CONTENTS

1.	INTRODUCTION	
-	1.1 The Linear Programming Problem	2
	1.2 Examples of Linear Problems	7
	1.3 Geometric Solution	14
	1.4 The Requirement Space	18
	1.5 Notation	24
	Exercises	25
	Notes and References	
2.	RESULTS FROM LINEAR ALGEBRA	
	AND CONVEX ANALYSIS	
	2.1 Vectors	39
	2.2 Matrices	44
	2.3 Simultaneous Linear Equations	54
	2.4 Convex Sets and Convex Functions	58
	2.5 Polyhedral Sets and Polyhedral Cones	64
	2.6 Representation of Polyhedral Sets	66
	2.7 Farkas's Theorem	70
	Exercises	72
	Notes and References	80
3.	THE SIMPLEX METHOD	
	3.1 Extreme Points and Optimality	81
	3.2 Basic Feasible Solutions	85
	3.3 Improving a Basic Feasible Solution	94
	3.4 Termination: Optimality and Unboundedness	101
	3.5 The Simplex Method	108
	3.6 The Simplex Method in Tableau Format	114
	3.7 Block Pivoting	122
	Exercises	124
	Notes and References	136
1.	STARTING SOLUTION AND CONVERGENCE	
	4.1 The Initial Basic Feasible Solution	137
	4.2 The Two-Phase Method	142
	4.3 The Big- M Method	154
	4.4 The Single Artificial Variable Technique	163

		Degeneracy and Cycling Lexicographic Validation of Cycling Prevention Exercises Notes and References	165 170 174 187
_	CDECI	AL SIMPLEX FORMS AND OPTIMALITY CONDITIONS	
J		The Revised Simplex Method	188
		The Simplex Method for Bounded Variables	201
		The Kuhn-Tucker Conditions and the Simplex Method	212
	5.5	Exercises	220
		Notes and References	234
6.	DUA	LITY AND SENSITIVITY	
•		Formulation of the Dual Problem	236
	6.2	Primal-Dual Relationships	242
	6.3	Economic Interpretation of the Dual	248
	6.4	The Dual Simplex Method	250
	6.5	The Primal-Dual Method	257
	6.6	Finding an Initial Dual Feasible Solution:	
		The Artificial Constraint Technique	265
	6.7	Sensitivity Analysis	267
	6.8	Parametric Analysis	277
		Exercises	286
		Notes and References	304
7.		DECOMPOSITION PRINCIPLE	
		The Decomposition Algorithm	306
		Numerical Example	311
		Getting Started	320
		The Case of Unbounded Region X	321
	7.5	Block Diagonal Structure	328
		Exercises	338
		Notes and References	351
8.		TRANSPORTATION AND ASSIGNMENT PROBLEMS	
		Definition of the Transportation Problem	353
		Properties of the A Matrix	356
	8.3	Representation of a Nonbasic Vector in Terms	

CONTENTS

		of the Basic Vectors	365
	8.4	The Simplex Method for Transportation Problems	367
	8.5	An Example of the Transportation Algorithm	373
	8.6	Degeneracy in the Transportation Problem	378
	8.7	The Simplex Tableau Associated with a Transportation	
		Tableau	382
	8.8	The Assignment Problem	383
	8.9	The Transshipment Problem	391
		Exercises	392
		Notes and References	403
9.	MINI	MAL COST NETWORK FLOWS	
	9.1	The Minimal Cost Network Flow Problem	404
	9.2	Properties of the A Matrix	407
	9.3	Representation of a Nonbasic Vector in Terms	
		of the Basic Vectors	411
	9.4	The Simplex Method for Network Flow Problems	413
	9.5	An Example of the Network Simplex Method	418
	9.6	Finding an Initial Basic Feasible Solution	419
	9.7	Network Flows with Lower and Upper Bounds	420
	9.8	The Simplex Tableau Associated with a Network	
		Flow Problem	425
		Exercises	426
		Notes and References	439
10.	THE	OUT-OF-KILTER ALGORITHM	
	10.1	The Out-of-Kilter Formulation of a Minimal	
		Cost Network Flow Problem	441
	10.2	Strategy of the Out-of-Kilter Algorithm	446
	10.3	Summary of the Out-of-Kilter Algorithm	458
	10.4	An Example of the Out-of-Kilter Algorithm	460
		Exercises	463
		Notes and References	472
11.	MAX	(IMAL FLOW, SHORTEST PATH,	
	AND	MULTICOMMODITY FLOW PROBLEMS	
	11.1	The Maximal Flow Problem	474
	11.2	The Shortest Path Problem	481

x		CONTENTS
11.3	Multicommodity Flows	492
11.4	Characterization of a Basis for the	
	Multicommodity Minimal Cost Flow Problem	502
	Exercises	507
	Notes and References	522
APPENDIZ	X. PROOF OF THE REPRESENTATION THEOREM	523 559