Contents

LI	ST	OF FIG	GURES	XV
LI	ST (OF TA	BLES	xvii
PΕ	REFA	ACE		xix
DI	EFIN	NITIO	N OF SYMBOLS	xxiii
1	SIN	CONV 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 SIMP GLOB THE SCEN THE S	TRY OF LINEAR INEQUALITY SYSTEMS AND THE K METHOD VEXITY AND LINEAR INEQUALITY SYSTEMS Affine & Convex Combinations Two-dimensional Convex Regions Line Segments, Rays, and Half Lines General Convex Regions Hyperplanes and Half-Spaces Convexity of Half Spaces and Hyperplanes Convexity of the Set of Feasible Solutions of an LP Convex Polyhedrons, Polytopes, and Cones Separating Hyperplane LEX DEFINED BAL MINIMUM, EXTREME POINTS, AND EDGES SIMPLEX METHOD VIEWED AS THE STEEPEST DE- IT ALONG EDGES SIMPLEX INTERPRETATION OF THE SIMPLEX METHOD ES & SELECTED BIBLIOGRAPHY BLEMS	1 1 1 3 5 6 6 7 8 9 9 11 13 14
2	DU 2.1 2.2	THE	Y AND THEOREMS OF THE ALTERNATIVES DUALITY THEOREM	47 47

X CONTENTS

	2.3	COMPLEMENTARY SLACKNESS	49
	2.4	THEOREMS OF THE ALTERNATIVES	50
		2.4.1 Gordan's Theorem	51
		2.4.2 Farkas's Lemma	52
		2.4.3 Stiemke's Theorem	53
		2.4.4 Motzkin's Transposition Theorem	54
		2.4.5 Ville's Theorem	55
		2.4.6 Tucker's Strict Complementary Slackness Theorem	56
	2.5	NOTES & SELECTED BIBLIOGRAPHY	58
	2.6	PROBLEMS	59
3	EA	RLY INTERIOR-POINT METHODS	67
	3.1	VON NEUMANN'S METHOD	70
		3.1.1 The von Neumann Algorithm	73
		3.1.2 Improving the Rate of Convergence	81
		3.1.3 Von Neumann Algorithm as a Variant of the Simplex Algorithm	ı 83
	3.2	DIKIN'S METHOD	
		3.2.1 Dikin's Algorithm	87
		3.2.2 Convergence of Dikin's Algorithm	
	3.3	KARMARKAR'S METHOD	
		3.3.1 Development of the Algorithm	100
		3.3.2 Proof of Convergence	105
		3.3.3 The Algorithm Summarized	114
		3.3.4 Converting a Standard LP to a Starting Form for the Algorithm	
		3.3.5 Computational Comments	
		3.3.6 Complexity of von Neumann versus Karmarkar Algorithms .	
	3.4	NOTES & SELECTED BIBLIOGRAPHY	
	3.5	PROBLEMS	121
4	INT	CERIOR-POINT METHODS	123
	4.1	NEWTON'S METHOD	
	4.2	THE LINEAR LEAST-SQUARES PROBLEM	
	4.3	BARRIER FUNCTION METHODS	128
		4.3.1 The Logarithmic Barrier Function	
		4.3.2 Properties of Barrier Function Methods	130
	4.4	THE PRIMAL LOGARITHMIC BARRIER METHOD FOR SOLV-	
		ING LINEAR PROGRAMS	
		4.4.1 Details of the Method	131
		4.4.2 Initial Feasible Solution	134
	4.5	PRIMAL-DUAL LOGARITHMIC BARRIER METHODS	134
	4.6	RECOVERING A BASIC FEASIBLE SOLUTION	
	4.7	COMPUTATIONAL COMMENTS	
	4.8	NOTES & SELECTED BIBLIOGRAPHY	
	1 a	PROBLEMS	146

CONTENTS xi

5	DE	GENERACY	149
	5.1	EXAMPLES OF CYCLING	
	5.2	ON RESOLVING DEGENERACY	153
	5.3	DANTZIG'S INDUCTIVE METHOD	154
	5.4	WOLFE'S RULE	156
	5.5	BLAND'S RULE	158
	5.6	KRISHNA'S EXTRA COLUMN RULE	160
	5.7	ON AVOIDING DEGENERATE PIVOTS	
	5.8	NOTES & SELECTED BIBLIOGRAPHY	166
	5.9	PROBLEMS	167
6	VA	RIANTS OF THE SIMPLEX METHOD	173
	6.1	INTRODUCTION	173
	6.2	MAX IMPROVEMENT PER ITERATION	
	6.3	DUAL-SIMPLEX METHOD	179
	6.4	PARAMETRIC LINEAR PROGRAMS	183
		6.4.1 Parameterizing the Objective Function	183
		6.4.2 Parameterizing the Right-Hand Side	187
	6.5	SELF-DUAL PARAMETRIC ALGORITHM	188
	6.6	THE PRIMAL-DUAL ALGORITHM	191
	6.7	THE PHASE I LEAST-SQUARES ALGORITHM	197
	6.8	NOTES & SELECTED BIBLIOGRAPHY	
	6.9	PROBLEMS	202
7	TR.	ANSPORTATION PROBLEM AND VARIATIONS	207
	7.1	THE CLASSICAL TRANSPORTATION PROBLEM	207
		7.1.1 Mathematical Statement	208
		7.1.2 Properties of the System	208
	7.2	FINDING AN INITIAL SOLUTION	
	7.3	FINDING AN IMPROVED BASIC SOLUTION	214
	7.4	DEGENERACY IN THE TRANSPORTATION PROBLEM	216
	7.5	TRANSSHIPMENT PROBLEM	219
		7.5.1 Formulation	219
		7.5.2 Reduction to the Classical Case by Computing Minimum Cost	
		Routes	222
		7.5.3 Reduction to the Classical Case by the Transshipment Pro-	222
	7.0	cedure	222
	7.6	SUMS	うった
	7.7	NOTES & SELECTED BIBLIOGRAPHY	
		PROBLEMS	228

xii CONTENTS

8	NE.	TWORK FLOW THEORY	231	
	8.1	THE MAXIMAL FLOW PROBLEM	232	
		8.1.1 Decomposition of Flows	233	
		8.1.2 The Augmenting-Path Algorithm for Maximal Flow	234	
		8.1.3 Cuts in a Network	239	
	8.2	SHORTEST ROUTE	241	
	8.3	MINIMUM COST-FLOW PROBLEM	242	
	8.4	NOTES & SELECTED BIBLIOGRAPHY	243	
	8.5	PROBLEMS	245	
9	GENERALIZED UPPER BOUNDS 25			
	9.1	PROBLEM STATEMENT	251	
	9.2	BASIC THEORY	253	
	9.3	SOLVING SYSTEMS WITH GUB EQUATIONS	253	
	9.4	UPDATING THE BASIS AND WORKING BASIS	257	
	9.5	NOTES & SELECTED BIBLIOGRAPHY	264	
	9.6	PROBLEMS	264	
10	DEC	COMPOSITION OF LARGE-SCALE SYSTEMS	265	
	10.1	WOLFE'S GENERALIZED LINEAR PROGRAM	267	
	10.2	DANTZIG-WOLFE (D-W) DECOMPOSITION PRINCIPLE	280	
		10.2.1 D-W Principle	284	
		10.2.2 D-W Decomposition Algorithm and Variants	289	
		10.2.2.1 The D-W Algorithm	289	
		10.2.2.2 Variants of the D-W Algorithm	290	
		10.2.3 Optimality and Dual Prices	290	
		10.2.4 D-W Initial Solution	291	
		10.2.5 D-W Algorithm Illustrated	292	
	10.3	BENDERS DECOMPOSITION	299	
		10.3.1 Dual of D-W Decomposition	299	
		10.3.2 Derivation of Benders Decomposition	300	
	10.4	BLOCK-ANGULAR SYSTEM	306	
	10.5	STAIRCASE STRUCTURED PROBLEMS	308	
		10.5.1 Using Benders Decomposition	309	
		10.5.2 Using D-W Decomposition	310	
		10.5.3 Using D-W Decomposition with Alternate Stages Forming the		
		Subproblems		
	10.6	DECOMPOSITION USED IN CENTRAL PLANNING	313	
	10.7	NOTES & SELECTED BIBLIOGRAPHY	315	
	10.8	PROBLEMS	317	

CONTENTS XIII

11		OCHASTIC PROGRAMMING: INTRODUCTION	323
	11.1	OVERVIEW	324
	11.2		
		11.2.1 Minimum Expected Costs	
	11 0	UNCERTAIN DEMANDS	
		NOTES & SELECTED BIBLIOGRAPHY	
	11.5	PROBLEMS	აა⊿
12	TW	O-STAGE STOCHASTIC PROGRAMS	335
		THE DETERMINISTIC TWO-STAGE LP PROBLEM	
		THE ANALOGOUS STOCHASTIC TWO-STAGE LP PROBLEM .	
	12.3	LP EQUIVALENT OF THE STOCHASTIC PROBLEM (EQ-LP) $\ .$	
		12.3.1 LP Equivalent Formulation	
		12.3.2 Geometric Description of Benders Decomposition Algorithm .	
		12.3.3 Decomposition Algorithm	
		12.3.4 Theory behind the Algorithm	348
	12.4	SOLVING STOCHASTIC TWO-STAGE PROBLEMS USING SAM-	
		PLING	
		12.4.1 Overview	
		12.4.2 Naive Sampling	
		12.4.3 Sampling Methodology	351
		12.4.4 Estimating Upper Bound z_{UB} for Min z given $\mathbf{x} = \mathbf{x^k}$	351
		12.4.5 Estimating Lower Bound z_{LB} for Min z	
	12.5	USE OF IMPORTANCE SAMPLING	354
		12.5.1 Crude (Naive) Monte Carlo Methods	
		12.5.2 Monte Carlo Methods using Importance Sampling	
		NOTES & SELECTED BIBLIOGRAPHY	
	12.7	PROBLEMS	362
A		DBABILITY THEORY: OVERVIEW	367
	A.1	BASIC CONCEPTS, EXPECTED VALUE, AND VARIANCE	367
	A.2	NORMAL DISTRIBUTION AND THE CENTRAL LIMIT THEO-	
		REM	370
	A.3	CHI-SQUARE DISTRIBUTION, STUDENT'S t -DISTRIBUTION,	
		AND CONFIDENCE INTERVALS	
		A.3.1 Chi-Square Distribution	
		A.3.2 Student's t -Distribution	
		A.3.3 Confidence Intervals	376
	A.4	NOTES & SELECTED BIBLIOGRAPHY	377
RI	EFEI	RENCES	379
IN	DEX		439