Contents

1	Introduction and preliminaries	1
	 1.1 Introduction, 1 1.2 General preliminaries, 3 1.3 Preliminaries from linear algebra, matrix theory, and Euclidean geometry 1.4 Some graph theory, 8 	·, 4
2	Problems, algorithms, and complexity	14
	 2.1 Letters, words, and sizes, 15 2.2 Problems, 15 2.3 Algorithms and running time, 16 2.4 Polynomial algorithms, 17 2.5 The classes P, NP, and co-1P, 18 2.6 NP-complete problems, 20 Some historical notes, 21 	
PA	ART I: LINEAR ALGEBRA	25
3	Linear algebra and complexity	27
	 3.1 Some theory, 27 3.2 Sizes and good characterizations, 29 3.3 The Gaussian elimination method, 31 3.4 Iterative methods, 36 	
	Notes on linear algebra	38
	Historical notes, 38 Further notes on linear algebra, 40	
	RT II: LATTICES AND LINEAR DIOPHANTINE QUATIONS	43
4	Theory of lattices and linear diophantine equations	45
	 4.1 The Hermite normal form, 45 4.2 Uniqueness of the Hermite normal form, 48 4.3 Unimodular matrices, 48 4.4 Further remarks, 50 	

iii		Contents
5	Algorithms for linear diophantine equations	52
	 5.1 The Euclidean algorithm, 52 5.2 Sizes and good characterizations, 54 5.3 Polynomial algorithms for Hermite normal forms and systems diophantine equations, 56 	of linear
6	Diophantine approximation and basis reduction	60
	 6.1 The continued fraction method, 60 6.2 Basis reduction in lattices, 67 6.3 Applications of the basis reduction method, 71 	
	Notes on lattices and linear diophantine equations	76
	Historical notes, 76 Further notes on lattices and linear diophantine equations, 82	
	ART III: POLYHEDRA, LINEAR INEQUALITI ND LINEAR PROGRAMMING	ES, 83
7	Fundamental concepts and results on polyhedra, linear ineq and linear programming	ualities, 85
	7.1 The Fundamental theorem of linear inequalities, 85 7.2 Cones, polyhedra, and polytopes, 87 7.3 Farkas' lemma and variants, 89 7.4 Linear programming, 90 7.5 LP-duality geometrically, 92 7.6 Affine form of Farkas' lemma, 93 7.7 Carathéodory's theorem, 94 7.8 Strict inequalities, 94 7.9 Complementary slackness, 95 7.10 Application: max-flow min-cut, 96	
8	The structure of polyhedra	99
	8.1 Implicit equalities and redundant constraints, 99 8.2 Characteristic cone, lineality space, affine hull, dimension, 100 8.3 Faces, 101 8.4 Facets, 101 8.5 Minimal faces and vertices, 104 8.6 The face-lattice, 104 8.7 Edges and extremal rays, 105 8.8 Extremal rays of cones, 105 8.9 Decomposition of polyhedra, 106 8.10 Application: doubly stochastic matrices, 107 8.11 Application: the matching polytope, 109	
9	Polarity, and blocking and anti-blocking polyhedra	112
	9.1 Polarity, 1129.2 Blocking polyhedra, 1139.3 Anti-blocking polyhedra, 116	

Contents	ix
----------	----

10	Sizes and the theoretical complexity of linear inequalities and linear programming	120
	 Sizes and good characterizations, 120 Vertex and facet complexity, 121 Polynomial equivalence of linear inequalities and linear programming, 124 Sensitivity analysis, 125 	
11	The simplex method	129
	11.1 The simplex method, 129 11.2 The simplex method in tableau form, 132 11.3 Pivot selection, cycling, and complexity, 137 11.4 The worst-case behaviour of the simplex method, 139 11.5 The average running time of the simplex method, 142 11.6 The revised simplex method, 147 11.7 The dual simplex method, 148	
12	Primal-dual, elimination, and relaxation methods	151
	 12.1 The primal-dual method, 151 12.2 The Fourier-Motzkin elimination method, 155 12.3 The relaxation method, 157 	
13	Khachiyan's method for linear programming	163
	 13.1 Ellipsoids, 163 13.2 Khachiyan's method: outline, 165 13.3 Two approximation lemmas, 166 13.4 Khachiyan's method more precisely, 168 13.5 The practical complexity of Khachiyan's method, 170 13.6 Further remarks, 171 	
14	The ellipsoid method for polyhedra more generally	172
	 14.1 Finding a solution with a separation algorithm, 172 14.2 Equivalence of separation and optimization, 177 14.3 Further implications, 183 	
15	Further polynomiality results in linear programming	190
	 15.1 Karmarkar's polynomial-time algorithm for linear programming, 190 15.2 Strongly polynomial algorithms, 194 15.3 Megiddo's linear-time LP-algorithm in fixed dimension, 199 15.4 Shallow cuts and rounding of polytopes, 205 	
	Notes on polyhedra, linear inequalities, and linear programming	209
	Historical notes, 209 Further notes on polyhedra linear inequalities and linear programming 223	

x	Со	ntents
PA	RT IV: INTEGER LINEAR PROGRAMMING	227
16	Introduction to integer linear programming	229
	 16.1 Introduction, 229 16.2 The integer hull of a polyhedron, 230 16.3 Integral polyhedra, 231 16.4 Hilbert bases, 232 16.5 A theorem of Doignon, 234 16.6 The knapsack problem and aggregation, 235 16.7 Mixed integer linear programming, 236 	
17	Estimates in integer linear programming	237
	 17.1 Sizes of solutions, 237 17.2 Distances of optimum solutions, 239 17.3 Finite test sets for integer linear programming, 242 17.4 The facets of P₁, 243 	
18	The complexity of integer linear programming	245
	 18.1 ILP is NO-complete, 245 18.2 NO-completeness of related problems, 248 18.3 Complexity of facets, vertices, and adjacency on the integer hull, 251 18.4 Lenstra's algorithm for integer linear programming, 256 18.5 Dynamic programming applied to the knapsack problem, 261 18.6 Dynamic programming applied to integer linear programming, 264 	
19	Totally unimodular matrices: fundamental properties and examples	266
	 19.1 Total unimodularity and optimization, 266 19.2 More characterizations of total unimodularity, 269 19.3 The basic examples: network matrices, 272 19.4 Decomposition of totally unimodular matrices, 279 	
20	Recognizing total unimodularity	282
	 20.1 Recognizing network matrices, 282 20.2 Decomposition test, 287 20.3 Total unimodularity test, 290 	
21	Further theory related to total unimodularity	294
	21.1 Regular matroids and signing of {0,1}-matrices, 294 21.2 Chain groups, 297 21.3 An upper bound of Heller, 299 21.4 Unimodular matrices more generally, 301 21.5 Balanced matrices, 303	
22	Integral polyhedra and total dual integrality	309
	 22.1 Integral polyhedra and total dual integrality, 310 22.2 Two combinatorial applications, 312 22.3 Hilbert bases and minimal TDI-systems, 315 22.4 Box-total dual integrality, 317 	

22.5 Behaviour of total dual integrality under operations, 321

Contents	xi

	22.6 An integer analogue of Carathéodory's theorem, 326 22.7 Another characterization of total dual integrality, 327 22.8 Optimization over integral polyhedra and TDI-systems algorithmically, 330 22.9 Recognizing integral polyhedra and total dual integrality, 332 22.10 Integer rounding and decomposition, 336	
23	Cutting planes	339
	 23.1 Finding the integer hull with cutting planes, 339 23.2 Cutting plane proofs, 343 23.3 The number of cutting planes and the length of cutting plane proofs, 344 23.4 The Chvátal rank, 347 23.5 Two combinatorial illustrations, 348 23.6 Cutting planes and NP-theory, 351 23.7 Chvátal functions and duality, 353 23.8 Gomory's cutting plane method, 354 	
24	Further methods in integer linear progamming	360
	 24.1 Branch-and-bound methods for integer linear programming, 360 24.2 The group problem and corner polyhedra, 363 24.3 Lagrangean relaxation, 367 24.4 Application: the traveling salesman problem, 370 24.5 Benders' decomposition, 371 24.6 Some notes on integer linear programming in practice, 372 	
	Historical and further notes on integer linear programming	375
	Historical notes, 375 Further notes on integer linear programming, 378	
	References Notation index Author index Subject index	381 452 454 465