


Decomposition Techniques in Mathematical Programming



Antonio J. Conejo Enrique Castillo
Roberto Mínguez Raquel García-Bertrand

Decomposition Techniques
in Mathematical Programming

Engineering and Science Applications

ABC



Professor Antonio J. Conejo
Universidad de Castilla – La Mancha
E.T.S. Ingenieros Industriales
Avda. Camilo José Cela s/n
13071 Ciudad Real
Spain
E-mail: antonio.conejo@uclm.es

Professor Enrique Castillo
Escuela de Ingenieros de Caminos
Universidad de Cantabria
Avda. de los Castros s/n
39005 Santander
Spain
E-mail: castie@unican.es

Dr. Roberto Mínguez
Universidad de Castilla – La Mancha
E.T.S. Ingenieros de Caminos
Avda. Camilo José Cela s/n
13071 Ciudad Real
Spain
E-mail: roberto.minguez@uclm.es

Dr. Raquel García-Bertrand
Universidad de Castilla – La Mancha
E.T.S. Ingenieros Industriales
Avda. Camilo José Cela s/n
13071 Ciudad Real
Spain
E-mail: raquel.garcia@uclm.es

Library of Congress Control Number: 2005934995

ISBN-10 3-540-27685-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27685-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11511946 89/TechBooks 5 4 3 2 1 0



To Núria, Mireia Zhen and Olaia Xiao

To my family

To my parents, my sister, my grandma, and my aunt

To José Agust́ın, to my brothers Javier and Jorge Luis,
and especially to my parents



Preface

Optimization plainly dominates the design, planning, operation, and con-
trol of engineering systems. This is a book on optimization that considers
particular cases of optimization problems, those with a decomposable struc-
ture that can be advantageously exploited. Those decomposable optimization
problems are ubiquitous in engineering and science applications. The book
considers problems with both complicating constraints and complicating vari-
ables, and analyzes linear and nonlinear problems, with and without inte-
ger variables. The decomposition techniques analyzed include Dantzig-Wolfe,
Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and
others. Heuristic techniques are also considered.

Additionally, a comprehensive sensitivity analysis for characterizing the
solution of optimization problems is carried out. This material is particularly
novel and of high practical interest.

This book is built based on many clarifying, illustrative, and computa-
tional examples, which facilitate the learning procedure. For the sake of clar-
ity, theoretical concepts and computational algorithms are assembled based
on these examples. The results are simplicity, clarity, and easy-learning.

We feel that this book is needed by the engineering community that has
to tackle complex optimization problems, particularly by practitioners and
researchers in Engineering, Operations Research, and Applied Economics. The
descriptions of most decomposition techniques are available only in complex
and specialized mathematical journals, difficult to understand by engineers.
A book describing a wide range of decomposition techniques, emphasizing
problem-solving, and appropriately blending theory and application, was not
previously available.

The book is organized in five parts. Part I, which includes Chapter 1, pro-
vides motivating examples and illustrates how optimization problems with de-
composable structure are ubiquitous. Part II describes decomposition theory,
algorithms, and procedures. Particularly, Chapter 2 and 3 address solution
procedures for linear programming problems with complicating constraints
and complicating variables, respectively. Chapter 4 reviews and summarizes



VIII Preface

duality theory. Chapter 5 describes decomposition techniques appropriate for
continuous nonlinear programming problems. Chapter 6 presents decompo-
sition procedures relevant for mixed-integer linear and nonlinear problems.
Chapter 7 considers specific decomposition techniques not analyzed in the
previous chapters. Part III, which includes Chapter 8, provides a comprehen-
sive treatment of sensitivity analysis. Part IV provides in Chapter 9 some case
studies of clear interest for the engineering profession. Part V contains some
of the codes in GAMS used throughout the book. Finally, Part VI contains
the solutions of the even exercises proposed throughout the book.

Relevant features of this book are

1. It provides an appropriate blend of theoretical background and practical
applications in engineering and science.

2. Many examples, clarifying, illustrative, and computational, are provided.
3. Applications encompass electrical, mechanical, energy, and civil engineer-

ing as well as applied mathematics and applied economics.
4. The theoretical background of the book is deep enough to be of interest

to applied mathematicians.
5. Practical applications are developed up to working algorithms that can

be readily used.
6. The book includes end-of-chapter exercises and the solutions of the even

numbered exercises are given in a Part VI. This makes the book very
practical as a textbook for graduate and postgraduate courses.

7. The book addresses decomposition in linear programming, mixed-integer
linear programming, nonlinear programming, and mixed-integer nonlinear
programming. It provides rigorous decomposition algorithms as well as
heuristic ones.

Required background to fully understand this book is moderate and in-
cludes elementary algebra and calculus, and basic knowledge of linear and
nonlinear programming.

Over the last two decades, the two senior authors of this book have been
involved in research projects that required the solution of large-scale complex
optimization problems. We have received advice and relevant observations
from many colleagues. We would like to express our appreciation to Prof.
Gerald B. Sheblé from Iowa State University, Prof. Mohammad Shahideh-
pour from Illinois Institute of Technology, Prof. Francisco D. Galiana from
McGill University, Prof. Vı́ctor H. Quintana from University of Waterloo,
Prof. Francisco J. Prieto from Universidad Carlos III of Madrid, and Prof.
Benjamin F. Hobbs from Johns Hopkins University.

We are also thankful to quite a few colleagues and former students for
suggestions and insightful observations that have improved our book. Partic-
ularly, we would like to thank Prof. Steven A. Gabriel from the University of
Maryland, and Prof. Bruce F. Wollenberg from the University of Minnesota.



Preface IX

We are deeply grateful to the University of Castilla-La Mancha, Spain, for
providing us with an outstanding research environment.

Ciudad Real and Santander, Spain A.J. Conejo
June 2005 E. Castillo

R. Mı́nguez
R. Garćıa-Bertrand



Contents

Part I Motivation and Introduction

1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Linear Programming: Complicating Constraints . . . . . . . . . . . . 8

1.3.1 Transnational Soda Company . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Stochastic Hydro Scheduling . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 River Basin Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 Energy Production Model . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Linear Programming: Complicating Variables . . . . . . . . . . . . . . . 28
1.4.1 Two-Year Coal and Gas Procurement . . . . . . . . . . . . . . 28
1.4.2 Capacity Expansion Planning . . . . . . . . . . . . . . . . . . . . . 32
1.4.3 The Water Supply System . . . . . . . . . . . . . . . . . . . . . . . . 36

1.5 Nonlinear Programming: Complicating Constraints . . . . . . . . . . 39
1.5.1 Production Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.2 Operation of a Multiarea Electricity Network. . . . . . . . 42
1.5.3 The Wall Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.5.4 Reliability-based Optimization

of a Rubblemound Breakwater . . . . . . . . . . . . . . . . . . . . 48
1.6 Nonlinear Programming: Complicating Variables . . . . . . . . . . . . 53

1.6.1 Capacity Expansion Planning: Revisited . . . . . . . . . . . . 53
1.7 Mixed-Integer Programming: Complicating Constraints . . . . . . 55

1.7.1 Unit Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.8 Mixed-Integer Programming: Complicating Variables . . . . . . . . 57

1.8.1 Capacity Expansion Planning: Revisited 2 . . . . . . . . . . 57
1.8.2 The Water Supply System: Revisited . . . . . . . . . . . . . . . 60

1.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



XII Contents

Part II Decomposition Techniques

2 Linear Programming: Complicating Constraints . . . . . . . . . . . . 67
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2 Complicating Constraints: Problem Structure . . . . . . . . . . . . . . 70
2.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4 The Dantzig-Wolfe Decomposition Algorithm. . . . . . . . . . . . . . . 77

2.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.4.2 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.4.3 Issues Related to the Master Problem . . . . . . . . . . . . . . 88
2.4.4 Alternative Formulation of the Master Problem. . . . . . 93

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Linear Programming: Complicating Variables . . . . . . . . . . . . . . . 107
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.2 Complicating Variables: Problem Structure . . . . . . . . . . . . . . . . 110
3.3 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3.2 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3.3 The Benders Decomposition Algorithm . . . . . . . . . . . . . 116
3.3.4 Subproblem Infeasibility . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2 Karush–Kuhn–Tucker First- and Second-Order Optimality

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2.1 Equality Constraints and Newton Algorithm . . . . . . . . 147

4.3 Duality in Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.3.1 Obtaining the Dual Problem from a Primal Problem

in Standard Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.3.2 Obtaining the Dual Problem . . . . . . . . . . . . . . . . . . . . . . 151
4.3.3 Duality Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.4 Duality in Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5 Illustration of Duality and Separability . . . . . . . . . . . . . . . . . . . . 176
4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5 Decomposition in Nonlinear Programming . . . . . . . . . . . . . . . . . . 187
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.2 Complicating Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.3 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



Contents XIII

5.3.1 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.3.3 Dual Infeasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.3.4 Multiplier Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.4 Augmented Lagrangian Decomposition . . . . . . . . . . . . . . . . . . . . 205
5.4.1 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.4.3 Separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.4.4 Multiplier Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.4.5 Penalty Parameter Updating . . . . . . . . . . . . . . . . . . . . . . 208

5.5 Optimality Condition Decomposition (OCD) . . . . . . . . . . . . . . . 210
5.5.1 Motivation: Modified Lagrangian Relaxation . . . . . . . . 211
5.5.2 Decomposition Structure . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.5.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.5.5 Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.6 Complicating Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.6.2 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.6.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.7 From Lagrangian Relaxation to Dantzig-Wolfe Decomposition 233
5.7.1 Lagrangian Relaxation in LP . . . . . . . . . . . . . . . . . . . . . . 234
5.7.2 Dantzig-Wolfe from Lagrangian Relaxation . . . . . . . . . 236

5.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6 Decomposition in Mixed-Integer Programming . . . . . . . . . . . . . 243
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.2 Mixed-Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 244

6.2.1 The Benders Decomposition for MILP Problems . . . . . 245
6.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.3 Mixed-Integer Nonlinear Programming . . . . . . . . . . . . . . . . . . . . 251
6.4 Complicating Variables: Nonlinear Case . . . . . . . . . . . . . . . . . . . 251

6.4.1 The Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . 251
6.4.2 Subproblem Infeasibility . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

6.5 Complicating Constraints: Nonlinear Case . . . . . . . . . . . . . . . . . 257
6.5.1 Outer Linearization Algorithm . . . . . . . . . . . . . . . . . . . . 258
6.5.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264



XIV Contents

7 Other Decomposition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.1 Bilevel Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

7.1.1 A Relaxation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.1.2 The Cutting Hyperplane Method . . . . . . . . . . . . . . . . . . 277

7.2 Bilevel Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
7.3 Equilibrium Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.4 Coordinate Descent Decomposition . . . . . . . . . . . . . . . . . . . . . . . 285

7.4.1 Banded Matrix Structure Problems . . . . . . . . . . . . . . . . 287
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Part III Local Sensitivity Analysis

8 Local Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
8.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
8.3 Sensitivities Based on Duality Theory . . . . . . . . . . . . . . . . . . . . . 305

8.3.1 Karush–Kuhn–Tucker Conditions . . . . . . . . . . . . . . . . . . 305
8.3.2 Obtaining the Set of All Dual Variable Values . . . . . . . 307
8.3.3 Some Sensitivities of the Objective Function . . . . . . . . 308
8.3.4 A Practical Method for the Sensitivities

of the Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 310
8.3.5 A General Formula for the Sensitivities

of the Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 310
8.4 A General Method for Obtaining All Sensitivities . . . . . . . . . . . 315

8.4.1 Determining the Set of All Feasible Perturbations . . . . 317
8.4.2 Discussion of Directional and Partial Derivatives . . . . . 318
8.4.3 Determining Directional Derivatives if They Exist . . . 320
8.4.4 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
8.4.5 Obtaining All Sensitivities at Once . . . . . . . . . . . . . . . . 321

8.5 Particular Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
8.5.1 No Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
8.5.2 Same Active Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 323
8.5.3 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

8.6 Sensitivities of Active Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 339
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Part IV Applications

9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
9.1 The Wall Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

9.1.1 Method 1: Updating Safety Factor Bounds . . . . . . . . . . 355
9.1.2 Method 2: Using Cutting Planes . . . . . . . . . . . . . . . . . . . 359

9.2 The Bridge Crane Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



Contents XV

9.2.1 Obtaining Relevant Constraints . . . . . . . . . . . . . . . . . . . 364
9.2.2 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

9.3 Network Constrained Unit Commitment . . . . . . . . . . . . . . . . . . . 368
9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
9.3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
9.3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
9.3.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

9.4 Production Costing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
9.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
9.4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
9.4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
9.4.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

9.5 Hydrothermal Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
9.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
9.5.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
9.5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
9.5.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

9.6 Multiarea Optimal Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
9.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
9.6.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
9.6.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
9.6.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

9.7 Sensitivity in Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Part V Computer Codes

A Some GAMS Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
A.1 Dantzig-Wolfe Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
A.2 Benders Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 403
A.3 GAMS Code for the Rubblemound Breakwater Example . . . . . 407
A.4 GAMS Code for the Wall Problem . . . . . . . . . . . . . . . . . . . . . . . . 410

A.4.1 The Relaxation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 410
A.4.2 The Cutting Hyperplanes Method . . . . . . . . . . . . . . . . . 414

Part VI Solution to Selected Exercises

B Exercise Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
B.1 Exercises from Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
B.2 Exercises from Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
B.3 Exercises from Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
B.4 Exercises from Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
B.5 Exercises from Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
B.6 Exercises from Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475



XVI Contents

B.7 Exercises from Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
B.8 Exercises from Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537



Part I

Motivation and Introduction



1

Motivating Examples: Models
with Decomposable Structure

1.1 Motivation

Optimization plainly dominates the design, operation and planning of engi-
neering systems. For instance, a bridge is designed by minimizing its building
costs but maintaining appropriate security standards. Similarly, railway sys-
tems are expanded and operated to minimize building and operation costs
while maintaining operation and security standards. Analogously, an electric
energy system is operated so that the power demanded is supplied at minimum
cost while enforcing appropriate security margins.

Optimization also pertains to everyday decision making. For example, we
try to buy the best house provided our budget is sufficient, and we look for
the best college education for our children provided we can afford it. It also
concerns minor decisions such as buying the best cup of coffee at a reasonable
price, and the like. Therefore, optimization is part of our everyday activities.

Therefore, optimization is “the science of the best” in the sense that it
helps us to make not just a reasonable decision, but the best decision subject to
observing certain constraints describing the domain within which the decision
has to be made. Mathematical programming models provide the appropriate
framework to address these optimization decisions in a precise and formal
manner.

The target or objective to be maximized (or minimized) is expressed by
means of a real-valued mathematical function denominated “objective func-
tion,” because this function is the objective to be maximized (or minimized).
This function depends on one or several “decision” variables whose optimal
values are sought.

The restrictions that have to be satisfied define what is denominated the
“feasibility region” of the problem. It should be noted that this feasibility
region should include many possible decisions (alternative values for the deci-
sion variables) for the optimization problem to make sense. If no decision or
just one decision is possible, the optimization problem lacks practical interest



4 1 Motivating Examples

because its solution is just the given unique feasible decision. The feasibil-
ity region is formally defined through equality and inequality conditions that
are denominated the constraints of the problem. Each one of these conditions
is mathematically expressed through one real-valued function of the decision
variables. This function is equal to zero, greater than or equal to zero, lower
than or equal to zero.

Therefore a mathematical programming problem, representing and opti-
mization decision framework, presents the formal structure below:

minimize objective function
subject to constraints

Depending upon the type of variables and the mathematical nature of the
objective function and the functions used for the constraints, mathematical
programming problems are classified in different manners. If the variables
involved are continuous and both the objective function and the constraints
are linear, the problem is denominated “linear programming problem.” If any
of the variables involved is integer or binary, while the constraints and the
objective function are both linear, the problem is denominated “mixed-integer
linear programming problem.”

Analogously, if the objective function or any constraint is nonlinear and all
variables are continuous, the problem is denominated “nonlinear programming
problem.” If additionally, any variable is integer, the corresponding problem
is denominated “mixed-integer nonlinear programming problem.”

Generally speaking, linear programming problems are routinely solved
even if they involve hundred of thousands of variables and constraints. Nonlin-
ear programming problems are easily solved provided that they meet certain
regularity conditions related to the mathematical concept of convexity, which
is considered throughout the following chapters of this book. Mixed-integer
linear programming problems are routinely solved provided that the number
of integer variables is sufficiently small, typically below one thousand. Mixed-
integer nonlinear programming problems are generally hard to solve and can
be numerically intractable, because: (a) a high number of integer variables,
and (b) the ugly mathematical properties of the functions involved. These
problems require an in-depth specific analysis before a solution procedure is
tried.

From an engineering point of view, operation problems involving engi-
neering systems are normally continuous problems, either linear or nonlin-
ear. However, design and capacity expansion planning problems are generally
mixed-integer linear or nonlinear problems. The reason is that some design or
planning variables are of integer nature while most operation variables are of
continuous nature.

This book considers particular cases of all these optimization problems.
These cases have structural properties that can be advantageously compu-
tationally exploited. These structural properties are briefly illustrated and
described below.



1.1 Motivation 5

Many real-world systems present certain decentralized structures. For in-
stance, the highway network of two neighboring countries is in some cases
highly dense in the interior of each country but rather lightly connected at
the border boundary. The same fact is encountered, for instance, in telecom-
munication and electric energy systems.

On the other hand, investment decision of real-world systems are typically
of integer nature while subsequent operation decisions are continuous. For
instance, investment decisions to improve the water supply system of a city
are integer because a particular facility exist or does not exist, and a facility is
built instead of other possible alternatives. However, the operation decisions
of the already built water supply system are continuous, e.g., pressure values
to be assigned at pumping stations.

The operation problem of the highway network of the two neighboring
countries naturally decomposes by country provided that we take care of the
constraints related to the interconnections. Note, however, that the operation
solution obtained solving both national problems independently is not the
best combined solution and it might be even infeasible due to the lack of con-
sideration of the border constraints. In this book, techniques to properly take
into account border constraints while solving the problem in a decomposed
manner are described.

Note that the reason to address this transnational problem in a decen-
tralized manner is not necessarily numerical, but political; as decentralized
solutions are more acceptable from a social viewpoint.

Therefore a mathematical programming problem associated with the op-
timization model above presents the following formal structure:

maximize objective1 + objective2

subject to constraints1
constraints2

common constraints common constraints

where the block of constraints “constraints1” is related to the first terms of
the objective function “objective1” and corresponds to the first country; while
the second block of constraints “constraints2” is related to the second part
of the objective function “objective2” and is related to the second country.
However, the block of common constraints affects both countries (they are
border constraints) and complicates the solution of the problem because it
prevents the sub-problems associated with the two countries to be solved sep-
arately. Because of the above considerations, the common constraints are de-
nominated complicating constraints.

Finally, note that it would have been possible to consider any number of
countries with different border structures instead of just two.



6 1 Motivating Examples

The capacity expansion problem of a water supply system involves integer
investment decision and continuous operating decisions. It is convenient to
process these two sets of decisions separately, due to their different nature
(integer versus continuous).

A mathematical programming problem associated with this model presents
the formal structure below:

maximize objective1 + objective2

subject to constraints1 & constraints1(compl. variables)
constraints2 & constraints2(compl. variables)

where the common part of both blocks of constraints is related to investment
(integer) decisions while the noncommon parts are related to the operations
(continuous) decisions. In this book, techniques to take into account sepa-
rately integer and continuous decisions while achieving a solution of the whole
problem are described. Treating integer variables is much more complicated
than treating continuous variables, and this is why problems including such
variables are denominated problems with complicating variables.

Additionally, note that once the integer decisions have been made, the
resulting sub-problem decomposes by blocks, which may clearly facilitate its
solution.

In dealing with nonlinear programming problems throughout this book,
we assume that these problems are convex. This is a requirement for most de-
composition algorithm to work. Although convexity is a strong mathematical
assumption, assuming convexity is not necessarily restrictive from a practical
viewpoint, as many engineering and science problems are convex in the region
where the solutions of interest are located, i.e., where solution are meaningful
from an engineering or science point of view.

Nowadays, people do not become totally satisfied when getting the solu-
tions to their problems; in addition, a sensitivity analysis is asked for. Sensitiv-
ity refers to how sensitive are the solutions of a problem to the assumptions
and data. A high sensitivity warns the designer about the possible conse-
quences that can follow if the assumptions or data used are far from reality
and directs him/her to the right action to prevent disastrous consequences.

In this book the problem of sensitivity analysis is analyzed in detail and
several procedures are presented to derive the sensitivities of optimization
problems. In particular, we study the sensitivities of the objective function
and constraints, and the sensitivities of the primal and dual variables to data.

There is a close connection between decomposition and sensitivity, as it
is shown in several examples used in this book. Decomposition permits the
easy obtention of some sensitivities that are difficult to obtain from the initial
problem.

Within the framework above, the objectives pursued in this book are the
following:



1.2 Introduction 7

1. To motivate the interest of decomposition techniques in optimization using
a rich spectrum of real-world engineering examples.

2. To describe decomposition techniques related to linear and nonlinear prob-
lems that include both continuous and integer variables. These problems
must present appropriate structures.

3. To illustrate these decomposition techniques with relevant engineering
problems of clear practical interest.

4. To provide practical algorithms that work and can be readily used by
students and practitioners.

5. To introduce the reader to the problem of sensitivity analysis and provide
tools and techniques to derive the sensitivities once the optimal solution of
an optimization problem is already available.

We believe that no such a book is currently available, although it is much
needed for both engineering and economics graduate students and practition-
ers.

The organization of this book is as follows:

1. Chapter 1 provides a collection of motivating examples that illustrates
how optimization problems with decomposable structure are common in
the real-world.

2. Chapter 2 addresses solution procedures for linear programming problems
with complicating constraints.

3. Completing the analysis of linear programming problems, Chap. 3 considers
solution techniques for linear programming problems with complicating
variables.

4. Chapter 4 reviews and summarizes duality theory, a requirement to develop
the decomposition techniques for nonlinear problems and the sensitivity
analysis presented in the following chapters.

5. Chapter 5 describes decomposition techniques appropriate for nonlinear
programming (continuous) problems.

6. Chapter 6 presents decomposition procedures relevant for mixed-integer
linear and nonlinear problems.

7. Chapter 7 considers specific decomposition techniques not analyzed in the
previous chapters.

8. Chapter 8 provides a comprehensive treatment of sensitivity analysis for
both decomposable and nondecomposable problems.

9. Finally, Chap. 9 provides some case studies of clear interest for the engi-
neering profession.

1.2 Introduction

This chapter provides an intuitive description of different practical problems
with a decomposable structure that can be exploited through a decomposition
technique. These problems arise naturally in engineering and science.



8 1 Motivating Examples

To advantageously apply a decomposition technique, the problem under
consideration should have the appropriate structure. Two such structures arise
in practice. The first is characterized by complicating constraints, and the sec-
ond by complicating variables. The complicating constraints and variables are
those that complicate the solution of the problem, or prevent a straightforward
solution of the problem or a solution by blocks, i.e., they make the problem
more difficult to solve.

In this chapter, some practical examples are used to motivate and illustrate
the problem of complicating constraints and variables. Linear problems are
considered first, then nonlinear problems are dealt with, and finally, mixed-
integer linear problems are analyzed.

1.3 Linear Programming: Complicating Constraints

The motivating examples in Subsects. 1.3.1 and 1.3.2 illustrate how relaxing
complicating constraints make a decentralized solution of the original problem
possible.

1.3.1 Transnational Soda Company

A transnational soda company manufactures soda drinks in three different
countries as shown in Fig. 1.1. To produce soda, each local company needs
mineral water, fruit juice, brown sugar, and the company trademark formula.
It should be noted that fruit juice may vary in the composition of the soda be-
tween 20 and 30% and the formula between 2 and 4%. All components can be
bought locally, at local prices, but the trademark formula is supplied from the
company headquarters at a common price. The transnational company seeks
to minimize its cost from operating the factories in the three countries. The
total quantity of soda to be produced is fixed to 1000 m3. The minimum cost

Company Headquartes

Factory
in

Country 1 

Factory
in

Country 2 

Factory
in

Country 3 

Fig. 1.1. Motivating example: transnational soda company



1.3 Linear Programming: Complicating Constraints 9

objective can be formulated as a linear programming problem as explained in
the following paragraphs.

In the first country, soda production cost can be expressed as

5x11 + 2x21 + 3x31 + 4x41 ,

where x11, x21, x31, and x41 are the required quantities of trademark formula,
mineral water, fruit juice, and brown sugar, respectively; and $5, $2, $3, and
$4, their respective market unit prices. Note that xij means the quantity of
item i (trademark formula, mineral water, fruit juice, or brown sugar) from
country j.

For countries 2 and 3, respectively, production costs are expressed as

5x12 + 2.2x22 + 3.3x32 + 4.4x42

and
5x13 + 2.1x23 + 3.1x33 + 4.1x43 .

Note that prices for domestic products are different from country to coun-
try.

The Food & Drug Administration in the first country requires that any
soda drink should have at most a maximum content of hydrocarbons and at
least a minimum content of vitamins. These two requirements can be expressed
as

0.1x11 + 0.07x21 + 0.08x31 + 0.09x41 ≤ 24
0.1x11 + 0.05x21 + 0.07x31 + 0.08x41 ≥ 19.5 ,

where 0.10, 0.07, 0.08, and 0.09 are, respectively, the per unit content of
hydrocarbons of the trademark formula, the mineral water, the fruit juice,
and the brown sugar; and 0.10, 0.05, 0.07, and 0.08 are respectively the per
unit content of vitamins of the trademark formula, the mineral water, the
fruit juice, and the brown sugar.

Food & Drug Administrations of countries 2 and 3 impose similar require-
ments, although minimum and maximum hydrocarbon and vitamin required
quantities are slightly different than those in the first country. These require-
ments are formulated as

0.1x12 + 0.07x22 + 0.08x32 + 0.09x42 ≤ 27.5
0.1x12 + 0.05x22 + 0.07x32 + 0.08x42 ≥ 22

and

0.1x13 + 0.07x23 + 0.08x33 + 0.09x43 ≤ 30
0.1x13 + 0.05x23 + 0.07x33 + 0.08x43 ≥ 22 .

For technical reasons, the supply of the trademark formula is limited to a
maximum amount of 22 m3. This constraint is expressed as



10 1 Motivating Examples

x11 + x12 + x13 ≤ 22 .

The total amount of soda to be produced is enforced through the constraint

x11 +x21 +x31 +x41 +x12 +x22 +x32 +x42 +x13 +x23 +x33 +x43 = 1,000 .

Limits on components are enforced through the expressions below

0.02(x11 + x21 + x31 + x41) ≤ x11 ≤ 0.04(x11 + x21 + x31 + x41)
0.20(x11 + x21 + x31 + x41) ≤ x31 ≤ 0.30(x11 + x21 + x31 + x41)

0.02(x12 + x22 + x32 + x42) ≤ x12 ≤ 0.04(x12 + x22 + x32 + x42)
0.20(x12 + x22 + x32 + x42) ≤ x32 ≤ 0.30(x12 + x22 + x32 + x42)

0.02(x13 + x23 + x33 + x43) ≤ x13 ≤ 0.04(x13 + x23 + x33 + x43)
0.20(x13 + x23 + x33 + x43) ≤ x33 ≤ 0.30(x13 + x23 + x33 + x43),

where coefficients 0.02, 0.20, 0.04, and 0.30 are used to set the limits.
Consequently, the transnational company minimum cost problem has the

form

minimize
xij ; i = 1, 2, 3, 4; j = 1, 2, 3

⎛⎝ 5x11 + 2x21 + 3x31 + 4x41+
5x12 + 2.2x22 + 3.3x32 + 4.4x42+
5x13 + 2.1x23 + 3.1x33 + 4.1x43

⎞⎠
subject to

0.1x11 + 0.07x21 + 0.08x31 + 0.09x41 ≤ 24
0.1x11 + 0.05x21 + 0.07x31 + 0.08x41 ≥ 19.5
0.1x12 + 0.07x22 + 0.08x32 + 0.09x42 ≤ 27.5
0.1x12 + 0.05x22 + 0.07x32 + 0.08x42 ≥ 22
0.1x13 + 0.07x23 + 0.08x33 + 0.09x43 ≤ 30
0.1x13 + 0.05x23 + 0.07x33 + 0.08x43 ≥ 22

x11 + x12 + x13 ≤ 22

x11+x21+x31+x41+x12+x22+x32+x42+x13+x23+x33+x43 = 1,000

and

0.02(x11 + x21 + x31 + x41) ≤ x11 ≤ 0.04(x11 + x21 + x31 + x41)
0.20(x11 + x21 + x31 + x41) ≤ x31 ≤ 0.30(x11 + x21 + x31 + x41)
0.02(x12 + x22 + x32 + x42) ≤ x12 ≤ 0.04(x12 + x22 + x32 + x42)
0.20(x12 + x22 + x32 + x42) ≤ x32 ≤ 0.30(x12 + x22 + x32 + x42)
0.02(x13 + x23 + x33 + x43) ≤ x13 ≤ 0.04(x13 + x23 + x33 + x43)
0.20(x13 + x23 + x33 + x43) ≤ x33 ≤ 0.30(x13 + x23 + x33 + x43).

The solution of this problem is shown in Table 1.1. The total production
cost incurred by the company is $2,915.1.

In summary, the four main elements of the transnational company problem
are:



1.3 Linear Programming: Complicating Constraints 11

Table 1.1. Soda company production results

Component (m3) Country 1 Country 2 Country 3 Total

Water 147.2 198.6 118.9 464.7

Fruit juice 92.7 108.2 99.1 300.0

Brown sugar 62.9 44.7 105.7 213.3

Trademark formula 6.2 9.2 6.6 22.0

Total 309.0 360.7 330.3 1,000

Data.
m: the number of components required to make the soda drink
n: the number of countries

pij : the market price of component i in country j
hij : per unit content of hydrocarbons of component i in country j
vij : per unit content of vitamins of component i in country j

hmax
j : the maximum allowed content of hydrocarbons in country j

vmin
j : the minimum required content of vitamins in country j

T : the total amount of soda to be produced in all countries
tav: the available amount of trademark formula

bdown
i : lower bound of allowed per unit content of component i in the soda

drink
bup
i : upper bound of allowed per unit content of component i in the soda

drink.

Variables.
xij : the amount of component i to be used in country j (x1j is the amount

of trademark formula in country j).
It is assumed that these variables are nonnegative,

xij ≥ 0; i = 1, . . . , m; j = 1, . . . , n . (1.1)

Constraints. The constraints of this problem are
1. maximum hydrocarbon content constraint

m∑
i=1

hijxij ≤ hmax
j ; j = 1, . . . , n , (1.2)

2. minimum vitamin content constraint
m∑

i=1

vijxij ≥ vmin
j ; j = 1, . . . , n , (1.3)

3. constraints associated with the per unit content of different components



12 1 Motivating Examples

bdown
i

(
m∑

i=1

xij

)
≤ xij ≤ bup

i

(
m∑

i=1

xij

)
;

i = 1, · · · ,m; j = 1, . . . , n , (1.4)

4. total amount of available trademark formula (complicating constraint)

n∑
j=1

x1j ≤ tav , (1.5)

5. demand constraint (complicating constraint)

m∑
i=1

n∑
j=1

xij = T . (1.6)

The first two sets of conditions (1.2) and (1.3) state that the content of
hydrocarbons and vitamins of the product are below and above the allow-
able limit values, respectively. The third constraint (1.4) guarantees that
the amounts of the different components are between the allowable lim-
its. The fourth constraint (1.5) states that the total amount of trademark
formula is below the available amount. Finally, the fifth constraint (1.6)
forces the total amount of soda produced to coincide with the desired
value T .

Function to Be Optimized. We are normally interested in minimizing
the total cost, i.e.,

minimize
xij

m∑
i=1

n∑
j=1

pijxij . (1.7)

The block structure of the resulting constraint matrix is illustrated in
Fig. 1.2, which shows the complicating constraints clearly.

It should be noted that the last two constraints prevent a decomposed
solution of the problem above; therefore, they are complicating constraints.
If this problem has to be solved in a decentralized fashion, an appropriate
decomposition technique has to be applied. Such decomposition technique
will be analyzed in the following chapters.

Additional examples of problems with the above decomposable structure
can be found in reference [1] and in the pioneering book by Dantzig [2].

1.3.2 Stochastic Hydro Scheduling

A hydroelectric plant is associated with a hydro reservoir, as shown in Fig. 1.3.
Electricity production depends on the reservoir water content and this water
content depends on stochastic water inflows to the reservoir.

Consider two time periods. At the beginning of each period, the random
input “amount of water inflow” (low or high) for the entire period is assumed



1.3 Linear Programming: Complicating Constraints 13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h11 h21 · · · hm1 · · ·
v11 v21 · · · vm1 · · ·
−− −− −− −− −− −− −− −− −−

bdown
1 − 1 bdown

1 · · · bdown
1 · · ·

bdown
2 bdown

2 − 1 · · · bdown
2 · · ·

· · · · · · · · · · · · · · ·
bdown
m bdown

m · · · bdown
m − 1 · · ·

−− −− −− −− −− −− −− −− −−
1 − bup

1 −bup
1 · · · −bup

1 · · ·
−bup

2 1 − bup
2 · · · −bup

2 · · ·
· · · · · · · · · · · · · · ·
−bup

m −bup
m · · · 1 − bup

m · · ·
· · · · · · · · · · · · . . . · · · · · · · · · · · ·

· · · h1n h2n · · · hmn

· · · v1n v2n · · · vmn

−− −− −− −− −− −− −− −− −−
· · · bdown

1 − 1 bdown
1 · · · bdown

1

· · · bdown
2 bdown

2 − 1 · · · bdown
2

· · · · · · · · · · · · · · ·
· · · bdown

m bdown
m · · · bdown

m − 1
−− −− −− −− −− −− −− −− −−

· · · 1 − bup
1 −bup

1 · · · −bup
1· · · −bup

2 1 − bup
2 · · · −bup

2· · · · · · · · · · · · · · ·
· · · −bup

m −bup
m · · · 1 − bup

m

1 · · · 1
1 1 · · · 1 · · · 1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1.2. The constraints structure of the transnational soda company problem

known, and the decision of how much water to be discharged in that period
in order to produce electricity has to be made.

The objective is to maximize the profit from selling energy in the two
considered periods.

Taking into account water inflow uncertainty, four scenarios are possible:
low inflow in both periods (scenario 1), low inflow in the first period and high
in the second (scenario 2), high inflow in the first period and low in the second
(scenario 3), and high inflow in both periods (scenario 4). This implies that
the inputs, Ots, for scenarios 1 to 4 are

{O11, O21} = {low, low};
{O12, O22} = {low,high};
{O13, O23} = {high, low};
{O14, O24} = {high,high} .

Scenarios are illustrated in Fig. 1.4 using a scenario tree.



14 1 Motivating Examples

rts rmin

rmax

Hidroelectric
plant

Stochastic
water inflow: wts

Fig. 1.3. Illustration of the reservoir data and variables in the stochastic hydro
scheduling example

Considering the four scenarios, the expectation of the total profit from
selling energy can be computed as

4∑
s=1

ps (20 × 5 × d1s + 30 × 5 × d2s) ,

where p1 = 0.3 (scenario 1), p2 = 0.2 (scenario 2), p3 = 0.2 (scenario 3),
p4 = 0.3 (scenario 4) are the probabilities of occurrence of those scenarios; 20
and 30 $/MWh are the electricity prices (considered known with certainty) for
period 1 and 2, respectively; and 5 MWh/m3 is a constant to convert water
volume discharge to electric energy production; d1s and d2s are the water
discharges during period 1 and 2, respectively, and scenario s.

The water balance in the reservoir has to be satisfied for each scenario.
This is enforced through the constraints below.

r1s = r0 − d1s + w1s; s = 1, 2, 3, 4
r2s = r1s − d2s + w2s; s = 1, 2, 3, 4 ,

where r1s and r2s are the reservoir water contents at the end of periods 1 and
2, respectively, and scenario s; r0 is the reservoir content at the beginning of
period 1; and finally, w1s and w2s are the water inflows during periods 1 and
2, respectively, and scenario s.

For the example in question, the above equations are stated below.
Scenario 1: low and low inflows



1.3 Linear Programming: Complicating Constraints 15

Decision
for period 1

Decision
for period 2 

Uncertainty
known for
 period 1

Uncertainty
known for
 period 2

Period 1 Period 2

low

high

low

high

low

high

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Fig. 1.4. Scenario tree for the stochastic hydro scheduling example

r11 = 50 − d11 + 20
r21 = r11 − d21 + 25 .

Scenario 2: low and high inflows

r12 = 50 − d12 + 20
r22 = r12 − d22 + 35 .

Scenario 3: high and low inflows

r13 = 50 − d13 + 30
r23 = r13 − d23 + 25 .

Scenario 4: high and high inflows

r14 = 50 − d14 + 30
r24 = r14 − d24 + 35 .

In the equations above, 50 m3 is the reservoir water content at the be-
ginning of period 1 for all scenarios, 20 and 30 m3 the low and high water



16 1 Motivating Examples

inflows during period 1, and 25 and 35 m3 the low and high water inflows in
period 2.

Additional important constraints are required; those that enforce that de-
cisions associated to two scenarios identical up to period t should be identical
up to period t. These relevant constraints are denominated nonanticipativity
constraints [3]. Since scenario 1 (low–low) and 2 (low–high) are equal up to
the first period, it must be that

d11 = d12; r11 = r12 .

On the other hand, since scenario 3 (high–low) and 4 (high–high) are equal
up to the first period, it must be

d13 = d14; r13 = r14 .

Reservoir content bounds are expressed as

rmin ≤ rts ≤ rmax; s = 1, 2, 3, 4; t = 1, 2

and water discharge limits as

0 ≤ dts ≤ dmax; s = 1, 2, 3, 4; t = 1, 2 .

The stochastic hydro scheduling problem is finally formulated as

Maximize
dts, rts; t = 1, 2; s = 1, 2, 3, 4

z = k

4∑
s=1

ps

2∑
t=1

λtdts ,

where k is a proportionality constant and λt is the benefit at time t, subject
to the water balance constraints

r11 = 50 − d11 + 20
r21 = r11 − d21 + 25
r12 = 50 − d12 + 20
r22 = r12 − d22 + 35
r13 = 50 − d13 + 30
r23 = r13 − d23 + 25
r14 = 50 − d14 + 30
r24 = r14 − d24 + 35 ,

the reservoir level constraints

20 ≤ r11 ≤ 140; 20 ≤ r12 ≤ 140; 20 ≤ r13 ≤ 140; 20 ≤ r14 ≤ 140
20 ≤ r21 ≤ 140; 20 ≤ r22 ≤ 140; 20 ≤ r23 ≤ 140; 20 ≤ r24 ≤ 140 ,

the discharge limits constraints



1.3 Linear Programming: Complicating Constraints 17

d11 ≤ 60; d12 ≤ 60; d13 ≤ 60; d14 ≤ 60
d21 ≤ 60; d22 ≤ 60; d23 ≤ 60; d24 ≤ 60 ,

and the nonanticipativity constraints

d11 = d12; r11 = r12; d13 = d14; r13 = r14 .

The solution is shown in Tables 1.2 and 1.3. Total profit from selling elec-
tricity is $11,250.

Table 1.2. First period decisions

Inflow in Discharge in
period 1 period 1 (m3)

Low 25
High 35

Table 1.3. Second period decisions

Inflow in Discharge in
Period 1 period 2 period 2 (m3) Scenario

Low Low 50 1
Inflow High 60 2

High Low 50 3
Inflow High 60 4

Sorting the variables in the following order r11, r21, d11, d21, r12, r22, d12, d22,
r13, r23, d13, d23, r14, r24, d14, d24, the constraint matrix of the above problem
has the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
−1 1 1

1 1
−1 1 1

1 1
−1 1 1

1 1
−1 1 1

1 −1
1 −1

1 −1
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



18 1 Motivating Examples

If the last four constraints are “relaxed,” the problem decomposes by
blocks. These constraints are therefore complicating constraints that prevent
a distributed solution of the problem, unless an appropriate decomposition
technique is used as, for instance, the Dantzig-Wolfe procedure. Such decom-
position techniques will be analyzed in the following chapters.

In summary, the four main elements of the stochastic hydro scheduling
problem are:

Data.
n: the number of scenarios
m: the number of periods
λt: the electricity price for period t
k: electric energy production to water volume discharge factor

ps: the probability of scenario s
wts: the water inflow for period t and scenario s
r0: initial reservoir water content

rmax: reservoir maximum allowed water content
rmin: reservoir minimum allowed water content
dmax: maximum allowed discharge per time period
Ots: input at time t associated with scenario s.

Variables.
dts: the water volume discharge during period t and scenario s
rts: the reservoir water content at the end of period t for scenario s.

It is assumed that these variables are nonnegative:

dts ≥ 0; t = 1, . . . , m; s = 1, . . . , n (1.8)

rts ≥ 0; t = 1, . . . , m; s = 1, . . . , n . (1.9)

Constraints. The constraints of this problem are
1. water balance constraints

rts = rt−1,s − dts + wts; t = 1, . . . , m; s = 1, . . . , n , (1.10)

2. allowable reservoir level constraint

rmin ≤ rts ≤ rmax; t = 1, . . . , m; s = 1, . . . , n , (1.11)

3. allowable discharge constraint

dts ≤ dmax; t = 1, . . . , m; s = 1, . . . , n, (1.12)

4. nonanticipativity constraint

dt1s1 = dt1s2 if Ots1 = Ots2 ∀t ≤ t1 (1.13)
rt1s1 = rt1s2 if Ots1 = Ots2 ∀t ≤ t1 . (1.14)



1.3 Linear Programming: Complicating Constraints 19

Conditions (1.10) are the balance of water input and output for period t
and scenario s. Constraints (1.11) state that the reservoir water contents
at all times and scenarios are in the allowed range. Constraints (1.12) state
that the water discharges are below the allowed limit. Finally, constraints
(1.13) are the nonanticipativity constraints.

Function to Be Optimized. We are normally interested in maximizing
the expected benefit, i.e.,

maximize
dts, rts; t = 1, 2, · · · ,m; s = 1, 2, · · · , n

z = k

n∑
s=1

ps

m∑
t=1

λtdts. (1.15)

Further details on the above formulation can be found, for instance, in [4].
The two motivating examples below (in Subsects. 1.3.3 and 1.3.4) illustrate

how relaxing complicating constraints renders a problem that can be solved
in a straightforward manner.

1.3.3 River Basin Operation

Consider a river basin including two reservoirs as illustrated in Fig. 1.5. Each
reservoir has associated a hydroelectric power plant that produces electricity.
The natural inflows to reservoirs 1 and 2 during the period t are denoted by
wt1 and wt2, respectively. The water contents of reservoirs 1 and 2 at the end
of period t are denoted, respectively, by rt1 and rt2. The water discharged
during period t by reservoir 1 and 2 are dt1 and dt2, respectively. Reservoir
contents are limited above and below by constants rmax

1 , rmin
1 , rmax

2 , and rmin
2 ,

respectively. Analogously, water discharge volumes are limited above by dmax
1

and dmax
2 . It is assumed that water released in reservoir 1 reaches instanta-

neously reservoir 2, which is a reasonable assumption if reservoirs are not far
away from each other.

The amounts of energy produced by power plants 1 and 2 during period t
are proportional to the corresponding water discharges during that period t.
The proportionality constants for plants 1 and 2 are k1 and k2, respectively.

The river system is operated to supply the local electricity demand in each
period, et. If additional energy can be produced during period t, it is sold at
market price λt, with the objective of maximizing profits.

Consider a time horizon of 2 h and assume that the reservoir contents at
the beginning of the time horizon are r01 and r02, for reservoirs 1 and 2,
respectively.

The profit maximization problem is

maximize
r11,r12,r21,r22,d11,d12,d21,d22

λ1(k1d11 + k2d12 − e1) + λ2(k1d21 + k2d22 − e2)

subject to the water balance constraints



20 1 Motivating Examples

rt1

rt2

wt2dt1

dt2

rmin
1

rmax
1

rmin
2

rmax
2

wt1

1

2

Fig. 1.5. Illustration of the river basin operation example

r11 = r01 + w11 − d11

r21 = r11 + w21 − d21

r12 = r02 + w12 − d12 + d11

r22 = r12 + w22 − d22 + d21

r21 + r22 = r01 + r02 + w11 + w21 + w12 + w22 − d12 − d22 ,

where the last is a redundant constraint that it is convenient to incorporate
because it renders a particularly appropriate matrix form of the problem; the
demand constraints

k1d11 + k2d12 ≥ e1 (1.16)
k1d21 + k2d22 ≥ e2 , (1.17)

the reservoir level bounds

rmin
1 ≤ r11 ≤ rmax

1 ; rmin
1 ≤ r21 ≤ rmax

1 (1.18)
rmin
2 ≤ r12 ≤ rmax

2 ; rmin
2 ≤ r22 ≤ rmax

2 , (1.19)



1.3 Linear Programming: Complicating Constraints 21

and the allowed discharge bounds

0 ≤ d11 ≤ dmax
1 ; 0 ≤ d21 ≤ dmax

1 (1.20)
0 ≤ d12 ≤ dmax

2 ; 0 ≤ d22 ≤ dmax
2 . (1.21)

Sorting the variables in the order r11, r21, r12, r22, d11, d21, d12, d22, the
matrix corresponding to constraints that are not bounds is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
−1 1 1

1 −1 1
−1 1 −1 1

−1 −1 −1 −1
k1 k2

k1 k2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The structure of this matrix reveals an exploitable structure. If the last
two constraints are relaxed, the remaining matrix has a network structure
which allows the use of highly efficient solution algorithms [5]. This matrix
includes in each column only a 1 and a −1 (total unimodularity). However,
the last two constraints prevent the use of an efficient algorithm unless an
appropriate decomposition mechanism is used as, for instance, the Dantzig-
Wolfe decomposition algorithm. Such decomposition technique is explained in
the following chapters.

Considering for the above example the data in Tables 1.4 and 1.5, the
solution of the river basin operation problem is provided in Table 1.6. Total
profit from selling energy is $26,400.

Table 1.4. Reservoir data

Water content
Initial reservoir Upper limit on

Reservoir Factor water content water discharged Min Max
i k (m3) (m3) (m3) (m3)

1 5 55 60 20 120
2 4.5 65 70 20 140

Table 1.5. Periodic data

Electricity Electricity Water inflow Water inflow
Period price demand in reservoir 1 in reservoir 2

t ($/MWh) (MWh) (m3) (m3)

1 30 490 20 25
2 20 525 30 40



22 1 Motivating Examples

Table 1.6. Solution for the hydroelectric river basin example

Discharge Discharge Electricity Electricity Energy
Period plant 1 plant 2 production demand sold

t (m3) (m3) (MWh) (MWh) (MWh)

1 43 70 530 490 40
2 42 70 525 525 0

In summary, the main elements of the hydroelectric profit maximization
problem for a river system of n reservoirs during m time periods, are:

Data.
n: the number of reservoirs
m: the number of time periods considered
λt: the electricity price for period t
ki: electric energy production to water volume discharge factor for reser-

voir i
wti: the water inflow in reservoir i during period t
r0i: initial water content in reservoir i

rmax
i : maximum allowed water content in reservoir i
rmin
i : minimum allowed water content in reservoir i

dmax
i : maximum allowed water discharge during a time period for reservoir i

et: electricity demand during period t
Ωi: the set of reservoirs above reservoir i and connected to it.

Variables.
dti: the water volume discharge of reservoir i during period t
rti: the reservoir water content of reservoir i at the end of period t

It is assumed that these variables are nonnegative,

dti ≥ 0; t = 1, . . . , m; i = 1, . . . , n (1.22)

rti ≥ 0; t = 1, . . . , m; i = 1, . . . , n . (1.23)

Constraints. The constraints of this problem are
1. the water balance constraints [including constraints (1.25) which is the

redundant one]

rti = rt−1,i − dti + wti +
∑
j∈Ωi

dtj ; t = 1, . . . , m; i = 1, . . . , n (1.24)

n∑
i=1

(rmi − r0i) =
m∑

t=1

n∑
i=1

wti −
m∑

t=1

dtn , (1.25)



1.3 Linear Programming: Complicating Constraints 23

2. the demand constraints
n∑

i=1

kidti ≥ et; t = 1, . . . , m , (1.26)

3. the reservoir level bounds

rmin
i ≤ rti ≤ rmax

i ; t = 1, . . . , m; i = 1, . . . , n , (1.27)

4. the allowed discharge bounds

0 ≤ dti ≤ dmax
i ; t = 1, . . . , m; i = 1, . . . , n . (1.28)

Function to Be Optimized. We are normally interested in maximizing
the expected benefit, i.e.,

maximize
dti, rti; t = 1, 2, . . . , m; i = 1, 2, . . . , n

z =
m∑

t=1

λt

(
n∑

i=1

kidti − et

)
.

(1.29)

1.3.4 Energy Production Model

Consider the triangular energy demand depicted in Fig. 1.6. In this figure, the
vertical axis represents power and the horizontal axis time; therefore, the area

Time

Power

d

1

Energy

Fig. 1.6. Electricity demand curve for the energy production model



24 1 Motivating Examples

Time

Power

d = 7

1

1

2

3

4

5

6

8

9

10

11

12

13

14

p1 = 1

p2 = 2

p3 = 3

p4 = 7

x1 = 13/14

x2 =
10
7

x3 =
15
14

x4 = 1
14

xi : Energy

Fig. 1.7. Optimal energy production strategy

under this curve is energy. The maximum power demand is d = 7 MW and the
considered time period is 1. A set of energy production devices are available.
Their respective maximum output powers are p1 = 1 MW, p2 = 2 MW,
p3 = 3 MW and p4 = 7 MW, and their production costs c1 = 1 $/MWh,
c2 = 2 $/MWh, c3 = 3 $/MWh, and c4 = 10 $/MWh, respectively.

The problem to be solved consists of supplying the energy demand at
minimum cost. The solution of this problem is trivial. Production devices are
arranged in merit order, from the cheapest one to the most expensive one,
and they are used for production in that order. This is shown in Fig. 1.7,
where x1, x2, x3, and x4 are the energies produced by devices 1, 2, 3, and
4, respectively. The optimal energy production values of this minimum cost
problem are 13

14 , 10
7 , 15

14 , and 1
14 MWh.

In order to write this problem formally, the definition of the maximum en-
ergy produced by a set of production devices is introduced first. For instance,
the maximum energy produced by devices 1 and 3 is denoted by e({1, 3}) and
computed as the area under the demand curve if these devices are loaded to-
gether at the bottom of the demand curve. Figure 1.8 illustrates the computa-
tion of e({1, 3}). It should be observed that function e({1, 3}) is commutative,
i.e., the loading order of devices 1 and 3 is immaterial.

Using the definition of the function maximum energy, the cost minimiza-
tion problem previously analyzed can be stated as



1.3 Linear Programming: Complicating Constraints 25

Time

Power

d = 7 

1

1

2

3

4

5

6

p1 = 1

p3 = 3

p3 = 3

p1 = 1

e({1,3})

Fig. 1.8. Function e({1, 3})

minimize
x1, x2, x3, x4

c1x1 + c2x2 + c3x3 + c4x4

subject to

x1 ≤ e({1})
x2 ≤ e({2})
x3 ≤ e({3})
x4 ≤ e({4})

x1 + x2 ≤ e({1, 2})
x1 + x3 ≤ e({1, 3})
x1 + x4 ≤ e({1, 4})
x2 + x3 ≤ e({2, 3})
x2 + x4 ≤ e({2, 4})
x3 + x4 ≤ e({3, 4})

x1 + x2 + x3 ≤ e({1, 2, 3})
x1 + x2 + x4 ≤ e({1, 2, 4})
x1 + x3 + x4 ≤ e({1, 3, 4})
x2 + x3 + x4 ≤ e({2, 3, 4})

x1 + x2 + x3 + x4 = e(d) .

It should be noted that the last constraint is an equality constraint to force
the devices to cover the demand. In fact, it eliminates the trivial null solution.

For the particular data considered, the above problem becomes

minimize
x1, x2, x3, x4

x1 + 2x2 + 3x3 + 10x4

subject to



26 1 Motivating Examples

x1 ≤ 13/14
x2 ≤ 12/7
x3 ≤ 33/14
x4 ≤ 7/2

x1 + x2 ≤ 33/14
x1 + x3 ≤ 20/7
x1 + x4 ≤ 45/14
x2 + x3 ≤ 45/14
x2 + x4 ≤ 24/7
x3 + x4 ≤ 7/2

x1 + x2 + x3 ≤ 24/7
x1 + x2 + x4 ≤ 7/2
x1 + x3 + x4 ≤ 7/2
x2 + x3 + x4 ≤ 7/2

x1 + x2 + x3 + x4 = 7/2 .

Note that the optimal solution of this problem is the solution previously
obtained that can be obtained using the merit order rule, i.e., x∗

1 = 13
14 MWh,

x∗
2 = 10

7 MWh, x∗
3 = 15

14 MWh, x∗
4 = 1

14 MWh.
In summary, a general statement of the problem previously analyzed must

consider the following four elements:

Data.
n: the number of production devices
pi: the maximum output power of device i
ci: the production cost of device i
d: the power demand

e(C): the maximum energy produced by the devices in the set C.
Ωi: the set {1, 2, · · · , i}.

Variables.
xi: energy produced by device i.

It is assumed that these variables are nonnegative,

xi ≥ 0; i = 1, . . . , n . (1.30)

Constraints. The constraints of this problem are∑
i∈Ωi

xi ≤ e(Ωi), ∀Ωi (1.31)

∑
i∈Ωn

xi = e(d) . (1.32)



1.3 Linear Programming: Complicating Constraints 27

Function to Be Optimized. We are normally interested in minimizing
the cost, i.e.,

minimize
x1, . . . , xn

n∑
i=1

cixi. (1.33)

Each of the constraints (1.31) is called a facet [6]. The feasibility region
of this linear problem is denominated a polymatroid. Further details on poly-
matroids and their properties can be found in references [7, 8].

A relevant observation is that the solution of this production problem
becomes nontrivial if additional linear constraints are imposed. For instance,
if the joint energy production of devices 1 and 2 is required to be below
25
14 MWh, the merit order rule is no longer valid and the problem loses its
polymatroid structure.

The example above with this additional linear constraint is

minimize
x1, x2, x3, x4

x1 + 2x2 + 3x3 + 10x4 (1.34)

subject to

x1 ≤ 13/14
x2 ≤ 12/7
x3 ≤ 33/14
x4 ≤ 7/2

x1 + x2 ≤ 33/14
x1 + x3 ≤ 20/7
x1 + x4 ≤ 45/14
x2 + x3 ≤ 45/14
x2 + x4 ≤ 24/7
x3 + x4 ≤ 7/2

x1 + x2 + x3 ≤ 24/7
x1 + x2 + x4 ≤ 7/2
x1 + x3 + x4 ≤ 7/2
x2 + x3 + x4 ≤ 7/2

x1 + x2 + x3 + x4 = 7/2
x1 + x2 ≤ 25/14 , (1.35)

whose solution is obtained using a standard solving algorithm. The solution
is x∗

1 = 13
14 MWh, x∗

2 = 6
7 MWh, x∗

3 = 23
14 MWh and x∗

4 = 1
14 MWh.

It should be noted that constraint x1 +x2 ≤ 25
14 plays the role of a compli-

cating constraint because it deprives the problem of its polymatroid structure
that allows a straightforward solution.



28 1 Motivating Examples

The linear constraint (1.35) is a complicating constraint. If it is relaxed,
the solution of the resulting problem is obtained in a straightforward manner
using the merit order rule, i.e., loading devices from the lowest to the highest
cost.

In practice, the number of production devices can be as high as 100, and
the facet formulation of the minimum energy production cost problem, with-
out additional linear constraints, requires 2100 − 1 constraints, a number that
prevents even writing down the problem. However, its solution is trivial using
the merit order rule. Nevertheless, if additional linear constraints are included,
the resulting problem becomes both unwritable and unsolvable, unless a de-
composition technique is used to relax the complicating constraints [9]. Such
decomposition techniques are explained in the following chapters.

1.4 Linear Programming: Complicating Variables

1.4.1 Two-Year Coal and Gas Procurement

Consider the problem of the procurement of coal and natural gas (expressed in
energy units) in a factory to supply the energy demand of the present year and
next year. The demand for energy this year is known with certainty and it is
equal to 750 MWh. The current prices of coal and gas are 4.5 and 5.1 $/MWh,
respectively. However, the energy demand for next year is uncertain: it may
be high with probability 0.3, medium with probability 0.5, and low with prob-
ability 0.2. High, medium, and low energy demands for the second year are
respectively 900, 750, and 550 MWh; the corresponding prices for coal are
7.5, 6, and 3 $/MWh, and the corresponding prices for natural gas are 8.5,
5.5, and 4 $/MWh. Note that we have converted the units to their equivalent
units in terms of electricity production. The first purchase decision of coal
and natural gas is taken at the beginning of the first year, and the second one
at the beginning of the second year. This second purchase decision is made
once the demand for the second year is known with certainty, which allows to
“correct” the purchase decision of the first year. To achieve a balanced energy
supply, the total amount of either coal or natural gas, used either in the first or
the second year, should be larger than one third and smaller than two thirds
of the total energy demand. Figure 1.9 illustrates this decision framework. It
should be noted that storage costs are considered negligible.

This 2-year coal and natural gas procurement problem can be formulated
as

minimize
c0, g0, c1, g1, c2, g2, c3, g3

4.5c0 + 5.1g0 + 0.3(7.5c1 + 8.5g1) + 0.5(6c2 + 5.5g2) + 0.2(3c3 + 4g3)

subject to



1.4 Linear Programming: Complicating Variables 29

First year
decision

Second year
alternative
decisions

Year 1 Year 2

low low

high

medium

Fig. 1.9. Two-year coal and gas procurement: decision framework

c0 +g0 ≥ 750
c1 +g1 +c0 +g0 = 1650
c1 +c0 ≤ 1100

−c1 −c0 ≤ −550
g1 +g0 ≤ 1100

−g1 −g0 ≤ −550

c2 +g2 +c0 +g0 = 1500
c2 +c0 ≤ 1000

−c2 −c0 ≤ −500
g2 +g0 ≤ 1000

−g2 −g0 ≤ −500

c3 +g3 +c0 +g0 = 1300
c3 +c0 ≤ 866

−c3 −c0 ≤ −433
g3 +g0 ≤ 866

−g3 −g0 ≤ −433
c0, g0, c1, g1, c2, g2, c3, g3 ≥ 0 ,

where c0 and g0 are the amount of coal and natural gas purchased the first
year, respectively, c1, c2, c3 are the amount of coal purchased the second year
for scenario 1 (high demand), 2 (medium demand), and 3 (low demand),
respectively, and finally g1, g2, g3 are the amount of natural gas purchased the
second year for scenario 1 (high demand), 2 (medium demand), and 3 (low
demand), respectively.

The first constraint is the first year demand constraint. The next con-
straints represent the balance energy supply during the first and the second
year, the maximum and minimum coal consumption and the maximum and
minimum gas consumption for each scenario, respectively.



30 1 Motivating Examples

Table 1.7. Coal and gas purchasing decisions

Year 1 2

Demand Unique High Medium Low

Fuel Coal Gas Coal Gas Coal Gas Coal Gas

Purchase (MW) 866 434 234 116 0 200 0 0

The solution of this problem is shown in Table 1.7. Total cost is $7,482.7.
If the order of variables is c1, g1, c2, g2, c3, g3, c0, g0, the constraint matrix

of the problem above is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1 1 1
1 1

−1 −1
1 1

−1 −1
1 1 1 1
1 1

−1 −1
1 1

−1 −1
1 1 1 1
1 1

−1 −1
1 1

−1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that variables c0 and g0 are complicating variables that prevent a
distributed solution of the problem. If these variables are fixed to given values,
the problem decomposes by blocks. Some of the decomposition techniques
explained in following chapters (such as the Benders decomposition) make
use of this problem structure to allow an efficient distributed but iterative
solution.

The general formulation of this problem must include the following ele-
ments:

Data.
S: the number of scenarios
ps: the probability of scenario s in the second year
d0: demand for the first year
ds: demand for the second year and scenario s
a0: coal price in the first year
as: coal price for scenario s in the second year



1.4 Linear Programming: Complicating Variables 31

b0: gas price in the first year
bs: gas price for scenario s in the second year.

Variables.
c0: amount of coal purchased the first year
cs: amount of coal purchased the second year for scenario s
g0: amount of gas purchased the first year
gs: amount of gas purchased the second year for scenario s.

It is assumed that these variables are nonnegative,

c0 ≥ 0;
cs ≥ 0; s = 1, . . . , S
g0 ≥ 0;
gs ≥ 0; s = 1, . . . , S

Constraints. The constraints of this problem are
1. first year demand constraint

c0 + g0 ≥ d0 ,

2. supply total (first and second year) demand for all scenarios constraints

c0 + g0 + cs + gs = d0 + ds; s = 1, 2, · · · , S ,

3. maximum and minimum coal consumption

c0 + cs ≤ 2
3
(d0 + ds); s = 1, 2, · · · , S

−c0 − cs ≤ −1
3
(d0 + ds); s = 1, 2, · · · , S ,

4. maximum and minimum gas consumption

g0 + gs ≤ 2
3
(d0 + ds); s = 1, 2, · · · , S

−g0 − gs ≤ −1
3
(d0 + ds); s = 1, 2, · · · , S .

Function to Be Optimized. We are normally interested in minimizing
the cost, i.e.,

minimize
c0, cs, g0, gs

a0c0 + b0g0 +
S∑

s=1

ps (ascs + bsgs) . (1.36)

This problem is a so-called two-stage recourse stochastic programming
problem. Further details can be found in the stochastic programming books
by Wallace and Kall [10], Higle and Sen [11], and Birge and Louveaux [12].



32 1 Motivating Examples

1.4.2 Capacity Expansion Planning

Consider the construction of two production facilities located at two different
places to supply the demand of a large city. The locations of the two produc-
tion facilities and the city are connected by roads with limited transportation
capacities, as shown in Fig. 1.10. The two production facilities can be en-
larged in a modular fashion, i.e., they can be expanded as needed each period
of the planning horizon. Considering a 2-year analysis, the objective of the
production company is to minimize investment and operation costs.

1 2

3

City

Production
location 2

Production
location 1

Fig. 1.10. Capacity expansion planning. Transportation network

Investment costs are expressed as

c11x11 + c21x21 + c12(x12 − x11) + c22(x22 − x21) ,

where xit (i = 1, 2; t = 1, 2) is the production capacity already built at the
beginning of period t at location i, and cit (i = 1, 2; t = 1, 2) the building cost
for period t and at location i.

The operational costs are the costs incurred in transportation. They are
expressed as

(e13f13,1+e23f23,1+e12f12,1+e21f21,1)+(e13f13,2+e23f23,2+e12f12,2+e21f21,2) ,

where fij,t (ij = 13, 23, 12, 21; t = 1, 2) is the quantity of product sent from
location i to location j in period t, and eij (ij = 13, 23, 12, 21) the per unit
transportation cost from location i to location j.

The constraints of this problem include the product balance at each loca-
tion for each time period, as well as bounds on production and transportation
capacity in each time period.



1.4 Linear Programming: Complicating Variables 33

Product balance equations in period 1 are

y11 = f13,1 + f12,1 − f21,1

y21 = f23,1 + f21,1 − f12,1

d1 = f13,1 + f23,1

and in period 2 are

y12 = f13,2 + f12,2 − f21,2

y22 = f23,2 + f21,2 − f12,2

d2 = f13,2 + f23,2 ,

where the positive variables yit (i = 1, 2, t = 1, 2) are the actual production
at location i during period t; and dt the demand of the city in period t.

Bounds on production capacity are

0 ≤ yit ≤ xit; i = 1, 2; t = 1, 2 ,

sequential bounds on available capacity are

xit ≤ xi,t+1; i = 1, 2; t = 1 ,

absolute bounds on production capacity are

0 ≤ xit ≤ xmax
i ; i = 1, 2; t = 1, 2 ,

and bounds on transportation capacity are

0 ≤ fij,t ≤ fmax
ij ; ij = 12, 23, 12, 21; t = 1, 2 .

This capacity expansion planning problem can be formulated with the
following elements:

Data.
dt: demand during period t
cit: building cost for location i and period t
eij : per unit transportation cost from location i to location j
P: set of roads with transportation flow. They are ordered pairs of loca-

tions
fmax

ij : maximum transportation capacity of road (i, j)
xmax

i : maximum capacity to be built at location i.

Variables.
xit: production capacity already built at the beginning of period t at loca-

tion i
yit: production at location i during period t



34 1 Motivating Examples

fij,t: production quantity sent from location i to location j during period t.
It is assumed that these variables are nonnegative,

xit ≥ 0; i = 1, 2; t = 1, 2
yit ≥ 0; i = 1, 2; t = 1, 2

fij,t ≥ 0; i = 1, 2; t = 1, 2; (i, j) ∈ P .

Constraints. The constraints of this problem are
1. production locations balance constraints

y1t = f13,t + f12,t − f21,t, ; t = 1, 2
y2t = f23,t + f21,t − f12,t, ; t = 1, 2 ,

2. city product balance constraints

dt = f13,t + f23,t; t = 1, 2 ,

3. production bounds constraints

0 ≤ yit ≤ xit; i = 1, 2; t = 1, 2 ,

4. expansion constraints

xit ≤ xi,t+1; i = 1, 2; t = 1 ,

5. expansion bounds

0 ≤ xit ≤ xmax
i ; i = 1, 2; t = 1, 2 ,

6. transportation capacity constraints

0 ≤ fij,t ≤ fmax
ij ; (i, j) ∈ P; t = 1, 2 .

Function to Be Optimized. We are normally interested in minimizing
the cost, i.e.,

minimize
xit, yit, fij,t; i = 1, 2; t = 1, 2; (i, j) ∈ P

2∑
i=1

(ci1xi1 + ci2(xi2 − xi1)) +
2∑

t=1

∑
(i,j)∈P

eijfij,t .

If bounds are not taken into account, the constraint matrix of the above
problem is written below



1.4 Linear Programming: Complicating Variables 35⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 1
1 −1 1 −1

1 1
1 −1

1 −1
1 −1 −1 1

1 −1 1 −1
1 1

1 −1
1 −1

1 −1
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the column order is y11, y21, f13,1, f23,1, f12,1, f21,1; y12, y22,
f13,2, f23,2, f12,2, f21,2; x11, x21, x12, x22.

It should be noted that variables xit (i = 1, 2; t = 1, 2) are complicating
variables. If they are fixed to given values, the problem above decomposes
by time period. Complicating variables prevent a distributed solution unless
a suitable decomposition technique is used. Such decomposition technique is
developed in the following chapters.

For the actual values in Tables 1.8, 1.9, and 1.10, the optimal solution of
this capacity expansion example is provided in Table 1.11. Total cost is $76.7,
including $51.5 of investment cost and $25.2 of transportation cost.

Table 1.8. Production capacity data

Location Maximum production
i capacity

1 10
2 12

Table 1.9. Demand and building cost data

Period Demand Building cost Building cost
t for location 1 ($) for location 2 ($)

1 19 2.0 3.5
2 15 2.5 3.0



36 1 Motivating Examples

Table 1.10. Transportation data

Road (i,j) Capacity Cost ($)

(1,3) 11 0.7
(2,3) 9 0.8
(1,2) 5 0.5
(2,1) 5 0.6

Table 1.11. Solution of the capacity expansion planning example

Location 1 Location 2 Flows

Period t Capacity Production Capacity Production 1–3 2–3 1–2 2–1

1 10 10 9 9 10 9 0 0
2 10 10 9 5 10 5 0 0

1.4.3 The Water Supply System

Consider the water supply system in Fig. 1.11 consisting of two networks, the
first containing nodes 1 to 6, and the second nodes 7 to 12, connected by a
single channel.

Nodes 1 and 12 are assumed to be the water supply nodes and the rest are
assumed to be consumption nodes with the flow indicated by the q variables.

Note that, in order to satisfy the balance equations, the values of the q
variables must satisfy the constraint,

x10 = 2

x1

x2

x5

x4

x7

x3

x6

x9

x14

x12

x13

x15

x11

x8

q1

q2

q5

q3

q4

q6

q7

q9

q11

q8

q10

q12
1

3

5

4

2

6 7

9

11

10

12

8

Fig. 1.11. A water supply network consisting of two networks connected by a single
channel



1.4 Linear Programming: Complicating Variables 37∑
i∈I

qi =
∑
j∈J

qj ,

where I is the set of supply nodes, and J is the set of consumption nodes.
The flow xi going through the connection i between nodes is considered

positive (xi ≥ 0) because the water movement is due to the gravity (no
pumps are used); it goes from higher to lower heights. To minimize the cost
of operating the system, one can

minimize
xi; i = 1, . . . , 15

15∑
i=1

(fi + vixi) ,

where the cost in dollars is composed by two terms, fi is the construction cost,
and vi is the maintenance cost depending on the equilibrium flow that goes
through the connection xi, so that higher flows involve higher maintenance
costs. The objective above is subject to the flow balance equations for all nodes
(input amount of water equal to output amount of water including supplies
and consumptions),⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1−1
1 −1

1 −1−1
1 1 −1

1 −1
1 1−1

1 1 1−1 1−1 1 1−1−1 1−1 1−1−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1
q2
q3
q4
q5
q6
q7
q8
q9

q10
q11−q12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that both supply and consumption data qi (i = 1, . . . , 12) are con-
sidered positive. The nodes have been numbered in an optimal order, so that
writing the flow balance equations, the associated matrix exhibits a particular
block and banded pattern, with the exception of the constraints implied by
the connecting channel. In addition the width of the band is a minimum.

Any optimization problem with these constraints can be considered as a
problem with a complicating constraint, or with a complicating variable. To
illustrate this, we partition the above matrix in blocks of two different forms,
as follows:



38 1 Motivating Examples

Formulation as a Problem with Complicating Variables (the compli-
cating variable is x8)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1−1 | |
1 −1 | |

1 −1−1 | |
1 1 −1 | |

1 −1 | |
1 1 | −1 |− − − − − − −+ −+ − − − − − − −

| 1 | 1 1
| | −1 1
| | −1 1 1
| | −1−1 1
| | −1 1
| | −1−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7−−
x8−−
x9
x10
x11
x12
x13
x14
x15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1
q2
q3
q4
q5
q6−−
q7
q8
q9
q10
q11−q12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix above has been partitioned to reveal the role of the two net-
works and the connection channel unknowns.

It should be noted that the network structure of the original matrix is
preserved by decomposition.

Formulation as a Problem with Complicating Constraints (the com-
plicating constraint is constraint 6, though it could be constraint 7 too, or
both)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1−1 |
1 −1 |

1 −1−1 |
1 1 −1 |

1 −1 |− − − − − − −+ − − − − − − − −
1 1 | −1− − − − − − −+ − − − − − − − −

| 1 1 1
| −1 1
| −1 1 1
| −1−1 1
| −1 1
| −1−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7−−
x8
x9
x10
x11
x12
x13
x14
x15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1
q2
q3
q4
q5−−
q6−−
q7
q8
q9
q10
q11−q12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If the capacity constraints are incorporated,

xi ≤ xmax
i ; i = 1, 2, . . . , 15 ,

the banded character of the constraints is not altered. It should be noted that
the network structure of the original matrix is not preserved by decomposition.

Considering the case of cost coefficients fi = 1 $/m3; ∀i and vi =
1 $/m3; ∀i, capacities xmax

i = 10 m3; ∀i, and the qi values in Fig. 1.12,
the optimal cost is $116 and the optimal solution flows are shown in Fig. 1.12.

Appropriate algorithms to take advantage of the block banded pattern of
the considered problem are analyzed in this book.



1.5 Nonlinear Programming: Complicating Constraints 39

x10 = 2

x1 = 1

x2 = 9

x5 = 2

x4 = 5

x7 = 0

x3 = 0

x6 = 2

x9 = 0

x14 = 6
x12 = 0

x13 = 3

x15 = 6

x11 = 4

x8 = 1

q1 = 10

q2 = 1

q5 = 2

q3 = 2

q4 = 3

q6 = 1

q7 = 3

q9 = 1

q11 =3

q8 = 4

q10 = 2

q12 = 12
1

3

5

4

2

6 7

9

11

10

12

8

Fig. 1.12. Water supply system showing the input, output, and connection flows
associated with the optimal solution

1.5 Nonlinear Programming: Complicating Constraints

1.5.1 Production Scheduling

Consider the minimum cost, multiperiod scheduling problem of several pro-
duction devices serving the demand of a certain commodity. The exact demand
should be served at every time period and no storage facility is available. Pro-
duction devices have maximum limits on their production, and up and down
ramping limits apply to the change of their respective production levels, i.e.,
sudden changes in production are not possible, and these limits give the max-
imum feasible changes.

Consider two production devices serving a 2 h demand horizon. The cost
to be minimized is

2∑
t=1

2∑
i=1

(
ai xit +

1
2
bi x2

it

)
, (1.37)

where ai and bi are the linear and quadratic cost parameters of device i, and
xit is its production level of device i during hour t.

The capacity limits of the production devices are

0 ≤ xit ≤ xmax
i ; i = 1, 2; t = 1, 2 , (1.38)

where xmax
i is the maximum output level of device i.

Considering that the output of each device at the beginning of the planning
horizon is x0

i (i = 1, 2), and that the ramping limit of each device is rmax
i

(i = 1, 2), the ramping constraints are

xi1 − x0
i ≤ rmax

i ; i = 1, 2 (1.39)



40 1 Motivating Examples

xi2 − xi1 ≤ rmax
i ; i = 1, 2 (1.40)

and
x0

i − xi1 ≤ rmax
i ; i = 1, 2 (1.41)

xi1 − xi2 ≤ rmax
i ; i = 1, 2 . (1.42)

Finally, the demand supply constraints are

x11 + x21 = d1 (1.43)

x12 + x22 = d2 , (1.44)

where d1 and d2 are the demands in periods 1 and 2, respectively.
The last constraints couple together the decisions of the two devices serving

the demands. Therefore, they are complicating constraints. If removed, the
nonlinear production scheduling problem decomposes by production device.

The constraint matrix of this problem is given below. If the variable order
is x11, x12, x21, x22, this matrix has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
−1 1
−1

1 −1
1

1
1

−1 1
−1

1 −1
1 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.45)

The decomposable structure of the matrix above is apparent once the last
two constraints are relaxed. Note also that the nonlinear objective function is
decomposable by production device.

In summary, the production scheduling problem has the following struc-
ture:

Data.
m: the number of time periods
n: the number of production devices
xmax

i : the output capacity of device i
rmax
i : the ramping (up and down) limit of device i

dt: demand for period t
x0

i : initial output level of device i
ai, bi: coefficients defining the nonlinear cost function of device i.



1.5 Nonlinear Programming: Complicating Constraints 41

Variables.
xit: the output of device i during period t.
These variables are nonnegative, i.e.,

xit ≥ 0 ; i = 1, . . . , n; t = 1, . . . , m .

Constraints.
1. maximum output capacity

xit ≤ xmax
i ; i = 1, . . . , n; t = 1, . . . , m , (1.46)

2. ramping up limits

xi1 − x0
i ≤ rmax

i ; i = 1, . . . , n , (1.47)

xit − xi,t−1 ≤ rmax
i ; i = 1, . . . , n; t = 2, . . . , m , (1.48)

3. ramping down limits

x0
i − xi1 ≤ rmax

i ; i = 1, . . . , n , (1.49)

xi,t−1 − xit ≤ rmax
i ; i = 1, . . . , n; t = 2, . . . , m , (1.50)

4. supply of demand
n∑

i=1

xit = dt ; t = 1, . . . , m . (1.51)

Function to Be Minimized.
The nonlinear function to be minimized is the production cost

m∑
t=1

n∑
i=1

(
aixit +

1
2
bix

2
it

)
. (1.52)

For the values provided in the Tables 1.12 and 1.13, the optimal solution
is

x∗
11 = 3.5; x∗

12 = 5; x∗
21 = 5.5; x∗

22 = 7 .

Finally, it should be emphasized that a decomposed solution of the nonlin-
ear production scheduling problem is achieved by some of the decomposition
techniques analyzed in the following chapters.

Table 1.12. Production device data

Device i xmax
i rmax

i x0
i ai bi

1 6 1.5 2.0 2.0 0.6
2 8 3.0 2.5 2.5 0.5



42 1 Motivating Examples

Table 1.13. Demand data

Period 1 2

Demand 9 12

1.5.2 Operation of a Multiarea Electricity Network

Consider the two-area electricity network of Fig. 1.13. Each area, X or Y,
includes two generators and one demand interconnected through three trans-
mission lines. Furthermore, the two areas are interconnected by one transmis-
sion line that is denominated tie-line. The maximum production capacities of
the generators are xmax

1 , xmax
2 , ymax

1 , and ymax
2 , respectively; and their linear

and quadratic cost coefficients are ax
i , bx

i , ay
i , by

i (i = 1, 2), respectively. The
hourly demands are dx and dy, respectively.

1

2 3

Area
X

Area
Y

45

6

y1

d y

y2

x1 x2

d x

δ 2

δ 1

δ 3

δ 5 δ 4

δ 6

Fig. 1.13. Two-area electricity network



1.5 Nonlinear Programming: Complicating Constraints 43

The operation problem consists of determining the hourly energy produc-
tions of the generators x1, x2, y1, and y2, in such a manner that the production
cost is minimum.

The electric energy flowing through a line between nodes i and j depends
on two constructive parameters of the electricity transmission line, denomi-
nated conductance, Gij and susceptance, Bij , and on the relative “height” of
the nodes, measured by phase variables, δi and δj , i.e.,

eij = eij (δi, δj , Gij , Bij) . (1.53)

This nonlinear operation problem has the structure described below:

Data.
dx, dy: hourly energy demands of systems x and y, respectively
xmax

1 , xmax
2 : maximum production capacities of the two generators of area

X
ymax
1 , ymax

2 : maximum production capacities of the two generators of area
Y

Gij , Bij : conductance and susceptance (structural parameters) of line ij
ax

i , b
x
i , a

y
i , by

i : linear and quadratic cost coefficients of generators of areas
X and Y, respectively.

Variables.
x1, x2: energy productions of generators of area X
y1, y2: energy productions of generators of area Y
δ1, . . . , δ6: relative “heights” or phases of nodes
eij : electric energy flowing through the line between nodes i and j.

Variables x1, x2, y1, y2 are nonnegative. Since phases always appear as
differences, one phase can be set to zero, i.e., δ1 = 0.

Constraints.
1. energy balance in every node (see Fig. 1.13)

− dx = e12 + e13 (1.54)
x1 = e21 + e23 (1.55)
x2 = e31 + e32 + e34 (1.56)

and

− dy = e65 + e64 (1.57)
y1 = e56 + e54 (1.58)
y2 = e45 + e46 + e43 , (1.59)

where

eij = eij (δi, δj , Gij , Bij) = Gij cos(δi − δj) + Bij sin(δi − δj) − Gij .
(1.60)



44 1 Motivating Examples

2. limits on production levels

x1 ≤ xmax
1 (1.61)

x2 ≤ xmax
2 (1.62)

y1 ≤ ymax
1 (1.63)

y2 ≤ ymax
2 . (1.64)

Function to Be Minimized. The nonlinear function to be minimized
is the cost

2∑
i=1

(
ax

i xi +
1
2
bx
i x

2
i

)
+

2∑
i=1

(
ay

i yi +
1
2
by
i y2

i

)
. (1.65)

The first summation corresponds to system X while the second summation
corresponds to system Y.

It should be noted that if the energy balance equations at frontier nodes 3
and 4 (see Fig. 1.13) are relaxed, the problem decomposes by area. Therefore,
the balance equations at the frontier nodes are complicating constraints. Some
of the techniques explained in the following chapters can be used to solve the
problem above in a decomposed manner.

Considering data in Tables 1.14, 1.15, and 1.16, the optimal solution of
this operation problem is

x∗
1 = 5.26 MWh, x∗

2 = 4.87 MWh, y∗
1 = 3.82 MWh, y∗

2 = 5.65 MWh .

The flow of energy in the tie line is

e∗34 = 0.89 MWh .

Table 1.14. Generator data

Area X Area Y

Generator xmax
i ax

i bx
i xmax

i ay
i by

i

(MW) ($/MWh) ($/(MW)2h) (MW) ($/MWh) ($/(MW)2h)

1 6 2.0 0.6 6 3.0 0.7
2 7 2.5 0.5 8 2.5 0.5



1.5 Nonlinear Programming: Complicating Constraints 45

Table 1.15. Line data

Line ij Gij Bij

12 −1.0 7.0
13 −1.5 6.0
23 −0.5 7.5
45 −1.0 9.0
46 −0.9 7.0
56 −0.3 6.5

Tie-line 34 −1.3 5.5

Table 1.16. Demand data

Demand data (MWh) dx dy

8 9.5

1.5.3 The Wall Design

Engineers in daily practice are faced with the problem of designing engineering
works as bridges, dams, breakwaters, structures, for example. A good design
requires minimizing the cost while satisfying some geometric and reliability
constraints of the work being designed.

Consider the wall in Fig. 1.14, where a and b are the width and the height
of the wall, w is its weight per unit length, t is the horizontal force acting on
its right-hand side, h is the corresponding offset with respect to the soil level,
and γ is the unit weight of the wall.

In this example we assume that a, b, and γ are deterministic constants, and
t ∼ N(µt, σt) and h ∼ N(µh, σh) are independent normal random variables
with the indicated mean and standard deviations.

a

b
t

hγ

w

O

Fig. 1.14. Wall and acting forces



46 1 Motivating Examples

Overturning
failure

Sliding
failure

Bearing
failure

Fig. 1.15. Illustration of the wall three modes of failure

Assume that the only the overturning failure mode as indicated in Fig. 1.15
is considered. Other failure modes (see Fig. 1.15) will be analyzed in Chap. 9,
p. 349.

The overturning safety factor Fo is defined as the ratio of the stabilizing
to the overturning moments with respect to some point (O in Fig. 1.14), i.e.,

Fo =
Stabilizing moment

Overturning moment
=

wa/2
h̃t̃

=
a2bγ

2h̃t̃
≥ F 0

o , (1.66)

where F 0
o is the corresponding lower bound associated with the overturning

failure, and the tildes refer to the characteristic values of the corresponding
variables (values fixed in the engineering codes). Then, the wall is safe if and
only if Fo ≥ 1.

Three different design alternatives can be used,

1. Classical Design. In a classical design the engineer minimizes the cost
of building the engineering work subject to safety factor constraint (1.66),
i.e.,

minimize
a, b

ab (1.67)

subject to

a2bγ

2h̃t̃
≥ F 0

o (1.68)

b = 2a , (1.69)

where ab is the cross section of the wall, i.e., the objective function to
be optimized (cost function), and the last constraint is a geometrical con-
straint fixing a minimum height of the wall b0. Characteristic values h̃ and
t̃ are taken equal to their mean values µh and µt, respectively.

2. Modern Design. Alternatively, the modern design minimizes the cost
subject to reliability constraints, i.e.,



1.5 Nonlinear Programming: Complicating Constraints 47

minimize
a, b

ab (1.70)

subject to the reliability and geometric constraints

β(a, b) ≥ β0 (1.71)
b = 2a , (1.72)

where
β(a, b) = minimum

t, h
β(a, b, t, h) (1.73)

subject to the overturning failure constraint

a2bγ

2ht
= 1 , (1.74)

where β(a, b) is the reliability index associated with the overturning failure
mode, and β0 the corresponding upper bound. In this case, h and t are
realizations of the corresponding random variables.

3. Mixed Design. There exists another design, the mixed alternative, that
combines safety factors and reliability indices (see Castillo et al. 13, 15–19)
and can be stated as

minimize
a, b

ab (1.75)

subject to the safety factor, reliability, and geometric constraints

a2bγ

2h̃t̃
≥ F 0

o (1.76)

β(a, b) ≥ β0 (1.77)
b = 2a . (1.78)

Unfortunately, the previous two alternatives cannot be solved directly,
because the constraints (1.71) and (1.77) involve the additional optimization
problem (1.73)–(1.74).

Therefore, constraints (1.71) and (1.77) are the complicating constraints.
Consequently, these two bi-level problems cannot be solved by standard tech-
niques and decomposition methods are required.

To perform a probabilistic design in the wall example, the joint probability
density of all variables is required.

Assume that the means, characteristic values, and the standard deviations
of the variables are

γ = 23 kN/m3, µh = 3 m, µt = 50 kN

σh = 0.2 m, σt = 15 kN .



48 1 Motivating Examples

Assume also that the required safety factors and reliability bounds are

F 0
o = 1.5, β0 = 3, b0 = 4 m .

The random variables can be transformed to standard normal random
variables (z1, z2) by

z1 =
t − µt

σt
, z2 =

h − µh

σh
(1.79)

and then, problem (1.75)–(1.78) becomes

minimize
a, b

ab (1.80)

subject to the safety factor, reliability, and geometric constraints

a2bγ

2h̃t̃
≥ 1.5 (1.81)

β(a, b) ≥ 3 (1.82)
b = 2a , (1.83)

whereas it will be shown in Sect. 7.2, p. 276,

β = minimum
h, t

z2
1 + z2

2 (1.84)

subject to

z1 =
t − µt

σt

z2 =
h − µh

σh

a2bγ

2ht
= 1 .

The solution of this problem is a∗ = 2.535 m and b∗ = 4 m with a cost
of $10.14 that leads to a safety factor of F ∗

o = 1.97 and a reliability index of
β∗

o = 3.

1.5.4 Reliability-based Optimization
of a Rubblemound Breakwater

Consider the construction of a rubblemound breakwater (see Fig. 1.16) to
protect a harbor area from high waves during storms. The breakwater must be
strong enough to survive the attack of storm waves, and the crest must be high
enough to prevent the intrusion of sea water into the harbor by overtopping.
For simplicity, only overtopping failure is considered. Other failure modes,
such as armor failure, wave transmission, are ignored.



1.5 Nonlinear Programming: Complicating Constraints 49

Fig. 1.16. Parameterized rubblemound breakwater used in the example

The goal is an optimal design of the breakwater based on minimizing
the construction and the insurance costs against overtopping damage of the
internal structures and ships.

The construction cost is

Cco = ccvc + caca ,

where vc and ca are the concrete and armor volumes, respectively, and cc and
ca are the respective construction costs per unit volume.

For the sake of simplicity the insurance cost is evaluated considering the
probability of overtopping failure, PD

f , during the breakwater lifetime, D.
To carry out a rigorous analysis, not only the probability of failure but how
much water exceeds the freeboard level should be considered as well. Thus,
the insurance cost is

Cin = 5000 + 1.25 × 106PD2

f ,

where the numerical constants are typical values.
The construction, insurance, and total cost versus the probability of fail-

ure are shown in Fig. 1.17. Note the decreasing and increasing character of
the construction and insurance costs, respectively, as the failure probability
increases, and the convex character of the total cost.

For a rubblemound breakwater of slope tanαs and freeboard Fc (see
Fig. 1.16), and a given wave of height H and period T , the volume of wa-
ter that overtops the structure can be estimated from the volume of water

H

Dwl

Incident
wave

Run up

d

2

10
10 2

45οαs

αs

=20

Fc



50 1 Motivating Examples

Optimal design

Linear approximation of
the total cost function

at the point (di )

d

Cost

Construction
cost (Cco )

Insurance
cost (Cin )

Total cost (Cto )

d*di

Cco(di)

Cin(di)

Cto(di)

Increasing probability of failure (Pf (d ))

Fig. 1.17. Graphical illustration of the cost functions for the breakwater design

that would rise over the extension of the slope exceeding the freeboard level.
With this approximation, overtopping (failure) occurs whenever the difference
between the maximum excursion of water over the slope, Ru, called wave run-
up, exceeds the freeboard Fc. Thus, overtopping failure occurs if

Fc − Ru < 0 . (1.85)

Based on experiments, the following equation has been proposed to eval-
uate the dimensionless quantity Ru/H:

Ru

H
= Au

(
1 − eBuIr

)
,

where Au and Bu are given coefficients that depend on the armor units, and
Ir is the Iribarren number

Ir =
tan αs√

H/L
,

where αs is the seaside slope angle and L is the wavelength, obtained from
the dispersion equation (

2π

T

)2

= g
2π

L
tanh

2πDwl

L
,

where Dwl is the design water level and g is the gravity constant.
In addition, because of construction reasons the slope αs is limited by

1/5 ≤ tan αs ≤ 1/2 .



1.5 Nonlinear Programming: Complicating Constraints 51

The set of variables and parameters involved in this problem can be par-
titioned into following four subsets:

d: Optimization design variables. The design random variables whose values
are to be chosen by the optimization program to optimize the objective
function (minimize the cost),

d = {Fc, tan αs} .

η: Nonoptimization design variables. The set of variables and parameters
whose mean or characteristic values are fixed by the engineer or the code
and must be given as data to the optimization problem,

η = {Au, Bu, Dwl, g,H, T, cc, ca} .

κ: Random model parameters. The set of parameters used in the probabilistic
design, defining the random variability and dependence structure of the
variables involved, in this case sea state descriptors,

κ = {Hs, T̄ , dst} ,

where Hs is the significant wave height, T̄ is the average value of the period
of the seawaves, and dst is the sea state duration.

ψ: Auxiliary or nonbasic variables. The auxiliary variables whose values can
be obtained from the basic variables d and η, using some formulas,

ψ = {Ir, ca, vc, Cco, Cin, Ru, L, d} .

The basic random variables in this problem are H and T , which are as-
sumed to be independent and with cumulative distribution functions,

FH(H) = 1 − e−2(H/Hs)
2
; H ≥ 0 (1.86)

and
FT (T ) = 1 − e−0.675(T/T̄ )4 ; T ≥ 0 . (1.87)

If Pf is the probability of overtopping failure due to a single wave, the
lifetime breakwater failure probability becomes

PD
f (d) = 1 − (1 − Pf(d))N

, (1.88)

where N = dst/T̄ is the mean number of waves during the design sea state
for period D, and dst is its duration.

Then, the design problem consists of

minimize
Fc, tan αs

Cto = ccvc + cava + 5000 + 1.25 × 106PD2

f

subject to



52 1 Motivating Examples

1/5 ≤ tan αs ≤ 1/2
Fc = 2 + d

vc = 10d

va =
1
2
(Dwl + 2)

(
46 + Dwl +

Dwl + 2
tan αs

)
Pf(d) = Φ(−β)

PD
f (d) = 1 − (1 − Pf(d))(dst/T̄ )

,

where Φ(·) is the cumulative distribution function of the standard normal
random variable and β is the reliability index that cannot be obtained directly
and involves another optimization problem

minimize
H,T

β =
√

z2
1 + z2

2

subject to

Ru

H
= Au

(
1 − eBuIr

)
Ir =

tan αs√
H/L(

2π

T

)2

= g
2π

L
tanh

2πDwl

L

Φ(z1) = 1 − e−2(H/Hs)
2

Φ(z2) = 1 − e−0.675(T/T̄ )4

Fc = Ru ,

where z1 and z2 are independent standard normal random variables.
As it has been illustrated, the reliability-based optimization problems

can be characterized as bi-level optimization problems (see Mı́nguez [13] and
Mı́nguez et al. [14]). The upper level is the overall optimization in the design
variables d, in this case the minimization of the total cost function. The lower
level is the reliability estimation in the z variables, necessary for evaluating
the insurance cost. This bi-level structure is the reason why the decomposition
procedure is needed.

Assuming the following values for the variables involved,

Dwl = 20 m, Au = 1.05 , Bu = −0.67 , cc = 60 $/m3,

g = 9.81 m/s2, ca = 2.4 $/m3, Hs = 5 m, T̄ = 10 s, dst = 1 h .

The solution of this problem, using the method above, is

F ∗
c = 5.88 m, tan α∗

s = 0.23, C∗
co = $6,571.3, C∗

in = $5,019.8, C∗
to = $11,591.1 .



1.6 Nonlinear Programming: Complicating Variables 53

Note that the method also provides the optimal reliability index and prob-
ability of run-up for a single wave and during the design sea state, respectively,

β∗ = 4.738, P ∗
f = 0.00000111 and PD

f

∗
= 0.00039845 .

1.6 Nonlinear Programming: Complicating Variables

1.6.1 Capacity Expansion Planning: Revisited

The capacity expansion planning problem, analyzed in Sect. 1.4.2, is revisited
in this section. The problem consists of constructing two electricity production
facilities, located at two different places, to supply the demand of a large
city. The production facilities and the city are connected by lines of limited
transmission capacity, as shown in Fig. 1.10.

The production facilities can be enlarged in a modular fashion, i.e., they
can be expanded as needed for each period of the planning horizon. The
only differences from the original statement of the problem in Sect. 1.4.2 are
that transmission costs are zero and that equations expressing the energy
transmitted through lines are nonlinear.

This multiperiod capacity expansion planning problem is formulated be-
low:

Data.
dt: demand during time period t
cit: building cost at location i for time period t
Bij : susceptance (structural parameter) of line ij
Gij : conductance (structural parameter) of line ij
P: set of transmission lines; lines are represented as ordered pairs of lo-

cations, i.e., arcs
fmax

ij : maximum transmission capacity of line ij
xmax

i : maximum production capacity that can be built at location i.

Variables.
xit: production capacity already built at location i at the beginning of

time period t
yit: actual production at location i during time period t
fij,t: energy sent from location i to location j during period t
δit: relative “height” at location i with respect to the reference location

during period t.
It should be noted that variables xit and yit are nonnegative. That is

xit ≥ 0 ; i = 1, 2; t = 1, 2 (1.89)
yit ≥ 0 ; i = 1, 2; t = 1, 2 . (1.90)



54 1 Motivating Examples

Constraints.
The constraints of this problem are
1. energy balances at production locations 1 and 2, respectively

y1t = f13,t + f12,t − f21,t ; t = 1, 2 (1.91)
y2t = f23,t + f21,t − f12,t ; t = 1, 2 , (1.92)

2. energy balance in the city

dt = f13,t + f23,t ; t = 1, 2 , (1.93)

3. production capacity limits

0 ≤ yit ≤ xit ; i = 1, 2; t = 1, 2 , (1.94)

4. expansion constraints

xit ≤ xi,t+1 ; i = 1, 2; t = 1 , (1.95)

5. expansion bounds

0 ≤ xit ≤ xmax
i ; i = 1, 2; t = 1, 2 , (1.96)

6. transmission capacity limits

0 ≤ fij,t ≤ fmax
ij ; (i, j) ∈ P; t = 1, 2 , (1.97)

7. transmitted commodity through lines

fij,t = Gij cos(δit−δjt)+Bij sin(δit−δjt)−Gij ; (i, j) ∈ P; t = 1, 2 .
(1.98)

Function to Be Minimized. The function to be minimized is cost, i.e.,

2∑
i=1

[ci1 xi1 + ci2 (xi2 − xi1)] . (1.99)

For the data provided in Tables 1.17, 1.18, 1.19, and 1.20, the optimal
solution of the multiperiod capacity expansion planning problem is provided
in Table 1.21. Total cost is $19.7.

It should be noted that variables xit (i = 1, 2; t = 1, 2) are complicating
variables. If they are fixed to given values, the nonlinear capacity expansion
planning problem is decomposed by time period. Complicating variables pre-
vent a distributed solution unless a suitable decomposition technique is used.
Some of such techniques are developed in the following chapters.



1.7 Mixed-Integer Programming: Complicating Constraints 55

Table 1.17. Transmission data

Line (i, j) (1,2) (1,3) (2,1) (2,3)

Susceptance, Bij 9 15 9 18
Conductance, Gij −0.5 −0.4 −0.5 −0.7
Capacity, fmax

ij 2.5 6.0 2.5 4.0

Table 1.18. Building cost data

Time period 1 2

Location 1 ($) 2.0 2.5
Location 2 ($) 3.5 3.0

Table 1.19. Demand data

Time period 1 2

Demand 7 5

Table 1.20. Expansion alternative data

Location Maximum capacity

1 5
2 6

Table 1.21. Solution of the second version of the capacity expansion planning
example

Location 1 Location 2 Flows

Period t Cap. Prod. Cap. Prod. 1–3 1–2 2–1 2–3

1 3.2 3.2 3.8 3.8 3.2 0.0 0.0 3.8
2 3.2 2.3 3.8 2.7 2.3 0.0 0.0 2.7

1.7 Mixed-Integer Programming:
Complicating Constraints

1.7.1 Unit Commitment

Consider two electric energy consumption centers interconnected by a trans-
mission line as illustrated in Fig. 1.18. Each consumption center has its own
production facility. If economically advantageous, energy can be transmitted
using the transmission line from a consumption center to the other one and
vice versa. The unit commitment problem consists of determining if either one
or two of the production facilities should be on line to supply the demand at
minimum cost.



56 1 Motivating Examples

δ 1

PG1 PG2

PD1 PD2G, B

C1 C20

Fig. 1.18. Unit commitment of production facilities

The problem is formulated as follows:

Data.
PDi: demand of consumption center i
Pmax

Gi : maximum capacity of production center i
Pmin

Gi : minimum capacity of production center i
G: conductance (structural parameter) of the transmission line
B: susceptance (structural parameter) of the transmission line
Ci: cost of producing at center i.

Variables.
PGi: production at center i
δ1: electrical angle (“height”) of production center 1 with respect to pro-

duction center 2
ui: status binary variable of production facility i; 1 if on-line and 0 if

off-line.

Constraints. The constraints of this problem are
1. production capacity limits of the facilities

ui Pmin
Gi ≤ PGi ≤ ui Pmax

Gi ; i = 1, 2 . (1.100)

2. production balance at center 1

PG1 + [G (1 − cos δ1) − B sin δ1] = PD1 . (1.101)

3. production balance at center 2

PG2 + [G (1 − cos δ1) + B sin δ1] = PD2 . (1.102)

The two terms within square brackets are the energies transmitted
through the line to centers 1 and 2, respectively.

4. security of supply

u1 Pmax
G1 + u2 Pmax

G2 ≥ PD1 + PD2 . (1.103)

This constraint ensures that enough capacity to supply the total de-
mand is in operation.



1.8 Mixed-Integer Programming: Complicating Variables 57

Function to Be Minimized. The objective is to minimize cost, thus
the objective function is

C1 PG1 + C2 PG2 . (1.104)

It should be noted that the problem above is mixed-integer and nonlin-
ear. However, nonlinear equations (1.101) and (1.102) can be linearized. This
linearization renders a mixed-integer linear problem. The outer linearization
procedure explained in Sect. 6.5.1, p. 258, uses an iterative linearization pro-
cedure to solve this nonlinear mixed-integer problem.

Table 1.22. Production center data

Center i Pmax
Gi (MW) Pmin

Gi (MW) Ci ($/MWh) PDi (MWh)

1 6 1.0 25 7
2 8 1.5 15 5

Table 1.23. Line data

Line G B

Data −0.5 3.5

Considering the data in Tables 1.22 and 1.23, the solution of this unit
commitment problem is

P ∗
G1 = 4.4 MWh; P ∗

G2 = 8.0 MWh; δ1 = −0.927 rad ,

with an objective function value of $230.
Note that the total production P ∗

G1 + P ∗
G2 is larger than the total demand

PD1 + PD2 due to losses in the transmission line.

1.8 Mixed-Integer Programming: Complicating Variables

1.8.1 Capacity Expansion Planning: Revisited 2

The capacity expansion planning problem, analyzed in Sects. 1.4.2 and 1.6.1,
is again revisited in this section. The problem consists of constructing two
discrete-sized production facilities, located in two different places, to supply
the demand of a large city. The production facilities and the city are con-
nected by roads of limited transportation capacity, as shown in Fig. 1.10. The
production facilities can be enlarged in a modular fashion, i.e., they can be
expanded as needed each period of the planning horizon. However, expansion



58 1 Motivating Examples

alternatives are discrete. The only differences with the original statement of
the problem in Sect. 1.4.2 are that expansion alternatives are discrete and
that transportation costs are quadratic.

This new discrete-sized multiperiod capacity expansion planning problem
is formulated below:

Data.
dt: demand during time period t
cit: building cost at location i for time period t
eij : per unit transportation cost from location i to location j
P: set of roads used for transportation; roads are represented as ordered

pairs of locations
fmax

ij : maximum transportation capacity of road (i, j){
xa

i , xb
i , x

c
i

}
: set of possible building alternatives.

Variables.
xit: discrete production capacity already built at location i at the begin-

ning of time period t
yit: actual production at location i during time period t
fij,t: production quantity sent from location i to location j during period

t.
It should be noted that all the above variables are nonnegative. Addition-
ally, variables xit (i = 1, 2, t = 1, 2) are integers. That is

yit ≥ 0 ; i = 1, 2; t = 1, 2 (1.105)
fij,t ≥ 0 ; (i, j) ∈ P; t = 1, 2 (1.106)
xit ∈ {

xa
i , xb

i , x
c
i

}
; i = 1, 2; t = 1, 2 (1.107)

xa
i , xb

i , x
c
i ≥ 0 ; i = 1, 2 . (1.108)

Constraints. The constraints of this problem are
1. production balances at production locations 1 and 2, respectively,

y1t = f13,t + f12,t − f21,t ; t = 1, 2 (1.109)
y2t = f23,t + f21,t − f12,t ; t = 1, 2 , (1.110)

2. production balances in the city

dt = f13,t + f23,t ; t = 1, 2 , (1.111)

3. production capacity limits

0 ≤ yit ≤ xit ; i = 1, 2; t = 1, 2 , (1.112)

4. building alternatives

xit ∈
{
xa

i , xb
i , x

c
i

}
; i = 1, 2; t = 1, 2 , (1.113)



1.8 Mixed-Integer Programming: Complicating Variables 59

5. transportation capacity limits

0 ≤ fij,t ≤ fmax
ij ; (i, j) ∈ P; t = 1, 2 . (1.114)

Function to Be Minimized. The function to be minimized is cost, i.e.,

2∑
i=1

⎛⎝ci1 xi1 + ci2 (xi2 − xi1) +
∑

(i,j)∈P
eij f2

ij,t

⎞⎠ . (1.115)

For the data provided in Tables 1.24, 1.25, 1.26, 1.27, the optimal solu-
tion of this discrete-sized multiperiod capacity expansion planning problem is
provided in Table 1.28. Total cost is $97.91, including $22 of investment cost
and $75.91 of transportation cost.

Table 1.24. Transportation data

Road (i, j) (1,2) (1,3) (2,1) (2,3)

Cost, eij ($) 0.5 0.7 0.6 0.8
Capacity, fmax

ij 5 11 5 9

Table 1.25. Production cost data

Time period 1 2

Location 1 2.0 2.5
Location 2 3.5 3.0

Table 1.26. Demand data

Time period 1 2

Demand 11 9

It should be noted that integer variables xit (i = 1, 2; t = 1, 2) are com-
plicating variables. If they are fixed to given integer values, the mixed-integer
nonlinear capacity expansion planning problem can be decomposed by time
period. Complicating variables prevent a distributed solution unless a suitable
decomposition technique is used. Some of such techniques are developed in the
following chapters.



60 1 Motivating Examples

Table 1.27. Expansion alternative data

Expansion alternative a b c

Location 1 3 5 9
Location 2 4 6 8

Table 1.28. Solution of the revisited capacity expansion planning example

Location 1 Location 2 Flows

Period t Cap. Prod. Cap. Prod. 1–3 1–2 2–1 2–3

1 9 7 4 4 6.15 0.85 0.00 4.85
2 5 5 4 4 4.85 0.15 0.00 4.15

1.8.2 The Water Supply System: Revisited

Consider the water supply system problem in Sect. 1.4.3. Note that the op-
timal solution flow in some connections is zero (no water flowing) but there
is a construction cost associated with that connection. This means that the
connection is built even in the case that no flow goes through. If we are inter-
ested in the minimum cost considering not only maintenance but construction
as well, the following cost terms ci in dollars associated with the connections
must be considered

ci =
{

0 if xi = 0
fi + vixi if 0 < xi ≤ xmax

i
; i = 1, . . . , 15 ,

where xmax
i is the maximum flow capacity for connection i, ci is the connection

cost in dollers, fi is the construction cost, and vi is the maintenance cost
depending on the equilibrium flow that goes through the connection xi.

This cost can be implemented using binary variables by the following set
of constraints for each connection i:

ci = yifi + vixi,
xi ≤ yix

max
i ,

xi ≥ 0,
yi ∈ {0, 1} .

(1.116)

Note that there are following two possibilities:

Case 1: If yi = 0, then 0 ≤ xi ≤ 0, so that xi = 0 and then ci = 0. This
means that there is no connection.

Case 2: If yi = 1, then 0 ≤ xi ≤ xmax
i , so that ci = fi + vixi. This means that

the connection exists.

One can decide which connections are necessary and what are redundant,
by solving the problem,



1.9 Concluding Remarks 61

minimize
xi, yi; i = 1, 2, . . . , 15

15∑
i=1

ci

subject to the flow balance equations:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1−1
1 −1

1 −1−1
1 1 −1

1 −1
1 1−1

1 1 1−1 1−1 1 1−1−1 1−1 1−1−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11−q12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and to constraints (1.116).

Using the same data as in the numerical example in page 55, one gets an
optimal cost of $96 and the optimal solution flows are shown in Fig. 1.19, where
the unnecessary connections have been deleted. This problem is decomposable
if variable x8 is considered a complicating variable. In that situation, the
Benders decomposition algorithm can be used.

x1 = 4

x2 = 6

x5 = 4

x4 = 5

x7 = 2

x3 = 3

x9 = 2

x14 = 8

x13 = 1

x15 = 4

x11 = 6

x8 = 1

q1 = 10

q2 = 1

q5 = 2

q3 = 2

q4 = 3

q6 = 1

q7 = 3

q9 = 1

q11 =3

q8 = 4

q10 = 2

q12 = 12
1

3

5

4

2

6 7

9

11

10

12

8

Fig. 1.19. Redesigned water supply system showing the input, output, and con-
nection flows associated with the optimal solution

1.9 Concluding Remarks

This chapter describes a collection of motivating examples with decomposable
structure. Its aim is to illustrate that the number of practical problems in



62 1 Motivating Examples

engineering (Industrial, Hydroelectricity, Energy Production, Civil, etc.) and
science that present decomposable structure is large and rich.

Applications range from operation to planning and design of engineering
systems, and include decision making problems under uncertainty.

In the following chapters techniques to efficiently solve problems with de-
composable structure are developed.

Table 1.29 shows the decomposition techniques that can be used to solve
decomposable problems. The symbol � means that the technique can be ap-
plied to the corresponding problem, the symbol − means that it cannot be
applied, the symbol (�) means that the technique is applicable but with a
doubtful behavior (with a possible fail) and the symbol (−) means that it is
not recommended to use this technique but it can be applied in some cases.

Table 1.29. Summary of decomposition techniques

Problem
Applicable Continuous linear Continuous nonlinear
Technique Compl. Compl. Compl. Compl.

constraints variable constraints variable

Dantzig-Wolfe � − �a −
Lagrangian relaxation (−) − � −
Augmented Lagrangian � − � −
Optimality conditions (−) − � −
Benders − � − �

Noncontinuous linear Noncontinuous nonlinear
Compl. Compl. Compl. Compl.

constraints variable constraints variable

Dantzig-Wolfe �b − �a −
Lagrangian relaxation (�) � � −
Augmented Lagrangian (�) � � −
Optimality conditions − − � −
Benders − � − �
a known with names other than Dantzig-Wolfe.
b known as “branch and price.”

1.10 Exercises

Exercise 1.1. Consider the water supply system in Subsect. 1.4.3, and answer
the following questions:

1. Determine the maximum number of links (connections) that can be re-
moved without causing service failure.

2. How this number relates to the reliability of the system?



1.10 Exercises 63

3. Are some nodes more reliable than others? Why?
4. How can this problem be decomposed?

Exercise 1.2. Modify the wall design problem for a wall shape as indicated
in Fig. 1.20, considering the additional constraints c ≥ a and d ≥ a.

Exercise 1.3. Formulate a transnational manufacturing operation problem
similar to the Transnational Soda Company analyzed in Sect. 1.3.1. Show its
decomposable structure.

Exercise 1.4. Formulate the problem faced by the operator of a water supply
system associated with a river basin. Since storage facilities are not available,
hourly water demand should be met at every hour. Show the structure of this
problem.

Exercise 1.5. Consider a multiarea and multiperiod production scheduling
problem. Show its structure and illustrate it by means of a simple example.

Exercise 1.6. Formulate a 2-year coal oil and gas procurement problem con-
sidering that five demand scenarios are possible the last year. Show its de-
composable structure.

Exercise 1.7. Formulate the multiperiod and multiarea operation problem
associated with a natural gas supply network that includes storage facilities.
Analyze the structure of this problem.

Exercise 1.8. Formulate a multiperiod capacity expansion planning problem
including nonlinear investment and operation costs and discrete investment
variables. Illustrate the structure of this problem.

a

b

c

d

tw1

w2

O

h

Fig. 1.20. Wall cross section



64 1 Motivating Examples

Exercise 1.9. Sketch the components of the problem associated to the en-
gineering design of a bridge. Show and illustrate the structure of this problem.

Exercise 1.10. Formulate the 24-h unit commitment problem of production
units. Consider minimum and maximum output constraints, ramping limits,
and security constraint. Show the structure of this problem. Derive linear
constraints to enforce minimum up time constraints.



Part II

Decomposition Techniques



2

Decomposition in Linear Programming:
Complicating Constraints

2.1 Introduction

The size of a linear programming problem can be very large. One can en-
counter in practice problems with several hundred thousands of equations
and/or unknowns. To solve these problems the use of some special techniques
is either convenient or required. Alternatively, a distributed solution of large
problems may be desirable for technical or practical reasons. Decomposition
techniques allow certain type of problems to be solved in a decentralized or
distributed fashion. Alternatively, they lead to a drastic simplification of the
solution procedure of the problem under study.

For a decomposition technique to be useful, the problem at hand must have
the appropriate structure. Two such cases arise in practice: the complicating
constraint and the complicating variable structures. The first one is analyzed
below, and the second is analyzed in Chap. 3.

In a linear programming problem, the complicating constraints involving
variables from different blocks drastically complicate the solution of the prob-
lem and prevent its solution by blocks. The following example illustrates how
complicating constraints impede a solution by blocks.

Illustrative Example 2.1 (Complicating constraints that prevent a
distributed solution). Consider the problem

minimize
x1, x2, x3, y1, y2, v1, v2, v3

a1x1 + a2x2 + a3x3 + b1y1 + b2y2 + c1v1 + c2v2 + c3v3

subject to



68 2 Linear Programming: Complicating Constraints

a11x1 + a12x2 + a13x3 = e1

a21x1 + a22x2 + a23x3 = e2

b11y1 + b12y2 = f1

c11v1 + c12v2 + c13v3 = g1

c21v1 + c22v2 + c23v3 = g2

d11x1 + d12x2 + d13x3 + d14y1 + d15y2 + d16v1 + d17v2 + d18v3 = h1

x1, x2, x3, y1, y2, v1, v2, v3 ≥ 0 .

If the last equality constraint is not enforced, i.e., it is relaxed, the above
problem decomposes into the following three problems:

Subproblem 1:

minimize
x1, x2, x3

a1x1 + a2x2 + a3x3

subject to
a11x1 + a12x2 + a13x3 = e1

a21x1 + a22x2 + a23x3 = e2

x1, x2, x3 ≥ 0 .

Subproblem 2:
minimize

y1, y2

b1y1 + b2y2

subject to
b11y1 + b12y2 = f1

y1, y2 ≥ 0 .

Subproblem 3:
minimize
v1, v2, v3

c1v1 + c2v2 + c3v3

subject to
c11v1 + c12v2 + c13v3 = g1

c21v1 + c22v2 + c23v3 = g2

v1, v2, v3 ≥ 0 .

Since the last equality constraint of the original problem

d11x1 + d12x2 + d13x3 + d14y1 + d15y2 + d16v1 + d17v2 + d18v3 = h1

involves all variables, preventing a solution by blocks, it is a complicating
constraint. ��

Complicating constraints may prevent a straightforward solution of the
linear programming problem being considered. The next example illustrates
this situation.



2.1 Introduction 69

Illustrative Example 2.2 (Complicating constraints that prevent an
efficient solution). Consider the problem

minimize
x1, . . . , x7

c1x1 + c2x2 + c3x3 + c4x4 + c5x5 + c6x6 + c7x7

subject to

a11x1 + a17x7 = b1

a22x2 + a27x7 = b2

a37x7 = b3

a41x4 + a42x2 + a43x3 + a44x4 + a45x5 + a46x6 + a47x7 = b4

x1, x2, x3, x4, x5, x6, x7 ≥ 0 ,

where
c1, c2, c3, c4, c5, c6, c7 ≥ 0 .

If the last equality constraint is dropped, the optimal solution is trivially
obtained solving the resulting system of equations, i.e.,

x7 =
b3

a37

x1 =
b1

a11
− a17

a37a11
b3

x2 =
b2

a22
− a27

a37a22
b3

x3, x4, x5, x5 = 0 .

Since the last constraint of the original problem

a41x1 + a42x2 + a43x3 + a44x4 + a45x5 + a46x6 + a47x7 = b4

prevents a straightforward solution of the problem, it is a complicating con-
straint. ��

Decomposition procedures are computational techniques that indirectly
consider the complicating constraints. The price that has to be paid for such
a simplification is repetition. That is, instead of solving the original prob-
lem with complicating constraints, two problems are solved iteratively (i.e.,
repetitively): a simple so-called master problem and a problem similar to the
original one but without complicating constraints. In this manner, compli-
cating constraints are progressively taken into account. The decomposition
techniques analyzed in this chapter attain optimality within a finite number
of iterations. This robust behavior is of particular interest in many practi-
cal applications. Decomposition techniques for problems with complicating
constraints are developed in the following sections.



70 2 Linear Programming: Complicating Constraints

2.2 Complicating Constraints: Problem Structure

Consider the linear programming problem

minimize
x1, x2, . . . , xn

n∑
j=1

cjxj (2.1)

subject to

n∑
j=1

eijxj = fi; i = 1, . . . , q (2.2)

n∑
j=1

aijxj = bi; i = 1, . . . , m (2.3)

0 ≤ xj ≤ xup
j ; j = 1, . . . , n , (2.4)

where constraints (2.2) have a decomposable structure in r blocks, each of
size nk (k = 1, 2, . . . , r), i.e., they can be written as

nk∑
j=nk−1+1

eijxj = fi; i = qk−1 + 1, . . . , qk; k = 1, 2, . . . , r . (2.5)

Note that n0 = q0 = 0, qr = q and nr = n.
On the other hand, since constraints (2.3) have no decomposable structure,

they are the complicating constraints.
Note that upper bounds xup

j (j = 1, . . . , n) are considered for all opti-
mization variables xj (j = 1, . . . , n). This assumption allows dealing with a
compact (finite) feasible region, leading to a simpler theoretical analysis of
the problem (2.1)–(2.4). This assumption is justified by the bounded nature
of most engineering variables.

Figure 2.1 shows the structure of the above problem for the case r = 3.
This particular problem can be written as

minimize
x[1],x[2],x[3]

(
(c[1])T | (c[2])T | (c[3])T

)
⎛⎜⎜⎜⎝

x[1]

−
x[2]

−
x[3]

⎞⎟⎟⎟⎠ ,

where the superindices in brackets refer to partitions, subject to



2.2 Complicating Constraints: Problem Structure 71

E [1]

E [2]

E [3]

A[1] A[2] A[3]

x [1]

x [2]

x [3]

b

f [1]

f [2]

f [3]

(c [1])T (c [2])T (c [3])T

q1

q2-q1

q3-q2

m

n1 n2-n1 n3-n2

Fig. 2.1. Decomposable matrix with complicating constraints

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E[1] | |
−− − −− − −−

| E[2] |
−− − −− − −−

| | E[3]

−− − −− − −−
A[1] | A[2] | A[3]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
x[1]

−−
x[2]

−−
x[3]

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f [1]

−−
f [2]

−−
f [3]

−−
b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
0 ≤ x[1] ≤ x[1]up

0 ≤ x[2] ≤ x[2]up

0 ≤ x[3] ≤ x[3]up .

In general, the initial problem can be written as

minimize
x[1],x[2], . . . ,x[r]

r∑
k=1

(
c[k]

)T
x[k] (2.6)

subject to

E[k]x[k] = f [k]; k = 1, . . . , r (2.7)
r∑

k=1

A[k]x[k] = b (2.8)

0 ≤ x[k] ≤ x[k]up; k = 1, . . . , r , (2.9)



72 2 Linear Programming: Complicating Constraints

where for each k = 1, 2, . . . , r, we have(
c[k]

)T

=
(
cnk−1+1 . . . cnk

)
(2.10)(

x[k]
)T

=
(
xnk−1+1 . . . xnk

)
(2.11)(

x[k]up
)T

=
(
xup

nk−1+1 . . . xup
nk

)
(2.12)

E[k] = (eij) ; i = qk−1 + 1, . . . , qk; j = nk−1 + 1, . . . , nk (2.13)(
f [k]

)T

=
(
fqk−1+1 . . . fqk

)
(2.14)

A[k] = (aij) ; i = 1, . . . , m; j = nk−1 + 1, . . . , nk (2.15)

bT =
(
b1 . . . bm

)
. (2.16)

If complicating constraints are ignored, i.e., they are relaxed, the original
problem becomes

minimize
x[k],x[2], . . . ,x[r]

r∑
k=1

(
c[k]

)T
x[k] (2.17)

subject to

E[k]x[k] = f [k]; k = 1, . . . , r (2.18)
0;≤ x[k] ≤ x[k]up; k = 1, . . . , r . (2.19)

This problem (2.17)–(2.19) is called the relaxed version of the problem.
The decomposed kth-subproblem is therefore

minimize
x[k]

(
c[k]

)T
x[k] (2.20)

subject to

E[k]x[k] = f [k] (2.21)
0 ≤ x[k] ≤ x[k]up (2.22)

or
minimize

xnk−1+1, xnk−1+2, . . . , xnk

nk∑
j=nk−1+1

cjxj (2.23)

subject to
nk∑

j=nk−1+1

eijxj = fi; i = qk−1 + 1, . . . , qk (2.24)

0 ≤ xj ≤ xup
j ; j = nk−1 + 1, . . . , nk . (2.25)

The following example shows a decomposable linear programming problem
with complicating constraints.



2.3 Decomposition 73

Illustrative Example 2.3 (Problem with decomposable structure).
The problem

minimize
x1, x2, x3, y1, y2, y3, z1, z2, z3, w1

−4x1 − y1 − 6z1

subject to

x1 −x2 = 1
x1 + x3 = 2

y1 −y2 = 1
y1 + y3 = 2

z1 −z2 = 1
z1 + z3 = 2

3x1 + 2y1 +4z1 + w1 = 17
x1, x2, x3, y1, y2, y3, z1, z2, z3, w1 ≥ 0

has a decomposable structure in three blocks, where the last equality

3x1 + 2y1 + 4z1 + w1 = 17

is the complicating constraint. ��

2.3 Decomposition

This section motivates the decomposition algorithm developed in the following
sections.

Suppose that each of the subproblems (relaxed problem) is solved p times
with different and arbitrary objective functions, and assume that the p basic
feasible solutions of the relaxed problems are

x
(1)
1 , x

(1)
2 . . . x

(1)
n

...
...

...
...

x
(p)
1 , x

(p)
2 . . . x

(p)
n ,

(2.26)

where x
(s)
j is the jth component of solution s, where all variables from all

the subproblems are considered, and the corresponding p optimal objective
function values are

z(1)

z(2)

...
z(p) ,

(2.27)

where z(s) is the objective function value of solution s. Note that we use
superindices of the form (s) to refer to the sth solution.



74 2 Linear Programming: Complicating Constraints

The values of the m complicating constraints for the above p solutions are

r
(1)
1 , r

(1)
2 . . . r

(1)
m

...
...

...
...

r
(p)
1 , r

(p)
2 . . . r

(p)
m ,

(2.28)

where r
(s)
i is the value of the ith complicating constraint for the sth solution,

i.e.,

r
(s)
i =

n∑
j=1

aijx
(s)
j .

For the derivations below, it should be emphasized that a linear convex
combination of basic feasible solutions of a linear programming problem is a
feasible solution of that problem.

The above p basic feasible solutions of the relaxed problem can be used to
produce a feasible solution of the original (nonrelaxed) problem. The case in
which a feasible solution cannot be generated is treated below. This is done by
solving the weighting problem below, which is the so-called master problem

minimize
u1, . . . , up

p∑
s=1

z(s)us (2.29)

subject to
p∑

s=1

r
(s)
i us = bi : λi; i = 1, . . . , m (2.30)

p∑
s=1

us = 1 : σ (2.31)

us ≥ 0; s = 1, . . . , p , (2.32)

where the corresponding dual variables λi and σ are indicated.
The following observations are in order:

1. Any solution of the above problem is a convex combination of basic feasi-
ble solutions of the relaxed problem; therefore, it is itself a basic feasible
solution of the relaxed problem.

2. Complicating constraints are enforced; therefore, the solution of the above
problem is a basic feasible solution for the original (nonrelaxed) problem.

Consider that a prospective new basic feasible solution is added to the
problem above. The objective function value of this solution is z and its com-
plicating constraints values are r1, . . . , rm.

The new weighting problem becomes

minimize
u1, . . . , up, u

p∑
s=1

z(s)us + zu (2.33)



2.3 Decomposition 75

subject to

p∑
s=1

(
r
(s)
i us + riu

)
= bi : λi; i = 1, . . . , m (2.34)

p∑
s=1

us + u = 1 : σ (2.35)

u, us ≥ 0; s = 1, . . . , p . (2.36)

The reduced cost (see Bazaraa et al. [20], Castillo et al. [21]) of the new
weighting variable u, associated with the tentative new basic feasible solution,
can be computed as

d = z −
m∑

i=1

λiri − σ . (2.37)

Taking into account that

z =
n∑

j=1

cjxj , (2.38)

where xj(j = 1, . . . , n) is the new prospective basic feasible solution, and that

ri =
n∑

j=1

aijxj , (2.39)

the reduced cost of weighting variable u becomes

d =
n∑

j=1

cjxj −
m∑

i=1

λi

⎛⎝ n∑
j=1

aijxj

⎞⎠− σ , (2.40)

which reduces to

d =
n∑

j=1

(
cj −

m∑
i=1

λiaij

)
xj − σ . (2.41)

If the tentative basic feasible solution is to be added to the set of previous
ones, the reduced cost associated with its weighting variable should be nega-
tive and preferably a minimum. To find the minimum reduced cost associated
with the weighting variable u and corresponding to a basic feasible solution
of the relaxed problem, the following problem is solved.

minimize
x1, x2, . . . , xn

n∑
j=1

(
cj −

m∑
i=1

λiaij

)
xj − σ

subject to



76 2 Linear Programming: Complicating Constraints

n∑
j=1

eijxj = fi ; i = 1, . . . , q

0 ≤ xj ≤ xup
j ; j = 1, . . . , n .

Note that the constraints of the relaxed problem must be added.
If constant σ is dropped from the objective function, the problem above

becomes

minimize
x1, x2, . . . , xn

n∑
j=1

(
cj −

m∑
i=1

λiaij

)
xj (2.42)

subject to

n∑
j=1

eijxj = fi ; i = 1, . . . , q (2.43)

0 ≤ xj ≤ xup
j ; j = 1, . . . , n . (2.44)

It should be noted that the above problem has the same structure as the
relaxed problem but with different objective functions. Therefore, it can be
solved by blocks. The subproblem associated with block k is

minimize
xnk−1+1, xnk−1+2, . . . , xnk

nk∑
j=nk−1+1

(
cj −

m∑
i=1

λiaij

)
xj (2.45)

subject to

nk∑
j=nk−1+1

eijxj = fi ; i = qk−1 + 1, . . . , qk (2.46)

0 ≤ xj ≤ xup
j ; j = nk−1 + 1, . . . , nk . (2.47)

From the analysis carried out, the following conclusions can be drawn:

1. To determine whether or not a given basic feasible solution of the relaxed
problem should be added to the weighting problem, the subproblems asso-
ciated with the relaxed problem should be solved with modified objective
functions.

2. The modified objective function of subproblem k is

nk∑
j=nk−1+1

(
cj −

m∑
i=1

λiaij

)
xj . (2.48)

In the above objective function, each cost coefficient has the form

c̄j = cj −
m∑

i=1

λiaij , (2.49)



2.4 The Dantzig-Wolfe Decomposition Algorithm 77

that is, the cost coefficient c̄j depends on the dual variable of every compli-
cating constraint and on the column j of the corresponding complicating
constraint matrix A.

3. Once the subproblems are solved, the optimal value vo of the objective
function of the relaxed problem is computed as

vo =
n∑

j=1

(
cj −

m∑
i=1

λo
i aij

)
xo

j , (2.50)

where xo
j (j = 1, . . . , n) is the solution of the relaxed problem, and λo

i

(i = 1, . . . , m) are the optimal values of the dual variables associated with
complicating constraints.
The minimum reduced cost is then

do = vo − σo , (2.51)

where σo is the optimal value of the dual variable associated with the
convex combination constraint (2.35).

4. Based on the minimum reduced cost value, it can be decided whether
or not to include the tentative basic feasible solution associated with the
weighting variable u. This is done as follows:
a) If vo ≥ σo, the tentative basic feasible solution cannot improve the

current solution of the weighting problem because its reduced cost is
nonnegative.

b) If, on the other hand, vo < σo, the tentative basic feasible solution
should be included in the weighting problem because its reduced cost
is negative and this can be used to attain a basic feasible solution with
smaller objective function value than the current one.

The above remarks allow us to propose the solution algorithm described
in the next section.

Because of its importance, we dedicate a section to the Dantzig-Wolfe
decomposition method.

2.4 The Dantzig-Wolfe Decomposition Algorithm

In this section the Dantzig-Wolfe decomposition algorithm is described in
detail.

2.4.1 Description

The Dantzig-Wolfe decomposition algorithm works as follows.



78 2 Linear Programming: Complicating Constraints

Algorithm 2.1 (The Dantzig-Wolfe decomposition algorithm).

Input. A linear programming problem with complicating constraints.
Output. The solution of the linear programming problem obtained after us-

ing the Dantzig-Wolfe decomposition algorithm.

Step 0: Initialization. Initialize the iteration counter, ν = 1. Obtain p(ν)

distinct solutions of the relaxed problem by solving p(ν) times (
 = 1, . . . , p(ν))
each of the r subproblems (k = 1, . . . , r) below

minimize
xnk−1+1, . . . , xnk

nk∑
j=nk−1+1

ĉ
(�)
j xj (2.52)

subject to
nk∑

j=nk−1+1

eijxj = fi ; i = qk−1 + 1, . . . , qk (2.53)

0 ≤ xj ≤ xup
j ; j = nk−1 + 1, . . . , nk , (2.54)

where ĉ
(�)
j (j = nk−1 + 1, . . . , nk; k = 1, . . . , r; 
 = 1, . . . , p(ν)) are arbitrary

cost coefficients to attain the p(ν) initial solutions of the r subproblems.

Step 1: Master problem solution. Solve the master problem

minimize
u1, . . . , up(ν)

p(ν)∑
s=1

z(s)us (2.55)

subject to

p(ν)∑
s=1

r
(s)
i us = bi : λi; i = 1, . . . , m (2.56)

p(ν)∑
s=1

us = 1 : σ (2.57)

us ≥ 0; s = 1, . . . , p(ν) (2.58)

to obtain the solution u
(ν)
1 , . . . , u

(ν)

p(ν) , and the dual variable values λ
(ν)
1 , . . . , λ

(ν)
m

and σ(ν).

Step 2: Relaxed problem solution. Generate a solution of the relaxed
problem by solving the r subproblems (k = 1, . . . , r) below.

minimize
xnk−1+1, xnk−1+2, . . . , xnk

nk∑
j=nk−1+1

(
cj −

m∑
i=1

λ
(ν)
i aij

)
xj (2.59)



2.4 The Dantzig-Wolfe Decomposition Algorithm 79

subject to

nk∑
j=nk−1+1

eijxj = fi ; i = qk−1 + 1, . . . , qk (2.60)

0 ≤ xj ≤ xup
j ; j = nk−1 + 1, . . . , nk (2.61)

to obtain a solution of the relaxed problem, i.e., x
(p(ν)+1)
1 , . . . , x

(p(ν)+1)
n , and

its objective function value v(ν), i.e.,

v(ν) =
n∑

j=1

(
cj −

m∑
i=1

λ
(ν)
i aij

)
x
(p(ν)+1)
j . (2.62)

The objective function value of the original problem is

z(p(ν)+1) =
n∑

j=1

cjx
(p(ν)+1)
j (2.63)

and the value of every complicating constraint is

r
(p(ν)+1)
i =

n∑
j=1

aijx
(p(ν)+1)
j ; i = 1, . . . , m . (2.64)

Step 3: Convergence checking. If v(ν) ≥ σ(ν), the optimal solution of the
original problem has been achieved. It is computed as

x∗
j =

p(ν)∑
s=1

u(ν)
s x

(s)
j ; j = 1, . . . , n (2.65)

and the algorithm concludes.
Else if v(ν) < σ(ν), the relaxed problem current solution can be used to

improve the solution of the master problem. Update the iteration counter,
ν ← ν + 1, and the number of available solutions of the relaxed problem,
p(ν+1) = p(ν) + 1. Go to Step 1. ��

A GAMS implementation of the Dantzig-Wolfe decomposition algorithm
is given in the Appendix A, p. 397.

Computational Example 2.1 (The Dantzig-Wolfe decomposition).
Consider the problem below

minimize
x1, x2, x3

z = −4x1 − x2 − 6x3

subject to



80 2 Linear Programming: Complicating Constraints

−x1 ≤ −1
x1 ≤ 2

−x2 ≤ −1
x2 ≤ 2

−x3 ≤ −1
x3 ≤ 2

3x1 + 2x2 + 4x3 ≤ 17
x1, x2, x3 ≥ 0 .

Note that this problem has a decomposable structure and one complicating
constraint. Its optimal solution is

x∗
1 = 2, x∗

2 = 3/2, x∗
3 = 2 .

This problem is solved in the following steps using the Dantzig-Wolfe de-
composition algorithm as previously stated in Subsect. 2.4.1.

Step 0: Initialization. The iteration counter is initialized, ν = 1. Two
(p(1) = 2) solutions for the relaxed problem are obtained solving the three
subproblems twice.

First, cost coefficients ĉ
(1)
1 = −1, ĉ

(1)
2 = −1, and ĉ

(1)
3 = −1 are used. The

subproblems for the first solution are

minimize
x1

−x1

subject to
1 ≤ x1 ≤ 2 ,

whose solution is x
(1)
1 = 2, and

minimize
x2

−x2

subject to
1 ≤ x2 ≤ 2 ,

whose solution is x
(1)
2 = 2, and

minimize
x3

−x3

subject to
1 ≤ x3 ≤ 2

whose solution is x
(1)
3 = 2.

The objective function of the relaxed problem is z(1) = −22 and the com-
plicating constraint value is r

(1)
1 = 18.



2.4 The Dantzig-Wolfe Decomposition Algorithm 81

Using cost coefficients ĉ
(2)
1 = 1, ĉ

(2)
2 = 1, and ĉ

(2)
3 = −1, the subproblems

are solved again to derive the second solution for the relaxed problem. This
solution is x

(2)
1 = 1, x

(2)
2 = 1, and x

(2)
3 = 2, leading to an objective function

value z(2) = −17 and a complicating constraint value r
(2)
1 = 13.

Step 1: Master problem solution. The master problem below is solved.

minimize
u1, u2

−22u1 − 17u2

subject to
18u1 + 13u2 ≤ 17 : λ1

u1 + u2 = 1 : σ
u1, u2 ≥ 0 .

Its solution is u
(1)
1 = 4

5 and u
(1)
2 = 1

5 with dual variable values λ
(1)
1 = −1

and σ(1) = −4.

Step 2: Relaxed problem solution. The subproblems are solved below to
obtain a solution for the current relaxed problem.

The objective function of the first subproblem is(
c1 − λ

(1)
1 a11

)
x1 = (−4 + 3)x1 = −x1

and its solution, obtained by inspection, is x
(3)
1 = 2.

The objective function of the second subproblem is(
c2 − λ

(1)
1 a12

)
x2 = (−1 + 2)x2 = x2

and its solution is x
(3)
2 = 1.

Finally, the objective function of the third subproblem is(
c3 − λ

(1)
1 a13

)
x3 = (−6 + 4)x3 = −2x3

and its solution is x
(3)
3 = 2.

For this relaxed problem solution (x(3)
1 = 2, x

(3)
2 = 1, x

(3)
3 = 2), the objec-

tive function value of the original problem is z(3) = −21 and the value of the
complicating constraint r

(3)
1 = 16.

Step 3: Convergence checking. The objective function value of the current
relaxed problem is

v(1) = −x
(3)
1 + x

(3)
2 − 2x

(3)
3 = −5 .

Note that v(1) < σ(1) (−5 < −4) and therefore the current solution of the
relaxed problem can be used to improve the solution of the master problem.



82 2 Linear Programming: Complicating Constraints

The iteration counter is updated, ν = 1 + 1 = 2, and the number of avail-
able solutions of the relaxed problem is also updated, p(2) = 2 + 1 = 3. The
algorithm continues in Step 1.

Step 1: Master problem solution. The master problem below is solved.

minimize
u1, u2, u3

−22u1 − 17u2 − 21u3

subject to
18u1 + 13u2 + 16u3 ≤ 17 : λ1

u1 + u2 + u3 = 1 : σ
u1, u2, u3 ≥ 0 .

Its solution is u
(2)
1 = 1

2 , u
(2)
2 = 0, and u

(2)
3 = 1

2 with dual variable values
λ

(2)
1 = − 1

2 and σ(2) = −13.

Step 2: Relaxed problem solution. The subproblems are solved below to
obtain a solution for the current relaxed problem.

The objective function of the first subproblem is(
c1 − λ

(2)
1 a11

)
x1 = (−4 +

3
2
)x1 = −5

2
x1

that renders x
(4)
1 = 2.

The objective function of the second subproblem is(
c2 − λ

(2)
1 a12

)
x2 = (−1 + 1)x2 = 0

that renders x
(4)
2 = 1.

Finally, the objective function of the third subproblem is(
c3 − λ

(2)
1 a13

)
x3 = (−6 + 2)x3 = −4x3

and its solution is x
(4)
3 = 2.

For this relaxed problem solution (x(4)
1 = 2, x

(4)
2 = 1, x

(4)
3 = 2), the ob-

jective function of the original problem is z(4) = −21 and the value of the
complicating constraint r

(4)
1 = 16.

Step 3: Convergence checking. The objective function value of the current
relaxed problem is

v(2) = −5
2
x

(4)
1 − 4x

(4)
3 = −13 .

Note that v(2) ≥ σ(2) (−13 ≥ −13) and therefore the optimal solution of
the original problem has been attained, i.e.,



2.4 The Dantzig-Wolfe Decomposition Algorithm 83⎛⎝x∗
1

x∗
2

x∗
3

⎞⎠ = u
(2)
1

⎛⎜⎝x
(1)
1

x
(1)
2

x
(1)
3

⎞⎟⎠ + u
(2)
2

⎛⎜⎝x
(2)
1

x
(2)
2

x
(2)
3

⎞⎟⎠ + u
(2)
3

⎛⎜⎝x
(3)
1

x
(3)
2

x
(3)
3

⎞⎟⎠
and ⎛⎝x∗

1

x∗
2

x∗
3

⎞⎠ =
1
2

⎛⎝ 2
2
2

⎞⎠ + 0

⎛⎝ 1
1
2

⎞⎠ +
1
2

⎛⎝ 2
1
2

⎞⎠ =

⎛⎝ 2
3
2
2

⎞⎠ .

��
The following example has been designed to illustrate a geometric inter-

pretation of the Dantzig-Wolfe decomposition technique.

Computational Example 2.2 (The Dantzig-Wolfe algorithm). Con-
sider the problem

minimize
x1, x2

z = 2x1 + x2 (2.66)

subject to
x1 ≤ 5

x2 ≤ 5
x1 + x2 ≤ 9
x1 −x2 ≤ 4

−x1 −x2 ≤ −2
−3x1 −x2 ≤ −3

x1, x2 ≥ 0 ,

(2.67)

where the last four constraints in (2.67) are the complicating constraints.
As shown in Fig. 2.2a, where the original feasible region has been shaded,

and the objective function contours drawn, it is clear that the global solution
of this problem is

z∗ = 2.5, x∗
1 = 0.5, x∗

2 = 1.5 .

Next, we use the Dantzig-Wolfe algorithm, which is illustrated in Table 2.1,
where the solutions of the master problems and subproblems are shown for
each iteration, until convergence.

Step 0: Initialization. As it has been explained, the initialization part of
the algorithm requires a minimum of p(ν) ≥ 1 solutions of the relaxed prob-
lem with arbitrary objective functions, to obtain a set of extreme points of
the relaxed problem. We consider the following two arbitrary optimization
problems:

minimize
x1, x2

z = −x1 − x2

and
minimize

x1, x2

z = −2x1 + x2



84 2 Linear Programming: Complicating Constraints

(a)

1 2 3 4 5

1

2

3

4

5

x1

x2

(0,0)

(5,0)

(0,5) (5,5)

M1

(b)

1 2 3 4 5

1

2

3

4

5

x1

x2

Optimum

(0,0)

(5,0)

(0,5) (5,5)

(d)

1 2 3 4 5

1

2

3

4

5

x1

x2

(0,0)

(5,0)

(0,5) (5,5)

M3

1 2 3 4 5

1

2

3

4

5

x1

x2

(0,0)

(0,5) (5,5)

M2

(5,0)

(c)

-3x1-x2= -3

-x1-x2= -2

x1-x2= 4

x1+x2= 9

z = 2.5 z = 11

z = 3

z = 2.5

z = 15z = 13z = 11z = 9z = 7

Fig. 2.2. Graphical illustration of the Dantzig-Wolfe decomposition algorithm

subject to
x1 ≤ 5

x2 ≤ 5
x1, x2 ≥ 0 ,

whose solutions are the extreme points (5, 5) and (5, 0), respectively. Next,
we evaluate the complicating constraints [the last four constraints in (2.67)],
not including the non-negativity constraints, and the target objective function
(2.66), and obtain the values of r1, r2, r3, r4, and z in Table 2.1 (iteration 0).
This ends the initialization step.

Step 1: Master problem solution. The master problem finds the point
that minimizes the original objective function in the intersection of the set of
linear convex combinations of the extreme points (5, 5) and (5, 0) [this is the



2.4 The Dantzig-Wolfe Decomposition Algorithm 85

Table 2.1. Solutions of the master problem and the subproblems in
Example (option 1)

Iteration Initial solutions for the subproblems

ν x
(ν)
1 x

(ν)
2 r

(ν)
1 r

(ν)
2 r

(ν)
3 r

(ν)
4 z(ν) v(ν)

0–1 5.0 5.0 10.0 0.0 –10.0 –20.0 15.0 –
0–2 5.0 0.0 5.0 5.0 -5.0 –15.0 10.0 –

Solutions for the subproblem

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 5.0 5.0 –5.0 –5.0 –5.0 5.0 –2.5
3 – – – – – – – 0.0

Iteration Master problem solutions

ν u
(ν)
1 u

(ν)
2 u

(ν)
3 u

(ν)
4 λ

(ν)
1 λ

(ν)
2 λ

(ν)
3 λ

(ν)
4 σ(ν) Feasible

1 0.2 0.8 – – 0.0 –1.0 0.0 0.0 15.0 Yes
2 0.2 0.0 0.8 – 0.0 0.0 –1.5 0.0 0.0 Yes
3 0.1 0.0 0.7 0.2 0.0 0.0 –0.5 –0.5 0.0 Yes

segment (5, 5) − (5, 0)], and the original feasible region, i.e., in the segment
(5, 4) − (5, 1) [see Fig. 2.2b]. Since the master problem looks for the optimal
solution in this intersection region, the point denoted by M1 in Fig. 2.2b is
obtained, with associated values of the primal variables, u1 and u2, and the
dual variables λ1, λ2, λ3, λ4, and σ, as shown in Table 2.1 (master problem
iteration 1). Note that only the second complicating constraint is active; this
implies that the only λ-value different from zero is λ2. Similarly, since the
solution of the master problem is on the boundary of the feasible region of
the relaxed problem, the value of σ is different from zero.

Step 2: Relaxed problem solution. The subproblems look for the extreme
point in the relaxed feasible region to be added to the master problem so that
the largest improvement in the objective function value is obtained. We have
two options for selecting the extreme point to be incorporated (see Fig. 2.2c):
(0, 0) and (0, 5). The extreme point (0, 5) would allow us to move to point
P : (0, 5), and the extreme point (0, 0), to the point M2 : (1, 1).

Clearly, the optimum is obtained by adding the point (0, 0), and this is
the point obtained after solving the relaxed problem. Next, the complicating
constraints and the target objective function are evaluated at this point, and
the values of r1, r2, r3, r4, and z are obtained (see subproblem iteration 1 in
Table 2.1)

Step 3: Convergence checking. Since v(1) = 0 < σ(1) = 15, we go to Step 1.



86 2 Linear Programming: Complicating Constraints

Step 1: Master problem solution. Now the intersection of the set of lin-
ear convex combinations of the points in the set {(5, 5), (5, 0), (0, 0)} with the
original feasible region, that is also indicated in Fig. 2.2c, is obtained. From
this, the solution of the master problem can be easily obtained (point M2 in
the figure). The associated values of the primal, u1, u2, and u3, and the dual
variables λ1, λ2, λ3, λ4, and σ, are shown in Table 2.1 (master problem itera-
tion 2). Note that only the third complicating constraint is active; this implies
that the only λ-value different from zero is λ3. Similarly, since the solution of
the master problem is not in the boundary of the feasible region of relaxed
problem, the value of σ is zero.

Step 2: Relaxed problem solution. Then, the subproblem step looks for
the extreme point in the relaxed feasible region to be added, which is the point
(0, 5) because it is the only one remaining. Next, the complicating constraints
and the original objective function are evaluated at this point, and the values
of r1, r2, r3, r4, and z are obtained (see subproblem iteration 2 in Table 2.1).

Step 3: Convergence checking. Since v(2) = −2.5 < σ(2) = 0, we go to
Step 1.

Step 1: Master problem solution. The new relaxed feasible region (gray
and shaded region), becomes the linear convex combination of the points in
the set {(5, 5), (5, 0), (0, 0), (0, 5)}. The intersection of this region with the ini-
tial feasible region is also indicated in the Fig. 2.2d, from which the solution of
the master problem can be easily obtained (point M3 in the figure). The asso-
ciated values for the primal u1, u2, u3, and u4 and dual variables λ1, λ2, λ3, λ4,
and σ, are shown in Table 2.1 (master problem iteration 3). Note that only the
third and the fourth complicating constraints are active; this implies that the
only λ-value different from zero are λ3 and λ4. Similarly, since the solution of
the master problem is not at the boundary of the feasible region of the relaxed
problem, the value of σ is zero.

Step 2: Relaxed problem solution. Since no extreme point can be added,
the algorithm continues in Step 3.

Step 3: Convergence checking. Since ν(3) = 0 ≥ σ(3) = 0, the optimal
solution has been obtained and the algorithm returns the optimal solution
using the following expressions:

z∗ = u
(3)
1 z(0−1) + u

(3)
2 z(0−2) + u

(3)
3 z(1) + u

(3)
4 z(2)

= 0.1 × 15 + 0.0 × 10 + 0.7 × 0 + 0.2 × 5 = 2.5

and



2.4 The Dantzig-Wolfe Decomposition Algorithm 87

(x∗
1, x

∗
2) = u

(3)
1 (x(0−1)

1 , x
(0−1)
2 ) + u

(3)
2 (x(0−2)

1 , x
(0−2)
2 ) + u

(3)
3 (x(1)

1 , x
(1)
2 )

+ u
(3)
4 (x(2)

1 , x
(2)
2 )

= 0.1 × (5, 5) + 0.0 × (5, 0) + 0.7 × (0, 0) + 0.2 × (0, 5)
= (0.5, 1.5) ,

where superscript (0 − ν) indicates initial solution ν. ��

2.4.2 Bounds

An upper and a lower bound of the objective function value that are obtained
as the Dantzig-Wolfe algorithm progresses, are derived below. These bounds
are of interest to stop the solution procedure once a prespecified error tolerance
is satisfied.

The upper bound is readily available once the master problem objective
function value is available. The master problem is, in fact, a restricted version
of the original problem and, therefore, its objective function value is an upper
bound of the optimal objective function value of the original problem. At
iteration ν, the objective function of the master problem is

p(ν)∑
i=1

z(i)u
(ν)
i .

An upper bound of the optimal objective function value of the original
problem is therefore

z(ν)
up =

p(ν)∑
i=1

z(i)u
(ν)
i . (2.68)

A lower bound is easily obtained from the solutions of the subproblems.
The relaxed problem at iteration ν is

minimize
xj ; j = 1, . . . , n

n∑
j=1

(
cj −

m∑
i=1

λ
(ν)
i aij

)
xj (2.69)

subject to
n∑

j=1

eijxj = fi ; i = 1, . . . , q (2.70)

0 ≤ xj ≤ xup
j ; j = 1, . . . , n (2.71)

and its optimal objective function value is v(ν).
Consider a feasible solution xj (j = 1, . . . , n) of the original problem.

Therefore, this solution meets the complicating constraints, i.e.,
n∑

j=1

aijxj = bi; i = 1, . . . , m. (2.72)



88 2 Linear Programming: Complicating Constraints

Since v(ν) is the optimal objective function value of problem (2.69)–(2.71)
above, substituting the arbitrary feasible solution into the objective function
of that problem renders

n∑
j=1

(
cj −

m∑
i=1

λ
(ν)
i aij

)
xj ≥ v(ν) (2.73)

and
n∑

j=1

cjxj ≥ v(ν) +
m∑

i=1

λ
(ν)
i

n∑
j=1

aijxj (2.74)

so that using (2.72) yields

n∑
j=1

cjxj ≥ v(ν) +
m∑

i=1

λ
(ν)
i bi . (2.75)

Due to the fact that xj (j = 1, . . . , n) is an arbitrary feasible solution of
the original problem, the inequality above allows writing

z
(ν)
down = v(ν) +

m∑
i=1

λ
(ν)
i bi , (2.76)

where z
(ν)
down is a lower bound of the optimal objective function value of the

original problem.

2.4.3 Issues Related to the Master Problem

The possible infeasibility of the master problem is considered in this subsection
and an alternative always-feasible master problem is formulated. The price
paid is a larger number of variables and dissimilar cost coefficients in the
objective function.

The selection of p solutions of the relaxed problem are usually motivated by
engineering considerations and it allows us the formulation of a feasible master
problem. However, in some instances, the formulation of a feasible master
problem might not be simple. In such a situation, an always feasible master
problem that includes artificial variables can be formulated. This problem has
the form

minimize
u1, . . . , up; v1, . . . , vm, w

p∑
i=1

z(i)ui + M

⎛⎝ m∑
j=1

vj + w

⎞⎠ (2.77)

subject to



2.4 The Dantzig-Wolfe Decomposition Algorithm 89

p∑
i=1

r
(i)
j ui + vj − w = bj : λj ; j = 1, . . . , m (2.78)

p∑
i=1

ui = 1 : σ (2.79)

ui ≥ 0; i = 1, . . . , p (2.80)
0 ≤ vj ≤ vup

j ; j = 1, . . . , m (2.81)
0 ≤ w ≤ wup , (2.82)

where vj (j = 1, . . . , m) and w are the artificial variables, and vup
j (j =

1, . . . , m) and wup are their respective upper bounds.
Note that the artificial variable makes problem (2.77)–(2.82) always feasi-

ble.
To illustrate how this master problem behaves, and its geometrical inter-

pretation, we include the following example.

Computational Example 2.3 (The Dantzig-Wolfe example revisited).
Consider the same problem as in Example 2.2, but assume that only the first
arbitrary objective function is used in the initialization Step 0.

Step 0: Initialization. Then, we consider the following arbitrary optimiza-
tion problems

minimize
x1, x2

z = −x1 − x2

subject to
x1 ≤ 5

x2 ≤ 5 ,

whose solution is the extreme point (5, 5). Then, we evaluate the complicating
constraints [the last four constraints in (2.67)] and the original objective func-
tion (2.66), and obtain the values of r1, r2, r3, r4, and z in Table 2.2 (iteration
0).

Step 1: Master problem solution. The master problem is infeasible be-
cause the intersection of the region generated by all linear convex combinations
of the point (5, 5) reduces to this point, which is not in the original feasible
region.

In the modified master problem, we obtain feasibility by modifying the
hyperplane boundaries, translating them by the minimum amount required to
attain feasibility. This means that those constraints that lead to feasibility are
kept (vj = w), and those that lead to infeasibility are modified the minimum
amount to get feasibility.

In our example, only the constraint x1 + x2 = 9 is not satisfied by the
point (5, 5), so it is replaced by x1 + x2 = 10, as illustrated in Fig. 2.3a.



90 2 Linear Programming: Complicating Constraints

1 2 3 4 5

1

2

3

4

5

x1

x2

(0,0)

(5,0)

(0,5) (5,5)

M1

(b)
z = 3

1 2 3 4 5

1

2

3

4

5

x1

x2

(0,0)

(0,5) (5,5)

M2

(5,0)

(c)
z = 2.5

(a)

1 2 3 4 5

1

2

3

4

5

x1

x2

Optimum

(0,0)

(5,0)

(0,5) (5,5)

-3x1-x2= -3

-x1-x2= -2

x1-x2= 4

x1+x2= 9

z = 2.5

x1+x2= 10

Fig. 2.3. Graphical illustration of how the feasible region is modified to make the
master problem feasible

Since the master problem looks for the optimal solution in this modified
intersection region, the point (5, 5) is obtained, whose associated values of the
primal, u1, and the dual variables λ1, λ2, λ3, λ4, and σ, are shown in Table 2.2
(master problem iteration 1).

Step 2: Relaxed problem solution. The subproblems look for the extreme
point in the relaxed feasible region to be added to the master problem so that
the largest improvement in the objective function value is obtained. We have
three options for selecting the extreme point to be incorporated (see Fig. 2.3b):
(0, 0), (0, 5), and (5, 0). The extreme point (0, 5) would allow us to move to



2.4 The Dantzig-Wolfe Decomposition Algorithm 91

point P : (0, 5), the extreme point (0, 0), to the point M1 : (1, 1), and the
extreme point (5, 0), to the point (5, 1).

Clearly, the optimum is obtained by adding the point (0, 0), and this is
the point obtained after solving the relaxed problem. Next, the complicating
constraints and the original objective function are evaluated at this point, and
the values of r1, r2, r3, r4, and z are obtained (see subproblem iteration 1 in
Table 2.2).

Step 3: Convergence checking. Since v(1) = 0 < σ(1) = 215, the procedure
continues in Step 1.

Step 1: Master problem solution. Now the intersection of the set of
linear convex combinations of the points in the set {(5, 5), (0, 0)} with the
target feasible region that is the segment (1, 1)–(4.5, 4.5), is obtained. From
it, the solution of the master problem can be easily obtained (point M1 in
Fig. 2.3b). The associated values of the primal, u1 and u2, and the dual vari-
ables λ1, λ2, λ3, λ4, and σ, are shown in Table 2.2 (master problem iteration 2).

Step 2: Relaxed problem solution. Next, the subproblem step looks for
the extreme point in the relaxed feasible region to be added. We have two
options for selecting the extreme point to be incorporated (see Fig. 2.3c):
(0, 5) and (5, 0). The extreme point (0, 5) would allow us to move to point
M2 : (0.5, 1.5), and the extreme point (5, 0) would not allow us further im-
provement. So, we add the point (0, 5). Next, the complicating constraints
and the original objective function are evaluated at this point, and the values
of r1, r2, r3, r4, and z are obtained (see subproblem iteration 2 in Table 2.2).

Step 3: Convergence checking. Since v(2) = −2.5 < σ(2) = 0, the algo-
rithm continues in Step 1.

Step 1: Master problem solution. The new relaxed feasible region (gray
and shaded region), becomes the linear convex combination of the points in
the set {(5, 5), (0, 0), (0, 5)}. The intersection of this region with the initial
feasible region is also indicated in the Fig. 2.3c, from which the solution of
the master problem can be easily obtained (point M2 in Fig. 2.3c). The as-
sociated values for the primal u1, u2, and u3 and dual variables λ1, λ2, λ3, λ4,
and σ, are shown in Table 2.2 (master problem iteration 3).

Step 2: Relaxed problem solution. Since no extreme point can be added,
the algorithm continues in Step 3.

Step 3: Convergence checking. Since v(3) = 0 ≥ σ(3) = 0, the optimal
solution has been obtained and the algorithm returns the optimal solution
using the following expressions:



92 2 Linear Programming: Complicating Constraints

Table 2.2. Solutions of the master problems and subproblems in Example 2.3

Iteration Bounds Initial solutions for the subproblems

l Lower Upper x
(ν)
1 x

(ν)
2 r

(ν)
1 r

(ν)
2 r

(ν)
3 r

(ν)
4 z(ν) v(ν)

0 −∞ ∞ 5.0 5.0 10.0 0.0 −10.0 −20.0 15.0 −
Solutions for the subproblem

1 −180.0 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.50 3.00 0.0 5.0 5.0 −5.0 −5.0 −5.0 5.0 −2.5
3 2.50 2.50 – – – – – – – 0.0

Iteration Bounds Master solutions

ν Lower Upper u
(ν)
1 u

(ν)
2 u

(ν)
3 λ

(ν)
1 λ

(ν)
2 λ

(ν)
3 λ

(ν)
4 σ(ν) Feasible

1 −∞ 35.0 1.0 – – −20.0 0.0 0.0 0.0 215 No
2 −180.0 3.00 0.2 0.8 – 0.0 0.0 −1.5 0.0 0.0 Yes
3 0.50 2.50 0.1 0.7 0.2 0.0 0.0 −0.5 −0.5 0.0 Yes

z∗ = u
(3)
1 z(0) + u

(3)
2 z(1) + u

(3)
3 z(2) = 0.1 × 15 + 0.7 × 0 + 0.2 × 5 = 2.5

and

(x∗
1, x

∗
2) = u

(3)
1 (x(0)

1 , x
(0)
2 ) + u

(3)
2 (x(1)

1 , x
(1)
2 ) + u

(3)
3 (x(2)

1 , x
(2)
2 )

= 0.1 × (5, 5) + 0.7 × (0, 0) + 0.2 × (0, 5) = (0.5, 1.5) .

Using expressions (2.68)–(2.76) lower and upper bounds on the solution
of Example 2.3 are computed and plotted in Fig. 2.4. Observe how bounds
approach each other until the optimal solution is attained. ��

zup

zdown

iteration

z

2 3 4
-200

-150

-100

-50

50

0

Fig. 2.4. Evolution of the upper and lower bounds of the objective function in
Example 2.3



2.4 The Dantzig-Wolfe Decomposition Algorithm 93

To comprehend the Dantzig-Wolfe decomposition, we encourage the reader
to determine the solutions of the master and subproblems corresponding to
the following cases:

1. The initialization step leads to the extreme point: (5, 0).
2. The initialization step leads to the extreme point: (0, 5).
3. The initialization step leads to the extreme point: (0, 0).
4. The initialization step leads to the extreme points: (5, 0) and (0, 5).

2.4.4 Alternative Formulation of the Master Problem

In some practical applications, it is convenient to formulate the master prob-
lem (2.29)–(2.32) in the alternative format stated below.

minimize
uij ; i = 1, . . . , p; j = 1, . . . , r

p∑
i=1

r∑
j=1

z(ij)uij (2.83)

subject to
p∑

i=1

r∑
j=1

r
(�)
ij uij = b(�) : λ(�) ; 
 = 1, . . . , m (2.84)

p∑
i=1

uij = 1 : σj ; j = 1, . . . , r (2.85)

uij ≥ 0 ; i = 1, . . . , p; j = 1, . . . , r , (2.86)

where z(ij) is the objective function value for the solution i of the subproblem
j and r

(�)
ij is the contribution to the right-hand-side values of the complicating

constraint 
 of the solution i of the subproblem j. In Fig. 2.5 a graphical
comparison between the master problem formulation presented in this section
and the one presented in Sect. 2.4.3 is shown.

Note that the above formulation relies on the fact that a convex combi-
nation of any number of basic feasible solutions of any subproblem is a fea-
sible solution of this subproblem. Note also that u1j , . . . , upj are the convex
combination variables corresponding to subproblem j (j = 1, . . . , r). The r
constraints (2.85) in the problem above are equivalent to the single constraint
(2.31) in the original formulation of the master problem.

The following observations are in order:

1. Any solution of problem (2.83)–(2.86) is a convex linear combination of
basic feasible solutions of the subproblems and therefore of the relaxed
problem; thus, it is itself a basic feasible solution of the relaxed problem.

2. Complicating constraints are enforced; therefore, the solution of the above
problem is a basic feasible solution for the original (nonrelaxed) problem.

A valuable geometrical interpretation associated with this alternative ap-
proach is illustrated in the example below.



94 2 Linear Programming: Complicating Constraints

... ...

(11)z ; u11
(12)z ; u12

(1j)z ; u1j... ...

(1r)z ; u1r

... ...

(i1)z ; ui1
(i2)z ; ui2

(ij)z ; uij... ...

(ir)z ; uir

... ...

(p1)z ; up1
(p2)z ; up2

(pj)z ; upj... ...

(pr)z ; upr

...

Subproblem
 solution 1

Subproblem
 solution i

Subproblem
solution p

Alternative
constraints

Single constraint

...

u1 + ... + ui + ... + up = 1

z(1) (1j)= Σ z
j =1

r
; u1

z(i) (ij)= Σ z
j =1

r
; ui

z(p) (pj)= Σ z
j =1

r
; up

...

...
...

...
...

u11 + ... + ui1+ ... + up1= 1

u1j + ... + uij + ... + upj = 1

u1r + ... + uir+ ... + upr= 1

Fig. 2.5. Relationship of the two alternative master problem formulations

Computational Example 2.4 (Alternative master problem). Consider
the problem

minimize
x1, x2, x3

z = x1 + x2 + x3 (2.87)

subject to
x1 ≤ 5

x2 ≤ 5
1/2x1 −x2 ≤ −1/2

x3 ≤ 4
−x1 + x2 + x3 ≤ 0

x1, x2, x3 ≥ 0 .

(2.88)

Note that this problem has a decomposable structure in two blocks and
one complicating constraint. Its optimal solution is

z∗ = 2, x∗
1 = 1, x∗

2 = 1, x∗
3 = 0 .

Figure 2.6 illustrates the feasibility region of problem (2.87)–(2.88), where
Fig. 2.6a represents the feasible region of that problem not considering the
single complicating constraint (relaxed problem), Fig. 2.6b shows the feasible



2.4 The Dantzig-Wolfe Decomposition Algorithm 95

(c)

x1 x2

x3

2

4

3

5

1

1

2

2

1

3

3

4

4

5

5

z = 5

z = 4

z = 3

z = 2

z = 1

Global feasible
region

Optimal
solution

(a)

x1/2-x2= -1/2

x1 x2

x3

Feasible region in
the hyperplane (x1-x2)

Feasible
region in

the axis x3

Feasible region of
the relaxed problem

Possible solutions of
the relaxed problem

(b)

x1

x2

x3

Feasible region
defined by the

complicating constraint

-x1+x2+x3= 0

Fig. 2.6. Graphical illustration of the feasibility region of the Computational Ex-
ample 2.4

region defined by the complicating constraint, and Fig. 2.6c shows the feasible
region of the original problem, and the objective function contours.

The problem above is solved using the Dantzig-Wolfe algorithm and the
two alternative master problem definitions.

Step 0: Initialization. Consider the objective function

z = 5x1 + 2x2 − x3,

to obtain an initial feasible solution of the relaxed problem for both decompo-
sition algorithms. This solution, represented in Fig. 2.7, is S1 = (0, 0.5, 4). The
complicating constraint [last constraint in (2.88)] and the objective function
(2.87), are then evaluated to obtain r(0) and z(0) that are shown in Table 2.3
and r

(0)
1 , r

(0)
2 , z

(0)
1 , and z

(0)
2 that are shown in Table 2.4.

Step 1: Master problem solutions. The master problems are solved ob-
taining the solution M1 = (0, 0.5, 4) shown in Fig. 2.7. Values for the primal
variables u

(1)
1 , u

(1)
11 , u

(1)
12 and the dual variables λ(1), σ(1), σ

(1)
1 , σ

(1)
2 are shown

in Tables 2.3 and 2.4, respectively.



96 2 Linear Programming: Complicating Constraints

x1 x2

x3

2

4

3

5

1

1

2

2

1

3

3

4

4

5

5

S1=M1= (0, 0.5, 4)

S2= (5, 3, 0)

M2= (1, 1, 0)
Optimal
solution

(b)

S1

S2

M2 u21
(2)=0.2

u11
(2)=0.8

u22
(2)=1.0

u12
(2)=0.0

x1 x2

x3

2

4

3

5

1

1

2

2

1

3

3

4

4

5

5

S1=M1= (0, 0.5, 4)

S2= (5, 3, 0)

M2= (3.45, 2.23, 1.24)

S3= (0, 0.5, 0)

M3= (1, 1, 0)
Optimal
solution

(a)

S1

S2

M2

u2
(2)=0.69

u1
(2)=0.31

Fig. 2.7. Graphical illustration of the functioning of the two alternative algorithms
used in Computational Example 2.4



2.4 The Dantzig-Wolfe Decomposition Algorithm 97

Table 2.3. Solutions of the master problem and the subproblems in Computational
Example 2.4 using the first master problem formulation

Iteration Bounds Initial solutions for the subproblem

ν Lower Upper x
(ν)
1 x

(ν)
2 x

(ν)
3 r(ν) z(ν)

0 −1.0E+8 1.0E+8 0.0 0.5 4.0 4.5 4.5

Solutions for the subproblem

1 −32.00 94.50 5.0 3.0 0.0 −2.0 8.0
2 0.77 6.92 0.0 0.5 0.0 0.5 0.5
3 2.00 2.00 – – – – –

Master solutions
Iteration

ν u
(ν)
1 u

(ν)
2 u

(ν)
3 λ(ν) σ(ν) Feasible

1 1.0 0.0 0.0 −20.0 94.5 No
2 0.31 0.69 0.0 −0.54 6.92 Yes
3 0.0 0.2 0.8 −3.0 2.0 Yes

Table 2.4. Solutions of the master problem and the subproblems in Computational
Example 2.4 using the alternative master problem formulation

Iteration Bounds Initial solutions for the subproblem

ν Lower Upper x
(ν)
1 x

(ν)
2 x

(ν)
3 r

(ν)
1 r

(ν)
2 r(ν) z

(ν)
1 z

(ν)
2 z(ν)

0 −1.0E+8 1.0E+8 0.0 0.5 4.0 0.5 4.0 4.5 0.5 4.0 4.5

Solutions for the subproblem
1 −32.00 94.50 5.0 3.0 0.0 −2.0 0.0 −2.0 8.0 0.0 8.0
2 2.00 2.00 – – – – – – – –

Iteration Master solutions

ν u
(ν)
11 u

(ν)
12 u

(ν)
21 u

(ν)
22 λ(ν) σ

(ν)
1 σ

(ν)
2 σ(ν) Feasible

1 1.0 1.0 0.0 0.0 –20.0 10.5 84.0 94.5 No
2 0.8 0.0 0.2 1.0 –3.0 2.0 0.0 2.0 Yes

Step 2: Relaxed problem solution. The objective of the subproblems is
to attain the most convenient solution inside the relaxed feasible region to be
added to the master problem. This results in solution S2 = (5, 3, 0) shown
in Fig. 2.7. The complicating constraint and the objective function are then
evaluated to obtain r(1) and z(1) that are shown in Table 2.3 and r

(1)
1 , r

(1)
2 , z

(1)
1 ,

and z
(1)
2 that are shown in Table 2.4.



98 2 Linear Programming: Complicating Constraints

Step 3: Convergence checking. Since

v(1) = z(1) = 8 < σ(1) = 94.5

and
v(1) = z

(1)
1 + z

(1)
2 = 8 < σ

(1)
1 + σ

(1)
2 = 94.5 ,

the current solution of the relaxed problem can be used to improve the solu-
tion of the master problem.

Step 1: Master problem solutions. Up to this point, both decomposition
algorithms work identically, as shown in Fig. 2.7. In this step, they follow
different paths.

• The master problem (2.77)–(2.82) is solved finding the solution M2, shown
in Fig. 2.7a. This solution minimizes the original objective function in the
intersection of (i) the set of linear convex combinations of solutions S1 and
S2, and (ii) the original feasible region. The values of the primal variables
u

(2)
1 , u

(2)
2 and dual variables λ(2), and σ(2) are shown in Table 2.3.

M2 = u
(2)
1 S1 + u

(2)
2 S2 = 0.31

⎛⎝ 0
0.5
4

⎞⎠ + 0.69

⎛⎝ 5
3
0

⎞⎠ =

⎛⎝ 3.45
2.23
1.24

⎞⎠ .

• The alternative master problem (2.83)–(2.86) is solved finding the solution
M2 shown in Fig. 2.7b. Note that this solution minimizes the original objec-
tive function in the intersection of (i) the set of linear convex combinations
decomposed by blocks of the solutions S1 and S2, and (ii) the global feasi-
ble region. The associated values of the primal variables u

(2)
11 , u

(2)
12 , u

(2)
21 , u

(2)
22

and dual variables λ(2), σ
(2)
1 , and σ

(2)
2 are shown in Table 2.4.

(
x1

x2

)
= u

(2)
11

(
x1

x2

)
S1

+ u
(2)
21

(
x1

x2

)
S2

= 0.8
(

0
0.5

)
+ 0.2

(
5
3

)
=

(
1
1

)

(x3) = u
(2)
12 (x3)S1

+ u
(2)
22 (x3)S2

= 0.0 (4) + 1.0 (0) = (0)

M2 =

⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝1
1
0

⎞⎠ .



2.5 Concluding Remarks 99

Step 2: Relaxed problem solution. The subproblem to be solved is the
same for both decomposition approaches. Its target is to find the most con-
venient solution inside the relaxed feasible region to be added to the master
problem. This solution is S3 = (0, 0.5, 0) shown in Fig. 2.7. The complicating
constraint and the target objective function are then evaluated to obtain r(1)

and z(1), which are shown in Table 2.3.

Step 3: Convergence checking. Note that this step is different for both
decompositions algorithms.

• As
v(2) = z(2) = 0.5 < σ(2) = 6.92 ,

the current solution of the relaxed problem can be used to improve the
solution of the master problem in the first approach.

• Since
v(2) = z

(1)
1 + z

(1)
2 = σ

(2)
1 + σ

(2)
2 = 2 ,

the optimal solution has been obtained using the second alternative. This
optimal solution is M2, shown in Fig. 2.7b. Therefore, this algorithm con-
cludes.

Step 1: Master problem solution. The master problem solution using the
first approach is M3 = (1, 1, 0), shown in Fig. 2.7a. The values of the primal
variables u

(3)
1 , u

(3)
2 , u

(3)
3 and the dual variables λ(3), and σ(3) are shown in Table

2.3. Note that these values are optimal. Therefore the algorithm concludes.
��

Concerning the alternative formulation (2.83)–(2.86) of the master prob-
lem, the following observations are in order:

1. Convex combination of basic feasible solutions of any subproblem are
treated independently from other subproblems. This may provide the mas-
ter problem with more flexibility to attain the optimal solution of the
original problem.

2. Despite of a larger number of variables in the master problem, it has been
observed in practical applications (see [9]) that this alternative master
problem performs usually better than the initial one.

2.5 Concluding Remarks

This chapter analyzes linear problems that include complicating constraints.
If these constraints are relaxed, the original problem decomposes by blocks
or attains such a structure that its solution is straightforward. This circum-
stance occurs often in engineering and science problems. The Dantzig-Wolfe
decomposition algorithm is motivated, derived, and illustrated in this chapter.
Alternative formulations of the master problem are considered, and bounds



100 2 Linear Programming: Complicating Constraints

on the optimal value of the objective function are provided. Diverse geomet-
rical interpretations enrich the algebra-oriented algorithms and quite a few
illustrative examples are analyzed in detail.

The decomposition technique analyzed in this chapter to solve the orig-
inal linear problem is the so-called Dantzig-Wolfe decomposition procedure.
This decomposition is also analyzed in the excellent references by Bazaraa et
al.[5], Chvatal [22], and Luenberger [23], in the application-oriented manual
by Bradley et al. [1], and in the historical book by Dantzig [2].

2.6 Exercises

Exercise 2.1. The problem faced by a multinational company that manu-
factures one product in different countries is analyzed in Sect. 1.3.1, p. 8.
This problem is formulated as a linear programming problem that includes
complicating constraints.

Solve the numerical example presented in that section using Dantzig-Wolfe
decomposition. Analyze the numerical behavior of the decomposition algo-
rithm and show that the result obtained are identical to those provided in
Sect. 1.3.1.

Exercise 2.2. Given the problem

minimize
x1, x2, x3, x4

z = −2x1 − x2 − x3 + x4

subject to
x1 + 2x2 ≤ 5

−x3 + x4 ≤ 2
2x3 + x4 ≤ 6

x1 + x3 ≤ 2
x1 + x2 + 2x4 ≤ 3

x1, x2, x3, x4 ≥ 0 .

1. Check that the following vector (x1, x2, x3, x4) is a solution:

x1 = 1, x2 = 2, x3 = 1, x4 = 0, z = −5.

2. Using the Dantzig-Wolfe decomposition algorithm and by minimizing the
objective functions,

z1 = −x1 −x2 + x4

z2 = x1 + x2 −x3

z3 = x1 −x3 + x4

z4 = 2x1 + x2 +3x4 ,

obtain the two different feasible solutions (x1, x2, x3, x4) of the relaxed
problem and the associated values of ri and z, shown in Table 2.5.



2.6 Exercises 101

Table 2.5. Initial solutions for the subproblems and new added solutions using the
Dantzig-Wolfe decomposition algorithm for Exercise 2.2

Bounds Initial solutions for the subproblems
Iteration

ν Lower Upper x
(ν)
1 x

(ν)
2 x

(ν)
3 x

(ν)
4 r

(ν)
1 r

(ν)
2 z(ν)

0–1 −∞ ∞ 5.00 0.00 0.00 0.00 5.00 5.00 −10.00
0–2 −∞ ∞ 0.00 0.00 3.00 0.00 3.00 0.00 −3.00

Subproblem solutions

1 −42.50 17.00 0.00 2.50 0.00 0.00 0.00 2.50 −2.50
2 −5.00 −5.00 – – – – – – –

Bounds Master solutions
Iteration

ν Lower Upper u
(ν)
1 u

(ν)
2 u

(ν)
3 λ

(ν)
1 λ

(ν)
2 σ(ν) Feasible

1 −∞ 17.00 0.00 1.00 0.00 −20.00 0.00 57.00 No
2 −42.50 −5.00 0.30 0.10 0.50 −1.00 −1.00 0.00 Yes

3. Show that using the Dantzig-Wolfe decomposition algorithm the following
solution is obtained

x1 = 1.6, x2 = 1.4, x3 = 0.4, x4 = 0, z = −5 .

4. Compare and discuss the resulting solution and that given in item 1 above.

Exercise 2.3. David builds electrical cable using 2 type of alloys, A and
B. Alloy A contains 80% of copper and 20% of aluminum, whereas alloy B
contains 68% of copper and 32% of aluminum. Costs of alloys A and B are
$80 and $60, respectively. In order to produce 1 unit of cable and ensuring
that the cable manufactured does not contain more that 25% of aluminum,
which are the quantities of alloys A and B that David should use to minimize
his manufacturing cost?

Consider the constraint limiting the amount of aluminum a complicating
constraint and solve the problem using Dantzig-Wolfe decomposition.

Exercise 2.4. Given the problem

minimize
x1, x2, . . . , x10

z = −4x1 − x4 − 6x7

subject to



102 2 Linear Programming: Complicating Constraints

x1 −x2 = 1
x1 + x3 = 2

x4 −x5 = 1
x4 + x6 = 2

x7 −x8 = 1
x7 + x9 = 2

3x1 + 2x4 + 4x7 + x10 = 17
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 ≥ 0 .

Show, using the Dantzig-Wolfe decomposition algorithm, that its solution
is

x1 = 2, x2 = 1, x3 = 0, x4 = 1.5, x5 = 0.5,

x6 = 0.5, x7 = 2, x8 = 1, x9 = 0, x10 = 0, z = −21.5 .

Exercise 2.5. The multireservoir hydroelectric operating planning problem
stated in Sect. 1.3.3, p. 19, of Chap. 1 is linear and includes complicating
constraints.

Solve the numerical example described in Sect. 1.3.3 using Dantzig-Wolfe
decomposition and compare the results obtained with those provided in that
section.

Exercise 2.6. Given the problem

minimize
x1, x2, x3, x4

z = −2x1 − x2 − x3 + x4

subject to
x1 −x2 ≤ 0
x1 + 2x2 ≤ 3

−x3 + x4 ≤ 0
3x3 + x4 ≤ 4

x1 + x3 ≤ 2
x1 + 4x2 + 2x4 ≤ 7

x1, x2, x3, x4 ≥ 0 ,

show, using the Dantzig-Wolfe decomposition algorithm, that its solution is

x1 = 1, x2 = 1, x3 = 1, x4 = 0, z = −4 .

Exercise 2.7. Consider the hydroelectric river system depicted in Fig. 2.8.
The system should be operated so that the demand for electricity is served
in every time period of the planning horizon in such a way that total cost is
minimum. Data is provided in the Tables 2.6, 2.7, and 2.8. The conversion
factor is used to convert water discharge volume to energy.

Solve this multiperiod operation planning problem using the Dantzig-
Wolfe decomposition so that the problem decomposes by reservoir.



2.6 Exercises 103

A1

A2

A3

A4B1

B2

B3

B4

u1

u2

u3

u4

x1

x2

x3

Fig. 2.8. Hydroelectric river system for Exercise 2.7

Table 2.6. Hydroelectric plant data for Exercise 2.7

Hydro plant data

Unit 1 2 3 4
Initial Volume (hm3) 104 205 55 0
Maximum Volume (hm3) 1,000 1,000 1,000 0
Minimum Volume (hm3) 0 0 0 0
Maximum Discharge (hm3/h) 30 30 30 80
Minimum Discharge (hm3/h) 0 0 0 0
Cost ($) 20 10 5 0

Conversion Factor (MWh/hm3) 10 10 10 10

Table 2.7. Inflow to reservoirs for Exercise 2.7

Inflow to reservoirs (hm3)
Reservoir 1 2 3 4

Period 1 35 25 20 10
Period 2 36 26 21 9
Period 3 37 27 22 8
Period 4 36 26 21 7
Period 5 35 25 20 6

Table 2.8. Demand data for Exercise 2.7

Demand data

Hour 1 2 3 4 5
Demand (MWh) 1,000 1,200 1,300 1,400 1,200



104 2 Linear Programming: Complicating Constraints

Exercise 2.8. The stochastic programming linear problem formulated in Sect.
1.3.2, p. 12, consists in determining the production policy of a hydroelectric
system under water inflow uncertainty. The target is to achieve maximum
expected benefit from selling energy. This problem includes complicating con-
straints and therefore can be conveniently solved using the Dantzig-Wolfe
decomposition.

Use the Dantzig-Wolfe decomposition to solve the hydro scheduling nu-
merical example stated in Sect. 1.3.2, and compare the results obtained with
those stated in that section.

Exercise 2.9. Electric Power Alpha serves a system including four nodes and
four lines. The generating nodes are 1 and 2 and the consumption nodes 3
and 4. Similarly, electric Power Beta serves other system that also includes
four nodes and four lines. Nodes 5 and 6 are generating nodes and nodes
7 and 8 are demand nodes. Both companies have agreed in interconnecting
their system to minimize cost and to improve security. The interconnection
line connects nodes 4 and 8.

1. Compute the saving resulting from using the interconnection. To do this,
solve the operation problem of the interconnected system, and compare its
optimal solution with the optimal solutions obtained if the two systems are
operated independently and without taking into account the interconnec-
tion.

2. Solve the operation problem of the interconnected system using the Dantzig-
Wolfe decomposition.

3. Give an economic interpretation of the coordinating parameters of the
decomposition.

Electric Power Alpha data are provided in the Tables 2.9 and 2.10. Electric
Power Beta data are given in the Tables 2.11 and 2.12. Interconnection line
data are provided in the Table 2.13.

Note that equations describing how electricity is transmitted through a
transmission line are explained in Sect. 1.5.2, p. 42.

Table 2.9. Line data for system served by Electric Power Alpha

From/to Conductance Susceptance Maximum capacity (MW)

1–2 −0.0064 0.4000 0.3
1–3 −0.0016 0.2857 0.5
2–4 −0.0033 0.3333 0.4
3–4 −0.0016 0.2500 0.6



2.6 Exercises 105

Table 2.10. Node data system served by Electric Power Alpha

Node Generating cost ($/MWh) Demand (MW)

1 6 0.00
2 7 0.00
3 0 0.35
4 0 0.45

Table 2.11. Line data system served by Electric Power Beta

From/to Conductance Susceptance Maximum capacity (MW)

5–6 −0.0056 0.3845 0.3
5–7 −0.0021 0.2878 0.5
6–8 −0.0033 0.3225 0.8
7–8 −0.0014 0.2439 0.6

Table 2.12. Node data system served by Electric Power Beta

Node Generating cost ($/MWh) Demand (MW)

5 8 0.00
6 9 0.00
7 0 0.35
8 0 0.45

Table 2.13. Interconnection line data

From/to Conductance Susceptance Maximum Capacity (MW)

4–8 −0.0033 0.3333 0.6

Exercise 2.10. To supply the energy demand depicted in Fig. 2.9, five pro-
duction devices are available. Their respective production costs ($/MWh) and
powers (MW) are 1, 2, 3, 4, 5 and 1, 2, 3, 3, 5. Knowing that the joint pro-
duction of devices 1 and 3 should be below 3 and that the joint production
devices 4 and 5 should be above 4, find the optimal schedule of the produc-
tion devices. In order to do so, analyze first the structure of the problem and
then solve it using the Dantzig-Wolfe decomposition procedure. Provide an
economical interpretation of the equivalent costs of the subproblems.

Exercise 2.11. The multi-year energy model studied in Sect. 1.3.4, p. 23,
is a large-scale linear programming problem that includes complicating con-
straints. These complicating constraints are few while the noncomplicating
ones are many. If the complicating constraints are ignored, the resulting prob-
lem attains polymatroid structure and its solution is straightforwardly ob-
tained using a greedy algorithm.



106 2 Linear Programming: Complicating Constraints

Time

Power

7

1

1

2

3

4

5

6

8

9

10

Energy

0.5

Fig. 2.9. Energy demand for Exercise 2.10

Use the Dantzig-Wolfe decomposition technique to solve the numerical ex-
ample stated in Sect. 1.3.4, solving subproblems through a greedy algorithm.
Analyze the numerical behavior of the Dantzig-Wolfe algorithm for this par-
ticular problem.

Exercise 2.12. A transnational plane maker manufactures engines centrally
but fuselages locally in three different locations where planes are built and
sold. In the first location available labor time and fuselage material are re-
spectively 100 and 55. In the second location 120 and 40, and in the third are
60 and 60.

The manufacture of a plane requires 10 labor units and 15 fuselage material
unit plus one engine.

1. Write an optimization problem to determine the maximum number of
planes that can be manufactured.

2. Consider the number of planes a real variable and solve the problem using
the Dantzig-Wolfe decomposition algorithm.

3. How to solve this problem if the number of planes is considered an integer
variable?



3

Decomposition in Linear Programming:
Complicating Variables

3.1 Introduction

In this chapter we address linear programming problems with complicating
variables. In a linear programming problem, the complicating variables are
those variables preventing a solution of the problem by blocks, i.e., a straight-
forward solution of the problem.

The following example illustrates the way complicating variables make it
impossible a distributed solution of a linear programming problem.

Illustrative Example 3.1 (Complicating variables that prevent a dis-
tributed solution). Consider the problem

maximize
α1, α2, β1, γ1, γ2, λ1

e1α1 + e2α2 + f1β1 + g1γ1 + g2γ2 + h1λ1

subject to

a11α1 + a12α2 + d11λ1 ≤ a1

a21α1 + a22α2 + d21λ1 ≤ a2

a31α1 + a32α2 + d31λ1 ≤ a3

b11β1 + d41λ1 ≤ b1

b21β1 + d51λ1 ≤ b2

c11γ1 + c12γ2 + d61λ1 ≤ c1

c21γ1 + c22γ2 + d71λ1 ≤ c2

c31γ1 + c32γ2 + d81λ1 ≤ c3 .

If variable λ1 is given the fixed value λfixed
1 , the problem decomposes into

the three subproblems:

Subproblem 1:

maximize
α1, α2

e1α1 + e2α2



108 3 Linear Programming: Complicating Variables

subject to
a11α1 + a12α2 ≤ a1 − d11λ

fixed
1

a21α1 + a22α2 ≤ a2 − d21λ
fixed
1

a31α1 + a32α2 ≤ a3 − d31λ
fixed
1 .

Subproblem 2:

maximize
β1

f1β1

subject to
b11β1 ≤ b1 − d41λ

fixed
1

b21β1 ≤ b2 − d51λ
fixed
1 .

Subproblem 3:
maximize

γ1, γ2

g1γ1 + g2γ2

subject to
c11γ1 + c12γ2 ≤ c1 − d61λ

fixed
1

c21γ1 + c22γ2 ≤ c2 − d71λ
fixed
1

c31γ1 + c32γ2 ≤ c3 − d81λ
fixed
1 .

��
The example below illustrates how complicating variables prevent a

straightforward solution of a linear programming problem.

Illustrative Example 3.2 (Complicating variables preventing a
straightforward solution). Consider the problem

maximize
α1, α2, α3, β1

b1α1 + b2α2 + b3α3 + b4β1

subject to

a11α1 + a14β1 ≤ c1

a22α2 + a24β1 ≤ c2

a34β1 ≤ c3

a44β1 ≤ c4

a54β1 ≤ c5

a64β1 ≤ c6

a71α1 + a72α2 + a73α3 + a74β1 ≤ c7 ,

where
b1, b2, b3, b4 > 0 .



3.1 Introduction 109

If variable β1 is fixed to the value βfixed
1 , the problem above has a straight-

forward solution. Note that the selection of the fixed value of β1 should meet
the constraints below

βfixed
1 ≤ c3

a34
, βfixed

1 ≤ c4

a44
, βfixed

1 ≤ c5

a54
, βfixed

1 ≤ c6

a64
.

The trivial solution is computed below. Variable α1 is computed first.

α1 ≤ c1

a11
− a14

a11
βfixed

1

and since b1 > 0,
α1 =

c1

a11
− a14

a11
βfixed

1 .

Then, variable α2 is computed as

α2 ≤ c2

a22
− a24

a22
βfixed

1

and since b2 > 0,
α2 =

c2

a22
− a24

a22
βfixed

1 .

Finally, once α1 and α2 are known, α3 is computed from

α3 ≤ c7

a73
− a74

a73
βfixed

1 − a71

a73
α1 − a72

a73
α2

and since b3 > 0, the above inequality becomes binding, and

α3 =
c7

a73
− a74

a73
βfixed

1 − a71

a73
α1 − a72

a73
α2 .

��
These examples and those analyzed in the preceding chapter suggest the

following theorem.

Theorem 3.1 (Primal and dual decomposability). If a linear program-
ming problem has a decomposable structure with complicating constraints, its
dual linear programming problem has a decomposable structure with compli-
cating variables. And conversely, if a linear programming problem has a de-
composable structure with complicating variables, its dual linear programming
problem has a decomposable structure with complicating constraints. ��
Proof. The proof of Theorem 3.1 follows in a straightforward manner from
the definition of the dual problem of a linear programming problem. ��



110 3 Linear Programming: Complicating Variables

3.2 Complicating Variables: Problem Structure

Consider the initial problem

minimize
x1, . . . , xn; y1, . . . , ym

n∑
i=1

ci xi +
m∑

j=1

dj yj (3.1)

subject to

n∑
i=1

a�i xi +
m∑

j=1

e�j yj ≤ b(�); 
 = 1, . . . , q (3.2)

0 ≤ xi ≤ xup
i ; i = 1, . . . , n (3.3)

0 ≤ yj ≤ yup
j ; j = 1, . . . , m , (3.4)

where xi (i = 1, . . . , n) are the complicating variables.
Complicating variables make the solution of problem (3.1)–(3.4) difficult.

If they are fixed to given values, problem (3.1)–(3.4) becomes substantially
simpler. This is so because either it decomposes in subproblems or it attains
such a structure that its solution is straightforward.

A problem with complicating variables can be transformed, using the dual
problem, into a problem with complicating constraints. The example below
illustrates how the dual approach can be used.

Illustrative Example 3.3 (Complicating variables: Dual problem).
The problem

maximize
y1, y2, y3, y4, y5, x1

4y1 + 3y2 + 2y3 + 3y4 + 2y5 + 3x1

subject to

y1 + 2y2 + 2x1 ≤ 3
2y1 + y2 + x1 ≤ 3

−2y1 + 3y2 + x1 ≤ 7
y3 + 3x1 ≤ 4

2y3 −x1 ≤ 3
y4 ≤ 1

2y4 + 4y5 + 3x1 ≤ 5
3y4 + y5 −x1 ≤ 4

has a decomposable structure and the complicating variable is x1.
Its dual problem is

minimize
u1, u2, . . . , u8

3u1 + 3u2 + 7u3 + 4u4 + 3u5 + u6 + 5u7 + 4u8



3.3 Benders Decomposition 111

subject to

u1 + 2u2 −2u3 = 4
2u1 + u2 + 3u3 = 3

u4 + 2u5 = 2
u6 + 2u7 + 3u8 = 3

4u7 + u8 = 2
2u1 + u2 + u3 + 3u4 −u5 + 3u7 −u8 = 3

u1, u2, u3, u4, u5, u6, u7, u8 ≤ 0 ,

which is a problem with complicating constraints. ��

3.3 Benders Decomposition

The Benders decomposition algorithm allows us to solve a linear programming
problem with complicating variables in a distributed manner at the cost of
iteration. Benders decomposition is described in this section.

3.3.1 Description

The solution of problem (3.1)–(3.4) can be obtained parameterizing this prob-
lem as a function of the complicating variables x1, . . . , xn. This is done as
follows.

Alternative Formulation of the Initial Problem (3.1)–(3.4):

minimize
x1, . . . , xn

n∑
i=1

ci xi + α(x1, . . . , xn) (3.5)

subject to

0 ≤ xi ≤ xup
i ; i = 1, . . . , n, (3.6)

where

α(x1, . . . , xn) = minimum
y1, . . . , ym

m∑
j=1

dj yj (3.7)

subject to

m∑
j=1

e�j yj ≤ b(�) −
n∑

i=1

a�i xi; 
 = 1, 2, . . . , q (3.8)

0 ≤ yj ≤ yup
j ; j = 1, . . . , m , (3.9)



112 3 Linear Programming: Complicating Variables

where α(x1, . . . , xn) is the function that provides the optimal objective func-
tion value of problem (3.7)–(3.9) for given values of the complicating variables
x1, . . . , xn. It should be noted that function α(x1, . . . , xn) is convex by con-
struction, as shown below.

Theorem 3.2 (Convexity of α(x1, . . . , xn)). The function α(x1, . . . , xn)
defined by (3.7)–(3.9) is convex.

��
Proof. Taking into account that the feasible region associated with the linear
programming problem (3.1)–(3.4) has the structure of a convex polytope, it
is clear that the feasible region associated with the function α(x1, . . . , xn)
defined by (3.7)–(3.9) is a subset of the initial one, restricted to the fixed
values of the complicating variables x1, . . . , xn, and considering that these
variables are inside the feasible region defined by constraints (3.2)–(3.4). Then,
consider two feasible solutions of problem (3.1)–(3.4) v(1) = (x(1), y(1))T and
v(2) = (x(2), y(2))T in such a way that for the complicating variables x(1) =
(x(1)

1 , . . . , x
(1)
n )T and x(2) = (x(2)

1 , . . . , x
(2)
n )T the associated solutions from

problem (3.7)–(3.9) are y(1) and y(2), respectively, with associated objective
function values,

α
(
x(1)

)
=

m∑
j=1

dj y
(1)
j , (3.10)

α
(
x(2)

)
=

m∑
j=1

dj y
(2)
j . (3.11)

Consider a linear convex combination of v(1) and v(2). By definition of
convex set, inside the feasible region defined by constraints (3.2)–(3.4), one
gets

v(3) = λv(1) + (1 − λ)v(2) = λ

(
x(1)

y(1)

)
+ (1 − λ)

(
x(2)

y(2)

)
=

(
x(3)

y(3)

)
.

The objective function of problem (3.7)–(3.9) can be evaluated at y(3),
resulting in

m∑
j=1

dj y
(3)
j =

m∑
j=1

dj

(
λy

(1)
j + (1 − λ)y(2)

j

)
= λ

m∑
j=1

dj y
(1)
j + (1 − λ)

m∑
j=1

dj y
(2)
j (3.12)

= λ α
(
x(1)

)
+ (1 − λ) α

(
x(2)

)
.

On the other hand, problem (3.7)–(3.9) can be solved for x(3) = λx(1) +
(1−λ)x(2) resulting in y∗ with objective function value α

(
x(3)

)
=

∑m
j=1 dj y∗

j .



3.3 Benders Decomposition 113

Note that

m∑
j=1

dj y∗
j ≤

m∑
j=1

dj y
(3)
j (3.13)

results in

α
(
x(3)

)
≤ λ α

(
x(1)

)
+ (1 − λ) α

(
x(2)

)
, (3.14)

which shows the convexity of the function α(x). ��
In Fig. 3.1, a 3-D graphical interpretation of the function α(x1, . . . , xn)

is shown. Note that, since α(x1, . . . , xn) is the minimum of z = dTy in the
feasible region, the piece-wise linear structure of α(x1, . . . , xn) is due to the
linear character of both the objective function and the feasible region bound-
aries. Figure 3.1 shows the feasible region (in grey) associated with the set of
constraints (3.8) and (3.9), the points where the minima are attained for each
value of x, and the corresponding points on the hyperplane z = dTy, which
once projected on the X−Z plane leads to the α(x1, . . . , xn) function.

Hyperplane z = d y

x

y

z

α(x)

x*

α(x*)

y*

Feasible
region

Fig. 3.1. 3-D graphical illustration of the α function



114 3 Linear Programming: Complicating Variables

Problem (3.5)–(3.6), which is equivalent to the original one, has the ad-
vantage of depending only on the complicating variables, and this can be
exploited computationally. However, an exact formulation is harder to obtain
than solving the original problem (3.1)–(3.4) because function α(x1, . . . , xn)
has to be determined exactly, and this is computationally intensive. Neverthe-
less, function α(x1, . . . , xn), being convex, can be easily approximated from
below using hyperplanes. In practice, this approximation has to be iterative,
so that it is improved at every iteration. This iterative approximation renders
the Benders decomposition algorithm sketched below:

1. Approximate α(x1, . . . , xn) from below using hyperplanes.
2. Solve problem (3.5)–(3.6) using the approximation of α(x1, . . . , xn) instead

of α(x1, . . . , xn).
3. Improve the approximation of α(x1, . . . , xn) using additional hyperplanes.

These additional hyperplanes are obtained solving the so-called subproblem
or subproblems.

4. If the approximation of α(x1, . . . , xn) is good enough, stop; otherwise, con-
tinue with Step 2.

Note that once the approximation of α(x1, . . . , xn) is sufficiently good, the
solution of the original problem (3.1)–(3.4) is obtained through the solution
of problem (3.5)–(3.6) that depends only on the complicating variables.

In what follows the Benders decomposition algorithm is developed rig-
orously, a relaxed version of problem (3.5)–(3.6), denominated the master
problem, is formulated in the following.

Consider given values for the complicating variables x
(k)
1 , . . . , x

(k)
n , so that

0 ≤ x
(k)
i ≤ xup

i (i = 1, . . . , n), and consider the following:

Subproblem:

minimize
y1, . . . , ym

m∑
j=1

dj yj (3.15)

subject to

n∑
i=1

a�i xi +
m∑

j=1

e�j yj ≤ b(�) ; 
 = 1, . . . , q (3.16)

0 ≤ yj ≤ yup
j ; j = 1, . . . , m (3.17)

xi = x
(k)
i : λi ; i = 1, . . . , n . (3.18)

This problem, which is denominated the subproblem, typically, either it
decomposes by blocks in subproblems or it attains such a structure such that
it is much easier to solve than the original problem.

Problem (3.15)–(3.18) is a particular instance of the original problem, i.e.,
a problem more restricted than the original one. Its solution is denoted by



3.3 Benders Decomposition 115

y
(k)
1 , . . . , y

(k)
m . The optimal values of the dual variables associated with the

constraints that fix the values of the complicating variables are λ
(k)
1 , . . . , λ

(k)
n .

This solution allows us formulating a relaxed version of problem (3.5)–
(3.6), i.e., the master problem formulated below.

Master problem 1:

minimize
x1, . . . , xn, α

n∑
i=1

ci xi + α (3.19)

subject to

α ≥
m∑

j=1

dj y
(k)
j +

n∑
i=1

λ
(k)
i (xi − x

(k)
i ) (3.20)

0 ≤ xi ≤ xup
i ; i = 1, . . . , n (3.21)

α ≥ αdown, (3.22)

where α is a scalar and αdown is a bound that can be determined from physical
or economical considerations pertaining to the problem under study.

It should be noted that problem (3.19)–(3.22) is a relaxed version of prob-
lem (3.5)–(3.6) because it approximates from below problem (3.5)–(3.6).

Considering ν solutions for the complicating variables, x
(k)
i (i = 1, . . . , n;

k = 1, . . . , ν), the corresponding number of solutions of subproblem (3.15)–
(3.18) is ν, i.e., y

(k)
j (j = 1, . . . , m; k = 1, . . . , ν).

In this situation, a better relaxed master problem can be formulated. This
is so because ν hyperplanes reconstruct the function α(x1, . . . , xn), instead of
just 1, as in problem (3.19)–(3.22). This problem is also denominated master
problem and has the following form:

Master problem 2:

minimize
x1, . . . , xn, α

n∑
i=1

ci xi + α (3.23)

subject to
m∑

j=1

dj y
(k)
j +

n∑
i=1

λ
(k)
i (xi − x

(k)
i ) ≤ α ; k = 1, . . . , ν (3.24)

0 ≤ xi ≤ xup
i ; i = 1, . . . , n (3.25)

α ≥ αdown. (3.26)

Constraints (3.24) are denominated Benders cuts. The solution of the
above problem is denoted by x

(k+1)
1 , . . . , x

(k+1)
n ; α(k+1).

The above considerations allow us building the Benders algorithm to be
described in Subsect. 3.3.3, p. 116. Before constructing this algorithms, ap-
propriate bounds of the objective function are derived.



116 3 Linear Programming: Complicating Variables

3.3.2 Bounds

It should be noted that the problem (3.23)–(3.26) is a relaxed version of
the original problem and its objective function approximates from below the
objective function of the original problem. Therefore, for iteration k + 1, the
optimal value of the objective function of problem (3.23)–(3.26) is a lower
bound of the optimal value of the objective function of the original problem,
i.e.,

z
(k+1)
down =

n∑
i=1

ci x
(k+1)
i + α(k+1) . (3.27)

On the other hand, problem (3.15)–(3.18), the subproblem, is a further
restricted version of the original problem. Therefore, its optimal objective
function value is an upper bound of the optimal value of the objective function
of the original problem, i.e.,

z(k+1)
up =

n∑
i=1

ci x
(k+1)
i +

m∑
j=1

dj y
(k+1)
j . (3.28)

Remark 3.1. As the lower bound (3.27) is the solution of a relaxed problem
that becomes progressively less and less relaxed as iterations increase, this
lower bound is monotonously increasing with the iterations.

3.3.3 The Benders Decomposition Algorithm

The Benders decomposition algorithm works as follows.

Algorithm 3.1 (The Benders decomposition algorithm).

Input. An LP problem with complicating variables, and a small tolerance
value ε to control convergence.

Output. The solution of the LP problem obtained after using the Benders
decomposition algorithm.

Step 0: Initialization. Initialize the iteration counter, ν = 1. Solve the
initial master problem below

minimize
x1, . . . , xn, α

n∑
i=1

cixi + α (3.29)

subject to

0 ≤ xi ≤ xup
i ; i = 1, . . . , n (3.30)

α ≥ αdown . (3.31)

This problem has the trivial solution: α(1) = αdown, and x
(1)
i = 0 if ci ≥ 0,

and x
(1)
i = xup

i if ci < 0.



3.3 Benders Decomposition 117

Step 1: Subproblem solution. The subproblem below is solved

minimize
y1, . . . , ym

m∑
j=1

dj yj (3.32)

subject to
n∑

i=1

a�i xi +
m∑

j=1

e�j yj ≤ b(�) ; 
 = 1, . . . , q (3.33)

0 ≤ yj ≤ yup
j ; j = 1, . . . , m (3.34)

xi = x
(ν)
i : λi ; i = 1, . . . , n . (3.35)

The solution of this problem is y
(ν)
1 , . . . , y

(ν)
m , with dual variable values

λ
(ν)
1 , . . . , λ

(ν)
n .

Step 2: Convergence checking. Compute an upper bound of the optimal
value of the objective function of the original problem:

z(ν)
up =

n∑
i=1

ci x
(ν)
i +

m∑
j=1

dj y
(ν)
j (3.36)

and compute a lower bound of the optimal value of the objective function of
the original problem:

z
(ν)
down =

n∑
i=1

ci x
(ν)
i + α(ν) . (3.37)

If z
(ν)
up − z

(ν)
down < ε, stop, the optimal solution is x

(ν)
1 , . . . , x

(ν)
n and

y
(ν)
1 , . . . , y

(ν)
m . Otherwise, the algorithm continues with the next step.

It should be noted that bounds do not have to be computed, i.e., if∑m
j=1 dj y

(ν)
j − α(ν) < ε, stop, the optimal solution is x

(ν)
1 , . . . , x

(ν)
n and

y
(ν)
1 , . . . , y

(ν)
m .

Step 3: Master problem solution. Update the iteration counter, ν ← ν+1.
Solve the master problem

minimize
x1, . . . , xn, α

n∑
i=1

cixi + α (3.38)

subject to
m∑

j=1

djy
(k)
i +

n∑
i=1

λ
(k)
i (xi − x

(k)
i ) ≤ α; k = 1, . . . , ν − 1 (3.39)

0 ≤ xi ≤ xup
i ; i = 1, . . . , n (3.40)

α ≥ αdown . (3.41)



118 3 Linear Programming: Complicating Variables

Once the solution of this problem, x
(ν)
1 , . . . , x

(ν)
n and α(ν), has been ob-

tained, the algorithm continues in Step 1.
In the previous derivations and for the sake of simplicity, it has been

considered the particular case in which the decomposition leads to a single
subproblem.

For the general case of multiple subproblems, note that the values of the
dual variables obtained in each subproblem, after fixing complicating variables
to given values, are different. They are denoted by λ

(k)
i,s , where k is the iteration

counter, i is the index corresponding to the complicating variable i, and s is
the subproblem index.

The master problem constraint (3.39) for this general case is formulated
as

m∑
j=1

djy
(k)
i +

r∑
s=1

n∑
i=1

λ
(k)
i,s (xi − x

(k)
i ) ≤ α; k = 1, . . . , ν − 1 . (3.42)

If dual variables are obtained for all subproblems in Step 1, and the above
master problem is solved in Step 3 instead of the originally formulated one,
the decomposition algorithm remains unchanged.

A problem with decomposable structure in three subproblems and compli-
cating variables is illustrated in Fig. 3.2. In this figure, a superscript in square
brackets indicates the corresponding subproblem. ��

A GAMS implementation of the Benders decomposition algorithm is given
in the Appendix A, p. 403.

Computational Example 3.1 (The Benders decomposition algorithm).
Consider the problem

minimize
x, y

z = −y − x/4

subject to
y −x ≤ 5

y − 1
2x ≤ 15

2

y + 1
2x ≤ 35

2

−y + x ≤ 10

0 ≤ x ≤ 16

y ≥ 0 .

The solution of this example is illustrated in Fig. 3.3, where the feasible
region is shown and the optimal values are x∗ = 10 and y∗ = 25

2 with an
objective function value equal to z∗ = −15.

If variable x is considered to be a complicating variable, the above problem
can be solved using the Benders decomposition (Algorithm 3.1). The process



3.3 Benders Decomposition 119

E [1]

E [2]

E [3]

A[1]

A[2]

A[3]

b[1]

b[2]

b[3]

(d [1])T

m2-m1

m3-m2

m1 m2-m1
m3-m2

cT(d [2])T (d [3])T

y[1]

y[2]

y[3]

x

m1

m

Fig. 3.2. Decomposable matrix with complicating variables

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

x

y Optimal
solution
(10,25/2)

y-x = 5

y-x/2 = 15/2

-y+x = 10

y+x/2 = 35/2

z = -5

z = -10

z = -15/2

z = -25/2

z = -15

z = -35/2

Global
Feasible
region

Fig. 3.3. Graphical illustration of Computational Example 3.1



120 3 Linear Programming: Complicating Variables

is illustrated in Figs. 3.4–3.7, where the graphical interpretations in the (x, y)
and (x, z) subspaces are given. Both illustrations allow a three dimensional
(3-D) understanding of the example.

Step 0: Initialization. The iteration counter is initialized, ν = 1. The initial
master problem is solved

minimize
x, α

−1
4
x + α

subject to
0 ≤ x ≤ 16

−25 ≤ α.

The solution of this problem is x(1) = 16, point M (1) in Fig. 3.4b, and
α(1) = −25 (see Figs. 3.4a,b). The value for variable α is equal to its lower
bound, −25.

Step 1: Subproblem solution. The subproblem below is solved

minimize
y

z = −y

subject to
y − x ≤ 5

y − 1
2 x ≤ 15

2

y + 1
2 x ≤ 35

2

−y + x ≤ 10

y ≥ 0

x = 16 : λ .

The solution of this problem is the point S(1) =
(
x(1), y(1)

)
=

(
16, 19

2

)
,

which is located inside the initial feasible region (see Fig. 3.4a), and minimizes
the objective function z. The objective function optimal value is z = − 27

2 , i.e.,
the z

(1)
up value in Fig. 3.4b. Note that the optimal value of the dual variable

associated with the constraint x = 16 is λ(1) = 1
2 .

Step 2: Convergence checking. An upper bound of the objective function
optimal value is computed as

z(1)
up = −1

4
x(1) − y(1) = −1

4
× 16 − 19

2
= −27

2
,

where the first term is associated with the complicating variable, x(1), and
the second term is associated with the y(1) variable (see Fig. 3.4b).



3.3 Benders Decomposition 121

5 10 15

0

-10

-20

αlo

x(1) = xup

α (1)

cx(1)

cx(1) zdown

cx(1)

M (1)

S(1)

(b)

λ (1)=1/2

z

(1)

zup
(1)

20

20

(a)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

x

x

y

S(1)

(16,19/2)

Initialization
x(1) = 16

 = -27/2

Master
feasible
region

zup
(1)

Fig. 3.4. Graphical illustration of the decomposition algorithm for iteration ν = 1

A lower bound of the objective function optimal value is computed as

z
(1)
down = −1

4
x(1) + α(1) = −1

4
× 16 − 25 = −29 .

Since the difference z
(1)
up − z

(1)
down = 31

2 > ε, the procedure continues.

Step 3: Master problem solution. The iteration counter is updated, ν =
1 + 1 = 2. The master problem below is solved

minimize
x, α

−1
4
x + α



122 3 Linear Programming: Complicating Variables

subject to

−19
2

+
1
2
(x − 16) ≤ α

0 ≤ x ≤ 16
−25 ≤ α,

where the first constraint is the Benders cut 1 (see Figs. 3.5a and 3.5b) asso-
ciated with the previous iteration.

The solution of this problem is the point M (2) in both Figs. 3.5a and 3.5b
and α(2) = − 35

2 . The point M (2) in Fig. 3.5a is the intersection of the Ben-
ders cut obtained in the previous iteration (active constraint for subproblem
1) and the line x = 0 (lower bound of the complicating variable x). Similarly,
the point M (2) in Fig. 3.5b is the intersection of the tangent hyperplane and

x(2)= xlo

0

-10

-20

α (2)

cx

M (2)

S(2)

(b)

z

λ (2)= -1

Benders cut 1

2 4 6 8 10 12 14 16

6 10 16

18 20

2

4

6

8

10

12

14

16

18

x

20
x

y

Master
Feasible
region

(a)

M(2)

x(2) = 0

 = -5

 = -35/2

Benders cut 1

S(2)= (0,5)

zup
(2)

zdown
(2)

zup
(2)

zdown
(2)

Fig. 3.5. Graphical illustration of the decomposition algorithm for iteration ν = 2



3.3 Benders Decomposition 123

the α function at the point x(1) = 16 (lower bound of the shadow region in
Fig. 3.5b) and the line x = 0.

Step 1: Subproblem solution. The subproblem below is solved

minimize
y

z = −y

subject to
y − x ≤ 5

y − 1
2x ≤ 15

2

y + 1
2x ≤ 35

2

−y + x ≤ 10
y ≥ 0
x = 0 : λ .

The solution of this problem is y(2) = 5, point S(2) in Fig. 3.5a that min-
imizes the objective function for the fixed value of x(2) = 0. Its z-value is
z = −5, as can be seen in Fig. 3.5b. The optimal dual variable associated
with the constraint x = 0, λ(2) = −1, is the slope of the α function at the
point x(2) = 0 (see Fig. 3.5b).

Step 2: Convergence checking. Upper and lower bounds of the objective
function optimal value are computed as

z(2)
up = −y(2) − 1

4
x(2) = −5 − 1

4
× 0 = −5

and
z
(1)
down = −1

4
x(2) + α(2) = −1

4
× 0 − 35

2
= −35

2
.

Since the difference z
(2)
up − z

(2)
down = −5 − 35

2 = 25
2 > ε, the procedure con-

tinues.

Step 3: Master problem solution. The iteration counter is updated, ν =
2 + 1 = 3, and the master problem below is solved

minimize
x, α

−1
4
x + α

subject to

−19
2

+
1
2
(x − 16) ≤ α

−5 − (x − 0) ≤ α

0 ≤ x ≤ 16
−25 ≤ α ,



124 3 Linear Programming: Complicating Variables

202 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

x

20
x

y

(a)

 = -55/4 Benders cut 1

S(3)

(25/3,35/3)

M(3)

x(3) = 25/3

 = -185/12

Benders cut 2 Master
Feasible
region

zdown
(3)

zup
(3)

x(3)

cx (3)

5 10 15

0

-10

-20 α (3)
M (3)

S(3)

(b)

λ (3)= -1/2

z

Benders cut 1
Benders cut 2

- z down
(3)zup

(3)

Fig. 3.6. Graphical illustration of the decomposition algorithm for iteration ν = 3

where the first two restrictions are the Benders cuts 1 and 2 (see Figs. 3.6a
and 3.6b) associated with the previous iterations 1 and 2.

The solution of this problem is x(3) = 25
3 , point M (3) in Fig. 3.6a, and

α(3) = − 40
3 in Fig. 3.6b, resulting from the intersection of the Benders cuts 1

and 2 in both Figs. 3.6a and 3.6b. The objective function value is the z-value
associated with the point M (3) (see Fig. 3.6b) and is equal to − 185

12 = −15.416.

Step 1: Subproblem solution. The subproblem below is solved

minimize
y

z = −y



3.3 Benders Decomposition 125

subject to
y − x ≤ 5

y − 1
2x ≤ 15

2

y + 1
2x ≤ 35

2

−y + x ≤ 10

y ≥ 0

x = 25
3 : λ .

The solution of the problem above is the point S(3) =
(
x(3), y(3)

)
=(

25
3 , 35

3

)
in Fig. 3.6a with an objective function value of − 35

3 (see the z-value
of point S(3) in Fig. 3.6b). The optimal dual variable associated with the
constraint x = 25

3 , λ(3) = −0.5, is the slope of the α function at the point
x(3) = 25

3 (see Fig. 3.6b).

Step 2: Convergence checking. Upper and lower bounds of the objective
function optimal value are computed as

z(3)
up = −y(3) − 1

4
x(3) = −35

3
− 1

4
× 25

3
= −55

4

and
z
(3)
down = −1

4
x(3) + α(3) = −1

4
× 25

3
− 40

3
= −185

12
.

Since the difference z
(3)
up − z

(3)
down = 5

3 > ε, the procedure continues.

Step 3: Master problem solution. The iteration counter is updated, ν =
3 + 1 = 4, and the master problem below is solved

minimize
x, α

−1
4
x + α

subject to
− 19

2 + 1
2 (x − 16) ≤ α

−5 − (x − 0) ≤ α
− 35

3 − 1
2 (x − 25

3 ) ≤ α
0 ≤ x ≤ 16

−25 ≤ α ,

where the first three restrictions are the Benders cuts 1, 2, and 3 (see Figs. 3.7a
and 3.7b) associated with the previous iterations.

The solution of this problem is x(4) = 10, point M (4) in Fig. 3.7a, and
α(4) = − 25

2 in Fig. 3.7b, resulting from the intersection of the Benders cuts 1
and 3 in both Figs. 3.7a and 3.7b. The objective function z-value associated
with the point M (4) is z = −15.



126 3 Linear Programming: Complicating Variables

cx(4)

5 x(4) =10 15

0

-10

-20

α (4)
M (4)

Optimal
solution

S(4)

(b)

λ(4)= -1/2
c4x

(4)

z

Benders cut 2

Benders cut 1

Benders cut 3

(a)

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

x

20
x

y

 = -15

Benders cut 1

M(4)

x(4) = 10
 = -15

Benders cut 2

Benders cut 3

S(4)

(10,25/2)

Master
Feasible
region

zup
(4)

zdown
(4)

Fig. 3.7. Graphical illustration of the decomposition algorithm for iteration ν = 4

Step 1: Subproblem solution. The subproblem below is solved

minimize
y

z = −y



3.3 Benders Decomposition 127

subject to
y − x ≤ 5

y − 1
2x ≤ 15

2

y + 1
2x ≤ 35

2

−y + x ≤ 10

y ≥ 0

x = 10 : λ .

The solution of the problem above is the point S(4) =
(
x(4), y(4)

)
=(

10, 25
2

)
in Fig. 3.7a with an objective function value of − 25

2 (see the z-value
of point S(4) in Fig. 3.7b). The optimal dual variable associated with the con-
straint x = 10, λ(4) = − 1

2 , is the slope of the α function at the point x(4) = 10
(see Fig. 3.7b).

Step 2: Convergence checking. Upper and lower bounds of the objective
function optimal value are computed as

z(4)
up = −y(4) − 1

4
x(4) = −12.5 − 1

4
× 10 = −15

and
z
(4)
down = −1

4
x(4) + α(4) = −1

4
× 10 − 12.5 = −15 .

Because both bounds are equal, the difference z
(4)
up − z

(4)
down = −15 + 15 =

0 < ε, therefore, the optimal solution has been found

x∗ = 10; y∗ =
25
2

; z = −15 .

The values of the objective function bounds and master and subproblem
variables are shown in Table 3.1. In Fig. 3.8 the evolution of the bounds z

(ν)
up

and z
(ν)
down is shown.

��

Table 3.1. Evolution of the values of the master and subproblem variables as the
decomposition algorithm, progresses

ν x(ν) y(ν) α(ν) λ(ν) z
(ν)
up z

(ν)
down

1 16 19
2

−25 1
2

−27
2

−29

2 0 5 −35
2

−1 −5 −35
2

3 25
3

35
3

−40
3

−1
2

−55
4

−185
12

4 10 25
2

−25
2

−1
2

−15 −15



128 3 Linear Programming: Complicating Variables

0

-5

-10

-15

-20

-25

zup

zdown

iteration

z

2 31 4 5

Fig. 3.8. Evolution of the upper and lower bounds of the objective function in
Example 3.1

3.3.4 Subproblem Infeasibility

The possible infeasibility of the subproblem is considered in this subsection
and an alternative always-feasible subproblem is formulated. The price paid
is a larger number of variables and dissimilar cost coefficients in the objective
function. This always-feasible problem has the following form:

minimize
y1, . . . , ym; v1, . . . , vq;w

m∑
j=1

dj yj + M

q∑
�=1

(v� + w) (3.43)

subject to

n∑
i=1

a�i xi +
m∑

j=1

e�j yj + v� − w = b(�); 
 = 1, . . . , q (3.44)

0 ≤ yj ≤ yup
j ; j = 1, . . . , m (3.45)

xi = x
(k)
i : λi; i = 1, . . . , n (3.46)

0 ≤ v� ≤ vup
� ; 
 = 1, . . . , q (3.47)

0 ≤ w ≤ wup , (3.48)

where M is a large enough positive constant, v� (
 = 1, . . . , q) and w are the
artificial variables, and vup

� (
 = 1, . . . , q) and wup are their respective upper
bounds.

To illustrate how this method works we solve Example 3.2.
Additionally, this problem decomposes in three subproblems and therefore

it illustrates the Benders decomposition algorithm using constraint (3.42).



3.3 Benders Decomposition 129

Computational Example 3.2 (The Benders decomposition algo-
rithm). Consider the problem

minimize
x1, x2, y1, y2, y3

z = −2y1 − y2 + y3 + 3x1 − 3x2

subject to
y1 + x1 + x2 ≤ 3

2y2 + 3x1 ≤ 12
y3 −7x2 ≤ −16

−x1 + x2 ≤ 2
x1, x2, y1, y2, y3 ≥ 0 .

The optimal values of this problem are x∗
1 = 0.3, x∗

2 = 2.3, y∗
1 = 0.4,

y∗
2 = 5.6, and y∗

3 = 0.0 with an objective function value equal to z∗ = −12.43.
If variables x1 and x2 are considered to be complicating variables, the

above problem is solved using the Benders Decomposition Algorithm 3.1.

Step 0: Initialization. The iteration counter is initialized, ν = 1. The initial
master problem is solved

minimize
x1, x2, α

3x1 − 3x2 + α

subject to
−x1 + x2 ≤ 2

α ≥ −100 .

The solution of this problem is x
(1)
1 = 0.0, x

(1)
2 = 2.0, and α(1) = −100.

Step 1: Subproblem solution. The subproblems below are solved.
The first subproblem is

minimize
y1

z1 = −2y1

subject to
y1 + x1 + x2 ≤ 3

x1 = 0 : λ1,1

x2 = 2 : λ2,1

y1 ≥ 0,

whose solution is y
(1)
1 = 1.0, λ

(1)
1,1 = 2.0, and λ

(1)
2,1 = 2.0 with an objective

function value z
(1)
1 = −2.0.



130 3 Linear Programming: Complicating Variables

The second subproblem is

minimize
y2

z2 = −y2

subject to
y2 + 3x1 ≤ 12

x1 = 0 : λ1,2

x2 = 2 : λ2,2

y2 ≥ 0,

whose solution is y
(1)
2 = 6.0, λ

(1)
1,2 = 1.5, and λ

(1)
2,2 = 0.0 with an objective

function value z
(1)
2 = −6.0.

The third subproblem is infeasible, so artificial variables v3 and w are
included in this subproblem:

minimize
y3, v3, w

z3 = y3 + 20(v3 + w)

subject to

y3 −7x2 + v3 −w ≤ −16
x1 = 0 : λ1,3

x2 = 2 : λ2,3

y3 ≥ 0,

whose solution is y
(1)
3 = 0, v3 = 0, w = 2, λ

(1)
1,3 = 0, and λ

(1)
2,3 = −140 with an

objective function value z
(1)
3 = 40.

The complete solution of all subproblems is y
(1)
1 = 1, y

(1)
2 = 6, y

(1)
3 = 0,

λ
(1)
1 = λ

(1)
1,1 + λ

(1)
1,2 + λ

(1)
1,3 = 3.5, and λ

(1)
2 = λ

(1)
2,1 + λ

(1)
2,2 + λ

(1)
2,3 = −138 with an

objective function value z(1) = z
(1)
1 + z

(1)
2 + z

(1)
3 = 32.

Step 2: Convergence checking. An upper bound of the objective function
optimal value is computed as

z(1)
up = −2y

(1)
1 − y

(1)
2 + y

(1)
3 + 3x(1)

1 − 3x
(1)
2 = 26 .

A lower bound of the objective function optimal value is computed as

z
(1)
down = 3x(1)

1 − 3x
(1)
2 + α(1) = −106 .

The difference z
(1)
up −z

(1)
down = 132 is not equal to 0, therefore, the procedure

continues.

Step 3: Master problem solution. The iteration counter is updated, ν =
1 + 1 = 2. The master problem below is solved



3.3 Benders Decomposition 131

minimize
x1, x2, α

3x1 − 3x2 + α

subject to
32 + 3.5 × x1 − 138 × (x2 − 2) ≤ α

−x1 + x2 ≤ 2
α ≥ −100 .

The solution of this problem is x
(2)
1 = 1, x

(2)
2 = 3, and α(2) = −100. The

objective function value is z(2) = −106.
The algorithm continues in Step 1.

Step 1: Subproblem solution. The subproblems below are solved. The first
subproblem is infeasible, so artificial variables v1 and w are included in the
subproblem:

minimize
y1, v1, w

z1 = −2y1 + 20(v1 + w)

subject to

y1 + x1 + x2 + v1 −w ≤ 3
x1 = 1 : λ1,1

x2 = 3 : λ2,1

y1 ≥ 0,

whose solution is y
(2)
1 = 0, v1 = 0, w = 1, λ

(2)
1,1 = 20, and λ

(2)
2,1 = 20 with an

objective function value z
(2)
1 = −19.3.

The second subproblem is

minimize
y2

z2 = −y2

subject to
y2 + 3x1 ≤ 12

x1 = 1 : λ1,2

x2 = 3 : λ2,2

y2 ≥ 0,

whose solution is y
(2)
2 = 4.5, λ

(2)
1,2 = 1.5, and λ

(2)
2,2 = 0 with an objective

function value z
(2)
2 = −4.5.

The third subproblem is

minimize
y3

z3 = y3



132 3 Linear Programming: Complicating Variables

subject to
y3 −7x2 ≤ −16

x1 = 1 : λ1,3

x2 = 3 : λ2,3

y3 ≥ 0,

whose solution is y
(2)
3 = 0, λ

(2)
1,3 = 0, and λ

(2)
2,3 = 0 with an objective function

value z
(2)
3 = 0.

The complete solution of all subproblems is y
(2)
1 = 0, y

(2)
2 = 4.5, y

(2)
3 = 0,

λ
(2)
1 = 21.5, and λ

(2)
2 = 20 with an objective function value z(2) = 14.8.

Step 2: Convergence checking. An upper bound of the objective function
optimal value is computed as

z(2)
up = −2y

(2)
1 − y

(2)
2 + y

(2)
3 + 3x(2)

1 − 3x
(2)
2 = 8.7 .

A lower bound of the objective function optimal value is computed as

z
(2)
down = 3x(2)

1 − 3x
(2)
2 + α(2) = −106 .

The difference z
(2)
up − z

(2)
down = 114.7 is not equal to 0, therefore, the proce-

dure continues.

Step 3: Master problem solution. The iteration counter is updated, ν =
2 + 1 = 3.

The master problem below is solved:

minimize
x1, x2, α

3x1 − 3x2 + α

subject to

32 + 3.5 × x1 − 138 × (x2 − 2) ≤ α

14.8 + 21.5 × (x1 − 1) + 20 × (x2 − 3) ≤ α

−x1 + x2 ≤ 2
α ≥ −100 .

The solution of this problem is x
(3)
1 = 1

3 , x
(3)
2 = 7

3 , and α(3) = −12.3. The
objective function value is z(3) = −18.3.

The algorithm continues in Step 1.

Step 1: Subproblem solution. The subproblems below are solved. The first
subproblem is

minimize
y1

z1 = −2y1



3.3 Benders Decomposition 133

subject to
y1 + x1 + x2 ≤ 3

x1 = 1
3 : λ1,1

x2 = 7
3 : λ2,1

y1 ≥ 0,

whose solution is y
(3)
1 = 0.3, λ

(3)
1,1 = 2, and λ

(3)
2,1 = 2 with an objective function

value z
(3)
1 = −0.7.

The second subproblem is

minimize
y2

z2 = −y2

subject to
y2 + 3x1 ≤ 12

x1 = 1
3 : λ1,2

x2 = 7
3 : λ2,2

y2 ≥ 0,

whose solution is y
(3)
2 = 5.5, λ

(3)
1,2 = 1.5, and λ

(3)
2,2 = 0 with an objective

function value z
(3)
2 = −5.5.

The third subproblem is

minimize
y3

z3 = y3

subject to
y3 −7x2 ≤ −16

x1 = 1
3 : λ1,3

x2 = 7
3 : λ2,3

y3 ≥ 0,

whose solution is y
(3)
3 = 0, λ

(3)
1,3 = 0, and λ

(3)
2,3 = 0 with an objective function

value z
(3)
3 = 0.

The complete solution of all subproblems is y
(3)
1 = 0.3, y

(3)
2 = 5.5, y

(3)
3 = 0,

λ
(3)
1 = 3.5, and λ

(3)
2 = 2 with an objective function value z(3) = −6.2.

Step 2: Convergence checking. An upper bound of the objective function
optimal value is computed as

z(3)
up = −2y

(3)
1 − y

(3)
2 + y

(3)
3 + 3x(3)

1 − 3x
(3)
2 = −12.2 .



134 3 Linear Programming: Complicating Variables

A lower bound of the objective function optimal value is computed as

z
(3)
down = 3x(3)

1 − 3x
(3)
2 + α(3) = −18.3 .

The difference z
(3)
up −z

(3)
down = 6.1 is not equal to 0, therefore, the procedure

continues.

Step 3: Master problem solution. The iteration counter is updated, ν =
3 + 1 = 4.

The master problem below is solved

minimize
x1, x2, α

3x1 − 3x2 + α

subject to

32 + 3.5 × x1 − 138 × (x2 − 2) ≤ α

14.8 + 21.5 × (x1 − 1) + 20 × (x2 − 3) ≤ α

−6.2 + 3.5 × (x1 − 1
3 ) + 2 × (x2 − 7

3 ) ≤ α

−x1 + x2 ≤ 2

α ≥ −100 .

The solution of this problem is x
(4)
1 = 0.28, x

(4)
2 = 2.28, and α(4) = −6.4.

The objective function value is z(4) = −12.4.
The algorithm continues in Step 1.

Step 1: Subproblem solution. The subproblems below are solved.
The first subproblem is

minimize
y1

z1 = −2y1

subject to
y1 + x1 + x2 ≤ 3

x1 = 0.28 : λ1,1

x2 = 2.28 : λ2,1

y1 ≥ 0,

whose solution is y
(4)
1 = 0.4, λ

(4)
1,1 = 2, and λ

(4)
2,1 = 2 with an objective function

value z
(4)
1 = −0.8.

The second subproblem is

minimize
y2

z2 = −y2



3.4 Concluding Remarks 135

subject to
y2 + 3x1 ≤ 12

x1 = 0.28 : λ1,2

x2 = 2.28 : λ2,2

y2 ≥ 0,

whose solution is y
(4)
2 = 5.6, λ

(4)
1,2 = 1.5, and λ

(4)
2,2 = 0 with an objective

function value z
(4)
2 = −5.6.

The third subproblem is

minimize
y3

z3 = y3

subject to
y3 −7x2 ≤ −16

x1 = 0.28 : λ1,3

x2 = 2.28 : λ2,3

y3 ≥ 0,

whose solution is y
(4)
3 = 0, λ

(4)
1,3 = 0, and λ

(4)
2,3 = 0 with an objective function

value z
(4)
3 = 0.

The complete solution of all subproblems is y
(4)
1 = 0.4, y

(4)
2 = 5.6, y

(4)
3 = 0,

λ
(4)
1 = 3.5, and λ

(4)
2 = 2 with an objective function value z(4) = −6.5.

Step 2: Convergence checking. An upper bound of the objective function
optimal value is computed as

z(4)
up = −2y

(4)
1 − y

(4)
2 + y

(4)
3 + 3x(4)

1 − 3x
(4)
2 = −12.4 .

A lower bound of the objective function optimal value is computed as

z
(4)
down = 3x(4)

1 − 3x
(4)
2 + α(4) = −12.4 .

The difference z
(4)
up − z

(4)
down is equal to 0, therefore, the optimal solution

has been found.
It is x∗

1 = 0.3, x∗
2 = 2.3, y∗

1 = 0.4, y∗
2 = 5.6, and y∗

3 = 0, and the optimal
objective function value is −12.4. ��

3.4 Concluding Remarks

This chapter analyzes linear programming problems with complicating vari-
ables. If these variables are fixed to given values, the original problem either



136 3 Linear Programming: Complicating Variables

decomposes by blocks or attains such a structure that its solution is straight-
forward. This situation often occurs in practical engineering and science prob-
lems.

The decomposition explained in this chapter was originally proposed by
Benders [24] and it is named Benders’ decomposition on his behalf. This de-
composition allows us the distributed solution of linear programming problems
including complicating variables at the cost of repetition. Benders decomposi-
tion was later extended to nonlinear problems and made known to a broader
technical community by Geoffrion [25]. Relevant insights and details are pre-
sented in the manual by Lasdon [26] and in the text by Floudas [27].

Benders Decomposition is precisely derived and then illustrated algebraic
and geometrically through the detailed solution of diverse examples through-
out the chapter.

Finally, it should be noted that the linear programming problem consid-
ered may have both complicating variables and constraints. In such situation,
a nested decomposition can be used. For instance, an outer Benders Decompo-
sition algorithm may deal with complicating variables while an inner Dantzig–
Wolfe procedure may deal with complicating constraints.

3.5 Exercises

Exercise 3.1. The stochastic linear programming problem addressed in
Sect. 1.4.1, p. 28, consists in procuring coal and gas for a 2-year time horizon,
so that heating needs are properly covered at minimum expected cost. This
problem has a complicating variable structure and therefore it can be solved
using Benders decomposition.

Solve the numerical example given in Sect. 1.4.1 through the Benders
decomposition algorithm and verify that the solution coincides with that pro-
vided in that section. Analyze the convergence behavior of the Benders algo-
rithm for this particular problem.

Exercise 3.2. Consider the following problem

minimize
x1, x2, x3, x4, x5

2x1 + 2.5x2 + 0.5x3 + 4x4 + 3x5

subject to

−2x1 +3x2 −4x5 ≤ −4
2x1 +4x2 + x5 ≤ 2.5

2x3 −x4 −x5 ≤ 0.5
−0.5x3 −x4 + 3x5 ≤ −3

x1, x2, x3, x4, x5 ≥ 0 .



3.5 Exercises 137

1. Check that the following vector (x1, x2, x3, x4, x5) is a solution:

x1 = 1, x2 = 0, x3 = 2.2, x4 = 3.4, x5 = 0.5, z = 18.2 .

2. Using the Benders decomposition algorithm obtain the final solution.

Exercise 3.3. Peter builds two types of transformers and he has available 6
units of ferromagnetic material and 28 h of time. Type I transformer manu-
facturing requires 2 unit of ferromagnetic material and 7 h of work, whereas
type II transformer manufacturing requires 1 unit of ferromagnetic mater-
ial and 8 h of work. Selling prices for transformers I and II are $120 and
$80, respectively. How many transformers of each type should Peter build to
maximize his profits?

Considering the number of type I transformers a complicating variable,
solve the problem using Benders decomposition.

Exercise 3.4. Given the problem

maximize
y1, y2, y3, x1

y1 + 3y2 + y3 + 4x1

subject to
−y1 + x1 ≤ 1

2y2 + 2x1 ≤ 4
x1 ≤ 4

2x1 ≤ 6
−x1 ≤ −1

2y1 + y2 + 2y3 + 2x1 ≤ 9
y1, y2, y3, x1 ≥ 0 .

Find the optimal solution considering x1 as a complicating variable.

Exercise 3.5. Consider a 2-year coal, gas, and oil procurement problem to
supply the energy demand of a factory. The demand for energy the first year
is 900 and the prices of coal, gas, and oil are 4.5, 4.9, and 5.1, respectively.
Demand for energy the second year can be 900 with probability 0.3, 750 with
probability 0.4, and 55 with probability 0.3. The corresponding prices for coal
are 7.5, 6, and 3; for gas 9, 5, and 4; and for oil 8.5, 5.5, and 3.5. Formulate a
linear problem whose solution determines the optimal purchase policy for the
first and the second year. Show that the problem has a complicating variable
structure and solve it using Benders decomposition.

Exercise 3.6. The multiperiod investment problem formulated and studied
in Sect. 1.4.2, p. 32, is linear and exhibits complicating variable structure.
Therefore, it can be solved using Bender decomposition.



138 3 Linear Programming: Complicating Variables

Solve the numerical case study presented in Sect. 1.4.2 using Benders de-
composition. Check the results with those provided in that section. Analyze
the numerical behavior of Benders decomposition in this particular example.

Exercise 3.7. The city water supply problem stated in Sect. 1.4.3, p. 36, is
linear and includes complicating variables.

Solve this problem using Benders decomposition and verify that the results
obtained are the same that those provided in Sect. 1.4.3.

Exercise 3.8. Consider two production devices serving a 3-period demand
of 100, 140, and 200 units. The operating range of devices 1 and 2 are within
10 and 150, and 50 and 180 units, respectively. The production of each device
cannot change above 60 units from one period to the next one. Production
costs of devices 1 and 2 are, respectively, $10 and $12 per unit, and start-up
costs are $4 and $2 per unit, respectively. The devices are not working before
the considered time horizon.

1. Formulate the optimal scheduling problem that allows determining the
start-up and shut-down sequence of the production devices that minimize
production cost while serving the demand.

2. Considering that the binary variables are complicating ones and use Ben-
ders decomposition to solve the problem.

Exercise 3.9. Consider the capacity expansion planning of two production
facilities to supply the demand of two cities during a 2-year time horizon. The
interconnection of production and demand locations are specified in Fig. 3.9.
Demands at location 1 for years 1 and 2 are 8 and 6, respectively, and for loca-
tion 2, 11, and 9 respectively. The maximum capacity to be built at locations

1 2

3 4

Production
location 1

Production
location 2

Demand
location 1

Demand
location 2

Fig. 3.9. Transportation network for Exercise 3.9



3.5 Exercises 139

Table 3.2. Building cost for the problem of Exercise 3.9

Building Cost ($)

Period t Location 1 Location 2

1 2.0 3.5
2 2.5 3.0

Table 3.3. Transportation cost and capacities for Exercise 3.9

Road (i–j) Capacity Cost ($)

1–2 11 0.5
1–3 9 0.6
2–3 5 0.7
2–4 5 0.8
3–4 4 0.4

1 and 2 are 10 and 12, respectively. Building cost are provided in Table 3.2.
Transportation costs and capacities are provided in Table 3.3.

Formulate a problem to determine the production capacity to be built at
each location each year. Show that this problem has a complicating variable
decomposable structure. Solve it using Benders decomposition.



4

Duality

4.1 Introduction

This chapter deals with duality in mathematical programming. Given a math-
ematical programming problem, called the primal problem, there exists an-
other associated mathematical programming problem, called the dual prob-
lem, closely related with it. Since duality is symmetric, i.e., the dual of the
dual problem is the primal, both problems are said to be dual to each other. In
the following, we provide simple examples that lead to a better understanding
of this important concept.

Under certain assumptions, the primal and dual problems have the same
optimal objective function value; hence it is possible to solve the primal prob-
lem indirectly by solving its corresponding dual problem. This can lead to
important computational advantages. In some other cases, the primal and
dual problems have different optimal objective function values. The differ-
ence between the optimal values of the primal and dual objective functions is
denominated duality gap.

As it will be shown, the values of the dual variables give the sensitivities
of the objective function with respect to changes to discuss in the constraints.

Furthermore, dual variables constitute the information interchanged be-
tween master problems and subproblems in most decomposition schemes;
therefore, duality is important to discuss in this book.

In Sect. 4.2 the important Karush–Kuhn–Tucker (KKT) optimality condi-
tions are described. Since the mathematical statement of dual problems have
substantial differences in linear and nonlinear programming, we deal with
them in Sects. 4.3 and 4.4, respectively. However, their equivalence is shown.
Finally, Sect. 4.5 illustrates duality and separability.



142 4 Duality

4.2 Karush–Kuhn–Tucker First- and Second-Order
Optimality Conditions

The general problem of mathematical programming, also referred to as the
nonlinear programming problem (NLPP), can be stated as follows:

minimize
x1, . . . , xn

z = f(x1, . . . , xn) (4.1)

subject to
h1(x1, . . . , xn) = 0

...
...

...
h�(x1, . . . , xn) = 0
g1(x1, . . . , xn) ≤ 0

...
...

...
gm(x1, . . . , xn) ≤ 0 .

In compact form the previous model can be stated as follows:

minimize
x

z = f(x) (4.2)

subject to

h(x) = 0 (4.3)
g(x) ≤ 0 , (4.4)

where x = (x1, . . . , xn)T is the vector of the decision variables, f : IRn → IR
is the objective function, and h : IRn → IR� and r : IRn → IRm. Note that
h(x) = (h1(x), . . . , h�(x))T and r(x) = (g1(x), . . . , gm(x))T are the equality
and the inequality constraints, respectively. For this problem to be nonlinear,
at least one of the functions involved in its formulation must be nonlinear. Any
vector x ∈ IRn that satisfies the constraints is said to be a feasible solution,
and the set of all feasible solutions is referred to as the feasible region.

One of the most important theoretical results in the field of nonlinear
programming are the conditions of Karush, Kuhn, and Tucker. They must
be satisfied at any constrained optimum, local, or global, of any linear and
most nonlinear programming problems. Moreover, they form the basis for the
development of many computational algorithms. In addition, the criteria for
stopping many algorithms, specifically, for recognizing if a local constrained
optimum has been achieved, are derived directly from them.

In unconstrained differentiable problems the gradient is equal to zero at
the minimum. In constrained differentiable problems the gradient is not nec-
essarily equal to zero. This is due to the constraints of the problem. Karush–
Kuhn–Tucker conditions (KKTC) generalize the necessary conditions for un-
constrained problems to constrained problems.



4.2 Karush–Kuhn–Tucker First- and Second-Order Optimality Conditions 143

Definition 4.1 (Karush–Kuhn–Tucker first-order conditions). The
vector x ∈ IRn satisfies the KKTCs for the NLPP (4.2)–(4.4) if there exists
vectors µ ∈ IRm and λ ∈ IR � such that

∇f(x) +
�∑

k=1

λk ∇hk(x) +
m∑

j=1

µj ∇gj(x) = 0 (4.5)

hk(x) = 0, k = 1, . . . , 
 (4.6)
gj(x) ≤ 0, j = 1, . . . , m (4.7)

µj gj(x) = 0, j = 1, . . . , m (4.8)
µj ≥ 0, j = 1, . . . , m . (4.9)

��
The vectors µ and λ are called the Kuhn–Tucker multipliers. Condition

(4.8) is known as the complementary slackness condition and requires the non-
negativity of the multipliers of the inequality constraints (4.9) and is referred
to as the dual feasibility condition, and constraints (4.6)–(4.7) are called the
primal feasibility conditions.

The genesis of these first-order optimality conditions (KKTC) can be mo-
tivated in the case of two independent variables for the case of (i) one equality
or inequality constraint, (ii) two inequality constraints, and (iii) one equality
and one inequality constraint, as shown in Figs. 4.1, 4.2, and 4.3, respectively.

6.252.251

x2

Feasible region

µ1> 0

µ1

0.5 1.5 2 2.5 3

2

2.5

3

1

f (x) = 9

∇ f (x*)

∇g1 (x*)

x*

g1 (x) = 0

x1

∇ f (x*)

∇g1 (x*)

f (x) = 4

Fig. 4.1. Illustration of the Karush–Kuhn–Tucker conditions (KKTCs) for the case
of one inequality constraint in the bidimensional case



144 4 Duality

6.252.251

Feasible region

4 9

0.5 1.5 2 2.5 3

2

2.5

3

1

x2

µ1> 0

µ1

∇g1 (x*) x*

g1 (x) = 0

x1

∇ f (x*)

∇g1 (x*)

f (x) = 5

g2 (x) = 0

∇g2 (x*)

µ2∇g2 (x*)

µ2> 0
∇ f (x*)

Fig. 4.2. Illustration of the KKTCs for the case of two inequality constraints in the
bidimensional case

6.252.251

Feasible region
defined by the

inequality constraint

4 9

< 0

0.5 1.5 2 2.5 3

2

2.5

3

1

1.5

1

0.5

x2

µ1> 0

µ1

∇g1 (x*)

x*

g1 (x) = 0

x1

∇h (x*)

∇g1 (x*)

f (x) = 5

λ∇h (x*)

∇ f (x*)

h (x) = 0

∇ f (x*)

λ

Fig. 4.3. Illustration of the KKTCs for the case of one inequality constraint and
one equality constraint in the bidimensional case



4.2 Karush–Kuhn–Tucker First- and Second-Order Optimality Conditions 145

Consider the case of an inequality constraint (see Fig. 4.1), which separates
the plane IR2 into two regions. In one of them the constraint is satisfied,
and in the other one it is not. Feasible points are those in the feasible region
including its border curve. If the minimum of the objective function is attained
at the interior of the feasible region, the constraint is not binding and the
associated multiplier vanishes. If, on the contrary, the minimum is attained
at the boundary, the constraint is binding. The problem is then equivalent
to one with the corresponding equality constraint, and at the minimum, the
gradients of the objective function and the constraint must be parallel (see
Fig. 4.1). They must be pointing in opposite directions because the objective
function increases as we move toward the interior of the feasible region, while
the constraint function becomes negative and thus it decreases. The multiplier
is then positive. This is what optimality conditions say in this situation.

If we add a new inequality constraint (see Fig. 4.2), (4.5) requires that,
if we multiply the gradient of each binding constraint [g1(x∗) and g2(x∗)] by
its corresponding Lagrange multiplier, the vector sum of these two vectors
must equal the negative of the gradient of the objective function, as shown in
Fig. 4.2.

Next, consider the case of one equality constraint and one inequality con-
straint (see Fig. 4.3). Satisfying the constraints is equivalent to moving along
the curve that represents the equality constraint inside the feasible region
defined by the inequality constraint. While moving along this curve, the ob-
jective function contour curves must intersect in such a way that the objective
function value decreases. When the inequality constraint is strictly satisfied,
the gradients of the objective function and the constraints are linearly depen-
dent. This is what the first-order optimality conditions state (see Fig. 4.3).

Remark 4.1 (Special cases). If a type of constraint is not present in an NLPP,
then the multiplier associated with the “absent” constraint is equal to zero,
and the constraint is dropped from the formulation of the KKTCs. The form
of the KKTCs for these cases are:

1. Unconstrained problems. In this case we have only the condition

∇f(x) = 0 .

2. Problems with only equality constraints. The KKTCs are an extension of
the classical principle of the multiplier method. This method appears when
NLPP have only equality constraints, and the KKTCs has the form

∇f(x) +
�∑

k=1

λk∇hk(x) = 0 (4.10)

hk(x) = 0; k = 1, . . . , 
 .

3. Problems with only inequality constraints. KKT conditions read



146 4 Duality

∇f(x) +
m∑

j=1

µj∇gj(x) = 0

gj(x) ≤ 0; j = 1, . . . , m (4.11)
µj gj(x) = 0; j = 1, . . . , m

µj ≥ 0; j = 1, . . . , m .

If we define the Lagrangian function by

L(x,µ,λ) = f(x) + λT h(x) + µT g(x) ,

we can write the KKTCs in compact form as

∇xL(x,µ,λ) = 0

∇λL(x,µ,λ) = 0

∇µL(x,µ,λ) ≤ 0

µT∇µL(x,µ,λ) = 0
µ ≥ 0 .

Note that µT∇µL(x,µ,λ) = 0 is equivalent to µj gj(x) = 0 (j =
1, . . . , m) only because ∇µL(x,µ,λ) ≤ 0 and µ ≥ 0.

Illustrative Example 4.1 (The KKT conditions). Consider the follow-
ing optimization problem:

minimize
x1, x2

−x2
1 − x2

2 (4.12)

subject to
x1 +x2 ≤ 1
x1 ≥ 0

x2 ≥ 0 .
(4.13)

The Lagrangian function is

L(x1, x2, µ1, µ2, µ3) = −x2
1 − x2

2 + µ1(x1 + x2 − 1) + µ2(−x1) + µ3(−x2)

and the KKT conditions become

∂L(x1, x2, µ1, µ2, µ3)
∂x1

= −2x1 + µ1 − µ2 = 0 ⇒x1 =
µ1 − µ2

2
(4.14)

∂L(x1, x2, µ1, µ2, µ3)
∂x2

= −2x2 + µ1 − µ3 = 0 ⇒x2 =
µ1 − µ3

2
(4.15)

x1 + x2 ≤ 1 (4.16)
−x1 ≤ 0 (4.17)
−x2 ≤ 0 (4.18)



4.2 Karush–Kuhn–Tucker First- and Second-Order Optimality Conditions 147

0.5 1.5

0.5

1.5

Feasible
region

x2

µ1= 2

g1 (x) = 0

x1

f (x*) = -1

∇ f (x*)
g2 (x) = 0

g3 (x) = 0

f (x) = -2.25

1

∇ f (x*)2

∇ f (x*)2

∇ f (x*)1

µ1∇g1 (x*)
1

∇g2 (x*)
2

µ3∇g3 (x*)
1

∇g1 (x*)
1

∇g3 (x*)
1

= (1, 0)x*
1

= (0, 1)x*
2

µ1∇g1 (x*)
2

∇g1 (x*)
2

µ2∇g2 (x*)
2

f (x) = -0.25

µ3= 2

µ1= 2
µ2= 2

Fig. 4.4. Illustration of the minimization problem in Example 4.1

µ1(x1 + x2 − 1) = 0 (4.19)
µ2(−x1) = 0 (4.20)
µ3(−x2) = 0 (4.21)

µ1, µ2, µ3 ≥ 0 , (4.22)

which has following two solutions:

x1 = 1, x2 = 0, µ1 = 2, µ2 = 0, µ3 = 2, z = −1

and
x1 = 0, x2 = 1, µ1 = 2, µ2 = 2, µ3 = 0, z = −1 .

These solutions are illustrated in Fig. 4.4, where the two optimal points
are shown together with the gradients of the objective function and the active
constraints as the KKT condition state. Note that they are linearly dependent.

��

4.2.1 Equality Constraints and Newton Algorithm

The KKTCs for the problem

minimize
x

z = f(x) (4.23)



148 4 Duality

subject to

h(x) = 0 (4.24)

constitute the system of nonlinear equations

∇xL(x,λ) = 0
h(x) = 0 ,

(4.25)

where L(x,λ) = f(x) + λTh(x).
The system of n+ 
 nonlinear equations presented above can be solved by

the Newton algorithm. If z denotes (x,λ) and F(z) denotes system (4.25), the
Taylor expansion of this system for ||∆z|| sufficiently small is

F(z + ∆z) ≈ F(z) + ∇zF(z) ∆z .

Note that the double bar notation denotes a vector norm (2-norm) defined
as [28]:

||x|| = (|x1|2 + |x2|2 + · · · + |xn|2) 1
2 =

(
xT x

) 1
2 . (4.26)

To achieve F (z) = 0, it is convenient to find a direction ∆z so that
F (z + ∆z) = 0. This direction can be computed from

∇zF (z)∆z = −F (z) ,

where ∇zF (z) can be expressed as

∇zF (z) = ∇(x,λ)F (x,λ) =
( ∇xxL(x,λ) ∇T

xh(x)
∇xh(x) 0

)
and where ∇xh(x) is the Jacobian of h(x).

The matrix above is denominated the KKT matrix of problem (4.23)–
(4.24), and the system( ∇xxL(x,λ) ∇T

xh(x)
∇xh(x) 0

)(
∆x
∆λ

)
= −

( ∇xL(x,λ)
h(x)

)
is denominated the KKT system of problem (4.23)–(4.24). It constitutes a
Newton iteration to solve system (4.25).

Definition 4.2 (Regular point). The solution x∗ of the LP problem (4.2)–
(4.4) is said to be a regular point of the constraints if the gradient vectors of
the active constraints are linearly independent. ��
Definition 4.3 (Degenerate inequality constraint). An inequality con-
straint is said to be degenerate if it is active and the associated µ-multiplier
is null. ��



4.3 Duality in Linear Programming 149

Definition 4.4 (Second-order sufficient conditions). Assume that f,h,
g ∈ C2. The following conditions are sufficient for a point x∗ satisfying (4.3)–
(4.4) to be a strict relative minimum of the problem (4.2)–(4.4):

(a) Constraints (4.5), (4.8), and (4.9) hold.
(b) The Hessian matrix L(x∗) = F (x∗) + λT H(x∗) + µT G(x∗) is positive

definite on the subspace

{y : ∇h(x∗)T y = 0,∇gj(x∗)T y = 0; ∀j ∈ J},
where J = {j : gj(x∗) = 0, µj > 0}.

��
Definition 4.5 (Second-order necessary conditions). Assume that
f,h, g ∈ C2. If x∗ is a relative minimum regular point of the problem (4.2)–
(4.4), then there exists vectors λ and µ ≥ 0 such that constraints (4.5) and
(4.9) hold and the Hessian matrix L(x∗) = F (x∗) + λT H(x∗) + µT G(x∗) is
positive semidefinite on the tangent subspace of the active constraints at x∗.

��

4.3 Duality in Linear Programming

In this section we deal with duality in linear programming. We start by giving
the definition of a dual problem.

Definition 4.6 (Dual problem). Given the linear programming problem

minimize
x

z = cT x (4.27)

subject to
Ax ≥ b

x ≥ 0 ,
(4.28)

its dual problem is
maximize

y
z = bT y (4.29)

subject to
AT y ≤ c

y ≥ 0 ,
(4.30)

where y = (y1, . . . , ym)T are called dual variables. ��
We identify the first problem as the primal problem, and the second one

as its dual counterpart. Note how the same elements (the matrix A, and the
vectors b and c) determine both problems. Although the primal problem is
not in its standard form, this format enables us to see more clearly the sym-
metry between the primal and the corresponding dual problem. The following
theorem shows that the dual of the dual is the primal.



150 4 Duality

Theorem 4.1 (Symmetry of the duality relationship). Duality is a
symmetric relationship; i.e., if problem D is the dual of problem P , then P is
also the dual of D. ��
Proof. To see this, we rewrite the dual problem (4.29)–(4.30) as a minimiza-
tion problem with constraints of the form ≥, as in constraints (4.27)–(4.28)

minimize
y

z = −bT y

subject to
−AT y ≥ −c

y ≥ 0 .
(4.31)

Then, according to Definition 4.6, its dual is

maximize
x

z = −cT x

subject to
−Ax ≤ −b

x ≥ 0 ,
(4.32)

which is equivalent to the primal problem (4.27)–(4.28). ��
Remark 4.2. As it can be observed, every constraint of the primal problem has
a dual variable associated with it, the coefficients of the objective function of
the primal problem are the right-hand side terms of the constraints of the
dual problem and vice versa, and the coefficient matrix of the constraints of
the dual problem is the transpose of the constraint matrix of the primal one.
The primal is a minimization problem but its dual is a maximization problem.

4.3.1 Obtaining the Dual Problem from a Primal Problem
in Standard Form

In this section we address the problem of finding the dual problem when the
primal one is given in its standard form. To answer this question all we have
to do is to use Definition 4.6 of the dual problem.

Theorem 4.2 (Dual problem in standard form). The dual problem of
the problem in standard form

minimize
x

z = cT x (4.33)

subject to
Ax = b

x ≥ 0 (4.34)

is



4.3 Duality in Linear Programming 151

maximize
y

z = bT y (4.35)

subject to
AT y ≤ c . (4.36)

��
Proof. The equality Ax = b in constraint (4.34) can be replaced by the two
equivalent inequalities Ax ≥ b and −Ax ≥ −b. Then, we can write the
problem (4.33)–(4.34) as

minimize
x

z = cT x

subject to
Ax ≥ b

−Ax ≥ −b
x ≥ 0 .

Using Definition 4.6, the dual of this problem is

maximize
y(1),y(2)

z = bT y(1) − bT y(2)

that is equivalent to
maximize

y
z = bT y ,

where y = y(1) − y(2) is not restricted in sign, subject to

AT y(1) − AT y(2) ≤ c ,

which is equivalent to
AT y ≤ c .

��
Remark 4.3. If the relationship between the primal and dual problems (The-
orem 4.2) would have been taken as the definition of dual problem, then the
initially given definition would have resulted as a theorem.

4.3.2 Obtaining the Dual Problem

A linear programming problem whose formulation is not in the form (4.27)–
(4.28) also has a dual problem. To facilitate the obtention of the dual of a
given problem in any form or the primal problem from the dual one, one can
use the following sets of rules:



152 4 Duality

Rules to Be Used if the Primal Problem Is a Minimization Problem:

Rule 1. A minimization primal problem leads to a maximization dual prob-
lem, and a maximization dual problem leads to a minimization primal
problem.

Rule 2. An equality constraint in the primal (dual) problem implies that the
corresponding dual (primal) variable is unrestricted.

Rule 3. A ≥ (≤) inequality constraint in the primal (dual) problem implies
that its dual (primal) variable is nonnegative.

Rule 4. A ≤ (≥) inequality constraint in the primal (dual) problem implies
that its dual (primal) variable is nonpositive.

Rule 5. A primal (dual) nonnegative variable leads to a ≤ (≥) inequality
constraint in the dual (primal) problem.

Rule 6. A primal (dual) nonpositive variable leads to a ≥ (≤) inequality
constraint in the dual (primal) problem.

Rule 7. A primal (dual) unrestricted variable leads to an equality constraint
in the dual (primal) problem.

Rules to Be Used if the Primal Problem Is a Maximization Problem:

Rule 1. A maximization primal problem leads to a minimization dual prob-
lem, and a minimization dual problem leads to a maximization primal
problem.

Rule 2. An equality constraint in the primal (dual) problem implies that the
corresponding dual (primal) variable is unrestricted.

Rule 3. A ≥ (≤) inequality constraint in the primal (dual) problem implies
that its dual (primal) variable is nonpositive.

Rule 4. A ≤ (≥) inequality constraint in the primal (dual) problem implies
that its dual (primal) variable is nonnegative.

Rule 5. A primal (dual) nonnegative variable leads to a ≥ (≤) inequality
constraint in the dual (primal) problem.

Rule 6. A primal (dual) nonpositive variable leads to a ≤ (≥) inequality
constraint in the dual (primal) problem.

Rule 7. A primal (dual) unrestricted variable leads to an equality constraint
in the dual (primal) problem.

The above rules are summarized in Fig. 4.5.

Illustrative Example 4.2 (Dual problem). The dual of the linear pro-
gramming problem

minimize
x1, x2, x3

z = x1 + x2 − x3



4.3 Duality in Linear Programming 153

Primal (Minimize) Dual (Maximize)

Constraint

Variable Unrest. Unrest.

Primal (Maximize)Dual (Minimize)

Fig. 4.5. Schematic representation of rules for obtaining dual problems from primal
ones and vice versa

subject to
2x1 +x2 ≥ 3
x1 −x3 = 0

x2 +x3 ≤ 2
x3 ≥ 0
x2 ≤ 0

(4.37)

is
maximize

y1, y2

z = 3y1 + 2y3

subject to
2y1 +y2 = 1
y1 +y3 ≥ 1

−y2 +y3 ≤ −1
y1 ≥ 0
y3 ≤ 0 .

(4.38)

To see this, we apply the rules as follows:

Rule 1. Since the primal problem is a minimization problem, the dual one is
a maximization problem.

Rule 2. Since the second constraint in the primal problem is an equality
constraint, the second dual variable y2 is unrestricted.

Rule 3. Since the first constraint in the primal problem is ≥, the first dual
variable y1 is nonnegative.

Rule 4. Since the third constraint in the primal problem is ≤, the third dual
variable y3 is nonpositive.

Rule 5. Since the third primal variable x3 is nonnegative, the third dual
constraint is ≤.



154 4 Duality

Rule 6. Since the second primal variable x2 is nonpositive, the second dual
constraint is ≥.

Rule 7. Since the first primal variable x1 is unrestricted, the first dual con-
straint is an equality.

Using the same rules to the dual problem, we can recover the primal one
as follows:

Rule 1. Since the dual is a maximization problem, the primal is a minimiza-
tion problem.

Rule 2. Since the first constraint in the dual problem is an equality con-
straint, the first primal variable x1 is unrestricted.

Rule 3. Since the third constraint in the dual problem is ≤, the third primal
variable x3 is nonnegative.

Rule 4. Since the second constraint in the dual problem is ≥, the second
primal variable x2 is nonpositive.

Rule 5. Since the first dual variable y1 is nonnegative, the first primal con-
straint is ≥.

Rule 6. Since the third dual variable y3 is nonpositive, the third primal con-
straint is ≤.

Rule 7. Since the second dual variable y2 is unrestricted, the second primal
constraint is an equality.

��

4.3.3 Duality Theorems

The importance of the primal–dual relationship is established in the following
theorems.

Lemma 4.1 (Weak duality lemma). Let P be the LPP (4.27)–(4.28), and
D its dual (4.29)–(4.30). Let x be a feasible solution of P and y a feasible
solution of D. Then

bT y ≤ cT x . (4.39)

Proof. The proof is simple. If x and y are feasible for P and D, respectively,
then

Ax ≥ b, y ≥ 0, AT y ≤ c, x ≥ 0 .

Note, by the nonnegativity of x and y, that

bT y ≤ xT AT y ≤ xT c = cT x .

��



4.3 Duality in Linear Programming 155

Corollary 4.1. If bT ȳ = cT x̄ for some particular vectors x̄ and ȳ, feasible
for P and D, respectively, then the optimal solutions of the dual and primal
problems are ȳ and x̄, respectively. Furthermore, if x̄ is an optimal solution for
the primal problem, then, there is an optimal solution ȳ for the dual problem,
and the optimal objective function value of both problems coincides with the
common value bT ȳ = cT x̄. Otherwise, one or both of the two sets of feasible
solutions is empty.

Proof. Proving this corollary is straightforward if we realize that, using con-
straint (4.39), we obtain

cT x̄ = bT ȳ ≤ max
y

{bT y|AT y ≤ c}

≤ min
x

{cT x|Ax ≥ b, x ≥ 0}
≤ cT x̄ = bT ȳ .

Hence, all inequalities are in reality equalities and x̄ and ȳ must be optimal
solutions of P and D, respectively, as claimed. ��

The Corollary 4.1 asserts that both problems, the primal P and the dual
D, admit optimal solutions simultaneously.

In summary, one of the following two statements holds:

1. Both problems have optimal solution and their optimal values coincide.
2. One problem has unbounded optimum and the other one has an empty

feasible region.

Illustrative Example 4.3 (Primal and dual of a mill problem and
sensitivities). A small mill manufactures two types of wood tables. Each ta-
ble of type 1 requires 4 machine-hours for cutting from the wood stock to size
and 4 machine-hours finishing time (assembly, painting, etc.). Similarly, each
table of type 2 requires 3 machine-hours of cutting time and 7 machine-hours
of finishing time. The cutting and finishing equipment capacities available per
day are 40 and 56 machine-hours, respectively. Finally, each type 1 table pro-
vides $70 profit, whereas each type 2 table provides $90 profit. These data are
summarized in Table 4.1.

Table 4.1. Data of the mill planning problem

Table type Machine-hours available
1 2 per day

Cutting time (h) 4 3 40
Finishing time (h) 4 7 56
Profit ($) 70 90



156 4 Duality

Primal and dual problems are analyzed below.

Primal

In order to maximize the daily total profit, we wish to know the quantity of
each type of tables produced per day. The linear programming model of the
problem is

maximize
x1, x2

z = 70x1 + 90x2

subject to

4x1 +3x2 ≤ 40
4x1 +7x2 ≤ 56

x1, x2 ≥ 0 ,
(4.40)

where x1 and x2 are the quantities of table types 1 and 2, respectively, to be
produced per day.

The optimal solution of this model, as can be seen in Fig. 4.6, indicates
a daily production of seven type 1 tables and four type 2 tables, and a daily
maximum profit of $850. This result indicates that both cutting and finishing
resources are fully utilized, because both constraints are binding.

2 4 6 8 10

2

4

6

8

10

12

z = 250 z = 450 z = 650

z = 1250

z = 1050

z* = 850

Feasible region

x2

g1 (x) = 0

x1

g2 (x) = 0
∇ f (x*)

∇g1 (x*)
= (7, 4)x*

y1

∇g2 (x*)y2

Fig. 4.6. Graphical analysis of the mill planning problem



4.3 Duality in Linear Programming 157

Now, suppose that we wish to obtain higher daily profits. Then, an ex-
pansion of the available capacities is necessary. Suppose that the available
finishing capacity can be expanded from 56 machine-hours to 72 machine-
hours per day. How does this expansion affect the total daily profit? The
answer is given by the solution of the following linear programming problem,
where we have

maximize
x1, x2

z = 70x1 + 90x2

subject to
4x1 +3x2 ≤ 40
4x1 +7x2 ≤ 72

x1, x2 ≥ 0 .
(4.41)

In this case the optimal solution is x1 = 4 and x2 = 8 with a maximum
daily profit of $1,000 (see Fig. 4.7). This solution indicates that we can increase
the daily profit by $150 if we increase the daily finishing capacity by 72−56 =
16 machine-hours. The rate $(1,000−850)/16 = $150/16 = $75/8, at which the
objective function value will increase as the finishing capacity is increased by
1 h, is called the sensitivity or shadow price (also dual price) of the finishing
resource constraint.

A formal treatment of sensitivities is provided in Theorem 4.5 in p. 175.

x2

x1
2 4 6 8 10

2

4

6

8

10

12

z=250 z=450 z=650

z=1250

z*=1000

g1(x)=0

g2(x)=0

z=850

Feasible region

f(x*)g2(x*)y2

g1(x*)y1

x*= (4, 8)

Fig. 4.7. Graphical analysis of the expanded mill planning problem



158 4 Duality

In general, the shadow price of a constraint is the change in the optimal
value of the objective function per unit change in the right-hand side value
of the constraint, assuming that all other parameter values of the problem
remain unchanged. For many linear programming applications the shadow
prices are at least as important as the solution of the problem itself; they
indicate whether certain changes in the use of productive capacities affect
the objective function value. Shadow prices can be obtained directly from the
solution of the primal problem or determined by formulating and solving the
dual problem.

Note that for both problems (4.40) and (4.41), as the same constraints
remain active, the dual variable values are identical.

Dual

The dual of the planning mill problem (4.40) is stated as follows:

minimize
y1, y2

z = 40y1 + 56y2

subject to
4y1 +4y2 ≥ 70
3y1 +7y2 ≥ 90

y1, y2 ≥ 0 .
(4.42)

The optimal solution of this problem is y1 = 65/8, y2 = 75/8 and the
optimal objective function value is 850. Note that y1 and y2 are the shadow
prices of cutting and finishing resources, respectively, and optimal objective
function values of problems (4.40) and (4.42) coincide.

The dual problem (4.42) can be interpreted as follows. Assume that we are
willing to sell machine time (rather than produce and sell tables), provided
that we can obtain at least the same level of total profit. In this case, produc-
ing tables and selling machine time would be two equivalent alternatives; the
y1 and y2 variables would represent the sale prices of 1 h of work on the cut-
ting and finishing machines, respectively. In order to maintain a competitive
business we should set the total daily profit as low as possible, i.e, we should
minimize the function 40y1 + 56y2, where the 40 and 56 coefficients represent
the machine-hours available per day for sale of cutting and finishing machines.
The constraints (4.42) state that the total prices of the cutting and finishing
hours required for producing one unit of each type of table must not be less
than the profit expected from the sale of one unit of each type of table, and
that prices must be positive quantities. ��

The primal dual relationship is further illustrated through the example
below.

Illustrative Example 4.4 (Communication net). We are interested in
sending a message through a communication net from one node A to some



4.3 Duality in Linear Programming 159

A B

C

D

4

2 2

3

1

Fig. 4.8. Communication net in Example 4.4

other node B with minimal cost. The network consists of four nodes, A, B,
C, and D, and there are channels connecting A and C, A and D, D and C,
C and B, and D and B, with associated costs per unit of message 4, 2, 3, 1,
and 2, respectively (see Fig. 4.8).

Primal

If variable xPQ denotes the fraction of the message going through the channel
connecting any node P with any other node Q, the following constraints must
be satisfied:

1. No fraction of the total message is lost in node C

xAC + xDC = xCB . (4.43)

2. No part of the message is lost in node D

xAD = xDC + xDB . (4.44)

3. The complete message arrives at B

1 = xCB + xDB . (4.45)

If we write the above constraints in matrix form, we get

xAC +xDC −xCB = 0
xAD −xDC −xDB = 0

xCB +xDB = 1
xAC , xAD, xDC , xCB , xDB ≥ 0 .

(4.46)

Note that if we add the last two constraints and subtract the first one,
we get xAC + xAD = 1. This means that the whole message departs from A.
Since it can be obtained as a linear combination of the other three, it must
not be included to avoid redundancy.



160 4 Duality

Consequently, the primal approach to this problem consists of minimizing
the total cost of sending the messages,

minimize
xAC , xAD, xDC , xCB , xDB

z = 4xAC + 2xAD + 3xDC + xCB + 2xDB

subject to
xAC +xDC −xCB = 0

xAD −xDC −xDB = 0
xCB +xDB = 1

xAC , xAD, xDC , xCB , xDB ≥ 0 .

(4.47)

Dual

Alternatively, we can assume that we can buy the information of the messages
at each node and sell them at a different node. Thus, the dual approach can
be interpreted as finding the prices yA, yB , yC , yD of the fractions of the total
message in each node, assuming that fractions of messages are bought in one
node and sold in another. The net benefit obtained in such a transaction
would be the difference of prices between the arriving and departing nodes. If
we normalize these conditions by setting yA = 0, the benefits are

yC − yA = yC

yD − yA = yD

yC − yD

yB − yC

yB − yD .

We must ensure that these benefits are not greater than the prices we
already know,

yC ≤ 4
yD ≤ 2

yC − yD ≤ 3
yB − yC ≤ 1
yB − yD ≤ 2 .

The objective is now to maximize the revenue when taking the total mes-
sage from node A to node B, i.e., the dual problem becomes

maximize
yC , yD, yB

yB

subject to
yC ≤ 4

yD ≤ 2
yC −yD ≤ 3

−yC +yB ≤ 1
−yD +yB ≤ 2 .

(4.48)

��



4.4 Duality in Nonlinear Programming 161

4.4 Duality in Nonlinear Programming

In this section the results obtained for linear programming problems are gen-
eralized to nonlinear programming problems. Consider the following general
nonlinear primal problem:

minimize
x

zP = f(x) (4.49)

subject to
h(x) = 0
g(x) ≤ 0 ,

(4.50)

where f : IRn → IR, h : IRn → IR �, g : IRn → IRm.
The dual problem requires the introduction of the dual function defined

as

φ(λ,µ) = Infimum
x

{f(x) + λT h(x) + µT g(x)} , (4.51)

where λ∗,µ∗ are the multipliers associated with the constraints (4.50) for the
optimal solution x∗ of problem (4.49)–(4.50).

The dual problem of the primal problem (4.49)–(4.50) is then defined as
follows:

maximize
λ,µ

zD = φ(λ,µ) (4.52)

subject to

µ ≥ 0 . (4.53)

Using the Lagrangian

L(x,λ,µ) = f(x) + λT h(x) + µT g(x) ,

we can rewrite the dual problem as

maximize
λ,µ;µ ≥ 0

[
Infimum

x
L(x,λ,µ)

]
. (4.54)

Illustrative Example 4.5 (Dual function).

minimize
x1, x2

z = x2
1 + x2 (4.55)

subject to
−x1 + 2x2 = 0

x1x2 ≥ 2.
(4.56)



162 4 Duality

The Lagrangian function is

L(x1, x2, λ, µ) = x2
1 + x2 + λ(−x1 + 2x2) + µ2(−x1x2 + 2)

and the KKT conditions become

∂L(x1, x2, λ, µ)
∂x1

= 2x1 − λ − µx2 = 0 (4.57)

∂L(x1, x2, λ, µ)
∂x2

= 1 + 2λ − µx1 = 0 (4.58)

−x1 + 2x2 = 0 (4.59)
−x1x2 + 2 ≤ 0 (4.60)

µ(−x1x2 + 2) = 0 (4.61)
µ ≥ 0 , (4.62)

which lead to the following primal and dual solutions:

z∗ = 5, x∗
1 = 2, x∗

2 = 1, λ∗ = 7/4, µ∗ = 9/4 .

For obtaining the dual problem we first calculate the dual function

φ(λ, µ)= inf
x1,x2

L(x, y, λ, µ)= inf
x1,x2

[
x2

1 + x2+λ(−x1 + 2x2)+µ2(−x1x2 + 2)
]

,

and since

∂L(x1, x2, λ, µ)
∂x1

= 2x1 − λ − µx2 = 0

∂L(x1, x2, λ, µ)
∂x2

= 1 + 2λ − µx1 = 0 ,

which leads to
x1 =

1 + 2λ
µ

, y =
2 + 4λ − λµ

µ2
,

the dual function becomes

φ(λ, µ) =
(1 + 2λ)2 − λµ(1 + 2λ) + 2µ3

µ2

and then the dual problem is

maximize
λ, µ

φ(λ, µ) =
(1 + 2λ)2 − λµ(1 + 2λ) + 2µ3

µ2

subject to µ ≥ 0.



4.4 Duality in Nonlinear Programming 163

Finally, since

∂φ(λ, µ)
∂λ

=
4λ(2 − µ) − µ + 4

µ2
= 0

∂φ(λ, µ)
∂µ

= 2 +
(1 + 2λ) [λ(µ − 4) − 2]

µ3
= 0

leads to
λ∗ = 7/4, µ∗ = 9/4 ,

which is the solution of the dual problem, and obviously coincides with that
obtained from the KKT conditions above. ��
Illustrative Example 4.6 (Dual function). Consider the same problem
as the Illustrative Example 4.1. To obtain the dual function φ(µ1, µ2, µ3) one
needs to obtain the Infimum,

φ(µ1, µ2, µ3) = Infimum
x1, x2

L(x1, x2, µ1, µ2, µ3) .

From conditions (4.14) and (4.15), and since

∂L(x1, x2, µ1, µ2, µ3)
∂x1

= −2x1 + µ1 − µ2 = 0

∂L(x1, x2, µ1, µ2, µ3)
∂x2

= −2x2 + µ1 − µ3 = 0

leads to
x1 =

µ1 − µ2

2
, x2 =

µ1 − µ3

2
,

the dual function becomes

φ(µ1, µ2, µ3) =
1
4
[
(µ1 − µ2)2 + (µ1 − µ3)2 − 4µ1

]
.

Then, the dual problem becomes

maximize
µ1, µ2, µ3

φ(µ1, µ2, µ3)

subject to
µ1, µ2, µ3 ≥ 0 ,

which has following two possible solutions:

µ1 = 2, µ2 = 0, µ3 = 2, φ(µ1, µ2, µ3) = −1

and
µ1 = 2, µ2 = 2, µ3 = 0, φ(µ1, µ2, µ3) = −1 .

��



164 4 Duality

Remark 4.4. We assume that f,h, and g are such that the infimum of the
Lagrangian function is always attained at some x, so that the “infimum”
operation in problems (4.51) and (4.54) can be replaced by the “minimum”
operation. Then, problem (4.54) is referred to as the max–min dual problem.

In this situation, if we denote by x(λ,µ) a point where the minimum of
the Lagrangian is attained (considered as a function of the multipliers), we
can write

φ(λ,µ) = f(x(λ,µ)) + λT h(x(λ,µ)) + µT g(x(λ,µ)) .

On the other hand, under the assumption of convexity of f and g, the
Lagrangian is convex in x, and therefore at the minimum its gradient should
vanish

∇φ(λ,µ) = ∇f(x(λ,µ)) + λT∇h(x(λ,µ)) + µT∇g(x(λ,µ)) = 0 . (4.63)

This last identity can be utilized to derive an expression for the gradient
of the dual function as well as its Hessian. Indeed, according to the chain rule

∇µφ(λ,µ) =
[
∇f(x(λ,µ)) + λT∇h(x(λ,µ)) + µT∇g(x(λ,µ))

]T

× ∇µx(λ,µ) + g(x(λ,µ)) , (4.64)

and by condition (4.63)

µφ(λ,µ) = g(x(λ,µ)) . (4.65)

One must be careful in using expresion (4.65) because of the discontinuity
of expression (4.64) with respect to µ. Nevertheless, this is not a problem in
practice.

Similarly, we obtain

∇λφ(λ,µ) = h(x(λ,µ)) . (4.66)

Note that the gradient of the dual function is the vector of mismatches of
the corresponding constraints.

Remark 4.5. For nondifferentiable functions, the subgradients play the same
as the gradients play for differentiable functions. Therefore, the important
concept of subgradient is defined below.

Definition 4.7 (Subgradient and subdifferential). Let C be a convex
nonempty set in 
n and let φ : C → 
 be convex. Then, α is called a subgra-
dient of φ(λ) at λ̃ ∈ C if

φ(λ) ≥ φ(λ̃) + αT (λ − λ̃); ∀λ ∈ C . (4.67)

Analogously, let φ : C → 
 be concave. Then, α is called a subgradient of φ(λ)
at λ̃ ∈ C if



4.4 Duality in Nonlinear Programming 165

(a) (b)

λ λλ λ λ λ

α

α

Subgradient

Subgradient

Subdifferential

φ α(   ) +     (    -    )λ λ  λT φ α(   ) +     (    -    )λ λ  λT

φ λ(   )

φ λ(   )

φ λ(   )φ λ(   )

Fig. 4.9. Subgradient and subdifferential graphical illustration: (a) concave func-
tion and (b) convex function

φ(λ) ≤ φ(λ̃) + αT (λ − λ̃); ∀λ ∈ C . (4.68)

The set of all subgradients of φ(λ) in λ̃ is a convex set known as the subdif-
ferential of φ(λ) at λ̃.

Figure 4.9 illustrates the concepts of subgradient and subdifferential.
��

Illustrative Example 4.7 (Subgradient). Consider the following prob-
lem:

minimize
x1, x2

−2x1 + x2

subject to

x1 + x2 =
5
2

(x1, x2) ∈ X ,

where X = {(0, 0), (0, 2), (2, 0), (2, 2), (5/4, 5/4)}.
The dual function φ(λ) is obtained solving the following problem:

φ(λ) = minimum
x1, x2

−2 x1 + x2 + λ

(
x1 + x2 − 5

2

)
subject to

(x1, x2) ∈ X .



166 4 Duality

The explicit expression of the dual function for this example is given by

φ(λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2 +

3λ

2
if λ ≤ −1

−4 − λ

2
if −1 ≤ λ ≤ 2

−5λ

2
if λ ≥ 2 .

Differentiating with respect to λ we obtain

α(λ) =
dφ(λ)

dλ
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3
2

if λ ≤ −1

−1
2

if −1 ≤ λ ≤ 2

−5
2

if λ ≥ 2 ,

which is the subgradient of the dual function. Note that at the values λ = −1
and λ = 2 there are many possible subgradients, thus their corresponding
subdifferentials are

λ̃ = −1; α ∈ [−1/2, 3/2]
λ̃ = 2; α ∈ [−5/2,−1/2] ,

as shown in Fig. 4.10. ��

-1

-2

-3

-5

-6

-4

-4 -3 -2 -1 -1 -2 -3 -4

λ

3/2

-1/2

α

α
-1/2

-5/2

Subgradients

φ λ(   )

= 2λ= -1λ

Fig. 4.10. Graphical illustration of the dual function, subgradient, and subdiffer-
ential for the Illustrative Example 4.7



4.4 Duality in Nonlinear Programming 167

Concerning the Hessian, note that by differentiating conditions (4.65) and
(4.66) with respect to µ and λ, respectively, we obtain

∇2
µφ(λ,µ) = ∇xg(x(λ,µ)) ∇µx(λ,µ) (4.69)

and
∇2

λφ(λ,µ) = ∇xh(x(λ,µ)) ∇λx(λ,µ) . (4.70)

To obtain an expression for ∇µx(λ,µ) and ∇λx(λ,µ), we differentiate
expression (4.63) with respect to µ and λ, respectively. The results are

∇2
xL(x(λ,µ),λ,µ) ∇µx(λ,µ) + ∇xg(x(λ,µ)) = 0 , (4.71)

and a similar equation exchanging λ by µ and h by g, i.e.,

∇2
xL(x(λ,µ),λ,µ) ∇λx(λ,µ) + ∇xh(x(λ,µ)) = 0 . (4.72)

Substituting these equations into (4.69) and (4.70), respectively, we obtain

∇2
µφ(λ,µ) = −∇xg(x(λ,µ))[∇2

xL(x(λ,µ),λ,µ)]−1 ∇xg(x(λ,µ)) ,
(4.73)

and the parallel formula for ∇2
λφ(λ,µ) is

∇2
λφ(λ,µ) = −∇xh(x(λ,µ))[∇2

xL(x(λ,µ),λ,µ)]−1 ∇xh(x(λ,µ)) .
(4.74)

Finally, if we are interested in the mixed second partial derivatives

∇2
λ µφ(λ,µ) ,

similar computations lead to

∇2
λ µφ(λ,µ) = −∇xg(x(λ,µ))[∇2

xL(x(λ,µ),λ,µ)]−1 ∇xh(x(λ,µ)) ,

(4.75)
and similarly

∇2
λ µφ(λ,µ) = −∇xh(x(λ,µ))[∇2

xL(x(λ,µ),λ,µ)]−1 ∇xg(x(λ,µ)) .

(4.76)
To show that the definition of a dual problem in nonlinear programming

is equivalent to Definition 4.6 for linear programming problems, we provide
the following example.

Illustrative Example 4.8 (Linear programming). Consider the follow-
ing dual problem of the linear programming primal problem:

minimize cT x (4.77)



168 4 Duality

subject to

Ax = a (4.78)
Bx ≤ b . (4.79)

Using the rules in Sect. 4.3.2, p. 151 the dual problem becomes:

maximize
λ,µ

λT a + µT b (4.80)

subject to
AT λ + BT µ = c (4.81)

and
µ ≤ 0 . (4.82)

On the other hand, the Lagrangian function of (4.77)–(4.79) becomes

L(x,λ,µ) = cT x + λT (Ax − a) + µT (Bx − b)

= (cT + λT A + µT B)x − λT a − µT b .

(4.83)

For this function to have a minimum we must have

(cT + λT A + µT B) = 0 , (4.84)

which leads to
λT A + µT B = −cT , (4.85)

and the minimum is
φ(λ,µ) = −λT a − µT b. (4.86)

Thus, the dual problem becomes

maximize
λ,µ

−λT a − µT b (4.87)

subject to
λT A + µT B = −cT (4.88)

and
µ ≥ 0 , (4.89)

which, changing signs to λ and µ, is equivalent to (4.80)–(4.82).
Note that the dual variables are λ and µ. ��



4.4 Duality in Nonlinear Programming 169

Illustrative Example 4.9 (Numerical example). Consider the following
problem:

minimize
x1, x2

zP = 40x1 + 56x2

subject to
4x1 +4x2 ≥ 70
3x1 +7x2 ≥ 90

x1, x2 ≥ 0 .

The optimal solution of this problem is x∗
1 = 65/8, x∗

2 = 75/8, and the
optimal objective function value is 850.

The above problem can be written as

minimize
x1, x2

z = 40x1 + 56x2

subject to
−4x1 −4x2 ≤ −70
−3x1 −7x2 ≤ −90
−x1 ≤ 0

−x2 ≤ 0 .

The Lagrangian function for this problem is

L(x,µ) = 40x1 + 56x2 + µ1(−4x1 − 4x2 + 70) + µ2(−3x1 − 7x2 + 90)
−µ3x1 − µ4x2

= (40 − 4µ1 − 3µ2 − µ3)x1 + (56 − 4µ1 − 7µ2 − µ4)x2

+70µ1 + 90µ2 ,

which has a minimum only if (note the non-negativity of x1, x2)

4µ1 +3µ2 +µ3 = 40
4µ1 +7µ2 +µ4 = 56 .

The minimum is
φ(µ) = 70µ1 + 90µ2 .

Then, we conclude that the dual problem is

maximize
µ1, µ2

φ(µ) = 70µ1 + 90µ2

subject to
4µ1 +3µ2 +µ3 = 40
4µ1 +7µ2 +µ4 = 56
µ1 ≥ 0

µ2 ≥ 0
µ3 ≥ 0

µ4 ≥ 0 ,



170 4 Duality

which, considering µ3 and µ4 as slack variables, is equivalent to

maximize
µ1, µ2

zD = 70µ1 + 90µ2

4µ1 +3µ2 ≤ 40
4µ1 +7µ2 ≤ 56
µ1 ≥ 0

µ2 ≥ 0.

The optimal solution of this problem is µ∗
1 = 7, µ∗

2 = 4, and the optimal
objective function value is 850.

This means (see Table 4.2) that the primal objective function zP will
change in 7 units per each unit of change of the right-hand side whose value is
70, and 4 units per each unit of change of the right-hand side whose value is
90, and that dual objective function zD will change in 65/8 units per each unit
of change of the right-hand side 40, and 75/8 units per each unit of change of
the right-hand side 56. ��

The following theorem shows that any value of the objective function of the
dual problem is a lower bound of the optimal value of the objective function
of the primal problem. This may be used to terminate computations in an
iterative algorithm where such values are available.

Theorem 4.3 (Weak duality). For any feasible solution x of the primal
problem (4.49)–(4.50) and for any feasible solution, λ,µ, of the dual problem
(4.52)–(4.53), the following holds

f(x) ≥ φ(λ,µ) . (4.90)

��

Table 4.2. Numerical example: primal and dual problems with their solutions

Primal Dual

Minimize
x1, x2

zP = 40x1 + 56x2 Maximize
µ1, µ2

zD = 70µ1 + 90µ2

subject to subject to

4x1 +4x2 ≥ 70

3x1 +7x2 ≥ 90

x1 ≥ 0

x2 ≥ 0

4µ1 +3µ2 ≤ 40

4µ1 +7µ2 ≤ 56

µ1 ≥ 0

µ2 ≥ 0

Optimal solution

x∗
1 = 65/8, x∗

2 = 75/8 µ∗
1 = 7, µ∗

2 = 4



4.4 Duality in Nonlinear Programming 171

Proof. From the definition of λ,µ, for every feasible x and for every µ ≥
0,µ ∈ IRm and λ ∈ IR �, we have

φ(λ,µ) = Infimum
y

[
f(y) + λT h(y) + µT g(y)

]
≤f(x)+λT h(x)+µT g(x)

(4.91)
and

f(x) + λT h(x) + µT g(x) ≤ f(x) (4.92)

because h(x) = 0 and µT g(x) ≤ 0 for being feasible solutions, therefore

φ(λ,µ) ≤ f(x) . (4.93)

��
If the feasible regions of both primal and dual problems are nonempty,

then expression (4.90) implies that sup(φ) and inf(f), both taken over their
respective constraint sets, are finite. Certainly, neither the supremum nor the
infimum need to be attained at any feasible point. If they are, then expression
(4.90) yields the result that if both primal an dual are feasible, both have
optimal solutions. A corollary of high practical interest is stated below.

Corollary 4.2 (Primal and dual optimality).
1. The following relation always holds

sup{φ(λ,µ)|µ ≥ 0} ≤ inf{f(x)|h(x) = 0, g(x) ≤ 0} . (4.94)

2. If f(x∗) = φ(λ∗,µ∗) for some feasible solution x∗ of the primal prob-
lem (4.49)–(4.50) and for some feasible solution (λ∗,µ∗) of the dual prob-
lem (4.52)–(4.53), then x∗ and (λ∗,µ∗) are optimal solutions of the primal
and dual problems, respectively. This solution defines a saddle point of the
Lagrangian corresponding to a maximum with respect to λ and µ and a min-
imum with respect to x (see Fig. 4.11).

3. If sup{φ(λ,µ) : µ ≥ 0} = +∞, then the primal problem has no feasible
solution.

4. If inf{f(x) : h(x) = 0, g(x) ≤ 0} = −∞, then φ(λ,µ) = −∞ for every
λ ∈ IR� and µ ≥ 0.

The proof of this corollary can be found for instance in [20].
If (4.94) does not hold with equality, the definition of duality gap, stated

below, is of interest.

Definition 4.8 (Duality gap). The difference

sup{φ(λ,µ)|µ ≥ 0} − inf{f(x)|h(x) = 0, g(x) ≤ 0}
is called the duality gap of the dual problems (4.49)–(4.50) and (4.52)–(4.53).

��



172 4 Duality

x

λ, µ

x*

λ, µ* *
φ (       )λ, µ

f (x*) =    (        )λ, µ* *φ

(x*,        )λ, µ
(x,       )λ, µ

Fig. 4.11. Graphical illustration of saddle point (x∗, λ∗, µ∗) of the Lagrangian

Illustrative Example 4.10 (Duality gap). Consider the same problem
as the one considered in the Illustrative Example 4.7,

minimize
x1, x2

−2x1 + x2

subject to

x1 + x2 =
5
2

(x1, x2) ∈ X ,

where X = {(0, 0), (0, 2), (2, 0), (2, 2), (5/4, 5/4)}. Its dual function is given by
the explicit expression

φ(λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2 +

3λ

2
if λ ≤ −1

−4 − λ

2
if −1 ≤ λ ≤ 2

−5λ

2
if λ ≥ 2 ,

shown in Fig. 4.12. The optimal solution of the dual problem is λ∗ = −1 with
objective function value φ(λ∗) = −7/2.



4.4 Duality in Nonlinear Programming 173

= 2λ
-1

-2

-3

-5

-6

-4

-4 -3 -2 -1 -1 -2 -3 -4

λ

Duality gap

f (x*) - φ λ( *) = 9/4

f (x*) = -5/4

φ λ( *) = -7/4

φ λ(   )

λ* = -1

Fig. 4.12. Graphical illustration of the duality gap for the Illustrative Example
4.10

It is easy to verify that x∗
1 = 5/4 and x∗

2 = 5/4 is the optimal solution of
the primal problem with an objective function value equal to f(x∗) = −5/4.

Therefore, the difference f(x∗)−φ(λ∗) = −5/4 + 7/2 = 9/4 is the duality
gap shown in Fig. 4.12. ��

If a multiplier vector solves the dual problem and there is no duality gap,
i.e., if the relationship (4.94) is strictly satisfied, then the solutions of the
Lagrangian associated with this multiplier vector are optimal solutions of the
primal problem. This result introduces a way to solve the primal problem
by means of solving the dual problem. The main result consists of obtaining
conditions that guarantee the nonexistence of the duality gap. This is the
situation of problems in which convexity conditions hold.

Theorem 4.4 (Duality theorem for convex problems). Consider a
convex mathematical programming problem such as (4.49)–(4.50). If x∗ solves
the primal problem, then its associated vector of multipliers (λ∗,µ∗) solves
the dual problem, and (µ∗)T g(x∗) = 0. Conversely, if (λ∗,µ∗) solves the dual
problem, and there exists a solution, x∗, of the Lagrangian associated with this
vector of multipliers such that (µ∗)T g(x∗) = 0, then x∗ is an optimal solution
of the primal problem. ��
Proof. If x∗ solves the primal problem and (µ∗,λ∗) is its associated vector of
multipliers, we know that they should be a solution of the KKT conditions



174 4 Duality

∇f(x∗) + λ∗∇h(x∗) + µ∗∇g(x∗) = 0

µ∗g(x∗) = 0

µ∗ ≥ 0

g(x∗) ≤ 0

h(x∗) = 0 .

The minimization problem defining φ(λ∗,µ∗) is

φ(λ∗,µ∗) = Infx {f(x) + λ∗T
h(x) + µ∗T g(x)} .

The condition coming from the above KKT system

∇f(x∗) + λ∗∇h(x∗) + µ∗∇g(x∗) = 0 ,

together with the convexity of the objective function (note that µ∗ ≥ 0)

f(x) + λ∗T
h(x) + µ∗T g(x) ,

imply that x∗ is a local minimizer for the problem to determine φ(λ∗,µ∗) and
therefore

φ(λ∗,µ∗) = f(x∗) ,

and by Corollary 4.2 the pair (λ∗,µ∗) is an optimal solution of the dual
problem. Note that the condition

µ∗g(x∗) = 0

also holds.
Conversely, assume that the pair (λ∗,µ∗) is an optimal solution for the

dual problem, and that x∗ is a corresponding solution of the associated La-
grangian such that (µ∗)T g(x∗) = 0. Applying the KKT conditions to the
dual, it can be concluded that

∇µφ(λ∗,µ∗) ≤ 0, ∇λφ(λ∗,µ∗) = 0 .

But taking into account expressions (4.65) and (4.66), we obtain

g(x∗) ≤ 0; h(x∗) = 0 .

This implies that x∗ is feasible for the primal. Then

φ(λ∗,µ∗) = f(x∗) + λ∗T
h(x∗) + µ∗T g(x∗) = f(x∗) ,

and by Corollary 4.2 we conclude the proof. ��
Illustrative Example 4.11 (Dual problem). Consider the following (pri-
mal) problem:



4.4 Duality in Nonlinear Programming 175

minimize
x1, x2

zP = x2
1 + x2

2

subject to

x1 + x2 ≤ 4
−x1 ≤ 0
−x2 ≤ 0 .

The unique optimal solution to this problem is (x∗
1, x

∗
2) = (0, 0) with the

optimal objective function value equal to 0. Let us formulate the dual problem.
We need first to find the dual function

φ(µ1, µ2, µ3) = min
x∈IR2

{x2
1 + x2

2 + µ1(x1 + x2 − 4) + µ2(−x1) + µ3(−x2)}
= min

x1
{x2

1 + (µ1 − µ2)x1} + min
x2

{x2
2 + (µ1 − µ3)x2} − 4µ1 .

After algebra manipulation we explicitly find the dual function

φ(µ) = −1
4
[(µ1 − µ2)2 + (µ1 − µ3)2] − 4µ1 ,

an the dual problem becomes

supremum
µ ≥ 0

φ(µ) .

Note that the dual function is concave. The dual problem optimum is
attained at µ∗

1 = µ∗
2 = µ∗

3 = 0 and z∗D = φ(µ∗) = 0. ��
In the following, relevant sensitivity results are derived.

Theorem 4.5 (Sensitivities are given by dual variables). Consider the
following general nonlinear primal problem:

minimize
x

zP = f(x) (4.95)

subject to
h(x) = a : λ
g(x) ≤ b : µ ,

(4.96)

where λ and µ are the dual variables and assume that its solution is a reg-
ular point and that no degenerate inequality constraints exist. Assume also
that sufficient conditions (4.4) for a minimum hold. Then, the values of the
dual variables, also called shadow prices, give the sensitivity of the objective
function optimal value to changes in the primal constraints, i.e.,

∂f(x)
∂ak

∣∣∣∣
x∗

= −λk,
∂f(x)
∂bj

∣∣∣∣
x∗

= −µj . (4.97)

��



176 4 Duality

Proof. If the optimal values for the primal and dual exist, they satisfy

f(x) = φ(λ,µ) = f(x) + λT h(x) + µT g(x) − λT a − µT b

= f(x) + λT h(x) + µT g(x) −
�∑

k=1

λkak −
m∑

j=1

µjbj ,

then, we have (4.97), which proves that the values of the dual variables are
the sensitivities of the objective function to changes in the right-hand sides of
(4.96). ��

It is relevant at this point to stress that in some instances it may be
important to look at duality partially, in the sense that some but not all
constraints are dualized. Those restrictions not dualized are incorporated as
such in the definition of the dual function. This is in fact the underlying
driving motivation for the Lagrangian decomposition techniques.

4.5 Illustration of Duality and Separability

To illustrate the relationship between primal and dual problems and separa-
bility, consider a single commodity that is produced and supplied under the
following conditions:

1. Different producers compete in a single market.
2. Demand in every time period of a study horizon has to be strictly satisfied.
3. No storage capacity is available.
4. Producers have different production cost functions and production con-

straints.

We consider two different approaches to this problem (i) the centralized
or primal approach and (ii) the competitive or dual approach.

A centralized (primal) approach to this problem is as follows. Produc-
ers elect a system operator which is in charge of guaranteeing the supply of
demand for every time period. To this end, the system operator:

1. is entitled to know the actual production cost function of every producer
and its production constraints,

2. knows the actual commodity demand in every time period,
3. has the power to dictate the actual production of every producer.

The main elements of this problem are:

Data.
cti(pti): production cost of producer i in period t to produce pti

Πi: producer i feasible operating region
dt: demand in period t



4.5 Illustration of Duality and Separability 177

T : number of time periods
I: number of producers.

Variables.
pti: amount of commodity produced by producer i during period t.

Constraints.

I∑
i=1

pti = dt; t = 1, . . . , T (4.98)

pti ∈ Πi; t = 1, . . . , T ; i = 1, . . . , I. (4.99)

Constraints (4.98) enforce for every time period the strict supply of de-
mand, and constraints (4.99) enforce the operational limits of every pro-
ducer.

Function to Be Optimized. Because the operator has the objective of
minimizing total production cost, it has to solve the following problem:

minimize
pti

T∑
t=1

I∑
i=1

cti(pti) , (4.100)

which is the sum of the production costs of all producers over all time
periods.

Thus, the primal problem is as follows:

minimize
pti

T∑
t=1

I∑
i=1

cti(pti) (4.101)

subject to

I∑
i=1

pti = dt; t = 1, . . . , T (4.102)

pti ∈ Πi; t = 1, . . . , T ; i = 1, . . . , I. (4.103)

The solution of this problem provides the optimal level of production of
every producer. Then the system operator communicates its optimal produc-
tion to every producer, which actually produces this optimal value.

Note that the approach explained is a centralized one. The system operator
has knowledge of the production cost functions and the production constraints
of every producer can determine the actual (optimal) production of every
producer, and has the power to force every producer to produce its centrally
determined optimal value.



178 4 Duality

We analyze then the structure of the dual problem of the cost minimization
primal problem (4.101)–(4.103).

If partial duality over constraints (4.102) is carried out, the Lagrangian
function has the form

L(pti, λt) =
T∑

t=1

I∑
i=1

cti(pti) +
T∑

t=1

λt

(
dt −

I∑
i=1

pti

)
. (4.104)

Arranging terms, this Lagrangian function can be expressed as

L(pti, λt) =
I∑

i=1

[
T∑

t=1

(cti(pti) − λt pti)

]
+

T∑
t=1

λt dt. (4.105)

The evaluation of the dual function for a given value of the Lagrange
multipliers λt = λ̂t (t = 1, . . . , T ) is achieved by solving the problem

minimize
pti

L(pti, λ̂t) (4.106)

subject to

pti ∈ Πi; t = 1, . . . , T ; i = 1, . . . , I . (4.107)

Using the explicit expression (4.105) for the Lagrangian function, the prob-
lem presented above entails

minimize
pti

I∑
i=1

[
T∑

t=1

(
cti(pti) − λ̂t pti

)]
+

T∑
t=1

λ̂t dt (4.108)

subject to

pti ∈ Πi; t = 1, . . . , T ; i = 1, . . . , I . (4.109)

Taking into account that the expression
∑T

t=1 λ̂t dt is constant, the previ-
ous problem reduces to

minimize
pti

I∑
i=1

[
T∑

t=1

(
cti(pti) − λ̂t pti

)]
(4.110)

subject to

pti ∈ Πi; t = 1; . . . , T ; i = 1, . . . , I . (4.111)

This problem has a very remarkable property of being separable, i.e., it
decomposes by producer. The individual problem of producer j is therefore
(note the sign change of the objective function)



4.5 Illustration of Duality and Separability 179

maximize
ptj

T∑
t=1

[
λ̂tptj − ctj(ptj)

]
(4.112)

subject to

ptj ∈ Πj ; t = 1, . . . , T . (4.113)

Therefore, the evaluation of the dual function can be achieved by solving
problem (4.112)–(4.113) for every producer, namely, I times.

What is again particularly remarkable is the interpretation of problem
(4.112)–(4.113); it represents the maximization of the profit of producer j sub-
ject to its production constraints. The Lagrange multipliers λt (t = 1, . . . , T )
are naturally interpreted as the selling prices of the commodity in periods
t = 1, . . . , T .

It can be concluded that to evaluate the dual function, every producer has
to solve its own profit maximization problem, and then the operator adds the

maximum profit of every producer and the constant term
T∑

t=1

λ̂t dt.

The duality theorem states that, under certain convexity assumptions,
the solutions of the primal and the dual problems are the same in terms of
the objective function value. It also states that the evaluation of the dual
function for the optimal values of Lagrangian multipliers λ∗

t (t = 1, . . . , T )
results in optimal values for productions p∗ti (t = 1, . . . , T ; i = 1, . . . , I). As a
consequence, the solution of the primal problem can be obtained solving the
dual one.

Duality theory also states that under very general conditions in the struc-
ture of the primal problem, the dual function is concave, and therefore, it can
be maximized using a simple steepest-ascent procedure.

To use a steepest-ascent procedure, it is necessary to know the gradient
of the dual function. Duality theory provides us with a simple expression
for the gradient of the dual function [see expressions (4.65) and (4.66)]. For
productions pti (t = 1, . . . , T ; i = 1, . . . , I) the components of the gradient of
the dual function are

dt −
I∑

i=1

pti; t = 1, . . . , T . (4.114)

That is, the component t of the gradient of the dual function is the actual
demand imbalance in period t.

A steepest-ascent procedure to solve the dual problem (and therefore the
primal one) includes the following steps:

1. The system operator sets up initial values of Lagrange multipliers (selling
prices).

2. Using the Lagrangian multipliers presented above, every producer maxi-
mizes its own profit meeting its own production constraints.



180 4 Duality

3. The operator calculates the demand imbalance in every time period (com-
ponents of the gradient of the dual function).

4. If the norm of the gradient of the dual function is not sufficiently small,
a steepest-ascent iteration is performed and the procedure continues in 2.
Otherwise the procedure concludes, the dual solution has been attained.

The preceding four-steps algorithm can be interpreted in the framework
of a competitive market. This is done below:

1. The market operator broadcasts to producers the initial (k = 1) value of
selling price for every period, λ

(k)
t (t = 1, . . . , T ).

2. Every producer j solves its profit maximization problem,

maximize
ptj

T∑
t=1

(
λ

(k)
t ptj − ctj(ptj)

)
(4.115)

subject to

ptj ∈ Πj ; ∀t , (4.116)

and sends to the market operator its optimal production schedule, p
(k)
tj

(t = 1, . . . , T (j = 1, . . . , I).
3. The market operator computes the demand imbalance in every time period

dt −
I∑

i=1

p
(k)
ti ; t = 1, . . . , T , (4.117)

and updates prices proportionally to imbalances

λ
(k+1)
t = λ

(k)
t + K

(
dt −

I∑
i=1

p
(k)
ti

)
; t = 1, . . . , T , (4.118)

where K is a proportionality constant.
4. If prices remain constant in two consecutive rounds, stop; the optimal so-

lution (market equilibrium) has been attained. Otherwise, continue with
Step 2.

This dual solution algorithm can be interpreted as the functioning of a
multiround auction. In fact, economists call this iterative procedure a Wal-
rasian auction [29].

A Walrasian auction preserves the privacy of the corporate information
(cost function and production constraints) of every producer and allows them
to maximize their respective own profits.

Some comments are in order. The primal approach is centralized, and the
system operator has complete information of the production cost function



4.7 Exercises 181

and operation constraints of every producer. Moreover, it is given the power
of deciding how much every producer should produce.

As opposed to the primal approach, the dual approach is decentralized
in nature and every producer maintains the privacy of its production cost
function and operation constraints. Furthermore, every producer decides how
much to produce to maximize its own benefits.

Under some assumptions, duality theory guarantees that both approaches
yield identical results.

4.6 Concluding Remarks

This chapter addresses the classical topic of duality in both linear and nonlin-
ear programming. After stating the Karush–Kuhn–Tucker optimality condi-
tions, the dual problem is derived for both linear and nonlinear problems. The
chapter concludes illustrating how duality can be used to attain a separable
dual problem.

Dual variables are the crucial communication instruments used by the
subproblems that result from applying any decomposition procedure to a de-
composable problem. Moreover, dual variables are sensitivity parameters that
inform on the objective function changes due to changes on the right-hand
sides of the constraints.

This chapter provides background material of high interest to address the
following chapters. Additional material on duality can be found in the classical
manuals by Bazaraa et al. [20] and by Luenberger [23].

4.7 Exercises

Exercise 4.1. Solve the following problems by applying KKTCs:

1.
maximize

x1, x2

z = x1 − exp(−x2)

subject to

− sin x1 + x2 ≤ 0
x1 ≤ 3 .

2.
minimize

x1, x2

z = (x1 − 4)2 + (x2 − 3)2

subject to

x2
1 − x2 ≤ 0

x2 ≤ 4 .



182 4 Duality

3.
maximize

x1, x2

z = x2

subject to

x2
1 − x2

2 ≤ 4
−x2

1 + x2 ≤ 0
x1, x2 ≥ 0 .

Exercise 4.2. Consider the following problem:

minimize
x1, x2, x3, x4

z = 3x1 + x2 − x4

subject to
x1 +x2 −x3 −x4 = 4

2x1 −x2 +x4 ≤ 0
3x2 +x3 −2x4 ≥ 1

x1, x2 ≥ 0
x4 ≤ 0 .

Build the dual problem, solve both problems, and check that the optimal
values coincide.

Exercise 4.3. Consider the following problem:

minimize
x1, x2

z = x1

subject to

x2
1 + x2

2 = 1 .

Compute the dual function and show that it is a concave function. Draw
it. Find the optimal solutions for the dual and primal problems by means of
comparing their objective functions.

Exercise 4.4. Consider the following problem:

minimize
x, y

z = x2 + y2

subject to

x = 5
xy ≥ 3 .



4.7 Exercises 183

Solve the primal problem. Compute explicitly the dual function and solve
the dual problem.

Exercise 4.5. Consider the following problem:

minimize
x1, x2

z = (x1 − 4)2 + (x2 − 1)2

subject to

2x1 + x2 ≥ 6

−x2
1 + x2 ≥ −2 .

1. Find the optimal solution for this primal problem geometrically.
2. Obtain graphically the optimal multipliers values associated with both con-

straints, i.e., the optimal solution of the dual problem.
3. Verify that KKT conditions hold.

Exercise 4.6. Consider the following problem:

minimize
x1, x2

z = 2x2
1 + x2

2 − 2x1x2 − 6x2 − 4x1

subject to

x2
1 + x2

2 = 1

−x1 + 2x2 ≤ 0

x1 + x2 ≤ 8

x1, x2 ≥ 0 .

1. Solve the problem using the KKTCs.
2. Compute explicitly the dual function.
3. Does a duality gap exist?

Exercise 4.7. Consider the same problem as the one in Illustrative Example
4.7, p. 165. Obtain the explicit expression of the dual function.

Exercise 4.8. Find the minimum length of a ladder that must lean against a
wall if a box of dimensions a and b is placed right at the corner of that same
wall (Fig. 4.13). Formulate and solve the primal and dual problems.



184 4 Duality

(x, 0)
u

v

(0, y)

(a, b)

ab

Fig. 4.13. Illustration of the ladder problem in Exercise 4.8

Exercise 4.9. Consider the following problem:

minimize
x1, x2

z = x1 + x2

subject to

x1 − x2 = 0
(x1, x2) ∈ X ,

where X = {(−4, 0), (4, 0), (0,−4), (0, 4), (−1,−1), (1, 1)}.
1. Compute explicitly the dual function.
2. Obtain graphically the solution of the dual problem.
3. Solve the primal problem. Does a duality gap exist?

Exercise 4.10. Find the closest point of the surface xyz = 1 to the origin for
x, y, z ≥ 0. Solve the primal and dual problems.

Exercise 4.11. Write and solve the dual problem of the following problem

maximize
x1, x2, x3, x4

z = 3x1 − 4x2 + 9x3 + x4

subject to
x1 −5x2 +x3 ≥ 0

3x1 −5x2 +x3 ≥ 10
x2, x3 ≥ 0

x4 ≤ 0 .

Exercise 4.12. Using the KKT conditions find the possible candidates
(x1, x2) and (λ, µ1, µ2, µ3) for solving the following problem:

minimize
x1, x2

Z = −x1 + x2



4.7 Exercises 185

subject to

−x2
1 + x2 = 0 : λ

x2
1 + x2

2 − 4 ≤ 0 : µ1

−x1 ≤ 0 : µ2

−x2 ≤ 0 : µ3 ,

and its dual, where λ, µ1, µ2, and µ3 are the dual variables.

Exercise 4.13. Consider the case of three producers of a good competing in
a single market during a time horizon of 4 months with demands 5, 6, 7, and
4, respectively, and assume that no storage capacity is available. Suppose that
the producers have the following production cost functions:

ct1(pt1) = 1 + 2p2
t1, ct2(pt2) = 2 + 3p2

t2, and ct3(pt3) = 3 + p2
t3,

where the subindex ti refers to producer i and period t, and it is assumed
that the production costs are independent of the period t. Assume also that
the maximum productions of the three producers are respectively,

C1 = 2, C2 = 3, and C3 = 3 .

1. Solve the problem using the centralized approach described in Sect. 4.5
and show that the optimal solution gives a minimum cost of $95.1636 for
the following productions:

Time period

Producer 1 2 3 4

1 1.36 1.80 2.00 1.09
2 0.91 1.20 2.00 0.73
3 2.73 3.00 3.00 2.18

2. Solve the problem using the decentralized approach and two different values
of the K constant to update the prices. Compare the number of iterations
required for a given error in the prices of the goods.

3. Use a large value of K and check that the process blows up.



5

Decomposition in Nonlinear Programming

5.1 Introduction

This chapter analyzes nonlinear problems with decomposable structure. The
complicating constraint and the complicating variable cases are both consid-
ered, and three procedures are analyzed for dealing with the complicating
constraint case: the Lagrangian relaxation (LR), the augmented Lagrangian
decomposition (ALD), and the optimality condition decomposition (OCD).
The last procedure presents the most efficient computational behavior in most
cases. Finally, for the complicating variable case, the Benders decomposition
(BD) procedure is reviewed.

5.2 Complicating Constraints

As previously stated in the linear case, complicating constraints are con-
straints that if relaxed, the resulting problem decomposes in several simpler
problems. Alternatively, the resulting problem attains such a structure that
its solution is simple. The decomposable case is the most interesting one in
practice and the one mostly considered in this chapter. In Sects. 5.3, 5.4, and
5.5, three different decomposition algorithms are studied. Sections 5.3 and
5.4 present the basic theory of the Lagrangian relaxation (LR) and the aug-
mented Lagrangian (AL) decomposition procedures, respectively. Section 5.5
presents a partitioning technique based on decomposing the optimality con-
ditions of the original problem, which is denominated optimality condition
decomposition (OCD).

5.3 Lagrangian Relaxation

In this section, the Lagrangian relaxation (LR) decomposition procedure is
explained.



188 5 Decomposition in Nonlinear Programming

5.3.1 Decomposition

For the LR technique to be applied advantageously to a mathematical pro-
gramming problem, the problem should have the following structure:

minimize
x

f(x) (5.1)

subject to

a(x) = 0 (5.2)
b(x) ≤ 0 (5.3)
c(x) = 0 (5.4)
d(x) ≤ 0 , (5.5)

where f(x) : IRn → IR, a(x) : IRn → IRna , b(x) : IRn → IRnb , c(x) : IRn →
IRnc , d(x) : IRn → IRnd , and na, nb, nc, and nd are scalars. Constraints
c(x) = 0 and d(x) ≤ 0 are the complicating constraints, i.e., constraints that
if relaxed, problem (5.1)–(5.5) becomes drastically simplified. The Lagrangian
function (LF) is defined as [20, 23]

L(x,λ,µ) = f(x) + λT c(x) + µT d(x) , (5.6)

where λ and µ are the Lagrange multiplier vectors. Under regularity and
convexity assumptions (Sect. 4.2 in Chap. 4) the dual function (DF) is defined
as

φ(λ,µ) = minimum
x

L (x,λ,µ) (5.7)

subject to

a(x) = 0 (5.8)
b(x) ≤ 0 . (5.9)

The dual function is concave and in general nondifferentiable [23]. This is a
fundamental fact that is exploited in the algorithms described in this chapter.
The dual problem (DP) is then defined as

maximize
λ,µ

φ(λ,µ) (5.10)

subject to

µ ≥ 0 . (5.11)

The LR decomposition procedure is attractive if the dual function is easily
evaluated for given values λ̄ and µ̄ of the multiplier vectors λ and µ, respec-
tively. In other words, if it is easy to solve the so-called relaxed primal problem
(RPP) for given λ̄ and µ̄, i.e., the problem



5.3 Lagrangian Relaxation 189

minimize
x

L(x, λ̄, µ̄) (5.12)

subject to

a(x) = 0 (5.13)
b(x) ≤ 0 . (5.14)

The above problem typically decomposes into subproblems, i.e.,

minimize
xi; i = 1, . . . , n

n∑
i=1

Li(xi, λ̄, µ̄) (5.15)

subject to

ai(xi) = 0; i = 1, . . . , n (5.16)
bi(xi) ≤ 0; i = 1, . . . , n . (5.17)

This decomposition facilitates its solution, and normally allows physical
and economical interpretations. The above problem is called the decomposed
primal problem (DPP). Then, the resulting subproblems can be solved in
parallel. Under convexity assumptions, the duality theorem says that

f(x∗) = φ(λ∗,µ∗) , (5.18)

where x∗ is the minimizer for the primal problem and (λ∗,µ∗) is the maxi-
mizer for the dual problem.

In the nonconvex case, given a feasible solution for the primal problem, x,
and a feasible solution for the dual problem, (λ,µ), the weak duality theorem
says that

f(x∗) ≥ φ(λ∗,µ∗) . (5.19)

In the convex case, the solution of the dual problem provides the solution of
the primal problem. In the nonconvex case the objective function value at the
optimal solution of the dual problem provides a lower bound to the objective
function value at the optimal solution of the primal problem. The difference
between the optimal objective functions of the primal and dual problems is
the duality gap. Most engineering and science mathematical programming
problems are nonconvex but the duality gap is relatively small in most cases.
The solution of the dual problem is called Phase 1 of the LR procedure.

Illustrative Example 5.1 (The LR decomposition). Consider the fol-
lowing optimization problem:

minimize
x, y

f(x, y) = x2 + y2



190 5 Decomposition in Nonlinear Programming

subject to
−x −y ≤ −4

x ≥ 0
y ≥ 0 .

The Lagrangian function is

L(x, y, µ) = x2 + y2 + µ(−x − y + 4)

subject to

x ≥ 0
y ≥ 0 .

Primal and Dual Problems

From the Karush–Kuhn–Tucker conditions we obtain

∂L(x, y, µ)
∂x

= 2x − µ = 0 ⇒ x =
µ

2
∂L(x, y, µ)

∂y
= 2y − µ = 0 ⇒ y =

µ

2
.

The solution of this problem is

x = 2, y = 2, µ = 4

as shown in Figs. 5.1a, b.
To obtain the dual function φ(µ) one needs to obtain the infimum of the

Lagrangian function,
infimum

x, y
L(x, y, µ) ,

which is attained at the following point:

x =
µ

2
, y =

µ

2
.

It is a minimum because the Hessian at this point becomes(
2 0
0 2

)
,

which is positive definite.
Then, the dual function is

φ(µ) = 4µ − µ2/2 ,

and the dual problem becomes



5.3 Lagrangian Relaxation 191

1

2

3

4

5
y

solution

z = 4 

z = 16

z* = 8 

x+y = 4 

Optimal

1 2 3 4 5
x

x* = (2, 2)

Feasible
region

f (x*)

= 4

1

2

3

4

5 y

1

2

3

4

5
x

z = 16

x+y = 4 
z* = 8 

z = 4 
x = y

x* = (2,2)

solution
Optimal Feasible

region

µ

Dual

function

g(x*)

(a)

(b)

(c)

z(x, y)

s = (1,1) 
A = (0, 0)

B = (2, 2)

x = (x, y)

d

Optimal
solution

4 6 8 µ

2

4

6

8
φ

µ

= 4µ

(   )µ

µ ∇

∇

φ (   )µ

= 4µ
µx

φ (   )µ

φ (   )µ

Fig. 5.1. Illustration of the problem in Illustrative Example 5.1; (a) minimization
on the plane XY ; (b) dual function; and (c) 3-D graphical interpretation of dual
and primal problems

maximize
µ

4µ − µ2/2

subject to
µ ≥ 0 ,

whose solution is
µ = 4, z = 8 .

Note that the optimal value of the Lagrangian function for a given value of
µ is always attained at the point x = y = µ/2. Being both x and y functions
of µ, the Lagrangian function L(x, y, µ) can be expresed as L(x, y).



192 5 Decomposition in Nonlinear Programming

Geometrical Interpretation

An insightful geometrical interpretation is provided below.
For a given point x = (x, y), it might be convenient to compute the cor-

responding value of µx (see Fig. 5.1c). For points A = (x, y) = (0, 0) and
B = (x, y) = (2, 2), µA = 0 and µB = 4, respectively. Thus, for point x

µx =
(µB − µA) d

AB
, (5.20)

where d is the projection of vector x on the straight line x = y and AB is the
distance between points A and B. Considering the vector sT = (1, 1),

d =
sT x√
sT s

=
x + y√

2
. (5.21)

Substituting (5.21) into (5.20),

µx =
(µB − µA) (x + y)

AB
√

2
=

4(x + y)
2
√

2
√

2
= x + y

and the Lagrangian function is

L(x, y) = x2 + y2 + (x + y)(−x − y + 4) .

It is possible to carry out a 3-D graphical interpretation of all functions
involved in this problem as shown in Figs. 5.1c and 5.2. In the last one,
the function to be optimized f(x, y) = x2 + y2, the Lagrangian function
L(x, y, µ) = L(x, y), the intersection of both functions and the dual func-
tion φ(µ) are shown. It is clear that the optimal solution of the problem is
attained at the saddle point of the Lagrangian function, i.e., the maximum of
the dual function and the minimum of the primal one coincides.

Decomposed Solution

The LR decomposition reconstructs and solves the dual problem in a distrib-
uted fashion as is illustrated below. Consider the dual problem

maximize
µ

2∑
i=1

φi(µ)

subject to
µ ≥ 0 ,



5.3 Lagrangian Relaxation 193

Lagrangian
function

z

x

y

0 1 2 3 4

0
1

2
3

4
(x*, y*)=(2,2)

x+y = 4

z = f (x,y) = x2+y2

f (x*,y*) = 8

Dual
function

Saddle point
of the 

Lagrangian

Lagrangian
function

x
y

z

0
3

-3
-3

0

3

0

5

10

15

x

y

z

0 1 2 3
0
1
2
3

0

5

10

z = f (x,y) = x2+y2

(x, y,   )µ
φ (    )µ

(x, y,   )µ

Fig. 5.2. 3-D graphical illustration of all the functions involved in the minimization
problem 5.1

where

φ1(µ) = minimize
x

L1(µ) = x2 − µx + 2µ

subject to

x ≥ 0

and

φ2(µ) = minimize
y

L2(µ) = y2 − µy + 2µ

subject to

y ≥ 0 .

In Fig. 5.3, a 3-D interpretation of the decomposed functions L1(x, µ) and
L2(y, µ) for µ = 2 is shown. ��



194 5 Decomposition in Nonlinear Programming

xy

0

21
2

Lagrangian
function

x+y = 2x* = 1

y*= 1

L1(x,   ) = x2+2   - x  µ µ µ

L2(y,   ) = y2+2   - y  µ µ µ

Dual
function
φ (    )µ

Fig. 5.3. Graphical illustration of the LR decomposition for a given value µ = 2

5.3.2 Algorithm

The Phase 1 Lagrangian relaxation algorithm for solving the dual problem
proceeds as follows.

Algorithm 5.1 (The Lagrangian relaxation).

Step 0: Initialization.
Set ν = 1.
Initialize dual variables λ(ν) = λ0 and µ(ν) = µ0.
Set φ

(ν−1)
down = −∞.

Step 1: Solution of the relaxed primal problem.
Solve the relaxed primal problem (5.12)–(5.14) and get the minimizer x(ν)

and the objective function value at the minimizer φ(ν).
Update the lower bound for the objective function of the primal problem,

φ
(ν)
down ← φ(ν) if φ(ν) > φ

(ν−1)
down .

Step 2: Multiplier updating.
Update multipliers using any of the procedures stated in Subsect. 5.3.4. If

possible, update also the objective function upper bound.



5.3 Lagrangian Relaxation 195

Step 3: Convergence checking.
If ||λ(ν+1)−λ(ν−1)||/||λ(ν)|| ≤ ε and ||µ(ν+1)−µ(ν−1)||/||µ(ν)|| ≤ ε, and/or

the stopping criterion of Sect. 5.3.4 is met, the ε-optimal solution is x∗ = x(ν),
stop. Otherwise set ν ← ν + 1, and go to Step 1. ��

5.3.3 Dual Infeasibility

The difference between the objective function value of the primal problem for
the minimizer and the objective function value of the dual problem at the
maximizer is called the duality gap. It is usually the case that the per unit
duality gap decreases with the size of the primal problem [30, 31]. Once the
solution of the dual problem is achieved, its associated primal problem solution
could be nonfeasible and therefore feasibility procedures are required. The
procedure used to find a primal feasible near-optimal solution is called Phase
2 of the LR procedure. Phase 2 slightly modifies multiplier values obtained
at the end of Phase 1 to achieve primal feasibility. Subgradient procedures
(see Sect. 5.3.4) are generally used [32]. In many practical problems they are
effective to reach feasibility in a few iterations without altering significantly
the objective function value of the dual problem at its maximizer.

5.3.4 Multiplier Updating

Several multiplier updating procedures are explained and compared in this
section. In the following, for the sake of clarity, multiplier vectors λ and µ are
renamed as θ = column(λ,µ).

The column vector of constraint mismatches at iteration ν constitutes a
subgradient of the dual function [20], i.e.,

s(ν) = column
[
c(x(ν)),d(x(ν))

]
(5.22)

is a subgradient vector for the dual function which is used below. Further
details can be found in Sect. 4.4 of Chap. 4.

Subgradient (SG)

The multiplier vector is updated as [33]

θ(ν+1) = θ(ν) + k(ν) s(ν)

||s(ν)|| , (5.23)

where
lim

ν→∞ k(ν) → 0 (5.24)

and



196 5 Decomposition in Nonlinear Programming

∞∑
ν=1

k(ν) → ∞ . (5.25)

A typical selection which meets the above requirements is

k(ν) =
1

a + b ν
, (5.26)

where a and b are scalar constants.
The subgradient (SG) method is simple to implement and its computa-

tional burden is small. However, it progresses slowly to the optimum in an
oscillating fashion. This is a consequence of the nondifferentiability of the dual
function. Furthermore, the oscillating behavior makes it very difficult to devise
an appropriate stopping criterion. It is typically stopped after a prespecified
number of iterations.

Illustrative Example 5.2 (SG update). To clarify how the SG method
works, Example 5.1 is solved using this multiplier updating procedure. The
problem solution is x∗ = y∗ = 2, f(x∗, y∗) = 8. The Lagrange multiplier
associated with the first constraint has an optimal value µ∗ = 4.

The Lagrangian function is

L(x, y, µ) = x2 + y2 + µ(−x − y + 4) .

The solution algorithm proceeds as follows.

Step 0: Initialization.
Set µ = µ(0).

Step 1: Solution of the relaxed primal problem. The relaxed primal
problem decomposes into the two subproblems below (2µ is arbitrarily as-
signed to each subproblem)

minimize
x

x2 − µx + 2µ

subject to
x ≥ 0

and

minimize
y

y2 − µy + 2µ

subject to
y ≥ 0 ,

whose solutions are denoted, respectively, xc and yc.



5.3 Lagrangian Relaxation 197

Step 2: Multiplier updating. A subgradient procedure with proportional-

ity constant equal to k(ν) =
1

a + b ν
is used, then

µ ← µ +
1

a + bν

(−xc − yc + 4)
| (−xc − yc + 4) | .

Step 3: Convergence checking. If multiplier µ does not change sufficiently,
stop; the optimal solution is x∗ = xc, y∗ = yc. Otherwise the procedure
continues in Step 1.

Considering a = 1, b = 0.1, and an initial multiplier value µ(0) = 3, the
algorithm proceeds as shown in Table 5.1. ��

Table 5.1. Example: Evolution of the LR algorithm using a subgradient (SG) mul-
tiplier updating method

Iteration # µ x y f(x, y) L(x, y, µ)

1 3.00 1.50 1.50 4.50 7.50
2 3.91 2.00 2.00 8.00 7.99
3 4.74 2.40 2.40 11.52 7.72
4 3.97 2.00 2.00 8.00 7.99
5 4.69 2.30 2.30 10.58 7.76
6 4.02 2.00 2.00 8.00 7.99
7 3.40 1.70 1.70 5.78 7.82
8 3.98 2.00 2.00 8.00 7.99
9 4.54 2.30 2.30 10.58 7.85

10 4.00 2.00 2.00 8.00 8.00

Cutting Plane Method (CP)

The updated multiplier vector is obtained by solving the linear programming
problem below

maximize
z,θ ∈ C

z (5.27)

subject to

z ≤ φ(k) + s(k)T
(
θ − θ(k)

)
; k = 1, . . . , ν , (5.28)

where C is a convex and compact set. It is made up of the ranges of variations
of the multipliers, i.e., C = {θ,θdown ≤ θ ≤ θup}. It should be noted that the
above constraints represent half-spaces (hyperplanes) on the multiplier space



198 5 Decomposition in Nonlinear Programming

θ

φ(θ)

(1)

s(1)

s(2)

φ (1)

(2)

φ (2)

(3)

φ (3)

s(3)

(4)

θθ

θθθθ

φ(θ)

Fig. 5.4. Graphical illustration of the cutting plane method (CP), where recon-
struction of the dual function using half-spaces (hyperplanes) is shown

(see Fig. 5.4). Values θdown and θup are, in general, easily obtained from
the physical or economical properties of the system which is modeled. Note
that this updating procedure is exactly the same as the master problem of
the Benders decomposition technique treated in Chap. 3, but with a concave
function and maximizing the objective function instead of minimizing it. It
should be noted that the number of constraints of the above problem grows
with the number of iterations. The above problem is a relaxed dual problem
(RDP), which gets closer to the actual dual problem as the number of itera-
tions grows. The CP method achieves a dual optimum by reconstructing the
dual function. It reconstructs the region of interest and regions of no inter-
est. This reconstruction is computationally expensive and therefore the CP
method computational burden is high. This algorithm is typically stopped
when the multiplier vector difference between two consecutive iterations is
below a prespecified threshold.

Illustrative Example 5.3 (The CP update). To clarify how the CP
method works, Example 5.1 is solved again using this multiplier updating
procedure.

The multiplier updating is as follows.

Step 2: Multiplier updating. The linear programming problem below is
solved

maximize
z, µ ∈ C

z

subject to

z ≤ φ(k) + s(k)
(
µ − µ(k)

)
; k = 1, . . . , ν , (5.29)

where φ(k) and s(k) are the dual function and the subgradient at iteration k,
respectively,



5.3 Lagrangian Relaxation 199

φ(k) =
((

x(k)
)2

+
(
y(k)

)2

+ µ(k)
(
−x(k) − y(k) + 4

))
s(k) =

(
−x(k) − y(k) + 4

)
.

Considering C = {µ, 0 ≤ µ ≤ 5} and an initial multiplier value µ(0) = 3,
the algorithm proceeds as illustrated in Table 5.2. ��

Table 5.2. Example: Evolution of the LR algorithm using a cutting plane (CP)
multiplier updating method

Iteration # µ x y f(x, y) L(x, y, µ)

1 3.00 1.50 1.50 4.50 7.50
2 10.00 5.00 5.00 50.00 −10.00
3 6.50 3.25 3.25 21.12 4.87
4 4.75 2.37 2.37 11.23 7.72
5 3.87 1.94 1.94 7.53 7.99
6 4.31 2.16 2.16 9.33 7.95
7 4.09 2.05 2.05 8.40 7.99
8 4.00 2.00 2.00 8.00 8.00

Bundle Method (BD)

The updated multiplier vector is obtained solving the relaxed dual quadratic
programming problem

maximize
z,θ ∈ C

z − α(ν)||θ − Θ(ν)||2 (5.30)

subject to

z ≤ φ(k) + s(k)T
(
θ − θ(k)

)
; k = 1, . . . , ν , (5.31)

where α is a penalty parameter, || · || is the 2-norm and Θ, “the center of
gravity,” is a vector of multipliers centered in the feasibility region so that
oscillations are avoided. It should be noted that the number of constraints of
the problem above grows with the number of iterations.

The center of gravity is updated in each iteration as stated below.

If φ
(
θ(ν)

)
− φ

(
Θ(ν−1)

)
≥ m δ(ν−1) (5.32)

then Θ(ν) = θ(ν) (5.33)

else Θ(ν) = Θ(ν−1) , (5.34)



200 5 Decomposition in Nonlinear Programming

Θ
Center of
gravity

φ(θ)

φ(θ  ; 1)α

θ

φ(θ)

φ(θ  ; 2)α

Fig. 5.5. Illustration of the dual and augmented dual functions for the Bundle
method (BD)

where m is a parameter whose value is 0 ≤ m ≤ 1, and δ(ν) is the nominal
increase that represents the difference between the objective function value
of the relaxed dual problem at iteration ν and the objective function value of
the dual problem at iteration ν. This value can be computed as follows:

δ(ν) = z(ν) − α(ν)||θ(ν) − Θ(ν)||2 − φ(θ(ν)) . (5.35)

If ν = 1, the center of gravity value is considered to be the initial value of
the multiplier vector, θ(0).

The BD method is a CP method in which the ascent procedure is con-
strained by an objective function penalty. The target is to center the CP
method in the region of interest. In Fig. 5.5 the dual and augmented dual
functions for different values of the parameter α are shown. The augmented
dual function is the dual function of problem (5.30)–(5.31) However, in order
to center the method in the region of interest, it is necessary to carefully tune
up the penalty and other parameters. This tune-up is problem dependent and
hard to achieve. This algorithm is typically stopped if the multiplier vector
difference between two consecutive iterations is below a prespecified threshold.
More sophisticated stopping criteria are possible.

Illustrative Example 5.4 (The BD update method). To clarify how
the BD method works, Example 5.1 is solved using this multiplier updating
procedure. The multiplier updating is as follows.

Step 2: Multiplier updating. The quadratic programming problem below
is solved,

maximize
z, µ ∈ C

z − α(ν)|µ − M (ν)|2



5.3 Lagrangian Relaxation 201

subject to

z ≤ φ(k) + s(k)
(
µ − µ(k)

)
; k = 1, . . . , ν , (5.36)

where φ(k) and s(k) are the dual function and the subgradient at iteration k,
respectively,

φ(k) =
((

x(k)
)2

+
(
y(k)

)2

+ µ(k)
(
−x(k) − y(k) + 4

))
s(k) =

(
−x(k) − y(k) + 4

)
.

The penalty parameter is calculated as α(ν) = d ν, where d is a constant
scalar. If ν = 1, the center of gravity is M = µ0. In other case, the center of
gravity is computed as

If φ
(
µ(ν)

)− φ
(
M (ν−1)

) ≥ mδ(ν−1)

then M (ν) = µ(ν)

else M (ν) = M (ν−1) ,

where

φ
(
µ(ν)

)
=

(
(x(ν))2 + (y(ν))2 + µ(ν)(−x(ν) − y(ν) + 4)

)
φ
(
M (ν−1)

)
=

(
(x(ν−1))2 +(y(ν−1))2 +M (ν−1)(−x(ν−1) − y(ν−1) + 4)

)
.

The normal increase is

δ(ν−1) = z(ν−1) − d(ν − 1)|µ(ν−1) − M (ν−1)|2 − φ
(
µ(ν−1)

)
.

Considering C = {µ, 0 ≤ µ ≤ 5}, m = 0.5, d = 0.02, and an initial multi-
plier value µ0 = 3, the algorithm proceeds as shown in Table 5.3. ��

Table 5.3. Example: Evolution of the LR algorithm using a bundle (BD) method
multiplier updating procedure

Iteration # M µ x y f(x, y) L(x, y, µ)

1 3.00 3.00 1.50 1.50 4.50 7.50
2 3.00 10.00 5.00 5.00 50.00 −10.00
3 3.00 6.50 3.25 3.25 21.12 4.87
4 3.00 4.75 2.37 2.37 11.23 7.72
5 3.00 3.87 1.94 1.94 7.53 7.99
6 4.31 4.31 2.16 2.16 9.33 7.95
7 4.00 4.09 2.00 2.00 8.00 8.00
8 4.00 4.00 2.00 2.00 8.00 8.00



202 5 Decomposition in Nonlinear Programming

Trust Region Method (TR)

The updated multiplier vector is obtained solving the relaxed dual linear pro-
gramming problem below,

maximize
z,θ ∈ C(ν)

z (5.37)

subject to

z ≤ φ(k) + s(k)T
(
θ − θ(k)

)
; k = 1, . . . , n; n ≤ n , (5.38)

where n is the maximum number of constraints considered when solving the
problem above, and C(ν) is the dynamically updated set defining the feasibil-
ity region for the multipliers [34]. If the number of iterations is larger than
the specified maximum number of constraints, the excess constraints are elim-
inated as stated below. At iteration ν the difference between every hyperplane
evaluated at the current multiplier vector and the actual value of the objec-
tive function for the current multiplier vector (residual) is computed as (see
Fig. 5.6)

εi = φ(i) + s(i)T
(
θ(ν) − θ(i)

)
− φ(ν); ∀i = 1, . . . , n . (5.39)

φ(θ)

θ (1)

s(1)

θ (n+1)θ (n)

φ (n)

s(n)

εn

φ (n+1)

ε1

φ (1)

θ

φ(θ)

Fig. 5.6. Graphical illustration of the residuals ε1 and εn at iteration ν = n + 1
for the trust region (TR) method. As ε1 > εn, hyperplane 1 is not considered for
the next iteration



5.3 Lagrangian Relaxation 203

As soon as n is larger than n, the “most distant” hyperplanes are not
considered, so that the number of hyperplanes is kept constant and equal
to n. It should be noted that the residual εi is always positive because the
cutting plane reconstruction of the dual function overestimates the actual dual
function. This technique to limit the number of hyperplanes considered has
proved to be computationally effective. The dynamic updating of the set C(ν),
the feasibility region of the multipliers, is performed as stated below. Let φ

(ν)
i

be the i component of the multiplier vector at iteration ν, then

if θ
(ν)
i = θ

(ν)

i (5.40)

then θ
(ν+1)

i = θ
(ν)

i (1 + a) (5.41)

and θ
(ν+1)
i = θ

(ν)

i (1 − b) (5.42)

and

if θ
(ν)
i = θ

(ν)
i (5.43)

then θ
(ν+1)

i = θ
(ν)
i (1 + c) (5.44)

and θ
(ν+1)
i = θ

(ν)
i (1 − d). (5.45)

Overlining indicates upper bound and underlining stands for lower bound.
The scalar parameters a, b, c, and d allow us to enlarge and shrink the fea-
sibility region of the multiplier vector, i.e., the convex compact set C. This
is efficiently accomplished because the above updating procedure is simple.
Typical values are a = c = 2 and b = d = 0.8.

The TR method is a CP method in which the ascent procedure is dy-
namically constrained by enlarging and shrinking the feasibility region on
a coordinate basis. This is possible because the feasibility region is simple:
bounds on every multiplier. Through this enlarging/shrinking procedure it is
possible to center the algorithm in the area of interest which results in high
efficiency. The enlarging/shrinking procedure is not problem dependent and
involves straightforward heuristics (see the simple updating procedure above).
This method is actually a trust region procedure with dynamic updating of the
trust region. This algorithm is typically stopped when the multiplier vector
difference between two consecutive iterations is below a prespecified thresh-
old. A small enough difference between an upper bound and a lower bound of
the dual optimum is also an appropriate stopping criterion.

Illustrative Example 5.5 (The TR method). To clarify how the TR
method works, Example 5.1 is solved using this multiplier updating proce-
dure. The multiplier updating is as follows.

Step 2: Multiplier updating. The linear programming problem below is
solved

maximize
z, µ ∈ C(ν)

z



204 5 Decomposition in Nonlinear Programming

subject to

z ≤ φ(k) + s(k)
(
µ − µ(k)

)
; k = 1, . . . , n; n ≤ n , (5.46)

where φ(k) and s(k) are the dual function and the subgradient at iteration k,
respectively,

φ(k) =
((

x(k)
)2

+
(
y(k)

)2

+ µ(k)
(
−x(k) − y(k) + 4

))
s(k) =

(
−x(k) − y(k) + 4

)
.

The dynamic set C(ν) that defines the feasibility region for the multiplier
µ is updated as explained above (5.40)–(5.45). If n is larger than n, the con-
straints with the highest residual value are not considered so that the number
of constraints is kept equal to n. The residual value, εk, is computed using
(5.39).

Considering C0 = {µ, 9 ≤ µ ≤ 10}, a = 0.5, b = 0.5, c = 0.5, d = 0.5,
n = 2, and an initial multiplier value µ0 = 3, the algorithm proceeds as in
Table 5.4 below. ��

Table 5.4. Example: Evolution of the LR algorithm using a trust region TR method
to update the multipliers

Iteration # µ µ µ x y f(x, y) L(x, y, l)

1 10.00 9.00 3.00 1.50 1.50 4.50 7.50
2 15.00 4.50 10.00 5.00 5.00 50.00 −10.00
3 15.00 4.50 6.50 3.25 3.25 21.12 4.87
4 15.00 4.50 4.75 2.37 2.37 11.23 7.72
5 22.50 2.25 4.50 2.25 2.25 10.12 7.88
6 22.50 2.25 3.75 1.88 1.88 7.07 7.97
7 22.50 2.25 4.13 2.06 2.06 8.49 7.99
8 22.50 2.25 4.03 2.00 2.00 8.00 8.00
9 22.50 2.25 3.98 2.00 2.00 8.00 8.00

10 22.50 2.25 4.00 2.00 2.00 8.00 8.00

Stopping Criteria

If using the CP method, the objective function value of the relaxed dual
problem at every iteration constitutes an upper bound of the optimal dual
objective function value. This is so because the piecewise linear reconstruction
of the dual function overestimates the actual dual function. On the other
hand, the objective function value of the dual problem (evaluated through



5.4 Augmented Lagrangian Decomposition 205

the relaxed primal problem) provides at every iteration a lower bound of the
optimal dual objective function value. This can be mathematically stated as
follows:

z(ν) ≥ φ∗ ≥ φ(ν) , (5.47)

where z(ν) is the objective function value of the relaxed dual problem at
iteration ν, φ∗ is the optimal dual objective function value, and φ(ν) is the
objective function value of the dual problem at iteration ν. The size of the
per unit gap

g(ν) =
z(ν) − φ(ν)

φ(ν)
(5.48)

is an appropriate objective function value criterion to stop the search for the
dual optimum.

5.4 Augmented Lagrangian Decomposition

The augmented Lagrangian (AL) decomposition procedure is explained below.

5.4.1 Decomposition

The augmented Lagrangian (AL) function of problem (5.1)–(5.5) has the fol-
lowing form:

A(x,z,λ,µ, α, β) = f(x) + λT c(x) +
1
2
α||c(x)||2

+
nd∑
i=1

[
µi

(
di(x ) + z2

i

)
+

1
2
β
(
di(x ) + z2

i

)2
]

.
(5.49)

Penalty parameters α and β are large enough scalars to ensure local con-
vexity and zi (i = 1, . . . , nd) are additional variables to transform inequality
constraints into equality constraints. It should be noted that the quadratic
terms confer the AL function good convexity properties (see [23, 35]). In
Fig. 5.7, a graphical interpretation of the AL function is shown.

For convenience we define vi = z2
i (i = 1, . . . , nd), therefore, the AL func-

tion above is equivalent to

A(x,v,λ,µ, α, β) = f(x) + λT c(x) +
1
2
α||c(x)||2

+
nd∑
i=1

[
µi

(
di(x) + vi

)
+

1
2
β
(
di(x) + vi

)2
]

.
(5.50)

The AL decomposition procedure involves minimization of the AL function
(5.50). Note that the minimization of (5.50) with respect to v can be carried



206 5 Decomposition in Nonlinear Programming

x

y

z

1
3

0
0

3

2

1
2

x

y
1

3

0
0

3

2
1

20

5

10

15

8

10

12

14

16

(x*, y*) = (2,2)(x*, y*) = (2,2)

Augmented
Lagrangian
functions

z

x

y
1

3

0
0

3

2
1

2

z

8

10

12

14

16

x

y
1

3

0
0

3

2
1

2

z

8

10

12

14

16

(x*, y*) = (2,2)

(x, y,       ) µ, α

(x*, y*, *) = 8 µ

= 1α

= 2α = 3α

(x*, y*, *, *) = 8 µ   α

(x*, y*, *, *) = 8 µ   α

(x*, y*) = (2,2)

Lagrangian
function
(x, y,   ) µ

Fig. 5.7. Graphical illustration of the Lagrangian function and the augmented La-
grangian functions for different values of the penalty parameter β for the Illustrative
Example 5.6

out analytically in a decomposed manner, leading to a problem that only
involves minimization with respect to x . The minimization of (5.50) with
respect to vi is

minimize
vi ≥ 0

pi = µi

(
di(x) + vi

)
+

1
2
β
(
di(x) + vi

)2
, (5.51)

where the variables vi must be nonnegative.
This problem can be easily solved. The derivative of the objective function

above with respect to vi is µi + β
(
di(x ) + vi

)
. If vi > 0, the derivative must

be zero, which implies vi = −di(x ) − µi/β. If vi = 0, this means that di(x )
is satisfied as an equality, which implies that µi > 0, and the derivative must
be nonnegative. Therefore,

vi = max{0,−di(x) − µi/β}; i = 1, . . . , nd . (5.52)



5.4 Augmented Lagrangian Decomposition 207

Then the objective function of problem (5.51) is evaluated as follows:

pi =

⎧⎪⎨⎪⎩
1
2β

[
(µi + βdi(x))2 − µ2

i

]
if vi = 0

− 1
2β

µ2
i if vi = −di(x) − µi/β .

These results can be combined into the formula

pi =
1
2β

[(
max{0, µi + βdi(x )})2 − µ2

i

]
. (5.53)

Finally, we substitute the expression of pi (i = 1, . . . , nd) in (5.50) to
obtain an explicit expression of the AL function,

A(x,λ,µ, α, β) = f(x) + λT c(x) +
1
2
α||c(x)||2

+
1
2β

nd∑
i=1

[(
max{0, µi + βdi(x )})2 − µ2

i

]
.

(5.54)

Alternatively, a nonlinear interior point treatment of inequality constraints
[36] can be used. This treatment requires adding slack variables to the inequal-
ity constraints in (5.49) to convert them into equality constraints. These slack
variables are then incorporated to the objective function through logarithmic
barrier terms to ensure their positivity.

5.4.2 Algorithm

The decomposition based on the AL is basically similar to the LR decompo-
sition procedure stated in the previous section. The basic difference is that
quadratic terms in the AL make the relaxed primal problem nondecompos-
able. To make it decomposable two procedures are mainly used. They are
stated in the Subsect. 5.4.3.

The algorithm proceeds as follows:

Algorithm 5.2 (The AL decomposition).

Step 0: Initialization. Initialize multipliers λ and µ and penalty parame-
ters α and β.

Step 1: Solution of the relaxed primal problem. Solve the relaxed pri-
mal problem (5.54). This problem has to be made separable (see Sect. 5.4.3
below).

Step 2: Multiplier updating. Calculate the gradient of the dual function
and update multipliers with the target of maximizing the dual function (see
Sect. 5.4.4).



208 5 Decomposition in Nonlinear Programming

If required, update also penalty parameters (see Sect. 5.4.5).

Step 3: Convergence checking. If multipliers do not change significantly
in two consecutive iterations, stop, the solution has been reached; otherwise,
continue with Step 1. ��

5.4.3 Separability

The first procedure to obtain separability linearizes the quadratic terms of the
augmented Lagrangian and fixes the minimum number of variables to the val-
ues of the previous iteration to achieve separability [37]. The second procedure
directly fixes in the augmented Lagrangian the minimum number of variables
to the values of the previous iteration to achieve separability.

5.4.4 Multiplier Updating

An appropriate rule to update multipliers λ is (see [23, 35])

λ(ν+1) = λ(ν) + α c(x(ν)) . (5.55)

Since multipliers µ are nonnegative, they can be updated as

µ
(ν+1)
i = max{0, µ

(ν)
i + βdi(x(ν))}; i = 1, . . . , nd . (5.56)

Further details on multiplier updating procedures can be found in refer-
ences [23, 35, 38].

5.4.5 Penalty Parameter Updating

Penalty parameters α and β can be increased with the number of iteration so
that convexity is maintained, but in such a way that no numerical ill condi-
tioning appears.

Illustrative Example 5.6 (The AL decomposition). The problem to be
solved is

minimize
x, y

f(x, y) = x2 + y2

subject to
−x − y ≤ −4

x ≥ 0
y ≥ 0,

whose solution is x∗ = y∗ = 2, f(x∗, y∗) = 8. The Lagrange multiplier associ-
ated with the first constraint has an optimal value µ∗ = 4.



5.4 Augmented Lagrangian Decomposition 209

The AL function is

A(x, y, µ) = x2 + y2 +
1
2β

[(
max{0, µ + β(−x − y + 4)})2 − µ2

]
.

The subproblems to be solved in Step 1 of the decomposition algorithm are

minimize
x

x2 +
1
2β

[(
max{0, µ + β(−x − y + 4)})2 − µ2

]
subject to

x ≥ 0

and

minimize
y

y2 +
1
2β

[(
max{0, µ + β(−x − y + 4)})2 − µ2

]
subject to

y ≥ 0 .

The algorithm is applied below:

Step 0: Initialization. Variables and multipliers are initialized, i.e.,

x = 5, y = 5, µ = 3, β = 0.3 .

Step 1: Solution of the relaxed primal problem. This problem decom-
poses into the two subproblems below. The first subproblem is

minimize
x

x2 +
1

2 × 0.3

[(
max{0, 3 + 0.3(−x − 5 + 4)})2 − 32

]
subject to

x ≥ 0 ,

whose solution is x = 1.17.
The second subproblem is

minimize
y

y2 +
1

2 × 0.3

[(
max{0, 3 + 0.3(−5 − y + 4)})2 − 32

]
subject to

y ≥ 0 ,

whose solution is y = 1.17.



210 5 Decomposition in Nonlinear Programming

Step 2: Multiplier updating. The multiplier is updated as follow:

µ = max{0, µ + β(−x − y + 4)} = max{0, 3 + 0.3(−1.17 − 1.17 + 4)} = 3.50 .

Step 3: Convergence checking. The multiplier µ does change sufficiently,
so the variables are updated

x = 1.17, y = 1.17 .

The parameter β is increased as

β ← 1.2 β .

The algorithm continues in Step 1 until convergence is achieved.
The algorithm stops for ν = 10, being the solution

x = 2.00, y = 2.00, µ = 4.00, β = 1.86, f(x, y) = 8.00 .

The evolution of the algorithm is shown in Table 5.5 below. ��

Table 5.5. Example: Evolution of the AL algorithm for the Illustrative Example
5.6

Iteration # µ x y f(x, y)

1 3.00 1.17 1.17 2.74
2 3.50 1.91 1.91 7.30
3 3.56 1.83 1.83 6.70
4 3.70 1.91 1.91 7.30
5 3.79 1.94 1.94 7.53
6 3.86 1.97 1.97 7.76
7 3.91 1.98 1.98 7.84
8 3.95 1.99 1.99 7.92
9 3.97 1.99 1.99 7.92

10 4.00 2.00 2.00 8.00

5.5 Optimality Condition Decomposition (OCD)

The decomposition technique analyzed in this section can be interpreted as a
particular implementation of the LR procedure. It is motivated by a natural
decomposition of the optimality conditions of the original problem. An in-
depth analysis of this technique can be found in [39].



5.5 Optimality Condition Decomposition (OCD) 211

5.5.1 Motivation: Modified Lagrangian Relaxation

To simplify our motivating analysis, we consider the case in which we have only
two groups (n = 2) of variables and additionally all constraints are equality
ones. The simplified problem has the form

minimize
x1,x2

f(x1,x2) (5.57)

subject to

h1(x1,x2) = 0 (5.58)
h2(x1,x2) = 0 (5.59)
cj(xj) = 0; j = 1, 2 , (5.60)

where the constraints h1(x1,x2) and h2(x1,x2) are complicating constraints.
The basic LR procedure (as stated in Sect. 5.3) applied to this problem con-
siders the problem

minimize
x1,x2

f(x1,x2) + λ̄
T
1 h1(x1,x2) + λ̄

T
2 h2(x1,x2) (5.61)

subject to

cj(xj) = 0; j = 1, 2 , (5.62)

defined in terms of multiplier estimates λ̄1 and λ̄2. Problem (5.61)–(5.62) can
be solved by fixing the values of some of the variables (x̄2 and x̄1) to obtain
the subproblems

minimize
x1

f(x1, x̄2) + λ̄
T
1 h1(x1, x̄2) (5.63)

subject to

c1(x1) = 0 (5.64)

and

minimize
x2

f(x̄1,x2) + λ̄
T
2 h2(x̄1,x2) (5.65)

subject to

c2(x2) = 0 . (5.66)

Once the solutions for these subproblems have been computed, the mul-
tipliers of the complicating constraints can be updated, using for example a
subgradient technique,



212 5 Decomposition in Nonlinear Programming

λ̄
(ν+1)
1 = λ̄

(ν)
1 + α h1(x1,x2) (5.67)

λ̄
(ν+1)
2 = λ̄

(ν)
2 + α h2(x1,x2) , (5.68)

where α is a suitable constant.
Note that the convergence of the procedure requires that the solutions for

the subproblems should be computed up to a certain degree of accuracy.
The procedure considered in this section follows a similar approach when

applied to problem (5.57)–(5.60). As in the preceding case, to decompose
problem (5.61)–(5.62) we require some separable approximation for f(x1,x2),
h1(x1,x2), and h2(x1,x2) as shown in Fig. 5.8. We also fix some of the
variables in these functions to their last computed values, to obtain

minimize
x1

f(x1, x̄2) + λ̄
T
2 h2(x1, x̄2) (5.69)

f (x)

f1(x1) f2(x2)

c2(x2)

c1(x1)

h1(x1, x2)

h2(x1, x2)

Optimality
Condition

Decomposition

Initial point (x1, x2)

Initial Lagrange
Multipliers

(  1,    2)

c1(x1) c2(x2)

h2(x1, x2)h1(x1, x2)

New point  (x1
*, x2

*)

   1
* =    1+    h1(x1

*, x2
*)

    2
* =   2+    h2(x1

*, x2
*)

x1
*

x2
*

f1(x1)+   2
Th2(x1, x2)λ f2(x2)+   1

Th1(x1, x2)λ

λ λ

λ α
α

λ
λλ

Fig. 5.8. Illustration of the optimality condition decomposition (OCD) procedure



5.5 Optimality Condition Decomposition (OCD) 213

subject to

h1(x1, x̄2) = 0 (5.70)
c1(x1) = 0 (5.71)

and

minimize
x2

f(x̄1,x2) + λ̄
T
1 h1(x̄1,x2) (5.72)

subject to

h2(x̄1,x2) = 0 (5.73)
c2(x2) = 0 , (5.74)

where x̄1 and x̄2 denote the values of the corresponding variables at the last
iteration.

To reduce the computational cost, we perform a single iteration for each
subproblem before updating the parameters x̄1 and x̄2. This procedure is not
very different from a standard Lagrangian approach, except for performing a
single iteration for each subproblem, but it presents one significant advantage:
it provides efficient information to update the multiplier estimates λ̄1 and λ̄2.
The multipliers corresponding to the subproblem constraints (5.70) and (5.73),
∆λ1 and ∆λ2 have the property that, if the values of x̄1 and x̄2 would be
the optimal ones, the best values for λ1 and λ2 would be given by λ̄1 + ∆λ1

and λ̄2 + ∆λ2. These updated values can be used for the next iteration.
The resulting procedure is very simple to implement, uses few easily updated
parameters, and works well in practice for certain classes of problems. It is
further analyzed in the following subsections.

5.5.2 Decomposition Structure

For convenience, problem (5.1)–(5.5) can be written as

minimize
xa; a = 1, . . . , A

A∑
a=1

fa(xa) (5.75)

subject to

h(x1, . . . ,xA) ≤ 0 (5.76)
ga(xa) ≤ 0; a = 1, . . . , A , (5.77)

where xa are the variables for each block a in which the original problem
decomposes. It should be noted that the sets of (5.76) and (5.77) represent
both equality and inequality constraints. Equations (5.76) are complicating



214 5 Decomposition in Nonlinear Programming

constraints. These equations contain variables from different blocks and pre-
vent each subproblem from being solved independently. If these equations are
removed from problem (5.75)–(5.77), the resulting problem can be trivially
decomposed into one subproblem for each block. Constraints (5.77) contain
only variables belonging to block a for a = 1, . . . , A. Considering that the op-
timal values of the Lagrange multipliers in problem (5.75)–(5.77) are known,
the problem can be stated in an equivalent form as follows:

minimize
xa; a = 1, . . . , A

A∑
a=1

fa(xa) +
A∑

a=1

λT
a ha(x1, . . . ,xA) (5.78)

subject to

ha(x1, . . . ,xA) ≤ 0; a = 1, . . . , A (5.79)
ga(xa) ≤ 0; a = 1, . . . , A , (5.80)

where constraints (5.76) have been separated in different blocks. Note that
the way in which these constraints are distributed does not affect the solution
of the problem, i.e., they can be distributed based on engineering insight.

Given trial values to all variables and multipliers (indicated by overlining)
different than those in block a, problem (5.78)–(5.80) reduces to

minimize
xa

k + fa(xa) +
A∑

b=1,b �=a

λ
T

b hb(x1, . . . ,xa−1,xa,xa+1, . . . ,xA) (5.81)

subject to

ha(x1, . . . ,xa−1,xa,xa+1, . . . ,xA) ≤ 0 (5.82)
ga(xa) ≤ 0 , (5.83)

where k =
A∑

b=1,b �=a

fb(xb) is a constant. The dual variable vector corresponding

to constraint (5.82) is denoted by λa. The reduced problem (5.81)–(5.83) can
be obtained for every block of the original problem. The proposed decomposi-
tion technique is actually based on the solutions of these reduced block-related
problems.

5.5.3 Decomposition

The proposed method is based on the decomposition of the optimality condi-
tions for the global problem (5.75)–(5.77), see [20]. Note that from standard
optimization theory, the first-order KKT optimality conditions for problem
(5.75)–(5.77) are



5.5 Optimality Condition Decomposition (OCD) 215

∇xa
fa(x∗

a) +
A∑

a=1

∇T
xa

ha(x∗
1, . . . ,x

∗
A) λ∗

a + ∇T
xa

ga(x∗
a) µ∗

a = 0 ;

a = 1, . . . , A (5.84)

ha(x∗
1, . . . ,x

∗
A) ≤ 0; a = 1, . . . , A (5.85)

ha(x∗
1,x

∗
2, . . . ,x

∗
n)T λ∗

a = 0; a = 1, . . . , A (5.86)
λ∗

a ≥ 0; a = 1, . . . , A (5.87)
ga(x∗

a) ≤ 0; a = 1, . . . , A (5.88)
ga(x∗

a)T µ∗
a = 0; a = 1, . . . , A (5.89)

µ∗
a ≥ 0; a = 1, . . . , A . (5.90)

These conditions have been constructed using the optimal values x∗
a, λ∗

a,
and µ∗

a that are assumed known. The values λ∗
a are the optimal Lagrange

multipliers associated with (5.76) and the values µ∗
a are the optimal Lagrange

multipliers associated with (5.77). For convenience, the block reduced sub-
problem (5.81)–(5.83) is restated below for optimal values x∗

a, λ∗
a, and µ∗

a:

minimize fa(xa) +
A∑

b=1,b �=a

λ∗T
b hb(xa) (5.91)

subject to

ha(xa) ≤ 0 (5.92)
ga(xa) ≤ 0 , (5.93)

where
xa = (x∗

1, . . . ,x
∗
a−1,xa,x∗

a+1, . . . ,x
∗
A) .

If the first-order KKT optimality conditions of every block reduced sub-
problem (5.91)–(5.93) (a = 1, . . . , A) are stuck together, it can be observed
that they are identical to the first-order optimality conditions (5.84)–(5.90)
of the global problem (5.75)–(5.77). It should be emphasized that this is a
relevant result that is exploited in the algorithm below. As previously stated,
block subproblem (5.91)–(5.93) is obtained relaxing all the complicating con-
straints of other blocks, i.e., adding them to the objective function of problem
(5.75)–(5.77) and maintaining its own complicating constraints. The reduction
is possible once the optimization variables are given trial values. The main dif-
ference between the LR algorithm and the proposed decomposition one is that
LR adds all the complicating constraints into the objective function. There-
fore, it needs auxiliary procedures to update the Lagrange multipliers. On
the contrary, the analyzed technique does not need any procedure to update
the multipliers because this updating is automatic and results from keeping
the complicating constraints (5.92) in every block subproblem. The proposed



216 5 Decomposition in Nonlinear Programming

approach has the advantage that convergence properties do not require to
attain an optimal solution of the subproblems at each iteration of the algo-
rithm. It is enough to perform a single iteration for each subproblem, and
then to update variable values. As a consequence, computation times can be
significantly reduced with respect to other methods that require the compu-
tation of the optimum for the subproblems in order to attain convergence.
The coordination of the global problem to ensure the satisfaction of the com-
plicating constraints is achieved through the Lagrange multipliers associated
with (5.76).

5.5.4 Algorithm

An outline of the proposed algorithm is as follows.

Algorithm 5.3 (The Optimality condition decomposition).

Step 0: Initialization.
Each block (a = 1, . . . , A) initializes its variables and parameters, xa, λa.

Step 1: Single iteration.
Each block (a = 1, . . . , A) carries out one single iteration for its corre-

sponding subproblem

minimize
xa

fa(xa) +
A∑

b=1,b �=a

λ
T

b hb(xa) (5.94)

subject to

ha(xa) ≤ 0 (5.95)
ga(xa) ≤ 0 , (5.96)

where xa = (x1, . . . ,xa−1,xa,xa+1, . . . ,xA), and obtains search directions
∆xa, ∆λa.

Step 2: Updating.
Each block (a = 1, . . . , A) updates its variables and parameters

xa ← xa + ∆xa, λa ← λa + ∆λa, for a = 1, . . . , A .

Information related to complicating constraints is distributed.

Step 3: Stopping criterion.
The algorithm stops if variables do not change significantly in two consec-

utive iterations. Otherwise, it continues in Step 1. ��



5.5 Optimality Condition Decomposition (OCD) 217

To speed convergence, the search directions obtained in Step 1 can be
refined using a Conjugate Gradient procedure [23]. The search directions,
(∆xa,∆λa), for subproblems (5.94)–(5.96) can be computed independently
of each other, allowing a parallel implementation in a distributed computa-
tion environment. A modified Newton procedure can be used, in conjunction
with a nonlinear interior point treatment of the inequality constraints [36].
This treatment requires adding slack variables to the inequality constraints
(5.95), to convert them into equality constraints. These slack variables are
then incorporated to the objective function through logarithmic barrier terms,
to ensure their positivity. Step 2 requires a central agent to coordinate the
process. This agent receives certain information from the subproblems and re-
turns it to the appropriate subproblems. This information consists of some of
the values xa,λa, for a = 1, . . . , A. The values xa that have to be distributed
are the updated values of the variables associated with the complicating con-
straints, after one iteration of Newton’s method. The values λa that need to be
distributed are the updated multipliers corresponding to (5.95) of each area,
again after one iteration of Newton’s method. It can be noted that the infor-
mation exchanged between the subproblems and the central agent is minimal.
Moreover, in this decomposition algorithm the central agent only distributes
information and checks the convergence condition. In other decomposition
techniques (such as most common the LR or AL decomposition procedures)
the central agent needs to update the exchanged information before distribut-
ing it to the different subproblems. In the proposed decomposition algorithm
the central agent does not need to update any information, as this information
is updated by the subproblems, implying a simpler process.

5.5.5 Convergence Properties

The convergence properties of the decomposition algorithm explained in this
section are analyzed below. For the sake of simplicity in this discussion, and
without loss of generality, separable constraints (5.77) are omitted. Also, the
problem will be represented using only two blocks, a and b. It should be imme-
diate to generalize the following results to more than two blocks. For the cen-
tralized approach, the search directions for subproblems a and b, (∆N

a ,∆N
b ),

are computed by solving in each iteration a system of linear equations of the
form

KKT ≡
(

KKTa KKTba

KKTab KKTb

)(
∆N

a

∆N
b

)
= −

( ∇xa,λa
L

∇xb,λb
L

)
, (5.97)

where ∆N
a = (∆xa,∆λa)T , ∆N

b = (∆xb,∆λb)T , and KKTa, KKTb, KKTab,
and KKTba are the Newton matrices [38] for areas a and b, defined as

KKTa =
( ∇2

xaxa
L ∇xa

hT
a

∇xaha 0

)
, KKTb =

( ∇2
xbxb

L ∇xb
hT

b

∇xb
hb 0

)



218 5 Decomposition in Nonlinear Programming

KKTab =
( ∇2

xaxb
L ∇xb

hT
a

∇xa
hb 0

)
, KKTba = KKTT

ab .

The superscript N indicates Newton directions, and L is the Lagrangian
function for problem (5.75)–(5.76), defined as

L(xa,xb,λa,λb) = fa(xa) + fb(xb) + λT
a ha(xa,xb) + λT

b hb(xa,xb) (5.98)

Correspondingly, movement directions for areas a and b, (∆a,∆b), in Step
1 of the decomposition algorithm can be obtained by solving the decomposable
and approximate linear system of equations

KKT ≡
(

KKTa 0
0 KKTb

)(
∆a

∆b

)
= −

(
∇xa,λa

L
∇xb,λb

L

)
. (5.99)

From these definitions and from performing Step 1 of the proposed algo-
rithm in parallel, the sufficient condition for convergence of the decomposition
algorithm is given below. If at the optimal solution of problem (5.75)–(5.76)
it holds that

ρ(I − KKT
−1

KKT) < 1 , (5.100)

then the proposed decomposition algorithm converges locally to the solution
at a linear rate. Here ρ(A) denotes the spectral radius of matrix A, matrix
I is the identity matrix and it is assumed that functions in (5.75)–(5.77) are
twice continuously differentiable. Condition (5.100) is related to the many re-
sults reported in the technical literature for the distributed solution of linear
systems of equations, see for example [28, 40]. Finally, note that by using
Newton method, the local rate of convergence for a centralized approach can
be quadratic. Condition (5.100) can be interpreted as a measurement of the
coupling between the blocks in the global problem. This measure tends to be
smaller for problems with a small number of complicating constraints. These
convergence properties seem to be satisfied for most practical cases of interest.
If condition (5.100) does not hold, it is possible to modify the proposed de-
composition algorithm to attain convergence. For example, a preconditioned
Conjugate Gradient method [28] can be applied. This approach would still
preserve the property that the operation could be performed allowing each
subproblem to maintain its autonomy, i.e., in a decentralized manner.

Note that the OCD algorithm can also be implemented solving the sub-
problems until optimality (not just one iteration). This results in a clear loss
of efficiency, but the implementation becomes much easier, particularly if op-
timization environments such as GAMS [41] are used.

A simple example that clarifies how the proposed decomposition algorithm
works is presented below.

Illustrative Example 5.7 (The Decomposition algorithm). The prob-
lem to be solved is

minimize
x1, x2, y1, y2

x2
1 + x2

2 + y2
1 + y2

2



5.5 Optimality Condition Decomposition (OCD) 219

subject to

4x1 + y2 − 1 = 0
x1 + 4y2 − 1 = 0 .

Observe that both constraints are complicating constraints. However, there
are only two variables implied in the complicating equations, x1 and y2. The
solution of this problem is

x∗ =
(

0.2
0.0

)
, y∗ =

(
0.0
0.2

)
, λ∗ =

( −0.08
−0.08

)
.

The constraint vector is denoted by h(x,y),

h(x,y) =
(

4x1 + y2 − 1
x1 + 4y2 − 1

)
.

Using the proposed methodology, the subproblems to be solved in Step 1
of the decomposition algorithm are, respectively,

minimize
x1, x2

x2
1 + x2

2 + λ2 (x1 + 4y2 − 1)

subject to

4x1 + y2 − 1 = 0

and

minimize
y1, y2

y2
1 + y2

2 + λ1 (4x1 + y2 − 1)

subject to

x1 + 4y2 − 1 = 0 .

The algorithm is applied below.

Step 0: Initialization. Variables and multipliers are initialized, i.e.,

x =
(

0.4
0.4

)
, y =

(
0.4
0.4

)
, λ =

( −0.01
−0.01

)
.

Step 1: Single iteration, system X. System X computes a movement
direction for the first decomposed subproblem, using Newton’s method, for
x = x. The Lagrangian function for this problem is

Lx(x1, x2, λ1) = x2
1 + x2

2 − 0.01 x1 + λ1(4x1 + 0.4 − 1)



220 5 Decomposition in Nonlinear Programming

then

∇x1,x2,λ1Lx(0.4, 0.4,−0.01) =

⎛⎝ 0.75
0.80
1.00

⎞⎠
∇2

x1,x2,λ1
Lx(0.4, 0.4,−0.01) =

⎛⎝ 2 0 4
0 2 0
4 0 0

⎞⎠ .

If the Newton’s method is applied⎛⎝ 2 0 4
0 2 0
4 0 0

⎞⎠⎛⎝ ∆x1

∆x2

∆λ1

⎞⎠ = −
⎛⎝ 0.75

0.80
1.00

⎞⎠
then ⎛⎝ ∆x1

∆x2

∆λ1

⎞⎠ =

⎛⎝ −0.25
−0.40
−0.0625

⎞⎠
one obtains

x = x + ∆x =
(

0.4
0.4

)
+

( −0.25
−0.40

)
=

(
0.15
0.00

)
and

λ1 = λ1 + ∆λ1 = −0.01 + (−0.0625) = −0.0725 . (5.101)

Step 2: Single iteration, system Y . System Y computes a movement
direction for the second decomposed subproblem, using Newton’s method, for
y = y. The Lagrangian function for this problem is

Ly(y1, y2, λ2) = y2
1 + y2

2 − 0.01 y2 + λ2(0.4 + 4y2 − 1)

then

∇y1,y2,λ2Ly(0.4, 0.4,−0.01) =

⎛⎝ 0.80
0.75
1.00

⎞⎠
∇2

y1,y2,λ2
Ly(0.4, 0.4,−0.01) =

⎛⎝ 2 0 0
0 2 4
0 4 0

⎞⎠ .

If the Newton method is applied⎛⎝ 2 0 0
0 2 4
0 4 0

⎞⎠⎛⎝ ∆y1

∆y2

∆λ2

⎞⎠ = −
⎛⎝ 0.80

0.75
1.00

⎞⎠
then



5.5 Optimality Condition Decomposition (OCD) 221⎛⎝ ∆y1

∆y2

∆λ2

⎞⎠ =

⎛⎝ −0.40
−0.25
−0.0625

⎞⎠
one obtains

y = y + ∆y =
(

0.4
0.4

)
+

( −0.40
−0.25

)
=

(
0.00
0.15

)
and

λ2 = λ2 + ∆λ2 = −0.01 + (−0.0625) = −0.0725 . (5.102)

Step 3: Convergence. Checks if the selected convergence condition ||h(x,y)||
< 10−4 is satisfied,

h =
( −0.25

−0.25

)
, ||h|| = 0.3536 > 10−4 .

As the convergence condition is not satisfied, variables

x = x =
(

0.15
0.0

)
, y = y =

(
0.0
0.15

)
and multipliers

λ = λ =
( −0.0725

−0.0725

)
are fixed, the iteration counter is updated, k = k + 1 = 2, and Steps 1, 2, and
3 of the algorithm are repeated until convergence is achieved.

In Table 5.6 the evolution of the objective function, variables, and multi-
pliers values as a function of the iteration number are shown. The algorithm
stops for k = 7, with a tolerance ||h|| = 8.6317 × 10−5. The solution is

x =
(

0.2
0.0

)
, y =

(
0.0
0.2

)
, λ =

( −0.08
−0.08

)
.

Table 5.6. Evolution of the optimality condition decomposition OCD algorithm for
Illustrative Example 5.7

Iteration # λ1 λ2 x1 x2 y1 y2 f(x, y)

1 −0.010 −0.010 0.150 0.000 0.000 0.150 0.045
2 −0.072 −0.072 0.212 0.000 0.000 0.212 0.090
3 −0.088 −0.088 0.197 0.000 0.000 0.197 0.077
4 −0.076 −0.076 0.201 0.000 0.000 0.201 0.081
5 −0.081 −0.081 0.200 0.000 0.000 0.200 0.079
6 −0.079 −0.079 0.200 0.000 0.000 0.200 0.080
7 −0.080 −0.080 0.200 0.000 0.000 0.200 0.080



222 5 Decomposition in Nonlinear Programming

The initial problem has also been solved using an LR procedure [33] and
an augmented LR one [20, 37]. The LR procedure uses a simple subgra-
dient updating of multipliers, and the AL decomposition procedure uses a
progressively increasing penalty term and a simple gradient multiplier up-
dating technique. The LR procedure stopped after k = 53 iterations, with
||h|| = 4.1772 × 10−5. The augmented LR procedure stopped after k = 15
iterations, with ||h|| = 9.9172 × 10−5.

Figure 5.9 shows the evolution of the objective function (5.101) as a func-
tion of the iteration number, for each of the three procedures. The dark gray
line represents the evolution of the objective function evaluated at the iterates
for the LR procedure. The gray line represents the evolution of the objective
function evaluated at the iterates for the AL decomposition procedure. Lastly,
the black line represents the evolution of the objective function evaluated at
points computed by the proposed decomposition algorithm.

3 5 7 9

0.1

0.2

0.3

0.4

0.5

f (x, y)

Iteration

Optimality Condition

Augmented Lagrangian

Lagrangian Relaxation

5 10 15 20 25 30 35 40 45 50

0.8

0.2

0.4

0.6

1

1.2

1.4

Iteration

f (x, y)

Fig. 5.9. Example: Evolution of the objective function in Illustrative Example 5.7

Note the slow and oscillating behavior of the LR procedure. The quadratic
penalty term in the AL procedure corrects this anomaly, although the con-
vergence is still slower than that of the decomposition algorithm analyzed in
this section. Figure 5.10 shows the value of multiplier λ1 at each iteration, for
each of the three procedures. The value of multiplier λ2 is the same for all
procedures. As in Fig. 5.9, the dark gray line represents the values of the mul-
tiplier computed by the LR procedure; the gray line represents the evolution
of the multiplier from the AL procedure; lastly, the black line represents the
evolution of the multiplier as obtained by the OCD algorithm. ��



5.6 Complicating Variables 223

Optimality Condition

Augmented Lagrangian

Lagrangian Relaxation

Iteration

Iteration

-0.6

-0.4

-0.2

-0.8

-1

0
3 5 7 9

5 10 15 20 25 30 35 40 45 50

-0.6

-0.2

-0.8

-1

0

-0.4

1λ 1λ

Fig. 5.10. Example: Evolution of the first multiplier

5.6 Complicating Variables

5.6.1 Introduction

The Benders decomposition is analyzed below to address nonlinear problems
with decomposable structure and complicating variables.

5.6.2 Benders Decomposition

The problem structure required to apply advantageously the Benders decom-
position is

minimize
x,y

f(x,y) (5.103)

subject to

c(x) ≤ 0 (5.104)
d(x,y) ≤ 0 , (5.105)

where x ∈ IRn, y ∈ IRm, f(x,y) : IRn × IRm → IR, c(x) : IRn → IRp and
d(x,y) : IRn× IRm → IRq. The problem includes both equality and inequality
constraints. Variables x are complicating variables, i.e., variables that if fixed
to given values render a simple or decomposable problem.



224 5 Decomposition in Nonlinear Programming

The auxiliary function α(x) is defined below. Function α(x) expresses the
objective function of the original problem (total costs) as a function solely of
the complicating variables.

α(x) = minimum
y

f(x,y) (5.106)

subject to

d(x,y) ≤ 0 . (5.107)

Using function α(x), the original problem can be expressed as

minimize
x

α(x) (5.108)

subject to

c(x) ≤ 0 . (5.109)

The procedure explained below produces iteratively better and better ap-
proximations to function α(x). If complicating variables are fixed to specific
values using constraints of the form, x = x(ν), and so that c(x(ν)) ≤ 0, the
resulting problem is easy to solve. This problem has the following form:

minimize
y

f(x,y) (5.110)

subject to

d(x,y) ≤ 0 (5.111)

x = x(ν) : λ(ν) . (5.112)

The problem above is denominated subproblem. Typically, it decomposes
in many subproblems. The solution of the problem above provides values for
the noncomplicating variables, y(ν), and the dual variable vector associated
with those constraints that fix the complicating variables to given values. This
sensitivity vector is denoted by λ(ν). An upper bound of the optimal objec-
tive function value is readily available because problem (5.110)–(5.112) is more
constrained than the original one. This upper bound is z

(ν)
up = f(x(ν),y(ν)).

The information obtained solving the subproblem allows reproducing more
and more accurately the original problem. Moreover, if function α(x) is con-
vex, the following problem approximates from below the original one:

minimize
α,x

α (5.113)



5.6 Complicating Variables 225

subject to

c(x) ≤ 0 (5.114)

α ≥ f(x(ν),y(ν)) +
n∑

k=1

λ
(ν)
k (xk − x

(ν)
k ). (5.115)

The last constraint of the problem above is called the Benders cut. The
problem itself is denominated master problem. Note that the optimal objec-
tive function value of this problem is a lower bound of the optimal objective
function value of the original problem. This is so because problem (5.113)–
(5.115) is a relaxation of the original problem. The solution of this master
problem provides new values for the complicating variables that are used for
solving a new subproblem. In turn, this subproblem provides information to
formulate a more accurate master problem that provides new values of com-
plicating variables. The procedure continues until upper and lower bounds of
the objective function optimal value are close enough.

5.6.3 Algorithm

The Benders decomposition works as follows.

Algorithm 5.4 (The Benders decomposition algorithm).

Input. An NLPP with complicating variables, and a small tolerance value ε
to control convergence.

Output. The solution of the NLPP problem obtained after using the Benders
decomposition algorithm.

Step 0: Initialization. Find feasible values for the complicating variables
x0, so that c(x0) ≤ 0.

Set ν = 1, x(ν) = x0, z
(ν)
down = −∞.

Step 1: Subproblem solution. Solve subproblem or subproblems

minimize
y

f(x,y)

subject to

d(x,y) ≤ 0

x = x(ν) : λ(ν) .

The solution of this subproblem provides y(ν), f(x(ν),y(ν)), and λ(ν).
Update the objective function upper bound, z

(ν)
up = f(x(ν),y(ν)).

Step 2: Convergence check. If |z(ν)
up − z

(ν)
down|/|z(ν)

down| ≤ ε, the solution with
a level of accuracy ε of the objective function is



226 5 Decomposition in Nonlinear Programming

x∗ = x(ν)

y∗ = y(ν) .

Otherwise, the algorithm continues with the next step.

Step 3: Master problem solution. Update the iteration counter, ν ← ν+1.
Solve the master problem

minimize
α,x

α

subject to

α ≥ f(x(i),y(i)) +
n∑

k=1

λ
(i)
k (xk − x

(i)
k ); ∀i = 1, . . . , ν − 1

c(x) ≤ 0 .

Note that at every iteration a new constraint is added. The solution of the
master problem provides x(ν) and α(ν).

Update objective function lower bound, z
(ν)
down = α(ν). The algorithm con-

tinues in Step 1.
It should be noted that the behavior of the master problem above depends

on the iterative evolution of α(ν). If α(ν) (ν = 1, 2, . . .) presents a convex
envelope, the above master problem properly reproduces the original problem
and the procedure converges to the solution of the original problem. ��
Illustrative Example 5.8 (The Benders decomposition for an NLPP).

Consider the problem

minimize
x, y1, y2

z = 3x y2 + y1 y2

subject to
4y1− x2 ≤ 5
2y2

2−
x y2

3
≤ 2

y1 ≥ 0
x ≥ 2
x ≤ 12 .

The optimal values of this example are x∗ = 12, y∗
1 = 37.25, and

y∗
2 = −0.41 with an objective function value equal to z∗ = −30.34. If variable

x is considered to be a complicating variable, the above problem is solved
using the Benders decomposition algorithm.

Step 0: Initialization. The iteration counter is initialized, ν = 1. The initial
value for the complicating variable x is x(1) = 2. The lower bound of the
objective function is z

(1)
down = −∞.



5.6 Complicating Variables 227

Step 1: Subproblem solution. The subproblem below is solved.

minimize
x, y1, y2

z = 3x y2 + y1 y2

subject to
4y1− x2 ≤ 5
2y2

2−
x y2

3
≤ 2

y1 ≥ 0
x = 2 : λ ,

whose solution is y
(1)
1 = 2.25, y

(1)
2 = −0.85, and λ(1) = −2.81 with an ob-

jective function value z = −6.99. The upper bound of the objective function
optimal value is z

(1)
up = −6.99.

Step 2: Convergence checking. The expression |z(1)
up − z

(1)
down|/|z(1)

down| = 1
is not small enough, therefore, the procedure continues in Step 3.

Step 3: Master problem solution. The iteration counter is updated, ν =
1 + 1 = 2. The master problem below is solved.

minimize
α

α

subject to
−6.99 − 2.81(x − 2) ≤ α

x ≥ 2
x ≤ 12 .

The solution of this problem is x(2) = 12.00 and α(2) = −35.13. The lower
bound of the objective function optimal value is z

(2)
down = α(2) = −35.13. The

procedure continues in Step 1.

Step 1: Subproblem solution. The subproblem below is solved.

minimize
x, y1, y2

z = 3x y2 + y1 y2

subject to
4y1− x2 ≤ 5
2y2

2−
x y2

3
≤ 2

y1 ≥ 0
x = 12 : λ ,

whose solution is y
(2)
1 = 37.25, y

(2)
2 = −0.41, and λ(2) = −1.94 with an ob-

jective function value z = −30.34. The upper bound of the objective function
optimal value is z

(2)
up = −30.34.



228 5 Decomposition in Nonlinear Programming

Step 2: Convergence checking. The expression |z(2)
up − z

(2)
down|/|z(2)

down| =
0.1363 is not small enough, therefore, the procedure continues in Step 3.

Step 3: Master problem solution. The iteration counter is updated, ν =
2 + 1 = 3. The master problem below is solved.

minimize
α

α

subject to
−6.99 − 2.81 × (x − 2) ≤ α

−30.34 − 1.94 × (x − 12) ≤ α
x ≥ 2
x ≤ 12 .

The solution of this problem is x(3) = 12 and α(3) = −30.34. The lower
bound of the objective function optimal value is z

(3)
down = −30.34.

Step 1: Subproblem solution. The subproblem below is solved.

minimize
x, y1, y2

z = 3x y2 + y1 y2

subject to
4y1− x2 ≤ 5
2y2

2−
x y2

3
≤ 2

y1 ≥ 0
x = 12 : λ ,

whose solution is y
(3)
1 = 37.25, y

(3)
2 = −0.41, and λ(3) = −1.94 with an ob-

jective function value z = −30.34. The upper bound of the objective function
optimal value is z

(3)
up = −30.34.

Step 2: Convergence checking. The expression |z(3)
up − z

(3)
down|/|z(3)

down| = 0
is small enough, therefore, the optimal solution has been found.

The solution is x∗ = 12, y∗
1 = −37.25, and y∗

2 = −0.41 with an optimal
objective function value −30.34. The convergence behavior of this example is
illustrated in Fig. 5.11. ��

An engineering-based computational example is detailed below.

Computational Example 5.1 (The Reliability-based optimization of
a rubblemound breakwater).

In Sect. 1.5.4, p. 48, the reliability-based optimization of a rubblemound
breakwater was presented. In this subsection we give a possible way of solv-
ing the corresponding optimization problem using the Benders decomposition.



5.6 Complicating Variables 229

1 2 3
Iteration

-5

-10

-15

-20

-25

-30

-35

-40

0z

zup

zdown

Fig. 5.11. The Benders algorithm evolution in Illustrative Example 5.8

The method proceeds as follows:

Step 0: Initialization. Select initial values for the design variables (compli-
cating variables) d(0) = {F (0)

c , tan α
(0)
s }.

Set the iteration counter to ν = 1, d(ν) = d(0), and the total cost lower
bound to C

(ν)
down = −∞.

Step 1: Evaluating the reliability index β. Based on the actual design
values (complicating variables), the reliability index is calculated solving the
problem

minimize
H,T

β(ν) =
√

z2
1 + z2

2

subject to

Ru

H
= Au

(
1 − eBuIr

)
Ir =

tan αs√
H/L(

2π

T

)2

= g
2π

L
tanh

2πDwl

L

Φ(z1) = 1 − exp(−2(H/Hs)2

Φ(z2) = 1 − exp(−0.675(T/T̄ )4

Ru = Fc

d = d(ν) : λ(ν) .

The solution of this subproblem provides β(ν), and the partial derivatives
of the reliability index with respect to the design variables λ(ν).



230 5 Decomposition in Nonlinear Programming

Then, it is possible to evaluate the probability of failure of one wave (Pf),
the probability of failure in the design sea state (PD

f ), the volumes of material
(vc, va), the construction cost Cco, the insurance cost Cin, and the total cost
C

(ν)
to (see Fig. 5.12) for the actual values of the complicating (design) variables

d(ν) and the reliability index β(ν) as

vc = 10h

va =
1
2
(Dwl + 2)(46 + Dwl +

(Dwl + 2)

tan α
(ν)
s

)

F (ν)
c = 2 + h

Pf = Φ(−β(ν))

PD
f = 1 − (1 − Pf)

dst/T̄

Cco = ccvc + cava

Cin = 5000 + 1.25 × 106PD
f

C
(ν)
to = Cco + Cin .

Thus, we have just calculated one point of the total cost function, for re-
constructing the function using hyperplanes, we need the partial derivatives of
function Cto with respect to the design variables d(ν), Ω(ν) shown in Fig. 5.12.
These partial derivatives can be calculated using the following expression:

d

Solution of the 
master problem

New design variables

Linear approximations of
the total cost function

(Benders cuts) 

d

Cost

d d
(i)

Cin
(i)

Cco
(i)

Cto
(i)

Cco
(  )ν

Cin
(  )ν

Total cost

Cto
(  )ν

Ω (  )ν

Ω (i)

(  )ν

Fig. 5.12. Graphical illustration of the reconstruction of the total cost function
using the Benders cuts



5.6 Complicating Variables 231

Ω(ν) =
∂C

(ν)
to

∂d(ν)
=

∂Cco

∂d(ν)
+

∂Cin

∂d(ν)
,

where
∂Cco

∂d(ν)
is the partial derivative of the construction cost, given in ana-

lytical form or calculated using the auxiliary problem,

minimize
Fc, tan α

Cco = ccvc + cava

subject to

vc = 10h

va =
1
2
(Dwl + 2)(46 + Dwl +

Dwl + 2
tan αs

)

Fc = 2 + h

d = d(ν) : θ(ν) ,

where θ(ν) are the required derivatives.
The partial derivative of the insurance cost is obtained as follows:

∂Cin

∂d(ν)
=

∂Cin

∂PD
f

∂PD
f

∂d(ν)

= −∂Cin

∂PD
f

dst

T̄
(1 − Pf)

(dst/T̄−1) ∂Pf

∂d(ν)

=
∂Cin

∂PD
f

dst

T̄
(1 − Pf)

(dst/T̄−1) exp(−β2/2)√
2π

∂β

∂d(ν)
,

where for this example

∂Cin

∂PD
f

= 2.5 × 106PD
f and

∂β

∂d(ν)
= λ(ν) .

Set the total cost upper bound to C
(ν)
up = C

(ν)
to .

Step 2: Convergence check. If |C(ν)
up −C

(ν)
down|/|C(ν)

up | ≤ ε, the solution with
a level of accuracy ε of the objective function and design variables is

C∗
to = C

(ν)
to , d∗ = d(ν) .

Otherwise, set ν ← ν + 1 and go to Step 3.

Step 3: Master problem. The hyperplane reconstruction of the total
cost function is used for calculating the new values of the complicating
variables d.

minimize
αcost,d

αcost



232 5 Decomposition in Nonlinear Programming

subject to

αcost ≥ C
(ν)
to +

n∑
i=1

Ω(ν)
i

(
di − d

(ν)
i

)
; ∀i = 1, . . . , ν − 1

2 ≤ 1
tan α

≤ 5

αcost ≥ 5000 .

The solution of this master problem provides the new values of the design
variables d(ν) for iteration ν, and the corresponding lower bound of the total
cost function C

(ν)
down = αcost.

The algorithm continues in Step 1.
As it has been shown, the reliability-based optimization problems char-

acterized as bi-level optimization problems, can be solved easily using the
Benders decomposition procedure.

A Numerical Example

To perform a reliability-based design of an individual rubblemound breakwa-
ter, assume the following values for the variables involved:

Dwl = 20 m, Au = 1.05 , Bu = −0.67 , cc = 60 $/m3,

g = 9.81 m/s2, ca = 2.4 $/m3, Hs = 5 m, T̄ = 10 s, dst = 1 h .

The solution of this problem, using the method above, is shown in
Table 5.7. It turns out that convergence of the process requires only 11 it-
erations. The evolution of the total cost function bounds during the process is
illustrated in Fig. 5.13. The optimal reliability index and probability of run-up
for a single wave and during the design sea state are, respectively,

Table 5.7. Illustration of the iterative procedure

ν Fc tan αs Cco Cin Cto Cdown Cup Error

1 7.00 0.33 6484.8 8297.8 14782.6 5000.0 14782.6 1.9565
2 5.65 0.20 6836.4 5000.0 11836.4 5000.0 11836.4 1.3673
3 9.32 0.50 7296.0 5000.0 12296.0 9682.5 12296.0 0.2699
4 6.52 0.29 6489.7 5542.8 12032.5 11116.5 12032.5 0.0824
5 6.66 0.29 6571.1 5077.2 11648.3 11197.9 11648.3 0.0402
6 7.02 0.29 6786.8 5000.0 11786.8 11413.5 11786.8 0.0327
7 5.98 0.24 6598.6 5007.5 11606.1 11521.9 11606.1 0.0073
8 6.40 0.26 6583.4 5021.2 11604.5 11570.4 11604.5 0.0030
9 6.00 0.24 6553.6 5033.9 11587.5 11571.8 11587.5 0.0014
10 5.67 0.22 6578.7 5020.4 11599.1 11584.6 11599.1 0.0013
11 5.88 0.23 6571.3 5019.8 11591.1 11585.8 11591.1 0.0005



5.7 From Lagrangian Relaxation to Dantzig-Wolfe Decomposition 233

1 2 3 4 5 6 7 8 9 10

5000

15000

10000

11 12

Cto

Iteration

Cup

Cdown

Fig. 5.13. Evolution of the objective function for the rubblemound breakwater
example (Computational Example 5.1)

β∗ = 4.738, P ∗
f = 0.00000111, and PD

f

∗
= 0.00039845 .

The GAMS code for solving this rubblemound breakwater example is given
in the Appendix A, p. 407. ��

5.7 From Lagrangian Relaxation
to Dantzig-Wolfe Decomposition

In Chap. 2 we have stated that linear programming problems with the follow-
ing structure:

minimize
xj ; j = 1, . . . , n

z =
n∑

j=1

cjxj (5.116)

subject to

n∑
j=1

eijxj = fi; i = 1, . . . , q (5.117)

n∑
j=1

aijxj = bi; i = 1, . . . , m (5.118)

0 ≤ xj ≤ xup
j ; j = 1, . . . , n, (5.119)

where constraints (5.117) have a decomposable structure in r blocks and con-
straints (5.118) are complicating constraints, can be solved using the Dantzig-
Wolfe decomposition technique.



234 5 Decomposition in Nonlinear Programming

A different alternative considering Theorem 3.1 is to obtain the dual of
(5.116)–(5.119), which has a decomposable structure with complicating vari-
ables, and solve it using the Benders decomposition.

Additionally, in this section we show how problem (5.116)–(5.119) can be
solved using the Lagrangian relaxation, and how the Dantzig-Wolfe decom-
position can be derived from the LR approach. These questions are addressed
below.

5.7.1 Lagrangian Relaxation in LP

Problems (5.116)–(5.119) have the adequate structure to apply the LR ad-
vantageously because if the complicating constraints (5.118) are relaxed, it
becomes drastically simplified.

Considering the Lagrangian function as

L(x,λ) =
n∑

j=1

cjxj +
m∑

i=1

λihi(x)

=
n∑

j=1

cjxj +
m∑

i=1

λi

⎛⎝bi −
n∑

j=1

aijxj

⎞⎠
=

n∑
j=1

(
cj −

m∑
i=1

λiaij

)
xj +

m∑
i=1

λibi = y +
m∑

i=1

λibi

where h(x) are the equality complicating constraints mismatches, and y is an
auxiliary variable. Then, for convenience, the dual function φ(λ) is defined as

φ(λ) = minimum
x

L(x,λ) =
n∑

j=1

(
cj −

m∑
i=1

λiaij

)
xj +

m∑
i=1

λibi

(5.120)
subject to

n∑
j=1

eijxj = fi; i = 1, . . . , q (5.121)

0 ≤ xj ≤ xup
j ; j = 1, . . . , n, (5.122)

which is a concave function [22].
If primal problem (5.116)–(5.119) has an optimal solution (has not un-

bounded optimum), then the optimal solution of the primal and dual problems
coincide.



5.7 From Lagrangian Relaxation to Dantzig-Wolfe Decomposition 235

The dual problem is then defined as

maximize
λi; i = 1, . . . , m

φ(λ) . (5.123)

In what follows the LR algorithm is applied.
Consider given values for the multipliers λ

(k)
1 , λ

(k)
2 , . . . , λ

(k)
m , and consider

the following subproblem t:

Subproblem t:

minimize
xj ; j = nt−1 + 1, . . . , nt

y
(k)
t =

nt∑
j=nt−1+1

(
cj −

m∑
i=1

λ
(k)
i aij

)
xj (5.124)

subject to

nt∑
j=nt−1+1

eijxj = fi; i = qt−1 + 1, . . . , qt (5.125)

0 ≤ xj ≤ xup
j ; j = nt−1 + 1, . . . , nt . (5.126)

This problem is denominated subproblem for the block t, and is the same
as the relaxed subproblem (2.45)–(2.47) of the Dantzig-Wolfe decomposition
algorithm.

Once the subproblems for all blocks (t = 1, . . . , r) are solved, we evaluate
the dual function using the objective function values of the block subproblems(
y
(k)
t

)
,

φ
(
λ(k)

)
=

r∑
t=1

y
(k)
t +

m∑
i=1

λ
(k)
i bi = y(k) +

m∑
i=1

λ
(k)
i bi . (5.127)

Value (5.127) is the solution of a particular instance of the original prob-
lem, i.e., a problem more restricted than the original one. Therefore, value
(5.127) is a lower bound of the optimal value of the objective function of the
original problem, i.e.,

φ
(k)
down = y(k) +

m∑
i=1

λ
(k)
i bi . (5.128)

This lower bound is identical to the one obtained while deriving the
Dantzig-Wolfe decomposition algorithm (2.76).

Note that the gradient of the dual function with respect to the multiplier
vector (λ) is the vector of mismatches of the corresponding constraints h(x),

θ
(k)
i = bi −

n∑
j=1

aijx
(k)
j = bi − r

(k)
i ; i = 1, . . . , m , (5.129)



236 5 Decomposition in Nonlinear Programming

where θ is the gradient of the dual function (objective function) and x(k) is
the solution of the subproblems.

The following step consists of updating the multiplier vector by solving
the linear programming problem:

Master problem:
maximize

λ1, . . . , λm, α
α (5.130)

subject to

α ≤ φ
(
λ(k)

)
+ θ(k)T

(
λ − λ(k)

)
; k = 1, . . . , ν − 1, (5.131)

where α is a scalar. Constraints (5.131) represent half-spaces (hyperplanes)
on the multiplier space.

This is a relaxed version of problem (5.123) because it approximates this
problem from above. Therefore, the solution is an upper bound of the optimal
solution of the original problem

φ(k)
up = α . (5.132)

Up to this point, we have illustrated the solution of (5.116)–(5.119) by
Lagragian relaxation.

5.7.2 Dantzig-Wolfe from Lagrangian Relaxation

In the preceding subsection we have illustrated how to use the Lagrangian
relaxation to solve LP problems with complicating constraints. But, what
about deriving the Dantzig-Wolfe method from the Lagrangian relaxation?
This question is addressed in this subsection.

Using Corollary 4.1 we obtain the dual problem of the master problem
(5.130).

Dual master problem:

minimize
uk; k = 1, . . . , ν − 1

ν−1∑
k=1

(
φ
(
λ(k)

)
−

m∑
i=1

θ
(k)
i λ

(k)
i

)
uk (5.133)

subject to

ν−1∑
k=1

uk = 1 (5.134)

−
ν−1∑
k=1

θ
(k)
i uk = 0; i = l + 1, . . . , m (5.135)

uk ≥ 0; k = 1, . . . , ν − 1 . (5.136)



5.7 From Lagrangian Relaxation to Dantzig-Wolfe Decomposition 237

Benders cut 1

Benders cut 2

Benders cut 3

λ

x

x* φ (   )λ

f (x*) =    (    )λ*φ

(x,   )λ

(x, (1))λ

(x, (2))λ

(x, (3))λ

(x(1), (1))λφ ( (1)) =λ

L(x(2), (2))λφ ( (2)) =λ

(x(3), (3))λφ ( (3)) =λ

Fig. 5.14. Graphical illustration of the reconstruction by hyperplanes of the dual
function φ (λ)

This dual master problem does not seem to be similar to the Dantzig-
Wolfe master problem (2.29)–(2.32). However, taking into account (5.127)
and (5.129) the following simplifications are possible:

−
ν−1∑
k=1

θ
(k)
i uk = −

ν−1∑
k=1

⎛⎝bi −
n∑

j=1

aijx
(k)
j

⎞⎠uk

= −
ν−1∑
k=1

(
bi − r

(k)
i

)
uk = −bi

ν−1∑
k=1

uk +
ν−1∑
k=1

r
(k)
i uk

= −bi +
ν−1∑
k=1

r
(k)
i uk (5.137)

φ
(
λ(k)

)
−

m∑
i=1

θ
(k)
i λ

(k)
i = y(k) +

m∑
i=1

λ
(k)
i bi −

m∑
i=1

θ
(k)
i λ

(k)
i



238 5 Decomposition in Nonlinear Programming

=
n∑

j=1

(
cj −

m∑
i=1

λ
(k)
i aij

)
x

(k)
j +

m∑
i=1

λ
(k)
i bi −

m∑
i=1

θ
(k)
i λ

(k)
i

=
n∑

j=1

(
cj −

m∑
i=1

λ
(k)
i aij

)
x

(k)
j +

m∑
i=1

λ
(k)
i bi −

m∑
i=1

⎛⎝bi −
n∑

j=1

aijx
(k)
j

⎞⎠λ
(k)
i

=
n∑

j=1

cjx
(k)
j = z(k). (5.138)

Substituting (5.137) into (5.135), and (5.138) into (5.133), respectively, we
obtain

minimize
uk; k = 1, . . . , ν − 1

ν−1∑
k=1

z(k)uk (5.139)

subject to

ν−1∑
k=1

uk = 1 (5.140)

ν−1∑
k=1

r
(k)
i uk = bi : µi; i = 
 + 1, . . . , m (5.141)

uk ≥ 0; k = 1, . . . , ν − 1. (5.142)

This dual master problem is equal to the Dantzig-Wolfe master problem
(2.29)–(2.32).

Note that dealing with linear programming, the solution of this dual master
problem is the same as the master problem (5.130)–(5.131). Therefore an
upper bound of the original problem (5.132) is

φ(k)
up = α =

ν−1∑
k=1

z(k)uk ,

which is the same as the expression (2.68) obtained in the Dantzig-Wolfe
decomposition.

So it can be concluded that the LR and the Dantzig-Wolfe decompositions
are equivalent procedures, being the only difference the formulation of the
master problem, where the LR uses dual variables, whereas the Dantzig-Wolfe
decomposition uses primal variables.

5.8 Concluding Remarks

This chapter considers different techniques to decompose nonlinear program-
ming problems that do have decomposable structure. For the complicating



5.9 Exercises 239

constraint case, three procedures are analyzed, being the OCD technique the
one that presents better convergence and efficiency properties. For the com-
plicating variable case, the Benders decomposition is reviewed. It is shown
that the application of the LR to a linear problem renders the Dantzig-Wolfe
decomposition algorithm. Several examples illustrate the decomposition prin-
ciples and procedures studied in this chapter.

The problem considered may have both complicating variables and con-
straints. In such situation a nested decomposition can be used. For instance, an
outer Benders decomposition algorithm may deal with complicating variables
whereas an inner Lagrangian relaxation procedure may deal with complicating
constraints.

5.9 Exercises

Exercise 5.1. Consider 3 h in which demands are 150, 300, and 500 units,
respectively. Consider three electricity plants whose minimum outputs are
zero. Ramp-up limits are 200, 100, and 100 units per hour, respectively, and
ramp-down limits 300, 150, and 100 units per hour, respectively, and variable
costs are, respectively, 0.100, 0.125, and 0.150 $ per unit.

Solve this multiperiod production planning problem using LR and AL de-
composition. Solve the subproblems using linear programming.

Exercise 5.2. Consider the following problem

minimize
x, y

f(x, y) = x2 + y2

subject to

x + y − 10 = 0
x ≥ 0
y ≥ 0 .

1. Write the Lagrangian function associated with this problem.
2. Solve the problem using an LR procedure and a subgradient updating of

multipliers.
3. Solve the problem using an LR procedure and a bundle method to update

multipliers.
4. Compare the solutions of 2 and 3.

Exercise 5.3. Consider the problem stated in Exercise 5.2,

minimize
x, y

f(x, y) = x2 + y2



240 5 Decomposition in Nonlinear Programming

subject to

x + y − 10 = 0
x ≥ 0
y ≥ 0 .

1. Write the AL function associated with this problem.
2. Solve the problem using an AL decomposition.

Exercise 5.4. The production-scheduling problem formulated in Sect. 1.5.1,
p. 39, has such a structure that it can be solved using either LR or AL de-
composition.

Solve the numerical example stated in Sect. 1.5.1 using both LR and AL
decomposition, and verify that the results obtained coincide with those pro-
vided in that section. Compare the numerical behavior the LR algorithm with
that of the AL decomposition algorithm.

Exercise 5.5. Consider the water supply network in Fig. 5.15. It consists
of two cities communicated by a single channel, a set of nodes and a set of
connections. The nodes have been numbered in an optimal order, so that if
the flow balance equations are written, the associated matrix exhibits a nice
block and banded pattern.

3

2

1

4

5

6

9

8

7

10

13

16

14

17

18

1511

12

Fig. 5.15. A water supply network consisting of two cities communicated by a single
channel

1. Assign to each connection i an arbitrary direction (arrow) corresponding
to the flow direction (from higher to lower height) and a variable xi.

2. Assign to each node j an arbitrary supply or consumption amount qj , but
be sure to assign values such that the total consumption coincides with the



5.9 Exercises 241

total supply, i.e.,
∑

i∈I qi =
∑

j∈J qj , where I is the set of supply nodes,
and J is the set of consumption nodes.

3. Write the flow balance equations for all nodes (input amount of water equal
to output amount of water including supply and consumption).

4. Write the resulting system of equations in matrix form and identify its
banded character and the blocks associated with the two cities.

5. Propose a nonlinear objective function to calculate the cost of the water
supply system.

6. If the node numbering were done at random, what would it be the aspect
of the associated matrix?

7. Propose some decomposition procedures to solve the problem.

Exercise 5.6. The optimal operation of a multiarea electricity network is
addressed in Sect. 1.5.2, p. 42. This problem presents such a structure that it
can be solved through the use of the OCD algorithm.

Solve the numerical example discussed in Sect. 1.5.2 using the OCD
method, and compare the results obtained with those provided in that sec-
tion. Analyze the numerical behavior of this decomposition algorithm for this
particular problem.

Exercise 5.7. A cardboard box is used to store lamps. Knowing that the
upper, bottom, and front sides should be built with double quantity of mate-
rial, determine the dimension of the box that contains maximum volume for
a surface of available cardboard equal to 10.

Consider the equality constraint of this problem a complicating constraint
and solve it using the LR.

Consider the height of the cardboard box a complicating variable and solve
this problem using the Benders decomposition.

Exercise 5.8. Using appropriate control systems the energy flows through
three parallel lines between nodes A y B can be fixed. Losses incurred in
transmission are given by

p(x1, x2, x3) =
1
2

(
x2

1 + x2
2 +

x2
3

10

)
+ x3 ,

where xi (i = 1, 2, 3) represents the volume of energy transmitted through
line i. Considering that the total energy transmitted is 10, compute the flow
to be send through every line so that losses are minimized.

Consider the equality constraint of this problem a complicating constraint
and solve it using the LR.

Consider x3 as a complicating variable and solve this problem using the
Benders decomposition.

Exercise 5.9. Consider two production devices serving a 3 period demand
of 100, 40, and 60 units. The operating range of devices 1 and 2 are within



242 5 Decomposition in Nonlinear Programming

0 and 150, and 0 and 180 units, respectively. The production of each device
cannot change above 60 units from one period to the next one. The quadratic
production cost of device 1 is characterized by fixed, linear, and quadratic
coefficients of values 5, 10, and 0.1, respectively. Coefficients for device 2 are
6, 12, and 0.08, respectively. The devices are not working before the study
horizon.

1. Formulate the optimal scheduling problem that allows determining the
start-up and shut-down sequence of the production devices that minimize
production cost while serving the demand.

2. Considering the conditions of demand supply complicating constraints,
solve the problem using the LR.

3. Repeat 2 using the AL decomposition.
4. Repeat 2 using the OCD.

Exercise 5.10. The investment planning problem considered in Sect. 1.6.1,
p. 53, presents such a structure that it can be conveniently solved using the
Benders decomposition.

Solve the numerical example related to this investment-planning problem
that is stated in Sect. 1.6.1 using the Benders decomposition, and verify that
the solution obtained is the one provided in that section.



6

Decomposition in Mixed-Integer Programming

6.1 Introduction

This chapter considers mixed-integer mathematical programming problems,
both linear and nonlinear.

Mixed-integer linear programming (MILP) problems can be solved in a
centralized fashion using the powerful solvers nowadays available. Branch and
cut techniques that have been developed during the last decade of the twen-
tieth century allow us, using personal computers, to solve problems at least
two orders of magnitude larger than those problems solvable before the devel-
opment of such branch and cut techniques [42]. Alternatively, MILP problems
can be decomposed to separate integer and continuous variables, which is
equivalent to considering the integer variables as complicating variables. The
resulting continuous subproblem may be decomposed by blocks. In this case,
such decomposable structure can be usually exploited computationally to de-
velop efficient algorithms. This situation often arises in practice, particularly,
in long-term multiperiod investment planning problems. Investment decisions
are integer while operation decisions are continuous and often separable by a
time period.

The case of complicating constraints in MILP problems is not so common
in practice. A decomposition technique similar to the Dantzig-Wolfe decom-
position for such type of problems is denominated “Branch and Price.” This
rather specific decomposition technique is computationally involved and is not
addressed in this book. It is described in detail in [43].

Mixed-integer nonlinear programming (MINLP) problems can be analyzed
from two different perspectives: considering the integer variables as compli-
cating variables, and considering the nonlinear constraints as complicating
constraints. If integer variables are considered as complicating variables and,
additionally, the problem has a decomposable structure, the decomposition
allows a distributed solution of the original problem. This situation is often
encountered in practice. Similar considerations to those made for the case



244 6 Decomposition in Mixed-Integer Programming

of linear decomposable problems are applicable for these problems. Actually,
long-term multiperiod investment problems usually fall under this category.

In general, it is assumed that the continuous nonlinear programming
(NLP) problem resulting from fixing integer variables to given values in a
MINLP problem is convex. This assumption is fundamental to guarantee the
convergence of the decomposition procedures proposed in this chapter. In
practice, local convexity in the neighborhood of the optimal solution normally
suffices to tackle realistic problems, for which good guesses of the neighbor-
hood of the optimal solution are available.

On the other hand, considering nonlinear constraints as complicating con-
straints and treating them through linearization procedures do not lead gener-
ally to a decomposed problem. Nevertheless, these techniques are also analyzed
in this chapter.

If Lagrangian relaxation techniques as described in Chap. 5 are applied
to MINLP problems, two unfortunate circumstances arise. First, the optimal
solution of the dual problem is different than the optimal solution of the
primal problem, the difference being the duality gap. Second, the solution of
the primal problem associated with the optimal solution of the dual problem
is generally infeasible for the primal problem. Nevertheless, from a practical
point of view, the above two unfortunate facts have commonly low impact as
duality gaps are relatively small and a simple mechanism can be used to make
primal infeasible solutions feasible. A practical case study that exhibits the
duality gap and primal infeasibility is described in Sect. 9.5.

In the following, MILP problems are considered first. Then, MINLP prob-
lems are analyzed.

6.2 Mixed-Integer Linear Programming

A general MILP problem has the form

minimize
x1, . . . , xn; y1, . . . , ym

n∑
i=1

ci xi +
m∑

j=1

dj yj (6.1)

subject to
n∑

i=1

a�i xi +
m∑

j=1

e�j yj = b�; 
 = 1, . . . , q (6.2)

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n (6.3)

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m . (6.4)

Note that upper and lower bounds have been imposed on optimization
variables. This reflects what happens in most engineering and science problems
and simplifies the mathematical treatment required.



6.2 Mixed-Integer Linear Programming 245

The most common integer variables in real world applications are binary
variables. Note that any integer variable can be substituted by a set of binary
variables, as shown below.

The integer variable
x = {a1, a2, . . . , an} (6.5)

can be substituted by n binary variables as follows:

x =
n∑

i=1

ai ui (6.6)

n∑
i=1

ui = 1 (6.7)

ui ∈ {0, 1}; i = 1, . . . , n . (6.8)

If a centralized solution of problem (6.1)–(6.4) is not advisable, the in-
teger variables can be considered as complicating variables and the Benders
decomposition scheme is used. This is detailed below.

6.2.1 The Benders Decomposition for MILP Problems

To solve problem (6.1)–(6.4), the Benders decomposition scheme, as explained
in Chap. 3, works as follows:

1. Fix integer variables to given feasible integer values.
2. For fixed-integer variable values, solve the resulting continuous LP problem

(or subproblems), and obtain its optimal objective function value and the
sensitivities associated with constraints fixing integer variables to specific
values. Obtain also an upper bound of the objective function optimal value.

3. Solve the MILP master problem to determine improved values of the integer
variables. Obtain also a lower bound of the objective function optimal
value.

4. If bounds of the objective function optimal value are close enough, stop,
the optimal solution has been reached; otherwise, the algorithm continues
in Step 2.

A formal description of the Benders decomposition algorithm for MILP
problems is as follows.

Algorithm 6.1 (The Benders decomposition algorithm to solve
MILP problems).

Input. Data for the MILP problem (6.1)–(6.4).
Output. The solution of problem (6.1)–(6.4) obtained after using the Ben-

ders decomposition algorithm.



246 6 Decomposition in Mixed-Integer Programming

Step 0: Initialization. Initialize the iteration counter, ν = 1, and let

x
(ν)
i =

{
xdown

i if ci ≥ 0

xup
i if ci < 0

α(ν) = αdown

because it is the trivial solution of the master problem

minimize
x1, . . . , xn, α

n∑
i=1

cixi + α

subject to
xdown

i ≤ xi ≤ xup
i , xi ∈ IN; i = 1, . . . , n

α ≥ αdown.

Step 1: Subproblem solution. Solve the LP subproblem

minimize
y1, . . . , ym

m∑
j=1

dj yj

subject to
m∑

j=1

e�j yj = b� −
n∑

i=1

a�i xi; 
 = 1, . . . , q

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m

xi = x
(ν)
i : λi; i = 1, . . . , n .

The solution of this problem is y
(ν)
1 , . . . , y

(ν)
m with dual variable values

λ
(ν)
1 , . . . , λ

(ν)
n .

The problem above may be decomposed by blocks. If this is the case, it is
solved by blocks. If it is infeasible, additional variables and objective function
penalties can be used to avoid infeasibility. This is done in a similar manner
as in the continuous case, as explained in Subsect. 3.3.4 of Chap. 3.

Step 2: Convergence checking. Compute upper and lower bounds of the
optimal value of the objective function of the original problem

z(ν)
up =

n∑
i=1

ci x
(ν)
i +

m∑
j=1

dj y
(ν)
j

z
(ν)
down =

n∑
i=1

ci x
(ν)
i + α(ν) .



6.2 Mixed-Integer Linear Programming 247

If z
(ν)
up − z

(ν)
down is smaller than a pre-specified tolerance, stop, the optimal

solution is x
(ν)
1 , . . . , x

(ν)
n and y

(ν)
1 , . . . , y

(ν)
m . Otherwise, the algorithm continues

with the next step.

Step 3: Master problem solution. Update the iteration counter, ν ← ν+1.
Solve the MILP master problem

minimize
x1, . . . , xn, α

n∑
i=1

cixi + α

subject to

α ≥
m∑

j=1

djy
(k)
j +

n∑
i=1

λ
(k)
i (xi − x

(k)
i ); k = 1, . . . , ν − 1

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n

α ≥ αdown .

The solution of this problem is x
(ν)
1 , . . . , x

(ν)
n and α(ν). The algorithm con-

tinues with Step 1. ��
A computational example is solved below. The problem considered in this

example decomposes into two continuous subproblems once its single integer
variable is fixed to a given integer value.

Computational Example 6.1 (The Benders decomposition for MILP
problems). Consider the problem

minimize
y1, y2, y3, x

z = −3
2
y1 − 2y2 − 2y3 − 2x

subject to
−y1 −3y2 +2x ≤ 2

y1 +3y2 −x ≤ 3
y3 −3x ≤ 7

2
x ≤ 100

y1, y2, y3, x ≥ 0
y1, y2, y3 ∈ IR

x ∈ IN ,

whose optimal solution is y∗
1 = 8, y∗

2 = 0, y∗
3 = 37

2 , and x∗ = 5 with an optimal
objective function value z∗ = −59.

If variable x is considered to be a complicating variable, the above problem
can be solved using the Benders decomposition algorithm. This is done below.



248 6 Decomposition in Mixed-Integer Programming

Step 0: Initialization. The iteration counter is initialized, ν = 1.
The initial master problem is

minimize
x, α

−2x + α

subject to
x ≤ 100
α ≥ −50
x ∈ IN .

Its optimal solution is x(1) = 100 and α(1) = −50.

Step 1: Subproblem solution. If complicating variable x is fixed to a
given value, the original problem decomposes into two subproblems. These
subproblems are solved below.

The first subproblem is

minimize
y1, y2, w

zs1 = −3
2
y1 − 2y2 + 40w

subject to
−y1 −3y2 +2x −w ≤ 2

y1 +3y2 −x −w ≤ 3
x = 100 : λ1

y1, y2 ≥ 0
y1, y2 ∈ IR .

Its optimal solution is y
(1)
1 = 301

2 , y
(1)
2 = 0, w(1) = 95

2 , and λ
(1)
1 = 71

4

with an optimal objective function value z
(1)
s1 = 6,697

4 . Note that the artificial
variable w has been included to attain feasibility.

The second subproblem is

minimize
y3

zs2 = −2y3

subject to
y3 −3x ≤ 7

2
x = 100 : λ2

y3 ≥ 0
y3 ∈ IR .

Its optimal solution is y
(1)
3 = 607

2 and λ
(1)
2 = −6 with an objective function

value zs2 = −607.

Step 2: Convergence checking. An upper bound of the objective function
optimal value is



6.2 Mixed-Integer Linear Programming 249

z(1)
up = −3

2
y
(1)
1 − 2y

(1)
2 + 40w(1) − 2y

(1)
3 − 2x(1) =

3,469
4

and a lower bound is

z
(1)
down = −2x(1) + α(1) = −250.

The difference z
(1)
up − z

(1)
down = 4,469

4 is not small enough; therefore, the pro-
cedure continues with Step 3.

Step 3: Master problem solution. The iteration counter is updated, ν =
1 + 1 = 2.

The current master problem is

minimize
x, α

zm = −2x + α

subject to

6,697
4

− 607 +
71
4

× (x − 100) − 6 × (x − 100) ≤ α

x ≤ 100
α ≥ −50
x ∈ IN .

Its optimal solution is x(2) = 5 and α(2) = −49 with an optimal objective
function value z

(2)
m = −59.

The algorithm continues with Step 1.

Step 1: Subproblem solution. The subproblems are solved below.
The first subproblem is

minimize
y1, y2

zs1 = −3
2
y1 − 2y2

subject to
−y1 −3y2 +2x ≤ 2

y1 +3y2 −x ≤ 3
x = 5 : λ1

y1, y2 ≥ 0
y1, y2 ∈ IR .

Its optimal solution is y
(2)
1 = 8, y

(2)
2 = 0, and λ

(2)
1 = −3

2 with an optimal
objective function value zs1 = −12.

The second subproblem is

minimize
y3

zs2 = −2y3



250 6 Decomposition in Mixed-Integer Programming

subject to
y3 −3x ≤ 7

2
x = 5 : λ2

y3 ≥ 0
y3 ∈ IR .

Its optimal solution is y
(2)
3 = 37

2 and λ
(2)
2 = −6 with an optimal objective

function value zs2 = −37.

Step 2: Convergence checking. An upper bound of the objective function
optimal value is

z(2)
up = −3

2
y
(2)
1 − 2y

(2)
2 − 2y

(2)
3 − 2x(2) = −59

and a lower bound is

z
(2)
down = −2x(2) + α(2) = −59.

The difference z
(2)
up − z

(2)
down = 0 is small enough; therefore, the optimal

solution has been found. It is y∗
1 = 8, y∗

2 = 0, y∗
3 = 37

2 , and x∗ = 5 with an
optimal objective function value equal to −59. ��

6.2.2 Convergence

The convergence of the Benders decomposition algorithm for MILP problems
is guaranteed as long as the envelope of function α(x1, . . . , xn) is convex. This
function is defined as

α(x1, . . . , xn) = minimum
y1, . . . , ym

m∑
j=1

dj yj (6.9)

subject to
m∑

j=1

e�j yj = b� −
n∑

i=1

a�i xi; 
 = 1, . . . , q (6.10)

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m. (6.11)

This convergence property follows directly from the convexity proof of
function α(x1, . . . , xn) corresponding to the continuous case, as stated in
Sect. 3.3.1.

MINLP problems are analyzed in the following sections.



6.4 Complicating Variables: Nonlinear Case 251

6.3 Mixed-Integer Nonlinear Programming

The considered MINLP problem is

minimize
x1, . . . , xn; y1, . . . , ym

f(x1, . . . , xn; y1, . . . , ym) (6.12)

subject to
hk(x1, . . . , xn; y1, . . . , ym) = 0; k = 1, . . . , q (6.13)

gl(x1, . . . , xn; y1, . . . , ym) ≤ 0; l = 1, . . . , r (6.14)

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n (6.15)

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m . (6.16)

Note that upper and lower bounds are imposed on optimization variables
to reflect physical limits, which results in a simpler mathematical treatment.

As previously stated, MINLP problems can be addressed either considering
the integer variables as complicating variables or the nonlinear constrains as
complicating constraints, the former approach being more common in practice.
These two approaches are described in detail in the following subsections.

It is assumed that the continuous NLP problem resulting from fixing in
the original MINLP problem the integer variables to any given feasible val-
ues is convex; otherwise, the convergence of the procedures analyzed in this
section cannot be guaranteed. However, local convexity in a neighborhood of
the optimal solution is sufficient to guarantee convergence in most practical
applications.

6.4 Complicating Variables: Nonlinear Case

If the integer variables of an MINLP problem are considered as complicating
variables, the Benders decomposition algorithm can be used straightforwardly.
This is what is done below.

6.4.1 The Benders Decomposition

The Benders decomposition algorithm to solve MINLP problems is as follows.

Algorithm 6.2 (The Benders decomposition algorithm to solve
MINLP problems).

Input. Data for the MILP problem (6.12)–(6.16).
Output. The solution of problem (6.12)–(6.16) obtained after using the Ben-

ders decomposition algorithm.



252 6 Decomposition in Mixed-Integer Programming

Step 0: Initialization. Initialize the iteration counter, ν = 1.
Solve the initial MILP master problem below.

minimize
α

α

subject to
xdown

i ≤ xi ≤ xup
i , xi ∈ IN; i = 1, . . . , n

α ≥ αdown .

Its trivial solution is x
(ν)
1 , . . . , x

(ν)
n ; α(ν) = αdown.

Step 1: Subproblem solution. Solve the continuous NLP subproblem:

minimize
y1, . . . , ym

f(x1, . . . , xn; y1, . . . , ym)

subject to
hk(x1, . . . , xn; y1, . . . , ym) = 0; k = 1, . . . , q

gl(x1, . . . , xn; y1, . . . , ym) ≤ 0; l = 1, . . . , r

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m

xi = x
(ν)
i : λi; i = 1, . . . , n .

The solution of this problem is y
(ν)
1 , . . . , y

(ν)
n with dual variable values

λ
(ν)
1 , . . . , λ

(ν)
n .

The above problem may be decomposed by blocks. If this is the case, it is
solved by blocks. This is a situation often encountered in practice.

Step 2: Convergence checking. Compute upper and lower bounds of the
optimal value of the objective function of the original problem:

z(ν)
up = f(x(ν)

1 , . . . , x(ν)
n ; y(ν)

1 , . . . , y(ν)
m )

z
(ν)
down = α(ν) .

If z
(ν)
up − z

(ν)
down is smaller, than a pre-specified tolerance, stop, the optimal

solution is x
(ν)
1 , . . . , x

(ν)
n and y

(ν)
1 , . . . , y

(ν)
m . Otherwise, the algorithm continues

with the next step.

Step 3: Master problem solution. Update the iteration counter, ν ← ν+1.
Solve the MILP master problem

minimize
α

α

subject to



6.4 Complicating Variables: Nonlinear Case 253

α ≥ f(x(k)
1 , . . . , x(k)

n ; y(k)
1 , . . . , y(k)

m ) +
n∑

i=1

λ
(k)
i (xi − x

(k)
i ); k = 1, . . . , ν − 1

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n

α ≥ αdown.

The solution of this problem is x
(ν)
1 , . . . , x

(ν)
n and α(ν). The algorithm con-

tinues with Step 1.
��

6.4.2 Subproblem Infeasibility

The infeasibility of the subproblem or subproblems can be treated using artifi-
cial variables and objective function penalties as stated for the linear continu-
ous case analyzed in Subsect. 3.3.4 p. 128. However, constraints specific to the
problem that force feasibility not altering the optimal solution are advisable.
This is so because penalty terms in nonlinear problems may result in slow or
no convergence. Constraints based on engineering or science facts that avoid
infeasibility while not altering the optimal solution are denominated “feasi-
bility cuts.”

A computational example on the application of the Benders decomposition
algorithm to MINLP problems is described next.

Computational Example 6.2 (The Benders decomposition for
MINLP problems). Consider the problem

minimize
x, y

z = −x − y

subject to
1
2 exp(2y) − x ≤ 1

4

0 ≤ y ≤ 1
2

x ∈ {0, 1} ,

whose optimal solution is x∗ = 1 and y∗ = 0.4581 with an optimal objective
function value equal to z∗ = −1.4581 as shown in Fig. 6.1.

If variable x is considered to be a complicating variable, the above problem
can be solved using the Benders decomposition algorithm. This is illustrated
further.

Step 0: Initialization. The iteration counter is initialized, ν = 1.
The initial master problem is

minimize
α

α

subject to



254 6 Decomposition in Mixed-Integer Programming

0.25 0.5 0.75 1 1.25 1.5

0.25

0.5

0.75

1

Continuous
Feasible
region

x

y z = -2z = -1.75z = -1.5z = -1.25z = -1

z = -0.75

z = -0.5

z = -0.25
z* = -1.4581

exp (2y)/2-x = 1/4

y=1/2

Optimal
solution

(1,0.4581)

Fig. 6.1. Graphical illustration of the Computational Example 6.2

α ≥ −50
x ∈ {0, 1}.

The solution of this problem is x(1) = 0 and α(1) = −50.

Step 1: Subproblem solution. The subproblem is

minimize
x, y

z = −x − y + 40w

subject to
1
2 exp(2y) − x − w ≤ 1

4

0 ≤ y ≤ 1
2

x = 0 : λ.

Its optimal solution is y(1) = 0, w(1) = 1
4 and λ(1) = −41 with an optimal

objective function value z = 10. Note that an artificial variable w has been
included to attain feasibility (see Fig. 6.2).

Step 2: Convergence checking. Upper and lower bounds of the objective
function optimal value are

z(1)
up = −x(1) − y(1) + 40w(1) = 10

and
z
(1)
down = α(1) = −50.

The difference z
(1)
up − z

(1)
down = 60 is not small enough; therefore, the proce-

dure continues with the next step.



6.4 Complicating Variables: Nonlinear Case 255

0.25 0.5 0.75 1 1.25 1.5

0.25

0.5

0.75

(x(1),y(1))

New continuous
feasible region

x

y

z(1) =10

exp (2y)/2-x = 1/4

y =1/2

Optimal
solution

(0,0)

exp (2y)/2-x-w = 1/4

Fig. 6.2. Graphical illustration of how the feasible region is modified to make the
subproblem feasible

Step 3: Master problem solution. The iteration counter is updated, ν =
1 + 1 = 2.

The master problem is

minimize
α

α

subject to
10 − 41 × (x − 0) ≤ α

α ≥ −50
x ∈ {0, 1} .

Its optimal solution is x(2) = 1 and α(2) = −31. The objective function
optimal value is z(2) = −31.

The algorithm continues with Step 1.

Step 1: Subproblem solution. The subproblem is

minimize
x, y

z = −x − y

subject to
1
2 exp(2y) − x ≤ 1

4

0 ≤ y ≤ 1
2

x = 1 : λ ,

whose solution is y(2) = 0.458 and λ(2) = −1.400 with an optimal objective
function value z = −1.458.

Step 2: Convergence checking. Upper and lower bounds of the objective
function optimal value are



256 6 Decomposition in Mixed-Integer Programming

z(2)
up = −x(2) − y(2) = −1.458

and
z
(2)
down = α(2) = −31 .

The difference z
(2)
up − z

(2)
down = 29.542 is not small enough; therefore, the

procedure continues with the next step.

Step 3: Master problem solution. The iteration counter is updated, ν =
1 + 1 = 3, and the master problem below is solved:

minimize
α

α

subject to
10 − 41 × (x − 0) ≤ α

−1.458 − 1.400 × (x − 1) ≤ α
α ≥ −50
x ∈ {0, 1} .

Its optimal solution is x(3) = 1 and α(3) = −1.458 with an optimal objec-
tive function value z(3) = −1.458

The algorithm continues with Step 1.

Step 1: Subproblem solution. The subproblem is

minimize
x, y

z = −x − y

subject to
1
2 exp(2y) − x ≤ 1

4

0 ≤ y ≤ 1
2

x = 1 : λ ,

whose solution is y(3) = 0.458 and λ(3) = −1.400 with an objective function
value z = −1.458.

Step 2: Convergence checking. Upper and lower bounds of the objective
function optimal value are

z(3)
up = −x(3) − y(3) = −1.458

and
z
(3)
down = α(3) = −1.458 .

The difference z
(1)
up − z

(1)
down = 0 is small enough; therefore, the optimal

solution has been found. It is x∗ = 1 and y∗ = 0.458 with an optimal objective
function value equal to −1.458. In Fig. 6.3 the evolution of the bounds z

(ν)
up

and z
(ν)
down is shown. ��



6.5 Complicating Constraints: Nonlinear Case 257

20

10

0

-10

-20

-40

-50

-60

zup

zdown-30

iteration
2 3 4

Fig. 6.3. Evolution of the upper and lower bounds of the Computational Example
6.2

6.4.3 Convergence

The convergence of the Benders decomposition algorithm for MINLP problems
is guaranteed as long as the envelope of function α(x1, . . . , xn) is convex.

This function is defined as

α(x1, . . . , xn) = minimum
y1, . . . , ym

f(x1, . . . , xn; y1, . . . , ym) (6.17)

subject to
hk(x1, . . . , xn; y1, . . . , ym) = 0; k = 1, . . . , q (6.18)

gl(x1, . . . , xn; y1, . . . , ym) ≤ 0; l = 1, . . . , r (6.19)

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m . (6.20)

Convexity, using cutting hyperplanes, allows a reconstruction from below
of the function α(x1, . . . , xn), as accurate as needed, and this is a key factor
that guarantees the convergence of the algorithm. In practice, local convex-
ity (vs. global convexity) normally suffices because in engineering or science
applications variable limits usually tightly bound the feasibility region.

6.5 Complicating Constraints: Nonlinear Case

The nonlinear constraints of an MINLP problem can be considered as compli-
cating constraints. This leads to the Outer Linearization algorithm described
in this section.



258 6 Decomposition in Mixed-Integer Programming

6.5.1 Outer Linearization Algorithm

The outer linearization procedure is only applicable to problems whose non-
linear constraints are inequalities.

This algorithm also requires the considered problem to have a linear objec-
tive function. However, this is achieved in a simple manner using the following
transformation.

The problem

minimize
x1, . . . , xn; y1, . . . , ym

f(x1, . . . , xn; y1, . . . , ym)

subject to
gl(x1, . . . , xn; y1, . . . , ym) ≤ 0; l = 1, . . . , r

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m

is equivalent to the problem

minimize
x1, . . . , xn; y1, . . . , ym, z

z

subject to
f(x1, . . . , xn; y1, . . . , ym) − z ≤ 0

gl(x1, . . . , xn; y1, . . . , ym) ≤ 0; l = 1, . . . , r

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m .

The basic functioning of the Outer Linearization algorithm is as follows:

1. Ignore the nonlinear constraints, solve the resulting initial MILP problem,
and obtain the initial solution.

2. Determine the most violated nonlinear constraint in the current solution,
and linearize it in the current solution.

3. Add the linear constraint obtained in the preceding step to the current
MILP problem, solve it, and update the current solution.

4. If all constraints in the current solution are sufficiently satisfied, stop, the
optimal solution has been reached; otherwise, continue with Step 2.

A formal statement of this algorithm is presented in the following.
Consider the problem

minimize
x1, . . . , xn; y1, . . . , ym

n∑
i=1

ci xi +
m∑

j=1

dj yj

subject to



6.5 Complicating Constraints: Nonlinear Case 259

n∑
i=1

a�i xi +
m∑

j=1

e�j yj = b�; 
 = 1, . . . , q

gl(x1, . . . , xn; y1, . . . , ym) ≤ 0; l = 1, . . . , r

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m .

Note that optimization variables are bounded above and below reflecting
physical limits which are always present in engineering and science problems.

The algorithm works as follows.

Algorithm 6.3 (The outer linearization algorithm).

Input. Data for the MILP problem.
Output. The solution of problem obtained after using the Outer Lineariza-

tion algorithm.

Step 0: Initialization. Initialize the iteration counter, ν = 1.
Solve the initial MILP problem below.

minimize
x1, . . . , xn; y1, . . . , ym

n∑
i=1

ci xi +
m∑

j=1

dj yj

subject to
n∑

i=1

a�i xi +
m∑

j=1

e�j yj = b�; 
 = 1, . . . , q

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m .

The solution obtained is x
(ν)
1 , . . . , x

(ν)
n ; y

(ν)
1 , . . . , y

(ν)
m .

Step 1: Determining constraint violations. Identify the most violated
nonlinear constraint in the current solution x

(ν)
1 , . . . , x

(ν)
n , y

(ν)
1 , . . . , y

(ν)
m , i.e.,

glν (x(ν)
1 , . . . , x(ν)

n ; y(ν)
1 , . . . , y(ν)

m ) = maximuml gl(x
(ν)
1 , . . . , x(ν)

n ; y(ν)
1 , . . . , y(ν)

m ).

Step 2: Convergence check. If glν (x(ν)
1 , . . . , x

(ν)
n ; y(ν)

1 , . . . , y
(ν)
m ) ≤ 0, stop,

the current solution x
(ν)
1 , . . . , x

(ν)
n , y

(ν)
1 , . . . , y

(ν)
m is the optimal solution; oth-

erwise the algorithm continues with the next step.

Step 3: Linearization. Linearize the most violated constraint in the current
solution.



260 6 Decomposition in Mixed-Integer Programming

lν(x1, . . . , xn; y1, . . . , ym) = glν (x(ν)
1 , . . . , x

(ν)
n ; y(ν)

1 , . . . , y
(ν)
m )

+
(
∇glν (x(ν)

1 , . . . , x
(ν)
n ; y(ν)

1 , . . . , y
(ν)
m )

)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 − x
(ν)
1

...
xn − x

(ν)
n

y1 − y
(ν)
1

...
ym − y

(ν)
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Step 4: Solution of the linearized problem. Solve the MILP problem

minimize
x1, . . . , xn; y1, . . . , ym

n∑
i=1

ci xi +
m∑

j=1

dj yj

subject to
n∑

i=1

a�i xi +
m∑

j=1

e�j yj = b�; 
 = 1, . . . , q

lk(x1, . . . , xn; y1, . . . , ym) ≤ 0; k = 1, . . . , ν

xdown
i ≤ xi ≤ xup

i , xi ∈ IN; i = 1, . . . , n

ydown
j ≤ yj ≤ yup

j , yj ∈ IR; j = 1, . . . , m .

The solution obtained is x
(ν+1)
1 , . . . , x

(ν+1)
n ; y

(ν+1)
1 , . . . , y

(ν+1)
m .

Update iteration counter, ν ← ν + 1, and continue with Step 1. ��
A computational example is solved in detail below. The problem of this

example is the same one used in Computational Example 6.2.

Computational Example 6.3 (The outer linearization for MINLP
problems). Consider the problem previously analyzed in Computational Ex-
ample 6.2

minimize
x, y

z = −x − y

subject to
g(x, y) = 1

2 exp(2y) − x − 1
4 ≤ 0

0 ≤ y ≤ 1
2

x ∈ {0, 1} ,

whose optimal solution is x∗ = 1 and y∗ = 0.458 with an optimal objective
function value equal to z∗ = −1.458 as shown in Fig. 6.1.

This problem can be solved using the previously stated outer linearization
algorithm. A tolerance of 1 × 10−4 is considered. The solution procedure is
illustrated below.



6.5 Complicating Constraints: Nonlinear Case 261

0.25 0.5 0.75 1 1.25 1.5

0.25

0.5

0.75

(x(1),y(1))

Approximate
continuous

feasible region

x

y z(1) = -3/2

g(x, y)=exp (2y)/2-x = 1/4

y = 1/2

Optimal
solution
(1,0.5)

l1(x, y) = -x+2.7183y-0.25

Fig. 6.4. Graphical illustration of the decomposition algorithm and the linear ap-
proximation l1(x, y) of the nonlinear constraint g(x, y) for iteration ν = 1

Step 0: Initialization. The iteration counter is initialized, ν = 1.
The initial MILP problem is

minimize
x, y

z = −x − y

subject to

0 ≤ y ≤ 1
4

x ∈ {0, 1} .

Its optimal solution is x(1) = 1, y(1) = 1
2 with an optimal objective func-

tion value z(1) = −3
2 (see Fig. 6.4).

Step 1: Determining the most violated constraint. The considered
problem has a single nonlinear constraint; therefore, that constraint is the
most violated one

g(x(1), y(1)) =
1
2
exp

(
2 × 1

2

)
− 1 − 1

4
= 0.109 .

Step 2: Convergence check. g(x(1), y(1)) = 0.109 is not small enough, the
algorithm continues with the next step.

Step 3: Linearization. The nonlinear constraint is linearized. Its gradient
in the current solution is

∇g(x(1), y(1)) =
(−1 exp(2 × 1

2 )
)T =

( −1 2.718
)T

.



262 6 Decomposition in Mixed-Integer Programming

The corresponding linear constraint is

l1(x, y) = g(x(1), y(1)) +
(
∇g(x(1), y(1))

)T
(

x − x(1)

y − y(1)

)
or

l1(x, y) = 0.109 +
(−1 2.718

)( x − 1
y − 1

2

)
,

and finally
l1(x, y) = −x + 2.718 y − 0.250 .

Step 4: Solution of the linearized problem. The current MILP problem
is

minimize
x, y

z = −x − y

subject to
−x + 2.718 y − 0.250 ≤ 0

0 ≤ y ≤ 1
2

x ∈ {0, 1} .

Its optimal solution is x(2) = 1, y(2) = 0.46 with an optimal objective
function value z(2) = −1.46 as shown in Fig. 6.5.

Update iteration counter, ν = 1 + 1 = 2, and continue with Step 1.

0.25 0.5 0.75 1 1.25 1.5

0.25

0.5

0.75

(x(2), y(2))
Approximate

continuous
feasible region

x

y z(2) = -1.4598

g(x,y)=exp (2y)/2-x = 1/4

y = 1/2

Optimal
solution

(1,0.4598)

l1(x, y)

l2(x, y)=-x+2.5083y-0.1492

Fig. 6.5. Graphical illustration of the decomposition algorithm and the linear ap-
proximations l1(x, y) and l2(x, y) of the nonlinear constraint g(x, y) for iteration
ν = 2



6.5 Complicating Constraints: Nonlinear Case 263

Step 1: Determining the most violated constraint. The considered
problem has a single nonlinear constraint; therefore, that constraint is the
most violated one

g(x(2), y(2)) =
1
2
exp(2 × 0.46) − 1 − 1

4
= 0.004.

Step 2: Convergence check. Since g(x(2), y(2)) = 0.004 is not small enough,
the algorithm continues with the next step.

Step 3: Linearization. The nonlinear constraint is linearized. Its gradient
in the current solution is

∇g(x(2), y(2)) =
( −1 exp(2 × 0.46)

)T =
( −1 2.508

)T
.

The corresponding linear constraint is

l2(x, y) = g(x(2), y(2)) +
(
∇g(x(2), y(2))

)T
(

x − x(2)

y − y(2)

)
or

l2(x, y) = 0.004 +
( −1 2.508

)( x − 1
y − 0.4

)
,

and finally
l2(x, y) = −x + 2.508 y − 0.149 .

Step 4: Solution of the linearized problem. The current MILP problem
is

minimize
x, y

z = −x − y

subject to
−x + 2.508y − 0.149 ≤ 0
−x + 2.718y − 0.250 ≤ 0

0 ≤ y ≤ 1
2

x ∈ {0, 1} .

Its optimal solution is x(3) = 1, y(3) = 0.458 with an optimal objective
function value z(3) = −1.458.

Update the iteration counter, ν = 2 + 1 = 3, and continue with Step 1.

Step 1: Determining the most violated constraint. The considered
problem has a single nonlinear constraint; therefore, that constraint is the
most violated one.



264 6 Decomposition in Mixed-Integer Programming

g(x(3), y(3)) =
1
2
exp(2 × 0.458) − 1 − 1

4
= 0.0001 .

Step 2: Convergence check.
g(x(3), y(3)) = 0.0001 is small enough (≤ 1×10−4); therefore, the algorithm

terminates, and the optimal solution is found. It is x∗ = 1, y∗ = 0.458 with
an optimal objective function value z∗ = −1.458. ��

6.5.2 Convergence

The converge proof of the outer linearization algorithm can be found in
Floudas [27]. The basic fact to show the convergence of the outer lineariza-
tion algorithm relies on the analysis of the series of solutions generated by the
algorithm. This series either converges to a locally optimal solution or never
finds a feasible solution if the problem is infeasible.

6.6 Concluding Remarks

This chapter presents a set of solution techniques for mixed-integer linear and
nonlinear problems that present in general a decomposable structure. The
complicating variable case is the one often encountered in practical engineering
and science problems.

The Benders decomposition algorithm, due to Benders [24], is used to
address problems with complicating variables. The Benders procedure was
generalized and publicized in the technical literature by Geoffrion [25, 44].

The outer linearization algorithm used for MILP problems is based on the
pioneering work of Kelly on cutting plane algorithms [45]. It has been analyzed
in detail by Floudas [27]. A state-of-the-art MILP solvers, using branch and
cut techniques, are reported in [42]. These solvers constitute the base of the
previous solution procedures.

Among other applications, the solution of long-term multiperiod invest-
ment problems using the Benders decomposition are reported in [46, 47, 48,
49, 50], for example.

6.7 Exercises

Exercise 6.1. Given the problem

minimize
y1, y2, y3, y4, x1, x2

4y1 + 3y2 + y3 + 0.5y4 + 4x1 + 5x2



6.7 Exercises 265

subject to

y1 −y2 +x1 −8x2 ≤ 1.5
−2y1 +3y2 −x1 +2x2 ≤ −5

7y3 +2y4 +x1 −5x2 ≤ 2
4y3 −y4 +3x1 −x2 ≤ −2.5

x1 ≤ 2
x2 ≤ 3.5

x1, x2 ∈ IN .

Find the optimal solution considering x1 and x2 as complicating variables.

Exercise 6.2. Consider the following problem

minimize
x, y

2x + 3y

subject to
xy ≥ 6

exp(y) +x ≥ 2
x ≤ 10
y ≤ 3
x ∈ IN .

Check that the following vector (x, y) is a solution:

x = 3, y = 2, z = 12 .

Using the Benders decomposition algorithm, obtain the final solution.

Exercise 6.3. In Sect. 1.7.1, p. 55, the unit commitment problem of thermal
power plants is analyzed, whose target is to supply at minimum cost the
demand for electricity throughout a multiperiod planning horizon, such as a
week divided in hours. This problem can be properly solved using the Benders
decomposition.

Solve the numerical example stated in Sect. 1.7.1 applying the Benders de-
composition and check that the results obtained coincide with those provided
in that section.

Exercise 6.4. Consider the following problem

maximize
x, y

−7x + 4y

subject to

x2 + y2 ≤ 1
y ≤ 2

x ∈ IN .



266 6 Decomposition in Mixed-Integer Programming

1. Check that the following vector (x, y) is a solution:

x = 0, y = 1, z = 4 .

2. Using the outer linearization algorithm, obtain the optimal solution.

Exercise 6.5. In Sect. 1.8.2, p. 60, the problem of designing and operating a
water supply system is considered. This problem has such a structure that it
can be solved using the Benders decomposition.

Solve the numerical problem stated in Sect. 1.8.2 using the Benders decom-
position and check the obtained results against those provided in that section.

Exercise 6.6. Consider an electric energy system that includes three nodes
and three lines. Data for lines are given in Table 6.1.

Table 6.1. Line data for Exercise 6.6

Line Susceptance Capacity limit (unit)

1–2 2.5 0.3
1–3 3.5 0.7
2–3 3.0 0.7

Nodes 1 and 2 are production nodes and the data for the production
facilities are provided in Table 6.2. Node 3 is a demand node and its demand
value is 0.85 MW.

Table 6.2. Production plan data for Exercise 6.6

Maximum Minimum
Plant capacity (unit) output (unit)

1 0.9 0
2 0.9 0

The production cost ci (in dollars) of each production plant has the fol-
lowing form:

ci =
{

0 if Pi = 0
fi + vi Pi if Pi > 0 ,

where fi is the fixed cost, vi the variable production cost, and Pi the produc-
tion output. Numerical data are given in Table 6.3.

Formulate this single-period minimum production cost problem as an
MILP problem.



6.7 Exercises 267

Table 6.3. Production cost data for Exercise 6.6

Plant fi ($) vi ($/unit)

1 10 6
2 5 7

Considering the binary variables complicating variables, solve this prob-
lem using the Benders decomposition.

Exercise 6.7. The capacity expansion planning problem consists in deter-
mining the investment additions in every period of a planning horizon in such
a way as to minimize both investment and operating costs. This problem is
addressed in Sect. 1.8.1, p. 57, and has such a structure that it can be solved
using the Benders decomposition.

Solve the numerical example analyzed in Sect. 1.8.1 using the Benders de-
composition and verify that the results obtained coincide with those provided
in that section.

Exercise 6.8. Consider the same water supply network as in Exercise 5.5,
p. 240. It consists of two cities communicated by a single channel (see Fig. 6.6),
a set of nodes and a set of connections. The nodes have been numbered in an
optimal order, so that if the flow balance equations are written, the associated
matrix exhibits a nice block and banded pattern. Nodes 1 and 18 are assumed
to be the water supply nodes and the rest are assumed to be consumption
points.

3

2

1

4

5

6

9

8

7

10

13

16

14

17

18

1511

12

Fig. 6.6. A water supply network consisting of two cities communicated by a single
channel



268 6 Decomposition in Mixed-Integer Programming

1 2

3 4

Production
location 1

Production
location 2

Demand
location 1

Demand
location 2

Fig. 6.7. Transportation network for Exercise 6.9

1. Add some constraints to consider the failure of some connections while
optimizing the nonlinear objective function.

2. Propose a decomposition procedure to solve the problem using mixed-
integer programming and decomposing the problem by city.

3. Is it foreseeable to have problems solving the subproblems?

Exercise 6.9. Consider the capacity expansion planning of two production
facilities to supply the demand of two cities during a 2-year time horizon. The
interconnection of production and demand locations are specified in Fig. 6.7.
Demands at location 1 for years 1 and 2 are 8 and 6 units, respectively; and at
location 2, 11 and 9 units, respectively. The maximum capacity to be built at
locations 1 and 2 are 10 and 12 units, respectively. Expansion alternatives are
discrete and include values 4, 6, and 10 units at location 1, and 3, 8, and 12
units at location 2. Building costs are provided in Table 6.4. Transportation
costs and capacities are provided in Table 6.5.

Formulate a problem to determine the production capacity to be built at
each location each year. Show that this problem has a complicating variable
decomposable structure. Solve it using the Benders decomposition.

Table 6.4. Building cost for the problem of Exercise 6.9

Building cost ($/unit)

Period t Location 1 Location 2

1 2.0 3.5
2 2.5 3.0



6.7 Exercises 269

Table 6.5. Transportation cost and capacities for Exercise 6.9

Road (i–j) Capacity (unit) Cost ($/unit)

1–2 11 0.5
1–3 9 0.6
2–3 5 0.7
2–4 5 0.8
3–4 4 0.4

Exercise 6.10. Consider an electric energy system including 4 nodes and 4
lines. The generating nodes are 1 and 2 while the consumption nodes are 3
and 4. Production plants located at nodes 1 and 2 are denominated C1 and
C2, respectively. A 3-h planning horizon is considered.

Solve the corresponding multiperiod network-constrained production plan-
ning problem using the Benders decomposition and determine

1. Status (on-line or off-line) of every plant in every time period.
2. Production of every plant in every time period.
3. Height (angle) of every node.
4. Sensitivity of every power balance equation in every time period.

System data are provided in Tables 6.6, 6.7, and 6.8.

Table 6.6. Production plant data for Exercise 6.10

Maximum Minimum Variable Start-up Fixed
capacity output cost cost cost

Plant (MW) (MW) ($/MWh) ($) ($)

C1 1.30 0.02 0.100 10 20
C2 2.50 0.02 0.125 17 18

Table 6.7. Line data for Exercise 6.10

Maximum
From/to Susceptance capacity (MW)

1–2 1.2 1.50
1–3 1.5 1.50
2–4 1.7 1.80
3-4 1.1 1.75



270 6 Decomposition in Mixed-Integer Programming

Table 6.8. Demand data for Exercise 6.10

Demand (MW)

Period 1 2 3

Node 3 0.20 2.50 0.10
Node 4 0.60 0.10 0.10

Note that equations describing how electricity is transmitted through a
transmission line are explained in Sect. 1.5.2, p. 42.

Exercise 6.11. Consider 3 h when demands are 150, 300, and 500 MW, re-
spectively. Consider three electricity plants with the maximum output powers
350, 200, and 140 MW, and the corresponding minimum output powers 50,
80, and 40 MW, respectively. Ramp-up limits are 200, 100, and 100 MW/h,
respectively and the ramp-down limits 300, 150, and 100 MW/h, respectively.
Fixed costs are 5, 7, and 6 $/h, respectively; start-up cost $20, $18, and $5,
respectively; shut-down costs $0.5, $0.3, and $1.0, respectively; and variable
costs 0.100, 0.125, and 0.150 $/MWh, respectively. All plants are off-line at
the beginning of the planning horizon.

Solve this multiperiod production planning problem using the Lagrangian
relaxation and augmented Lagrangian decomposition. Solve subproblems us-
ing mixed-integer linear programming.



7

Other Decomposition Techniques

In previous chapters several standard decomposition techniques have been
described for linear, nonlinear, and mixed-integer problems, for the cases of
complicating constraints and variables. In this chapter, other techniques are
described and illustrative examples are given, including the important engi-
neering design method (see Castillo et al. [15, 16, 17, 18, 19] and Mı́nguez
[13]), which has clear practical interest.

7.1 Bilevel Decomposition

Consider the problem
minimize

x
c(x) (7.1)

subject to

h(x) ≤ h0 (7.2)
g(x) ≤ 0 , (7.3)

where the function h(x) cannot be easily evaluated. For example,

hi(x) = minimum
u


i(x;u) ; ∀i (7.4)

subject to

rj(u) = kj ; ∀j , (7.5)

or perhaps h(x) is the output of a complicated finite element program. Note
that constraints (7.3) can be both equality and inequality constraints.

The main difficulty of this problem is that the constraint (7.2) cannot be
incorporated into standard optimization frameworks, so that decomposition
techniques are required. Since two related optimization problems are solved,



272 7 Other Decomposition Techniques

it is called a bilevel decomposition. Nevertheless, the structure of the problem
suggests a Benders type decomposition mechanism.

In this section two different alternative methods for solving this type of
problems are discussed.

7.1.1 A Relaxation Method

Under some circumstances, the solution of the problem (7.1)–(7.5) can be
obtained as the limit of the solutions of a sequence {P (ν) : ν = 1, 2, . . .} of
problems, where P (ν) consists of

minimize
x

c(x) (7.6)

subject to

r(x) ≤ r
(ν)
0 (7.7)

g(x) ≤ 0 , (7.8)

where h(x) has been replaced by r(x), which is easily implementable in stan-
dard optimization algorithms, and a rule for obtaining r

(ν+1)
0 is given

r
(ν+1)
0 = r

(ν)
0 + ρ(h0 − h(ν)) ,

where h(ν) is the vector of solutions of the problems (7.4)–(7.5) for the optimal
solution x(ν) of the problem P (ν).

This requires the existence of a regular one-to-one (increasing) unknown
correspondence, h(x) = q(r(x)), between h(x) and r(x), which is denoted
by h = q(r).

More precisely, to solve the initial problem (7.1)–(7.5) we propose the
algorithm below.

Algorithm 7.1 (The relaxation algorithm).

Input. The problem (7.1)–(7.5), a relaxation factor ρ, initial values r
(1)
0 for

r0, and the tolerance ε to check convergence.
Output. The solution of the problem (7.1)–(7.5) within the given tolerance.

Step 0: Initialization. Initialize the iteration counter, ν = 1, and fix the
values of r0 for the first iteration to the initial values r

(1)
0 .

Step 1: Master problem solution. Solve the master problem

minimize
x

c(x) (7.9)



7.1 Bilevel Decomposition 273

subject to

r(x) ≤ r
(ν)
0 (7.10)

g(x) ≤ 0 (7.11)

and obtain its optimal solution x(ν).

Step 2: Subproblems solution. Obtain, for all i, the values

h
(ν)
i = hi(x(ν)) = minimum

u

i(x(ν);u) (7.12)

subject to

ri(u) = ki . (7.13)

Step 3: Check convergence. If ||h(ν) − h(ν−1)|| < ε, stop the procedure
and output the solution. Otherwise, continue with Step 4.

Step 4: Update the r0 bounds. Use the formula

r
(ν+1)
0 = r

(ν)
0 + ρ(h0 − h(ν)) ,

increase by 1 the iteration counter ν = ν + 1, and continue with Step 1. ��
Theorem 7.1 (Convergence of Algorithm 7.1). Under some regularity
conditions, which guarantee the Taylor series expansion of q(r) and ||Im −
ρ∇q(r(ν)

+ ))|| < 1, the above algorithm leads to the solution of the problem
(7.1)–(7.5). ��
Proof. Assuming some regularity conditions, the convergence of the algorithm
can be justified as follows:

h(ν+1) = q(r(ν+1)
0 ) = q(r(ν)

0 + ρ(h0 − h(ν)))

= q(r(ν)
0 ) + ρ∇q(r(ν)

+ )(h0 − h(ν))

= h(ν) + ρ∇q(r(ν)
+ )(h0 − h(ν))

=
(
Im − ρ∇q(r(ν)

+ )
)

h(ν) + ρ∇q(r(ν)
+ )h0

= (Im − ρqν) h(ν) + ρqνh0,

where r
(ν)
+ is the usual intermediate point of the Taylor series, Im is the

identity matrix whose dimension m is that of h, and qν = ∇q(r(ν)
+ ). Then,

we have



274 7 Other Decomposition Techniques

h(ν) =

(
ν−1∏
i=1

(Im − ρqi)

)
h(1) + ρ

⎛⎝ν−1∑
j=1

qj

ν−1∏
s=j+1

(Im − ρqs)

⎞⎠h0 ,

which for adequate values of ρ and regularity conditions, including ||Im −
ρqi)|| < 1, converges to h0. ��
Illustrative Example 7.1 (The relaxation method). Consider the prob-
lem

minimize
x1, x2, x3, x4

z = (x1 + x2 − 2)2 + (x3 + x4 − 2)2 (7.14)

subject to

h1(x) = 1.2 (7.15)
h2(x) = 6 (7.16)

x1 − x2 = 3 , (7.17)

where

h1(x) = minimum
u1, u2, u3, u4

4∑
i=1

(ui − xi)2 (7.18)

subject to

3u1 + u2 + 2u3 + u4 = 6 (7.19)

and

h2(x) = minimum
u1, u2, u3, u4

4∑
i=1

(ui − xi)2 (7.20)

subject to

u1 + u2 + u3 + 2u4 = 7. (7.21)

The solution of the problem (7.14)–(7.21) can be obtained as the limit of
the solutions of the sequence {P (ν) : ν = 1, 2, . . .} of problems (7.6)–(7.8), i.e.,
using the iterative process.

Step 0: Initialization. Initialize the iteration counter, ν = 1, and let
r
(1)
1 = r

(0)
1 and r

(1)
2 = r

(0)
2 .

Step 1: Solve the Master problem.

minimize
x1, x2, x3, x4

z = (x1 + x2 − 2)2 + (x3 + x4 − 2)2 (7.22)



7.1 Bilevel Decomposition 275

subject to

3x1 + x2 + 2x3 + x4 = r
(ν)
1 (7.23)

x1 + x2 + x3 + 2x4 = r
(ν)
2 (7.24)

x1 − x2 = 3 . (7.25)

In this step the values of the x variables, x(ν), are obtained.

Step 2: Solve the subproblems. The problems (7.18)–(7.19) and (7.20)–
(7.21) are solved for fixed values of the x variables, i.e., for x = x(ν).

Step 3: Check convergence. If the error is lower than or equal to the
tolerance (

1.2 − h
(ν)
1

)2

+
(
6 − h

(ν)
2

)2

≤ ε ,

stop the process. Otherwise go to Step 4.

Step 4: Update values. Use the following rule to obtain r(ν+1):(
r
(ν+1)
1

r
(ν+1)
2

)
=

(
r
(ν)
1

r
(ν)
2

)
+ 0.9

(
1.2 − h

(ν)
1

6.0 − h
(ν)
2

)
,

increase by 1 the iteration counter ν = ν + 1, and go to Step 1. Table 7.1
illustrates the evolution of the iterative process showing the values of the
variables and the error, for the following data:

ρ = 0.9, r
(0)
1 = 7, r

(0)
2 = 4, ε = 0.00001 .

��

Table 7.1. Iterative process until the solution is obtained

ν z(ν) x
(ν)
1 x

(ν)
2 x

(ν)
3 x

(ν)
4 r

(ν)
1 r

(ν)
2 h

(ν)
1 h

(ν)
2 Error(ν)

1 0.89 2.17 −0.83 0.00 1.33 7.00 4.00 0.07 1.29 1.000000
2 0.09 2.61 −0.39 −1.61 3.82 8.02 8.24 0.27 0.22 23.508934
3 2.96 3.11 0.11 −3.79 7.01 8.86 13.44 0.54 5.93 34.261783
4 3.51 3.16 0.16 −3.53 6.85 9.45 13.50 0.79 6.04 0.435572
5 3.81 3.19 0.19 −3.33 6.71 9.81 13.46 0.97 5.97 0.168727
6 4.03 3.21 0.21 −3.24 6.65 10.02 13.49 1.08 6.02 0.054007
7 4.11 3.22 0.22 −3.17 6.61 10.13 13.47 1.14 5.99 0.015312
8 4.18 3.22 0.22 −3.15 6.59 10.19 13.49 1.17 6.01 0.004069
9 4.20 3.22 0.22 −3.13 6.58 10.22 13.48 1.18 5.99 0.001055
10 4.22 3.23 0.23 −3.13 6.58 10.23 13.48 1.19 6.00 0.000275
11 4.22 3.23 0.23 −3.12 6.57 10.24 13.48 1.20 6.00 0.000074
12 4.23 3.23 0.23 −3.12 6.57 10.24 13.48 1.20 6.00 0.000021



276 7 Other Decomposition Techniques

Illustrative Example 7.2 (The relaxation method: The wall design).
In Chap. 1, Sect. 1.5.3, the wall design problem was stated and three different
design methods were presented: the classical, the modern, and mixed ap-
proaches. However, no algorithms were given to solve them. In this example
we illustrate the use of the relaxation method by its application to the wall
problem.

In fact, the relaxation method consists of repeating a sequence of three
steps: (1) an optimal (in the sense of optimizing an objective function) classic
design, based on given safety factors, is done; (2) reliability indices or bounds
for all failures modes are determined; and (3) all mode safety factor bounds
are adjusted. The three steps are repeated until convergence, i.e., until the
safety factors lower bounds and the failure mode probability upper bounds
are satisfied. More precisely, using the numerical values stated in Sect. 1.5.3,
p. 45, the method proceeds as follows:

Step 0: Initialization. Initialize the iteration counter, ν = 1, and let
F

(1)
o = 1.5.

Step 1: Solve the classical problem.

Minimize
a, b

cost = ab (7.26)

subject to

23a2b

300
≥ F (ν)

o (7.27)

b ≥ 4 . (7.28)

Step 2: Solve the subproblem.

β(ν) = minimize
h, t

√
z2
1 + z2

2 (7.29)

subject to

z1 =
t − 50

15

z2 =
h − 3
0.2

23a2b

300
= 1 .

Step 3: Check convergence. If |β(ν)−β(ν−1)| < ε, stop. Otherwise, continue
with Step 4.



7.1 Bilevel Decomposition 277

Step 4: Update safety factors. Using

F (ν+1)
o = max

(
F (ν)

o + ρ(β0 − β(ν)), F 0
o

)
,

the safety factors are updated. Next, increase by 1 the iteration counter
ν = ν + 1, and go to Step 1.

Note that values of the actual reliability index β(ν) below the desired bound
levels β0, lead to an increase of the associated safety factor bound. Note also
that if the safety factor required by the reliability indices becomes smaller
than the associated lower bound, it is kept equal to F 0

o .
Using the above algorithm, the results shown in Table 7.2 are obtained.

This table shows the progress and convergence of the algorithm, which requires
only six iterations. Note that only the β constraint is active and the constraint
associated with Fo is inactive. This is illustrated in the last row of Table 7.2,
where the active value has been boldfaced. This means that the reliability
index for overturning is more restrictive than the corresponding safety factor.

Table 7.2. Illustration of the iterative process of the original algorithm

ν Cost(ν) a(ν) b(ν) F
(ν)
ro β(ν) Error(ν)

1 9.148 2.139 4.277 1.500 1.586 0.8915578
2 10.800 2.324 4.648 1.924 2.860 0.4455132
3 10.957 2.341 4.681 1.966 2.983 0.0409869
4 10.976 2.343 4.685 1.971 2.998 0.0050819
5 10.979 2.343 4.686 1.972 3.000 0.0006479
6 10.979 2.343 4.686 1.972 3.000 0.0000829

Note that the optimal design is more expensive than the initial one because
at iteration ν = 1 the wall does not hold the reliability constraint β ≥ β0. Fro

is the actual safety factor related to overturning failure. ��

7.1.2 The Cutting Hyperplane Method

The iterative method presented in Sect. 7.1.1 for solving the problem (7.1)–
(7.5), requires a relaxation factor ρ that needs to be fixed by trial and error. An
adequate selection leads to a fast convergence of the process, but an inadequate
selection can lead to lack of convergence. In this section an alternative method
(see Castillo et al. [51]) that solves this shortcoming is given, and in addition
it exhibits a better convergence. The method is explained in the following
algorithm.



278 7 Other Decomposition Techniques

Algorithm 7.2 (The cutting plane algorithm).

Input. The problem (7.1)–(7.5), initial values x(0) for x, and the tolerance ε
to check convergence.

Output. The solution of the problem (7.1)–(7.5) within the given tolerance.

Step 0: Initialization. Initialize the iteration counter, ν = 1.

Step 1: Master problem solution. Solve the master problem

minimize
x

c(x) (7.30)

subject to

h(s) + λ(s)T
(x − x(s)) ≤ h0; s = 1, 2, . . . , ν − 1 (7.31)

g(x) ≤ 0 (7.32)

and obtain its optimal solution x(ν).

Step 2: Subproblems solution. Obtain, for all i, the values

h
(ν)
i = hi(x(ν)) = minimum

u

i(x(ν);u) (7.33)

subject to

rj(u) = kj (7.34)

x = x(ν) : λ(ν) . (7.35)

Step 3: Check convergence. If ||h(ν) − h(ν−1)|| < ε, stop the procedure
and output the solution. Otherwise, update the iteration counter ν = ν + 1,
and continue with Step 1. ��

It should be noted that (7.31) constitute a hyperplane reconstruction of
the original constraints h(x) ≥ h0.

Illustrative Example 7.3 (Using the cutting hyperplanes method).
The cutting hyperplanes method applied to the wall example is as follows:

Step 0: Initialization. Let

ν = 1, F (1)
o = 1.5 .

Step 1: Solve the classical problem.

minimize
a, b

ab (7.36)



7.1 Bilevel Decomposition 279

subject to

23a2b

300
≥ F (ν)

o (7.37)

β(s) +
(

λ
(s)
1

λ
(s)
2

)T ((
a
b

)
−

(
a(s)

b(s)

))
≥ β0; ∀s = 1, 2, . . . , ν − 1 (7.38)

b ≤ 4. (7.39)

Step 2: Solve the subproblem.

β(ν) = minimum
h, t, a, b

z2
1 + z2

2 (7.40)

subject to

a = a(ν) : λ
(ν)
1 (7.41)

b = b(ν) : λ
(ν)
2 (7.42)

z1 =
t − 50

15
(7.43)

z2 =
h − 3
0.2

(7.44)

23a2b

300
= 1. (7.45)

Step 3: Check convergence. If |β(ν)−β(ν−1)| < ε, stop. Otherwise, update
the iteration counter ν = ν + 1, and continue with Step 1.

The iterative procedure leads to the results shown in Table 7.3 that pro-
vides the same information as Table 7.2 using the alternative procedure. In
this case the process converges after five iterations.

It should be noted that problem (7.36)–(7.39) is a relaxation of the initial
problem in the sense that functions β(·) are approximated using cutting hyper-
planes. Function β(·) becomes more precisely approximated as the iterative
procedure progresses, which implies that problem (7.36)–(7.39) reproduces

Table 7.3. Illustration of the iterative process for the alternative algorithm

ν Cost(ν) a(ν) b(ν) F
(ν)
ro β(ν) Error(ν)

1 9.148 2.139 4.277 1.500 1.586 0.8915578
2 11.108 2.357 4.713 2.007 3.101 0.4885284
3 10.979 2.343 4.686 1.972 3.000 0.0334907
4 10.979 2.343 4.686 1.972 3.000 0.0001204
5 10.979 2.343 4.686 1.972 3.000 0.0000000



280 7 Other Decomposition Techniques

more exactly the initial problem (see Kelly [45]). Observe, additionally, that
cutting hyperplanes are constructed using the dual variable vector associated
with constraints (7.41) and (7.42) in problems (7.40)–(7.45) (the subprob-
lems). The constraints (7.41) and (7.42) in problem (7.40)–(7.45) fix to given
values the optimization variables of problem (7.36)–(7.39) (the master prob-
lem). ��

7.2 Bilevel Programming

Consider the following bilevel programming problem:

minimize
x

fU(x,y∗) (7.46)

subject to

hU(x,y∗) = 0 (7.47)
gU(x,y∗) ≤ 0 (7.48)

y∗ = arg minimize
y

fL(x,y) (7.49)

subject to hL(x,y) = 0 (7.50)
gL(x,y) ≤ 0 , (7.51)

where superscripts ‘U’ and ‘L’ denote upper-level and lower-level, respectively.
The above problem consists of an upper-level optimization problem, (7.46)–

(7.48), associated with a lower-level optimization problem (7.49)–(7.51). The
lower-level problem considers x as a parameter and obtains the optimal value
of y that depends on parameter x. The upper-level problem obtains the op-
timal value of x using the optimal value of y computed in the lower-level
problem.

It is not possible to solve the bilevel problem (7.46)–(7.51) in this implicit
form. The most common algorithmic approach to attack bilevel problems is
based on solving the nonlinear problem obtained by replacing the lower-level
problem with its Karush–Kuhn–Tucker conditions, see [52, 53].

The KKT conditions of the lower-level problem are

∇yfL(x,y) + λT∇yhL(x,y) + µT∇ygL(x,y) = 0 (7.52)

µT gL(x,y) = 0 (7.53)
µ ≥ 0 (7.54)

hL(x,y) = 0 (7.55)
gL(x,y) ≤ 0 . (7.56)

Therefore, the bilevel programming problem can now be expressed as the
following nonlinear programming problem:



7.2 Bilevel Programming 281

minimize
x,y

fU(x,y) (7.57)

subject to

hU(x,y) = 0 (7.58)
gU(x,y) ≤ 0 (7.59)

∇yfL(x,y) + λT∇yhL(x,y) + µT∇ygL(x,y) = 0 (7.60)

µT gL(x,y) = 0 (7.61)
µ ≥ 0 (7.62)

hL(x,y) = 0 (7.63)
gL(x,y) ≤ 0 . (7.64)

The bilevel problems may present a decomposable structure that can be
exploited through decomposition techniques. This bilevel formulation is of
interest for real-word problems. For example [54] formulates and solves the
terrorist threat problem in a electric energy system as a general bi-level pro-
gramming problem.

Illustrative Example 7.4 (The bilevel programming problem). Con-
sider the following bilevel problem to be solved:

minimize
x

4y∗ − x

subject to

y∗ + 2x ≤ 8
y∗ = arg minimize

y
−y − x

subject to
−y ≤ 0

y + x ≤ 7
−x ≤ 0

x ≤ 4 .

To solve this problem, the first-order optimality conditions of the lower-
level problem are included as constraints of the upper-level problem, as it is
done below,

minimize
x, y

4y − x



282 7 Other Decomposition Techniques

subject to

y + 2x ≤ 8
−1 − µ1 + µ2 = 0

−yµ1 = 0
(y + x − 7)µ2 = 0

−y ≤ 0
y + x ≤ 7
−x ≤ 0

x ≤ 4
µ1, µ2 ≥ 0 .

The solution of this nonlinear programming problem is

x = 1, y = 6 .

��

7.3 Equilibrium Problems

In an economic equilibrium, the demands of consumers and the supplies of pro-
ducers are balanced at a price level. Consider a particular market equilibrium
in which the cost for the supply activities is represented by the function c(x).
The demand function d(p) is a function of prices. The equilibrium problem
can be formulated as

minimize
x

c(x) − pT x (7.65)

subject to

b − Ax ≤ 0 : α (7.66)
d(p) − Ex ≤ 0 : µ (7.67)

−x ≤ 0 : β , (7.68)

where x represents the production levels and p prices. Equation (7.65) is the
minus profit of selling the production x. Equation (7.66) represent the operat-
ing constraints for production devices whose dual vector is α; (7.67) represent
demand requirements being µ the corresponding dual vector. Finally, (7.68)
states that production levels are positive.

Equilibrium conditions relate the vector of prices, p, with the dual vector
corresponding to constraints (7.67), µ, that is p = µ.

Therefore, the solution of the equilibrium problem can be obtained by
solving its first-order KKT optimality conditions, i.e., by solving the following
nonlinear system of equalities and inequalities:



7.3 Equilibrium Problems 283

∇xc(x) − p − AT α − ET µ − β = 0 (7.69)
(b − Ax) α = 0 (7.70)

(d(p) − Ex) µ = 0 (7.71)
(−x)β = 0 (7.72)

α ≥ 0 (7.73)
µ ≥ 0 (7.74)
β ≥ 0 (7.75)

b − Ax ≤ 0 (7.76)
d(p) − Ex ≤ 0 (7.77)

−x ≤ 0 . (7.78)

This system of equations can be reduced eliminating variable β and re-
placing variable µ by variable p. Equations (7.69), (7.72), and (7.75) can be
expressed through the (7.79) and (7.80). The resulting system is

∇xc(x) − p − AT α − ET p ≥ 0 (7.79)(
∇xc(x) − p − AT α − ET p

)
x = 0 (7.80)

(Ax − b) α = 0 (7.81)
(Ex − d(p)) p = 0 (7.82)

α ≥ 0 (7.83)
p ≥ 0 (7.84)

b − Ax ≤ 0 (7.85)
d(p) − Ex ≤ 0 (7.86)

−x ≤ 0 . (7.87)

The above system of inequalities and equalities can be solved through the
solution of the following quadratic programming problem.

minimize
x,p,α

(
∇xc(x) − p − AT α − ET p

)
x + (Ax − b) α + (Ex − d(p)) p

(7.88)
subject to

∇xc(x) − p − AT α − ET p ≥ 0 (7.89)
Ax − b ≥ 0 (7.90)

Ex − d(p) ≥ 0 (7.91)
x ≥ 0 (7.92)
α ≥ 0 (7.93)
p ≥ 0 . (7.94)



284 7 Other Decomposition Techniques

The objective function is the product of the nonnegative constraints and
the nonnegative variables, being always bounded below. Therefore, the so-
lution of this quadratic programming problem is the solution of the system
(7.79)–(7.87) if and only if it is a global minimum whose objective function
value is equal to zero.

It should be noted that equilibrium problems may present a decomposable
structure that can be exploited through decomposition techniques.

The following example illustrates the structure of equilibrium problems.

Illustrative Example 7.5 (Equilibrium problem). Consider a market
equilibrium problem with two producers and two demands. The equilibrium
problem is

minimize
x1, x2

3x1 + 5x2 − p1x1 − p2x2 (7.95)

subject to

1 ≤ x1 ≤ 10 (7.96)
3 ≤ x2 ≤ 12 (7.97)
2 + 3p1 ≤ x1 (7.98)
4 + 2p2 ≤ x2 , (7.99)

which can be written as

minimize
x1, x2

3x1 + 5x2 − p1x1 − p2x2 (7.100)

subject to

1 − x1 ≤ 0 : α1 (7.101)
−10 + x1 ≤ 0 : α2 (7.102)

3 − x2 ≤ 0 : α3 (7.103)
−12 + x2 ≤ 0 : α4 (7.104)

3p1 + 2 − x1 ≤ 0 : p1 (7.105)
2p2 + 4 − x2 ≤ 0 : p2 . (7.106)

The quadratic programming problem equivalent to the equilibrium prob-
lem is formulated as follows:

minimize
x,p,α

(3 − p1 − α1 + α2 − p1)x1 + (5 − p2 − α3 + α4 − p2)x2

+(x1 − 1)α1 + (10 − x1)α2 + (x2 − 3)α3 + (12 − x2)α4

+(x1 − 3p1 + 2)p1 + (x2 − 2p2 + 4)p2

(7.107)



7.4 Coordinate Descent Decomposition 285

subject to

3 − p1 − α1 + α2 − p1 ≥ 0 (7.108)
5 − p2 − α3 + α4 − p2 ≥ 0 (7.109)

1 − x1 ≥ 0 (7.110)
−10 + x1 ≥ 0 (7.111)

3 − x2 ≥ 0 (7.112)
−12 + x2 ≥ 0 (7.113)

3p1 + 2 − x1 ≥ 0 (7.114)
2p2 + 4 − x2 ≥ 0 (7.115)
α1, α2, α3, α4 ≥ 0 (7.116)

p1, p2 ≥ 0 . (7.117)

The solution of the problem is

x1 = 6.5, x2 = 9.0, p1 = 1.5, p2 = 2.5 .

��

7.4 Coordinate Descent Decomposition

In this section the coordinate descent decomposition method is described. It
should be emphasized that the convergence of this algorithm is not guaranteed.
Nevertheless, it usually behaves properly in practical applications.

Consider the problem

minimize
x1,x2, . . . ,xn

f(x1,x2, . . . ,xn) , (7.118)

where xi ∈ IRki (i = 1, 2, . . . , n) subject to

h(x1,x2, . . . ,xn) = 0 (7.119)
g(x1,x2, . . . ,xn) ≤ 0 , (7.120)

then, the coordinate descent decomposition method is described using the
following algorithm.

Algorithm 7.3 (The coordinate descent decomposition algorithm).

Input. The problem (7.118)–(7.120), initial values x
(0)
i for i = 1, 2, . . . , n,

and the error tolerance ε to check convergence.
Output. The solution of the problem (7.118)–(7.120) within the given error.



286 7 Other Decomposition Techniques

Step 0: Initialization. Let ν = 1.

Step 1: Solve the subproblems. For i = 1 − n, solve the problem

minimize
xi

f
(
x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
i−1,xi,x

(0)
i+1, . . . ,x

(0)
n

)
(7.121)

subject to

h
(
x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
i−1,xi,x

(0)
i+1, . . . ,x

(0)
n

)
= 0 (7.122)

g
(
x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
i−1,xi,x

(0)
i+1, . . . ,x

(0)
n

)
≤ 0 , (7.123)

obtain its optimal solution x
(ν)
i , and let x

(0)
i = x

(ν)
i .

Step 2: Check convergence. If ||x(ν) − x(ν−1)|| < ε, stop the procedure
and output the solution. Otherwise, continue with Step 1. ��

If dealing with over-constrained subproblems, it might be convenient re-
placing Step 1 by the following alternative Step 1:

Step 1: Solve the subproblems. For i = 1 − n, solve the problem

minimize
xi, ε, δ

f
(
x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
i−1,xi,x

(0)
i+1, . . . ,x

(0)
n

)
+ κ(ν)

n∑
i=1

(||ε|| + ||δ||),
(7.124)

where κ > 1, subject to

h
(
x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
i−1,xi,x

(0)
i+1, . . . ,x

(0)
n

)
= ε (7.125)

g
(
x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
i−1,xi,x

(0)
i+1, . . . ,x

(0)
n

)
≤ δ , (7.126)

and obtain its optimal solution x
(ν)
i , and let x

(0)
i = x

(ν)
i .

The ε and δ variables are used to avoid infeasibility of the subproblems,
because the number of unknowns is smaller than the number of constraints.

This method can be interpreted as one method that proceeds by using
partial derivatives with respect to the block variables (the remaining variables
are kept constant).

Though this method converges under some regularity assumptions, its con-
vergence is slow. However, it can be easily implemented in parallel procedures.
This method is the coordinate descent method in which different optimization
problems are solved in an iterative manner. In each iteration, the objective
function is optimized with respect to a single variable or groups of variables,
while the remaining variables are kept constant (thus, the name of coordinate



7.4 Coordinate Descent Decomposition 287

descent). There are as many optimization problems as variables or groups,
and all the variables must be considered either individually or in one group.
This way, the partial effect of each variable or group is considered, which is
equivalent to considering partial derivatives.

7.4.1 Banded Matrix Structure Problems

The optimization problems with banded matrix structure are well suited for
the coordinate descent decomposition algorithm:

minimize
x,y

ν∑
i=1

fi(xi,yi)

subject to⎡⎢⎢⎢⎢⎢⎣
K1 C1 0 · · · 0 0 0
CT

1 K2 C2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · CT
ν−2 Kν−1 Cν−1

0 0 0 · · · 0 CT
ν−1 Kν

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...
xν−1

xν

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
y1

y2
...

yν−1

yν

⎤⎥⎥⎥⎥⎥⎦ .

(7.127)
This problem can be solved iteratively, by decomposing it into ν problems

(i = 1, 2, . . . , ν), as follows:

minimize
xi,yi

fi(xi,yi) + µν(||εi−1|| + ||εi|| + ||εi+1||) (7.128)

subject to

CT
i−2x̃i−2 + Ki−1x̃i−1 + Ci−1xi = ỹi−1 + εi−1 (7.129)

CT
i−1x̃i−1 + Kixi + Cix̃i+1 = yi + εi (7.130)

CT
i xi + Ki+1x̃i+1 + Ci+1x̃i+2 = ỹi+1 + εi+1 , (7.131)

where µν is a large constant that tends to infinity with ν, the tildes refer to
fixing the values of the corresponding variables, and the constraints (7.129)
for i = 1 and (7.131) for i = ν must be eliminated.

Note that each of the subproblems incorporates all the constraints that
depend on the variables of a single block, and then they are strongly condi-
tioned.

The ε variables are used to avoid infeasibility of the subproblems, because
the number of unknowns is smaller than the number of constraints.

There are many examples where this banded structure appears, as finite
element problems, finite difference problems. Two illustrative examples are
given below.



288 7 Other Decomposition Techniques

V 1

H1
M1

V 2

H2

M2

(a)

(b)
v1

h1
θ1

v2

h2

θ2

1

1

2

2

Fig. 7.1. (a) Node forces and moments, and (b) node displacements and rotations
for an elementary horizontal piece

Illustrative Example 7.6 (The matrix analysis of structures). Con-
sider the structural piece in Fig. 7.1, where

Hi, Vi,Mi; i = 1, 2

are the horizontal and vertical forces, and the moments applied to nodes 1
and 2, and

hi, vi, θi; i = 1, 2

are the horizontal and vertical displacements, and the rotations, respectively,
of these nodes.

Using the well-known two cases of clamped at both ends and clamped
and supported beams in Figs. 7.2a and b, respectively, and the simple axial
compression well-known law, the following system of equations establishes the
relationships between these variables.⎛⎜⎜⎜⎜⎜⎜⎜⎝

H1

V1

M1

−−
H2

V2

M2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= K

⎛⎜⎜⎜⎜⎜⎜⎜⎝

h1

v1

θ1

−−
h2

v2

θ2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝ K1 | K2

−− + −−
KT

2 | K3

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

h1

v1

θ1

−−
h2

v2

θ2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

AE
L 0 0 | −AE

L 0 0
0 12EI

L3
6EI
L2 | 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L | 0 − 6EI

L2
2EI
L−− −− −− + −− −− −−

−AE
L 0 0 | AE

L 0 0
0 − 12EI

L3 − 6EI
L2 | 0 12EI

L3 − 6EI
L2

0 6EI
L2

2EI
L | 0 − 6EI

L2
4EI
L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

h1

v1

θ1

−−
h2

v2

θ2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(7.132)



7.4 Coordinate Descent Decomposition 289

6EI

L2

12EI

L3

6EI

L2
12EI

L3

2EI

L

4EI

L

6EI

L2

6EI

L2

(a)

(b)

v = 1

= 11

2

1

2

θ

Fig. 7.2. Basic cases of clamped at both ends and clamped and supported beams
used for building the stiffness matrix. The relative displacement in (a) and the
rotation in (b) are unity

where the matrix K of the system is known as the stiffness matrix, A is the
cross section, E is the Young modulus, I is the moment of inertia of the cross
section of the piece, L is the length, KT

2 is the transpose of K2, and the
meaning of the block matrices K1, K2, and K3 becomes clear from system
(7.132).

The above relationships between forces and moments and displacements
and rotations for a horizontal piece can be generalized to include pieces in any
position by means of the following considerations.

Consider the piece in Fig. 7.3, where h′ and v′, and H ′ and V ′ are the
displacements and forces in the piece and its orthogonal direction, respectively.

Then, we have⎛⎝ h
v
m

⎞⎠ = G

⎛⎝ h′

v′

m′

⎞⎠ ,

⎛⎝ H
V
M

⎞⎠ = G

⎛⎝ H ′

V ′

M ′

⎞⎠ , (7.133)

θ h'

v'

α

h

v

(a)

M H'

V'

α

H

V

(b)

Fig. 7.3. Piece rotated an angle α with respect to the horizontal line



290 7 Other Decomposition Techniques

where

G =

⎛⎝ cos α sin α 0
− sin α cos α 0

0 0 1

⎞⎠ (7.134)

is the rotation matrix.
Thus, for the piece in Fig. 7.3 we have⎛⎜⎜⎜⎜⎜⎝

H1

V1

M1

H2

V2

M2

⎞⎟⎟⎟⎟⎟⎠ =
(

G 0
0 G

)
K

(
G−1 0

0 G−1

)
⎛⎜⎜⎜⎜⎜⎝

h1

v1

θ1

h2

v2

θ2

⎞⎟⎟⎟⎟⎟⎠ . (7.135)

If we have a structure composed of several pieces, its stiffness matrix can
be obtained from the stiffness matrices of all its pieces.

For example, consider the structure in Fig. 7.4a. In the upper part of
Fig. 7.5, the building process of the stiffness matrix is illustrated. First, the
stiffness matrices KI,KII, and KIII of the three pieces I, II, and III are cal-
culated, and next, their corresponding blocks (see system of (7.132)) are as-
sembled in the corresponding places (see the node numbers and the block
matrices in the upper right matrix in Fig. 7.5).

V 1

M1

V 2

H2
M2

V 4

H4

M4

V 1

M1

V 2

H2
M2

V 3

H3

V 4

M4H1

M3

(a)

H1

2

H4

3

1 4

V 3

H3

M3

(b)

2 3

1 4

Fig. 7.4. Two one-level structures

K1
I K2

I

K2
IT

K3
I K1

II K2
II

K2
II T

K3
II K1

III K2
III

K2
III

T

K3
III

+

+

3 41 2

3

4

1

2I

V 1

M1

V 2

H2
M2

V 4

H4

M4
H1

2 3

1 4

V 3

H3

M3II

III

Fig. 7.5. Stiffness matrix for the structure in Fig. 7.4a, and illustration of how to
build it



7.4 Coordinate Descent Decomposition 291

The corresponding system of equations relating forces and moments,
Hi, Vi,Mi(i = 1, 2, 3, 4) with displacements and rotations, hi, vi, θi(i = 1, 2, 3,
4) for Ai = Ei = Ii = Li = 1(i = 1, 2, 3) becomes⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1

V1

M1

−
H2

V2

M2

−
H3

V3

M3

−
H4

V4

M4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 0 6 | −12 0 6 | 0 0 0 | 0 0 0
0 1 0 | 0 −1 0 | 0 0 0 | 0 0 0
6 0 4 | −6 0 2 | 0 0 0 | 0 0 0
− − − + − − − + − − − + − − −

−12 0 −6 | 13 0 −6 | −1 0 0 | 0 0 0
0 −1 0 | 0 13 6 | 0 −12 6 | 0 0 0
6 0 2 | −6 6 8 | 0 −6 2 | 0 0 0
− − − + − − − + − − − + − − −
0 0 0 | −1 0 0 | 13 0 −6 | −12 0 −6
0 0 0 | 0 −12 −6 | 0 13 −6 | 0 −1 0
0 0 0 | 0 6 2 | −6 −6 8 | 6 0 2
− − − + − − − + − − − + − − −
0 0 0 | 0 0 0 | −12 0 6 | 12 0 6
0 0 0 | 0 0 0 | 0 −1 0 | 0 1 0
0 0 0 | 0 0 0 | −6 0 2 | 6 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

v1

θ1

−
h2

v2

θ2

−
h3

v3

θ3

−
h4

v4

θ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7.136)
where the banded matrix structure becomes apparent.

Any optimization problem based on this structure must incorporate these
constraints (7.136). For example, one can

minimize
h,v,θ

H3

subject to

h1 = 0
v1 = 0
θ1 = 0

−0.03 ≤ h2 ≤ 0.03
−0.001 ≤ v2 ≤ 0.001
−0.02 ≤ θ2 ≤ 0.02

H2 = 0
V2 = 0

M2 = 0
H4 = 0
V4 = 0

M4 = 0

and constraints (7.136). This means obtaining the minimum horizontal force
in node 3 subject to some displacements and rotation constraints at nodes 1
and 2.



292 7 Other Decomposition Techniques

Table 7.4. Iterative process using the method described in constraints (7.129)–
(7.131)

iteration
1 2 3 4 5 6 7 8 9

H1 0.487 0.445 0.456 0.464 0.468 0.472 0.474 0.476 0.477
V1 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
M1 0.212 0.208 0.212 0.215 0.216 0.217 0.218 0.219 0.219
H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H3 −0.465 −0.484 −0.483 −0.482 −0.482 −0.482 −0.482 −0.482 −0.481
V3 −0.008 −0.030 −0.016 −0.009 −0.005 −0.003 −0.002 −0.001 −0.001
M3 0.250 0.277 0.269 0.265 0.263 0.262 0.262 0.262 0.262
H4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

h1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
v1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
θ1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
h2 −0.023 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030 −0.030
v2 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001
θ2 0.014 0.014 0.016 0.017 0.018 0.019 0.019 0.019 0.019
h3 −0.516 −0.513 −0.513 −0.513 −0.512 −0.512 −0.512 −0.512 −0.511
v3 0.136 0.144 0.145 0.146 0.147 0.147 0.148 0.148 0.148
θ3 0.266 0.277 0.277 0.277 0.278 0.278 0.279 0.279 0.279
h4 −0.786 −0.788 −0.789 −0.789 −0.790 −0.790 −0.790 −0.791 −0.791
v4 0.164 0.154 0.149 0.148 0.147 0.147 0.147 0.148 0.148
θ4 0.269 0.273 0.275 0.276 0.277 0.278 0.278 0.279 0.279

Table 7.4 shows the evolution of the iterative process using the method
described in constraints (7.129)–(7.131), until convergence. ��
Illustrative Example 7.7 (A flow application). In this example we con-
sider the water flow under a dam. It is well known that water flows in small
amounts under the dam structures due to the gradient caused by the differ-
ent levels of water up and down stream as shown in Fig. 7.6. The stability
analysis of the dam requires the knowledge of the water pressures at the dam
foundation. The flow is governed by the differential equation

∆φ =
∂2φ

∂x2
+

∂2φ

∂y2
= 0 ,

which can be approximated by finite differences using the net in Fig. 7.6 and
the set of equations

φr + φl + φu + φb − 4φc = 0, for all node c (7.137)



7.4 Coordinate Descent Decomposition 293

1

2

...

m

1 2 k... n...

k k

k-1

k+1

k+mk-m

x

y

h

φ

φ

φ φφ

Fig. 7.6. Finite difference net for the approximation of the differential equation for
the water flow under a dam

where r, l, u, b refer to the right, left, up, and bottom nodes of the center
node c.

Potential φ at any point (x, y) is defined as

φ = y +
p

γ
, (7.138)

where p is the water pressure and γ is the water unit weight.
We assume that φ is a constant on both sides of the dam and takes values

h and 0 (note that atmospheric pressure implies p = 0) at the up and down
stream, respectively, and that the soil is limited by its right, left, and bottom
sides by impervious materials. We also assume that the dam foundation is
impervious. This implies that the contours of φ must be perpendicular to the
impervious boundaries. To this end we assume that the values of the potential
φ at the artificial white nodes in the boundary are coincident with the values
of the potential at the nodes they are connected. Thus, for the bottom nodes
in the impervious boundaries (7.137) becomes

φr + φl + φu − 3φc = 0; c ∈ Din , (7.139)

and similarly, for the right, left, and up (below the dam) boundaries.



294 7 Other Decomposition Techniques

For the right and left corner nodes, (7.137) becomes

φl + φu − 2φc = 0; c ∈ Drb (7.140)

and
φr + φu − 2φc = 0; c ∈ Dlb , (7.141)

respectively.
If one is interested in maximizing the height in the dam, the problem can

be stated as
maximize

h,φ
h

subject to

φr + φl + φu + φb − 4φc = 0; c ∈ Din

φr + φl + φb − 3φc = 0; c ∈ Ddf

φr + φl + φb − 3φc = h; c ∈ Dus

φr + φl + φb − 3φc = 0; c ∈ Dds

φr + φl + φu − 3φc = 0; c ∈ Db

φl + φu + φb − 3φc = 0; c ∈ Dr

φr + φu + φb − 3φc = 0; c ∈ Dl

φl + φu − 2φc = 0; c ∈ Drbc

φr + φu − 2φc = 0; c ∈ Dlbc∑
c∈Ddf

acφc ≤ a0∑
c∈Ddf

bcφc ≤ b0 ,

where Din, Ddf , Dus, Dds, Db, Dr, Dl, Drbc, Dlbc are the sets of interior, dam
foundation, up-stream, down-stream, bottom, right, left, right-bottom corner,
and left-bottom corner, respectively, and the last two constraints refer to the
dam overturning and sliding constraints.

For the purpose of illustration, in Fig. 7.7 we show a simple example and
the corresponding system of equations that allows calculating the potentials
in all nodes.



7.4 Coordinate Descent Decomposition 295⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 −3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 −3 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 −3 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −3 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −3 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −3 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −3 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

φ12

φ13

φ14

φ15

φ16

φ17

φ18

φ19

φ20

φ21

φ22

φ23

φ24

φ25

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10

0

0

0

0

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.142)



296 7 Other Decomposition Techniques

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Fig. 7.7. A simple example of finite difference net for analyzing the water flow
under a dam

(
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 b1 0 0 0 0 b2 0 0 0 0 b3 0 0 0 0 0 0 0 0 0

)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

φ12

φ13

φ14

φ15

φ16

φ17

φ18

φ19

φ20

φ21

φ22

φ23

φ24

φ25

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤
(

a0

b0

)
,

(7.143)
where b1, b2, b3, a0, and b0 are known constants.

The coordinate descent method applied to this problem consists of max-
imizing the objective function assuming that one of the φ variables is free



7.5 Exercises 297

and the remaining variables are fixed to their actual values, and repeating the
process for all variables until convergence. Thus, only the subsets of constraints
in systems (7.142) and (7.143) in which the free variable has coefficients dif-
ferent from zero, are considered in the corresponding problem. ��

7.5 Exercises

Exercise 7.1. Consider the transnational soda company problem in p. 8 and
explain how can it be solved using the banded matrix structure of the con-
straints.

Exercise 7.2. Consider the following problem:

minimize
x1, x2

(
x1

y1

)2

+
(

x2

y2

)2

subject to

g1(x,y) =
x1x2

y1y2
≥ g

(0)
1

g2(x,y) =
x2

y2

√
y1

x1
≥ g

(0)
2

h(x,y) ≥ h0 ,

where function h(x,y) is the solution of the following problems for i = 1, 2

hi(x,y) = minimum
u1, u2, v1, v2

√√√√ 2∑
j=1

(
uj − xj

xjvxj

)2

+
2∑

j=1

(
vj − yj

yjvyj

)2

subject to
gi(u,v) = 1 ,

where

g1(u,v) =
u1u2

v1v2
and g2(u,v) =

u2

v2

√
v1

u1
.

Supposing the following data values:

y1 = 1.0, y2 = 1.0, vx1 = 0.02, vx2 = 0.02, vy1 = 0.1, vy2 = 0.1 ,

g
(0)
1 = 1.2, g

(0)
2 = 1.6, h

(0)
1 = 3.0, h

(0)
2 = 4.0 ,

and taking as starting point x = (5.0, 5.0)T :

1. Solve the problem using the relaxation method.
2. Solve the problem using the cutting plane method.



298 7 Other Decomposition Techniques

Exercise 7.3. Apply the banded matrix structure technique to solve the wa-
ter supply system example in Sect. 1.4.3, p. 36. Write a GAMS problem to
solve it globally and using this technique.

Exercise 7.4. Consider the structure on the right of Fig. 7.4, where a diago-
nal piece is added to it. Rewrite the constraints (stiffness matrix) after adding
this piece. Discuss how this change complicates the problem.

Exercise 7.5. Consider the net in Fig. 7.6.

1. Number the nodes up–down and left–right.
2. Write the finite difference constraints for interior, boundary, and corner

nodes.
3. Write the stability (overturning and sliding) constraints.
4. Number the nodes left–right and up–down.
5. Repeat item 2 and 3 for this numbering.
6. Discuss which of the two numberings is the most convenient.
7. Solve the optimization problem discussed in Example 7.7.

Exercise 7.6. In the rubblemound breakwater problem in Sect. 1.5.4, p. 48,
the goal is an optimal design of the breakwater based on minimizing the con-
struction and the insurance costs against overtopping damage of the internal
structures and ships. Consider the following problem where just the minimiza-
tion of the construction cost is considered:

minimize
Fc, tan αs

Cco = ccvc + cava

subject to

H = 1.8Hs

T = 1.1Tz

1/5 ≤ tan αs ≤ 1/2
Fc = 2 + d

vc = 10d

va =
1
2
(Dwl + 2)

(
46 + Dwl +

Dwl + 2
tan αs

)
RU

H
= AU

(
1 − eBUIr

)
Ir =

tan αs√
H/L(

2π

T

)2

= g
2π

L
tanh

2πDwl

L

Fc/RU ≥ F0

β ≥ β0 ,



7.5 Exercises 299

where the last two constraints are safety constraints associated with the clas-
sical approach based on safety factors and the probabilistic approach based
on reliability indices, respectively. F0 and β0 are the minimum required safety
factor and reliability index against overtopping, respectively. Note that the
reliability index is calculated the same way as in the problem in Sect. 1.5.4,
p. 48.

Solve this problem using the relaxation method described in Sect. 7.2 con-
sidering the same data and F0 = 1.15 and β0 = 4.5. Note that this problem
is similar to the wall problem.

Exercise 7.7. Give a detailed explanation of how to apply the coordinate
descent decomposition to the stochastic hydro scheduling problem in p. 12.

Exercise 7.8. Consider the following bilevel programming problem

minimize
x

4x + 8y∗

subject to

xy∗ ≤ 17
5x + 6y∗ ≥ 43

x ≥ 0
y∗ = arg maximize

y
−2x + 4y

subject to
x + 3y ≤ 19

y ≤ 18
y ≥ 0 .

1. Obtain the KKT conditions of the lower-level problem.
2. Compute the solution of the bilevel problem.

Exercise 7.9. Consider an electricity network that includes one generator
and one demand. The production cost of the generator is equal to 3 $/MWh
and the maximum and minimum output are 8 and 2 MW, respectively. The
demand function depends on the energy price and is equal to d(p) = 11 −
0.5p. Compute the power produced by the generator and the energy price at
equilibrium.



Part III

Local Sensitivity Analysis



8

Local Sensitivity Analysis

8.1 Introduction

In engineering practice, people use mathematical models to describe their
problems. However, mathematical models are not exact replicas, but simpli-
fications of reality. Frequently, when we specify a model, we act as if the
model were true and the associated assumptions were valid. Similarly, when
estimating the parameters of the model we use data, which are not exact
but subject to errors, lack of precision, etc. Consequently, conclusions drawn
from an analysis are sensitive to models and data. In some applications, even
small changes in the data can have a substantial effects on the results. It is
therefore essential for data analysts to be able to assess the sensitivity of their
conclusions to model and data. This is known as sensitivity analysis. Sensi-
tivity analysis allows the analyst to assess the effects on inferences of changes
in the data values, to detect outliers or wrong data values, to define testing
strategies, to optimize resources, reduce costs, etc.

Sensitivity analysis is the study of how the variation in the output of a
model can be apportioned, qualitatively or quantitatively, to different sources
of variation, and aims to determine how the model depends upon the data
or information fed into it, upon its structure, and upon the framing assump-
tions made to build it. As a whole, sensitivity analysis is used to increase the
confidence in the model and its predictions, by providing an understanding of
how the model response variables respond to changes in the inputs. Adding a
sensitivity analysis to an study means adding quality to it.

In this chapter, some methods for sensitivity analysis are discussed. The
chapter is structured as follows. In Sect. 8.2 the problem of sensitivity is stated.
Section 8.3 derives some formulas from duality theory that are applicable to
the sensitivity of the objective function. In Sect. 8.4 a general formula for
obtaining all the sensitivities at once, i.e., the sensitivities of the objective
function and the primal and dual variables with respect to data, is given, and
all the methods are illustrated by their application to particular examples. In
Sect. 8.5 interesting particular cases, including the LP case are discussed and



304 8 Local Sensitivity Analysis

some examples are given. In Sect. 8.6 sensitivities of active constraints to data
are analyzed.

8.2 Statement of the Problem

Consider the following primal NLPP

minimize
x

zP = f(x,a) (8.1)

subject to

h(x,a) = b : λ (8.2)
g(x,a) ≤ c : µ , (8.3)

where f : IRn × IRp → IR, h : IRn × IRp → IR �, g : IRn × IRp → IRm with
h(x,a) = (h1(x,a), . . . , h�(x,a))T and g(x,a) = (g1(x,a),. . ., gm(x,a))T

are regular enough for the mathematical developments to be valid over the
feasible region S(a) = {x|h(x,a) = b, g(x,a) ≤ c} and f,h, g ∈ C2. It is
also assumed that the problem (8.1)–(8.3) has an optimum at x∗.

As indicated in Chap. 4, the Primal problem P , as stated in problem
(8.1)–(8.3), has an associated dual problem D, which is defined as

maximize
λ,µ

zD = Inf
x

{L(x,λ,µ,a, b, c)} (8.4)

subject to
µ ≥ 0 , (8.5)

where

L(x,λ,µ,a, b, c) = f(x,a) + λT (h(x,a) − b) + µT (g(x,a) − c) (8.6)

is the Lagrangian function associated with the primal problem (8.1)–(8.3), and
λ and µ, the dual variables, are vectors of dimensions 
 and m, respectively.
Note that only the dual variables (µ in this case) associated with the inequality
constraints [g(x) in this case], must be nonnegative.

Given some regularity conditions on local convexity (see Luenberger [23],
Castillo et al. [55]), if the primal problem (8.1)–(8.3) has a locally optimal
solution x∗, the dual problem (8.4)–(8.5) also has a locally optimal solution
(λ∗,µ∗), and the optimal values of the objective functions of both problems
coincide. Note that if J is the set of indices j for which gj(x∗,a) = cj , a local
solution x∗ is a regular point of the constraints h(x,a) = b and g(x,a) ≤ c
if the gradient vectors ∇xhk(x∗,a), ∇xgj(x∗,a), where k = 1, . . . , 
; j ∈ J ,
are linearly independent.

When dealing with the optimization problem (8.1)–(8.3), the following
questions regarding sensitivity analysis are of interest:



8.3 Sensitivities Based on Duality Theory 305

1. What is the local sensitivity of z∗P = f(x∗,a) to changes in a, b, and c?
That is, the sensitivity of the objective function at the optimal point when
the parameters or data are modified.

2. What is the local sensitivity of x∗ to changes in a, b, and c? That is, the
sensitivity of the primal variables at their optimal values if the parameters
or data are locally modified.

3. What are the local sensitivity of λ∗ and µ∗ to changes in a, b, and c?
That is, the local sensitivities of the dual variables with respect to data or
parameters.

The answers to these questions are given in the following sections.

8.3 Sensitivities Based on Duality Theory

In this section some sensitivities are calculated using duality theory. We first
remind the reader the Karush–Kuhn–Tucker (KKT) conditions (see Chap. 4).

8.3.1 Karush–Kuhn–Tucker Conditions

The primal (8.1)–(8.3) and the dual (8.4)–(8.5) problems, respectively, can
be solved using the Karush–Kuhn–Tucker first order necessary conditions
(KKTCs) (see, for example, Luenberger [23], Bazaraa, Sherali, and Shetty
[20], Castillo et al. [21]):

∇xf(x∗,a) + λ∗T ∇xh(x∗,a) + µ∗T ∇xg(x∗,a) = 0 (8.7)
h(x∗,a) = b (8.8)
g(x∗,a) ≤ c (8.9)

µ∗T (g(x∗,a) − c) = 0 (8.10)
µ∗ ≥ 0 , (8.11)

where x∗ and (λ∗,µ∗) are the primal and dual optimal solutions, ∇xf(x∗,a)
is the gradient (vector of partial derivatives) of f(x∗,a) with respect to x,
evaluated at the optimal point x∗. The vectors µ∗ and λ∗ are also called
the Kuhn–Tucker multipliers. Condition (8.7) says that the gradient of the
Lagrangian function in (8.6) evaluated at the optimal solution x∗ must be zero.
Conditions (8.8)–(8.9) are called the primal feasibility conditions. Condition
(8.10) is known as the complementary slackness condition. Condition (8.11)
requires the nonnegativity of the multipliers of the inequality constraints, and
is referred to as the dual feasibility conditions.

The following example illustrates the use of the KKT conditions.

Illustrative Example 8.1 (Dual problems and KKT conditions). Con-
sider the following optimization problem:



306 8 Local Sensitivity Analysis

minimize
x1, x2

z = (x1 − 1)2 + (x2 − 1)2 (8.12)

subject to
x1 +x2 ≤ 1
x1 ≥ 0

x2 ≥ 0.
(8.13)

The Lagrangian function is

L(x,µ) = (x1 − 1)2 + (x2 − 1)2 + µ1(x1 + x2 − 1) + µ2(−x1) + µ3(−x2)

and the KKT conditions become

∂L(x,µ)
∂x1

= 2(x1 − 1) + µ1 − µ2 = 0 ⇒ x1 =
µ2 − µ1

2
+ 1 (8.14)

∂L(x,µ)
∂x2

= 2(x2 − 1) + µ1 − µ3 = 0 ⇒ x2 =
µ3 − µ1

2
+ 1 (8.15)

x1 + x2 ≤ 1 (8.16)
−x1 ≤ 0 (8.17)
−x2 ≤ 0 (8.18)

µ1(x1 + x2 − 1) = 0 (8.19)
µ2(−x1) = 0 (8.20)
µ3(−x2) = 0 (8.21)

µ1, µ2, µ3 ≥ 0 , (8.22)

which have one solution

x1 = 1/2, x2 = 1/2, µ1 = 1, µ2 = 0, µ3 = 0 .

This is illustrated in Fig. 8.1, where the optimal point is shown together
with the gradients of the objective function and the active constraint. Note
that they have opposite directions.

To obtain the dual function φ(µ1, µ2, µ3) one needs to obtain the Infimum:

Infimum
x1, x2

L(x1, x2, µ1, µ2, µ3) ,

which is attained at the point [see (8.14) and (8.15)]:

x1 =
µ2 − µ1

2
+ 1, x2 =

µ3 − µ1

2
+ 1 . (8.23)

It is a minimum because the Hessian of L(x,µ) at this point becomes(
2 0
0 2

)
,



8.3 Sensitivities Based on Duality Theory 307

0.5 1 1.5

0.5

1

1.5

1

Feasible
region

(1,1)

x* = (0.5, 0.5)

x2

x1

∇ f (x*)

∇g1 (x*)

µ ∇g1 (x*)

= 1

∇ f (x*)

1µ

f (x*) = 0.5

f (x) = 0.0625

f (x) = 0.25

f (x) = 0.5625

f (x) = 1
g (x) = 0

Fig. 8.1. Illustration of the minimization problem in Example 8.1

which is positive definite.
Then, the dual function is

φ(µ) =
(−2µ2

1 − 4µ2 − µ2
2 − µ3(4 + µ3) + 2µ1(2 + µ2 + µ3)

)
/4

and the dual problem becomes

maximize
µ1, µ2, µ3

(−2µ2
1 − 4µ2 − µ2

2 − µ3(4 + µ3) + 2µ1(2 + µ2 + µ3)
)
/4

subject to
µ1, µ2, µ3 ≥ 0 ,

whose solution is

µ1 = 1, µ2 = 0, µ3 = 0, z = 1/2 .

��

8.3.2 Obtaining the Set of All Dual Variable Values

Once the primal problem has been solved, the values of the optimal dual vari-
ables (the solution of the dual problem) can be easily obtained, as shown in



308 8 Local Sensitivity Analysis

the following section. In fact, when asked for the optimal solution of a primal
problem, most algorithms embedded in computer packages (GAMS-SNOPT,
GAMS-CONOPT, GAMS-MINOS, MATLAB, etc.) also give the optimal so-
lution of the associated dual problem, with practically no extra computational
cost. However, if one is interested in deriving analytical expressions for the
optimal values of the dual variables or in calculating these values, one can
proceed as follows.

The KKTCs in conditions (8.7)–(8.11) allow us to obtain the multipliers
(values of the dual variables λ∗ and µ∗) once the optimal solution x∗ of
the primal problem (8.1)–(8.3) has been obtained using the subset of linear
equations in λ∗ and µ∗:

∇xf(x∗,a) + λ∗T ∇xh(x∗,a) + µ∗T ∇xg(x∗,a) = 0 (8.24)

µ∗T (g(x∗,a) − c) = 0 (8.25)
µ∗ ≥ 0 . (8.26)

To this end, we proceed with the following steps:

Step 1. Determine the subset of indices of inequality constraints (8.3) which
are active, i.e., those j such that gj(x∗,a) = cj . Let J be this set, and let
µj = 0 for all j /∈ J .

Step 2. Solve in λ∗ and µ∗ the system of equations and inequalities:

∇xf(x∗,a) + λ∗T ∇xh(x∗,a) +
∑
j∈J

µj∇xgj(x∗,a) = 0 (8.27)

µ∗
j ≥ 0, ∀J . (8.28)

Since the unknowns in system (8.27) and (8.28) are the sensitivity vectors λ∗

and µ∗, this system is linear, and therefore easy to solve. This system can be
solved using the procedures in Castillo et al. [56, 57].

Furthermore, the solution of the system (8.27) and (8.28) provides ana-
lytical expressions to calculate vectors λ∗ and µ∗ as a function of the primal
solution x∗ of problem (8.1)–(8.3). This is an important result because this
analytical expression is not provided by practical solution algorithms.

8.3.3 Some Sensitivities of the Objective Function

The practical importance of the dual solutions derives from the fact that
the values of the dual variables give the sensitivities of the optimal objective
function value with respect to the parameters b and c appearing on the right-
hand side of the constraints, as stated in the following theorem.

Theorem 8.1 (Sensitivities). Consider the optimization problem (8.1)–
(8.3) whose solution x∗ is a regular point (see Definition 4.2) and that no



8.3 Sensitivities Based on Duality Theory 309

degenerate (see Definition 4.3) inequality constraints exist. Assume also that
sufficient conditions (4.4) for a minimum hold. Then, we have

∂f(x∗,a)
∂bi

= −λ∗
i ; i = 1, 2, . . . , 
;

∂f(x∗,a)
∂cj

= −µ∗
j ; j = 1, 2, . . . , m,

i.e., the sensitivities of the optimal objective function value of the problem
(8.1)–(8.3) with respect to changes in the terms appearing on the right-hand
side of the constraints are the negative of the optimal values of the correspond-
ing dual variables. ��

The proof of this theorem can be found, for instance, in Luenberger [23],
and can be considered as a corollary of Theorem 8.2.

For this important result to be applicable to practical cases of sensitiv-
ity analysis, the parameters for which the sensitivities are sought after must
appear on the right-hand side of the primal problem constraints. But what
about parameters not satisfying this condition, as a, for example? The answer
to this question is given in Sect. 8.4.

To illustrate Theorem 8.1, it is applied to a linear programming problem.

Illustrative Example 8.2 (The Linear programming sensitivities).
Consider the following linear programming problem:

minimize
x1, x2, . . . , xn

zP =
n∑

i=1

cixi (8.29)

subject to

n∑
i=1

pjixi = rj : λj ; j = 1, 2, . . . , 
 (8.30)

n∑
i=1

qkixi ≤ sk : µk; k = 1, 2, . . . , m , (8.31)

where λj and µk are the corresponding dual variables.
The sensitivities of the optimal value of the objective function to rj and

sk, following Theorem 8.1, are

∂z∗P
drj

= −λ∗
j (8.32)

∂z∗P
dsk

= −µ∗
k. (8.33)

��
The following section uses a simple but efficacious trick to obtain all pos-

sible sensitivities of the objective function.



310 8 Local Sensitivity Analysis

8.3.4 A Practical Method for the Sensitivities
of the Objective Function

In this section we show how the duality methods can be applied to derive
the objective function sensitivities in a straightforward manner. The basic
idea is simple. Assume that we desire to know the sensitivity of the objective
function to changes in some data values. If we convert the data into artificial
variables and set them, by means of constraints, to their actual values, we
obtain a problem that is equivalent to the initial optimization problem but
has a constraint such that the values of the dual variables associated with
them give the desired sensitivities.

To be more precise, the primal optimization problem (8.1)–(8.3) is equiv-
alent to the following one:

minimize
x, ã

zP = f(x, ã) (8.34)

subject to

h(x, ã) = b (8.35)
g(x, ã) ≤ c (8.36)

ã = a : η. (8.37)

It is clear that problems (8.1)–(8.3) and (8.34)–(8.37) are equivalent, but
for the second the sensitivities with respect to a are readily available. Note
that to be able to use the important result of Theorem 8.1, we convert the
data a into artificial variables ã and set them to their actual values a as
in constraint (8.37). Then, by Theorem 8.1, the negative values of the dual
variables η associated with constraint (8.37) are the sensitivities sought after,
i.e., the partial derivatives ∂zP /∂ai (i = 1, 2, . . . , p).

Remark 8.1. Note that this equivalence gives a powerful method to obtain the
objective function sensitivities.

8.3.5 A General Formula for the Sensitivities
of the Objective Function

The following theorem provides a closed form formula for local sensitivities of
the objective function (see Castillo et al. [58]). It gives an alternative to the
method developed in the preceding section.

Theorem 8.2 (The objective function sensitivities with respect to
the parameter a). Consider the primal problem (8.1)–(8.3) whose solution
x∗ is a regular point (see Definition 4.2) and that no degenerate (see Definition
4.3) inequality constraints exist. Assume also that sufficient conditions (4.4)
for a minimum hold. Then, the sensitivity of the objective function with respect
to the components of the parameter a is given by



8.3 Sensitivities Based on Duality Theory 311

∂z∗P
∂a

= ∇aL(x∗,λ∗,µ∗,a, b, c) , (8.38)

which is the gradient vector of the Lagrangian function

L(x,λ,µ,a, b, c) = f(x,a) + λT (h(x,a) − b) + µT (g(x,a) − c) (8.39)

with respect to a evaluated at the optimal solution x∗,λ∗, and µ∗. ��
Proof. Since the problem (8.1)–(8.3) is equivalent to the problem (8.34)–
(8.37), from the first KKT condition for this problem one gets

∇aL(x∗,λ∗,µ∗,a, b, c) = ∇aL(x∗,λ∗,µ∗,η∗, ã,a, b, c) (8.40)

= ∇af(x∗, ã) + λ∗T∇a(h(x∗, ã) − b)

+ µ∗T∇a(g(x∗, ã) − c) + η∗T∇a(ã − a)
= −η∗ , (8.41)

i.e., the sensitivities of the objective function of the problem (8.1)–(8.3) with
respect to the parameters a are the partial derivative of its Lagrangian func-
tion with respect to the a components at the optimal point. ��
Remark 8.2. The practical importance of Theorem 8.2 is that it supplies an
analytical expression for the objective function sensitivities.

Note that Theorem 8.1 is just a corollary of Theorem 8.2.
To illustrate Theorem 8.2, it is applied to two different LP problems.

Illustrative Example 8.3 (The linear programming case). The sim-
plest and very important case where Theorem 8.2 can be applied is the case
of linear programming.

Consider the same linear programming problem problem as in constraints
(8.29)–(8.31). The Lagrangian function becomes

L(x,λ,µ, c, r, s) =
n∑

i=1

cixi +
�∑

j=1

λj

(
n∑

i=1

pjixi − rj

)

+
m∑

k=1

µk

(
n∑

i=1

qkixi − sk

)
. (8.42)

To obtain the sensitivities of the optimal value of the objective function
to rj , sk, ci, pji, or qki, following Theorem 8.2, we simply obtain the par-
tial derivatives of the Lagrangian function with respect to the corresponding
parameter, i.e.,



312 8 Local Sensitivity Analysis

∂z∗P
∂rj

=
∂L(x,λ,µ)

∂rj
= −λ∗

j (8.43)

∂z∗P
∂sk

=
∂L(x,λ,µ)

∂sk
= −µ∗

k (8.44)

∂z∗P
∂ci

=
∂L(x,λ,µ)

∂ci
= x∗

i (8.45)

∂z∗P
∂pji

=
∂L(x,λ,µ)

∂pji
= λ∗

jx
∗
i (8.46)

∂z∗P
∂qki

=
∂L(x,λ,µ)

∂qki
= µ∗

kx∗
i . (8.47)

This is a simple case that leads to very neat results. ��
Illustrative Example 8.4 (The dependence on a common parame-
ter). Consider also the case of all parameters depending on a common para-
meter u, i.e., the problem

minimize
x1, x2, . . . , xn

n∑
i=1

ci(u)xi (8.48)

subject to

n∑
i=1

pji(u)xi = rj(u) : λj ; j = 1, 2, . . . , 
 (8.49)

n∑
i=1

qki(u)xi ≤ sk(u) : µk; k = 1, 2, . . . , m . (8.50)

Then, the sensitivity of the optimal value of the objective function to u is
given by [see (8.42)]:

∂L(x,λ,µ, u)
∂u

=
n∑

i=1

∂ci(u)
∂u

xi +
�∑

j=1

λj

(
n∑

i=1

∂pji(u)
∂u

xi − ∂rj(u)
∂u

)

+
m∑

k=1

µk

(
n∑

i=1

∂qki(u)
∂u

xi − ∂sk(u)
∂u

)
. (8.51)

Note that the cases in constraints (8.43)–(8.47) are particular cases
of (8.51). ��

Note also that Theorem 8.2 is applicable to any NLPP as straightforwardly
as to the two LP problems above, as illustrated in the following example.

Illustrative Example 8.5 (The sensitivities in NLPP). Consider the
following optimization problem:



8.3 Sensitivities Based on Duality Theory 313

minimize
x, y

z = a1x
2 + a2y

2 (8.52)

subject to
a4x + y = a5

xy ≥ a3

(x − 4)2 + a6(y − 2)2 ≤ a7 ,
(8.53)

where a1 = 1, a2 = 1, a3 = 4, a4 = 1, a5 = 5, a6 = 1, and a7 = 1.
The Lagrangian function is

L(x, y, λ, µ1, µ2) = x2+y2+λ(x+y−5)+µ1(4−xy)+µ2((x−4)2+(y−2)2−1),

and the KKTC are

∂L
∂x

= 2x + λ − µ1y + 2µ2(x − 4) = 0 (8.54)

∂L
∂y

= 2y + λ − µ1x + 2µ2(y − 2) = 0 (8.55)

x + y = 5 (8.56)
xy ≥ 4 (8.57)

(x − 4)2 + (y − 2)2 ≤ 1 (8.58)
µ1(4 − xy) = 0 (8.59)

µ2((x − 4)2 + (y − 2)2 − 1) = 0 (8.60)
µ1 ≥ 0 (8.61)
µ2 ≥ 0 . (8.62)

The only KKT point that satisfies the KKT conditions is the point
(x∗, y∗) = (3, 2), which is the optimal solution, as illustrated in Fig. 8.2.
The corresponding values of the multipliers are λ = −4, µ1 = 0, and µ2 = 1.

To study the sensitivity of the objective function optimal value to the
a-parameters, the problem (8.52)–(8.53) can be written as

minimize
x, y,a

z = a1x
2 + a2y

2

subject to
xy ≥ a3

a4x + y = a5

(x − 4)2 + a6(y − 2)2 ≤ a7

a = a0 ,

(8.63)

where, since the parameters a3, a5, and a7 already appear on the right-hand
sides of some constraints, we let a = (a1, a2, a4, a6)T and a0 = (1, 1, 1, 1)T .

The resulting values of the sensitivities, i.e., the negative of the dual vari-
able values are



314 8 Local Sensitivity Analysis

1 2 3 4 5

1

2

3

4

5

Optimal
solution

x

y

Feasible
region

z = 4

z = 16

z* = 13

xy = 2 xy = 4 xy= 6

xy =  8

x* = (3, 2)

2µ ∇g2 (x*)

λ ∇h (x*)

∇ f (x*)
= 01µ
= 12µ
= −4 λ

Fig. 8.2. Illustration of the minimization problem in Example 8.5

∂z∗

∂a1
= 9,

∂z∗

∂a2
= 4,

∂z∗

∂a3
= 0,

∂z∗

∂a4
= −12,

∂z∗

∂a5
= 4,

∂z∗

∂a6
= 0,

∂z∗

∂a7
= −1 ,

where the asterisks refer to the optimal values.
Alternatively, one can proceed as follows. The Lagrangian function of the

problem (8.52)–(8.53) in terms of the parameters is

L(x, y, λ, µ1, µ2) = a1x
2 + a2y

2 + λ(a4x + y − a5) + µ1(a3 − xy)
+µ2((x − 4)2 + a6(y − 2)2 − a7) ,

then, using Theorem 8.2, one gets

∂z∗

∂a1
=

∂L(x, y, λ, µ1, µ2)
∂a1

= (x∗)2 = 9

∂z∗

∂a2
=

∂L(x, y, λ, µ1, µ2)
∂a2

= (y∗)2 = 4

∂z∗

∂a3
=

∂L(x, y, λ, µ1, µ2)
∂a3

= µ∗
1 = 0

∂z∗

∂a4
=

∂L(x, y, λ, µ1, µ2)
∂a4

= λ∗x∗ = −12



8.4 A General Method for Obtaining All Sensitivities 315

∂z∗

∂a5
=

∂L(x, y, λ, µ1, µ2)
∂a5

= −λ∗ = 4

∂z∗

∂a6
=

∂L(x, y, λ, µ1, µ2)
∂a6

= µ∗
2(y

∗ − 2)2 = 0

∂z∗

∂a7
=

∂L(x, y, λ, µ1, µ2)
∂a7

= −µ∗
2 = −1 ,

i.e., the same results as before. ��

8.4 A General Method for Obtaining All Sensitivities

The method developed in the preceding section was limited to determining
the sensitivities of the objective function. In what follows, and in order to
simplify the mathematical derivations, the parameter vectors b and c, used in
constraints (8.1)–(8.3) and (8.7)–(8.11), are assumed to be subsumed by a. In
this section we present a powerful method that allows us to determine all sen-
sitivities at once, i.e., the sensitivities of the optimal solutions (x∗,λ∗,µ∗, z∗)
of the problems (8.1)–(8.3) and (8.4)–(8.5) to local changes in the parameters
a. Pioneering work leading to this method is due to Fiacco [83]. To this end,
we perturb or modify a,x,λ,µ, and z in such a way that the KKTC still
hold. Thus, to obtain the sensitivity equations we differentiate problems (8.1)
and (8.7)–(8.11), as follows:

(∇xf(x∗,a))T dx + (∇af(x∗,a))T da − dz = 0 (8.64)⎛⎝∇xxf(x∗,a)+
�∑

k=1

λ∗
k∇xxhk(x∗,a)+

m∑
j=1

µ∗
j∇xxgj(x∗,a)

⎞⎠dx

+

⎛⎝∇xaf(x∗,a)+
�∑

k=1

λ∗
k∇xahk(x∗,a)+

m∑
j=1

µ∗
j∇xagj(x∗,a)

⎞⎠da

+ ∇xh(x∗,a)dλ + ∇xg(x∗,a)dµ = 0n (8.65)

(∇xh(x∗,a))T dx + (∇ah(x∗,a))T da = 0� (8.66)
(∇xgj(x∗,a))T dx + (∇agj(x∗,a))T da = 0; if µ∗

j �= 0; j ∈ J (8.67)

(∇xgj(x∗,a))T dx + (∇agj(x∗,a))T da ≤ 0; if µ∗
j = 0; j ∈ J (8.68)

−dµj ≤ 0; if µ∗
j = 0; j ∈ J (8.69)

dµj

[
(∇xgj(x∗,a))T dx + (∇agj(x∗,a))T da

]
= 0; if µ∗

j = 0; j ∈ J , (8.70)

where all the matrices are evaluated at the optimal solution, and redundant
constraints have been removed. More precisely, the constraints (8.67)–(8.70)
are simplifications of the constraints that result directly from differentiating
constraints (8.9)–(8.11), i.e., from



316 8 Local Sensitivity Analysis

(∇xgj(x∗,a))T dx + (∇agj(x∗,a))T da ≤ 0; j ∈ J , (8.71)

and

(µ∗
j + dµj)(gj(x∗,a) + dgj(x∗,a)) = µ∗

jdgj(x∗,a) + dµj(gj(x∗,a)
+ dgj(x∗,a)); j ∈ J. (8.72)

Since all these inequality constraints are active, we have gj(x∗,a) = 0; ∀j ∈ J
and then (8.72) results in (8.67) for µ∗

j �= 0, and in (8.70) for µ∗
j = 0.

Finally, since (8.67) implies (8.71), for µ∗
j �= 0, (8.71) must be written only

for µ∗
j = 0, i.e., (8.68).

Note that constraint (8.67) forces the constraints gj(x∗,a) = 0 whose
multipliers are different from zero (µ∗

j �= 0) to remain active, constraint (8.68)
allows the optimal point to move inside the feasible region, constraint (8.69)
forces the Lagrange multipliers to be greater than or equal to zero, and con-
straint (8.70) forces a new point to hold the complementary slackness condition
for µ∗

j = 0. This last constraint is a second-order constraint that implies that
one of the constraints (8.68) or (8.69) has to be an equality constraint.

In matrix form, the system (8.64)–(8.69) can be written as

Mδp =

⎡⎢⎢⎢⎢⎢⎢⎣
Fx | Fa | 0 | 0 | −1

Fxx | Fxa | HT
x | GT

x | 0

Hx | Ha | 0 | 0 | 0

G1
x | G1

a | 0 | 0 | 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
dx

da

dλ

dµ

dz

⎤⎥⎥⎥⎥⎥⎥⎦ = 0 (8.73)

Nδp =

⎡⎣G0
x | G0

a | 0 | 0 | 0

0 | 0 | 0 | −I0
mJ

| 0

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

dx

da

dλ

dµ

dz

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0 , (8.74)

where mJ = card(J) is the number of active inequality constraints and the
meaning of matrices M and N becomes clear from the system (8.64)–(8.69),
and the submatrices are defined below (corresponding dimensions in paren-
thesis)

Fx(1×n) = (∇xf(x∗,a))T (8.75)

Fa(1×p) = (∇af(x∗,a))T (8.76)

Fxx(n×n) = ∇xxf(x∗,a) +
�∑

k=1

λ∗
k∇xxhk(x∗,a)

+
mJ∑
j=1

µ∗
j∇xxgj(x∗,a) (8.77)



8.4 A General Method for Obtaining All Sensitivities 317

Fxa(n×p) = ∇xaf(x∗,a) +
�∑

k=1

λ∗
k∇xahk(x∗,a)

+
mJ∑
j=1

µ∗
j∇xagj(x∗,a) (8.78)

Hx(�×n) = (∇xh(x∗,a))T (8.79)

Ha(�×p) = (∇ah(x∗,a))T (8.80)

Gx(mJ×n) = (∇xg(x∗,a))T (8.81)

Ga(mJ×p) = (∇ag(x∗,a))T
, (8.82)

where G0
x and G0

a refer to the submatrices of Gx and Ga, respectively,
associated with the null µ-multipliers of active constraints, G1

x and G1
a refer

to the submatrices of Gx and Ga, respectively, associated with the non-null
µ-multipliers of active constraints, and −I0

mJ
is the negative of a unit matrix

after removing all rows j ∈ J such that µ∗
j �= 0.

The dimensions of all the above matrices are given in Table 8.1.

Table 8.1. Main matrices and their respective dimensions

∇xf(x∗, a) ∇af(x∗, a) ∇xxf(x∗, a) ∇xxhk(x∗, a) ∇xxgj(x
∗, a)

n × 1 p × 1 n × n n × n n × n
∇xaf(x∗, a) ∇xahk(x∗, a) ∇xagj(x

∗, a)) ∇xh(x∗, a) ∇ah(x∗, a)
n × p n × p n × p n × 	 p × l

∇xg(x∗, a) ∇ag(x∗, a) ∇xgj(x
∗, a) ∇agj(x

∗, a) g(x∗, a)
n × mJ p × mJ n × 1 mJ × 1 mJ × 1

dx da dλ dµ dz
n × 1 p × 1 	 × 1 mJ × 1 1 × 1

In order to consider the second-order condition (8.70) the system (8.73)–
(8.74) has to be modified extracting from (8.74) and adding to (8.73) the row
associated with either the term G0 or −I0

mJ
for each constraint such that µ∗

j =
0; j ∈ J . The interpretation is simple, we add into (8.73) the term related to
G0 for the constraints we want to remain active after the perturbation, or the
term associated with −I0

mJ
for the constraints we want to allow to become

inactive. Note that 2m0 combinations (systems) are possible, where m0 in the
number of constraints whose µ∗

j = 0. In what follows we initially consider the
system (8.73)–(8.74) and later we take into account constraint (8.70).

8.4.1 Determining the Set of All Feasible Perturbations

Conditions (8.73)–(8.74) define the set of feasible perturbations δp = (dx, da,
dλ, dµ, dz)T , i.e., for moving from one KKT solution to another KKT solution.



318 8 Local Sensitivity Analysis

Since constraints (8.73)–(8.74) constitute an homogeneous linear system
of equalities and inequalities in dx, da, dλ, dµ, and dz, its general solution is
a polyhedral cone (see Padberg [59] and Castillo et al. [21, 60]):

δp =
t∑

i=1

ρivi +
q∑

j=1

πjwj , (8.83)

where ρi ∈ IR(i = 1, 2, · · · , t) and πj ∈ IR+(j = 1, 2, · · · , q), and vi and wj

are vectors that generate the linear space and the proper cone parts of the
polyhedral cone, respectively.

It should be noted that since a linear space is a particular case of a cone,
one can obtain a linear space as the solution of a homogeneous system of
linear inequalities.

The vertex cone representation (8.83) of the feasible perturbations can be
obtained using the Γ -algorithm (see Padberg [59] and Castillo et al. [21, 56]),
which is known to be computationally intensive for large problems. However,
one can obtain first the solution of constraint (8.73) (the corresponding null
space), and then use the Γ -algorithm to incorporate the constraints in con-
straint (8.74), which are only a reduced number (active inequality constraints
with null µ-multipliers) or none. Note that the null space computation is a
standard procedure whose associated computational burden is similar to that
of solving a linear homogeneous system of N equations (O(N3)) [61].

Nevertheless, as we shall see, the obtention of the vertex cone representa-
tion (8.83), though convenient, could be unnecessary.

Once constraint (8.83) is known, all feasible perturbations become avail-
able. Note that if we want to take into account constraint (8.70) all possible
combinations of the system (8.73)–(8.74) must be solved so that several so-
lutions (8.83) exist. Any selection of ρi ∈ i = 1, 2, . . . , t and πj ∈ IR+(j =
1, 2, . . . , q) in any solution leads to a feasible perturbation and all of them can
be obtained in this form.

8.4.2 Discussion of Directional and Partial Derivatives

Conditions (8.73)–(8.74) can be written as

U

⎡⎢⎢⎣
dx

dλ

dµ

dz

⎤⎥⎥⎦ = Sda (8.84)

V

⎡⎢⎢⎣
dx

dλ

dµ

dz

⎤⎥⎥⎦ ≤ T da , (8.85)

where the matrices U , V , S, and T are



8.4 A General Method for Obtaining All Sensitivities 319

U =

⎡⎢⎢⎢⎢⎢⎢⎣
Fx | 0 | 0 | −1

Fxx | HT
x | GT

x | 0

Hx | 0 | 0 | 0

G1
x | 0 | 0 | 0

⎤⎥⎥⎥⎥⎥⎥⎦ , S = −

⎡⎢⎢⎢⎢⎢⎢⎣
Fa

Fxa

Ha

G1
a

⎤⎥⎥⎥⎥⎥⎥⎦ , (8.86)

V =

⎡⎣ G0
x | 0 | 0 | 0

0 | 0 | −I0
mJ

| 0

⎤⎦ , T = −
⎡⎣ G0

a

0

⎤⎦ . (8.87)

Note that as system (8.84)–(8.85) comes from (8.73)–(8.74) and due to
condition (8.70), several systems (8.84)–(8.85) corresponding to the different
combinations may exist.

An optimal point (x∗, λ∗, µ∗, z∗) can be classified as follows:

Regular point: The solution x∗, λ∗, µ∗, and z∗ is a regular point if the
gradient vectors of the active constraints are linearly independent. Under
this circumstance, the optimal point can be nondegenerate or degenerate:
1. Nondegenerate: The Lagrange multipliers µ∗ of active inequality

constraints are different from zero, there is no matrix V and U−1

exists.
2. Degenerate: The Lagrange multipliers µ∗ of active inequality con-

straints are different from zero, there is no matrix V and U−1 does
not exist. Alternatively, some of the Lagrange multipliers of active in-
equality constraints in µ∗ are equal to zero and matrix U−1 does not
exist because U is not a square matrix.

Nonregular point: The gradient vectors of the active constraints are lin-
early dependent. Note that the KKT conditions do not characterize ad-
equately this case because there exist infinite Lagrange multiplier value
combinations that hold. However, the method also provides the sensitivi-
ties for given values of the Lagrange multipliers. In this case no difference
is made between nondegenerate and degenerate cases because matrix U
is never invertible.

Note that the most common situation occurs if we have a regular non-
degenerate point. The cases of regular degenerate and nonregular points are
exceptional. However, since we deal with a set of parametric optimization
problems (we use parameters a), normally there exist particular values for
the parameters such that these two cases occur as important transition situ-
ations.

Finally, it should be noted that expressions (8.84) and (8.85) allow us to
determine

(1) directional derivatives if they exist.
(2) partial derivatives if they exist.
(3) all partial derivatives at once if they exist.



320 8 Local Sensitivity Analysis

Note that existence means that there is a feasible perturbation where the
KKT conditions still hold. We deal with all these problems in the following
subsections.

8.4.3 Determining Directional Derivatives if They Exist

To check if a directional derivative exists, we replace da by the corresponding
unit vector and solve all possible combinations of the system (8.84)–(8.85). If
at least for one of the combinations it exists (existence) and the solution is
unique (uniqueness), then the directional derivative exists.

One can obtain first the solution of constraint (8.84) (the corresponding
null space), and then use the Γ -algorithm [56] to incorporate the constraints
in (8.85), which are only a reduced number (active inequality constraints with
null µ-multipliers).

8.4.4 Partial Derivatives

A partial derivative is a special case of directional derivative. The partial
derivative of u with respect to ak means the increment in u due to a unit
increment in ak and null increments in ar, r �= k. Then, in a feasible pertur-
bation δp that contains a unit component dak together with null values for
components dai,∀i �= k, the remaining perturbation components contain the
corresponding right-derivatives (sensitivities) with respect to ak, i.e.,(

∂x1

∂a+
k

, . . . ,
∂xn

∂a+
k

, 0, . . . , 0, 1, 0, . . . , 0,
∂λ1

∂a+
k

, . . . ,
∂λp

∂a+
k

,
∂µ1

∂a+
k

, . . . ,
∂µmJ

∂a+
k

,
∂z

∂a+
k

)T

.

(8.88)
Similarly, a feasible perturbation of the form(

∂x1

∂a−
k

, . . . ,
∂xn

∂a−
k

, 0, . . . , 0,−1, 0, . . . , 0,
∂λ1

∂a−
k

, . . . ,
λp

∂a−
k

,
∂µ1

∂a−
k

, . . . ,
∂µmJ

∂a−
k

,
∂z

∂a−
k

)T

(8.89)
contains as the remaining components all the left-derivatives with respect to
ak. If both exist and coincide in absolute value but not in sign, the corre-
sponding partial derivative exists.

The partial derivative is obtained solving the directional derivatives for dak

and −dak, respectively, and checking if both exist, and coincide in absolute
value but not in sign. If the answer is positive, the corresponding partial
derivative exists.

Note that this procedure also allows us to know if there are directional
derivatives for any arbitrary vector da in both directions da and −da.



8.5 Particular Cases 321

8.4.5 Obtaining All Sensitivities at Once

If the solution x∗, λ∗, µ∗, and z∗ is a nondegenerate regular point, then the
matrix U is invertible and the solution of the system (8.84)–(8.85) is unique
and it becomes ⎡⎢⎢⎢⎣

dx

dλ

dµ

dz

⎤⎥⎥⎥⎦ = U−1S da , (8.90)

where (8.85) is satisfied trivially since V does not exist.
Several partial derivatives can be simultaneously obtained if the vector da

in (8.90) is replaced by a matrix including several vectors (columns) with the
corresponding unit directions. In particular, replacing da by the unit matrix
Ip in (8.90) all the partial derivatives are obtained. The matrix with all partial
derivatives becomes ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂a
∂λ

∂a
∂µ

∂a
∂z

∂a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= U−1S. (8.91)

For any vector da the derivatives in both directions da and −da are ob-
tained simultaneously.

8.5 Particular Cases

There are some important particular cases of the feasible perturbation equa-
tions (8.73)–(8.74).

8.5.1 No Constraints

In the particular case of an optimization problem with no constraints the
system (8.65)–(8.70) transforms to

∇xxf(x∗,a)dx + ∇xaf(x∗,a)da = 0 (8.92)

and if ∇xxf(x̄,a) is invertible, one gets

∂x

∂a (n×p)
= − (∇xxf(x∗,a))−1 ∇xaf(x∗,a) , (8.93)

where
∂x

∂a
is the matrix containing all the sensitivities of x with respect to a.



322 8 Local Sensitivity Analysis

Illustrative Example 8.6 (The maximum likelihood method). Con-
sider the following sample:

a = (1.341, 3.171, 3.629, 0.964, 5.904,−3.07, 2.573,−0.432, 2.1, 0.886) ,

drawn from a normal distribution N(µ, σ2), which depends on the set of pa-
rameters x = (µ, σ).

The maximum likelihood estimates µ̂ and σ̂ of the parameters µ and σ are
the solutions of the optimization problem

minimize
µ, σ

z =
1
2

p∑
i=1

(
ai − µ

σ

)2

+ p log σ + p log(2π)/2 ,

whose solution is

µ∗ = 1.7067, σ∗ = 2.3047, z∗ = 22.5387 .

Since

∂2z

∂µ2
=

p

σ2

∂2z

∂µ∂σ
=

2
p∑

i=1

(ai − µ)

σ3

∂2z

∂σ2
=

3
σ4

p∑
i=1

(ai − µ)2 − p

σ2

∂2z

∂µ∂ai
= − 1

σ2
; i = 1, . . . , p

∂2z

∂σ∂ai
=

2(µ − ai)
σ3

; i = 1, . . . , p ,

we get

∇xxf(x,a)=

⎛⎜⎜⎜⎜⎜⎝
p

σ2

2
p∑

i=1

(ai − µ)

σ3

2
p∑

i=1

(ai − µ)

σ3

3
p∑

i=1

(ai − µ)2 − pσ2

σ4

⎞⎟⎟⎟⎟⎟⎠=
(

1.88282 0
0 3.76565

)

∇xaf(x,a) =

⎛⎜⎝ − 1
σ2

· · · − 1
σ2

2(µ − a1)
σ3

· · · 2(µ − ap)
σ3

⎞⎟⎠
and then from (8.93) one obtains the sensitivities



8.5 Particular Cases 323⎛⎜⎝
∂µ

∂a1
. . .

∂µ

∂ap

∂σ

∂a1
. . .

∂σ

∂ap

⎞⎟⎠ =
1
p

⎛⎝ −1 . . . −1

a1 − µ

σ
. . .

ap − µ

σ

⎞⎠ . (8.94)

In addition, from Theorem 8.2 one gets

∂z

∂ai
=

ai − µ

σ2
; i = 1, . . . , p .

Table 8.2 gives all sensitivities for this example. ��

Table 8.2. Sensitivities

i 1 2 3 4 5 6 7 8 9 10

∂µ/∂ai −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1
∂σ/∂ai 0.016 −0.064 −0.083 0.032 −0.182 0.207 −0.038 0.093 −0.017 0.036
∂z/∂ai −0.069 0.276 0.362 −0.140 0.790 −0.900 0.163 −0.403 0.074 −0.154

8.5.2 Same Active Constraints

In this section we assume that the active inequality constraints remain active,
i.e., the perturbed case has the same active constraints as the initial problem.
Assume that the nonlinear problem has been solved and that one knows its
optimal solution x∗ and its dual solution λ∗, and that one has removed the
inactive constraints and all active inequality constraints have been converted
to equality constraints. Then, U and S can be written as

U =

⎡⎢⎣ Fx | 0 | −1
Fxx | HT

x | 0
Hx | 0 | 0

⎤⎥⎦ , S = −

⎡⎢⎣ Fa

Fxa

Ha

⎤⎥⎦ , (8.95)

and [
∂x

∂a

∂λ

∂a

∂z

∂a

]T

= U−1S . (8.96)

Note that (8.96) allows us to compute all sensitivities at once. However,
several particular cases are discussed below.

If the number of constraints equals the number of variables and matrix
Hx is invertible, we have



324 8 Local Sensitivity Analysis⎡⎢⎢⎢⎢⎢⎢⎣
∂x

∂a
∂λ

∂a
∂z

∂a

⎤⎥⎥⎥⎥⎥⎥⎦ = U−1S = −

⎡⎢⎣ 0n×1 | 0n×n | Hx
−1
n×�

0�×1 |(HT
x)−1

�×n|−(HT
x)−1FxxHx

−1
�×�

−11×1| 01×n | FxHx
−1
1×�

⎤⎥⎦
⎡⎢⎣ Fa1×p

Fxan×p

Ha�×p

⎤⎥⎦ ,

(8.97)
from which we get the closed formulas

∂x

∂a
= −H−1

x Ha (8.98)

∂λ

∂a
= (H−1

x )T
[
FxxH−1

x Ha − Fxa
]

(8.99)

∂z

∂a
= Fa − FxH−1

x Ha = Fa + λT Ha. (8.100)

Alternatively, if the matrix Fxx is invertible, then B = −HxFxx
−1HT

x
under the given assumptions is also invertible and we have

U−1 =

⎡⎢⎢⎣
0n×1 |

(
I + Fxx

−1HT
xB−1Hx

)
Fxx

−1 | −Fxx
−1HT

xB−1

0�×1 | −B−1HxFxx
−1 | B−1

−11×1|Fx

(
I + Fxx

−1HT
xB−1Hx

)
Fxx

−1|−FxFxx
−1HT

xB−1

⎤⎥⎥⎦ ,

(8.101)
from which we get the alternative closed formulas

∂x

∂a
= −

(
I + Fxx

−1HT
xB−1Hx

)
Fxx

−1Fxa

+Fxx
−1HT

xB−1Ha (8.102)
∂λ

∂a
= B−1HxFxx

−1Fxa − B−1Ha (8.103)

∂z

∂a
= Fa − Fx

(
I + F−1

xxHT
xB−1Hx

)
Fxx

−1Fxa

+FxF−1
xxHT

xB−1Ha. (8.104)

Note that (8.104) is exactly Theorem 8.2.

Illustrative Example 8.7 (The LP problem). Consider the following LP
problem:

minimize
x

z = cT x (8.105)

subject to
Ax = b : λ , (8.106)

where c = (c1, c2, . . . , cn), x = (x1, x2, . . . , xn), b = (b1, b2, . . . , bm) ≥ 0, A is
a matrix of dimensions m×n with elements aij(i = 1, 2, . . . m; j = 1, 2, . . . , n)
and λ are the dual variables.



8.5 Particular Cases 325

We are interested in determining the sensitivities of z∗, x∗, and λ∗ with
respect to all the data

a = (c1, . . . , cn; a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn, b1, . . . , bm) .

Assume that all the constraints in (8.106) are active [this is easy to achieve,
especially if one has already solved the LP problem (8.105)–(8.106)] and non-
basic (zero) variables are eliminated, i.e., n = m, and A reduces to an invert-
ible matrix. Then, the problem is regular and the matrix U becomes

U =

⎛⎜⎝ cT
1×n | 01×n | −11×1

0n×n | AT
n×n | 0n×1

An×n | 0n×n | 0n×1

⎞⎟⎠ , (8.107)

whose inverse is

U−1 =

⎛⎜⎜⎝
0n×1 | 0n×n | A−1

n×n

0n×1 |
(
AT

)−1

n×n
| 0n×n

−11×1 | 01×n | (
cT A−1

)
1×n

⎞⎟⎟⎠ . (8.108)

The matrix S is

S = −

⎛⎜⎝ xT
1×n | 01×n2 | 01×n

In |
(
In ⊗ λT

)
n×n2

| 0n×n

0n×n | (
xT ⊗ In

)
n×n2 | −In

⎞⎟⎠ , (8.109)

where ⊗ refers to the tensor or Kronecker’s product of matrices.
Then, the local sensitivities become

∂z

∂cj
= xj ;

∂z

∂aij
= λixj ;

∂z

∂bi
= −λi,

∂xj

∂ck
= 0;

∂xj

∂aik
= −ajixk;

∂xj

∂bi
= aji,

∂λi

∂cj
= −aji;

∂λi

∂a�j
= −ajiλ�;

∂λi

∂b�
= 0,

(8.110)

where aji are the elements of A−1.
Observe that (8.110) provide the sensitivities of the objective function,

the primal variables and the dual variables with respect to all parameters in
(8.105)–(8.106). ��
Illustrative Example 8.8 (The sensitivity with respect to parame-
ters). Consider that all the data are functions of a set of parameters θ,
i.e.,



326 8 Local Sensitivity Analysis

minimize
x

z = cT (θ)x (8.111)

subject to
A(θ)x = b(θ) : λ (8.112)

then, using the chain rule and (8.110), the sensitivities become

∂z

∂θr
=

∑
j

xj
∂cj(θ)
∂θr

+
∑
i,j

λixj
∂aij(θ)

∂θr
−

∑
i

λi
∂bi(θ)
∂θr

∂xj

∂θr
= −∑

i,k

ajixk
∂aik(θ)

∂θr
+

∑
i

aji ∂bi(θ)
∂θr

∂λi

∂θr
= −∑

j

aji ∂cj(θ)
∂θr

−
∑
�,j

ajiλ�
∂a�j(θ)

∂θr

(8.113)

or in matrix form

∂z

∂θ
= xT ∂c

∂θ
− λT

(
∂b

∂θ
− ∂A

∂θ
x

)
∂x

∂θ
= A−1

(
∂b

∂θ
− ∂A

∂θ
x

)

∂λ

∂θ
=

(
A−1

)T

(
∂c

∂θ
−

(
∂A

∂θ

)T

λ

)
.

(8.114)

Note that this is the general case and that the sensitivities in (8.110) are
particular cases. ��

8.5.3 The General Case

The general case is illustrated in the following examples.

Illustrative Example 8.9 (The regular nondegenerate case). Consider
the following parametric optimization problem:

minimize
x1, x2

z = (x1 − 1)2 + (x2 − 1)2 (8.115)

subject to
x1 +x2 ≤ a1

x1 ≥ a2

x2 ≥ a3,
(8.116)

which for a1 = 1, a2 = 0, a3 = 0 leads to the following optimal solution (see
Example 8.1):



8.5 Particular Cases 327

x1 = 1/2, x2 = 1/2, µ1 = 1, µ2 = 0, µ3 = 0, z = 1/2 .

Note that the only active constraint is the first one, and then, the remain-
ing constraints are inactive and can be eliminated from the analysis.

To analyze the existence of partial derivatives we solve the system of in-
equalities (8.73)–(8.74), which in this case becomes

⎛⎜⎜⎜⎝
−1−1 | 0 0 0 | 0 | −1− −+ −−−+−+ −

2 0 | 0 0 0 | 1 | 0
0 2 | 0 0 0 | 1 | 0− −+ −−−+−+ −
1 1 | −1 0 0 | 0 | 0

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1
dx2−−
da1
da2
da3−−
dµ1−−
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 , (8.117)

whose solution is the linear space⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1
dx2−−
da1
da2
da3−−
dµ1−−
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1
0 0 −1
− − −
0 0 −2
0 1 0
1 0 0
− − −
0 0 2
− − −
0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎝ ρ1

ρ2

ρ3

⎞⎠ . (8.118)

Expression (8.117) can be transformed [see (8.84)–(8.85)] as follows:⎛⎜⎜⎜⎝
−1−1 | 0 | −1− −+−+ −

2 0 | 1 | 0
0 2 | 1 | 0− −+−+ −
1 1 | 0 | 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

dx1
dx2−−
dµ1−−
dz

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 0−−−
0 0 0
0 0 0−−−−1 0 0

⎞⎟⎟⎠
(

da1
da2
da3

)
. (8.119)

Since the matrix U on the left-hand side of expression (8.119) is invertible,
all the sensitivities with respect to a1, a2, and a3 can be obtained at once using
(8.91):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x∗
1

∂a1

∂x∗
1

∂a2

∂x∗
1

∂a3
∂x∗

2

∂a1

∂x∗
2

∂a2

∂x∗
2

∂a3

−− −− −−
∂µ∗

1

∂a1

∂µ∗
1

∂a2

∂µ∗
1

∂a3

−− −− −−
∂z∗

∂a1

∂z∗

∂a2

∂z∗

∂a3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
−1−1 | 0 | −1− −+−+ −

2 0 | 1 | 0
0 2 | 1 | 0− −+−+ −
1 1 | 0 | 0

⎞⎟⎟⎟⎠
−1 ⎛⎜⎜⎝

0 0 0−−−
0 0 0
0 0 0−−−−1 0 0

⎞⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0
1
2 0 0
− − −

−1 0 0
− − −

−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.



328 8 Local Sensitivity Analysis

Note that the sensitivities with respect to the parameters a2 and a3, ap-
pearing only in the inactive constraints, are null. ��
Illustrative Example 8.10 (The regular degenerate case). Consider
the following parametric optimization problem (see Fig. 8.3):

minimize
x, y

z = x2 + y2 (8.120)

subject to
(x − 2)2 + (y − 2)2 ≤ 2

−x + a ≤ 0.
(8.121)

The KKT conditions for this problem are(
2x
2y

)
+

(
2(x − 2)
2(y − 2)

)
µ1 +

(−1
0

)
µ2 =

(
0
0

)
(x − 2)2 + (y − 2)2 − 2 ≤ 0

−x + a ≤ 0
µ1

(
(x − 2)2 + (y − 2)2 − 2

)
= 0

µ2(−x + a) = 0
µ1, µ2 ≥ 0 ,

(8.122)

and the corresponding solution, for the particular case a = 1 is

x∗
1 = 1, x∗

2 = 1, µ∗
1 = 1, µ∗

2 = 0, z∗ = 2 . (8.123)

In Fig. 8.3 the optimal solution, the feasible region of the problem (8.120)–
(8.121), as well as the graphical interpretation of the first equation in (8.122)
are shown. Note that the second constraint, −x + a ≤ 0, it is not necessary
for getting the optimal solution (8.123), this means that it could be removed
and the same optimal solution would still remain.

A vector of changes

δp = (dx, dy, da, dµ1, dµ2, dz)T

must satisfy the system (8.64)–(8.70), which for this example becomes

( 2 2 )
(

dx
dy

)
+ 0da − dz = 0 (8.124)((

2 0
0 2

)
+ µ1

(
2 0
0 2

)
+ µ2

(
0 0
0 0

))(
dx
dy

)
+
((

0
0

)
+ µ1

(
0
0

)
+ µ2

(
0
0

))
da

+
(−2 −1
−2 0

)(
dµ1

dµ2

)
=

(
0
0

)
(8.125)



8.5 Particular Cases 329

Fig. 8.3. Illustration of the feasible region, the optimal values, and the KKT mul-
tipliers for the regular degenerate example

(−2 −2 )
(

dx
dy

)
= 0 (8.126)

(−1 0 )
(

dx
dy

)
+ da ≤ 0 (8.127)

dµ2 ≥ 0 . (8.128)

In this case, the gradients of the constraints are linearly independent and
one of the Lagrange multipliers is null; so, we have a regular degenerate case.
The system (8.73)–(8.74), using expressions (8.124) and (8.128), becomes

Mδp =

⎛⎜⎜⎝
2 2 0 0 0 −1
4 0 0 −2 −1 0
0 4 0 −2 0 0

−2 −2 0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

dx
dy
da
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 (8.129)

and

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Optimal
solution

x

y

Feasible
region

z = 1

z = 4

z* = 2

x* = (1, 1)

1µ ∇g1 (x*)

∇g2 (x*)

∇ f (x*)

= 11µ
= 02µ

(x-2)2+(y-2)2-2 = 0

x = a



330 8 Local Sensitivity Analysis

Nδp =

(
−1 0 1 0 0 0

0 0 0 0 −1 0

)
⎛⎜⎜⎜⎜⎜⎜⎝

dx
dy
da
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ 0 . (8.130)

Note that we have not considered constraint (8.70) yet. If we want (1) the
second inequality constraint to remain active the first equation in constraint
(8.130) should be removed and included in (8.129), whereas if we want (2)
the inequality constraint to be allowed to become inactive then the second
equation in constraint (8.130) should be removed and included in (8.129).
The corresponding solutions are the cones⎛⎜⎜⎜⎜⎜⎝

dx
dy
da
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎠ = π

⎡⎢⎢⎢⎢⎢⎣
1
−1
1
−2
8
0

⎤⎥⎥⎥⎥⎥⎦ and

⎛⎜⎜⎜⎜⎜⎝
dx
dy
da
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎠ = π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
0
0
0

⎤⎥⎥⎥⎥⎥⎦ , (8.131)

respectively, where π ∈ IR+, which give all feasible perturbations. Note, for
example, that the optimal objective function does not depend on the para-
meter a because dz is null for all possible values of π. Note also that in the
solution that allows the second inequality constraint to become inactive, the
only element different from zero is da, which can only be negative, this means
that decreasing the parameter a makes the second constraint inactive as it is
shown in Fig. 8.4b.

In order to study the existence of directional derivatives with respect to
a we use the directions da = 1 and da = −1, and solve the two possible
combinations of (8.84)–(8.85) that lead to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+

∂y

∂a+

∂µ1

∂a+

∂µ2

∂a+

dz

∂a+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎣
1
−1
−2
8
0

⎤⎥⎥⎥⎦ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
∂y

∂a−
∂µ1

∂a−
∂µ2

∂a−
dz

∂a−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=[Ø] , and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+

∂y

∂a+

∂µ1

∂a+

∂µ2

∂a+

dz

∂a+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=[Ø] ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
∂y

∂a−
∂µ1

∂a−
∂µ2

∂a−
dz

∂a−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎦ ,

(8.132)
respectively, which implies that only right-or-left hand side derivatives exist.
Increasing the parameter a makes the second constraint to remain active with
an associated Lagrangre multiplier different from zero (note that the multi-
plier µ2 only can increase holding the last constraint in (8.122)) as shown in
Fig. 8.4a. The partial derivative of z with respect to a is zero. Decreasing the



8.5 Particular Cases 331

parameter a makes the second constraint inactive whereas the solution of the
problem remains the same evidencing that the second constraint is redundant,
as shown in Fig. 8.4b. ��

Illustrative Example 8.11 (The nonregular case). Consider the follow-
ing parametric optimization problem (see Fig. 8.5):

minimize
x, y

z = −2a1x − y (8.133)

subject to
x + y = a2

x ≤ a3

y ≤ a4

x + 4y/3 ≤ 4.

(8.134)

The KKT conditions for this problem are(−2a1

−1

)
+

(
1
1

)
λ +

(
1
0

)
µ1 +

(
0
1

)
µ2 +

(
1

4/3

)
µ3 =

(
0
0

)
x + y − a2 = 0

x − a3 ≤ 0
y − a4 ≤ 0

x + 4y/3 − 4 ≤ 0
µ1(x − a3) = 0
µ2(y − a4) = 0

µ3(x + 4y/3 − 4) = 0
µ1, µ2, µ3 ≥ 0 ,

(8.135)
and one of the possible solutions, for the particular case a1 = 1, a2 = 2, a3 = 1,
and a4 = 1 is

x = 1, y = 1, λ = 1, µ1 = 1, µ2 = 0, µ3 = 0, z = −3 .

In Fig. 8.5 the optimal solution, the feasible region of the problem (8.133)–
(8.134), and the graphical interpretation of the first equation in constraint
(8.135) are shown. Note that the constraints associated with null multipliers
are not necessary for getting the optimal solution, this means that they could
be removed and the same optimal solution would still remain.

Note that in this example the dual problem has infinite solutions, because
the gradients of the active constraints are linearly dependent. Since the two
first inequality constraints are active, they will remain either active or inactive
in a neighborhood of the optimum depending on the values of the Lagrange
multipliers.



332 8 Local Sensitivity Analysis

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Optimal
solution

x

y

Feasible
region

z = 1

z = 4

z* = 2
x* = (1, 1)

(x-2)2+(y-2)2-2 = 0

x = a-da

da

(b)

(a)

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Optimal
solution

x

y

Feasible
region

z = 1

z = 4

z* = 2

x* = (1+da, 1-da)

(x-2)2+(y-2)2-2 = 0

da

da

x = a+da

Fig. 8.4. Illustration of the feasible regions, and optimal values of the modified
problems due to changes in the parameter a, for the regular degenerate case: (a)
positive increment, (b) negative increment



8.5 Particular Cases 333

1 2 3 4

1

2

3

4

Optimal
solution

x

y

x+4y/3 = 4 

f (x) = -4 f (x) = -6 f (x) = -8

f (x) = -2 x-y

x+y = 2 

λ ∇h (x*)

1µ ∇g1 (x*)

∇ f (x*)
= 11µ
= 1λ

f (x) = -2

f (x*) = -3

x* = (1, 1)

Fig. 8.5. Illustration of the minimization problem in Example 8.11

We analyze only the case λ = 1, µ1 = 1, and µ2 = 0. A vector of changes

δp = (dx, dy, da1, da2, da3, da4, dλ, dµ1, dµ2, dz)T

must satisfy the system (8.64)–(8.70). The system (8.73)–(8.74) becomes

Mδp =

⎛⎜⎜⎜⎜⎝
−2 −1 −2 0 0 0 0 0 0 −1

0 0 −2 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 1 0
1 1 0 −1 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx
dy
da1

da2

da3

da4

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 (8.136)



334 8 Local Sensitivity Analysis

Nδp =
(

0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx
dy
da1

da2

da3

da4

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 0 . (8.137)

Note that we have not considered constraint (8.70) yet. If we desire (1) the
inequality constraint related to µ2 to remain active, the first equation in con-
straint (8.137) should be removed and included in (8.136), whereas if we desire
(2) the inequality constraint to be allowed to become inactive, then the second
equation in constraint (8.137) should be removed and included in (8.136). The
corresponding solutions are the cones⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx
dy
da1

da2

da3

da4

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ρ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1
−1
−1
0
0
2
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

− 1
2
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
0
−1
−1
0
0
0
0
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1
1
1
0
−2
0
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.138)

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx
dy
da1

da2

da3

da4

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ρ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1
−1
−1
0
0
2
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1
−1
2
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
0
−1
−1
0
0
0
0
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
0
−1
1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.139)

respectively, where ρ1, ρ2, ρ3 ∈ IR and π ∈ IR+. The vector associated with
π for the first hypothesis corresponds to the feasible changes in the Lagrange
multipliers owing to the linearly dependence on the constraint gradients but
only positive increments are allowed because as µ2 = 0, a negative increment
would imply a negative multiplier which does not satisfy (8.135).



8.5 Particular Cases 335

Figure 8.5 shows a graphical interpretation of the first equation in con-
straint (8.135) particularized for this case. Note that constraints related to µ2

and µ3 are not necessary for obtaining the optimal solution. This means that
they could be removed and the same optimal solution would still remain.

In order to study the existence of partial derivatives with respect to a1, it is
possible to consider the directions in which the desired directional derivatives
are looked for, da = ( 1 0 0 0 )T and da = (−1 0 0 0 )T , respectively,
and solve the two possible combinations of (8.84)–(8.85) leading to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+
1

∂y

∂a+
1

∂λ

∂a+
1

∂µ1

∂a+
1

∂µ2

∂a+
1

∂z

∂a+
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
0
0
0
2
0
−2

⎤⎥⎥⎥⎥⎥⎦ + π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
1
1
0

⎤⎥⎥⎥⎥⎥⎦ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
1

∂y

∂a−
1

∂λ

∂a−
1

∂µ1

∂a−
1

∂µ2

∂a−
1

∂z

∂a−
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
0
0
0
−2
0
2

⎤⎥⎥⎥⎥⎥⎦ + π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
1
1
0

⎤⎥⎥⎥⎥⎥⎦ , π ∈ IR+ ,

(8.140)
and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+
1

∂y

∂a+
1

∂λ

∂a+
1

∂µ1

∂a+
1

∂µ2

∂a+
1

∂z

∂a+
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
0
0
0
2
0
−2

⎤⎥⎥⎥⎥⎥⎦ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
1

∂y

∂a−
1

∂λ

∂a−
1

∂µ1

∂a−
1

∂µ2

∂a−
1

∂z

∂a−
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
0
0
0
−2
0
2

⎤⎥⎥⎥⎥⎥⎦ , (8.141)

respectively, which imply that the following partial derivatives exist: ∂x
∂a1

=
∂y
∂a1

= 0 and ∂z
∂a1

= −2, because they are unique and have the same absolute
value and different sign. However, the partial derivatives ∂λ

∂a1
, ∂µ1

∂a1
, and ∂µ2

∂a1
do not exist, because the corresponding dλ, dµ1, dµ2 are not unique [they
depend on the arbitrary real number π in contraint (8.140)].

Note that the feasible region (Figs. 8.6 and 8.7) degenerates to a single
point (x, y) = (1, 1) [see Fig. 8.7a], so that the optimal solution of prob-
lem (8.133)–(8.134) corresponds to this point independently of the objective



336 8 Local Sensitivity Analysis

1 2 3

1

2

3

Optimal
solution

Feasible
region

x

y

(b)

1 2 3

1

2

3

Feasible
region

Optimal
solution

x

y

x+4y= 4

(c)

1 2 3

1

2

3

Optimal
solution

x

y

(d)

1 2 3

1

2

3

Optimal
solution

x

y

(a)

f (x*) = -5

f (x) = -2a1x-y

f (x) = -12

f (x) =-4
x* = (1, 1) x+4y = 4

x+y = a2

f (x) = -8

f (x*) = -2

f (x) = -6

x+4y = 4

x* = (1, 0)

x+y = a2

f (x) = -2a1x-y

f (x) = -2a1x-y

y = a4

f (x) = -6

x+4y = 4x* = (1, 1)

f (x) = -4

f (x) = -4

f (x) = -2

f (x*) = -3

x = a3f (x) = -2a1x-y

f (x*) = -4
f (x) = -6

f (x) = -2

x* = (2, 0)

Fig. 8.6. First illustration of Example 8.11

function used. Thus, as parameter a1 affects only the objective function, the
derivatives of x1 and x2 with respect to this parameter are null (see Fig. 8.6a).

In order to study the existence of partial derivatives with respect to a2,
we solve (8.84)–(8.85) using the directions da = ( 0 1 0 0 )T and da =
( 0 −1 0 0 )T :⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+
2

∂y

∂a+
2

∂λ

∂a+
2

∂µ1

∂a+
2

∂µ2

∂a+
2

dz

∂a+
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
1
1
0

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
2

∂y

∂a−
2

∂λ

∂a−
2

∂µ1

∂a−
2

∂µ2

∂a−
2

∂z

∂a−
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
1
1
0

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+
2

∂y

∂a+
2

∂λ

∂a+
2

∂µ1

∂a+
2

∂µ2

∂a+
2

dz

∂a+
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=[Ø],

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
2

∂y

∂a−
2

∂λ

∂a−
2

∂µ1

∂a−
2

∂µ2

∂a−
2

∂z

∂a−
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
0
−1
0
0
0
1

⎤⎥⎥⎥⎥⎥⎦ ,

(8.142)



8.5 Particular Cases 337

1 2

1

2

x

y

x+y = a
2

x = a
3

y = a
4

 Feasible
region

1 2

1

2

x

y

x+y = a
2
+ da

2

x = a
3

y = a
4

 Non feasible
region

1

1

2

x

y

x+y = a
2

x=a
3

y = a
4
- da

4

 Non feasible
region

(b)

1 2

1

2

x

y

x+y =a
2

x = a
3
- da

3

y = a
4

 Non feasible
region

(c) (d)

(a)

Fig. 8.7. Second illustration of Example 8.11

respectively, which imply that no partial derivatives exist. Note that the vec-
tors associated with the π-values correspond to the possible changes in the
multipliers that make the solution to remain valid without changing the op-
timal values of x, y, and z. This is possible because the dual problem has an
infinite number of solutions. Note, as well, that no right-hand side derivatives
exist because increasing a2 makes the problem infeasible but the left-hand side
derivatives exist as shown in Fig. 8.7b: ∂x

∂a−
2

= 0, ∂y

∂a−
2

= −1 and ∂z
∂a−

2
= 1. In

Fig. 8.6b the new optimal point is shown if a2 is decreased in one unit, where
x = 1 remains the same, y = 0 decreases in one unit, and z = −2 increases in
one unit (note that the unit increase is valid because we are dealing with an
LP problem, but in NLPP only small perturbations are allowed). Note that
the second inequality constraint (y ≤ a4) becomes inactive.

If we consider directions da = ( 0 0 1 0 )T and da = ( 0 0 −1 0 )T ,
respectively, and solve the two possible combinations of (8.84)–(8.85), the right
and left-hand side derivatives with respect to a3 are obtained:



338 8 Local Sensitivity Analysis⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+
3

∂y

∂a+
3

∂λ

∂a+
3

∂µ1

∂a+
3

∂µ2

∂a+
3

∂z

∂a+
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
1
1
0

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
3

∂y

∂a−
3

∂λ

∂a−
3

∂µ1

∂a−
3

∂µ2

∂a−
3

∂z

∂a−
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
1
1
0

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+
3

∂y

∂a+
3

∂λ

∂a+
3

∂µ1

∂a+
3

∂µ2

∂a+
3

∂z

∂a+
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
1
−1
0
0
0
−1

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
3

∂y

∂a−
3

∂λ

∂a−
3

∂µ1

∂a−
3

∂µ2

∂a−
3

∂z

∂a−
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [Ø] ,

(8.143)
respectively, as in the previous example no partial derivatives exist. Note,
as well, that no left-hand side derivatives exist because decreasing a3 makes
the problem infeasible but right-hand side derivatives exist as it is shown in
Fig. 8.7c: ∂x

∂a+
3

= 1, ∂y

∂a+
3

= −1, and ∂z
∂a+

3
= −1. Figure 8.6c shows the new

optimal point if a3 is increased in one unit, where x = 2 and y = 0 increases
and decreases one unit, respectively and z = −4 decreases in one unit (note
that the unit increase is valid because we are dealing with an LP problem,
but for NLPP only small perturbations are allowed). Note that the second
inequality constraint (y ≤ a4) becomes inactive.

The same process is done for the last parameter da = ( 0 0 0 1 )T and
da = ( 0 0 0 −1 )T , respectively, solving the two possible combinations of
(8.84)–(8.85), the right- and left-hand side derivatives with respect to a4 are
obtained:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+
4

∂y

∂a+
4

∂λ

∂a+
4

∂µ1

∂a+
4

∂µ2

∂a+
4

∂z

∂a+
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
1
1
0

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
4

∂y

∂a−
4

∂λ

∂a−
4

∂µ1

∂a−
4

∂µ2

∂a−
4

∂z

∂a−
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=π

⎡⎢⎢⎢⎢⎢⎣
0
0
−1
1
1
0

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a+
4

∂y

∂a+
4

∂λ

∂a+
4

∂µ1

∂a+
4

∂µ2

∂a+
4

∂z

∂a+
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂a−
4

∂y

∂a−
4

∂λ

∂a−
4

∂µ1

∂a−
4

∂µ2

∂a−
4

∂z

da−
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [Ø] ,

(8.144)
respectively, which imply that no partial derivatives exist. Note that the vec-
tors associated with the π-values, as in the previous cases, correspond to the
possible changes in the multipliers that make the solution remain valid without
changing the optimal values of x, y, and z. This is possible because the dual
problem has infinite solutions. Note, as well, that no left-hand side derivatives



8.6 Sensitivities of Active Constraints 339

exist because decreasing a4 makes the problem infeasible but the right-hand
side derivatives exist as shown in Fig. 8.7d: ∂x

∂a−
4

= 0, ∂y

∂a−
4

= −1 and ∂z
∂a−

4
= 1.

Figure 8.6d shows that these derivatives are null because the optimal solu-
tion of the primal problem remains the same. Note that the second inequality
constraint (y ≤ a4) becomes inactive. ��

8.6 Sensitivities of Active Constraints

Sometimes one can be interested in the sensitivities of a constraint with re-
spect to data. In this case, we have the following theorem (see Castillo et al.
[58]):

Theorem 8.3 (The sensitivities of active constraints). If the problem

minimize
x

zP = f(x) (8.145)

subject to

h(x) = 0 : λ (8.146)
g(x) ≤ 0 : µ , (8.147)

where λ and µ are the corresponding dual variables, has an optimal regular
solution x∗ holding the sufficient conditions (4.4) for minimum, such that
z∗P = f(x∗) and that no degenerate (see Definition 4.3) inequality constraints
exist, then

(a) If λs > 0, the problem (8.145)–(8.147) is equivalent to the problem

minimize
x

zP = hs(x) (8.148)

subject to

f(x) = z∗P : 1/λs (8.149)
hk(x) = 0 : λk/λs, k �= s (8.150)
gj(x) ≤ 0 : µj/λs, j = 1, 2, . . . , q. (8.151)

(b) If λs < 0, the problem (8.145)–(8.147) is equivalent to the problem

maximize
x

zP = hs(x) (8.152)

subject to

f(x) = z∗P : 1/λs (8.153)
hk(x) = 0 : λk/λs, k �= s (8.154)
gj(x) ≤ 0 j : µj/λs j = 1, 2, . . . , q. (8.155)



340 8 Local Sensitivity Analysis

(c) If µs > 0, the constraint gs(x) ≤ 0 becomes active, i.e., gs(x) = 0 and
then it can be treated as an equality with positive λs = µs.

The multipliers or dual variables in (8.149), (8.150), and (8.151) or
(8.153), (8.154), and (8.155) give the corresponding sensitivities of hs(x) to
changes in z∗P , hk, and gj, respectively. ��
Proof. We only give the proof for the case λs > 0, because in the other cases
it is similar. The KKT necessary optimality conditions for the NLPP (8.145)–
(8.147) are

∇xf(x∗) + λ∗T ∇xh(x∗) + µ∗T ∇xg(x∗) = 0

h(x∗) = 0

g(x∗) ≤ 0

µ∗T g(x∗) = 0
µ∗ ≥ 0.

If no redundant constraints exist and the NLPP has an optimal solution x∗

such that z∗P = f(x∗), then, if λs > 0, we can write

∇xhs(x∗) +
1
λ∗

s

∇xf(x∗) +
�∑

k �=s

λ∗
k

λ∗
s

∇xhk(x∗) +
m∑

j=1

µ∗
j

λ∗
s

∇xgj(x∗) = 0

f(x∗) = z∗P
hk(x∗) = 0; k �= s

gj(x∗) ≤ 0; ∀j

µ∗
j

λ∗
s

gj(x∗) = 0; ∀j

µ∗
j

λ∗
s

≥ 0; ∀j,

which are the KKTC for the problem (8.148)–(8.151) and lead to the indicated
multipliers.

Since the problem (8.145)–(8.147) satisfies the second-order necessary con-
ditions (Definition 4.5) and f,h, g ∈ C2, then because of the nondegenerate
inequalities, it also satisfies the Second-Order sufficient conditions (Definition
4.4). ��

The results in this section, apart from giving the sensitivities of constraints,
allow us to solve the initial problem in an alternative way. This has advantages
in some cases in which one looks for optimal solutions of the initial problem
(8.145)–(8.147) with a given optimal value and wants to fix the right-hand side
of a constraint for that to be possible. In this case, the alternative statements
(8.148)–(8.151) or (8.152)–(8.155) allows us to solve the problem in one step,
while the initial problem requires iterations.



8.7 Exercises 341

Illustrative Example 8.12 (Example 8.5 revisited). Consider the opti-
mization problem in Example 8.5

minimize
x, y

z = x2 + y2 (8.156)

subject to
x + y = 5

(x − 4)2 + (y − 2)2 ≤ 1 ,
(8.157)

whose optimal solution is z∗ = 13 at the point (x∗, y∗) = (3, 2) and the
corresponding values of the multipliers are λ = −4 and µ = 1.

According to Theorem 8.3 and since λ < 0, the problem (8.156)–(8.157) is
equivalent to the problem

maximize
x, y

z = x + y (8.158)

subject to
x2 + y2 = 13 : 1/λ = −1/4

(x − 4)2 + (y − 2)2 ≤ 1 : µ/λ = −1/4 ,
(8.159)

where the corresponding multipliers are indicated.
Similarly, according to Theorem 8.3 and since µ > 0, the problem (8.156)–

(8.157) is equivalent to the problem

minimize
x, y

z = (x − 4)2 + (y − 2)2 − 1 (8.160)

subject to
x + y = 5 : λ/µ = −4

x2 + y2 = 13 : 1/µ = 1 ,
(8.161)

where the corresponding multipliers are also indicated. ��

8.7 Exercises

Exercise 8.1. Consider the following optimization problem:

minimize
x1, x2

−(x1 + 1)2 − (x2 + 1)2 (8.162)

subject to
x2

1 +x2
2 ≤ 1. (8.163)

1. Obtain the Lagrangian function.
2. Solve the problem graphically.



342 8 Local Sensitivity Analysis

3. Solve the problem using the KKT conditions and show that the optimal
value of the objective function, attained at the point (1/

√
2, 1/

√
2), is −(1+√

2)2.

4. Show that the dual function is φ(µ) =
µ(1 + µ)

1 − µ
and discuss its range.

5. State the dual problem.
6. Solve the dual problem and show that the optimal value of the objective

function, attained at the point µ = 1 +
√

2, is −(1 +
√

2)2.
7. Check that there is no duality gap.
8. Replace 1 in the right-hand side of the constraint by parameter a and

discuss the existence of derivatives with respect to a. Finally, obtain the
derivatives of the optimal objective function value and the coordinates of
the solution point with respect to a.

Exercise 8.2. A circle of minimum radius must be found such that it contains
a given set of points. To this end:

1. Simulate 30 points whose random coordinates are N(0, 1).
2. State the problem as one optimization problem. Note that the variables

are the coordinates of its center (x0, y0) and its radius r.
3. Solve the problem using an appropriate solver.
4. Use the technique of converting the data to artificial variables and incor-

porating constraints stating that these variables are equal to their corre-
sponding data values, to obtain the sensitivities of the resulting minimum
radius with respect to the point coordinates.

5. Identify the three points that define the circle based on the above sensitiv-
ities.

6. Generalize the problem to the case of n dimensions.

Exercise 8.3. Consider the following optimization problem:

minimize
x1, x2

(x1 + 1)2 + (x2 + 1)2 (8.164)

subject to
x2

1 +x2
2 ≤ 1. (8.165)

1. Obtain the Lagrangian function.
2. Solve the problem graphically.
3. Solve the problem using the KKT conditions and show that the optimal

value of the objective function, attained at the point (−1/
√

2,−1/
√

2), is
(
√

2 − 1)2.

4. Show that the dual function is φ(µ) =
µ(1 − µ)

1 + µ
and discuss its range.

5. State the dual problem.
6. Solve the dual problem and show that the optimal value of the objective

function, attained at the point µ =
√

2 − 1, is (
√

2 − 1)2.
7. Check that there is no duality gap.



8.7 Exercises 343

8. Replace 1 in the right-hand side of the constraint by parameter a and
discuss the existence of derivatives with respect to a. Finally, obtain the
derivatives of the optimal objective function value and the coordinates of
the solution point with respect to a.

Exercise 8.4. Consider the water supply problem in Sect. 1.4.3 with the
data in Fig. 1.12. Modify the optimization problem for the sensitivities of the
objective function with respect to the capacities ri and flows qj to be directly
obtained as the values of dual variables.

Exercise 8.5. Consider the problem

minimize
x, y

z = (x − x0)2 + (y − y0)2 (8.166)

subject to
(x − a)2 + (y − b)2 = r2 , (8.167)

where x0, y0, a, b and r are given constants.

1. Give a geometrical interpretation to this problem and plot a graph to
explain it.

2. Solve the problem analytically.
3. Obtain the sensitivity of z with respect to x0, y0, a, b, and r based on the

analytical solution.
4. Modify problem (8.166)–(8.167) to obtain the above sensitivities using the

techniques developed in this chapter.

Exercise 8.6. Consider the following parametric optimization problem:

minimize
x1, x2

z = −x2
1 − x2

2 (8.168)

subject to
x1 +x2 ≤ a1

x1 ≥ a2

x2 ≥ a3,
(8.169)

which for a1 = 1, a2 = 0, a3 = 0 leads to the following optimal solution:

x∗
1 = 0, x∗

2 = 1, µ∗
1 = 2, µ∗

2 = 2, µ∗
3 = 0, z∗ = −1 .

Calculate all sensitivities at once using the technique developed in Sect. 8.4.

Exercise 8.7. Consider the problem

maximize
x, y

z = xy (8.170)



344 8 Local Sensitivity Analysis

subject to

xy ≤ r2 (8.171)
y = bx (8.172)
x ≤ c (8.173)
y ≤ d (8.174)
x ≥ 0 (8.175)
y ≥ 0 , (8.176)

where a, b, c, and d are given constants.

1. Give a geometrical interpretation to this problem and plot a graph to
explain it.

2. Solve the problem analytically.
3. Obtain the sensitivity of z with respect to a, b, c, and d based on the ana-

lytical solution.
4. Modify problem (8.171)–(8.176) to obtain the above sensitivities using the

techniques developed in this chapter.
5. Discuss the existence of partial derivatives of z with respect to a, b, c, and

d, for the case a = 4, b = 1, c = 2, d = 2.

Exercise 8.8. Use the technique developed in Sect. 8.4 to calculate all sensi-
tivities at once of the problem in Example 8.5, and check that the sensitivities
you obtain for the objective function coincide with those given in Example 8.5.

Exercise 8.9. Consider the operation of a multiarea electricity network ex-
ample in Chap. 1 and the numerical data in Tables 1.14, 1.15, and 1.16. Modify
the problem to obtain the sensitivities of the objective function with respect
to all data values.

Exercise 8.10. Write a GAMS program to check Example 8.12. Proceed as
follows:

1. Write the code for the initial program (8.156)–(8.157).
2. Write the code for the modified program (8.158)–(8.159).
3. Write the code for the modified program (8.160)–(8.161).
4. Solve the above three problems and print the results in a file.
5. Check that the results are those expected by the theory.

Exercise 8.11. Consider the uniform random variable family with densities
of the form

f(y; a, b) =
1

b − a
, a ≤ y ≤ b ,

with mean
a + b

2
and variance

(b − a)2

12
.



8.7 Exercises 345

To estimate the parameters a and b based on a random sample, use the
constrained method of moments, which consists of solving the optimization
problem:

minimize
a, b

z =
(

a + b

2
− ȳ

)2

+
(

(b − a)2

12
− σ2

)2

(8.177)

subject to

a − ymin ≤ 0 : µ1 (8.178)
ymax − b ≤ 0 : µ2 , (8.179)

where ȳ and σ2 are the sample mean and variance, respectively, µ1 and µ2 are
the corresponding dual variables, and ymin and ymax are the minimum and
maximum values of the sample, respectively.

1. Simulate five points with random coordinates U(0, 1).
2. Calculate the sensitivities of the objective function z and the Lagrange

multipliers µ1 and µ2 with respect to the sample values.

Exercise 8.12. Consider the following simple NLPP

minimize
x1, x2

f(x) = a1x
2
1 + x2

2 (8.180)

subject to

h(x) = x1x
2
2 − a2 = 0 : λ (8.181)

g(x) = −x1 + a3 ≤ 0 : µ , (8.182)

where λ and µ are the corresponding multipliers.
Using the techniques developed in Sect. 8.4 discuss and study the sensitiv-

ities with respect to the parameters for the particular case a1 = a3 = 1 and
a2 = 2.

Exercise 8.13. Consider the diet problem in Murty [62]. Let x1, x2, and
x3 be the amounts of greens, potatoes, and corn (foods) included in the diet,
respectively. The amounts vitamins A, C, and D, respectively, in each nutrient
and the minimum daily vitamin requirements are given in Table 8.3.

Then, the well-known diet problem becomes

minimize
x1, x2, x3

z = 50x1 + 100x2 + 51x3 (8.183)



346 8 Local Sensitivity Analysis

Table 8.3. Amounts of vitamins A, C, and D in each food and the minimum daily
vitamin requirements

Vitamin contents Daily requirement

Food Greens Potatoes Corn of vitamin

Vitamin A 10 1 9 5

Vitamin C 10 10 10 50

Vitamin D 10 11 11 10

Cost ($/kg) 50 100 51

subject to

10x1 + x2 + 9x3 ≤ 5 : λ1 (8.184)
10x1 + 10x2 + 10x3 ≤ 50 : λ2 (8.185)
10x1 + 11x2 + 11x3 ≤ 10 : λ3 (8.186)

−x1 ≤ 0 : λ4 (8.187)
−x2 ≤ 0 : λ5 (8.188)
−x3 ≤ 0 : λ6 . (8.189)

1. Solve the problem (8.183)–(8.189) and detect the active constraints.
2. Using the expressions (8.110) given in the Illustrative Example 8.7 obtain

the sensitivities with respect to the parameters.
3. Which is the most important parameter to be controlled or modified to

decrease the cost?

Exercise 8.14. Consider the following simple nonlinear programming prob-
lem:

minimize
x1, x2

f(x) = x2
1 + x2

2

subject to

h(x) = −x1 + a1 = 0 : λ (8.190)
g1(x) = −x1 − x2 + 2a1 ≤ 0 : µ1 (8.191)

g2(x) = a2x1 − x2 ≤ 0 : µ2 , (8.192)

where λ, µ1, and µ2 are the multipliers corresponding to the constraints
(8.190)–(8.192).

Using the techniques developed in Sect. 8.4 discuss and study the sensi-
tivities with respect to the parameters for the particular case a1 = a2 = 1.



Part IV

Applications



9

Applications

9.1 The Wall Design

Engineering design consists of selecting the dimensions and materials for an
engineering work to satisfy the desired requirements and to become a reliable
construction. Engineering design is a complicated and highly iterative process
that usually requires a long experience. Iterations consist of a trial-and-error
selection of the design variables or parameters, together with a check of the
associated safety and functionality constraints, until reasonable designs, in
terms of cost and safety, are obtained.

Since safety of structures is the fundamental criterion for design, the en-
gineer first identifies all failure modes of the work being designed and then
establishes the safety constraints to be satisfied by the design variables. To en-
sure satisfaction of the safety constraints, two approaches are normally used:
(a) the classical approach based on safety factors, and (b) the modern ap-
proach based on failure probabilities or reliability indices.

In the design and reliability analysis of an engineering work, there are some
random variables (X1, . . . , Xn) involved. They include geometric variables,
material properties, loads, etc.

To illustrate these concepts, we consider again the wall problem but in-
cluding three modes of failure. The wall design has already been analyzed,
but in a simple version, in Chap. 1, page 45 and in Chap. 7, p. 276. The wall
is depicted in Fig. 9.1, where a and b are the width and the height of the
wall, γ is the unit weight of the wall, w is its weight per unit length, t is the
horizontal force acting on its right-hand side, h is the corresponding offset
with respect to the soil level, σmean is the mean stress at the foundation level
(it is used instead of the maximum stress in order to simplify the problem),
s is the soil strength, and k is the friction coefficient between soil and wall.
These are the actual values of the corresponding random variables that are
denoted using the corresponding capital letters.

In this section we assume that a, b, γ, t, h, s, and k are independent normal
random variables. Note that from the random character point of view there



350 9 Applications

a

b
t

h

σ

γ

k w

w

mean

O

Fig. 9.1. Wall and acting forces

are two sets of variables {t, h, s, k}, which have a large importance because of
its large dispersion, and {a, b, γ} which are random but with small variability.
In fact they could be considered as deterministic. Note also that a and b are
random because in the real wall they will not take the exact values desired by
the engineer due to constructions errors and imprecisions.

This set of variables involved in the problem can be partitioned into four
subsets:

d: Optimization design variables. They are the design variables whose values
are to be chosen by the optimization program to optimize the objective
function (minimize the cost). Normally, they define the dimensions of the
work being design, as width, thickness, height, cross sections, etc. In our
wall example these variables are

d = {a, b} .

η: Nonoptimization design variables. They are the set of variables (deter-
ministic or random) whose mean or characteristic values are fixed by
the engineer or the code and must be given as data to the optimiza-
tion program. Some examples are costs, material properties (unit weights,
strength, Young modula, etc.), and other geometric dimensions of the
work being designed. In our wall example

η = {γ, t, h, s, k} .



9.1 The Wall Design 351

κ: Random model parameters. They are the set of parameters used in the
probabilistic design, defining the random variability, and dependence
structure of the variables involved. In our wall example

κ = {σa, σb, σγ , σt, σh, σs, σk} ,

where σ refers to the standard deviation of the corresponding variable.
ψ: Auxiliary or nonbasic variables. They are auxiliary variables whose values

can be obtained from the basic variables d and η, using some formu-
las. They are used to facilitate the calculations and the statement of the
problem constraints. In the wall example

ψ = {w, σmean} .

The corresponding mean of d, and the mean or characteristic values of η
will be denoted by d̄ and η̃, respectively.

In the classical approach the safety factors are used as constraints and
the variables are assumed to be deterministic, i.e., the mean or characteristic
(extreme percentiles) values of the variables are considered.

Assume that the following three failure modes are considered (see Fig. 9.2):

1. Overturning failure mode. The overturning safety factor Fo is defined as
the ratio of the stabilizing to the overturning moments with respect to
some point (O in Fig. 9.1), as

Fo = go(d̄, η̃) =
Stabilizing moment

Overturning moment
=

wā/2
h̃t̃

=
ā2b̄γ̃

2h̃t̃
≥ F 0

o , (9.1)

where F 0
o is the corresponding lower bound associated with the overturn-

ing failure, and the bars and tildes refer to the means and the characteristic
values of the corresponding variables, respectively.

2. Sliding failure mode. The sliding safety factor Fs is the ratio of the stabi-
lizing to the sliding forces as

Overturning
failure

Sliding
failure

Bearing
failure

Fig. 9.2. Illustration of the wall three modes of failure



352 9 Applications

Fs = gs(d̄, η̃) =
Stabilizing force

Sliding force
=

k̃w

t̃
=

āb̄k̃γ̃

t̃
≥ F 0

s , (9.2)

where F 0
s is the corresponding lower bound associated with the sliding

failure.
3. Bearing capacity failure mode. The bearing capacity safety factor Fb is

the ratio of the bearing capacity to the maximum stress at the bottom of
the wall,

Fb = gb(d̄, η̃) =
Bearing capacity
Maximum stress

=
S̃

σmean
≥ F 0

b , (9.3)

where F 0
b is the corresponding lower bound associated with a foundation

failure.

The wall is safe if and only if Fo, Fs, Fb ≥ 1.
Three different design alternatives can be used.

1. Classical design. In a classical design the engineer minimizes the cost of
building the engineering work subject to safety factor constraints (9.1)–
(9.3), i.e.,

minimize
d̄

c(d̄ , η̃) (9.4)

subject to

gi(d̄, η̃) ≥ F 0
i ; ∀i ∈ I (9.5)

h(d̄, η̃) = ψ (9.6)
rj(d̄, η̃) ≤ 0; ∀j ∈ J , (9.7)

where c(d̄, η̃) is the objective function to be optimized (cost function),
I = {o, s, b} is the set of failure modes, gi(d̄, η̃) (i ∈ I) are the actual safety
factor functions associated with all failure modes, respectively, constraints
(9.6) are the equations that allow obtaining the auxiliary variables ψ from
the basic variables d and η, and rj(d̄, η̃) ≤ 0 (j ∈ J) are the geometric or
code constraints.

2. Modern design. Alternatively, the modern design minimizes the cost
subject to reliability constraints, i.e.,

minimize
d̄

c(d̄, η̃) (9.8)

subject to

βi(d̄, η̃,κ) ≤ β0
i ; ∀i ∈ I (9.9)

h(d̄, η̃) = ψ (9.10)
rj(d̄, η̃) ≤ 0; ∀j ∈ J , (9.11)



9.1 The Wall Design 353

where βi is the reliability index function associated with failure mode i,
and β0

i the corresponding upper bound.

3. Mixed design. There exists another design, the mixed alternative, which
combines safety factors and reliability indices (see Castillo et al. [15, 16,
17, 18, 19, 13]) and can be stated as

minimize
d̄

c(d̄, η̃) (9.12)

subject to

gi(d̄, η̃) ≥ F 0
i ; ∀i ∈ I (9.13)

βi(d̄, η̃,κ) ≤ β0
i ; ∀i ∈ I (9.14)

h(d̄, η̃) = ψ (9.15)
rj(d̄, η̃) ≤ 0; ∀j ∈ J. (9.16)

Unfortunately, the previous two alternatives cannot be solved directly,
because evaluation of the constraints (9.9) and (9.14) involve additional opti-
mization problems,

βi(d̄, η̃,κ) = minimum
di,ηi

βi(di,ηi, d̄, η̃,κ) (9.17)

subject to

gi(di,ηi) = 1 (9.18)
h(di,ηi) = ψ . (9.19)

Therefore, constraints (9.9) and (9.14) are the complicating constraints
of our problem. Consequently, these two bilevel problems cannot be solved
by standard techniques and decomposition methods, some of them given in
Sect. 7.2, p. 276 are required.

To obtain the reliability index β(d,η, d̄, η̃,κ) one proceeds as follows:

1. The set of random variables (a, b, k, t, γ, h, s) is transformed, using the
Rosenblatt [63] transformation, into a set of independent standard normal
random variables (z1, z2, . . . , zn):

zk = zk(d,η, d̄, η̃,κ); k = 1, 2, . . . , n , (9.20)

where n is the number of random variables involved in the problem (n = 7
in the wall problem).

2. The transformed failure region is replaced by the halfspace limited by
the hyperplane tangent to the failure region boundary, at the point z∗ =
(z∗1 , z∗2 , . . . , z∗n) in the failure region which is closest to the origin (see
Fig. 9.3). This point z∗ is known as the design point or point of maximum



354 9 Applications

0.15

0.10

0.05

0

-4

-2

0

2

4
-4

-2

0

2

4

Point of maximum
likelihood or design

point

Failure region

Linear approximation
FORM

z 1

z 2

β
Safe region

Fig. 9.3. Graphical illustration of the standard normal distribution function in the
u-space, the β-value, and the point of maximum likelihood in the bidimensional case

likelihood. If this hyperplane has equation
n∑

i=1

aizi = c, then its distance β

to the origin is
β =

c√
n∑

i=1

a2
i

and, since
n∑

i=1

aizi probability distribution is N(0,
n∑

i=1

a2
i ), the failure prob-

ability becomes

Pf = P (
n∑

i=1

aizi ≤ c) = F
N(0,

n∑
i=1

a2
i )

(c)

= Φ

⎛⎜⎜⎜⎜⎝ −c√
n∑

i=1

a2
i

⎞⎟⎟⎟⎟⎠ = Φ(−β)

= Φ

(
−

n∑
k=1

z2
k(d,η, d̄, η̃,κ)

)
, (9.21)



9.1 The Wall Design 355

where FN(0,σ2)(x) is the cumulative distribution function of N(0, σ2), and
Φ(·) is the cumulative distribution function of the standard normal random
variable.

3. Then, since the design point is the point in the failure region that is
closest to the origin, which implies a maximum failure probability, this is
calculated solving the problem

β = minimum
d,η

n∑
k=1

z2
k(d,η, d̄, η̃,κ) (9.22)

subject to

zk = zk(d,η, d̄, η̃,κ); k = 1, 2, . . . , n (9.23)
g(d,η) = 1 (9.24)
h(d,η) = ψ . (9.25)

Next, two alternative methods are given for solving the engineering design
problem (9.12)–(9.16).

9.1.1 Method 1: Updating Safety Factor Bounds

The method presented in this section uses an iterative procedure that consists
of repeating a sequence of three steps (see Castillo et al. [15, 16, 17]): (1) an
optimal (in the sense of optimizing an objective function) classic design, based
on given safety factors, is done; (2) reliability indices or bounds for all failures
modes are determined; and (3) all mode safety factor bounds are adjusted.
The three steps are repeated until convergence, i.e., until the safety factors
lower bounds and the failure mode probability upper bounds are satisfied.
More precisely, the method proceeds as follows:

Algorithm 9.1 (Updating safety factor bounds).

Input. The nonlinear programming problem (9.12)–(9.16).
Output. The solution of the problem obtained by iteratively updating the

safety factor bounds.

Step 1: Solving the optimal classic design. An optimal classic design
based on the actual safety factors, which are fixed initially to their corre-
sponding lower bounds, is done. In other words, the following problem is
solved

minimize
d̄

c (d̄, η̃) (9.26)

subject to

gi(d̄, η̃) ≥ F 0
i ; ∀i ∈ I (9.27)

h(d̄, η̃) = ψ (9.28)
rj(d̄, η̃) ≤ 0; ∀j ∈ J. (9.29)



356 9 Applications

The result of this process is a set of values of the design variables (their
means) that satisfy the safety factor constraints (9.27) and the geometric and
code ones (9.29).

Step 2: Evaluating the reliability indices βi. The actual reliability indices
βi associated with all modes of failure are evaluated, based on the design values
of Step 1, solving the problem

βi = minimize
di,ηi

n∑
k=1

z2
k(di,ηi, d̄, η̃,κ) (9.30)

subject to

zk = zk(di,ηi, d̄, η̃,κ); k = 1, 2, . . . , n (9.31)
h(di,ηi) = ψ (9.32)
gi(di,ηi) = 1. (9.33)

At this step, as many optimization problems as the number of modes of
failure are solved.

Step 3: Check convergence. If ||(β(ν)−β(ν−1))/β(ν)|| < ε, then stop. Oth-
erwise, go to Step 4.

Step 4: Updating safety factor values. The safety factors bounds are
adequately updated. To this end, the safety factors are modified using the
increments

F
(ν+1)
i = max

(
F

(ν)
i + ρ(β0

i − β(ν)), F 0
i

)
,

where ρ is a small positive constant (a relaxation factor). Next, the iteration
counter is updated ν ← ν + 1 and the process continues with Step 1.

Note that values of the actual reliability indices β
(ν+1)
i below the desired

bound levels β0
i , lead to an increase of the associated safety factor bound.

In addition, if, using this formula, any safety factor F
(ν+1)
i becomes smaller

than the associated lower bound, it is kept equal to F 0
i .

��
To perform a probabilistic design in the wall example, the joint probability

density of all variables is required. Assume for example that all the variables
involved are independent normal random variables, i.e.,

a ∼ N(ā, σa), b ∼ N(b̄, σb), k ∼ N(k̃, σk) ,

t ∼ N(t̃, σt), γ ∼ N(γ̃, σγ), h ∼ N(h̃, σh), s ∼ N(s̃, σs) ,

where ∼ indicates probability distribution, ā, b̄, k̃, t̃, γ̃, h̃, and s̃ are the mean
values and σa, σb, σk, σt, σγ , σh, and σs are the standard deviations of a, b, k, t,
γ, h, and s, respectively. The numerical values are given in Table 9.1.



9.1 The Wall Design 357

Table 9.1. Data for the wall example

Variable x

a (m) b (m) k t (kN) γ (kN/m3) h (m) s (kN/m2)

x̄ o x̃ ā b̄ 0.3 50 23 3 220

σx 0.01 0.01 0.05 15 0.46 0.2 16

Using the Rosenblatt [63] transformation, this set is transformed into a
set of standard normal random variables z1, z2, . . . , z7 by

z1 =
a − ā

σa
, z2 =

b − b̄

σb
, z3 =

k − k̃

σk
, z4 =

t − t̃

σt
,

z5 =
γ − γ̃

σγ
, z6 =

h − h̃

σh
, z7 =

s − s̃

σs
.

(9.34)
Assume that the required safety factors and reliability bounds are

F 0
o = 1.5, F 0

s = 1.6, F 0
b = 1.5, β0

o = 3, β0
s = 3, β0

b = 3 .

For these numerical data, Algorithm 7.1 in this case consists of the follow-
ing steps:

Step 0: Initialization. Let

ν = 1, F (1)
o = 1.5, F (1)

s = 1.6, F
(1)
b = 1.5 .

Step 1: Solve the classical problem.

minimize
ā, b̄

āb̄ (9.35)

subject to

ā2b̄γ̃

2h̃t̃
≥ F (ν)

o (9.36)

āb̄k̃γ̃

t̃
≥ F (ν)

s (9.37)

s̃

σmean
≥ F

(ν)
b (9.38)

b̄ = 2ā . (9.39)

Step 2: Solve the subproblems. For i = 1, 2, 3:

β
(ν)
i = minimum

a, b, k, t, γ, h, s

7∑
j=1

z2
j (9.40)



358 9 Applications

subject to constraints (9.34) and

a2bγ

2ht
= 1 (9.41)

or
abkγ

t
= 1 (9.42)

or
s

σmean
= 1 , (9.43)

depending on i = 1, 2, or 3, i.e., overturning, sliding, or foundation failures,
respectively, are considered.

Step 3: Check convergence. If ||(β(ν)−β(ν−1))/β(ν)|| < ε, then stop. Oth-
erwise, go to Step 4.

Step 4: Update safety factors. Using

F
(ν+1)
i = max

(
F

(ν)
i + ρ(β0

i − β(ν)), F 0
i

)
,

the safety factors are updated. Next, the iteration counter is updated ν ← ν+1
and the process continues with Step 1.

Using this algorithm, the results shown in Table 9.2 are obtained. The
solution is ā = 3.053 m and b̄ = 6.107 m. This table shows the progress and
convergence of the process that requires only six iterations, and where only
βs is active and Fo, Fs, Fb, βo, and βb are inactive. This is illustrated in the
last row of the table, where the active value has been boldfaced. This means
that the reliability index for sliding is more restrictive than the corresponding
safety factor.

Since the final overturning actual safety factor (4.364) and beta value
(8.877) are very high compared with the design bounds (1.5 and 3, respec-
tively), this implies that overturning is almost impossible.

Table 9.2. Illustration of the iterative process of the original algorithm

Actual bounds Actual values Actual values

ν Cost a b F 0
o F 0

s F 0
b Fo Fs Fb βo βs βb

1 11.594 2.408 4.816 1.500 1.600 1.500 2.140 1.600 1.986 3.456 1.491 6.763
2 20.332 3.189 6.377 1.500 1.600 1.500 4.970 2.806 1.500 10.132 3.245 4.508
3 18.918 3.076 6.152 1.500 1.600 1.500 4.461 2.611 1.555 9.084 3.042 4.832
4 18.672 3.056 6.112 1.500 1.600 1.500 4.374 2.577 1.565 8.900 3.005 4.890
5 18.645 3.054 6.107 1.500 1.600 1.500 4.365 2.573 1.566 8.879 3.000 4.897
6 18.642 3.053 6.107 1.500 1.600 1.500 4.364 2.573 1.566 8.877 3.000 4.897



9.1 The Wall Design 359

9.1.2 Method 2: Using Cutting Planes

The iterative method presented in Sect. 9.1.1 requires a relaxation factor ρ
that needs to be fixed by trial and error. An adequate selection leads to
a fast convergence of the process, but an inadequate selection can lead to
lack of convergence. In this section an alternative method (see Castillo et al.
[51]) is given that solves this shortcoming, and in addition exhibits a better
convergence. The method is as follows.

The problem (9.26)–(9.33) can be organized in the following steps:

Step 1: Solve the classical problem.

minimize
d̄

c(d̄, η̃) (9.44)

subject to

gi(d̄, η̃) ≥ F 0
i ; ∀i ∈ I (9.45)

β
(s)
i + λ

(s)T

i (d̄ − d̄
(s)) ≥ β0

i ; ∀i ∈ I; s = 1, 2, · · · , ν − 1 (9.46)
h(d̄, η̃) = ψ (9.47)
rj(d̄, η̃) ≤ 0; ∀j ∈ J. (9.48)

Step 2: Solve the subproblems.

β
(ν)
i = minimum

di,ηi, d̄

n∑
k=1

z2
k(di,ηi, d̄, η̃,κ) (9.49)

subject to

zk = zk(di,ηi, d̄, η̃,κ); k = 1, 2, . . . , n (9.50)
h(di,ηi) = ψ (9.51)
gi(di,ηi) = 1 (9.52)

d̄ = d̄
(ν) : λ

(ν)
i . (9.53)

Step 3: Check convergence. If ||(β(ν)−β(ν−1))/β(ν)|| < ε, then stop. Oth-
erwise, the iteration counter is updated ν ← ν + 1 and the process continues
with Step 1.

It should be noted that problem (9.44)–(9.53) is a relaxation of problem
(9.12)–(9.16) in the sense that functions β

(s)
i (·) are approximated using cut-

ting hyperplanes. Functions β
(s)
i (·) become more precisely approximated as

the iterative procedure progresses, which implies that problem (9.44)–(9.53)
reproduces more exactly problem (9.12)–(9.16) (see Kelly [45]). Observe, ad-
ditionally, that cutting hyperplanes are constructed using the dual variable



360 9 Applications

vector associated with constraint (9.53) in problems (9.49)–(9.53) (the sub-
problems). Constraints (9.53) in problems (9.49)–(9.53) fix to given values the
optimization variable vector of problem (9.44)–(9.48) (the master problem).

For the wall example, this process consists of the following steps:

Step 0: Initialization. Let

ν = 1, F (1)
o = 1.5, F (1)

s = 1.6, F
(1)
b = 1.5 .

Step 1: Solve the classical problem.

minimize
ā, b̄

āb̄ (9.54)

subject to

ā2b̄γ̃

2h̃t̃
≥ F 0

o (9.55)

āb̄k̃γ̃

t̃
≥ F 0

s (9.56)

s̃

σmean
≥ F 0

b (9.57)

β
(s)
i + λ

(s)T

i

((
a
b

)
−

(
a(s)

b(s)

))
≥ β0

i ; ∀i ∈ I; s = 1, · · · , ν − 1 (9.58)

b̄ = 2ā , (9.59)

obtaining ā(ν) and b̄(ν).

Step 2: Solve the subproblems. For i = 1, 2, 3:

β
(ν)
i = minimum

a, b, k, t, γ, h, s

7∑
j=1

z2
j (9.60)

subject to constraint (9.34),

a = ā(ν) : λ
(ν)
1i

b = b̄(ν) : λ
(ν)
2i

and
a2bγ

2ht
= 1 (9.61)

or
abkγ

t
= 1 (9.62)

or



9.2 The Bridge Crane Design 361

s

σmean
= 1 , (9.63)

depending on i = 1, 2, or 3, i.e., overturning, sliding, or foundation failures,
respectively, are considered.

Step 3: Check convergence. If ||(β(ν)−β(ν−1))/β(ν)|| < ε, then stop. Oth-
erwise, the iteration counter is updated ν ← ν + 1, and the process continues
with Step 1.

The iterative procedure leads to the results shown in Table 9.3, that pro-
vides the same information as Table 9.2 using the alternative procedure. In
this case the process converges after five iterations.

Table 9.3. Illustration of the iterative process for the alternative algorithm

Actual bounds Actual values Actual values

ν cost a b F 0
o F 0

s F 0
b Fo Fs Fb βo βs βb

1 11.594 2.408 4.816 1.500 1.600 1.500 2.140 1.600 1.986 3.456 1.491 6.763
2 17.463 2.955 5.910 1.500 1.600 1.500 3.956 2.410 1.619 7.989 2.807 5.180
3 18.603 3.050 6.100 1.500 1.600 1.500 4.350 2.567 1.568 8.848 2.994 4.906
4 18.642 3.053 6.107 1.500 1.600 1.500 4.363 2.573 1.567 8.877 3.000 4.897
5 18.642 3.053 6.107 1.500 1.600 1.500 4.363 2.573 1.567 8.877 3.000 4.897

9.2 The Bridge Crane Design

Modern industrial requirements need the application of equipment for han-
dling large, heavy, or bulky objects. That is why there are engineers special-
izing in overhead material handling: bridge cranes, hoists, and monorails.

Focussing on crane bridges, an under running overhead crane with single
girder is shown in Fig. 9.4. All its structural elements must be manufactured in
accordance with current mandatory requirements of the National Safety and
Health Act, OSHA Section 1910.179 and 1910.309 as applicable. Additionally,
all American Crane & Equipment Corporation (ACECO) cranes are manufac-
tured in accordance with the appropriate standard of the American National
Standards Institute (ANSI) specifications, the National Electric Code, and the
Crane Manufacturers Association of America (CMAA) specifications. Crane
girders are designed using structural steel beams (reinforced as necessary) or
fabricated plate box sections. Bridge girder to end truck connections are de-
signed for loadings, stresses, and stability in accordance with current CMAA
design specifications.

In this section, we apply the Engineering Design Method illustrated in
Sect. 1.5.3, p. 45, for designing an overhead crane for an industrial nave (see



362 9 Applications

L

b

bw

tw

e

Fig. 9.4. Graphical illustration of the bridge crane design and its cross section

Fig. 9.4). In particular, we calculate the bridge girder dimensions that allow
trolley traveling horizontally. It should be a box section fabricated from plate
of structural steel, for the web, top plate and bottom plate, so as to provide
for maximum strength at minimum dead weight. Maximum allowable vertical
girder deflection should be a function of span.

Consider the girder and the cross section shown in Fig. 9.4, where L is the
span or distance from centerline to centerline of runway rails, b and e are the
flange width and thickness, respectively, and hw and tw are the web height
and thickness, respectively.

The set of variables involved in this problem can be partitioned into four
subsets:

d: Optimization design variables. They are the design variables whose values
are to be chosen by the optimization program to optimize the objective
function (minimize the cost). In this crane example these variables are
(see Fig. 9.4):

d = {b, e, tw, hw} .

η: Nonoptimization design variables. They are the set of variables whose
mean or characteristic values are fixed by the engineer or the code and
must be given as data to the optimization program. In this bridge girder
example,

η = {fy, P, L, γy, E, ν, cy},
where fy is the elastic limit of structural steel, P is the maximum load
supported by the girder, L is the length of the span, γy is the steel unit
weight, E is the Young modulus of the steel, ν is the Poisson modulus,
and cy is the steel cost.

κ: Random model parameters. They are the set of parameters defining the
random variability, and dependence structure of the variables involved. In
this example,



9.2 The Bridge Crane Design 363

κ = {σfy , σP , σL, σγy} ,

where σ refers to the standard deviation of the corresponding variable.
ψ: Auxiliary or nonbasic variables. They are auxiliary variables whose values

can be obtained from the basic variables d and η, using some formulas.
In this example,

ψ = {W, Ixx, Iyy, It, G, σ, τ,Mcr, δ} ,

whose meaning is described below.

In the classical approach the safety factors are used as constraints and the
variables are assumed to be deterministic, i.e., either the mean or character-
istic (extreme percentiles) values of the variables are used.

Assume that the following four failure modes are considered (see Fig. 9.5):

1. Maximum allowed deflection. The maximum deflection safety factor Fd is
defined (see Fig. 9.5a) as

Fd =
δmax

δ
, (9.64)

where δ is the maximum deflection on the center of the girder, and δmax

is the maximum deflection allowed by codes.
2. Damage limit state of the steel upper and lower flanges. We consider the

ratio of the actual strength to actual stresses (see Fig. 9.5b) as

Fu =
fy√

σ2 + 3τ2
, (9.65)

where Fu is the corresponding safety factor, and σ and τ are the normal
and tangential stresses at the center of the beam, respectively.

L/2

δ
σ τ

M T

(a) (b)

(c) (d)

Fig. 9.5. Illustration of the bridge girder modes of failure: (a) maximum allowed
deflection, (b) damage limit state of the steel upper and lower flanges and the steel
web, (c) local buckling, and (d) global buckling



364 9 Applications

3. Damage limit state of the steel web. The bearing capacity safety factor
Fw is the ratio of the shear strength capacity to actual shear stress (see
Fig. 9.5b) at the center of the beam

Fw =
fy√
3τ

. (9.66)

4. Global buckling. The global buckling safety factor Fb is the ratio of the
critical moment against buckling (see Fig. 9.5d) of the cross section to the
maximum moment applied at the center of the beam

Fb =
Mcr

M
. (9.67)

The gilder bridge is safe if and only if Fd, Fu, Fw, and Fb ≥ 1.

9.2.1 Obtaining Relevant Constraints

In the following subsection we give full detail of how to obtain the constraints
for the gelder bridge.

Geometrical and Mechanical Properties of the Girder

The moments of inertia Ixx and Iyy are obtained as

Ixx =
1
12

[
b(hw + 2e)3 − (b − tw)h3

w

]
(9.68)

Iyy =
1
12

(
2eb3 + hwt3w

)
, (9.69)

whereas the torsional moment of inertia is obtained using

It =
1
3
(
2be3 − hwt3w

)
. (9.70)

The deflection at the center of the beam is calculated using

δ =
PL3

48EIxx
+

5WL4

384EIxx
, (9.71)

where W is the girder bridge weight per unit length

W = γs(2eb + twhw) . (9.72)

The stresses at the center of the beam are calculated considering

T = P/2 (9.73)



9.2 The Bridge Crane Design 365

M = PL/4 , (9.74)

where T and M are the shear force and moment, respectively. Thus,

σ =
M(hw + e)

2Ixx
(9.75)

τ =
T

hwtw
. (9.76)

The critical moment for global buckling is

Mcr =
π

L

√
EGIyyIt (9.77)

with the auxiliary parameter

G =
E

2(1 + ν)
.

Code and Other Requirements

The following constraints are established by the codes.
The steel thickness must satisfy

0.008 ≤ e ≤ 0.15 (9.78)
0.008 ≤ tw ≤ 0.15 , (9.79)

and the maximum deflection allowed is

δmax = L/888 .

To avoid local buckling (see Fig. 9.5c) the design satisfy the following
restriction:

b

2e
≤ 15

√
276
fy

, (9.80)

where fy is the steel strength in MPa.
The trolley is the unit which travels on the bottom flange of the bridge

girder and carries the hoist. To support the trolley the minimum flange width
is 0.30m.

9.2.2 A Numerical Example

To perform a probabilistic design in the bridge girder example, the joint prob-
ability density of all variables is required. Assume for simplicity that all the
variables involved are independent normal random variables, i.e.,

fy ∼ N(µfy , σfy), P ∼ N(µP , σP ), L ∼ N(µL, σL), γy ∼ N(µγy , σγy) .



366 9 Applications

The means are

µfy = 400 MPa, µP = 600 kN, µL = 6 m, µγy = 78.5 kN/m3
,

and the standard deviations

σfy = 251 MPa, σP = 90 kN, σL = 0.05 m, σγy = 0.785 kN/m3
.

The constant parameters are

E = 210,000 MPa, ν = 0.3, cy = 0.24 $/kN .

Assume also that the required safety factors and reliability bounds are

F 0
d = 1.15, F 0

u = 1.5, F 0
w = 1.5, F 0

b = 1.3,

and
β0

d = 1.5, β0
u = 3.7, β0

w = 3.7, β0
b = 3.2 .

Note that the “violation” of limit states with more serious consequences
are associated with higher reliability indices.

Using the Rosenblatt [63] transformation, the above set of random variab-
les is transformed into a set of standard normal random variables z1, z2, . . . , z4

by

z1 =
fy − µfy

σfy

, z2 =
P − µP

σP
, z3 =

L − µL

σL
, z4 =

γy − µγy

σγy

. (9.81)

Using the proposed method, the results shown in Table 9.4 are obtained.
This table shows the progress and convergence of the procedure that attains
the solution after seven iterations. The first column shows the values of the
design variables, and the actual safety factors and failure β-values, associ-
ated with the optimal classical design for the safety factors. Note that no
lower safety factor bound is active. Note also that the βb and βd constraints
(boldfaced in Table 9.4) are active. Then, the associated safety margins are
increased until all constraints hold.

The last column of the table shows the design values of the design variables

b, e, tw, hw,

together with the safety factors and associated β-values.
The active values appear boldfaced in Table 9.4, from which the following

conclusions can be drawn:

1. The process converges in only seven iterations.
2. The list of actual safety factors and β-reliability indices is provided.
3. No safety factor is active.
4. Due to the strict constraints imposed by the serviceability limit state con-

straint (maximum deflection) and global buckling, the probability bounds
βb and βd are active.



9.2 The Bridge Crane Design 367

Table 9.4. Illustration of the iterative process

ν Units 1 2 3 4 5 6 7

Cost(ν) ($) 2,245.0 2,243.2 2,325.6 2,354.8 2,361.2 2,362.2 2,362.3

b(ν) (cm) 41.81 30.00 36.14 39.25 40.43 40.67 40.68

e(ν) (mm) 16.78 23.65 20.44 19.13 18.64 18.54 18.53

t
(ν)
w (mm) 8.00 8.00 8.00 8.00 8.00 8.00 8.00

h
(ν)
w (cm) 72.91 70.70 72.49 72.64 72.72 72.74 72.74

F
(ν)
u − 2.23 2.17 2.30 2.33 2.33 2.34 2.34

F
(ν)
t − 4.49 4.35 4.46 4.47 4.48 4.48 4.48

F
(ν)
b − 1.30 1.30 1.42 1.47 1.48 1.49 1.49

F
(ν)
d − 1.15 1.11 1.20 1.22 1.22 1.22 1.22

β
(ν)
u − 6.014 5.795 6.235 6.342 6.370 6.375 6.375

β
(ν)
t − 10.968 10.794 10.935 10.948 10.954 10.955 10.955

β
(ν)
b − 1.980 1.980 2.761 3.106 3.186 3.199 3.200

β
(ν)
d − 1.001 0.725 1.333 1.461 1.494 1.500 1.500

Error(ν) − 0.6627 0.3815 0.4563 0.1111 0.0253 0.0041 0.0002

5. The final design (iteration 7) is more expensive than the initial design
(iteration 1), because the initial design does not satisfy the βb and βd

constraints.

The sensitivities for this bridge girder example are given in Table 9.5,
which gives the cost sensitivities associated with the optimal classical design.
It allows us to know how much a small change in a single data value changes
the total cost of the bridge girder. This information is useful during the con-
struction process to control the cost, and for analyzing how the changes in
the safety factors required by the codes influence the total cost of engineering
works. For example, a change of $1 in the unit cost cy of the steel leads to a
cost increase of $9843 (see the corresponding entry in Table 9.5). Similarly,
an increase in the safety factor lower bound Fd does not change the cost, and
an increase of one unit in the bridge span leads to an increase of the cost of
$747.

Additionally, Table 9.5 gives the sensitivities associated with the β-values.
It is useful to know how much a small change in a single data value changes
the corresponding β-value; for example, the means, standard deviations, etc.
In this table the designer can easily analyze how the quality of the material
(reduced standard deviations in fy) or precision in the applied loads (reduced
standard deviations in P ) influence the safety of the beam. Note that an
increase in the dispersion (standard deviations or coefficients of variation)
leads to a decrease of the β indices.



368 9 Applications

Table 9.5. Sensitivities

x ∂Cost/∂x ∂βu/∂x ∂βt/∂x /∂x∂βb /∂x∂βd

b − 12.851 0.000 46.864 17.717
e − 280.902 0.000 993.835 408.587
tw − 352.458 698.939 122.267 108.587
hw − 11.974 7.687 0.448 23.088

µfy 0.000 0.000 0.000 0.000 0.000
µP 1.268 −0.008 −0.005 −0.011 −0.011
µL 746.662 −0.975 0.000 −3.218 −2.722
µγy 30.125 0.000 0.000 0.000 −0.001
σfy 0.000 0.000 0.000 0.000 0.000
σP 3.312 −0.036 −0.027 −0.035 −0.016
σL 149.935 −0.303 0.000 −1.657 −0.556
σγy 0.000 0.000 0.000 0.000 0.000

E 0.000 0.000 0.000 0.000 0.000
ν 290.378 0.000 0.000 −3.730 0.000
cy 9,842.876 0.000 0.000 0.000 0.000

Fu 0.000 − − − −
Ft 0.000 − − − −
Fb 0.000 − − − −
Fd 0.000 − − − −
βu 0.000 − − − −
βt 0.000 − − − −
βb 77.858 − − − −
βd 37.611 − − − −

9.3 Network Constrained Unit Commitment

This application demonstrates the practical use of the Benders decomposition
procedure, which was explained in Chap. 3.

9.3.1 Introduction

This section addresses the problem of supplying electric energy through an
electric network during the hours of one day or one week. The sources of energy
are power plants that can be started up and shut down as needed throughout
the week. Particular emphasis is given to the modeling of the network and the
possibility of starting-up and shutting-down plants.

Specifically, this application addresses the so-called multiperiod optimal
power flow (OPF), properly modeling the start-up and shut-down of thermal
units, and the transmission network in terms of line transmission capacity
limits and line losses.



9.3 Network Constrained Unit Commitment 369

The OPF [64, 65, 66] considers a single time period (a snap shot in time)
and determines the output of every on-line power plant so that a specified
objective function is optimized. The transmission network is modeled in detail.
Generating plants are considered either online or off-line.

The unit commitment problem [67, 32, 68, 69, 70] considers a multiperiod
time horizon and determines the start-up and the shut-down schedules of
thermal plants, as well as their productions. Thermal plants are modeled
precisely, however, the transmission network is not considered.

This section addresses simultaneously the unit commitment problem and
the OPF problem. This results in what is called a multiperiod OPF.

References [69, 71, 72, 73] address, with different levels of detail, the mul-
tiperiod OPF using Lagrangian relaxation. In this section the Benders decom-
position [24, 25, 26] is used to solve this multiperiod problem. The Benders
decomposition is a natural way to decompose the problem because the binary
variable decisions are decoupled from continuous variable decisions. The mas-
ter problem of this decomposition scheme fixes the start-up and shut-down
schedules of thermal units, while the Benders subproblem solves a multiperiod
OPF. The subproblem sends to the master problem marginal information on
the “goodness” of the proposed start-up and shut-down schedule, which allows
the master problem to suggest an improved start-up and shut-down schedule.
The procedure continues until some cost tolerance is met.

The Benders decomposition shows good convergence properties for this
application, being typically low the number of iterations required to attain
convergence.

Readily available solution data provided by the model include power out-
put and production cost per generator and time period.

Detailed numerical simulation results and other technical details can be
found in [74].

9.3.2 Notation

The notation used is stated below.

Constants.
Aj : start-up cost of power plant j in $

Bnp: subsceptance (constructive parameter) of line np in 1/Ω
Cnp: transmission capacity limit of line np in MW
Dnk: load demand at node n during period k in MW

Ej(tjk): nonlinear function representing the operating cost of power plant j
as a function of its power output in period k in $/MWh

Fj : fixed cost of power plant j in $/h
Knp: loss constant (conductance) of line np in 1/Ω
Rk: security (spinning reserve) requirement during period k in MW

Rnp: resistance of line np in Ω
Tmax

j : maximum power output of thermal plant j in MW



370 9 Applications

Tmin
j : minimum power output of thermal plant j in MW

T : number of time periods
Xnp: reactance of line np in Ω.

Variables.
tjk: power output of plant j in period k in MW
vjk: binary variable which is equal to 1 when plant j is committed in period

k
V

(ν)
jk : constant values of variables vjk fixed by The Benders master problem

at iteration ν
yjk: binary variable which is equal to 1 when plant j is started up at the

beginning of period k
z(ν): total operating cost at iteration ν
α(ν): continuous variable which approximates operating costs in the Ben-

ders master problem at iteration ν in $
δnk: angle of node n in period k in radians
λ

(ν)
jk : dual variables provided by the subproblem which are associated to the

decisions of fixing variables vjk at constant values
φnk: locational marginal price of node n in period k in $/MWh.

Sets.
J : set of indices of all thermal plants
K: set of period indices
N : set of indices of all nodes
Λn: set of indices of the power plants at node n
Ωn: set of indices of nodes connected and adjacent to node n
Υ : set of iteration indices.

9.3.3 Problem Formulation

The multiperiod OPF problem is stated below,

minimize
vjk, yjk, tjk; k ∈ K, j ∈ J

∑
k∈K

∑
j∈J

[Fjvjk + Ajyjk + Ej(tjk)] (9.82)

subject to∑
j∈Λn

tjk +
∑

p∈Ωn

[Bnp(δpk − δnk) − Knp(1 − cos(δpk − δnk))]

= Dnk : φnk; ∀n ∈ N ,∀k ∈ K (9.83)

∑
j∈J

Tmax
j vjk ≥

∑
n∈N

Dnk + Rk; ∀k ∈ K (9.84)



9.3 Network Constrained Unit Commitment 371

Tmin
j vjk ≤ tjk ≤ Tmax

j vjk; ∀j ∈ J ,∀k ∈ K (9.85)

−Cnp ≤ Bnp(δpk − δnk) ≤ Cnp; ∀n ∈ N ,∀p ∈ Ωn,∀k ∈ K (9.86)

yjk ≥ vjk − vj,k−1; ∀j ∈ J ,∀k ∈ K (9.87)
vjk, yjk ∈ {0, 1}; ∀j ∈ J ,∀k ∈ K . (9.88)

Variables φnk are the dual variables associated with constraints (9.83).
These dual variables are denominated locational marginal prices. Variable
φnk provides the marginal cost of supplying one additional megawatt hour
during period k in bus (location) n.

The objective function (9.82) includes fixed cost, start-up cost, and oper-
ating cost.

A power balance constraint is written per node and period, as stated in
(9.83). The first term is the summation of energies injected in the node by
production plants, and the second term is the summation of the energies
reaching the node through lines connected to it. Within this second term, the
subtracting block corresponds to energy losses. The right-hand side term is
the demand at the node.

A security (spinning reserve) constraint per period is written, (9.84). For
every period, it states that online power should excess demand by a pre-
specified margin.

Plant power output is limited above and below as stated in (9.85).
Transmission capacity limits of lines are stated in (9.86).
The two sets of (9.87) and (9.88) preserve the logic of running, start-up,

and shut-down (e.g., a running plant cannot be started-up).
It should be noted that minimum up- and down-time constraints are not

considered. However, they can be easily incorporated in the formulation as
additional linear constraints.

9.3.4 Solution Approach

The multiperiod OPF problem formulated in the preceding section is a large-
scale mixed-integer nonlinear optimization problem.

This problem is solved using the Benders decomposition method [24, 25].
This technique decomposes the original problem into a 0/1 mixed-integer lin-
ear master problem and a nonlinear subproblem. The subproblem is a multi-
period OPF with the 0/1 variables fixed to given values. The master problem
determines the running, start-up, and shut-down schedule of the plants. For
the schedule fixed by the master problem, the Benders subproblem determines
total operating cost, properly enforcing transmission capacity limits and tak-
ing into account line losses.

The solutions of the subproblem provide marginal information on the good-
ness of the scheduling decisions made at the master problem. This information
enables the master problem to propose a refined running, start-up, and shut-
down schedule. This iterative procedure continues until some cost tolerance
is met.



372 9 Applications

Subproblem

The subproblem is a multiperiod operation problem that is continuous and in
which the on-line power plants are specified. Its objective is to minimize cost
while supplying the demand and using solely the plants that are on-line. This
subproblem at iteration ν is formulated below.

minimize
tjk; j ∈ J , k ∈ K

z(ν) =
∑
k∈K

∑
j∈J

Ej(tjk) (9.89)

subject to ∑
j∈Λn

tjk +
∑

p∈Ωn

[Bnp(δpk − δnk) − Knp(1 − cos(δpk − δnk))]

= Dnk; ∀n ∈ N , ∀k ∈ K (9.90)

Tmin
j vjk ≤ tjk ≤ Tmax

j vjk; ∀j ∈ J , ∀k ∈ K (9.91)

−Cnp ≤ Bnp(δpk − δnk) ≤ Cnp; ∀n ∈ N , ∀p ∈ Ωn,∀k ∈ K (9.92)

vjk = V
(ν−1)
jk : λ

(ν)
jk ; ∀j ∈ J , ∀k ∈ K . (9.93)

The above subproblem formulation is similar to the original problem for-
mulation once the 0/1 variables are fixed to given values. Therefore the de-
scription of equations is not repeated below.

The last block of constraints (9.93), which enforces the running, start-
up, and shut-down schedule, fixed in the master problem, deserves special
mention. The dual variables λ

(ν)
jk associated with this block of constraints

provide the master problem with relevant dual information to improve the
current schedule.

Master Problem

The multiperiod master problem allows us to decide which plants are online
and which ones are off-line throughout the considered multiperiod decision
horizon. This master problem is formulated below.

minimize
α(ν), vjk, yjk; j ∈ J , k ∈ K

α(ν) +
∑
k∈K

∑
j∈J

[Fjvjk + Ajyjk] (9.94)

subject to

α(ν) ≥ z(ν) +
∑
k∈K

∑
j∈J

λ
(ν)
jk [vjk − V

(ν)
jk ]; ∀ν ∈ Υ (9.95)

yjk ≥ vjk − vj,k−1; ∀j ∈ J , ∀k ∈ K (9.96)



9.3 Network Constrained Unit Commitment 373

vjk, yjk ∈ {0, 1}; ∀j ∈ J , ∀k ∈ K (9.97)∑
j∈J

Tmax
j vjk ≥

∑
n∈N

Dnk + Rk; ∀k ∈ K (9.98)

∑
j∈J

Tmin
j vjk ≤

∑
n∈N

Dnk; ∀k ∈ K . (9.99)

The objective function (9.94) includes an underestimate of total operating
costs in all periods (variable α), fixed costs, and start-up costs.

The constraints (9.95) are the Benders cuts. These cuts provide a lower
estimate of total operating costs in the Benders subproblem (as a function of
the scheduling variables which are the variables of the master problem). An
additional cut is added in every iteration.

The two sets of (9.96) and (9.97), as in the original problem, enforce the
logic of running, start-up, and shut-down of the power plants.

Equations (9.98) and (9.99) are called feasibility cuts and force the master
problem to generate solutions that satisfy the load and reserve requirements.
These constraints enforce the feasibility of the subproblem.

It should be noted that the only real variable in the above problem is α(ν),
all other variables are binary integer.

Stopping Criterion

The iterative Benders procedure stops if the operating cost computed through
the master problem and the operating cost computed through the subproblem
are close enough, i.e., if the equation below holds

|α(ν) − z(ν)|
|z(ν)| ≤ ε , (9.100)

where ε is a per unit cost tolerance.
Convergence behavior is appropiate as the total operating costs over all

periods as a function of the scheduling variables (the optimization variables of
the master problem) is a nonincreasing function. This is so because the larger
the number of committed units is, the lower the total variable operating costs
are over all periods.

Iterative Algorithm

In summary, the iterative Benders algorithm is described below.

Step 1 : Solve the initial or current master problem.
Step 2 : Update scheduling binary variables.
Step 3 : Solve the subproblems.
Step 4 : If the stopping criterion is met, stop; otherwise formulate a new

Benders cut, add it to the master problem and go to Step 1.



374 9 Applications

9.4 Production Costing

This application expands the motivating Example in Sect. 1.3.4 in p. 23, and
demonstrates the practical use of the Dantzig-Wolfe decomposition technique,
which is explained in Chap. 2.

9.4.1 Introduction

The production costing problem consists of supplying a set of energy de-
mands, expressed through power versus time curves, using production plants.
This problem is multiperiod, i.e., an energy demand curve exists for every
time period of the production medium- or long-term planning horizon. Pro-
duction plants are related through intraperiod constraints within a given time
period and through interperiod constraints across time periods. Each produc-
tion plant is characterized by its production cost and its links with other pro-
duction plants. The load curve in every period can be modeling using a prob-
abilistic description, and analogously, plants unavailabilities can be described
using probabilistic models. However, for the sake of clarity, no probability de-
scription is used in this application, although its inclusion is straightforward.

Production cost models [75, 76, 77] are widely used tools to estimate elec-
tric energy productions and costs in a long- or medium-term horizon. A typical
time horizon is a year divided in monthly or weekly periods. The load in every
period is modeled using a load duration curve, as can be seen in Fig. 1.6, p. 23.
The load duration curve expresses the percentage of the load that is equal or
exceed a fixed power value. Section 1.3.4 in p. 23 illustrates the basic blocks
that constitute a production cost model.

To perform energy and cost calculations, plants are ordered from lower
to higher operating cost. This order is referred to as merit order. This merit
or loading order is used to load plants at maximum capacity (see Sect. 1.3.4
in p. 23). This plant loading rule is enough to carry out a production cost
calculation so that total production costs are minimized. However, this rule
holds only if neither intra- nor inter-period constraints, denominated dispatch
constraints, are taken into account. The merit order is illustrated in Fig. 1.7,
p. 24.

Dispatch constraints are of two types: intraperiod constraints, i.e., con-
straints that couple together decisions within a given period, and interperiod
dispatch constraints, i.e., constraints that couple together decisions across
time periods. Intraperiod constraints include among others those involved in:
(i) energy storage plants, (ii) multiple block plants, and (iii) limited energy
plants. Interperiod constraints include the ones involved in: (i) emission caps
over multiple plants and (ii) complex cascaded hydroelectric plants. Interpe-
riod constraints are particularly useful to model dispatch restrictions of the
cascaded hydroelectric power plants of a complex river system.



9.4 Production Costing 375

For the formulation below, it should be noted that the unserved energy in
a time period is the energy not supplied once a given set of production plants
is loaded in the considered time period but not the remaining plants.

This section addresses a multiperiod production cost model including both
intraperiod and interperiod constraints.

The work described in this section, originally proposed in [9], is built upon
the facet LP formulation presented in [6]. Detailed numerical simulations and
other technical details can be found in [9].

9.4.2 Notation

The notation used is stated below.

Indices.
i: plant index
j: intraperiod constraint index

m: interperiod constraint index
k: time period index
s: index for the initial solutions
l: iteration index
ν: current iteration index.

Sets.
Ω: set of plants

Ψk
0 : set of initial solutions of the subproblem associated with period k

Ξk
ν : set of positive reduced cost solutions of the subproblem associated

with period k from iteration 1 to iteration ν − 1
∅: the empty set.

Numbers.
I: number of plants

Jk: number of intraperiod constraints in period k
M : number of interperiod constraints
K: number of periods.

Variables.
ek

i : energy produced by plant i in period k in MWh
uk

l : dimensionless weighting factor for the solution of the subproblem as-
sociated with period k at iteration l

ek
il: energy produced by plant i in the subproblem associated with period

k at iteration l in MWh
z: objective function of the original problem in $

zν : objective function of the master problem at iteration ν in $
zk

ν : objective function of the subproblem associated with period k at iter-
ation ν in $.



376 9 Applications

Marginal values.
dk

l : reduced costs of the subproblem of period k at iteration l
λmν : marginal value of the interperiod constraint m at iteration ν
µk

jν : marginal value of the intraperiod constraint j of period k at iteration
ν

σk
ν : marginal value of the convexity constraint for period k at iteration ν.

Constants.
Ci: running cost of plant i in $/MWh

Dk
mi: coefficient of variable ek

i in the interperiod constraint m in per unit; it
relates the production of plant i with the productions of other plants
across time periods

Ak
ij : coefficient of variable ek

i in the intraperiod constraint j of period k
in per unit; it relates the production of plant i with the productions
of other plants within period k

Fm: right-hand side of the interperiod constraint m in MWh
Bk

j : right-hand side of the intraperiod constraint j of period k in MWh
W k(Ω): unserved energy after loading plants of set Ω in period k in MWh

P k
l : cost of the subproblem associated with period k at iteration l in $

Qk
ml: contribution to the right-hand side of the interperiod constraint m

of solution l of the subproblem associated with period k in MWh
Rk

jl: contribution to the right-hand side of the intraperiod constraint j of
solution l of the subproblem related to period k in MWh .

9.4.3 Problem Formulation

The multiperiod production cost model including dispatch constraints is for-
mulated below.

minimize
ek

i ;∀i,∀k
z =

K∑
k=1

I∑
i=1

Cie
k
i (9.101)

subject to

K∑
k=1

I∑
i=1

Dk
mie

k
i = Fm; m = 1, . . . , M (9.102)

I∑
i=1

Ak
ije

k
i = Bk

j ; j = 1, . . . , Jk, k = 1, . . . , K (9.103)∑
i∈Ω

ek
i ≤ W k(∅) − W k(Ω); ∀Ω ⊂ {1, . . . , I}, k = 1, . . . , K (9.104)

I∑
i=1

ek
i = W k(∅); k = 1, . . . , K (9.105)

ek
i ≥ 0; i = 1, . . . , I, k = 1, . . . , K . (9.106)



9.4 Production Costing 377

Decision variables are the energies produced by every plant in every period.
The objective function in (9.101) represents generation costs over plants

and periods.
The block of (9.102) represents interperiod linear constraints, i.e., con-

straints that couple together the production of a set of plants over different
time periods. These constraints are particularly useful to model hydro system
constraints. They allow the optimal allocation of hydro generation among
periods.

The block of (9.103) represents intraperiod linear constraints, i.e., con-
straints that couple together the production of a set of plants within a given
time period. These constraints are used to model environmental and different
types of dispatch constraints.

Equations (9.104) and (9.105) are the facet constraints [6] used to express
the merit order loading rule as a linear programming problem (See Sect. 1.3.4
in p. 23).

Finally, constraints (9.106) enforce the positiveness of energy values.
It should be noted that W k(Ω) is the unserved energy value of period k

after loading the plants in set Ω.
An example of the formulation (9.101)–(9.106) is (1.34)–(1.35), stated in

Sect. 1.3.4, p. 27. Note the way in which the unserved energy value W k(Ω) is
calculated.

This problem cannot be solved directly. The number of constraints grows
exponentially with the number of plants and, for systems of realistic sizes, it
reaches extremely high values. A 12-period case study including 100 generating
plants requires 12 × (2(100+1) − 1) = 3.04 × 1031 facet constraints. Therefore,
this problem has to be addressed using a decomposition procedure.

9.4.4 Solution Approach

Blocks of constraints (9.102) and (9.103) are the complicating constraints, as
they couple together the productions of the plants across time periods and
within any time period. They make problem (9.101)–(9.106) hard to solve.
If these blocks of constraints are ignored, the resulting problem decomposes
by time period, and every subproblem attains such a structure that it can be
solved in a straightforward manner by direct application of the aforementioned
merit order rule.

The Dantzig-Wolfe decomposition technique was developed to efficiently
solve problems with the structure of problem (9.101)–(9.106). Through the
Dantzig-Wolfe decomposition procedure the original problem is reformulated
becoming the so-called master problem. In this master problem complicat-
ing constraints are explicitly considered, while the remaining constraints are
implicitly considered. The master problem typically has a low number of con-
straints but a high number of variables. The variables (columns) to add to the
master problem at every iteration are determined through the solution of the
subproblems. Every subproblem is associated with a time period and includes



378 9 Applications

only noncomplicating constraints. Therefore, the solution of every subproblem
is independently obtained by straightforward application of the merit order
rule.

The Master Problem

The master problem carries out a convex combination of subproblem solutions
with the objective to meet complicating constraints while achieving minimum
cost. The solution of the master problem provides marginal cost signals to
be used by the subproblems to implicitly take into account the complicating
constraints. The master problem at iteration ν has the form

minimize
uk

s , uk
l ;∀s,∀l,∀k

zν =
K∑

k=1

⎛⎝ ∑
s∈Ψk

0

P k
s uk

s +
∑
l∈Ξk

ν

P k
l uk

l

⎞⎠ (9.107)

subject to

K∑
k=1

⎛⎝ ∑
s∈Ψk

0

Qk
msu

k
s +

∑
l∈Ξk

ν

Qk
mlu

k
l

⎞⎠= Fm : λmν ; m = 1, . . . , M (9.108)

∑
s∈Ψk

0

Rk
jsu

k
s+

∑
l∈Ξk

ν

Rk
jlu

k
l =Bk

j :µk
jν ; j = 1, . . . , Jk, k = 1, . . . , K (9.109)

∑
s∈Ψk

0

uk
s +

∑
l∈Ξk

ν

uk
l = 1 : σk

ν ; k = 1, . . . , K (9.110)

uk
l ≥ 0 ; l = 1, . . . , ν − 1, k = 1, . . . , K (9.111)

uk
s ≥ 0 ; s ∈ Ψk

0 , k = 1, . . . , K, (9.112)

where

Ξk
ν =

{
l ∈ {1, 2, . . . , ν − 1} : dk

l > 0
}

; k = 1, . . . , K (9.113)

is the set of positive reduced cost solutions of the subproblem associated with
period k from iteration 1 to iteration ν − 1,

dk
l = σk

l − zk
l (9.114)

are reduced costs,

P k
l =

I∑
i=1

Cie
k
il (9.115)

is the contribution to the total cost of solution l of the subproblem associated
with period k,

Qk
ml =

I∑
i=1

Dk
mie

k
il (9.116)



9.4 Production Costing 379

is the contribution to the right-hand side of the interperiod constraint m of
solution l of the subproblem associated with period k, and

Rk
jl =

I∑
i=1

Ak
ije

k
il (9.117)

is the contribution to the right-hand side of the intraperiod constraint j of
solution l of the subproblem associated with period k.

The variables of the master problem are the weighting factors for the
solutions of the subproblems. The objective function (9.107) is a convex com-
bination of the available subproblem solutions. Equations (9.108) enforce in-
terperiod constraints while (9.109) enforce intraperiod constraints. Equations
(9.110)–(9.112) enforce convex combination conditions for every period.

It should be noted that the master problem above is a small size linear
programming problem whose number of constraints is constant and equal to
the number of complicating constraints plus one convexity constraint for each
period, and whose variable number grows with the number of iterations.

The Subproblems

Each subproblem represents the production cost problem corresponding to a
single time period. The effect on intra- and interperiod constraints is taken
into account through a modified objective function.

The subproblem at iteration ν, associated with period k has the following
form:

minimize
ek

iν ;∀i
zk

ν =
I∑

i=1

⎛⎝Ci −
M∑

m=1

λmνDk
mi −

Jk∑
j=1

µk
jνAk

ij

⎞⎠ ek
iν (9.118)

subject to ∑
i∈Ω

ek
iν ≤ W k(∅) − W k(Ω); ∀Ω ⊂ {1, . . . I} (9.119)

I∑
i=1

ek
iν = W k(∅) (9.120)

ek
iν ≥ 0; i = 1, . . . , I . (9.121)

The variables of the subproblems are the energies produced by every plant.
The cost associated with every variable in the objective function consists of
three terms: (i) running cost, (ii) cost incurred for contributing to meet inter-
period constraints, and (iii) cost incurred for contributing to meet intraperiod
constraints.

It should be noted that the number of subproblems at iteration ν is equal
to the number of periods K. It should also be noted that the subproblems are
solved independently.



380 9 Applications

The optimal solution of every subproblem is obtained from a merit order
criterion that is independent of the number of facet constraints.

Units affected by active dispatch constraints are forced to change their
location in the load duration curve and to lie in the position determined by
their respective equivalent costs. The equivalent cost of one unit in one period
is the cost coefficient of that unit in the objective function of the subproblem
associated with that period. The equivalent cost depends on the unit running
cost, the dual value of any active dispatch (complicating) constraint and the
linear coefficient of that unit in the (complicating) dispatch constraint.

Iterative Procedure

The solution at iteration ν of subproblem k is a useful solution if it has
a positive reduced cost, i.e., if σk

ν − zk
ν is positive. Any useful subproblem

solution can be incorporated into the master problem as a new variable to
improve the current master problem solution [5].

At iteration ν the master problem carries out a convex combination of the
useful subproblem solutions of the first ν − 1 iterations with the objective to
meet complicating constraints while achieving the minimum cost. The solution
of the master problem provides cost signals (λs and µs) to be used by the
subproblems to implicitly take into account the complicating constraints.

Once every plant production cost has been updated using master problem
price signals, the subproblems are solved independently. The solutions of the
subproblems provide the master problem with information on the usage of the
“resources” (right-hand sides) associated with the complicating constraints.

The master problem and the subproblems are solved iteratively until no
useful subproblem solution is found, i.e., until no master problem variable
with positive reduced cost exists.

Once the iterative procedure is completed, energy values of plants in every
period are computed as

ek
i =

∑
s∈Ψk

0

ek
isu

k
s +

∑
l∈Ξk

ν

ek
ilu

k
l ; i = 1, . . . , I, k = 1, . . . , K . (9.122)

It should be noted that the convergence and robustness of the above pro-
cedure are guaranteed because all subproblems are bounded [5].

Iterative Algorithm

In summary, the iterative Dantzig-Wolfe algorithm is stated below.

Step 1: Solve an initial master problem.
Step 1: Solve independently the subproblems that incorporate the price sig-

nals from the master problem.
Step 1: Solve an updated master problem that incorporates the useful solu-

tions of the last subproblems.



9.5 Hydrothermal Coordination 381

Step 1: If the stopping criterion is met, stop; otherwise continue with
Step 2.

9.5 Hydrothermal Coordination

This application demonstrates the practical use of the Lagrangian relaxation
(LR) technique that is explained in Chap. 5.

9.5.1 Introduction

The objective of the hydrothermal coordination problem is to serve the de-
mand for electricity at minimum cost throughout a short-term multiperiod
horizon, typically one week hour by hour. Available production plants include
thermal ones, and hydroelectric plants embedded in river systems. Thermal
plants can be both started-up and shut-down as needed. More specifically,
this problem is solved to determine the start-up and shut-down schedule of
thermal plants, as well as the power output of thermal and hydro plants dur-
ing a short-term planning horizon. The objective is to meet customer demand
with appropriate levels of security (measured through the so-called spinning
reserve) so that total operating costs are minimized.

This is a large-scale mixed-integer nonlinear problem. As recognized in the
technical literature, the Lagrangian Relaxation (LR) technique considered in
Chap. 5 is the most appropriate procedure to solve this problem [78, 69, 79,
32].

The LR procedure decomposes the original problem in one subproblem
per thermal plant and one subproblem per hydroelectric system.

Instead of solving the original problem, the LR technique solves its dual
problem. As a spinoff of the solution of the dual problem a solution for the
primal problem is obtained. However, more often than not, this primal solution
is slightly infeasible. Heuristic procedures are required to get a feasible primal
solution. Finally, plants should be dispatched to supply exactly the demand.
Therefore, the LR technique consists of the three phases below:

Phase 1. To solve the dual problem.
Phase 2. To obtain a primal feasible solution.
Phase 3. To exactly dispatch committed generation to meet the demand.

Phase 1 requires the solution of a nondifferentiable maximization problem,
and the most commonly used technique to address this phase is the subgra-
dient technique [67, 79, 32]. However, the technique used in this application
is a cutting plane method as explained in Sect. 5.3.4 of Chap. 5.

Phase 2 is easily accomplished using a subgradient algorithm as described
in Chap. 5.

Phase 3 is a multiperiod economic dispatch, whose solution is well stated
in the technical literature [80].



382 9 Applications

Detailed numerical simulation results and additional technical information
for the hydrothermal coordination problem can be found in [81].

9.5.2 Notation

The notation used in this application is stated below:

Variables.
xi: variable vector related to thermal plant i
yj : variable vector related to the hydroelectric system j

(x,y): vector defined as (xi,yj ; ∀i,∀j)
d(λ,µ): solution of the decomposed primal problem.

Functions.
f(x): total cost

f i(xi): cost related to thermal plant i
gi(xi): inequality constraint vector related to thermal plant i of dimension

equal to the number of subperiods in the planning horizon; it repre-
sents the contribution of thermal plant i to meet security constraints

gj(yj): inequality constraint vector related to hydroelectric system j of di-
mension equal to the number of subperiods in the planning horizon; it
represents the contribution of hydroelectric system j to meet security
constraints

hi(xi): equality constraint vector related to thermal plant i of dimension
equal to the number of subperiods in the planning horizon; it rep-
resents the contribution of thermal plant i to satisfy demand con-
straints

hi(yj): equality constraint vector related to hydroelectric system j of dimen-
sion equal to the number of subperiods in the planning horizon; it
represents the contribution of hydroelectric system j to satisfy de-
mand constraints

si(xj): constraints pertaining to thermal plant i
sj(xj): constraints pertaining to hydroelectric system j.

Constants.
G: vector of dimension equal to the number of subperiods in the planning

horizon, related to inequality constraint; it represents the right-hand
side of the security constraints

H: vector of dimension equal to the number of subperiods in the planning
horizon, related to equality constraints; it represents the right-hand
side of the demand constraints.

Dual variables.
λ: dual vector of dimension equal to the number of subperiods in the

planning horizon; it is related to demand supply constraints



9.5 Hydrothermal Coordination 383

µ: dual vector of dimension equal to the number of subperiods in the
planning horizon; it is related to security constraints

θ: vector defined as (λ,µ).

9.5.3 Problem Formulation

Formulation

The short-term hydrothermal coordination problem can be formulated as fol-
lows:

minimize
x,y

f(x) =
∑

i

fi(xi) (9.123)

subject to

si(xi) ≤ 0; ∀i (9.124)
sj(yj) ≤ 0; ∀j (9.125)

g(x,y) = G −
∑

i

gi(xi) −
∑

j

gj(yj) ≤ 0 (9.126)

h(x,y) = H −
∑

i

hi(xi) −
∑

j

hj(yj) = 0. (9.127)

Equation (9.123) is the production cost to be minimized. Note that this
equation depends solely of thermal plant variables, because there is no signif-
icant cost associated to produce with hydroelectric plants. Equation (9.124)
are the constraints related to every thermal unit, (9.125) are the constraints
related to every hydroelectric system, (9.126) enforces spinning reserve con-
straints, and (9.127) enforces demand constraints. It should be noted that
time is embedded in the above formulation.

Equations (9.126) and (9.127) are global constraints which couple together
thermal-related and hydro-related variables.

Problem (9.123)–(9.127) is denominated the primal problem (PP).
Global constraints are incorporated in the objective function of the primal

problem through Lagrange multipliers to obtain the Lagrangian function:

L(x,y,λ,µ) =
∑

i

fi(xi) + λT

⎡⎣H −
∑

i

hi(xi) −
∑

j

hj(yj)

⎤⎦
+µT

⎡⎣G −
∑

i

gi(xi) −
∑

j

gj(yj)

⎤⎦ . (9.128)

The dual problem (DP) of the original primal problem (9.123)–(9.127) has
the form

maximize
λ,µ

φ(λ,µ) (9.129)



384 9 Applications

subject to
µ ≥ 0 , (9.130)

where
φ(θ) = φ(λ,µ) = λT H + µT G + d(λ,µ), (9.131)

where θ = (λ,µ), and d(λ,µ) is the solution of the decomposed primal prob-
lem (DPP) stated below

minimize
x,y

∑
i

[
fi(xi)−λT hi(xi)−µT gi(xi)

]
−
∑

j

[
λT hj(yj)+µT gj(yj)

]
(9.132)

subject to

si(xi) ≤ 0; ∀i (9.133)
sj(yj) ≤ 0; ∀j. (9.134)

The above problem decomposes in one subproblem per thermal unit and
one subproblem per hydroelectric system.

The subproblem associated with thermal unit i is

minimize
xi

fi(xi) − λT hi(xi) − µT gi(xi) (9.135)

subject to

si(xi) ≤ 0 , (9.136)

and the subproblem associated with hydroelectric system j is

minimize
yj

λT hj(yj) + µT gj(yj) (9.137)

subject to

sj(yj) ≤ 0. (9.138)

9.5.4 Solution Approach

Iterative Algorithm

The LR procedure to solve the dual problem works as follows:

Step 1: Initialize multiplier vector θ = (λ,µ).
Step 2: Solve the decomposed primal problem by solving 1 subproblem per

thermal plant (9.135)–(9.136) and 1 subproblem per hydroelectric system
(9.137)–(9.138).

Step 3: Update the multiplier vector using any of the procedures stated in
Chap. 5.

Step 4: If the convergence criterion is satisfied, stop. Otherwise continue with
Step 2. Convergence criteria depend on the multiplier updating procedure
and are explained in Chap. 5.



9.6 Multiarea Optimal Power Flow 385

Duality Gap

If the dual problem is solved using a piecewise linear reconstruction of the dual
function, the objective function value of the current linearly reconstructed
dual problem constitutes an upper bound of the optimal dual cost value. On
the other hand, the objective function value of the dual problem (evaluated
through the decomposed primal problem) provides at every iteration a lower
bound of the optimal dual cost value. This can be mathematically stated as
follows:

z(ν) ≥ φ∗ ≥ φ(ν) , (9.139)

where z(ν) is the objective function value of the linear reconstruction of the
dual problem at iteration ν, φ∗ is the optimal dual cost value, and φ(ν) =
λ(ν)T H + µ(ν)T G + d(λ(ν),µ(ν)) is the objective function value of the dual
problem at iteration ν.

The size of the per unit gap g(ν) = (z(ν) −φ(ν))/φ(ν) is an appropriate per
unit cost criterion to stop the search for the dual optimum.

9.6 Multiarea Optimal Power Flow

This application demonstrates the practical use of the optimality condition
decomposition technique that is explained in Sect. 5.5, p. 210.

9.6.1 Introduction

The objective of this problem is to determine the energy generated by pro-
duction plants to supply the demand for electricity while minimizing the total
production cost in a single time period. These production plants are located in
an electric network that is composed by several areas that are interconnected
by tie-lines. It is required to enforce the constraints imposed by the electric
network and to determine the flows of energy through lines, and particularly
through tie-lines.

The optimality condition decomposition is applied to a multiarea optimal
power flow (OPF) problem in the context of an electric energy system that
spans several interconnected areas. It is often desirable to preserve the auton-
omy of each area in these systems. A decentralized operation can be preserved
while still attaining overall optimality by applying decomposition techniques
to a centralized operation problem.

The multiarea OPF problem is an important problem for the secure and
economic operation of an interconnected power system. The multiarea OPF
determines, in a precise way, the active and reactive power that each genera-
tion unit in the system must generate. This is done to ensure that all demand
and security constraints for the system are satisfied at a minimal cost for all
interconnected areas. The resulting multiarea OPF problem is a large-scale
optimization problem [80].



386 9 Applications

The decomposition procedure used allows the company in each area to
operate its system independently of the other areas, while obtaining an op-
timally coordinated but decentralized solution. A central agent in the model
is necessary to collect and distribute information for the whole system. This
agent ensures the coordination of the global system and therefore, the pro-
posed methodology is appropriate for an Independent System Operator (ISO)
in charge of the technical operation of an electric energy system.

Detailed numerical simulations and further technical details of the multi-
area OPF problem can be found in [82].

9.6.2 Notation

The notation used in the model is state below:

Numbers.
A: total number of areas
B: total number of nodes
G: total number of generators
L: total number of transmission lines.

Sets.
Λj : set of indices of generators in node j
Ωj : set of indices of nodes connected to node j
Θ: set of indices of transmission lines.

Constants.
Yjk: element jk of the admittance magnitude matrix in 1/Ω (network con-

structive data)
δjk: element jk of the admittance phase matrix in radians (network con-

structive data)
Pmax

Gi
: maximum active power production capacity of generator i in MW

Pmin
Gi

: minimum active power production capacity of generator i in MW
Qmax

Gi
: maximum reactive power production capacity of generator i in MVAr

Qmin
Gi

: minimum reactive power production capacity of generator i in MVAr
V max

j : maximum voltage magnitude in node j in per unit V
V min

j : minimum voltage magnitude in node j in per unit V
PDj

: active power demand in node j in MW
QDj

: reactive power demand in node j in MVAr
Smax

jk : maximum transmission capacity of line jk in MVA.

Variables.
pGi

: active power produced by generator i in MW
qGi

: reactive power produced by generator i in MVAr
vj voltage magnitude in node j in per unit V



9.6 Multiarea Optimal Power Flow 387

θj : voltage phase in node j in radians
pG: vector of produced active powers
qG: vector of produced reactive powers
v: voltage magnitude vector
θ: voltage phase vector.

9.6.3 Problem Formulation

The multiarea OPF model can be formulated as

minimize
pG, qG,v,θ

f(pG, qG,v,θ) (9.140)

subject to

aj(pG,v,θ) = 0; j = 1, . . . , B (9.141)
rj(qG,v,θ) = 0; j = 1, . . . , B (9.142)

tj(v,θ) ≤ 0; j = 1, . . . , L (9.143)
Pmin

Gi
≤ pGi

≤ Pmax
Gi

; i = 1, . . . , G (9.144)

Qmin
Gi

≤ qGi
≤ Qmax

Gi
; i = 1, . . . , G (9.145)

V min
j ≤ vj ≤ V max

j ; j = 1, . . . , B (9.146)
−π ≤ θj ≤ π; j = 1, . . . , B . (9.147)

Function (9.140) is the objective function that typically represents pro-
duction cost.

The power flow equations are included in the model as constraints (9.141)–
(9.142). There are two equations for each node of the global system, repre-
senting the active and reactive power balance in each node,∑

i∈Λa
j

pa
Gi

− P a
Dj

= va
j

∑
k∈Ωa

j

Y a
jk va

k cos(θa
j − θa

k − δa
jk); j = 1, . . . , Na (9.148)

∑
i∈Λa

j

qa
Gi

−Qa
Dj

= va
j

∑
k∈Ωa

j

Y a
jk va

k sin(θa
j − θa

k − δa
jk); j = 1, . . . , Na (9.149)

where a = 1, . . . , A, and the superscripts a indicate the area for each constant
and variable.

Constraints (9.143) are the transmission capacity limits for each line of
the global system,(

va
j va

k Y a
jk cos(θa

j − θa
k − δa

jk)
)2 +

(
va

j va
k Y a

jk sin(θa
j − θa

k − δa
jk)

)2 ≤
(Smax

jk )2; (j, k) ∈ Θa, a = 1, . . . , A . (9.150)

Constraints (9.144)–(9.147) represent technical limits over variables.
Model (9.140)–(9.147) can be written in compact form as



388 9 Applications

minimize
xa

A∑
a=1

fa(xa) (9.151)

subject to

ha(x1, . . . ,xA) ≤ 0; a = 1, . . . , A (9.152)
ga(xa) ≤ 0; a = 1, . . . , A, (9.153)

where xa are the state variables for each area a of the global system that
contain node voltage magnitudes and node phase angles. Equations (9.152)
represent the power flow equations and transmission capacity limits (9.148)–
(9.150) for those lines and nodes interconnecting different areas. Constraints
(9.153) include the power flow equations and transmission capacity limits
(9.148)–(9.150), only for those lines and nodes lying within a given area, and
limits over dependent and control variables (9.144)–(9.147). It should be noted
that the sets of (9.152) and (9.153) represent both equality and inequality
constraints.

The multiarea OPF model (9.151)–(9.153) is a large-scale optimization
problem. Equations (9.152) are the complicating constraints. These equations
contain variables from different areas and prevent each system from operating
independently from the others. If these equations are removed from problem
(9.151)–(9.153), the resulting problem can be trivially decomposed into one
subproblem for each area.

The complicating constraints (9.152) include the power balance equations
at the interconnecting nodes of area a (the nodes in area a connected to
nodes in areas b different than area a). Also, the transmission capacity limits
for the interconnecting lines of the global system are complicating constraints.
It should be noted that the only variables appearing in the complicating con-
straints are those corresponding to the interconnecting nodes of the global
system.

Equation (9.153) contain only variables belonging to area a for a =
1, . . . , A. These constraints represent balance equations, transmission limits,
and technical constraints for area a.

The proposed decomposition is as follows. Problem (9.151)–(9.153) is
equivalent to the problem below

minimize
xa; a = 1, . . . , A

A∑
a=1

fa(xa) +
A∑

a=1

λT
a ha(x1, . . . ,xA) (9.154)

subject to

ha(x1, . . . ,xA) ≤ 0; a = 1, . . . , A (9.155)
ga(xa) ≤ 0; a = 1, . . . , A . (9.156)

Given trial values to all variables and multipliers (indicated by overlining)
different than those in area a, problem (9.154)–(9.156) reduces to



9.7 Sensitivity in Regression Models 389

minimize
xa

k + fa(xa) +
A∑

b=1,b �=a

λ
T

b hb(x1, . . . ,xa−1,xa,xa+1, . . . ,xA)

(9.157)

ha(x1, . . . ,xa−1,xa,xa+1, . . . ,xA) ≤ 0 (9.158)
ga(xa) ≤ 0 , (9.159)

where k =
A∑

b=1,b �=a

fb(xb) is a constant.

The dual variable vector corresponding to constraint (9.158) is denoted by
λa.

The reduced problem (9.157)–(9.159) can be obtained for every area. The
proposed decomposition technique is actually based on the solutions of these
reduced area problems, as stated in Chap. 5.

9.6.4 Solution Approach

An outline of the optimality condition decomposition algorithm is as follows:

Step 1: Each area initializes its variables and parameters.
Step 2: Each area carries out one iteration for its corresponding subproblem

and obtains search directions.
Step 3: Each area updates its variables and parameters.

The central agent distributes updated information of border nodes and
lines.

Step 4: The algorithm stops if variables do not change significantly in two
consecutive iterations. Otherwise, it continues with Step 2.

9.7 Sensitivity in Regression Models

In this application we develop a sensitivity analysis associated with the stan-
dard linear regression model

yi = α + βxi + εi , (9.160)

where yi, xi : i = 1, 2, . . . , n are the values of the response and predictor
variables, respectively, α and β are the regression coefficients or parameters,
and εi : i = 1, 2, . . . , n are the values of the random errors.

In the Minimax regression problem (MM), the maximum of the distances
between observed and predicted values is minimized, i.e.,

minimize
α,β,ε

ZMM = ε (9.161)



390 9 Applications

Table 9.6. Data set

i xi yi

1 0.99624 1.88400
2 0.15747 1.03862
3 0.98227 1.68746
4 0.52450 1.24458
5 −0.73862 0.33268
6 0.27944 1.54415
7 −0.68096 0.10369
8 −0.49984 0.63275
9 0.33786 1.55854
10 −0.12929 0.71364

subject to

yi − α − βxi ≤ ε, i = 1, . . . , n (9.162)
α + βxi − yi ≤ ε, i = 1, . . . , n , (9.163)

where we note that the usual extra constraint ε ≥ 0 is not required because
it is implied by (9.162) and (9.163).

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

1

2

3

4

5

6

7

8

9

10

ε

ε

x

y

Fig. 9.6. Data set, fitted MM regression line, and error lines (dotted)



9.7 Sensitivity in Regression Models 391

Assume that we have the data in Table 9.6. Then, the resulting MM regres-
sion model leads to the regression line shown in Fig. 9.6, where two parallel
dashed lines have been added at distances ±ε above and below such a line.
One important property of these two lines is that they pass through two and
one data point, and that these are the points giving the maximum distance to
the MM regression line. These three points (4, 6, and 7) are shown in Fig. 9.6.

Since (9.162) and (9.163) cannot simultaneously hold for the same i, unless
ε = 0, the Minimax problem (9.161)–(9.163), assuming a nondegenerated case,
i.e., a case in which ε �= 0, is equivalent to the problem

minimize
α,β,ε

ZMM = ε (9.164)

subject to

yi − α − βxi = ε : λ
(1)
i , i ∈ I1 , (9.165)

α + βxi − yi = ε : λ
(2)
i , i ∈ I2 , (9.166)

where I1 and I2 are disjoint subsets of {1, 2, . . . , n}, such that |I1| + |I2| ≥ 3.
In this section we assume that the solution of the nonlinear MM regression
problem (9.161)–(9.163) is regular and nondegenerate. Then, |I1| + |I2| = 3
and ε > 0.

The set I1 contains the data points above the MM regression line at dis-
tance ε from that line. Similarly, the set I2 contains the data points below the
MM regression line at distance ε from that line. In the example of Fig. 9.6 the
set I1 contains one point and the set I2 contains two points, but in other cases
the reverse can occur. For the sake of simplicity, only this case is discussed:

|I1| = {(xr, yr)}; |I2| = {(xs, ys), (xt, yt)} .

Note that these points correspond to the points 6, 4, and 7, respectively,
in the numerical example.

Then, problem (9.164)–(9.166) becomes

minimize
α,β,ε

ZMM = ε (9.167)

subject to

yr − α − βxr = ε : λr (9.168)
α + βxs − ys = ε : λs (9.169)
α + βxt − yt = ε : λt, (9.170)

where (9.168)–(9.170) can be written in matrix form as⎛⎝−1 −xr −1
1 xs −1
1 xt −1

⎞⎠⎛⎝α
β
ε

⎞⎠ =

⎛⎝−yr

ys

yt

⎞⎠ , (9.171)



392 9 Applications

and then we have⎛⎝ α̂
β̂
ε̂

⎞⎠ =

⎛⎝−1 −xr −1
1 xs −1
1 xt −1

⎞⎠−1 ⎛⎝−yr

ys

yt

⎞⎠ (9.172)

=

⎛⎜⎜⎜⎝
−1

2
xr + xt

2xt − 2xs

xr + xs

2xs − 2xt

0 1
xs−xt

1
xt+xs

−1
2

xr − xt

2xt − 2xs

xr − xs

2xs − 2xt

⎞⎟⎟⎟⎠
⎛⎝−yr

ys

yt

⎞⎠ (9.173)

=

⎛⎜⎜⎜⎜⎜⎝
yr

2
+

(xr + xt) ys

2xt − 2xs
+

(xr + xs) yt

2xs − 2xt
ys − yt

xs − xt
yr

2
+

(xr − xt) ys

2xt − 2xs
+

(xr − xs) yt

2xs − 2xt

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎝ 1.01393
0.94643
0.26575

⎞⎠ , (9.174)

which are closed formulas for the parameter estimates and the optimal objec-
tive function value, and the corresponding numerical values for our example.

The dual variables in the numerical example are

λr = 0.5, λs = 0.39835, λt = 0.10165 .

Finally, using the sensitivity formulas for the linear programming case
(8.110), one gets⎛⎜⎜⎜⎜⎜⎝

∂α

∂xr

∂α

∂xs

∂α

∂xt
∂β

∂xr

∂β

∂xs

∂β

∂xt
∂ε

∂xr

∂ε

∂xs

∂ε

∂xt

⎞⎟⎟⎟⎟⎟⎠ = β

⎛⎜⎜⎜⎜⎝
−1

2
xr + xt

2xs − 2xt

xr + xs

2xt − 2xs

0
1

xt − xs

1
xs − xt

−1
2

xr − xt

2xs − 2xt

xs − xr

2xs − 2xt

⎞⎟⎟⎟⎟⎠

=
(

ys − yt

xs − xt

)⎛⎜⎜⎜⎜⎝
−1

2
xr + xt

2xs − 2xt

xr + xs

2xt − 2xs

0
1

xt − xs

1
xs − xt

−1
2

xr − xt

2xs − 2xt

xs − xr

2xs − 2xt

⎞⎟⎟⎟⎟⎠

=

⎛⎝−0.473217 −0.157621 −0.315596
0 −0.785123 0.785123

−0.473217 0.377016 0.0962011

⎞⎠
and



9.7 Sensitivity in Regression Models 393⎛⎜⎜⎜⎜⎜⎝
∂α

∂yr

∂α

∂ys

∂α

∂yt
∂β

∂yr

∂β

∂ys

∂β

∂yt
∂ε

∂yr

∂ε

∂ys

∂ε

∂yt

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
2

xr + xt

2xt − 2xs
− xr + xs

2xt − 2xs

0
1

xs − xt

1
xt − xs

1
2

xr − xt

2xt − 2xs

xs − xr

2xt − 2xs

⎞⎟⎟⎟⎟⎠

=

⎛⎝ 0.5 0.166542 0.333458
0 0.829559 −0.829559

0.5 −0.398354 −0.101646

⎞⎠ ,

which are closed formulas for the sensitivities of all the primal variables with
respect to the data points, and the corresponding values for our numerical
example.

Note that the sensitivity
∂ε

∂yr
is not −λr but λr due to the minus sign

preceding yr in (9.171).



Part V

Computer Codes



A

Some GAMS Implementations

A.1 GAMS Implementation
of the Dantzig-Wolfe Decomposition Algorithm

A GAMS general implementation of the Dantzig-Wolfe decomposition algo-
rithm is given below. The aim of this code is simply to clarify how the algo-
rithm works. Note that the code is not optimized because it solves each of
the linear programming problems from scratch, without using the previous
results.

* This program solves linear programming problems with complicating
* constraints using the Dantzig-Wolfe decomposition.
* It is considered the Computational Example 1.2.
$title dw1_2

* A file to keep the results of the problem is declared.
* The internal file name is ’out1’ and it refers to
* an external file named ’dw1_2.out’.
file out1/dw1_2.out/; put out1;

* First, single scalar data are declared and defined.
SCALARS

IP number of available solutions of the relaxed problem
ncomp number of complicating constraints /4/
sigma normalized constraint dual variable value in master problem
ninitsol number of initial basic solutions of the relaxed problem /2/
objectf objective function value of the relaxed problem /0/
lowerB original problem lower bound of the objective function /1E+08/
upperB original problem upper bound of the objective function /-1E+08/
new to control new basic solution
MMM master problem large enough positive penalizing constant /20/
err to control error
toler tolerance /0.0001/
step steps of the algorithm /0/;

* Now, indices are declared and defined.
SETS

N number of variables /1*2/
P maximum number of feasible solutions of the relaxed problem /1*10/
K number of subproblems of the relaxed problem /1*2/
M number of constraints including complicating constraints /1*6/

* Complicating constraints are the ’ncomp’ last constraints
NN(N) subset of variables



398 A Some GAMS Implementations

MM(M) subset of constraints
COUNT(P) counter of calculated solutions of the relaxed problem;

* Initialize this counter to the number of initial solutions
COUNT(P)$(ord(P) le ninitsol)=yes;

* Vectors of data are defined as parameters.
PARAMETER

Z(P) optimal value of the objective function for solution P
R(M,P) value of the complicating constraint M for solution P
XX(N,P) value of the basic solution P of the relaxed problem

* The parameters LV and UV indicate which variables belong to
* each subproblem of the relaxed problem.

LV(K) first variable in subproblem K /1 1, 2 2/
UV(K) last variable in subproblem K /1 1, 2 2/

* The parameters LC and UC indicate which constraints belong to
* each subproblem of the relaxed problem.

LC(K) first constraint in subproblem K /1 1, 2 2/
UC(K) last constraint in subproblem K /1 1, 2 2/
C(N) cost coefficients of the original objective function /1 2, 2 1/
B(M) known terms of each constraint /1 5, 2 5, 3 9, 4 4, 5 -2, 6 -3/
C1(N) cost coefficients for each subproblem of the relaxed problem
lambda(M) values of dual variables associated with each master problem...
...constraint without considering the normalized constraint;

* Initialize the value of the each solution of the relaxed problem.
XX(N,P)=0;

* The data matrices are defined as a table.
TABLE E(M,N) constraints coefficients including complicating constraints

1 2
1 1
2 1
3 1 1
4 1 -1
5 -1 -1
6 -3 -1
TABLE CC(P,N) cost coefficients (relaxed problem)

1 2
1 -1 -1
2 -2 1;

VARIABLES z1 objective function variable of each problem solved;

POSITIVE VARIABLES
U(P) variables of the master problem
X(N) variables of the relaxed problem
W(M) artificial variable to avoid infeasibility in master problem
W1 artificial variable to avoid infeasibility in master problem;

* Initialize the value of the solutions of the relaxed problem.
X.l(N)=1;

EQUATIONS
* Equations are declared.

zglobaldef original objective function equation
subproblemdef objective function equation of the subproblems constraints
constraints equations of the original problem

* or the relaxed problem depending of the subset MM
zmasterdef objective function of the master problem
masterc(M) constraint equations of the master problem
normalize normalized equation of the master problem;

* Once the equations have been declared, they need to be defined.
* The following sentences formulate the above declared equations.

zglobaldef..z1=e=sum(NN,C(NN)*X(NN));
subproblemdef..z1=e=sum(NN,C1(NN)*X(NN));
constraints(MM)..sum(NN,E(MM,NN)*X(NN))=l=B(MM);
zmasterdef..z1=e=sum(COUNT,Z(COUNT)*U(COUNT))+MMM*(sum(MM,W(MM))+W1);



A.1 Dantzig-Wolfe Algorithm 399

masterc(MM)..sum(COUNT,R(MM,COUNT)*U(COUNT))+W(MM)-W1=l=B(MM);
normalize..sum(COUNT,U(COUNT))=e=1;

* The next sentences name each model and list its constraints.
* The model ’global’ represents the original problem.
* The model ’subprob’ represents a subproblem of the relaxed problem.
* The model ’master’ represents the master problem.
MODEL global/zglobaldef,constraints/;
MODEL subprob/subproblemdef,constraints/;
MODEL master/zmasterdef,masterc,normalize/;

*** The GLOBAL SOLUTION of the problem is calculated ***
put "starts the global solution"/;

* All variables and constraints are considered in original problem.
NN(N)=yes; MM(M)=yes;

* The next sentence directs GAMS to solve the global model using
* a linear programming solver (lp) to minimize the objective.
SOLVE global USING lp MINIMIZING z1;

* Next sentences write the results in the external file. Omit this
* part of the program if you are only interested in the algorithm.
* The values of the objective function of the original problem,
* the model status and the solver status are shown.
put "z1=",z1.l:12:8," mdst=",global.modelstat,", svst=",global.solvestat//;
put "Global solution"/; put "---------------"/;
* The value of the variables is shown.
loop(N,put X.l(N):8:4," ";); put ""/;

*** The solution is calculated using the DANTZIG-WOLFE DECOMPOSITION ***
put "***%***%***%***%***%***%***%***%***%***%***%***%*"/;
put "Starts the Dantzig-Wolfe decomposition technique"/;

** INITIALIZATION
* Initialize the number of available solutions of the relaxed problem.
IP=0;
* The initial solutions of the relaxed problem are calculated.
loop(COUNT,
* To obtain the initial solution, each subproblem is solved.

loop(K,
* In each subproblem, the associated variables are assigned by subset NN.
* The same is done with the constraints, which are assigned by subset MM.

NN(N)=no; NN(N)$((ord(N) ge LV(K)) and (ord(N) le UV(K)))=yes;
MM(M)=no; MM(M)$((ord(M) ge LC(K)) and (ord(M) le UC(K)))=yes;

* The cost coefficients for each subproblem are assigned.
C1(NN)=CC(COUNT,NN);

* Next sentences write the results in the external file.
* This part of the program can be omitted.

put "***%***%***%***%***%***%***%***%***%***%***%***%*"/;
put "Subproblem ",(IP+1):2," in block ",K.tl:2," is solved minimizing"/;

* The cost coefficients of the subproblems are shown.
loop(NN,put C1(NN):5:2," ";);put ""/; put "and constraints:"/;

* The coefficients of the subproblem constraints are shown.
loop(MM,loop(NN,put E(MM,NN):5:2," ");put " <=",B(MM):5:2/;);

* The next sentence directs GAMS to solve the the subprob model using a
* linear programming solver (lp) to minimize the objective.

SOLVE subprob USING lp MINIMIZING z1;

* Next sentences write the results in the external file. Omit this
* part of the program if you are only interested in the algorithm.
* The objective function values of the subproblem, the model status
* and the solver status are shown.

put "z1=",z1.l:12:8," mdst=",global.modelstat,",svst=",global.solvestat//;
put "with solution"/;



400 A Some GAMS Implementations

* The variables values of the subproblem are shown.
loop(NN,put X.l(NN):8:1," ";);put ""/; );

* Checks if the obtained solution already exists.
* Initialize err.

err=1;
* the counter for identifying new solutions is initialized.

new=0;
* The new solution is compared with existing solutions.

loop(P$(ord(P) le IP),
* err measures the difference between actual and calculated solutions
* solution P already available.

err=sum(N,abs(XX(N,P)-X.l(N)));
* If err is bigger than a tolerance, then the actual solution is new.

if(err>toler,new=new+1);
);

if(new=IP,
* If the actual solution is new, it steps forward and added to the list.

step=step+1; IP=IP+1; XX(N,P)$(ord(P) = IP)=X.l(N);
* The objective function value is calculated for the new solution.

Z(P)$(ord(P) = IP)=sum(N,C(N)*X.l(N));
* The complicating constraints values are calculated for the new solution.

loop(M$(ord(M)>card(M)-ncomp),
R(M,P)$(ord(P)=IP)=sum(N,E(M,N)*X.l(N));

);
else

* If the solution calculated isn’t new, it is rejected.
put "THIS SOLUTION ALREADY EXISTS"/;

);
);

* The maximum value of the counter is the number of available solutions.
COUNT(P)=no; COUNT(P)$(ord(P)le IP)=yes;

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The variable values of each initial solution are shown.

put "Values of X"/; put "-----------"/;
loop(COUNT,

loop(N,put XX(N,COUNT):8:1;);put""/;
);

* The objective function values of each initial solution are shown.
put "Values of Z"/; put "-----------"/;
loop(COUNT,put Z(COUNT):8:1/;);

* The complicating constraints values for each initial solution are shown.
put "Values of R"/; put "-----------"/;
loop(COUNT,

loop(M$(ord(M)>card(M)-ncomp),put R(M,COUNT):8:1;); put""/;
);

* The master problem and the relaxed problem are solved while
* the objective function value of the relaxed problem is smaller than
* the dual variable value of the normalized constraint in the
* master problem.
sigma=objectf+1;
while(objectf<sigma,

** MASTER PROBLEM
put "MASTER PROBLEM"/;

* The original problem constraints are the complicating constraints.
MM(M)=no; MM(M)$(ord(M) > card(M)-ncomp)=yes;

* Next sentences write the results in the external file.
* You can omit this part of the program.

put "***%***%***%***%***%***%***%***%***%***%***%***%*"/;
put "Master problem is solved with objective function "/;



A.1 Dantzig-Wolfe Algorithm 401

* The cost coefficients of the master problem are shown.
loop(COUNT,put Z(COUNT):9:3," ";);put ""/;
put "with normalizing constraint and constraints:"/;

* The coefficients of the constraints of the master problem are shown.
loop(MM,loop(COUNT,put R(MM,COUNT):5:2," ");put " <= ",B(MM):5:2/;);

* The next sentence directs GAMS to solve the master model using a
* linear programming solver (lp) to minimize the objective.

SOLVE master USING lp MINIMIZING z1;
* The original problem objective function upper bound is the
* objective function value of the master problem.

upperB=z1.l;

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The value of the upper bound is shown.

put "UPPER BOUND=",upperB/;
* The objective function value, the model, and the solver status are shown.

put "z1=",z1.l:12:8," mdst=",master.modelstat,", svst=",master.solvestat//;
put "with solution"/;

* The variable values of the master problem are shown.
loop(COUNT,put U.l(COUNT):8:1, " ";);put " W: ";

* The artificial variable values of the master problem are shown.
loop(MM,put W.l(MM):8:1," ";);put " W1: ",W1.l:8:1/;

* The lambda value is the marginal value of each complicating constraint.
lambda(MM)=masterc.m(MM);

* The sigma value is the marginal value of the normalized constraint.
sigma=normalize.m;

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The values of lambda and sigma are shown.

put "values of lambda"/; loop(MM,put lambda(MM):8:1," ");put ""/;
put "and sigma"/; put sigma:8:1/;

** RELAXED PROBLEM
put "RELAXED PROBLEM"/;

* The cost coefficients for each subproblem are assigned.
C1(N)=C(N)-sum(MM,lambda(MM)*E(MM,N));

* The relaxed problem solution is obtained solving the subproblems.
loop(K,

* In each subproblem, the associated variables are assigned by subset NN.
* The same is done with the constraints, which are assigned by subset MM.

NN(N)=no; NN(N)$((ord(N) ge LV(K)) and (ord(N) le UV(K)))=yes;
MM(M)=no; MM(M)$((ord(M) ge LC(K)) and (ord(M) le UC(K)))=yes;

* Next sentences write the results in the external file.
* You can omit this part of the program.

put "***%***%***%***%***%***%***%***%***%***%***%***%*"/;
put "Subproblem ",IP:2," in block ",K.tl:2," is solved minimizing"/;

* The cost coefficients of the subproblems are shown.
loop(NN,put C1(NN):5:2," ";);put ""/; put "and constraints:"/;

* The coefficients of the subproblem constraints are shown.
loop(MM,loop(NN,put E(MM,NN):5:2," ");put " <= ",B(MM):5:2/;);

* The next sentence directs GAMS to solve the subprob model using a
* linear programming solver (lp) to minimize the objective function.

SOLVE subprob USING lp MINIMIZING z1;

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The objective function values of the subproblem, the model status
* and the solver status are shown.

put "z1=",z1.l:12:8," mdst=",global.modelstat,", svst=",global.solvestat//;
put "Generating new solution", IP," Block ",K.tl:2/;



402 A Some GAMS Implementations

put "-----------------"/;
* The subproblem variable values are shown.

loop(NN,put X.l(NN):8:1;);put ""/;
);

* The optimal objective function lower bound of the problem is calculated.
lowerB=sum(N,C1(N)*X.l(N))+sum(M$(ord(M)>card(M)-ncomp),lambda(M)*B(M));

* The objective function of the relaxed problem is calculated.
objectf=sum(N,C1(N)*X.l(N));

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The lowerB and objectf values are shown.

put "LOWER BOUND=",lowerB/; put "objectf=",objectf/;

* Once, the relaxed problem solution (the solution of all subproblems)
* is obtained, it checks if a new solution has been obtained
* Initialize err.

err=1;
* the counter for identifying new solutions is initialized.

new=0;
* The new solution is compared with existing solutions.

loop(P$(ord(P) le IP),
* err measures the difference between actual and calculated solutions

err=sum(N,abs(XX(N,P)-X.l(N)));
* If err is bigger than the tolerance, then the actual solution is new.

if(err>toler,new=new+1);
);
if(new=IP,

* If the actual solution is new, it steps forward and added to the list.
step=step+1; IP=IP+1;
COUNT(P)$(ord(P) eq IP)=yes; XX(N,P)$(ord(P)= IP)=X.l(N);

* The objective function value is calculated for the new solution.
Z(P)$(ord(P) = IP)=sum(N,C(N)*X.l(N));

* The complicating constraints values are calculated for the new solution.
loop(M$(ord(M)>card(M)-ncomp),

R(M,P)$(ord(P) =IP)=sum(N,E(M,N)*X.l(N));
);

else
* If the solution calculated isn’t new, it is rejected.

put "THIS SOLUTION ALREADY EXISTS"/;
);

);
* Next sentences write the results in the external file.
* You can omit this part of the program.
* The variable values of each initial solution are shown.
put "Values of X"/; put "-----------"/;
loop(COUNT, loop(N,put XX(N,COUNT):8:1;); put""/;);
* The objective function values of each initial solution are shown.
put "Values of Z"/; put "-----------"/;
loop(COUNT,put Z(COUNT):8:1/;);
* The complicating constraints values for each initial solution are shown.
put "Values of R"/; put "-----------"/;
loop(COUNT,

loop(M$(ord(M)>card(M)-ncomp),put R(M,COUNT):8:1;);
put""/;

);

* The optimal value of the variables of the master problem is shown.
put "values of U"/; put "------------"/;
loop(COUNT,put U.l(COUNT):8:1, " ";);put""/; put "SOLUTION:\\"/;
* The optimal objective function value of the original problem is shown.
put "z=",(sum(P$(ord(P) <= IP),U.l(P)*Z(P))):8:1;
* The optimal variable values of the original problem are shown.
loop(N, put (sum(P$(ord(P) <= IP),U.l(P)*XX(N,P))):8:1," "; );
put ""/; put "-------------------- END -------------------"/;



A.2 Benders Decomposition Algorithm 403

A.2 GAMS Implementation
of the Benders Decomposition Algorithm

A GAMS implementation of the Benders decomposition algorithm is given
below. The aim of this code is simply to clarify how the algorithm works. Note
that the code is not optimized because it solves each of the linear programming
problems from scratch, without using the previous results.

* This program solves linear programming problems with complicating
* variables using the Benders decomposition.
* We consider the computational example 1.7.
$title b1_7

* We define a file to store the results of the problem.
* The internal file name is ’out1’ and it is referred to as external
* name ’b1_7.out’.
file out1/b1_7.out/; put out1;

* First, single scalar data are declared and defined.
SCALARS

IP counter of iterations
ncomp number of complicating variables /1/
ncmast number of constraints of the master original problem /1/
toler tolerance to control convergence of the algorithm /1E-8/
lowerB lower bound of the original problem objective function /-1E+08/
upperB upper bound of the original problem objective function /1E+08/
alphadown lower bound of alpha /-25/
MMM large enough positive constant to penalize the artificial variables...
....value of the subproblems /20/;

* Indices are declared and defined.
SETS

N number of variables including complicating variables /1*2/
K number of subproblems /1*1/
M number of constraints /1*5/

* The master problem constraints are the ’ncmast’ last constraints
NN(N) subset of variables
NNC(N) subset of complicating variables
MM(M) subset of constraints
P maximum number of solutions of the master problem /1*15/
COUNT(P) number of calculated feasible solutions of the master problem;

* The complicating variables are the ’ncomp’ last variables.
NNC(N)=no; NNC(N)$(ord(N) gt card(N)-ncomp)=yes;

* Initialize the counter of solutions of the master problem.
COUNT(P)=no;

* Vectors of data are defined as parameters.
PARAMETER
* LV and UV store which variables belong to each subproblem.

LV(K) first variable in subproblem K /1 1/
UV(K) last variable in subproblem K /1 1/

* LC and UC store which constraints belong to each subproblem.
LC(K) first constraint in subproblem K /1 1/
UC(K) last constraint in subproblem K /1 4/
C(N) cost coefficients of the original objective function /1 -1, 2 -0.25/
B(M) known terms of each constraint /1 5, 2 7.5, 3 17.5, 4 10, 5 16/
OBJSUB(P) objective function value of the subproblem
lambda(P,N) value of the dual variables associated with the constraints...
...that fix the value of the complicating variables in the subproblem
XC_fix(P,N) value of the complicating variables of the solution P;

* The data matrices are defined as a table.
TABLE E(M,N) coefficients of the constraints

1 2



404 A Some GAMS Implementations

1 1 -1
2 1 -0.5
3 1 0.5
4 -1 1
5 1;

VARIABLES
alpha variable alpha of the master problem
z1 objective function variable of each problem solved;

POSITIVE VARIABLES
X(N) variables of the subproblems to avoid infeasibility
W(M) artificial variable used in the subproblems to avoid infeasibility
W1 artificial variable used in the subproblems to avoid infeasibility;

EQUATIONS
* Equations are declared.

zglobaldef original objective function equation constraints
constraints equations of the original or the master problem
subproblemdef objective function equation of each subproblem
subproblemc constraint equations of each subproblem
frozenc frozing constraint of the complicating variables
zmasterdef objective function of the master problem
benders_cut Benders’ cut constraint
lowerb_alpha lower bound constraint of alpha;

* Once the equations have been declared, they need to be defined.
* The following sentences formulate the above declared equations.
zglobaldef..z1=e=sum(NN,C(NN)*X(NN));
constraints(MM)..sum(NN,E(MM,NN)*X(NN))=l=B(MM);
subproblemdef..z1=e=sum(NN,C(NN)*X(NN))+MMM*(sum(MM,W(MM))+W1);
subproblemc(MM)..sum(N,E(MM,N)*X(N))+W(MM)-W1=l=B(MM);
frozenc(COUNT,NNC)..X(NNC)=e=XC_fix(COUNT,NNC);
zmasterdef..z1=e=sum(NN,C(NN)*X(NN))+alpha;
benders_cut(COUNT)..alpha=g=OBJSUB(COUNT)

+sum(NN,lambda(COUNT,NN)*(X(NN)-XC_fix(COUNT,NN)));
lowerb_alpha..alpha=g=alphadown;

* The next sentences name each model and list its constraints.
* The first model ’global’ represents the original problem.
* The second mode ’subprob’ represents a subproblem.
* The third model ’master’ represents the master problem.
MODEL global/zglobaldef,constraints/;
MODEL subprob/subproblemdef,subproblemc,frozenc/;
MODEL master/zmasterdef,constraints,benders_cut,lowerb_alpha/;

*** The GLOBAL SOLUTION of the problem is calculated ***
put "starts the global solution"/;

* The original problem contains all variables and constraints.
NN(N)=yes; MM(M)=yes;

* The next sentence directs GAMS to solve the global model using
* a linear programming solver (lp) to minimize the objective.
SOLVE global USING lp MINIMIZING z1;

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The values of the objective function of the original problem,
* the model status, and the solver status are shown.
put "z1=",z1.l:12:8," mst= ",global.modelstat,", sst= ",global.solvestat//;
put "Global solution"/; put "---------------"/;
* The value of the variables is shown.
loop(N,put X.l(N):8:4," ";); put ""/;

*** The problem is solved using the BENDERS DECOMPOSITION ***
put "***%***%***%***%***%***%***%***%***%***%***%***%*"/;



A.2 Benders Decomposition Algorithm 405

put "Starts the Benders decomposition technique"/;

* Initialize the counter of iteration.
IP=0;

* The master problem and the subproblem or subproblems are solved
* while the objective function upper bound is bigger than its lower bound.
while((upperB-lowerB)>toler,
* Increase the counter of iterations.

IP=IP+1;

** MASTER PROBLEM
* The variables considered are the ’ncomp’ last variables.

NN(N)=no; NN(N)$(ord(N) gt card(N)-ncomp)=yes;
* The original problem constraints are the ’ncmast’ last constraints.

MM(M)=no; MM(M)$(ord(M) gt card(M)-ncmast)=yes;
* In the first iteration there is not Benders’ cuts (Initialization)

if (IP=1,
lambda(COUNT,NN)=0; XC_fix(COUNT,NN)=0; OBJSUB(COUNT(P))=alphadown;

* Next sentences write the results in the external file.
* You can omit this part of the program.

put "***%***%***%***%***%***%***%***%***%***%***%***%*"/; put
"Initialization is solved with objective function "/;
* The cost coefficients of the master problem are shown.

loop(NN,put C(NN):9:3," ";);put "+ alpha";put ""/;
put "with constraints:"/;

* The constraints coefficients of the master problem are printed.
loop(MM,loop(NN,put E(MM,NN):5:2," ");put " <= ",B(MM):6:2/;);
put "alpha >=",alphadown/;

* In the rest of the iterations Benders’ cut constraints appear.
else

* Next sentences write the results in the external file.
* You can omit this part of the program.

put "***%***%***%***%***%***%***%***%***%***%***%***%*"/; put
"Master problem is solved with objective function "/;
* The cost coefficients of the master problem are shown.

loop(NN,put C(NN):9:3," ";);put "+ alpha";put ""/;
put "with constraints:"/;

* The constraints coefficients of the master problem are shown.
loop(MM,loop(NN,put E(MM,NN):5:2," ");put " <= ",B(MM):6:2/;);
put "alpha >=",alphadown/;
loop(COUNT,

put "alpha >=",OBJSUB(COUNT):8:2," ";
loop(NN,put lambda(COUNT,NN):10:2;);put ""/;);

);

* The next sentence directs GAMS to solve the master model using
* a linear programming solver (lp) to minimize the objective function.

SOLVE master USING lp MINIMIZING z1;
* The counter of solutions only shows the actual solution.

COUNT(P)=no; COUNT(P)$(ord(P)eq IP)=yes;
* The values of the master problem complicating variables are stored.

XC_fix(COUNT,NN)=X.l(NN);
* The lower bound of the optimal objective function of the original
* problem is the objective function value of the master problem.

lowerB=z1.l;

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The value of the lower bound is shown.

put "LOWER BOUND=",lowerB/;
* The values of the objective function of the master problem,
* the model status, and the solver status are shown.

put "z1=",z1.l:12:8," mst= ",master.modelstat,", sst= ",master.solvestat//;



406 A Some GAMS Implementations

put "with solution"/;
* The values of the variables of the master problem are shown.

loop(NN,put X.l(NN):8:1, " "/;);
* The value of alpha is shown.

put "value of alpha "/; put alpha.l:8/;

** SUBPROBLEM
* Initialize the subproblem objective function value and the lambda value
* If there are several subproblems, the final objective function value
* of the subproblem is the sum of the subproblem objective function values.
* The lambda final value is the sum of the subproblem lambdas.

OBJSUB(COUNT)=0; lambda(COUNT,NN)=0;
* The subproblem or subproblems are solved.

loop(K,
* For each subproblem, the associated variables are assigned (subset NN).
* The same with the constraints that are assigned to the subset MM.

NN(N)=no; NN(N)$((ord(N) ge LV(K)) and (ord(N) le UV(K)))=yes;
MM(M)=no; MM(M)$((ord(M) ge LC(K)) and (ord(M) le UC(K)))=yes;

* Next sentences write the results in the external file.
* You can omit this part of the program.

put "***%***%***%***%***%***%***%***%***%***%***%***%*"/;
put "Subproblem ",IP:2," in block ",K.tl:2," is solved minimizing"/;

* The cost coefficients of the subproblem considered are shown.
loop(NN,put C(NN):5:2," ";);put ""/; put "and constraints:"/;

* The subproblem constraints coefficients are shown.
loop(MM,

loop(NN,put E(MM,NN):5:2;);
loop(NNC,put E(MM,NNC):10:2, " ");
put " <= ",B(MM):6:2/;

);

* The next sentence directs GAMS to solve the subprob model
* using a linear programming solver (lp) to minimize the objective function.

SOLVE subprob USING lp MINIMIZING z1;
* The value of the objective function of the subproblem is assigned.

OBJSUB(COUNT)=OBJSUB(COUNT)+z1.l;
* Assign lambda value (marginal value of the frozen subproblem constraints).

lambda(COUNT,NNC)=lambda(COUNT,NNC)+frozenc.m(COUNT,NNC);

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The values of the objective function of the subproblem considered,
* the model status, and the solver status are shown.

put "z1=",z1.l:12:8," mst= ",global.modelstat,", sst= ",global.solvestat//;
put "with solution in block ",K.tl:2/; put "-----------------"/;

* The values of the variables of the subproblem solved are shown.
loop(NN,put X.l(NN):8:1, " ";);put " W: ";

* The values of the artificial variables of the subproblem are shown.
loop(MM,put W.l(MM):8:1," ";);put " W1: ",W1.l:8:1/;

* The value of lambda is shown.
put "values of lamda "/;
loop(NNC,loop(COUNT,put frozenc.m(COUNT,NNC):8:3/;););

);

* The original problem optimal objective function upper bound is calculated.
upperB=sum(COUNT,OBJSUB(COUNT))+sum(NNC,C(NNC)*X.l(NNC));
put "UPPER BOUND=",upperB/;

* The counter of solutions shows the subset of solutions calculated.
COUNT(P)=no; COUNT(P)$(ord(P)le IP)=yes;

);

* Next sentences write the results in the external file.
* You can omit this part of the program.
* The optimal value of the variables is shown.
put "OPTIMAL SOLUTION:\\"/; loop(N,put X.l(N):8:1;); put ""/;
put "-------------------- END -------------------"/;



A.3 GAMS Code for the Rubblemound Breakwater Example 407

A.3 GAMS Code for the Rubblemound
Breakwater Example

A GAMS implementation of the Benders decomposition algorithm for solving
the reliability-based optimization of a rubblemound breakwater, introduced
in Sect. 1.5.4 and in the Computational Example 5.1, p. 228 is given below.

$title rubblemound breakwater example

* Initializing the output file
file out /rebasebenders.out/; put out;

SETS
I number of random variables /1*2/
IT iterations /1*20/
ITER(IT) dinamic set to control Benders cuts;

ITER(IT)=no;

SCALARS
pi /3.1415926535898/
gra /9.81/
error /1/
Csup upper bound of the total cost /INF/
Cinf lower bound of the total cost /5000/
Toler admissible tolerance/1e-3/;

SCALARS
* Non-optimization design variables

Dwl design water level (m) /20/
Au experimental parameter for runup /1.05/
Bu experimental parameter for runup /-0.67/
cc concrete cost (dollars) /60/
ca armor cost (dollars) /2.4/

* Random model parameters, sea state descriptors
Hs significant wave height (m) /5/
Tz mean period (s) /10/
dst sea state duration (s) /3600/

* Auxiliary scalars
pf probability of failure for one wave
pfD probability of failure for the design sea state;

PARAMETERS
Ctotal(IT) vector of total costs for each iteration
ValorFc(IT) vector of freeboards for each iteration
LambdaFc(IT) vector of partial derivatives of the total cost function...
...with respect to the freeboard for each iteration
ValorTan(IT) vector of seaside slopes for each iteration
LambdaTan(IT) vector of partial derivatives of the total cost...
...function with respect to seaside slopes for each iteration;

VARIABLES
cd construction cost
ci insurance cost
beta reliability index
alfacost auxiliary variable for the master problem
z(I) normalized random variables;

POSITIVE VARIABLES
* Random variables

H wave height
T wave period

* Optimization design variables, complicating variables
tan seaside slope



408 A Some GAMS Implementations

Fc freeboard level
auxtan auxiliary seaside slope for the master problem
auxFc auxiliary freeboard level for the master problem

*Auxiliary or non-basic variables
Ir Iribarren number
L wavelength
Ru run up
d breakwater height
vc concrete volume
va armor volume;

* Limits for the design variables,
* very important to achieve convergence
auxFc.up=20; auxFc.lo=5; auxtan.lo=1/5; auxtan.up=1/2;
L.lo=10; H.up=2.2*Hs; T.up=2.2*Tz;

EQUATIONS
* Overall optimization

cddf construction cost definition
ddf breakwater height definition
vcdf concrete volume definition
vadf armor volume definition

* Sub-level optimization problem
betadef reliability index definition
Zdef1 definition of the standard normal random variables z1
Zdef2 definition of the standard normal random variables z2
Iridf Irribarren number definition
Ldf dispersion equation
rudf runup definition
verdf definition of the verification equation runup equal to Fc

* Master problem
Restric(IT) Benders cuts
auxmaster;

* Overall optimization
cddf..cd=e=cc*vc+ca*va; ddf..Fc=e=2+d; vcdf..vc=e=10*d;
vadf..va=e=0.5*(Dwl+2)*(Dwl+46+(Dwl+2)/tan);

* Sub-level optimization problem
betadef..beta=e=sqrt(sum(I,sqr(z(I))));
Zdef1..errorf(z(’1’))=e=1-exp(-2*sqr(H/Hs));
Zdef2..errorf(z(’2’))=e=1-exp(-0.675*power((T/Tz),4));
Iridf..Ir*sqrt(H/L)=e=tan;
Ldf..2*pi*L*(exp(2*pi*Dwl/L)+exp(-2*pi*Dwl/L))=e=
T*T*gra*(exp(2*pi*Dwl/L)-exp(-2*pi*Dwl/L));
rudf..Ru=e=H*Au*(1-exp(Bu*Ir)); verdf..Fc=e=Ru;

* Master
Restric(ITER)..alfacost=g=Ctotal(ITER)+LambdaFc(ITER)*(auxFc-ValorFc(ITER))+
LambdaTan(ITER)*(auxtan-ValorTan(ITER));
auxmaster..alfacost=g=5000;

MODEL sublevel/betadef,Zdef1,Zdef2,Iridf,Ldf,rudf,verdf/;
MODEL cdirect/cddf,ddf,vcdf,vadf/;
MODEL Master/Restric,auxmaster/;

Ctotal(IT)=0.0; LambdaFc(IT)=0.0; ValorFc(IT)=0.0;
LambdaTan(IT)=0.0; ValorTan(IT)=0.0;

* Initial values for the complicating variables
Fc.fx=7; tan.fx=1/3;

loop(IT$(error gt TOLER), put " Iteration= ",ord(IT):12:8//;

if(ORD(IT)>1,
* Solving the master problem for obtaining new values of
* the complicating variables



A.3 GAMS Code for the Rubblemound Breakwater Example 409

SOLVE Master USING lp MINIMIZING alfacost;
put "alfacost= ",alfacost.l:12:4,", modelstat= ",Master.modelstat,
", solvestat= ",Master.solvestat/;

* New values for the complicating variables
Fc.fx=auxFc.l; tan.fx=auxtan.l;

* Lower bound of solution at iteration IT
Cinf=alfacost.l;

);
* Saving the values of the complicating variables for iteration IT

ValorFc(IT)=Fc.l; ValorTan(IT)=tan.l;
* Activating Benders cut

ITER(IT)=yes;

put "Complicating variables: Fc=",Fc.l:6:3,", tan=",tan.l:6:3/;

* Initial values, very important to achieve convergence
H.l=1.5*Hs; T.l=1.1*Tz; L.l=136.931; Ir.l=tan.l/sqrt(H.l/L.l);
Ru.l=H.l*Au*(1-exp(Bu*Ir.l)); z.l(’1’)=2.28; z.l(’2’)=0.32;
beta.l=sqrt(sum(I,sqr(z.l(I))));

* Solve the reliability problem for fixed values
* of the complicating variables

SOLVE sublevel USING nlp MINIMIZING beta;

put "pf= ",(errorf(-beta.l)):12:8,", modelstat= ",
sublevel.modelstat,", solvestat= ",sublevel.solvestat/;

* Probabilities of failure
pf=errorf(-beta.l); pfD=1-(1-pf)**(dst/Tz);

* Partial derivatives of pfD with respect to complicating variables
LambdaFc(IT)=-dst*(1-pf)**(dst/Tz-1)*exp(-beta.l*beta.l/2)*
(Fc.m)/(Tz*sqrt(2*pi));
LambdaTan(IT)=-dst*(1-pf)**(dst/Tz-1)*exp(-beta.l*beta.l/2)*
(tan.m)/(Tz*sqrt(2*pi));

* Insurance cost as a function of pfD
ci.l=5000+125000000*pfD**2;

put "pfD= ",pfD:12:8/; put "insurance cost= ",(ci.l):12:4/;
put "LambdaFc1(",ord(IT):2," )=",LambdaFc(IT):12:4,
"LambdaTn1(",ord(IT):2," )=",LambdaTan(IT):12:4/;

Ctotal(IT)=ci.l;
* Partial derivatives of insurance cost with respect to
* complicating variables

LambdaFc(IT)=LambdaFc(IT)*(2*125000000*pfD);
LambdaTan(IT)=LambdaTan(IT)*(2*125000000*pfD);

put "LambdaFc2(",ord(IT):2," )=",LambdaFc(IT):12:4,
"LambdaTn2(",ord(IT):2," )=",LambdaTan(IT):12:4/;

* Auxiliary model for calculating the construction cost and their
* partial derivatives with respect to complicating variables

SOLVE cdirect USING nlp MINIMIZING cd;

put "direct cost= ",cd.l:12:4,", modelstat= ",cdirect.modelstat,",
solvestat= ",cdirect.solvestat/;

* Total cost for fixed values of the complicating variables
Ctotal(IT)=Ctotal(IT)+cd.l;

* Partial derivatives of total cost with respect to complicating variables
LambdaFc(IT)=LambdaFc(IT)+Fc.m; LambdaTan(IT)=LambdaTan(IT)+tan.m;

put "Ctotal(",ord(IT):2," )=",Ctotal(IT):12:4/; put
"LambdaFc(",ord(IT):2," )=",LambdaFc(IT):12:4,
"LambdaTn(",ord(IT):2," )=",LambdaTan(IT):12:4/;

* Upper bound of solution



410 A Some GAMS Implementations

Csup=Ctotal(IT);

* Calculating error
error=(abs(Csup-Cinf)/Cinf);

put "Upper bound= ",Csup:12:4/; put "Lower bound= ",Cinf:12:4/;
put "error= ",error:15:10//;

);

A.4 GAMS Code for the Wall Problem

A.4.1 The Relaxation Method

This version of the GAMS code contains commands to perform a sensitivity
analysis with respect to the cost (classic design) and reliability indices βo, βs,
and βb (probabilistic design). Note that this program solves the wall prob-
lem introduced in Sect. 9.1, p. 349 using the relaxation method explained in
Subsection 9.1.1.

$title wall example method 1 with sensitivity analysis

file out1 /wall1.out/;

SETS
V set of variables /a,b,nu,T,gamma,H,S/
D(V) set of optimized design variables /a,b/
A(V) set of non-optimized design variables /nu,T,gamma,H,S/
M failure modes /turn,slid,bear/
IT iterations /1*15/;

ALIAS(M,Maux);

SCALARS

* convergence control

epsilon maximum allowable tolerance /1e-5/
error error in actual iteration/1/
iteration iteration number /0/
rho relaxation factor /0.8/;

PARAMETERS
* Safety factors lower bounds

Flo(M) /
turn 1.5
slid 1.6
bear 1.5/
Fr(M) Real safety factors values
Fpar(M)
betalo(M) Beta lower bounds /
turn 3.0
slid 3.0
bear 3.0/
betaa(M) Actual beta values
betaux(M) Auxiliar beta values for error checking
Faux(M)
mean(V) mean values for classic model/
a 3
b 6
nu 0.3
T 50.0



A.4 GAMS Code for the Wall Problem 411

gamma 23.0
H 3.0
S 220.0
/
sigma(V) standard deviations /
a 0.01
b 0.01
nu 0.05
T 15.0
gamma 0.46
H 0.2
S 16.0/
PML(M,V) Points of maximum likelihood;

PARAMETERS
* Auxiliar parameters for sensitivity analysis

sensFclas(M), sensAclas(A), sensBclas(V), sensMclas(M), sensF(M,M)
sens(M,V), sensB(M,V);

VARIABLES
beta(M) Actual beta values
cost Master objective function
ZC
VarD(V) Variables
VarR(V) Random variables
VarB(V) Statistical data variables
Fa(M) Safety factors
Z(V) Auxiliary variables for subproblems
Zeta(M,V);

EQUATIONS
* Equations for primal problem WITHOUT sensitivity analysis
ZClassic, turn, slid, bear, geometric
* Equations for failure problems WITHOUT sensitivity analysis
Zbeta, Zdef, Fturn, Fslid, Fbear
* Equations for first primal problem WITH sensitivity analysis
turnS, slidS, bearS, Zsens, betasens
* Equations for failure problems WITH sensitivity analysis
ZdefS;

* Equations for primal problem WITHOUT sensitivity analysis
ZClassic..cost=e=VarD(’a’)*VarD(’b’);
turn..VarD(’a’)*VarD(’a’)*VarD(’b’)*mean(’gamma’)=g=2*mean(’H’)

*mean(’T’)*Fpar(’turn’);
slid..VarD(’a’)*VarD(’b’)*mean(’nu’)*mean(’gamma’)=g=mean(’T’)

*Fpar(’slid’);
bear..mean(’S’)=g=VarD(’b’)*mean(’gamma’)*Fpar(’bear’);
geometric..VarD(’a’)*2=e=VarD(’b’);

* Equations for failure problems WITHOUT sensitivity analysis
Zbeta..ZC=e=sqrt(sum(V,sqr(Z(V))));
Zdef(V)..Z(V)=e=(VarR(V)-mean(V))/sigma(V);
Fturn..VarR(’a’)*VarR(’a’)*VarR(’b’)*VarR(’gamma’)=e=2*VarR(’H’)

*VarR(’T’);
Fslid..VarR(’a’)*VarR(’b’)*VarR(’nu’)*VarR(’gamma’)=e=VarR(’T’);
Fbear..VarR(’b’)*VarR(’gamma’)=e=VarR(’S’);

* Equations for primal problem WITH sensitivity analysis
turnS..VarD(’a’)*VarD(’a’)*VarD(’b’)*VarD(’gamma’)=g=2*VarD(’H’)

*VarD(’T’)*Fa(’turn’);
slidS..VarD(’a’)*VarD(’b’)*VarD(’nu’)*VarD(’gamma’)=g=VarD(’T’)

*Fa(’slid’);
bearS..VarD(’S’)=g=VarD(’b’)*VarD(’gamma’)*Fa(’bear’);
Zsens(M,V)..Zeta(M,V)=e=(PML(M,V)-VarD(V))/(VarB(V));
betasens(M)..sqrt(sum(V,Zeta(M,V)*Zeta(M,V)))=g=betalo(M);

* Equations for failure problems WITH sensitivity analysis



412 A Some GAMS Implementations

ZdefS(V)..Z(V)=e=(VarR(V)-VarD(V))/VarB(V);

***%***% INITIAL MODEL WITHOUT SENSITIVITY ANALYSIS ***%***%

MODEL classic /ZClassic,turn,slid,bear,geometric/;
MODEL mturn /Zbeta,Zdef,Fturn/;
MODEL mslid /Zbeta,Zdef,Fslid/;
MODEL mbear /Zbeta,Zdef,Fbear/;

***%***% MODELS WITH SENSITIVITY ANALYSIS***%***%

MODEL classicS /ZClassic,turnS,slidS,bearS,geometric,Zsens,betasens/;
MODEL mturnS /Zbeta,ZdefS,Fturn/;
MODEL mslidS /Zbeta,ZdefS,Fslid/;
MODEL mbearS /Zbeta,ZdefS,Fbear/;

Fpar(M)=Flo(M); betaa(M)=betalo(M); PML(M,V)=0;

put out1;
put "-----------------------------------------------------------------"/;
put " n Cost a b Fo Fs Fb Bo Bs Bb Error"/;
put "-----------------------------------------------------------------"/;
loop(IT$(error>epsilon),

iteration=iteration+1;
betaux(M)=betaa(M);

* Initialize design variables

VarD.l(D)=mean(D);
SOLVE classic USING nlp MINIMIZING cost;

* Actual safety factors

Fr(’turn’)=(VarD.l(’a’)*VarD.l(’a’)*VarD.l(’b’)*mean(’gamma’)/
(2*mean(’H’)*mean(’T’)));

Fr(’slid’)=(VarD.l(’a’)*VarD.l(’b’)*mean(’nu’)*mean(’gamma’)
/mean(’T’));

Fr(’bear’)=mean(’S’)/(VarD.l(’b’)*mean(’gamma’));
mean(D)=VarD.l(D);
loop(M,

VarR.l(V)=mean(V);
if(ORD(M) eq 1,

SOLVE mturn USING nlp MINIMIZING zc;
else if(ORD(M) eq 2,

SOLVE mslid USING nlp MINIMIZING zc;
else

SOLVE mbear USING nlp MINIMIZING zc;
);

);
* Save beta values and points of maximum likelihood

betaa(M)=zc.l;
PML(M,V)=VarR.l(V);

);
* update safety factor bounds

Fpar(M)=Fpar(M)+rho*(betalo(M)-betaa(M));
loop(M,if(Fpar(M)<Flo(M),Fpar(M)=Flo(M);););

* error evaluation

error=0.0;
loop(M,

if(abs((betaa(M)-betaux(M))/betaa(M))>error,
error=abs((betaa(M)-betaux(M))/betaa(M));

);
);

*-------------------------Printing Table -----------------------*
put iteration:2:0;
put cost.l:6:2;



A.4 GAMS Code for the Wall Problem 413

loop(D,put mean(D):6:2;);
loop(M,put Fr(M):6:2;);
loop(M, put betaa(M):6:2;);
put error:9:5/;

*-------------------- End Printing Table End -------------------*

); put
"-----------------------------------------------------------------"//;

VarD.fx(A)=mean(A); VarB.fx(V)=sigma(V); Fa.fx(M)=Flo(M);

loop((M,D,V)$(ORD(D)=ORD(V)),
Zeta.l(M,V)=(PML(M,D)-VarD.l(D))/(VarB.l(V));

);
loop((M,A,V)$(ORD(A)+CARD(D)=ORD(V)),

Zeta.l(M,V)=(PML(M,A)-VarD.l(A))/(VarB.l(V));
);

* Final loop for calculating sensitivities

SOLVE classicS USING nlp MINIMIZING cost;

sensFclas(M)=Fa.m(M); sensAclas(A)=VarD.m(A);
sensBclas(V)=VarB.m(V); sensMclas(M)=betasens.m(M);
VarD.fx(D)=mean(D);

loop(M,
VarR.l(D)=mean(D);
VarR.l(A)=mean(A);
if(ORD(M) eq 1,

SOLVE mturnS USING nlp MINIMIZING zc;
else if(ORD(M) eq 2,

SOLVE mslidS USING nlp MINIMIZING zc;
else

SOLVE mbearS USING nlp MINIMIZING zc;);
);
sens(M,V)=VarD.m(V);
sensB(M,V)=VarB.m(V);

);

*---------- Print table of sensitivities ------------*
put "-------------------------------------------"/;
put " x c Bo Bs Bb"/;
put "--------------------MEAN-------------------"/;
loop(D,

put D.tl:7," -- ";
loop(M,put sens(M,D):9:3;); put ""/;

);
loop(A,

put A.tl:7,sensAclas(A):9:3;
loop(M,put sens(M,A):9:3;); put ""/;

);
put "--------------------SIGMA------------------ "/;
loop(V,

put V.tl:7,sensBclas(V):9:3;
loop(M,put sensB(M,V):9:3;); put ""/;

);
put "-------------------------------------------"/;
loop(M,

put "F",M.tl:6,sensFclas(M):9:3;
loop(Maux,put " -- ";); put ""/;

);
put "-------------------------------------------"/;
loop(M,

put "B",M.tl:6,sensMclas(M):9:3;
loop(Maux,put " -- ";);put ""/;



414 A Some GAMS Implementations

);
put "-------------------------------------------"/;

A.4.2 The Cutting Hyperplanes Method

This version of the GAMS code contains commands to perform a sensitivity
analysis with respect to the cost (classic design) and reliability indices βo, βs,
and βb (probabilistic design). Analogously to the previous code this program
solves the wall problem introduced in Sect. 9.1, p. 349 but using the cutting
plane (CP) method explained in detail in SubSection 9.1.2.

$title wall example method 2 with sensitivity analysis

file out1 /Wall2.out/; put out1;

SETS
V set of variables /a,b,nu,T,gamma,H,S/
D(V) set of optimized design variables /a,b/
A(V) set of non-optimized design variables /nu,T,gamma,H,S/
M failure modes /turn,slid,bear/
IT iterations /1*15/
ITER(IT) index to control hyperplane cuts
FIRST(M);

ALIAS(M,Maux);

FIRST(M)=no; ITER(IT)=no;

SCALARS
cost objective function values
epsilon maximum allowable tolerance /1e-5/
error error in actual iteration /1/
iteration iteration number /0/;

PARAMETERS
* Safety factors lower bounds

Flo(M)/
turn 1.5
slid 1.6
bear 1.5/
Fr(M) Real safety factors values

* Beta lower bounds
betalo(M) Beta lower bounds/
turn 3.0
slid 3.0
bear 3.0/
betaa(M) Actual beta values
betaux(M) Auxiliar beta values for error checking

* Auxiliar parameters for cuts
betaK(IT,M), lambdaK(IT,M,D), muK(M,A), deltaK(M,V), XesK(IT,D)

* Design variables
mean(V) mean values for classic model/
a 3
b 6
nu 0.3
T 50.0
gamma 23.0
H 3.0
S 220.0

/
sigma(V) standard deviations /
a 0.01
b 0.01



A.4 GAMS Code for the Wall Problem 415

nu 0.05
T 15.0
gamma 0.46
H 0.2
S 16.0/
PML(M,V) Points of maximum likelihood;

PARAMETERS
errors(IT)
* Auxiliar parameters for sensitivity analysis
sensFclas(M),sensAclas(A),sensBclas(V),sensMclas(M)
sensX(M,D),sensA(M,A),sensB(M,V);

VARIABLES
* Actual beta values

beta(M)
* Master objective function

zc
* Design variables

VarD(V) variables
VarR(V) Random variables
VarB(V) Statistical data variables
Fa(M) Safety factors
Z(V) Auxiliary variables for subproblems
Zeta(M,V);

EQUATIONS
* Equations for primal problem without sensitivity analysis
Zclass,turn,slid,bear,geometric,betadef,auxbeta
* Equations for failure problems without sensitivity analysis
Zbeta,ZDdef,ZAdef,Fturn,Fslid,Fbear,fixedX,fixedFa
* Equations for primal problem with sensitivity analysis
turnS,slidS,bearS,betadefS,fixedA(A),fixedB(V)
* Equations for failure problems with sensitivity analysis
ZdefS;

* Equations for primal problem without sensitivity analysis
Zclass..zc=e=VarD(’a’)*VarD(’b’);
turn..VarD(’a’)*VarD(’a’)*VarD(’b’)*mean(’gamma’)=g=

2*mean(’H’)*mean(’T’)*Flo(’turn’);
slid..VarD(’a’)*VarD(’b’)*mean(’nu’)*mean(’gamma’)=g=

mean(’T’)*Flo(’slid’);
bear..mean(’S’)=g=VarD(’b’)*mean(’gamma’)*Flo(’bear’);
geometric..VarD(’a’)*2=e=VarD(’b’);
betadef(ITER,M)$(FIRST(M))..beta(M)=l=betaK(ITER,M)

+sum(D,lambdaK(ITER,M,D)*(VarD(D)-XesK(ITER,D)));
auxbeta(M)$(FIRST(M))..beta(M)=g=betalo(M);

* Equations for failure problems without sensitivity analysis
Zbeta..zc=e=sqrt(sum(V,sqr(Z(V))));
ZDdef(D)..Z(D)=e=(VarR(D)-VarD(D))/(sigma(D));
ZAdef(A)..Z(A)=e=(VarR(A)-mean(A))/(sigma(A));
Fturn..VarR(’a’)*VarR(’a’)*VarR(’b’)*VarR(’gamma’)=e=

2*VarR(’H’)*VarR(’T’);
Fslid..VarR(’a’)*VarR(’b’)*VarR(’nu’)*VarR(’gamma’)=e=VarR(’T’);
Fbear..VarR(’b’)*VarR(’gamma’)=e=VarR(’S’);
fixedX(D)..VarD(D)=e=mean(D);

* Equations for first primal problem with sensitivity analysis
turnS..VarD(’a’)*VarD(’a’)*VarD(’b’)*VarD(’gamma’)=g=

2*VarD(’H’)*VarD(’T’)*Fa(’turn’);
slidS..VarD(’a’)*VarD(’b’)*VarD(’nu’)*VarD(’gamma’)=g=

VarD(’T’)*Fa(’slid’);
bearS..VarD(’S’)=g=VarD(’b’)*VarD(’gamma’)*Fa(’bear’);
betadefS(ITER,M)$(FIRST(M))..beta(M)=l=betaK(ITER,M)

+sum(D,lambdaK(ITER,M,D)*(VarD(D)-XesK(ITER,D)))
+sum(A,muK(M,A)*(VarD(A)-mean(A)))



416 A Some GAMS Implementations

+sum(V,deltaK(M,V)*(VarB(V)-sigma(V)));

* Equations for failure problems with sensitivity analysis
ZdefS(V)..Z(V)=e=(VarR(V)-VarD(V))/(VarB(V));

***%***% INITIAL MODELS WITHOUT SENSITIVITY ANALYSIS ***%***%

MODEL classic /Zclass,turn,slid,bear,geometric,betadef,auxbeta/;
MODEL mturn/Zbeta,ZDdef,ZAdef,Fturn,fixedX/;
MODEL mslid/Zbeta,ZDdef,ZAdef,Fslid,fixedX/;
MODEL mbear/Zbeta,ZDdef,ZAdef,Fbear,fixedX/;

***%***% MODELS WITH SENSITIVITY ANALYSIS ***%***%

MODEL mturnS /Zbeta,ZdefS,Fturn,fixedX/;
MODEL mslidS /Zbeta,ZdefS,Fslid,fixedX/;
MODEL mbearS /Zbeta,ZdefS,Fbear,fixedX/;
MODEL classicS /Zclass,turnS,slidS,bearS,geometric,betadefS,auxbeta/;

betaa(M)=betalo(M); lambdaK(IT,M,D)=0.0; XesK(IT,D)=0.0;
betaK(IT,M)=0.0; PML(M,V)=0;

put "-----------------------------------------------------------------"/;
put " n Cost a b Fo Fs Fb Bo Bs Bb Error"/;
put "-----------------------------------------------------------------"/;
loop(IT$(error>epsilon),

iteration=iteration+1;
betaux(M)=betaa(M);

* Initialize the variables

VarD.l(D)=mean(D);
SOLVE classic USING nlp MINIMIZING zc;
cost=zc.l;
Fr(’turn’)=(VarD.l(’a’)*VarD.l(’a’)*VarD.l(’b’)*

mean(’gamma’)/(2*mean(’H’)*mean(’T’)));
Fr(’slid’)=(VarD.l(’a’)*VarD.l(’b’)*mean(’nu’)*

mean(’gamma’)/mean(’T’));
Fr(’bear’)=mean(’S’)/(VarD.l(’b’)*mean(’gamma’));
mean(D)=VarD.l(D);
XesK(IT,D)=mean(D);
loop(M,

VarR.l(V)=mean(V);
if(ORD(M) eq 1,SOLVE mturn USING nlp MINIMIZING zc;
else if(ORD(M) eq 2,SOLVE mslid USING nlp MINIMIZING zc;
else SOLVE mbear USING nlp MINIMIZING zc;

);
);

* Save beta values and maximum likelihood points

betaa(M)=zc.l;
lambdaK(IT,M,D)=fixedX.m(D);
betaK(IT,M)=zc.l;
PML(M,V)=VarR.l(V);

);
error=0.0;
loop(M,

if((abs(betaa(M)-betaux(M))/betaa(M))>error and betaa(M)>0,
error=(abs(betaa(M)-betaux(M))/betaa(M));
errors(IT)=error;

);
);
FIRST(M)=yes;
ITER(IT)=yes;

*-------------------------Printing Table -----------------------*
put iteration:2:0;
put cost:6:2;



A.4 GAMS Code for the Wall Problem 417

loop(D,put mean(D):6:2;);
loop(M,put Fr(M):6:2;);
loop(M, put betaa(M):6:2;);
put error:9:5/;

*-------------------- End Printing Table End -------------------*
);
put "-----------------------------------------------------------------"//;

**%%-------- LAST ITERATION FOR SENSITIVITY ANALYSIS ----------%%**

muK(M,A)=0.0; deltaK(M,V)=0.0; VarD.fx(A)=mean(A);
VarB.fx(V)=sigma(V);
loop(M,

VarR.l(V)=mean(V);
if(ORD(M) eq 1,

SOLVE mturnS USING nlp MINIMIZING zc;
elseif(ORD(M) eq 2),

SOLVE mslidS USING nlp MINIMIZING zc;
else

SOLVE mbearS USING nlp MINIMIZING zc;
);
muK(M,A)=VarD.m(A);
deltaK(M,V)=VarB.m(V);
sensX(M,D)=fixedX.m(D);
sensA(M,A)=VarD.m(A);
sensB(M,V)=VarB.m(V);

);

Fa.fx(M)=Flo(M);

SOLVE classicS USING nlp MINIMIZING zc;
sensFclas(M)=Fa.m(M);
sensAclas(A)=VarD.m(A);
sensBclas(V)=VarB.m(V);
sensMclas(M)=auxbeta.m(M);

put "---------------------------------------------"/;
put "x Cost Bo Bs Bb "/;
put "---------------------- MEAN -----------------"/;
loop(D,put D.tl:8:0," -- ";

loop(M,put sensX(M,D):9:3;); put ""/;
);
loop(A,

put A.tl:8:0,sensAclas(A):9:3;
loop(M,put sensA(M,A):9:3;); put ""/;

);
put "--------------------- SIGMA -----------------"/;
loop(V,

put V.tl:8:0,sensBclas(V):9:3;
loop(M,put sensB(M,V):9:3;); put ""/;

);
put "---------------------------------------------"/;
loop(M,

put "F",M.tl:7,sensFclas(M):9:3;
loop(Maux,put " -- ";);put ""/;

);
put "---------------------------------------------"/;
loop(M,

put "B",M.tl:7,sensMclas(M):9:3;
loop(Maux,put " -- ";);put ""/;

);
put "---------------------------------------------"/;



Part VI

Solution to Selected Exercises



B

Exercise Solutions

B.1 Exercises from Chapter 1

Solution to Exercise 1.2. Considering the wall shape shown in Fig. 1.20,
the overturning safety factor is

Fo =
w1(d − a/2) + w2(d − a)/2

h̃t̃
=

abγ(2d − a) + c(d − a)2γ
2h̃t̃

≥ F 0
o .

Since the objective of this problem is minimizing the cost of building the
wall, the formulation of the wall design problem is

minimize
a, b, c, d

ab + c(d − a)

subject to safety factor, reliability, and geometric constraints

abγ(2d − a) + c(d − a)2γ
2h̃t̃

≥ F 0
o

β(a, b, c, d) ≥ β0

b ≥ b0

c ≥ a

d ≥ a ,

where
β = minimum

h, t
z2
1 + z2

2

subject to

z1 =
t − µt

σt

z2 =
h − µh

σh

abγ(2d − a) + c(d − a)2γ
2ht

= 1 .



422 B Exercise Solutions

This bilevel problem can be solved considering the second constraint of
the first problem as a complicating constraint.

Solution to Exercise 1.4. Considering the notation used in Sect. 1.3.3,
the formulation of the river basin operation problem, if storage facilities are
not available, is shown below. Note that the objective of the problem is to
maximize the expected benefit. That is,

maximize
dti, rti;∀i;∀t

z =
m∑

t=1

λt

(
n∑

i=1

kidti − et

)
subject to water balance constraints

dti = wti +
∑
j∈Ωi

dtj ; t = 1, . . . , m; i = 1, . . . , n

m∑
t=1

n∑
i=1

wti =
m∑

t=1

dtn ,

demand constraints
n∑

i=1

kidti ≥ et; t = 1, . . . , m ,

and discharge bounds

0 ≤ dti ≤ dmax
i ; t = 1, . . . , m; i = 1, . . . , n .

The structure of this problem is illustrated considering two periods of time
and two reservoirs. Arranging variables in order d11, d21, d12, d22, the matrix
corresponding to the constraints (without considering) bounds is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

−1 1
−1 1

−1 −1
k1 k2

k1 k2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It should be noted that the last two constraints are complicating con-
straints. If they are relaxed, the resulting matrix exhibits a structure that can
be computationally exploited.

Solution to Exercise 1.6. Considering the notation used in Sect. 1.4.1,
the formulation of the 2-year coal, oil, and gas procurement problem, for five
demand scenarios in the second year is



B.1 Exercises from Chapter 1 423

minimize
c0, cs, g0, gs

a0c0 + b0g0 +
5∑

s=1

ps (ascs + bsgs)

subject to the first year demand constraint

c0 + g0 ≥ d0 ,

supply total demand (first and second year) constraints for all scenarios

c0 + g0 + cs + gs = d0 + ds; s = 1, · · · , 5 ,

maximum and minimum bounds on coal consumption

c0 + cs ≤ 2
3
(d0 + ds); s = 1, · · · , 5

−c0 − cs ≤ −1
3
(d0 + ds); s = 1, · · · , 5 ,

and maximum and minimum bounds on gas consumption

g0 + gs ≤ 2
3
(d0 + ds); s = 1, · · · , 5

−g0 − gs ≤ −1
3
(d0 + ds); s = 1, · · · , 5 .

If the order of variables is c1, g1, c2, g2, c3, g3, c4, g4, c5, g5, c0, g0, the
constraint matrix of the problem above is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

1 1 1 1

1 1

−1 −1

1 1

−1 −1

1 1 1 1

1 1

−1 −1

1 1

−1 −1

1 1 1 1

1 1

−1 −1

1 1

−1 −1

1 1 1 1

1 1

−1 −1

1 1

−1 −1

1 1 1 1

1 1

−1 −1

1 1

−1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



424 B Exercise Solutions

Variables c0 and g0 are complicating variables that prevent a distributed
solution of the problem. If these variables are fixed to given values, the prob-
lem decomposes by blocks.

Solution to Exercise 1.8. Considering the example presented in Sect. 1.4.2,
the formulation of the multiperiod capacity expansion planning problem in-
cluding nonlinear investment and operation costs, and discrete investment
variables is shown below. The objective of the production company is to min-
imize both investment and operation costs, i.e.,

minimize
xit, yit, fij,t

T∑
t=1

⎡⎣ 2∑
i=1

cit(xit − xi,t−1)2 +
∑

(i,j)∈P
eijf

2
ij,t

⎤⎦
subject to balance constraints at production nodes

y1t = f13,t + f12,t − f21,t; t = 1, . . . , T
y2t = f23,t + f21,t − f12,t; t = 1, . . . , T ,

balance constraint at the consumption node

dt = f13,t + f23,t; t = 1, . . . , T ,

production bounds

0 ≤ yit ≤ xit; i = 1, 2; t = 1, . . . , T ,

constraints on maximum capacity expansion

xit ≤ xi,t+1; i = 1, 2; t = 1, . . . , T − 1 ,

expansion capacity bounds

0 ≤ xit ≤ xmax
i ; i = 1, 2; t = 1, . . . , T ,

constraints on transportation capacity

0 ≤ fij,t ≤ fmax
ij ; (i, j) ∈ P; t = 1, . . . , T ,

and discrete investment variables

xit ∈ N; i = 1, 2; t = 1, . . . , T .

Considering two periods of time, the constraint matrix of the above prob-
lem is



B.1 Exercises from Chapter 1 425⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 1

1 −1 1 −1

1 1
1 −1

1 −1

1 −1 −1 1
1 −1 1 −1

1 1
1 −1

1 −1

1 −1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the variable order is y11, y21, f13,1, f23,1, f12,1, f21,1; y12, y22,
f13,2, f23,2, f12,2, f21,2; x11, x21, x12, x22.

It should be noted that discrete variables xit (i = 1, 2; t = 1, 2) are com-
plicating variables. If they are fixed to given values, the problem above de-
composes by time period.

Solution to Exercise 1.10. Considering the example presented in Sect. 1.7.1,
the formulation of the 24-h unit commitment of production units is shown be-
low. The objective of this problem is to minimize cost, i.e.,

minimize
PGit

24∑
t=1

2∑
i=1

citPGit

subject to production capacity limits for the facilities

uit Pmin
Gi ≤ PGit ≤ uit Pmax

Gi ; i = 1, 2; t = 1, . . . , 24,

production balance at node 1

PG1t + [G (1 − cos δ1t) − B sin δ1t] = PD1t,

production balance at node 2

PG2t + [G (1 − cos δ1t) + B sin δ1t] = PD2t,

security of supply

u1t Pmax
G1 + u2t Pmax

G2 ≥ PD1t + PD2t,

and ramping limits

PGi,t−1 − PGit ≤ Rdown
i ; i = 1, 2; t = 1, . . . , 24,

PGit − PGi,t−1 ≤ Rup
i ; i = 1, 2; t = 1, . . . , 24,

where Rdown
i is the ramp-down limit for unit i and Rup

i is the ramp-up limit
for unit i.



426 B Exercise Solutions

It should be noted that the problem above is mixed-integer and nonlinear.
The balance constraints are complicating constraints. If these constraints are
linearized, the problem becomes mixed-integer and linear.

The minimum up time constraints are formulated as follows:

[xi,t−1 − MUTi][ui,t−1 − uit] ≥ 0 ∀i; t = 1, . . . , 24,

where xi,t is the number of hours that unit i has been on at the end of hour
t, and MUTi is the minimum up time of unit i (minimum number of hours
that the unit should be on line once started up).

This equation is nonlinear. However, linear constraints to enforce minimum
up time for unit i is shown below.

Li∑
t=1

[1 − ui,t] = 0; ∀i

t+MUTi−1∑
τ=t

ui,τ ≥ MUTiyit; ∀i; t = Li + 1, . . . , 24 − MUTi + 1

24∑
τ=t

[uiτ − yit] ≥ 0; ∀i; t = 24 − MUTi + 2, . . . , 24,

where yit is the start-up status for unit i in period t and Li = Min[24, (MUTi−
UTi)ui,0]. Note that UTi represents the number of time periods that unit i
has been on-line at the beginning of the planning horizon.

B.2 Exercises from Chapter 2

Solution to Exercise 2.2.

1. If the original problem is solved directly, we obtain the following global
solution:

x1 = 1, x2 = 2, x3 = 1, x4 = 0, z = −5 .

2. It should be noted that the last two constraints are complicating con-
straints. Table 2.5 shows two different feasible solutions (x1, x2, x3, x4) of
the relaxed problem and the associated values of r1, r2, and z, obtained
by minimizing the objective functions:

z1 = −x1 −x2 +x4

z2 = x1 +x2 −x3

z3 = x1 −x3 +x4

z4 = 2x1 +x2 +3x4 .



B.2 Exercises from Chapter 2 427

3. The problem is solved using the Dantzig-Wolfe decomposition as follows:

Step 1: Master problem solution. The master problem below is solved.

minimize
u1, u2

−10u1 − 3u2

subject to
5u1 +3u2 ≤ 2 : λ1

5u1 +0u2 ≤ 3 : λ2

u1 +u2 = 1 : σ
u1, u2 ≥ 0 .

Its solution is u
(1)
1 = 0 and u

(1)
2 = 1 with dual variable values λ

(1)
1 = −20,

λ
(1)
2 = 0, and σ1 = 57.

Step 2: Relaxed problem solution. The subproblems are solved below
to obtain a solution for the current relaxed problem.
The objective function of the first subproblem is(

c1 − λ
(1)
1 a11 − λ

(1)
2 a21

)
x1 +

(
c2 − λ

(1)
1 a12 − λ

(1)
2 a22

)
x2 =

(−2 + 20)x1 + (−1)x2 = 18x1 − x2 ,

and its solution, obtained by inspection, is x1 = 0 and x2 = 2.5.
The objective function of the second subproblem is(

c3 − λ
(1)
1 a13 − λ

(1)
2 a23

)
x3 +

(
c4 − λ

(1)
1 a14 − λ

(1)
2 a24

)
x4

= (−1 + 20)x3 + (1)x4 = 19x3 + x4 ,

and its solution is x3 = 0 and x4 = 0.
For this relaxed problem solution, the objective function value of the orig-
inal problem is z = −2.5 and the values of the complicating constraints
r1 = 0 and r2 = 2.5, respectively.

Step 3: Convergence checking. The objective function value of the
current relaxed problem is

v1 = 18x1 − x2 + 19x3 + x4 = −2.5 .

Note that v1 < σ1 (−2.5 < 57) and therefore the current solution of
the relaxed problem can be used to improve the solution of the master
problem.
The iteration counter is updated, ν = 1 + 1 = 2, and the number of avail-
able solutions of the relaxed problem is also updated, p(2) = 2 + 1 = 3.
The algorithm continues with Step 1.



428 B Exercise Solutions

Table 2.5 shows the new solutions of the relaxed problem obtained through
the Dantzig-Wolfe decomposition algorithm, together with the corre-
sponding upper and lower bounds associated with each step. This table
also shows the results (u1, u2, u3, u4), λ1, λ2, and σ for the master problem
for different iterations with the corresponding lower and upper bounds.
The solution obtained by decomposition is

x1 = 1.6, x2 = 1.4, x3 = 0.4, x4 = 0, z = −5 .

4. Note that the solution obtained by decomposition is different from the
global solution obtained by solving the global problem. However, the val-
ues of the objective function coincide. This means that the solution of this
problem is not unique.

Solution to Exercise 2.4. If the original problem is solved directly, the
solution is

x1 = 2, x2 = 1, x3 = 0, x4 = 1.5, x5 = 0.5,

x6 = 0.5, x7 = 2, x8 = 1, x9 = 0, x10 = 0, z = −21.5 .

It should be noted that the last constraint prevents a decomposed solution
of the problem; therefore, it is a complicating constraint.

Minimizing the following objective functions we obtain five feasible initial
solutions of the relaxed problem that are shown in Table B.1,

z1 = −x3 − x6 − x9

z2 = −x3 − x6 − x7

z3 = −x3 − x4

z4 = −x3 − x4 − x7

z5 = −x1 − x6 .

The solution resulting from the Dantzig-Wolfe decomposition algorithm is
given in Table B.1. It should be noted that the solution obtained by decom-
position is the same than the one obtained without decomposition.

Solution to Exercise 2.6. The solution of the original problem is

x1 = 1, x2 = 1, x3 = 1, x4 = 0, z = −4 .

It should be noted that the last two constraints prevent a decomposed
solution of the problem; therefore, they are complicating constraints.

We can obtain two feasible initial solutions of the relaxed problem mini-
mizing the objective functions,

z1 = −x1 − x2 + x3

z2 = x1 + x2 − x3 .



B.2 Exercises from Chapter 2 429

Table B.1. Initial solutions for the subproblems and additional solutions obtained
through the Dantzig-Wolfe decomposition algorithm in Exercise 2.4

Iteration Bounds Initial solutions for the subproblems

ν Lower Upper x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 r1 z

0−1 −∞ ∞ 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 9.0 −11.0
0−2 −∞ ∞ 1.0 0.0 1.0 1.0 0.0 1.0 2.0 1.0 0.0 0.0 13.0 −17.0
0−3 −∞ ∞ 1.0 0.0 1.0 2.0 1.0 0.0 1.0 0.0 1.0 0.0 11.0 −12.0
0−4 −∞ ∞ 1.0 0.0 1.0 2.0 1.0 0.0 2.0 1.0 0.0 0.0 15.0 −18.0
0−5 −∞ ∞ 2.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 12.0 −15.0

Solutions for the subproblem

1 −22.0 −18.0 2.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0 0.0 18.0 −22.0
2 −22.0 −21.0 2.0 1.0 0.0 1.0 0.0 1.0 2.0 1.0 0.0 0.0 16.0 −21.0
3 −21.5 −21.5 − − − − − − − − − − − −

Master solutions
u1 u2 u3 u4 u5 u6 u7 λ1 σ Feasible

1 −∞ −18.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 −18.0 Yes
2 −22.0 −21.0 0.0 0.2 0.0 0.0 0.0 0.8 0.0 −1.0 −4.0 Yes
3 −22.0 −21.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 −0.5 −13.0 Yes

The solution resulting from the Dantzig-Wolfe decomposition algorithm is
provided in Table B.2. Note that the solution obtained by decomposition is
identical to the one obtained without decomposition.

Table B.2. Initial solutions for the subproblems and additional solutions obtained
through the Dantzig-Wolfe decomposition algorithm in Exercise 2.6

Iteration Bounds Initial solutions for the subproblems

ν Lower Upper x1 x2 x3 x4 r1 r2 z

0−1 −∞ ∞ 1.0 1.0 0.0 0.0 1.0 5.0 −3.0
0−2 −∞ ∞ 0.0 0.0 1.3 0.0 1.3 0.0 −1.3

Solutions for the subproblem

1 −4.33 −3.0 1.0 1.0 1.3 0.0 2.3 5.0 −4.3
2 −4.0 −4.0 − − − − − − −

Master solutions

u1 u2 u3 λ1 λ2 σ Feasible

1 −∞ −3.0 1.0 0.0 0.0 0.0 0.0 −3.0 Yes
2 −4.33 −4.0 0.2 0.0 0.8 −1.0 0.0 −2.0 Yes



430 B Exercise Solutions

Solution to Exercise 2.8. The formulation of the stochastic hydro schedul-
ing problem is

minimize
dts, rts;∀t;∀s

z = (−30 − 45 − 20 − 30 − 20 − 30 − 30 − 45)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d11
d21
d12
d22
d13
d23
d14
d24

⎞⎟⎟⎟⎟⎟⎟⎟⎠
subject to water balance constraints

r11 = 50 − d11 + 20
r21 = r11 − d21 + 25
r12 = 50 − d12 + 20
r22 = r12 − d22 + 35
r13 = 50 − d13 + 30
r23 = r13 − d23 + 25
r14 = 50 − d14 + 30
r24 = r14 − d24 + 35 ,

reservoir level limits

20 ≤ r11 ≤ 140, 20 ≤ r12 ≤ 140, 20 ≤ r13 ≤ 140, 20 ≤ r14 ≤ 140,

20 ≤ r21 ≤ 140, 20 ≤ r22 ≤ 140, 20 ≤ r23 ≤ 140, 20 ≤ r24 ≤ 140 ,

discharge limits

d11 ≤ 60, d12 ≤ 60, d13 ≤ 60, d14 ≤ 60,

d21 ≤ 60, d22 ≤ 60, d23 ≤ 60, d24 ≤ 60 ,

and nonanticipativity constraints

d11 = d12, r11 = r12, d13 = d14, r13 = r14 .

The nonanticipativity constraints are complicating constraints, the
Dantzig-Wolfe procedure is therefore used to solve this problem.

The solution of the original problem not using decomposition is

z = −11250, d11 = d12 = 25, d13 = d14 = 35,
d21 = 50, d22 = 60, d23 = 503, d24 = 60 .



B.2 Exercises from Chapter 2 431

We obtain two feasible initial solutions of the relaxed problem minimizing
the following objective functions:

z1 = 25d11 + 20d21 + 35d12 + 30d22 + 30d13 + 25d23 + 35d14 + 30d24

z2 = −10d11 − 25d21 − 35d12 − 25d22 − 20d13 − 35d23 − 35d14 − 4524 .

The solution resulting from the Dantzig-Wolfe decomposition algorithm is
provided in Table B.3.

Table B.3. Initial solutions for the subproblems and additional solutions obtained
through the Dantzig-Wolfe decomposition algorithm in Exercise 2.8

Iteration Bounds Initial solutions for the subproblems

ν Lower Upper d11 d21 d12 d22 d13 d23 d14 d24 r1 r2 r3 r4 z

0−1 −∞ ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0

0−2 −∞ ∞ 60 20 50 35 25 60 35 60 −35 35 −10 10 −11,250

Solutions for the subproblem

1 −15,475 −7,750 50 25 0 60 25 60 35 60 50 −50 −10 10 −10,475

2 −15,461 −10,022 15 60 25 60 60 25 0 60 −10 10 60 −60 −10,100

3 −11,388 −10,799 15 60 25 60 60 25 35 60 −10 10 25 −25 −11,150

4 −11,445 −10,967 15 60 25 60 25 60 35 60 −10 10 −10 10 −11,500

5 −11,302 −11,229 50 25 25 60 60 25 35 60 25 −25 25 −25 −10,625

6 −11,322 −11,250 50 25 25 60 25 60 35 60 25 −25 −10 10 −10,975

7 −11,250 −11,250 − − − − − − − − − − − − −
Master solutions

u1 u2 u3 u4 u5 u6 u7 u8 λ1 λ2 λ3 λ4 σ Feasible

1 −∞ −7,750 0 1 0 0 0 0 0 0 20 −80 20 20 −7,750 No

2 −15,475 −10,022 0 0.7 0.3 0 0 0 0 0 20 11 20 −71 −10,022 No

3 −15,461 −10,799 0 0.5 0.4 0.1 0 0 0 0 20 11 20 7 −10,799 Yes

4 −11,388 −10,967 0 0.4 0.3 0 0.3 0 0 0 20 11 16 20 −10,967 Yes

5 −11,445 −11,229 0 0 0.2 0 0.3 0.5 0 0 20 3 20 10 −11,229 Yes

6 −11,302 −11,250 0 0 0 0 0 0.7 0.3 0 20 3 20 12 −11,250 Yes

7 −11,323 −11,250 0 0 0 0 0.3 0.4 0 0.3 20 5 20 10 −11,250 Yes

The solution obtained by decomposition is the same as one obtained with-
out decomposition:

z = −11250, d11 = d12 = 25, d13 = d14 = 35,
d21 = 50, d22 = 60, d23 = 503, d24 = 60 .

Solution to Exercise 2.10. The problem to be solved consists of supplying
the energy demand at minimum cost. In order to formulate this problem, the
definition of the maximum energy produced by a set of production devices
was introduced in Sect. 1.3.4. This cost minimization problem can be stated
as

minimize
xi,∀i

z = x1 + 2x2 + 3x3 + 4x4 + 5x5

subject to



432 B Exercise Solutions

x1 ≤ 0.97
x2 ≤ 1.90

x3 ≤ 2.77
x4 ≤ 2.77

x5 ≤ 4.37
x1 +x2 ≤ 2.77
x1 +x3 ≤ 3.60
x1 +x4 ≤ 3.60
x1 +x5 ≤ 5.10

x2 +x3 ≤ 4.37
x2 +x4 ≤ 4.37
x2 +x5 ≤ 5.77

x3 +x4 ≤ 5.10
x3 +x5 ≤ 6.40

x4 +x5 ≤ 6.40
x1 +x2 +x3 ≤ 5.10
x1 +x2 +x4 ≤ 5.10
x1 +x2 +x5 ≤ 6.40
x1 +x3 +x4 ≤ 5.77
x1 +x3 +x5 ≤ 6.97
x1 +x4 +x5 ≤ 6.97

x2 +x3 +x4 ≤ 6.40
x2 +x3 +x5 ≤ 7.50
x2 +x4 +x5 ≤ 7.50

x3 +x4 +x5 ≤ 7.50
x1 +x2 +x3 +x4 ≤ 6.97
x1 +x2 +x3 +x5 ≤ 7.50
x1 +x2 +x4 +x5 ≤ 7.50
x1 +x3 +x4 +x5 ≤ 7.50

x2 +x3 +x4 +x5 ≤ 7.50
x1 +x2 +x3 +x4 +x5 ≤ 7.50

−x1 −x2 −x3 −x4 −x5 ≤ −7.50
x1 +x3 ≤ 3.00

x4 +x5 ≤ 4.00,

where xi is the energy produced by device i.
If the last two constraints are relaxed, the solution of the problem can be

obtained using a merit order rule; therefore these equations are complicating
constraints.

The solution of this problem is

z = 21.98, x1 = 0.88, x2 = 1.90, x3 = 2.13, x4 = 2.07, x5 = 0.53 .

We can obtain two feasible initial solutions of the relaxed problem mini-
mizing the following objective functions:



B.2 Exercises from Chapter 2 433

z1 = 2x1 − 3x2 + 5x3 + 6x4 + x5

z2 = x1 + 2.5x2 + 3x3 + 4x4 − x5 .

The solution resulting from the Dantzig-Wolfe decomposition algorithm is
provided in Table B.4.

Table B.4. Initial solutions for the subproblems and additional solutions obtained
through the Dantzig-Wolfe decomposition algorithm in Exercise 2.10

Iteration Bounds Initial solutions for the subproblems

ν Lower Upper x1 x2 x3 x4 x5 r1 r2 z

0−1 −∞ ∞ 0.62 1.90 1.10 0.00 3.88 1.72 3.88 27.10
0−2 −∞ ∞ 0.72 1.30 1.10 0.00 4.38 1.82 4.38 28.50

Solutions for the subproblem

1 21.68 27.10 0.98 1.80 2.33 1.88 0.53 3.30 2.40 21.68
2 18.59 22.71 0.72 1.90 0.00 2.48 2.40 0.72 4.88 26.43
3 21.76 22.23 0.88 1.90 1.87 2.32 0.53 2.75 2.85 22.22
4 21.97 21.98 0.88 1.90 2.32 1.87 0.53 3.20 2.40 21.78

Master solutions

u1 u2 u3 u4 u5 λ1 λ2 σ Feasible

1 −∞ 27.10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 27.16 Yes
2 21.68 22.71 0.19 0.00 0.81 0.00 0.00 –3.44 0.00 33.04 Yes
3 18.59 22.23 0.00 0.00 0.88 0.12 0.00 –1.84 0.00 27.76 Yes
4 21.76 21.98 0.00 0.00 0.45 0.00 0.55 –1.00 0.00 24.97 Yes

The solution obtained by decomposition is

z = 21.98, x1 = 0.92, x2 = 1.85, x3 = 2.08, x4 = 2.12, x5 = 0.53 .

Solution to Exercise 2.12.

1. We are interested in maximizing the number of planes that can be man-
ufactured. This problem is formulated as a linear programming problem.
The objective function can be expressed as

minimize
xi;∀i

z = −
3∑

i=1

xi,

where xi is the number of planes manufactured at location i.
For technical reasons, the available labor time and the fuselage material
are limited to a maximum amount at each location. These constraints are
expressed as
Available labor time constraints

10x1 ≤ 100
10x2 ≤ 120
10x3 ≤ 60 .



434 B Exercise Solutions

Fuselage material constraints

15x1 ≤ 50
15x2 ≤ 40
15x3 ≤ 55 .

Finally, the number of engines manufactured centrally are limited to a
maximum amount. This limit is enforced through the constraint below

x1 + x2 + x3 ≤ 9 .

Consequently, the problem has the form

minimize
xi;∀i

z = −
3∑

i=1

xi

subject to
10x1 ≤ 100
15x1 ≤ 50

10x2 ≤ 120
15x2 ≤ 40

10x3 ≤ 60
15x3 ≤ 55

x1 +x2 +x3 ≤ 9 .

2. Considering the number of planes a real variable, it can be noted that the
last constraint prevents a decomposed solution of the problem. Therefore,
the problem can be solved using the Dantzig-Wolfe decomposition.

We can obtain two feasible initial solutions of the relaxed problem min-
imizing the following objective functions:

z1 = −x1 − x2 + x3

z2 = x1 + x2 − x3.

The solution resulting from the Dantzig-Wolfe decomposition algorithm
is provided in Table B.5.
The solution obtained by decomposition is

z = −9.00, x1 = 3.33, x2 = 2.67, x3 = 3.00 .



B.3 Exercises from Chapter 3 435

Table B.5. Initial solutions for the subproblems and additional solutions obtained
through the Dantzig-Wolfe decomposition algorithm in Exercise 2.12

Iteration Bounds Initial solutions for the subproblems

ν Lower Upper x1 x2 x3 r1 z

0−1 −∞ ∞ 3.33 2.67 0.00 6.00 −6.00
0−2 −∞ ∞ 0.00 0.00 3.67 3.67 −3.67

Solutions for the subproblem

1 −9.67 −6.00 3.33 2.67 3.67 9.67 −9.67
2 −9.00 −9.00 − − − − −

Master solutions

u1 u2 u3 λ1 σ Feasible

1 −∞ –6.00 1.00 0.00 0.00 0.00 –6.00 Yes
2 –9.67 –9.00 0.18 0.00 0.82 –1.00 0.00 Yes

B.3 Exercises from Chapter 3

Solution to Exercise 3.2.

1. If the original problem is solved directly, the solution obtained is

x1 = 1, x2 = 0, x3 = 2.2, x4 = 3.4, x5 = 0.5, z = 18.2 .

2. If variable x5 is considered to be a complicating variable, the above prob-
lem can be solved using the Benders decomposition as follows.

Step 0: Initialization. The iteration counter is initialized, ν = 1. The
initial master problem is solved:

minimize
x5, α

z = 3x5 + α

subject to
−100 ≤ α .

The solution of this problem is x
(1)
5 = 0 and α(1) = −100. The value for

the objective function is z(1) = −100.

Step 1: Subproblem solution. The subproblem is infeasible, then ar-
tificial variables w1 and w2 are included in the subproblem,

minimize
x1, x2, x3, x4

z = 2x1 + 2.5x2 + 0.5x3 + 4x4 + 20(w1 + w2)



436 B Exercise Solutions

subject to

−2x1 +3x2 −4x5 −w1 ≤ −4
2x1 +4x2 +x5 −w1 ≤ 2.5

2x3 −x4 −x5 −w2 ≤ 0.5
−0.5x3 −x4 +3x5 −w2 ≤ −3

x5 = 0.

The solution of this problem is x
(1)
1 = 1.6, x

(1)
2 = 0, x

(1)
3 = 1.4, x

(1)
4 = 2.3,

w
(1)
1 = 0.8, and w

(1)
2 = 0. The objective function optimal value is

z(1) = 28.1. Note that the optimal value of the dual variable associated
with the constraint x5 = 0 is λ(1) = −32.5.

Step 2: Convergence checking. An upper bound of the objective func-
tion optimal value is computed as

z(1)
up = 28.1 + (−100) − (−100) = 28.15 .

A lower bound of the objective function optimal value is

z
(1)
down = −100 .

Since the difference z
(1)
up − z

(1)
down = 128.1 > ε, the procedure continues.

Step 3: Master problem solution. The iteration counter is updated,
ν = 1 + 1 = 2. The master problem below is solved.

minimize
x5, α

z = 3x5 + α

subject to
28.15 − 32.5(x5 − 0) ≤ α

−100 ≤ α .

The solution of this problem is x
(2)
5 = 3.9 and α(2) = −100. The value for

the objective function is z(2) = −88.2.

The procedure continues with Step 1.

The solution resulting from the Benders decomposition algorithm is given
in Table B.6.
The solution of this problem is x1 = 1, x2 = 0, x3 = 2.2, x4 = 3.4, x5 =
0.5 with an objective function value z = 18.2.

Solution to Exercise 3.4. If variable x1 is considered a complicating vari-
able, the considered problem can be solved using the Benders decomposition
as follows.



B.3 Exercises from Chapter 3 437

Table B.6. Evolution of the values of the master and subproblem variables using
the Benders decomposition in Exercise 3.2

ν x
(ν)
1 x

(ν)
2 x

(ν)
3 x

(ν)
4 x

(ν)
5 α(ν) λ(ν) z

(ν)
up z

(ν)
down w

(ν)
1 w

(ν)
2

1 1.6 0 1.4 2.3 0 −100 −32.5 28.1 −100 0.8 0

2 0 0 7.7 11 3.9 −100 29.6 88.4 −88.1 1.4 0

3 0 0 3.2 4.7 1.1 −7.6 9.6 23.7 −4.3 0 0

4 1.1 0 2.1 3.3 0.4 14.1 −22.9 19.5 15.4 0.1 0

5 0.9 0 2.3 3.5 0.6 15.3 5.6 18.7 17 0 0

6 1 0 2.2 3.4 0.5 16.7 5.6 18.2 18.2 0 0

Step 0: Initialization. The iteration counter is initialized, ν = 1. The initial
master problem is solved:

minimize
x1, α

−4x1 + α

subject to
x1 ≤ 4

2x1 ≤ 6
−x1 ≤ −1
−100 ≤ α .

The solution of this problem is x
(1)
1 = 3 and α(1) = −100. The value for

the objective function is z(1) = −112.

Step 1: Subproblem solution. The subproblem is infeasible, then an arti-
ficial variable w1 is included in the subproblem:

minimize
y1, y2, y3

−y1 − 3y2 − y3 − 4x1 + 20w1

subject to
−y1 +x1 −w1 ≤ 1

2y2 +2x1 −w1 ≤ 4
2y1 +y2 +2y3 +2x1 −w1 ≤ 9

x1 = 3.

The solution of this problem is y
(1)
1 = 2.5, y

(1)
2 = 0, y

(1)
3 = 0, and w

(1)
1 = 2.

The objective function optimal value is z(1) = 37.5. Note that the optimal
value of the dual variable associated with the constraint x1 = 3 is λ(1) = 40.

Step 2: Convergence checking. An upper bound of the objective function
optimal value is computed as

z(1)
up = 37.5 + (−112) − (−100) = 25.5 .



438 B Exercise Solutions

A lower bound of the objective function optimal value is

z
(1)
down = −112 .

Since the difference z
(1)
up − z

(1)
down = 137.5 > ε, the procedure continues.

Step 3: Master problem solution. The iteration counter is updated, ν =
1 + 1 = 2. The master problem below is solved

minimize
x1, α

−4x1 + α

subject to
x1 ≤ 4

2x1 ≤ 6
−x1 ≤ −1

37.5 + 40(x1 − 3) ≤ α
−100 ≤ α .

The solution of this problem is x
(2)
1 = 1 and α(2) = −42.5. The value for the

objective function is z(2) = −46.5.
The procedure continues with Step 1.
The solution resulting from the Benders decomposition algorithm is pro-

vided in Table B.7.

Table B.7. Evolution of the values of the master and subproblem variables using
the Benders decomposition in Exercise 3.4

ν y
(ν)
1 y

(ν)
2 y

(ν)
3 x

(ν)
1 α(ν) λ(ν) zup

(ν) zdown
(ν) w

(ν)
1

1 2.5 0 0 3 −100 40 25.5 −112 2

2 0 1 3 1 −42.5 3.5 −10 −46.5 0

3 2.5 0 0 2 −2.5 40 −10.5 −10.5 0

The solution of this problem is y1 = 2.5, y2 = 0, y3 = 0, x1 = 2 with an
objective function value z = 10.5.

Solution to Exercise 3.6. The formulation of the multiperiod investment
problem is

minimize
xit, yit, fij,t; i = 1, 2; t = 1, 2; (i, j) ∈ P

2x11 + 3.5x21 + 2.5(x12 − x11) + 3.0(x22 − x21)+

(0.7f13,1+0.8f23,1+0.5f12,1+0.6f21,1)+(0.7f13,2+0.8f23,2+0.5f12,2+0.6f21,2)



B.3 Exercises from Chapter 3 439

subject to product balance constraints in period 1

y11 = f13,1 + f12,1 − f21,1

y21 = f23,1 + f21,1 − f12,1

19 = f13,1 + f23,1 ,

and in period 2

y12 = f13,2 + f12,2 − f21,2

y22 = f23,2 + f21,2 − f12,2

15 = f13,2 + f23,2 ,

production bounds

0 ≤ yit ≤ xit; i = 1, 2; t = 1, 2 ,

expansion limits
xit ≤ xi,t+1; i = 1, 2; t = 1 ,

expansion capacity bounds

0 ≤ x1t ≤ 10; t = 1, 2 ,

0 ≤ x2t ≤ 12; t = 1, 2 ,

and transportation capacity limits

0 ≤ f13,t ≤ 11; t = 1, 2

0 ≤ f23,t ≤ 9; t = 1, 2

0 ≤ f12,t ≤ 5; t = 1, 2

0 ≤ f21,t ≤ 5; t = 1, 2 .

Note that variables xit are complicating variables. If they are fixed to
given values, the problem decomposes by time periods. The solution resulting
from the Benders decomposition algorithm is provided in Table B.8. Some of
the subproblems are infeasible; therefore, artificial variables w1 and w2 are
included to achieve feasibility.

The solution of this problem corresponds with the results provided in
Sect. 1.4.2.

Solution to Exercise 3.8.

1. The formulation of the optimal scheduling problem is

minimize
qit, yit, xit; i = 1, 2; t = 1, 2, 3

3∑
t=1

(10q1t + 12q2t + 4y1t + 2y2t)



440 B Exercise Solutions

Table B.8. Evolution of the values of the master and subproblem variables using
the Benders decomposition in Exercise 3.6

Subproblem solutions

ν y
(ν)
11 y

(ν)
21 f

(ν)
13,1 f

(ν)
23,1 f

(ν)
12,1 f

(ν)
21,1 y

(ν)
12 y

(ν)
22 f

(ν)
13,2 f

(ν)
23,2 f

(ν)
12,2 f

(ν)
21,2

1 3.8 3.8 7.6 7.6 0 0 3 3 6 6 0 0

2 10 9 10 9 0 0 10 5 10 5 0 0

3 10.4 7.4 10.8 7.8 0 0 10 5 10 5 0 0

4 8.5 9.3 9.6 9 0 0.7 8.1 6.9 8.1 6.9 0 0

5 10 9 10 9 0 0 10 5 10 5 0 0

Master problem solutions

ν x
(ν)
11 x

(ν)
21 x

(ν)
12 x

(ν)
22 α(ν) λ

(ν)
11 λ

(ν)
21 λ

(ν)
12 λ

(ν)
22 zup

(ν) zdown
(ν) w

(ν)
1 w

(ν)
2

1 0 0 0 0 −100 −3.9 −3.8 −3.9 −3.8 −100 156.4 3.8 3

2 10 12 10 12 −12.8 −0.1 0 0 0 49.2 87.2 0 0

3 10 7 10 7 25.2 0 −3.8 0 0 69.7 77.3 0.4 0

4 8.1 8.9 8.1 8.9 25.4 −4.1 −3.5 −0.1 0 72.9 80.9 0.4 0

5 10 9 10 9 25.2 0 0 0 0 76.7 76.7 0 0

subject to
production balances

q11 + q21 = 100
q12 + q22 = 140
q13 + q23 = 200 ,

ramping limits

q1,t+1 − q1t ≤ 60; t = 1, 2
q1t − q1,t+1 ≤ 60; t = 1, 2
q2,t+1 − q2t ≤ 60; t = 1, 2
q2t − q2,t+1 ≤ 60; t = 1, 2 ,

production capacity limits

10x1t ≤ q1t; t = 1, 2, 3
50x2t ≤ q2t; t = 1, 2, 3

q1t ≤ 150x1t; t = 1, 2, 3
q2t ≤ 180x2t; t = 1, 2, 3 ,



B.4 Exercises from Chapter 4 441

logic of running and start-up status for production devices

y11 ≥ x11

y1t ≥ x1t − x1,t−1; t = 2, 3
y21 ≥ x21

y2t ≥ x2t − x2,t−1; t = 2, 3 ,

feasibility constraints (these constraints force the master problem to gen-
erate feasible solutions for the subproblem)

10x11 + 50x21 ≤ 100
150x11 + 180x21 ≥ 100

10x12 + 50x22 ≤ 140
150x12 + 180x22 ≥ 140

10x13 + 50x23 ≤ 200
10x13 + 50x23 ≤ 200

150x13 + 180x23 ≥ 200 ,

and discrete and binary variable declarations

qit ∈ N; i = 1, 2; t = 1, 2, 3
xit ∈ {0, 1}; i = 1, 2; t = 1, 2, 3
yit ∈ {0, 1}; i = 1, 2; t = 1, 2, 3 .

Variables qit represent the production of device i in period t, xit represent
the status variables of device i in period t, and variables yit represent the
start-up variable of device i in period t.

2. It should be noted that variables xit and yit are complicating variables.
The solution resulting from the Benders decomposition algorithm is pro-
vided in Table B.9. Note that dual variables λ are associated with the
constraints that fix the values of the complicating variables in the sub-
problem, therefore there are 12 dual variables. In Table B.9 we only pro-
vide the values of the dual variables which are different to zero. Dual
variables λ3, λ4, and λ5 correspond with constraints that fix the values of
x13, x21, and x22, respectively.

B.4 Exercises from Chapter 4

Solution to Exercise 4.2. Using the rules in Sect. 4.3.2 we obtain the dual
problem

maximize
y1, y2, y3

z = 4y1 + y3



442 B Exercise Solutions

Table B.9. Evolution of the values of the master and subproblem variables using
the Benders decomposition in Exercise 3.8

Subproblem solutions

ν q
(ν)
11 q

(ν)
12 q

(ν)
13 q

(ν)
21 q

(ν)
22 q

(ν)
23 x

(ν)
11 x

(ν)
12 x

(ν)
13 x

(ν)
21 x

(ν)
22 x

(ν)
23

1 50 90 150 50 50 50 1 1 1 1 1 1
2 100 140 150 0 0 50 1 1 1 0 0 1
3 100 140 150 0 0 50 1 1 1 0 0 1

Master problem solution

ν y
(ν)
11 y

(ν)
12 y

(ν)
13 y

(ν)
21 y

(ν)
22 y

(ν)
23 α(ν) λ

(ν)
3 λ

(ν)
4 λ

(ν)
5 z

(ν)
up z

(ν)
down

1 1 0 0 1 0 0 −1,000 0 100 200 −994 4,706
2 1 0 0 0 0 1 4,400 −300 0 0 4,406 4,506
3 1 0 0 0 0 1 4,500 −300 0 0 4,506 4,506

subject to
y1 +2y2 ≤ 3
y1 −y2 +3y3 ≤ 1

−y1 +y3 = 0
−y1 +y2 −2y3 ≥ −1

y2 ≤ 0
y3 ≥ 0 .

Note that

1. Since the primal problem is a minimization problem, the dual is a maxi-
mization problem.

2. The coefficients of the dual objective function are the right-hand side
terms of the primal constraints.

3. The right-hand side terms of the dual problem constraints are the coeffi-
cients of the primal objective function.

4. The matrix of the coefficients of the dual constraints is the transpose of
the corresponding primal matrix.

5. The equal, less-equal, or greater-equal signs are derived from the rules in
Sect. 4.3.2.

The solution of the primal is

x∗
1 = 0, x∗

2 = 5/4, x∗
3 = −11/4, x∗

4 = 0, z∗P = 5/4 ,

and the solution of the dual

y∗
1 = 1/4, y∗

2 = 0, y∗
3 = 1/4, z∗D = 5/4 .

Note that the optimal objective function values of the primal and dual
problems coincide.



B.4 Exercises from Chapter 4 443

Solution to Exercise 4.4. The Lagrangian function is

L(x, y, λ, µ) = x2 + y2 + λ(x − 5) + µ(3 − xy)

and the KKT conditions

2x + λ − µy = 0
2y − µx = 0

x = 5
xy ≥ 3

µ(3 − xy) = 0
µ ≥ 0 ,

which lead to the primal and dual solutions

x∗ = 5, y∗ = 3/5, λ∗ = −1,232/125, µ∗ = 6/25 .

For obtaining the dual problem we first calculate the dual function

φ(λ, µ) = inf
x,y

L(x, y, λ, µ) = inf
x,y

[
x2 + y2 + λ(x − 5) + µ(3 − xy)

]
,

and since

∂L(x, y, λ, µ)
∂x

= 2x + λ − µy = 0

∂L(x, y, λ, µ)
∂y

= 2y − µx = 0 ,

it leads to
x =

2λ

µ2 − 4
, y =

λµ

µ2 − 4
.

The dual function becomes

φ(λ, µ) =
λ2 − 5λ

(
µ2 − 4

)
+ 3µ

(
µ2 − 4

)
µ2 − 4

and then the dual problem is

maximize
λ, µ

φ(λ, µ) =
λ2 − 5λ

(
µ2 − 4

)
+ 3µ

(
µ2 − 4

)
µ2 − 4

subject to µ ≥ 0.
Finally, since

∂φ(λ, µ)
∂λ

=
20 + 2λ − 5µ2

µ2 − 4
= 0

∂φ(λ, µ)
∂µ

=
−2λ2µ + 3

(
µ2 − 4

)2

(µ2 − 4)2
= 0 ,



444 B Exercise Solutions

one obtains
λ∗ = −1232/125, µ∗ = 6/25 ,

which is the solution of the dual problem, and obviously coincides with that
obtained from the KKT conditions above.

Solution to Exercise 4.6. The problem is illustrated graphically in Fig. B.1.
The Lagrangian function is

L(x1, x2, λ, µ1, µ2, µ3, µ4) = 2x2
1 + x2

2 − 2x1x2 − 6x2 − 4x1

+λ(x2
1 + x2

2 − 1) + µ1(−x1 + 2x2)
+µ2(x1 + x2 − 8) − µ3x1 − µ4x2 ,

and the KKT conditions

0.5 1.5 2 2.5 31 x1

x2

0.5

1.5

2

2.5

3

1

x*
Feasible region defined

by the inequality constraints∇ f (x*)

∇g1 (x*)

∇h (x*)

f (x*) = -5.261

g1 (x) = -x1+2x2

h (x) = x1+ x2
2 2

f (x)  contours

Fig. B.1. Illustration of the problem in Exercise 4.6



B.4 Exercises from Chapter 4 445

4x1 − 2x2 − 4 + 2λx1 − µ1 + µ2 − µ3 = 0
2x2 − 2x1 − 6 + 2λx2 + 2µ1 + µ2 − µ4 = 0

x2
1 + x2

2 = 1
−x1 + 2x2 ≤ 0

x1 + x8 ≤ 8
µ1(−x1 + 2x2) + µ2(x1 + x2 − 8) − µ3x1 − µ4x2 = 0

µ1, µ2, µ3, µ4 ≥ 0 ,

which leads to

x∗
1 =

2√
5
, x∗

2 =
1√
5
, λ∗ =

7√
5
−1, µ∗

1 =
2
5
(4+

√
5), µ∗

2 = µ∗
3 = µ∗

4 = 0 ,

with an objective function value zP = 1 − 14√
5
.

The dual function is

φ(λ, µ1, µ2, µ3, µ4) = inf
x1,x2

L(x1, x2, λ, µ1, µ2, µ3, µ4)

and since

∂L(x1, x2, λ, µ1, µ2, µ3, µ4)
∂x1

= 4x1 − 2x2 − 4 + 2λx1 − µ1 + µ2 − µ3 = 0

∂L(x1, x2, λ, µ1, µ2, µ3, µ4)
∂x2

= 2x2 − 2x1 − 6 + 2λx2 + 2µ1 + µ2 − µ4 = 0

it leads to

x1 =
10 − µ1 − 2µ2 + µ3 + λ(4 + µ1 − µ2 + µ3) + µ4

2(1 + 3λ + λ2)

x2 =
16 − 3µ1 − 3µ2 + µ3 + 2µ4 + λ(6 − 2µ1 − µ2 + µ4)

2(1 + 3λ + λ2)
,

the dual function becomes

φ(λ, µ1, µ2, µ3, µ4) = −136 + 4λ3 + 5µ2
1 − 20µ2 + 5µ2

2 + 4λ2(3 + 8µ2)
4(1 + 3λ + λ2)

−20µ3 − 4µ2µ3 + µ2
3 + 2µ1(−22 + 4µ2 − µ3 − 3µ4)
4(1 + 3λ + λ2)

−32µ4 − 6µ2µ4 + 2µ3µ4 + 2µ2
4 + λ(56 + 5µ2

1)
4(1 + 3λ + λ2)

−λ(2µ2
2 + 8µ3 + µ2

3 + 12µ4 + µ2
4 + 76µ2)

4(1 + 3λ + λ2)

−λ(−2µ2λ(µ3 + µ4) + 2µ1(µ2 + µ3 − 2(4 + µ4)))
4(1 + 3λ + λ2)

,



446 B Exercise Solutions

and the dual problem becomes

maximize
λ, µ1, µ2, µ3, µ4

zD = φ(λ, µ1, µ2, µ3, µ4)

subject to µ1, µ2, µ3, µ4 ≥ 0, whose solution is

λ∗ =
7√
5
− 1, µ∗

1 =
2
5
(4 +

√
5), µ∗

2 = µ∗
3 = µ∗

4 = 0 ,

which coincides with the one given above.

The optimal objective function value of the dual problem is zD = 1− 14√
5

that coincides with the optimal objective function value of the primal prob-
lem, therefore no duality gap exists.

Solution to Exercise 4.8. Consider the scheme of the problem in Fig. 4.13.
Since the equation of the straight line passing through the points (x, 0) and
(0, y) is

v = −y

x
(u − x)

and the critical case occurs where the point (a, b) touches the ladder, the
problem can be stated as

minimize
x, y

x2 + y2

subject to
xb + y(a − x) ≤ 0 .

The Lagrangian function is

L(x, y, µ) = x2 + y2 + µ [xb + y(a − x)]

and the KKT conditions

2x + µ(b − y) = 0
2y + µ(a − x) = 0
xb + y(a − x) ≤ 0

µ [xb + y(a − x)] = 0 ,

which for µ �= 0 leads to

x∗ = a + a1/3b2/3

y∗ = b + a2/3b1/3

µ∗ = 2
(

a2/3 + b2/3

a1/3b1/3

)
.



B.4 Exercises from Chapter 4 447

The dual function is

φ(µ) = inf
x,y

L(x, y, µ) = inf
x,y

{
x2 + y2 + µ [xb + y(a − x)]

}
.

Since
∂L(x, y, µ)

∂x
= 2x + µ(b − y) = 0

and
∂L(x, y, µ)

∂y
= 2y + µ(a − x) = 0

it leads to

x =
2bµ + aµ2

µ2 − 4
, y =

2aµ + bµ2

µ2 − 4
,

we have

φ(µ) =
µ2(a2 + b2 + abµ)

µ2 − 4
.

Then, the dual problem is

maximize
µ

µ2(a2 + b2 + abµ)
µ2 − 4

subject to µ ≥ 0.
Since

∂φ(µ)
∂µ

=
µ
(
abµ

(−12 + µ2
)− 8a2 − 8b2

)
(µ2 − 4)2

= 0 ,

we have

µ∗ = 2
(

a2/3 + b2/3

a1/3b1/3

)
,

i.e., the same value obtained from the KKT conditions.

Solution to Exercise 4.10. The problem can be stated as

minimize
x, y, z

x2 + y2 + z2

subject to
xyz = 1; x, y, z ≥ 0 .

The Lagrangian function is

L(x, y, µ) = x2 + y2 + z2 + λ(xyz − 1) − µ1x − µ2y − µ3z

and the KKT conditions



448 B Exercise Solutions

2x + λyz − µ1 = 0
2y + λxz − µ2 = 0
2z + λxy − µ3 = 0

xyz = 1
x, y, z ≥ 0

µ1x + µ2y + µ3z = 0
µ1, µ2, µ3 ≥ 0 ,

which for µ1 = µ2 = µ3 = 0 leads to

x∗ = y∗ = z∗ = 1, λ∗ = −2 . (B.1)

The dual function is

φ(λ, µ1, µ2, µ3) = inf
x,y

L(x, y, λ, µ1, µ2, µ3)

= inf
x,y

{
x2 + y2 + z2 + λ(xyz − 1) − µ1x − µ2y − µ3z

}
.

Since
∂L(x, y, λ, µ1, µ2, µ3)

∂x
= 2x + λyz − µ1 = 0

∂L(x, y, λ, µ1, µ2, µ3)
∂y

= 2y + λxz − µ2 = 0

∂L(x, y, λ, µ1, µ2, µ3)
∂z

= 2z + λxy − µ3 = 0 ,

and we can use the symmetry property of the problem, we have

x = y = z =
−1 +

√
1 + λµ

λ

and µ1 = µ2 = µ3 = µ. Then, we have

φ(λ, µ) =
2 − λ3 − 2

√
1 + λµ + λµ

√
1 + λµ

λ2
.

Then, the dual problem is

maximize
λ, µ

φ(λ, µ) =
2 − λ3 − 2

√
1 + λµ + λµ

√
1 + λµ

λ2

subject to µ ≥ 0, whose solution is

µ∗ = 0, λ∗ = −2 ,

which implies µ∗
1 = µ∗

2 = µ∗
3 = 0, i.e., the same value obtained from the KKT

conditions.



B.4 Exercises from Chapter 4 449

Solution to Exercise 4.12. We must introduce one multiplier for each con-
straint. We denote as λ the multiplier for the equality constraint, and µ1, µ2,
and µ3 the multipliers for the inequality constraints. Then, the Lagragian
function is

L(λ, µ1, µ2, µ3)=−x1 +x2+λ(−x2
1 +x2)+µ1(x2

1+x2
2−4)−µ2x1−µ3x2. (B.2)

The KKTC conditions are

1. The stationary condition of the Lagrangian function is stated as( −1
1

)
+λ

( −2x1

1

)
+µ1

(
2x1

2x2

)
+µ2

( −1
0

)
+µ3

(
0

−1

)
=

(
0
0

)
.

(B.3)
2. The primal feasibility conditions are

x2
1 + x2

2 − 4 ≤ 0
−x1 ≤ 0
−x2 ≤ 0 (B.4)

−x2
1 + x2 = 0.

3. The slackness conditions are

µ1(x2
1 + x2

2 − 4) = 0 (B.5)
µ2(−x1) = 0 (B.6)
µ3(−x2) = 0. (B.7)

4. The dual feasibility conditions are

µ1, µ2, µ3 ≥ 0 . (B.8)

To solve this system of equalities and inequalities, we consider the following
cases (full enumeration of possibilities):

Case 1. µ2 �= 0. If µ2 �= 0, then using condition (B.6), x1 = 0, and condition
(B.3) implies

−1 − µ2 = 0
1 + 2x2µ1 − µ3 + λ = 0 .

Since µ2 = −1 and the non-negativity condition (B.8) does not hold, then any
KKT points must satisfy µ2 = 0.

Case 2. µ3 �= 0 and µ2 = 0. If µ3 �= 0 then using condition (B.7), x2 = 0,
and using the relationship −x2

1 + x2 = 0 of condition (B.4) we obtain x1 = 0,
and using condition (B.3), we obtain the contradiction



450 B Exercise Solutions

−1 = 0 .

This shows that any KKT point must have µ3 = 0.

Case 3. µ1 �= 0 and µ2 = µ3 = 0. If µ1 �= 0, then using condition (B.5),
we obtain x2

1 + x2
2 − 4 = 0, and using the feasibility condition, we form the

following system of equations

x2
1 + x2

2 − 4 = 0
−x2

1 + x2 = 0 .
(B.9)

The only solution satisfying condition (B.9) is (x1, x2) = (
√

δ, δ), where δ =
(−1 +

√
17)

2
and, using condition (B.3), we get

−1 + 2
√

δµ1 − 2
√

δλ = 0
1 + 2δµ1 + λ = 0 ,

with solution

µ1 =
2δ −√

δ

2δ(1 + 2δ)
> 0

λ =
−1
2
√

δ
+

2δ −√
δ

2δ(1 + 2δ)
,

which is a KKT point.

Case 4. The last case is µ1 = µ2 = µ3 = 0. Using condition (B.3), we obtain
the system of equations

−1 − 2λx1 = 0
1 + λ = 0 ,

and we obtain the solution λ = −1 and x1 = 1/2. Using now condition (B.4),
we get x2 = x2

1 = 1/4. Since this point is feasible, it is also a KKT point.
Thus, there are two candidates, shown in Cases 3 and 4:

(x1, x2, λ, µ1, µ2, µ3) =

(√
δ, δ,

−1
2
√

δ
+

2δ −√
δ

2δ(1 + 2δ)
,

2δ −√
δ

2δ(1 + 2δ)
, 0, 0

)

with

δ =
(−1 +

√
17)

2
and

(x1, x2, λ, µ1, µ2, µ3) = (1/2, 1/4,−1, 0, 0, 0) .



B.5 Exercises from Chapter 5 451

B.5 Exercises from Chapter 5

Solution to Exercise 5.2. The solutions for the different items are as follows:

1. The Lagrangian problem is

L(x, y, λ) = x2 + y2 + λ(x + y − 10)

subject to

x ≥ 0
y ≥ 0.

2. The LR decomposition reconstructs and solves the dual problem in a
distributed fashion. Consider the dual problem

maximize
λ

2∑
i=1

φi(λ)

where

φ1(λ) = minimize
x

L1(λ) = x2 + λx − 5λ

subject to

x ≥ 0 ,

and

φ2(λ) = minimize
y

L2(λ) = y2 + λy − 5λ

subject to

y ≥ 0 .

If, as stated in Sect. 5.3.4, a subgradient procedure with proportionality

“constant” for iteration ν equal to k(ν) =
1

a + b ν
is used, then

λ ← λ +
1

a + bν

(x + y − 10)
| (x + y − 10) | .

With a = 1, b = 0.1, and an initial multiplier value λ(0) = −8, we can use
the following program in GAMS to solve the problem:



452 B Exercise Solutions

$Title Exercise 5.2.2

file out/Exercise5.2.2.out/; put out;

SCALARS
a updating parameter /1/
b updating parameter /0.1/
error control eror parameter /1/
epsilon maximum tolerable error /1e-3/
itmax maximum iteration number /200/
nu iteration counter /0/
lambdaold;

PARAMETERS
lambda Lagrange multiplier value /-8/;

POSITIVE VARIABLES x,y;

VARIABLES phi1,phi2;

EQUATIONS dual1,dual2;

dual1..phi1=e=x*x+lambda*x-5*lambda;
dual2..phi2=e=y*y+lambda*y-5*lambda;

MODEL dual1df /dual1/; MODEL dual2df /dual2/;

x.l=0; y.l=0;
phi1.l=x.l*x.l+lambda*x.l-5*lambda;
phi2.l=y.l*y.l+lambda*y.l-5*lambda;

while(error>epsilon and nu<itmax,
nu=nu+1;
put " Iteration ",nu:3:0//;
SOLVE dual1df using nlp MINIMIZING phi1;
put "Modelstat= ",dual1df.modelstat,"; Solvestat= ",...
...dual1df.solvestat/;
put "Phi1= ",phi1.l:8:3,"; x= ",x.l:8:3/;
SOLVE dual2df using nlp MINIMIZING phi2;
put "Modelstat= ",dual2df.modelstat,"; Solvestat= ",...
...dual2df.solvestat/;
put "Phi2= ",phi2.l:8:3,"; y= ",y.l:8:3/;
put "z= ",(phi1.l+phi2.l):8:3/;

* Updating multiplier
lambdaold=lambda;
lambda=lambdaold+(x.l+y.l-10)/(abs(x.l+y.l-10))/(b+a*nu);
put "New multiplier lambda= ",lambda:8:3//;

* Updating error
if(lambda ne 0,

error=abs((lambda-lambdaold)/lambda);
else

error=abs((lambda-lambdaold));
);
put "Error= ",error:12:9//;

);

The optimal solution is x∗ = 5.005, y∗ = 5.005, z∗ = 50.000 that is at-
tained after 100 iterations.

3. Using the bundle (BD) method for updating the multipliers the quadratic
programming problem below must be solved (see Sect. 5.3.4)

maximize
z, λ ∈ C

z − α(ν)|λ − M (ν)|2



B.5 Exercises from Chapter 5 453

subject to

z ≤ φ(k) + s(k)
(
λ − λ(k)

)
; k = 1, . . . , ν , (B.10)

where C = {λ,−10 ≤ λ ≤ 0}, φ(k) and s(k) are the dual function and the
subgradient at iteration k, respectively. Then, we have

φ(k) =
((

x(k)
)2

+
(
y(k)

)2

+ λ(k)
(
x(k) + y(k) − 10

))
s(k) =

(
x(k) + y(k) − 10

)
.

The penalty parameter can be calculated as α(ν) = d ν, where d is a
constant scalar. If ν = 1, the center of gravity is M (1) = λ0. Otherwise,
the center of gravity is computed as

if φ
(
λ(ν)

)− φ
(
M (ν−1)

) ≥ mδ(ν−1)

then M (ν) = λ(ν)

else M (ν) = M (ν−1) ,

where

φ
(
µ(ν)

)
=

(
(x(ν))2 + (y(ν))2 + λ(ν)(x(ν) + y(ν) − 10)

)
φ
(
M (ν−1)

)
=

(
(x(ν−1))2 +(y(ν−1))2 +M (ν−1)(x(ν−1) + y(ν−1) − 10)

)
.

The objective function gap is

δ(ν−1) = z(ν−1) − d(ν − 1)|λ(ν−1) − M (ν−1)|2 − φ
(
λ(ν−1)

)
.

With C = {λ,−20 ≤ λ ≤ 0}, m = 0.5, d = 0.02, and an initial multiplier
value λ0 = −8, the following GAMS program can be used for solving this
problem:

$Title Exercise 5.2.3

file out/Exercise5.2.3.out/; put out;

Set
IT maximum number of iterations /1*30/
ITER(IT) dynamic set for activating cutting hyperplanes
ACT(IT) dynamic set for the actual iteration;

ALIAS(IT,IT1); ITER(IT)=no;

SCALARS
error control eror parameter /1/
epsilon maximum tolerable error /1e-3/
phiup dual function upper bound /INF/
philo dual function lower bound /-INF/
alpha penalty parameter
d constant /0.02/
me /0.5/;



454 B Exercise Solutions

PARAMETERS
lambdas(IT) lagrange multipliers values for each iteration
zs(IT) dual function values for each iteration
s(IT) subgradient values for each iteration
M(IT)
phiM(IT)
delta(IT);

POSITIVE VARIABLES x,y;

VARIABLES
z,phi1,phi2,objcut
lambda Lagrange multipliers value;

EQUATIONS dual1,dual2,cutobj,cutting,lambdaup,lambdalo;

dual1..phi1=e=x*x+lambda*x-5*lambda;
dual2..phi2=e=y*y+lambda*y-5*lambda;
cutobj(ACT)..objcut=e=z-alpha*sqr(lambda-M(ACT));
cutting(ITER)..z=l=zs(ITER)+s(ITER)*(lambda-lambdas(ITER));
lambdaup..lambda=g=-20; lambdalo..lambda=l=0;

MODEL dual1df /dual1/;
MODEL dual2df /dual2/;
MODEL updating updating /cutobj,cutting,...
...lambdaup,lambdalo/;

x.l=0; y.l=0;

lambdas(IT)=0;
zs(IT)=0;
s(IT)=0;
M(IT)=0;
phiM(IT)=0;
delta(IT)=0;

lambda.fx=-8;

loop(IT$(error>epsilon),

put " Iteration ",ORD(IT):3:0//;

alpha=d*ORD(IT);

phi1.l=x.l*x.l+lambda.l*x.l-5*lambda.l;
phi2.l=y.l*y.l+lambda.l*y.l-5*lambda.l;
SOLVE dual1df using nlp MINIMIZING phi1;
put "Modelstat= ",dual1df.modelstat,"; Solvestat= ",...
...dual1df.solvestat/;
put "Phi1= ",phi1.l:8:3,"; x= ",x.l:8:3/;
SOLVE dual2df using nlp MINIMIZING phi2;
put "Modelstat= ",dual2df.modelstat,"; Solvestat= ",...
...dual2df.solvestat/;
put "Phi2= ",phi2.l:8:3,"; y= ",y.l:8:3/;

lambdas(IT)=lambda.l;
zs(IT)=phi1.l+phi2.l;
s(IT)=x.l+y.l-10;
philo=zs(IT);
put "z= ",zs(IT):8:3,"; lambda= ",lambdas(IT):8:3,";...
...subgradient= ",s(IT):8:3,"; Dual lower bound= ",philo:8:3/;

if(ORD(IT)=1,
M(IT)=lambda.l;

else



B.5 Exercises from Chapter 5 455

if(zs(IT)-sum(IT1$(ORD(IT1)+1=ORD(IT)),phiM(IT1))...
...ge me*sum(IT1$(ORD(IT1)+1=ORD(IT)),delta(IT1)),

M(IT)=lambda.l;
else

M(IT)=sum(IT1$(ORD(IT1)+1=ORD(IT)),M(IT1));
);

);
phiM(IT)=x.l**2+y.l**2+M(IT)*s(IT);

ACT(IT1)=no;
ACT(IT)=yes;
ITER(IT)=yes;

lambda.up=Inf;
lambda.lo=-Inf;
SOLVE updating using nlp MAXIMIZING objcut;
put "Modelstat= ",updating.modelstat,"; Solvestat= ",...
...updating.solvestat/;
put "objcut= ",objcut.l:8:3,"z= ",z.l:8:3,"; lambda= ",...
...lambda.l:8:3/;

delta(IT)=z.l-alpha*sqr(lambdas(IT)-M(IT))-zs(IT);
lambda.fx=lambda.l;
phiup=objcut.l;
put "Dual function upper bound= ",phiup:8:3/;

* Updating error
if(lambda.l ne 0,

error=abs((lambda.l-lambdas(IT))/lambda.l);
else

error=abs(lambda.l-lambdas(IT));
);
put "Error= ",error:12:9//;

);

The optimal solution is x∗ = 5.027, y∗ = 5.027, z∗ = 49.999 that is at-
tained after nine iterations.

4. Note that both methods converge to the same solution but the bundle
method (9 iterations) is much faster than the subgradient method (100
iterations) with the same prespecific error tolerance (ε = 0.001).

Solution to Exercise 5.4. The production-scheduling problem formulated
in Sect. 1.5.1, p. 39, can be solved using the Lagrangian relaxation (LR)
method. If the demand constraints (1.51) for the periods (m = 2) are consid-
ered as complicating constraints, the nonlinear production-scheduling problem
decomposes by production device (n = 2). The solution of this problem is the
same as the solution of the following dual problem:

maximize
λ

φ(λ)

subject to
λdown ≤ λ ≤ λup,

where λ is the Lagrange multipliers vector related to the demand constraints
(1.51) for all periods.

Note that the dual function can be decomposed by production device, thus
φ(λ) =

∑n
i=1 φi(λ) where the dual functions φi(λ) are



456 B Exercise Solutions

φi(λ) = minimize
xit

m∑
t=1

(
aixit +

1
2
bix

2
it + λt

(
xit − dt

n

))
subject to

xit ≥ 0; t = 1, . . . , m
xit ≤ xmax

i ; t = 1, . . . , m
xi1 − x0

i ≤ rmax
i

xit − xi,t−1 ≤ rmax
i ; t = 2, . . . , m

x0
i − xi1 ≤ rmax

i

xi,t−1 − xit ≤ rmax
i ; t = 2, . . . , m ,

(B.11)

where the demand for each period dt has been equally distributed among all
devices.

For the Lagrange multipliers updating the cutting plane method (CP) is
used. To this aim, the following problem is solved:

maximize
z, λt; t = 1, . . . , m

z

subject to

z ≤ φ(k) +
t∑

i=1

s
(k)
t

(
λt − λ

(k)
t

)
; k = 1, . . . , ν

λdown ≤ λ ≤ λup ,

where st =
∑n

i=1 xit − dt is the subgradient of the dual function.
Assuming λup = 10, λdown = −10, λ(0) = 0, and x

(0)
it = 0 where i =

1, 2; t = 1, 2, the following GAMS program is used to solve this problem:

$Title Exercise 5.4.1

file out/Exercise5.4.1.out/; put out;

Set
m the number of time periods /1*2/
n the number of production devices /1*2/
ACT(n) dynamic set for the actual device;

Alias(m,m1); Alias(n,n1);

PARAMETERS
xmax(n) the output capacity of device n/
1 6
2 8/
rmax(n) the ramping (up and down) limit of device n/
1 1.5
2 3/
x0(n) initial output level of device n/
1 2
2 2.5/
a(n) linear coefficients in the cost function of device n/
1 2
2 2.5/
b(n) nonlinear coefficients in the cost function of device n/



B.5 Exercises from Chapter 5 457

1 0.6
2 0.5/
d(m) demand for period m/
1 9
2 12/;

POSITIVE VARIABLES x(n,m) the output of device n during period m;

Equation maxout maximum output capacity;
maxout(ACT,m)..x(ACT,m)=l=xmax(ACT);

Equation rampup0,rampup ramping up limits;
rampup0(ACT)..x(ACT,’1’)-x0(ACT)=l=rmax(ACT);
rampup(ACT,m,m1)$(ORD(m)+1=ORD(m1))..x(ACT,m1)-x(ACT,m)=l=...
...rmax(ACT);

Equation rampdown0,rampdown ramping down limits;
rampdown0(ACT)..x0(ACT)-x(ACT,’1’)=l=rmax(ACT);
rampdown(ACT,m,m1)$(ORD(m)+1=ORD(m1))..x(ACT,m)-x(ACT,m1)=l=...
...rmax(ACT);

Set
IT iteration number /1*50/
ITER(IT) dynamic set for activating cutting hyperplanes;

SCALARS
error control error parameter /0/
maxerror /1/
epsilon maximum tolerable error /1e-3/
phiup dual function upper bound /INF/
philo dual function lower bound /-INF/;

PARAMETERS
lambdas(IT,m) Lagrange multipliers values associated with demand...
...constraint m for iteration IT
zs(IT) dual function values for iteration IT
s(IT,m) subgradient values associated with demand constraint m ...
...for iteration IT;

VARIABLES z, phi, lambda(m) lagrange multipliers value;

EQUATION dual associated with each device;
dual(ACT)..phi=e=sum(m,a(ACT)*x(ACT,m)+0.5*b(ACT)*x(ACT,m)**2+...
...lambda(m)*(x(ACT,m)-d(m)/card(n)));

EQUATION cutting cutting planes;
cutting(ITER)..z=l=zs(ITER)+sum(m,s(ITER,m)*(lambda(m)-...
...lambdas(ITER,m)));

EQUATIONS lambdaup,lambdalo upper and lower Lagrange multiplier
limits;

lambdaup(m)..lambda(m)=l=10;
lambdalo(m)..lambda(m)=g=-10;

MODEL dualdf /dual,maxout,rampup0,rampup,rampdown0,rampdown/;
MODEL updating multiplier updating /cutting,lambdaup,lambdalo/;

x.l(n,m)=0;

ITER(IT)=no;

lambdas(IT,m)=0; zs(IT)=0; s(IT,m)=0;

lambda.fx(m)=0;

loop(IT$(maxerror>epsilon),



458 B Exercise Solutions

put " Iteration ",ORD(IT):3:0//;

loop(n,
ACT(n1)=no;
ACT(n)=yes;
phi.l=sum(m,a(n)*x.l(n,m)+0.5*b(n)*x.l(n,m)**2+...
...lambda.l(m)*(x.l(n,m)-d(m)/card(n)));
SOLVE dualdf using nlp MINIMIZING phi;
put "Modelstat= ",dualdf.modelstat,"; Solvestat= ",...
...dualdf.solvestat/;
put "phi(",ORD(n):3:0,")= ",phi.l:8:3/;
loop(m,

put "x(",ORD(n):3:0,", ",ORD(m):3:0,")= ",x.l(n,m):8:3/;
);
zs(IT)=zs(IT)+phi.l;

);

s(IT,m)=sum(n,x.l(n,m))-d(m);
lambdas(IT,m)=lambda.l(m);
philo=zs(IT);
put "z= ",zs(IT):8:3,"; Dual function lower bound= ",philo:8:3/;
loop(m,

put "subgrad(",ORD(IT):3:0,", ",ORD(m):3:0,")= ",s(IT,m):8:3/;
);

ITER(IT)=yes;

lambda.up(m)=Inf;
lambda.lo(m)=-Inf;
SOLVE updating using nlp MAXIMIZING z;
put "Modelstat= ",updating.modelstat,"; Solvestat= ",...
...updating.solvestat/;
put "z= ",z.l:8:3/;
loop(m,

put "lambda(",ORD(m):3:0,")= ",lambda.l(m):8:3/;
);

lambda.fx(m)=lambda.l(m);
phiup=z.l;
put "Dual function upper bound= ",phiup:8:3/;

* Updating error

maxerror=0;
loop(m,

if(lambda.l(m) ne 0,
error=abs((lambda.l(m)-lambdas(IT,m))/lambda.l(m));

else
error=abs((lambda.l(m)-lambdas(IT,m)));

);
if(error>maxerror, maxerror=error;);

);
put "Error= ",maxerror:12:9//;

);

The optimal solution is

x∗
11 = 3.500, x∗

12 = 5.000, x∗
21 = 5.500, x∗

22 = 7.003 ,

which is attained after 22 iterations with a relative error tolerance of ε = 0.001.
Note that it is the same solution provided in Sect. 1.5.1.

For solving this problem using the augmented Lagrangian (AL) decompo-
sition (see Sect. 5.4) the following augmented Lagrangian function is defined:



B.5 Exercises from Chapter 5 459

A(x,λ)=
n∑

i=1

m∑
t=1

(
aixit+

1
2
bix

2
it

)
+

m∑
t=1

λt

(
n∑

i=1

xit − dt

)
+

α

2

m∑
t=1

λt

(
n∑

i=1

xit − dt

)2

,

which can be decomposed by production device as

Ai(x,λ)=
m∑

t=1

[
aixit+

1
2
bix

2
it + λt

(
xit − dt

n

)]
+

α

2n

m∑
t=1

λt

⎛⎜⎝xit+
n∑

j �=i

j=1

x
(ν−1)
jt − dt

⎞⎟⎠
2

.

Note that, as in the LR procedure, the demand for each period dt has been
equally distributed among all devices. To achieve separability the variables
associated with other devices are fixed to the values of the previous iteration
(x(ν−1)

jt ) and the quadratic term is also equally distributed among all devices.
These functions together with (B.11) constitute the main subproblems. The
multipliers are updated using a gradient of the augmented Lagrangian function
(see Sect. 5.4.4)

λ
(ν+1)
t = λ

(ν)
t + α

(
n∑

i=1

xit − dt

)
.

Assuming α = 1, x
(0)
it = 0 (i = 1, 2; t = 1, 2), and λ

(0)
t = 0 (t = 1, 2),

the following GAMS program is used to solve the problem (the first part of
the code until the ramp-down equation definition is the same as the previous
GAMS program):

SCALARS
error control error parameter /0/
maxerror /1/
itmax maximum iterations number /50/
nu iteration counter /0/
epsilon maximum tolerable error /1e-3/
alpha /1/;

PARAMETERS
z
lambda(m) Lagrange multipliers value/
1 0
2 0/
lambdaold(m)
xaux(n,m) auxiliar the output of device n during period m;

VARIABLES phi;

EQUATION dual associated with each device;
dual(ACT)..phi=e=sum(m,a(ACT)*x(ACT,m)+...
...0.5*b(ACT)*sqr(x(ACT,m))+lambda(m)*(x(ACT,m)-...
...d(m)/card(n)))+0.5*alpha*sum(m,sqr(x(ACT,m)+...
...sum(n1$(not ACT(n1)),xaux(n1,m))-d(m)))/card(n);

EQUATION xfix;
xfix(n1,m)$(not ACT(n1))..xaux(n1,m)=e=x(n1,m);

MODEL dualdf /dual,maxout,rampup0,rampup,rampdown0,rampdown/;

x.l(n,m)=0; xaux(n,m)=x.l(n,m);

put "Initial multipliers"/; loop(m,



460 B Exercise Solutions

put "lambda(",ORD(m):3:0,")= ",lambda(m):8:3/;
);put /;

while(maxerror>epsilon and nu<itmax,
nu=nu+1;
put " Iteration ",nu:3:0//;
z=0;
loop(n,

ACT(n1)=no;
ACT(n)=yes;
phi.l=sum(m,a(n)*x.l(n,m)+0.5*b(n)*sqr(x.l(n,m))+...
...lambda(m)*(x.l(n,m)-d(m)/card(n)))+...
...0.5*alpha*sum(m,sqr(sum(n1,x.l(n1,m))-d(m)))/card(n);
SOLVE dualdf using nlp MINIMIZING phi;
put "Modelstat= ",dualdf.modelstat,"; Solvestat= ",...
...dualdf.solvestat/;
put "phi(",ORD(n):3:0,")= ",phi.l:8:3/;
loop(m,

put "x(",ORD(n):3:0,", ",ORD(m):3:0,")= ",x.l(n,m):8:3/;
);
z=z+phi.l;

);
xaux(n,m)=x.l(n,m);
put "Augmented Lagrangian function= ",z:8:3/;

* Updating multiplier
lambdaold(m)=lambda(m);
lambda(m)=lambdaold(m)+alpha*(sum(n,x.l(n,m))-d(m));
put "New multipliers"/;
loop(m,

put "lambda(",ORD(m):3:0,")= ",lambda(m):8:3/;
);put /;

* Updating error
maxerror=0;
loop(m,

if(lambda(m) ne 0,
error=abs((lambda(m)-lambdaold(m))/lambda(m));

else
error=abs((lambda(m)-lambdaold(m)));

);
if(error>maxerror, maxerror=error;);

);
put "Error= ",maxerror:15:13//;

);

The optimal solution is

x∗
11 = 3.500, x∗

12 = 5.000, x∗
21 = 5.500, x∗

22 = 7.000 ,

which is attained after four iterations with a relative error tolerance of ε =
10−8.

Note that this example points out the slow and oscillating behavior of the
LR procedure, that converges in 22 iterations, while the quadratic penalty
term in the AL procedure corrects this anomaly, obtaining a more precise
solution in just 4 iterations.

Solution to Exercise 5.6. The optimal operation of the multiarea electric-
ity network addressed in Sect. 1.5.2, p. 42, can be solved using the optimality
condition decomposition (OCD). Consider Table B.10 where all the variables
(columns) and equations (rows) are specified. Each cell contains the value 1
if the corresponding variable (column) appears in the corresponding equation



B.5 Exercises from Chapter 5 461

Table B.10. Structure of optimal operation of a multiarea electricity network prob-
lem

x1 x2 e12 e21 e13 e31 e23 e32 e34 δ1 δ2 δ3
b1 0 0 1 0 1 0 0 0 0 0 0 0
b2 1 0 0 1 0 0 1 0 0 0 0 0
b3 0 1 0 0 0 1 0 1 1 0 0 0
e12 0 0 1 0 0 0 0 0 0 1 1 0
e21 0 0 0 1 0 0 0 0 0 1 1 0
e13 0 0 0 0 1 0 0 0 0 1 0 1
e31 0 0 0 0 0 1 0 0 0 1 0 1
e23 0 0 0 0 0 0 1 0 0 0 1 1
e32 0 0 0 0 0 0 0 1 0 0 1 1
e34 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 e34
e43 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 e43

0 0 0 0 0 0 0 1 0 1 0 0 b4
0 0 0 0 0 1 1 0 0 0 1 0 b5
0 0 0 1 1 0 0 0 1 0 0 1 b6
1 1 0 0 1 0 0 0 0 0 0 0 e45
1 1 0 0 0 1 0 0 0 0 0 0 e54
0 1 1 0 0 0 1 0 0 0 0 0 e56
0 1 1 0 0 0 0 1 0 0 0 0 e65
1 0 1 0 0 0 0 0 1 0 0 0 e46
1 0 1 0 0 0 0 0 0 1 0 0 e64
δ4 δ5 δ6 e43 e45 e54 e56 e65 e46 e64 y1 y2

(row) and the value 0 otherwise. Note that equations eij , ∀(i, j), correspond
to (1.60) and bi (i = 1, . . . , 6) are the balance equation constraints in all
nodes, (1.54)–(1.59). If the constraints corresponding to the flow of energy
between frontier nodes 3 and 4 (e34 and e43) are relaxed, the problem decom-
poses by area. Therefore, the balance equations at the frontier nodes are the
complicating constraints.

The subproblems to achieve the optimality condition decomposition are
the following:

minimize
xi; i = 1, 2

2∑
i=1

(
ax

i xi +
1
2
bx
i x

2
i

)
+ λy(ē43 − G43 cos(δ̄4 − δ3) − B43 sin(δ̄4 − δ3) + G43)

subject to

−dx = e12 + e13

x1 = e21 + e23

x2 = e31 + e32 + e34

xi ≤ xmax
i ; i = 1, 2

eij = Gij cos(δi − δj) + Bij sin(δi − δj) − Gij ;
(i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}

e34 = G34 cos(δ3 − δ̄4) + B34 sin(δ3 − δ̄4) − G34 : λx ,

corresponding to system X, where the bar refers to fixed values and λx is the
Lagrange multiplier associated with the last constraint, and



462 B Exercise Solutions

minimize
yi; i = 1, 2

2∑
i=1

(
ay

i yi +
1
2
by
i y2

i

)
+ λx(ē34 − G34 cos(δ̄3 − δ4) − B34 sin(δ̄3 − δ4) + G34)

subject to

−dy = e65 + e64

y1 = e56 + e54

y2 = e45 + e46 + e43

yi ≤ ymax
i ; i = 1, 2

eij = Gij cos(δi − δj) + Bij sin(δi − δj) − Gij ;
(i, j) ∈ {(4, 5), (5, 4), (4, 6), (6, 4), (5, 6), (6, 5)}

e43 = G43 cos(δ4 − δ̄3) + B43 sin(δ4 − δ̄3) − G43 : λy,

corresponding to system Y , where λy is the Lagrange multiplier related to the
last constraint.

The following GAMS program can be used to solve this problem:

$Title Exercise 5.6

file out/Exercise5.6.out/; put out;

Set
lo zone location /x,y/
ge number of generators /1*2/
n nodes /1*6/
AL(n,n) dynamic set for the active lines
FIXC(n,n) dynamic set for active mismatches
ACL(lo) dynamic set for the active location;

Alias(n,n1);
ALIAS(lo,lo1);

PARAMETERS
d(lo) hourly energy demands of systems x and y/
x 8
y 9.5/
G(n,n) conductance of line ij
Bs(n,n) susceptance of line ij;

AL(n,n)=no;
AL(’1’,’2’)=yes; G(’1’,’2’)=-1.0; Bs(’1’,’2’)=7.0;
AL(’1’,’3’)=yes; G(’1’,’3’)=-1.5; Bs(’1’,’3’)=6.0;
AL(’2’,’3’)=yes; G(’2’,’3’)=-0.5; Bs(’2’,’3’)=7.5;
AL(’3’,’4’)=yes; G(’3’,’4’)=-1.3; Bs(’3’,’4’)=5.5;
AL(’4’,’5’)=yes; G(’4’,’5’)=-1.0; Bs(’4’,’5’)=9.0;
AL(’4’,’6’)=yes; G(’4’,’6’)=-0.9; Bs(’4’,’6’)=7.0;
AL(’5’,’6’)=yes; G(’5’,’6’)=-0.3; Bs(’5’,’6’)=6.5;

loop((n,n1)$(ORD(n)>ORD(n1) and AL(n1,n)),
AL(n,n1)=yes;
G(n,n1)=G(n1,n);



B.5 Exercises from Chapter 5 463

Bs(n,n1)=Bs(n1,n);
);

TABLE xmax(lo,ge) maximum production capacities...
...of the two generators of areas X and Y

1 2
x 6 7
y 6 8;

TABLE a(lo,ge) linear cost coefficients
1 2

x 2 2.5
y 3 2.5;

TABLE b(lo,ge) quadratic cost coefficients
1 2

x 0.6 0.5
y 0.7 0.5;

POSITIVE VARIABLES x(lo,ge) energy productions of generators...
...of areas X and Y;

VARIABLES
delta(n) relative heights or phases of nodes
e(n,n) electric energy flowing through the line between...

...nodes
cost total production cost
c(n,n) complicating constraint mismatches;

delta.fx(’1’)=0;

Equations balance1,balance2,balance3,balance4,balance5,...
...balance6,auxc energy balance in every node;

balance1$(ACL(’x’))..e(’1’,’2’)+e(’1’,’3’)+d(’x’)=e=0;
balance2$(ACL(’x’))..e(’2’,’1’)+e(’2’,’3’)-x(’x’,’1’)=e=0;
balance3$(ACL(’x’))..e(’3’,’1’)+e(’3’,’2’)+e(’3’,’4’)-x(’x’,’2’)=e=0;
balance4$(ACL(’y’))..e(’6’,’4’)+e(’6’,’5’)+d(’y’)=e=0;
balance5$(ACL(’y’))..e(’5’,’4’)+e(’5’,’6’)-x(’y’,’1’)=e=0;
balance6$(ACL(’y’))..e(’4’,’3’)+e(’4’,’5’)+e(’4’,’6’)-x(’y’,’2’)=e=0;
auxc(n,n1)$(FIXC(n,n1) and AL(n,n1))..c(n,n1)=e=0;

Equation edf electric energy flowing through the line between nodes;
edf(n,n1)$(AL(n,n1))..c(n,n1)=e=e(n,n1)-G(n,n1)*cos(delta(n)-delta(n1))...
...-Bs(n,n1)*sin(delta(n)-delta(n1))+G(n,n1);

Equation prodpu maximum production limit per generator;
prodpu(ACL,ge)..x(ACL,ge)=l=xmax(ACL,ge);

Parameter lambda(n,n),lambdaold(n,n) complicating constraint Lagrange...
...multipliers;

Equation costlo total production cost per location definition;
costlo..cost=e=sum((ge,ACL),a(ACL,ge)*x(ACL,ge)+0.5*b(ACL,ge)*sqr(x(ACL,ge)))...
...+sum((n,n1)$(not FIXC(n,n1)),lambda(n,n1)*c(n,n1));

Model localcost /costlo,balance1,balance2,balance3,balance4,balance5,...
...balance6,auxc,edf,prodpu/;

SCALARS
error control error parameter /0/
maxerror /1/
epsilon maximum tolerable error /1e-5/
itmax maximum iteration number /20/
nu iteration counter /0/;



464 B Exercise Solutions

lambda(n,n1)=0;
x.l(lo,ge)=0;
delta.l(n)=0;
e.l(n,n1)$(AL(n,n1))=0;

while(maxerror>epsilon and nu<itmax,
nu=nu+1;
loop(lo,

ACL(lo1)=no;
ACL(lo)=yes;
AL(n,n1)=no;
FIXC(n,n1)=yes;
if(ORD(lo)=1,

AL(’1’,’2’)=yes;
AL(’2’,’1’)=yes;
AL(’1’,’3’)=yes;
AL(’3’,’1’)=yes;
AL(’2’,’3’)=yes;
AL(’3’,’2’)=yes;
AL(’3’,’4’)=yes;
AL(’4’,’3’)=yes;
FIXC(’4’,’3’)=no;
e.fx(’4’,’3’)=e.l(’4’,’3’);
delta.fx(’4’)=delta.l(’4’);

);
if(ORD(lo)=2,

AL(’4’,’5’)=yes;
AL(’5’,’4’)=yes;
AL(’4’,’6’)=yes;
AL(’6’,’4’)=yes;
AL(’5’,’6’)=yes;
AL(’6’,’5’)=yes;
AL(’3’,’4’)=yes;
AL(’4’,’3’)=yes;
FIXC(’3’,’4’)=no;
e.fx(’3’,’4’)=e.l(’3’,’4’);
delta.fx(’3’)=delta.l(’3’);

);

SOLVE localcost using nlp MINIMIZING cost;
put "Modelstat= ",localcost.modelstat,"; Solvestat= ",localcost.solvestat/;
put "cost(",ORD(lo):3:0,")= ",cost.l:8:3/;

if(ORD(lo)=1,
lambdaold(’3’,’4’)=lambda(’3’,’4’);
lambda(’3’,’4’)=edf.m(’3’,’4’);

);
if(ORD(lo)=2,

lambdaold(’4’,’3’)=lambda(’4’,’3’);
lambda(’4’,’3’)=edf.m(’4’,’3’);

);

e.lo(’4’,’3’)=-Inf; e.up(’4’,’3’)=Inf;
delta.lo(’4’)=-Inf; delta.up(’4’)=Inf;
e.lo(’3’,’4’)=-Inf; e.up(’3’,’4’)=Inf;
delta.lo(’3’)=-Inf; delta.up(’3’)=Inf;
);

* Updating error

maxerror=0;
loop((n,n1)$((ORD(n)=3 and ORD(n1)=4) or (ORD(n)=4 and ORD(n1)=3)),

if(lambda(n,n1) ne 0,
error=abs((lambda(n,n1)-lambdaold(n,n1))/lambda(n,n1));

else
error=abs(lambda(n,n1)-lambdaold(n,n1));

);



B.5 Exercises from Chapter 5 465

if(error>maxerror, maxerror=error;);
);
put "Error= ",maxerror:12:9//;

);

loop((ge,lo),
put "x(",lo.tl:2,",",ge.tl:2,")= ",x.l(lo,ge):8:3/;

);
loop((n,n1)$(AL(n,n1)),

put "e(",n.tl:2,",",n1.tl:2,")= ",e.l(n,n1):8:3/;
);put /;
loop(n,

put "delta(",n.tl:2,")= ",delta.l(n):8:3/;
);put /;

The optimal solution is

x∗
1 = 5.26 MW, x∗

2 = 4.87 MW, y∗
1 = 3.82 MW, y∗

2 = 5.65 MW .

The flow of energy in the tie line is

e∗34 = 0.89 MW ,

which is attained after seven iterations with a relative error tolerance of ε =
10−5.

Note that in this example the subproblems are solved until the optimality
conditions hold at each iteration. This strategy is valid but it is inefficient be-
cause the algorithm would converge just performing a single iteration for each
subproblem, and then updating variable values. In this example, subproblems
are solved to optimality for the sake of an easy implementation.

Solution to Exercise 5.8. The energy flow problem can be solved consid-
ering the constraint that fixes the total energy transmitted as a complicating
constraint. Using a LR procedure with a CP method for updating the para-
meters, the algorithm proceeds as follows:

Step 0: Initialization. Set the counter ν = 1 and initialize the Lagrange
multiplier corresponding to the complicating constraint to its initial value
λ(1) = 0. This means that no energy is transmitted, therefore the optimal so-
lution of the corresponding subproblem will be x

(1)
1 = 0, x(1)

2 = 0, and x
(1)
3 = 0

(check it in the running program).

Step 1: Solution of the relaxed primal problem. The relaxed primal
problem decomposes into the three subproblems below (the total energy trans-
mitted (10) is equally distributed between subproblems):

φ
(ν)
1 = minimize

x1

x2
1

2
+ λ(ν)

(
x1 − 10

3

)



466 B Exercise Solutions

subject to
x1 ≥ 0 ,

φ
(ν)
2 = minimize

x2

x2
2

2
+ λ(ν)

(
x2 − 10

3

)
subject to

x2 ≥ 0 ,

and

φ
(ν)
3 = minimize

x3

x2
3

20
+ x3 + λ(ν)

(
x3 − 10

3

)
subject to

x3 ≥ 0 ,

whose solutions are denoted, respectively, by x
(ν)
1 , x

(ν)
2 , and x

(ν)
3 . Note that

the Lagrange multiplier is fixed.
Update the values φ(ν) = φ

(ν)
1 + φ

(ν)
2 + φ

(ν)
3 , s(ν) = x

(ν)
1 + x

(ν)
2 + x

(ν)
3 − 10.

Step 2: Multiplier updating. The updated multiplier is obtained by solving
the linear programming problem

maximize
z, λ ∈ C

z (B.12)

subject to

z ≤ φ(k) + s(k)
(
λ − λ(k)

)
; k = 1, . . . , ν . (B.13)

Step 3: Convergence checking. If multiplier λ has not changed sufficiently,
stop; the optimal solution has been found. Otherwise, update the iteration
counter ν = ν + 1 and continue the procedure with Step 1.

Assuming C = {−10, 10} and λ(0) = 0, the following GAMS program can
be used to solve the problem:

$Title Exercise 5.8.1

file out/Exercise5.8.1.out/; put out;

Set
l the number of parallel lines /1*3/
IT iteration number /1*15/
ITER(IT) dynamic set for activating cutting hyperplanes;

Alias(l,l1); Alias(IT,IT1);

PARAMETER e total demanded energy /10/;

POSITIVE VARIABLES x(l) volume of energy transmitted through line i;



B.5 Exercises from Chapter 5 467

SCALARS
error control error parameter /1/
epsilon maximum tolerable error /1e-3/
phiup dual function upper bound /INF/
philo dual function lower bound /-INF/;

PARAMETERS
lambdas(IT) Lagrange multipliers values associated with demand...
...constraint for iteration IT
zs(IT) dual function values for iteration IT
s(IT) subgradient values associated with demand constraint m...
...for iteration IT;

VARIABLES z, phi, lambda Lagrange multipliers value;

EQUATION dual1,dual2,dual3 associated to each device;
dual1..phi=e=0.5*sqr(x(’1’))+lambda*(x(’1’)-e/card(l));
dual2..phi=e=0.5*sqr(x(’2’))+lambda*(x(’2’)-e/card(l));
dual3..phi=e=0.05*sqr(x(’3’))+x(’3’)+lambda*(x(’3’)-e/card(l));

EQUATION cutting cutting planes;
cutting(ITER)..z=l=zs(ITER)+s(ITER)*(lambda-lambdas(ITER));

EQUATIONS lambdaup,lambdalo upper and lower Lagrange multiplier
limits;

lambdaup..lambda=l=10;
lambdalo..lambda=g=-10;

MODEL dual1df /dual1/; MODEL dual2df /dual2/; MODEL
dual3df/dual3/; MODEL updating multiplier
updating/cutting,lambdaup,lambdalo/;

x.l(l)=0;

ITER(IT)=no;

lambdas(IT)=0; zs(IT)=0; s(IT)=0;

lambda.fx=0;

loop(IT$(error>epsilon),
put " Iteration ",ORD(IT):3:0//;

loop(l,
if(ORD(l)=1,

phi.l=0.5*sqr(x.l(’1’))+lambda.l*(x.l(’1’)-e/card(l));
SOLVE dual1df using nlp MINIMIZING phi;
put "Modelstat= ",dual1df.modelstat,"; Solvestat= ",...
...dual1df.solvestat/;

elseif (ORD(l)=2),
phi.l=0.5*sqr(x.l(’2’))+lambda.l*(x.l(’2’)-e/card(l));
SOLVE dual2df using nlp MINIMIZING phi;
put "Modelstat= ",dual2df.modelstat,"; Solvestat= ",...
...dual2df.solvestat/;

else
phi.l=0.05*sqr(x.l(’3’))+x.l(’3’)+lambda.l*...
...(x.l(’3’)-e/card(l));
SOLVE dual3df using nlp MINIMIZING phi;
put "Modelstat= ",dual3df.modelstat,"; Solvestat= ",...
...dual3df.solvestat/;

);

put "phi(",ORD(l):3:0,")= ",phi.l:8:3/;
put "x(",ORD(l):3:0,")= ",x.l(l):8:3/;
zs(IT)=zs(IT)+phi.l;

);

s(IT)=sum(l,x.l(l))-e;



468 B Exercise Solutions

lambdas(IT)=lambda.l;
philo=zs(IT);
put "z= ",zs(IT):8:3,"; Dual function lower bound= ",philo:8:3/;
put "subgradient(",ORD(IT):3:0,")= ",s(IT):8:3/;

ITER(IT)=yes;

lambda.up=Inf;
lambda.lo=-Inf;
SOLVE updating using nlp MAXIMIZING z;
put "Modelstat= ",updating.modelstat,"; Solvestat= ",...
...updating.solvestat/;
put "z= ",z.l:8:3/;
put "lambda= ",lambda.l:8:3/;

lambda.fx=lambda.l;
phiup=z.l;
put "Dual function upper bound= ",phiup:8:3/;

* Updating error
if(lambda.l ne 0,
error=abs((lambda.l-lambdas(IT))/lambda.l);

else
error=abs((lambda.l-lambdas(IT)));
);
put "Error= ",error:12:9//;

);

The optimal solution is

x∗
1 = 1.667, x∗

2 = 1.667, x∗
3 = 6.674, p∗ = 11.667 ,

which is attained after 14 iterations with a relative tolerance error of ε = 10−3.
Considering x3 as a complicating variable the problem can be solved using

the Benders decomposition. In this case, the solution algorithm proceeds as
follows:

Step 0: Initialization. The iteration counter is initialized, ν = 1. The initial
value for the complicating variable x3 is set to x

(1)
3 = 0. The lower bound of

the objective function is set to z
(1)
down = 0.

Step 1: Subproblem solution. The subproblem below is solved:

minimize
x1, x2, x3

z =
1
2

(
x2

1 + x2
2 +

x2
3

10

)
+ x3

subject to
x1 + x2 = 10 − x3

x3 = x
(ν)
3 : λ(ν) ,

whose solution is x
(ν)
1 , x

(ν)
2 , and λ(ν). The upper bound of the objective func-

tion optimal value is z
(ν)
up = z(ν).



B.5 Exercises from Chapter 5 469

Step 2: Convergence checking. If |z(ν)
up − z

(ν)
down|/|z(ν)

down| is not small
enough, the procedure continues with Step 2 and the iteration counter is
updated ν = ν + 1; otherwise, the optimal solution has been found.

Step 2: Master problem solution. The master problem below is solved:

minimize
α, x3

α

subject to

z(k) + λ(k)(x3 − x
(k)
3 ) ≤ α; k = 1, . . . , ν − 1

α ≥ 0
x3 ≥ 0 ,

the solution of which is the new value of the complicating variable x
(ν)
3 and

α(ν). The lower bound of the objective function optimal value is z
(ν)
down = α(ν).

The procedure continues with Step 1.

Assuming x
(1)
3 = 0 and αdown = 0, the following GAMS program can be

used to solve the problem:

$Title Exercise 5.8.2

file out/Exercise5.8.2.out/; put out;

Set
l the number of parallel lines /1*3/
IT iteration number /1*15/
ITER(IT) dynamic set for activating cutting hyperplanes;

Alias(l,l1); Alias(IT,IT1);

PARAMETERS
e total demanded energy /10/;

POSITIVE VARIABLES
x(l),auxx3 volume of energy transmitted through line i;

SCALARS
error control error parameter /1/
epsilon maximum tolerable error /1e-3/
zup objective function upper bound /INF/
zlo objective function lower bound /0/;

PARAMETERS
x3(IT) fixed values of the complicating variables
zs(IT) objective function value for iteration IT
lambda(IT) dual variables associated with the complicating...
...variable;

VARIABLES alpha, loss Lagrange multipliers value;

EQUATION obj associated with each device;
obj..loss=e=0.5*sqr(x(’1’))+0.5*sqr(x(’2’))+0.05*...
...sqr(x(’3’))+x(’3’);

EQUATION demand;
demand..sum(l,x(l))=e=e;



470 B Exercise Solutions

EQUATION cutting,alphalo cutting planes;
cutting(ITER)..alpha=g=zs(ITER)+lambda(ITER)*(auxx3-x3(ITER));
alphalo..alpha=g=0;

MODEL subproblem /obj,demand/;
MODEL master multiplier updating /cutting,alphalo/;

x.l(l)=0;

ITER(IT)=no;

auxx3.up=e;

lambda(IT)=0; zs(IT)=0; x3(IT)=0;

loop(IT$(error>epsilon),

put " Iteration ",ORD(IT):3:0//;

if(ORD(IT)=1,
x.fx(’3’)=0;

else
SOLVE master using lp MINIMIZING alpha;
put "Modelstat= ",master.modelstat,"; Solvestat= ",...
...master.solvestat/;
put "alpha= ",alpha.l:8:3/;
put "auxx3= ",auxx3.l:8:3/;

x.fx(’3’)=auxx3.l;
zlo=alpha.l;
put "Objective function lower bound= ",zlo:8:3/;

);

SOLVE subproblem using nlp MINIMIZING loss;
put "Modelstat= ",subproblem.modelstat,"; Solvestat= ",...
...subproblem.solvestat/;

loop(l,
put "x(",ORD(l):3:0,")= ",x.l(l):8:3/;

);
zs(IT)=loss.l;
lambda(IT)=x.m(’3’);
x3(IT)=x.l(’3’);
zup=zs(IT);
put "loss= ",zs(IT):8:3,"; Objective function upper...
...bound= ",zup:8:3/;

* Updating error

if(zlo ne 0,
error=abs((zup-zlo)/zlo);

else
error=abs((zup-zlo));

);
put "Error= ",error:12:9//;
ITER(IT)=yes;

);

The optimal solution is

x∗
1 = 1.699, x∗

2 = 1.699, x∗
3 = 6.602, p∗ = 11.668 ,

which is attained after eight iterations with a relative error tolerance of smaller
than ε = 10−3.



B.5 Exercises from Chapter 5 471

Solution to Exercise 5.10. The capacity expansion planning problem an-
alyzed in Sect. 1.6.1 can be solved in a decomposed manner. If variables xit

(i = 1, 2; t = 1, 2) are considered complicating variables, then the problem
can be decomposed by time period.

Using the Benders decomposition, the solution algorithm proceeds as fol-
lows:

Step 0: Initialization. The iteration counter is initialized, ν = 1. Initial
values for the complicating variables x

(1)
it are set to the maximum production

capacity that can be built at location i. The lower bound of the objective
function is z

(1)
down = 0. Note that the minimum cost is zero.

Step 1: Subproblem solution. The subproblems associated with each time
period are solved:

minimize
xi1; i = 1, 2

2∑
i=1

[(ci1 − ci2) xi1]

subject to

y11 = f13,1 + f12,1 − f21,1

y21 = f23,1 + f21,1 − f12,1

d1 = f13,1 + f23,1

0 ≤ yi1 ≤ xi1 ; i = 1, 2
0 ≤ fij,1 ≤ fmax

ij ; (i, j) ∈ P
fij,1 = Gij cos(δi1 − δj1) + Bij sin(δi1 − δj1)

−Gij , ; (i, j) ∈ P
xi1 = x

(ν)
i1 : λ

(ν)
i,1 ; i = 1, 2 ,

and

minimize
xi2; i = 1, 2

2∑
i=1

(ci2xi2)

subject to

y12 = f13,2 + f12,2 − f21,2

y22 = f23,2 + f21,2 − f12,2

d2 = f13,2 + f23,2

0 ≤ yi2 ≤ xi2 ; i = 1, 2
0 ≤ fij,2 ≤ fmax

ij ; (i, j) ∈ P
fij,2 = Gij cos(δi2 − δj2) + Bij sin(δi2 − δj2) − Gij ; (i, j) ∈ P
xi2 = x

(ν)
i2 : λ

(ν)
i,2 ; i = 1, 2 ,



472 B Exercise Solutions

whose solutions are x
(ν)
it . Note that as the terms of the objective functions in

both subproblems are the complicating variables (fixed values), then the sub-
problems are indeed nonlinear systems of equations that can be solved without
using optimization techniques, and the values of the dual variables related to
the complicating constraints are the partial derivatives of the cost function
λ

(ν)
i1 = ci1 − ci2 and λ

(ν)
i2 = ci2, respectively. The upper bound of the objective

function optimal value is z
(ν)
up = z(ν) =

∑2
i=1

[
ci1 x

(ν)
i1 + ci2

(
x

(ν)
i2 − x

(ν)
i1

)]
.

Note that if one of the first subproblems is infeasible, this means that the
global problem is infeasible, either because the maximum production that
can be built or the transmission line capacities are not enough for ensuring
demand satisfaction.

Step 2: Convergence checking. If |z(ν)
up −z

(ν)
down|/|z(ν)

down| is not small enough,
the procedure continues with Step 2 and the iteration counter is updated
ν ← ν + 1; otherwise, the optimal solution has been found.

Step 3: Master problem solution. The master problem below is solved.

minimize
xit; i = 1, 2; t = 1, 2

α

subject to

α ≥ z(k) +
2∑

i=1

2∑
t=1

λ
(k)
it (xit − x

(k)
it ); k = 1, . . . , ν − 1

α ≥ 0
xit ≤ xi,t+1 ; i = 1, 2; t = 1

0 ≤ xit ≤ xmax
i ; i = 1, 2; t = 1, 2

2∑
i=1

xit = dt; t = 1, 2 . (B.14)

The solutions of this problem are the new values of the complicating vari-
ables x

(ν)
it and α(ν). The lower bound of the objective function optimal value

is z
(ν)
down = α(ν). Note that to ensure that the maximum production capaci-

ties are enough for supplying the demand in each time period, an additional
constraint (B.14) must be added to the master problem with respect to the
initial problem. The procedure continues with Step 1.

The following GAMS program can be used to solve this problem using the
Benders decomposition:

$Title Exercise 5.10

file out/Exercise5.10.out/; put out;

Set
t time period /1*2/



B.5 Exercises from Chapter 5 473

lo production facilities /1*2/
n line nodes /1*3/
AL(n,n) dynamic set for the active lines
ACL(lo) dynamic set for the active location
ACT(t) dynamic set for the active time period
IT iteration number /1*15/
ITER(IT) dynamic set for activating cutting hyperplanes;

Alias(n,n1); Alias(t,t1,t2); ALIAS(lo,lo1); Alias(IT,IT1);

SCALARS
error control error parameter /1/
epsilon maximum tolerable error /1e-3/
zup objective function upper bound /INF/
zlo objective function lower bound /0/;

PARAMETERS
d(t) demand during time period/
1 7
2 5/
G(n,n) conductance of line ij
B(n,n) susceptance of line ij
fmax(n,n) maximum capacity of the line
xmax(lo) maximum production capacity that can be built...
...in location/
1 5
2 6/;

AL(n,n1)=no;
AL(’1’,’2’)=yes; G(’1’,’2’)=-0.5; B(’1’,’2’)= 9.0;
fmax(’1’,’2’)=2.5;
AL(’1’,’3’)=yes; G(’1’,’3’)=-0.4; B(’1’,’3’)=15.0;
fmax(’1’,’3’)=6.0;
AL(’2’,’1’)=yes; G(’2’,’1’)=-0.5; B(’2’,’1’)= 9.0;
fmax(’2’,’1’)=2.0;
AL(’2’,’3’)=yes; G(’2’,’3’)=-0.7; B(’2’,’3’)=18.0;
fmax(’2’,’3’)=4.0;

Table c(lo,t) building cost for location and time period
1 2

1 2 2.5 2 3.5 3;

POSITIVE VARIABLES
x(lo,t) production capacity already built at location at the...
...beginning of time period
y(lo,t) actual production at location during time period $t$
xaux(lo,t) auxiliary variable for the master problem;

PARAMETERS
xs(IT,lo,t) fixed values of the complicating variables
zs(IT) objective function value for iteration IT
lambda(IT,lo,t) dual variables associated with the complicating...
...variable;

VARIABLES
f(n,n,t) energy sent from one location to another during period
delta(n,t) relative height of location with respect to the...
reference location during period.
cost total production cost
alpha;

Equations balance1,balance2 energy balances at production
locations 1 and 2... ...respectively;

balance1(t)$(ACT(t))..y(’1’,t)-f(’1’,’3’,t)-f(’1’,’2’,t)+...
...f(’2’,’1’,t)=e=0;
balance2(t)$(ACT(t))..y(’2’,t)-f(’2’,’3’,t)-f(’2’,’1’,t)+...
...f(’1’,’2’,t)=e=0;



474 B Exercise Solutions

Equation demand energy balance in the city;
demand(t)$(ACT(t))..d(t)=e=f(’1’,’3’,t)+f(’2’,’3’,t);

Equation prodlim production capacity limits;
prodlim(lo,t)$(ACT(t))..y(lo,t)=l=x(lo,t);

Equation translim transmission capacity limits;
translim(n,n1,t)$(AL(n,n1) and ACT(t))..f(n,n1,t)=l=fmax(n,n1);

Equation fdf transmitted commodity through lines;
fdf(n,n1,t)$(AL(n,n1) and ACT(t))..f(n,n1,t)=e=G(n,n1)*...
...cos(delta(n,t)-delta(n1,t))+B(n,n1)*sin(delta(n,t)-...
...delta(n1,t))-G(n,n1);

Equation costdf total production cost definition;
costdf..cost=e=sum((t,t1)$(ACT(t) and ORD(t)+1=ORD(t1) and...
...ORD(t)<CARD(t)),sum(lo,(c(lo,t)-c(lo,t1))*x(lo,t)))+...
...sum(t$(ACT(t) and ORD(t)=CARD(t)),sum(lo,c(lo,t)*x(lo,t)));

Equation expansion expansion constraints;
expansion(lo,t,t1)$(ORD(t)+1=ORD(t1))..xaux(lo,t)=l=xaux(lo,t1);

Equation expbound expansion bounds;
expbound(lo,t)..xaux(lo,t)=l=xmax(lo);

Equation capacity;
capacity(t)..sum(lo,xaux(lo,t))=g=d(t);

EQUATION cutting,alphalo cutting planes;
cutting(ITER)..alpha=g=zs(ITER)+sum((lo,t),lambda(ITER,lo,t)*...
...(xaux(lo,t)-xs(ITER,lo,t)));
alphalo..alpha=g=0;

Option iterlim=1000;

MODEL primal
/costdf,balance1,balance2,demand,prodlim,translim,fdf/;
MODEL updating multiplier updating
/cutting,alphalo,expansion,expbound,capacity/;

lambda(IT,lo,t)=0; zs(IT)=0; xs(IT,lo,t)=0; ITER(IT)=no;

y.l(lo,t)=0; f.lo(n,n1,t)=0;

loop(IT$(error>epsilon),
put " Iteration ",ORD(IT):3:0//;

if(ORD(IT)=1,
x.fx(lo,t)=xmax(lo);

else
xaux.lo(lo,t)=y.l(lo,t);
SOLVE updating using lp MINIMIZING alpha;
put "Modelstat= ",updating.modelstat,"; Solvestat= ",...
...updating.solvestat/;
put "alpha= ",alpha.l:8:3/;
loop((lo,t),

put "x(",lo.tl:2,",",t.tl:2,"= ",xaux.l(lo,t):8:3/;
);

x.fx(lo,t)=xaux.l(lo,t);
zlo=alpha.l;
put "Optimal objective function lower bound= ",zlo:8:3/;

);

loop(t2,
ACT(t)=no; ACT(t2)=yes;
SOLVE primal using nlp MINIMIZING cost;



B.6 Exercises from Chapter 6 475

put "Modelstat= ",primal.modelstat,"; Solvestat= ",...
...primal.solvestat/;
zs(IT)=zs(IT)+cost.l;
lambda(IT,lo,t2)=x.m(lo,t2);
xs(IT,lo,t2)=x.l(lo,t2);

);

zup=zs(IT);
put "cost= ",zs(IT):8:3,"; Objective function upper bound= "...
...,zup:8:3/;

* Updating error
if(ORD(IT)>1,

if(zlo ne 0,
error=abs((zup-zlo)/zlo);

else
error=abs((zup-zlo));

);
);
put "Error= ",error:12:9//;
ITER(IT)=yes;

);

loop((lo,t),
put "x(",lo.tl:2,",",t.tl:2,")= ",x.l(lo,t):8:3/;

);put /; loop((lo,t),
put "y(",lo.tl:2,",",t.tl:2,")= ",y.l(lo,t):8:3/;

);put /; loop((n,n1,t)$(AL(n,n1)),
put "f(",n.tl:2,",",n1.tl:2,",",t.tl:2,")= ",f.l(n,n1,t):8:3/;

);put /; loop((n,t),
put "delta(",n.tl:2,",",t.tl:2,")= ",delta.l(n,t):8:3/;

);put /;

The optimal solution is shown in Table B.11.

Table B.11. Optimal solution to Exercise 5.10

Period Location 1 Location 2 Flows

t Cap. Prod. Cap. Prod. 1–3 1–2 2–1 2–3

1 3.2 3.2 3.8 3.8 3.2 0.0 0.0 3.8
2 3.2 2.3 3.8 2.7 2.3 0.0 0.0 2.7

B.6 Exercises from Chapter 6

Solution to Exercise 6.2. The graphical description of the problem is shown
in Fig. B.2, where it can be observed that the point (3, 2) is an optimal
solution. Substituting this point into the constraints we get

z = 2 × 3 + 3 × 2 = 12
2 × 3 = 6 ≥ 6

exp(2) + 3 = 10.39 ≥ 2
x = 3 ≤ 10
y = 2 ≤ 3
x = 3 ∈ IN ,



476 B Exercise Solutions

y

2

3

1

4

x321 4-2-3 -1

-1

-2

-3

-4

x* = (3, 2)

z = 2x + 3y = 16 
z* = 12z = 8 

z = 4 

z = 0 

z = -4 

z = -8 z = -12 z = -16 

Feasible region

exp(x) + y = 2 

x y = 6 

x y = 6 

Fig. B.2. Illustration of the problem in Exercise 6.2

where we can see that, because all the constraints are satisfied, it is a solution
of the problem.

This problem can be solved considering the integer variable x as a compli-
cating variable using the Benders decomposition, then the solution algorithm
proceeds as follows:

Step 0: Initialization. The iteration counter is initialized, ν = 1. Initial
values for the complicating variables are selected by setting x

(1)
i = 1. The

lower bound of the objective function is z
(1)
down = −∞.

Step 1: Subproblem solution. The following subproblem is solved:

minimize
x, y

2x + 3y + 10w

subject to
xy + w ≥ 6

exp(y) + x ≥ 2
y ≤ 3
w ≥ 0
x = x(1) = 1 : λ(1) ,

whose solution is y(1) = 3, w(1) = 3, and λ
(1)
1 = −28. The upper bound of

the objective function optimal value is updated to z
(1)
up = z(1) = 41. Note

that an additional variable (w) has been added to the first constraint to avoid
infeasibility.



B.6 Exercises from Chapter 6 477

Step 2: Convergence checking. Since |z(1)
up −z

(1)
down|/|z(1)

down| = 41 and is not
small enough, the procedure continues with Step 2 and the iteration counter
is updated ν ← ν + 1 = 2.

Step 2: Master problem solution. The master problem is solved.

minimize
α, x

α

subject to
41 − 28(x − 1) ≤ α

α ≥ 0
x ≤ 10
x ∈ IN .

The solution of this problem gives the new value of the complicating variable
x(2) = 10 and α(2) = −211. The lower bound of the objective function opti-
mal value is updated to z

(2)
down = α(2) = −211. The procedure continues with

Step 1.

Step 1: Subproblem solution. The subproblem is solved again fixing the
complicating variable to the following value:

x = x(2) = 10 : λ(2) ,

whose solution is y = 0.6, w = 0, and λ(2) = 1.82. The upper bound of the
objective function optimal value is updated to z

(2)
up = z(2) = 21.8.

Step 2: Convergence checking. Since |z(2)
up − z

(2)
down|/|z(2)

down| = 1.1 and
is not small enough, the procedure continues with Step 2 and the iteration
counter is updated ν ← ν + 1 = 3.

Step 2: Master problem solution. The master problem below is solved:

minimize
α, x

α

subject to
41 − 28(x − 1) ≤ α

21.8 + 1.82(x − 10) ≤ α
α ≥ 0
x ≤ 10
x ∈ IN .

The solution of this problem is x(3) = 3 and α(3) = 9.06. The lower bound of
the objective function optimal value is updated to z

(3)
down = α(3) = 9.06. The

procedure continues with Step 1.



478 B Exercise Solutions

Step 1: Subproblem solution. The subproblem is solved fixing the com-
plicating variable to the following value:

x = x(3) = 3 : λ(3) ,

whose solution is y = 2, w = 0, and λ(3) = 0. The upper bound of the objec-
tive function optimal value is updated to z

(3)
up = z(3) = 12.

Step 2: Convergence checking. Since |z(3)
up − z

(3)
down|/|z(3)

down| = 0.32 and
is not small enough, the procedure continues with Step 2 and the iteration
counter is updated ν ← ν + 1 = 4.

Step 2: Master problem solution. The master problem is solved:

minimize
α, x

α

subject to
41 − 28(x − 1) ≤ α

21.8 + 1.82(x − 10) ≤ α
12 + 0(x − 3) ≤ α

α ≥ 0
x ≤ 10
x ∈ IN .

The solution of this problem gives the new value of the complicating variable
x(4) = 3 and α(4) = 12. The lower bound of the objective function optimal
value is updated to z

(4)
down = α(4) = 12. Then, the procedure continues with

Step 1. In Fig. B.3 the graphical description of the three Benders cuts in the
last master problem and the reconstruction of the α(x) function using points,
are shown.

Step 1: Subproblem solution. The following subproblem with this new
value of the complicating variable is solved:

x = x(4) = 3 : λ(4) ,

whose solution is y = 2, w = 0, and λ(4) = 3. The upper bound of the objec-
tive function optimal value is updated to z

(4)
up = z(4) = 12.

Step 2: Convergence checking. Since |z(4)
up − z

(4)
down|/|z(4)

down| = 0 and is
small enough, the optimal solution has been found. Note that it is the same
as that obtained graphically: x∗ = 3, y∗ = 2, and z∗ = 12.



B.6 Exercises from Chapter 6 479

2.5 3 3.5 4 4.5 5 5.5 6

8

10

12

14

z

x

Points of the     (x(( ) function    

x* = 3

Benders cuts

Fig. B.3. Illustration of the α(x) function and the Benders cuts in one of the master
problems used in Exercise 6.2

The following GAMS program can be used to solve the problem:

$Title Exercise 6.2

file out/Exercise6.2.out/; put out;

Option mip=CPLEX;

Set
IT iteration number /1*15/
ITER(IT) dynamic set for activating cutting hyperplanes;

Alias(IT,IT1);

VARIABLES z, y, x;

SCALARS
error control error parameter /1/
epsilon maximum tolerable error /1e-3/
zup objective function upper bound /INF/
zlo objective function lower bound /0/;

PARAMETERS
xs(IT) fixed values of the complicating variables
zs(IT) objective function value for iteration IT
lambda(IT) dual variables associated with the complicating...
...variable;

VARIABLES alpha;

INTEGER VARIABLE xaux; POSITIVE VARIABLE w;

EQUATION obj associated to each device;
obj..z=e=2*x+3*y+10*w;

EQUATION cons1, cons2, cons3 constraints;
cons1..x*y+w=g=6;
cons2..x+exp(y)=g=2;
cons3..y=l=3;



480 B Exercise Solutions

EQUATION cutting cutting planes;
cutting(ITER)..alpha=g=zs(ITER)+lambda(ITER)*(xaux-xs(ITER));

MODEL subproblem /obj,cons1,cons2,cons3/; MODEL master multiplier
updating /cutting/;

ITER(IT)=no;

xaux.up=10;

lambda(IT)=0; zs(IT)=0; xs(IT)=0;

loop(IT$(error>epsilon),
put " Iteration ",ORD(IT):3:0//;

if(ORD(IT)=1,
x.fx=1;

else
SOLVE master using mip MINIMIZING alpha;
put "Modelstat= ",master.modelstat,"; Solvestat= ",...
...master.solvestat/;
put "alpha= ",alpha.l:8:3/;
put "xaux= ",xaux.l:8:3/;

x.fx=xaux.l;
zlo=alpha.l;
put "Objective function lower bound= ",zlo:8:3/;

);

SOLVE subproblem using nlp MINIMIZING z;
put "Modelstat= ",subproblem.modelstat,"; Solvestat= ",...
...subproblem.solvestat/;
put "x= ",x.l:8:3, "y= ",y.l:8:3," w= ",w.l:8:3,...
..."z= ",z.l:8:3/;
put "lambda= ",x.m:16:8/;

zs(IT)=z.l;
lambda(IT)=x.m;
xs(IT)=x.l;
zup=zs(IT);
put "Objective function upper bound= ",zup:8:3/;

* Updating error

if(zlo ne 0,
error=abs((zup-zlo)/zlo);

else
error=abs((zup-zlo));

);
put "Error= ",error:12:9//;
ITER(IT)=yes;

);

Solution to Exercise 6.4. Substituting the vector (0, 1) into the constraints
we obtain

z = −7 × 0 + 4 × 01 = 4
12 + 02 = 1 ≤ 1

1 ≤ 2
0 ∈ IN .

Since all the constraints hold it is a candidate to optimal solution, but we
do not know if it is really optimal.



B.6 Exercises from Chapter 6 481

This problem can be solved using the previously stated outer linearization
algorithm. A tolerance of 10−4 is considered. The solution procedure is as
follows.

Step 0: Initialization. The iteration counter is initialized to ν = 1.
The initial MILP problem is

maximize
x, y

z = −7x + 4y

subject to
y ≤ 2
x ∈ IN ,

whose optimal solution is x(1) = 0, y(1) = 2, with an optimal objective func-
tion value z(1) = 8.

Step 1: Determining the most violated constraint. Since this problem
has a unique nonlinear constraint, it is the most violated one,

g(x(1), y(1)) = 02 + 22 − 1 = 3 .

Step 2: Convergence check. Since g(x(1), y(1)) = 3 and is not small enough,
the algorithm continues.

Step 3: Linearization. The nonlinear constraint is linearized. Its gradient
in the current solution is

∇g(x(1), y(1)) =
(

2x(1) 2y(1)
)T

=
(

0 4
)T

.

The corresponding linear constraint is

l1(x, y) = g(x(1), y(1)) +
(
∇g(x(1), y(1))

)T
(

x − x(1)

y − y(1)

)
or

l1(x, y) = 3 +
(

0 4
)( x − 0

y − 2

)
.

Step 4: Solution of the linearized problem. The current MILP problem
is

maximize
x, y

z = −7x + 4y

subject to
l1(x, y) ≤ 0

y ≤ 2
x ∈ IN ,



482 B Exercise Solutions

whose optimal solution is x(2) = 0, y(2) = 1.25, with an optimal objective
function value z(2) = 5.

Update iteration counter, ν = 1 + 1 = 2, and continue with Step 1.

Step 1: Determining the most violated constraint. The violation of the
nonlinear constraint is evaluated,

g(x(2), y(2)) = 02 + 1.252 − 1 = 0.5625 .

Step 2: Convergence check. Since g(x(2), y(2)) = 0.5625 and is not small
enough, the algorithm continues.

Step 3: Linearization. The nonlinear constraint is linearized. Its gradient
in the current solution is

∇g(x(2), y(2)) =
(

2x(2) 2y(2)
)T

=
(

0 2.5
)T

.

The corresponding linear constraint is

l2(x, y) = g(x(2), y(2)) +
(
∇g(x(2), y(2))

)T
(

x − x(2)

y − y(2)

)
or

l2(x, y) = 0.5625 +
(

0 2.5
)( x − 0

y − 1.25

)
.

Step 4: Solution to the linearized problem. The current MILP problem
is

maximize
x, y

z = −7x + 4y

subject to
li(x, y) ≤ 0; i = 1, 2

y ≤ 2
x ∈ IN ,

whose optimal solution is x(3) = 0, y(3) = 1.025, and the optimal objective
function value z(3) = 4.1.

Update the iteration counter, ν = 2 + 1 = 3, and continue with Step 1.

Step 1: Determining the most violated constraint. The new violation
of the nonlinear constraint is

g(x(3), y(3)) = 02 + 1.0252 − 1 = 0.050625 .

Step 2: Convergence check. Since g(x(3), y(3)) = 0.050625 and is not small
enough, the algorithm continues.



B.6 Exercises from Chapter 6 483

Step 3: Linearization. The nonlinear constraint is linearized. Its gradient
in the current solution is

∇g(x(3), y(3)) =
(

2x(3) 2y(3)
)T

=
(

0 2.05
)T

.

The corresponding linear constraint is

l3(x, y) = 0.050625 +
(

0 2.05
)( x − 0

y − 1.025

)
.

Step 4: Solution to the linearized problem. The current MILP problem
is

maximize
x, y

z = −7x + 4y

subject to
li(x, y) ≤ 0; i = 1, 2, 3

y ≤ 2
x ∈ IN ,

whose optimal solution is x(4) = 0, y(4) = 1.0003, and the optimal objective
function value z(4) = 4.001.

Update the iteration counter, ν = 2 + 1 = 3, and continue with Step 1.

Step 1: Determining the most violated constraint. The new violation
of the nonlinear constraint is

g(x(4), y(4)) = 02 + 1.00032 − 1 = 0.00061 .

Step 2: Convergence check. Since g(x(4), y(4)) = 0.00061 and is not small
enough, the algorithm continues.

Step 3: Linearization. The nonlinear constraint is linearized. Its gradient
in the current solution is

∇g(x(4), y(4)) =
(

2x(4) 2y(4)
)T

=
(

0 2.0006
)T

.

The corresponding linear constraint is

l4(x, y) = 0.00061 +
(

0 2.0006
)( x − 0

y − 1.0003

)
.

Step 4: Solution to the linearized problem. The current MILP problem
is

maximize
x, y

z = −7x + 4y



484 B Exercise Solutions

subject to
li(x, y) ≤ 0; i = 1, 2, 3, 4

y ≤ 2
x ∈ IN ,

whose optimal solution is x(5) = 0, y(5) = 1, and the optimal objective function
value z(5) = 4.

Update the iteration counter, ν = 2 + 1 = 3, and continue with Step 1.

Step 1: Determining the most violated constraint. The new violation
of the nonlinear constraint is

g(x(5), y(5)) = 02 + 12 − 1 = 0.0 .

Step 2: Convergence check. Since g(x(5), y(5)) = 0.0 and is small enough
(≤ 10−4), the algorithm terminates, and the optimal solution has been found
to be x∗ = 0, y∗ = 1, with an optimal objective function value z∗ = 4.

The following GAMS program can be used to solve this problem:

$Title Exercise 6.4

file out/Exercise6.4.out/; put out;

Option mip=CPLEX;

Set
IT iteration number /1*10/
ITER(IT) dynamic set for activating cutting hyperplanes;

Alias(IT,IT1);

VARIABLES z, y;
INTEGER VARIABLE x;

SCALARS
error control error parameter /1/
epsilon maximum tolerable error /1e-4/;

PARAMETERS
xs(IT) value of the variable x for iteration IT
ys(IT) value of the variable y for iteration IT
g(IT) constraint for iteration IT
gradx(IT) dual variable associated with the complicating...
...variable x
grady(IT) dual variable associated with the complicating...
...variable x;

EQUATION obj associated with each device;
obj..z=e=-7*x+4*y;

EQUATION cons1 constraints;
cons1..y=l=2;

EQUATION approx constraint approximation;
approx(ITER)..g(ITER)+gradx(ITER)*(x-xs(ITER))+...
...grady(ITER)*(y-ys(ITER))=l=0;



B.6 Exercises from Chapter 6 485

MODEL main /obj,cons1,approx/;

ITER(IT)=no;

xs(IT)=0;
ys(IT)=0;
g(IT)=0;
gradx(IT)=0;
grady(IT)=0;

loop(IT$(error>epsilon),
put " Iteration ",ORD(IT):3:0//;

SOLVE main using mip MAXIMIZING z;
put "Modelstat= ",main.modelstat,"; Solvestat= ",main.solvestat/;
put "x= ",x.l:8:3, "y= ",y.l:8:3, "z= ",z.l:8:3/;

g(IT)=x.l*x.l+y.l*y.l-1;
gradx(IT)=2*x.l;
grady(IT)=2*y.l;
xs(IT)=x.l;
ys(IT)=y.l;

put "g(",IT.tl:2,")= ",g(IT):12:8/;
put "gradx(",IT.tl:2,")= ",gradx(IT):12:8," x(",IT.tl:2,")=...
... ",xs(IT):12:8/;
put "grady(",IT.tl:2,")= ",grady(IT):12:8," y(",IT.tl:2,")=...
... ",ys(IT):12:8/;

ITER(IT)=yes;

* Updating error
error=g(IT);
put "Error= ",g(IT):12:9//;

);

Solution to Exercise 6.6. The production cost ci in dollars of each produc-
tion plant i can be expressed as

ci =
{

0 if Pi = 0
fi + viPi if 0 < Pi ≤ Pmax

i
,

where Pmax
i is the maximum output capacity.

Alternatively, this function can be replaced, using binary variables, by the
following set of constraints:

ci = yifi + viPi

0 ≤ Pi

Pi ≤ yiP
max
i

yi ∈ {0, 1} .

Note that there are following two possibilities:

Case 1. If yi = 0, then 0 ≤ Pi ≤ 0, so that Pi = 0 and then ci = 0.
Case 2. If yi = 1, then 0 ≤ Pi ≤ Pmax

i , so that ci = fi + viPi.

Therefore, the single-period minimum production cost problem can be
formulated as the following MILP problem



486 B Exercise Solutions

minimize
Pi; i = 1, 2

2∑
i=1

ciPi

subject to

0 = P1 − e13 − e12

0 = P2 + e12 − e23

0 = −d + e13 + e23

eij ≤ emax
ij ; (i, j) ∈ {(1, 2), (1, 3), (2, 3)}

eij = Bij sin(δi − δj);
(i, j) ∈ {(1, 2), (1, 3), (2, 3)}

ci = yifi + viPi

0 ≤ Pi

Pi ≤ yiP
max
i

yi ∈ {0, 1}; i = 1, 2 ,

where the first three constraints are the corresponding energy balance equa-
tions in nodes 1, 2, and 3, respectively, eij , (i, j) ∈ {(1, 2), (1, 3), (2, 3)} are
the electric energy flows through the line between nodes i and j, Bij is the
susceptance (structural parameter) of line ij, δi is the relative “height” or
phase of node i, and yi are binary variables.

This problem can be solved using the Benders decomposition algorithm
(6.1), considering the binary variables yi (i = 1, 2) as complicating variables.
Note that a physical interpretation of the solution can be done. The produc-
tion facilities operation can be controlled by the binary variables, if the binary
variable yi = 0, then Pi = 0, therefore, the production facility i is not working.

The optimal solution of this problem is the set of productions that min-
imizes the costs satisfying the corresponding demand, and we would like to
compare different situations with respect to working facilities, such as both
production facilities are operating at the same time, only one, or none is work-
ing. Besides, government will penalize the production facilities if they are not
able to satisfy the demand and, since the whole demand must be satisfied,
this penalty will be high, 10ud

∑2
i=1 fi, where ud is the unsatisfied demand.

Using the Benders decomposition, the solution algorithm proceeds as fol-
lows:

Step 0: Initialization. The iteration counter is initialized to ν = 1. Ini-
tial values for the complicating variables are set to y

(1)
i = 1, i.e., initially

we consider that both production facilities are operating. The lower bound of
the objective function is set to z

(1)
down = 0. Note that the minimum cost is zero.

Step 1: Subproblem solution. The following subproblem, where the un-
satisfied demand is considered in the cost function, is solved:



B.6 Exercises from Chapter 6 487

minimize
Pi; i = 1, 2

2∑
i=1

ciPi + 10ud

2∑
i=1

fi

subject to

0 = P1 − e13 − e12

0 = P2 + e12 − e23

0 = −d + e13 + e23 + ud

eij ≤ emax
ij ; (i, j) ∈ {(1, 2), (1, 3), (2, 3)}

eij = Bij sin(δi − δj);
(i, j) ∈ {(1, 2), (1, 3), (2, 3)}

ci = yifi + viPi

0 ≤ Pi

Pi ≤ yiP
max
i

yi = y
(1)
i = 1 : λ

(1)
i ; i = 1, 2 ,

whose solution is P
(1)
1 = 0.265, P

(1)
2 = 0.585, λ

(1)
1 = 2.654, and λ

(1)
2 = 2.923.

The upper bound of the objective function optimal value is updated to
z
(1)
up = z(1) = 8.392. Note that it corresponds to the optimal solution when

both production facilities are operating and that the unsatisfied demand ud

is equal to zero.

Step 2: Convergence checking. Since |z(1)
up − z

(1)
down|/|z(1)

down| = 8.392 and
is not small enough, the procedure continues with Step 2 and the iteration
counter is updated ν ← ν + 1 = 2.

Step 2: Master problem solution. Based on the information obtained
from the first subproblem, we try to know what is the cheapest option for
decreasing the cost, thus the following master problem is solved:

minimize
α, y1, y2

α

subject to

8.392 + 2.654(y1 − 1) + 2.923(y2 − 1) ≤ α
α ≥ 0
yi ∈ {0, 1} ; i = 1, 2 ,

the solution of which is the new value of the complicating variables y
(2)
i =

0 (i = 1, 2) i.e., the cheapest option is to stop the production of both facilities
and, based on the actual information, a linear estimation of the cost is α(2) =
2.815. The lower bound of the objective function optimal value is updated to
z
(2)
down = α(2) = 2.815. The procedure continues with Step 1.



488 B Exercise Solutions

Step 1: Subproblem solution. As the exact cost of this new situation
(both production facilities are not operating) is sought, the subproblem is
solved again fixing the complicating variables to the following values:

yi = y
(2)
i = 0 : λ

(2)
i , i = 1, 2 ,

whose solution is P
(2)
1 = 0, P

(2)
2 = 0, λ

(2)
1 = −1,350, and λ

(2)
2 = −1,350.

The upper bound of the objective function optimal value is updated to
z
(2)
up = z(2) = 1,275. Note that it is the optimal solution when both pro-

duction facilities are not operating and that the unsatisfied demand ud is
equal to 0.85; this means that no demand is satisfied at all and because of the
penalty, the cost is much higher than in the first situation.

Step 2: Convergence checking. Since |z(2)
up − z

(2)
down|/|z(2)

down| = 451.9 and
is not small enough, the procedure continues with Step 2 and the iteration
counter is updated ν = ν + 1 = 3.

Step 2: Master problem solution. Based on the new information obtained
from the second subproblem, we try to know if there is another alternative
cheaper than the previous ones, thus the following master problem is solved:

minimize
α, y1, y2

α

subject to

8.392 + 2.654(y1 − 1) + 2.923(y2 − 1) ≤ α
1, 275 − 1,350(y1 − 0) − 1, 350(y2 − 0) ≤ α

α ≥ 0
yi ∈ {0, 1}; i = 1, 2 ,

the solution of which is the new value of the complicating variables y
(3)
1 = 1

and y
(3)
2 = 0, i.e., only the first production facility is operating, and based on

the actual information, a linear estimation of the new cost is α(3) = 5.469.
The lower bound of the objective function optimal value is updated to
z
(3)
down = α(3) = 5.469. The procedure continues with Step 1.

Step 1: Subproblem solution. The exact cost of this new situation (only
the first production facility is operating) is obtained, solving the subproblem
again while fixing the complicating variables to the following values:

y1 = y
(3)
1 = 1 : λ

(3)
1

y2 = y
(3)
2 = 0 : λ

(3)
2 ,

whose solution is P
(3)
1 = 0.85, P

(3)
2 = 0, λ

(3)
1 = 8.5, and λ

(3)
2 = −18.18. The

upper bound of the objective function optimal value is updated to z
(3)
up =

z(3) = 12.835. Note that the unsatisfied demand ud is now equal to 0.



B.6 Exercises from Chapter 6 489

Step 2: Convergence checking. Since |z(3)
up − z

(3)
down|/|z(3)

down| = 1.347 and
is not small enough, the procedure continues with Step 2 and the iteration
counter is updated ν ← ν + 1 = 4.

Step 2: Master problem solution. Based on the new information obtained
from the previous subproblem, we try to know if there is another alternative
cheaper than the previous ones, thus the master problem is solved:

minimize
α, yi; i = 1, 2

α

subject to

8.392 + 2.654(y1 − 1) + 2.923(y2 − 1) ≤ α
1, 275 − 1, 350(y1 − 0) − 1, 350(y2 − 0) ≤ α

12.835 + 8.5(y1 − 1) − 18.18(y2 − 0) ≤ α
α ≥ 0
yi ∈ {0, 1}; i = 1, 2 ,

the solution of which is the new value of the complicating variables y
(4)
1 = 0

and y
(4)
2 = 1, i.e., only the second production facility is operating, and based

on the actual information, a linear estimation of the new cost is α(4) = 5.738.
The lower bound of the objective function optimal value is updated to
z
(4)
down = α(4) = 5.738. The procedure continues with Step 1.

Step 1: Subproblem solution. The exact cost of this new situation (only
the second production facility is operating) is obtained solving the subproblem
again with the following values of the complicating variables:

y1 = y
(4)
1 = 0 : λ

(4)
1

y2 = y
(4)
2 = 1 : λ

(4)
2 ,

whose solution is P
(4)
1 = 0, P

(4)
2 = 1, λ

(4)
1 = −15.21, and λ

(4)
2 = 4.25.

The upper bound of the objective function optimal value is updated to
z
(4)
up = z(4) = 9.3075. Note that the unsatisfied demand ud is equal to 0.

Step 2: Convergence checking. Since |z(4)
up − z

(4)
down|/|z(4)

down| = 0.622 and
is not small enough, the procedure continues with Step 2 and the iteration
counter is updated ν ← ν + 1 = 5.

Step 2: Master problem solution. Note that we have already checked
all the possibilities, now we should take the cheapest one that, based on the
information obtained from the previous iterations, is the first one. Let us solve
the master problem again to see what we get

minimize
α, yi; i = 1, 2

α



490 B Exercise Solutions

subject to

8.392 + 2.654(y1 − 1) + 2.923(y2 − 1) ≤ α
1,275 − 1, 350(y1 − 0) − 1,350(y2 − 0) ≤ α

12.835 + 8.5(y1 − 1) − 18.18(y2 − 0) ≤ α
9.3075 − 15.21(y1 − 0) + 4.25(y2 − 1) ≤ α

α ≥ 0
yi ∈ {0, 1}; i = 1, 2 .

The solution of this problem gives the new values of the complicating vari-
ables y

(5)
1 = 1 and y

(5)
2 = 1, that is the case where both production facilities

are operating, and based on the actual information, a linear estimation of the
new cost is α(5) = 8.392. The lower bound of the objective function optimal
value is updated to z

(5)
down = α(5) = 8.392. Note that it is exactly the same as

that obtained from the first subproblem. The procedure continues with Step 1.

Step 1: Subproblem solution. The exact cost of this new situation (the two
production facilities are operating) is obtained solving the first subproblem
again. The optimal solution is P

(5)
1 = 0.265, P

(5)
2 = 0.585. The upper bound

of the objective function optimal value is updated to z
(5)
up = z(5) = 8.392.

Step 2: Convergence checking. Since |z(5)
up − z

(5)
down|/|z(5)

down| = 0, the op-
timal solution has been found.

The following GAMS program can be used to solve the problem:

$Title Exercise 6.6

file out/Exercise6.6.out/; put out;

Set
lo production facilities /1*2/
n line nodes /1*3/
AL(n,n) dynamic set for the active lines
IT iteration number /1*15/
ITER(IT) dynamic set for activating cutting hyperplanes;

Alias(n,n1); ALIAS(lo,lo1); Alias(IT,IT1);

SCALARS
error control error parameter /1/
epsilon maximum tolerable error /1e-3/
zup objective function upper bound /INF/
zlo objective function lower bound /0/;

PARAMETERS
d demand /0.85/
B(n,n) susceptance of line ij
emax(n,n) maximum capacity of the line
Pmax(lo) maximum production capacity/
1 0.9
2 0.9/
f(lo) fixed cost for each production plant/
1 10
2 5/



B.6 Exercises from Chapter 6 491

v(lo) variable cost for each production plant/
1 6
2 7/;

AL(n,n1)=no; AL(’1’,’2’)=yes; B(’1’,’2’)= 2.5; emax(’1’,’2’)=0.3;
AL(’1’,’3’)=yes; B(’1’,’3’)= 3.5; emax(’1’,’3’)=0.7;
AL(’2’,’3’)=yes; B(’2’,’3’)= 3.0; emax(’2’,’3’)=0.7;

POSITIVE VARIABLES
P(lo) actual production at location
c(lo) cost coefficients
ud unsatisfied demand;

BINARY VARIABLES yaux(lo);

VARIABLES
e(n,n) energy sent from one location to another
delta(n) relative height of location
cost total production cost
y(lo)
alpha;

PARAMETERS
ys(IT,lo) fixed values of the complicating variables
zs(IT) objective function value for iteration IT
lambda(IT,lo) dual variables associated with the complicating...
...variable;

Equations balance1,balance2,balance3 energy balances in nodes...
...1 2 and 3 respectively;
balance1..P(’1’)-e(’1’,’3’)-e(’1’,’2’)=e=0;
balance2..P(’2’)+e(’1’,’2’)-e(’2’,’3’)=e=0;
balance3..-d+e(’1’,’3’)+e(’2’,’3’)+ud=e=0;

Equation translim transmission capacity limits;
translim(n,n1)$(AL(n,n1))..e(n,n1)=l=emax(n,n1);

Equation edf transmitted commodity through lines;
edf(n,n1)$(AL(n,n1))..e(n,n1)=e=B(n,n1)*sin(delta(n)-delta(n1));

Equation copar cost coefficient definition;
copar(lo)..c(lo)=e=f(lo)*y(lo)+v(lo)*P(lo);

Equation prodlim production capacity limits;
prodlim(lo)..P(lo)=l=y(lo)*Pmax(lo);

Equation costdf total production cost definition;
costdf..cost=e=sum(lo,c(lo)*P(lo))+10*sum(lo,10*f(lo))*ud;

EQUATION cutting,mincov,alphalo cutting planes;
cutting(ITER)..alpha=g=zs(ITER)+sum(lo,lambda(ITER,lo)*...
...(yaux(lo)-ys(ITER,lo)));
alphalo..alpha=g=0;

MODEL subproblem /costdf,balance1,balance2,balance3,translim,...
...edf,copar,prodlim/;

MODEL master multiplier updating /cutting,alphalo/;

lambda(IT,lo)=0; zs(IT)=0; ys(IT,lo)=0; ITER(IT)=no;

loop(IT$(error>epsilon),

put " Iteration ",ORD(IT):3:0//;

if(ORD(IT)=1,
y.fx(lo)=1;

else



492 B Exercise Solutions

SOLVE master using mip MINIMIZING alpha;
put "Modelstat= ",master.modelstat,...
..."; Solvestat= ",master.solvestat/;
put "alpha= ",alpha.l:12:6/;
loop(lo,

put "yaux(",lo.tl:2,")= ",yaux.l(lo):12:6/;
);

y.fx(lo)=yaux.l(lo);
zlo=alpha.l;
put "Optimal objective function lower bound= ",zlo:12:6/;

);

SOLVE subproblem using nlp MINIMIZING cost;
put "Modelstat= ",subproblem.modelstat,...
..."; Solvestat= ",subproblem.solvestat/;
zs(IT)=cost.l;
lambda(IT,lo)=y.m(lo);
ys(IT,lo)=y.l(lo);

zup=zs(IT);
put "cost= ",zs(IT):12:6,"; Objective function...
...upper bound= ",zup:12:6/;
loop(lo,

put "P(",lo.tl:2,")= ",P.l(lo):12:6,"lambda(",lo.tl:2,...
...")= ",lambda(IT,lo):12:6/;

);put /;
put "Unsatisfied demand= ",ud.l:12:6/;

* Updating error
if(zlo ne 0,

error=abs((zup-zlo)/zlo);
else

error=abs((zup-zlo));
);
put "Error= ",error:12:9//;
ITER(IT)=yes;

);

Solution to Exercise 6.8. If some connections are lacking and the nonlinear
objective function is considered, the following cost coefficients could be used:

ci =
{

0 if xi = 0
fi + vix

2
i if 0 < xi ≤ xmax

i
; i = 1, . . . , 25 ,

where xmax
i is the maximum flow capacity for connection i, ci is the connection

cost in dollars, fi is the fixed cost owing to the presence of the connection, and
vi is the variable cost depending on the equilibrium flow that goes through
connection xi.

These constraints can be replaced using binary variables by the following
set of constraints for each connection i:

ci = yifi + vix
2
i

0 ≤ xi ≤ yix
max
i

yi ∈ {0, 1} .

Therefore, the nonlinear water supply problem considering the existence
or nonexistence of connections can be stated as



B.6 Exercises from Chapter 6 493

minimize
xi, yi; i = 1, 2, . . . , 25

25∑
i=1

ci

subject to ∑
j∈Pi

xj = ±qi; i = 1, . . . , 18,

ci = yifi + vix
2
i ; i = 1, . . . , 25

0 ≤ xi ≤ yix
max
i ; i = 1, . . . , 25

yi ∈ {0, 1}; i = 1, . . . , 25 ,

where Pi is the set of connections connected to supply node i, xj is positive for
outgoing flow and negative for ingoing flow, whereas qi is positive for supply
nodes (qi ∈ J) and negative for consumption nodes (qi ∈ I).

This mixed-integer nonlinear programming (MILP) problem can be solved
on decomposed by city using the Benders decomposition algorithm, consider-
ing the binary variables and the flow x13 that goes from one city to another
as complicating variables. The following master problem and subproblems for
iteration ν are considered:

Master Problem. The MILP problem for obtaining the new values of the
complicating variables is

minimize
x13, yi; i = 1, 2, . . . , 25

α

subject to

α ≥ z
(k)
C1

+ z
(k)
C2

+
(
µ

(k)
C1

+ µ
(k)
C2

)(
x13 − x

(k)
13

)
+

25∑
i=1

λ
(k)
i

(
yi − y

(k)
i

)
; k = 1, . . . , ν − 1

0 ≤ x13 ≤ y13x
max
13

yi ∈ {0, 1}; i = 1, . . . , 25 ,

where zC1 and zC2 are the optimal costs for each city, obtained from the
subproblems. The optimal solution of this master problem provides the new
values for the complicating variables x

(ν)
13 and y

(ν)
i (i = 1, . . . , 25). Note that

the dual variable λ
(k)
13 is equal to λ

(k)
13C1

+ λ
(k)
13C2

.

Subproblem 1. For the first city C1, the following subproblem is considered:

minimize
xi, yi; i = 1, 2, . . . , 13

13∑
i=1

ci



494 B Exercise Solutions

subject to ∑
j∈Pi

xj = ±qi; i = 1, . . . , 9

ci = yifi + vix
2
i ; i = 1, . . . , 13

0 ≤ xi ≤ yix
max
i ; i = 1, . . . , 13

yi = y
(ν)
i : λ

(ν)
i ; i = 1, . . . , 12

y13 = y
(ν)
13 : λ

(ν)
13C1

x13 = x
(ν)
13 : µ

(ν)
C1

,

the solution of which provides the optimal flows xi (i = 1, 2, . . . , 12), the op-
timal cost in the first city z

(ν)
C1

and its sensitivities λ
(ν)
i (i = 1, . . . , 12), λ

(ν)
13C1

,

and µ
(ν)
C1

with respect to the fixed values of the complicating variables.

Subproblem 2. For the second city C2, the following subproblem is consid-
ered:

minimize
xi, yi; i = 13, 14, . . . , 25

25∑
i=14

ci

subject to ∑
j∈Pi

xj = ±qi; i = 10, . . . , 18

ci = yifi + vix
2
i ; i = 14, . . . , 25

0 ≤ xi ≤ yix
max
i ; i = 13, . . . , 25

yi = y
(ν)
i : λ

(ν)
i ; i = 14, . . . , 25

y13 = y
(ν)
13 : λ

(ν)
13C2

x13 = x
(ν)
13 : µ

(ν)
C2

,

the solution of which provides the optimal flows xi (i = 14, . . . , 25), the opti-
mal cost in the first city z

(ν)
C2

and its sensitivities λ
(ν)
i (i = 14, . . . , 25), λ

(ν)
13C2

,

and µ
(ν)
C2

with respect to the fixed values of the complicating variables.
Depending on the values of the complicating variables x13 and y13, the sub-

problems could be infeasible because the total consumption quantity could not
coincide with the total supply in one of the cities or both.

Solution to Exercise 6.10. The multiperiod network-constrained produc-
tion planning problem considering a 3-h planning horizon (m = 3) and two
production plants (n = 2) can be formulated as follows:

minimize
xit, uit; i = 1, 2; t = 1, 2, 3

3∑
t=1

2∑
i=1

(cixit + sit) ,



B.6 Exercises from Chapter 6 495

where the objective function includes the production and the start-up cost,
subject to

xit ≥ 0; t = 1, 2, 3; i = 1, 2
x1t = e12,t + e13,t; t = 1, 2, 3
x2t = −e12,t + e24,t; t = 1, 2, 3
d3t = e13,t − e34,t; t = 1, 2, 3
d4t = e24,t + e34,t; t = 1, 2, 3

eij,t = Bij sin(δi,t − δj,t); (i, j) ∈ P; t = 1, 2, 3
eij,t = emax

ij ; (i, j) ∈ P; t = 1, 2, 3
uitx

min
i ≤ xit ≤ uitx

max
i ; t = 1, 2, 3; i = 1, 2∑2

i=1 uitx
max
i ≥ ∑2

i=1 dit; t = 1, 2, 3
uit ∈ {0, 1}; t = 1, 2, 3; i = 1, 2 ,

(B.15)

where the first block of constraints ensures the production positiveness, the
next four constraints are the balance equations in the nodes, the next block
of constraints express the electric energy flow through the line between nodes
i and j being P = {(1, 2), (1, 3), (2, 3), (3, 4)}, the seventh block of constraints
enforces the production capacity limits of the plants, and the next block es-
tablishes certain levels of supply security. Note that the binary variables uit

control the functioning of plant i during period t.
The production cost cit in dollars of each production plant i in time period

t can be expressed as
cit = fi + vixit .

Additionally, the start-up costs (sit) for each plant in every time period
are obtained using the following equations:

si1 =
{

sup
i if ui1 − u0

i > 0
0 if ui1 − u0

i ≤ 0

and

sit =
{

sup
i if uit − ui,t−1 > 0

0 if uit − ui,t−1 ≤ 0 ; t = 2, 3 ,

where sup
i is the start-up cost for plant i, and u0

i is the status of plant i at
the beginning of the time planning horizon.

It should be noted that binary variables uit (i = 1, 2; t = 1, 2, 3) are compli-
cating variables whereas the last two constraints are complicating constraints.
If binary variables are fixed to given values, the mixed-integer nonlinear multi-
period network-constrained production planning problem can be solved using
nonlinear programming methods.

If the Benders decomposition is used, two problems have to be solved it-
eratively.

Subproblem. The subproblem for given values of the binary variables uit =
u

(k)
it for iteration k (i = 1, 2; t = 1, 2, 3) without considering the security of



496 B Exercise Solutions

supply constraint is solved. In this problem we minimize the production cost
for given status (on- or off-line) of plants in every time period, and we obtain
the dual variables λ

(k)
it associated with the constraints that fix the values of

the binary variables to their actual values. Note that once we have selected the
actual values of the binary variables, the complicating constraint no longer
complicate the solution of the problem.

Master Problem. The master problem is

minimize
α, uit; i = 1, 2; t = 1, 2, 3

α

subject to

z(k) +
3∑

t=1

2∑
i=1

λ
(k)
it (uit − u

(k)
it ) ≤ α; k = 1, . . . , ν − 1

2∑
i=1

uitx
max
i ≥

2∑
i=1

dit; t = 1, 2, 3

α ≥ 0
yi ∈ {0, 1}; i = 1, 2 .

Note that we have added the security of supply constraints to ensure the
feasibility of the subsequent subproblem.

The optimal solution of this problem is shown in Tables B.12, B.13, B.14,
and B.15.

Table B.12. Optimal solution status of every plant in every time period for Exercise
6.10: on-line (1) or off-line (0)

Period 1 2 3

C1 0 1 0
C2 1 1 1

Table B.13. Optimal production of every plant in every time period xit for Exercise
6.10

Period (t) 1 2 3

x1t 0 0.267 0
x2t 0.8 2.333 0.2



B.6 Exercises from Chapter 6 497

Table B.14. Optimal height (angle) of every node in every time period δit for
Exercise 6.10

Period (t) 1 2 3

δ1t −0.012 −0.032 −0.012
δ2t 0.172 1.241 0.046
δ3t −0.159 −1.263 −0.058
δ4t −0.177 0.469 −0.031

Table B.15. Optimal sensitivities of every power balance equation in every time
period for Exercise 6.10

Period (t) 1 2 3

Node 1 18.200 20.053 18.050
Node 2 18.200 18.583 18.050
Node 3 −18.200 −21.090 −18.050
Node 4 −18.200 −18.158 −18.050

The following GAMS program can be used to solve the problem:

$Title Exercise 6.10

file out/Exercise6.10.out/; put out;

Option mip=CPLEX;

Set
lo production facilities /1,2/
de consumption nodes /3,4/
t time period /1*3/
n line nodes /1*4/
AL(n,n) dynamic set for the active lines
IT iteration number /1*15/
ITER(IT) dynamic set for activating cutting hyperplanes;

Alias(n,n1); Alias(t,t1); Alias(IT,IT1);

SCALARS
error control error parameter /1/
epsilon maximum tolerable error /1e-12/
zup objective function upper bound /INF/
zlo objective function lower bound /0/;

PARAMETERS
B(n,n) susceptance of line ij
emax(n,n) maximum capacity of the line
xmax(lo) maximum production capacity/
1 1.3
2 2.5/
xmin(lo) minimum production capacity/
1 0.02
2 0.02/
f(lo) fixed cost for each production plant/
1 20
2 18/
v(lo) variable cost for each production plant/
1 0.1
2 0.125/
sup(lo) start up cost for each production plant/



498 B Exercise Solutions

1 10
2 17/
u0(lo) initial status/
1 0
2 0/;

AL(n,n1)=no; AL(’1’,’2’)=yes; B(’1’,’2’)= 1.2; emax(’1’,’2’)=1.5;
AL(’1’,’3’)=yes; B(’1’,’3’)= 1.5; emax(’1’,’3’)=1.5;
AL(’2’,’4’)=yes; B(’2’,’4’)= 1.7; emax(’2’,’4’)=1.8;
AL(’3’,’4’)=yes; B(’3’,’4’)= 1.1; emax(’3’,’4’)=1.75;

Table d(de,t) demand data
1 2 3

3 0.2 2.5 0.1 4 0.6 0.1 0.1;

POSITIVE VARIABLES
x(lo,t) actual production at a location and time
c(lo,t)
s(lo,t) start up cost;

BINARY VARIABLES uaux(lo,t);

VARIABLES
e(n,n,t) energy sent from one location to another in time t
delta(n,t) relative height of location
cost total production cost
u(lo,t)
alpha;

PARAMETERS
us(IT,lo,t) fixed values of the complicating variables
zs(IT) objective function value for iteration IT
lambda(IT,lo,t) dual variables associated with the complicating...
...variable;

Equations balance1,balance2,balance3,balance4 energy balances in...
nodes 1, 2, 3, and 4, respectively;

balance1(t)..x(’1’,t)-e(’1’,’2’,t)-e(’1’,’3’,t)=e=0;
balance2(t)..x(’2’,t)+e(’1’,’2’,t)-e(’2’,’4’,t)=e=0;
balance3(t)..d(’3’,t)-e(’1’,’3’,t)+e(’3’,’4’,t)=e=0;
balance4(t)..d(’4’,t)-e(’2’,’4’,t)-e(’3’,’4’,t)=e=0;

Equation translim transmission capacity limits;
translim(n,n1,t)$(AL(n,n1))..e(n,n1,t)=l=emax(n,n1);

Equation edf transmitted commodity through lines;
edf(n,n1,t)$(AL(n,n1))..e(n,n1,t)=e=B(n,n1)*sin(delta(n,t)...
...-delta(n1,t));

Equation prodlimax,prodlimin production capacity limits;
prodlimax(lo,t)..x(lo,t)=l=u(lo,t)*xmax(lo);
prodlimin(lo,t)..x(lo,t)=g=u(lo,t)*xmin(lo);

Equation copar cost coefficient definition;
copar(lo,t)..c(lo,t)=e=f(lo)+v(lo)*x(lo,t);

Equation startup0a,startup0b,startupa,startupb start up cost
definition;

startup0a(lo,’1’)..s(lo,’1’)$(u(lo,’1’)-u0(lo)>0)=e=sup(lo);
startup0b(lo,’1’)$(u(lo,’1’)-u0(lo) le 0)..s(lo,’1’)=e=0;
startupa(lo,t,t1)$(u(lo,t)-u(lo,t1)>0 and ORD(t1)+1=ORD(t))..
s(lo,t)=e=sup(lo);
startupb(lo,t,t1)$(u(lo,t)-u(lo,t1) le 0 and ORD(t1)+1=ORD(t))..
s(lo,t)=e=0;

Equation costdf total production cost definition;
costdf..cost=e=sum((lo,t),c(lo,t)*x(lo,t));



B.6 Exercises from Chapter 6 499

EQUATION cutting,secsupp,alphalo cutting planes;
cutting(ITER)..alpha=g=zs(ITER)+sum((lo,t),lambda(ITER,lo,t)*...
...(uaux(lo,t)-us(ITER,lo,t)));
secsupp(t)..sum(lo,uaux(lo,t)*xmax(lo))=g=sum(de,d(de,t));
alphalo..alpha=g=0;

MODEL subproblem
/costdf,copar,balance1,balance2,balance3,balance4,...
...translim,edf,prodlimax,prodlimin/; MODEL master multiplier
updating /cutting,secsupp/;

lambda(IT,lo,t)=0; zs(IT)=0; us(IT,lo,t)=0; ITER(IT)=no;

loop(IT$(error>epsilon),
put " Iteration ",ORD(IT):3:0//;

if(ORD(IT)=1,
u.fx(lo,t)=1;

else
uaux.l(lo,t)=u.l(lo,t);
SOLVE master using mip MINIMIZING alpha;
put "Modelstat= ",master.modelstat,"; Solvestat= ",...
...master.solvestat/;
put "alpha= ",alpha.l:12:6/;

u.fx(lo,t)=uaux.l(lo,t);
zlo=alpha.l;
put "Optimal objective function lower bound= ",zlo:12:6/;

);
loop((lo,t),

put "u(",lo.tl:2,",",t.tl:2,")= ",u.l(lo,t):12:6/;
);

SOLVE subproblem using nlp MINIMIZING cost;
put "Modelstat= ",subproblem.modelstat,"; Solvestat= ",...
...subproblem.solvestat/;
zs(IT)=cost.l;
loop(lo,

if(u.l(lo,’1’)-u0(lo)>0,
zs(IT)=zs(IT)+sup(lo);

);
loop((t,t1)$(u.l(lo,t)-u.l(lo,t1)>0 and ORD(t1)+1=ORD(t)),

zs(IT)=zs(IT)+sup(lo);
);

);
lambda(IT,lo,t)=u.m(lo,t);
us(IT,lo,t)=u.l(lo,t);

zup=zs(IT);
put "cost= ",cost.l:12:6,"costTot= ",zs(IT):12:6,...
..."; Objective function upper bound= ",zup:12:6/;
loop((lo,t),

put "x(",lo.tl:2,",",t.tl:2,")= ",x.l(lo,t):12:6,...
..."; lambda= ",lambda(IT,lo,t):12:6/;

);put /;

* Updating error

if(zlo ne 0,
error=abs((zup-zlo)/zlo);

else
error=abs((zup-zlo));

);
put "Error= ",error:12:9//;
ITER(IT)=yes;

);



500 B Exercise Solutions

B.7 Exercises from Chapter 7

Solution to Exercise 7.2. The solution of this problem can be obtained
by means of the relaxation method stated in Sect. 7.1.1 using the following
iterative process:

Step 0: Initialization. Initialize the iteration counter, ν = 1, and let
r
(ν)
1 = g

(0)
1 and r

(ν)
2 = g

(0)
2 .

Step 1: Solve the master problem.

minimize
x1, x2

z =
(

x1

y1

)2

+
(

x2

y2

)2

subject to

g1(x,y) =
x1x2

y1y2
≥ r

(ν)
1

g2(x,y) =
x2

y2

√
y1

x1
≥ r

(ν)
2 .

In this step the values of the x variables, x(ν), are obtained.

Step 2: Solve the subproblems. The following problems are solved for
fixed values of the x variables, i.e., for x = x(ν):

h
(ν)
i (x(ν),y) = minimum

u1, u2, v1, v2

√√√√√ 2∑
j=1

(
uj − x

(ν)
j

x
(ν)
j vxj

)2

+
2∑

j=1

(
vj − yj

yjvyj

)2

subject to
gi(u,v) = 1

where

g1(u,v) =
u1u2

v1v2
and g2(u,v) =

u2

v2

√
v1

u1
.

The solution of this subproblems are h
(ν)
1 and h

(ν)
2 , respectively.

Step 3: Check convergence. If the maximum relative error

error(ν) = max
∀i

∣∣∣∣∣h(ν)
i − h

(ν−1)
i

h
(ν)
i

∣∣∣∣∣
is smaller than the tolerance ε, stop the process. Otherwise go to Step 4.



B.7 Exercises from Chapter 7 501

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

>
x1 y2 g2

(0)
y1

x2

> y1 y2 g1
(0)x2 x1

> y1 y2 g1
(r)x2 x1 Initial feasible 

region

x1

x2

f (x, y) = 1
f (x, y) = 4

f (x, y) = 9

f (x, y) = 2.795

Optimal solution
(0.951, 1.560)

f *(x, y) = 3.340

Fig. B.4. Illustration of the problem solution in Exercise 7.2

Step 4: Update values. Use the following rule to obtain r(ν):(
r
(ν+1)
1

r
(ν+1)
2

)
=

(
r
(ν)
1

r
(ν)
2

)
+ ρ

(
h

(0)
1 − h

(ν)
1

h
(0)
2 − h

(ν)
2

)
.

Update the iteration counter ν ← ν + 1, and continue with Step 1.
In Fig. B.4 the graphical illustration of the problem solution is shown

that is attained at the point x∗ = (0.951, 1.560)T , with an objective function
value f(x∗,y∗) = 3.340. Table B.16 illustrates the evolution of the iterative
process showing the values of the variables and the error, corresponding to
the following additional data:

ρ = 0.2, ε = 0.00001 .

Alternatively, this problem can be solved using the cutting hyperplane
method. To this end the following algorithm can be used:



502 B Exercise Solutions

Table B.16. Iterative process until the solution is obtained using the relaxation
method

ν z(ν) x
(ν)
1 x

(ν)
2 r

(ν)
1 r

(ν)
2 h

(ν)
1 h

(ν)
1 Error(ν)

1 2.795 0.825 1.454 1.200 1.600 1.319 4.419 –
2 3.439 0.973 1.578 1.536 1.600 3.287 4.419 0.5988883
3 3.329 0.949 1.559 1.479 1.600 2.969 4.419 0.1070439
4 3.341 0.951 1.561 1.485 1.600 3.004 4.419 0.0114119
5 3.340 0.951 1.560 1.484 1.600 3.000 4.419 0.0013410
6 3.340 0.951 1.560 1.484 1.600 3.000 4.419 0.0001560
7 3.340 0.951 1.560 1.484 1.600 3.000 4.419 0.0000182
8 3.340 0.951 1.560 1.484 1.600 3.000 4.419 0.0000021

Step 0: Initialization. Initialize the iteration counter, ν = 1.

Step 1: Solve the master problem.

minimize
x1, x2

(
x1

y1

)2

+
(

x2

y2

)2

subject to

g1(x,y) =
x1x2

y1y2
≥ g

(0)
1

g2(x,y) =
x2

y2

√
y1

x1
≥ g

(0)
2

h(s) + λ(s)T
(x− x(s)) ≥ h0; s = 1, 2, · · · , ν − 1 ,

where the last equation constitutes an hyperplane reconstruction of the orig-
inal constraint h(x,y) ≥ h0.

In this step the values of the x variables, x(ν), are obtained.

Step 2: Solve the subproblems. The following problems are solved for
fixed values of the x variables, i.e., for x = x(ν):

h
(ν)
i (x(ν),y) = minimum

u1, u2, v1, v2

√√√√ 2∑
j=1

(
uj − xj

xjvxj

)2

+
2∑

j=1

(
vj − yj

yjvyj

)2

subject to
gi(u,v) = 1

x = x(ν) : λ
(ν)
i ,



B.7 Exercises from Chapter 7 503

where

g1(u,v) =
u1u2

v1v2
and g2(u,v) =

u2

v2

√
v1

u1
.

The solution of this subproblems are h
(ν)
1 and h

(ν)
2 , respectively.

Step 3: Check convergence. If the maximum relative error

error(ν) = max
∀i

∣∣∣∣∣h(ν)
i − h

(ν−1)
i

h
(ν)
i

∣∣∣∣∣
is smaller than the tolerance ε, stop the process. Otherwise, update the iter-
ation counter ν ← ν + 1, and continue with Step 1.

The iterative procedure leads to the results shown in Table B.17 that
provides the same information as Table B.16 using the alternative procedure.
In this case the process converges after four iterations.

Table B.17. Iterative process until the solution is obtained using the cutting hy-
perplane method

ν z(ν) x
(ν)
1 x

(ν)
2 r

(ν)
1 r

(ν)
2 h

(ν)
1 h

(ν)
1 Error(ν)

1 2.795 0.825 1.454 1.200 1.600 1.319 4.419 –
2 3.333 0.950 1.559 1.481 1.600 2.980 4.419 0.5576132
3 3.340 0.951 1.560 1.484 1.600 3.000 4.419 0.0065065
4 3.340 0.951 1.560 1.484 1.600 3.000 4.419 0.0000009

Solution to Exercise 7.4. Consider the system of (7.136) relating forces and
moments corresponding to the structure in Fig. 7.4a. If we add an additional
diagonal piece as illustrated in Fig. 7.4b, the stiffness matrix of the structure
has to be updated.

The rotation matrix (7.134) associated with this diagonal piece is

G =

⎛⎝
√

2
2

√
2

2 0
−

√
2

2

√
2

2 0
0 0 1

⎞⎠ , (B.16)

whereas its stiffness matrix is obtained using (7.135):



504 B Exercise Solutions

KIV =

⎛⎝ KIV
1 | KIV

2

−− + −−
KIV

2
T | KIV

3

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

13
2

11
2 3

√
2 − 13

2 − 11
2 −3

√
2

11
2

13
2 3

√
2 − 11

2 − 13
2 −3

√
2

3
√

2 3
√

2 4 −3
√

2 −3
√

2 −2
− 13

2 − 11
2 −3

√
2 13

2
11
2 3

√
2

− 11
2 − 13

2 −3
√

2 11
2

13
2 3

√
2

−3
√

2 −3
√

2 −2 3
√

2 3
√

2 4

⎞⎟⎟⎟⎟⎟⎟⎠ .

The stiffness matrix of the complete structure can be obtained from the
stiffness matrices of all its pieces as shown in Fig. B.5.

K1
I K2

I

K2
IT

K3
I K1

II

K2
IV

K2
II T

K3
II K1

III K2
III

K2
III

T

K2
IV

T

K3
III

+

+

V 1

M1

V 2

H2
M2

V 3

H3

V 4

M4H1

M3

H4

2 2

2

3 3

31

1

1

4

4

4

K1
IV+

K3
IV+

Fig. B.5. Stiffness matrix for the structure shown in Fig. 7.4b, and an illustration
of how to build it

The final stiffness matrix relating forces and moments Hi, Vi,Mi(i =
1, 2, 3, 4) with displacements and rotations hi, vi, θi(i = 1, 2, 3, 4) for Ai =
Ei = Ii = Li = 1(i = 1, 2, 3) for this new structure becomes

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

37
2

11
2 (6+3

√
2) | −12 0 6 | − 13

2 − 11
2 −3

√
2 | 0 0 0

11
2

15
2 3

√
2 | 0 −1 0 | − 11

2 − 13
2 −3

√
2 | 0 0 0

(6+3
√

2) 3
√

2 8 | −6 0 2 | −3
√

2 −3
√

2 −2 | 0 0 0
− − − + − − −+ − − − + − − −

−12 0 −6 | 13 0−6 | −1 0 0 | 0 0 0
0 −1 0 | 0 13 6 | 0 −12 6 | 0 0 0
6 0 2 | −6 6 8 | 0 −6 2 | 0 0 0
− − − + − − −+ − − − + − − −

− 13
2 − 11

2 −3
√

2 | −1 0 0 | 39
2

11
2 (−6+3

√
2) | −12 0−6

− 11
2 − 13

2 −3
√

2 | 0−12−6 | 11
2

39
2 (−6+3

√
2) | 0−1 0

−3
√

2 −3
√

2 −2 | 0 6 2 | (−6+3
√

2)(−6+3
√

2) 12 | 6 0 2
− − − + − − −+ − − − + − − −
0 0 0 | 0 0 0 | −12 0 6 | 12 0 6
0 0 0 | 0 0 0 | 0 −1 0 | 0 1 0
0 0 0 | 0 0 0 | −6 0 2 | 6 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(B.17)
where the banded matrix structure is shown.

Note that the pattern of the initial structure shown in (7.136) is like the
one in (7.127). Note also that after adding the new piece, the pattern of the
new stiffness matrix, shown in (B.17) is also like that in (7.127), but with a
larger width band, which does not justify the use of the proposed method.



B.7 Exercises from Chapter 7 505

Solution to Exercise 7.6. The solution of this problem can be obtained
by means of the relaxation method stated in Sect. 7.1.1 using the following
iterative scheme:

Step 0: Initialization. Initialize the iteration counter, ν = 1, and let the
actual safety factor and reliability index lower limit to their minimum values
F

(ν)
lo = F0 and β(ν−1) = β0.

Step 1: Solve the master problem. The construction cost minimization
problem considering safety factor constraints is solved:

minimize
Fc, tan αs

Cco = ccvc + cava

subject to

H = 1.8Hs

T = 1.1Tz

1/5 ≤ tan αs ≤ 1/2
Fc = 2 + d

vc = 10d

va =
1
2
(Dwl + 2)

(
46 + Dwl +

Dwl + 2
tan αs

)
Ru

H
= Au

(
1 − eBuIr

)
Ir =

tan αs√
H/L(

2π

T

)2

= g
2π

L
tanh

2πDwl

L

Fc/Ru ≥ F
(ν)
lo .

In this step the values of the freeboard F
(ν)
c and seaside slope tangent tan α

(ν)
s

are obtained. Note that the constraint related to the reliability index lower
bound is not considered in this problem.

Step 2: Solve the subproblem. The reliability index associated with the
new values of the design variables is calculated by means of the following
problem:

minimize
H,T

β =
√

z2
1 + z2

2

subject to

Ru

H
= Au

(
1 − eBuIr

)



506 B Exercise Solutions

Ir =
tan α

(ν)
s√

H/L(
2π

T

)2

= g
2π

L
tanh

2πDwl

L

Φ(z1) = 1 − e−2(H/Hs)
2

Φ(z2) = 1 − e−0.675(T/T̄ )4

F (ν)
c = Ru .

The solution of this subproblem provides β(ν).

Step 3: Check convergence. If the relative error

error(ν) =
∣∣∣∣β(ν) − β(ν−1)

β(ν)

∣∣∣∣
is smaller than the tolerance ε, stop the process, the optimal solution has been
found. Otherwise, set ν ← ν + 1 and go to Step 4.

Step 4: Update values. Use the following rule to obtain F
(ν)
lo :

F
(ν)
lo = F

(ν−1)
lo + ρ(β(0) − β(ν−1)) .

If the resulting safety factor is lower than the minimum value (F (ν)
lo < F0),

then
F

(ν)
lo = F0 .

The optimal solution is

C∗
co = 6,512.2456, F ∗

c = 5.756, tan αs
∗ = 0.231 ,

which is attained after 12 iterations (see Table B.18) with a relaxation factor
ρ = 0.1 and a relative error tolerance of ε = 10−4. The probabilistic safety
constraint is active β∗ = β0 = 4.5.

B.8 Exercises from Chapter 8

Solution to Exercise 8.2. Let (Xi, Yi) be the coordinates of the random
points, i.e.,

Xi ∼ N(0, 1), Yi ∼ N(0, 1); i = 1, 2, . . . , 20 ,

where ∼ indicates probability distribution.



B.8 Exercises from Chapter 8 507

Table B.18. Illustration of the iterative procedure in Exercise 7.6

Iterations Fc tan αs Cco Cin Cto Error

1 5.344 0.259 5,991.6 1.247 3.526 0.276259
2 5.554 0.244 6,257.4 1.296 4.009 0.120514
3 5.657 0.237 6,387.2 1.321 4.256 0.057910
4 5.707 0.234 6,450.9 1.333 4.379 0.028197
5 5.732 0.232 6,482.2 1.339 4.440 0.013806
6 5.745 0.232 6,497.6 1.342 4.471 0.006776
7 5.751 0.231 6,505.1 1.343 4.486 0.003330
8 5.754 0.231 6,508.9 1.344 4.493 0.001637
9 5.755 0.231 6,510.7 1.344 4.496 0.000805

10 5.756 0.231 6,511.6 1.345 4.498 0.000396
11 5.756 0.231 6,512.0 1.345 4.499 0.000195
12 5.756 0.231 6,512.2 1.345 4.500 0.000096

Our problem can be stated as

minimize
r, x0, y0

z = r (B.18)

subject to

(xi − x0)2 + (yi − y0)2 ≤ r2 : µi; i = 1, 2, . . . , 20 (B.19)

where µi(i = 1, 2, . . . , 20) are the dual variables.
It is interesting to see that since a circle is defined by three points, apart

from degenerate cases, only three points [those points defining the circle (see
Fig. B.6)] lead to active constraints. Thus, the objective function is sensitive
only to these three points. The same can be said for the sensitivities of x0, y0,
and r.

The sensitivities can be calculated analytically or numerically. For the first
option, we first obtain the Lagrangian function

L(x0, y0, r, µ) = r +
20∑

i=1

µi

[
(xi − x0)2 + (yi − y0)2 − r2

]
(B.20)

and, according to Theorem 8.2 the sensitivities of z∗ to the data points are

∂z∗

∂xi
= 2µ∗

i (x
∗
i − x0) (B.21)

∂z∗

∂yi
= 2µ∗

i (y
∗
i − y0) . (B.22)

Let k, s, and t the indices of the data points with non-null values of µi, and
call ηk, ηs, and ηt to the corresponding µ values, then from (8.75) to (8.82)
one gets



508 B Exercise Solutions

-2 -1 0 1 2

-1

1

0

2

1

2

3

4
5

6

7 8

9

10

11

12

13

14

15

1617

18

19

20

x

y

Fig. B.6. Illustration of the data points and the circle in Exercise 8.2. Note that
the three data points 4, 11, and 15 define the circle

F xx =

(
3∑

s=1

ηs

) ⎛⎝⎛⎛ 2 0 0
0 2 0
0 0 −2

⎞⎠⎞⎞

Fxa =

⎛⎝⎛⎛−2η1 0 −2η2 0 −2η3 0
0 −2η1 0 −2η2 0 −2η3

0 0 0 0 0 0

⎞⎠⎞⎞

Hx =

⎛⎝⎛⎛−2(xk − x0) −2(yk − y0) −2r
−2(xs − x0) −2(ys − y0) −2r
−2(xt − x0) −2(yt − y0) −2r

⎞⎠⎞⎞

Ha =

⎛⎝⎛⎛2(xk − x0) 2(yk − y0) 0 0 0 0
0 0 2(xs − x0) 2(ys − y0) 0 0
0 0 0 0 2(xt − x0) 2(yt − y0)

⎞⎠⎞⎞

F x = ( 0 0 1 )
F a = ( 0 0 0 0 0 0 ) ,

and the sensitivities can be easily calculated from (8.98) to (8.100), i.e.,

∂x

∂a
= −H−1

x Ha (B.23)

∂η

∂a
= (H−1

x )T
[
FxxH−1

x Ha − Fxa
]

(B.24)



B.8 Exercises from Chapter 8 509

∂z

∂a
= Fa − FxH−1

x Ha = Fa + ηT Ha. (B.25)

Alternatively to the analytical expressions, we can use the following pro-
gram in GAMS to solve the problem and calculate the sensitivities by finite
differences:

$ title Circle

file out/circle.out/;
put out;

SETS I number of points /1*20/;

ALIAS(I,I1);

SCALARS
r0
x00
y00
epsilon/0.001/;

PARAMETERS
X(I) data points abscissas
Y(I) data points ordinates
sensrx(I),sensry(I),sensx0x(I),sensx0y(I),sensy0x(I),sensy0y(I)
dual(I),dualx(I,I),dualy(I,I);

VARIABLES
z objective function value
x0 x coordinate of the center
y0 x coordinate of the center
r radious of the center;

EQUATIONS
zdef objective function value
inside(I);

zdef..z=e=r;

inside(I)..sqr(X(I)-x0)+sqr(Y(I)-y0)=l=sqr(r);

MODEL circle/ALL/;

X(I)=normal(0,1);
Y(I)=normal(0,1);
r.l=10;
x0.l=0;
y0.l=0;

SOLVE circle USING nlp MINIMIZING z;
put " modelstat=",circle.modelstat," solvestat=",circle.solvestat/;
put "radio=",r.l:12:8," x0=",x0.l:12:8," y0=",y0.l:12:8/;

* sensitivities using finite differences

r0=r.l;
x00=x0.l;
y00=y0.l;
dual(I)=-inside.m(I);

loop(I1,
X(I1)= X(I1)+epsilon;
SOLVE circle USING nlp MINIMIZING r;
sensrx(I1)=(r.l-r0)/epsilon;
sensx0x(I1)=(x0.l-x00)/epsilon;



510 B Exercise Solutions

sensy0x(I1)=(y0.l-y00)/epsilon;
dualx(I1,I)=(-inside.m(I)-dual(I))/epsilon;
X(I1)=X(I1)-epsilon;

);

loop(I1,
Y(I1)= Y(I1)+epsilon;
SOLVE circle USING nlp MINIMIZING z;
sensry(I1)=(r.l-r0)/epsilon;
sensx0y(I1)=(x0.l-x00)/epsilon;
sensy0y(I1)=(y0.l-y00)/epsilon;
dualy(I1,I)=(-inside.m(I)-dual(I))/epsilon;
Y(I1)=Y(I1)-epsilon;

);

put "Data, dual variables and sensitivities"/;

loop(I,put I.tl:3," & " ,X(I):8:3," & ",Y(I):8:3," & ",...
...dual(I):8:3," & ", sensx0x(I):8:3," & ",sensy0x(I):8:3,...
..." & ",sensrx(I):8:3," & ",sensx0y(I):8:3," & ",...
...sensy0y(I):8:3," & ",sensry(I):8:3," \\"/;);
put "\\"/;

loop((I,I1),if( abs(dualx(I1,I)) > 0.0000001,put I.tl:3," & ",...
I1.tl:3," & ",dualx(I1,I):8:5," & ", dualy(I1,I):8:5," \\"/;);)

Table B.19 shows the data points, the dual variables, and the x0, y0, and
r sensitivities. Note that all sensitivities are null, except those for data points
4, 11, and 15.

Table B.19. Data points, dual variables, and the x0, y0, and r sensitivities

i xi yi µi
∂x0

∂xi

∂y0

∂xi

∂r

∂xi

∂x0

∂yi

∂y0

∂yi

∂r

∂yi

1 −0.313 −1.153 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.328 0.710 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.464 1.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 −1.830 −0.724 0.079 0.388 0.467 −0.274 0.240 0.289 −0.170
5 −0.732 −0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 −0.972 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 −0.394 −0.995 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.935 −0.907 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 −0.759 0.663 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 1.571 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 −0.909 2.213 0.069 0.048 −0.290 −0.112 −0.111 0.670 0.258
12 0.344 −0.625 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 −0.662 −0.218 0.000 0.000 0.000 0.000 0.000 0.000 0.000
14 −0.486 −0.962 0.000 0.000 0.000 0.000 0.000 0.000 0.000
15 1.884 −0.108 0.097 0.563 −0.177 0.386 −0.129 0.040 −0.088
16 −0.721 −0.263 0.000 0.000 0.000 0.000 0.000 0.000 0.000
17 −1.299 −0.527 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 −1.375 −1.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19 0.320 1.982 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 1.187 0.826 0.000 0.000 0.000 0.000 0.000 0.000 0.000



B.8 Exercises from Chapter 8 511

Table B.20. Sensitivities
∂ηj

∂xi
and

∂ηj

∂yi
of the dual variables ηj with respect to xi

and yi

j i
∂ηj

∂xi

∂ηj

∂yi

4 4 −0.02397 −0.00443
4 11 0.03649 −0.02972
4 15 −0.01254 0.03416

11 4 0.04959 −0.00070
11 11 −0.01842 0.02717
11 15 −0.03116 −0.02651
15 4 0.00750 0.02562
15 11 −0.00456 −0.02863
15 15 −0.00294 0.00302

Similarly, Table B.20 shows the sensitivities
∂ηj

∂xi
and

∂ηj

∂yi
of the dual

variables ηj with respect to xi and yi.
The generalization to n dimensions of the problem (B.18)–(B.19) is

minimize
r, x01, x02, . . . , x0n

z = r (B.26)

subject to

n∑
j=1

(xij − x0j)2 ≤ r : µi; i = 1, 2, . . . , m. (B.27)

Solution to Exercise 8.4. The water supply problem can be stated as

minimize
x1, x2, . . . , x15

z =
15∑

i=1

ci(xi) =
15∑

i=1

(fi + vixi) (B.28)

subject to the flow balance equations for all nodes (input amount of water
equal to output amount of water including supplies and consumptions):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1−1
1 −1

1 −1−1
1 1 −1

1 −1
1 1−1

1 1 1−1 1−1 1 1−1−1 1−1 1−1−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11−q12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.29)



512 B Exercise Solutions

where ci(xi) is the cost associated with connection i and flow xi, and

0 ≤ xi ≤ ri; i = 1, 2, . . . , 15 , (B.30)

which can be written as

minimize
x1, x2, . . . , x15

15∑
i=1

ci(xi) (B.31)

subject to

Ax = q (B.32)
x ≤ r (B.33)

−x ≤ 0 , (B.34)

where the matrices A, q, and r are those in (B.29) and (B.30).
Since all the ri and qj appear on the right- or left-hand sides of the con-

straints, we do not need a change of the statement of the problem, because
Theorem 8.1 allows us to calculate the sensitivities. Thus, we solve the opti-
mization problem (B.31)–(B.34) and use the dual variable values for calculat-
ing the sensitivities.

Alternatively, Theorem 8.2 can be used to solve the problem, as follows:
The Lagrangian function is

L(x, q, r,λ,µ(1),µ(2)) =
15∑

i=1

ci(xi)+λT(Ax − q)+
(
µ(1)

)T

(x−r)−
(
µ(2)

)T

x .

(B.35)
Then, using Theorem 8.2, the sensitivities are

∂z∗

∂qi
= −λ∗

i ; i = 1, 2, . . . , 12 (B.36)

∂z∗

∂ri
= −µ∗

i ; i = 1, 2, . . . , 12 . (B.37)

Note that this solution coincides with that given by Theorem 8.1.

Solution to Exercise 8.6. To analyze the existence of partial derivatives
we solve the system of inequalities (8.73)–(8.74), which in this case becomes

⎛⎜⎜⎜⎜⎜⎝
0−2 | 0 0 0 | 0 0 | −1− −+ −−−+− −+ −

−2 0 | 0 0 0 | 1−1 | 0
0−2 | 0 0 0 | 1 0 | 0− −+ −−−+− −+ −
1 1 | −1 0 0 | 0 0 | 0

−1 0 | 0 1 0 | 0 0 | 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1
dx2−−
da1
da2
da3−−
dµ1
dµ2−−
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 . (B.38)



B.8 Exercises from Chapter 8 513

Note that the multiplier related to inactive constraint µ3 is not considered
in the study.

As we want to calculate all the sensitivities at once, we transform system
(B.38) into (8.84) as follows:⎛⎜⎜⎜⎜⎜⎝

0−2 | 0 0 | −1− −+− −+ −
−2 0 | 1−1 | 0

0−2 | 1 0 | 0− −+− −+ −
1 1 | 0 0 | 0

−1 0 | 0 0 | 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

dx1
dx2−−
dµ1
dµ2−−
dz

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 0 0−−−
0 0 0
0 0 0−−−−1 0 0
0 1 0

⎞⎟⎟⎟⎟⎠
(

da1
da2
da3

)
. (B.39)

Since matrix U is invertible, the problem is nondegenerate. The matrix
with all the partial derivatives becomes⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x∗
1

∂a1

∂x∗
1

∂a2

∂x∗
1

∂a3
∂x∗

2

∂a1

∂x∗
2

∂a2

∂x∗
2

∂a3−− −− −−
∂µ∗

1

∂a1

∂µ∗
1

∂a2

∂µ∗
1

∂a3
∂µ∗

2

∂a1

∂µ∗
2

∂a2

µ∗
2

∂a3−− −− −−
∂z∗

∂a1

∂z∗

∂a2

∂z∗

∂a3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= U−1S =

⎛⎜⎜⎜⎜⎜⎝
0 1 0
1 −1 0
− − −
2 −2 0
2 −4 0
− − −
−2 2 0

⎞⎟⎟⎟⎟⎟⎠ , (B.40)

which gives all sensitivities. Note, for example, that the sensitivities with re-
spect to parameter a3 (third column in matrix B.40) are null, because a3 only
appears in the inactive constraint:

Solution to Exercise 8.8. In this case, (8.73)–(8.74) become

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 4 | 9 4 0 0 0 0 0 | 0 | 0 | −1
−−+−−− − −− −+−+ −+ −
4 0 | 6 0 0−4 0 0 0 | 1 | −2 | 0
0 4 | 0 4 0 0 0 0 0 | 1 | 0 | 0
−−+−−− − −− −+−+ −+ −
1 1 | 0 0 0 3−1 0 0 | 0 | 0 | 0
−−+−−− − −− −+−+ −+ −
−2 0 | 0 0 0 0 0 0−1 | 0 | 0 | 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx
dy−−
da1
da2
da3
da4
da5
da6
da7−−
dλ−−
dµ2−−
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 . (B.41)

As we want to calculate all the sensitivities at once, we transform system
(B.41) into (8.84) as follows:



514 B Exercise Solutions⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 4 | 0 | 0 | −1
−−+−+ −+ −
4 0 | 1 | −2 | 0
0 4 | 1 | 0 | 0
−−+−+ −+ −
1 1 | 0 | 0 | 0
−−+−+ −+ −
−2 0 | 0 | 0 | 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
dx
dy−−
dλ−−
dµ2−−
dz

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 4 0 0 0 0 0
−−− − −− −
6 0 0−4 0 0 0
0 4 0 0 0 0 0
−−− − −− −
0 0 0 3−1 0 0
−−− − −− −
0 0 0 0 0 0−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
da1
da2
da3
da4
da5
da6
da7

⎞⎟⎟⎟⎟⎠ .

(B.42)
Since matrix U is invertible, the problem is nondegenerate. The matrix

with all the partial derivatives becomes⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x∗

∂a1

∂x∗

∂a2
· · · ∂x∗

∂a7
∂y∗

∂a1

∂y∗

∂a2
· · · ∂y∗

∂a7

−− −− −− −−
∂λ∗

∂a1

∂λ∗

∂a2
· · · ∂λ∗

∂a7

−− −− −− −−
∂µ∗

2

∂a1

∂µ∗
2

∂a2
· · · ∂µ∗

2

∂a7

−− −− −− −−
∂z∗

∂a1

∂z∗

∂a2
· · · ∂z∗

∂a7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= U−1S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1/2
0 0 0 −3 1 0 1/2
− − − − − − −
0 −4 0 12 −4 0 −2
− − − − − − −
3 −2 0 4 −2 0 −2
− − − − − − −
9 4 0 −12 4 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the last row gives the sensitivities of z with respect to the a-values,
which are coincident with those obtained in Example 8.5. However, rows 1, 2, 3,
and 4 give the sensitivities of x, y, λ, and µ2 with respect to the same a-values.

Solution to Exercise 8.10. The required GAMS program is
$title activeConstraints

file out/active.out/;
put out;

VARIABLES
x
y
z objective function variable;

EQUATIONS
zdef1 objective function 1
zdef2 objective function 2
zdef3 objective function 3
c1 constraint 1
c2 constraint 2
c3 constraint 3
c4 constraint 4;

zdef1..z=e=x*x+y*y;
zdef2..z=e=x+y;
zdef3..z=e=sqr(x-4)+sqr(y-2)-1;



B.8 Exercises from Chapter 8 515

c1..x*y=g=4;
c2..x+y=e=5;
c3..sqr(x-4)+sqr(y-2)=l=1;
c4..x*x+y*y=e=13;

* The three models are defined

MODEL A/zdef1,c1,c2,c3/;
MODEL B/zdef2,c1,c4,c3/;
MODEL C/zdef3,c1,c2,c4/;

* Model 1 is solved

SOLVE A USING nlp MINIMIZING z;
put "z=",z.l," modelstat=",A.modelstat," solvestat=",A.solvestat/;
put "x=",x.l:12:8," y=",y.l:12:8/;
put "mu1=",(-c1.m)," lambda=",(-c2.m)," mu2=",(-c3.m)//;

* Model 2 is solved

SOLVE B USING nlp MAXIMIZING z;
put "z=",z.l," modelstat=",B.modelstat," solvestat=",B.solvestat/;
put "x=",x.l:12:8," y=",y.l:12:8/;
put "mu1=",(-c1.m)," lambda=",(-c4.m)," mu2=",(-c3.m)//;

* Model 3 is solved

SOLVE C USING nlp MINIMIZING z;
put "z=",z.l," modelstat=",C.modelstat," solvestat=",C.solvestat/;
put "x=",x.l:12:8," y=",y.l:12:8/;
put "mu1=",(-c1.m)," lambda1=",(-c2.m)," lambda2=",(-c4.m)//

and the output file is
z= 13.00 modelstat= 2.00 solvestat= 1.00
x= 3.00000000 y= 2.00000000
mu1= 0.00 lambda= -4.00 mu2= 1.00

z= 5.00 modelstat= 2.00 solvestat= 1.00
x= 3.00000000 y= 2.00000000
mu1= 0.00 lambda= -0.25 mu2= -0.25

z= 0.00 modelstat= 2.00 solvestat= 1.00
x= 3.00000000 y= 2.00000000
mu1= 0.00 lambda1= -4.00 lambda2= 1.0

Solution to Exercise 8.12. The Karush–Kuhn–Tucker (KKT) conditions
for this problem are(

2a1x1

2x2

)
+

(
x2

2

2x1x2

)
λ +

(−1
0

)
µ =

(
0
0

)
x1x

2
2 − a2 = 0

−x1 + a3 ≤ 0
µ(−x1 + a3) = 0

µ ≥ 0 ,

(B.43)

and the corresponding solution, for the particular case a1 = a3 = 1 and a2 = 2
is

x∗
1 = 1, x∗

2 =
√

2, λ∗ = −1, µ∗ = 0, z∗ = 3 . (B.44)

In Fig. B.7a the optimal solution and the feasible region of the problem
(8.181)–(8.183) are shown. The graphical interpretation of the first equation



516 B Exercise Solutions

0 1 2 3

1

2

3

x1

x2

Feasible
Region

∆

f(x)

∆

h(x)λ

∆

g(x)µa1 = a3 = 1

a2 = 2

= -1λ
= 0µ

g(x) = -x1 + a3 = 0

f (x) = a1x1 - x2
2 2

h(x) = -x1x2 - a2 = 0
2

z = 18 

z = 8 

z* = 3 

z = 2 

(b)(a)

Fig. B.7. Illustration of: (a) the feasible region in the regular degenerate example,
optimal values and (b) Karush–Kuhn–Tucker (KKT) multipliers

in (B.43) is shown in Fig. B.7b. Note that constraint g(x) is not necessary for
getting the optimal solution (B.44), this means that it could be removed and
the same optimal solution would still remain.

A vector of changes

δp = (dx1, dx2, da1, da2, da3, dλ, dµ, dz)T

must satisfy the system (8.64)–(8.70), which for this example becomes

( 2 2
√

2 )
(

dx1

dx2

)
+ ( 1 0 0 )

⎛⎝ da1

da2

da3

⎞⎠− dz = 0 (B.45)

((
2 0
0 2

)
+ λ

(
0 2

√
2

2
√

2 2

)
+ µ

(
0 0
0 0

))(
dx1

dx2

)

+
((

2 0 0
0 0 0

)
+ λ

(
0 0 0
0 0 0

)
+ µ

(
0 0 0
0 0 0

))⎛⎝ da1

da2

da3

⎞⎠
+
(

2
2
√

2

)
dλ +

(−1
0

)
dµ =

(
0
0

)
(B.46)

( 2 2
√

2 )
(

dx1

dx2

)
+ ( 0 −1 0 )

⎛⎝ da1

da2

da3

⎞⎠ = ( 0 ) (B.47)



B.8 Exercises from Chapter 8 517

(−1 0 )
(

dx1

dx2

)
+ ( 0 0 1 )

⎛⎝ da1

da2

da3

⎞⎠ ≤ ( 0 ) (B.48)

dµ ≥ 0. (B.49)

The M matrix in (8.73) particularized for this example is

M =

⎡⎢⎢⎣
2 2

√
2 1 0 0 0 0 −1

2 −2
√

2 2 0 0 2 −1 0
−2

√
2 0 0 0 0 2

√
2 0 0

2 2
√

2 0 −1 0 0 0 0

⎤⎥⎥⎦ , (B.50)

whereas the matrix N in (8.74) is

N =
[ −1 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0

]
. (B.51)

In this case, matrix U has no inverse because it is not a square matrix, the
gradients of the constraints are linearly independent and one of the Lagrange
multipliers is null, so we have a regular degenerate case. The system (8.73)–
(8.74), using expressions (B.50) and (B.51), becomes

Mδp =

⎛⎜⎜⎝
2 2

√
2 1 0 0 0 0 −1

2 −2
√

2 2 0 0 2 −1 0
−2

√
2 0 0 0 0 2

√
2 0 0

2 2
√

2 0 −1 0 0 0 0

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

da3

dλ
dµ
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

(B.52)

Nδp =
( −1 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

da3

dλ
dµ
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 0. (B.53)

Note that we have not considered (8.70) yet. If we want (i) the inequality
constraint to remain active the first equation in system (B.53) should be
removed and included in system (B.52), whereas if we want (ii) the inequality
constraint to be allowed to become inactive then the second equation in system
(B.53) should be removed and included in system (B.52). The corresponding
solutions are the cones



518 B Exercise Solutions⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

da3

dλ
dµ
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ρ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−2
2
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1√
2

1
2
0
0
0
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
− 1√

2
2
−2
0
0
6
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1
1√
2
(ρ2 − π)

−2ρ1 + ρ2 + 2π
2(ρ1 + ρ2 − π)

ρ1

ρ1

6π
3ρ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.54)

and⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

da3

dλ
dµ
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ρ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−2
2
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1√
2

1
2
0
0
0
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−2
2
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1 + π
1√
2
ρ2

−2ρ1 + ρ2 − 2π
2(ρ1 + ρ2 + π)

ρ1

ρ1 + π
0

3ρ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.55)

respectively, where ρ1, ρ2 ∈ IR and π ∈ IR+, which give all feasible perturba-
tions. Note, for example, that the component associated with dµ = (6π1 or
0) is always positive for (B.49) to hold, whereas the component related to the
equality constraint dλ = (ρ1 or ρ1 + π) can be positive or negative.

In order to study the existence of directional derivatives with respect to
a1 we use the directions da = ( 1 0 0 )T and da = (−1 0 0 )T , and solve
the two possible combinations of (8.84)–(8.85) that lead to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
1

∂x2

∂a+
1

∂λ

∂a+
1

∂µ

∂a+
1

∂z

∂a+
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎣
0
0
0
2
1

⎤⎥⎥⎥⎦ ;

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a−
1

∂x2

∂a−
1

∂λ

∂a−
1

∂µ

∂a−
1

∂z

∂a−
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=[∅], and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
1

∂x2

∂a+
1

∂λ

∂a+
1

∂µ

∂a+
1

∂z

∂a+
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=[∅];

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a−
1

∂x2

∂a−
1

∂λ

∂a−
1

∂µ

∂a−
1

∂z

∂a−
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣
1
3− 1
3
√

2
1
3
0
−1

⎤⎥⎥⎥⎥⎦ ,

(B.56)
respectively, where [∅] means that there is no solution, which implies that both
directional derivatives exist (existence and uniqueness) but only the partial

derivative of z with respect to a1 exists
∂z

∂a1
= 1. For the remaining variables

the directional derivatives do not coincide in absolute value, therefore, the cor-
responding partial derivatives do not exist. Note that in the right-derivative
the solution point remains the same but the Lagrange multiplier µ associ-
ated with the inequality constraint becomes different from zero as shown in



B.8 Exercises from Chapter 8 519

Fig. B.8a. For the left-derivative the solution point changes and the inequal-
ity constraint becomes inactive, note that the Lagrange multiplier associated
with the equality constraint h(x) changes but it is sufficient for getting a new
optimal solution (see Fig. B.8b) whereas the one related to the inequality
constraint remains equal to zero.

The directional derivatives with respect to a2 are obtained using the direc-
tions da = ( 0 1 0 )T and da = ( 0 −1 0 )T , and solving the two possible
combinations of (8.84)–(8.85) leading to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
2

∂x2

∂a+
2

∂λ

∂a+
2

∂µ

∂a+
2

∂z

∂a+
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=[∅];

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

da−
2

∂x2

∂a−
2

∂λ

∂a−
2

∂µ

∂a−
2

∂z

∂a−
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎣
0

− 1
2
√

2
0
1
−1

⎤⎥⎥⎥⎦ , and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
2

∂x2

∂a+
2

∂λ

∂a+
2

∂µ

∂a+
2

∂z

∂a+
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣
1
6
1

3
√

2
1
6
0
1

⎤⎥⎥⎥⎥⎦ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

da−
2

∂x2

∂a−
2

∂λ

∂a−
2

∂µ

∂a−
2

∂z

∂a−
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=[∅],

(B.57)
respectively, which implies that both directional derivatives exist (existence
and uniqueness) but only the partial derivative of z with respect to a2 ex-

ists
∂z

∂a2
= 1. For the remaining variables the partial derivatives do not exist.

Note that in the right-derivative the solution point changes and the inequality
constraint becomes inactive. The gradients of the objective and equality con-
straint remain with the same direction but different magnitude as shown in
Fig. B.8c whereas for the left-derivative the solution point changes as well but
the inequality constraint remains active with a Lagrange multiplier different
from zero (see Fig. B.8d). Note that the inequality constraint forces the new
solution point to move along its limit (see Fig. B.8d).

Analogously, the directional derivatives with respect to a3 are obtained
using the directions da = ( 0 0 1 )T and da = ( 0 0 −1 )T , and solving
the two possible combinations of (8.84)–(8.85) leading to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
3

∂x2

∂a+
3

∂λ

∂a+
3

∂µ

∂a+
3

dz

∂a+
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎣
1

− 1√
2

1
6
0

⎤⎥⎥⎥⎦ ;

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

da−
3

∂x2

∂a−
3

∂λ

∂a−
3

∂µ

∂a−
3

∂z

∂a−
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=[∅], and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
3

∂x2

∂a+
3

∂λ

∂a+
3

∂µ

∂a+
3

∂z

∂a+
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=[∅],

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

da−
3

∂x2

∂a−
3

∂λ

∂a−
3

∂µ

∂a−
3

∂z

∂a−
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎦ ,

(B.58)



520 B Exercise Solutions

0 1 2 3

1

2

3

x1

x2

Feasible
Region

g(x) = -x1 + a3 = 0

h(x) = x1x2 - a2 = 0
2

z = 2 

(a)

∆

f(x)

∆

h(x)λ

∆

g(x)µ

0 1 2 3

1

2

3

x1

x2

Feasible
Region

g(x) = -x1 + a3 = 0

z = 2 

(b)

∆

f(x)

∆

h(x)λ

∆

g(x)µ

0 1 2 3

1

2

3

x1

x2

Feasible
Region

g(x) = -x1 + a3 = 0

h(x) = x1x2 - (a2+da2) = 0
2

z = 2 

(c)

0 1 2 3

1

2

3

x1

x2

Feasible
Region

g(x) = -x1 + a3 = 0

z = 2 

(d)

∆

f(x)

∆

h(x)λ

∆

g(x)µ

∆

f(x)

∆

h(x)λ

∆

g(x)µ

0 1 2 3

1

2

3

x1

x2

Feasible
Region

g(x) = -x1 + a3-da3 = 0

(e)

∆

f(x)

∆

h(x)λ

∆

g(x)µ

0 1 2 3

1

2

3

x1

x2

Feasible
Region

(f)

∆

f(x)

∆

h(x)λ

∆

g(x)µ

f (x) = (a1+da1) x1 - x2
2 2

f (x) = (a1-da1) x1 - x2
2 2

g(x) = -x1 + a3+da3 = 0

h(x) = x1x2 - a2 = 0
2

h(x) = x1x2 - (a2 - da2) = 0
2

h(x) = x1x2 - a2 = 0
2 h(x) = x1x2 - a2 = 0

2

Fig. B.8. Illustration of the feasible regions, optimal values, and KKT multipliers of
the modified problems due to changes in the parameters a, for the regular degenerate
case. (Upper) Positive and negative increments of a1. (Middle) Positive and negative
increments of a2. (Lower) Positive and negative increments of a3



B.8 Exercises from Chapter 8 521

respectively, which implies that both directional derivatives exist (existence
and uniqueness) but only the partial derivative of z with respect to a3 exists
∂z

∂a3
= 0. For the remaining variables the partial derivatives do not exist.

Note that in the right-derivative the solution point changes but the inequality
constraint remains active with Lagrange multiplier different from cero. The
inequality constraint forces the solution point to move to the right as shown
in Fig. B.8e. For the left-derivative the solution point does not change and
the inequality constraint becomes inactive. In Fig. B.8f it is shown how the
feasible region moves left.

Solution to Exercise 8.14. The KKT conditions for this problem are(
2x1

2x2

)
+

(−1
0

)
λ +

(−1 a2

−1 −1

)(
µ1

µ2

)
=

(
0
0

)
−x1 + a1 = 0

−x1 − x2 + 2a1 ≤ 0
a2x1 − x2 ≤ 0

µ1(−x1 − x2 + 2a1) = 0
µ2(a2x1 − x2) = 0

µ1, µ2 ≥ 0 ,

(B.59)

and the corresponding solution, for the particular case a1 = a2 = 1 are (see
Fig. B.9a):

x1 = x2 = 1; µ1 =
4 − λ

2
; µ2 =

λ

2
. (B.60)

Note that the dual problem has infinite solutions. Since the two inequality
constraints are active, they will remain active or inactive in a neighborhood
of the optimum depending on the values of the Lagrange multipliers. Then, a
vector of changes

δp = (dx1, dx2, da1, da2, dλ, dµ1, dµ2, dz)T

must satisfy the system (8.64)–(8.70), for all possible cases, the M matrix in
(8.73) can be obtained from the following matrix:

M =

⎡⎢⎢⎢⎢⎢⎢⎣

2 2 0 0 0 0 0 −1
2 0 0 µ2 −1 −1 1 0
0 2 0 0 0 −1 −1 0

−1 0 1 0 0 0 0 0
−1 −1 2 0 0 0 0 0

1 −1 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.61)

by removing the rows corresponding to the null µ-multipliers, and the matrix
N in (8.74) can be obtained from the matrix



522 B Exercise Solutions

x1

x2

Feasible
Region

1

1

2

2

(0,0)

(b)

(c) (d)

h(x) = -x1 + a1 = 0
g2(x) = a2x1 - x2 = 0

g1(x) = -x1 - x2 + 2a1 = 0

h(x) = -x1 + a1 = 0 g2(x) = a2x1 - x2 = 0

g1(x)

x1

x2

Feasible
Region

1

1

2

2

(0,0)

(a)

∆

f(x)

∆

h(x)λ ∆

g2(x)2µ

∆

g1(x)1µ

a1 = a2 = 1

= 2λ

1 = 1µ

2 = 1µ

a1 = 1 + 1ρ
a2 = 1

1 = 1 + 2 1ρµ
2 = 1µ

= 2λ

2   1ρ

2   1ρ

∆

f(x)

∆
g2(x)2µ

∆

g1(x)1µ
∆

h(x)λ

1ρ

1ρ
2   1ρ

Fig. B.9. Illustration of the feasible regions in Case 1, optimal values and KKT
multipliers of the initial and modified problems due to changes in the a1 parameter.
(Upper) Initial problem. (Lower) Positive increment of a1

N =

⎡⎢⎢⎣
−1 −1 2 0 0 0 0 0

1 −1 0 1 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0

⎤⎥⎥⎦ , (B.62)

by removing the rows corresponding to the non-null µ-multipliers.
We analyze the only possible two different cases [see (B.60)]:

Case 1: µ1, µ2 �= 0. For example λ = 2; µ1 = 1; µ2 = 1 [for a graphical
interpretation of the first equation in system (B.59) see Fig. B.9b]. In



B.8 Exercises from Chapter 8 523

this case, the matrix U is singular because the gradients of the active
constraints are not linearly independent so we have a nonregular case.
Since all µ-multipliers are non-null, the N matrix does not exist and the
system (8.73)–(8.74), using expression (B.61), becomes

Mδp =

⎛⎜⎜⎜⎜⎜⎜⎝

2 2 0 0 0 0 0 −1
2 0 0 1 −1 −1 1 0
0 2 0 0 0 −1 −1 0

−1 0 1 0 0 0 0 0
−1 −1 2 0 0 0 0 0

1 −1 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 .

Note that in this example there is no need to consider (8.70) because the
Lagrange multipliers are different from zero. The solution is the linear
space⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ρ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
2
0
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
2
−1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1

ρ1

ρ1

0
2ρ2

2ρ1 − ρ2

ρ2

4ρ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ρ1, ρ2 ∈ IR , (B.63)

which gives all feasible perturbations. Note that the vector associated with
ρ2 corresponds to the feasible changes in the Lagrange multipliers owing
to the linearly dependence on the constraint gradients (see Fig. B.10).
In Figs. B.9d the required changes in the Lagrange multipliers λ, µ1, and
µ2 when a1 is modified for the first equation in system (B.59) to hold, are
shown.

∆

f(x)
2ρ

2ρ

∆

g2(x)2µ

∆

g1(x)1µ

∆

h(x)λ= 2 + 2 2ρλ

1 = 1 - 2ρµ

2 = 1 + 2ρµ

∆

f(x)

∆

h(x)λ ∆

g2(x)2µ

∆

g1(x)1µ

= 2λ

1 = 1µ

2 = 1µ

Fig. B.10. Case 1 (Nonregular point): Illustration of the feasible KKT multipliers
changes due to changes in the ρ2 parameter



524 B Exercise Solutions

In order to study the existence of partial derivatives with respect to a1

we use the directions da = ( 1 0 )T and da = (−1 0 )T , that imply [see
(B.63)] ρ1 = 1 and ρ1 = −1, respectively, and⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
2
0
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
2
−1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
−1
0
0
−2
0
−4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
2
−1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.64)

which implies that the following partial derivatives exist:
∂x1

∂a1
=

∂x2

∂a1
= 1,

and
∂z

∂a1
= 4 because they are unique (see Fig. B.9c). However, the partial

derivatives
∂λ

∂a1
,

∂µ1

∂a1
, and

∂µ2

∂a1
do not exist, because the corresponding

dλ, dµ1, dµ2 are not unique (they depend on the arbitrary real number
ρ2).
Alternatively, it is possible to consider the direction in which the desired
partial derivative is looking for, da = ( 1 0 )T , and solve system (8.84)–
(8.85) with da and −da leading to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
1

∂x2

∂a+
1

∂λ

∂a+
1

∂µ1

∂a+
1

∂µ2

∂a+
1

dz

∂a+
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
1
1
0
2
0
4

⎤⎥⎥⎥⎥⎥⎦ + ρ2

⎡⎢⎢⎢⎢⎢⎣
0
0
2
−1
1
0

⎤⎥⎥⎥⎥⎥⎦ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a−
1

∂x2

∂a−
1

∂λ

∂a−
1

∂µ1

∂a−
1

∂µ2

da−
1

∂z

∂a−
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
−1
−1
0
−2
0
−4

⎤⎥⎥⎥⎥⎥⎦ + ρ2

⎡⎢⎢⎢⎢⎢⎣
0
0
2
−1
1
0

⎤⎥⎥⎥⎥⎥⎦ .

(B.65)
As (8.85) does not exist in this case, this condition holds strictly and
(B.65) provides the partial derivatives if the solution is unique. The partial
derivatives obtained coincide with the ones obtained from (B.64), i.e.,
∂x1

∂a1
=

∂x2

∂a1
= 1 and

∂z

∂a1
= 4, whereas the partial derivatives

∂λ

∂a1
,

∂µ1

∂a1
,

and
∂µ2

∂a1
do not exist, because they are not unique (they depend on the

arbitrary real number ρ2).



B.8 Exercises from Chapter 8 525

Since in system (B.63) da2 = 0, the partial derivatives with respect to a2

do not exist. The same result can be obtained considering the direction
da = ( 0 1 )T in (8.84) that has no solution, i.e., no derivative exists with
respect to da2.
Note that in this case the active constraints remain active (all µ multipliers
are positive). This implies that the cone degenerates to a linear space.

Case 2: µ1 = 0, µ2 �= 0. For example, λ = 4, µ1 = 0, µ2 = 2 (see
Fig. B.11a or B.11b). In this case, the matrix U is singular because the
gradients of the active constraints are not linearly independent, so we also
have a nonregular case. The system (8.73)–(8.74), using expression (B.61)
and (B.62), becomes

Mδp =

⎛⎜⎜⎜⎜⎝
2 2 0 0 0 0 0 −1
2 0 0 2 −1 −1 1 0
0 2 0 0 0 −1 −1 0

−1 0 1 0 0 0 0 0
1 −1 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 (B.66)

Nδp =
( −1 −1 2 0 0 0 0 0

0 0 0 0 0 −1 0 0

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 0 . (B.67)

Note that we have not considered (8.70) yet. If we want (i) the inequal-
ity constraint g1(x) to remain active the first equation in system (B.67)
should be removed and included in system (B.66), whereas if we want (ii)
the inequality constraint to be allowed to become inactive then the sec-
ond equation in system (B.67) should be removed and included in system
(B.66). The corresponding solutions are the cones⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
4
0
2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
−2
1
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρ
ρ
0

4ρ − 2π
π

2ρ − π
4ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.68)

and



526 B Exercise Solutions⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
4
0
2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
−1
2
4
0
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ − π
ρ + π
ρ − π
2π

4(ρ + π)
0

2(ρ + π)
4ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.69)

respectively, where ρ ∈ IR and π ∈ IR+. Analogously to the previous
case, the vector associated with π for the first hypothesis corresponds
to the feasible changes in the Lagrange multipliers owing to the linearly
dependence on the constraint gradients but only positive increments are
allowed because as µ1 = 0, a negative increment would imply a negative
multiplier which does not hold system (B.59).
Figure B.11b shows a graphical interpretation of the first equation in
system (B.59) particularized for this case. Note that constraint g1(x) is
not necessary for getting the optimal solution (B.60), this means that it
could be removed and the same optimal solution would still remain.
In order to study the existence of partial derivatives with respect to a1

we use the directions da = ( 1 0 )T and da = (−1 0 )T , that implies
considering system (B.68), ρ = 1 and ρ = −1, respectively, leading to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
4
0
2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
−2
1
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
−1
0
−4
0
−2
−4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
−2
1
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.70)

and considering system (B.69), ρ = 1, π = 0, and ρ = −1, π = 0, respec-
tively, leading to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
4
0
2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
−1
0
−4
0
−2
−4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.71)

respectively, which imply that the following partial derivatives exist:
∂x1

∂a1
=

∂x2

∂a1
= 1 and

∂z

∂a1
= 4, because they are unique and have the same



B.8 Exercises from Chapter 8 527

x1

x2

Feasible
Region

1

1

2

2

(0,0)

x1

x2
Feasible
Region

1

1

2

2

(0,0)

(b)

(e) (f)

(c) (d)

x1

x2

Feasible
Region

1

1

2

2

(0,0)

(a)

z = 1

z = 2

z = 4

h(x) = -x1 + a1 = 0

g2(x) = a2x1 - x2 = 0

g1(x) = -x1 - x2 + 2a1 = 0

h(x) = -x1 + a1 = 0

g2(x) = a2x1 - x2 = 0

g1(x) = -x1 - x2 + 2a1 = 0

h(x) = -x1 + a1 = 0

g2(x)

g1(x) = -x1 - x2 + 2a1 = 0

a1 = a2 = 1

= 4λ

1 = 0µ

2 = 2µ

∆

f(x)∆

h(x)λ

∆

g2(x)2µ

∆

f(x)

∆

h(x)λ

∆

g2(x)2µ

∆

f(x)

∆

h(x)λ

∆

g2(x)2µ

ρ

ρ
2   1ρ

a1 = 1 + ρ
a2 = 1

2 = 2 + 2 ρµ

= 4 + 4 ρλ
1 = 0µ

2ρ

2ρ

2π
2ρ

+ρ π

a2 = 1 + 2 π
a1 = 1

2 = 2 + 2   + 2ρ πµ

= 4 + 4 + 4ρ πλ
1 = 0µ

=ρ π

Fig. B.11. Illustration of Case 2 feasible regions, optimal values, and KKT multipli-
ers of the initial and modified problems due to changes in the a1 and a2 parameters,
respectively. (Upper) Initial problem. (Middle) Positive increment of a1. (Lower)
Positive increment of a2



528 B Exercise Solutions

absolute value and different sign (see Fig. B.11c). However, the partial

derivatives
∂λ

∂a1
,

∂µ1

∂a1
, and

∂µ2

∂a1
do not exist, because the corresponding

dλ, dµ1, dµ2 are not unique [they depend on the arbitrary real number π
in system (B.70)].
Alternatively, it is possible to consider the directions in which the desired
directional derivatives are looked for, da = ( 1 0 )T and da = (−1 0 )T ,
and solve the two possible combinations of system (8.84)–(8.85) leading
to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
1

∂x2

∂a+
1

∂λ

∂a+
1

∂µ1

∂a+
1

∂µ2

∂a+
1

∂z

∂a+
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
1
1
4
0
2
4

⎤⎥⎥⎥⎥⎥⎦+π

⎡⎢⎢⎢⎢⎢⎣
0
0
−2
1
−1
0

⎤⎥⎥⎥⎥⎥⎦ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a−
1

∂x2

∂a−
1

∂λ

∂a−
1

∂µ1

∂a−
1

∂µ2

∂a−
1

∂z

∂a−
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
−1
−1
−4
0
−2
−4

⎤⎥⎥⎥⎥⎥⎦+π

⎡⎢⎢⎢⎢⎢⎣
0
0
−2
1
−1
0

⎤⎥⎥⎥⎥⎥⎦ , π ∈ IR+ ,

(B.72)
and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
1

∂x2

∂a+
1

∂λ

∂a+
1

∂µ1

∂a+
1

∂µ2

∂a+
1

∂z

∂a+
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
1
1
4
0
2
4

⎤⎥⎥⎥⎥⎥⎦ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a−
1

∂x2

∂a−
1

∂λ

∂a−
1

∂µ1

∂a−
1

∂µ2

∂a−
1

∂z

∂a−
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
−1
−1
−4
0
−2
−4

⎤⎥⎥⎥⎥⎥⎦ , (B.73)

where the same results as in system (B.70) and (B.71) are obtained.
In order to study the existence of partial derivatives with respect to a2,
we use the directions da = ( 0 1 )T and da = ( 0 −1 )T , which implies
considering system (B.69), where ρ = π = 1/2 and as the value of π can
just be positive, it is not possible to get da2 = −1 from neither system
(B.68) nor (B.69) and then no partial derivatives exist with respect to a2.
Therefore, as π > 0 only right-derivatives can exist:



B.8 Exercises from Chapter 8 529⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
4
0
2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.74)

which implies:
∂x1

∂a+
2

= 0,
∂x2

∂a+
2

= 1,
∂λ

∂a+
2

= 4,
∂µ1

∂a+
2

= 0,
∂µ2

∂a+
2

= 2, and

∂z

∂a+
2

= 2 because they are unique (see Figs. B.11e and B.11f).

Alternatively, if we try to solve (8.84)–(8.85) using da = ( 0 1 )T and
da = ( 0 −1 )T :⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
2

∂x2

∂a+
2

∂λ

∂a+
2

∂µ1

∂a+
2

∂µ2

∂a+
2

∂z

∂a+
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=π

⎡⎢⎢⎢⎢⎢⎣
0
0
−2
1
−1
0

⎤⎥⎥⎥⎥⎥⎦ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a−
2

∂x2

∂a−
2

∂λ

∂a−
2

∂µ1

∂a−
2

∂µ2

∂a−
2

dz

∂a−
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=π

⎡⎢⎢⎢⎢⎢⎣
0
0
−2
1
−1
0

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a+
2

∂x2

∂a+
2

∂λ

∂a+
2

∂µ1

∂a+
2

∂µ2

∂a+
2

∂z

∂a+
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
0
1
4
0
2
2

⎤⎥⎥⎥⎥⎥⎦,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1

∂a−
2

∂x2

∂a−
2

∂λ

∂a−
2

∂µ1

∂a−
2

∂µ2

∂a−
2

∂z

∂a−
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=[Ø] ,

(B.75)
where the same results as in system (B.74) are obtained.
In Figs. B.11d and B.11f the required changes in the Lagrange multipliers
λ and µ2 when a1 and a2 are modified, respectively, for the first equation
in system (B.59) to hold, are shown.
Note that in this example constraint g1 becomes inactive.



References

1. Bradley, S. P., Hax, A. C., and Magnanti, T. L. Applied Mathematical Program-
ming. Addison-Wesley Publishing Company, Reading, MA, 1997.

2. Dantzig, G. B. Linear Programming and Extensions. Princeton University Press,
Princeton, 1963.

3. Rockafellar, R. T. and Wets, R. J. B. Scenario and policy aggregation in op-
timization under uncertainty. Mathematicals Operation Research 16 (1991),
119–147.

4. Escudero, L. F., de la Fuente, J. L., Garćıa, C., and Prieto, F. J. Hydropower
generation management under uncertainty via scenario analysis and parallel
computation. IEEE Transactions on Power System 11, 2 (1996), 683–689.

5. Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D. Linear Programming and
Network Flows, 2nd ed. John Wiley & Sons, New York, 1990.

6. Bloom, J. A. and Gallant, L. Modeling dispatch constraints in production cost
simulations based on the equivalent load method. IEEE Transactions on Power
System 9, 2 (1994), 598–611.

7. Edmonds, J. Submodular functions, matroids, and certain polyhedra. Combi-
natorial structure and their applications. In: Proceedings of the Calgary Inter-
national Conference (New York, 1969), Gordon and Breach, pp. 69–87.

8. Nemhauser, G. L. and Wolsey, L. A. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1999.

9. Pérez-Ruiz, J. and Conejo, A. J. Multi-period probabilistic production cost
model including dispatch constraints. IEEE Transactions on Power System 15,
2 (2000), 502–507.

10. Wallace, S. and Kall, P. Stochastic Programming. John Wiley & Sons, New
York, 1995.

11. Higle, J. L. and Sen, S. Stochastic Decomposition: A Statistical Method for Large
Scale Stochastic Linear Programming. Kluwer Academic Publisher: Dordrecht,
The Netherlands, 1996.

12. Birge, J. R. and Louveaux, F. Introduction to Stochastic Programming. Springer-
Verlag, New York, 1997.

13. Mı́nguez, R. Seguridad, Fiabilidad y Análisis de Sensibilidad en Obras de In-
genieŕıa Civil Mediante Técnicas de Optimización por Descomposición. Aplica-
ciones. PhD thesis, University of Cantabria, Santander, Spain, 2003.



532 References

14. Mı́nguez, R., Castillo, E., and Hadi, A. S. Solving the inverse reliability problem
using decomposition techniques. Structural Safety, ASCE 27 (2005), 1–23.

15. Castillo, E., Losada, M., Mı́nguez, R., Castillo, C., and Baquerizo, A. An optimal
engineering design method that combines safety factors and failures probabili-
ties: Application to rubble-mound breakwaters. Journal of Waterways, Ports,
Coastal and Ocean Engineering, ASCE 130, 2 (2004), 77–88.

16. Castillo, E., Mı́nguez, R., Rúız-Terán, A., and Fernández-Canteli, A. Design and
sensitivity analysis using the probability-safety-factor method. An application
to retaining walls. Structural Safety 26 (2003), 159–179.

17. Castillo, E., Mı́nguez, R., Rúız-Terán, A., and Fernández-Canteli, A. Design
of a composite beam using the probability-safety-factor method. International
Journal for Numerical Methods in Engineering 62 (2005), 1148–1182.

18. Castillo, C., Losada, M. A., Castillo, E., and Mı́nguez, R. Técnicas de opti-
mización aplicadas al diseño de obras maŕıtimas. In: VII Jornadas de Ingenieŕıa
de Costas y Puertos. Almeŕıa, España, 2003, pp. 27–30.

19. Castillo, C., Losada, M., Mı́nguez, R., and Castillo, E. Técnicas de optimización
aplicadas al diseño de obras maŕıtimas. In: Procedimiento Metodológico Partici-
pativo para la Canalización, Recogida y Difusión de Estudios y Análisis Técnico-
Cient́ıficos sobre los Documentos del Programa ROM, EROM 00 (2003), EROM,
Puertos del Estado, Ministerio de Fomento.

20. Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. Nonlinear Programming,
Theory and Algorithms, 2nd ed. John Wiley & Sons, New York, 1993.

21. Castillo, E., Conejo, A., Pedregal, P., Garćıa, R., and Alguacil, N. Building and
Solving Mathematical Programming Models in Engineering and Science. John
Wiley & Sons, Inc., New York, 2001. Pure and Applied Mathematics: A Wiley-
Interscience Series of Texts, Monographs and Tracts.

22. Chvátal, V. Linear Programming. W. H. Freeman and Company, New York,
1983.

23. Luenberger, D. G. Linear and Nonlinear Programming, 2nd ed. Addison-Wesley,
Reading, MA, 1984.

24. Benders, J. F. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4 (1962), 238–252.

25. Geoffrion, A. M. Generalized Benders decomposition. Jaurnal of Optimization
Theory and Applications 10, 4 (1972), 237–260.

26. Lasdon, L. S. Optimization Theory for Large Systems. MacMillan, New York,
1970.

27. Floudas, C. A. Nonlinear and Mixed-Integer Optimization. Fundamentals and
Applications. Oxford University Press, New York, 1995.

28. Golub, G. B. and Van Loan, C. F. Matrix Computations, 3rd ed. The Johns
Hopkins University Press, USA, 1996.

29. Walras, L. Elements of Pure Economics, or, The Theory of Royal Wealth.
American Economic Association and the Royal Economy Society by Irwin,
R. D., Homewood, 1874. Translated into english by William Jaffé from:
“Élements d’Économie Politique Pure; ou la Théorie de la Richesse Sociale”
in 1954.

30. Bertsekas, D. P., Lauer, G. S., Sandell, N. R., and Posbergh, T. A. Optimal
short-term scheduling of large-scale power systems. IEEE Transactions on Au-
tomatic Control 28, 1 (1983), 1–11.

31. Everett, H. Generalized Lagrange multiplier method for solving problems of
optimum allocation of resources. Operations Researchs 11 (1963), 399–417.



References 533

32. Zhuang, F. and Galiana, F. D. Toward a more rigorous and practical unit
commitment by lagrangian relaxation. IEEE Transactions on Power Systems
3, 2 (1988), 763–773.

33. Polyak, B. T. Introduction to Optimization. Optimization Software, Inc., New
York, 1987.

34. Redondo, N. J. and Conejo, A. J. Short-term hydro-thermal coordination by
Lagrangian relaxation: Solution of the dual problem. IEEE Transactions on
Power Systems 14, 1 (1999), 89–95.

35. Bertsekas, D. P. Nonlinear Programming. Athena Scientific, Belmont, MA,
1995.

36. Wu, Y., Debs, A. S., and Marsten, R. E. A direct nonlinear predictor-corrector
primaldual interior point algorithm for optimal power flow. IEEE Transactions
on Power Systems 9, 2 (1994), 876–883.

37. Cohen, G. Auxiliary problem principle and decomposition of optimization prob-
lems. Jaurnal of Optimization Theory and Applications 32, 3 (1980), 277–305.

38. Bertsekas, D. Constrained Optimization and Lagrange Multiplier Methods. Aca-
demic Press, New York, 1982.

39. Conejo, A. J., Nogales, F. J., and Prieto, F. J. A decomposition procedure based
on approximate newton directions. Mathematical Programming 93, 3 (2002),
495–515.

40. Saad, Y. Iterative Methods for Sparse Linear Systems. PWS Publishing, New
York, 1996.

41. Brooke, A., Kendrick, D., and Meeraus, A. Release 2.25 GAMS A User’s Guide.
South San Francisco, 1992.

42. Bixby, R. E. Solving real-world linear programs: A decade and more of progress.
Operations Research 50, 50 (2002), 3–15.

43. Barnhart, C., Johnson, E., Nemhauser, G. L., Savelsbergh, M., and Vance, P.
Branch-and-price: Column generation for solving huge integer programs. Oper-
ations Researh 46, 3 (1998), 316–329.

44. Geoffrion, A. M. and Graves, G. W. Multicommodity distribution system-design
by Benders decomposition. Management Science 20, 5 (1974), 822–844.

45. Kelley, J. E. The cutting-plane method for solving convex programs. Journal
of the SIAM 8, 4 (1960), 703–712.

46. Pereira, M. V. F. and Pinto, L. M. V. G. Multistage stochastic optimization
applied to energy planning. Mathematical Programming 52, 2 (1991), 359–375.

47. Haffner, S., Monticelli, A., Garćıa, A., Mantovani, J., and Romero, R. Branch
and bound algorithm for transmission system expansion planning using a trans-
portation model. IEEE Proceedings-Generations Transmission and Distribution.
(2000), 149–156.

48. Romero, R. and Monticelli, A. A hierarchical decomposition approach for trans-
mission network expansion planning. IEEE Transactions on Power Systems 9,
1 (1994), 373–380.

49. Bloom, J. A. Solving an electricity generating capacity expansion planning prob-
lem by generalized Benders decomposition. Operations Research 31, 1 (1983),
84–100.

50. Bloom, J. A., Caramanis, M., and Charny, L. Long-range generation planning
using generalized Benders decomposition Implementation and experience. Op-
erations Research 32, 2 (1983), 290–313.



534 References

51. Castillo, E., Conejo, A., Mı́nguez, R., and Castillo, C. An alternative approach
for addressing the failure probability-safety factor method with sensitivity analy-
sis. Reliability Engineering and System Safety 82 (2003), 207–216.

52. Dempe, S. Foundations of Bilevel Programming. Kluwer Academic Publishers:
Dordrecht, The Netherlands, 2002.

53. Bard, J. F. Practical Bilevel Optimization: Algorithms and Applications. Kluwer
Academic Publishers: Dordrecht, The Netherlands, 1998.

54. Arroyo, J. M. and Galiana, F. D. On the solution of the bilevel programming for-
mulation of the terrorist threat problem. IEEE Transactions on Power Systems
20, 2 (2005), 789–797.

55. Castillo, E., Conejo, A., Castillo, C., Mı́nguez, R., and Ortigosa, D. A pertur-
bation approach to sensitivity analysis in nonlinear programming. Journal of
Optimization Theory and Applications 128, 1 (2006).

56. Castillo, E., Cobo, A., Jubete, F., and Pruneda, R. E. Orthogonal Sets and
Polar Methods in Linear Algebra: Applications to Matrix Calculations, Systems
of Equations and Inequalities, and Linear Programming. John Wiley & Sons,
New York, 1999.

57. Castillo, E., Jubete, F., Pruneda, E., and Solares, C. Obtaining simultaneous
solutions of linear subsystems of equations and inequalities. Linear Algebra and
its Applications, 346 (2002), 131–154.

58. Castillo, E., Conejo, A., Mı́nguez, R., and Castillo, C. A closed formula for local
sensitivity analysis in mathematical programming. Engineering Optimization
(2005) (in press).

59. Padberg, M. Linear Optimization and Extensions. Springer, Berlin, Germany,
1995.

60. Castillo, E. and Jubete, F. The γ-algorithm and some applications. International
Journal of Mathematical Education in Science and Technology 35, 3 (2004), 369–
389.

61. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical
Recipes in C. Cambridge University Press, New York, 1992.

62. Murty, K. G. Linear Programming. John Wiley & Sons, New York, 1983.
63. Rosenblatt, M. Remarks on a multivariate transformation. Annals Mathematical

Statistics 23, 3 (1952), 470–472.
64. Carpentier, J. Optimal power flows (survey). Electric Power & Energy Systems

1, 1 (1979), 142–154.
65. Stott, B., Alsac, O., and Monticelli, A. Security analysis and optimization. In:

Proceedings of the IEEE, Special Issues on Computers in Power Systems (1987),
Vol. 75, pp. 1623–1644.

66. Alsac, O., Bright, J., Prais, M., and Stott, B. Further development in LP-based
optimal power flow. IEEE Transactions on Power Systems 5, 3 (1990), 697–711.

67. Merlin, A. and Sandrin, P. A new method for unit commitment at electricité de
france. IEEE Transactions on Power Apparatus and Systems PAS 102 (1983),
1218–1225.

68. Ferreira, L. A. F. M., Anderson, T., Imparato, C. F., Miller, T. E., Pang, C. K.,
Svoboda, A., and Vojdani, A. F. Short-term resource scheduling in multi-area
hydrothermal power system. Electric Power & Energy Systems 11, 3 (1989),
200–212.

69. Wang, S. J., Shahidehpour, S. M., Kirschen, D. S. Mokhtari, S., and Irisarri,
G. D. Short-term generation scheduling with transmission and environmental



References 535

constraints using an augmented lagrangian relaxation. IEEE Transactions on
Power Systems 10, 3 (1995), 1294–1301.

70. Sheblé, G. B. and Fahd, G. N. Unit commitment literature synopsis. IEEE
Transactions on Power Systems 9, 1 (1994), 128–135.

71. Schaw, J. A direct method for security-constrained unit commitment. IEEE
Transactions on Power Systems 10, 3 (1995), 1329–1342.

72. Ruzic, S. and Rajakovic, N. A new approach for solving extended unit commit-
ment problem. IEEE Transactions on Power Systems 6, 1 (1991), 269–277.

73. Batut, J., and Renaud, A. Daily generation scheduling optimization with trans-
mission constraints: A new class of problems. IEEE Transactions on Power
Systems 7, 3 (1992), 982–989.

74. Alguacil, N. and Conejo, A. J. Multi-period optimal power flow using Benders
decomposition. IEEE Transactions on Power Systems 15, 1 (2000), 196–201.

75. Balériaux, H., Jamoulle, E., and Linard de Gertechin, F. Simulation de
l’explotation d’un parc de machines thermiques de production d’lectricit coupl
des stations de ponpage. Revue E. Societé Royale Belge des Electriciens 7, 3
(1967), 225–245.

76. Bloom, J. A. and Charny, L. Long range generation planning with limited energy
and storage plants. part I: Production costing. IEEE Transactions on Power
Apparatus and Systems PAS 102, 9 (1983), 2861–2870.

77. Booth, R. R. Power system simulation model based on probability analysis.
IEEE Transactions on Power Systems PAS 91, 1 (1972), 62–69.

78. Rakic, M. V. and Marcovic, Z. M. Short term operation and power exchange
planning of hydro-thermal power systems. IEEE Transactions on Power Systems
9, 1 (1994), 359–365.

79. Yan, H., Luh, P. B., Guan, X., and Rogan, P. M. Scheduling of hydrothermal
power systems. IEEE Transactions on Power Systems 8, 3 (1993), 1135–1365.

80. Wood, A. J. and Wollenberg, B. F. Power Generation, Operation and Control,
2nd ed. John Wiley & Sons, New York, 1996.

81. Jiménez, N. and Conejo, A. J. Short-term hydro-thermal coordination by la-
grangian relaxation: Solution of the dual problem. IEEE Transactions on Power
Systems 14, 1 (1999), 89–95.

82. Nogales, J., Conejo, A. J., and Prieto, F. J. A decomposition methodology
applied to the multi-area optimal power flow problem. Annals of Operations
Research 120, 1–4 (2003), 99–116.

83. Fiacco, A. V. Introduction to sensitivity and stability analysis in nonlinear
programming. Academic Press, New York, 1983.



Index

Active constraints 147

Algorithm

augmented Lagrangian decomposition
207

augmented Lagrangian relaxation
207

Benders decomposition 116, 225

GAMS code 403

example 118

for MILP 245

coordinate descent decomposition
285

cutting plane 278

Dantzig-Wolfe decomposition 77, 83

GAMS code 397

Lagrangian relaxation 194

optimality condition decomposition
216, 389

outer linearization 258, 259

convergence 264

relaxation method 272

updating safety factor bounds 355

All sensitivities at once 321

Alternative formulation 93

Analysis of structures 288

Applications 62, 69, 93, 99, 158, 245,
251, 264, 303, 349

Augmented Lagrangian 187, 205

decomposition 205

Augmented Lagrangian decomposition
187, 207

algorithm 207

Augmented Lagrangian relaxation 222

algorithm 207
multiplier updating 208
penalty parameter updating 208
separability 208

Banded matrix structure 287, 291
Benders decomposition 30, 111, 223,

369
algorithm

for MILP 245
algorithm 61, 114, 116, 225, 251, 264

example 118
for MINLP 251

application 368
bounds 116
convergence 250, 257, 369
GAMS code 403
MINLP 251
mixed-integer linear programming

245
scheme 245

Benders description 111
Bi-level problems 47, 52
Bilevel decomposition 271
Bilevel problems 353
Bilevel programming 280
Binary variables 245
Bounds 87, 116

Benders decomposition 116
Dantzig-Wolfe 87
updating safety factors

method 1 355
Bridge crane design 361



538 Index

Bundle method 199

Capacity expansion planning 4, 32, 33,
53, 54, 57

revisited 2 53, 57
Civil 62
Classical design 46
Coal and gas procurement 28
Communication net 158
Complementary slackness condition

143
Complicating constraints 5, 7, 8, 12,

18, 40, 67, 68, 72, 74, 99, 109, 110,
136, 187, 188, 214, 216, 234, 243,
251, 271, 377

linear programming 8
mixed-integer programming 55
nonlinear case 257
nonlinear programming 39
problem structure 70

Complicating constraints and variables
136

Complicating constraints that prevent a
distributed solution 67

Complicating constraints that prevent
an efficient solution 69

Complicating variables 6–8, 30, 35,
37, 38, 54, 57, 59, 67, 109–111, 135,
223, 224, 239, 243, 245, 251, 264

dual problem 110
linear programming 28, 107
mixed-integer programming 57
nonlinear case 251
nonlinear programming 53
prevent a distributed solution 107
preventing a straightforward solution

108
problem structure 110

Conductance 43
Convergence 250, 257, 264
Convergence properties 216–218, 369
Convex 164, 173, 244, 251
Convex combination 74, 99, 378, 379

constraint 77
linear 74, 98

Convex linear combination 93
Convexity 6, 164
Coordinate descent decomposition 285

algorithm 285

Cutting hyperplane 257, 279, 359, 414
example 278

Cutting plane
algorithm 278

Cutting plane method 197
Cutting planes 359

Dantzig-Wolfe 18, 21
bounds 87

Dantzig-Wolfe decomposition 233, 243
algorithm 77, 83, 99, 235, 239, 397
example 79
example revisited 89
GAMS code 79
geometric interpretation 83
master problem 237
method 77
procedure 136
technique 233, 374

Decentralized 5, 8, 67, 181, 218, 385,
386

Decision variables 3
Decomposable structure 3, 7
Decomposed 5, 12, 41, 44, 54, 59, 72,

98, 189, 214, 219, 220, 243, 384,
388, 428, 434, 455

Decomposition 73, 188
Benders 61, 111, 223
Dantzig-Wolfe 18, 21, 77
in linear programming 67, 107
mixed-integer programming 243

Decomposition in nonlinear program-
ming 187

Decomposition Structure 213
Decomposition Techniques

other 271
Decomposition techniques 7, 8, 18, 28,

30, 41, 62, 67, 176, 217, 385
Degenerate inequality constraint 148
design 4
Directional and partial derivatives 318
Directional derivatives 320
Distributed 67, 107, 111, 136, 192, 214,

216–218, 243
Dual 155

example 174
problem 152

Dual feasibility condition 143
Dual function 161, 188



Index 539

Dual infeasibility 195
Dual price 157
Dual problem 149, 188

in standard form 150
obtaining 151

Dual variable 6, 74, 77, 115, 141, 175,
181, 214, 224, 246, 252, 280, 303,
304, 307–310, 339, 359, 371, 382,
389

Duality 141
in linear programming 149
in nonlinear programming 161
theorems 154

Duality and separability 176
Duality for convex problems

theorem 173
Duality gap 141, 171, 172, 189, 244
Duality theory 305

Energy production 14, 18, 22, 24, 43,
62, 374

Energy production model 23
Equality constraints 142
Equilibrium problems 282
Example

cutting hyperplane 278
Dantzig-Wolfe decomposition 79
Dantzig-Wolfe revisited 89
energy production model 23
linear programming 167

Facet 27, 28, 375, 377, 380
Failure mode 46
Feasibility cuts 253
Feasibility region 3, 27, 94, 199,

202–204, 257
Feasible region 70, 83, 112, 142, 145,

155, 171, 304
boundaries 113

Feasible solution 142
Flow application 292

General method for obtaining all
sensitivities 315

Gradient of the dual function 164

Hessian 164, 167
Hydroelectricity 62
Hydrothermal coordination 381

problem formulation 383
solution approach 384

Industrial 62, 361
Inequality constraints 142
Infeasibility 128
Integer variable 245

Karush, Kuhn, and Tucker 142
Karush–Kuhn–Tucker

conditions 142
first order conditions 143

Karush–Kuhn–Tucker conditions 190,
305, 306, 311

optimality 181
Karush–Kuhn–Tucker first- and

second-order optimality conditions
142

Karush–Kuhn–Tucker second-order
necessary conditions 149

Kuhn–Tucker multipliers 143

Lagrangian 161
Lagrangian relaxation 187, 210, 215,

233, 239, 369, 381
Dantzig-Wolfe 233
algorithm 194
decomposition 188
in LP 234

Linear programming 4
complicating constraints 8, 67
complicating variables 28, 107
dual 167
dual problem 151
duality 149
mixed-integer 4, 243, 244, 264
primal 167
problem 7, 9, 70, 109, 136, 197, 202,

233, 309, 377
sensitivities 309

Lower bound 11, 46, 87, 116, 170, 189,
203, 205, 225, 235, 244, 251, 276,
352, 385

Master problem 69, 74, 79, 87, 88, 93,
99, 114, 115, 141, 198, 238, 245,
280, 360, 369, 371–373, 378

alternative formulation 93
dual 236



540 Index

issues 88
Mathematical programming 3
Matrix analysis of structures 288
Mill problem 155
Mixed design 47
Mixed-integer

linear programming 244
nonlinear programming 251

Mixed-integer linear programming
Benders decomposition 245

Mixed-integer programming 55, 57
decomposition 243

Modern design 46
Modified Lagrangian relaxation 211
Multiarea electricity network 42
Multiarea optimal power flow 385

problem formulation 387
solution approach 389

Multiplier updating 195, 208

Network constrained unit commitment
368

Network constraint
problem formulation 370
solution approach 371

Newton algorithm 147
Nonanticipativity constraints 16, 17,

19
Nonlinear programming 4

complicating constraints 39
complicating variables 53
decomposition 187
duality 141, 161
method 495
mixed-integer 4, 243, 251, 493
problem 7, 142, 312
sensitivity 312

Objective function 3, 4, 6, 40, 46, 57,
73, 76, 87, 115, 116, 128, 141, 142,
145, 189, 195, 207, 225, 235, 245,
253, 258, 286, 303, 306, 308, 310,
315, 350, 369, 379, 385

Obtaining
the dual from a primal in standard

form 150
Obtaining the dual problem 151
Only equality constraints 145
Only inequality constraints 145

operation problems 4
Optimality condition decomposition

187, 210, 385
algorithm 216, 389
example 218

optimization 3
Other decomposition techniques 271
Outer linearization 57

algorithm 258, 259
convergence 264
example 260

Partial derivatives 320
Particular cases 321
Partitions 70
Penalty parameter updating 208
Polymatroid 27
Prevent a distributed solution 107
Preventing a straightforward solution

108
Primal 155
Primal and dual decomposability 109
Primal and dual optimality 171
Primal feasibility condition 143
Primal infeasibility 244
Primal variable 6
Probabilistic design 47, 51, 351, 356,

365, 410, 414
Problem with decomposable structure

73
Production costing 374

problem formulation 376
solution approach 377

Production scheduling 39–41

Reduced cost 75, 77, 375, 376, 378, 380
Regular degenerate case 328
Regular nondegenerate case 326
Regular point 148, 308, 310, 339
Regularity conditions 4, 273, 274, 304
Relaxation method 272

algorithm 272
wall design 276

Relaxed problem 73–76, 78, 79, 88
Reliability 228

analysis 349
bounds 48
constraints 45, 46
estimation 52



Index 541

index 47, 52, 276
indices 349, 353

Reliability-based optimization 48
Reliability-based Optimization of a

Rubblemound Breakwater 228
River basin operation 19, 21
Rubblemound breakwater 48

GAMS code 407

Safety factor 47, 48, 276, 277, 299, 349,
351, 353, 367

Same active constraints 323
Scenario tree 15
Scenarios 13
Second-order

necessary conditions 149
sufficient conditions 149

Sensitivities 155, 305
active constraints 339
dependence on a common parameter

312
dual variables 175
linear programming 309
objective function 308, 310

general formula 310
Sensitivity 157, 175, 181, 224, 308, 311,

315
analysis 7, 303, 304, 310, 410, 414
local 303
nonlinear programming 312

Sensitivity analysis 6
Sensitivity in Regression models 389
Separability 208
Set of all feasible perturbations 317
Shadow price 157
Software 397, 403, 407, 410
Special case 145
Standard form

dual problem 150
Stochastic 12
Stochastic hydro scheduling 12, 18
Stopping criteria 204
structural properties 4
Subdifferential 164–166
Subgradient 164, 166, 195, 196, 211,

222, 239, 381
example 165

Subgradient and subdifferential 164
Subgradients 164
Subproblem 72, 73, 76, 78, 93, 97, 110,

114, 116, 141, 181, 189, 196, 209,

214, 224, 243, 253, 280, 286, 360,
369, 372, 379, 388

infeasibility 128, 253
reduced 215

Subproblems 5
Sufficient conditions 309
Susceptance 43
Symmetry of the duality relation 150

Theorem
dual in standard form 150
duality 154
duality for convex problems 173
local duality 189
primal and dual decomposability

109
sensitivities 175, 308
sensitivities of active constraints

339
symmetry of the duality relationship

150
weak duality 154, 170

Transnational soda company 8
Trust region method 202

Uncertainty 13, 62
Unconstrained problems 145
Unit commitment 55, 369
Updating safety factor bounds

algorithm 355
Upper bound 11, 47, 70, 87, 89, 116,

128, 203, 204, 224, 236, 238, 245,
276, 353, 355, 385

Variable
dual 6, 74, 77, 115, 141, 175, 181,

214, 224, 246, 252, 280, 303, 304,
307–310, 339, 359, 371, 382, 389

primal 6
Vector of mismatches 164

Wall design 45, 349
Wall problem

GAMS code 410
Water supply system 5, 6, 36, 60

revisited 60
Weak duality

theorem 170
Weak duality lemma 154
Weighting problem 74, 76, 77


	3540276858
	Contents
	Part I: Motivation and Introduction
	1 Motivating Examples
	1.1 Motivation
	1.2 Introduction
	1.3 Linear Programming: Complicating Constraints
	1.4 Linear Programming: Complicating Variables
	1.5 Nonlinear Programming: Complicating Constraints
	1.6 Nonlinear Programming: Complicating Variables
	1.7 Mixed-Integer Programming: Complicating Constraints
	1.8 Mixed-Integer Programming: Complicating Variables
	1.9 Concluding Remarks
	1.10 Exercises


	Part II: Decomposition Techniques
	2 Linear Programming: Complicating Constraints
	2.1 Introduction
	2.2 Complicating Constraints: Problem Structure
	2.3 Decomposition
	2.4 The Dantzig-Wolfe Decomposition Algorithm
	2.5 Concluding Remarks
	2.6 Exercises

	3 Linear Programming: Complicating Variables
	3.1 Introduction
	3.2 Complicating Variables: Problem Structure
	3.3 Benders Decomposition
	3.4 Concluding Remarks
	3.5 Exercises

	4 Duality
	4.1 Introduction
	4.2 Karush–Kuhn–Tucker First- and Second-Order Optimality Conditions
	4.3 Duality in Linear Programming
	4.4 Duality in Nonlinear Programming
	4.5 Illustration of Duality and Separability
	4.6 Concluding Remarks
	4.7 Exercises

	5 Decomposition in Nonlinear Programming
	5.1 Introduction
	5.2 Complicating Constraints
	5.3 Lagrangian Relaxation
	5.4 Augmented Lagrangian Decomposition
	5.5 Optimality Condition Decomposition (OCD)
	5.6 Complicating Variables
	5.7 From Lagrangian Relaxation to Dantzig-Wolfe Decomposition
	5.8 Concluding Remarks
	5.9 Exercises

	6 Decomposition in Mixed-Integer Programming
	6.1 Introduction
	6.2 Mixed-Integer Linear Programming
	6.3 Mixed-Integer Nonlinear Programming
	6.4 Complicating Variables: Nonlinear Case
	6.5 Complicating Constraints: Nonlinear Case
	6.6 Concluding Remarks
	6.7 Exercises

	7 Other Decomposition Techniques
	7.1 Bilevel Decomposition
	7.2 Bilevel Programming
	7.3 Equilibrium Problems
	7.4 Coordinate Descent Decomposition
	7.5 Exercises


	Part III: Local Sensitivity Analysis
	8 Local Sensitivity Analysis
	8.1 Introduction
	8.2 Statement of the Problem
	8.3 Sensitivities Based on Duality Theory
	8.4 A General Method for Obtaining All Sensitivities
	8.5 Particular Cases
	8.6 Sensitivities of Active Constraints
	8.7 Exercises


	Part IV: Applications
	9 Applications
	9.1 The Wall Design
	9.2 The Bridge Crane Design
	9.3 Network Constrained Unit Commitment
	9.4 Production Costing
	9.5 Hydrothermal Coordination
	9.6 Multiarea Optimal Power Flow
	9.7 Sensitivity in Regression Models


	Part V: Computer Codes
	A: Some GAMS Implementations
	A.1 Dantzig-Wolfe Algorithm
	A.2 Benders Decomposition Algorithm
	A.3 GAMS Code for the Rubblemound Breakwater Example
	A.4 GAMS Code for the Wall Problem


	Part VI: Solution to Selected Exercises
	B: Exercise Solutions
	B.1 Exercises from Chapter 1
	B.2 Exercises from Chapter 2
	B.3 Exercises from Chapter 3
	B.4 Exercises from Chapter 4
	B.5 Exercises from Chapter 5
	B.6 Exercises from Chapter 6
	B.7 Exercises from Chapter 7
	B.8 Exercises from Chapter 8


	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W




