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Consider the standard form problem 

mi nimize c'x 
to Axe:: b 

x > 0, 

and its dual 

maximize p'b 

subject to p'A :; c' 

In this chapter, we study the dependence of the optimal cost and the opti­
mal solution on the coefficient matrix A, the requirement vector b, and the 
cost vector c. This is an important issue in practice because we often have 
incomplete knowledge of the problem data and we may wish to predict the 
effects of certain parameter changes. 

In the first section of this chapter, we develop conditions under which 
the optimal basis remains the same despite a change in the problem 
and we examine the consequences on the optimal cost. \Ve a180 discuss 
how to obtain an optimal solution if we add or delete some constraints. In 
subsequent sections, we allow larger changes in the problem data, resulting 
in a new optimal ba...,is, and we develop a global perspective of the 
dence of the optimal cost on the vectors band c. The chapter ends with 
a brief discussion of parametric programming, which is an extension of the 
simplex method tailored to the case where there is a single scalar unknown 

parameter. 
Many of the results in this chapter can be extended to cover general 

linear programming problems. Nevertheless, and in order to simplify the 
presentation, our standing assumption throughout this chapter will be that 
we are dealing with a standard form problem and that the rows of the m x n 
matrix A are linearly independent. 

5.1 Local sensitivity analysis 

In this section, we develop a methodology for performing sensitivity anal­
ysis. We consider a linear programming problem, and we a.,<;sume that we 
already have an optimal basis B and the associated optima.l solution x*. 
We then assllme that some entry of A, b, or c ha.<; been changed, or that 
a Hew constraint is added, or that a new variable is added. We first look 
for conditions under which the current hasis is still optimaL If these con­
ditions are violated, we look for an algorithm that finds a new 
solution without having to solve the new problem from scratch. We will 
see that the simplex method can be quite useful in this respect. 

Having assumed that B is an optimal basis for the original 
the following two conditions are satisfied: 

B-1b 2:: 0, (fea.'>ibility) 
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c' c' B-1A > 0'B _~, (optimality) . 

When the problem is changed, we check to see how these conditions are 
afl:(~('ted. insisting that both conditions (feasibility and optimality) hold 
for the modified problem, we obtain the conditions under which the basis 
matrix B remains optimal for the modified problem. In what follows, we 
apply this approach to several examples. 

A new variable is added 

Suppose that we introduce a new variable Xn ,together with a. corre­
sponding column A n + 1, and obtain the new problem 

minimize c'x Cn j-lX n +l 

subject to Ax + A n+ 1x n+l b 

x 2:: 0, ;J;n+l 2:: o. 
We wish to determine whether the current basis B is still optimal. 

We note that (X,Xn+l) (x*,O) is a ba.'iic feasible solution to the 
new problem associated with the basis B, and we only need to examine the 
optimality conditions. For the basis B to remain optimal, it is necessary 
and sufficient that the reduced cost of Xn+l be nonnegative, that 

= Cnt~l - c~B-1An+l :> O. 

If this condition is satisfied, (x*, 0) is an optimal solution to the new prob­
lem. If, however, < 0, then ,0) is not necessarily optimal. In 
order to find an optimal solution, we add a column to the simplex 
associated with the new variable, and apply the primal simplex 
starting from the current basis B. Typically, an optimal solution to the new 
problem is obtained with a small number of iterations, and this approach 
is usually much faster than solving the Hew problem from scratch. 

Example 5.1 Consider the problem 

minimize -5X1 J:2 + 12:1::1 
to 3X1 + 2J'2 + X3 10 

5xI + 3X2 X4 16 
:rl). , ., :1;4 O. 

All optimal solution to this proh1pm is by x = (2,2,0,0) and the corre­
sponding simplex tableau is given 

,----
Xl 

12 o 

Xl I 2 2 

X2 = 2 o 5 -3 
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Note that B-
1 is 'given by the last two columns of the tableau. 


Let us now introduce a variable Xs and consider the new problem 


minimize -5:1;1 X2 + 12:1:3 Xs 
subject to 3xI + 2x< + X3 Xs 10 

5xI + 3:1'2 + X4 + X5 16 
Xl, ••. , Xs ? O. 

We have As 1) and 

r5 = C.? - C~B'IAs ~ -J _ [ _.) _ 11 [-3 2] [1 ] 5 <3 1 -4, 

Sincecs is negative, introducing the new variable to the basis can be beneficial. 
We observe that B-

1 
As = 2) and augment the tableau by introducing a 

column associated with X5: 

Xl 1 0 --3 2 ·1 

Xz = 0 1 5 -3 2 

We then bring X5 into the Xz exits and we obtain the tollnwlnrt tableau, 
which happens to be optimal: 

X2 X3 X4 XI> 

2 12 1 0 

Xl 3 0.5 -0.5 0.5 0 

Xr:,) I U Vi1 0.5 -1.5 

An solution is given by x = (3,0,0,0, 

A new inequality constraint is added 

Let us now introduce a new constraint a~+ 1x 2': bm +1, where am t1 and 
are given. If the optimal solution x* to the original problem satil:lfies 

this constraint, then x* is an optimal solution to the new problem a.s well. 
If the new constraint is violated, we introduce a nonnegative slack variable 
Xn+b and rewrite the new constraint in the form a"nt-lx Xn+l 

We obtain a problem in standard form, in which the matrix A is replaced 
by 

[a~:l -~]. 
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Let B be an optimal basis for the original problem. We form a basis 
for the new problem by selecting the original basic variables together with 
X n +1' The new basis matrix B is of the form 

13 [B 0 
a' -1]' 

where the row vector a' contains those components of a~rt+1 associated with 
the original basic columns. (The determinant of this matrix is the negative 
of the determinant of B, hence nonzero, and we therefore have a true basis 
matrix.) The basic solution associated with this basis is (x*, a~n+1x* 

), and is infeasible because of our assumption that x* violates the 
new constraint. Note that the new inverse basis matrix is readily available 
because 

[ B- 1 

a'B- 1 -~ ]. 

(To see this, note that the product B-
1
B is equal to the identity matrix.) 

Let eB be the m-dimensional vector with the costs of the basic vari­
ables in the original problem. Then, the vector of reduced costs associated 
with the basis B for the new problem, is given by 

c~B-IA[e' 0] - [e~ 0] a'B- 1 

1 

_~]=[el OJ,[ B- -~ J [ aC+l 

and is nonnegative due to the opLimality of B for the original problem. 
Hence, B is a dual feasible basis and we are in a position to apply the dual 
simplex method to the new problem. Note that an initial simplex tableau 
for the new prohlem is readily constructed. For example, we have 

--1 [A 0] [ B- 1A ~ ],B a"n+l -1 a'B- 1A a"n+! 

where B-1A is available from the final simplex tableau for the 
problem. 

Example 5.2 Consider again the problem in Example 5.1: 

minimize -5xl X2 + 12:1:3 
to 3Xl + 2X2 + :1'3 10 

5Xl + 3X2 + X4 16 
Xl,···, X4 2': 0, 

and recall the optimal simplex tableau: 

-I 
X2 X3 ;1:4 

0 2 7 

XI :t 1 0 -3 2 

X2 2 I 0 1 ,5 -3 
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\Ve introduce the additional constraint XI -I X2 .5, which is violated by the 
optimal solution x' (2,2,0,0). We have am+l = (1,I,O,O), (1171+1 = 5, and 
a~n+ 1x' < bm +1. We form the Htandard form problem 

minimize -5xI X2 + 12x:l 
10to 3:r'1 -+ 2X2 + X3 

165X1 -I 3:£2 + X4 

Xs 5
Xl + X2 


;:/:I, ... ,X52:0. 


Let a consist of the components of a rn + I associated with the baHic variables. 

We then have a (1,1) and 

a'B- 1 A- ~ ] - [1 1 0 0] [0 0 2 1].II [1 1] [ ~ o 
1 

-3 
5 

The tableau for the new nroblem is of the form 

Xl = 

I2 

X5 = 

X2 X3 X4 Is 

o 2 7 

o -:1 2 

5 -3 

o 2-1 

() 

o 

o 

1 

We now have all the information necessary to apply the dual simplex method to 

the new problem. 

Our discussion has been focused on the case where an inequality con­
straint is added to the primal problem. Suppose now that we introduce 
a new constraint p' An+l :<: enll in the dual This is equivalent to intro­

a new variable in the primal, and we are back to the ease that was 

considered in the preceding subsection. 

A new equality constraint is added 

\Ve now consider the case where the new constraint is of the form a~HI 1 x 

, and we assume that this new constraint is violated the optimal 
solution x' to the original problem. The dual of the new problem is 

maximize p'b + Prn+1 

subject to [p' Pm+1] [ a~~'l J ::; c', 

where IJ 11 is a dual variable associated with the new constraint. Let p*m 
be an optimal basic feasihle solution to the original dual problem. Then, 
(p*,O) is a feasible solution to the new dual problem. 

Let rn be the dimension of p, which is the same as the original num­
ber of constraints. Since p* is a basic feasible solution to the original dual 

rn of the constra.ints in (p*)'A ::; c' are linearly independent and 
active. However, there is no guarantee that at (p*, 0) we will have rn+ 1 lin­
early independent active constraints of the new dual problem. In particular, 
(p',O) need not he a basic feasible solution to the new dual problem and 
may not provide a cOIlvenient starting point for the dual simplex method 
on the new problem. While it may be possible to obtain a dual basic feasi­
ble solution by setting Pm+! to a suitably chosen nonzero value, we present 
here an alternative approach. 

Let lIS assume, without loss of generality, that a~nll x* > bm.+ 1. We 
introduce the auxiliary primal problem 

minimize c'x + Alxn+l 

to Ax b 

1 X :Tn 1-1 = brn+1 

X 0, Xn +l > 0, 

where llif is a large positive constant. A primal fea.<;ible hasis for the aux­
iliary problem is obtained picking the basic variables of the 
solution to the original problem, together with the variable :rnl-l. The re­

hasis matrix is the same as the matrix B of the preceding suhsection. 
There is a difference, however. In the preceding subsection, B was a dual 
feasible ba.'lis, wherea.'l here B is a primal feasihle ba.'lis. For this rea.'3on, 
the primal simplex method can now be used to solve the auxiliary problem 
to nntirn!=l 

Suppose that an optimal solution to the auxiliary problem satisfies 
Inil 0; this will be the case if the new problem is feasible and the 
coeflicient AT is large enough. Then, the a.dditional constraint 

ha.s been satisfied and we have an optimal solution to the new problem. 

Changes in the requirement vector b 

Suppose t.hat some component bi of the requirement vector b is 
to bi + b. Eqnivalently, the vector b is changed to b + Dei, where ei is the 
ith ullit vector. \Ve wish to determine the range of Values of /) under which 
the current basis remains optimal. Note that the optimality conditions are 
not affected by the change in b. \Ve therefore need to examine onlv the 
fea.'libility condition 

B- 1 (b + be,) o. (5.1) 

Let g (l11i, be the ith column of B- 1 . Equa.tion (5.1) 
becomes 

XB + bg;:::: 0, 

or, 
IBej) + ;:::: 0, j 1, ... ,m. 
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Equivalently, 

) 5.85. ). 
For b ill this range, the optimal cost, as a function of b, is given by 
C~B-l(b + bed p'b + bPi, where p' = C~B-l is the (optimal) dual 
solution associated with the current basis B. 

If b is outside the allowed range, the current solution satisfies the 
optimality (or dual feasibility) conditions, but is infeasible. In that 
ca.'ie, we can apply the dual simplex algorithm starting from the current 
basis. 

Example 5.3 Consider the tableau 

Xl 

;1'2 

from 5.1. 

Let us contemplate adding 6 to b!. We look at the first column of 
which is (-3,5). The basic variables under the same basis are Xl = 2 36 and 
2 + 56. This basis will remain feasible as long as 2 315 2: 0 and 2 + ,So 2: 0, that 
is, if -2/5 ::; 15 ::; The rate of change of the optimal cost per unit change of 
6 is given by c~B- 1)' ( -3,5) 10. 

If 0 is increased 2/a, then Xl 

can perform an iteration of the dual simplex 
and X3 enters the basis. 

becomes At this 

Changes in the cost vector c 

Suppose now that some cost coefficient c.i becomes Cj + Ii. The primal 
feasibility condition is not affected. We therefore need to focus on the 
optimality condition 

C~B-IA < c'. 

If Cj is the cost coefficient of a nonbasic variable ;r;j, then CB does not 
Clli:tllge, and the that is affe(;u~d is the one for the reduced 
cost of x j; we need 

'B I 5:C B - A j ::; Cj + u, 

or 

b? 

"I 

Sec. 5.1. Local sensitivity analysis 209 

If this condition holds, the current basis remains optimal; otherwise, we can 
the primal simplex method from the current basic feasible 

solution. 
If Cj is the cost coeffieient of the Cth basic variable, that 

then CB becomes CB + lief and all of the optimality conditions will be 
affected. The optimality conditions for the new problem are 

(CB + bee)'B-1 Ai ::; Ci, If i i j. 

(Since x J is a basic variable. its reduced cost stays at zero and need not be 

Ci, If i i j, 

where (/Ri is the Pth entry of B-1Ai, which can be obtained from the snnp1eX 
tableau. These inequalities determine the range of b for which the same 
basis remains optimal. 

Example 5.4 We consider once more the problem in Example 5.1 and deter­
mine the range of changes Oi of Ci, under which the same basis remainH optimal. 
Since X3 and X4 are nonbasic variables. we obtain the conditions 

D;l -2, 

64 -7. 

Consider now adding Dl to C!. From the simplnv we obtain ql2 = 0, 
ql:l-- 3, q14 = 2, and we are led to the conditioIL'; 

01 ? -2;:~, 

61 7/2. 

Changes in a nonbasic column of A 

that some entry aij in the jth column Ai of the matrix A is 
'-U'-""F,vU. to aU +b. \-Ve wish to determine the range of values of b for which 
the old optimal basis remains 

If the column Aj is nonbasic, the basis matrix B does not change, 
and the primal feasibility condition is unaffected. Furthermore, only the 
reduced cost of the jth column is affected, leading to the condition 

('j p'(Aj +bei) 2: 0, 

or, 
? o. 

where p' C~B-l. If this condition is violated, the nonbasic column Aj 
can be brought into the basis, and we can continue with the primal simplex 
method. 
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Changes in a basic column of A 

c'x*(5) 5X;Pi + 0(52 
). 

For an intuitive interpretation of this equation, let us consider the diet 
and recall that aij corresponds to the amount of the ith nutrient 

in the jth food. Given an optimal solution x* to the original 
an increase of aij by 5 means that we are "for free" an additional 
amount 5x; of the ith nutrient. Since the dual variable Pi iK the marginal 
cost per unit of the ith nutrient, we are getting for free something that is 
normally worth 6Pi:r;, and this allows us to reduce OUI' costs 
amount. 

Production planning revisited 

In Section 1.2, we introduced a production planning problem that DEC had 
faced ill the end of 1988. In this we answer some of the 
that we posed. Recall that there were two important choices, whether to 
usc the constrained or the unconstrained mode of production for disk drives, 
and whether to usc alternative memory boards. As discussed in Section 1.2, 
these four combinations of choices led to four different linear programming 

We report the solution to these problems, as obtained from a 
linear programming package, in Table 5.1. 

Table 5.1 indicates that revenueK can substantially increase by using 
alternative memory boards, and the company should definitely do so. The 
decision of whether to use the constrained or the unconstrained mode of 
production for diKk drives is less dear. In the constrained mode, the revenue 
is 248 million versus 213 million in the unconstrained mode. However, 
customer satisfaction and, therefore, future revenues might be 
since in the constrained mode some customers will a product different 
than the desired one. Moreover, these results are obtained assuming that 
the number of available 256K memory boards and disk drives were 8,000 
and :3,000, respectively, which is the lowest value in the range that wal3 
estimated. vVe should therefore examine the sensitivity of the solution as 
the number of available 256K memory boards and disk drives increases. 
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Mode 

COIlstr. 

constr. 248 1.8 

unconstr. 133 0.272 

uncollstr. 213 1.8 

Table 5.1: Optimal solutions to the four variants of the 

tion planuing 
 Revenue is in millions of dollars and the 
quantities x, are in thousands. 

With most linear packages, the output includes the val­
ues of the dual variables, as well as the range of variations under 
which local sensitivity analysis is valid. Table 5.2 presents the values of 
the dual variables associatcd with the constraints on available disk drives 
and 256K memory boards. In addition, it provides the range of allowed 
"""ttl,.,"''' on the number of disk drives and memory boards that would leave 
the dual variables unchanged. This information is provided for the two !in­

to constrained and unconstrained 
mode of production for disk respectively, undcr the assumption that 
alternative memory boards will be used. 

------------- ­

Mode Constrained I Unconstrained 
r~~~~ -------- ­ ---------- ­

Revenue 248 21:3 
---------­

Dual variable 
F

for 256K boards 
,J o 

---------­

Range [-1.5,
for 256K boards 

[-1.62, 

----------- ­

Dual variable 
0

for disk drives 
2:3.52 

-----­

Range 

I 
[-0.2,0.7,

for disk drives 

and range:,; for the constraints correspond­
ing to the avallanl of the number of 256K memory boards and 
disk drives. 
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In the constrained mode, increasing the number of available 25{)K 
boards 0.2 thousand (the largest number in the allowed range) result" 
in a revenue increase of 15 x 0.2 = 3 million. In the unconstrained 
Ul(:re:aslng the number of available 256K boards has no effect on revenues, 
because the dual variable is zero and the range extends upwards to 
In the constrained mode, increasing the number of available disk drives by 
up to 0.75 thousand (the largest number in the allowed range) has no effect 
on revenue. Finally, in the unconstrained increasing the number 
of available disk drives by 1.13 thousand results in a revenue increase of 
23.52 x 1.13 26.57 million. 

In conclusion, in the constrained mode of production, it is important 
to aim at an increase of the number of available 256K memory boards, 
while in the unconstrained mode, increasing the number of disk drives i" 
rnore irnn(\rtl'lnt 

in this case) can have an 
the information provHle(l 

ranges, can offer significant 111"'11',11"" 

and can be a very useful aid to decision makers. 

5.2 	 Global dependence on the right-hand side 
vector 

In this "ection, we take a global view of the dependence of the optimal cost 
on the requirement vector b. 

Let 
P(b) {xIAx=b,x o} 

be the feasible set, and note that our notation makes the £ipnf'nd,m on b 
Let 

8= is nnnpn1l1t"\T 

and observe that 

8={Axlx20}; 

in particular, 8 is a convex "et. For any bE 8, we define 

F(b) = 	 min e'x, 
XEP(b) 

which iH the optimal cost as a function of b. 
Throughout this we assume that the dual feasible set 

piA :S e ' } is Then, duality theorv imolies that the 
cost .F(b) is finite for every b E 8. 

structure of the function F(b), for b E 8. 

, 
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<":llTmnse that there exists a 
basic feasible and let B be the cor­

basis matrix. The vector Xu of hasic variables at that 
solution is XB - B- 1b*, and is positive 

In addition, the vector of reduced costs is nonnegative. If we 
and if the difference b b * is sufficiently small, B -] b remains and 
we still have a basic feasible solution. The reduced COHts are not affected 
by the change from b* to b and remain nonnegative. Therefore, B is an 
optimal basis for the new problem as well. The optimal cost F (b) for the 
new problem is given by 

F(b) e~B-]b = p'b, for b close to b*, 

where pi = e~B -] is the optimal solution to the dual This 
establishes that in the of b*, F(b) is a linear function of b and its 
gradient is given by p. 

We now turn to the 	 of 

Theorem 5.1 The optimal cost F(b) is a COIlvex function of b on 
tIle set 8. 

Proof. Let b l and b 2 be two elemeuts of 8. For i = 1,2, let be an 
optimal solution to the problem of millimizing e'x subject to X 0 and 
Ax bi. Thus, F(bl ) e'xl and F(b2 ) = e 'x 2 . Fix a scalar A [0,1], 
and note that the vector y AXl + (1 A)X2 is nonnegative and Hatisfies 
Ay Ab1 + (1 - A) b 2 . In particular, y is a fea . .''lible Holution to the linear 

problem obtained when the requirement vector b is set to 

+ (1- e'y (l A)e' x2 = 

"1 

establishing the convexi of F. 	 LJ 

l 
I 

We now corroborate Theorem 5.1 by taking a different approach, 
involving the dual problem 

:~imaximize p'b 

subject to piA ::; e', 

which has been assumed feasible. For any b E 8, F(b) is finite 
is equal to the value of the dual ~U'.'V~U' 

be the extreme of the dual feasible set. 
is that the matrix A has linearly independent rows; hence its 

columns span )Rm. Equivalently, the rows of A' span )Rm and Theorem 2.6 
in Section 2.5 imolies that the dual fea,'"lible set must have at least one 

"IiIi' 

1III 
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f 

(J 

Figure 5.1: The optimal co;;t when the vector b is a function 


of a scalar parameter. Ead! linear piece is of the form (p')'(b* + 

where p' is the Hh extreme point of the dual feasible seL 


In each one of the intervals () < BI , BI < B < B2 , and B > B'2, 

we have different dual optimal solutions, namely, pI, p2, and p3, 


1:-'01' 0 - O! or () = ()2, the dual problem has multiple 


optimal solutions. 


extreme point.) Since the opLimum of the dual must be attained at an 
extreme point, we obtain 

F(b) = . max (p' )'b, bE S. (5.2)
,=l. ... ,N 

In particular, F is equal to the maximum of a finite collection of linear 
functions. It is therefore a piecewil-le linear convex function, and we have a 
new proof of Theorem 5.1. In addition, within a region where F is linear, 
we have F(b) (pi)'b, where pi is a corresponding dual optimal solution, 
in with our earlier discussion. 

For those values of b for which F is not differentiable. that is. at the 
jnnction of two or more linear pieces, the dual problem does not have a 
unique optimal solution and t hi;.; implies that every optimal basic feasible 
solution to the primal is degenerate. (This is because, as shown earlier ill 
thi8 section. the existence of a non degenerate optimal basic feasible 8olutioll 

that F is 
We now restrict attention to clll1uges 

b b* + Od, where b* and d are fixed vector8 and 0 is a scalar. Let 
= F(b" +Od) be the cost mo; a function of the scalar 

we obtain 

+ b* + Od E S. 

1 
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"'). '1'~ Flb"') + p \b - b 

Ji'(b*) + P'(b _ b*) 

b* b b* b 

Figure 5.2: Illustration of subgradients of a function F at a 

point b*. A subgradient p is the gradient of a linear function 

F(b*) + p'(b - b*) that lies below the function F(b) and agrees 
with it for b = b*. 

This is essentially a "section" of the function F; it is again a piecewise linear 
convex function; see Figure 5.1. Once more, at breakpoints of this function, 
every optimal basic fem;ible solution to the primal must be U'-''''~'H;' 

5.3 The set of all dual optimal solutions* 

We have seen that if the function F is uelllH;U 

of a certain vector b*, then there is a 
equal to the gradient of F at that point, which leads to the 
of dual optimal Hollltions as marginal costs. We would like to extend this 

This is 
solution can 

so that it remains valid at the breakpoints of F. 

be viewed as a need the 
which is illUHtrated in 5.2. 

Definition 5.1 Let F be a convex function defined on a convex set S. 
Let b* be an element of S. We say tbat a vector p is a subgradient 
of Pat b* if 

+ p'(b - b*) ::::; F(b), VbES. 

Note that if b* is a breakpoint of the function F, then there are 
several On the other hand, if F is linear near b*, there is a 
unique equal to the gradient of F. 
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Theorem 5.2 Suppose tilat tile lUlear programming problem of min­
imizing c'x subject to Ax = b* and x 2 °is feasible and tilat tile 
optimal cost is finite. Tilen, a vector p is an optimal solution to tile 
dual problem if and only if it is a subgradient of tile optimal cost 
function F at tile point b*. 

Proof. Recall that the function F is defined on the set which is the 
set of vectors b for which the set P(b) of feasible solutions to the 
problem is nonempty. Suppose that p is an optimal solution to the dual 
problem. Then, strong duality implies that p'b* F(b*). Consider now 
some b E S. For any feasible solution x PCb), weak 

p'b c'x. Taking the minimum over all x PCb), we obtain 
p'b F(b). p'b ~ p'b* S F(b) F(b*), and we conclude that p 
is a subgradient of F at b*. 

We now prove the converse. Let p be a of F at b*: that 

< \j b E S.+ 
Pick some x 0, let b = Ax, and note that x E In 

c'x. Using Ea. (5.3). we obtain 

p'Ax p'b S F(b) ~ +p'b* < c'x~ +p'b*. 

Since this is true for all x 2 0, we must have p'A S c', which shows that p 
is a dual feasible solution. Also, by letting x 0, we obtain F(b*) p'b*. 

weak duality, every dual feasible solution q must q'b* ~ 
F(b*) S p'b*, which shows that p is a dual optimal solution. 

5.4 Global dependence on the cost vector 

In the last two sections, we fixed the matrix A and the vector c, and we 
considered the effect of changing the vector b. The key to our development 
was the fact that the set of dual feasible solutions remains the same as b 
varies. In this section, we study the case where A and b are but the 
vector c varies. Tn this case, the primal feasible set remains unaffected; our 

CLH<U'.HI'. assumption will be that it is nonempty. 

We define the dual feasible set 


and let 

If T and 
and (02 )1A < 

Q(c) = {p Ip'A s c'}, 

T {c 
then there exist )'A S )' 

J:.or any scalar A E 

(1 < + (1·· 
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and this establishes that AC 1 + (1 ~ A)C2 E T. We have therefore shown 
that T is a COIlvex set. 

H c 1:. the infeasibility of the dual problem implies that the optimal 
primal cost is 00. On the other hand, if c E T, the optimal primal cost 
must be finite. Thus, the optimal primal cost, which we will denote 
G(c), is finite if and if c T. 

2Let xl, x , ... , be the basic feasible solutions in the primal feasible 
set: clearly, the"e do not depend on c. Since an optimal solutioll to a 
standard form problem can always be found at an extreme Doint. we have 

C'Xi. 

is the minimum of finite collection of linear functions and is 
n;D"nm;L'~ linear concave function. If for some value c* of c, the 

solution ) we have (C*)'Xi < (c*)'xj, for all j I i. 
For c very close to c', the < c'xj , j I i, continue to 

that xi is still a unique primal optimal solution with cost c'xi. 
locally, C'xi. On the other hand, at those values 

primal solutions, the function G has a 

We summarize the main points of the preceding discussion. 

Theorem 5.3 Consider a feasible linear programmiIlg problem in stan­

dard form. 


(a) TIle set T of all c for whicil tile optimal cost is finite, is convex. 

(b) The optimal cost G (c) is a concave function of c on tile set T. I 
Ii! 
,Ii

(c) If for some value of c tile prima.] problem il&') a unique optimal 
solution x·, tilen G is linear in tile vicinity of c and its gradient 

is equal to x· . 


5.5 Parametric programming 

Let us fix A, b, c, and a vector d of the same dimension as c. for any 
scalar 0, we consider the 

minimize (c 

to Ax b 

x > 0, 

and let g(O) be the optimal cost as a function of O. I~aturally, we assume 
that the feasible set is nonernpty. For those values of () for which the 
cost is finite, we have 

g(()) . min (c+()d)'xi,
,=I, .. "N 

http:CLH<U'.HI
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where xl, ... , x N are the extreme points of the feasible set; see Figure 5.3. 
In particular, g(e) is a piecewise linear and concave function of the param­
eter e. In this section, we discuss a systematic procedure, based on the 
simplex method, for obtaining g(e) for all values of O. We start with an 
example. 

xl optimal x 2 optimal x 3 optimal x4 optimal (7 

Figure 5.3: The optimal cost g(8) as a function of 8. 

Example 5.5 Con"ider the problem 

minimize (-;{ + 28)Xl + (3- + X:~ 

to Xl + 2:r:2 3xa ::; 5 
2Xl + :r:2 - 4X3 < 7 

Xl,X2,X:l ::;>: O. 

We introduce slack variables ill order to bring the problem into standard form, 
and then let the slack variable" be the hasic variable". This determines a basic 
feasible "olution and leads to the following tableau. 

--T-­

:rl X2 X3 £4 

-:3 + 28 3 8 0 0 

X4 = I 5 2 -3 o 
X3 I 7 2 1 -4 o 1 

If -3 + 28 ::;>: 0 and 3 8::;>: 0, all reduced costs are and we 
have an optimal basic feasible solution. In particular, 

y(8) 0, if ~ < 8 < 3.2 - .-
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If () is increased slightly above 3, the reduced COBt of X2 becomes negative 
and we no longer have all optimal basic feasible solution. We let X2 enter the 
basis, :1:4 exits, and we obtain the new tableau: 

:1:1 X2 X3 .1"4 X5 

-4.5-7.5 + 2.58 

£2 2.5 0.5 -1.5 0.5 0 

1.5 () -2.5 -0.5X5 = I 4.5 

We note that all reduced costs are nonnegative if and only if 3 ::; 0 ::; 5.5/1.5. 
The optimal cost for that range of values of 0 is 

= 7.5 2.58 , if :3 < 0 ~.5. 
-- 1.5 

If 8 is increased beyond 5.5/1.5, the reduced cost of X;3 becomes negative. If we 
attempt to bring :r:3 into the basis, we cannot find a positive pivot element in the 
third column of the tableau, and the problem ill unbounded, with g(8) = -x. 

Let us now go back to the original tableau and suppose that 8 is decreased 
to a value slightly below 3/2. Then, the reduced cost of Xl becomes negative, we 
let Xl enter the basis, and I5 exits. The new tableau is: 

Xz :1:3 X4 Xc,) 

-70 ;1.5 20 -5+ 40 0 1.5 - 0 

0 1.5 -1 -O..S1.5 

3.5:~ = I 1 0.5 -2 0 0.5 

vVe note that all of the reduced costs are nonnegative if and only if ::; () :3/2. 
For these values of 8, we have an optimal solution, with an optimal cost of 

'f' 5 / () / 3g(8) -10.5 + 78, I .- "-- "---.
4'- - 2 

Finally, for 8 < 5/4, the reduced cost of X:3 is negative, but the optimal cost is 
equal to -x, because all entries in the third column of the tableau are negative. 
We plot the optimal (;o::;t in Figure 5.4. 

We now generalize the steps in the preceding example, in order to 
obtain a broader methodology. The key observation is that once a basis 
is the reduced costs arc affine (linear plus a constant) functions of 
e. Then, if we require that all reduced costs be nonnegative, we force e to 
belong to some interval. (The interval could be empty but if it is nonempty, 
its endpoints are also included.) We conclude that for any given basis, the 
set of e for which this basis is optimal is a closed interval. 
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g(8) 

3 8 

Figure 5.4: The optimal cost gee) as a function of e, in Example 
5.5. For eoutside the interval [5/4,11/3]' gee) is equal to -00. 

Let us now assume that we have chosen a basic feasible solution and 
an associated basis matrix B, and suppose that this basis is optimal for 8 
satisfying 81 s: 8 s: 82 , Let Xj be a variable whose reduced cost becomes 
negative for 8 > 82 . Since this reduced cost is nonnegative for 81 s: 8 s: 82 , 

it must be equal to zero when 8 = 82 . We now attempt to bring Xj into 
the basis and consider separately the different cases that may arise. 

Suppose that no entry of the jth column B- 1 Aj of the simplex 
tableau is positive. For 8 > 82 , the reduced cost of Xj is negative, and 
this implies that the optimal cost is -00 in that range. 

If the jth column of the tableau has at least one positive element, we 
carry out a change of basis and obtain a new basis matrix B. For 8 = 82 , 

the reduced cost of the entering variable is zero and, therefore, the cost 
associated with the new basis is the same as the cost associated with the 
old basis. Since the old basis was optimal for 8 = 82 , the same must be 
true for the new basis. On the other hand, for 8 < 82 , the entering variable 
Xj had a positive reduced cost. According to the pivoting mechanics, and 
for 8 < 82 , a negative multiple of the pivot row is added to the zeroth 
row, and this makes the reduced cost of the exiting variable negative. This 
implies that the new basis cannot be optimal for 8 < 82 . We conclude that 
the range of values of 8 for which the new basis is optimal is of the form 
82 s: 8 s: (h, for some 83 • By continuing similarly, we obtain a sequence of 
bases, with the ith basis being optimal for 8i s: 8 s: 8;+1. 

Note that a basis which is optimal for 8 E [8;, 8H d cannot be optimal 
for values of 8 greater than 8HI . Thus, if 8Hl > 8i for all i, the same basis 
cannot be encountered more than once and the entire range of values of 8 
will be traced in a finite number of iterations, with each iteration leading 
to a new breakpoint of the optimal cost function g(8). (The number of 
breakpoints may increase exponentially with the dimension of the problem.) 
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The situation is more complicated if for some basis we have (}i = (}HI. 

In this case, it is possible that the algorithm keeps cycling between a finite 
number of different bases, all of which are optimal only for () = (}i = (}HI. 

Such cycling can only happen in the presence of degeneracy in the primal 
problem (Exercise 5.17), but can be avoided if an appropriate anticycling 
rule is followed. In conclusion, the procedure we have outlined, together 
with an anticycling rule, partitions the range of possible values of 8 into 
consecutive intervals and, for each interval, provides us with an optimal 
basis and the optimal cost function as a function of 8. 

There is another variant of parametric programming that can be used 
when c is kept fixed but b is replaced by b + 8d, where d is a given vector 
and 8 is a scalar. In this case, the zeroth column of the tableau depends 
on 8. Whenever 8 reaches a value at which some basic variable becomes 
negative, we apply the dual simplex method in order to recover primal 
feasibility. 

5.6 Summary 

In this chapter, we have studied the dependence of optimal solutions and of 
the optimal cost on the problem data, that is, on the entries of A, b, and 
c. For many of the cases that we have examined, a common methodology 
was used. Subsequent to a change in the problem data, we first examine its 
effects on the feasibility and optimality conditions. If we wish the same basis 
to remain optimal, this leads us to certain limitations on the magnitude of 
the changes in the problem data. For larger changes, we no longer have 
an optimal basis and some remedial action (involving the primal or dual 
simplex method) is typically needed. 

We close with a summary of our main results. 

(a) 	 If a new variable is added, we check its reduced cost and if it is 
negative, we add a new column to the tableau and proceed from 
there. 

(b) 	 If a new constraint is added, we check whether it is violated and if 
so, we form an auxiliary problem and its tableau, and proceed from 
there. 

(c) 	 If an entry of b or c is changed by 8, we obtain an interval of values 
of 8 for which the same basis remains optimal. 

(d) 	 If an entry of A is changed by 8, a similar analysis is possible. How­
ever, this case is somewhat complicated if the change affects an entry 
of a basic column. 

(e) 	 Assuming that the dual problem is feasible, the optimal cost is a 
piecewise linear convex function of the vector b (for those b for which 
the primal is feasible). Furthermore, subgradients of the optimal cost 
function correspond to optimal solutions to the dual problem. 

li 
I
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that the primal problem is feasible, the cost is a 
linear concave function of the vector c those c for which 

has finite 

If the cost vector is an affine function of a scalar parameter (j, there 
for solving the 

is 
vector b is an affine function of a scalar parameter. 

5.7 	 Exercises 

Exercise 5.1 Consider the same problem as in Example 5.1. for which we al­
have an basis. Let us introduce the additional constraint :1:1 + :1:2 

3. Form the problem described in the text, and solve it using the pri­
mal 	 method. Whenever the "large" constant A1 is comDared to another 

lvl should be treated as being the larger one. 

Exercise 5.2 (Sensitivity with respect to changes in a basic column 
of A) In this (and the next two) we study the change in the value 
of the cost when an entry of the matrix A i" pertnrbed by a small 
amount. We consider a linear programming problem in standard form, under the 
usual that A has linearly independent rows. Suppose that we have 
an optimal basis B that leads to a nondegenerate optimal solution x*, and a. 
nondegenerate dual optimal solution p. We assume that the first column is basic. 
We will now the first entry of Al from all to all + 8, where 8 is a small 
scalar. Let E be a matrix of dimem;i0l1''; 'fI1 x Tn (where Tn is the number of rows 
of A), whose entries are all zero except for the top left entry ell, which is equal 
to 1. 

(a) 	 Show that if 8 is small enough, B+hE is a basis matrix for the new problem. 

(b) 	 Show that under the basis B + 6E, the vector XB of basic variables in the 
new problem is equal to (I + 6B IE) IB-Ib. 

(c) 	 Show that if h is sufficiently small, B I 6E is an optimal basis for the new 
problem. 

(d) 	 \Ve use the symbol ~ to denote equality when second order terms in 6 are ig­
nored. The following approximation is known to be true: (I + 6B-- I E) 1 ~ 
1 6B- I E. this approximatiou. show that 

C~~XB ~ c'x* hPIX~, 

PI) is the first component of the optimal solution to 
dual) problem, and XB has been defined 

Exercise 5.3 (Sensitivity with respect to changes in a basic column 
of A) Consider a linear problem in standard form under the usual 

that the rows of the matrix A are 
that the columns AI, ... , Am form an basis. Let Ao be some vector and 
suppose that we Al to Al +6Ao. Consider the matrix B(8) consisting of 
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the columns An + 8AI , A 2 , •.. , Am. Let [81, .52 ] be a closed interval of values of 
8 that contains zero and in which the determinant of is nonzero. Show that 
the subset of r81 , 621 for which B(8) is an oDtimal basis is a closed interval. 

Exercise 5.4 Consider the problem in Example 5.1, with all from 
3 to :3 + 6. Let us keep XI and X2 as the ba.'lic variables and let B(6) be the 

as a function of h. 

(a) B(6)-lb. For which values of his B(6) a feasible ba.'lis? 

(b) c~lB(6)-1. For which values of.5 is B(6) an optimal basis? 

(c) 	 Determine the optimal cost, as a function of b, when h is restricted to those 

values for which B(6) is an optimal ba.~is matrix. 


Exercise 5.5 While solving a standard form linear programming problem II i 
the simplex method, we arrive at the following tableau: 

;Cl X2 X3 X4 Xc 

0 0 1.'3 0 c[j 

X2 = I 0 ,Br-: 
" 

X~ = I 	 I 

Xl = I 31 1 0 4 0 6 

Suppose also that the last three columns of the matrix A fonl1 an identity matrix. 

(a) 	 Give necessary and sufficient conditions for the ba.'iis described bv this 

tableau to be optimal (in terms of the coefficients in the 


(b) 	 Assume that this basis is optimal and that C3 = O. Find an basic 

feasible solution, other than the one described by this tableau. 


(c) 	 Suppose that I > O. Show that there exists an basic feasible 

of the values of 1.'3 and 1.'5. 


UIJLlllltU 

(d) 	 Assume that the basis associated with this tableau is 

also that bl in the original problem is replaced by bI + E. Give upper and 

lower bounds on ( so that this basis remains optimal 


(e) 	 Assume that the basis associated with this tableau is 

also that Cl in the original problem is replaced by ell (. Give upper and 

lower bounds on ( so that this basis remains optimal. 


to the Ljw;tIluuetl of spe­
cial to 

Month Januarv1 1 Februa.ry I March I April 

225 1 180 	 IUnits 150 	 160 

nrnlh",,,, a maximum of 160 lamps per month at a cost of $35 
per unit. can be purchased from Company C at a cost of $50 
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per larnp. Company A incurs an inventory bolding cost of $5 per month for each 
lamp held in inventory. 

(a) 	 Formulate the problem that Company A is as a linear programming 
problem. 

(b) 	 Solve the problem using a linear programming P<1C;Ki't)<,';:. 

(c) 	 Company A is considering some preventive maintenance during one of the 
first three months. If maintenance is scheduled for the company 
can manufacture only 151 units (instead of 160); the maximum 

production if maintenance is scheduled for or March is 
153 and 155 units, respectively. What maintenance schedule would you 
recommend and why? 

A 
$45 per 

D? If yes, when and 
how many and what is the irrmact of 
thiH decision on the total cost? 

(d) 

of units ;'UIJjJUvU to Company 
What is the minimum decrease that would make this 

A? 

(f) 	 Because of anticipated increases in interest rates, the holding cost per 

is to increase to $8 per unit in Februarv. How does this 

affect the total cost and the optimal solution? 


(g) 	 B has just informed Company A that it only no unitH in 
January (instead of 150 requested previously). Calculate upper and lower 
bounds on the impact of this order on the optimal cost information 
from the optimal solution to·the original problem. 

Exercise 5.7 A paper company manufactures three basic products: pads of 
paper, 5-packs of paper, and 20-packs of paper. The pad of paper consists of a 

pad of 25 sheets of lined paper. The 5-pack consists of 5 pads of paper, 
together with a small notebook. The 20-pack of paper consists of 20 pads of 
paper, together with a large notebook. The small and notebooks are not 
sold 

Production of each pad of paper requires 1 minute of paper-In<:l.CIllIle 
1 minute of supervisory time, and $.10 in direct costs. Production of each small 
notebook takes 2 minutes of paper-machine time, 45 seconds of time, 
and $.20 in direct cost. Production of each large notebook takes 3 minutes of 

:~O seconds of supervisory time and $.30 in direct costs. To 
takes 1 minute of packager's time and 

package the 20-pack takes 3 minutes of packagel 

time, and time are constants bI , bz , 
can be sold to retailers in any quantity at the prices 

may 
to formulate the in such a 
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way that the following questions can be answered by looking at a single dual 
variable or reduced cost in the final tableau. Also, for each question, give a brief 
explanation of why it can be answered by looking at just one dual price or reduced 
cost. 

(a) 	 What is the value of an ext.ra unit of supervisory time? 

(b) 	 \Vhat is the lowest at which it. is worthwhile to produce 

of paper for sale? 


(c) that 	 can be hired at $8 per hour. Is it 

that the direct cost of of paper increases from $.10 

to $.12. What is the profit decrease? 


Exercise 5.8 A pottery manufacturer can make four different types of 
room service sets: JJP E llll:l ish , Currier, Primrose. and Bluetail. 
Primrose can be made two different methods. Each set uses 
room time, and kiln shown in Table 5.3. 
is the abbreviation for 

Clay (lbs) i 10 I 15 10 10 20 130 

Enamel (lbs) 1 2 2 1 I 1 I ]3 

Dry room (hours) 3 1 6 6 :3 I 45 

Kiln (hours) 2 4 I 2 5 3 , 23 

Profit 	 51 102 I 66 66 89 

Table 5.3: The column in the table the manufac­

turer's resource 
 for the remainder of the week. Notice 

that Primrose call be made two different methods. 

use the same amount of and 

But the second method uses one less of enamel and three 

more hours in the kiln. 


Ii 

The manufacturer is committed to the same amount of II 
Primrose using methods 1 and 2. The formulation of the profit maximization 

below. The decision variables C. PI, Pz, B are the number 
:1 

Primrose Method 1, Primrose Method 2, and I 

We assume, for the purposes of this problem, that the 
number of sets of each type can be fractional. I,ll!1 



226 	 Chap. 5 Sensil;ivityanalysis 

maximize 51E + 102C + 66Ft + 66P2 + 89B 
to IOE + 15C + 101'1 + 1OP2 + 20B S 130 

E 2C + 21'1 + P2 + B <::: 1:3 
3E + G+ 6Ft + 6P2 + 3B S ~15 

2E + 4C + 2FI + 5P2 + 3B S 23 
H F2 0 

B O. 

and the dual, respectively. together with 
is 

that follow. 
in Tables 5.4 and 5.5. Use this information to 

Optimal 
Value 

Reduced 
Cost 

Objective 
Coefficient 

Allowable 
Increase 

Allowable 
Decrease 

E n -3.571 51 :L571 eXl 

C 2 0 102 16.667 12.5 

PI 

P2 

0 

0 

0 

-·37.571 

66 

66 

37.571 00 
------------------ ­ -------- ­

:37.571 00 

B 
~ 

5 0 8~) 47 
I 

12.5 

Table 5.4: The optimal primal solution and its sensitivity with 
respect to changes in coefficients of the objective function. The 
last two columns describe ·the allowed changes in these coefficients 
for which the same solution remains optimal. 

(a) What ifi the optimal of each service set, and what ifi the total 

(b) Give an economic 	 of the dual 
variablefi report, for each of the five constraints. 

Should the manufacturer an additional 20 lbs. of Clav at $1.1 per 

that the number of hours available in room decreasesthe 
30. Give a bound for the decrease in the total 

(e) 	 In the current model, the number of Primrose 
required to be the same as the number of Primrose 
Consider a revision of the model in which this constraint is 
constraint PI P2::: O. In the reformulated problem would the amount of 
Primrose made bv method 1 be 

Exercise 5.9 Using the notation of Section 1).2, show that for any positive 
scalar .\ and any b E: 8, we have F(.\b) '\F(b). Assume that the dual feasible 
set is nonempty, so that F(b) is finite. 

,III 

Table 5.5: The optimal dual solution and its sensitivity. The 

column labeled "slack value" gives us the optimal values of the 

slack variables associated with each of the primal constraint~. The 

third column simply repeats the right-hand side vector b, while the 

la'3t two columns describe the allowed changes in the components 

of b fi)r which the optimal dual solution remains the same. 


Exercise 5.10 Consider the linear programming problem: 

minimize Xl + X2 

subject to Xl + 2X2 = e, 
Xl, X2 2: O. 

(a) 	 Find (by an optimal solution, as a function of e. 
(b) 	 Draw a showing the optimal cost as a function of e. 
(c) Use the picture in part (b) to obtain the set of all dual optimal solutions, 

Exercise 5.11 Consider the function of Sec­
that is linear for e E: Is it true that there exists a 

solution when (h < e< e2 ? Prove or ., a counterexample. 

Exercise 5.12 Consider the programming problem discussed in Sec· 
tion 5.5. 

(a) 	 that for some value of e, there are exactly two distinct basic feasible 

solutions that are optimal. Show that they must be adjacent. 


2(b) 	 Let 0* be a of the function g((J). Let x I, x , x 3 be basic feasi bJe 

solutions, all of which are optimal for e 0*. Suppose that Xl is a unique 

optimal solution for e < 0', x:1 is a unique optimal solution for 8 > 8*, and 


2
Xl, x , are the optimal basic feasible solutions for e = e*. Provide 

an example to show that and x:1 Heed not be adjacent. 
 d 
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Allowable 
Variable RHS Increase 

I Dual -I Constr. 

I I.429 130 2:3.:3;} 

9 0 13 I 00 

'7 0 45 00 28I. 
Kiln 23 20.143 23 5.60 3.50 

Prim. 0 ll.429 0 3.50 0 

I 
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Exercise 5.13 Consider the following linear programming problem: 

minimize 4Xl + 5:1:3 
subject to 2Xl + X2 5:1:3 1 

-3XI + 4:Z::l + ~;4 2 
Xl, xz, X3, X.~ ? D. 

(a) Write down a simplex tableau and find an optimal solution. Is it 

(b) Write down the dual problem and find an optimal solution. Is it 

the vector b from b 
where 0 is a scalar parameter. Find an solution and 

the value of the optimal cost, as a function of fJ. all 0, both 
and 

Exercise 5.14 Consider the 

minimize (e + 
to Ax b + Of 

x ? 0, 

where A is an m x n matrix with independent rows. We assume that the 
nt·"hl"m is fea.'5ible and the optinl"'. is finite for all values of 0 in some 
interval 

(a) 	 that a certain basis is optimal for 0 -10 and for 0 10. Prove 
that the same basis is optimal for 0 = 5. 

(b) 	 Show that f(O) is a piecewise qU<ldratic function of O. Give an upper bound 
on the number of "pieces." 

(c) 	 Let b 0 and c = O. Suppose that a certain basis is optimal for 0 l. 
For what other nonnegative values of 0 is that same basis optimal? 

(d) 	 Is f(fJ) convex, concave or neither? 

Exercise 5.15 Consider the problem 

Iminimize ex 
subject to Ax b + Od 

x > 0, 

and let 	 cost, as a function of O. 

for a given value of (j. For 
lloIlncgaLlve scalar t, define X (D, t) to be the union of the sets 

t) a convex set? Provide a Droof or a 

(a) 

that we remove the Ilonnegativity constraints x 2: 0 from the 
nroblem under consideration. Is t) a convex set"? Provide a Droof or 
a counterexample. 

Q"nnose that and belong to XeD, t). Show that there is a continuous 
from to that is contained within X (D, t). That is, there existH 

such that a(A,) = Xl. a(A'") = x 2
, and orA) E 

A 
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Exercise 5.16 Consider the parametric programming problem of Section 5.5. 

Suppose that smIle basic feasible solution is optimal if and only if () is equal to 

son1e ()*. 


(a) 	 Suppose that the feasible set is unbounded. Is it true that there exist at 

least three distinct basic feasible solutions that are oDtimal when () = O*? 


(b) 	 Answer the in part for the case where the feasible set is 

bounded. 


Exercise 5.17 Consider the parametric n]"(\lynHn that 

every basic solution encountered bv the 

the ale:orithrn does not 


5.8 Notes and sources 

The material in this chapter, with the of Section 5.3, is standard, 
and can be found in any text on linear programming. 

5.1. 	 A more detailed discussion of the results of the production planning 
case study can be found in Freund and Shannahan (1992). 

5.3. 	 The results in this section have beautiful generali7,ations to the case 
of nonlinear convex optimi7,ationj see, e.g., Rockafellar (1970). 

5.5. 	 Anticyding rules for parametric programming can be found in Murty 
(1983). 

I 
_I 
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In this chapter, we discuss methods for solving linear programm 
lems with a large number of variables or constraints. We Lhe idea 
of column generation whereby we generate a column of the matrix 
A only after iL has been determined that it can profitably enter the ba­
sis. The dual of this idea leads to the C'uU,ing plane, or delayed constraint 
gr:neration method, in which the feasible set is approximated using only 
a subset of the constraints, with more constraints added if the 
solution is infeasible. \Ve illustrate the delayed column method 

a classical application, the cutting-stocK: Another 
is found in 

for linear programming problems with a special structure. \Ve close 
with a discussion of stochastic programming, which deals with two-stage 
optimization problems involving uncertainty. \Ve obtain a scale linear 
programming formulation, and we present a decomposition method known 
as Benders decompos'ition. 

6.1 Delayed column generation 

Consider the standard form 

minimize e'x 
to Ax b 

x > 0, 

with x E ~n and b E ~rn, under the usual assumption that the rows 
of A are linearly independent. Suppose that the number of columns is 
so large that it is impossible to and store the entire matrix A 
in memory. Experience with problems indicates that, usually, most 
of the columns never enter the and we can therefore afford not to 

This blends well with the revised 
at any only the current 

basic columns and the column which is to enter the basi/:;. There is 
one that remains to be we need a method for 
discovering variables Xi with negative reduced costs c without having to 

" generate all columns. Sometimes, this can be accomplished by solving the 
problem 

minimize Ci, (6.1) 

where the minimization is over all i. In many instances 
lations to be studied in Sections 6.2 and this 

structure: a sInaliest Ci can be found efl1Utl1L1Y 

every Ct. If the minimum in this optimization problem is ITl·""t",,· 

or equal to 0, all reduced costs are and we have an 
solution to the linear programming problem. If on the other hand, 
the minimum is negative, the variable Xi corresponding to a minimizing 
index i has negative reduced cost, and the column Ai can enter the basis. 

Sec. 6.1 JClEiVea column generatlOn 

The key to the above outlined approach is our ability to solve the 
optimization problem (6.1) efficiently. We will Ree that in the 
Wolfe decomposition method, the problem (6.1) is a smaller auxiliary linear 
programming problem that can be solved using the simplex method. For the 
cutting-stock problem, the problem (6.1) is a certain discrete optimization 
problem that can be solved fairly efficiently special purpose methods. 
Of course, there are also cases where the problem (6.1) has no 
structure and the methodologv described here cannot be 

A variant involving retained columns 

In the delayed column generation method that we have just discussed, the 
columns that exit the basis are discarded from memory and do not enjoy 
ally special status. In a variant of this method, the algorithm retains in 
memory all or some of the columns that have been generated in the past, 
and proceeds in terms of restricted linear problems that in­
volve only the retained columns. 

We describe the algorithm as a sequence of master iterations. At the 
ieginning of a m&')ter iteration, we have a basic fe&':lible solution to the 

and an associated basis matrix. We search for a variable 
;po-!CIti"" reduced possibly by minimizing Ci over all i; if none is 

terminates. Suppose that we have found some j such 
that Cj < O. We then form a collection of columns Ai, i E I, which contains 
all of the basic columns, the entering coluIIln A j , and possibly some other 
columns as well. Let us define the restTided problem 

minimize LCiXi 

iEI 

to LAiXi b 
iEI 

x > o. 

Recall that the basic variables at the current basic feasible solution to 
the original problem are among the columns that have been kept in the 
restricted problem. \Ve therefore have a basic feasible solution to the re­
stricted problem, which can be used &"1 a point for its solution. 
\Ve then perform as many simplex iterations as until the restricted 
problem is solved to At that point, we are ready to start with 
the next master iteration. 

The method we have just described is a case of the revised 
in conjunction with some special rules for choosing the 

variable that priority to the variables Xi, i E I; it is only when 
the reduced costs of these variables are all nonnegative (which happens at 
an optimal solution to the restricted problem) that the algorithm examines 
the reduced costs of the remaining variables. The motivation is that we 
may wish to give priority to variables for which the corresponding columns 
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have already been generated and stored in memory, or to variables that are 
more probable to have negative reduced cost. There are several variants 
of this method, depending on the manner that the set I is chosen at each 
iteration. 

(a) 	 At one extreme, I is just the set of indices of the current basic vari­

ables, together with the entering variable; a variable that exits the 

basis is immediately dropped from the set I. Since the restricted 

problem has m + 1 variables and m constraints, its feasible set is at 

most one-dimensional, and it gets solved in a single simplex iteration, 

that is, as soon as the column Aj enters the basis. 


(b) 	 At the other extreme, we let I be the set of indices of all variables 

that have become basic at some point in the past; equivalently, no 

variables are ever dropped, and each entering variable is added to 

I. If the number of master iterations is large, this option can be 
problematic because the set I keeps growing. 

(c) 	 Finally, there are intermediate options in which the set I is kept to 

a moderate size by dropping from I those variables that have exited 

the basis in the remote past and have not reentered since. 


In the absence of degeneracy, all of the above variants are guaranteed 
to terminate because they are special cases of the revised simplex method. 
In the presence of degeneracy, cycling can be avoided by using the revised 
simplex method in conjunction with the lexicographic tie breaking rule. 

6.2 The cutting stock problem 

In this section, we discuss the cutting stock problem, which is a classical 
example of delayed column generation. 

Consider a paper company that has a supply of large rolls of paper, 
of width W. (We assume that W is a positive integer.) However, customer 
demand is for smaller widths of paper; in particular bi rolls of width Wi, 

i = 1,2, ... , m, need to be produced. We assume that Wi ::; W for each i, 
and that each Wi is an integer. Smaller rolls are obtained by slicing a large 
roll in a certain way, called a pattern. For example, a large roll of width 70 
can be cut into three rolls of width WI = 17 and one roll of width W2 = 15, 
with a waste of 4. 

In general, a pattern, say the jth pattern, can be represented by a 
column vector Aj whose ith entry aij indicates how many rolls of width Wi 

are produced by that pattern. For example, the pattern described earlier is 
represented by the vector (3,1,0, ... ,0). For a vector (a1j, . .. ,amj) to be 
a representation of a feasible pattern, its components must be nonnegative 
integers and we must also have 

m 

L aij Wi ::; W. 	 (6.3) 
i=l 

1 
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Let n be the number of all feasible patterns and consider the m x n matrix 
A with columns A j , j = 1, ... ,n. Note that n can be a very large number. 

The goal of the company is to minimize the number of large rolls used 
while satisfying customer demand. Let Xj be the number of large rolls cut 
according to pattern j. Then, the problem under consideration is 

n 

minimize ~X ~.7 
.1=1 

n (6.4) 
subject to LaijXj bi , 1, ... ,m, 

j=l 

Xj ;::: 0, j = 1, ... ,no 

Naturally, each Xj should be an integer and we have an integer program­
ming problem. However, an optimal solution to the linear programming 
problem (6.4) often provides a feasible solution to the integer programming 
problem (by rounding or other ad hoc methods), which is fairly close to 
optimal, at least if the demands bi are reasonably large (cf. Exercise 6.1). 

Solving the linear programming problem (6.4) is a difficult compu­
tational task: even if m is comparatively small, the number of feasible 
patterns n can be huge, so that forming the coefficient matrix A in full is 
impractical. However, we will now show that the problem can be solved 
efficiently, by using the revised simplex method and by generating columns 
of A as needed rather than in advance. 

Finding an initial basic feasible solution is easy for this problem. For 
j = 1, ... , m, we may let the jth pattern consist of one roll of width Wj and 
none of the other widths. Then, the first m columns of A form a basis that 
leads to a basic feasible solution. (In fact, the corresponding basis matrix 
is the identity.) 

Suppose now that we have a basis matrix B and an associated basic 
feasible solution, and that we wish to carry out the next iteration of the 
revised simplex method. Because the cost coefficient of every variable Xj 

is unity, every component of the vector CB is equal to 1. We compute the 
simplex multipliers p' = C~B-1. Next, instead of computing the reduced 
cost Cj = 1 - p'Aj associated with every column (pattern) A j , we consider 
the problem of minimizing (1 - p'Aj) over all j. This is the same as 
maximizing p'Aj over all j. If the maximum is less than or equal to 1, all 
reduced costs are nonnegative and we have an optimal solution. If OIl the 
other hand, the maximum is greater than 1, the column Aj corresponding 
to a maximizing j has negative reduced cost and enters the basis. 

We are now left with the task of finding a pattern j that maximizes 
p'A j . Given our earlier description of what constitutes an admissible pat­
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tern [ef. Eq. , we are faced with the Droblem 

m 

maximize 'LPiai 
i co I 

m 

to LWia, l<V (6.5) 
;=1 

ai 20, 1, ... ,m, 
a, integer, 1, ... , m. 

This problem is called the integer knapsack problem. (Think of Pi as the 
and Wi as the weight of the ith item; we seek to fill a knapsack and 

maximize its value without the total weight exceeding W). Solving the 
knapsack problem requires some effort, but for the range of numbers that 
arise in the cutting stock problem, this can be done fairly eiIicientl 

One possible algorithm for solving the knapsack problem, based on 
programming, is as follows. Let F(v) denote the optimal 

value in the problem (6.5), when ~V is replaced by v, and let us use the 
convention F(v) °when v < O. Let Wmin = min; Wi. If v < Wmin, then 
dearly F(v) = 0. For v 2 Wmin, we have the recursion 

F(v) . max {F(v +pd· (6.6)
t=l)".,Tn 

For an interpretation of this note that a knapsack of 
at most v is obtained by first the knapsack with weight at most 
v Wi, and then adding an item of weight Wi. The knapsack of weight 

should be filled so that we obtain the maximum value, 
, and the ith item should be chosen so that the total 

j Pi is maximized. Using the recursion (6.6), F(v) can be 
for v = Wmin, Wmin + 1, ... , 1-V. In addition, an optimal solution 

is obtained by backtracking if a record of the maximizing index i is 
at each step. The computational complexity of this procL'<iure is 
because the recursion (6.6) is to be carried out for O(W) different values 
of v, each time requiring O(m) arithmetic 

The dynamic programming methodology is discussed in more gener­
ality in Section 11.3, where it is also applied to a somewhat different variant 
of the knapsack problem. The knapsack problem can also be solved 
the branch and bound methodology, developed in Section 11.2. 

6.3 Cutting plane methods 

Delayed column generation methods, when viewed in terms of the dual 
variables, can be described as delayed constraint generation, or cutting 
methods. In this section. we develop this alternative nC'r<1YH',·ti 

Sec. 6.3 Cutting plane methods 

Consider the problem 

maximize p'b 

subject to piAi Ci, 1, ... , Tt, 

considered in Section 6.1. 
Once more, we assume that it is impossible to generate and store each one 
of the vectors Ai, because the number n is very large. Instead of dealing 
with all n of the dual constraints, we consider a subset 1 of {I, ... , and 
form the relaxed dual problem 

maximize p'b (6.R) 

subject to piAi Ci, i E 1, 

which we solve to optimality. Let p* be an optimal basic feasible solution 
to the relaxed dual problem. There are two possibilities. 

Suppose that p* is a feasible solution to the original problem 
Any other feasible solution p to the original problem (6.7) is also 
feasible for the relaxed problem (6.8), because the latter bas fewer 
constraints. Therefore, by the optimality of p* for the problem (6.8), 
we have p'b <::: (p*)'b. Therefore, p* is an optimal solution to the 

problem (6.7), and we can terminate the algorithm. 

If p* is infeasible for the problem (6.7), we find a violated 
add it to the constraints of the relaxed dual problem, and continue 
similarly. See Figure 6.1 for an illustration. 

In order to carry out this algorithm, we need a method for checking 
whether a vector p* is a feasible solution to the original dual problem (6.7). 
Second, if p* is dual infeasible, we need an eiIicient method for identifying 
a violated constraint. (This is known as the separation problem, because it 
amounts to a hyperplane that separates p* from the dual fea..'lible 
set, and is discussed further in Section 8.5.) One possibilitv is to formulate 
and solve the optimization n,."hlf'TYl 

(6.9)minimize Ci 

over all i. If the optimal value in this problem is nonnegative, we have 
a feasible (and, therefore, optimal) solution to the original dual 
if it is negative, then an i satisfies Ci < (p*YAi, and we have 
identified a violated constraint. The success of this approach hinges on our 
ability to solve the problem (6.9) efficiently; fortunately, this is sometimes 
possible. In addition, there are cases where the optimization problem (6.9) 
is not solved but one can test for feasibility and identify violated 
constraints using other means. (See, e.g., Section 11.1 for applications of 
the cutting plane method to programming 

It should be apparent at this point that 
method to the dual problem is identical to 
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b
T 

Figure 6.1: A polyhedron P defined in terms of i5everal inequality 
con~traints. Let the vector b point downwards, so that maximizing 
p'b is the same as looking for the lowest point. We start with the 
constraints indicated by the thicker lines, and the optimal solution 
to the relaxed dual problem is pO The vector po is infeasible and 
we identify the constraint indicated a hatched line a.'l a violated 
one. We this constraint in the relaxed dual problem, 
and solve the new relaxed dual problem to ootimalitv. to arrive at 
the vector p2. 

generation method to the primal. For example, nllnmuzmg Ci - (p*)'Ai 
in order to find a violated dual constraint is identical to Ci in 
order to find a primal variable with reduced cost. Furthermore, 
the relaxed dual problem (6.8) is simply the dual of the restricted 

(6.2) formed in Section 6.1. 
The plane method, as described here, corresponds to the vari­

ant of dc1ayed column generation in which all columns generated by the al­
gorithm are retained, and the set I grows with each iteration. As discussed 
in Section 6.1, a possible alternative is to drop some of the elements of I; 
for example, we could those constraints that have not been active for 
some time. 

If we take the idea of dropping old dual constraints and carry it to 
the extreme, we obtain a variant of the cutting plane method whereby, at 
each stage, we add one violated constraint, move to a new p vector, and 
remove a constraint that has been rendered inactive at the new vector. 

Example 6.1 Consider 6.1 once more. We start at and let I consist 
of the two constraints that are active at D 

U
. Thp constraint corresponding to the 
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hatched line is violated and we add it to the set I. At this point, the set I consists 
of three dual constraints, and the relaxed dual problem has exactly three basic 
solutions, namely the points po, pl, and p3. We maximize p'h to these 
three constraints, and the vector pi is chosen. At this point, the constraint that 
goes through po and p3 is satisfied, but ha.'l been rendered inactive. We drop this 

leaves us with the two constraints through the 
we can now identify another violated constraint and 

continue 

Since the cutting plane method is simply the delayed column gener­
ation method, viewed from a different there is no need to provide 
implementation details. While the algorithm is easily visualized in terms of 
"UCUll/!, planes and the dual problem, the computations can be carried out 

the revised simplex method on the primal problem, in the standard 
fashion. 

noting that in some occasions, we may be faced with a 
primal problem (not in standard form) that ha.." relatively few variables but 
a very large number of constraints. In that case, it makes seIlse to apply 
the cutting plane algorithm to the primal; equivalently, we can form the 
dual problem and solve it delayed column generation. 

6.4 Dantzig-Wolfe decomposition 

Consider a linear programming problem of the form 

rmnllIllze C~XI + C;X2 

to D1Xj t· D2X2 = b o 

b l 

F 2 X 2 b 2 

Xj,X22':O. 

Suppose that XI and X2 are vectors of dimensions nj and n2, respectively, 
and that b o, b l , b2 have dimensions rno, mj, rn2, respectively. Thus, 
besides Ilonnegativity constraints, Xj satisfies rnj X2 satisfies 
rn2 constraints, and x I, X2 together rno coupling constraints. Here, 
D], D 2 , F I , F2 are matrices of appropriate dimensions. 

Problems with the structure we have just described arise in several 
applications. For example, Xl and X2 could be decision variables associ­
ated with two divisions of the same firm. There are constraints tied to 
each division, and there are also some constraints representing 
shared resources, such as a total budget. the number of coupling 
constraints is a small fraction of the total. We will now vroceed to develop 
a decomposition method tailored to problems of this 
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equality constraints (6.11)-(6.13) that shows mm;e clearly the structure ofReformulation of the problem 
the column associated with each variable is 

Our first step is to introduce an equivalent nroblem. with fewer 
constraints, but many more 

For i = 1,2, we define 

{Xi :::: 0 I FiX; = h;}, 

and we assume that and P2 are Then, the problem can be 

rewritten as 

minimize C~Xl + C;X2 

subject to D1Xl + D2X2 b o 

Xl C PI 

X2 

For i = 1,2, let , j E J" be the extreme points of Pi' Let also 
k be a complete set of extreme rays of Pi. Using the resolution theo­
rem (Theorem 4.15 in Section 4.9), any element Xi of Pi can be rMw""pn 

in the form 
Xi L + L 

jbJi kr;:Ki. 

where the coefficients A1 and Of' are nonnegative and 

Ai 1, i 1,2. 
jr;:.], 

problem can be now reformulated asThe 

. . . d ,j ~ ()k' k ~ d , j ()k' k 
rmmnuze AICIXI + L ICl w l + L A2C2 x 2 + 2 C 2 W 2 

jr;:.J] kEKl jEJ2 kr;:K2 

to L AiD l + L ()~DIW~ L A~D2X~ 
jr;:.h kEK, jEh 

+ L ()~D2W~ b o 
"EK2 

V 1 (6.12)
1 

JEJ] 

(6.L A~ 1 
:i E]2 

:::: 0, :::: 0, V i,j, k. 

Aj 
I [Dt 1+ LA~ [D~~ 1 

jE·h jEh 

D( 1+ L ()~ [Dr~+L 
kEK, kEK2 1 [ :" 1 

The decomposition algorithm 

In contrast to the original problem, which had mo + mi + m2 
constraints, the master problem has only mo + 2 equality constraints. On 
the other hand, the number of decision variables in the master problem 
could be astronomical, because the number of extreme points and rays is 
usually exponential in the number of variables and constraints. Because 
of the enormous number of variables in the master problem, we need to 
use the revised simplex method which, at any given iteration, involves only 
mo +2 basic variables and a basis matrix of dimensions (mo +2) x (rno + 

Suppose that we have a basic feasible solution to the master 
associated with a basis matrix B. We assume that the inverse basis matrix 
B-1 is available, as well as the dual vector p' = c~B-l. Since we have 
rno+2 equalit.y const.raints, the vector p has dimension mo+2. The first rno 
components of p, to be denoted by q, are the dual variables associated with 
t.he constraint.s (6.11). The last two components, to be denoted by r'1 and 
r'2, are the dual variables associated with the "convexity" constraints (6.12) 
and (6.13), respectively. In particular, p = (q,r'1,7'2). 

In order to decide whether the current basic feasible solution is op­
. we need to examine the reduced costs of the different variables and 

check whether anyone of them is negative. The cost coefficient of a variable 
Ai is c~ xi. Therefore, the reduced cost of the variable A{ is given 

- [q' 7'1 [Dt 1 - q'DJ)xi 1'1· 

the cost coefficient of the variable ()f is c; w~ . Therefore, its 
reduced cost is 

k- [q' 7'1 [Dt 1~ 'D)q 1 WI' 

This problem will be called the master' problem. It is equivalent to the 
original problem (6.10) and is a linear programming problem in standard We now introduce the most critical idea in the decomposition algo­

form, with decision variables A~ and ()~. An alternative notation for the rithm. Instead of evaluating the reduced cost of every variable A'j and ()~, 

http:6.11)-(6.13
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and checking its we fOl'm the linear programming problem 

minimize (c~ - q'Dl)Xl 

to Xl E F\, 

called the first "~1U:lTlr(w which we solve means of the method. 
There are three to consider. 

is -00, tllen, upon 
the simplex method provide" us with an extreme ray wf that satisfies 
(ci q'Dl)wf 0 the discussion at the end of Section 
Tn this ca"e, the reduced cost of the variable ot is negative. At this 
point, we can the column 

[Dt 1 

associated with e~, and have it enter the ba,9is in the master problem. 

If the ubprobJem is finite and smaller than T], 

method provides us with an ex­
treme < "rl. In this case, the 
reduced cost of the variable At this ooint. we can 

the column 

[ D~~ 1 
associated with A{, and have it enter the baRi" in the master problem. 

(c) 	 Finally, if the optimal cost ill the subproblem is finite and no smaller 
than 1'"1, this implie" that (ci - q'D dxi ? 1'" I for all extreme points 
xl, and (ci q'DIJw1 2 0 for all extreme ray" wt. In this case, the 
reduced cost of every variable A{ or ot is nonnegative. 

The same approach is followed for checking the renuced cmits of the 
variables and e~: we form the second 

minimize - q'DZ)X2 

to X2 E 

the 
than or 7'2 and all reduced costs are or we find a 
variable or o~ whose reduced cost itl negative and can enter the basis. 

The resulting algorithm is summarizl'd below. 
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Dantzig-Wolfe decomposition algorithm 

1. 	 A typical iteration starts with a total of mo+2 extreme points and 
extreme rays of PI, P2 • which lead to a basic feasible solution to 
the master problem, the corresponding inverse basis matrix B-1 , 

and the dual vector p' = (q,1'"I,1'"2)' = C'r;B-l. 
2. 	 Form and solve the two subproblems. If the 

first subproblem is no tlmaller than 1'"1 and the optimal cost in 
the second subproblem is no smaller than 1'"2, then all reduced 
costs in the master problem are nonnegative. we have an A",tim., 

solution, and the algorithm terminates. 

3. 	 If the optimal cost in the ith subproblem is -00, we obtain an 
extreme ray wf, associated with a variable Of whose reduced 
cost is negative; this variable can enter the basis in the master 
problem. 

4. 	 If the optimal cost in the ith subproblem is finite and less than 
1'"i, we obtain an extreme point xL associated with a variable A{ 
whose reduced cost is negative; this variable can enter the basis 
in the master problem. 

5. chosen a variable to enter the b8..:"is, generate the column 
associated with that variable, carry out an iteration of the revised 
simplex method for the master problem. and uodate B-1 and p. 

of the 

number of columns, a column is generated 
have reduced cost and is about to enter the basis. Note that the 
subproblems are smaller linear programming problems that are employed atl 
an economical search method for discovering columns with reduced 
costs. 

As discussed in Section 6.1, we can also utle a variant whereby all 
columns that have been generated in the past are retained. In thi" case, 
Step Gof the algorithm has to be modified. Tnslead of out a tlingle 
simplex iteration, we solve a restricted master problem to optimality. This 
rctltricted problem has the same structure as thc master problem, except 
that it onlv involves the columntl that have been so far. 

Economic interpretation 

TWA"i,-l., an appealing economic interpretation of the Dantzig-Wolfe de­
method. We have an organization with two divisions that 

have to meet a common objective, reflected in the coupling COIltltraint 
D1Xl + D 2 xz b o· A central planner assigns a value of q for each unit 
of contribution towards the common objective. Division i is interested in 
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minimizing C~Xi. subject to its own constraints. However, any choice of Xi 

contributes DiXi towards the common objective and h&'3 therefore a value 
of q'Dix·i. This leads division i to minimize (c:' q'D i )Xi (cost minus 
value) subject to its local constraints. The optimal solution to the divi­
sion's subproblem can be viewed as a to the central planner. The 
central planner uses these and combines them (optimally) with 
preexisting proposals to form a feasible solution for the overall problem 
Based on this feasible solution {which is a basic feasible solution to the 
master problem the values q are reassessed and the process is repeated. 

Applicability of the method 

VLJit:1U"the method 	 of the 
form 

. .. , 	 ,
mmmllze cIXI CtXt 

to DIXI D2X2 Dtxt 

FiXi hi, 	 1,2, ... , t, 

xI,X2, ... ,Xt O. 

The only difference is that at each iteration of the revised simplex method 
for the master problem, we may have to solve t subproblems. 

In fact, the method is applicable even if t 1, as we now discuss. 
Consider the linear programming problem 

minimize c'x 

subject to Dx b o 
Fx b 

X > O. 

in which the constraints have been partitioned into two sets, and 
define the P {x 0 Fx b}. expressing each elementI 

of P in terms of extreme Doints and extreme rays, we obtain a master 
hut a smaller Humber of 

SUbproblem, which is a 

h&'3 a 
our developIllent, we have been assuming that all con­

straints are in standard form in particular, the feasible sets Pi of the 
oblems are also in standard form. This is hardly necessary. For ex­

ample, if we aSSllme that the sets Pi have at least one extreme Doint. the 
resolution theorem and the same line of 
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Examples 

We now consider some examples and go through the details of the algorithm. 
In order to avoid excessive bookkeeping, our first example involves a single 
subproblem. 

Exalllple 6.2 Consider the problem 

minimize -4xI X2 6X3 

subject to 	 :3Xl + 2X2 + 4X3 17 
1 Xl 2 
1 X2 2 
1 ~ X3 2. 

\Ve divide the constraints into two groups: the first group consists of the con­

straint Dx = bo, where D is the 1 x :3 matrix D [:3 2 4), and where bo = 

the second group is the constraint x E where P {x 

1,2, :3}. Note that P has eight extreme 

therefore. has no extreme rays. The master problem has two equalitv constraints. 


8 

j=1 

8 

where x J are the extreme points of P. The columnH of the conHtraint matrix in the 
master problem are of the form (Dxi , Let us pick two of the extreme points 
of P, say, Xl = (2,2,2) and (1,1, and let the corresponding variables 
.xl and .x2 be our initial basic variables. We have DXI 18, DXL -=-0­

therefore, the corresponding basis matrix is 

1:3 ] .B [l~ 
1 ' 

its inverse is 

B- 1 
[ 

0.2 -2.6 ] 
-0.2 :3.6 . 

We form the product of B- 1 with the vector (17, 1). The result, which is (0.8,0.2), 
gives us the values of the basic variables .x1, .x2

. Since these values are nOllnegative, 
we have a basic feasible solution to the master problem. 

We now determine the simplex multipliers. Recalling that the cost of .x j is 
jc'x , we have 

CB(I) c'x
1 r 4 - 1 - 6] [ ~ 1= -22, 
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C13(2) [ - 4 1 

and 

6] [ i ] = -17. 

We therefore have 

I r ']T J B- 1 I - - B- 1 1 -41.p q = CD 22 [ 

'We now form the subproblem. We are to minimize - q'D)x to 
x P. We have 

, , [ .c .' q D - 4- 1 - 6J [3 2 4] = 1 2], 

and the ontimal solution is x 1,2). This is a new extreme point of P, which 
x:J. The optimal cost in the subproblem is -5, and is less than 

T, which is -1. It follows that the reduced cost of the variable A:1 is 
and this variable can enter the basis. At this point, we generate the column 
corresponding to A3. Since Dx3 = 16, the corresponding column, call it g, is 

We form the vector u = B-Ig, which is found to be (0.6,0.1). In order 
to determine which variable exits the we form the ratios Al = 0.8/0.6 
and A2/U2 0.2/0.4. The second ratio is smaller and A2 exits the basis. We now 
have a new basis 

16 ] .B [\8 
1 ' 

its inverse is 

B- 1 = 
0.5 -8U ]

-0.5 . 

We form the product of B-1 with the vector (17,1) and determine the values of 
the basic which are AI (Ui and A3 0.5. The new value of is 
c'x3 -21. Once more, we compute [q' T] = , which is 

\Ve now go back to the subproblem. We have 

c'-q'D=r-,1 1 -6] [324] 2.5 0 - 1]. 

We minimize (c' q'D)x over P. We find that (2,2,2) is an optimal solution, 
and the optimal cost is equal to 13. Since this is the same as the value of T, 

we conclude that the reduced cost of every Ai is nonnegative, and we have an 
optimal solution to the master problem. 

In terms of the variables Xi, the optimal solution is 

2
1 1 1.3 

X = -x + x 1.5 
222[ 

The progress of the is illustrated in Figure 6.2. 

As shown in Figure even though the optimal solution is an ex­
treme point of the feasible set in x-spaee, feasible solutions in the 
course of the algorithm (e.g., the point A) are not extreme points. Another 
illustration that conveys the same message is provided by Figure 6.3. Notice 
the similarity with our discussion of the column geometry in Section 3.6. 
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I 

I 

Dantzig-Wolfe decomposition 

X3 

~ 

x2 =(1,1,2) 

:x3 (2,1,2) { I~ 

Xl 

Figure 6.2: Illustration of Example 6.2, in terrmi of the variables 
in the original problem. The cube shown iH the set P. The 

feasible set is the intersection of thc cube with the hyperplane 3xJ + 
2:];2 +4X:l = 17, and corresponds to the shaded triangle. Undcr the 
first basis considered, we have a feasible solution which is a eonvex 
combination of the extreme Xl, x 2 

, namely, point A. At 
the next step, the extreme point x:l is introduced. If Al were to 
become nonbasic, we would be dealing with convex eombinations 
of x 2 and x 3

, and we would not be able to satisfy the constraint 
3Xl +2xz +4X3 17. This provides a explanation of why 
AI must stay and A2 must exit the basis. The new basic feasible 
solution corresponds to the point is a convex combination of Xl 

and x 3 
, and was found to be optimaL 



249 
,... 248 Chap. 6 IJarge scale optimization 

~c 

x5 

Figure 6.3: Another illustration of the geometry of Dantzig­
Wolfe decomposition. Consider the case where there is a single 
subproblem whose feasible set h&<; extreme points , and 
a single coupling equality constraint which corresponds to the line 
shown in the figure. The algorithm is initialized at point A and 
follows the path A, E, C, with point C being an optimal solution. 

Example 6.3 The purpose of this example is to illustrate the behavior of the 
decomposition algorithm when the feasible set of a subproblem is unbounded. 

Consider the linear programming problem 

minimize -5XI + X2 

subject to Xl :; 8 

Xl - X2 :; 4 
2X1 X2 10 

Xl. X2 :::: O. 

The feasible set is shown in 6.4. 
We associate a slack variable X3 with the first constraint and obtain the 

problem 
minimize ··5XI + X2 

subject to Xl + X3 8 
Xl - X2 < 4 

2XI X2 :; 10 

XI,X2 () 

X3 O. 

We view the constraint Xl + X3 = 8 as a coupling constraint and let 

PI = { , Xl - X2 :; 4. 2X1 - X2 :; 10, :rl,x2:::: o}. 
P2 = {X3 I X3 ? 

We therefore have two subproblems, although the second subproblem h&'i a very 
feasible set. 
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X2 

wi 

Figure 6.4: lll11stration of Example 6.3. The algorithm starts 

at (6.2) and after one master iteration reaches point 
which is an optimal solution. 

The set f\ is the same as the set shown in Figure 6.4, except that the 
constraint XI :; 8 is absent. Thus, PI has three extreme points, namely, xt 

2), xi = (4,0), x{ (0,0). and two extreme rays, namely, wi (1,2) and 
~ (0,1). 

Because of the simple structure of the set P2. instead of introducing an 
extreme ray w~ and an associated variable B~, we B~ with X3, and keep 
X;; as a variable in the master problem. 

The master problem has two equality constraints, namely, 

3 

"'" dD j "'" lI"D" 8L-tAl IX'I + L-t01 lWI + X3 , 

j=1 k=l 

3 

LA{ l. 
j=1 

Accordingly, a basis consists of exactly two columns. 
In this example, we have DI [1 0] and D2 1. Consider the variable 

Ai associated with the extreme point xi (6,2) of the first subproblem. The 
corresponding column is (D1XL 1) = (6,1). The column associated with X3 is 

0). If we choo..'ie Ai and X3 &'1 the basic variables, the ba.'3is matrix is 

1
B [~ 
 ° 

and its inverse is 

B- 1 [~ -! ] . 
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We form the product of B~~l with the vector (ho, 1) = (8, 1). The result, which 
is (1,2), gives us the values of the basic vaJ'iables >..i,X3' Since these values 
are nonnegative, we have a basic feasible solution to the master problem, which 

'esponds to (Xl, (6, see Figure 6.4. 
We now determine the dual variables. We have CB(I) "'" (-5.1 )'x7 -28 

and CB(2) = 0 x 1 O. We therefore have 

pI = [q r 28 O]B- 1 
= [0 

that we use the notation q instead of q, because q is one-dimensional. Fur­
thermore, the dual variable r2 is absent because there is no convexity constraint 
associated with the second subproblem.) 

We form the first subproblem. We are to minimize (c~ q'Dl)XI subject 
to Xl En. Because q = 0, we have c~ qD 1 = c~ = (-5, I)'. \Ve are therefore 
minimizing -5Xl + X2 subject to Xl n and the optimal cost is -00. In 
particular, we find that the extreme ray wi = (1,2) has cost. The 
associated variable oi is to enter the basis. At this point, we generate the column 
corresponding to 01. Since D I wi 1, the corresponding column, call it g. is 
(1,0). We form the vector u g, which is found to be The 
positive entry is the second one and this is therefore the pivot element. It follows 
that the second basic :1:;1, exits the basis. Because the column 
associated with the entering variable OJ is equal to the column associated with 
the variable X3, we still have the same basis matrix alld, therefore. the 
same values of the ba,'';ic' variables. >..i 1, ot = 2. This takes us to the 
vector X = xI + 2wi = 6): sec 6.1. 

For the llew basic variables, CB(J) is -28 and 

CB(2)-'C~wi [ 51][~]=-3. 

We compute (q,rI)' = C~JB-1. which is equal to (-3, -10)'. 
VVe now go back to the first subproblem. Since q = -:{. we have 

c~ - qDl r 5 1J oJ - 2 1]. 

vVe minimize -2X1 +X2 over the set PI The 
cost to is equal to rl, all of the variables 

associated with the first subproblem have nonnegative reduced costs. 
vVe next consider the second \Ve have C2 O. q = and 

D2 1. Thus, the reduced cost of X3 is equal to c; qD 2 = 3. We conclude that 
all of the variables in the master problem have nonnegative reduced costs and we 
have an optimal solution. 

Starting the algorithm 

In order to start the decomposition algorithm, we need to find a basic 
fea.sible solution to the master problem. This ca.n be done as follows. We 
first aDDlv Phase I of the simplex method to each one of the 

and find extreme Doints x; and xi of 
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both sides of some of the 
we can assume that D 1x} + D2X~ ::::; b. Let y be a 

variables of dimension mo. We form the auxiliary ma.'3ter 

rno 

minimize LYt 
t=1 

subject to .~ (.. >..iD;xI + ~~~ OfDiWf) +y = bo 
t-l,2 JE:../, kE:./\, 

L >..-{ = 1 

JEl, 


L>"-!.'=] 
jEh 

;:: 0, 0, Yt 0, \if i,j, k, t. 

A basic feasible solution to the problem is obtained by letting 
1, >"i = 0 for j =;'=1, Of 0 for all k, and y = b o - DIX~ D2X~, 

from here, we can use the decomposition algorithm to solve the 
master problem. If the optimal cost is positive, then the master 

problem is infeasible. If the optimal cost is zero, an optimal solution to the 
auxiliary problem provides us with a basic feasible solution to the master 
problem. 

Termination and computational experience 

is a 
inherits its termination nr,(\T),prt 

sence of it is guaranteed to terminate in a finite number of 
In the presence of degeneracy, finite termination is ensured if an 
rule is although this is rarely done in practice. Note that Bland's rule 
cannot be applied in this context, because it is incompatible with the way 
that the decomposition algorithm chooses the entering variable. There is no 
such difficulty, in principle, with the lexicographic pivoting rule, provided 
that the inverse basis matrix is explicitly computed. 

A practical way of speeding up the solution of the subproblems is 
to start the simplex method on a subproblem the optimal solution 
obtained the previous time that the was solved. As 
the function of the subproblem does not change too 
between successive master iterations, one that this could lead to 
an solution for the subproblem after a relatively small number of 
iterations. 

Practical experience suggests that the algorithm makes substantial 
progress in the beginning, but the cost improvement can become very slow 
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later on. is sometimes terminated prema­

no faster than the revised 
lem. The true advantage of the decompoHition algorithm lies in its "tonlJ)''' 

Suppose that we have t subproblems, each one 
same number ml of equality constraints. The storage requirements of the 
revised simplex method for the original problem are O((mo +trnl)2), which 
is the size of the revised simplex tableau. In contrast, the storage require­
ments of the decomposition algorithm are O((rno + t)2) for the tableau of 
the master problem, and t times O(rni) for the revised silllplex tableaux of 
the subproblems. Furthermore, the decomposition algorithm needs to have 

one tableau stored in main memory at any given time. For 
if t = 10 and if rno = rn1 is much than t, the main memory 
mcnts of the decomposition are about 100 times smaller than 

a bottleneck 
in tmndlmg very the decomposition 
approach can the range of problems that can be prac­
tically solved. 

Bounds on the optimal cost 

As already discusHed, the decomposition may take a time 
to terminate. eHpeeially for very We will now show how 
to obtain upper and lower bounds for the VjJlHl1<:tl 

be used to stem the algorithm once the cost 

Theorem 6.1 Suppose that the master problem is feasible and its op­
timal cost z* is finite. Let z be the cost of the feasible solution obtained 
at some intermediate stage of the decomposition algorithm. Also, let 
ri be tile value o[ the dual variable associated with the convexity con­
straint [or the itIl subproblem. Finally, let Zi be the optimal cost in 
the itIl subprohlem, assumed finite. Then, 

Z + L(Zi- z* :s: z. 

Proof. The inequality z* :s: z is obvious, since z is the cost <1HHociated 
with a fC<1Hible solution to the original problem. It remains to prove the 
left-haud side ineqnality in the statement of the theorem. 

We provide the proof for the case of two 511 bproblems. The proof for 
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case is similar. The dual of the master oroblern is t.he 

maximize q'bo +rl +r2 

to q'Dlxi + rl < c~xi, V j E .11, 

q'Dlwt < c~wt, Vk l(I, (6.14) 

q 'D2X 2j + 1'2 :s: c~x~, V j E.h 

q'D2w~ < c~w~, Vk K 2 • 

Suppose that we have a basic feasible solution to the master problem, with 
cost z, and let (q, r1, be the associated vector of simnlpv 
This is a (generally infeasible) basic solution to the dual 
same 

q'bo + r1 + r2 = z. 5) 

Since the optimal cost Zl ill the first subproblem is finite, we have 

. ( 'j q 'DlXj)
I Z1,mm C1X I

.JEh 

mm• ('Clw1
k -q'D k) 0.lW 1 > 

kEKl 

Thus, q together with Zj in the place of rl, satisfy the first two dual con­
straints. By a similar q together with Z2 in the of '['2, 

the last two dual constraints. Therefore, (q, Zl, is a feasible solution to 
the dual problem (6.14). Its cost iH q'bo + Zj + Z2 and. bv weak dualitv. is 
no cost z*. Hence, 

z* > q'bo + Z1 + Z2 

q'bo +rl +1'2 + (Zl - r1) + (Z2 -r2) 

Z + (Zl r,) + (Z2 - '['2), 

where the last equality follows from Eq. (6.15). 

Note that if the optimal cost in one of the subproblems is -00, then 
Theorem 6.1 does not any useful bounds. 

The proof of Theorem 6.1 is an instance of a 
lower bounds on the cost of linear programming problems, 

which iH the following. Given a nonoptimal basic feasible solution to the 
primal, we consider the corresponding (infeasible) baHic solution to the dual 
problem. If we can Homehow modify this dual solution, to make it feasi­
ble, the weak duality theorem readily yields a lower bound. This was the 
approach taken in the proof of Theorem 6.1, where we started from the gen­
erally infeasible dual solution (q, rl, r2), moved to the dual feasible solution 
(q, Zl, Z2), and then invoked weak 

Example 6.4 Let us revisit 6.2 and consider the situation just be­
fore the first change of ba.'>is. We are at a basic feasible solution determined 
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(Al,A2) = (0.8,0.2). Since CB (-22, -17), we have z 17)'(0.8,0.2) = 

21. \Ve also have T = -4. Finally, the optimal cost ill the subproblem is 
(-1,1, -2)'(2, 1,2) =-5. It follows that 21 ::: z· -21 + (-4) 22. 

the true value of z· is -21.5. 

6.5 	 Stochastic programming and Benders 

decomposition 


two-stage stochastic linear program­
lUI.J1t:::lH:";. there are two sets of 

there are some 
exogenous parameters that influence the second of decision 
but whose values are uncertain, and become known after the first set of 
decisions has been fixed. In order to address of this type, we de­
velop a new decomposition algorithm, called Benders decomposition, which 
i8 ba8ed on delayed constraint generation opposed to delayed column 
generation). 

Problem formulation 

Consider a decision maker who has to act in two consecutive stages. The 
first stage involves the choice of a decision vector x. Subsequently, some new 
information is obtained, and then, at the second stage, a new vector Y of 
deciHions is to be chosen. Regarding the nature of the obtained information, 
we a'-;sume that there are K 	 and that the true scenario 
is only revealed after x is chosen. We use w to index the different scenarios, 
and we let (}'w stand for the of any particular scenario w, which 
we a'5Sllme to be positive. Since the second decisions are made after 
he true scenario w becomes we allow the decision vector Y to 

on (v', and wc use thc notation Yw to make this dependence 
\Ve now make more sDerific Hssnmntinn,"" on the 

with the 
decisions x and Yw, rpsnef'tlve The first decisions must satisfy the 
constraints 

Ax b 

x > O. 

III addition, the first and second decisions need to satisfy constraints 
of the form 

Bwx + Dyw dw 

Yw 0, 
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for all w; in particular, every scenario may involve a different set of con­
straints. The objective is to choo8e x and Yl, ... ,YK so that the "expected 
cost" 

c'x +(}'d'YI + ... + (}:Kf'YK 

is minimized. We thus arrive at the problem 

minimize c'x + O'lf'Ylf- 0'2 f 'Y2 +- ... + (}'Kf'YK 


subject to Ax b 


B1x + DYI d l 


+ DY2 	 d 2 

Bj{x 	 DYK+ 
X,Yl,Y2,' . ,YK ::: 0, 

which will Notice that even if the 
scenarios K is moderate, this formulation can be a 

linear For this reason, a decoIrlDosition method is 
in order. 

Example 6.5 (Electric power capacity expansion) All electric utility is 
installing two generators (indexed by j = 1,2) with different fixed and 
costs, in order to meet the demand within its service region. Each day is divided 
into three parts of equal duration, indexed by i = 1,2,:3. These correspond to 
parts of the day during which demand takes a base, medium, or peak 

The fixed cost. per unit capacity of generator j is amortized over its 
lifetime and amounts to {;J per day. The operating cost of generator j during the 
ith part of the day is l,j. If the demand during the ith part of the day cannot be 
served due to lack of capacity, additional capacity must be purchased at a cost of 
gi. the capacity of each generator j is required to be at least bj. 

There are two sources of uncertainty, namely, the exact value of the de­
mand d t during each part of the day, and the availability aj of generator j. The 
demand d, can take one of four values d"I, ... , d i ,4, wit.h probability Pu,,·. ,Pi,4, 

The availability of generator 1 is au" .. , 111.4, with 
Similarly, the availability of generator 2 is a2, 1, ", a2.5, 

with Q2,1 ••. , Q2,5, respectively, If we enumerate all the 
events, we see that there is a total of 43 x 4 x 5 1280 scenarios w. Let us 
use to denote the demands and availabilities, under scc.'­
nano w. 

\Ve introduce t he first stage variables Xj, j -= 1,2, that represent the in­
stalled of generator j. \Ve also introduce the second stage variables 
that denote the operating levels of generator j during theith part of the 
under scenario w. Finally y';' is the capacity that. l1('eds to be 
scenario w, in order to satisfy Ullmet demand during the ith part of the 
nt.f'rnr'pt availability to mean that the operating level of generator j, at any 

time, is at most ajxj. Vve then arrive at the following formulation: 
I 

I, 
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minimize 2 + E [38 (2~AiY:j + giY';')] 
subject to Xj 2': 	 'i j, 

y:j ::; 	 'i i,j,w, 

LYi; 	 2': dr, 'i i, w, 

Xj,y:j,y,!:, 2': 0, 'ii,j,w. 

(Here, .J stands for mathematical expectation, that is the average over all 
scenarios w, weighted according to their probabilities.) The full model involves 
11.')22 variables and 11522 constraints (not counting nonnegativity rnm:lr"i 

Reformulation of the problem 

Consider a vector x such that Ax =: b and x 0, and suppose that this is 
our choice for the first decisions. Once x is fixed, the optimal second 

decisions Yw can be determined separately from each other, by solving 
for each w the 

minimize f'yw 

subject to 	 Bwx + Dyw d w (6. 

Yw 2> O. 

Let zw(x) be the optimal cost of the problem (6.16), together with the 
convention zw(x) 00 if the problem is infea.'3ible. If we now go back to 
the optimization of x, we are faced with the nrohl"rn 

K 

minimize e'x + L awzw(x) 
w~~l 

to 	 Ax b (6.17) 

x:::: o. 

consider those x for 

which is 

maximille p~ (d w Bwx ) 
(6.18)

to p~D f'. 

Let 

P = {p ! p'D :s.; f'}. 
We assume that P is nonempty and has at least one extreme point. iLet p, 
i = 1, ... ,I, be the extreme points, and let w j , j 1, ... ,J, be a CVUlf.)lC 

set of extreme rays of P. 
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Under our assumption that the set P is nonempty, either the dual 
problem (6.18) has an optimal solution and zw(x) is finite, or the optimal 
dual cost is infinite, the primal problem (6.16) is infeasible, and zw(x) 00. 

In Darticular. zw(x) < 00 if and onlv if 

(wj)'(dw - Bwx) 0, 'I;j j. (6.19) 

Whenever is finite, it is the optimal cost of the problem (6. 
optimum must be attained at an extreme point of the Ret P; in 

zw(x) . max (pi)'(dw Bwx). 
'l.=l, ... J 

Alternatively, zw(x) is the smallest number Zw such that 

(pi)'(dw Bwx):s.; zw, 'I;j i. 

\Ve use thiR characterization of zw(x) in the problem (6. and 
also take into account the condition (6.19), which is required for zw(x) to 
be finite, and we conclude that the master problem (6.17) can be put in 
the form 

K 

minimize e'x + L awzw 
w=l 

to Ax b 

(pi)'(dw - Bwx ) :s.; ZW) 'I;j i,w, 

)'(dw Bwx):s.; 0, 'I;j j,w, 

x 2> O. 

\Vith this reformulation, the number of variables has been reduced 
substmltially. The number of constraints can be extremely large, but this 
obstacle can be overcome using the cutting plane method. In particular, 
we will only generate constraints that we find to be violated bv the current 
solution. 

Delayed constraint generation 

At a typical iteration of the algorithm, we consider the relaxed master 
which has the same objective as the problem (6.20), but involves 

only a subset of the constraints. We aRSllll1e that we have an optimal 
solution to the relaxed master problem, consisting of a vector x* and a 
vector z* , ... ,zk). In the spirit of the cutting plane method, we 
need to cheek whether (x*, z*) is also a feasible Rolution to the full master 
problem. However, instead of individuallv checking all of the ('(}n."'t.r~ 

we proceed by solving some 
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methods are almost identical, with Benders decomposi 

with our discussion in Section 6.3, that we have the op­
discarding all or some of the constraints in the relaxed primal that 
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For w = 1, ... , K, we consider the 

minimize f/yw 

subject to Dyw d w Bwx' 

Yw 2: 0, 

which we solve to optimality. Notice that the subproblems encountered at 
different iterations, or for different values of w, differ only in the 
side vector dw Bwx*. Tn particular, the corresponding dual pnJOlen:IS 

have the same feasible set, namely, P. For this reason, it is natural 
to assume that the subproblems are solved by means of the dual 
method. 

There are a few diITerent possibilities to consider: 

(a) 	 If the dual simplex method indicates that a (primal) subproblem is 
infea.'lible, it provides us with an extreme ray wi(w) of the dual feasible 
set P, such that 

(wj(w)'(d Bwx*) > O.w 

We have then identified a violated which can be added to 
the relaxed master nTV,hlmn 

is feasible, then the dual simplex method 
-llllWtLe:", and provides us with a dual optimal basic feasible solution 

pi(w). If we have 

(pi(w)'(dw - Bwx*) > z:, 
we have again identified a violated constraint, which can be added to 
the relaxed master problem. 

if the are all feasible and we have 

Bwx *) 

for all w, by the optimality of pi(w), we obtain 

(pi)'(dw - Bwx*) z:, 

for all extreme points pi. In addition, 

(wj)/(dw Bwx*) 0, 

for all extreme rays wi, and no constraint is violated. We then have 
an optimal solution to the master problem (6.20), and the algorithm 
terminates. 

The resulting algorithm is summarized below. 

Sec. 6.5 Stochastic programming and Benders decomposit 

Benders decomposition for two-stage problems 

1. 	 A typical iteration starts with a relaxed master problem, in which 
only some of the constraints of the master problem (6.20) are 
included. An optimal solution (x*, z*) to the relaxed master 
problem is calculated. 

2. 	 For every w, we solve the subproblem 

minimize f'y w 

to Dyw d w Bwx· 
Yw 2: 0, 

using the dual simplex method. 

3. 	 If for every w, the corresponding subproblem is feasible and the 
optimal cost is less than or equal to z:, all constraints are sat­
isfied, we have an optimal solution to the master Droblem. and 
the algorithm terminates. 

4. 	 If the subproblem corresponding to some w has an optImal so-­
lution whose cost is than z:, an optimal basic feasible 
solution pi(w) to the dual of the 
the constraint 

(pi(w))'(dw - Bwx) ::; z: 

is added to the relaxed ma.<;ter problem. 

5. 	 If the subproblem corresponding to some w is infeasible, its dual 
has infinite cost, and a positive cost extreme ray wj(w) is identi­
fied. Then, the constraint 

- Bwx) 0 

is added to the relaxed master problem. 

Benders decomposition uses delayed constraint generation and the 
cutting plane method, and should be contrasted with Dantzig-"Volfe de­
composition, which is based on column generation. Nevertheless. the two 

have become inactive. 
One of the principal practical difficulties with stochastic progTam­

ming, is that the number J( of possible scenarios is often large, leading to 
a large number of subproblems. This is even more so for stochastic pro­
gramming problems involving more than two stages, where similar methods 
can be in principle applied. A number of remedies have been DroDosed. in­
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eluding the use of random sampling to generate only a representative set 
of scenarios. \Vith the use of parallel computers and sophisticated sam­
pling methods, the solution of some extremely large problems may become 
possible. 

6.6 Summary 

The main ideas <malnnarl in this CllCLJjLel are the 

In a problem with an excessive number of we need to gen­
erate a column only if its reduced cost is and that column 
is to enter the basis (delayed column generation). A method of this 
type requires an efficient subroutine for identifying a variable with 
negative reduced cost. 

(b) 	 In a problem with an excessive number of constraints, a constraint 
needs to be taken into account only if it is violated by the current so­
lution (delayed constraint generation). A method of this type (cutting 
plane method) an efficient subroutine for identifving violated 
constraints. 

We have noted that rlnl"u~rl to 

coincide with Fur­


we noted that there are several variants lJellUUU!. on whether we 

retain or discard from memory previously generated columns or constraints. 


.For a problem consisting of a number of subproblems linked by cou­
pling constraints, the delayed column generation method applied to a suit­
ably reformulated problem, results in the Dantzig-Wolfe decomposition 
method. Loosely speaking, Benders decomposition is the "dual" of Dantzig­
Wolfe decomposition, and is based on delayed constraint generation. Stoch­
astic programming is an important class of problems where Benders decom­
position can be applied. 

6.7 Exercises 

Exercise 6.1 Consider the cutting stock problem. Use an optimal solutioll to 
the linear programming problem (6.4) to construct a feasible solution for the 
corresponding integer problem, whose cost differs from the optimal 
cost by no more than rn. 

Exercise 6.2 This problem is a variation of the diet problem. There are n foods 
and m nutrients. Vye are an m. x n matrix A, with au the alT'ount 
of nutrient i per unit of the jth food. Consider a parent with two children. Let b l 

and b 2 be the minimal nutritional requirements of the two children 
let c be the cost vector with the prices of the difl'erent foods. Assume 

that aij 2': °and Ci °for all i and j. 
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The parent has to buy food to satisfy the children's needs, at mlIllIllum 
cost. To avoid jealousy, there is the additional constraint that the amount to he 
spent for each child is the same. 

I j 

(a) 	 Provide a standard form formulation of this problem. What are the dimeIl­

siom; of the constraint matrix? 


(b) If the method is used to solve the problem in part lay. COIl­

solved during a iteration of the master 

lem. 


nnrr'\.-;sph for based on the solution of 

Exercise 6.3 Consider the following linear problem: 

maximize Xl2 + Xn + X23 


subject to III + XI2 + Xl3 20 

X21 + X22 + X23 20 

-Xll X21 -20 
XI2 X22 -10 

- Xl3 XZ:l -10 
Xll :C2:l ::; 15 
Xij 0, for all i, j. 

\Ve wish to solve this problem where the 
constraint Xll + XZ3 

constraints define a 

(a) 	 Consider the following two feasible solutions for the subprohlem: 

Xl (Xll,X12,XI3,X21,X22,X23) (20,0,0,0,10,10), 

and 
X2 (Xll,X12,:CI3,.T2I,X22,X23) (0,10,10,20,0,0). 

Construct a restricted master problem in which x is cOIlstrained to be 

a convex combination of Xl and X2. Find the solutioIl and the 


for the restricted master problem. 


calculated in part formulatp the 


(c) 	 What is the reduced cost of the variahle Ai associated with the optimal 

extreme point obtained from the subproblem solved in part (b)? 


(d) Compute an upper bound OIl the optimal cost. 

Exercise 6.4 Consider a linear programming problem of the forIll 

minimize CiXl + C;X2 + c~)y 

Dl 0 Xl b i1to FI ] 
~2 2': bzo D2 F2 

Xl,X2 O. 

two different ways of decomposing thisWe will 

" 
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(a) 	 Form the dual problem and explain how 

be applied to it. What is the structure of the 

typical iteration? 


(b) 	 Rewrit.e the first set of constraints in the form D 1xl + FIYI 2: b l and 
D2X2 + F2Y2 b2, together with a constraint relating Yl to Y2. Discuss 
how to apply Dantzig-Wolfe decomposition and describe the structure of 
the 

Exercise 6.5 Consider a linear nrncrrmnTnin nn.hl,oTn of the form 

minimize c'x + d'y 

~ Ax+Dy~b 

Fx~f 

y?O. 

that we have access to a very fast subroutine for 

of the form 


minimize h'x 

subject to Fx ~ f, 

for cost vectors h. How would you go about ueCUlIlpU~lll!', the 

(b) 	 that we have access to a very fast subroutine for solving problems 
of the form 

minimize d'y 
subject to Dy < h 

y 2: 0, 

right-hand side vectors h. How would you go about decom­
the problem? 

Exercise 6.6 Consider a linear programming problem in standard form in which 
the matrix A has the following structure: 

Aoo AOI Aon 
AIO All 

A 	 A22 

Ano 	 Ann 

(All submatrices other than those indicated are zero.) Show how a decomposition 
method can be applied to a problem with this structure. Do not provide details, 
as long as you indicate the master problem and the subproblems. Hint: 
I)ecompose twice. 

Exercise 6.7 Consider a linear problem in standard form. Let us 
constraints as the constraints and use the 

for the case of a single suboroblem. Show that the 
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Exercise 6.8 Consider the Dantzig-Wolfe decompo"ilinn 

that we are at a basic feasible solution to the master 


(a) Show that at least one of the variables Ai must be a basic variable. 

Let 11 be the current value of the 
first convexity constraint (6.12), and let Zl be the optimal cost in the first 

Show that ZI ~ 

Exercise 6.9 Consider a oroblem of the form 

minimize max 

to no constraints, where ai, bi are given vectors and 

(a) Describe a method for problems of this form. 

(b) 	 Let x be an optimal solution to a relaxed problem in which only some of the 
terms a:'x - bi have been retained. Describe it simple method for 
lower and upper bounds on the optimal cost in the original problem. 

Exercise 6.10 In this exercise, we develop an alternative proof of Theorem 6.1. 

(a) 	 Supposp that x is a basic feasible solution to a standard form problem, 
and let c be the corresponding vector of reduced costs. Let y be any other 
feasible solution. Show that c'y = e'y + c'x. 

(b) 	 Consider a basic feasible solution to the master problem whose cost is equal 
to z. Write down a lower bound on the reduced cost of any variable A; and 
(}7, in terms of Ii and Zj. Then, use the result of part (a) to provide a proof 
of Theorem 6.1. 

Exercise 6.11 (The relation between Dantzig-Wolfe and Benders de­
composition) Consider the two-stage stochastic linear programming problem 
treated in Section 6.5. 

(a) 	 Show that the dual has a form which is amenable to 

decomposition. 


(b) 	 Describe the Dantzig-Wolfe decomposition algonttnfl, as 

and identify differences and similarities with Benders (lecompositi 


Exercise 6.12 (Bounds in Benders decomposition) For the two-stage 
stochastic linear programming problem of Section 6.5, derive upper and lower 
bounds on the optimal cost of the master problem, based on the information 

the solutions to the 

6.8 Notes and sources 

6.2. 	 The stock problem 
was 

6.3. 	 methods are often employed in linear programming 
and will be discussed 
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