system of equalities regardless of its size into a equivalent system of inequalities
by adding just a single linear relation. Suppose that the given (sub)-system is Ax =
b, then an equivalent system is Ax ≤ b, eAx ≥ eb where e is a summation vector.
Again, we suggest to use eAx ≥ eb – ε with some small ε > 0 as the additional
constraint. This transformation is especially suitable for the dual simplex method,
see Chapter 5.1 of this volume. As an illustration, consider the following

Example: Consider the following linear programming problem:

 P: Max z = 3x1 + 2x2 + 5x3
 s.t. 2x1 – x2 + 3x3 = 6
 −x1 + 3x2 – x3 = 9
 x1, x2, x3 ≥ 0.

The problem can then be rewritten as the equivalent formulation

 P: Max z = 3x1 + 2x2 + 5x3

 s.t. 2x1 – x2 + 3x3 ≤ 6
 −x1 + 3x2 – x3 ≤ 9
 x1 + 2x2 + 2x3 ≥ 15
 x1, x2, x3 ≥ 0.

Absolute values of the left–hand sides are dealt with in the remainder of this
section. Formally, we consider the relation |LHS| Ri RHS. Whenever the right-
hand side values are negative or zero, we either have no feasible solution, a
redundant constraint, or the case in which the left-hand side must equal zero.
None of these cases are of interest in practical implementations. Suppose now that
a right-hand side value is strictly positive. If the relation is Ri = {=}, the feasible
set defined by the constraint comprises all points on two parallel hyperplanes, i.e.,
a set that is obviously not convex and cannot be dealt with in the context of linear
programming. The case Ri = {≥} is similar in that it describes two halfspaces
whose bordering hyperplanes are parallel, so that the feasible set is the entire

300 8 Problem Reformulations

space except for a corridor between two parallel hyperplanes. Again, this set is not
convex and can thus not be modeled as a linear program. However, both cases can
be dealt with by solving the resulting two linear programming problems separately
and then choosing the solution with the better objective function value.

Let now Ri = {≤}. The feasible set is again bounded by two parallel hyperplanes,
except this time the feasible set includes all points between these two hyperplanes.
The graph in Figure 8.1 shows the feasible set for the constraint |x1 + 2x2| ≤ 2 as
the shaded area.

1x

2x22 21 =+ xx

22 21 =−− x 1x

Figure 8.1

It is apparent that this set can be modeled by the two constraints x1 + 2x2 ≤ 2 and
−x1 − 2x2 ≤ 2, i.e., in general, we can replace the constraint |LHS| ≤ RHS by the
two linear constraints, LHS ≤ RHS and −LHS ≤ RHS.

An extension is the case in which the left-hand side comprises the sum of absolute
values, e.g., ∑ with bi

j
jij bxa ≤− ||

)1)((−− δ

j
jij xa j

i > 0. Such a relation can be replaced by the

constraints ∑ , which is an exponential number

of constraints.

10∨=δ∀≤ jib

A special case of this reformulation occurs in the context of facility location
problems, where a facility is to be located at an unknown point with coordinates x
and y, and we attempt to measure the distance between the location of the facility

8.3 Reformulations of the Objective Function 301

and the location of a known customer at some point with coordinates a and b.
Define now the distance between the facility and the customer as the so-called
Manhattan distance, which is defined as the sum of distances of both dimensions,
i.e., |x − a| + |y − b|. Assuming that this distance should not exceed a prespecified
limit z, we can write the constraint |x − a| + |y − b| ≤ z, which is precisely the
situation shown above with two terms on the left-hand side. As each of the two
absolute values can be positive or negative, we will have to replace this constraint
by four linear constraints:

 x − a + y − b ≤ z,
 x − a − y + b ≤ z,

−x + a + y − b ≤ z, and
−x + a − y + b ≤ z.

8.3 Reformulations of the Objective Function

This section deals with a variety of objective functions that, at least in their
original form, are not part of a linear programming problem. However, as we will
demonstrate, they can be reformulated so that they do fit the mold of standard
linear programming.

8.3.1 Minimize the Weighted Sum of Absolute Values

Optimization of the sum of weighted absolute values can only be performed under
certain conditions with the help of linear programming. The problem can be stated
as

 P: Min z =∑
=

n

j
jj xc

1

 s.t. Ax ≤ b
 x ∈ ún.

Consider now a contour line of the objective for some given value of the objective
function. Let this value be z and suppose the objective function is written as z(x).
The contour line in the (x1, x2, …, xn) space of the decision variables is then a
hyperdiamond. The set z(x) ≤ z is then convex, while the set z(x) ≥ z is not. We
then write

Definition 8.1: A function is convex if for any x1 + x2 and for any real number λ ∈
]0, 1[the relationship f(λx1 + (1−λ)x2) ≤ λf(x1) + (1−λ)f(x2) holds. The negative of
a convex function is called concave.

From the definition of convexity we can prove

 8 Problem Reformulations 302

Lemma 8.2: For a convex function f, the set {x: f(x) ≤ α} is convex for any real
number α. Similarly, for a concave function g, the set {x: g(x) ≥ β} is convex for
any real number β.

It is apparent that the function ∑
=

n

j
jj xc

1
 is convex, as long as cj ≥ 0 ∀ j, otherwise

it is not. Similarly, the function ∑
=

n

j
jj xc

1
 is concave, as long as cj ≤ 0 ∀ j.

Example: Consider the function z = |x1| + 2|x2|.

 2|x2| ≤ 2. It is apparent that this is a convex set.

1x

2x

1

−2 2

−1

Figure 8.2

The shaded area in Figure 8.2 indicates the solutions (x1, x2) for which z = |x1| +

In general, it is easy to minimize a convex function (or, equivalently, maximize a
concave function), whereas it is difficult to maximize a convex function (or
minimize a concave function).

Assume now that we are minimizing a function ∑
=

n

j
jj xc

1
 with cj > 0 ∀ j. We can

then proceed in a number of ways, two of which are outlined below.

Reformulation: Define new variables d and d which denote the positive and

negative value of the unrestricted variable x

+
j

−
j

j, respectively. Then xj = d −

and |x

+
j

−
jd

j| = , so that we can rewrite problem P above as −+ + jj dd

8.3 Reformulations of the Objective Function 303

 P': Min z' = ∑
=

−+ +
n

j
jjj ddc

1
)(

 s.t. bAdAd ≤− −+

 , ≥ 0 ∀ j. +
jd −

jd

This reformulation doubles the number of variables, while keeping the same
number of constraints.

An application of the model discussed in this section is found in the reshipment
model of transportation planning, see Section 2.8. Recall that the model was
written as

 Min z = ∑∑
= =

m

i

n

j
ijij xc

1 1
||

 s.t. ∑ misx i

n

j
ij ,...,1

1
=∀=

=

 njdx j

m

i
ij ,...,1

1
=∀=∑

=

 xij ∈ ú ∀ i=1, …, m; j=1, …, n,

where si denotes the supply at origin i, dj is the demand at destination j, and the
unit transportation costs cij naturally satisfy the required conditions cij > 0. The
small example had two origins with supplies 10 and 10, respectively, as well as
two destinations with demands of 5 and 15, respectively. Given the cost matrix

 , 







=

21
62

C

the reformulation is then

 P: Min z' = 2 −+−+−+−+ +++++++ 2222212112121111 22662 dddddddd

 s.t. d 1012121111 =−+− −+−+ ddd

 1022222121 =−+− −+−+ dddd

 521211111 =−+− −+−+ dddd

 1522221212 =−+− −+−+ dddd

 . 0,,,,,,, 2222212112121111 ≥−+−+−+−+ dddddddd

 8 Problem Reformulations 304

Another application of the above transformation can be found in the area of curve
fitting. Assume that we have obtained m observations with respect to n criteria.
Each such observation is denoted by xij, i = 1, …, m and j = 1, …n, which are
referred to as independent variables. In addition we have corresponding
observations yi, i = 1, …, m, which refer to our dependent variable. The idea is
now to use the observations xij to estimate the dependent variable y. In order to do
so, we first define points Pi = (yi; xi1, xi2, …, xij, … xin) as well as a hyperplane in

(n+1)-dimensional space as , where b and a∑
=

+=
n

j
jj xaby

1
j, j=1, …, n are the

n+1 parameters whose values are to be determined. The objective is to locate the
hyperplane, so as to match the locations of the points Pi, i=1, …, m as closely as
possible. The actual formulation of the objective will depend on the definition of
proximity. One possibility is to minimize the sum of absolute deviations of the
observed points from the hyperplane. This is the approach taken here. (Other
possibilities are to measure the quality of the fit of the hyperplane as the sum of
squared deviations or the maximal deviation of any of the observations from the
hyperplane. For further details the reader is referred to Appa and Smith (1973) as
well as Norback and Morris (1980), or the survey by Hobson and Weinkam
(1979).

The deviation of the point Pi from the hyperplane (measured on the y axis) is

denoted by di = |yi − y| = ∑
=

−−
n

j
ijji xaby

1
. Minimizing the sum of these absolute

values of the point – hyperplane deviations involves solving the problem

 ∑ ∑
= =

−−=
m

i

n

j
ijji xabyz

1 1
Min:P

 s.t. b, aj ∈ ú, j =1,…,n.

Using the above transformation, we obtain the equivalent formulation

 ∑
=

−+ +=
m

i
ii ddz

1
)('min:P'

 s.t. ∑
=

−+ ==++−
n

j
iijjii miyxabdd

1
,...,1,

 midd ii ,...,1,0, =≥−+

 b, aj ∈ ú, j =1,…,n.

Some software packages require to express the variables b and aj, j=1, …, n, in
terms of nonnegative variables. This can be accomplished by using the
transformation discussed in Section 8.1.2.

8.3 Reformulations of the Objective Function 305

As an illustration, consider the following numerical

Example: It has been conjectured that the price of an upscale vehicle is a function
of its gas mileage, horsepower, and weight. Table 8.1 provides the numerical
information that has been taken from a number of internet sources.

Table 8.1

2007 model MSRP price Gas mileage
(hwy), mpg

hp weight
(lbs)

Cadillac DTS 41,525 25 275 4,009
Corvette Z06, LZ1 69,175 26 505 3,132

Jaguar XJ Vanden Plas 74,835 27 300 3,819
Lexus GS 430 52,375 25 290 3,748

(where MSRP is the manufacturer’s suggested retail price).

The formulation of the problem is then

 P: Min z = |(41,525 − b − 25a1 − 275a2 − 4,009a3)
 + (69,175 − b − 26a1 − 505a2 − 3,132a3)
 + (74,835 − b − 27a1 − 300a2 − 3,819a3)
 + (52,375 − b − 25a1 − 290a2 − 3,748a3)|

 s.t. b; a1, a2, a3 ∈ ú.

Transforming the problem and solving the linear programming problem P' results
in the regression hyperplane

 (price) = −68,394.31 + 13,583.50 (mpg) − 124(hp) − 48.7361 (lbs),

where we have replaced the original variables a1, a2, and a3 by their optimal
values that result from solving the problem P.

This somewhat surprising result indicates that each additional mile per gallon will
cost $13,583.50, while each additional horsepower saves $124 (caused by the very
powerful, but comparatively inexpensive Corvette) and each additional pound in
weight saves $48.74, a result that is again caused by the lightweight Corvette.

The ideas that led to the above transformations are also useful in an application
concerning reference point programming as discussed in Chapter 9 of this volume.
In particular, consider the problem

 8 Problem Reformulations 306

 P: Min z = ∑ | −
j

jjj xgc |

 s.t. Ax ≤ b
 x ≥ 0.

Defining new variables yj := |gj − xj| ∀ j, we can rewrite the problem as

 P: Min z = ∑

j
jj yc

 s.t. yj ≥ gj − xj ∀ j
 yj ≥ xj − gj ∀ j
 Ax ≤ b
 x, y ≥ 0.

As in the above transformation, the additional constraints that link the variables xj
and yj ensure that yj is at least as large as |gj − xj|, and the minimization function,
coupled with nonnegative weights cj, ensures that yj will actually equal the
absolute value. This is the desired result.

8.3.2 Bottleneck Problems

The first author to describe bottleneck problems appears to have been Barsow
(1959). In this context, the term “bottleneck” is not to be understood as constraints
that are tight at optimum as is customary, but in a much narrower context:
Bottleneck programming problems are mathematical formulations with a special
type of objective function that minimizes the maximal cost coefficient of any
variable with strictly positive value. The set of constraints is the same as in any
other optimization problem. In this section we will restrict ourselves to linear
constraints. Formally, bottleneck programming problems with linear constraints.
i.e. bottleneck linear programming problems (or BLP for short) can be written as:

 Pmaximin: Max 0}{min >= jjj

x:cz
x

 s.t. Ax = b
 x ≥ 0,

or
 Pminimax: Min 0}{max >= jj

j
x:cz

x

 s.t. Ax = b
 x ≥ 0.

A special case of bottleneck problems was first described by Fulkerson,
Glicksberg and Gross (1953) and then by Gross (1959). Later a variety of new
theoretical and methodological developments were made by Hammer (1969),

8.3 Reformulations of the Objective Function 307

Edmonds and Fulkerson (1970), Garfinkel and Rao (1971) and (1976), Kaplan
(1976) and Posner and Wu (1981), to name just a few.

Applications of bottleneck linear programming problems are found in areas such
as political districting and location models. Two simple numerical problems will
be formulated in the following

Example 1: A bank manager has to allocate $200,000 to five investment
alternatives. The investment in each of the alternatives is limited to no more than
$60,000. The probabilities for a total loss of the investments are 1%, 3%, 2%, 6%
and 4%, respectively. Being very cautious, the manager wishes to limit minimize
the maximal loss probability of any of the investment alternatives to which money
is allocated.

Defining xj, j = 1,…, 5 to be the amount of money allocated to the j-th investment
alternatives, the mathematical formulation is:

 P: Min =z 0}{max >jj

j
x:c

x

 with c1 = .01, c2 = .03, c3 = .02, c4= .06, and c5 = .04,

 s.t. x1 + x2 + x3 + x4 + x5 = 200,000
 xj ≤ 60,000 ∀ j =1, …, 5
 x1, x2, x3, x4, x5 ≥ 0.

Alternatively, this minimax bottleneck linear programming problem could have
been formulated with an objective that minimizes the expected or the worst-case
loss; for formulations with the latter objective, see Section 8.3.3.

Example 2: A Federal Government agency has a budget of $3,200,000 which may
be spent on measures against the pollution of lakes. Assume in this hypothetical
example that the budget cannot be overspent. There are five lakes with pollution
levels of 2, 5, 7, 4 and 1, respectively and the planning agency has to decide which
lakes to clean up, assuming that partial cleanups are not feasible or desirable. The
cleanup costs for the lakes are $700,000; $1,200,000; $1,600,000, $1,100,000 and
$900,000 respectively. The objective of the government agency is to take
antipollution measures, so that after the cleaning, the worst polluted lake is as
clean as possible.

In order to model the above situation, we define zero-one variables xj, j = 1,…, 5,
such that

 .

= otherwise 0

cleanednot is laketh - theif,1 jx j

 8 Problem Reformulations 308

The budget constraint (in millions of dollars) can be written as 0.7(1 – x1) + 1.2(1
– x2) + 1.6(1 – x3) + 1.1(1 – x4) + 0.9(1 – x5) ≤ 3.2 or .7x1 + 1.2x2 + 1.6x3 + 1.1x4 +
0.9x5 ≥ 2.3, so that the model can be written as

 P: }0:{maxMin >= jj

j
xcz

 with c1 = .02, c2 = .05, c3 = .07, c4 = .04, c5 = .01

 s.t. 7x1 + 12x2 + 16x3 + 11x4 + 9x5 ≥ 23
 x1, x2, x3, x4, x5 = 0 ∨ 1.

Example 3: Bottleneck assignment problems are defined as models with the usual
assignment constraints that have a bottleneck objective function. The reasoning
behind a bottleneck objective in the context of an assignment problem can be
envisaged as follows. Consider the usual worker-machine assignment scenario in
which a part is processed by workers assigned to machines along an assembly
line. The coefficient cij denotes the quality of the work performed on the part by
the i-th worker assigned to the j-th machine. The underlying assumption of the
bottleneck objective in this example is that the quality of the final product, i.e., the
part after it has been processed by all workers and machines, is just as good as the
lowest quality job performed on it. In more popular terms, a chain is not stronger
than its weakest link. To give a numerical example where high numbers denote a
high quality, suppose that a particular worker-machine assignment in a 5 worker,
5 machine setting results in qualities 6, 6, 6, 6 and 6 for the various jobs, and a
different assignment of the same set of workers to the same set of machines results
in qualities 10, 10, 9, 4 and 10. Then the first worker-machine assignment would
be preferred since the quality of all jobs is 6 whereas in the second case it would
only be 4.

Similar to our discussion in linear programming, it is again useful to determine the
set of solutions that have the same value of the objective function. In standard
linear programming, such a set determined an iso-profit line. In contrast, the set of
points with equal objective value in the case of bottleneck problems are highly
discontinuous. As an example, consider the minimax bottleneck problem Min

with c},{max 21
0, 21

ccz
xx >

= 1 = 3 and c2 = 5. The entire space can then be subdivided

into three regions, each of which has solutions of equal objective value. The origin
has a value of z = 0, all points with x1 > 0 and x2 = 0 have z = 3, and all remaining
points in the nonnegative orthant have an objective value of z = 5.

A useful property of bottleneck problems was proved by Garfinkel and Rao
(1976) regarding optimal solutions. It is restated here as

Lemma 8.3: If a bottleneck linear programming problem has feasible solutions,
then at least one of its optimal solutions is a basic solution.

8.3 Reformulations of the Objective Function 309

The idea behind the proof is as follows. Assume that the variables have been
renumbered, such that c1 ≤ c2 ≤ c3 ≤…≤ cn for minimax and c1 ≥ c2 ≥ c3 ≥…≥ cn
for maximin bottleneck problems. Suppose that in a minimax bottleneck problem
there are p basic solutions x1, x2, …, xp, with x , being the variable

with the highest subscript that has a positive value in each of the p solutions.
Without loss of generality let j

1
1j

p
jj p

xx ,...,2
2

1 ≥ j2 ≥ … ≥ jp, so that z = cp. Any solution that is
strictly better than the p basic solutions above will have to have xl = 0 for l = jp,
…, n. However, since any solution that is not a basic solution can be expressed as
a linear convex combination of basic solutions and a basic solution will have xl =

 which, for 0 < λ∑λ
k

k
jk k

x k < 1 and ∑λ
k

k = 1 has xl > 0, contradicting that the

new solution is strictly better than any of the existing solutions xk, k = 1, …, p.

The reasoning behind the lemma allows us to use a sequential linear programming
approach. This could be accomplished as follows (for the minimax bottleneck
problem). Start with a problem that includes all constraints and only variable x1. If
there is a feasible solution, it is optimal with the objective value z = c1. If not,
include variable x2 as well. Again, if there is a feasible solution, it is optimal and
the objective value is z = c2. Continue in this fashion until a solution is found or
it has been determined that no feasible solution exists.

This procedure can be incorporated in a version of the standard simplex method
that is identical to the first phase of the two-phase method, except for the pivot
column selection rule. Adding slack, excess, and artificial variables Ai as usual,

the artificial objective function is then Min . The bottleneck

simplex method can then be described as follows.

∑∑
=

==
n

j
jj

i
i xwAw

1
0

The Bottleneck Simplex Method (minimax)

Step 1: Is w0 = 0?

If yes: Stop, the current solution is optimal
If no: Go to step 2.

Step 2: Is wj ≥ 0 ∀ j?
If yes: Stop, the problem has no feasible solution
If no: Go to step 3.

Step 3: Determine s = min {j: wj < 0}; then the s-th column is the pivot column.

 The r-th row is chosen as pivot row, such that








=
> is

i
airs

r
a
b

a
b

is 0:
min and ars is

 the pivot element. Perform one tableau transformation with the pivot
 ars and go to Step 1.

 8 Problem Reformulations 310

The maximin version of the problem can be dealt with in a similar fashion. Note
that the solution procedure does not require knowledge of the numerical values of
the parameter cj, only their ranking is relevant.

Example: Consider the following minimax bottleneck problem

 P: Min z = max }0:{ >jj

j
xc

 s.t. −3x2 + 2x3 + 3x4 + 4x5 + 2x6 ≤ 24
 −x1+ 4x3− 2x4 + 2x5 + x6 = 8
 2x1 − x2 + 3x4 − x6 ≥ 3
 −3x1 + x2 + x3 − 2x4 + x5 + 4x6 = 12
 x1, x2, x3, x4, x5, x6 ≥ 0.

Adding variables S1, A2, −E3, A3, and A4 to the left-hand sides of the respective
constraints, the initial tableau is

T1:
 x1 x2 x3 x4 x5 x6 S1 A2 E3 A3 A4 1
 0 −3 2 3 4 2 1 0 0 0 0 24
 −1 0 4 −2 2 1 0 1 0 0 0 8
 2 −1 0 3 0 −1 0 0 −1 1 0 3
 −3 1 1 −2 1 4 0 0 0 0 1 12
aof 2 0 −5 1 −3 −4 0 0 1 0 0 −23

The eligible pivot columns are those belonging to the variables x3, x5, and x6, and
we choose the variable with the smallest subscript as the variable to enter the
basis, here x3. The pivot row, and with it the leaving variable, is determined by
means of the usual “smallest ratio” rule in the simplex method, which here turns
out to be the second row on the tableau. This means that the artificial variable A2
will leave the basis, and we will delete it from the next tableau T2.

T2:
 x1 x2 x3 x4 x5 x6 S1 E3 A3 A4 1
 2

1 −3 0 4 3 2
3 1 0 0 0 20

 − 4
1 0 1 2

1− 2
1 4

1 0 0 0 0 2
 2 −1 0 3 0 −1 0 −1 1 0 3
 − 4

11 1 0 − 2
3 2

1 4
15 0 0 0 1 10

aof 4
3 0 0 − 2

3 − 2
1 − 4

11 0 1 0 0 −13

Since w0 = −13 ≠ 0, the current solution is not yet feasible. The pivot-eligible
column with the smallest subscript is the column that belongs to the variable x4,
which is chosen as the entering variable. The third row is the pivot row, so that the

8.3 Reformulations of the Objective Function 311

artificial variable A3 will leave the basis and it is deleted from further
consideration. The next tableau is then T3.

T3:
 x1 x2 x3 x4 x5 x6 S1 E3 A4 1
 6

13− − 3
5 0 0 3 6

17 1 3
4 0 16

 12
1 − 6

1 1 0 2
1 12

1 0 − 6
1 0 2

5

 3
2 − 3

1 0 1 0 − 3
1 0 − 3

1 0 1

 − 4
7 2

1 0 0 2
1 4

13 0 − 2
1 1 2

23

aof 4
7 − 2

1 0 0 − 2
1 − 4

13 0 2
1 0 − 2

23

The solution in tableau T3 is still not feasible. The pivot-eligible variable with the
smallest subscript is x2, so this variable will enter the basis. The only possible
pivot is in the fourth row, so that the artificial variable A4 will leave the basis, so
that we can delete its column. (Note that it is not always the case that an artificial
variable leaves the basis in each step). The next tableau is T4.

T4:
 x1 x2 x3 x4 x5 x6 S1 E3 1
 −8 0 0 0 3

14 3
41 1 3

1− 3
154

 − 2
1 0 1 0 3

2 6
7 0 3

1− 3
16

 − 2
1 0 0 1 3

1 6
11 0 3

2− 3
28

 − 2
7 1 0 0 1 2

13 0 −1 23
aof 0 0 0 0 0 0 0 0 0

It is apparent that the solution in tableau T4 is feasible, so that the algorithm
terminates with an optimal bottleneck solution. The optimal solution is

T]0,0,8,6,23,0[3
2

3
1=x with a value of the objective function of 4cz = .

A second example is a bottleneck assignment problem that demonstrates the
threshold technique, a special case of the simplex bottleneck method.

Example: Consider a scenario in which five employees are to be assigned to five
positions, so that each employee occupies exactly one position and each position
is occupied by exactly one employee, i.e., the structure of the standard assignment
problem. In the following matrix A = (aij), an element aij denotes the quality of the
job employee i does when assigned to position j. The main assumption is that the
overall quality of the work is the lowest quality achieved by any of the employees
in their position. This implies the obvious objective to maximize the minimal
quality. The estimated quality of individual job assignments is collected in the
matrix

 8 Problem Reformulations 312

 ,























=

66542
24641
21354
44235
42123

A

where a high number indicates a high quality. The method will now try to
determine a feasible assignment that uses only the highest values, which in this
case is “6.” However, it is apparent that none of the employees will attain this
quality if assigned to position 1. Hence we lower our expectation and consider all
assignments in which an employee-position assignment results in a quality of at
least “5,” the next lower assignment figure. This is accomplished by solving a
regular (minsum “cost”) assignment problem using a matrix M = (mij), in which
mij = 0 indicates an assignment that results in a quality of at least 5, while a “×”
indicates that the assignment will fall short of the desired quality of “5.” Here,

 .























××
××××
××××
××××
×××××

=

000
0

0
0

M

As there is no feasible assignment in the first row (i.e., the first employee is not
capable of achieving a quality of at least 5 in any of the positions), we lower the
quality to the next level, which is 4. Redefining the matrix M, in which zeroes
now indicate assignments with a quality ranking of at least 4, we find

 .























×
××
×××

××
××××

=

0000
000

00
000
0

M

At this level, there is a variety of feasible (and hence optimal) solutions. The only
really limiting assignment is that employee 1 must be assigned to position 5. Other
than that, there is a variety of possible assignments. One such assignment has
employees 1, 2, 3, 4, and 5 work in positions 5, 1, 2, 3, and 4, respectively. The
job qualities in the individual assignments are 4, 5, 5, 6, and 6. It is obvious that
employee 1 is the bottleneck. As a policy implication, the decision maker will
consider additional training for that employee, as everybody else is able to
perform higher-quality work.

8.3 Reformulations of the Objective Function 313

The above procedure reveals that the optimal solution of an [n × n]-dimensional
bottleneck assignment problem can be determined by solving a sequence of
regular minsum cost assignment problems. The number of such problems cannot
be larger than the number of distinct values aij, which, in turn, is limited to n2.
Rather than starting from the highest possible quality and than stepping down as
far as necessary one step at a time, bisection search could be used instead. Also
note that a premature termination of the algorithm is not possible, the first feasible
and potentially implementable solution is also optimal.

8.3.3 Minimax and Maximin Problems

The models discussed in the section have a certain resemblance to the bottleneck
problems described previously. They also have a minimax or maximin objective
function, but in the basic model presented here, the objective is to either minimize
the maximal value of any of the given decision variables (maximize the minimum
value of a decision variable), while bottleneck problems minimize (maximize) the
attribute of the variable with the largest (smallest) subscript. Some relations
between bottleneck problems and minimax formulations will be explored below.

As a motivation, consider a decision maker whose goal is to store ten tons of
ammunition in four locations. The concern is that a direct hit may destroy some of
the ammunition, so that the objective is to divide the ammunition, such that in
case of a direct hit, the damage is minimized. Assuming that the decision maker
wants to guard against the worst case, i.e., the highest potential loss, the problem
is easily formulated by defining variables xj that denote the amount of ammunition
stored in location j, j = 1, …, 4. We can then formulate the problem as

 P: Min z = max {xj}
 s.t. x1 + x2 + x3 + x4 = 10
 x1, x2, x3, x4 ≥ 0.

Somewhat arbitrarily, consider now the three solutions x1 = (10, 0, 0, 0), x2 = (5,
0, 1, 4), and x3 = (2.5, 2.5, 2.5, 2.5). Given the decision maker’s pessimistic
attitude (viz., that the worst case will occur, meaning that the location that houses
the largest amount of ammunition, will get hit), the objective values of the three
solution above are 10, 5, and 2.5, respectively, making x3 the best of the three
solutions offered here. It is easy to see that this solution is also optimal, and that
the minimax objective function has an equalizing effect. This is in marked
difference to the usual minisum (or maxisum) objectives that tend of have
“extreme” solution in the sense that typically only a few variables assume positive
values, while many other variables equal zero. It is also apparent that the optimal
solution of the minimax problem is not an extreme point of the polytope described
by the constraints in the formulation. A similar formulation was put forward by
Simmons (1972), who allocates money to insurance policies so as to guard against
the worst possible loss.

 8 Problem Reformulations 314

Another application considers a system of m simultaneous linear equations in n
variables, Ax = b, x ∈ ún which has no solution. It first introduces deviational
variables di ∈ ú, i = 1,…, m which measure the difference between right- and left-
hand sides. The objective is then to find a solution that is as close to feasibility as
possible. One possible approach minimizes the maximal deviation of a solution to
the feasible set. This minimax problem can be formulated as

P: Min z = max |}{| i
i

d

s.t. Ax + d = b
 x ∈ ún, d ∈ úm.

Another approach minimizes the sum of deviations from feasible solutions. This
can be accomplished by solving the linear programming problem

 P: Min z = ∑ d
=

m

i
i

1
||

 s.t. Ax + d = b
 x ∈ ún, d ∈ úm.

These problems will be modeled and solved in Chapter 9.3.3.

Applications of minimax problems in general are found in fields such as the
routing towards emergency facilities, where the worst congestion in the system is
to be minimized, or the design of sales districts, so as to maximize the district with
the smallest number of potential customers. Generally speaking, minimax and
maximin problems are applicable in those applications, in which it is desired to
obtain balanced solutions.

Consider now the graphical representation of minimax, maximin, maximax, and
minimin problems. Figures 8.3a and 8.3b indicate the gradients of the objective
functions as well as some of the iso-profit lines (level curves).

First consider the simple minimax objective Min z = max {x1, x2} and the
maximax objective Max z = max {x1, x2}. For any fixed value of z,
say is the set of points on the two line segments
between as well as between

},{maxˆthen,ˆ 21 xxzz =
ˆ(and)0,ˆ(zz == xx)ˆ, z)ˆ,0(and)ˆ,ˆ(zzz == xx . In

Figure 8.3a, all points with z-values of 3, 4 and 5 are located on the northeast sides
of the squares whose northeast corners are at x = (3, 3), x = (4, 4), and x = (5, 5),
respectively. Note that the vertices of the angles of the iso-profit lines are located
on the 45° line. The minimax objective now attempts move these angles as much
into a southwesterly direction as possible, whereas the maximax objective would
move the angles as much into a northeasterly direction as possible.

8.3 Reformulations of the Objective Function 315

x2
Maximax

5

z=5

z=4

1 z=3 450

x1 51

Minimax

Figure 8.3a

x2
Maximin

5

z=4
z=3

z=2
1

450

x1 1 5

Minimin
Figure 8.3b

On the other hand, consider the maximin objective Max z = min {x1, x2} and the
minimin objective Min z = min {x1, x2}. The iso-profit lines for these objectives
are the angles with vertices at)ˆ,ˆ(zz=x and their two sides parallel to the axes.
Figure 8.3b displays set of points with ẑ = 2, 3 and 4 respectively. The maximin
objective now tries to move these angles as much as possible into a northeasterly

 8 Problem Reformulations 316

direction, while the minimin objective attempts to move them into a southwesterly
direction.

x2

5
B A

z=4

z=3
C

z=2

z=1 1
D

450

x1 51
minimin

Figure 8.4a

x2 maximax

5

A

• B

C

1
D
z=5 z=3 z=4 z=2 z=1

x1
51

Figure 8.4b

8.3 Reformulations of the Objective Function 317

One can easily show that z = max {x1, x2} is a convex function, whereas z = min
{x1, x2} is concave. Therefore, the minimax and the maximin problems can be
solved by means of feasible direction methods, whereas the minimin and maximax
problems cannot. As an example, consider Figure 8.4a, where the shaded area
indicates the feasible region. Assume that our starting solution is point A with its
objective value z = 2 and suppose that we are using a minimin objective. Any
move from the point A that stays within the feasible region and moves from A
only some small distance ε > 0 will lead to solutions with higher, i.e., worse,
values of the objective function. This could lead to the wrong conclusion that A is
optimal, whereas the optimal solution is actually at point D where the objective
value equals 1=z . A similar argument can be made for the maximax objective in
Figure 8.4b, where point A may mistakenly be considered optimal as all feasible
points in its vicinity have objective values that are worse than that of A, which in
reality, point D is optimal.

Due to the property of their objective functions, minimin and maximax problems
cannot be transformed to and solved by a single linear programming problem
each. It is, however possible to use a sequence of linear programming problems to
solve these problems. More specifically, a minimin problem, formulated as P: Min
z = , s.t. Ax ≤ b, x ≥ 0, could be replaced by a set of n linear program-

ming problems P

}{min
,...,1 jnj

x
=

j: Min zj = xj, s.t. Ax ≤ b, x ≥ 0, resulting in optimal solutions
.,...,1, nj =jx Now the k-th solution is optimal for the original problem P if kz =

}.{ jzmin
j

 Similarly, a maximax problem could be replaced by a sequence of

linear programming problems.

On the other hand, minimax and maximin problems may be modeled as single
linear programming problems. Rather than demonstrating the equivalence on a
special problem, consider the more general formulation

 P: Min z = }{max

,...,1
k

k

rk
d+

=
xc

 s.t. Ax ≤ b
 x ≥ 0,

where the minimax function in the objective consists of r linear expressions ckx +
dk with ck = and scalars d],...,,[21

k
n

kk ccc























=

rc

c
c

.

.

.
2

1

k, k = 1, …, r. Defining an [r × n]-

dimensional matrix C and an [r+1]-dimensional column vector d = (dk), an

 8 Problem Reformulations 318

equivalent linear programming problem P′ can be defined using one additional
variable z and r additional constraints as follows:

 P′: Min z
 s.t Ax ≤ b
 Cx – ez ≤ –d
 x ≥ 0, z ∈ ú.

Similarly, for a maximin problem with objective to Max the

equivalent linear programming formulation is P″: Max z, s.t. Ax ≤ b, Cx – ez ≥ –
d; x ≥ 0, z ∈ ú.

}{min
,...,1

k
k

rk
dz +=

=
xc

As an illustration, consider the following numerical

Example: Let a minimax problem be formulated as

 P: Min z = max {(–x1 + 2x2 + 14), (3x1 – x2 + 2)}
 s.t. x1 + 2x2 ≤ 10
 4x1 – 3x2 ≥ 6
 x1 , x2 ≥ 0.

Here, c1 = [–1, 2] and c2 = [3, –1], so that





=



=








−

−
=








= 2

14and
13

21
2
1

2

1

d
d

c
c dC .

Then the equivalent linear programming problem can be written as

 P′: Min z
 s.t. x1 + 2x2 ≤ 10
 4x1 – 3x2 ≥ 6
 –x1 + 2x2 – z ≤ –14
 3x1 – x2 – z ≤ –2
 x1 , x2 ≥ 0
 z ∈ ú.

The optimal solution is 31 =x , 02 =x , and z = 11.

Figure 8.5 shows that the sets of points with fixed zz ˆ= value no longer form the
corner of a right angle but some other angle with all vertices on a straight line
which no longer leads through the origin.

8.3 Reformulations of the Objective Function 319

x2

10 51

1

−1 x1
−1

z = 11
z = 10

−5 z = 8

−10

Figure 8.5

As already calculated algebraically, Figure 8.5 shows the optimal solution as well
as the contour line associated with the optimal solution and some that have better
values of the objective function, but are no longer feasible.

One final thought concerning relations between bottleneck problems and minimax
problems should conclude this section. Consider the maximin bottleneck problem
as defined in the previous section:

 P: Min =z 0}{max >jj

j
x:c

x

 s.t. Ax = b
 x ≥ 0.

Define then zero-one variables yj and formulate the minimax problem

 8 Problem Reformulations 320

 P': Min z = }{max jj
j

yc
x

 s.t. Ax = b
 x ≤ My
 x ≥ 0, y ∈ {0, 1}r.

It is easy to demonstrate that problem P' solves the bottleneck problem P. Suppose
that P has a solution kc=z , i.e., 0and0 => jk xx ∀ j > k. Given that the
minimax problem P' has the same constraints means that this solution will also be
feasible for P'. It is clear that 0>kx implies that 1=ky , while jy , could be
either zero or one for all j > k. However, the minimization objective in P' forces yj
to zero for all j > k, establishing that the zero-one minimax problem P' can solve
the bottleneck problem P.

8.3.4 Fractional (Hyperbolic) Programming

A useful transformation from a nonlinear to a linear programming problem is
possible if the objective is fractional. This is commonly referred to as fractional
programming or hyperbolic programming. Let the original problem be formulated
as

 P: Max z =
dx
cx

+
+

0

0

d
c

 s.t. Ax ≤ b
 x ≥ 0,

where c and d are n-vectors, c0 and d0 are scalars, A is an [m × n]-dimensional
matrix, and b is an m-vector. Objectives of this type are manifold: it applies
whenever one expression is not seen as absolute, but in relation to another
measure. Typical examples are return on investment, profit per square foot (in the
retail business), performance in relation to that of competitors, and others.

The nonlinear programming problem P can be linearized by first defining a single
new variable λ = [d0 + dx]−1 > 0. The problem can then be rewritten as

 P': Max λc0 + λcx

 s.t. λ = [d0 + dx]−1
 Ax ≤ b
 x ≥ 0.

Multiplying Ax≤ b by λ and defining a new vector of variables y = λx, the
problem can be written as the linear programming problem

8.3 Reformulations of the Objective Function 321

 P'': Max cy + coλ

 s.t. Ay – bλ ≤ 0
 dy + doλ = 1
 y ≥ 0
 λ > 0.

Example: Consider the fractional programming problem

21

21

21
32

Max :P
xx
xxz

++
++

=

 s.t. x1 + x2 ≤ 2
 x1 ≤ 1
 x1, x2 ≥ 0.

With λ = [1 + 2x1 + x2]−1, y1 = λx1 and y2 = λx2, we obtain

 P'': Max z = y1 + 3 y2 + 2λ

 s.t. y1 + y2 − 2λ ≤ 0
 y1 – λ ≤ 0
 2y1 + y2 +λ = 1
 y1, y2 ≥ 0
 λ > 0.

The optimal solution of problem P'' is == 21 ,0 yy ⅔ and =λ ⅓, and hence the
solution to the original problem P can be reconstructed as ,01 =x 22 =x , and

=zand 2⅔.

For a more general and in-depth treatment of fractional programming and for a
bibliography, see Frenk and Schaible (2004).

A popular application of this transformation is used to derive the linear
programming problem that was introduced in the section on data envelopment
analysis (for details, readers are referred to Section 2.5). To reiterate, there are m
branches whose efficiency is to be determined with respect to n+ outputs and n−
input factors. Here, the parameters a and denote the output of good i
produced by branch l and the input of factor k required by branch l, respectively.
Define now weights u

+
li

−
lka

i and vk that are associated with the output i and the input k,
respectively. The relative efficiency of some branch j can then be written as

 8 Problem Reformulations 322

∑
∑

−

+

=

k
kkj

i
iij

j va

ua
E .

Suppose now that it is our objective to evaluate the efficiency of branch j. It is
then required to normalize the efficiencies of all other branches l ≠ j, so as to
guarantee bounded solutions. The problem can be written as

 Max
∑
∑

−

+

k
kkj

iij

j va

ua
= iE

 s.t.
∑
∑

−

+

k
kk

ii

va

ua

l

l
i ≤ 1 ∀ l

 ui ≥ 0 ∀ i, vk ≥ 0 ∀ k.

Multiplying the constraints by their respective denominators and moving all
variables to the left-hand sides results in

 ∀ l. ∑ ∑ ≤− −+

i k
kkii vaua 0ll

Defining a new variable λ =  > 0, we can then replace the

denominator in the objective function by λ. Multiplying the constraints with λ, we
obtain the equivalent problem

1−
−










∑ k

k
kjva

 Max Ej = ∑a λ+

i
iij u

 s.t. lll ∀≤λ−λ ∑∑ −+ 0
k

kk
i

ii vaua

 ∑ =λ−

k
kkjva 1

 ui ≥ 0 ∀ i, vk ≥ 0 ∀ k, λ > 0.

Defining new variables u = ui′ iλ and kv′ = vkλ, this problem can be written as

8.3 Reformulations of the Objective Function 323

 Max Ej = ∑a ′+

i
iij u

 s.t. lll ∀≤′−′ ∑∑ −+ 0
k

kk
i

ii vaua

 ∑ =′−

k
kkjva 1

 ≥ 0 ∀ i, viu′ k′ ≥ 0 ∀ k.

Assigning now dual variables wl ≥ 0 to the first set of constraints and a single dual
variable ∈ ú to the last constraint, the dual of this problem can then be written
as

D
jE

 Min jE D

 s.t. ∑ ∀ i ++ ≥
l

ll iji awa

 kEawa D
jkjk ∀≥+−∑ −− 0

l
ll

 (or, equivalently, kEawa D
jkjk ∀≤∑ −−

l
ll)

 wl ≥ 0 ∀ l, ∈ ú. D
jE

This is the problem we solve in order to determine the efficiency of the k-th
branch, and it is identical to the problem formulated in Section 2.5.

It should be pointed out that it would be equally possible to minimize the input per
unit of output instead of maximizing the inverse expression as was done here. An
example of data envelopment analysis is provided in Section 2.5.

9 MULTIOBJECTIVE PROGRAMMING

In the mathematical optimization problems discussed so far, we have assumed that
there was a single objective function. This may be valid in some circumstances
(e.g., when a well-established company attempts to maximize its profit), it will be
unsatisfactory in others. In particular, when there is more than a single stakeholder
as is the case in virtually all public decision making problems, or more than a
single concern exists. Typical concerns include some often interrelated measures
such as profits, costs, revenues, market shares, and return on investment, but can
also include other issues such as risk, pollution, the loss of property values, and
other criteria. The former, sometimes referred to as “private objectives” tend to be
easily measured, while the latter, also referred to as “public objectives,” are
typically difficult to measure. For instance, pollution is almost always an
expression that combines different pollutants that are not difficult to measure
individually, while modeling their aggregation is certainly problematic. For
simplicity, we will assume throughout this chapter that r issues of concern have
been identified and agreed upon by all decision makers, and that these concerns
can be expressed by means of a quantitative measure.

Before progressing any further, let us introduce some terminology. In general, we
speak of multi-criteria-decision making or MCDM whenever multiple concerns
(objectives or criteria) exist. The field of multi-criteria decision making is then
commonly subdivided into multi-attribute decision making or MADM on the one
hand and multi-objective (linear) programming or MO(L)P on the other. The
difference is that in multi-attribute decision making, the decision maker is to
choose between a finite number of already existing solutions, while multi-
objective programming problems include a number of objectives that are to be
optimized, typically in continuous space. In this chapter, we will restrict ourselves
to multi-objective linear programming problems. For a summary of MADM
models and techniques, see, e.g., Cohon (1978) or Eiselt and Sandblom (2004).

A brief account of the history of multiobjective optimization methods is provided
by Ballestero and Romero (1998). The origins of the field can be traced back to
Koopmans (1951a) and Kuhn and Tucker (1951). The former contribution
introduces the notion of domination in the field, while the second paper develops

 9 Multiobjective Programming 326

optimality conditions. Bicriterion models, i.e., models with two objectives were
first discussed by Geoffrion (1967). A major impact was the first conference on
multicriteria decision making at the University of South Carolina in 1972. The
Proceedings of this conference were published by Cochrane and Zeleny (1973).
After that milestone, activity in the field increased tremendously, witnessed by the
thousands of references collected Stadler (1984) who already collected about
1,700 references in the mid-1980s. Today an internet search will result in no less
than 240,000 hits when using “multiobjective optimization” as a search argument.

A seemingly obvious question in multiobjective optimization problems is whether
individual issues should be expressed as constraints or objectives. At first glance,
the distinction between objectives and constraints appears to be clear. Closer
inspection will, however, reveal that while the formal distinction between
objectives and constraints remains crisp, it is quite blurry as far as the applications
are concerned. This concept may be explained by using an example from a survey
by Eiselt and Laporte (1987). The issue is the scheduling of exams at a large
University. Scheduling any two exams that are to be written by at least one
student at exactly the same time is obviously not feasible and must be formulated
as a constraint. Scheduling exams, such that a student will have to write a three-
hour exam from, say 8 a.m. to 11 a.m. and another from 12 noon to 3 p.m. on the
same day is highly undesirable, but possible. In order to avoid such incidents as
much as possible, such schedules will carry a high penalty, but will not be
prohibited by means of a constraint, as this is clearly a softer requirement as
compared to the former case.

Even softer is to avoid schedules in which a student is scheduled for an exam on
the first day of the exam period and another on the last day of the exam period.
Again, there will be a penalty associated with such a schedule (albeit a smaller
one as compared to the previous case), but again, it will not be prohibited. As a
matter of fact, prohibiting all unpleasant occurrences by way of (absolute)
constraints will typically result in the nonexistence of feasible solutions. In
contrast, using penalties will result in solutions that may not be “pleasant” (more
than one exam on a single day or exams for one student spaced throughout the
exam period), but are balancing the unpleasantness among all students in the
model.

With the distinction between objectives and constraints now being suitably
blurred, we may now distinguish between different approaches on the basis of the
decision maker’s input. Assume that it has been decided which issues are modeled
as (hard) constraints and which are expressed in (softer) objectives. We first
distinguish between approaches in which the decision maker feels unable to
provide any input (beyond establishing constraints and objectives), and those
where he does.

9.1 Vector Optimization 327

9.1 Vector Optimization
The vector optimization problems discussed in this section assume no information
on the part of the decision maker beyond the actual specification of the constraints
and the objectives. In particular, vector optimization models are suited for cases in
which the decision maker feels unable to specify tradeoffs between objectives or
target values for the individual objectives. While it sounds attractive in the
beginning, this model will result in a large number of solutions that will
subsequently be evaluated by the decision maker. Thus, the need for input from
the decision maker has not been eliminated but postponed.

One important feature of optimization models with multiple objectives is that the
concept of optimality, in the way it was defined for single-objective optimization
problems, does no longer apply. It is important to realize that a solution can only
be called “optimal” with respect to one criterion or one objective. Hence it will be
mandatory to generalize the concept of optimality. Usually, decision makers
employ the concept of pareto-optimality first put forward by the Italian economist
Pareto (1906). It essentially states that a solution or decision is called pareto-
optimal (or, alternatively, efficient, nondominated, or noninferior), if there is no
other feasible solution that is equal or better with respect to all objectives included
in the model. The first to determine pareto-optimal solutions for multiobjective
programming problem appears to have been Yu (1973). Formally, we can write

Definition 9.1: Given maximization objectives Max z1, Max z2, …, Max zr,
decisions d1, d2, …, dl, and profits (or payoffs) aij for decision di with respect to
objective zj, a decision di dominates a decision dk, if aij ≥ akj ∀ j with the inequality
being strict for at least one j.

All dominated decisions can be deleted from further consideration. The decision
maker will then make a choice among the remaining set of nondominated
solutions.

As an illustration of the concept, consider the following

Example: Suppose that a decision maker has three objectives that are to be
maximized, viz., Max z1, Max z2, and Max z3, and assume that four solutions have
been determined. The solutions achieve objective functions as shown in Table 9.1.

 Table 9.1

 z1 z2 z3
Solution 1 7 5 1
Solution 2 3 0 3
Solution 3 4 −1 8
Solution 4 6 2 3

 9 Multiobjective Programming 328

Here, Solution 1 is better than Solution 2 with respect to the first two objectives,
as its achievements are 7 and 5 and thus are considerably higher than that of
Solution 2 whose achievements are only 3 and 0, but on objective 3, Solution 1
achieves only 1 whereas Solution 2 achieves 3, so that there is no dominance. In
this example, only Solution 4 dominates Solution 2 as it its achievements are the
same or higher with respect to all three objectives. Consequently, a rational
decision maker will never choose Solution 2, which can be deleted from
consideration. Among the other three solutions, there is no clear dominance, so
that all three of them will be called efficient.

Given that not all objectives can usually be optimized at the same time, we will
follow a common convention and write “Max” z rather than Max z. We can then
formulate the following vector optimization problem as

 P: “Max” z1 = c1x
 z2 = c2x
 …
 zr = crx

 s.t. Ax ≤ b
 x ≥ 0,

where ck denotes the coefficients of the k-th objective of the decision maker. A
more compact form would assemble all objective function coefficients in the

matrix C = 
 and objective values in the vector z so that the problem

can be written as



















rc

c
c

M

2

1



















=

rz

z
z

M
2

1

 “Max” z = Cx
 s.t. Ax ≤ b
 x≥ 0.

In order to investigate such a problem, consider first the objective functions and
ignore the constraints. For our discussion, suppose that we have a point x and two
objective functions “Max” z

ˆ
1 = c1x and “Max” z2 = c2x. The situation is displayed

in Figure 9.1a, where the two objectives are anchored at the point x and the lines
(1) and (2) represent the iso-profit lines of the respective objective functions
through the point x . The discussion of the graphical representation of linear
programming has revealed that all points on line (1) are as good as with respect
to the first objective, while all points on line (2) are as good as x with respect to
the second objective. Furthermore, all points in the halfspace indicated by two
arrows pointing away from line (1) are better than x̂ with respect to the first

ˆ

x̂
ˆ

ˆ

9.1 Vector Optimization 329

objective. Similarly, all points in the halfspace shown by the arrows on line (2) are
better than point with respect to the second objective. x̂

x̂

•

(2)

c2

• c1

(1)

Figure 9.1a

For simplicity of the exposition Figure 9.1b shows the same situation again, but
without the objectives, which are not necessary once the iso-profit lines through

 have been determined. x̂

The two iso-profit lines through x subdivide the plane into four cones, which
have here been denoted by C

ˆ
− −, C+ −, C− +, and C+ +, respectively. Consider any

point in the cone denoted by C-- and compare this point to the benchmark point x .
Given its location, any point in C

ˆ
− − has a lower value of the first and the second

objective as compared to the benchmark, thus the name of the cone. Clearly,
whenever the benchmark point is realized, it would not make sense to move into
the cone C− −, as both objective function values would deteriorate in such a move.
Similarly, consider the cone C+ −. Given its location in relation to the iso-profit
lines, any point in C+ − is better than the benchmark point x̂ with respect to the
first objective, but worse than x with respect to the second objective. Hence the
comparison between any point in C

ˆ
+ − and the benchmark point x is inconclusive.

The same argument applies to points in the cone C
ˆ

− +.

Consider now a point in the cone C+ +. Given the location of the benchmark point

 in relation to any point in the cone Cx̂ + + indicates that moving from x into Cˆ + +
will result in an improvement of both values of the objective function. This gives

 9 Multiobjective Programming 330

the cone C+ + its name improvement cone. The conclusion is here that from any
given point x , we would like to move into the improvement cone defined by the
objective functions, thus improving their values.

ˆ

x̂

C+ +

C− +

•
•

C+ −

C− −

(2)

(1)

Figure 9.1b

Before integrating the above results with the consideration of feasible sets, we
would like to point out that

• the angle between the gradients of any two objective functions is an indicator

of the degree of conflict between the objectives, and
• the above arguments hold for any number of objectives.

First consider the angle between two objective functions. This angle is very small
in Figure 9.2a, where the conflict is small (the two objectives are almost in
agreement), while the situation in Figure 9.2b shows a large angle between the
two objectives indicating extensive conflict. As the figure shows, the
improvement cone in case of small conflict is large, while it is narrow when
extensive conflict is present. Consider the two extreme cases: if the two objectives
are identical, the improvement cone coincides with the halfspace generated by the
objectives, as is the case in standard linear programming. On the other hand, if
there is total conflict (i.e., the two objectives are diametrically opposed), the
improvement cone degenerates to the empty set.

9.1 Vector Optimization 331

x̂

c2 c1

(1)

Figure 9.2a
(2)

Figure 9.2b

ˆ

(2)

x•

c2
c1

(1)

Consider now the case of more than two objectives. The improvement cone is then
the intersection of those halfspaces of the objectives that allow improvements
(again shown by arrows at the iso-profit lines into the direction in which the
objective value improves). In Figure 9.3, the first and third objectives generate the
improvement cone that opens in the southwesterly direction, but when the second
objective is introduced as well, the intersection of all three halfspaces is empty,

 9 Multiobjective Programming 332

indicating that the improvement cone is empty, and that in this case, all points are
nondominated.

In general, if the improvement cone has interior points, then the entire cone,
including its boundary but excluding x consists of points that are preferred to x .
If, on the other hand, the improvement cone has no interior points, no points are
better than .

ˆ ˆ

x̂

x̂

(2)

c1
c2

•

(3)

c3(1)

Figure 9.3

The visualization of multiple objectives and the concept of the improvement cone
is also a valuable tool in the context of labor negotiations. Consider a highly
simplistic situation, in which one decision maker represents labor, while the other
represents management. Suppose that the only issue on the table is salary
increases. Naturally, while labor wants to maximize salary increases, management
will try to keep them as small as possible. In other words, there is total conflict.
This situation is shown in Figure 9.4a.

Management Unions

$

Figure 9.4a

Suppose now that the negotiators introduce a second issue, say, the introduction of
additional paid coffee breaks, flexible working hours, additional options regarding
retirement, or some other improvement of working conditions. The union and its

9.1 Vector Optimization 333

members will then decide on some tradeoff between the two issues. Clearly, salary
increases will still be considerably more important than working conditions, but
there will be a finite tradeoff. For management, the tradeoff between working
conditions and additional labor costs is also finite. Actually, management might
prefer the improvement of working conditions over a similar amount paid in
additional salaries, as salaries may not improve productivity, while better working
conditions could have that effect.

The objective of the two decision makers can then be visualized in Figure 9.4b. At
this point we are also able to construct the improvement cone as introduced above,
which is shown as C+ +.

Management

·
·

C+ +

Working
conditions

Unions

Wage

Figure 9.4b

It is now apparent that, in contrast to the original situation of total conflict, the
improvement cone here will serve as a “compromise cone,” in which the two
decision makers could find solutions they can agree upon. The lesson here is that
the introduction of additional noncontroversial issues may help find compromises.

We will now combine the results of the above discussion with the constraints and
the feasible set. The basic idea is this. Suppose we would construct the
improvement cone at any arbitrary feasible point x . Whenever it is possible to
move from the point x into the improvement cone and stay feasible, then the
point under consideration cannot be nondominated. This clearly indicates that the
set of nondominated points cannot include any interior points of the feasible set.
On the other hand, any point on the boundary of the feasible set (i.e., not just

ˆ
ˆ

 9 Multiobjective Programming 334

extreme points) may be noninferior. Because of the location of the noninferior
points, the set of noninferior points is usually referred to as the nondominated
frontier. Without proof, we state the following

Lemma 9.2: The nondominated frontier is a connected set.

To illustrate the concept, we put forward the following

Example: Consider the following vector optimization problem

 P: Max z1 = −2x1 + 3x2
 Max z2 = 3x1 − x2
 s.t. –x1 + x2 ≤ 2 (1)
 x1 +2x2 ≤ 6 (2)
 x1 ≤ 4 (3)
 x1 + x2 ≥ 1 (4)
 x1, x2 ≥ 0.

(1) x2

1
c2

x4

x3

x2 x1

5
c1

x6

x1

(2)

(4)
(3)

Figure 9.5a

9.1 Vector Optimization 335

The feasible set in Figure 9.5a is shaded and improvement cones have been
constructed at all extreme points x1 = (1, 0), x2 = (4, 0), x3 = (4, 1), x4 = (2/3, 8/3),
x5 = (0, 2), and x6 = (0, 1). It can be seen that the extreme points x2, x3, and x4 are
all part of the nondominated frontier, as the intersection of the improvement cone
at those points and the feasible set are only the points themselves, i.e., no
improvement with respect to both objectives is possible. In case of the other three
extreme points it is always possible to move into the improvement cone and stay
in the feasible set, indicating their inferiority. The efficient frontier then includes
the three nondominated extreme points as well as all boundary points between
them. This is indicated in Figure 9.5a by the bold line segments between the
extreme points x2 and x3 and between x3 and x4. The decision maker will then
choose among the points on the efficient frontier.

z6•

z5

z4

z3
z2

z1

•

•

•

•

•

−5 −1
−1

10

5

1 5

z2

z1

Figure 9.5b

Alternatively, we can plot the solutions in what is known as the objective space, in
which the values of the objective functions are plotted along the axes and the
extreme points are zk = (z1(xk), z2(xk)), i.e., the values of the objective function at
the extreme points in the space of decision variables. In our example, z1 = (−2, 3),
z2 = (−8, 12), z3 = (−5, 11), z4 = (20/3, −⅔), z5 = (6, −2), and z6 = (3, −1). The

 9 Multiobjective Programming 336

feasible set in the objective space is shown in Figure 9.5b. The improvement cone
in the objective space is simply the first quadrant shifted appropriately, which
clearly indicates that among the six solutions, only z2, z3, and z4 are noninferior;
the same result that we obtained earlier in the space of the decision variables.

At this point we have reduced the problem at hand to the task of finding the
efficient frontier. Unfortunately, that task is NP-hard, as it may include an
exponential number of extreme points, not to mention all linear convex
combinations of adjacent efficient extreme points.

One possibility to generate all efficient extreme points is the multiobjective
simplex method. The technique is due to Evans and Steuer (1973), Philip (1972)
and Zeleny (1973). For a more recent account of the multiobjective simplex
method, readers are referred to Ehrgott (2005). This is an exact method.
Depending on the degree of conflict, it may take a very long time to determine all
nondominated extreme points. As Ballestero and Romero (1998) report, the
multiobjective simplex method has been used to solve problems to about 50
decision variables and three objective functions by the ADBASE program
developed by Steuer (1995).

A variety of methods exist that approximate the efficient frontier. Most
prominently among them are the weighting method and the constraint method.
Their application does, however, require some additional input from the decision
maker, so that they do not really belong in this category and we will therefore
discuss them in Section 9.2.

In the special case of bi-objective problems, it is possible to construct tradeoff
curves that are very helpful tools in the decision making process. In essence, they
will plot the achievement of one objective function against the other in the (z1, z2)
space. As such, they are the nondominated frontier in the objective space.

Ultimately, the trouble with this approach is that while the decision maker took
the easy way out initially by not specifying any relation between the objectives,
any external target values, and other information, there are now dozens (or,
typically in the case of the multiobjective simplex method, hundreds of thousands)
of solutions that the decision maker will have to compare, obviously an enormous
task, even if only a few chosen solutions are to be compared. This is where
additional input by the decision maker is required. This additional input can come
either as a set of decision rules, tradeoffs, or similar information that is explicitly
included in the model, or some interactive process. Some of these methods are
described in the sections below.

9.2 Models with Exogenous Tradeoffs Between Objectives 337

9.2 Models with Exogenous Tradeoffs Between Objectives
This section discusses approaches to multiobjective optimization problems that
use some input from the decision maker. Here, we consider only input that
specifies relations between objectives and the choice of expressing a criterion as
an objective or a constraint. Models that require input which specifies the relations
between the achievement of a computed solution and some desired target value
will be discussed in Section 9.3.

9.2.1 The Weighting Method

In case the decision maker is able to specify a finite tradeoff between any pair of
objectives, it is possible to apply the weighting method that was suggested by
Zadeh (1963). The basic idea of the weighting method is simple: Given the
individual objectives Max z1 = c1x, Max z2 = c2x, …, Max zr = crx, we use
nonnegative weights w1, w2, …, wr which are multiplied by the corresponding
objective and then a composite objective is determined by adding up the weighted

objectives. Formally, we construct the composite objective as Max z = ∑ .

This objective is then repeatedly optimized for different combinations of weights.
=

r

k

k
kw

1
xc

If the decision maker is reasonably certain about the choice of weights, the
optimization of the composite objective function with that weight combination
will result in the desired combination (with appropriate sensitivity analyses using
slightly perturbed weights following the optimization).

Most of the time the decision maker will not be able to specify precise weights.
We can then use the weighting method to approximate the efficient frontier.
Clearly, using a large number of objectives will require many combinations of
weights to be examined. However, practical models will have rarely more than
half a dozen or so objectives. Ideally, the analyst will start by optimizing one
objective at a time, while ignoring all others, i.e., he will employ weight vectors w
= [1, 0, …, 0], [0, 1, 0, …, 0], …, [0, 0, …, 0, 1] in r separate optimization runs.
This will establish the extreme boundaries of the efficient frontier. Then, typically,
in cooperation with the decision maker, the analyst will solve problems, in which
the composite objective function is constructed by using weight combinations
deemed reasonable by the decision maker. This alternating interactive process
terminates when a solution is computed that the decision maker deems acceptable.

The weighting method can be illustrated by the following

Example: Consider the same bi-objective programming problem, which was
introduced in Section 9.1. Optimizing the first objective (i.e., setting w = [1, 0])
results in the unique optimal solution ()3

8
3
2 ,=x with objectives values

()3
2

3
2

21 ,6),(−=zz , while optimizing the second objective results in the optimal

 9 Multiobjective Programming 338

solution)0,4(=x with objective values)12,8(), 21(−=zz . As can be seen in
Figures 9.5a and 9.5b, these are indeed the two points at the end of the efficient
frontier. The decision maker may now feel more comfortable, while not totally
satisfied, with the former solution, so that the analyst may try a weight
combination such as w = [.7, .3] or similar combinations. (It is common, but not
necessary that the weights sum up to one). In Table 9.2, we provide optimal
solutions for a number of weight combinations.

),(21 xx=x

 Table 9.2

Weights w =
[w1, w2]

Composite objective Optimal solution

Optimal objective
values),(21 zz=z

1.0, 0 −2x1 + 3x2 ()3
8

3
2 , ()3

2
3
2 ,6 −

.8, .2 −x1 + 2.2x2 ()3
8

3
2 , ()3

2
3
2 ,6 −

.6, .4 1.4x2 ()3
8

3
2 , ()3

2
3
2 ,6 −

.5, .5 .5x1 + x2 ()3
8

3
2 , ()3

2
3
2 ,6 −

.4, .6 x1 + .6x2 (4, 1) (−5, 11)

.2, .8 2x1 − .2x2 (4, 0) (−8, 12)
0, 1.0 3x1 − x2 (4, 0) (−8, 12)

It turns out that as long as the weight of the first objective dominates the weight of
the second objective, the point),(21 xx=x = ()3

8
3
2 , with objective values

),(21 zz=z = ()3
2

3
2 ,6 − is optimal. In this example, it so happens that the

weighting method generates all three efficient extreme points as we examine some
possible weight combinations. In general, this will not be the case.

Furthermore, if the decision maker feels unable to choose between, say, the
solutions),(21 xx=x = ()3

8
3
2 , and),(21 xx=x

.

 = (4, 1), but leans towards the
latter, we can compute intermediate solutions by using weight combinations that
favor the second point, such as (α1, α2) = (3, .7), so that the linear convex
combinations of the two solutions is (.3) ()3

8
3
2 , + (.7)(4, 1) = (3.0, 1.5) with the

objective values),(21 zz=z = .3 ()3
2

3
2 ,6 − + .7(−5, 11) = (−1.5, 7.5).

When using weights in the weighting method, consider the following. For
simplicity, we assume again a bi-objective optimization model, i.e., a vector
optimization model with just two objectives. The vector of weights w in the
weighting method has two basic functions: first, the weights express the relative
importance of the objectives, and secondly, they provide a means of conversion
between the units in the different objectives, which may be incommensurable.

9.2 Models with Exogenous Tradeoffs Between Objectives 339

As an illustration, consider the following

Example: A decision maker wants to optimize some function of the two objectives
profit and market share. The analyst has constructed the composite objective Max
z = w1(Profit) + w2(Market share), which, by arbitrarily setting w1 =1 and using a
weight w = w2, results in the composite objective Max z = (Profit) + w(Market
share). Suppose now that two distinct solutions have been determined, one with a
profit of $100,000 and a market share of 5%, and the other with $50,000 profit
and a 12% market share.

Here, the weight factor w denotes the conversion of 1% market share into an
equivalent (profit) dollar value. Suppose now that a 1% market share is deemed to
be worth $10,000, then w = 10,000, and the two solutions have objective values of
100,000 + 10,000(5) = 150,000 and 50,000 + 10,000(12) = 170,000, so that the
latter solution is preferred.

The lexicographic method assumes that the decision maker is able to specify a
ranking of the objectives, such that the first objective is infinitely more important
than the second objective, which, in turn, is infinitely more important than the
third, and so forth. In that sense, the lexicographic method is nothing but a
weighting method with infinite weights. Given such preemptive priorities (a very
strong assumption, no doubt), it is possible to solve the problem by means of a
sequence of linear programming problems. Assuming that the objectives are
ranked from “Max” z1 to “Max” z2, …, “Max” zr, we will ignore all objectives but
the first. The resulting problem is a single-objective linear programming problem,
which can be solved as usual. Suppose that the optimal value of the objective
function is 1z . We then add the constraint c1x ≥ 1z to the system of constraints
and optimize the system with the objective Max z2 = c2x. The optimal solution of
this system is then 2z . We now add the constraint c2x ≥ 2z to the system and
maximize the third objective. This procedure continues until all objectives have
been optimized.

The drawback of this procedure is obvious: first, the decision maker has to make
some very strong statements regarding the ranking of the objectives, and secondly,
lower-ranking objectives are highly unlikely to be considered at all. For a good
description, readers are referred to Collette and Siarry (2003). A variety of other
techniques are discussed in Figueira et al. (2005).

9.2.2 The Constraint Method

The constraint method dates back to Marglin (1967). The basic idea is to
transform all but one objective to constraints with unknown right-hand side values
which represent different target values or achievement levels. For any given set of
right-hand side values, the problem is but a standard linear programming problem.
After the problem is solved for one set of achievement levels, their values are
modified by the decision maker and the problem is solved again with a different

 9 Multiobjective Programming 340

set of right-hand side values. This process is repeated until a solution has been
found that is acceptable to the decision maker.

In order to illustrate the process, we use the same example that was employed to
illustrate the weighting method. For convenience it is restated here.

Example: The bi-objective optimization model under consideration is

 P: Max z1 = −2x1 + 3x2
 Max z2 = 3x1 − x2
 s.t. –x1 + x2 ≤ 2 (1)
 x1 +2x2 ≤ 6 (2)
 x1 ≤ 4 (3)
 x1 + x2 ≥ 1 (4)
 x1, x2 ≥ 0.

We arbitrarily choose the first objective to remain as an objective function, while
the second objective is rewritten as a constraint with a preselected value of z2, and
the problem can then be written as

 P: Max z1 = −2x1 + 3x2
 s.t. –x1 + x2 ≤ 2 (1)
 x1 + 2x2 ≤ 6 (2)
 x1 ≤ 4 (3)
 x1 + x2 ≥ 1 (4)
 3x1 − x2 = z2 (5)
 x1, x2 ≥ 0.

Figure 9.6

z2 = 8 z2 =12 z2 = 2

z2 = −2

c1

x1

x2

z2 =−1

9.3 Models with Exogenous Achievement Levels 341

Figure 9.6 shows the feasible set defined by the constraints (1) – (4) and the
nonnegativity constraints as the shaded area. In addition, there is the gradient of
the objective function shown as c1 as well as contour lines for z2 = 12, 8, 2, −1,
and −2. It can be seen that for z2-values larger than 12 and smaller than −2, these
contour lines do not intersect the feasible set, so that there exists no feasible
solution.

The solutions obtained by the constraint method in the above example are
summarized in Table 9.3 for a few selected values of z2.

 Table 9.3

z2 Optimal solution x Objective value 1z =
> 12 no feasible solution —
12 (4, 0) −8
8 (3.14, 1.43) −2
4 (2, 2) 2
0 (.86, 2.57) 6
−1 (.5, 2.5) 5
−2 (0, 2) 6

<−2 no feasible solution

As opposed to the weighting method, the constraint method typically does not find
extreme points of the original feasible set.

Finally, we would like to mention interactive methods that may be used in order to
incorporate the decision maker’s input in a procedure that shuttles back and forth
between the decision maker, who specifies some (typically limited) input and the
analyst, who incorporates the decision maker’s input in the model and resolves it.
The earliest such methods date back to Benayoun et al. (1971) and the STEP
method that uses a minimax objective to measure the weighted distance between
the ideal point and the realized solution. Another early reference is Geoffrion et
al. (1972). Reviews of interactive procedures are offered by Steuer (1986) and
Shin and Ravindran (1991) and Hussein and Al-Ghaffar (1996). A good summary
is provided by Reeves and Franz (1985) and recent references are Sakawa (2002)
and Chen et al. (2005).

9.3 Models with Exogenous Achievement Levels
All models and approaches described in this section have in common that they
necessitate information from the decision maker regarding the deviation of a
solution from an exogenously specified measure. If this measure is some ideal (or
reference) point, i.e., some ideal achievement level, then we deal with reference

 9 Multiobjective Programming 342

point programming, as we will attempt to minimize the distance between the
actual achievement level and that of the ideal point. Alternatively, reference points
can also be least ideal (or nadir) points, so that the model will attempt to find a
solution that is as far away from such a point as possible. In both cases, the
decision maker must also specify a metric that is used to compute the distance
between a solution and a reference point. A description of reference point methods
in the discrete case can be found in Eiselt and Sandblom (2004), and a recent
reference that applies the concepts is Buchanan and Gardiner (2003). Fuzzy
programming is a concept in which desired achievements of the given objectives
are assumed to be stated in an ambiguous way and the approach attempts to
reconcile them. Finally, goal programming is a penalty method that works with
target values and the method penalizes deviations from the prespecified targets.

9.3.1 Reference Point Programming

Reference point programming methods require that the decision maker specifies
ideal or least ideal points for each of the objectives, as well as a metric that
measures the distance between the actual achievement and the yardstick, defined
by the (least) ideal point. Clearly, in case an ideal point is given, the distance
between it and some solution generated by the solver is a disutility that is to be
minimized, so that ideally, the ideal point is reached in which case the disutility
(or penalty) equals zero. On the other hand, in case of a least ideal point, we
would like to find solutions that are as far away as possible from the nadir point,
so that the distance expresses a utility that we will attempt to maximize. Given the
multiobjective programming problem

 P: “Max” z1 = c1x
 z2 = c2x
 …
 zr = crx

 s.t. Ax ≤ b
 x≥ 0,

One way to determine an ideal point is to solve the r linear programming
problems

 P: Max zk = ckx
 s.t. Ax ≤ b
 x ≥ 0,

and then define the ideal point as (rzzz ,...,, 21). Choosing an ideal point that
individually optimizes all objectives may not be a very good idea, as such a point
may not properly reflect the decision maker’s wishes.

9.3 Models with Exogenous Achievement Levels 343

To illustrate the concept, consider the example in Figure 9.7, in which the feasible
set is plotted in the objective space (z1, z2). Minimizing the (Euclidean) distance
from the ideal point to the set results in the point z (note that z is not an extreme
point), while maximizing the (Euclidean) distance from the least ideal point to the
set, we obtain the solution z . Intuitively, while z appears to be a reasonable
compromise solution, z is not: while its achievement on the second objective is
good, it fails miserably on the first objective with a comparatively high value of
z1. Worse yet, the point is dominated by one of its neighboring extreme points.

z

z2

Ideal point • ••

•

Least
ideal point •

• •

z1

•

Figure 9.7

Another problem is the choice of distance function. Most authors will chose one
among the class of Minkowski metrics. This is a class of distance functions that
are define by a parameter p, so that the lp distance between two points a = (a1, a2,
…, an) ∈ ún and b = (b1, b2, …, bn) ∈ ún is defined as

pn

k

p
kkp bad

1

1
),(












−= ∑

=

ba .

For p = 1, we obtain the Manhattan metric

 , ∑
=

−=
n

k
kk babad

1
1 ||),(

 9 Multiobjective Programming 344

i.e., the distance between two points is the sum of the coordinate differences. For
p = 2, we obtain the usual Euclidean (or straight-line) distances

2
1

1

2
2)(),(












−= ∑

=

n

k
kk bad ba ,

which are obviously nonlinear. Finally, for p → ∞, we obtain the Chebyshev
distances
 { }kk

k
bad −=∞ max),(ba .

The Chebyshev distance is the largest individual absolute difference of any pair of
coordinates between the two points and is useful in minimax settings. Note that
Chebyshev distances are piecewise linear. As a matter of fact, only the l1 and l∞
distances lend themselves to formulations as linear programs.

Typically, the decision maker (or the analyst) will choose one of these metrics and
apply it to the problem at hand. Zeleny’s (1973) “compromise programming” is
similar in that it first determines the nondominated set and the ideal point, which
is the point that optimizes each objective individually. If the ideal point is feasible,
this is the solution. Otherwise, the approach minimizes the deviation from the
ideal point from the feasible set with some lp distance. The region that is optimal
for any of these distances is the compromise region.

In a recent contribution, Buchanan and Gardiner (2003), minimize (maximize)
Chebyshev distances between the feasible set and the ideal (least ideal) point.

We will illustrate the general idea by means of a numerical example that uses
Manhattan distances.

Example: Consider a problem, whose feasible set is described by the constraints

 x2 ≤ 6
 x1 + x2 ≤ 8
 2x1 +x2 ≤ 11
 x1 ≤ 5
 x1, x2 ≥ 0.

Suppose that the (unachievable) point (7, 4) has been identified by the decision
maker as the ideal point. The task is now to define a distance function that allows
us to measure the distance between the feasible set and the ideal point. The
Manhattan distance d1(A, C) between two points A = (a, b) and C = (c, d) in the
plane is then d1(A, C) = |a − b| + |c − d|. The problem is now to minimize |7 − x1| +
|4 − x2| subject to the constraints that describe the feasible set. Following the

9.3 Models with Exogenous Achievement Levels 345

transformation described in Section 8.3.1 in this volume, the problem can be
transformed into a linear programming problem, which can be written as

 P: Min z = y1 + y2
 s.t. y1 ≥ 7 − x1
 y1 ≥ x1 − 7
 y2 ≥ 4 − x2
 y2 ≥ x2 − 4
 x2 ≤ 6
 x1 + x2 ≤8
 2x1 + x2 ≤ 11
 x1 ≤ 5
 x1, x2 ≥ 0.

The optimal solution of this problem is),(21 xx=x = (3½, 4) with an l1 distance
of 3½. Note that the optimal solution is not an extreme point of the original
feasible set.

Employing the Chebyshev metric, i.e., using a minimax objective instead, i.e.,
Min z = max {y1, y2}, we can write the objective as Min z and add the constraints z
≥ y1 and z ≥ y2, and leave the remaining constraints unchanged. The problem then
has a solution =x (4⅔, 1⅔) with a value of the objective function of z = 2⅓.

2x

1x y

x2, y2

5
C C

CC

x1, y1 51

Figure 9.8

 9 Multiobjective Programming 346

An extension of this concept would include not a single ideal point (which may be
very difficult to specify by the decision maker), but an “indifference region” of
points, which are all deemed desirable by the decision maker. In order to
formulate the problem, we define the variables x1 and x2 as usual in the feasible set
of the above example, and additional variables y1 and y2 that determine a point in
the indifference region, which are restricted by the boundaries of that region. Let
the constraints that define the indifference region be

 y2 ≤ 5
 3y1 + y2 ≥ 23
 3y1 −2y2 ≤ 17.

The situation is shown in Figure 9.8 with the shaded area indicating the feasible
set and the crosshatched area showing the indifference region.

In order to determine the shortest possible l1 distance between a feasible point (x1,
x2) and a point in the indifference region (y1, y2), we minimize |x1 − y1| + |x2 − y2|.
This can again be accomplished by defining two new variables z1 and z2 and
formulating the problem as

 P: Min z = z1 + z2

 z1 ≥ x1 − y1
 z1 ≥ y1 − x1
 z2 ≥ x2 − y2
 z2 ≥ y2 − x2

 y2 ≤ 5
 3y1 + y2 ≥ 23
 3y1 −2y2 ≤ 17

 x2 ≤ 6
 x1 + x2 ≤ 8
 2x1 + x2 ≤ 11
 x1 ≤ 5
 x1, x2 ≥ 0

The optimal solution has x = (21, xx) = (4½, 2) and y = (21, yy) = (7, 2) with a
distance of z = 2½.

9.3.2 Fuzzy Programming

It is apparent that the information provided to an analyst or decision maker is not
always correct or clear. In particular, there are two types of lack of precision:

9.3 Models with Exogenous Achievement Levels 347

ambiguity applies if somebody is not sure about a number (“the demand for our
product is probably about 500 this month”) and vagueness, which indicates that
somebody is not able to clearly specify an achievement (“our profit this quarter
should be significantly above $100,000”). Both types of imprecision can be dealt
with by fuzzy sets. In this section, we deal with vagueness.

Fuzzy sets were introduced by Bellman and Zadeh (1970). Much of the early work
on their use was done by Zimmermann (1976, 1978). This an active area that even
has its own journal “Fuzzy Sets and Systems.” Good surveys can be found in
Zadeh (1979) and Inuiguchi and Ramík (2000). Here, we first introduce the
concept of fuzzy sets and provide a basic model that allows us to incorporate
fuzziness in a linear optimization model.

Our point of departure is the standard set theory, in which given elements x1, x2,
…, xn are included in the universal set U. Suppose that there are sets A, B, … ⊂ U,
and each arbitrary element xj ∈ A or xj ∉ A for a set A. This concept is usable if
everything is well defined, e.g., if the set A is defined as “the set of corporations
that are traded at the NYSE and that reported profits of strictly more than $10
million in 2006.” Each company then either is an element of that set or it is not
and there is no gray zone. Sets that are defined in a clear and concise way are
termed crisp. However, we can “fuzzify” the statement simply by replacing
“…profits of strictly more then $10 million…” by “…profits of significantly more
than $10 million… .” The term “significantly” is subjective and the set A is no
longer crisp but fuzzy.

Given a fuzzy set A, we can define a so-called fuzzy membership function µA(x),
which expresses the degree to which each individual element x ∈ A belongs to the
set A. The fuzzy membership function assumes a value of zero, if the element in
question is very far from or most certainly not a member of the set, and it equals
one if the element is definitely part of the set. The case of the usual crisp sets is a
special case of fuzzy sets with a membership function that equals either zero or
one. In the above example, let the elements x1, x2, …, x7 denote the profits of six
companies (in millions), such that x1 = 9, x2 = 10, x3 = 13, x4 = 18, x5 = 20, and x6
= 30. Defining now a fuzzy membership function as















≥

<<
−
−

≤

=

20if,1

2010if,
1020
10

10if,0

)(

x

xx

x

xAµ

The values of the membership function are then µA(xj) = 0, 0, .3, .8, 1, and 1. The
first two elements are not part of the set as they do not satisfy the specification of
a minimum of $10 million in profits, the companies 3 and 4 are associated with

 9 Multiobjective Programming 348

gradually increasing degrees of the membership function, while companies 5 and
6 are both thought of as having profits that are significantly higher than $10
million, so both of them are full members of the set A.

Notice the difference between the fuzzy membership function and probabilities:
while the membership function measures the degree to which an element satisfies
an ill-defined constraint or objective, a probability would measure the likelihood
that an element satisfies a well-defined constraint or objective.

We are now able to define some basic operations on fuzzy sets. Let xj, j=1, …, n
denote elements. We then can write

Definition 9.3: The intersection of two fuzzy sets A and B with membership
functions µA(x) and µB(x) is defined as C = A ∩ B with µC(xj) = min {µA(xj), µB(xj)}
∀ j.

Similarly we can define

Definition 9.4: The union of two fuzzy sets A and B with membership functions
µA(x) and µB(x) is defined as D = A ∪ B with µD(xj) = max {µA(xj), µB(xj)} ∀ j.

As a simple illustration, consider the following numerical

Example: There are four elements x1, x2, x3, and x4, whose membership functions
are µA(xj) = .8, .3, 0, and 0 as well as µB(xj) = 0, .4, .2, .7. The intersection C = A ∩
B has memberships µC(xj) = 0, .3, 0, 0, while the intersection D = A ∪ B has
membership function µD(xj) = .8, .4, .2, and .7.

Again, it is easy to see that these definitions have the equivalent operations for
crisp sets as a special case. Consider three elements x, y, and z, such that x, y ∈ A
and y, z ∈ B, we have membership functions µA = 1, 1, 0 and µB = 0, 1, 1, so that
the A ∩ B has values of the membership function of 0, 1, 0, indicating that only y
is a member of the intersection, while the membership values of the union are 1, 1,
1, which coincides with the usual result.

Consider now the objective function in an optimization problem and how it can be
remodeled by using fuzzy sets. Suppose that a firm wants to maximize some
objective function and assume that the decision maker is able to provide some
upper and lower bounds for the measure of interest. Assume that the measure of
interest is profit and assume that the decision maker has specified a lowest
acceptable profit of $5 million and a desirable target value of $10 million We can
then define a set A that includes all solutions whose profit significantly exceeds $5
million. The membership function µA(x) would then be zero for all solutions with
profits of less than $5 million, it would assume a value of one for all solutions
with profits of $10 or more, and it would have some value between zero and one
for all solutions whose associated profits are between $5 and $10 million.

9.3 Models with Exogenous Achievement Levels 349

Suppose now that the decision maker has a second objective, called customer
satisfaction. This qualitative criterion has been measured on a five-point Likert
scale with “1” denoting an unhappy customer and “5” symbolizing a customer
who is completely satisfied. Suppose our decision maker would accept a neutral
customer who is satisfied with a rating of “4,” so that we can define a set B that
includes all solutions that have a satisfaction rating substantially above neutral.
The membership function then has all solutions with satisfaction rating below “3”
at the zero level, all solutions x with a rating of “4” or higher will have µB(x) =1,
and the solutions with satisfaction ratings between “3” and “4” have values
between zero and one.

Considering now both objectives, the decision maker would like to have profits
“significantly higher than $5 million,” i.e., membership in the set A, as well as
customer satisfaction ratings, “well above neutral,” i.e., membership in the set B.
In order to satisfy both criteria, we have to find solutions in the intersection C =A
∩ B. Following Definition 9.3, membership in the set C is defined by the
membership function µC(x) = min {µA(x), µB(x)}, which, since both measures are
utilities (rather than disutilities), is to be maximized. This leads to the following
reformulation. Consider a standard vector optimization problem

 P: “Max” z1 = c1x
 z2 = c2x
 …
 zr = crx

 s.t. Ax ≤ b
 x≥ 0,

in which the decision maker has specified lower bounds Lk and upper bounds Uk
on the values of the objective functions k = 1, …, r as well as defined the
membership function that will assume values of zero for objective values below
Lk, one for objective values above Uk, and values between zero and one for
objective values between those bounds. One possibility (but by no means the only
one) is to employ a piecewise linear membership function















≥

∈
−
−

≤

=

k
k

kk
k

kk

k
k

k
k

k

Uif

UL
LU
L

L

x

xc

xcxc

xc

,1

[,]if,

if,0

)(µ

The problem can then be formulated as

 9 Multiobjective Programming 350

 P': Max z' =)}({min xkk
µ

 s.t. Ax ≤ b
 x ≥ 0.

Using the standard reformulation described in Section 8.3.3 of this volume, we
can rewrite this problem as

 P": Max z"
 s.t. z" ≤ µk(x) ∀ k
 s.t. Ax ≤ b
 x ≥ 0.

Since µk(x) are piecewise linear functions, we may proceed to solve problem P" as
follows. First, we introduce the constraints ckx ≥ Lk ∀ k and ckx ≤ Uk ∀ k and

replace the constraints z" ≤ µk(x) by z" ≤
kk

k
k

LU
L

−
−xc . If the problem has no feasible

solution because at least one of the lower bounds cannot be achieved, then the
lowest achievable value of any of the membership functions equals zero.
Objectives that have reached the upper bound can have their upper bound
removed and their value µk(x) replaced by one. If the upper bounds are chosen as
the maximal achievements of an objective as all other objectives are disregarded,
then these upper bound constraints do not have to be included in the reformu-
lation.

In order to illustrate the above approach, consider again the problem that was
solved for vector optimization problems in Section 9.1. For convenience, we
restate the problem here.

Example: The bi-objective linear optimization problem under consideration is

 P: “Max” z1 = −2x1 + 3x2
 “Max” z2 = 3x1 − x2
 s.t. –x1 + x2 ≤ 2 (1)
 x1 + 2x2 ≤ 6 (2)
 x1 ≤ 4 (3)
 x1 + x2 ≥ 1 (4)
 x1, x2 ≥ 0.

Solving two simple linear programming problems results in the ideal point

),(21 zz = (U1, U2) = (6⅔, 12). The least acceptable (nadir) point is set somewhat
arbitrarily to (L1, L2) = (⅔, 2). Assuming that both objective values are between
their lower and upper bounds, the objective function of the problem can then be
reformulated as

9.3 Models with Exogenous Achievement Levels 351

 P: Max z = min










 −−−+−

10
2)3(,

6
)32(213

2
21 xxxx

 = min { })2.1.3(.),9/12/13/1(2121 −−−+− xxxx .

The problem can then be written as

 P': Max z

 s.t. z ≤ −⅓x1 + ½x2 − 1/9
 z ≤ .3x1 − .1x2 − .2
 s.t. –x1 + x2 ≤ 2 (1)
 x1 + 2x2 ≤ 6 (2)
 x1 ≤ 4 (3)
 x1 + x2 ≥ 1 (4)
 x1, x2 ≥ 0.

The optimal solution to problem P' is 9881.1,0238.2 21 == xx so that z = 0.2083.
It is apparent that constraint (2) is binding at optimum and the optimal solution is
on the nondominated frontier shown in Figure 9.5a.

There is a variety of extensions of this basic approach. One of them is to include
nonlinear fuzzy membership functions, which then have to be dealt with by
techniques from nonlinear optimization, while the inclusion of fuzzy parameters
leads to possibilistic programming. An interesting paper in this context is by
Vasant et al. (2005). However, such extensions are beyond the scope of this book.

Other extensions of fuzziness are derived from the theory of rough sets as
introduced by Pawlak (1991). Their use in linear programming, or optimization in
general has, however, not been established.

9.3.3 Goal Programming

Another way to address optimization problems in case the decision maker has
provided some guidelines concerning values of the objective functions is goal
programming. The essence of goal programming is the introduction of aspiration
levels or target values tk, k=1, …, r with the proviso that the solution should reach
the target values, if possible. In the sense that they provide externally determined
reference points, goal programming problems are similar to reference point
methods. The formulation of problems with target values typically blurs the
distinction between objectives and constraints, since objectives are formulated as
goal constraints, so that the deviation of the actual achievement is measured in
terms of deviation from the goal and this deviation is then minimized.

 9 Multiobjective Programming 352

The earliest descriptions of goal programming are due to Charnes et al. (1955) and
Charnes and Cooper (1961), where in the latter reference, the authors also
introduce the term “goal programming.” Ijiri (1965) uses a preemptive priority
structure for the individual goals. Ignizio (1982) summarizes his work in the
1960s and 1970s, which includes may applications of goal programming. Other
milestones are the books by Lee (1972) and Schniederjans (1984). Newer
contributions are the books by Ignizio and Cavalier (1994), Schniederjans (1995),
and the edited collections by Trzaskalik and Michnik (2002) and Tanino et al.
(2003).
The underlying concept in the goal programming approach is the concept of
satisficing introduced by Simon (1957). Simply speaking, the main idea of
satisficing (= satisfying + sufficing) is that decision makers do not necessarily
maximize their utility, but instead, are satisfied when a predetermined target value
or aspiration level has been achieved.

The modeling procedure progresses as follows. The first step is to decide which of
the constraints are “hard,” i.e., must be satisfied under all circumstances. Those
constraints will be dealt with as usual. Consider now the goal constraints, i.e.,
those constraints that should be satisfied whenever possible, but if they are not, we
would be satisfied if the solution would be as close as possible to the prescribed
target.

Formally, consider a goal constraint of the type al•x R tl. where the left-hand side,
as usual, denotes the achievement by the present solution, whereas the right-hand
side denotes a target value or aspiration level tl with which the present
achievement will be compared. In contrast to regular constraints, goal constraints
do allow deviations of the actual achievement from the target value. For that
purpose, we define deviational variables that measure the underachievement

of the target and as such act as slack variables, as well as deviational variables
that measure overachievements, which can be interpreted similar to excess
variables. The objective function will then be composed of a weighted sum of
over- and underachievements of the individual measures.

−
ld

+
ld

Given the three admissible relations in linear programming, we can distinguish
between three situations shown in Table 9.4.

Table 9.4

Desired situation Formulation of goal
constraint

Contribution to the
objective function

ak•x ≤ tl Min +
ld

ak•x = tl Min +− + ll dd
ak•x ≥ tl

llll tdd =−+ +−
•xa

0, ≥+−
ll dd

Min −
ld

9.3 Models with Exogenous Achievement Levels 353

As an illustration, suppose that 100 resource units are available and only 80 have
been used in a particular solution. Since both deviational variables are constrained
to be nonnegative, d =20 and = 0 will result. This indicates that twenty units
less than available are used in the solution. Similarly, if we were to have used 130
units in some solution, the deviational variables would assume the values = 0

and = 30, indicating that we overuse the resources by 30 units. Note that had
this constraint been formulated as a regular constraint, such an overuse would not
have been allowed. In contrast, a goal constraint will allow overuse, but
minimizing in the objective function will attempt to keep such overuse as
small as possible. In contrast to regular constraints that limit achievements, goal
constraints will asked to respect an achievement, if possible. This softening of the
constraints allows deviations that carry a penalty with them, but are nonetheless
possible.

−
l

+
ld

−
ld

+
ld

+
ld

The fact that we use over- and underachievement variables in the same constraint
may appear to be a problem. However, it is not possible that both variables are
positive at the same time. The reason is that the columns of the two variables are
identical except for the sign, i.e., they are linearly dependent, so that they cannot
be included in the same basic matrix which, by definition, has full rank.

One serious problem arises in the objective function, though. The objective
function in goal programming is constructed as the weighted sum of deviations
from the target values. This means that one single objective will include
deviational variables that are defined in terms of dollars, others in terms of
manpower, risk, calories, tons of steel, or whatever the application may call for.
Clearly, including all of these variables with different units together in one
objective raises the issue of commensurability. One easy (but potentially not
satisfactory) way out of this is to define weights, whose function is not only to
express the different degrees of importance of the over- and underachievements,
but also to provide a conversion of the units used in the goal constraints.

As described above, goal programming can be classified as a reference point
method. As opposed to the reference point method described earlier, goal
programming employs target values that are reachable and the solution can
deviate from both sides.

One other feature that may be present in goal programming problems is a
lexicographic structure of the overall objective. In particular, it is possible to have
a finite number of individual objectives, each assumed to be infinitely more
important as the next lower-ranking objective. On each such level, finite weights
are used to ensure that deviational variables from different goal constraints are
commensurable and their relative importance is expressed properly.

 9 Multiobjective Programming 354

The notion that classes of constraints are infinitely more important than others—
while standard in lexicographic programming problems—appears nevertheless
contrived. Such a concept is, however, not at all new to users of linear
programming. Consider a standard linear programming problem with the usual
constraints and an objective function. Here it is infinitely more important to
satisfy the constraints than optimizing the objective function, as without a feasible
solution, optimization is meaningless. In other words, the preemptive priority
structure applies there as well. In goal programming, this structure is generalized
to apply to different levels of objective functions.

In order to formally define a goal programming problem, we have to introduce
some definitions. The regular constraints in a goal programming problem are
supposed to include slack and excess variables as usual (which here, for
convenience, are denoted as xj similar to the decision variables). Then artificial
variables are added to those constraints that are originally of the type ≥ and =, as
usual. The numbers of the constraints that involve artificial variables are collected
in the set I, so that artificial variables Ai exist for all constraints in the set I.

All goal constraints are written with deviational variables as shown in Table 9.4.
The deviational variables are then collected into clusters depending on their
importance. The highest-ranking and most important deviations are collected in
cluster 1, cluster 2 includes the next class of importance, and so forth. The
preemptive priority levels are then P0 >>> P1 >>>P2 >>> … >>> Pr. The model
can then formally be written as

 P: Min z = ∑ ∑ ∑ ∑
∈ = = =

++−−












++

Ii

r

k

s s

kkki dwdwPAP
1 1 1

0
l l

llll

 s.t. ∑
=

∈∀=+
n

j
iijij IibAxa

1

 stddxa
n

j
jij ,...1

1
=∀=−+ +−

=
∑ llll

 lll ,,0,,, ijddAx ij ∀≥+−

If the model also includes a regular maximization or minimization objective
function, it can also be incorporated in this structure. Assume that the objective
were to maximize the function cx, we can then define an (unattainable) target
value z for it, write the goal constraint cx + d and minimize the

underachievement If the target value z is chosen sufficiently large, this is
equivalent to maximizing the function cx.

zdhh =− +−

.−hd

In order to illustrate the modeling with goal constraints, consider the following

9.3 Models with Exogenous Achievement Levels 355

Example: An investor has $100,000 that can be invested in three alternatives, viz.,
bonds, stocks, and the family business. The respective returns are 6%, 8% and 4%.
In addition to the money available, it is possible to borrow money from the bank
at 9%. The hard constraints and the softer goal constraints are listed below.

Absolute constraints:
 (1) Do not borrow more than $20,000 from the bank.
 (2) Do not overspend the total budget.
 (3) The amount of money invested in the family business has to exceed
 the total amount of money invested elsewhere by at least $10,000.
Priority level 1:
 (4) Due to risk aversion, at most 10% of the total amount of money
 invested can be allocated to stocks, if possible
 (5) Security reasons require an investment of $40,000 or more in bonds,
 if possible
 (6) The family asks for $30,000 or more for their business, if possible.

The decision maker assumes that the three goals (4), (5), and (6) have relative
weights of 2, 3, and 7, respectively.

Priority level 2:
 (7) Invest exactly $100,000, if possible
 (8) Maximize the return on the total investment.

The decision maker specifies that both objectives on this level have equal weight.
In addition, the objectives on priority level 1 are assumed to be infinitely more
important than those on priority level 2.

We first define variables x1, x2, and x3 as the dollar amounts invested in the three
alternatives and x4 as the amount borrowed from the bank. The constraints can
then be formulated as

 x4 ≤ 20,000 (1')
 x1 + x2 + x3 ≤ 100,000 + x4 (2')
 x3 ≥ x1 + x2 + 10,000 (3')

Including slack variables x5 and x6 as well as an excess variable x7 and an artificial
variable A1, the constraints can be written as

 x4 + x5 = 20,000 (1)
 x1 + x2 + x3 + x6 = 100,000 + x4 (2)
 x3 − x7 + A1 = x1 + x2 + 10,000 (3)

If the goal constraints on the first priority level were to be formulated as regular
(i.e., hard) constraints, we would write

 9 Multiobjective Programming 356

 x2 ≤ .1(x1 + x2 + x3) (4')
 x1 ≥ 40,000 (5')
 x3 ≥ 30,000 (6')

Similarly, formulating the goal constraints on the second priority level as hard
constraints, we would like to obtain (if possible)

 x1 + x2 + x3 = 100,000 (7')
 Max z = .06x1 + .08x2 + .04x3 − .09x4 (8')

Using now deviational variables and the transformation shown in Table 9.4, we
can write the goal constraints that derive from the relations (4'), (5'), and (6') as

 x2 = .1(x1 + x2 + x3) (4) +− −+ 44 dd

 x1 = 40,000 (5) +− −+ 55 dd

 x3 = 30,000 (6) +− −+ 66 dd

with objective function contributions of Min , Min d , and Min d ,
respectively.

+
4d −

5
−
6

The goal constraints on the second level are rewritten as

 x1 + x2 + x3 + = 100,000 (7) +− − 77 dd

 .06x1 + .08x2 + .04x3 − .09x4 + = z (8) +− − 88 dd

where we can set z := 10,000 as an unattainable level of achievement.
Furthermore, the objective function contributions are Min d and Min ,
respectively.

+− + 77 d −
8d

The highest priority level includes the artificial variables of the regular
constraints. It can be written as

 Min A1.

The next priority level includes weighted deviations defined in the goal
constraints

 Min +2 , −− ++ 654 73 ddd

and the next and lowest priority level includes

 Min − +d . −+ + 877 dd

9.3 Models with Exogenous Achievement Levels 357

The overall objective is then

 Min P0 A1 + P1(2) + P2(). −−+ ++ 654 73 ddd −+− ++ 877 ddd

There are different ways to solve goal programming problems. The simplest way
(and one that uses existing linear programming software) is the sequential goal
programming approach. On level k, this technique proceeds as follows. Assume
that the objective function of the original problem is written as
 Min z = ∑ ,

k
kk zP

where zk is the appropriate function of deviational variables. Furthermore, assume
that the values on the levels l = 1, …, k have already been determined as

....,, 121 −kzzz On level k, the problem under consideration can then be written as

 P: Min zk
 s.t. zl ≤ lz , l = 1, …, k−1
 Ax ≤ b
 x ≥ 0.

In other words, in iteration k the method will add constraints that require the
higher levels to be restricted to the values they achieved when those levels were
optimized. Starting with the highest-ranking part of the objective, this process is
performed for all levels sequentially—hence the name—until the lowest level has
been optimized.

As an illustration, consider the investment example above. On Level 0, the
objective minimizes A1. There is an infinite number of feasible solution that have
A1 at the zero level. Deleting the artificial variable keeps it at the zero level
indefinitely. Consider now Level 1. The objective is Min z1 = 2
which is optimized under consideration of the constraints (1) – (8), leading to the
solution

−−+ ++ 654 73 ddd

,000,50,0,000,40 321 === xxx and 04 =x with 1z = 0.

On Level 2, we employ the objective Min z2 = d coupled with the
constraints (1) – (8) and the additional constraint that requires the achievement on
the higher-ranking Level 1 to be at least as good as in the previous step, i.e.,

 ≤ 0. The optimization results in

−+− ++ 877 dd

−−+ ++ 654 732 ddd ,000,401 =x ,000,52 =x
,000,553 =x and 04 =x with the partial objective achievement of 000,952 =z .

Other solution approaches to goal programming problems exist. For instance,
there is a multiphase optimization method, which uses some properties to reduce
the size of the problem and it also avoids having to re-solve the problem for each

 9 Multiobjective Programming 358

level. However, given the computational power available today and the relatively
small number of levels in practical problems, it does not appear worthwhile to
spend much effort in devising other solution techniques.

It may be very tempting to avoid resolving the problem for each level separately
by using finite weights P1 >> P2 >>…>>Pr and then solving the resulting linear
programming problem once. However, this reformulation may not result in the
correct solution.

Example: A single-level goal programming problem is given as

 P: Min z = −+− ++ 22111)(dPddP

 s.t. x1 + x2 ≤ 2
 x1 + = 3 +− − 11 dd

 1,000x2 + = 5,000 +− − 22 dd

 x1, x2, ≥ 0. +−+−
2211 ,,, dddd

The optimal solution of this goal programming problem is ,21 =x ,02 =x

, , and d . If we were to set P1 := 100 and P2 := 1 in
order to mimic the large difference between the importance of the two levels, and
then aggregate the two levels of the objective, we obtain the solution

11 =−d =+
1d 02 =+d 000,52 =−

01 =x ,

22 =x , 000,3,3 2 =−d1 =−d , and 02 == +d2
+d , obviously a very different

solution.

We will conclude this section by providing another possible application of goal
programming. Suppose we have a system of simultaneous linear equations Ax = b
that does not have a feasible solution, i.e., some of the statements in the equations
are contradictory. Since there is no feasible solution x ∈ ú, we may want to
determine a solution that is as close as possible to the feasible set described by the
equations. Assume that we define proximity, i.e., the degree by which a solution
deviates from the feasible set by the sum of deviations from feasibility, we can
then solve the single-level goal programming problem

 P: Min z = ∑ +− +

i
ii dd)(

 s.t. ∀ i iiij
j

ij bddxa =−+ +−∑
 xj ∈ ú ∀ j; d ≥ 0 ∀ i. +−

ii d,

In order to explain the procedure, consider the following

9.4 Bilevel Programming 359

Example: Consider the system of simultaneous linear equations

 x1 + 3x2 + 7x3 = 120
 −3x1 + x2 + 2x3 = 60
 −x1 −3x2 + 5x3 = 60.

It is easy to verify that the system has no solution. We now attach deviational
variables to the equations and minimize their sum in the system
 P′: Min z = +−+−+− +++++ 332211 dddddd

 s.t. x1 + 3x2 + 7x3 + d = 120 +− − 11 d

 −3x1 + x2 + 2x3 + = 60 +− − 22 dd

 −x1 −3x2 + 5x3 + = 60. +− − 33 dd

This problem has a solution 1x = 0, 2x = 5, and 3x = 15 with a total deviation of
z = 25. If we were to define the deviation of a solution from feasibility not as the
sum of deviations but equal to the largest single deviation (for the appropriate
reformulation, see Section 8.3.3 in this volume), we obtain the solution 1x = 0, 2x
= 40, and 3x = 2.8571 with the largest deviation in the each of the three
constraints of z = 14.2857.

Many extensions and practical approaches have been suggested to the basic goal
programming model. Early interactive techniques were discussed by Dyer (1972),
more recent interactive approaches are described by Reeves and Hedin (1993) and
Zykina (2004). Jones and Tamiz (2002) provide a survey of the field in the years
up to 2000. Two issues of the journal INFOR in 2004 have also been devoted to a
variety of aspects of goal programming.

9.4 Bilevel Programming
Bilevel problems have a long history in economics. Their structure includes two
levels on which decisions are made. On the upper level, there is the leader, while
the follower occupies the lower level The first to describe situations of this nature
was the economist von Stackelberg (1934) and the problems were introduced into
the operations research field by Bracken and McGill (1973). A comprehensive
account of bilevel programming is provided by Dempe (2002) and up-to-date
surveys have been provided by Vicente and Calamai (1994), Vicente (2001),
Colson et al. (2005), and Fliege and Vicente (2006).

The basic idea in bilevel programs is that the (market) leader is able and willing to
make his decision first, not knowing what the followers will do and how they will
react. Once the leader has made his decision, the follower(s) will take the leader’s
decision as given and react in a way that optimizes their own objective. The

 9 Multiobjective Programming 360

marketing concept of the “first mover” is closely related. Strictly speaking, the
concept belongs under the umbrella of sequential games. Some of the issues
related to leader – follower games deals with the question whether or not the
leader actually has an advantage over the follower.

It is also noteworthy that in order to become a leader, a firm or decision maker has
to have the ability and an incentive to do so. As an example, consider the
pharmaceutical industry. A firm will only (be able to) develop a new drug, if it has
sufficient resources, and, given that, it will only proceed with the development if
there is a sufficiently great incentive to do so, which is usually regulated by the
patenting laws. These laws will also determine whether or not there is an
advantage to the market leader.

Notice the asymmetry in leader – follower games: while the leader faces the
potentially uncertain reaction of the followers (requiring him to guard against the
follower’s possible decisions), the follower faces a fully deterministic situation in
which he only has to take the leader’s decision into account, which has already
been made by the time the follower has to make his decision. Given this, it is
apparent that from a computational point of view, the follower’s problem is
considerably easier to solve.

Bilevel problems are usually written in the form Max f(y, x), s.t. g(y, x) ≤ 0, where
y is a vector of variables that is under the jurisdiction of the (von Stackelberg)
leader, while x includes the variables that are within the jurisdiction of the
follower. This scenario lends itself easily to competitive situations, but not as
obviously to general multiobjective scenarios. One possibility is the following. A
large retail company sells shoes that it purchases from a number of suppliers.
Acting as a leader, it will want to set price, quality, and quantity. However, the
smaller supplier has the possibility to negotiate some of the conditions as it may
otherwise deal with another retailer instead. Note that this scenario only applies if
there are multiple retailers that work independently and there is sufficient demand
for the supplier’s product.

The general idea of solving bilevel problems is to first solve the follower’s
problem. In order to do so, the follower will take the leader’s decision as given
and derives an optimal response to each of the leader’s possible decisions. This
reaction function is then used by the leader in his optimization. As long as the
follower’s reaction function can be expressed in a closed form, the leader’s
problem is also easy. However, this is almost always not the case. Typically, the
reaction function is the solution of a (linear) programming problem, which then
becomes difficult to incorporate in the bilevel scenario.

In order to convey the basic ideas, consider the following illustration. We have
chosen to use a small, albeit nonlinear, problem that has an easy solution and a
meaningful interpretation.

9.4 Bilevel Programming 361

Example: An employer and an employee are planning their work schedules. The
employer is the leader as he will offer a certain wage. Given this wage, the
employee, the follower, will plan how many hours he will offer for the wage set
by the employer. To formalize, denote by w the wage rate, the employer’s only
variable, and let tw and tl symbolize the work time and leisure time, respectively,
decided upon by the employee. Suppose that the employee has a utility function
u(tw, tl) = wtw + ltα , i.e., the employee’s utility increases linearly with his wage
and it increases at a decreasing rate with the leisure time he affords himself. The
employee’s work time is bounded by his desire to sleep for 8 hours, the
unwillingness to work more than 14 hours, and a lower bound depending on the
wage as 25/w. The employee’s utility maximizing problem can then be written as

 Pf: Max u(tw, tl) = wtw + ltα

 s.t. tw + tl = 16
 tw ≤ 14
 tw ≥ 25/w
 tw, tl ≥ 0.

For any reasonable (nonnegative) wage rate, the nonnegativity constraints for the
employee’s two variables are redundant, and the first constraint can be used to
eliminate one of the variables, leaving the problem

 Pf: Max u(tw, tl) = wtw + wt−16α
 s.t. tw ∈ [25/w, 14].

On the other hand, the employer derives a (monetary) value of β out of each hour
the employee works for him, while his costs equal the wage rate w. Consequently,
the employer’s problem is to maximize his monetary benefit (profit) π as

 Pl: Max π = (β − w) tw
 s.t. w ≥ 0 and tw solves problem Pf.

In order to solve the problem, we temporarily take the wage rate w as given and
consider the follower’s problem. Taking the first derivative with respect to tw and
setting it to zero results in

 0)16(½ ½ =−α−= −
w

w
tw

dt
du ,

resulting in

 9 Multiobjective Programming 362

 tw = 16-
2

2






 α

w
.

This function is the employer’s reaction function. In other words, whatever wage
the employer offers, the employee will use it in this relation to optimally plan his
working time. Note that the relation does indeed specify a maximum as the second
derivative is negative. For simplicity, assume that α = 40 .

Replacing tw in the inequality constraints in Pf results in the conditions

8
α

≤w = 5 ≈ 2.2361 and

 w ≥ 1.8927, so that w ∈ [1.8927, 2.2361].

Given the employee’s reaction function, the employer’s objective function is now

 Pl: Max π = 








 α
−−β 2

2

4
16)(

w
w .

Letting now β = 5, we can take the derivative with respect to w, set it equal to
zero, and solve. The result is a wage rate of .7291.1=w This is the leader’s
solution. Replacing this wage rate in the follower’s reaction function leads to

6553.12=wt hours of labor and 3447.3=lt hours of leisure time.

The purpose of this example was to convey the basic strategy that is used to solve
bilevel programming problems: In a recursive manner, the leader’s variables are
first considered parameters and the follower’s problem is solved. The result is the
follower’s reaction function which is then replaced in the leader’s problem.
Finally, the leader uses this information to optimize his own model.

REFERENCES

Ackoff RL (1974) Redesigning the future: a systems approach to societal problems.
Wiley, New York, NY

Ackoff RL (1978) The art of problem solving. Wiley, Inc., New York, NY

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and

applications. Prentice-Hall, Englewood Cliffs, NJ

Anbil R, Gelman E, Patty B, Tanga R (1991) Recent advances in crew-pairing

optimization at American Airlines. Interfaces 21: 62-74

Appa G, Smith C ((1973) On L1 and Chebyshev estimation. Mathematical

Programming 5: 73-87

Ballestero E, Romero C (1998) Multiple criteria decision making and its application

to economic problems. Kluwer, Boston Dordrecht London

Barsow AR (1959) What is linear programming. Moscow: 90-101

Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programming: theory and

algorithms. Wiley, New York, NY

Beale EML (1955) Cycling in the dual simplex algorithm. Naval Research

Logistics Quarterly 2: 269-276

Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment.

Management Science 17: 141-164

Benayoun R, de Montgolfier J, Tergny J, Laritchev O (1971) Linear programming

with multiple objective functions: step method (STEM). Mathematical
Programming 1: 366-375

 References 364

Benders JF (1962) Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik 4: 238-252

Bhatti MA (2000) Practical optimization methods with Mathematica applications.

Springer, New York, NY

Bland RG (1977) New finite pivoting rules for the simplex method. Mathematics of

Operations Research 2: 103-107

Bracken J, McGill J (1973) Mathematical programs with optimization problems in

the constraints. Operations Research 21: 37–44

Bradley SP, Hax AC, Magnanti TL (1977) Applied mathematical programming.

Addison Wesley, Reading, MA

Bretscher O (1997) Linear algebra with applications. Prentice-Hall, Upper Saddle

River, NJ

Brown GW, Koopmans TC (1951) Computational suggestions for maximizing a

linear function subject to linear inequalities. In: Koopmans TC (ed) Chapter
XXV in Activity analysis of production and allocation. Cowles Commission
Monograph 13, Wiley, New York, NY, pp 377-380

Buchanan J, Gardiner L (2003) A comparison of two reference point methods in

multiple objective mathematical programming. European Journal of
Operational Research 149: 17-34

Bunch JR, Parlett BN (1971) Direct methods for solving symmetric indefinite

systems of linear equations. SIAM Journal on Numerical Analysis 8: 639-655

Charnes A (1952) Optimality and degeneracy in linear programming. Econometrica

20: 160-170

Charnes A, Cooper WW (1961) Management models and industrial applications of

linear programming. Wileys, New York, NY

Charnes A, Cooper WW, Ferguson RO (1955) Optimal estimation of executive

compensation by linear programming. Management Science 1, 138-151

Charnes A, Cooper WW, Henderson A (1953) An introduction to linear

programming. Wiley, New York

Charnes A, Cooper WW, Mellon B (1952) Blending aviation gasolines—a study in

programming interdependent activities in an integrated oil company.
Econometrica 20: 135-159

References 365

Charnes, A, Cooper WW, Rhodes E (1978) Measuring the efficiency of
decision-making units. European Journal of Operational Research 2: 429-444

Charnes A, Klingman D (1971) The more-for-less paradox in the distribution

model. Cahiers de centre d’études recherche operationnelle 13: 11-22

Charnes A, Lemke CE (1954) Computational theory of linear programming I: the

bounded variables problem. ONR Research Memo No. 10, Graduate School of
Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA

Chen G, Huang X, Yang X (2005) Vector optimization. Lecture Notes in

Economics & Mathematical Systems 541, Springer, Berlin

Cochrane JL, Zeleny M (eds) (1973) Multiple criteria decision making. University

of South Carolina Press, Columbia, SC

Cohon, J. L. (1978): Multiobjective Programming Planning. In: Mathematics in

Science and Engineering, Vol. 140, Academic Press, New York.

Collette Y, Siarry P (2003, 2nd edn.) Multiobjective optimization: principles and

case studies. Springer, Berlin Heidelberg New York

Colson B, Marcotte P, Savard G (2005) Bilevel programming: a survey. 4OR 3:

87-107

Cook SA (1971) The complexity of theorem-proving procedures. Proceedings of

the 3rd Annual ACM Symposium on the Theory of Computing, New York, pp.
151-158

Cooper L, Steinberg D (1970) Introduction to methods of optimization. W. B.

Saunders Co., Philadelphia, PA

Dantzig GB (1951) Application of the simplex method to a transportation problem.

In: Koopmans TC (ed), Activity analysis of production and allocation. Cowles
Commission Monograph 13, Wiley, New York, pp 359-373

Dantzig GB (1954) Notes on linear programming, Parts VIII, IX, X, Upper bounds,

Secondary constraints and block triangularity in linear programming. The
Rand Corporation, Research Memorandum RM-1367, Oct 4, 1954. Published
under the same title in Econometrica 23, 1955, 174-183

Dantzig GB (1963) Linear programming and extensions. Princeton University

Press, Princeton, NJ

 References 366

Dantzig GB (1982) Reminiscences about the origins of linear programming. In:
Bachem A, Grötschel M, Korte B (eds). Mathematical programming. The State
of the Art. Springer, Berlin Heidelberg New York, pp 78-86

Dantzig GB (1991) Linear programming. In: Lenstra JK, Rinnooy Kan AHG,

Schrijver A (eds) History of mathematical programming: a collection of
personal reminiscences. Elsevier Science, Amsterdam, pp 19-31

Dantzig GB, Ford LR, Fulkerson DR (1956) A primal-dual algorithm for linear

programming. In: Kuhn HW, Tucker AW (eds) Linear inequalities and related
systems. Annals of Mathematics Studies, Princeton University Press,
Princeton, NJ, pp 171-181

Dantzig GB, Orchard-Hays W (1953) Notes on linear programming: part V −

alternate algorithm for the revised simplex method using product form of the
inverse. TM-1268, The RAND Corporation, Santa Monica, CA

Dantzig GB, Fulkerson DR, Johnson SM (1954) The solution of a large-scale

traveling salesman problem. Operations Research 2: 393-410

Dantzig GB, Orden A (1953) Duality theorems, Rand report RM-1265. The Rand

Corporation, Santa Monica, CA

Dantzig GB, Thapa MN (1997) Linear programming. I: Introduction. Springer,

New York Berlin Heidelberg

Dantzig GB, Thapa MN (2003) Linear programming, 2: Theory and extensions.

Springer, New York Berlin Heidelberg

Dantzig GB, Van Slyke RM (1967) Generalized upper bounded techniques for

linear programming. Journal of Computer and Systems Sciences 1: 213-226

Dantzig GB, Wolfe P (1961) The decomposition algorithm for linear programs.

Econometrica 29:767-778

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs.

Operations Research 8:101-111

DeMarr R (1983) External pivoting in linear programming. Abstracts presented to

the American Mathematical Society, issue 22, vol 4, no 1

Dempe S (2002) Foundations of bilevel programming, Kluwer, Boston, MA

Dikin I (1967) Iterative solution of problems of linear and quadratic programming.

Soviet Mathematics Doklady 8: 674-675

References 367

Dinkelbach W (1969) Sensitivitätsanalysen und parametrische Programmierung.
In: Ökonometrie und Unternehmensforschung XII, Springer, Berlin Heidel-
berg New York

Dwyer PS (1975) Transportation problems with some xij negative and

transshipment problems. Naval Research Logistics Quarterly 22: 751-776

Dyer JC (1972) Interactive goal programming. Management Science 19: 62-70

Edmonds J (1965) Paths, trees, and flowers. Canadian Journal of Mathematics 17:

449-467

Egerváry J (1931) Matrixok kombinatorius tulajdonságairól (On combinatorial

properties of matrices, in Hungarian). Mathematikai és Fizikai Lapok 38:
16-28

Ehrgott M (2005) Multicriteria optimization. Springer, Berlin Heidelberg New

York

Eiselt HA; Laporte G (1987) Combinatorial optimization problems with soft and

hard requirements. Journal of the Operational Research Society 38: 785-795

Eiselt HA, Pederzoli G, Sandblom C-L (1987) Continuous optimization. W.

DeGruyter, Berlin

Eiselt HA, Sandblom C-L (1985) External pivoting in the simplex algorithm.

Statistica Neerlandica 39: 327-341

Eiselt HA, Sandblom C-L (1990) Experiments with external pivoting. Computers &

Operations Research 17: 325-332

Eiselt HA, Sandblom C-L (2000a) The bounce algorithm for mathematical

programming. Mathematical Methods of Operations Research 52: 173-183

Eiselt HA, Sandblom C-L (eds and authors) (2000) Integer programming and

network models. Springer, Berlin Heidelberg New York

Eiselt HA, Sandblom C-L (eds & authors) (2004) Decision analysis, location

models, and scheduling problems. Springer, Berlin Heidelberg New York

Evans JP, Steuer RE (1973) A revised simplex method for linear multiple objective

programming. Mathematical Programming 5: 54-72

Farrell JM (1957) The measurement of productive efficiency. Journal of the Royal

Statistical Society 120: 253-281

 References 368

Fiacco AV (1979) Barrier methods for nonlinear programming. In: Holzman AG
(ed) Operations research methodology. Marcel Dekker, New York Basel, pp
377-440

Fiacco AV, McCormick GP (1968) Nonlinear programming: sequential

unconstrained minimization techniques. Wiley, New York, NY

Figueira J, Greco S, Ehrgott M (2005) Multiple criteria decision analysis: state of

the art surveys. Springer, New York, NY

Finke G (1977) A unified approach to reshipment, overshipment and

post-optimization problems. In: Stoer J (ed) Optimization techniques.
Proceedings of the 8th IFIP Conference, Part 2. Lecture Notes in Control and
Transportation Sciences 7, Springer, Berlin Heidelberg New York, pp 201-208

Finke G (1983) Minimizing overshipments in bottleneck transportation problems.

INFOR 21: 121-135

Fliege J, Vicente LN (2006) Multicriteria approach to bilevel optimization. Journal

of Optimization Theory and Applications 131: 209-225

Ford Jr LR, Fulkerson DR (1954) Maximal flow through a network. Rand Research

Memorandum 1400, The RAND Corporation, Santa Monica Subsequently
published under the same title in the Canadian Journal of Mathematics 8, 1956,
399-404

Fourier JBJ (1826) Solution d’une question particulière du calcul des inégalités.

Nouveau Bulletin des Sciences par la Société philomathique de Paris: 99-100

Frank A (2005) On Kuhn’s Hungarian method—a tribute from Hungary. Naval

Research Logistics 52: 2-5

Frisch KR (1956) La résolution des problèmes de programme linéaire par la

méthode du potential logarithmique. Cahiers du Seminaire d’Économetrie 4:
7-20

Gal T (1979) Postoptimality analyses, parametric programming and related topics.

McGraw Hill, New York

Gal T (1984) Linear parametric programming - A brief survey. Mathematical

Programming Study 21: 43-68

Gale D (1960) The theory of linear economic models. Mc-Graw-Hill, New York,

NY

References 369

Gale D, Kuhn HW, Tucker AW (1951) Linear programming and the theory of
games: Koopmans, T.C. (ed), Activity analysis of production and allocation.
Cowles Commission Monograph 13: 317-329

Garey MR, Johnson DS (1979) Computers and intractability: A guide to the theory

of NP-completeness. Freeman, San Francisco, CA

Garfinkel RS, Rao M (1976) Bottleneck linear programming. Mathematical

Programming 11: 291-298

Gass SI, Assad AA (2005) An annotated timeline of operations research: An

informal history. Kluwer, New York, NY

Gass SI, Saaty T (1955) The computational algorithm for the parametric objective

function. Naval Research Logistics Quarterly 2: 39

Gauss CF (1826) Theoria combinationis observationum erroribus minimis

obnoxiae. Werke, vol. 4, Göttingen, Germany

Garner Garille S, Gass SI (1981) Stigler’s diet problem revisited. Operations

Research 49: 1-13

Geoffrion AM (1967) Solving bicriterion mathematical programs. Operations

Research 15: 39-54

Geoffrion AM, Dyer JS, Feinberg A (1972) An interactive approach for

multi-criterion optimization with an application to the operation of an
academic department. Management Science 19: 357-368

Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting

stock problem. Operations Research 9: 849-859

Gilmore PC, Gomory RE (1963) A linear programming approach to the cutting

stock problem − Part II. Operations Research 11: 863-888

Gordan P (1873) Über die Auflösung linearer Gleichungen mit reellen

Coefficienten. Mathematische Annalen 6: 23-28

Grattan-Guinness I (1970) Joseph Fourier’s anticipation of linear programming.

Operational Research Quarterly 21: 361-364

Gutin G, Punnen A (eds) (2002) The traveling salesman problem and its variations.

Kluwer, Boston Dordrecht London

Hirsch WM (1957) Hirsch conjecture, verbal communication to Dantzig

 References 370

Hitchcock FL (1941) The distribution of a product from several sources to
numerous localities. Journal of Mathematical Physics 20: 224-230

Hobson RF, Weinkam JJ (1979) Curve fitting. In: Holzman AG (ed) Operations

research methodology. Dekker, New York Basel, pp 335-362

Hoffman AJ (1953) Cycling in the simplex algorithm. National Bureau of

Standards, Report No. 2974, Washington, D.C

Hoffman AJ, Kruskal JG (1956) Integral boundary points of convex polyhedra. In:

Kuhn HW, Tucker AW (eds) Linear inequalities and related systems. Annals of
Mathematics Studies, Princeton University Press, Princeton, NJ, pp 223-246

Huard P (1967) Resolution of mathematical programming with nonlinear

constraints by the method of centers. In: Abadie J (ed) Nonlinear
programming. North-Holland, Amsterdam, pp 209-219

Hussein ML, Al-Ghaffar FSA (1996) An interactive approach for vector

optimization problems. European Journal of Operational Research 89: 185-192

Ignizio JP (1982) Linear programming in single- & multiple-objective systems.

Prentice-Hall, Englewood Cliffs, NJ

Ignizio JP, Cavalier TM (1994) Linear programming. Prentice-Hall, Englewood

Cliffs, NJ

Ijiri Y (1965) Management goals and accounting for control. Rand McNally,

Chicago, IL

Inuiguchi M, Ramík J (2000) Possibilistic linear programming: A brief review of

fuzzy mathematical programming and a comparison with stochastic
programming in portfolio selection problem. Fuzzy Sets and Systems 111:
3-28

Jeroslow, RG (1973) There cannot be any algorithm for integer programming with

quadratic constraints. Operations Research 21: 221-224

Jones DF, Tamiz M (2002) Goal programming in the period 1990-2000. In: Ehrgott

M, Gandibleux X (eds) Multiple criteria optimization: State of the art
annotated bibliographic surveys. Springer, New York, NY

Kantorovich LV (1939) (1960) Mathematical methods in the organization and

planning of production. Translation of the 1939 original (in Russian). In:
Management Science 6: 366

References 371

Karmarkar N (1984) A new polynomial-time algorithm for linear programming.
Combinatorica 4: 373-395

Karp RM (1972) Reducibility among combinatorial problems. In: Miller R E,

Thatcher J W (eds) Complexity of computer computations. Plenum Press, New
York, pp. 85-103

Khachian LG (1979) Polynomial algorithm for linear programming. Doklady

Akademii Nauk SSSR 244: 1093-1096 (in Russian), translated into English in
the same year in Soviet Mathematics Doklady 20: 191-194

Klee V, Minty GJ (1972) How good is the simplex algorithm. In: Shisha O (ed)

Inequalities III. Academic Press, New York, pp 159-175

Klee VL, Walkup DW (1967) The d-step conjecture for polyhedra of dimension d <

6. Acta Mathematica 117: 53-78

König D (1931) Graphok és matrixok (Graphs and matrices, in Hungarian).

Mathematikai és Fizikai Lapok 38: 116-119

Koopmans TC (1951) Activity analysis of production and allocation. Wiley, New

York, NY

Koopmans TC (1951a) Analysis of production as an efficient combination of

activities. In: Koopmans TC (ed) Activity analysis of production and
allocation. Wiley, New York, NY, pp. 33-97

Koopmans TC, Beckmann M (1957) Assignment problems and the location of

economic activities. Econometrica 25: 53-76

Kuhn HW (1955) The Hungarian method for the assignment problem. Naval

Research Logistics Quarterly 2: 83-97

Kuhn HW (1991) On the origin of the Hungarian method. In: Lenstra JK, Rinnooy

Kan AHG, Schrijver A (eds) History of mathematical programming: a
collection of personal reminiscences. CWI, Amsterdam and North Holland,
Amsterdam, The Netherlands, pp 77-81

Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Neyman J (ed)

Proceedings of second Berkeley symposium on mathematical statistics and
probability. University of California Press, Berkeley, CA, pp 481 – 491

Kuhn HW, Tucker AW (eds) (1956) Linear inequalities and related systems.

Annals of Mathematics Studies 38. Princeton, NJ

 References 372

Ladner RE (1977) The computational complexity of provability in systems of
modal propositional logics. SIAM Journal on Computing 6: 467-480

Land AH, Doig AG (1960) An automatic method of solving discrete linear

programming problems. Econometrica 28: 496-520

Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (1985) The traveling

salesman problem: A guided tour of combinatorial optimization. Wiley,
Chichester, United Kingdom

Lee SM (1972) Goal programming for decision analysis. Auerbach, Philadelphia,

PA

Lemke CE (1954) The dual method of solving linear programming problems. Naval

Research Logistics Quarterly 1: 36-47

Lenstra JK, Rinnooy Kan AHG, Schrijver A (eds) History of mathematical

programming: A collection of personal reminiscences. Elsevier, Amsterdam

Leontief WW (1936) Quantitative input and output relations in the economic

system of the United States. Review of Economic Statistics 18: 105-125

Levin AYu (1965) On an algorithm for the minimization of convex functions.

Soviet Mathematics Doklady 6: 286-290

Lootsma FA (1972) A survey of methods for solving constrained minimization

problems via unconstrained minimization. In: Lootsma FA (ed) Numerical
methods for non-linear optimization. Academic Press, London

Mangasarian OL (1969) Nonlinear programming. McGraw-Hill Publ. Co., New

York, NY. Reprinted as SIAM Classic in applied mathematics 10, 1994,
Philadelphia, PA

Manne AS (1953) Notes on parametric linear programming. Rand Paper P- 468.

The Rand Corporation, Santa Monica, CA

Marglin JA (1967) Public investment criteria. MIT, Cambridge, MA

Markowitz HM (1952) Portfolio selection. Journal of Finance 7: 77-91

McCloskey JF (1987) The beginnings of operations research: 1934-1941.

Operations Research 35: 143-152

McMullen P (1970) The maximum numbers of faces of a convex polytope.

Mathematika 17: 179-184

References 373

Moore JH, Weatherford LR (2001) Decision modeling with Microsoft® Excel.
Prentice Hall, Englewood Cliffs, NJ

Motzkin TS (1936) Beiträge zur Theorie der linearen Ungleichungen. Doctoral

Thesis, Zürich, Switzerland

Murty KG (1986) The gravitational method for linear programming. Opsearch 23:

206-214

Murty KG (1992) Network programming. Prentice Hall, Englewood Cliffs, NJ

Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley,

New York, NY

Neumann J, von Morgenstern O (1944) Theory of games and economic behavior.

Princeton University Press, Princeton, NJ

Nicholson K (2006) Linear algebra with applications. 5th edn. McGraw Hill,

Boston, MA

Norback JP, Morris JG (1980) Fitting hyperplanes by minimizing orthogonal

deviations. Mathematical Programming 19: 102-105

Orchard-Hays W (1955) Notes on linear programming (Part 6) The RAND vode for

the simplex method (SX4). Report #1440, The RAND Corporation, Santa
Monica, CA. (Based on the author’s unpublished Master’s Thesis in 1952)

Orden A (1952) Application of the simplex method to a variety of matrix problems.

In: Orden A, Goldstein L (eds) Proceedings of the Symposium on linear
inequalities and programming. pp 28-50

Overbay, S., Schorer, J., Conger, H.

http://www.ms.uky.edu/~carl/ma330/project2/al-khwa21.html, accessed
4/25/2007

Padberg M (1995) Linear optimization and extensions. Springer, Berlin Heidelberg

New York

Pareto V (1906) Manuale di econnomia politica. Società Editrice Libraria, Milan,

Italy

Parisot GR (1961) Résolution numérique approchée du problème de

programmation linéaire par application de la programmation logarithmique.
Revue française de la recherché opérationnelle 20: 227-259

Parkinson CN (1957) Parkinson's law. Houghton Mifflin, Boston, MA

 References 374

Pawlak Z (1991) Rough sets: Theoretical aspects of reasoning about data. Kluwer,
Dordrecht

Philip J (1972) Algorithms for the vector maximization problem. Mathematical

Programming 2: 207-229

Rardin RL (1998) Optimization in operations research. Prentice-Hall, Upper Saddle

River, NJ

Reeves GR, Franz LS (1985) A simplified interactive multiple objective linear

programming procedure. Computers & Operations Research 12: 589-601

Reeves GR, Hedin SR (1993) A generalized interactive goal programming

procedure. Computers & Operations Research 20: 247-253

Renegar J (1988) A polynomial-time algorithm based on Newton’s method for

linear programming. Mathematical Programming 40: 59-93

Roos C, Terlaky T, Vial J-Ph (2006) Interior point methods for linear optimization.

2nd edn. Springer, New York, NY

Saigal R (1995) Linear programming. Kluwer, Boston, MA

Sakawa M (2002) Fuzzy multiobjective and multilevel optimization. In Ehrgott M.,

Gandibleux X. (eds) Multiple criteria optimization: state of the art annotated
bibliographic survey, Kluwer, The Netherlands, pp 171-226

Schmalenbach E (1948) Pretiale Wirtschaftslenkung. Band 1: Die optimale

Geltungszahl, Dresden, Germany

Schniederjans MJ (1984) Linear goal programming. Petrocelli Books, Princeton,

NJ

Schniederjans M (1995) Goal programming: methodology and applications.

Kluwer, Boston, MA

Shin WS, Ravindran A (1991) Interactive multiobjective optimization survey I:

continuous case. Computers & Operations Research 18: 97-114

Shor NZ (1970) Utilization of the operation of space dilation in the minimization of

convex functions. Kibernetika 1: 6-12 (in Russian), translated into English in
the same year in Cybernetics 6: 7-15

Sierksma G (2002) Linear and integer programming: theory and practice (2nd ed.)

Marcel Dekker, New York, NY

References 375

Simmons DM (1972) Linear programming for operations research, Holden-Day,
San Francisco, CA

Simonnard M (1966) Linear programming. Prentice-Hall, Englewood Cliffs, NJ

Simon HA (1957) Models of man. Wiley, Yew York, NY

Stadler W (1984) A comprehensive bibliography on multicriteria decision making.

In: Zeleny M (ed) MCDM past decade and future trends. JAI Press, CT, pp
223-328

Steuer RE (1986) Multiple criteria optimization: theory, computation, and

application. Wiley, New York, NY

Steuer R E (1995) The ADBASE multiple objective linear programming package.

In Gu J, Chen J, Wei Q, Wang S (eds), Multiple criteria decision making,
SCI-TECH, Windsor, England, pp 1-6

Stigler G (1945) The cost of subsistence. Journal of Farm Economics 25: 303-314

Strassen V (1969) Gaussian elimination is not optimal. Numerische Mathematik

13: 354-356

Sun M, Stam A, Steuer RE (1996) Solving multiple objective programming

problems using feed-forward artificial neural networks: The interactive
FFANN procedure. Management Science 42: 835-849.

Swarc W (1971) The transportation paradox. Naval Research Logistics Quarterly

18: 185-202

Tanino T, Tanaka T, Inuiguchi M (eds) (2003) Multi-objective programming and

goal programming: theory and applications. Advances in soft computing 21,
Springer, Berlin Heidelberg

Trzaskalik T, Michnik J (eds) (2002) Multiple objective and goal programming.

Advances in soft computing 12, Springer, Berlin Heidelberg

Vanderbei RJ (2001) Linear programming: foundations and extensions. 2nd edn.

Kluwer, Boston, MA

Vasant P, Nagarajan R, Yaacob S (2005) Fuzzy linear programming with vague

objective coefficients in an uncertain environment. Journal of the Operational
Research Society 56: 597-603

 References 376

Vicente LN (2001) Bilevel programming: introduction, history, and overview. In:
Floudas CA, Pardalos PM (eds) Encyclopedia of optimization. Springer, New
York

Vicente LN, Calamai PH (1994) Bilevel and multilevel programming: A

bibliographic review. Journal of Global Optimization 5: 291-306

von Neumann J (1947) On a maximization problem (manuscript). Institute for

Advanced Study, Princeton, NJ, Nov 1947

von Stackelberg H (1934) Marktform und Gleichgewicht. Springer, Vienna &

Berlin

Walford, R.L. (2007) http://yarrow.best.vwh.net/Usda_data/foods_db.html

accessed April 24, 2007

Yu PL (1973) Introduction to domination structures in multicriteria problems. In:

Cochrane JL, Zeleny M (eds.) Multiple criteria decision making, University of
South Carolina Press, Columbia SC, pp 249-261

Zadeh M (1963) Optimality and non-scalar-valued performance criteria. IEEE

Transactions on Automatic Control AC 8: 59-60

Zadeh LA (1979) Fuzzy sets. In: Holzman AG (ed) Operations research

methodology. Marcel Dekker, New York Basel, pp 569-606

Zeleny M (1973) Compromise programming. In: Cochrane JL, Zeleny M (eds),

Multiple criteria decision making. University of South Carolina Press,
Columbia, SC, 262-301

Zhang S (1991) On anti-cycling rules for the simplex method. Operations Research

Letters 10: 189-192

Zimmermann H-J (1976) Description and optimization of fuzzy systems.

International Journal of General Systems 2: 209-215

Zimmermann H-J (1978) Fuzzy programming and linear programming with several

objectives. Fuzzy Sets and Systems 1: 45-55

Zionts S (1969) The criss-cross method for solving linear programming problems.

Management Science 15: 426-445

Zykina AV (2004) A generalized solution of an interactive goal programming

problem. Cybernetics and Systems Analysis 40: 277-283

SUBJECT INDEX

A

absolute values (of constraints)
 299-301
Absolute values (objective function)
 301-306
affine linear combination 21-22
affine scaling method 274, 277-284
allocation problems 71-75
alternative optimal solutions 140
antisymmetric matrix 170
artificial objective function 153-154
artificial variables 63
aspiration levels 351
assignment problems 102-107

B

balanced transportation problem 93
barrier method 285-293
basic feasible point 28
basic feasible solution 144
basic point 28
basic solution 144
basic variable 9
basis matrix 9
basis of a matrix 9
bilevel programming 359-362
binary encoding 35
binding relation 20
bi-objective programming 350
bisection search method 39
blending problems 89-91
block-angular structure 95
bottleneck objective 306-313
bounce method 267
bounded set 20
break-even analysis 58-60

C

canonical form 143
case study 111-128
characteristic value 3
Chebyshev metric 343
circling 164
closed-form solution 31
closed set 18
cold start 225
column vector 1
commensurability 353
compact set 20
column generation 219-224
constraint method 339-341
constraints, loosen up 139
constraints, too tight 138
convex function 301
convex hull 29
convex polyhedral cone 29
convex set 23-30
Cramer’s rule 10
curve fitting 304-305
cutting stock problems 75-80,
 221-224
cycling 165

D

data envelopment analysis (DEA)
 82-85, 321-323
decision problems 41
degeneracy in postoptimality
 analyses 245-248
destinations 92
deterministic model 52
determinant of a matrix 2
deviational variables 302-305,
 352-359
diet problems 67-70, 199-200
direction of the objective function
 131

 Subject Index 378

dual degeneracy 140, 160-163
dual price 64
dual problem 178, 183-197
dual simplex method 203-212

E

efficient set 327
eigenvalue 3
ellipsoid method 268-272
employee scheduling 80-82
entering variable 145
essential relation 20
Euclidean metric 343
excess variables 63
exponential algorithm 36
external pivoting 264-267
extreme point 28

F

Farkas’ lemma 168
feasible set 19
fractional programming 320-323
fuzzy membership function 347
fuzzy programming 346-351

G

Gauss-Jordan pivoting method
 10-18
generalized assignment problem
 106-107
generalized upper bounding
 technique 212
global optimum 137
goal programming 351-359
gradient of the objective function
 131
gravitational method 267
guillotine cuts 80

H

halfspace 18
Hirsch conjecture 138
hundred percent rule 240, 245
Hungarian method 102, 105-106
hyperbolic programming 320-323
hyperplane 18

I

idempotent matrix 294
identity matrix 1
improvement cone 330
improving feasible direction 134
indicators 64, 145
indifference region 346
interior point method 273-294
intersection of convex sets 27
intersection of fuzzy sets 348
inventory balancing constraints 86
inventory model 85-89
inverse of a matrix 2
iso-profit lines 130

L

Lapace rule to evaluate determinants
 2-3
leader-follower scenario 360
leaving variable 145
left shadow price 238
lexicographic method 339
lexicographic selection rule 165
linear combination 21
linear convex combination 22
linear dependence 7
linear relation 5
local optimum 137
lower bounding constraints 295-296

Subject Index 379

M

Manhattan metric 343
matrix 1
matrix search method 39
Maximin problem 313-320
Minimax problem 313-320
Minkowski-Farkas lemma 170
Minkowski metrics 343
more-for-less paradox 101
multi-attribute decision making 325
multicriteria decision making 325
multiobjective programming
 325-362
multiobjective simplex method 336

N

Newton-Raphson method 3-4
nonbasic variable 9
nondominated frontier 334
nondominated solution (set) 327
noninferior solution (set) 327
nonnegative linear combination 21
nonnegative orthant 19
nonnegativity constraints 62
normal form (linear program) 63
NP-complete problems 42-43
NP-hard problems 42-43

O

objective space 335
opportunity cost 64, 198
optimale Geltungszahl 167
origins 92
overachievements 352
overshipments 101-102, 201-202

P

pairwise exchange method 41
parametric programming 260

Pareto optimal solution (set) 327
perturbation function 236-239,
 244, 248
perturbation technique 165
phase 1 154
phase 2 148
pivoting 10-18, 150-151
pivot column 148
pivot row 148
polyhedron 20
polynomial algorithm 36
polytope 20
portfolio selection problems 73-75
possibilistic programming 351
postoptimality analysis 225-260
preemptive priorities 339
primal degeneracy 142, 163-165
primal-dual relations 179, 183-197
primal problem 178, 183-197
primal simplex method 143-157
printout 65-66, 254-255
probabilistic model 52
production-inventory model
 107-128
product of two matrices 2
projection matrix 294
projective scaling method 273
proportionality 6, 53
proxy criterion 50

Q

quadratic assignment problem 107

R

rank of a matrix 8
recognition problems 41
reduced cost 64, 145
redundant relation 20
reference point programming
 341-346
reshipments 99-101, 201-202
right shadow price 238

 Subject Index 380

robust model 227
rough sets 351
row vector 1

S

scalar 1
search in an unordered set 40
sensitivity analysis 225-260
sequential scanning method 39
set of feasible solutions 19
shadow price 64, 198
simplex 4
simplex multipliers 64
size of the instant of a problem 35
skew symmetric matrix 170
slack variables 63
stalling 164
standard form 143
stochastic model 52
strong complementary slackness 174
strong duality theorem 172
sum of matrices 1
surplus variables 63
surrogate criterion 50
symmetric matrix 2, 294
system of simultaneous linear
 equations, 5-23

T

target values 351
theorems of the alternative 168
tight relation 20
time complexity function 36
trace of a matrix 2
tradeoff curves 336
transportation problems 91-102,
 200-202
transpose of a matrix 2
transshipment points 99
traversal method 262-264
trim loss problems 75-80
two-phase method 155-158

U

underachievements 352
union of fuzzy sets 348
unit vector 1
unrestricted variables 296-298
upper bounding technique 212-218

V

vector optimization 327-336
volume of a simplex 4

W

warm start 248
weak complementary slackness 173
weak duality theorem 171-172
weighting method 337-339

