Flows in Networks

BY
L. R. FORD, JRr.

D. R. FULKERSON

PRINCETON UNIVERSITY PRESS
PRINCETON, NEW JERSEY

Copyright © 1962 by The Rand Corporation
Published, 1962, by Princeton University Press
L.C. Card 62-7401
ISBN 0-691-07962-5

All Rights Reserved

Second Printing, 1966
Third Printing, 1967
Fourth Printing, 1969
Fifth Printing, 1971
Sixth Printing, 1974

Printed in the United States of America
by Princeton University Press, Princeton, New Jersey

For
L. R. Ford, Sr., and Elbert Fulkerson

PREFACE

This book presents one approach to that part of linear programming
theory that has come to be encompassed by the phrase ‘‘transportation
problems”’ or “network flow problems.” We use the latter name, not only
because it is more nearly suggestive of the mathematical content of the
subject, but also because it is less committed to one domain of application.
Since many of the applications that are examined have little to do with
transportation (and we have not included all the different ways in which
the theory has already been used), it seems appropriate not to stress one
particular applied area over others.

Just where the study of network flow problems may be said to have
originated is a debatable question. Certain static minimal cost transporta-
tion models were independently studied by Hitchcock, Kantorovitch, and
Koopmans in the 1940’s. A few years later, when linear programming
began to make itself known as an organized discipline, Dantzig showed
how his general algorithm for solving linear programs, the simplex method,
could be simplified and made more effective for the special case of trans-
portation models. It would not be inaccurate to say that the subject
matter of this book began with the work of these men on the very practical
problem of transporting a commodity from certain points of supply to
other points of demand in a way to minimize shipping cost. (This problem
forms the nucleus of our Chapter III, entitled ‘““Minimal Cost Flow
Problems.”) However, dismissing the formulational and applied aspects
of the subject completely, and with the advantages of hindsight, one can
go back a few years earlier to research of Konig, Egervary, and Menger on
linear graphs, or Hall on systems of distinet representatives for sets, and
also relate this work in pure mathematics to the practically oriented sub-
ject of flows in networks. We have done this in Chapter II, “Feasibility
Theorems and Combinatorial Applications.”

One characteristic of the book that has been suggested above should
perhaps be made explicit. While this is primarily a book in applied
mathematics, we have also included topics that are purely mathemati-
cally motivated, together with those that are strictly utilitarian in con-
cept. For this, no apology is intended. We have simply written about
mathematics which has interested us, pure or applied.

To carry the historical sketch another (and our last) step back in time
might lead one to the Maxwell-Kirchhoff theory of current distribution in

vii

PREFACE

an electrical network. Although this topic is closely related to the subject
of the book, we have chosen not to include it. The reason for this is that we
have limited the flow problems discussed to purely linear ones and, within
this category, to those for which the assumption of integral data in the
problem implies the existence of an integral solution. This sub-class of
linear flow problems has, we feel, a simple elegance not shared by those
outside the class. The first restriction, that of linearity, eliminates the
Maxwell-Kirchhoff electrical network problem, which, viewed as a pro-
gramming problem, becomes one of minimizing a quadratic function
subject to linear constraints. The second restriction eliminates, forexample,
linear problems that involve the simultaneous flow of several commodities,
important as these may be in practical applications of linear programming.

There are four chapters in the pages that follow; two of them (Chapters
II and III) have been mentioned already. Chapter I, *Static Maximal
Flow,” studies the problem of maximizing flow from one point to another
in a capacity-constrained network. From our point of view, this problem
is the most fundamental topic dealt with in the book. Its solution provides
a method of attack on the feasibility and combinatorial questions that
form the subject of Chapter II, while the simple construction that results,
when taken in conjunction with work of Kuhn on the optimal assignment
problem, provides the key to the development of the various minimal cost
flow methods in Chapter III. In addition, the recent treatment by Gomory
and Hu of multi-terminal maximal flows, which is presented in Chapter IV,
relies heavily on the central theorem of Chapter I. Thus Chapter I is
prerequisite to the others, which are largely independent of each other.

Throughout the book the emphasis is on constructive procedures, even
more, on computationally effective ones. Other things being nearly equal,
we prefer a constructive proof of a theorem to a non-constructive one, and
a constructive proof that leads to an efficient computational scheme is,
to our way of thinking, just that much better.

The reader who is familiar with the simplex method of solution for
network flow problems will find that this facet of the subject has been
omitted in our presentation. For example, the notion of a spanning sub-
tree of a network, which would play a fundamental role in the simplex
theory, is not introduced until the last chapter, and then for another use.
This omission does not reflect an aesthetic judgment on our part; it is,
rather, that the more purely combinatorial methods developed here seem
to be better computationally and also yield fresh insight into the subject.

viii

ACKNOWLEDGMENTS

It is a pleasure to record our obligation to the following people, with
whom we have discussed various parts of the manuseript: S.E. Dreyfus,
R.E.Gomory, T.C.Hu, H.J.Ryser, L.S.Shapley, P.Wolfe, and J.W.T.
Youngs. We want also to express special appreciation to T.E. Harris and
F.S.Ross, who stimulated our interest in the topic of flows in networks,
and to G.B.Dantzig, who has provided steady encouragement in our work
on this topic over the past several years.

This study was prepared as part of the continuing program of research
undertaken for the U.S. Air Force by The RAND Corporation.

10.
. Node capacities and other extensions .

. Linear programming and duality principles

. Maximal flow value as a function of two arc capacities .

W =1 O Ok WD ==

©

CONTENTS

Preface .
Acknowledgements
CHAPTER 1
STATIC MAXIMAL FLOW
Introduction .
. Networks .
. Flows in networks
. Notation
Cuts
. Maximal flow . .
. Disconnecting sets and cuts
. Multiple sources and sinks
. The labeling method for solving maximal ﬂow problems
. Lower bounds on arc flows .

Flows in undirected and mixed networks .

References

CHAPTER 11

FEASIBILITY THEOREMS AND COMBINATORIAL
APPLICATIONS

Introduction .

. A supply-demand theorem .

. A symmetric supply-demand theorem

. Circulation theorem .

. The Kénig-Egerviry and Menger graph theorems .
. Construction of a maximal independent set of admissible cells

. A bottleneck assignment problem .

. Unicursal graphs .

. Dilworth’s chain decomp081t10n theorem for partlally ordered

sets

. Minimal number of 1nd1v1duals to meet a ﬁxed schedule of ta,sks
. Set representatives

xi

vii
ix

36
36
42
50
53
55
57
59

61
64
67

11.
12.

S O B W N

—

[t

> W N -

CONTENTS

The subgraph problem for directed graphs 75
Matrices composed of 0’sand 's 79
References 9

CHAPTER 111
MINIMAL COST FLOW PROBLEMS

Introduetion 93
. The Hitchcock problem 05
. The optimal assignment problem 111
. The general minimal cost flow problem 113
. Equivalence of Hitchcock and minimal cost flow problems .o 127
. A shortest chain algorithm 130
. The minimal cost supply-demand problem non-negative
directed cyelecosts 134
The warehousing problem 137
. The caterer problem 140
. Maximal dynamic flow 142
. Project cost curves . . T Fa |
. Constructing minimal cost clrculatlons 182
References 169

CHAPTER IV
MULTI-TERMINAL MAXIMAL FLOWS

Introduction . . . B
. Forests, trees, and spanning subtrees B Vb
. Realization conditions 176
. Equivalent networks 177
. Network synthesis 187
References 19

Xii

FLOWS IN NETWORKS

CHAPTER I

STATIC MAXIMAL FLOW

Introduction

The mathematical problem which forms the subject matter of this
chapter, that of determining a maximal steady state flow from one point
to another in a network subject to capacity limitations on arcs, comes up
naturally in the study of transportation or communication networks. It
was posed to the authors in the spring of 1955 by T.E.Harris, who, in
conjunction with General F.S.Ross (Ret.), had formulated a simplified
model of railway traffic flow, and pinpointed this particular problem as the
central one suggested by the model [11]. It was not long after this until the
main result, Theorem 5.1, which we call the max-flow min-cut theorem,
was conjectured and established [4]. A number of proofs of this theorem
have since appeared [2, 3, 5, 14]. The constructive proof given in § 5 is the
simplest and most revealing of the several known to us.

Sections 1 and 2 discuss networks and flows in networks. There are
many alternative ways of formulating the concept of a flow through a
network ; two of these are described in § 2. After introducing some notation
in § 3, and defining the notion of a cut in § 4, we proceed to a statement and
proof of the max-flow min-cut theorem in § 5. Sections 6, 7, 9, 10, and 11
amplify and extend this theorem. In § 8, the construction implicit in its
proof is detailed and illustrated. This construction, which we call the
“labeling process,”” forms the basis for almost all the algorithms presented
later in the book. A consequence of the construction is the integrity theorem
(Theorem 8.1), which has been known in connection with similar problems
since G. B. Dantzig pointed it out in 1951 [1]. It is this theorem that makes
network flow theory applicable in certain combinatorial investigations.

Section 12 provides a brief presentation of duality principles for linear
programs. Since no proofs are included, the reader not familiar with linear
inequality theory may find this section too brief to be very illuminating.
But excellent discussions are available [8, 9, 10]. We include § 12 mainly
to note that the max-flow min-cut theorem is a kind of combinatorial
counterpart, for the special case of the maximal flow problem, of the more
general duality theorem for linear programs.

Section 13 uses the max-flow min-cut theorem to examine maximal flow
through a network as a function of a pair of individual arc capacities. The

1

I. STATIC MAXIMAL FLOW

main conclusion here, which may sound empty but is not, is that any two
arcs either always reinforce each other or always interfere with each other.

1. Networks

A directed network or directed linear graph G = [N; /] consists of a
collection N of elements z, y, . . ., together with a subset 27 of the ordered
pairs (z, y) of elements taken from N. It is assumed throughout that N is a
finite set, since our interest lies mainly in the construction of computational
procedures. The elements of N are variously called nodes, vertices, junction
points, or potnts; members of 7 are referred to as arcs, links, branches, or
edges. We shall use the node-arc terminology throughout.

A network may be pictured by selecting a point corresponding to each
node x of N and directing an arrow from z to y if the ordered pair (z, y) is
in &/. For example, the network shown in Fig. 1.1 consists of four nodes
s, x, ¥, t, and six ares (s, z), (s, ¥), (z, ¥), (y, x), (x,t) and (y, t).

Figure 1.1

Such a network is said to be directed, since each arc carries a specific
orientation or direction. Occasionally we shall also consider undirected
networks, for which the set </ consists of unordered pairs of nodes, or
mixed networks, in which some arcs are directed, others are not. We can of
course picture these in the same way, omitting arrowheads on ares having
no orientation. Until something is said to the contrary, however, each arc
of the network will be assumed to have an orientation.

We have not as yet ruled out the possibility of arcs (z, x) leading from a
node x to itself, but for our purposes we may as well do so. Thus, all arcs
will be supposed to be of the form (z, y) with « # y. Also, while the exist-
ence of at most one arc (z, y) has been postulated, the notion of a network
frequently allows multiple arcs joining x to y. Again, for most of the
problems we shall consider, this added generality gains nothing, and so we
shall continue to think of at most one arc leading from any node to another,
unless an explicit statement is made to the contrary.

2

§1. NETWORKS

Let 21, %2, . . ., Tp (n = 2) be a sequence of distinct nodes of a network
such that (x;, x;41) is an are, foreach ¢ = 1,..., n — 1. Then the sequence
of nodes and arcs
(l.l) x, (xl, xz), T2y o vy (xn_l, :vn), Tp
is called a chain; it leads from x; to z,. Sometimes, for emphasis, we call
(1.1) a directed chain. If the definition of a chain is altered by stipulating
that x, = 1, then the displayed sequence is a directed cycle. For example,
in the network of Fig. 1.1, the chain s, (s, 2), , (z,t), tleadsfrom s to ¢; this
network contains just one directed cycle, namely, z, (z, ¥), ¥, (¥, z), .

Let 1, z2, . . ., x5 be a sequence of distinet nodes having the property
that either (xy, 2;41) or (xy+1, x;) is an are, for each 7+ = 1,...,n — 1.
Singling out, for each ¢, one of these two possibilities, we call the resulting
sequence of nodes and arcs a path from x; to 5. Thus a path differs from a
chain by allowing the possibility of traversing an arc in a direction opposite
to its orientation in going from x; to x,. (For undirected networks, the two
notions coincide.) Ares (z;, 2;+1) that belong to the path are forward arcs of
the path; the others are reverse arcs. For example, the sequence s, (s,), ¥,
(z, ¥), x, (, t), t is a path from s to ¢ in Fig. 1.1; it contains the forward arcs
(8, y), (x,t) and the reverse arc (z, y). If, in the definition of path, we
stipulate that x; = z,, then the resulting sequence of nodes and arcs is a

cycle.
We may shorten the notation and refer unambiguously to the chain
Z1, X, . . ., Tpn. Occasionally we shall also refer to the path x;, xs, . . ., 2,;

then it is to be understood that some selection of arcs has tacitly been
made.

Given a network [N; 7], one can form a node-arc incidence matrix as
follows. List the nodes of the network vertically, say, the arcs horizontally,
and record, in the column corresponding to arc (z,y), a 1 in the row
corresponding to node x, a —1 in the row corresponding to y, and zeros
elsewhere. For example, the network of Fig. 1.1 has incidence matrix

(s, %) (s, y) (%,) (y,) (2, ¢) (y,¢)
sf' 11 0 0 0 0
zf-1 0 1 -1 1 0
y] 0 -1 -1 1 o0 1
tL o o o o -1 -1]1.

Clearly, all information about the structure of a network is embodied in its

node-arc incidence matrix.
If xe N, we let A(x) (“after 2”’) denote the set of all y € N such that

(@, y) e A :
(1.2) Az) = {y e N|(z, y) €).

3

I. STATIC MAXIMAL FLOW

Similarly, we let B(z) (‘“‘before z’’) denote the set of all y € N such that
(y,x) e A

(1.3) B() = {y e N|(y, 2) €).
For example, in the network of Fig. 1.1,
A(s) = {=z, y}, B(s) = @ (the empty set).

We shall on occasion require some other notions concerning networks.
These will be introduced as needed.

2. Flows in networks

Given a network G = [N; &), suppose that each arc (z,y) € &/ has
associated with it a non-negative real number c¢(z, y). We call ¢(x, y) the
capacity of the arc (z, y); it may be thought of intuitively as representing
the maximal amount of some commodity that can arrive at y from x per
unit time. The function ¢ from &7 to non-negative reals is the capacity
Sfunction. (Sometimes it will be convenient to allow infinite arc capacities
also.)

The fundamental notion underlying most of the topics treated sub-
sequently is that of a static or steady state flow through a network, which
we now proceed to formulate. (Since dynamic flows will not be discussed
until Chapter III, the qualifying phrase ‘‘static’’ or “steady state’ will
usually be omitted.)

Let s and ¢ be two distinguished nodes of N. A static flow of value v from
stotin[N; /] is a function f from &/ to non-negative reals that satisfies
the linear equations and inequalities

v, r =8,

(2.1) > f@y— > f@e)={ o, z# 8,
ye A(z) ye B(z) —v, z =t

(2.2) f@,9) < ez, y) all (z,y) € .

We call s the source, t the sink, and other nodes intermediate. Thus if the
net flow out of x is defined to be

> fwy) = > fly9),

y€eA(z) ye B(z)

then the equations (2.1) may be verbalized by saying that the net flow out
of the source is v, the net flow out of the sink is — v (or the net flow into the
sink is v), whereas the net flow out of an intermediate node is zero. An
equation of the latter kind will be called a conservation equation.

When necessary to avoid ambiguity, we shall denote the value of a flow f
by v(f). Notice that a flow f from s to ¢ of value v is a flow from ¢ to s of
value —v.

4

§2. FLOWS IN NETWORKS

An example of a flow from s to ¢ is shown in Fig. 2.1, where it is assumed
that arc capacities are sufficiently large so that none are violated. The
value of this flow is 3.

Figure 2.1

Given a flow f, we refer to f(z, y) as the arc flow f(z, y) or the flow in arc
(%, y). Each arc flow f(z, y) occurs in precisely two equations of (2.1), and
has a coefficient 1 in the equation corresponding to node x, a coefficient —1
in the equation corresponding to node y. In other words, the coefficient
matrix of equations (2.1), apart from the column corresponding to v, is the
node-arc incidence matrix of the network. (By adding the special arc (¢, s)
to the network, allowing multiple arcs if necessary, a non-negative flow
value v can be thought of as the ““return flow’ in (¢, s), and all equations
taken as conservation equations.)

A few observations. There is no question concerning the existence of
flows, since f = 0, v = 0 satisfy (2.1) and (2.2). Also, while we have
assumed that =/ may be a subset of the ordered pairs (z, y), # y, with
the capacity function ¢ non-negative on &/, we could extend & to all
ordered pairs by taking ¢ = 0 outside of 2/, or we could assume strict
positivity of ¢ by deleting from .7 arcs having zero capacity. Finally, the
set of equations (2.1) is redundant, since adding the rows of its coefficient
matrix produces the zero vector. Thus we could omit any one of the
equations without loss of generality. We prefer, however, to retain the
one-one correspondence between equations and nodes.

The static maximal flow problem is that of maximizing the variable v
subject to the flow constraints (2.1) and (2.2). Before proceeding to this
problem, it is worth while to point out an alternative formulation that is
informative and will be useful in later contexts. This might be termed the
arc-chain notion of a flow from s to ¢.

Suppose that 4y,..., A, is an enumeration of the arcs of a network,
the arc 4; having capacity c(4;); and let Cy, . . ., Cp, be a list of all directed

5

I. STATIC MAXIMAL FLOW

chains from s to ¢. Form the m by n incidence matrix (a;;) of ares versus
chains by defining

(2 3) 1, if AieC,,
. ay =

& 0, otherwise.
Now let & be a function from the set of chains (Y, . . ., C to non-negative

reals that satisfies the inequalities

(2.4) > ayh(Cy) < o(4q), i=1,...,m.
j=1

We refer to & as a flow from s to t in arc-chain form, and call h(Cy) a chain

Sflow or the flow in chain C;. The value of b is

(2.5) w(h) = > h(CY).
i=1

When we need to distinguish the two notions of a flow from s to ¢ thus far
introduced, we shall call a function f from the set of arcs to non-negative
reals which satisfies (2.1) and (2.2) for some v, a flow from s to t in node-arc
form. There will usually be no need for the distinction, since we shall work
almost exclusively with node-arc flows after this section.

Let us explore the relationship between these two formulations of the

intuitive notion of a flow. Suppose that x;, . . ., x; is a list of the nodes, and
let (bgi), k=1,...,1, 1 =1,...,m, be the node-arc incidence matrix
introduced earlier. Thus
1, if Ay = (zx, y),
(2.6) bri =< —1, if A4y = (y, k),
0, otherwise.

Then
1, if Ai = (Zk, y) and Ai GC],
bmau = —l, if Ai = (y, xk) and Ai € C],
0, otherwise,
and it follows that

m 1, ifxy = s,
(2.7) > brigiy =< —1, if 2 = ¢,
i=1 0, otherwise.

If b is a flow from s to ¢ in arc-chain form, and if we define

(2.8) f(4) = > ayh(Cy), i=1,...,m,
j=1

then fis a flow from s to ¢ in node-arc form, and v(f) = v(k). For, by (2.4)
and (2.8),
f(de) < o(dy),

6

§2. FLOWS IN NETWORKS
and by (2.7),

m

3 bt - S S buagh(cy)

= i=1 j=1

= > (Z kiaij)h(cj)
Jj=1 ‘i=1
(> KOy, if zp = s,
i=1
={— > hCy, if 2y = ¢,
i=1
. O, otherwise.

But these are precisely equations (2.1) for the function fand v=37_, A(C)).
On the other hand, we can start with a flow f in node-arc form having
value v, and obtain from it a flow % in arc-chain form having value
v(h) = v. Intuitively, the reason the inequality now appears is that the
node-arc formulation permits flow along chains from ¢ to s.
There are various ways of obtaining such an arc-chain flow % from a
given node-arc flow f. One way is as follows. Define

(2.9) h(Cj) = min fj(4y), j=1,...,n,
4;€C;
where
ji—-1
(2.10) Silds) = f(A4) = > aph(Cp), j=1,...,m+ 1.
p=1

In words, look at the first chain Cy, reduce f; = f by as much as possible
(retaining non-negativity of arc flows) on ares of Cy; this yields fo. The
process is then repeated with C; and f>, and so on until all chains have been
examined. It follows that f;,; is a node-arc flow from s to ¢ having value

o(fi+1) = v — 35 _; h(Cyp), since

m m m j
> buafiaa(dd) = 2 biaf(4) — > Y braiph(Cp),
i=1 i=1 i=1 p=1

(J
v — Z R(Cp), if 2y = s,
p=1
J
={—v+ D> k(Cy), if 2 = ¢,
p=1
. 0, otherwise.

I. STATIC MAXIMAL FLOW

Moreover, fj+1(4i) < fi(dd), all 4;, and fj11(4i) = 0 for some 4;€Cy.
Hence the node-arc flow f,4; vanishes on some arc of every chain from
s to ¢. This implies that v(fn+1) < 0, as the following lemma shows.

Lemma 2.1. If f is a node-arc flow from s to t having value v(f) > 0, then
there is a chain from s to t such that f > 0 on all arcs of this chain.

Proor. Let X be the set of nodes defined recursively by the rules

(a) se X,

(b) if z € X, and if f(z, y) > 0, then y € X.
We assert that ¢t € X. For, suppose not. Then, summing the equations (2.1)
over z € X, and noting cancellations, we have

of) = D [f=9) — f(y,).

zeX
yeX

But by (b), if (z, y) is an arec with z € X, y ¢ X, then f(z, y) = 0. This and
the last displayed equation contradict (f) > 0. Thus ¢ € X. But for any
z € X, the definition of X shows that there is a chain from s to x such that
f > 0 on arcs of this chain. Hence there is a chain from s to « with this
property.

It follows from the lemma that the value of f, 1 is non-positive, that is

v(far1) = v = > k(Cp) <O.

p=1
Consequently v(%) > v. This proves

THEOREM 2.2. If h is an arc-chain flow from s to t, then f defined by (2.8)
s a node-arc flow from s to t and v(f) = v(h). On the other hand, if f is a
node-arc flow from s to t, then h defined by (2.9) and (2.10) is an arc-chain
flow from s to t, and v(k) = v(f).

A consequence of Theorem 2.2 is that it is immaterial whether the
maximal flow problem is formulated in terms of the node-arc incidence
matrix or the arc-chain incidence matrix. Thus, for example, since arcs of
the form (z, s) or (¢,) can be deleted from 27 without changing the list of
chains from s to ¢, we may always suppose in either formulation of the
maximal flow problem that all source arcs point out from the source, and
all sink ares point into the sink. (For such networks, one has v(k) = v(f)
in the second part of Theorem 2.2 as well as the first part.)

A function & defined from f as in (2.9) and (2.10) will be termed a chain
decomposition of f. A chain decomposition of f will, in general, depend on the
ordering of the chains. For example, if in Fig. 1.1 we take f = 1 on all arcs,
and take C; = (s,z,t),Ce = (s,y,t), C3 = (s,x,9,t), Cq = (s,¥,2,t),
then 4(C1) = A(C2) = 1, (C3) = h(C4) = 0. But, examining the chains in
reverse order would lead to h(Cy) = 2(C3) = 1, k(C2) = h(C1) = 0.

8

§3. NOTATION

From the computational point of view, one would certainly suppose the
node-arc formulation of the maximal flow problem to be preferable for
most networks, since the number of chains from s to ¢ is likely to be large
compared to the number of nodes or the number of arcs. A computing
procedure that required as a first step the enumeration of all chains from
s to t would be of little value. There are less obvious reasons why the node-

arc formulation is to be preferred from the theoretical point of view as
well.

3. Notation

To simplify the notation, we adopt the following conventions. If X and
Y are subsets of N, let (X, Y) denote the set of all arcs that lead from
z € X to y € Y; and, for any function ¢ from 7 to reals, let

(3.1) > gy =gX, Y
(z,y)e(X,Y)

Similarly, when dealing with a function % defined on the nodes of N,
we put
3.2) > k@) = K(X).

reX
We customarily denote a set consisting of one element by its single element.
Thus if X contains the single node z, we write (z, Y), g(x, Y), and so on.

Set unions, intersections, and differences will be denoted by U, N, and
—, respectively. Thus X U Y is the set of nodesin X orin ¥, X N Y the
set of nodes in both X and Y, and X — Y the set of nodes in X but not
in Y. We use < for set inclusion, and < for proper inclusion. Comple-
ments of sets will be denoted by barring the appropriate symbol. For
instance, the complement of X in N is X=N-X.

Thus, if X, Y, Z < N, then
(3.3) 9 X, YU Z)=9X, YY)+ 9(X, Z) — 9X, YN Z),

(3.4) g(Yu Z, X) =g(Y, X) + 9(Z, X) — g(Y N Z, X).
Hence if Y and Z are disjoint,

9X, YU Z) =g(X,Y) + g(X, 2),

g Yvu Z X)=g(Y, X) + g(Z, X).

+ Two comments are in order here. First, one can describe a computing procedure
for the arc-chain formulation of the maximal flow problem that does not require an
explicit enumeration of all chains [6]). Second, a strong theoretical reason for adopting
the node-arc formulation, nonetheless, is that the node-arc incidence matrix has a
desirable property not shared by the arc-chain incidence matrix. This is the uni-

modularity property, that is, every submatrix has determinant + 1 or 0. See [12] for a
full discussion of this property and its implications for linear programming problems.

9

I. STATIC MAXIMAL FLOW

Notice that
(B(x)’ x) = (N’ x):
(z, A(x)) = (=, N),

and
gV, X) = > g(N,x) = > g(B(),),
reX reX
gX,N) = > gla, N) = > gz, A)).
zeX reX

Later on (Chapter II) we shall use the notation |X| to denote the
number of elements in an arbitrary set X.

4. Cuts

Progress toward a solution of the maximal network flow problem is
made with the recognition of the importance of certain subsets of arcs,
which we shall call cuts. A cut € in [N; o] separating s and t is a set of
arcs (X, X) where s € X, t € X. The capacity of the cut (X, X) is ¢(X, X).

For example, the set of ares € = {(s, y), (%, ¥), (z, t)} with X = {s, x}, is
a cut in the network of Fig. 1.1 separating s and ¢.

Notice that any chain from s to { must contain some arc of every cut
(X, X). For let xj, x2, . . ., x5 be a chain with x; = s, x, = ¢t. Since r; € X,
xn € X, there is an z; (1 < ¢ < n) with 2;€ X, ;11 € X. Hence the arc
(1, ;41) is a member of the cut (X, X). It follows that if all arcs of a cut
were deleted from the network, there would be no chain from s to ¢ and
the maximal flow value for the new network would be zero.

Since a cut blocks all chains from s to ¢, it is intuitively clear (and indeed
obvious in the arc-chain version of the problem) that the value v of a flow

S cannot exceed the capacity of any cut, a fact that we now prove from
(2.1) and (2.2).

Lemma 4.1, Let f be a flow from s to t in a network [N ; /], and let f have
value v. If (X, X) is a cut separating s and t, then
(4.1) v = f(X,X) - f(X, X) < (X,).

Proor. The equality of (4.1) was actually proved in Lemma 2.1.
We re-prove it here, using the notation introduced in the preceding section.
Singce f is a flow, f satisfies the equations

f(S’N) _f(N7 S) =0,
f(x:N)—'f(N:x):O; x # 8t
f@, N) — f(N, t) = —

Now sum these equations over x € X. Since s € X and ¢ € X, the result is

v= > (fl&, N) = f(N,z)) = f(X,N) - f(N, X).

zekX

10

§5. MAXIMAL FLOW
Writing N = X U X in this equality yields
v=f(X,XUX)-f(XUXX)
=f(X, X) + (X, X) - f(X, X) - f(X, X),

thus verifying the equality in (4.1). Since f(X, X) > 0 and f(X, X) <
¢(X, X) by virtue of (2.2), the inequality of (4.1) follows immediately.

In words, the equality of (4.1) states that the value of a flow from s to ¢
is equal to the net flow across any cut separating s and ¢.

5. Maximal flow

We are now in a position to state and prove the fundamental result
concerning maximal network flow [4, 5].

TueoreM 5.1. (Max-flow min-cut theorem.) For any network the
maximal flow value from s to ¢ is equal to the minimal cut capacity of all cuts
separating s and t.

Before proving Theorem 5.1, we illustrate it with an example. Consider
the network of Fig. 1.1 with capacity function ¢ and flow f as indicated in
Fig. 5.1, ¢(x, y) being the first member of the pair of numbers written

Figure 5.1

adjacent to arc (z, y), and f(z, y) the second. Here the flow value is 3.
Since the cut composed of arces (s,), (y,), and (y, t) also has capacity 3,
it follows from Lemma 4.1 that the flow is maximal and the cut minimal.

Proor oF THEOREM 5.1. By Lemma 4.1, it suffices to establish the
existence of a flow f and a cut (X, X) for which equality of flow value and
cut capacity holds. We do this by taking a maximal flow f (clearly such
exists) and defining, in terms of f, a cut (X, X) such that

f(X! X) = C(X’ X_)’
f(X, X) =0,
so that equality holds throughout (4.1).
11

I. STATIC MAXIMAL FLOW

Thus, let f be a maximal flow. Using f, define the set X recursively as
follows :
(a) s X;
(b) if x e X and f(z, y) < ¢(z, y), thenye X;
ifxre X and f(y,) > 0, then y € X.
We assert that ¢ € X. For, suppose not. It then follows from the defini-
tion of X that there is a path from s to ¢, say

S =121,%2,...,Tp =1,
having the property that for all forward ares (z;, x;4+1) of the path,

s, ziv1) < (@i, 2i41),

whereas for all reverse arcs (z;41, x;) of the path,

fxi41,) > 0.

Let &; be the minimum of ¢ — f taken over all forward ares of the path, &3
the minimum of f taken over all reverse arcs, and let ¢ = min (&1, €2) > 0.
Now alter the flow f as follows: increase f by ¢ on all forward arcs of the
path, and decrease f by ¢ on all reverse arcs. It is easily checked that the
new function thus defined is a flow from s to t having value v + ¢. But then
f is not maximal, contrary to our assumption, and thus ¢ € X.

Consequently (X, X) is a cut separating s and ¢. Moreover, from the
definition of X, it follows that

flx, &) = c(x, %) for (x, %) € (X, X),
f&x) =0 for (%, x) € (X, X),

since otherwise £ would be in X. Thus
fIX,X) =¢X,X), fX,X)=0,

so that equality holds in 4.1.

Several corollaries can be gleaned from Lemma 4.1, Theorem 5.1, and
its proof.

We shall call a path from s to ¢t a flow augmenting path with respect to a
flow f provided that f < ¢ on forward ares of the path, and f > 0 on
reverse arcs of the path. Then we have

CorOLLARY 5.2. A flow f is maximul if and only if there is no flow
augmenting path with respect to f.

Proor. If fis maximal, then clearly no flow augmenting path exists.
Suppose, conversely, that no flow augmenting path exists. Then the set X
defined recursively using f as in the proof of Theorem 5.1 cannot contain
the sink ¢. Hence, as in the proof of Theorem 5.1, (X, X) is a cut separating
s and ¢t having capacity equal to the value of f. Consequently f is maximal.

12

§5. MAXIMAL FLOW

Corollary 5.2 is of fundamental importance in the study of network
flows. It says, in essence, that in order to increase the value of a flow, it
suffices to look for improvements of a very restricted kind.

We say that an arc (z, y) is saturated with respect to a flow f if f(z, y)
= c(x, y) and is flowless with respect to fif f(z, y) = 0. Thus an arc that is
both saturated and flowless has zero capacity. Corollary 5.3 characterizes
a minimal cut in terms of these notions.

CorOLLARY 5.3. A cut (X, X) is minimal if and only if every maximal
flow f saturates all arcs of (X, X) whereas all arcs of (X, X) are flowless with
respect to f.

Using Corollary 5.3 it is easy to prove

CorROLLARY 5.4. Let (X,X) and (Y, Y) be minimal cuts. Then
(XUY, XUY)and (XN Y, XNY)are also minimal cuts.

The following theorem shows that the minimal cut (X, X) singled out in
the proof of Theorem 5.1 does not, in actuality, depend on the maximal

flow f.

THEOREM 5.5. Let (Y, Y) be any minimal cut, let f be a maximal flow,
and let (X, X) be the minimal cut defined relative to f in the proof of Theorem
51. Then X < Y.

Proor. Suppose that X is not included in Y. Then X N ¥ < X, and
(XNY, XN Y)is a minimal cut by Corollary 5.4. Let x be a node in X
that is not in X N Y. Since x € X and z # s, there is a path from s to =,
say § = 1, ¥2,..., ¥x = ¥, such that each forward arc of the path is
unsaturated with respect to f, while each reverse arc carries positive flow.
But since se XN Y and x € X N Y, there is a pair x;, 441 (1 < 2 < k)
such that ;e XN Y, ;1€ XN Y. If (24, ;41) is a forward arc of the
path, then f(x;, xi11) < c(xi, 2i+1), contradicting Corollary 5.3. Similarly
if (@741, 7;) is a reverse arc of the path, Corollary 5.3 is contradicted.
Hence X < Y.

Thus if (X;, X;), ¢ = 1,..., m, are all the minimal cuts separating
source and sink, the set X defined relative to a particular maximal flow in
the proof of Theorem 5.1 is the intersection of all X; and hence does not
depend on the selection of the flow.

Although the minimal cut (X, X) was picked out in the proof of Theorem
5.1 by a recursive definition of the source set X, symmetrically we could
have generated a minimal cut (Y, ¥) by defining its sink set ¥ in terms of
a maximal flow f as follows:

(a") te Y,
(b')ifye Y and f(z, y) < ¢(x, y), thenz e ¥;
ifye Y and f(y,x) > 0, thenze Y.

13

I. STATIC MAXIMAL FLOW

Equivalently, one can think of reversing all arc orientations and arc
flows, interchanging source and sink so that ¢ becomes the source, s the
sink, and then use the definition given in the proof of Theorem 5.1 to
construct Y. Again, although its definition is made relative to a particular
maximal flow, the set Y does not actually depend on the selection, since
Y is the intersection of the sink sets X; of all minimal cuts (X;, X;).

Using both definitions, we can state a criterion for uniqueness of a
minimal cut.

THEOREM 5.6. Let X be the set of nodes defined in the proof of Theorem
5.1, let Y be the set defined above, and assume that c is strictly positive. The
minimal cut (X, X) is unique if and only if (X, X) = (¥, Y).

ProOoF. We must show that if (X, X) = (¥, Y), and if (Z, Z) is any
minimal cut, then (X, X) = (Z, Z).

First note that if (X, X) = (Y, ¥), then both equal (X, ¥). For,
X < Y by Theorem 5.5, hence (X, Y) < (Y, Y). On the other hand, if
(w,v)e(X,X) = (Y, Y),thenue X andve ¥, so (4,) € (X,).

For the arbitrary minimal cut (Z, Z), we have, again by Theorem 5.5
and its analogue for (¥, ¥),that X < Z, Y € Z. Thus (X, Y) < (2, Y)
< (Z, Z). Hence ¢(X, Y) < ¢(Z, Z). Now if (X, ¥) < (Z, Z), then either
some arcs of (Z, Z) have zero capacity, contradicting our assumption
¢ > 0,0rc(X, Y) < ¢(Z, Z), contradicting the minimality of (Z, Z). Thus
(X, X)=(X,Y) = (Z, 2).

Notice that Theorem 5.6 is not valid if the assumption ¢ > 0 is relaxed
to ¢ > 0. For instance, in the network shown in Fig. 5.2, X = {s}, ¥ = {t},

O——0

O——0

Figure 5.2

and (X, X) = (¥, Y) = (s, t). However, (Z, Z) with Z = {s, x} is another
minimal cut that contains both arcs.

6. Disconnecting sets and cuts

We have characterized cuts as sets of arcs of the form (X, X) with
se X, te X, and have noted that a cut blocks all chains from s to f. Thus
if we call a set of arcs a disconnecting set if it has the chain blocking property,

14

§7. MULTIPLE SOURCES AND SINKS

then a cut is a disconnecting set. The converse, however, is not necessarily
true. For example, the set of all arcs in a network is a disconnecting set,
but may not be a cut.

That every disconnecting set contains a cut can be seen easily as follows.
Let 2 denote the disconnecting set, and define a subset X of nodes by the
rule

(a) seX;
(b) ifxe X and (z,y) € &/ — 2, then y € X.

It is clear that t € X and (X, X) < 2. Notice that if 2 is a proper dis-
connecting set, that is, a disconnecting set whose proper subsets are not
disconnecting, then (X, X) = 2. Thus every proper disconnecting set is a
cut. The converse may not hold, though. For example, in Fig. 5.2, the cut
(X, X) with X = {s, x} is not a proper disconnecting set.

We may summarize the discussion thus far by saying:

(1) the class of proper disconnecting sets is included in the class of cuts,
which, in turn, is included in the class of disconnecting sets, and that
each of these inclusions may be proper;

(2) every disconnecting set contains a cut.

It follows that the notion of a cut could be replaced by either that of
disconnecting set or proper disconnecting set in the statement of the
max-flow min-cut theorem.

We have chosen to focus attention on cuts rather than disconnecting
sets because the former are more convenient to work with when dealing
with flows in node-arc form; the latter are convenient for an arc-chain
formulation of the maximal flow problem. (See [4], where a proof of
Theorem 5.1 which uses the arc-chain formulation is given.)

Notice that, in any case, restricting attention to proper disconnecting
sets is as far as one can go in narrowing the class of sets of arcs that require
consideration, since every proper disconnecting set of a network has
minimal capacity for some capacity function: for instance, c¢(z, y) = 1 if
(@, y) € D, c(x, y) = oo otherwise, singles out the proper disconnecting set
2 as the unique minimal cut.

7. Multiple sources and sinks

Although the assumption has been that the network has a single source
and single sink, it is easy to see that the situation in which there are
multiple sources and sinks, with flow permitted from any source to any
sink, presents nothing new, since the adjunction of two new nodes and
several arcs to the multiple source, multiple sink network reduces the
problem to the case of a single source and sink.

15

I. STATIC MAXIMAL FLOW

In more detail, suppose that the nodes N of a network [N; .o/] are
partitioned into three sets:

S (the set of sources),
T (the set of sinks),
R (the set of intermediate nodes),

and consider the problem of finding a maximal flow from S to 7'.
A flow from S to 7' may be thought of as a real valued function f defined
on &7 that satisfies

(7.1) fx,N) — f(N,x) =0 for z € R,
(7.2) 0 < flz,y) < clz,) for (x, y) € ,
the flow value being

(7.3) v =f(8,N) — f(N,S).

Extend [N; o] to a network [N*; 2/*] by adjoining two nodes «, v and
all ares (u, S), (T, v), and extend the capacity function ¢ defined on 27 to
c* defined on &7* by

c*(u, x) = oo, zel,
C*(:l', 1)) = 00, re T,
Xz, y) = c(x, y), (x, y) e .

Thus the restriction f of a flow f* from u to v in [N*; &7*] is a flow from
Sto Tin[N; o). Vice versa, a flow f from S to T in [N ; &7] can be extended
to a flow f* from u to v in [N*; 27*] by defining

f*(u,) = f(z, N) — f(N, =), zesl,
f*(x’v)=f(N’x)_f(x)N)’ xET,
[, y) = f(=, 9), otherwise.

Consequently the maximal flow problem from S to 7" in [N ; 7] is equiva-
lent to a single source, single sink problem in the extended network.

Relevant cuts for the case of many sources S and sinks 7' are those
separating S and 7': that is, a set of arcs (X, X) withS ¢ X, T < X. Or,
in terms of disconnecting sets, the appropriate notion would be a set of
arcs that blocks all chains from S to 7'. The max-flow min-cut theorem and
its corollaries, as well as the other theorems of § 5, remain valid, mutatis
mutandis, as can be seen either from the equivalent extended problem or
by making slight changes in the proofs throughout.

The situation in which there are several sources and sinks, but in which
certain sources can ‘‘ship’ only to certain sinks, is distinetly different.
For such a problem, which might be thought of in terms of the simultaneous

16

§8. THE LABELING METHOD FOR SOLVING MAXIMAL FLOW PROBLEMS

flow of several commodities, the maximal flow value can be less than the
minimal disconnecting set capacity. Here a disconnecting set means a
collection of arcs that blocks all chains from sources to corresponding
sinks. For example, consider the network shown in Fig. 7.1 with sources

Y
~ N\
t;/ igure 7.1 \tl

81, 82, 83, and sinks £;, ¢, £3. Each arc has unit capacity. Assume that s;, ¢;
(¢ = 1, 2, 3) are the source and sink for commodity i. Then the maximal
flow value is 3/2, obtained by sending a half unit of commodity ¢ along the
unique chain from s; to t;. However, the arcs (z, y) and (y, 2) are a minimal
disconnecting set having capacity 2.

8. The labeling method for solving maximal flow problems

Under mild restrictions on the capacity function, the proof of the max-
flow min-cut theorem given in § 5 provides a simple and efficient algorithm
for constructing a maximal flow and minimal cut in a network [5].

The algorithm may be started with the zero flow. The computation then
progresses by a sequence of “‘labelings” (Routine A below), each of which
either results in a flow of higher value (Routine B below) or terminates
with the conclusion that the present flow is maximal.

To ensure termination, it will be assumed that the capacity function c is
integral valued. This is not an important restriction computationally,
since a problem with rational arc capacities can be reduced to the case of
integral capacities by clearing fractions, and of course, for computational
purposes, confining attention to rational numbers is really no restriction.

Given an integral flow f, we proceed to assign labels to nodes of the
network, a label having one of the forms (z*, &) or (x—, ¢), where xr e N
and ¢ is a positive integer or oo, according to the rules delineated in
Routine A.

17

I. STATIC MAXIMAL FLOW

During Routine A, a node is considered to be in one of three states:
unlabeled, labeled and scanned, or labeled and unscanned. Initially all
nodes are unlabeled.

Routine A (labeling process). First the source s receives the label
(—, &(s) = o). (The source is now labeled and unscanned; all other nodes
are unlabeled.) In general, select any labeled, unscanned node . Suppose
it is labeled (2%, &(x)). To all nodes y that are unlabeled, and such that
f(x, y) < c(z, y), assign the label (z+, &(y)), where

(8.1) &(y) = min [&(z), c(x, y) — f(z, y)].

(Such y are now labeled and unscanned.) To all nodes y that are now
unlabeled, and such that f(y,) > 0, assign the label (-, ¢(y)), where

(8.2) &(y) = min [e(x), f(y, *)].

(Such y are now labeled and unscanned and x is now labeled and scanned.)
Repeat the general step until either the sink ¢ is labeled and unscanned, or
until no more labels can be assigned and the sink is unlabeled. In the
former case, go to Routine B; in the latter case, terminate.

Routine B (low change). The sink ¢ has been labeled (y=, ¢(t)). If ¢ is
labeled (y*, &(t)), replace f(y, t) by f(y,t) + &(t); if t is labeled (y~, &(¢t)),
replace f(t,y) by f(t,y) — &(t). In either case, next turn attention to
node y. In general, if y is labeled (2, £(y)), replace f (x, ¥) by f(x, y) + &(t),
and if labeled (z—, &(y)), replace f(y,) by f(y,) — &(t), and go on to
node x. Stop the flow change when the source s is reached, discard the old
labels, and go back to Routine A.

The labeling process is a systematic search for a flow augmenting path
from s to ¢ (Corollary 5.2). Enough information is carried along in the labels
so that if the sink is labeled (henceforth we term this case breakthrough),
the resulting flow change along the path can be made readily. If, on the
other hand, Routine A ends and the sink has not been labeled (non-
breakthrough), the flow is maximal and the set of arcs leading from labeled
to unlabeled nodes is a minimal cut, since the labeled nodes correspond to
the set X defined in the proof of Theorem 5.1.

A main reason underlying the computational efficiency of the labeling
process is that once a node is labeled and scanned it can be ignored for the
remainder of the process. Labeling a node x corresponds to locating a path
from s to x that can be the initial segment of a flow augmenting path.
While there may be many such paths from s to z, finding one suffices.

If the flow f is integral and Routine A results in breakthrough, then the
flow change &(t) of Routine B, being the minimum of positive integers, is a
positive integer. Hence if the computation is initiated with an integral
flow, each successive flow is integral. Consequently the algorithm is finite,
since the flow value increases by at least one unit with each occurfence of

18

§8. THE LABELING METHOD FOR SOLVING MAXIMAL FLOW PROBLEMS

breakthrough; upon termination, a maximal flow has been constructed
that is integral. Although this fact is a trivial consequence of the con-
struction, the fact itself is important and will be used time and again in the
solution of combinatorial problems. We therefore state it as a theorem.

TrEOREM 8.1 (Integrity theorem). If the capacity function c is integral
valued, there exists a maximal flow f that is also integral valued.

The following numerical example illustrates the use of the labeling
method in constructing a maximal flow.

ExampLE. Let the given network be that of Fig. 1.1 with arc capacities
and initial flow as indicated in Fig. 8.1, the pair ¢(z, y), f(z, y) being written
in that order adjacent to arc (z, y).

Figure 8.1

Start Routine A by assigning s the label (—, o), see Fig. 8.2. From s,

(y+t,n

(s*,3)

Figure 8.2

label y with (s*, min (3, o)) = (s*, 3), thus completing the labeling from s.
From y,x can be labeled (y*, 1) (or (y—, 1)), and is the only unlabeled node

19

1. STATIC MAXIMAL FLOW

that can be labeled from y. Again select a labeled, unscanned node (x is the
only such), and continue assigning labels. This time breakthrough occurs :
the sink ¢ can be labeled (z+, 1). This locates a flow augmenting path,
found by backtracking from the sink according to the directions given in
the labels, along which a flow change of ¢(¢) = 1 can be made. Here the
path is the chain s, y, z, t. The new flow of value 2 is shown in Fig. 8.3.

-, n

(st,2)
Figure 8.3

Now discard the old labels and repeat the labeling process. This time the
labels shown in Fig. 8.3 are obtained. Again breakthrough has resulted and
a flow improvement of ¢(t) = 1 can be made along the path s, (s,), v,
(@, y), z, (z,t), t, yielding the flow shown in Fig. 8.4.

(st,n

Figure 8.4

Repetition of Routine A now results in non-breakthrough, the labeled
set of nodes being those shown in Fig. 8.4. Thus the flow of Fig. 8.4 is
maximal and a minimal cut consists of the arcs (s, z), (¥,), and (¥, t).

Labeling backward from the sink by rules corresponding to (a’), (b’) of

20

§8. THE LABELING METHOD FOR SOLVING MAXIMAL FLOW PROBLEMS

§ 5 locates the same cut, and hence by Theorem 5.6 this is the unique
minimal cut separating s and ¢.

We conclude this section with an example indicating that the labeling
process might fail to terminate if arc capacities are irrational. Specifically,
the example shows that if the process is interpreted broadly enough to
permit the selection of any flow augmenting path at each stage of the
computation, then finite termination may not occur when arc capacities
are irrational.

Before describing this example, we make one definition which will be
helpful in the description. If [V; &7] is a network with capacity function
¢, and if fis a flow from s to ¢ in [N ; &7], then c(z, y) — f(x, y) is the residual
capacity of arc (x, y) with respect to f.

Now consider the recursion

Ap+2 = Ap — Ap+1.

This recursion has a solution a, = r», where r = (—1 + V/5)/2 < 1.
Thus the series 3°_, a converges to some sum S. We construct a directed
network with four ““special arcs”’

4y = (1, y1),
Az = (22, y2),
Az = (23, y3),
As = (74, y4),

and the additional arcs (yi, ¥;), (%1, ¥;), (¥4, 25), for ¢ # j, together with
source arcs (s, x7) and sink ares (y;, ¢). The four special arcs have capacities
ag, a1, ag, ag, respectively; all other arcs have capacity S.

Step 1. Find a chain from s to ¢ that includes, from among the special
arcs, only A1, and impose ag units of flow in this chain. For example, take
the chain s, 21, y1, t. (The special arcs now have residual capacities 0, ay,
as, ag, respectively.)

Inductive step. Suppose the special ares 47, 43, A3, A} (some rearrange-
ment of Ay, As, A3, A4) have residual capacities 0, an, @n+1, @n+1. Find a
chain from s to ¢ that includes, from among the special arcs, only 4} and
A3, and impose @, 41 additional units of flow along this chain. For example,
the chain s, z3, y3, x5, y3, t will do. (The special arcs now have residual
capacities 0, @, — an+1 = @n+2, 0, An41.) Next find a path from s to ¢ that
contains 4} as a forward are, A} and A} as reverse arcs, the latter being
the only reverse arcs of the path, and impose an additional flow of an 42
units along this path. For example, the path s, 3, 5, ¥1, *1, Y3, T3, Yy, ¢
containing the reverse ares (y;, #7), (v, x3) will do. (The special arcs now
have residual capacities an+2, 0, @42, Gn41.)

The inductive step increases the flow value by az+1 + @n+2 = a4. Hence
no non-special arc is ever required to carry more than >°_, a, = S units

21

I. STATIC MAXIMAL FLOW

of flow in repeating the induective step. The process converges to a flow
having value S, whereas the maximal flow value for this network is 4S.

9. Lower bounds on arc flows

Although lower bounds of zero have been assumed on all arc flows, there
is no real necessity for this assumption in constructing maximal flows. If
the conditions

(9.1) 0 < flz,y) < cx,y)
are replaced by
(9.2) Uz, y) < f(x,y) < ez, y),

where [is a given real valued function defined on arcs of &7 that satisfies
(9:3) 0 < Uz, y) < clzy),

the labeling process can be varied to handle this situation provided one
has an initial flow to start the computation. There may be no function f
satisfying the equations (2.1) and the inequalities (9.2) (e.g., take | = ¢ in
the example of the preceding section), but assuming that these constraints
are compatible for a given integral valued ! and ¢, and that an initial f
satisfying them has been found, the only change in the labeling rules for
constructing a maximal flow is the following. If x has been labeled (2%, ¢),
then y may be labeled [z—, min (e, f(y,) — U(y, x))] provided f(y, z)
> Uy, x).
It is also easy to see that the analogue of Theorem 5.1 becomes

THEOREM 9.1. If there is a function f satisfying (2.1) and (9.2) for some
number v, then the maximal value of v subject to these constraints is equal to
the minimum of ¢(X, X) — U(X, X) taken over all X < N withse X, te X.

On the other hand, still assuming the existence of a function f satisfying
(2.1) and (9.2) for some v, the minimal value of » may be found in a similar
way: if x is labeled (2%, ¢) and if f(z,y) > l(z, y), attach the label
[#=, min (¢, f(z, y) — l(z, y))] toy; orif f(y,) < c(y, x), assign y the label
[x+’ min (6’ C(.% 27) - f(?/: x))]

Here the analogue of Theorem 5.1 is

THEOREM 9.2. If there is a function f satisfying (2.1) and (9.2) for some
number v, the minimal value of v subject to these constraints is equal to the
mazimum of (X, X) — ¢(X, X) taken over all X < N withse X, te X.

The questions that still remain are those of determining conditions
under which the constraints (2.1) and (9.2) are compatible, and of con-
structing a function f satisfying them when these conditions hold. We
postpone these questions for the moment. They, and similar questions,
will be taken up in Chapter II.

22

§10. FLOWS IN UNDIRECTED AND MIXED NETWORKS

10. Flows in undirected and mixed networks

Let us suppose that the network is undirected or mixed, and that each
arc has a non-negative flow capacity. If the arc (z, y) is undirected with
capacity c(z, y), we intepret this to mean that

[, y) < oz, y),
(10.1) [y, 2) < ez,),
f(x’ y)f(?/, :L‘) = 0.

That is, f(x, y) is the flow from z to y in (2, y), and the arc (z, y) has a flow
capacity c(z, y) in either direction, but flow is permitted in only one of the
two directions.

For example, one might think of a network of city streets, each street
having a traffic flow capacity, and ask the question: how should one-way
signs be put up on streets not already oriented in order to permit the
largest traffic flow from some set of points to another?

At first glance, it might appear that this problem would involve ex-
amination of a large number of maximal flow problems obtained by
orienting the network in various ways. But a moment’s thought shows
that the problem can be solved by considering only one directed network :
namely, that obtained by replacing each undirected arc with a pair of
oppositely directed arcs, each having capacity equal to the old arc. The
reason for this is that, given any solution f, v of the flow constraints (2.1)
and (2.2), one can produce a solution f’, v in which

[y f(y,2) =0
by taking

(10.2) [, y) = max (0, f(z, y) — f(y, %))

In words, we can cancel arc flows in opposite directions.

Thus, since it is clear that the maximal flow value for any specific
orientation of the given network is no greater than the maximal flow value
obtained by replacing each undirected arc by a pair of directed arcs,
allowing both orientations for each undirected arc solves the original
problem of maximizing v subject to the flow equations (2.1), capacity
constraints (2.2) for directed arcs, and constraints (10.1) for undirected
ares.

11. Node capacities and other extensions

Other kinds of inequality constraints in addition to bounds on arc flows
can be imposed without altering the character of the maximal flow
problem. For instance, suppose that each node x has a flow capacity
k(z) > 0, and that it is desired to find a maximal flow from s to ¢ subject to
both arc and node capacities.

23

I. STATIC MAXIMAL FLOW

More explicitly, let us assume that all source arcs are directed from the
source and all sink arcs into the sink, and that it is desired to maximize
f(s, N) subject to

(11.1) f(x, N) — f(N,z) =0, x # 8t
(11.2) 0 < f(z,y) < ¢z, y), (xz,y) e,
(11.3) [z, N) < k(=), x £t
(11.4) F(NV, £) < k().

This problem can be reduced to the arc capacity case by a simple device.
Define a new network [N*; o/*] from [N; 7] as follows. To each x e N
we make correspond two nodes z’, z” € N*;if (x, y) € o7, then (z', y") € &*;
in addition, (2", 2’) € &/* for each x € N. The (arc) capacity function
defined on o7* is
(11.5) cx@',y") = ¢z, y), (2, y) €,
(11.6) c*(z', x') = k(x), zeN.

Thus, for example, if the given network [V ; .o/] is that of Fig. 11.1, the
network [N*; .o/*] is shown in Fig. 11.2.

Figure 11.1

Figure 11.2

24

§11. NODE CAPACITIES AND OTHER EXTENSIONS

In effect, each node x has been split into two parts, a ““left” part " and
a “right” part z’, so that all ares entering « now enter its left part,
whereas all arcs leaving x now leave its right part. The capacity k(z) is
then imposed as an arc capacity on the new arc leading from the left part
of x to its right part.

Thus any function f satisfying (11.1)—(11.4), that is, any flow from s to ¢
in [N; o/] that does not exceed the node capacities, yields an equivalent
flow f* from s” to ¢’ in [N*; &/*] by defining

(11.7) f*(xl’ :'/”) = f(x’ y)» (x,y) e o,
(11.8) X", z') = f(x, N), x #t,
(11.9) F*@",t) = f(N,¢t),

and conversely.

If the notion of a disconnecting set is extended to include nodes as well
as arcs, the analogue of the max-flow min-cut theorem asserts that the
maximal flow value is equal to the capacity of a disconnecting set of nodes
and arcs having minimal capacity.

In a similar way, more general kinds of constraints on the flow out of or
into node x can be reduced to the case of arc capacities by enlarging the
network. For example, suppose that the nodes of the set A(x) are put into
subsets

(11.10) A1), ..., A ()

with the proviso that

(1L11) Ai) N Aj(z) # & = Ay(z) € Aj(@) or Aj@) S Ai(a),

and assume, in addition to the flow equations,

(11.12) flx, Ai(x)) < ki(z), t=1,..., mx).

Constraints of the form (11.12), under the assumption (11.11), can be
handled as indicated schematically in Fig. 11.3 and Fig. 11.4 for a single
node x.

Constraints of a similar kind on flow into z can be reduced to arc
constraints by enlarging the network in an analogous fashion.

Notice that inequality constraints (11.2), (11.3), (11.4) are a special case
of (11.12) and similar constraints on flow into x:

(11.13) f(Bj(x), x) < hj(x), Jj=1...,n).

If we refer to each set (z, 4;(z)) and (Bj(z), «) as an elementary set of
arcs, and extend the notion of a disconnecting set of arcs to say that a
collection 4 of elementary sets is a disconnecting collection if each chain
from s to ¢t has an arc in common with some elementary set contained in %,
it can be shown that the maximal flow value from s to ¢ is equal to the

25

I. STATIC MAXIMAL FLOW

N\

A, x)

@
o

A, (x)

—

A (x)

@) eim

Figure 11.3

Figure 11.4

minimal blocking capacity (under the assumption (11.11) and a similar
assumption on Bj(x)).
12. Linear programming and duality principles

The problem of finding a maximal flow through a network, whether
stated in node-arc or in arc-chain form, is one of extremizing a linear

26

§12. LINEAR PROGRAMMING AND DUALITY PRINCIPLES

function subject to linear equations and linear inequalities. Such a problem
is called a linear programming problem. There are various known methods
of computing answers to linear programs. The method that is in general
use is G. B. Dantzig’s simplex algorithm, around which a sizeable literature
has already grown up. It is not our purpose here to discuss the theory of
linear inequalities or algorithms for solving general linear programs, since
this book is devoted, for the most part, to special kinds of linear programs
that arise in transportation, communication, or certain kinds of combina-
torial problems, and to a presentation of special algorithms for solving
these linear programs. We would be negligent, however, if some mention
were not made of linear programming duality principles in connection
with these problems.

Associated with every linear programming problem in variables
wy, ..., Wyt

anwy + ... + aywy + a1, Wil F+ ... + Qrpwy = by
apwy + ... + agwr + AW+l + ... + Ggawy = by
12.1)
Ap+1,1W1 + ..o+ G410 + Ak 104101 o0+ QGk41,nWa
< b1
Apaw1 + ...+ Gpwr + QWi + ... F GmaWn < by
(12.2) wy, . . ., wy unrestricted in sign; wy41, ..., wy = 0
(12.3) maximize cyw; + ... + Ca,Wwy

is a dual program obtained by assigning multipliers Ay, ..., Ay to the
individual constraints of (12.1) and forming the program

a11A1 + ...+ Gp1dk + Q41 1Ak+1 F ..o+ Gmidp = 1
aydr + ..o+ apde + A1, A+l F o F Anidm =
(12.4)
ay, 1+11A1 + ... F g, 141k + Gkt 1+1Ak+L F+ oo+ Cm, 141Am
Z Ci41
@101 + ... + Gkndk + ki1, Akl + oo F Amadm = Cm
(12.5) A1, ..., Ay unrestricted in sign; Ag41, ..., A = 0
(12.6) minimize b;A\; + ... + bpAn.

Here the ay;, b;, and c; are given real numbers.
The matrix of the constraints (12.4) is the transpose of that of (12.1).
Equalities of (12.4) correspond to unrestricted variables wy, ..., w;, and

27

I. STATIC MAXIMAL FLOW

inequalities to non-negative variables wj41,..., ws. The multipliers or
dual variables Aj, ..., A;y that correspond to equations of (12.1) are
unrestricted in sign, whereas Ag41, ..., A, corresponding to inequalities
of (12.1), are non-negative.

Observe that if the dual problem (12.4), (12.5), and (12.6) is written in
the form of the primal problem (12.1), (12.2), and (12.3), by multiplying
each of the constraints of (12.4) by —1 and maximizing — > bsAs, then the
dual of (12.4), (12.5), (12.6) is (12.1), (12.2), (12.3). In other words, the dual
of the dual is the primal.

The constraints of the primal problem are said to be feasible if there is a
vector w = (wy, . . ., wy) satisfying them; w is then called a feasible vector,
and the primal problem is termed feasible. A feasible vector w that
maximizes the linear form 3 c;w; is called optimal. Analogous language is
used for the dual problem.

Thus a linear programming problem either has

(a) optimal (and hence feasible) vectors;
(b) feasible vectors, but no optimal vector;
(¢) no feasible vectors.

The fundamental duality theorem of linear programming [9] relates the
way these situations can occur in a pair of dual programs, and asserts
equality between the maximum in the primal and the minimum in the
dual : if case (a) holds for the primal, then (a) holds for its dual and the
maximum value of > cjw; is equal to the minimum value of > b;A;; if (b)
holds for the primal, then (c¢) holds for the dual; if (¢) holds for the primal,
either (b) or (c) is valid for the dual.

That the maximum value of Y cjw; is no greater than the minimum of
> byA if both primal and dual have feasible vectors is easily seen. Letting
w and A be feasible in their respective programs, it follows that

(12.7) > owy < > > aygwy,
J i1

since unrestricted variables w; correspond to equations >; Aqay; = ¢; and
non-negative variables w; to inequalities >; Mag > ;.
Thus equality holds in (12.7) if and only if

(12.8) > ayy > ¢ = wy = 0.
i
Similarly,
(12.9) > > Magwy < D biks,
j 1 i

since the A; that are unrestricted in sign correspond to equations 3; ayw;
= by, whereas non-negative A; correspond to inequalities >; ayw; < by.

28

§12. LINEAR PROGRAMMING AND DUALITY PRINCIPLES
Thus, equality holds in (12.9) if and only if

(12.10) A > 0= Z ajw; = by
J
Consequently
(12.11) > ewy < D bidy,

equality holding if and only if (12.8) and (12.10) are valid. The major
content of the duality theorem is the assertion that if case (a) holds for
the primal, it also holds for the dual, and that there are then feasible
solutions to primal and dual problems that satisfy the optimality criteria
(12.8) and (12.10).

Our purpose in giving this sketchy résumé of linear programming
duality theory is twofold. First, we shall note that the max-flow min-cut
theorem provides a proof of the duality theorem for the special case of
maximal flow problems. Second, although the algorithms to be presented
subsequently do not require appeal to the duality theorem, they were
motivated by duality considerations, and we want to feel free to invoke
such considerations where convenient.

If we take the constraints of the maximal flow problem in the node-are
form and assign multipliers =(x) to the equations (2.1), multipliers y(z, y) to
the capacity inequalities (2.2), then, recalling that the coefficient matrix of
the equations is (apart from the column corresponding to the variable v)
the node-arc incidence matrix of the network, it follows that the dual has
constraints

—m(s) + #(t) = 1,

v(@,) 20, all (z, y),
subject to which the form
(12.13) 2, el y)r(x, y)
o

is to be minimized. In (12.12), the first constraint comes from the v-column
of the primal problem, the second from the (z, y)-column. The dual
variables 7(x) are unrestricted in sign since they correspond to equations,
whereas the variables y(z,y) correspond to inequalities and are con-
sequently non-negative.

If (X, X) is a minimal cut separating s and ¢, it can be checked that an
optimal solution to the dual problem is provided by taking

12.14) (z) = 0 forre X,

(12. ™= forzeX,
1 for (z, y) € (X, X,

12. YY) =

(12.15) v y) {O otherwise.

29

I. STATIC MAXIMAL FLOW

This follows since (12.14) and (12.15) define a feasible solution to the dual
that produces equality between the primal form v and dual form (12.13).
Or one can check the optimality properties (12.8) and (12.10).

In particular, the dual of the maximal flow problem always has an
integral solution. It can be shown, in fact, that all extreme points of the
convex polyhedral set defined by setting m(s) = 0 in (12.12), which cor-
responds to dropping the (redundant) source equation in the primal
problem, are of the form given in (12.14) and (12.15) for some X with
s € X. Using this fact, the max-flow min-cut theorem can be deduced from
the duality theorem [2].

13. Maximal flow value as a function of two arc capacities

For a given network [V ; /] with specified sources S and sinks 7', the
value % of a maximal flow from S to T is solely a function of the individual
arc capacities. Indeed, if o = {4, As,..., An} and A4; has capacity
¢(4;), we know that

(13.1) 7= min > c(4y),

€< gc%
the minimum being taken over all cuts € separating S and 7. The theorems
and proofs of this section provide insight into the behavior of 7 considered
as a function of two arc capacities, everything else being held fixed. Both
theorems and proofs are due to Shapley [16].

It will be convenient to allow infinite capacities for the two arcs in
question, and hence infinite 5. However, the capacities of other arcs are
assumed finite.

Let ;(¢) denote the maximal flow value when the capacity c¢(4;) has
been replaced by the non-negative variable £. Similarly, 4;(¢,) denotes
the maximal flow value when c¢(4;) and ¢(4;) have been replaced by non-
negative variables £ and . It is a consequence of (13.1) that

(13.2) vi(§) = min [5:(0) + §, By(o0)].
In more detail, if ¢ is less than the critical capacity

(13.3) £ = vy(0) — w(0),

the arc 4; is a member of every minimal cut, whereas for £ > £*, the arc
A;is in no minimal cut. Here £* may be either zero or infinite. If the critical
capacity £* is strictly positive, and if ¢(4;) = £*, there is a minimal cut
containing 4; and a minimal cut not containing A;.

Two applications of (13.2) yield

(134) 51](£’ 7]) = min [51]'(0, O) + f + 7, 5131(()) w) + f,
Bij(0, 0) + 7, Bg5(c0, 0)].

30

§13. MAXIMAL FLOW AS A FUNCTION OF TWO ARC CAPACITIES

Thus the piecewise linear function ¥y(¢,) divides the non-negative
quadrant of the &, plane into at most four open convex regions in each
of which it is linear, together with certain boundary lines and vertices. We
label these regions Ri1, Rig, Ro1, Roo, respectively: Ri; is the region in
which the minimum in (13.4) is assumed uniquely by 9;(0,0) + ¢ + 7,
Ry the region in which the minimum is assumed uniquely by %44(0,) + £,
and so on. Thus the subscripts identifying the region are the values of the
. . .. 0Dy Oy
partial derivatives P —g
both arces 4; and A; are in every minimal cut; in Ry, 4;isin every minimal
cut while 4; is in no minimal cut; in Ry, 4; is in no minimal cut and 4;is
in every minimal cut; in Rgg, neither 4; nor 4; is in any minimal cut.
The common boundaries of each pair of regions appear as in Fig. 13.1:

Ro Foo Po o "oo
1 "ol o | “o0
R” R|| ROI ROl

(i) (i) (i) (iv) (v) (vi)

Figure 13.1

in that region. Notice that for any point of Ry,

The equations of these boundary lines are respectively

(13.5) n = 0y4(0, 00) — 7445(0, 0) (R1o — R11)
(13.6) ¢ = vyloo, 0) — 445(0,0) (Ru1 — Ro1)
(13.7) ¢ + m = By(00, ©) — 535(0,0) (R11 — Roo)
(13.8) £ — 9 = Byy(00, 0) — 745(0, ©) (Rio — Ro1)
(13.9) § = By(00, 00) — Byy(0, ©) (R0 — Roo)
(13.10) 7 = Byy(0, ©) — Byy(0,0) (Roo — Rox).

Here 945(0, c0) = oo means that region Ry is empty, v4(c0, 0) = o0 means
that Ro; is empty, and %;;(00, ©) = oo means that oo is empty.

In order to determine the different ways in which the non-negative
quadrant of the ¢, n plane can be partitioned by the four regions, a case
classification can be made using

(1311) Py = 5ij(CO, oo) el 5“(0, a)) —_ {;U(co’ O) + 1—)‘1(0, O)
as follows :
(a) py > O (including py = o),
(b) pi; = O or py; indeterminate (co — o),
(¢) pyy < O.
31

1. STATIC MAXIMAL FLOW

Using (13.5)-(13.10), it follows that if all four regions are present in each
case, the resulting configurations for the ¢,y non-negative quadrant
then appear as in Fig. 13.2:

! Foo P
- 10 (o]¢}
10
ROI R °
R“ H Ol
3 3 ¢
(a) (b) (c)
Figure 13.2

Moreover, if p;; = o, the configuration is a degenerate form of Fig. 13.2(a)
in which Rgo does not appear, while if p;; is indeterminate, various de-
generate forms of Fig. 13.2(b) occur. Of course, other kinds of degeneracy
may be present, e.g., Rjgp may be empty in Fig. 13.2(c) by virtue of
Byj(00, 00) — ¥4(0, c0) = 0, and so on. But the configurations of Fig. 13.2
are exclusive and comprehend all possibilities. Notice that there is never
more than one diagonal boundary segment, that is, an R;; — Roo contact
precludes an Ryp — Ro; contact, and that in cases (a) and (c), a diagonal
segment is always present. For future reference, we also note that a point
(€%, n*) on a diagonal segment is critical in the following sense : if ¢(4y) is
fixed at £*, then n* is the critical capacity of 4;, whereas if ¢(4;) is fixed at
n*, then £* is the critical capacity of 4;. Thus at such a point (£*, n*) with
&* > 0, n* > 0, there is a minimal cut containing 4;, a minimal cut not
containing A4;, and similarly for 4;.

The foregoing case classification provides the background for a general
statement about the difference quotient

(13.12) ¢y = Dl + b, + k) — g€ + }an) — Tg(€, m +) + Ty(é)

for the function 7(¢, n). Here g;; is of course a function of » and k as well
as £ and 7, and is well defined only if ¢ + A > 0, + k > 0, and Ak # 0.

THEOREM 13.1. For all rectangles (¢, 7), (€ + h,n), (&, n + k), (€ + A,
1 + k) in the £, n non-negative quadrant, the difference quotient qi; ts of
one sign.

Proor. Assume without loss of generality that » > 0, k¥ > 0, and
consider the described rectangle. It cannot enclose more than one diagonal
piece from the boundary configuration. If it encloses none, then ¢;; = 0.
If the piece enclosed has positive slope, then ¢;; > 0 (in fact, ¢y is equal to

32

§13. MAXIMAL FLOW AS A FUNCTION OF TWO ARC CAPACITIES

the length of the intercepted diagonal divided by hk4/2). On the other
hand, if the piece enclosed has negative slope, then g;; < 0.

The following corollary, which relates the sign of gy to that of the con-
stant py; defined by (13.11), is immediate.

CoROLLARY 13.2.

(a) If py > O (including py = o), then qy is sometimes >0, and never
<0;

(b) if py = O or if py is indeterminate (o0 — o), then gy 18 identically
zero;

(c) if pyy < O, then qi; is sometimes <O, and never >0.

Theorem 13.1 can be verbalized in a somewhat more intuitive way.
Roughly speaking, a positive ¢;; means that the ares 4; and 4; complement
or reinforce each other, whereas a negative g;; means that they compete
or interfere with each other. Thus the theorem asserts that any pair of
arcs in a network (having fixed capacities for all other arcs) consistently
reinforce or interfere with each other. In general, the manner in which two
arcs interact depends on the capacities of the other arcs, as well as the
relative positions of the two arcs in the network. For example, consider the
network of Fig. 13.3:

Figure 13.3

Here p;2 = 1, but removal of the arc A3 (or reducing its capacity to zero)
yields p12 = —1. However, in certain cases, the interaction-type of a pair
of arcs is determined solely by their relative positions, independently of
the capacity values, as the following theorem and corollary show.

THEOREM 13.3.

(i) If the terminal node of Ay is the initial node of Aj, then qi; = 0.

(ii) If A4 and A; have the same initial node, then qi < 0.

(iii) If the inatial node of Ay is a source, and the terminal node of Aj is
a sink, then qi; > 0.

33

I. STATIC MAXIMAL FLOW

Proor.

(i) Consider a minimal cut € = (X, X) in the network. If the common
node x of 4; and 4;isin X, then 4;isnotin €. If zis in X, then A4, is not
in €. Thus R;;, in which both 4; and A4; belong to every minimal cut, is
empty. Hence g;; > 0.

(ii) Ignoring the trivial case in which no diagonal segment appears in
the configuration, let (£*, n*) be an arbitrary point on the diagonal having
positive coordinates. Then (£*, n*) is critical, and hence there is a minimal
cut %; = (X1, X;) containing A; and a minimal cut €s = (X, X,)
containing A4;. Thus, since 4; and A4; have the same initial node, the
minimal cut € = (X; N X2, X1 U X») contains both A4; and A4;. The
capacity of € corresponding to the point (£*, n*) is of course 7y(£*, n*),
and consequently the capacity of € corresponding to the variable point
(€, m) is Dyy(E*, n*) + € — €* + 1 — 9*. Thus

i€, m) < (€%, n*) + € — £ + n — 7¥,
and in particular,
250, 0) < Dyy(€*, 7*) — &% — 7*.
By (13.4) equality holds here, and so
vi5(£*, 1*) = 0450, 0) + £* + n*.

It follows that (£*, n*) is on the boundary of Rj;. Since (£*, n*) was an
arbitrary point on the diagonal having positive coordinates, the boundary
configuration is that of Fig. 13.2(c), and hence ¢;; < 0
(iii) The proof here is similar to that of (ii). Again we may ignore the
trivial case corresponding to Fig. 13.2(b), and select a critical point
(£€*, n*) on the boundary segment having positive coordinates. Hence
there is a minimal cut €; = (X, X;) containing 4; and a minimal cut
= (X3, X2) not containing 4;. It follows that the minimal cut ¢ =
(X1 N X3, X1 U X3) contains 4; but not 4;. The capacity of € correspond-
ing to (£*, n*) is 9;5(£*, n*), and hence the capacity of € corresponding to
the variable point (&,) is 045(&*, n*) + € — £*. Thus

o6,) < By(€*, n*) + € — &%,
and in particular
945(0,) < Dy (€*, n*) — £*.

Again equality must hold here, and so (¢*, n*) is on the boundary of Ry,.
Hence g5 > 0.

CoroLLARY 134. If A; and A; have the same terminal node, then
gij < 0. If the initial nodes of A; and Aj are both sources, then qi; < 0. If the
terminal nodes of A; and Aj are both sinks, then qi; < 0.

34

ar

§13. MAXIMAL FLOW AS A FUNCTION OF TWO ARC CAPACITIES

Proor. The first statement follows from the theorem by reversing all
¢ orientations and interchanging the roles of sources and sinks. The

second statement can be proved in a way exactly analogous to the proof

of

part (ii) of the theorem. The third statement follows from the second by

reversing the network.

1

10.

11.

12.

13.

14

15.

16

References

. G. B. Dantzig, ‘“Application of the Simplex Method to a Transportation
Problem,” Activity Analysis of Production and Allocation, Cowles
Commission Monograph 13, Wiley, 1951, 359-373.

and D. R. Fulkerson, ‘“On the Max-Flow Min-Cut Theorem of
Networks,”” Linear Inequalities and Related Systems, Annals of Mathe-
matics Study 38, Princeton University Press, 1956, 215-221.

. P. Elias, A. Feinstein, and C. E. Shannon, ‘“Note on Maximum Flow
Through a Network,” I.R.E. Trans. on Inform. Theory, IT-2 (1956),
117-119.

. L. R. Ford, Jr., and D. R. Fulkerson, ‘“‘Maximal Flow Through A Net-
work,” Canad. J. Math. 8 (1956), 399-404.

, ““A Simple Algorithm for Finding Maximal Network Flows and

an Application to the Hitchcock Problem,” Canad. J. Math. 9 (1957),

210-218.

, ‘““A Suggested Computation for Maximal Multi-Commodity
Network Flows,” Management Sci. 5 (1958), 97—-101.

. D. R. Fulkerson and G. B. Dantzig, ‘“Computation of Maximal Flows in
Networks,”” Naval Res. Logist. Quart. 2 (1955), 277-283.

. D. Gale, “The Basic Theorems of Real Linear Equations, Inequalities,
Linear Programming, and Game Theory,” Naval Res. Logist. Quart. 3
(1956), 193-200.

. D. Gale, H. W. Kuhn, and A. W. Tucker, ““Linear Programming and the
Theory of Games,” Activity Analysis of Production and Allocation,
Cowles Commission Monograph 13, Wiley, 1951, 317-328.

A. J. Goldman and A. W. Tucker, “Theory of Linear Programming,”
Linear Inequalities and Related Systems, Annals of Mathematics Study
38, Princeton University Press, 1956, 53-97.

T. E. Harris and F. 8. Ross, “Fundamentals of a Method for Evaluating
Rail Net Capacities,” (U) The RAND Corporation, Research Memo-
randum RM-1573, October 24, 1956 (Secret).

A. J. Hoffman and J. B. Kruskal, Jr., “Integral Boundary Points of
Convex Polyhedra,” Linear Inequalities and Related Systems, Annals of
Mathematics Study 38, Princeton University Press, 1956, 223—246.

D. Konig, Theorie der Endlichen und Unendlichen Graphen, Chelsea
Publishing Co., New York, 1936.

. J. T. Robacker, “On Network Theory,” The RAND Corporation, Re-

search Memorandum RM-1498, May 26, 1955.

, “Min-Max Theorems on Shortest Chains and Disjunct Cuts of a
Network,” The RAND Corporation, Research Memorandum RM-1660,
January 12, 1956.

. L. 8. Shapley, ‘“On Network Flow Functions,” The RAND Corporation,
Research Memorandum RM-2338, March 16, 1959.

35

CHAPTER II

FEASIBILITY THEOREMS AND
COMBINATORIAL APPLICATIONS

Introduction

The first part of this chapter develops several theorems which give
necessary and sufficient conditions for the existence of network flows that
satisfy additional linear inequalities of various kinds. Adopting the linear
programming terminology introduced in the first chapter, we call these
feasibility theorems. Typical of such are a supply-demand theorem (§1)
due to Gale[11], that states conditions for the existence of a flow satisfying
“demands’’ at certain nodes from ‘‘supplies’’ at others, and a circulation
theorem (§ 3) due to Hoffman [17] that gives conditions for the existence of
a circulatory flow in a network in which arc flows are subject to both lower
and upper bounds. In addition to these and variants of them, one other
useful feasibility theorem is presented in § 2.

Proofs of each of these theorems can be made to rely on the max-flow
min-cut theorem. (It is true, conversely, that each implies the max-flow
min-cut theorem.) As a consequence, it will follow from the integrity
theorem that if the additional constraints are integral, e.g., if the supply and
demand functions in the supply-demand theorem are integral valued, or if
the lower and upper bound functions for the circulation theorem are
integral valued, then integral feasible flows exist provided there are any
feasible flows. Using this fact, various combinatorial problems that have
received attention in the mathematical literature can be posed and solved
in terms of network flow. The remainder of the chapter illustrates this
method of attack on a number of such problems.

1. A supply-demand theorem

Let [N;.«/] be an arbitrary network with capacity function ¢, and
suppose that N is partitioned into sources S, intermediate nodes R, and
sinks 7T (as in 1.7). Associate with each x € S a non-negative number a(z),
to be thought of as the supply of some commodity at x, and with each
z € T a non-negative number b(z), the demand for the commodity at z. We
are interested in the question : under what conditions can the demands at

36

§l. A SUPPLY-DEMAND THEOREM

the sinks be fulfilled from the supplies at the sources, that is, when are the
constraints

f(x, N) — f(N, z) < a(x), zel,
flx, N) — f(N,z) = 0, z€ R,
f(N,2) — f(z, N) > b(x), zeT,

0 < flz,y) < clx,), (z,y) e,

feasible ?

For example, consider the undirected network of Fig. 1.1 having arc
capacities as indicated, and suppose a(l) = 7,a(2) = 2,b(7) = 1,b(8) = 8.
(Formally, we take & to consist of ordered pairs, so that the undirected
arc (z, y) is replaced by the pair of directed ares (z, y) and (y, z), each
having the given capacity.)

7q\ 2 (7)1

2(2/ 7 (e) ¢

Figure 1.1

A flow that almost succeeds in meeting the demands from the supplies is
shown in Fig. 1.2, in which the second numbers on arcs represent the
amounts of flow, and arrows denote flow directions.

Is there a feasible flow for this problem, or does Fig. 1.2 represent the
best one can do? To answer this question, look at the subset of nodes
X = {2, 8}. If the problem is feasible, it must be possible to send into X a
total amount that is at least equal to the excess of demand over supply
for X, here b(8) — a(2) = 6. But the arcs leading into X have capacity
sum 5. Thus it is not possible to fulfill the demand at node 8, and the
problem is infeasible.

The following theorem, due to Gale [11], gives necessary and sufficient
conditions for the supply-demand constraints to be feasible.

37

II. FEASIBILITY THEOREMS AND COMBINATORICS

4.3
40, ol

2,2

<
¢

©)
|

Figure 1.2

THEOREM 1.1. The constraints

(1.1) f(x, N) — f(N, z) < a(z), zeSs,
(1.2) flx, N) — f(N, z) =0, ze R,
(1.3) f(N,z) — f(z, N) = b(z), zeT,
(L.4) 0<f(@y <cy), (x, y) e A,

where a(x) = 0, b(x) = 0, are feasible if and only if
(1.5) HTNX)—aSNX) <X, X)

holds for every subset X < N.

Interpreting a supply as a negative demand, condition (1.5) is the
statement that the net demand over any subset X of N cannot exceed
the capacity of the arcs leading into X. The main content of the theorem is
the assertion that if this condition is satisfied for all subsets of N, then the
problem is feasible.

Proor. If there is an f satisfying (1.1)—(1.3), it follows immediately by
summing these equations and inequalities over z € X that

HTNX)—aSNX)<fN,X) - f(X,N).
Writing N = X U X gives
HTNX)—aSNX)<fX,X) - fX,X).
If f satisfies (1.4), this last inequality implies
HTNX)—al8NX) <X, X).
38

§l. A SUPPLY-DEMAND THEOREM

To prove the sufficiency of (1.5), extend the network [N ; /] to a new
network [N*; &/*] by adjoining a fictitious source s, sink ¢, and the arcs
(8, 8), (7, t). The capacity function on &7* is defined by

c*(s, x) = a(x), FAIR
c*(z, t) = b(x), zeT,
X, y) = (=,), (2, y) € .

The assumption (1.5) for all X < N is tantamount to the statement that
the cut (7', t) separating s and ¢ is minimal in [N*; 27*]. To see this, let
(X*, X*) be any cut separating s and ¢ Defining X = X* — s,
X = X* — t, we have

c*(X*, X*) — c*(T,t) = c¥(X,t) + c*(s, X) + c*(X, X) — c*(T,¢t)
=bTNX)+aSNX)+cX,X) - bT)
— —H(TNX) +aSNnI) + X, X).

Thus c*(X*, X*) > ¢*(T, t) for all cuts (X*, X*) separating s and ¢ if and
only if (1.5) holds for all X = N.

It follows from the max-flow min-cut theorem that (1.5) implies the
existence of a flow f* from s to ¢ in [N*; o7*] that saturates all arcs of (7', ¢).
The restriction f of f* to & clearly satisfies (1.2) and (1.4); f also satisfies
(1.1) and (1.3), since

a(x) >f*(s’x) =f*(x’N) _f*(N’x) =f(x’N) _f(N’x)’
b(z) = f*(z,t) = f*(N,) — f*(z, N) = f(N, z) — f(z, N),

for z in § and T, respectively.

This completes the proof of Theorem 1.1.

Going back to the example of Fig. 1.1, we see from the labeling process
that a minimal cut in the enlarged network consists of the arcs (s, 2), (1, 2),
(4, 2), (6, 8), (7, 8), (7, t) having capacity sum 8, which is less than the total
demand 9. Hence the problem is infeasible and a partition (X, X) of N has
been found for which (1.5) fails, namely X = {2, 8}, as was noted earlier.
In general, if one is interested in checking the feasibility of a given supply-
demand network, the most efficient method is to use the labeling process to
solve the equivalent maximal flow problem in the enlarged network,
rather than to check the condition (1.5) for all subsets of N. If the problem
is infeasible, a violation of (1.5) will be located at the conclusion of the
computation by taking X and X to be the labeled and unlabeled nodes of
N, respectively.

The principal tool used in the proof of Theorem 1.1 was the max-flow
min-cut theorem. It can be seen, on the other hand, that Theorem 1.1
implies the max-flow min-cut theorem : one places a demand at the sink ¢

39

II. FEASIBILITY THEOREMS AND COMBINATORICS

equal to the minimal cut capacity, an infinite supply at the source s, and
lets the other nodes be members of R.
There is another formulation of Theorem 1.1 which is useful [11].

CoROLLARY 1.2. The constraints (1.1)-(1.4) are feasible if and only if, for
every set T' < T, there ts a flow fr- satisfying (1.1), (1.2), (1.4), and

(1.6) Jr(N, T") — fr(T", N) > b(T").

Proor. The necessity is obvious. Sufficiency asserts that if, corre-
sponding to every subset of sinks, there is a flow that satisfies the aggregate
demand of the subset without exceeding the supply limitations at each
source, then there is a flow that meets all the individual demands.

To prove sufficiency, let X, X be any partition of N and define sets

8 =8NX,RR=RnX,T"=TnNnX.
Since f7- satisfies (1.1), (1.2), and (1.6), it follows that

—a(S) < frr(N,8) — fr (S, N),
0 = fpr(N,R') — fr(R', N),
B(T') < fr(N, T') = fo(T", N).

Hence adding and using (1.4),

b(T,) - a(Sl) < fT'(N’ X) _fT'(X’ N) = fT'(X’ X) - fT'(X’ X)
< ¢(X, X).

Thus condition (1.5) is fulfilled for all X = N, and the constraints are
feasible by Theorem 1.1.

A similar proof shows that the supply-demand constraints are feasible
if and only if, for every subset S’ of sources, there is a flow fs’ satisfying
(1.2), (1.3), (1.4) and

fs' (8, N) = fsr (N, §') < a(S).

In other words, if corresponding to each subset of sources, there is a flow
that satisfies all individual demands without exceeding the aggregate
supply of the subset (the supply at sources outside the subset being
infinite), then there is a feasible flow.

The proof of Theorem 1.1 and the integrity theorem establish the
following fact. If the functions a, b, and ¢ are integral valued, and if there
is a feasible flow, then there is an integral feasible flow. Similar integrity
statements will hold for the other feasibility theorems proved in the next
two sections.

Beginning with § 4, the remainder of this chapter will require the use of
such integrity statements in setting up a number of combinatorial prob-
lems as flow problems. We illustrate this approach here with the following

40

§1. A SUPPLY-DEMAND THEOREM

example, suggested by Gale. Consider a round robin tournament between
n teams, with each team playing every other team ¢ times. (For instance,
in pre-1961 major league baseball, n = 8 and ¢ = 22.) Let (2 = 1, 2,
n) be the number of wins for the ¢th team at the conclusion of the
tournament. What are necessary and sufficient conditions on a given set
of non-negative integers «j, ag,..., ay in order that they represent a
possible win record? Obvious necessary conditions are that 37 ; oy
= cn(n — 1)/2, the total number of games played, and that «; < ¢(n — 1),
the total number of games played by the ¢th team. These conditions are
of course not sufficient, since, for example, we might take o« =
= ¢(n — 1) and satisfy these conditions, yet teams 1 and 2 play each other.
To find necessary and sufficient conditions, one can proceed as follows.
Select the notation so that @y > a3 > ... > o, = 0, and define a directed
network [N;] by N = {1,2,...,n}, & = {(¢,j)|¢ < j}. Now, thinking
of (7, j) as representing the number of wins for team ¢ over team j, one has

S)+ D e = fG,] =«
71> i<t

or
(1.7) £, N) = f(N,) = o — c(s — 1).

Conversely, any integer valued function f defined on the arcs of the
network that satisfies (1.7) and

(1.8) 0<f(i,j)<c

represents a tournament in which team ¢ wins o; games. Defining S = N
and T = S by

(1.9) = {t]|a; — c(t — 1) > 0},

and corresponding supply and demand functions by

(1.10) a(t) = oy — (i — 1), iefl,
(1.11) b(i) = —aq + c(i — 1), ieT,

it follows, using the integrity theorem, that the «; represent a possible win
record if and only if the constraints

(1.12) f@, Ny — f(N, i) = a(s), ies,
(1.13) f(N, i) — f@G, N) = b(3), ieT,
(1.14) 0<f(i,j)<c

are feasible. In view of the condition 3"_, «; = cn(n — 1)/2, which says
that a(S) = b(T'), we can, if we like, replace (1.12) and (1.13) by inequalities
(respectively < and >) in order to obtain the supply-demand constraints

41

II. FEASIBILITY THEOREMS AND COMBINATORICS

appearing in Theorem 1.1. Applying Theorem 1.1, it follows that the «;
represent a possible win record if, and only if, for every X < N,

(1.15) c > (i—1)— > a<c|(X, X).
ieX ieX
(Here | | denotes cardinality. Note that for X = N, equality actually holds
in (1.15) by virtue of >?_; oy = cn(n — 1)/2.)
The 27 inequalities (1.15) can be simplified greatly. They are, in fact,
equivalent to only » inequalities. To see this, first rewrite (1.15) as

(1.16) —clX| + c[in - (X, X)|] < .EZX o,

and consider those inequalities of (1.16) for all subsets X of fixed cardinality
p. The left side of (1.16) is constant for such X, being equal to
c(n — p)(n — p — 1)/2, while the right side is minimized by taking
X ={1,2,..., p}. Thus the inequalities (1.16) are equivalent to

n
(1.17) cn — p)n —p —1)/2 < Z a, p=0,1,...,n—1,

i=p+1

or, adding 3% o; = en(n — 1)/2 to both sides, to
»
(1.18) > i < cp(n —p — 1)2, p=12... n
i=1

To sum up, the necessary and sufficient conditions that o; > ag >

. = ap > 0 represent a win record for a round robin tournament in
which each team plays ¢ games with every other team are that the in-
equalities (1.18) hold, the last with equality.

2. A symmetric supply-demand theorem

Suppose that, instead of requiring the net flow out of each source to be
bounded above, and the net flow into each sink to be bounded below, we
extend the problem by imposing both lower and upper bounds on the net
flow leaving each source and entering each sink. What are feasibility
conditions for the resulting set of inequalities? One version of the theorem
that will be established for this situation may be described verbally as
follows :

(a) if there is a flow that satisfies the lower bound requirements at the
sources and the upper bound requirements at the sinks, and

(b) if there is a flow that satisfies the upper bound requirements at the
sources and the lower bound requirements at the sinks,

then there is a flow that meets all the requirements simultaneously.
For example, consider the network of Fig. 2.1 with all arc capacities

42

§2. A SYMMETRIC SUPPLY-DEMAND THEOREM

S 4
2,2 2,2
1,2 2,2
2,2 1,2

Figure 2.1

unity, the sources being the nodes on the left, the sinks on the right, with
lower and upper bounds as indicated. For lower bounds at sources and
upper bounds at sinks, a feasible flow is shown by the heavy arcs of Fig.
2.2, while for the reverse situation, upper bounds at sources and lower
bounds at sinks, a feasible flow is shown in Fig. 2.3. Notice that the flow of

(2) (=)

2

| 2

2 2
Figure 2.2

(<) (2)

2 2

2 l
Figure 2.3

Fig. 2.2 violates the constraints of Fig. 2.3, and the flow of Fig. 2.3 violates
the constraints of Fig. 2.2. According to the theorem, there is a flow
meeting all constraints. One such is shown in Fig. 2.4.

43

II. FEASIBILITY THEOREMS AND COMBINATORICS

2,2 2,2

1,2 2,2

2,2 1,2
Figure 2.4

A proof of this theorem can be given along lines similar to the proof of
Theorem 1.1 by transforming the given feasibility problem into an equiva-
lent maximal flow problem in an enlarged network (using a device that
will appear again in the next section). The max-flow min-cut theorem can
then be applied to derive a pair of feasibility conditions, one of which is
equivalent to (a) above, the other to (b).

We first describe the device to be used in transforming the feasibility
problem into a maximal flow problem. Basically, what will be needed is a
way of changing arbitrary lower bounds on arc flows to lower bounds that
are uniformly zero. Thus suppose, for example, that in a network [&; /]
with source s and sink ¢, the problem is to ascertain whether there is a flow
from s to ¢ satisfying 0 < I(z, y) < f(z, y) < c(e, y) for some arc (z, y).
Assuming that all source arcs are directed from s and all sink arcs into ¢,
the problem may be pictured schematically as in Fig. 2.5. (The possibility

|~ . \@
/

Figure 2.5

s =x or y =t is not excluded.) Enlarge the network as suggested in
Fig. 2.6 by adding two nodes u, w, the arcs (u, y), (%, w), each having
capacity l(z, y), the arc (¢, s) having infinite capacity, and let (z, y) have
the new capacity c(z, y) — I(, y). Then a feasible flow f from s to ¢ of value

44

§2. A SYMMETRIC SUPPLY-DEMAND THEOREM

Figure 2.6

v in the original network generates a flow f* from u to w of value l(z, y) by
defining
f*(t’ 8) = v,
f*(u’ y) = f*(x’ w) = l(x’ y)’
f*(x’ y) = f(x’ y) — l(x: Y
* = f, otherwise,

and conversely. Thus a feasible flow exists if and only if the value of a
maximal flow in the new network is l(z, y).
Another way to interpret this device is to think of a supply l(z, y) at y
and a demand l(z, y) at z, thereby eliminating the nodes u, w and their arcs.
Returning now to the original problem of finding feasibility conditions
in [N; &/] for the constraints

a(x) < f(z, N) — f(N, z) < a'(z), zes,
f@, N) — f(N,z) =0, z€e R,
b(x) < f(N, z) — f(x, N) < b'(x), zeT,
0 < fl@y) <clx,y), (z,y) e,
where a, a’, b, b" are given functions satisfying
0 < a(z) < a'(), zes,
0 < b(x) < b'(z), zeT,

first extend the network by adjoining new nodes s, ¢ and the ares (s, S),
(T,t), where (s,), x €S, has lower and upper bounds a(x), a’(z); and

45

II. FEASIBILITY THEOREMS AND COMBINATORICS

(x,t), x € T, has lower and upper bounds b(z), b'(x). A further extension
can then be made using the device discussed above for getting rid of non-
zero lower bounds on arc flows. The result, pictured schematically in
Fig. 2.7, is a network [N*; .o/*], where N* consists of N plus four new
nodes s, £, u, w and &7* consists of &7 and the additional arcs (s, S), (u, S),
(T,), (T, w), (u,t), (s, w), (t,s).

-

Figure 2.7

The capacity function ¢ defined on & is extended to 2/* by

c(s,) = a'(x) — a(x), zes,
c(u, x) = a(x), zes,
c(z, t) = b'(x) — b(x), zeT,
c(z, w) = b(x), zeT,
c(u, t) = b(T),

c(s, w) = a(9),

c(t, s) = oo.

We assert that a feasible flow exists in [V ; 7] if and only if the value of
a maximal flow from » to w in [N*; &7*] is a(S) + b(T). Suppose first that
f is feasible in [N ; 2/]. Extend f to f*, defined on 2/*, as follows:

f*@s, z2) = f(z, N) — f(N, x) — a(x), zedl,
f*(u,) = a(x), zel,
f*=, t) = f(N,z) — f(x, N) — b(z), zeT,
[*(x, w) = b(x), zeT,

46

§2. A SYMMETRIC SUPPLY-DEMAND THEOREM
f*(u, t) = b(T),
fX(s, w) = a(9),
f*(t’ S) = f(S: ZV) - f(N’ S)’
f*(il', y) =f(x’ ?/), (x, y)EJY.
It is a routine matter to check that f* is a flow from u to w in [N*; o7*].
Clearly, f* has value a(S) + b(T).
Conversely, let f* be a flow from u to w in [N*; 2/*] of value a(S) + b(T).
Then
f*(w,) = a(x), zeb,
f*(il:, w) = b(x)) zeT.
Let f be f* restricted to 7. Then f is a flow from § to T in [N ; &/], and it
remains only to show that f is feasible. Suppose z € S. Then

f*(u’x) +f*(s,x) =f(x7 N) —f(N,.’L’),
or

a(z) + f*(s, 2) = f(z, N) — f(N, 2);
and, since 0 < f*(s, 2) < a'(x) — a(x), we get
a(x) < f(x, N) — f(N, 2) < a'(x).
The inequalities
b(z) < f(N, x) — f(z, N) < b'(x), zeT,

are similarly proved. This completes the proof of the assertion.

We may, therefore, in searching for feasibility criteria, re-phrase the
question as follows. Under what conditions does there exist a flow f* from
u to w in [N*; o7*] having value a(S) + b(7'), that is. saturating all
source and sink arcs?

The max-flow min-cut theorem can now be used to provide an answer
to this question by insisting that the capacities of all cuts separating u
and w be at least a(S) + b(T'). Thus, let (X*, X*) be a cut in [N*; «/*] and
consider cases.

Case 1. se€ X*, t e X*. Partition X*, X* as follows: X* = uUsuU X,
X* = wuU tU X, so that X is the complement of X in N. Then

c(X*, X*) = c(u, t) + c(u, X) + c(s, w) + ¢(8, X) + (X, w) + ¢(X, t)
+ (X, X)

WT) + a(SNX) +alS) + (SN X) — a(SN X)
+5TNX)+b(TNX)-bTnN X) + (X, X).

Hence in this case, we always have c(X*, X*) > a(S) + b(7T).
Case 2. s € X*, t € X*. Then c¢(X*, X*)is infinite, and again no condition
is obtained.

47

II. FEASIBILITY THEOREMS AND COMBINATORICS

Case 3. s€ X* t e X* Letting X* = sUtUuU X, X* =wU X, we
have

c(X*, X*) = c(s, w) + ¢(s, X) + c(u, X) + (X, w) + ¢(X, X)
=al)+a(SNX)—alSNX)+aSNX)+ bTnNX)
+ ¢(X, X).

Thus ¢(X*, X*) > a(S) + b(T) if and only if
(X, X)2(TNX)—aSNIX).

Cased. se X* teX* Let X* =uU X, X* =sUtUwuUX. Then

o(X*, X*) = c(u, t) + c(u, X) + ¢(X, t) + ¢(X, w) + ¢(X, X)
b(T) 4+ a(SNX)+b(TNX)—-bTNX)+bTNX)

+ (X, X),

and we obtain the condition
(X, X) 2 a(SN X) — b (TN X).
We may therefore state the following result [8].

THEOREM 2.1. The constraints

(2.1) a@) < f(z, N) — f(N,2) < a'(2), zes,
(2.2) f(x, N) — f(N,z) = 0, z€ R,
(2.3) bz) < (N, 2) — flz, N) < b'(a), zeT,
(2.4) 0 < flz,y) < ¢, 9), (¢, y) €,

(where 0 < a(x) < a'(x) for €8 and 0 < b(x) < b'(x) for xeT) are
feasible if and only if

(2.5) (X, X) 2 0(TNX)—allNX),
(2.6) (X, X)>aSNX)-b(TNX)

hold for all X = N.

Notice that (2.5) is precisely condition (1.5) for the supply-demand case
(Theorem 1.1); that is, if a(z) = 0 for x € S and b'(x) = oo for x € T, then
Theorem 2.1 reduces to Theorem 1.1. Condition (2.6) may be interpreted
as follows. If we interchange sources and sinks in [N ; &/], reverse all arc
orientations, and think of a as the demand function at the set S of sinks,
b" as the supply function at the set T' of sources, then (2.6) is a necessary
and sufficient condition for feasibility of the supplies and demands in the
reversed network. Thus Theorem 2.1 may be restated as follows.

48

§2. A SYMMETRIC SUPPLY-DEMAND THEOREM

CoROLLARY 2.2. The constraints (2.1)—(2.4) are feasible if and only if
each of the constraint sets

a(x) < f(x, N) — f(N, z), zel,
@.7) flx, N) — f(N,z) = 0, ze R,
' f(N:x)'_f(x:N)<bl(x)’ ZET,
0 < fz,y) < clx,), (,y) e,
fl@, N) — f(N, z) < a'(), zes,
fl@, N) — f(N,z) =0, zeR,
(28) b(x) < f(N,z) — f(z, N), zeT,
0 < f(z,y) < clx,y), (x,y) e,
is feasible.

Corollary 2.2 is the formulation described verbally at the beginning of
this section.

When the network is suitably specialized, Theorem 2.1 (or its corollary)
provides criteria for the existence of a non-negative matrix whose row and
column sums lie between designated limits, or, more generally, for the
existence of a matrix with these properties and the further property that
the elements of the matrix are bounded above by specified numbers. We
state the criteria provided by Corollary 2.2 explicitly.

CoroLLARY 2.3. Let 0<a;<aj, i=1,...,m0<b <b, j=1,
.o.,m, and cy > O be given constants. If there are matrices (f}), (f%)
satisfying
(2.9) o <Dfh DIE<Y 0<fi<ey

J i
(2.10) DfE<a, b <3fL 0< i<y
J i

then there is a matrix (fij) satisfying
211) o< yfy<a, b<Df;<b, 0<f,;<cy
J i

To prove Corollary 2.3, take [N; /] to be the network consisting of
nodes z;(2 = 1,...,m), y; (j = 1,..., n), and ares (z;, y;) of capacity c;;.
Let 8 = {x1,...,2p), T = {y1, ..., Yn}, so that R is vacuous. Associate
with each source x; the bounds a;, a; and with each sink Y; the bounds
b;, b;. Then a flow from S to T' is a matrix (f;;) satisfying 0 < f;; < ¢;;; a
feasible flow satisfies, in addition, the first two inequalities of (2.11). Thus
Corollary 2.3 is an immediate consequence of Corollary 2.2.

The particular kind of network involved in the proof of Corollary 2.3,
namely one in which the nodes IV are divided into two subsets with all arcs

of o7 leading from nodes of one subset to those of the other (we do not,

49

II. FEASIBILITY THEOREMS AND COMBINATORICS

however, insist that all such arcs be present in %), will crop up frequently
enough to justify a special name. One name that has been used by writers
in graph theory is ““bipartite’’; henceforth we shall use this terminology
also.

3. Circulation theorem

The final feasibility theorem that we shall discuss before proceeding to
combinatorial applications is due to Hoffman [17]. This theorem is con-
cerned with the existence of circulations; that is, flows that are source
and sink free, that satisfy prescribed lower and upper bounds on arcs.

The method used in the last section can be applied to this problem as
well.

Let the given network be [V; .27] and suppose that l and ¢ are the lower
and upper bound functions defined on 27, where 0 < I < c. A feasible
circulation in [N ; /] is a function f on & satisfying

f(@, N) — f(N,z) =0, zeN,
Uz, y) < flz,y) < ¢z,), (x,y) e .

Extend [N; 2/] to [N*; o/*] by the adjunction of two nodes s, ¢ and the
sets of arcs (s, N) and (I, t). The capacity function defined on &/* is

C*(Z, y) = c(z, y) - l(x’ Y), (x,y) € A,
c*(s,) = UN, z), zeN,
c*(z,t) = l(z, N), xeN.

It is easy to verify that a feasible circulation f in [N ; .«/] generates a flow
f* from s to t in [N*; o/*] via the rule:

[*@,) = f(z,y) — Uz, y), (x,y) e A,
[*(s, x) = U(N, x), zeN,
f*(x,t):l(x,N), zeN.

Thus the question becomes: when is there a flow from s to ¢ in [N*; &/*]
that has value [(N, N)?

The procedure is now familiar. The necessary and sufficient condition
for the existence of a flow from s to ¢ of value (N, N) is that all cut
capacities exceed I(N, N). Let (X*, X*) be a cut separating s and ¢ in
[N*; o/*], and define X = N together with its complement X in N by

X=X*—35,X=X*—1¢
Then
cHX*, X*) =c*(XUs, XU)
= c*(X, X) + c*(s, X) + XX, t)
=c¢X,X) - X, X) + N, X) + (X, N)
X, X) + UX,X) + (X, N),

50

§3. CIRCULATION THEOREM
and consequently c*(X*, X*) > I(N, N) if and only if
(X, X) > UX, X).
Thus we have established

THEOREM 3.1. A4 necessary and sufficient condition for the constraints

(3.1) fx, N) — f(N,z) =0, zeN,
3.2) Uz, y) < f(z, y) < c(=,y), (@, y) e,
to be feasible, where 0 < Uz, y) < c(z, y), is that

(3.3) X, X) > X, X)

hold for all X < N.

As in the other feasibility theorems, the necessity of the condition is
intuitively clear (and easily proved directly), since (3.3) simply asserts
that there must be sufficient escape capacity from the set X to take care
of the flow forced into X by the function I. If the condition is satisfied for
all subsets of nodes, the existence of a feasible circulation is assured.

The reason why the necessity of such feasibility conditions is always the
easier half of the theorem is that necessity corresponds to the weak half of
the max-flow min-cut theorem, that is, flow values are bounded above by
cut capacities.

There is one fundamental difference between the supply-demand
theorems and the circulation theorem, however, that lies in the distinction
between flows in undirected or mixed networks and flows in directed net-
works. If we interpret flows in undirected or mixed networks to mean that
flow in an arc is unidirectional but no direction may be specified (as in 1.10),
then Theorems 1.1 and 2.1 remain valid. But Theorem 3.1 gives no in-
formation about the problem of determining conditions under which a
feasible circulation exists in an undirected network subject to lower and
upper bounds on arc flows. (This problem is, so far as we know, unsolved.)
Generally speaking, if non-zero lower bounds are imposed on undirected
arc flows, then replacing an undirected arc by a pair of oppositely directed
arcs and cancelling flows in opposite directions, is not a valid operation.
Thus, there is a real distinction between directed and undirected problems
in this case.

The circulation theorem can be used to answer the question raised in 1.9
concerning the existence of flows from s to ¢ in a directed network subject
to lower and upper bounds on arc flows. By adding the arcs (s, t) and (¢, s)
to the network with infinite capacity (allowing multiple arcs if necessary),
the relevant condition becomes (3.3) for all X = N such that either both
s and ¢ belong to X or neither does. To construct such flows, one can of
course solve the equivalent maximal flow problem used in deriving the
existence conditions.

51

II. FEASIBILITY THEOREMS AND COMBINATORICS

Hoffman has also stated an extension of the circulation theorem covering
the situation in which the net flow into node x lies between stipulated
bounds [17]. The result here, which may be proved either from the
circulation theorem or its variant described above, is:

THEOREM 3.2. The constraints

(3.4) a(z) < f(N, z) — f(z, N) < a'(x),

(3.5) Uz, y) < f(x Y) < c(x, y),

(where a(x) < a’(x), 0 < Uz, y) < c(z, y)) are feasible if and only if
(3.6) (X, X) > X, X) + max [a(X), — a'(X)]

holds for all X < N.

A proof of Theorem 3.2 can be given by adjoining a source s and sink ¢
to N, the sets of ares (s, N) and (N, t) to &, and extending the functions [
and c to arcs of the new network by defining

l(s, z) = max (0, —a’'(z)),
Uz, t) = max (0, a(x)),
c(s,) = max (0, —a(x)),
¢(z, t) = max (0, a'(x)).

Applying the feasibility conditions stated in the preceding paragraph to
the new network yields the pair of conditions embodied in (3.6).

In case a(x) = a’(x) = 0, or indeed, if a(x) = 0, then (3.6) reduces to
(3.3).

Although the proof of Theorem 3.1 that has been presented in this
section used the max-flow min-cut theorem, an alternate, direct proof can
be given along lines similar to the proof of the latter. The direct con-
struction for a feasible circulation described below provides such a proof
in case the lower bound function ! and capacity function ¢ are rational
valued. The basic routine in this construction is again a labeling process.

We assume for the construction that ! and ¢ are integral valued.

Construction of a feasible circulation. Start with any integral valued f
that satisfies the conservation equations at all nodes. For example, f = 0
will do. Next locate an arc (s, t) for which one of the bound conditions
(3.2) is violated, and go on to the appropriate case below.

Case 1. f(s,t) > c(s, t). Start a labeling process at node s, trying to
reach node ¢, assigning labels to nodes as follows. First label s with
[t=, e(s) = f(s, t) — c(s, t)]. In general, select any labeled, unscanned node
z, and assign further labels to (unlabeled) nodes y using the rules:

(@) if (z, y) is an arc with f(z, y) < c(z, y), assign y the label [z*, ¢(y)

= min (¢&(x), c(@, y) — f(z, y))];
(b) if (y,) is an arc with f(y, x) > I(y, x), assign y the label [z, &(y)

= min (e(x),f(y, Il?) - l(y’ .’l:))]
52

§4. THE KONIG-EGERVARY AND MENGER GRAPH THEOREMS

Continue labeling until either node ¢ is labeled (breakthrough), or until no
more labels can be assigned and node ¢ is unlabeled (non-breakthrough).
In the former case, change the flow by adding and subtracting &(t) while
back-tracking from ¢ to s according to first members of the labels; having
reached s, also subtract &(t) from f(s,t). If non-breakthrough occurs,
terminate. (There is no feasible circulation.)

Case 2. f(s,t) < l(s,t). Start labeling at ¢, trying to reach s, first
assigning ¢ the label [s*, &(f) = I(s, t) — f(s, t)]. The labeling rules are the
same as Case 1. If breakthrough occurs, so that a path from ¢ to s has been
found, change the flow by adding &(s) to the flow in forward arcs of this
path, subtracting &(s) from the flow in reverse arcs, and adding &(s) to
f(s, t). If non-breakthrough, terminate. (There is no feasible circulation.)

Following a flow change in either case, locate another arc flow that
violates its bounds, and re-label.

This algorithm either constructs a feasible circulation in finitely many
steps, or proves there is no feasible circulation. First of all, note that if
breakthrough occurs in either case, a cycle has been found that includes
the arc (s, t). (For in Case 1, t cannot be labeled from s via the arc (s, ¢),
and similarly in Case 2.) Then the flow change made on arcs of this cycle
again yields an f’ satisfying the conservation equations. Moreover, the new
arc flow f'(s, t) comes at least one unit closer to feasibility, and if l(z, y)
< f(z, y) < c(z, y) for any other (z, y), then also l(z, y) < f'(x, y) < c(x, y).
It follows that, after finitely many steps, either a feasible circulation is
constructed, or non-breakthrough occurs.

Suppose that non-breakthrough occurs, say in Case 1, and let X and X
be the labeled and unlabeled sets of nodes. Then s € X, t € X. It follows
from the labeling rules that f(z, Z) > c(z, Z) for all arcs in (X, X), and
f&, x) < U(Z, z) for all arcs of (X, X). Also, for at least one arc of (X, X),
namely (s,t), we have strict inequality f(s,t) > c(s, t). Thus, since f
satisfies the conservation equations at all nodes,

0=F(X,X) - fX,X)>cX,X) - X, X),

violating condition (3.3). Hence there is no feasible circulation.

An exactly similar proof holds for Case 2.

A variant of this construction for a feasible circulation will play a role in
one of the algorithms of Chapter III.

4. The Ko6nig-Egervary and Menger graph theorems

We shall customarily use the word “‘graph’ or ““linear graph’ when our
intent is to focus attention on purely combinatorial results, and use
“network”” when the primary concern is with flows.

There are two well-known theorems in linear graph theory that are
intimately related to the max-flow min-cut theorem for network flows.

53

II. FEASIBILITY THEOREMS AND COMBINATORICS

They may, in fact, be regarded as combinatorial prototypes of the latter.
The first of these theorems (Theorem 4.1 below), due to Kénig and Eger-
vary, appears as a lemma in the proof of Menger’s theorem given in [21]; it
deals with bipartite graphs. Menger’s theorem (Theorem 4.2 below) is the
generalization that results for arbitrary graphs.

We use the notation [N ; /] =[S, T'; /] for bipartite graphs in which
arcs lead from S to 7.

THEOREM 4.1. Let G =[8, T; /] be a bipartite graph. The maximal
number of arcs of G that are pairwise node disjoint is equal to the minimal
number of nodes tn an S, T disconnecting set of nodes.t

Here an 8, T disconnecting set of nodes is a set of nodes that blocks all
chains from S to 7.

To prove this theorem using flows, one can proceed as follows. Adjoin
nodes s, t and the sets of arcs (s, 8), (7', ¢) to the network. For the resulting
network [N*; o/*] define a capacity function by

c(s,z) = 1, zel,
c(z, t) =1, zeT,
c(x,y) = oo, (z,y) e .

Let f be an integral maximal flow from s to ¢ and let (X, X) be a minimal
cut separating s and ¢. (Note that (X, X) can contain no arcs of .«7.) The
arcs of the set # = {(z, y) € &|f(x, y) = 1} are pairwise node disjoint,
and the nodes of the S, 7' disconnecting set D = (SN X) U (T N X) are
in one-one correspondence with the arcs of the minimal cut (X, X). It
follows from the max-flow min-cut theorem that if f has value v, then v is
the number of elements in .#, and also in D. Hence, since the maximal
number of pairwise node disjoint arcs of G is clearly less than or equal to
the minimal number of nodes in an S, 7' disconnecting set of nodes, the
proof of Theorem 4.1 is complete.

Another statement of the Konig-Egervary theorem is sometimes given
in terms of m by n arrays that contain two kinds of cells, admissible and
inadmissible, say. Suppose we refer to the rows and columns of the array
by the common term ““lines.” A set of lines covers the admissible cells of
the array if each admissible cell belongs to some line of the set. A set of
admissible cells is independent if no two cells of the set lie in the same line.
By constructing from the array the bipartite graph G composed of nodes

S={xl,...,xm}, T={y1,...,yn},

t Many combinatorial proofs of this theorem are known. Of these, perhaps the one
closest in spirit to the use of flows is that of [21], in which the notion of an alternating
path substitutes for that of a flow augmenting path. One other proof we wish to call
the reader’s attention to is given in [5]. This proof, and the use of it made by Kuhn
[22]in devising an algorithm for the optimal assignment problem, played an important
role in the development of the algorithms to be presented later for minimal cost
transportation problems.

54

§5. MAX INDEPENDENT SET OF ADMISSIBLE CELLS

and ares (2, y;) corresponding to admissible cells, one sees that the notion
of “independent set of admissible cells” (respectively, ‘‘covering set of
lines”’) corresponds to “pairwise node disjoint ares” (respectively, “S, T'
disconnecting set of nodes’), and hence Theorem 4.1 becomes: the
maximal number of independent admissible cells is equal to the minimal
number of lines that cover all admissible cells.

THEOREM 4.2. Let S and T be two disjoint subsets of the nodes of the graph
G = [N;). The maximal number of pairwise node disjoint chains from S
to T is equal to the minimal number of nodes in an S, T disconnecting set of
nodes.

Again this theorem follows from the max-flow min-cut theorem and
integrity theorem by adjoining a source s and sink ¢, together with source
arcs (s, S) and sink arcs (7', t), and imposing unit capacity on all old nodes,
infinite capacity on arcs. A chain decomposition of an integral maximal
flow from s to ¢t provides a maximal set of pairwise node disjoint chains.

The graph G in Theorem 4.2 may be directed, undirected, or mixed
without affecting the theorem statement. It is also clear that a similar
theorem holds for chains from S to 7' that are pairwise arc disjoint and
sets of arcs that block all chains from S to 7, since we may place unit
capacity on arcs, infinite capacity on nodes.

The max-flow min-cut theorem is obviously a generalization of Theorem
4.2. On the other hand, a proof of the max-flow min-cut theorem that uses
Theorem 4.2 as the principal tool has been given by Robacker [28].

5. Construction of a maximal independent set of admissible cells

The labeling process for constructing maximal flows can of course be
used to produce a maximal independent set of admissible cells and a
minimal covering set of lines for the array interpretation of Theorem 4.1.
It is worth while deseribing this computation in detail, since some simpli-
fication is possible because of the special nature of the associated flow
problem. The algorithm that results is similar to the construction that
may be considered implicit in Koénig’s proof of Theorem 4.1, and also
similar in spirit, although not in detail, to Kuhn’s method for solving this
problem [22].

Let¢ = 1,..., m index the rows of the array,j = 1, ..., n the columns.
The maximal flow problem becomes that of placing as many 1’s as possible
in admissible cells, with the proviso that at most one 1 can be placed in
any line. Initiate the process with any feasible placement of 1’s, e.g., scan
the first row and place a 1 in the first admissible cell, then delete the lines
containing this 1 and repeat the procedure in the reduced array.

After obtaining a feasible placement of 1’s, begin by labeling (with
dashes, say) all rows that contain no 1’s. Then select a labeled row, say

55

II. FEASIBILITY THEOREMS AND COMBINATORICS

the ith row, and scan it for admissible cells, labeling the (unlabeled)
columns corresponding to such cells by the number of the row being
scanned, here 7. Repeat until all labeled rows have been scanned (never
labeling a column that has already received a label). Now select any
labeled column, say column j, and scan it for a 1; if such is found, label the
row in which the 1 lies with the number of the column being scanned,
here j. Again select an unscanned, labeled column and repeat the procedure.
After scanning all labeled columns, revert to row scanning by selecting a
labeled, unscanned row. The process continues in this fashion, alternating
between row and column scanning until either :

(a) a column is labeled that contains no 1, in which case an improved
placement of 1’s can be found from the labels (breakthrough);

(b) no more labels are possible and breakthrough has not occurred, in
which case the present placement of 1’s is maximal (non-breakthrough).

In case (a) the total number of 1’s in the array can be increased (by one)
as follows. In the column containing no 1 that has just been labeled, place
a 1 in the position designated by its label; then proceed, in the row in
which this 1 lies, to the position indicated by its label and remove the 1
there; then go, in the column just reached, to the position indicated by its
label, and place a 1, and so on. Eventually one of the initially labeled rows
(those marked by dashes) will be reached, at which point the replacement
stops, and the total number of 1’s in the array has been increased by one.
The labeling process is then repeated with the new placement of 1’s.

In case (b), a minimal covering set of lines consists of the unlabeled
rows and labeled columns.

ExampLr. In the array of Fig. 5.1, admissible cells are blank and
inadmissible cells are crossed out. The 1’s shown constitute an initial
placement using the suggested starting procedure. Rows 8 and 9 have no
I’s; we need to “break through’ to either column 5 or 9 to get an im-
provement. Scanning row 8 labels columns 2, 4, 6; row 9 produces the
additional labels on columns 1, 8. From column 1 we label row 2; from
column 2, row 1; from column 4, row 3; from column 6, row 5; and from
column 8, row 6. Switching back to row scanning, we get only the additional
label 2 on column 3. Then row 4 receives the label 3, following which
breakthrough into either column 5 or 9 occurs; here we have labeled
column 5. The arrows in Fig. 5.1 indicate the resulting sequence of changes
in the placement of 1’s.

After making the indicated changes and relabeling, case (b) occurs and
a minimal cover is found to consist of rows 2, 4, 7, 9 and columns 2, 4, 6, 8.

A practical instance of this kind of problem might occur, for example, in
attempting to fill jobs with qualified personnel. Thus if man ¢ is qualified

56

§6. A BOTTLENECK ASSIGNMENT PROBLEM

1 1 2
2| 1= |
A

3 4 1 4
4q 1 3
5 1 6
6 1 8
7 1

8 -
9| v -

9 8 2 8 q 8 9 <-—1Lo bels
Figure 5.1

for job j, cell 4 is classified “‘admissible,”” otherwise ‘‘inadmissible.” An
assignment of men to jobs that maximizes the number of men assigned to
jobs they are qualified for can then be found by the procedure we have
outlined. As we shall see later, this problem is a special case of the optimal
assignment problem; a solution to the latter can, however, be obtained by
solving a sequence of such special assignment problems.

6. A bottleneck assignment problem

The computation of the preceding section can also be applied repeatedly
to solve the following bottleneck problem. Suppose there are » men and n
jobs, that man ¢ in job j has an “efficiency” ay;, and that it is desired to
find an assignment ¢ — P(¢) of men to jobs that maximizes the least
ai, pwy; that is, we want to construct a permutation P* that achieves
maxp min; a;, pyy. For example, the jobs might be those on an assembly
line, and a;; might represent the number of units per hour that man ¢ can
process if assigned to job j. Then for a given assignment P, the rate of the
assembly line is measured by the bottleneck min; a;, p(), and thus we wish
to maximize this over all permutations P.

Gross has pointed out a simple procedure for solving this problem [12].
Briefly, it is this. Begin by selecting an arbitrary permutation P. Then, in

57

II. FEASIBILITY THEOREMS AND COMBINATORICS

the array (ai), call a cell admissible or inadmissible according as ag
> min; a;,p) OF & < Ming az,pgy. (Clearly P can be improved if and only
if n independent admissible cells can now be found in the array.) Apply the
algorithm of § 5 to construct a maximal set of k admissible cells. If k < =,
P is optimal; if k¥ = n, repeat the procedure with the new permutation
thus defined.

ExampLE. Suppose the array (a;;) is that of Fig. 6.1 and we initiate

vl 3 26| o |

vVl 2 3|8 | 3|

8 | 1 |1 | s’ oo
v

Figure 6.1

the computation with the permutation indicated by the checks (v). The
resulting admissible cells are indicated by circles in Fig. 6.2. We may then

®
@) O,

)

O
)

0|0
OJO)

00000

Figure 6.2

start with the partial assignment obtained by retaining as many checks in
admissible cells as possible (here five) and apply the labeling procedure to
construct the assignment indicated by 1’s in Fig. 6.2. In the new array of
admissible cells thus defined (Fig. 6.3), there are at most five independent
admissible cells, and hence the assignment of Fig. 6.2 is optimal.

58

§7. UNICURSAL GRAPHS

OO

O)

O
O|0|00I0B
©

O)

Figure 6.3

7. Unicursal graphs

A mixed linear graph G = [N; /] will be called unicursal if there
exists a closed route in @ that contains each arc of G once and only once,
and each node of G at least once. Here the phrase * closed route’” means a
sequence of nodes and arcs that has the form

(7.1) x1, (21, 22), 2, (T2, 3), . . -, (Tp-1, X1), X1.

Thus a closed route differs from a directed cycle in that the nodes of (7.1)
need not be distinct; but any directed arc encountered in traversing a
closed route will be traversed with its direction, as for a directed cycle.
To avoid special statements, we also stipulate that a single node is a
closed route. Hence the graph consisting of one node and no arcs is
unicursal.

The study of graphs had its origin in unicursal problems; in particular,
Euler’s celebrated problem of the * bridges of Konigsberg.” Necessary and
sufficient conditions that a given graph G be unicursal are well known in
case @ is either directed or undirected. In this section we shall use flows to
derive such conditions for mixed graphs. These conditions contain as
special cases those for the directed or undirected case.

To state Theorem 7.1 below, we require one other elementary notion
about graphs that has not been previously elaborated, that of connected-
ness. For our purposes here, we may say that two distinct nodes « and y of
a graph @ are connected if there is a path in G from « to y (and hence from
y to z). This defines an equivalence relation on the nodes of G, and there-
fore partitions .V into connected classes Ny, Ng, ..., N, which have the
properties:

(1) every two nodes of the same class are connected,

(2) there is no arc in ¢ joining nodes of distinct classes.

39

II. FEASIBILITY THEOREMS AND COMBINATORICS

If p =1, the graph G is connected; that is, every two nodes of G are
connected.t Thus every graph G splits up into connected subgraphs
H,, H,, ..., Hy Here H; is the subgraph of G consisting of all nodes of the
ith equivalence class V;, together with all arcs of G that join nodes of this
class.

It is clear that a necessary condition for unicursality is that the graph be
connected. Another obvious necessary condition is that every node of the
graph be incident with an even number of ares, since a closed route leaves
a node as often as it enters it. For undirected graphs, these two necessary
conditions are also sufficient. In order to obtain necessary and sufficient
conditions for unicursality for directed graphs, however, the latter condi-
tion must be replaced by the condition that the number of inwardly
directed arcs is equal to the number of outwardly directed arcs at each
node.

THEOREM 7.1. The mixed graph G = [N; &/] is unicursal if and only if

(a) G 1s connected;

(b) every node of G is incident with an even number of arcs;

(c) forevery X = N, the difference between the number of directed arcs from
X to X and the number of directed arcs from X to X is less than or equal to the
number of undirected arcs joining X and X.

Notice that in case @ is directed or undirected, the conditions of the
theorem reduce to those stated above for these cases. We now prove
Theorem 7.1. Again necessity gives no difficulty. To prove sufficiency, one
can proceed by establishing a circulation in @, then directing some of the
originally undirected arcs according to this circulation.

In particular, first replace each undirected arc of G by a pair of oppositely
directed arcs, obtaining 4 directed graph G = [N;./1]. Define lower
bounds and capacities for arcs (z, y) in &7 by

(7.2) c(x,y) =1, (x, y) € 1,
1, if (x, y) is a directed arc of .27,
0, otherwise.

(7.3) Uz, y) = {
Then hypothesis (c) of the theorem is equivalent to (3.3) of the circulation
theorem, and hence there is a feasible circulation f in ¢;. This circulation
may further be assumed integral, hence f(x, y) = 0 or 1. Now orient some
of the undirected arcs of G as follows. If (z, y) is an undirected arc of
and if f(z,y) = 1, f(y,) = 0, direct the arc from x to y. This yields a
mixed graph G2 = [N; &75], which has properties (a), (b) of the theorem,
and also

t G might better be said to be ‘“‘weakly’ connected, reserving the notion of
‘“‘strong” connectedness for a graph in which there is a chain fromn any node to

another. Actually, it is immaterial whether (a) of Theorem 7.1 is stated in terms of
strong or weak connectedness.

60

§8. DECOMPOSITION FOR PARTIALLY ORDERED SETS

(¢") the number of inwardly directed arcs equals the number of outwardly
directed arcs at each node.

It now suffices to establish that G2 is unicursal. To do this, one can
proceed by induction on the number of arcs of such a graph. 1f (/2 has no
arcs and is connected, it consists of a single node, and is unicursal. Assume
that a graph having properties (a), (b), (¢’) and fewer than m > 0 arcs is
unicursal, and consider such a graph Gs having m arcs. By (b) and (¢’), the
graph G2 contains a closed route that visits more than one node, and such
that the deletion of its arcs yields a graph (satisfying (b) and (c').
Consider the connected pieces of ;. Each piece satisfies (a), (b), and (c),
has fewer than m arcs, hence is unicursal by the inductive assumption.
Since (3 is connected, each of these unicursal pieces has at least one node
in common with the closed route. It follows that G is unicursal, as was to
be shown.

It may also be observed that in application to any mixed graph satisfy-
ing (a) and (b), the simplest method of testing for unicursality is probably
to set up the problem in flow form and attempt to construct a feasible
circulation by the method of § 3. If there is no feasible circulation, then the
method yields sets X and X for which the hypothesis (c) fails to be satisfied.

8. Dilworth’s chain decomposition theorem for partially ordered sets

Let P be a finite partially ordered set with elements 1, 2, . . ., n and order
relation “>"’. A chain in P is a set of one or more elements 1y, 19, . . ., i
with
(8.1) I >=te > ... > g

(If we associate a directed graph with P by taking nodes 1, 2, ..., n and
ares (¢, j) corresponding to ¢ > j, this notion of a chain coincides with the
notion of chain in the graph, except that now we allow a single node to be
a chain.) A decomposition of P is a partition of P into chains. Thus P
always has the trivial decomposition into n l-element chains. A decom-
position with the smallest number of chains is minimal.

Two distinct members 4, j of P are unrelated if neither ¢ > j nor j > .
Notice that the maximal number of mutually unrelated elements of P is
less than or equal to the number of chains in a minimal decomposition of P,
since two members of a set of mutually unrelated elements cannot belong
to the same chain. The finite case of Dilworth’s chain decomposition
theorem asserts that actually equality holds in the inequality just stated
[3].

ExaMpLE. In the partially ordered set depicted in Fig. 8.1, all arcs are
oriented downward and arcs corresponding to relations implied by trans-
itivity have been omitted. The heavy lines indicate a decomposition into

61

II. FEASIBILITY THEOREMS AND COMBINATORICS

Figure 8.1

three chains and the three circled nodes are a set of mutually unrelated
elements.

Dantzig and Hoffman have shown how to formulate the problem of
finding a minimal decomposition of a partially ordered set as a linear
programming problem, and have deduced Dilworth’s theorem from duality
theory [2]. Here we shall establish the connection between this theorem
and the Konig-Egervary theorem. It will follow that the problem of
constructing a minimal decomposition can be solved by the algorithm of
§5[7].

Given the partially ordered set P = {1, 2,...,n},let G =[S, T'; /] be
the bipartite graph consisting of 2n nodes § = {1, ..., zn}, T = {y1, ...,
ya}, and arcs defined from P by the rule: (z;, y;) € &7 if and only if ¢ > j.
Using the language introduced in the array version of Theorem 4.1, we
shall refer to independent sets of arcs and covering sets of nodes in G. A
covering set of nodes is proper if no proper subset is itself a cover.

LemMa 8.1. Corresponding to any independent set F < S/ there is a
decomposition A of P with |#| + |A| = n.
Proor. Let

(8.2) I = {@i, Yip)s @1y Yi)s - - s iy Uiy}

Thus

(8.3) 41 > 02,13 > 14, ..., T2p—1 > G2k

in P, and we may group the distinct elements of the set {11, . . ., 125} into

chains, each containing two or more elements. These chains are disjoint,
since # is an independent set of ares in G. By adding to these, as one

62

§8. DECOMPOSITION FOR PARTIALLY ORDERED SETS

element chains, all elements of P that do not already appear, a decom-
position A of P is obtained. If the number of elements of P that are in the
jt chain of A is I, it follows that

14| lA|
(8.4) Z Z = 1) + |A] = |£] + |4,

since l; — 1 counts the number of arcs of .# that are used in forming the
Jt chain of A.

Notice that the proof of Lemma 8.1 does not make full use of the
assumption that P is partially ordered. Indeed, Lemma 8.1. is valid for
directed graphs that contain no directed cycles.

Lemma 8.2. Corresponding to any proper cover X < S\U T, there is a
set U < P of mutually unrelated elements with |X| + |U| = n.
Proor. Let

(85) X = {xip L) x’tk’ Yjps e e yjm}

be a proper cover. The elements of the set of indices in (8.5) are distinct,
for suppose i1 = j1, say. Since X is a proper cover, there is an z, ¢ X with
(xr, y3,) € A ; similarly there is a ys;¢ X with (x;, ys) € /. Then, by
transitivity and the assumption that 7; = j;, it follows that (z,, y5) € <.
This contradicts the assumption that X is a cover, and thus implies that
the elements of the set {iy, ..., ik, j1, .. ., jm} are all distinct. Now let U
be the complement in P of this set. Since X is a cover, the elements of U
are mutually unrelated, and » = |X| + |U|.

Dilworth’s theorem now follows from the lemmas and Theorem 4.1.
For let £ be a maximal independent set, X a minimal cover, and let A, U
be their respective correspondents in P. By Theorem 4.1, |#| = |X|;
hence, by the lemmas, |A| = |0|. But, as we have observed, |U| < |A| for
all U and A.

It is true, conversely, that Dilworth’s theorem implies Theorem 4.1.
This can be seen by making the given bipartite graph G = [8, T'; &7] into
a partially ordered set by defining, for x €8, y € T, the relation z > y
corresponding to (z, y) € &/. The desired implication now follows from the
following two easily checked statements:

(a) corresponding to any decomposition A of P, there is a set of inde-
pendent arcs £ of G with |A] + |#| = |SU T|; namely, let £ be the two
element chains of A;

(b) corresponding to any set U < P of unrelated elements, there is a
cover X of G with |U| + |X| < |[SU T|, for the complement of U
contains a cover.

From the proofs of the lemmas, it is clear that the algorithm described

63

II. FEASIBILITY THEOREMS AND COMBINATORICS

in §5 can be used to construct a minimal chain decomposition and a
maximal set of mutually unrelated elements.

ExaMpPLE (continued). For the partially ordered set of Fig. 8.1, the
equivalent array problem is schematized in Fig. 8.2. The assignment of 1’s

Figure 8.2

shown there, obtained using the starting procedure suggested in §5,
corresponds to the chain decomposition {1, 3, 6; 2, 4, 8; 5, 9; 7}. The label-
ing shown breaks through to column 7. After making the indicated switch,
we obtain the new decomposition {1, 3, 7; 2, 4, 6, 8; 5, 9} containing one
fewer chain. The next labeling produces labels on rows 5, 6, 7, 8, 9 and
columns 8, 9 without breakthrough. Consequently the unlabeled rows
1, 2, 3, 4 and labeled columns 8, 9 are a minimal cover, and hence the
“missing” elements 5, 6, 7 form a maximal mutually unrelated set.

9. Minimal number of individuals to meet a fixed schedule of tasks

As an application of the maximal flow computation for a minimal chain
decomposition of a partially ordered set, consider the problem of finding the
fewest number of individuals required to meet a fixed schedule of tasks.

64

§9. FIXED SCHEDULES

Suppose there are n tasks 7T'; with stipulated starting times a; and finishing
times b; (a; < b;) and that reassignment times from 7'; to 7'; are given by
numbers r; > 0 for ¢ # j. How many individuals are needed to perform
all tasks on schedule ?

For example, the individuals might be machines of a given type, and ry
might represent the set-up time necessary, having finished 7';, before T';
can be started. Or the individuals might be airplanes, say, the T'; scheduled
flights, and ri; the time required to return from the point of destination of
flight T'; to the point of origin of flight 7' [1].

Making the reasonable assumption that

9.1 ik < T + ik
it is easy to see that the 7'; can be partially ordered by defining
(9.2) Ti; > T; if and only if b; + ry < ay,

and that, in terms of this partial ordering, a chain represents a possible
assignment of tasks to one individual. Thus we are seeking a minimal chain
decomposition of this partially ordered set.

It follows from Dilworth’s theorem that the fewest number of individuals
required is equal to the maximal number of tasks, no two of which can be
performed by the same individual.

One special case in which a minimal chain decomposition can be found
by a simple decision rule, without recourse to an iterative procedure like
the labeling process, is that in which the elements of the partially ordered
set can be numbered 1, ..., n in such a way that ¢ < j implies that the
predecessors of ¢ are included in those of j. In terms of the corresponding
array, this is equivalent to saying that the rows and columns can be
rearranged so that the set of inadmissible cells has “echelon” or ““stair-
case’” form (see Fig. 9.2, below). Assuming they have been so arranged,
the following rule solves the problem.

Staircase rule. Select any admissible cell that borders the staircase of
tnadmissible cells and place a 1 in it. Delete the corresponding row and
column and repeat the procedure. (Here ‘border” means “have a segment
in common.”)

Notice that the inadmissible cells of the reduced problem have staircase
form, so the rule makes sense.

At termination of the process, a minimal cover can be found simply by
selecting as many consecutive rows as possible that contain 1’s (starting
from the top), then switching to columns to cover the remaining admissible
cells, if any.

In terms of the partially ordered set, the rule might be phrased as
follows. Assuming that the set has been numbered as stipulated above,
select an undominated element (e.g., element 1), then proceed to its first

65

II. FEASIBILITY THEOREMS AND COMBINATORICS

(in terms of the numbering) successor j, then to the first successor k of j,
and so on until an element having no successor is reached. This traces out
one chain of a minimal decomposition. Delete the elements of this chain
and repeat the process.

ExaMpPLE. In the partially ordered set shown in Fig. 9.1, or in array
form in Fig. 9.2, the rule leads to the minimal decomposition {1, 2, 6, 7;
3, 4, 5}. A minimal covering in Fig. 9.2 consists of row 1 and columns 4, 5,
6, 7; this singles out 2 and 3 as a maximal set of unrelated elements.

2 3
4
6 5
7
Figure 9.1

Figure 9.2

A proof that the rule works for problems having staircase form can be
based on the fact that in any proper covering of the admissible cells for

66

§10. SET REPRESENTATIVES

such a problem, an admissible cell bordering an inadmissible cell is covered
by just one line. (For example, the proper coverings in Fig. 9.2 are: last
six columns: first row, last four columns; first two rows, last three columns;
first three rows, last two columns; first four rows, last column; first six
rows.) We omit the details of a proof; the interested reader will have no
difficulty constructing his own.

More difficult combinatorial problems along these lines emerge if the
requirement that the schedule of tasks has been fixed in advance is dropped.
For example, one might consider tasks T,..., T, with known times
t1, ..., ty to perform each task, stipulated reassignment times ry;, and pose
either of the following questions :

(a) assuming that all tasks must be completed by time 7', arrange a
schedule that requires the fewest number of individuals;

(b) assuming a fixed number of individuals, arrange a schedule that
completes all tasks at the earliest time.

The problem statement might be further complicated by the assumption of
technological ordering restrictions—e.g., washing a dish precedes drying
same—or, by the assumption of different types of individuals—e.g., dish
washers and dish dryers. As far as we know, no computationally good ways
of solving problems of this genre are known, although some special results
have been deduced. For instance, Johnson has given an elegant solution to
a problem of type (b) above in which there are two individuals, w (the
washer) and d (the dryer), 2n tasks Wy,..., Wy, D1, ..., Dy, with the
restrictions that W; must precede D; and that w specializes in W’s, d in
D’s; the reassignment times from W; to W; or from D; to Dj; are assumed
zero [20].

10. Set representatives

Let
& =1{81,...,80)

be a family of subsets of a given set
E ={e1,...,em}
A list R of distinct elements of E,
R ={e, 1,501}

is a system of distinct representatives (customarily abbreviated SDR) for
&L if
eijeSj, j=l,...,n,

and e;, is said to represent S;.

67

II. FEASIBILITY THEOREMS AND COMBINATORICS

ExampLE 1. Let E = {1, 2, 3, 4, 5}, and suppose ¥ is composed of
S1 =1{2,4,5},8: ={1,5},83 ={3,4}, 84 = {3,4}. Then R = {5, 1, 3, 4}
is an SDR for % in which 5 represents Sy, 1 represents Sg, and so on.

ExamprLe 2. Let S; = {1, 2}, S = {2}, S3 = {2, 3, 4, 5}, 84 = {1, 2}.
Here there is no SDR, since S1, S, 4 contain between them only two
elements.

ExampLE 3. Let the fundamental set £ consist of all U.S. Senators, and
let Si,...,8, be an enumeration of Senate Committees. Can one find n
distinct Senators e, . . ., e; such that Senator e; ’ is a member of Committee
S;t

ExamMPLE 4. Suppose there are m men and n women, and that woman j
rates man ¢ as matrimonially acceptable or unacceptable. When is it
possible to contract » marriages so that each woman has a husband
acceptable to her?

Necessary and sufficient conditions for the existence of an SDR are
contained in the following well-known theorem of P.Hall [16].

TrEOREM 10.1. An SDR exists for & = {S1,...,8a} if and only if
every union of k sets of & contains at least k distinct elements, k = 1,..., n.

As in the flow feasibility theorems, the necessity of the Hall condition is
of course obvious.

In this section we shall discuss some Hall-type theorems that can be
deduced from the flow feasibility theorems presented earlier in the chapter.
While each of these theorems can be regarded as a generalization of Hall’s
theorem, it is perhaps misleading to emphasize this point, since it is equally
true that each can be deduced from Hall’s theorem. Indeed, one can show
that the max-flow min-cut theorem is a consequence of Hall’s theorem;
the proof is lengthy, but see [17], for example, where such a proof of the
integral form of the circulation theorem is given.

Before proceeding to other set representative problems, we first give a
flow proof of Hall’s theorem. Specifically, we shall show that the sufficiency
of Hall’s condition is an immediate consequence of Corollary 1.2, the
second version of the supply-demand theorem, and, of course, the integrity
theorem. To see this, define the bipartite network @ = [8, T'; /] with

S ={x1,...,%m}, T = {y1, .-, Yn} & = {(xi, y;)|ei € Sy}

Associate a demand b(y;) = 1 with each node of 7', a supply a(x;) = 1 with
each node of S. The capacities of all arcs may be taken infinite. (See
Fig. 10.1.) It is then clear that an integral feasible flow from S to 7 picks
out an SDR for 8y, ..:, 8, and conversely. (Since we are requiring only
that f(S, y;) > 1, the same set may be represented more than once; this
poses no difficulties.)

If Hall’s condition is satisfied, then for any subset 7’ < 7T, there are at

68

§10. SET REPRESENTATIVES

Figure 10.1

least b(7") = |T"| nodes of S that are joined to nodes of 7", and hence the
flow fp- of Corollary 1.2 exists. Consequently the flow problem is feasible,
and . admits an SDR.

As corollaries of Hall’s theorem, we mention the following sufficient
conditions for the existence of an SDR. Corollary 10.2 has been stated
in [24].

CoroLLARY 10.2. Suppose S;(j = 1,...,n) contains s; elements, that
et = 1,...,m) occurs in ry of the sets Sy, and let S = 37_, 85 = 27 1y,
M =max (ry,...,"m, S1,---,8n). If (n — 1)M < 8, then the family
& ={S1,..., Sn} has an SDR.

ProoF. Suppose Hall’s condition is violated, so that there are & sets,
say 81, . . ., Sk, which collectively contain I < k elements. Then some one
of these I elements must occur in p of the sets S;, where pl > >¥ s;. By
assumption, we have

Szzk:s,+§n:sj>(n-—l)M,
1

£t
and thus
n
pl>m—1)M =% s>n—1)M—(n—kM=(k—1)M.
Et1

Since I < k — 1, we must have p > M, a contradiction.

CorOLLARY 10.3. Suppose there are n elements e; and n sets S;, that each
S; contains k > O elements and each e; occurs in k sets. Then & =
{S1,...,8n} has an SDR.

Proor. Immediate from Corollary 10.2.
A re-interpretation and repeated application of Corollary 10.3 yields:

69

1I. FEASIBILITY THEOREMS AND COMBINATORICS

CorROLLARY 10.4. If A is an n by n matriz composed of the integers 0 and
1 with k > 0 1’s tn each row and column, then A is a sum of k permutation
matrices.

Suppose next that we drop the requirement concerning distinctness of
representatives, and insist instead that each element e; € £ must occur in
the system of representatives R at least @, times and at most a times,
where 0 < a, < a/. (Thus if a; =0, a/ =1, for all ¢ =1,...,m, this
reduces to the SDR problem.) We term R a system of restricted representa-
ttves (SRR). In matrimonial terms, the problem is now a polygynous one
in which man ¢ requires a; wives, but can handle at most a; wives.

The following theorem gives existence conditions for an SRR [6].

TaeorEM 10.5. An SRR tn which e; occurs at least a,, and at most a,
times (0 < a; < a)), exists for & = {81,...,8,} if and only if, for every
subset X of the indices {1, ..., n},

m
(10.1) |X|] <min(n — > e, + > a, > a).
1

i i
1(x) 1Ia)

Here I(X) < {1,..., m} is the index set of Jje x Sj-

Proor. The cond.itions (10.1) are perhaps most easily discovered by
applying the symmetric supply-demand theorem to the network used in
the proof of Hall’s theorem. This time we insist that the total flow out of
each node z; €S (¢ = 1,...,m) be at least a(x;) = a; and at most a’(x;)
= a;, and the flow into y; € T' be precisely one, b(y;) = b'(y;) = 1. Again
arc capacities are infinite. Thus integral feasible flows and SRR’s corre-
spond by the rule: f(x;, y;) = 1 if and only if e; represents S;.

Let X < S U T and define

SNX=U, 8nX-=070, TnX=1, TnX =7,

so that U is the complement of U in S, and ¥ is the complement of ¥V in 7.
Then conditions (2.5) of Theorem 2.1 become

(10.2) (U, V) = |V| — (D), alUc 8, Ve,

which holds automatically unless (U, V) =
If we extend the notations A(x), B(x), introduced earlier (I.1), to subsets
X of nodes in the usual fashion, e.g.,

B(X) = U B@),
reX
then, for the case at hand, the statement (U, V) = o is equivalent to

either of the statements B(V) < U or A(U) < V. Using the former of
these, we see that the set of inequalities (10.2) is equivalent to the set

(10.3) |7| < a'(B(V)), all 7 < 7.
70

§10. SET REPRESENTATIVES
Similarly, conditions (2.6) of Theorem 2.1 become
U, V)= aU) — |V]| =aU) —n+ |V|
foralUc 8, VeT,or
V| <n—aU) =n—aS) + a(0)

for all ¥ = T, all U such that B(V) < U < S. Consequently the set of
inequalities

(10.4) 7| < n — a(S) + a(B(V)), al VT,

together with (10.3), are necessary and sufficient for the existence of
(integral) feasible flows.

Translating (10.3) and (10.4) to set theoretic statements yields (10.1).

Thus the inequalities

X< > 4
IX)

are necessary and sufficient for the existence of an SRR in which each ¢;
can occur at most a; times, while

|X|<n—§ai+ zm
1

I(X)
are conditions for the existence of an SRR in which each ¢; must occur at
least a; times.

Notice that taking @, = 0, @] = 1 in (10.1) gives Hall’s condition for the
existence of an SDR.

In the special case that a; = 1forv =1,...,l,say,a; =0fori =1+ 1,
...,manda} = lall¢ =1,..., m, the SRR problem is that of determin-
ing conditions for the existence of an SDR containing the prescribed set of
marginal elements ey, ..., e;. Mann and Ryser [23] proved that such an
SDR exists if, in addition to Hall’s condition, every marginal element
appears at least ¢ times among the S;, where ¢ > 0 is the largest number of
marginal elements in any S;. (They applied this sufficient condition to
prove an interesting theorem due to Ryser [29] that provides necessary
and sufficient conditions for extending an r by s Latin rectangle to an
n by n Latin square.) The following theorem of Hoffman and Kuhn
replaces the Mann-Ryser condition with a necessary and sufficient one [19].

THEOREM 10.6. AnSDR for & = {Sy, ..., Sy} that contains a prescribed
set M of marginal elements exists if and only if both Hall’s condition and the
following condition hold : for any M' = M, the number of sets S; that meet M’
is at least | M'|.

It is not difficult to see that the Mann-Ryser conditions imply the
Hoffman-Kuhn conditions.

The validity of Theorem 10.6 can be seen from Hall’s theorem and the

71

II. FEASIBILITY THEOREMS AND COMBINATORICS

general principle enunciated in Corollary 2.2. Applied here, Corollary 2.2
implies that we need only check the fact that the Hoffman-Kuhn condition
is the feasibility condition for the problem obtained by interpreting the
lower bounds a(x;) (=1 or 0 according as z; € M or not) as demands in the
reversed network, and the upper bounds b'(y;) = 1 as supplies. But the
Hoffman-Kuhn condition is precisely the Hall condition for feasibility in
this situation.

Another necessary and sufficient condition for the marginal element
problem that involves selections only of subsets of & is given directly by
Theorem 10.5.

CoroLLARY 10.7. An SDR for & = {81, ..., Sa} that contains a pre-
scribed set M = {eq, ..., e} of marginal elements exists if and only if,
Jor every X < {1,...,n},

(10.5) |X| < min (n — 1 + | L0 I(X)], [IX))).
Here L = {iy, ..., 1)} is the index set of M and I(X) is the index set of
Uiex Ss.

One can extend the SRR problem by asking for conditions under which a
common SRR exists for two different collections

y = {Sl,...,Sn},
T ={T1,..., Ty},

of subsets of the fundamental set, and still have a flow feasibility problem
[6].

In matrimonial terms, the common SRR problem can be considered
to have the following far-fetched interpretation. There are » men (corre-
sponding to Si,...,8y), n women (corresponding to T'y,..., T») and m
marriage brokers (corresponding to ey, ..., ey). Each broker has certain
men and women clients, and must arrange at least a, and at most a;
marriages; all men and women must be married monogamously. When is
this possible?

Here the network (see Fig. 10.2) may be taken as follows:

Nodes Arcs Arc lower | Arc capacity
bound function ¢
function !
8, t (,7%) g=1,...,n 0 1
S ={z,...,x,} (%, y:) <=e€S; 0 [o¢)
R={y, . Yn} (Yoy) i=1,...,m a; a;
B = {yl,. .., yn} (¥) <=e el 0 ©
T =1{2,...,2,} (2t) j=1,...,n 0 1
(¢, 8) n o0

72

§10. SET REPRESENTATIVES

Figure 10.2

One sees easily that a common SRR exists for &, 7 if and only if this
network admits a feasible circulation; hence, by Theorem 3.1, if and only
if the inequalities

o(X, X) > UX, X)
hold for all subsets X of the nodes. To see what these inequalities reduce to
for this particular network, let

SNX="U, SNX =7,
RNnNX=17, RNnX=17,
RnX=1V, RNnX=17V,
TN X =W, TnX =W,

and begin by considering cases.
Casel. se X,te X. Then

(X, X)=c(s,0) + c(U, V) + c(V, V') + c¢(V', W),
UX, X) =Uv, v).
Case 2. s€ X, te X. Then
(X, X)=c(s, 0) + ¢(U, V) + c(V, V') + ¢(V', W) + c(W,),
X, X) =YV, V') + n.

Case 3. seX, te X. Then ¢(X, X) includes the term ¢(t,s) = oo;
consequently this case may be ignored.
Case 4. seX,teX. Then

X, X)=c(U, V) + eV, V') + c(V', W) + (W, ¢),
UX, X) = |V, V).
73

II. FEASIBILITY THEOREMS AND COMBINATORICS

Next observe that the inequalities ¢(X, X) > (X, X) of Case 1 are
dominated by those of Case 2, since ¢(W,t) = |W| < n. Similarly Case 4
inequalities are dominated by Case 2, since ¢(s, U) = |U| < n. Thus a
feasible circulation exists if and only if

O] +¢U, V) +c(V, V') + eV, W)+ |W| > UV, V') + n,
or
(10.6) |W| + |U| <n+cU, V) + eV, V') + V', W) = UV, V),
foralUc S, V= R, VS R, WcT.

Again (10.6) is automatic unless the sets of arcs (U, V) and (V’, W) are
empty, that is, unless 4(U) < V and B(W) < V'. Then the right side of
(10.6) is, if anything, decreased by taking V = A(U) and V' = B(W).
Thus, replacing W by W, (10.6) is equivalent to

(107 |W| + |U] < n + o(A(U), BOW)) — (A, BOWY),

foralUc S, W T.
This proves

THEOREM 10.8. A common SRR in which et = 1,..., m) occurs at
least a; times and at most a times (0 < a; < a]) exists for & = {S,,...,8,}
and I = {Th,..., Ta}if and only if, for every X, Y < {1,..., n},

T 13

m
(108) |X|+|¥Y|<n—-Da+ Da + .
1 I(xX)vuny) I(X)NnI(Y)

Here I(X) < {1,..., m} is the index set of Jjex Sjand I(Y) < {1,..., m}
that Of UiE Y Tj

By taking a; = 0, a] = 1 in Theorem 10.8, conditions for the existence
of a common SDR are obtained.

CororLLARY 10.9. A4 common SDR exists for & = {Si,...,Sa} and
T = {T,..., Tn} if and only if, for every X, Y < {1,..., n},

(10.9) | X| + Y] <n+ [I(X)N I(Y)].

Here I{X) is the index set of Jjecx Sj and 1(Y) that of Uje v T

We conclude this section with the statement of one other set repre-
sentative problem that can be solved as a flow feasibility problem:
to find conditions for the existence of an SDR whose intersection with each
member of a given partition of the fundamental set has cardinality between
assigned bounds. This problem was posed and solved by Hoffman and
Kuhn, who showed that it can be formulated as a linear program, and
existence conditions established from duality theory [18].

74

§11. THE SUBGRAPH PROBLEM FOR DIRECTED GRAPHS

THEOREM 10.10. Let a,and ai, k = 1,..., p, satisfying 0 < a; < ay,
be integers associated with a given partition P,..., Py of a given set
= {e1,..., em}. The subsets S1,...,8n of E have a system of distinct

representatives R such that a, < |R N P,| < a;, if and only if

) ()7 e (7 1)

holds for all U = {1,...,p}and V = {1,..., n}.
A representing network for this problem may be taken as follows (see
Fig. 10.3):

(10.10)

Nodes Arcs Arc capacities
S={z1,...,%p} | (¥k, y1) = e;€ Py 1
EB={y1,...,ym} | (y1,2) = e €8 ©
T= {219 <y Zq

Associate with each z; € S the bounds a,, a;, on flow out of z,, with each
z; € T the bounds b; = b; = 1 on flow into z;. Theorem 10.10 then follows
from the symmetric supply-demand theorem.

S R T
| 00]
a,,a, [N
i
9,9, 11
i
a3,0% I,
Figure 10.3

Thus, taking the first term on the right of (10.10), one has conditions for
the existence of a system of distinct representatives R such that |R N Py|
< a;; the other term provides existence conditions for an R satisfying
IR NP kl = ag

11. The subgraph problem for directed graphs

Another graph theoretic combinatorial problem that can be dealt with
by flow methods is one known as the subgraph problem for directed graphs.
A solution to this problem has been given by Ore [25]. Various special cases
have also received attention in the mathematical literature.

75

II. FEASIBILITY THEOREMS AND COMBINATORICS

Here we shall use the symmetric supply-demand theorem to discuss a
slight extension of this problem.

Let G = [N; &) be a finite directed graph, and let e(x) and i(x) be,
respectively, the number of arcs entering and the number of arcs issuing
from node x. Then the (local) degree of G at x is the pair e(x), ¢(x). The
subgraph problem for G is that of determining conditions under which G
has a subgraph H having prescribed local degrees. Here a subgraph H of G
is a graph H = [N; &/'] with &/’ © /.

Consider the following generalization of this problem. Associate with
each x € N four integers

a(z), a'(x), b(z), b'(x)

satisfying
(1L.1) 0 < a(z) < a'(x),
(11.2) 0 < b(x) < b'(),

and find conditions under which @ has a subgraph H whose local degrees
en(x), 1p(z) satisfy

(11.3) a(x) < ig(x) < a'(x),
(11.4) b(z) < en(x) < b'(x).

To determine such conditions, we convert the problem to a flow problem
and apply Theorem 2.1. First construct from G a bipartite graph G’ =
[S, T'; /'] having twice as many nodes as G but the same number of arcs :
to each x € N correspond two nodes, ' €S, " € T; if (x, y) € o, then
(@', y") € &', and these are all the arcs of G’ (see Fig. 11.1). Assign unit
capacity to each arc of (', and insist that the flow out of 2’ € § lie between
a(x) and a’(z), the flow into " € T lie between b(x) and b'(x).

Figure 11.1

It is clear that an integral feasible flow f from S to 7T in G’ yields a
subgraph H of G satisfying (11.3), (11.4) by putting (z, y) in H if and only
if f(z', y") = 1, and conversely. Hence, letting U, V be arbitrary subsets

76

§11. THE SUBGRAPH PROBLEM FOR DIRECTED GRAPHS

of S, T, respectively, and denoting their respective complements in S, T
by U, V, it follows from Theorem 2.1 that H exists if and only if

(1L.5) a'(0) + |(U, V)| = b(V),

(11.6) b'(V) + (U, V)| = a(U),

holdforal U< S, V< T.

Before proceeding further, let us consider inequalities (11.5) for a(z)
= a’(x), b(x) = b'(x), that is, in the case for which the local degrees of H
are specified exactly. Then a necessary condition for H to exist is that
a(N) = b(N), or, in G,

(11.7) a(S) = b'(T).
On the other hand, (11.7) and (11.6) now imply (11.5), since

a(O) + |(U, V)] 2 &) + a(U) = b'(V) = a(S) — b'(V)
> b'(T) = b'(V) = b'(V),

which is (11.5) with @’ = a, b’ = b.

Thus (11.7) and (11.6) are necessary and sufficient for the existence of a
subgraph H having local degrees ex(x) = b'(x), tu(r) = a(x).

Each of the conditions (11.5), (11.6) is stated in terms of selections of
pairs of sets. Each can, however, be simplified to a condition involving the
choice of but one set. Consider (11.6), for example. For given U < 8, let

V={y"eTp'(y") < [(U, ")}
For this pair U, V, the left-hand side of (11.6) may be written as
min [b'(y"), |(U, y")[].
Y EA)
On the other hand, for fixed U < §, this sum minimizes b'(V) + |(U, V)|
over all V < 7. Thus inequalities (11.6) are equivalent to the inequalities
(11.8) > min[b'(y"), (U, 9")]] > a(U), all U < 8.
y" e A(U)
Similarly, (11.5) reduces to
(11.9) > min[a'(y), (¥, V)] > b(P), al V< T.
y' eB(V)

Thus, translating (11.8) and (11.9) to conditions stated in terms of the
given graph G, we have the following theorem.

THEOREM 11.1. Let G = [N; /] be a directed graph and suppose that,
corresponding to each x € N, there are integers a(z), a’(x), b(z), b’(x) with
(11.10) 0 < a(x) < a'(x),

(11.11) 0 < b(z) < b'(2).

77

II. FEASIBILITY THEOREMS AND COMBINATORICS

Then G has a subgraph H whose local degrees ey (x), tp(x) satisfy
(11.12) a(z) < tg(z) < a'(z),
(11.13) b(z) < en(x) < b'(x),

if and only if, for all X = N, we have

(11.14) a(X) < > min[b'(y), (X, 9],
yeA(KX)

(11.15) 5X) < > minfa'(y), |(y, X1
y€ B(X)

In view of the remark that (11.6) and (11.7) are necessary and sufficient
for the existence of a subgraph H having prescribed local degrees, we
may also state a theorem of Ore [25].

CoroLLARY 11.2. The directed graph G = [N; /] has a subgraph H
with local degrees

(11.16) in(x) = a(x) > 0,
(11.17) en(x) = bx) > 0,
if and only if

(11.18) a(N) = b(N),

and, for all X < N,

(11.19) a(X) < D min[b(y), [(X,)]
ye AX)

Notice also, as a consequence of Corollary 2.2, that if G has subgraphs
H,, H; such that

b(z) < en,(x), im, (%) < @'(2),
en,(x) < b'(x), a(@) < ig,(x),

then G has a subgraph H such that

For undirected graphs @, the (local) degree of G at x is the number of
arcs incident with z, and the subgraph problem is that of determining
conditions under which G has a subgraph H with specified local degrees.

78

§12. MATRICES COMPOSED OF 0’s AND 1’s

This problem has been solved by Tutte [34], and also by Ore [26]. In
contrast with the directed case, we know of no formulation of the undirected
problem as a flow feasibility problem.}

12. Matrices composed of 0’s and 1’s

An m by n matrix whose entries are the integers 0 and 1 can be thought
of as distributing n elements into m sets: the 1’s in row i designate the
elements that occur in the ¢th set, and the 1’s in column j designate the
sets that contain the jt? element. In other words, the matrix may be thought
of as an incidence matrix of sets versus elements. Such matrices may thus
be regarded as fundamental in combinatorial investigations.

Ryser has focused attention on the class of all m by n (0, 1)-matrices
having prescribed row and column sums, and has obtained a number of
results that give insight into combinatorial properties of the class [30, 31,
32]. Some of these results are accessible through the use of network flows;
others appear not to be.

The first question that naturally arises for such matrices is : when do they
exist? That is, given non-negative integers ay,..., ay,, and by,..., by,
when does there exist an m by n (0, 1)-matrix having @; 1’s in the it row
and b; I’s in the jth column? Both Ryser [30] and Gale [11] independently
answered this question. Not only do existence conditions here turn out to
be much fewer in number than one might expect, but also a simple rule
can be stated for constructing such a matrix.

Suppose we pose the existence problem in inequalities form, asking for a
(0, I)-matrix 4 = (ay) such that

m

(12.1) > ay > by,
i=1
n

(12.2) > ay < a
ji=1

T One could, of course, attempt to formulate the problem as a linear program of
more general type. A way that suggests itself is to associate a variable bounded
between 0 and 1 with each arc of the graph, impose the restriction for each node z that
the sum of all variables corresponding to ares incident with z should not exceed the
specified degree of H at z, and ask for a feasible solution that maximizes the sum of all
variables. The difficulty here, however, is that fractional solutions to the program can
be obtained if the given graph @ has odd cycles; that is, the important integrity
property of maximizing solutions has been lost.

Of course the fact that a first naive statement of the problem leads to fractional
solutions does not in itself imply that other linear programming formulations might
not be useful. For instance, it can be shown that the convex polyhedron of flows in
arc-chain form (I.2) has fractional vertices, but this is not true when the problem is
put in node-arc form. Similarly, an attempt to pose the minimal chain decomposition
problem for partially ordered sets in terms of the node-chain incidence matrix of the
corresponding directed graph runs into the difficulty of fractional extreme solutions.
But useful information about the combinatorial problem can be obtained from a
different formulation, as we have seen.

79

II. FEASIBILITY THEOREMS AND COMBINATORICS

Incase > a; = 5 by, the problem is that of filling an m by » array with 0’s
and 1’s so that the ¢th row sum is a;, and the jt? column sum is b;.

For a concrete example, consider n families to be seated at m tables,
where the jth family has b; members and the ¢th table a; seats, in such a way
that no two members of the same family are seated at the same table.

The existence problem (12.1), (12.2) for (0, 1)-matrices can be treated as
a flow feasibility problem by setting up the bipartite network consisting of
nodes

S ={x1,...,%m}, T ={y1,..., Ynp
and arcs
& = {(zs, ¥5)} i=1,...,m;j=1,...,n

Associate a demand b(y;) = b; with the jth node of 7', a supply a(x;) = a;
with the ith node of S, and impose unit capacity on all arcs. Then feasible
integral flows f(zs, y;) and (0, 1)-matrices (ay;) satisfying (12.1) and (12.2)
correspond via a5 = f(2s, ¥j)-

If we use the second version of the supply-demand theorem (Corollary
1.2), we need to determine, corresponding to each 7" < T, a flow fr- that
maximizes f(S, 7"), subject to the supply limitations at the sources S.
Now f(8S, T") is maximized simply by sending as much as possible from
each z; € S to T". Thus, if |T'| =k,

fr (2, T') = min (ay, k)
and

(12.3) fr8, T = i min (a;, k).
i=1

Suppose we picture the integers a; as represented by rows of dots, for
example :
ai
az
as
a4
Let a denote the number of dots in the jtb column of the pictorial
representation. Thus the sequences (a;) and (af) are conjugate partitions
of the integer > a,, that is, ¢} is the number of a, that are greater than or
equal to j. Then it is apparent that

m k
(12.4) > min (a, k) = > af.
i=1 j=1
Thus the problem is feasible if and only if
17|
(12.5) uT') < D af
j=1

80

§12. MATRICES COMPOSED OF 0’s AND I’s

holds for all 7" < 7. Since the right side of (12.5) depends only on the
cardinality of 7, we may replace all the inequalities obtained by letting
T' range over subsets of k elements with just one : that obtained by select-
ing 7" to maximize b(7"). Thus (12.5), for all 7" < T, is equivalent to the
n inequalities

k k
(12.6) > b < > af, k=1,...,n,
=1 =1
where we have chosen the notation so that by > bs > ... > b,.

This establishes the following theorem [11, 30].
THEOREM 12.1 Letas; (i = 1,...,m)and b; (j = 1,..., n) be two sets of

non-negative integers, where by = bg > ... = by,. Then there is an m by n

(0, 1)-matriz A = (a4) satisfying

(12.7) Za@ b;, Zdij < ay,

if and only if ’

(12.8) - ﬁ:bjs ﬁa}", k=1,...,n,
Jj=1 j=1

where a¥ = |{ila; > j}|.
Easy consequences of Theorem 12.1 are

CoroLLARY 12.2. If b; = b for all j, there is a (0, 1)-matriz satisfying
(12.7) if and only if nb < 37_, af.

CoroLLARY 12.3. If ai = a for all i, there is a (0, 1)-matriz satisfying
(12.7) if and only if 37 < ma, b; < m.

ProOF OF COROLLARY 12 2. We need to show that kb < 3% af for

=1,...,n— l. Now knb < k 37 af by assumption, so it suﬁices to
establish & Z <Yk af, whlch is equivalent to k37, ;a" <
(n— k) Sta ThlS inequality follows from the fact that the sequence
(a*) is monotone decreasing, since

IcZa’.“gk(n—k)a}:“\(n—k) < n—-k)Za*.

J
k+1

Proor oF CoroLLARY 12.3. The inequalities

k k m

>.b; < >af = > min (a, k) = mmin (a, k)
1 1 1

21

follow from b < ma and b] < m. For if k < a, then Zl ; < mk
= mmin (a, k); if, on the other hand, £ > a, then 3% b; < >% b; < ma
= m min (a, k).

81

II. FEASIBILITY THEOREMS AND COMBINATORICS

Although we have used the second version of the supply-demand
theorem in deriving the existence conditions (12.8), we might just as well
have used the first version, or applied the max-flow min-cut theorem
directly. The resulting existence conditions are worth stating explicitly,
since they involve the “structure matrix”’ that has been introduced
by Ryser in the study of (0, 1)-matrices having specified row and column
sums [32]. Ryser has defined the structure matrix (fy;) for the class
A = Way, ..., am; b1, ..., by) of all m by n (0, 1)-matrices having mono-
tone decreasing row and column sums a; and b; to be the m + 1 by n + 1
matrix

tgr =kl + agy1 + ... + an — (bl + ... +bl),
(12.9) k=0,1,...,m;1=0,1,...,n.

If the class % is non-empty, then it can be seen directly that the t;; are
non-negative integers. For we may select a matrix A4 in 2 and partition it

thus:
*

(12.10) A
* 4.

Here A, is k£ by I. It follows that ¢;; defined by (12.9) is equal to the
number of 0’s in A; plus the number of 1’s in A,. It is true, conversely,
that the non-negativity of the structure matrix implies that the set U is
non-empty. To see this, one can use the first supply-demand theorem.
Applied here, this theorem asserts that U is non-empty if the inequalities

(12.11) Db— > ai < || |J]|
7 7

hold for all selections of subsets I < {1,...,m}, J < {l,...,n}. Butfor I
and J of fixed cardinalities & and [, respectively, the left side of (12.11) is
maximized by selectingJ = {1,...,1}, [= {k + 1, ..., m}, in view of the
assumptions a; > ag = ... = @, by = by > ... = by. Then (12.11) is
the statement that the entries of the structure matrix for the class 2 are
non-negative.

There is a simple, direct n-stage rule for constructing a (0, 1)-matrix
satisfying the row and column sum constraints (12.7) in case the problem
is feasible [10, 11]. Suppose that conditions (12.8) are satisfied and that we
assign the ones in column p in some arbitrary fashion, say to the subset of
rows I = {i1,..., 4} Let @, ¢ =1,...,m, and by, j=1,...,n—1,
denote the upper and lower bounds on row and column sums in the reduced
problem, so that

_ a; — 1, ifeel,
a = ag, otherwise,
B ={bj,]=1,,p—1,

d bj+1, j=p,...,n—l.

82

§12. MATRICES COMPOSED OF 0’s AND I’s

By Theorem 12.1, the reduced problem is feasible if and only if
B k
(12.12) Zlbjg 2. af, k=1,...,n—1,
i= J

=1
where (a}°) is the conjugate sequence to (@;). Now the right side of (12.12)
can be rewritten as

k
Za}" - b, + af, (),
1

where aff, |(I) is the number of a; such that i€ and a; > k + 1. Con-
sequently the feasibility conditions for the reduced problem are

k k
(12.13) bi+b,< > af+af (D), k=1,...,p—1,
j=1 ji=1
k+1 k
(12.14) b < > af + af,, (D), k=p,...,n— L
j=1 j=1

If we specialize I to correspond to the b, largest a;, then
af, (I) = min (b, a5, ,),

and conditions (12.13), (12.14) always hold under the assumption of
feasibility for the original problem. For if k¥ < p and min (b, af,,) = b,
(12.13) becomes ’
k k

bj < a/;'k 5
= j=1

J

1

if £ < p and min (b,, af ;) = aff,, (12.13) becomes

k k+1
Z bj + b?) < 2 a;'k’
j=1 i=1
which is valid since b; > bs > ... > by,. If, on the otherhand, ¥ > p and
min (b, af, ;) = b,, (12.14) reduces to
k+1 k
Z b; < Z ar,
j=1 =1
it

again a valid inequality since the b; are monotone decreasing; if ¥ > p and
min (bp, af +1) = af +1, (12.14) becomes

E+1 E+1

*
z b, < Z ay.
j=1 Jj=1

Thus the following rule either constructs a solution or shows that the
problem is infeasible.

(0, 1)-matriz rule. Select any column, assign its 1’s to the rows having
largest row sum bounds, and repeat the procedure in the reduced problem.

83

II. FEASIBILITY THEOREMS AND COMBINATORICS

In terms of the table seating problem, all n families can be seated in n
stages by selecting, at the jth stage, any family not already seated, and
distributing its members among those tables having the most vacant seats.

ExaMPLE.

(conjugate sequence)

6 6 3 3 2 2 (o]

. . . 6

5 4 4 4 3 1 1

The feasibility conditions of Theorem 12.1 hold, since

5<6,
9 < 12,
13 < 15,
17 < 18,
20 < 20,
21 < 22,
22 € 22.

84

§12. MATRICES COMPOSED OF 0’s AND I’s

Using the rule, the following solution is found :

1 1 1 1 1 1 6
1 1 1 1 1 116
1 1 1 1 4
1 1 2
1 1 2

1 1 2

We point out, in view of Corollary 2.3, that if there are two (0, 1)-
‘matrices such that one satisfies upper bounds on row sums, lower bounds on
column sums, while the other satisfies lower bounds on row sums, upper
bounds on column sums, then there is a (0, 1)-matrix satisfying the desig-
nated lower and upper bounds on both row and column sums, provided, of
course, that the lower bounds on rows (columns) do not exceed the upper
bounds on rows (columns).

Assuming m = n, the existence problem for (0, 1)-matrices can also be
interpreted as one concerning the existence of directed graphs on »n nodes
having specified local degrees, where we now permit circular arcs, that is,
arcs that lead from a node to itself. Here an entry 1 in the 4§ position
means there is an arc from ¢ to j. If we do not allow circular arcs, the
problem becomes one of filling an n by » matrix with 0’s and 1’s, subject
to stated upper bounds a; on row sums, lower bounds b; on column sums,
and the added restriction that 1’s cannot be placed along the main diagonal.
In other words, we require that the trace of the matrix be zero [9].

Following the same procedure used in the proof of Theorem 12.1, it is
not difficult to see that feasibility conditions for this latter problem can be

stated as
-1

(12.15) Zb 2 af + afy(), alll = {1,...,n},
1

where a%(I) is the number of a; such that a; > |I| and i e . These
inequalities simplify considerably if we make the assumption that there is
a common rearrangement of the a’s and b’s such that

(12.16) @mzaz> ...
(12.17) by>by> ... > bn

II. FEASIBILITY THEOREMS AND COMBINATORICS

Under these circumstances,

Z b; — al()

7
is maximized, for |I| = k, by selecting I = {1, ..., k}. Thus (12.15) may
be replaced by the n inequalities

k k-1
(12.18) Dbi< D af+afk+1,...,m), k=1..,n
1 1
Particular cases under which the common re-numbering (12.16), (12.17)
exists are those corresponding to Corollaries 12.2 and 12.3, thatis, b; = b,
all 7, or a; = a, all 5.
If, instead of using the conjugate sequence (af), we push the dots
representing the integers a; as far as possible to the left, but this time place
no dots in the main diagonal, e.g.,

. . ql:4

. 02:3

03:3

and define a;"* to be the number of dots in the ith column, then

k-1 k
(12.19) Daft+af{k+1,...,0) = > a*.
1 i=1

Thus (12.18) simply asserts that the partial sums of the b-sequence are
dominated by those of the a**-sequence, and we have conditions analogous
to those found by Ryser and Gale for the (0, 1)-matrix problem.

We shall refer to the sequence (a}*) as the diagonally restricted conjugate
sequence in the following theorem, which summarizes this discussion.

THEOREM 124. Letay > as > ... = an, by > bs > ... > by be non-
negative integers. There is a (0, 1)-matriz (ai;) satisfying

(12.20) z ay < ay, Zaw > by, Zan =0,
J i i

86

§12. MATRICES COMPOSED OF 0’s AND I’s
if and only if

k k
(12.21) > b < D ar, k=1,...n
i=1 i=1

Here the sequence (a¥*) is the diagonally restricted conjugate of the sequence
(ag).

The diagonally restricted conjugate sequence iz not necessarily mono-
tone, but it is enough so to make the analogue of Corollary 12.2 valid.

CoroLLARY 12.5. Ifb;=balli =1,...,n,thenthereisa (0, 1)-matrix
satisfying (12.20) if and only if nb < 37_, a*

CorOLLARY 12.6. Ifa; =aalli = 1,...,n,thenthereisa (0, 1)-matriz
satisfying (12.20) if and only of 37_, b, < na, b, < m — 1.

1=1"
Proor oF CoroLLARY 12.5. First note that

= Ll + &,
where
={ili <k and a; >k — 1},
Jry={ilt >k and a; > k}.
We shall show that the monotonicity of the sequence (a;) implies that

either the sequence (¢}*) is monotone, or else it has at most one point of
increase, and that increase is one; that is, either

A > Al > L > ar

or,forsomek =1,...,n ~ 1,
(l’f* > ... >ak*’a’k+1 =1 +a** >ak+2 Z...z2a

To see this, observe that

x| = x| — 1,

| k| = |Jk+1]s
and hence af* > af¥, — 1, equality holding if and only if equality holds
in both the last displayed inequalities. Since a; > as > ... > ag, it
follows that a}* = a}*, — 1if and only if @, > k and a;,, < k. Thus, if

there were two points of increase in the sequence (a}*), say k and [with
k < 1, then we should have

ar 21>k > ag,
contradicting ax+1 > a;. This completes the proof of the assertion made at
the beginning of this paragraph.
To finish proving the corollary, we need to show that the inequalities

k
kb < > ar¥, k=1,...,mn,
1

87

II. FEASIBILITY THEOREMS AND COMBINATORICS

follow from nb < 2% af* and the “almost monotone” property of the
sequence (a**). This can be established by induction on =, as follows. For
n = 1, there is nothing to prove. Assume the proposition for » — 1, and
consider the case for n. If b < a**, then the almost monotone property,
together with the fact that we are dealing with integers, implies that
b < a}* for all i. Consequently kb < 3% aX*. If, on the other hand,
b > a}*, then we have (n — 1)b < >%~ ! a}*, and the induction hypothesis
applies.

Proor oF CororLLARY 12.6. To show that a; =a, 2} ;b < na,
b, < n — limply 3% ;b < S¥a¥*, where b, > b, > ... > b,, consider
two cases. If k£ < a, then a¥* = n — 1 for ¢ < k, and hence

Ek:bi <kn-1)= ia}"*.
1 1

If, on the other hand, ¥ > a, then

n—1 for: < a,
af* =<a fori =a + 1,
0 fori > a + 1,
and hence
k n k
Zbi szbi <na=2a§"*.
1 1 1

We turn now from existence problems for (0, 1)-matrices having stated
row and column sums to a brief discussion of other results concerning such
matrices. Throughout this discussion we let A denote the class of (0, 1)-
matrices 4 having row sums a;, column sums b;, with a; > ag > ...
Zam>0,b1 202> ... > by > 0. We further suppose that % is non-
empty. Such a class is called normalized [32]. The assumption of monotone
row and column sums sometimes entails no loss of generality (e.g., the
class existence problem), but at other times is a restriction (e.g., the zero
trace problem).

For given 4 in U, the trace o of 4 may be defined by ¢ = YMinemm g .
Ryser has derived simple formulas for the minimal trace ¢ and the maximal
trace & of all matrices in 2 [32]. These formulas are in terms of the structure
matrix for the class:

(12.22) G = n}cazx [min (k, l) - tkl]»
(12.23) G = r}gn [max (k, 1) + tx],

k=0,1,...,m;1=0,1,...,n.

Formulas (12.22) and (12.23) can also be obtained using network flows,
but a flow approach would require some of the theory to be developed in

88

§12. MATRICES COMPOSED OF 0’s AND I's

Chapter II1. The formula (12.22) for ¢ includes Theorem 12.4 as a special
case. It is an interesting exercise to demonstrate this directly.

Another problem for the class % that has been solved by Ryser is that of
determining the maximal term rank p for all matrices in U [31]. Here the
term rank p of a (0, 1)-matrix is the maximal number of independent 1’s
in the matrix, or, equivalently, the minimal number of lines that cover all
I’s. Ryser’s remarkable formula for maximal term rank g is again in terms
of the structure matrix :

(12.24) 5= rr;iln [+ 1 + ty],

k=0,1,...,m;1=0,1,...,n.
No similar formula for minimal term rank g is known as of this writing,
but Haber has given an effective algorithm for constructing a matrix of
term rank g [13]. Neither term rank problem appears amenable to a flow
approach.

Recently the notion of the “width” ¢ of a (0, 1)-matrix has been
introduced, and a simple formula for the minimal width & of matrices in %
has been found [10]. Here the width of a (0, 1)-matrix A is the least
number of columns of A having the property that every row of the
resulting submatrix contains at least one 1. That is, viewing A as the
incidence matrix of sets versus elements, the width of A is the least
number of elements that represént all sets. The formula for & has a some-
what different character than (12.22), (12.23), and (12.24), but may again
be regarded as involving the structure matrix. If we define

(12.25) N(g, k,l) =tgr + b1 + ... + b)) — ke,
where
(12.26) 0<e<mnm, 0<k<m, e<!l <,

then the minimal width & for 4 in U is equal to the first non-negative
integer ¢ such that

(12.27) N k1) >m—k

for all integers k and [satisfying (12.26). While N(e, k, I) may be defined
in terms of the structure matrix by (12.25), it can also be checked that if
4 in A is partitioned thus:

o * 4, *
T4 o+ 4],
with A; of size m — k by & and Ag of size k by I — ¢, then N(e, k, 1) is

equal to the number of 1’s in A; plus the number of 0’s in Ay plus the
number of 1’s in A43.

89

II. FEASIBILITY THEOREMS AND COMBINATORICS

The corresponding problem of determining the maximal width ¢ for all
4 in A appears very difficult.f

The formula (12.27) for & can be derived using network flows. We
sketch this approach. It may first be shown that there is a matrix 4 in %
of width & such that the submatrix composed of the first & columns of A
has at least one 1 in each row. This follows from the monotonicity of the
column sums of 4 and an interchange argument. Here an interchange is a
transformation of the elements of 4 that changes a minor of type

o 1]
[l

or vice versa, and leaves all other elements of 4 fixed.]

It follows from this observation that £ is the first & such that the
constraints

into a minor of type

(12.28) Z aij = ay, zaij = bj,
J i
(12.29) > a2 1,
Jj=1
(12.30) aij=0 or 1,

are feasible. Now, using the device of I.11 for bounding partial sums of arc
flows emanating from a node, a flow feasibility problem can be set up for
the constraints (12.28), (12.29), (12.30). The result is a network of the kind
shown in Fig. 12.1 (for m = 3, n = 4, ¢ = 2). Here the supplies are a,,
az, a3, the demands b1, bg, b3, b4, and the arc capacities are unity except
for those marked otherwise. Application of the supply-demand theorem to
a network having this structure leads, after simplification, to the
conditions (12.27) as necessary and sufficient for the existence of the
required flow.

It can also be shown that if the (0, 1)-matrix rule of this section is
applied by first assigning the 1’s in the last column, then the next-to-last,
and so on, the resulting matrix has minimal width &.

1 Especially since a solution to this problem would settle the existence question for
finite projective planes. See [33].

t The Ryser interchange theorem asserts that if 4 and 4’ are in %A, then 4 is
transformable into 4’ by a finite sequence of interchanges [30].

90

10.

11.

12.

13.

§12. MATRICES COMPOSED OF 0’s AND 1I’s

a
b 9!

TN

Figure 12.1

References

. G. B. Dantzig and D. R. Fulkerson, ‘‘Minimizing the Number of Tankers

To Meet a Fixed Schedule,” Naval Res. Logist. Quart. 1 (1954),
217-222.

. G. B. Dantzig and A. J. Hoffman, “Dilworth’s Theorem on Partially

Ordered Sets,” Linear Inequalities and Related Systems, Annals of
Mathematics Study 38, Princeton University Press, 1956, 207-214.

. R. P. Dilworth, ‘‘A Decomposition Theorem for Partially Ordered Sets,”

Ann. of Math. 51 (1950), 161-166.

. A. L. Dulmage and N. S. Mendelsohn, ‘“The Term and Stochastic Ranks

of a Matrix,” Canad. J. Math. 11 (1959), 269-279.

. J. Egervary, ‘“‘Matrixok kombinatorikus tulajonsagairdl,” Mat. és Fiz.

Lapok 38 (1931), 16-28. Translation by H. W. Kuhn, ‘“On Combinatorial
Properties of Matrices,”” George Washington University Logistics Papers
11 (1955).

. L. R. Ford, Jr., and D. R. Fulkerson, ‘“Network Flow and Systems of

Representatives,” Canad. J. Math. 10 (1958), 78-85.

. D. R. Fulkerson, ‘“Note on Dilworth’s Decomposition Theorem for

Partially Ordered Sets,” Proc. Amer. Math. Soc. 7 (1956), 701-702.

. ——, “A Network Flow Feasibility Theorem and Combinatorial

Applications,” Canad. J. Math. 11 (1959), 440—451.

, ‘‘Zero-one Matrices with Zero Trace,” PacificJ. Math. 10 (1960),

831-836.

and H. J. Ryser, “Widths and Heights of (0, 1)-Matrices,”
Canad. J. Math. 13 (1961), 239-255.

D. Gale, ‘“A Theorem on Flows in Networks,” Pacific J. Math. 7 (1957),
1073-1082.

O. Gross, ‘“The Bottleneck Assignment Problem,” The RAND Corpora-
tion, Paper P-1630, March 6, 1959, presented at the RAND Symposium
on Mathematical Programming (Linear Programming and Extensions),
March 16-20, 1959.

R. M. Haber, “Term Rank of 0, 1 Matrices,” Rend. Sem. Mat. Univ.
Padova 30 (1960), 24-51.

91

II. FEASIBILITY THEOREMS AND COMBINATORICS

14. M. Hall, Jr., “An Existence Theorem for Latin Squares,” Bull. Amer.
Math. Soc. 51 (1945), 387—388.

15. M. Hall, Jr., “Distinct Representatives of Subsets,” Bull. Amer. Math.
Soc. 54 (1948), 922-926.

16. P. Hall, “On Representatives of Subsets,” J. Lond. Math. Soc. 10 (1935),
26-30.

17. A. J. Hoffman, ‘“Some Recent Applications of the Theory of Linear
Inequalities to Extremal Combinatorial Analysis,”” Proc. Symposia on
Applied Math. 10 (1960).

18. and H. W. Kuhn, “On Systems of Distinct Representatives,”
Linear Inequalities and Related Systems, Annals of Mathematics Study
38, Princeton University Press, 1956, 199-206.

19. , “‘Systems of Distinct Representatives and Linear Programming,”

Amer. Math. Monthly 63 (1956), 455—460.

20. 8. Johnson, ‘“‘Optimal Two- and Three-stage Production Schedules with
Setup Times Included,” Naval Res. Logist. Quart. 1 (1954), 61-68.

21. D. Konig, Theorie der Endlichen wund Unendlichen Graphen, Chelsea
Publishing Co., New York, 1950, 258 pp.

22. H. W. Kuhn, “The Hungarian Method for the Assignment Problem,”
Naval Res. Logist. Quart. 2 (1955), 83-97.

23. H. B. Mann and H. J. Ryser, ‘“‘Systems of Distinct Representatives,”
Amer. Math. Monthly 60 (1953), 397—401.

24. N. S. Mendelsohn and A. L. Dulmage, ‘“Some Generalizations of the
Problem of Distinct Representatives,” Canad. J. Math. 10 (1958),
230-241.

25. 0. Ore, “Studies on Directed Graphs I,”” Ann. of Math. 63 (1956), 383-406.

26. , “Graphs and Subgraphs,” Trans. Amer. Math. Soc. 84 (1957),
109-137. :

27. R. Rado, ‘“‘Factorization of Even Graphs,” Quart. J. Math. 20 (1949),
95-104.

28. J. T. Robacker, “On Network Theory,” The RAND Corporation, Re-
search Memorandum RM-1498, May 26, 1955.

29. H. J. Ryser, “A Combinatorial Theorem with an Application to Latin
Rectangles,” Proc. Amer. Math. Soc. 2 (1951), 550-552.

30. , ‘““Combinatorial Properties of Matrices of Zeros and Ones,”
Canad. J. Math. 9 (1957), 371-377.

31. , “The Term Rank of a Matrix,” Canad. J. Math. 10 (1958), 57-65.

32. , “Traces of Matrices of Zeros and Ones,” Canad. J. Math. 12 (1960),
463-476.

33. , “Matrices of Zeros and Ones,” Bull. Amer. Math. Soc. 66 (1960),
442-464.

34. W.T. Tutte, ‘“The Factors of Graphs,” Canad. J. Math. 4 (1952), 314-329.

92

CHAPTER III
MINIMAL COST FLOW PROBLEMS

Introduction

In this chapter we take up the problem of constructing network flows
that minimize cost. The practical importance of this problem area is
affirmed by the fact that a sizeable fraction of the linear programming
literature has been devoted to it, and an even larger share of the many
concrete industrial and military applications of linear programming have
been in this domain. Indeed, a survey made in 1956 [65] indicated that
about half of such applications at that time fell in the category of trans-
portation problems, or, in our parlance, minimal cost flow problems.
Among the reasons for what might seem to be a surprising concentration,
particularly in applications, on problems of this kind, are perhaps these :
answers to large transportation problems, involving many hundreds of
constraints and thousands of variables, can be easily computed, whereas
it is an impossible task, at present, to solve a general linear programming
problem of these dimensions; a number of linear programs that might not
appear to be transportation problems, turn out to be such on closer
examination. Well-known examples of this are the warehousing and
caterer problems, discussed in this chapter.

The standard transportation problem is that sometimes referred to as
the Hitchcock problem, after one of its formulators [42]. Hitchcock also
gave a procedure, much akin to the general simplex method, for obtaining
a solution. Independently, during World War II, Koopmans arrived at the
same problem in connection with his work as a member of the Combined
Shipping Adjustment Board. He and Reiter [54] discussed the problem
from the standpoint of economic efficiency analysis and pointed out the
analogy between it and the classical Maxwell-Kirchhoff electrical network
problem. Other writers who studied transportation problems at about the
same time are Tolstoi [66], Kantorovitch [50], and Kantorovich and
Gavurin [51].

In a paper published in 1951, Dantzig showed how his simplex method
for general linear programs specializes to yield an efficient computation for
the standard transportation problem [7]. At the same time he observed
the important integrity property of solutions to such problems. Since then,

93

III. MINIMAL COST FLOW PROBLEMS

various other accounts of the simplex computation for transportation
problems have appeared, and other kinds of algorithms have been
proposed.

The algorithm deseribed in § 1 for obtaining solutions to the Hitchcock
problem is a generalization of a combinatorial procedure developed by
Kuhn [56] for the optimal assignment problem (§ 2), a special case of the
Hitchcock problem. One of the basic ideas underlying Kuhn’s method
stems from Egervéry’s proof [17] of the Konig-Egervary theorem con-
cerning bipartite graphs; another may be regarded as implicit in the proof
of this theorem that appears in [55]. In this method, which Kuhn has
dubbed the “Hungarian Method,” two routines are involved, one for
finding a maximal set of independent admissible cells and a minimal
covering of admissible cells in an n by n matrix ; the other, for transforming
to a new set of admissible cells in case the old maximal set contained fewer
than n members. For transportation problems, the analogue of the former
of these becomes a maximal flow problem ; of the latter, a transformation of
dual variables. Thus we view the process as one of solving a sequence of
maximal flow problems.

We have chosen to discuss the Hitcheock problem, for which the under-
lying network is bipartite, before presenting a general algorithm for
solving minimal cost flow problems in arbitrary networks with capacity
constraints on arcs (§ 3). An equivalence between these two problems is
then presented in § 4. In § 5 an algorithm is described for finding a shortest
chain from one node to another in an arbitrary network in which each arc
has an associated length. This problem is a special case of the minimal cost
flow problem. In § 6 we return to the latter, allowing arc costs to be nega-
tive, but subject to a non-negative directed cycle condition. The shortest
chain algorithm of § 5 can be used to initiate the computation in this case.
The following two sections (7 and 8) contain brief discussions of the
warehousing and caterer problems.

Section 9 applies the theory developed for minimal cost flows to the
problem of constructing a maximal dynamic flow for a given number of
time periods in a network in which each arc has not only a flow capacity,
but a transit time as well. The assumption that capacities and transit
times are independent of time leads to a remarkably simple and effective
method of solving the maximal dynamic flow problem for all time periods.
Without this assumption, the problem can be treated as a static problem
in a time-expanded replica of the given network.

Another application of minimal cost flows is discussed in § 10. The
problem here is that of determining the least cost for a project composed of
many individual jobs that are partially ordered due to technological
restrictions. It is assumed that the cost of doing any job varies linearly
between given extreme completion times for the job, and a schedule is

94

§1. THE HITCHCOCK PROBLEM

sought that minimizes project cost, assuming that the project must be
completed by a given date.

Section 11 concludes with a description of a method for constructing
minimal cost feasible circulations in a network having lower bounds and
capacities on arcs. The algorithm of § 11 may be viewed as a generalization
of the ones presented earlier in the chapter.

1. The Hitchcock problem

A paraphrase, in the language we have been using, of Hitchcock’s
statement of the problem might run as follows. Suppose there are m
sources 271, . . ., y for a commodity, with a(z;) units of supply at z;, and n
sinks y1, . . ., yn for the commodity, with a demand b(y;) at y;. If a(xs, y;)
is the unit cost of shipment from z; to y;, find a flow that satisfies demands
from supplies and minimizes flow cost.

Since the network for this problem is bipartite, it is convenient to drop
the 2’s and y’s and use matrix notation and terminology. Thus, letting
a; > 0 denote the supply at the ¢*h source, b; > O the demand at the jtb
sink, a;; > 0 the unit shipping cost from source ¢ to sink j, the problem is
to find an m by n non-negative matrix fy; that satisfies the row sum

constraints
n

(1.1) Z fy < ay, i=1,...,m,

i=1

the column sum constraints

m
(1.2) z fu=b, i=1...,n,
i=1
and minimizes
(1.3) Z a‘]f“'
%,

Since we are assuming a; > 0, it suffices to suppose that (1.2) are
equalities. Indeed, the problem is usually stated with both (1.1) and (1.2)
as equalities, and the feasibility assumption that total supply equals total
demand, ;a; = 3;b;. However, we shall merely assume that X;a;
> 2;bj, and leave the problem in inequality form.{ It follows from the
supply-demand theorem that this is a necessary and sufficient condition
for feasibility. We shall also assume that the a;, b;, and ay; are integers
(equivalently, we could suppose they are rationals).

1 The customary assumption that (1.1) and (1.2) are equalities entails no loss of
generality, since one can add an (n + 1) column with column sum 2:11 a = 3., b
and take ipt1 =0, thereby obtaining an equivalent Hitchcock problem in equality

form. In order for this simple equivalence to work, it is essential that costs be non-
negative.

95

III. MINIMAL COST FLOW PROBLEMS

ExamMpLE. Suppose that unit shipping costs are given by the array of
Fig. 1.1 with supplies a; and demands b; as indicated in Fig. 1.2. Then a
feasible solution with total cost 93 is shown in Fig. 1.3.

3 3 6 2 | 2
5 3 7 3 8 5 4
sl 612|857 |1 S
218 3|4 82 3
96|10 5]10] 9 ®
Figure 1.1 Figure 1.2
2 2
3 |]
3
3
Figure 1.3

To write down the linear programming dual (see 1.12) of the Hitchcock
problem, we may first rewrite (1.1) as

—Zflj > -y
j

to get the problem in the form (1.12.4)-(1.12.6). Thus, assigning dual “row
variables” oy to the constraints (1.1), dual ““column variables”B; to the
constraints (1.2), the dual linear programt has constraints

(1.4) —a + By < ay,

(1.5) o, By > 0,
subject to which the form

t The dual variables «;, 8; play a role analogous to potentials in electrical network
theory, and are sometimes referred to by this name. They are also frequently given
the economic interpretation of prices; this is perhaps more appropriate here, since
the primal problem has been verbally described in terms of supplies, demands, and
shipping costs. However, we avoid either of these interpretations and simply call
them ‘‘dual variables,” or, later on, ‘“‘node numbers.”

96

§1. THE HITCHCOCK PROBLEM
(L.6) — > aiw + D by
v J

is to be maximized. (If we had taken (1.2) as equalities, the 8; would not

be restricted in sign.)
ExaMPLE (continued). A feasible dual solution is shown in Fig. 1.4,
where the circled entries indicate equality in the dual constraints (1.4).

N
4 5 6 10 5 7 8

Figure 1.4

Since the form (1.6) has value —33 + 126 = 93 for this feasible dual
solution, and since (1.6) is bounded above by (1.3) for any pair of feasible
solutions to dual and primal, it follows that the feasible solutions shown in
Fig. 1.3 and Fig. 1.4 are optimal in their respective problems. Notice that

(a) —og + Bj < @y implies f{j =0,

(b) ap > 0 implies ijij = ay,

(c) ﬁj >0 implies Z’lflj = bj.

Indeed, we know these implications must hold because the fi; and o, B;
constitute a pair of optimal solutions to primal and dual.

The general scheme of the algorithm to be described for solving Hitch-
cock problems is this: start with a particular feasible dual solution «;, 8;,
and attempt to satisfy the primal constraints, allowing positive fi; only if
—a; + By = ay; more precisely, solve the problem

(1.7) Dfy<a
7
(1.8) qu < by,
(1.9) fiy 20,
(1.10) fij =0, if —oy + ﬁj < ayg,
(1.11) maximize > fi;.

i3

97

III. MINIMAL COST FLOW PROBLEMS

This is a maximal flow problem and can consequently be solved by the
labeling process. We are then either done, or can use the results of the
labeling to transform the old feasible dual solution to an improved one,
that is, one that gives a higher value to the dual form (1.6), and a new
maximal flow problem emerges. Eventually the computation terminates
with optimal solutions to both primal and dual.{

It will also be true, although we have not mentioned it explicitly in this
sketch of the computation, that, at any stage, >; fi; will equal a; if the
current dual variable o; is positive. Termination of the process occurs when
the demands b; are met exactly, and thus at termination, the remaining
optimality property (c) above will hold.

We proceed to give a detailed statement of the algorithm [21, 22]. To
start,] take

(1'12) o =0, Bf = min aij, fij = 0.
i

(Thus the initial 4, B; satisfy the dual constraints (1.4), (1.5).) The
computation now progresses by a sequence of labelings (A, below); if a
labeling results in breakthrough, the flow f is changed appropriately (B,
below); if non-breakthrough occurs, the current dual variables o;, B; are
transformed (C, below).

Cells 3j for which —e«; + Bj = a4; will be called admissible, others
tnadmissible, in describing the computation. The labeling rules are little
different from those of I1.5. Again we alternate between row and column
scanning. This time, however, the flow change will not always be unity.
Hence we shall carry along enough information in the labels so that,
if breakthrough occurs, the resulting flow change can be effected without
first backtracking along the flow augmenting path. (Actually, for hand
computation, it is just as convenient to backtrack.)

Routine A (labeling process). Begin by assigning labels (—, &;), where
& = a; — 2 ;fi, to all rows ¢ for which X ; fi; < a;. Next select a labeled
row, say row ¢, and scan it for all (unlabeled) columns j such that cell 7j is
admissible; label these columns (¢, §;), where 8; = ¢. Repeat until the
labeled rows have all been scanned. Then select a labeled column, say
column j, and scan it for all unlabeled rows ¢ such that f;; > 0; label such ¢
with (j, &) where & = min (fij, §;). Repeat until previously labeled
columns have all been scanned. Then revert to row scanning of newly
labeled rows, and so on. If a column is labeled for which 3 fi; < b;
(breakthrough), stop the labeling process and apply Routine B. Otherwise

1 A generalization of this primal-dual method to arbitrary linear programs can be
found in [11].

t We could start with all a; = 0, all §; = 0. However, the starting dual solution
(1.12) is a better one.

98

§l. THE HITCHCOCK PROBLEM

continue until no more labels can be assigned (non-breakthrough) and go
to Routine C.

Routine B (flow change). Here we have labeled column j with (7, §;) and
21 fiy < by Alternately add and subtract ¢ = min (8;, b; — > fi;) along
the path indicated by the labels. That is, add ¢ to f;, then proceed, in row
i, to the cell singled out by the first member of the label on row ¢, and
subtract &, then proceed, in the column reached, to the position picked
out by the first member of its label, add ¢, and so on, stopping when one
of the initially labeled rows has been reached. If now all column demands
have been satisfied, the algorithm terminates. Otherwise, start with the
new flow generated, discard the old labels, and go back to Routine A.

Routine C (dual variable change). The labeling process has resulted in
non-breakthrough. Let I and J be the index sets of labeled rows and
columns, respectively, and define new dual variables by

og, 7 EI,
1.13 "=
() % {ai + 8, ieI,

, jed,

(1.14) g = {’3’ J €

ﬂj + 8, .7 EJ)
where
(1.15) 8 = min (ay + o — By).

17

The labeling process is then repeated with new admissible cells defined by
o, B

Béfore showing that this algorithm solves the Hitchcock problem in a
finite number of steps, we make some preliminary observations dealing
with the non-breakthrough case. First of all, the dual variable change 8 of
Routine C is a positive integer, since all cells ¢j in the (non-empty) rec-
tangle IJ are inadmissible relative to «; and Bj; for, otherwise, some column
of J would have been labeled from some row of I. (That the rectangle I is
non-empty follows from the assumption that termination has not yet
occurred, for if either I or J were empty, the minimal covering value
a(l) + b(J) for all admissible cells would be at least 247_1b;, which is
absurd since a(I) + b(J) = i, fij, the flow value.) Thus we gain new
admissible cells in IJ corresponding to positions for which the minimum
in (1.15) is attained. On the other hand, any admissible cell in IJ becomes
inadmissible for the next labeling. For such a cell, however, we must have
had f;; = 0, as otherwise a row of I would have been labeled from a column
of J, and thus the old flow can be used to start the next labeling. Indeed,
even the old labeling can be retained to initiate the new one, because

(a) the pattern of admissibility in IJ and IJ has not been altered, and

(b) the admissible cells lost in IJ could not have contributed to the old
labeling, since J received labels from 1.

99

III. MINIMAL COST FLOW PROBLEMS

That the algorithm terminates in a finite number of steps can be seen as
follows. First of all, since each occurrence of breakthrough increases the
flow value >;,; fi; by at least one unit, the number of labelings that produce
breakthrough is bounded above by the total demand }; b;. On the other
hand, one can show easily that each non-breakthrough increases the dual
form (1.6) by at least one unit. Since this form is bounded above (e.g., by
24> ag5fyy for any feasible f), this will establish finiteness. To see that the
dual form increases, note from (1.13) and (1.14) that

—2%%+Z%;=—Z%w+2%&+&%ﬁ—mm-
i J i J

As we have observed, 8 is a positive integer. Thus it suffices to show that
b(J) — a(I) > 0. Again this strict inequality follows from the fact that if
non-breakthrough has occurred, then

a(l) + b(J) = Zf,, < by
j=1

Another way to demonstrate finiteness rests on the fact that the
number of consecutive occurrences of non-breakthrough can never exceed
min (m, n) + 1. For, as was pointed out, after non-breakthrough, the old
labeling can be repeated. In addition, at least one more row and column
can be labeled. To see this, recall that after changing the dual variables, at
least one new admissible cell is obtained in the rectangle IJ. Thus some
column of J will receive a label. If the new labeling is to result again in
non-breakthrough, then this column demand has been fulfilled; that is,
Sif;; = b; for the column j e J in question. Since f;; = 0 for i € I, then
fi; > 0 for some i € I, and consequently another row can be labeled. (We
are tacitly assuming that columns with zero demand, if any, have been
deleted from the problem to start with.)

This second finiteness proof leads to a bound on the total number of
labelings required to solve a Hitchcock problem that depends only on the
total demand and the size of the problem, the bound being

n n

(1.16) Z%+(Z@—QmmeH4%

=1 j=1
Here the first term bounds the number of labelings resulting in break-
through; the second, the number of labelings resulting in non-break-
through. While this bound, the idea for which is due to Munkres [61], does
not come close to being achieved in practice, it is still sufficiently good to
be interesting. It perhaps also lends some theoretical support to the
empirical observation that ‘‘long, narrow’ Hitchcock problems are faster
solved than ‘“comparable square’ ones, the comparison being on m + =,
the number of constraints.

100

§l. THE HITCHCOCK PROBLEM

Having established finiteness, our next job is to show that, upon
termination of the computation, a pair of optimal solutions to primal and
dual has been constructed. This is almost obvious, but nonetheless we give
the details. First note that it is clear from (1.13)-(1.15) that feasible dual
solutions are maintained throughout the computation, provided we start
with one. It is also clear that, upon termination, a feasible primal solution
has been constructed. Moreover, at each stage we allow the possibility
fiy > 0 only if the current dual variables satisfy ay; + «; — B; = 0, and
thus upon termination we have this optimality property. Also, at termina-
tion we have 3; f;; = b; for all j. Consequently, the optimality criterion
that B; > 0 should imply >; fiy = b; is satisfied automatically. The third
and last optimality condition that needs to be checked is that, at termina-
tion, oy > O only if > fi; = a4. This certainly holds for the starting oy. It
also holds for all subsequent a; because o4 increases from zero only if ¢ € J
at some stage. This means that at this stage >;fi; = a4, and hence this
equality is maintained for later stages.

We summarize some of this discussion in the following theorem.

THEOREM 1.1. Let a; >0 =1,...,m), bj>0(j=1,...,n), and
a; > 0 be given integers. The algorithm composed of Routines A, B, C
produces (integral) solutions to the corresponding Hitchcock problem and its
dual after at most S;b; + (3;b; — 1) (min (m, n) + 1) applications of
Routine A.

In computing a Hitchcock problem by hand, it is convenient to carry
along two arrays, one of which might be termed the ‘ cost-dual variable
array” and the other, the “flow array.” In the first of these the dual
variables are recorded above and to the left, say, of the cost array; using
the resulting array, it is easy to locate cells for which ay; + o« — B; = 0.
These can be marked by circles in the flow array. The labeling process is
then carried out on the flow array, labels being recorded to the right and
below the array, say. If breakthrough results, the indicated changes are
made in the flow array and the old labels erased. If non-breakthrough
results, the dual variables are changed in the cost-dual variable array,
new admissible cells are marked by circles in the flow array, and the circles
in old admissible cells that are no longer admissible are erased. One can
then re-label, using the old flow and old labeling to initiate the new
labeling.

It is also convenient to carry along an extra row and column in the flow
array for the purpose of recording the remaining supplies a; — 3; fi; and
demands b; — 3 fi;, changing these with each flow change. Those
by — 21 fi that are positive indicate potential breakthrough columns; the
positive a; — X fi; single out rows that start the labeling process.

ExampLE (continued). The figures and interspersed comment below

101

III. MINIMAL COST FLOW PROBLEMS

describe the step-by-step solution of the example. In carrying out the
labeling process, we have not recorded the second members of the labels,
but have found the flow change by backtracking in the event of break-
through.

Cost-dual variable array Flow array

2 3 3 7 2 4
ols|[3|7|3]s ! @ ® 0
olslseliz|s|7|n 2 @ a |-
ol2ls|3|als|2 3(3) O () o
olo|e|io]s|i0]9 a 9 |-
bj-sr;—{0]0 6|1]0]2

[2 <—Labels

The initial flow was filled in by sweeping the first row for its first circle,
here cell 12, setting fiz = min (a3, b2) = 3, reducing the supply and
demand for row 1 and column 2 by 3, then going on to the next circle, and
so on. (Of course we could have repeated the labeling process a number of
times instead.) We then label and do not break through to one of the
“shorted”” columns 3, 4, 6. Thus I = {2,4},J = {1,2, 3,4, 6} and we turn
to the cost-dual variable array to compute 8§ = min ;7 (@ + o — B5) = 2,
the minimum being achieved in cells 24 and 44. We then change the dual
variables using (1.13), (1.14), add circles in cells 24, 44, and remove circles
in IJ (here there are none), to obtain the new arrays shown below.

4 5 5 5 7 4 | 2 3 4 5 &
2{s|3|7|3]8]s5 |® | 0
olsfeli2]s5]7|n 2 @@ 4-|-
2|28 |3|a|8]2 3@0 Oo
oleo |6 |0]|5]0]9 4 O 9 |-

olole|i-|o]2
2

102

§1. THE HITCHCOCK PROBLEM

The labeling has resulted in breakthrough to column 4, the resulting
flow change of ¢ = 1 being indicated by + and — in the flow array.

OHOENG®

O jlojlw]oO
|

H W N

Non-breakthrough, 8§ = 1, new circle in cell 21, no circles lost.

5 5 6 5 7 5 I 2 3 4 5 6
25|13 |7|13(|8]5 | @ @ 0|4
o1 5|6 1215 7| 2+ I@ 3-|-
32|83)|4|8]2 3@ @ OO |
0|9 |6 [I0O[5/10]9 4 O 9 |-

ojofe-|0] 0|2
2

Breakthrough to column 3, ¢ = 3.

G () 0|4
2@ @@ 0 |a
JOHONEOL
4 O 9 |-

2

103

III. MINIMAL COST FLOW PROBLEMS

Non-breakthrough, § = 2, new circle 16, lose circle 31.

5 5 8 5 7 7 | 2 3 4 5 6
2ls|3|7(3]|8]s | GB)) (H)o]a
ols|sfiz|s|7|n 2(3) (X)) ol
sl2{s|3]|a]|8]2 3 @ Oo
olg |6 |i0|5|io]e a @ 9-|-
olo|3]|ofo]|2-
2 1 4 2 |

Breakthrough to column 6, ¢ = 1.

m|lo|O]|O
»

LS w N

5 6 9 5 7 8 I 2 3 4 5 6
3ls|3|7]|3]s e 1+) o |2
ofls]efi2|5|7|n 2@0 @@ o |4
6l2|8|3]|als]|2 3 @ Oo
o|l9o|e|i0fs]|i0]o a @ @ 8- |-
olo[3]{o]o[iI-
2 a 4 2 |

104

§1. THE HITCHCOCK PROBLEM

Breakthrough to column 6, ¢ = 1.

INoEENont
2 X) LX) [o]
SEROBEer
a () [0 7 |-

0o
2 2 |

Non-breakthrough, § = 1, new circles 13, 43, lose circle 36.

5 6 10 5 7 8 |2 a 5 6
3ls|[3]|7[3]e]s n@ 0
ols|eliz[s|7|n 230 @@ 0
728|348]2 3 @ 0
ol9|se|io|s|iofs 4@@0 7- |-
olol3-[ofo]o
a 4 4

()
©

& w N

The last cost-dual variable array gives an optimal dual solution; the
last flow array, an optimal primal solution. These are the same as shown
previously in Fig. 1.3 and Fig. 1.4.

If desired, alternative minimizing flows, if such exist, can be found by
using the optimal dual solution. The additional constraints that must be

105

II1. MINIMAL COST FLOW PROBLEMS

observed are just the optimality properties previously stated. For in-
stance, we can permit fi3 or foo to be positive, since they correspond to
admissible cells in the last low array, so long as we insist that fi;; = 0
for inadmissible cells and 3; fi; = a1, >; f3; = as (since o1 > 0, ag > 0).
Also, of course, we must maintain the conditions >;fi; = b; (since all
B; > 0). Thus, for example, to look for a minimizing flow in which fi3 > 0,
we could impose a lower bound of unity on f;3 and solve the resulting flow
problem on the “network” of admissible cells.

In a similar way, the optimal dual variables can be used to discover how
much the shipping bill would increase if a positive flow were allowed in an
inadmissible cell. For instance, increasing fa3 from 0 to & would increase the
shipping bill by k(ass + a2 — B3) = 2k, so long as flows corresponding to
other inadmissible cells were held at zero and the other optimality con-
ditions preserved. Consequently the ‘“most expensive’’ route to use is 32,
for which ags + a3 — B2 = 9 is maximal.

Other information is contained in an optimal dual solution. For ex-
ample, since a3 = 7, it follows that increasing the supply at source 3 by
one unit is potentially worth 7 units on the transportation bill (here it
really is worth 7 units), and so on. Linear programming facts of this kind
are well known and we shall not dwell on them, except to say that for the
Hitchcock problem such statements follow readily from the identity

Z_%‘(fi'j - fy) = Z (@; + e — B)fi; — Z aa; — a;) + Z_ﬂj(bf —b).
Y 1,3 v J

Here f is an optimal primal solution, «, B, an optimal dual solution, and
f" a flow from sources to sinks having row sums a; and column sums b/.

Another rule for changing the dual variables that can be used instead of
the one given by (1.13)—(1.15) has been stated by Flood [19]. This trans-
formation has the advantage of making larger changes in the dual form at
the expense of destroying old admissible cells containing positive flow
entries.

To deduce this rule, let us begin by supposing that, instead of adding as
large a constant as possible to all o, 5 € I, and B;, j € J, maintaining dual
feasibility, we look, more generally, for a dual variable change of the
following kind :

o, rel
1.17 T=4" ’
() % {ai + 8, iel,
(1.18) ﬂ; — {ﬁj’]e{,
Bi + &, Jjed,

where 8, 8; > 0 and a;; 4+ of — B} > 0, the latter for all 4, j. For this
transformation, the change in dual form is given by

(1.19) Zb}&j - 82%
J 1

106

§1. THE HITCHCOCK PROBLEM

and thus we take as our objective that of maximizing (1.19) subject to the
constraints

(1.20) ay; + oy — Bj— 8 =0,] elJ,
(1.21) ay + o — BJ' + 8 — Sj >0, lJEIj,
(1.22) 5§ >0, 8 = 0.

The reason for restricting attention to the transformation (1.17), (1.18),
instead of allowing variable quantities to be added to the o, ¢ € I, as
well, is that for the former, the resulting maximum problem can be solved
by a simple rule, as we shall see. Without the restriction, we have, in effect,
a problem on a par with the original Hitchcock problem.

To simplify the notation, set

(123) aij = a5 + oa; — /3;.

Notice that on the first step, that is, for the «;, 8; defined by (1.12), it is
true that every column of the rectangle IJ contains at least one ay = 0,
because for any j, @; = 0 for at least one 7, and the rectangle IJ contains
no zero a;. We may assume that we have this property in the maximum
problem (1.19)-(1.22), since we can guarantee it, if necessary, by increasing
the B; until every column contains at least one @;; = 0.

For fixed 8, the change (1.19) is maximized by taking each §; as large as
possible, that is,

8_1 = min [min aig, min (@ + 3)], J ed.
1 1

In view of the remark of the preceding paragraph, this becomes

81 = min (min aij, d), jed.
I

Then our problem is to determine a § that achieves

1.24 i -
(1.24) 1;1:3(Z b; min (8, Aj)) — 8 Z ai,
J 1
where
(1.25))\j = min agj, JE J.
I

Let us assume the notation has been chosen so that J = {1,.. ., ¢}, and

0 < A1 € A&2 € ... < Ag We first remark that the maximum in (1.24) is

attained by selecting & to be one of the A; (j = 1, ..., q). Indeed, any &’
107

III. MINIMAL COST FLOW PROBLEMS
such that Ay < 8" < Agt1 (kb =1

g — 1) is majorized by selecting
either § = Ay or 8 = Ag,1, since, of the three numbers

II

£

+

-
~M
I__J

the first is no smaller than the second if the quantity in parentheses is

non-positive, and the third is larger than the second otherwise. Moreover

if 8 > Ag, the comparison is between the two numbers
g q

Z bj)\j —_ 8’ Zai, z bj)\j —)(q Zai,

i=1 7 i=1 i

the second being larger. If 8’ < Aj, the comparison is between the numbers

[Zb:i Zai])‘l[qu;bj_lzai},

and again the second is larger since the number in parentheses is positive
Thus 8 is one of Aj,

Ag, and the problem is reduced to determining
k q
max ¢(k) = max [Z b + /\k(Z b; — Zai)]
k k =1 Jj=k+1 i
,...,q. Now

q
ek + 1) — k) = (Ag+1 —)‘k)(Z b — Z)
Jj=k+1

and thus p(k + 1) — g(k) is non-negative or non-positive according as the
second factor on the right is. It follows that the maximum problem is
solved by selecting 8 = A, where k is the first integer for which

k
Z bj > i bj - Zat
i=1 i=1 7

Thus we have at our disposal the following alternative rule for changing

fork =1

dual variables after non-breakthrough
Mazximal dual change rule. Let

(126) /\; = mIin (aij + o — ﬂj), jGJ,
108

§l. THE HITCHCOCK PROBLEM

and arrange the A; in increasing order. Beside each A; record the corresponding
column demand b;. Accumulate these latter until the sum first exceeds
b(J) — a (I), and let § denote the corresponding ;. Then define

g, 1el
1.27 [= ’
() % {Oti + 8, 7: € Ir
(1.28) B = min (a;; + <.

Notice that taking 8 = A; corresponds to the simpler transformation
(1.13)—(1.15).7

If the transformation (1.27), (1.28) is used, admissible cells in the
rectangle /J may become inadmissible for the next step. Since these may
contain positive flow entries, we must set such entries equal to zero if we
wish to maintain the condition that fi; = 0 if d@; > 0. But doing this
means that the condition }; f;; = a; corresponding to positive «; may not
hold at the conclusion of the computation. To avoid this complication, we
can take the original problem in equation form. This has been done in
the example below.
ExAMPLE (continued). After the initial step, we have the arrays:

2 3 33 7 20 | 2 3 4 5 6 7
ol5[3|7|3|8|5]0 TN OO Ol o
o|5|6 12|57 ||0| 2 D] |®@|o
ol2|8|3|4|8 ol 3|13 |0 O|0| o
o|9|e|i0f5]|0]|9]0 4 Ol e

o|o|6]! 2|0
2 4

1 The basic algorithm, using the transformation (1.13)-(1.15), has been coded for
the IBM 704 computer by K.Speilberg; this code is available through SHARE, No.
464. Computing times quoted for the code (exclusive of input-output times) for
several examples were :

matrix time
130 by 30 1 min. 30 sec.
160 by 30 3 min. 34 sec.
190 by 30 4 min. 0 sec.
220 by 30 4 min. 58 sec.

Comparisons were also made with the specialized form of the simplex algorithm that
is known as the stepping-stone method. For the same set of problems, the latter times
were 2 min. 13 sec., 4 min. 56 sec., 7 min. 5 sec., and 11 min. 58 sec., respectively.

109

O ~N O N

III. MINIMAL COST FLOW PROBLEMS

Suppose we apply the maximal dual change rule. Here I = [1, 3], J =
(1,2,3,4,6],b(J)—a(l) = 16—7 = 9,and

AL =3, A2 = 3, A3 =1, A= 2, Ao =17,
by = 3, bs = 3, b3 = 6, by = 2, b = 2.

Thus, since by + by + by = 8 < 9 < by + b1 + bg + b3, we take & = A3
="7. Then the new arrays are

5 6 10 5 7 9 O | 2 3 4 5 6 7
5|3|7(3|8|5]|0 ! 4
sleliz|s|7|n|o| 2|00 OO |® o
2|8 |3|4|8|2]|0| 3 O Q| |3
olelio|sfio|7(|o]| 4| OO0 OO
3|3|6|2]|0|2]|0

Several successive breakthroughs then lead to the non-breakthrough
situation

A N
o|Oo|JO |+

with T = [2,3,4],J = [1,2,3,4,5,6,7],b(J) — a(l) = 4,and

M=T7 =4 M=4 M=5 A=8 2A=3 I=17
by=3, bp2=3, b3=6, bg=2bs=1 bg =2 by =4.

110

§2. THE OPTIMAL ASSIGNMENT PROBLEM

Thus 6 = A3 = 4, and we obtain the new arrays

9 10 14 9 1l 12 4 | 2 3 4 5 6 7
5(3(7(|3|8|5]0 | OO O 4
slelizjs|7|njol 2|00 OO |@|o
2|/8(3|4]|8 o| 3 O 2
ole|lo|s5]|l0j9|0| 4| ®OB® Ol o
3|1 {olo|ol2|o0

At this point we have an optimal dual solution, and are therefore almost
done. A few more applications of the labeling procedure yield an optimal
primal solution.

2. The optimal assignment problem [56, 57, 60, 61, 68, 69]

A well-known extremal combinatorial problem, which generalizes the
problem of assigning qualified personnel to jobs (IL.5) and is also similar
in some respects to the bottleneck assignment problem (IL.6), is that of
assigning » men to » jobs in an optimal fashion: it is assumed that man 4
in job j has an efficiency measured by the non-negative integer a;;, and a
permutation or assignment ¢ — P(7) is sought that maximizes the efficiency
sum

n
Z @4,P(1)-
i=1

If one takes a;; = 1 or 0 according as man ¢ is or is not qualified for job j,
the problem of I1.5 is obtained.

Since, by Theorem 1.1, a Hitchcock problem with integral supplies and
demands always has an integral solution, the optimal assignment problem
can be posed as the special Hitchcock problem :

n

(2.1) Dfa=1, i=1,...,n,
j=1
n

(2.2) Dfa=1 ji=1,...,n,
i=1

t That the combinatorial problem can be solved as a linear programming problem
can be seen in many ways. For example, as is well known, the permutation matrices
are the extreme points of the convex set of doubly stochastic matrices; that is, the
convex set defined by (2.1)-(2.3), a fact that is readily deducible, for instance, from
Hall’s theorem. Thus any linear programming method that constructs an extreme
point solution, as the simplex method does, would solve the assignment problem.
While our algorithm for Hitchcock problems does not guarantee an extreme point
solution, it does guarantee an integral solution, and this suffices.

111

III. MINIMAL COST FLOW PROBLEMS
(2.3) fis =0,

(2.4) maximize Z aijfij.
i,J
(One could equally well assume m men and n jobs with m > =, and state
the problem in mixed equality-inequality form, insisting that every job be
filled precisely once, and no man be assigned to more than one job.)
Except for the fact that maximization has replaced minimization, the
problem is now cast in familiar form. We can get rid of this slight difference,
if desired, by subtracting each a;; from, say, K = max;,; ai;, and then
minimizing
D (K — ay)fy = Kn — > aijfy.
i,J %
In this form the algorithm of the last section requires no restatement to
be applicable. Or, one could use the dual of (2.1)-(2.4), which can be
written as

(2.5) —a; + By = ay, ,j=1,...,mn,
(2.6) minimize > B; — > ai,
J 3

to make necessary changes in the computation.

Since row and column sums are unity, each maximal flow problem
encountered in solving an optimal assignment problem is of Konig-
Egervary type; that is, a maximal set of independent admissible cells is to
be constructed.

It follows from Theorem 1.1 that the number of labelings required to
solve an optimal assignment problem can not exceed n2 + n — 1. Actually
a somewhat better bound can be obtained as follows. Suppose that a
breakthrough has produced a partial assignment containing v < n ones,
and this is followed by non-breakthrough with labeled rows I and labeled
columns J. Then |I| + |J| = vand hence |I| < v. Consequently, since |I|
decreases by at least one with each additional consecutive non-break-
through, there can be at most v + 1 such. It follows that the total number
of labelings is no greater than }(n2 + 3n — 2), which is a uniformly
better bound than the one given by Theorem 1.1.

While the optimal assignment problem is a special case of the Hitchcock
problem, it is equally true that a Hitchcock problem with integral row
and column sums a; and b; can be solved as an optimal assignment prob-
lem. For, taking the Hitchcock problem in equality form, we may replace
the ith row by a; rows, each having unit row sum and all having the same
costs ay;; and similarly for the columns, thereby obtaining an equivalent
n by n assignment problem with n = >;a; = >;b;. For computational
purposes, expanding the problem in this way is of course not worth while.

112

§3. THE GENERAL MINIMAL COST FLOW PROBLEM

3. The general minimal cost flow problemf

The construction of minimal cost flows that fulfill demands at some nodes
from supplies at others, in a network in which each arc has infinite capacity
and a unit shipping cost, assumed non-negative, has been referred to in the
linear programming literature as the trans-shipment problem. Orden [62]
and others have recognized the fact that such a problem can be converted
to a Hitchcock problem. In the next section, we shall present an equiva-
lence between the trans-shipment problem with capacity constraints on
arcs (the minimal cost flow problem) and the Hitchcock problem, but our
aim in this section is to treat the former directly.

Assume given a network [N; /] having sources S, intermediate nodes
R, and sinks 7', arc capacities c(x, y), arc costs a(z, y), with supplies a(x)
for z €8 and demands b(zx) for x € T. The problem is to construct a
feasible flow, if one exists, which minimizes cost. That is, we wish to solve
the linear program

(3.1) f(z, N) — f(N, z) £ a(x), zel,
(3.2) fl@, N) — f(N,z) =0, z€ R,
(3.3) fl@, N) — f(N,z) < —b(), zeT,
(3.4) 0 <flxy) < cy), (x,y) e L,
(3.5)

minimize z a(z, y)f(z, v).
7

We suppose throughout that a(x), b(x), ¢(z, y) are positive integers, a(z, y)
non-negative integers.

It is convenient, particularly for later discussion of other problems, to
put this problem in slightly different terms. The differences are these. First,
we shall assume a single source and single sink in our network [N ; &/];}
second, we introduce the flow value v as an explicit variable in the program;
third, instead of minimizing the function in (3.5), we shall maximize

(3.6) pv — Z a(z, y)f(x, y).

3
Here p may be thought of as a parameter that consecutively assumes the
values 0, 1, 2, Thus we are now considering the sequence of programs
(3.7) fls, Ny —v =0,
(3'8) f(x’N)_f(N’x)"_'O) z # 8,8,

t The algorithm of this section was originally developed as a means of solving the
maximal dynamic flow problem [24]. This problem will be discussed later in the
chapter (§9).

1} We may do this by adding to the original network nodes s, ¢, together with
source and sink arcs (s, S), (7, t), taking c(s,x) = a(zx) for z €S, ¢(zx,t) = b (x) for
zeT, and a(s,x) = 0 for x e S, a(x,t) = 0 for xe T.

113

III. MINIMAL COST FLOW PROBLEMS

(3.9) —f(N,t) + v =0,
(3.10) 0 < flx,y) < clx,y), (x,y) e,
(3.11) maximize pv — > a(z, y)f (x, y)-

K4

We term the pth program of this sequence the pth related program. The
function to be maximized in the ptt related program places a premium of
p units on every unit of flow that gets through the network, and a penalty
a(x, y) on every unit of flow in arc (z, y).

For p sufficiently large, the related program asks for a maximal flow
that minimizes cost over all maximal flows. Hence for large p, a solution
either solves the original flow problem (3.1)-(3.5) (if v equals the total
demand), or shows the latter to be infeasible. (Of course, feasibility could
be determined to begin with by solving a maximal flow problem.) The
computation will generate successive flows fo = 0, fi1,...,fp, the last
being a maximal flow. Each f, will be a solution to the pth related program,
and thus P will be a “sufficiently large’’ value of p.

Before describing this computation, let us motivate it by considering the
dual of the pth related program. If we assign dual variables #(x) to equa-
tions (3.7)—(3.9), and y(z, y) to the capacity constraints f(z, y) < c(z, y),
then the dual has constraints

(3.12) —n(s) + #(t) = p,
(3.13) m(@) — 7(y) + vz, y) = —a@,y), (x,y) €,
(3.14) y(@,y) =20, (@, y) e,
subject to which the form
(3.15) > el Yy, y)

o

is to be minimized. (The equality appears in (3.12) since the sign of v has
not explicitly been restricted, although one could do so.) We refer to the
dual variables =(x) associated with the nodes of the network as node
numbers,t the dual variables y(z, y) as arc numbers. Although the node
numbers are not necessarily non-negative, the ones constructed by the
algorithm will be, and in fact, non-negative integers satisfying =(s) = 0,
n(t) = p.
Optimality criteria for primal and dual are

(3.16) m(@) — #(y) + y(x,y) > —a(x,y) = f(x,y) =0,
(3.17) y(,y) > 0= f(z,y) = c(z, y).

t Again the reader who is so inclined may wish to interpret these as potentials or
prices.

114

§3. THE GENERAL MINIMAL COST FLOW PROBLEM

It follows that if a flow f and node numbers 7 can be constructed satisfying

(3.18) n(s) =0, =) =np,
(3.19) n(y) — 7(x) < a(z,y) = f(z,y) =0,
(3.20) n(y) — 7(x) > a(@,y) = f(z,y) = c(z, y),

then, by taking
(3.21) y(@, y) = max (0, n(y) — =(x) — a(x, y)),

feasible solutions to both the pth related program and its dual have been
found that satisfy (3.16)-(3.17), and are therefore optimal in their re-
spective programs. Consequently, we shall make no explicit mention of
the arc numbers, but shall deal only with flows and node numbers, aiming
at the optimality properties (3.18), (3.19), (3.20).

Although we have used general duality principles in arriving at these
optimality properties, it is easy to check directly that these properties
imply that f minimizes Y a(x, y)f(x, y) — pv. For if we define

(3.22) a(x, y) = a(z,y) + =(x) — =(y),
it follows that

D yfiay) = a@ y)fy) + > =@)f (@ y) — > n(y)fy)

zY zY zY

= > a(z, y)f (@, y)+Z Z)foy Zw(y)zf(x,y)

zY

= > alz, y)f (, y>+2) S 1f (@) — f(y, 2)]

!

= > a(@, y)f (@, y) + vlm(s) — =(t)].

zYy

Hence, by (3.18),

(3.23) D a y)f(y) = > al, y)f(x,y) —

Now (3.19) and (3.20) clearly imply that f minimizes the left-hand side of
(3.23), hence also the right.

As was the case for the Hitchcock problem, the minimal cost flow
algorithm of this section consists, in essence, of solving a sequence of
maximal flow problems, each on the sub-network of admissible arcs, one
difference being that now there will be two kinds of inadmissible arcs,
corresponding to (3.19) and (3.20). For the former of these, the arc flow
will be held fixed at zero, while for the latter, the saturation condition will
be maintained. Thus each maximal flow problem can be thought of as one
in which upper bounds of zero are imposed on certain arcs, and lower

115

III. MINIMAL COST FLOW PROBLEMS

bounds equal to the arc capacity, on others. (Each such maximal flow
problem will be feasible.) After solving by the labeling method, the current
node numbers are changed by adding a constant to all node numbers
corresponding to unlabeled nodes. In the description below, we have
assumed this constant to be 1. This is merely a descriptive convenience :
it corresponds to changing the parameter p to p + 1 instead of some pos-
sibly larger value p + 8. We shall state later how large to take & in actual
practice.

There are alternative ways of starting the computation. The simplest is
to begin with all node numbers equal to zero and the zero flow. This
corresponds to taking p = 0, since (3.18), (3.19), (3.20) are then satisfied.

To describe the general cycle of the computation, let us now suppose
that we have an integral flow f and node integers = satisfying (3.18), (3.19),
(3.20) with =(¢) = p (that is, f solves the pth related program), and we
wish to construct an integral flow f’ and node integers =’ satisfying the
same conditions with #'(() = p + 1 (so that f’ solves the (p + 1)st
related program). Let the admissible ares for this cycle be those for which

(3.24) n(y) — m(z) = a(a,).

(Thus if a(z, y) > 0, at most one of (z,) and (y, x) is admissible. For the
starting point = = 0, only arcs with a(x, y) = 0 are admissible.)

Minimal cost flow routine. Perform the labeling process on the sub-
network of admissible arcs, beginning with the flow f. Thus the labeling
rules are: node y can be labeled from node z if either

(a) (x,y) is admissible and f(z, y) < c(z, ¥),
(b) (y, x) is admissible and f(y, z) > 0.

If breakthrough occurs, change the flow in the usual way, and re-label. If
non-breakthrough occurs, denote the present flow (which may or may not
be f) by f’ and define new node integers by

m(x), zeX,

3.25 7' (x) =
(8.28) @) {w(x) +1, reX,

where X is the set of labeled nodes.

The routine is then repeated, using the new node integers =’ to define
admissible arcs, and beginning with the flow f’. Eventually a maximal
flow is constructed, as we shall show later. First, we point out that if the
flow f and node numbers = satisfy (3.18)-(3.20), then the same node
numbers and flow f’ do also, simply because the routine does not permit
flow changes in inadmissible arcs. In addition, f' and =’ satisfy these
conditions with #’(t) = p + 1, that is

(3.26) w(s) =0,7(t) =p + 1,
116

§3. THE GENERAL MINIMAL COST FLOW PROBLEM

(3.27) (y) — 7'(@) < a(x,y) = [, y) =0,
(3.28) (y) — 7'(@) > alx, y) = f'(x, y) = c(x, y).

Condition (3.26) is obvious from (3.25) and the fact that s € X, t € X if
non-breakthrough occurs. To establish (3.27), suppose #'(y) — ='(x)
< a(z, y). Then from (3.25) and the fact that we are dealing with integers,
we have n(y) — m(x) < a(z, y). If strict inequality holds, then (z, y) was
inadmissible throughout the routine, and hence f’'(z,) = f(z, y) = 0. If,
on the other hand, equality holds, then from (3.25) we must have ='(y)
= n(y), #’(x) = () + 1, and hence x € X, y € X at the conclusion of the
labeling process. Since (z, y) was admissible, it follows that f'(z, y) = 0, as
otherwise x would be labeled from y (labeling rule (b)), a contradiction.
Thus f’(z, y) = 0 in either case, establishing (3.27).

The proof of (3.28) is similar.

Consequently, if we denote the outputs of the pth application of the
routine by f) and 7, we may state the following theorem and corollaries.

TureorREM 3.1. The node integers mp and integral flow fp satisfy the
optimality properties (3.18), (3.19), (3.20) for the ptt related program. In
addition, so do wp and fp41.

CoroLLARY 3.2. The flows fp and fpi1 maximize the linear form
v — > ax, y)f(x, y) (where v is the value of f) over all flows from source to
sink. Moreover, the corresponding node integers mp and arc integers yp(x, y)
= max (0, mp(y) — mp(x) — a(z, y)) solve the dual program. In particular,

Pop — 2 a(@, Y)fp(®, Y) = Pops1 — D a(®, Y)fp+i(, y)
(3.29) i o
= > o, Yyp(,).
K4

It follows from Corollary 3.2 that f; minimizes total flow cost over all
flows of value v,. It is also clear from this corollary that for all sufficiently
large p, fp must be a maximal flow. One way of making this last statement
more precise is by introducing the notion of “path cost.” Consider any
path from s to ¢ (I.1) and sum the arc costs for all forward arcs of the
path, then subtract from this the sum of arc costs corresponding to
reverse arcs of the path, We call the resulting number the path cost.

CorOLLARY 3.3. If p is greater than the maximal path cost from s to ¢,
then fp is maximal and minimizes cost over all maximal flows.

Proor. If fp, is not maximal, then there is a flow augmenting path
from s to ¢ (Corollary 1.5.2); that is, there is a flow f of value v = vp + ¢
(¢ > 0) and a path from s to ¢ such that

fo(x, y) + &, if (z, y) is a forward arc of the path,
f@,y) =< folx,y) — & if (x,y) is a reverse arc of the path,
folz, v), otherwise.

117

III. MINIMAL COST FLOW PROBLEMS

Hence, letting p’ be the path cost, we have

;a(x, Y, y) — folx, 9] = p'e < pe = pv — vy)

or

pop — 2 al@, y)fp(x,y) < pv — > alz, y)f(x, y),
7 K4

contradicting Corollary 3.2. Thus f; is maximal, and hence minimizes cost
over all maximal flows.

Once a maximal flow has been constructed by the routine, the original
problem has either been solved or shown to be infeasible. Thus Corollary
3.3 gives a bound on the computation. In terms of the number of individual
labelings, this bound would involve the total demand and the cost function.
As was the case for the Hitchcock problem, a bound can be obtained that
depends only on the total demand and the number of nodes. The idea is the
same : one looks at consecutive occurrences of non-breakthroughs between
breakthroughs. If we put the algorithm in slightly different terms, the
difference being that trivial non-breakthrough situations are thrown out
by making a large enough node number change to ensure that at least one
more node will be labeled on the next labeling, then such a bound is
obtained easily.

To see what the node number change should be to guarantee this
situation, we need only examine arcs of the sets (X, X) and (X, X), since
adding a constant to =(x) for x € X does not change the pattern of ad-
missibility of arcs of the sets (X, X) and (X, X). Thus we consider the
following six cases, the first three of which correspond to arcs of (X, X),
the last three, to arcs of (X, X):

(a) 7(@) — n(x) = a(z,z) (hence f(x,Z) = c(z, 7)),
(b) 7(Z) — m(z) > a(z,%) (hence f(z,Z) = c(z, 7)),
(¢) #(Z) — m(x) < a(x,Z) (hence f(x,Z) = 0),
(d) w(x) — 7(Z) = a(x,) (hence f(Z, x) = 0),
(e) m(x) — m(Z) > a(Z, x) (hence f(Z, x) = c(Z, x)),
() =(x) — #n(z) < a(Z, x) (hence f(Z, x) = 0).

If we add a small constant 8 to #(Z), e.g., § = 1, then possible changes in
the admissibility structure are indicated by the diagram :

O > g %Q
s

§3. THE GENERAL MINIMAL COST FLOW PROBLEM

It follows that if we define a@(z, y) by (3.22), we may determine a node
number change & as follows. First single out the subsets of arcs corre-
sponding to (c) and (e) above:

(3.30) A1 = {(= y)|lre X,y X, a(x,y) > 0},
(3.31) Ay = {(zy)|reX,yeX,a(x, y) < 0}.
Let
(3.32) 81 = min [a(z, ¥)],
S
(3.33) 82 = min [—a(z, y)].
o

2

Then the node number change
(3.34) 8 = min (83, 82) > 0

introduces at least one more admissible arc from one of the sets %/; or 5.
(Moreover, the optimality properties (3.18), (3.19), (3.20) again hold for
the old flow f and new node integers.) Consequently the old labeling can be
repeated, and in addition at least one more node can be labeled. Since the
source s is always labeled, the maximal number of consecutive non-
breakthroughs cannot exceed the number of nodes in the network.

Admissible arcs corresponding to (a) and (d) above become inadmissible
for the next labeling.

We note the following corollary.

CoroLLARY 3.4. The flow fpis maximizes the linear form p'v —
> a(x, y)f(x, y) for all p’ inthe interval p < p' < p + 8. Here & is the node
number change (3.34), and fp.1s is the flow that produces non-breakthrough
and the subsequent change 8 in the minimal cost flow routine.

Termination of the computation is recognized when the minimizing sets
in (3.32) and (3.33) are both empty, which is equivalent to saying that
every arc of (X, X) is saturated, whereas every arc of (X, X) is flowless.
Thus (X, X) is a minimal cut and the flow is maximal.

The amount by which the dual form Y ¢(z, y)y(z, y) changes with an
occurrence of non-breakthrough can be determined directly, or can be
found from Corollary 3.4 as follows. Since f,4; maximizes pv —

2 a(x, y) f(=, y), we have
> (@, Y)yp(@ ¥) = PUpis — > a(@, Y)fp+s(, y)-
Since fp+s also maximizes (p + 8)v — > a(z, y)f(x, y), we have
(D + Bvprs — D a(@, Y)fp+a(@, y) = D (@, Y)yp+s(@, Y)-
Hence
2 el Yy, y) = 2 c@, y)yp+o(@, y) — Svpes.
119

III. MINIMAL COST FLOW PROBLEMS

Thus the dual form increases by 8v,., in going from related problem p to
p + 8.

The discussion thus far has centered around the maximization of the
linear form (3.6), or rather the family of forms (3.6) for variable p. But
there is another, and more basic, way of viewing the method of this
section that should be emphasized. We noted following Corollary 3.2 that
the flow f, minimizes cost over all flows from source to sink that have
value v, = v(fp). Suppose we let a;, be the cost of f),

ap = a(, y)fp(,).

%
We have
0=vy<v <v2< ... <vp,
O=a<a<a<... <ap,
and thus the sequence of points (vy, ap), p = 0,1,..., P, generates a

piecewise linear, monotonic increasing curve a(v) in the (v, a)-plane by
joining distinct, adjacent points of the sequence with line segments. It
follows that a(v) is the minimal flow cost corresponding to the flow value
v for all v satisfying 0 < v < vp. For suppose not. Then there would be a
v satisfying vp < v < vp41, for some p =0,1,..., P — 1, and a flow
f from source to sink of value v with cost @(v) < a(v). Let v = avp +
(1 — «)vp+1, 0 < @ < 1, and consider the flow f = «f) + (1 — «)fp+1 of
value v and cost a(v). By assumption,

pv — @(v) > pv — a(v) = pv — Z a(z, y)f(x, ¥),
and hence upon substituting for v and f,
pv — a(v) > o[pvy — a(vp)] + (1 — &)[prp+1 — a(vp+1)]-
By Corollary 3.2, the bracketed terms here are equal, and so
pv = a(v) > pvp — a(vyp),

contradicting the fact that f; maximizes the form pv — Y a(z, y)f(z, y)
over all flows from source to sink. Thus the function a(v) generated in the
computation gives the minimal cost for 0 < v < vp. A consequence of this
fact is that a(v) is convex.

Notice that this viewpoint provides a simple conceptual framework for
the computational process, which might be summarized by the statement :
each additional unit of flow through the network travels by a least cost
flow augmenting path. In more detail, suppose we have constructed a flow
f of value v at some stage of the algorithm. The procedure then finds a
flow augmenting path with respect to f that has the least path cost of all
such paths. Thus each linear piece of a(v) corresponds to an interval in

120

§3. THE GENERAL MINIMAL COST FLOW PROBLEM

which the flow augmenting paths that are located have a constant path
cost, given by the slope of a(v). If v, < wp41, the slope of a(v) in the
interval (vp, vp4+1) is equal to p, since by (3.29),

a(vp+1) — a(vp) = P(vp+1 — Vp)-

(This can also be seen directly by summing the equations = [a(z,y)
+ mp(x) — mp(y)] = O along a path from s to ¢ consisting of admissible
ares, the plus sign being taken for forward arcs, the minus sign for reverse
ares, to obtain the result that the path cost is p.)

The foregoing discussion suggests the validity of Theorem 3.5 below,
which has been stated by Jewell [48] and Busacker and Gowen [3]; it is
also implicit in the computational procedure described by Iri [45]. This
theorem may properly be regarded as the central one concerning minimal
cost flows.

THEOREM 3.5. Let f be a minimal cost flow from source to sink corre-
sponding to the flow value v. Then the flow f' obtained from f by adding ¢ > 0
to the flow in forward arcs of a minimal cost f-augmenting path, and sub-
tracting € from the flow in reverse arcs of the path, is a minimal cost flow
corresponding to the value v + e.

Note that Theorem 3.5 strengthens the principle brought out above by
allowing f to be any minimal cost flow of value v. The proof given here
simply uses the fact that such an f and some 7, must satisfy the optimality
properties (3.18), (3.19), (3.20).

Proor. We may assume that v satisfies vp < v < vp41. Then every
f-augmenting path has cost >p. To prove the theorem it suffices to show
that equality holds here for some f-augmenting path.

We first note that f and =, satisfy the optimality properties (3.19),
(3.20) (and of course (3.18)) for the pth related program. For, letting
a(x,y) = a(x, y) + mp(xr) — mp(y), we have from (3.23),

Z a(x, y)fp(x, y) = a(vp) — pvp,
> @@, y)f (@ y) = a(v) — po.

Now (3.19), (3.20) hold for f and 7p; if they did not also hold for f and =,
then clearly

> alx, y)f(xy) > > @, y)fa(, y),
and hence from the last two displayed equations,

a(v) — a(vp) > p(v — vp),
a contradiction.
Assume now that every f-augmenting path has path cost >p. Consider
the labeling process of the algorithm applied to f and the sub-network of

121

III. MINIMAL COST FLOW PROBLEMS

mp-admissible arcs. Non-breakthrough must result, since all paths of
admissible arcs from s to ¢ have cost p. It follows that the node numbers
7y, Obtained from =, by adding unity to ,(x) for unlabeled z, together
with the flow f, satisfy the optimality properties for the (p + 1)t related
program. Thus

pv — a(v) = prp — a(vp) = Prp+1 — A(Vp+1)
(p + v — a() = (p + Dvps1 — a(vp41),

whence subtracting gives v = vp41, contradicting the assumptionv < vp41.
Thus some f-augmenting path has cost p, as was to be shown.

It follows from Theorem 3.5 that any method for finding a minimal cost
flow augmenting path can be used to solve the minimal cost flow problem
posed in this section, since one can always start with the zero flow. The
method we have described is merely one such. (For others, see [3] and
[45], for example.) Conceptually it is not the simplest, but it has certain
advantages for later use.

It should also be remarked that the validity of Theorem 3.5 does not
actually depend on the assumption of non-negative costs that has been
made in this section. The reason for assuming non-negative costs here is
that it is then easy to initiate the computational routine, e.g., with f = 0,
m = 0. Later we will describe (§ 11) a more general and flexible method
requiring no assumption concerning the cost function.

We conclude the discussion of this section with the following theorem,
which will be invoked in the study of maximal dynamic flows in § 9.

THEOREM 3.6. Let x1, %, . . ., 2k (X1 = 8, 2k = t) be any chain from s to
t. Then

k-1
(3.35) Z [a(zi, i+1) + yp(@0, 2141)] > P

t=1

If fp(xi, xi11) > O for all arcs of the chain, then yp(xi, x4+1) > O for some arc
of the chain, and equality holds in (3.35).
Proor. The first assertion results from summing the inequalities

mp(xi) — mp(Ti+1) + yp(Ti, Ti+1) = —a(g, Tit1)

along the chain, and noting that m,(s) = 0, mp(¢) = p.

If fp(xi, s41) > 0, then by Theorem 3.1, equality holds in the last
displayed inequality, hence also in (3.35) if every arc of the chain has
positive flow.

For the remaining assertion of the theorem, assume that fp(x, 2i+1) > 0
(¢ =1,...,k — 1) and consider the labeling process using f, that resulted

122

§3. THE GENERAL MINIMAL COST FLOW PROBLEM

in non-breakthrough. Since s € X and t € X, there is a node 2, of the chain
with 2y, € X, 41 € X. If fp_1(m, ¥m+1) > 0, then by Theorem 3.1,

7Tp—1(£m+1) - Wp—l(xm) 2 a(Tpm, Tm+1)-

If, on the other hand, fy—i1(*m, Zm+1) = O, then, since the flow in arc
(*m, Tm+1) has changed, the arc was admissible for the labeling process;
that is,

Tp-1(Tm+1) — 7Tp-1(Tm) = A(Tm, Tm+1)-
Now

mp(Em) = Tp-1(Tm),
Tp(Tm+1) = mp-1(Tm+1) + L.
Hence, since we have established
Tp-1(Tm+1) — 7p-1(Tm) — A(@m, Tm+1) 2 0,
it follows that
Yo(@m, Tm+1) = Tp(Tm+1) — 7p(®m) — A(Tm, Tm+1) > 0.

ExampLE. To illustrate the construction of a maximal flow that
minimizes cost, consider the network of Fig. 3.1, in which the first number

Figure 3.1

on an arc is its capacity ; the second, its unit shipping cost. We assume that
the problem is an undirected one, the given costs and capacities holding for
both directions.

If we begin with all node numbers zero and proceed with the computa-
tion, no positive flow gets through the network until #(¢) = 15. The node
integers 15 are shown in Fig. 3.2. From these, admissible arcs are de-
termined (indicated by black arrowheads in Fig. 3.2), and the labeling

123

III. MINIMAL COST FLOW PROBLEMS

3 13
25 909 10,2
503| [50,2 0, 10
10 J Lo 5 10’
15
a5 108 804
(OHeedHG 1.8 B 03
10,3 605, 0,!
’ 13
15,2
158[[15, A 2;8,2
o, 10,3
7 203 10

Figure 3.2 (w15, f16)

process (using fi5 = 0) yields the flow fi6 (shown in the lower left-hand
corners of the boxes in Fig. 3.2) together with the final labeled set X for
the cycle (the double circles of Fig. 3.2). Here § = 1, new admissible arcs
are (z4, %g), (z7, t), (9, t), whereas (7, 2¢) becomes inadmissible by virtue
of having a positive arc number y;¢(x7,) = 1 (shown in the lower right-
hand corner of the box in Fig. 3.3; white arrowheads are used to indicate

3 14
252 909 10,2
50,3 150,2 5 10,1 10
15 | {15 10,1 6
45, 10,8 80;
10,3
@ 3085 15,8 12 5
103 60, 10! S
15,8 15,2 8 202
15 10 103
10,1 5
20,3
7 5 10

Figure 3.3 (m16, f17)

flow directions in such arcs). Starting with f¢ of Fig. 3.2, and labeling on
the admissible sub-network of Fig. 3.3, produces the flow fi7 shown in
Fig. 3.3, and finally the labeled set X for the cycle.

124

§3. THE GENERAL MINIMAL COST FLOW PROBLEM

Figures 3.4-3.9 show the subsequent outputs of the routine. The flow fa3
Fig. 3.9 is maximal (a minimal cut being shown by the heavy arcs) and
course minimizes cost over all maximal flows.

3 14
25,2 90, 10,2
?
503 [foz] L2 10 10,
50 | 40 5 10! 17
45, 10,8 804
o6 58] 201 Tio3
R o =
10,3 605 10,1
10 10 14
15,8} [15,2 202
5 | |15 8 5
10,3
0,1 S
20,3
8 20
Figure 3.4 (17, f1s)
4 15
25,2 909 0
20 10 10,1
50,3| [502 A ;
50.1] |30 0,1 18
45, :8'8 28'4
CHE O —{E—3G
o3 05 10,1
10 20 15
15,8] [15,2 5 20,2
5 | |is 15 _Ifio3
10,1 5
10
203
8 20,1

Figure 3.5 (m1s, f19)

125

III. MINIMAL COST FLOW PROBLEMS

4 15
25
20,2 9‘8,9 10,2
503 [50,2 10,2
50.1| |30) Nqor S
I |
45, 10,1 23'4
306 15,8
10’ "8 15.1 S 9
10,3 60,5 10,1
10,1 20 16
15,8 15,2 0 20,2
15,1) 15,1 15 03
10,1 5
10
203
S 20,1

Figure 3.6 (w19, f20)

2 15
25,2 909
15
50,3([50, 2 S
50,1| |25 58
45, 10,2
OEIo =
03] — . [605
10,2 20
15,8/ [15,2 T
152] (15,2
10,1
10
20,3
10 20”5 4

Figure 3.7 (m20, f21)

126

§4. EQUIVALENCE OF HITCHCOCK AND MINIMAL COST FLOW PROBLEMS

4 16
25,2 90,9
25,1 20 122
503| 602 10,1 10,3
50,1| |25 ’ 10’
351 10,8 2l
= s 102 o4
CHEM O
10,3 60,5 10,1
' 20 S
HE
) 15,3]
10,1} '?,'3
10
20,3
T 2o 15
Figure 3.8 (w21, fa2)
4 16
1
503([s02] == 2 o 10,4
50.1| [25 7 10,1
a5, 103 804 22
306 15,8 70 | 03
20 {6 154 '8 5
10,3 60,5 10,1
— 104 20 | S
B 1 20,
15,4 .5;2 13 15'2
10,1 '%’3
10
[20,3]
20,1 &

Figure 3.9 (w22, fo3)

Observe the behavior of the (undirected) arc (z7,) throughout the
computation. Initially, for small values of p, it carries flow from z; to xs;
eventually the arc becomes admissible in the other direction, and is
saturated in this direction in the final flow.

4. Equivalence of Hitchcock and minimal cost flow problems

It is clear that the Hitchcock problem is a special case of the minimal
cost flow problem. It is not so obvious that the reverse is true. That the
two problems are equivalent, however, can be established in various ways.
For instance, a device due to Orden [62] can be used to pass from a capacity
constrained trans-shipment problem to a capacity constrained Hitchcock
problem; one can then apply a technique due to Dantzig [8] to convert the

127

III. MINIMAL COST FLOW PROBLEMS

latter to a standard Hitchcock problem. We shall not, in fact, follow this
path. Rather we shall exploit a method suggested by Wagner [70] and
make the transition in one step.

We first remark that it entails no loss of generality to take the general
flow problem in equation form, that is

(4.1) flx, N) — f(N, z) = a(z), zes,
(4.2) f(x, N) — f(N,z) =0, z€ R,
(4.3) f(N,) — f(x, N) = b(z), zeT,
(4.4) 0<f=y <cy), (*,y) e,
(4.5) minimize Z a(z, y)f(z, y).

o

For if (4.1) and (4.3) are inequalities (respectively < and >), we may
insert an additional sink ¢ together with the arcs (S,), each of these having
large capacity and zero cost, and place a demand at the sink equal to
a(S) — b(T), thereby obtaining an equivalent problem in equation form.t

To convert the problem (4.1)-(4.5) to a Hitchcock problem, define a
bipartite network from the given one [V ; 27] as follows. Each source in the
new network corresponds to an arc of the old; we denote them by ordered
pairs z, y; each sink in the new network corresponds to a node of the old.
All arcs of the new network lead from sources to sinks: source z, y is
connected to sink z with cost a(z, y;x) = 0, and to sink y with cost
a(x,y;y) = a(x, y). The “other arcs’ are missing, or may be assumed to
have infinite cost. (Strictly speaking, we should take the latter point of
view, since we have defined the Hitchcock problem as if all arcs from
sources to sinks are present. It is merely a convenience of exposition,
however, to throw out arcs unless they have either the form (x, y; x) or
(%, ¥; y), and we shall do this.) At source z, y place a supply c(z, y); at sink
z put a demand c(x, N) — a(x), c¢(x, N), or ¢(x, N) + b(x) according as
zeS,ze R, or x €T in the old network. Note that ¢(x, N) — a(z) > 0 if
the original problem is feasible, and that balance of supply and demand in
the original problem implies the same for the new problem.

ExamprLE. If the original problem is that schematized in Fig. 4.1, then
the new problem is pictured in Fig. 4.2.

1 If negative costs are present, this specific translation to a problem in equation
form may not be valid. However, if one also adds the arcs (7', t), each with large
capacity and zero cost, an equivalent flow problem is always obtained. Then the
Hitchcock problem into which this is converted by the method of this section will
also be in equation form, but will have negative costs if the original problem does. If
desired, these costs a;; can be made non-negative by changing them to a;; — min; a;;,
since for a Hitchcock problem in equation form, any cost transformation a;; = a,;
+ a; — B; yields an equivalent problem.

128

§4. EQUIVALENCE OF HITCHCOCK AND MINIMAL COST FLOW PROBLEMS

| .

a (1) 3 >(5) »(5)

~(6) »(6)

c(1,2)

c (1,3)

c(1,2) +c(1,3)—all)
c(2,3)

c(2,3) + ¢c(2,4) —a(2)
c(2,4)

c(3,4) +¢(3,5)
c(3,4)

c(4,3)+ ¢c(4,6)
¢ (3,5)

c(5,4)+c(5,6)+ bH(5)
c (4,3)

b(6)

¢ (4,6)

c (5,4)

¢ (5,6)

Figure 4.2

The new problem is to determine arc flows f(x, y; 2) (thus f(x, y; 2) is
defined for (z, y) € &7, and z = x or z = y), that solve the program

(4.6) f@y;9) + flz,y;2) = c(z, y),
—a(x), zel,
(4.7) Z [f@, y;2) + f(y, z;2)] =cx, N) +9 O re R,
YEN b(x), zeT,

129

III. MINIMAL COST FLOW PROBLEMS

(4.8) f@ y;2) 20,
(4.9) minimize Z alx, y; y)f(x, y; y)
(r,y)ed

Suppose now that f(xz,y) is feasible for the original problem. Then
define

(4.10) fx,y59) = flx, y),
(4.11) flx,y; x) = c(x,y) — f(=,).

Thus arc flows in the new problem are non-negative. In addition, (4.6) and
(4.7) are satisfied, since

f@ysy) + fzy;2) = 2, y),
D@y) + f(y, 25 2)] = cl@, N) — f(z, N) + f(N, 2).

Yy

Conversely, if the new problem is feasible, and if we define f(x, y) by
(4.10), it is clear that the constraints (4.4) are satisfied. Also,

f@ N) = f(N,2) = D [f@y;9) — fly, %5)]
Yy
=D el y) — fl@, y; 0] — > f(y, =3 2)
Yy Yy

by (4.6). Using (4.7), the right side of this equality reduces to a(x), 0, or
—b(x) according as x € S, x € R, or x € T, verifying (4.1), (4.2), (4.3).

Since it is also clear that corresponding feasible flows in the two prob-
lems have the same cost, it follows that a general minimal cost flow
problem can be transformed to a Hitchcock problem in this way.

Thus it suffices to confine attention to bipartite graphs in studying flow
problems. It would be pointless to do so, however, both from the mathe-
matical and computational viewpoints.

5. A shortest chain algorithm

A special minimal cost flow problem having independent interest is that
of finding a minimal cost (or shortest) chain from one node to another in a
network in which each arc (z, y) has an associated cost (or length) a(x, y)
> 0. While this is a purely combinatorial problem, it may also be con-
sidered as a minimal cost flow problem by placing unit supply at the first
node (the source) and unit demand at the second node (the sink), taking arc
capacities infinite, and asking for a feasible flow that minimizes cost.
Since the algorithm of § 3 constructs an integral flow, it solves the shortest
chain problem. In other words, the first unit of flow constructed by the
algorithm travels by a least cost chain.

130

§5. A SHORTEST CHAIN ALGORITHM

Other ways of solving the shortest chain problem have been proposed
[1, 9, 20, 58]. We mention one that has been suggested by Minty for the
case of undirected networks [58]. Simply build a string model of the net-
work, the lengths of the pieces of string being proportional to the given arc
lengths, take the source in one hand, the sink in the other, and stretch.
Thus one is solving the given minimum problem by maximizing. Indeed,
the analogue device solves the dual maximum problem.

Applications of the shortest chain problem are numerous. Some come to
mind readily. For instance, in making up a table of highway distances
between cities, a shortest chain between each pair of cities needs to be
computed. Or, in setting up a Hitchcock problem, it is frequently the case
that many alternate shipping routes exist between a given source and sink.
Then either a minimal cost route needs to be computed, or the problem
should be formulated directly as one of trans-shipment. Another problem
that has been viewed, in its discrete form. as a shortest chain problem, is
that of determining the least time for an airplane to climb to a given
altitude [5].

Our purpose in this section is to describe a combinatorial method for the
shortest chain problem that works under a less restrictive assumption than
a(x,y) > 0, the less restrictive assumption being: the sum of costs
around any directed cycle is non-negative.t (For an undirected network,
this assumption is no less restrictive : it implies @ > 0.)

As in other methods for solving the shortest chain problem, the method
described below does more: it yields, on one application, shortest chains
from the source to all other nodes of the network that can be reached
from the source by chains. Thus, for example, if one were faced with the
problem, mentioned previously, of finding shortest highway distances
between each pair of some set of cities, it would not be necessary to repeat
the algorithm for each pair.

In essence, the algorithm works with the dual of the shortest chain
problem, although it is not necessary, in the proof, to use this fact
explicitly.

Shortest chain algorithm.

(1) Start by assigning all nodes labels of the form [—, m(x)], where
m(s) = 0, w(x) = oo for x # s.

(2) Search for an arc (x,y) such that =(z) + a(x,y) < =(y).
(Here co + @ = 00.) If such an arc is found, change the label on node y to
[x, m(x) + a(x, y)], and repeat. (That is, the new =(y) is =(z) + a(x, y).) If
no such arc is found, terminate.

T It can be shown that if no assumption is made about the function a(z, y), then
the shortest chain problem is equivalent to the * traveling salesman problem’ [12, 40],
for which no really simple algorithms are known. Thus some such assumption as
non-negative directed cycle costs appears essential here.

131

IT1I. MINIMAL COST FLOW PROBLEMS

At any stage of the computation, if 7(y) < oo for y#s, then y has a label
whose first member is some node x, and =(x) + a(x, y) < w(y), hence
m(x) < oo0. For the existence of the label [z, m(y)] implies that at some
(possibly earlier) stage, m(x) + a(x, y) = =(y); and while =(x) may be later
reduced to produce an inequality, if 7(y) were also reduced later, either y
is not labeled from z, or else equality holds again. It follows that if, at any
stage, one starts at such a node y and follows the labels, then one eventually
either

(a) arrives at s and must stop, or

(b) cycles.

Suppose that at every stage of the calculation, case (a) above holds for
every y with #(y) < oo. Let

S =21,%2,...,%n =Y

be the chain from s to y singled out by the labels at any stage. Then
(5.1) m(x1) + a(xi, v41) < 7(T141), t=1...,n-1,
and summing these inequalities along the chain gives

n—1

w(s) + Z a(xi, 2i41) < 7(Y)-

=1

But #(s) = 0, for otherwise s would be labeled from some node, and case
(a) would not hold. Thus

n—1

(5.2) m(y) = z a(xg, Tg+1).
i=1

It follows that the computation terminates, since chain lengths are
bounded below, and the node numbers 7(y) are monotone decreasing. At
termination, (5.1) must be an equality, and hence so is (5.2). Suppose that,
at termination, there were a shorter chain from s to y than the one yielded
by the labels, say

$ =T, %, ..., %, =Y.
Then, for this chain

m—1
n(@)) + O a(@), x),,) < m(@),).
i=1

But, since termination has occurred, we have

n(x) + a(x], ;) = 7(x;,,), 1=1...,m—1,

whence summing gives a contradiction.
Now suppose that at some stage of the computation, case (b) above
holds. Let

x1, X2, ..., Tk = X1

132

§5. A SHORTEST CHAIN ALGORITHM

be a directed cycle yielded by the labels, and suppose that x; was the last
node of the cycle to receive a label from its predecessor. At this stage
(immediately before x; was labeled from z;-;) we had

w(z5) > w(wj-1) + a(r-1, 75),

w(x5+1) = m(x5) + a(xy, Tj41).

Letting primes denote the node numbers after labeling x; from x;_y, it
follows that

' (®j41) > 7' (5) + a(xy, Tj41)-
Hence, summing the inequalities
7' (Te41) = 7' (1) + alzi, Ti41)

around the directed cycle, and noting that one of them is strict, we have

k-1
. alai, z4) < 0.
i=1

Thus, under our assumption that no directed cycles have negative
lengths, case (b) cannot occur, the algorithm terminates, and at termina-
tion, shortest chains have been located from s to all other nodes of the
network that can be reached from s by chains. Moreover, the node num-
ber for such a node is the length of a shortest chain.

The shortest chain algorithm can be used to obtain a better starting dual
solution for the minimal cost flow problem of § 3. That is, instead of starting
with all node numbers zero, one can find a shortest chain from source to
sink by the method of this section, and then use the resulting node num-
bers, together with the zero flow, to initiate the computation of a maximal
flow that minimizes cost.

The algorithm can also be used if costs are allowed to be negative, so
long as directed cycle costs are non-negative, to find node numbers
which, together with the zero flow, can be used to start the minimal cost
routine. The computation from there on is no different, so long as it is
desired to find a maximal flow that minimizes cost, and the theory of § 3
is unchanged. Not only is this so, but the shortest chain method can also
be used to find a minimal cost flow augmenting path with respect to a
given minimal cost flow of value v, and hence, in view of Theorem 3.5,
the problem of § 3 can be solved by repeated applications of this method.

To see this, suppose we have constructed a minimal cost f of value v and
wish to find a minimal cost f-augmenting path. One way of doing this is to

133

III. MINIMAL COST FLOW PROBLEMS

define a new network [V; 27'] from the given one [N ; &7], and an appro-
priate length function a’(z, y) for (z, y) in 7', as follows. First note that
we may assume that not both f(z, y) and f(y, x) are positive, by virtue of
a(x, y) + a(y, z) = 0. Now put (z,y) in & if either f(z,y) < c(z, y) or
f(y, z) > 0, and define a’(z, y) by

a(r,y), iff(x,y) < c(x,y) and f(y, x) = O (or is undefined),

a'(z,y) = {—a(y,), if f(y,) > 0.

(5.3)

It follows that a chain from s to ¢ in [N ; &7'] corresponds to an f-augment-
ing path in [NV; &/], and vice versa. Moreover, the a’-length of the chain is
equal to the a-cost of the path. It can also be seen that since f is a minimal
cost flow, the function a’ satisfies the non-negative directed cycle condi-
tion. Hence the routine of this section can be used to construct minimal
cost flows of successively higher values, since one can start with the zero
flow (because of the assumption on the cost function a).

Suppose, however, that the constraints are of the form (3.1), (3.2), (3.3)
and negative costs are present, but directed cycle costs are non-negative.
Then it may be that an optimal solution yields strict inequalities in (3.3);
that is, it may be better to oversupply certain demands, and thus imposing
these demands as capacities on additional sink arcs (as was done in § 3)
may not be valid. However, a problem of this kind can be dealt with
computationally in various simple ways. We describe, in the next section,
one such computation, a minor modification of the method of § 3.

6. The minimal cost supply-demand problem: non-negative directed

cycle costs

Before describing the modifications needed in the minimal cost flow
routine in order to handle a problem of form (3.1)-(3.5) with negative costs,
perhaps we should first consider an example in which negative costs arise
naturally. For instance, we might think of an entrepreneur faced with the
following problem. In each of N successive time periods he can buy, sell,
or hold for later sale some commodity, subject to the following constraints.
In the it period, there is an upper bound a; > 0 on the amount of the
commodity that he can purchase, an upper bound ¢; > 0 on the amount he
can hold for the next period, and a lower bound b; > 0 on the amount he
sells (perhaps because of prior agreements). Assuming that the entrepreneur
knows buying, selling, and storage costs p; > 0, 5 > 0, ki = 0, respec-
tively, for each period, how does he maximize profit over the N periods?

One can represent this problem as that of determining a minimal cost
flow from source s to sinks £y, ..., ¢y in the network shown (for N = 5)
in Fig. 6.1, where the demands at the sinks must be fulfilled. Thus negative

134

§6. NON-NEGATIVE CYCLE COSTS

Figure 6.1

“transportation’’ costs can come up in a practical way. Notice too that

since the representing network for this problem contains no directed

cycles, the non-negative directed cycle condition is satisfied automatically.
We return to the linear program (3.1)—(3.5). The supplies a(x), demands

b(x), and capacities c(z, y) are, as usual, assumed to be positive integers.
Dual constraints for this program can be written as

n(@) — 7(y) + y(x, y) > —a(=,y),
y(z, ,7/) =20
w(z) > 0 forzeSU T,

3

and consequently optimality properties for a feasible flow f and node
numbers 7 are

(6.1) n(y). — 7(x) < alz,y) = f(z,y) = 0,

(6.2) m(y) — m(@) > alx,y) = f(z,y) = c(z,y),

(6.3) m(x) > 0,ze8; mw(x) > 0,ze8 = f(x, N) — f(N, 2) = a(z),

64) =(®) > 0,zeT; =) >0,zeT =f(N,z) — f(z, N) = b(x).
135

III. MINIMAL COST FLOW PROBLEMS

We shall show one way of using the minimal cost flow routine in order to
produce f and = satisfying these properties.

As in § 3, first extend the given network [N; /] to [N*; &/*] by ad-
joining nodes s, ¢, the arcs (s, S), (7', t), and defining

c(s,) = a(x), a(s, xz) = 0, zel,
c(x, t) = b(z), a(z,t) =0, zeT.

This extension maintains the non-negative directed cycle cost condition.
Next compute a maximal flow that minimizes cost over all maximal
flows by the method of § 3, starting this time with node numbers obtained
from the shortest chain algorithm, and the zero flow. Assuming that the
problem is feasible, the computation terminates with a flow f for which

f(y,t) = c(y,t) = b(y), yeT,
and node numbers =(z) satisfying
(6.5) n(s) = 0,
(6.6) n(y) — #(x) < a(@,y) = f(r,y) =0, (x,y) € L*,
(6.7) m(y) — 7(@) > alx, y) = fr,y) = c(x,y), (r,y) ™

We now consider two cases.

Case 1. ©w(y) > 0 all y € T. In this case the computation ends, since the
restriction of f to & solves the original problem. To see this, we check the
optimality properties (6.1)-(6.4), using 7. The first two of these are
obvious, since they hold in the extended network. For (6.3), we note that
the computation began with node numbers of zero for x €8, and thus
m(x) = 0 for x € 8 by virtue of monotonicity. If #(x) > 0 for x €8, then
m(x) — m(s) > a(s,z) = 0, and hence f(s, x) = c(s, z) = a(x) by (6.7).
Thus f(x, N) — f(N, x) = a(x). Property (6.4) follows from the case
assumption and the termination condition f(y,t) = b(y) for y e T.

Case 2. =(y) < 0 for some y € T. Join such y to a new sink » by arcs
(y,) with

c(y, u) = oo, a(y, u) = 0.

Call the resulting network [NV; o]. Extend f and = to o and N, respec-
tively,-by defining
fly,u) =0, m(u) = min #(y) < 0.
yeT
Now continue the computation, starting with = and f, and treating » as the
sink, until a flow f and associated node numbers # are constructed with

#(u) = 0. (We may think of increasing the node numbers on unlabeled
nodes by unity at each non-breakthrough, stopping when #(u) = 0.)

136

§7. THE WAREHOUSING PROBLEM

Properties (6.1), (6.2), (6.3) now hold for the restrictions of # and f as in
Case 1, and thus we need only verify (6.4). First consider those y € T' for
which 7(y) > 0. For such y, #(y) > 0. Moreover, f(y,t) = f(y, t) = b(y)
for these y, and thus (6.4) holds. (Observe that the second part of the
computation does not change f(y, t) for any y € T'.) On the other hand,
since the additional arcs (y, %) have infinite capacity and zero cost, it
follows from (6.7) applied to f, # that #(u) — #(y) = —#(y) < 0, and
thus #(y) > 0 for the remaining y € 7, also. If 0 < f(y, u), then #(y) = 0
from (6.6), (6.7), and the fact that f(y, u) < co. Consequently, if #(y) > 0,
then

0 =f(y’u) =f(N’y) —f(.%N) '"f(y’t),

and hence
JV,y) — (. N) = (g, t) = f(y, t) = b(y).

7. The warehousing problem

A problem similar to, but simpler than, the entrepreneur example
described in the last section is one known as the *“ warehousing problem”’
[4, 6, 10, 14, 47, 64]. Again we think of an entrepreneur who purchases,
stores, and sells, in each of N successive periods, some commodity that is
subject to known fluctuations in purchasing costs and selling prices. The
differences between the present problem and the previous one are these:

(a) the entrepreneur has a warehouse of fixed capacity in which new
purchases and hold-overs from the previous period are stored before
selling ;

(b) the only limitation on purchases or sales in each period is that
represented by the warehouse capacity; thus supplies are infinite and
demands are zero. Again profit is to be maximized.

Adopting the notation

p¢: amount purchased in period ¢,

w;: amount placed in warehouse after purchasing in period ¢,
s¢: amount sold in period 1,

hi: amount held in warehouse after selling in period 4,

c: warehouse capacity,

Py: purchase cost per unit in period 4,

w;: warehouse cost per unit in period ¢,

§;: selling price per unit in period ¢,

the constraint equations and inequalities for the warehousing problem can
be written as
hi-y + pi — wi = 0, 1=1,...,N;ho =0,
(7.1) wi—si—h¢=0, 7 1,...,N;hN=O,
wy < C.

137

II1. MINIMAL COST FLOW PROBLEMS

Here all variables are non-negative. Subject to these constraints, it is
desired to minimize

N
(7.2) > (Pipi + Taw; — 5isq).
i=1

(We could start with a positive initial stock kg, and allow the possibility
that the final stock 2y can be positive also. Since this makes no essential
difference in the subsequent analysis, we have assumed by = Ay = 0.)

Again we can represent this problem as a minimal cost flow problem in
a suitable network ; it is little different in structure from the previous one.
Such a network is shown, for N = 3, in Fig. 7.1, with the associated arc
flow variables.

Figure 7.1

The extremely simple nature of the problem becomes more apparent
through a network representation different from the one of Fig. 7.1. This
representation is due to Dantzig [10]. To deduce it, we return to the
constraints (7.1) that describe the problem, and replace the warehouse
capacity inequality w; < ¢ by the equation in non-negative variables

w; + u; = C.

Thus u; represents the unused capacity of the warehouse in period 7, and
the constraints (written out for N = 3) appear in detached coefficient form
as follows:

138

§7. THE WAREHOUSING PROBLEM

Py Wy Sy hy Uy Pp Wp Sp hp Uy P3 W3 S3 U3

(1) 1 1 =c
(2)[1] =0
(3) 1]-1]- =0
(4) 1 1 =c
(78) (s) TERE =0
(6) 1| -1]-1 =0
(7) 1 1 |=c
(8) 1 1t =0
(9) 1]-1 =0

If we now replace equation (7) by —(7) + (4) — (6) — (8), (4) by
—(4) 4+ (1) = (3) — (5), and (1) by —(1) — (2) (in general, replace
equation (3n + 1) by —(3n + 1) + (3n — 2) — (3n) — (3n + 2)), and
then change signs throughout, an equivalent system is obtained :

Py Wy sy hy u; pp wp sp hp up pP3 w3 S3 u3

(1)} 1 1 =¢
(2)]-1] 1 =0
(3) 1] =0
(4) -1 At 1 =0
(74) () -1 11 =0
(6) A1t =0
(7) -1 11 1]:0
(8) -1 11 =0
(9) -1 =0

The coefficient matrix of the new system has (except for the last two
columns) precisely one +1 and one —1 in each column, the other co-
efficients being zero. Thus (7.4) again has a network representation, shown
in Fig. 7.2, where the (redundant) equation corresponding to node 10 is
the sum of all the equations of (7.4).

139

III. MINIMAL COST FLOW PROBLEMS

(Source (Sink
supply ¢) demand ¢
v

Figure 7.2

In this network representation, arcs corresponding to the variables p;,
wy, & still have costs Py, Wy, —3§;, and we are asked to find a minimal cost
flow of ¢ units from source to sink. But since there are no capacity re-
strictions on arcs, and there are no directed cycles, there is an optimal flow
in which all ¢ units travel by a minimal cost chain from source to sink.
Thus it suffices to find such a chain in order to solve the problem. Several
facts emerge from this:

(a) The capacity of the warehouse plays no role in determining the form
of an optimal solution.

(b) There is an optimal pattern of buying and selling of the all or
nothing kind, that is, whatever action is taken in a period is pursued to the
limit of warehouse capacity.

(c) The total profit for N periods is a multiple of the warehouse capacity.

Because of the simple structure of the representing network, an optimal
policy (least cost chain) can be determined by the following trivial cal-
culation. Start at the source, say, and compute node numbers recursively
as illustrated below for N = 3:

m =0, m = m + P, m3 = w3 + W,
w4 = min (my, w3 — §1), w5 = min (mq + P2, m3), me = m5 + We,
7 = min (my, mg — J2), g = min (w7 + P3, m), my = mg + W3,

710 = min (w7, m9 — §3).

The m; so determined constitute an optimal dual solution to the least
cost chain problem, and by keeping a record of where the various minima
occur in the calculation, a least cost chain is singled out.

8. The caterer problem

Another example of a minimal cost flow problem is the ‘‘ caterer prob-
lem”’ [31, 46, 63]. Imagine a caterer who knows that he will require r; > 0
fresh napkins on each of N successive days,j = 1, ..., N. He can meet his
needs in two ways: by purchasing new napkins, or by using napkins
previously laundered. However, the laundry has two kinds of sérvice,

140

§8. THE CATERER PROBLEM

quick and slow. A napkin sent for quick laundering is available for use m
days later, whereas a napkin sent for slow service is available n days later,
0 < m < n. New napkins purchased from the store cost p cents each,
quick laundry service is § cents per napkin, and slow service § cents per
napkin. How does the caterer, who starts out with no napkins, say, meet
his requirements at minimal cost?

The problem perhaps appears somewhat less frivolous if stated in terms
of aircraft engines and quick and slow overhaul (its actual origin), but we
shall stick with napkins and laundering.

Let p; > Orepresent the number of new ns pkins purchased for use on the
jth day (remaining requirements on that day are supplied by laundered
napkins), s; > 0 the number sent for slow laundry service, ¢; > 0 the
number sent for quick service and #; > 0 the number of soiled napkins
held over to the next day. Then the problem faced by the caterer is to solve
the linear program in non-negative variables :

(8.1) s + S4—n + Qj-m = 71, j= 1,..., N,
(8.2) Sj+qj+hj—hj_1<7‘j, j=1,..‘,N,
N
(8:3) minimize > (fyps + G5 + 59)-
j=1
Here variables with subscripts not in the range 1, ..., N are suppressed.

The constraints (8.1) and (8.2) can be represented in network form. The
representation can be made clear by considering an example with m = 1,
n = 2, N = 4, for which a suitable network is shown in Fig. 8.1. The

(Supplies) (Demands)

(Store,supply)

Figure 8.1
141

III. MINIMAL COST FLOW PROBLEMS

problem faced by the caterer is to compute a minimal cost flow that
satisfies the demands at the sinks from the supplies at the sources.

9. Maximal dynamic flow

The problem taken up in this section may be stated informally as
follows. Given a network G = [N ; &/] with source s and sink ¢, suppose that
each arc of G has not only a capacity, but a traversal time as well. If, at
each node of G, the commodity can either be trans-shipped immediately or
held over for later shipment, determine the maximal amount of commodity
flow from source to sink in a specified number of time periods [24]. For
example, in the network of Fig. 9.1, the first number on an arc is its
capacity in terms of commodity flow per unit time, the second number is
the arc traversal time. How many units of the commodity can reach ¢ from
sin 5 time periods, say, and what is a shipping schedule that achieves this?

X
A
3.3 2,1
s NI ¢
2,1 3,3
\
y
Figure 9.1

One feasible 5-period shipping schedule is shown schematically in the
time-sequenced Figs. 9.2 through 9.6. Here Fig. 9.2 means that 4 units

v 5~
- | A \\
/// Il \\
I ~
% I \\
| A
s | t
| ”
Iy e
| -7
yl/
Figure 9.2

142

§9. MAXIMAL DYNAMIC FLOW

Figure 9.3

Figure 9.4

Figure 9.5

143

III. MINIMAL COST FLOW PROBLEMS

x
\ 4
ar
> | 2
-
- |
¥ I
e '|
s” | t
|
~ |
RN (! /
~ | 2
RN lI -7
~ *I Pl
N2
Figure 9.6

leave s at initial time 0, 2 units bound for «, the other 2 units for y; at time
1 the 2 units going to x have traversed i of the arc (s, x), and the other 2
units have arrived at y. Thus Fig. 9.2 represents the time interval 0 to 1,
and so on. At time 3, 1 unit arrives at ¢; 3 more units arrive at time 4, 4
more at time 5, giving a total flow from s to ¢ of 8 units in the periods 0-1,
1-2, ..., 4-5. Is this a maximal dynamic flow for 5 periods, or is it possible
to do better?

One can formulate the maximal dynamic flow problem as follows. Let
c(x, y), a(x, y) be the capacity and traversal time of arc (z, y); we take
these to be positive integers. Let f(z, y;7) be the amount of flow that
leaves x along (x, y) at time 7, consequently arriving at y at timer + a(x,).
Also f(x, x; 7) is the hold-over at « from 7 to 7 + 1. If v(p) is the net flow
leaving s or entering ¢ during the p periods O to1,1to 2,...,p — 1 to p,
then the problem may be stated as the linear program:

9.1) maximize v(p)

subject to the constraints

y4
©2) > > e yin) = fly.sT — a(y, 9)] — v(p) =0,

7=0 yeN

(9.3) > @ ysn) = fly,e5m — a(y, 2)] =0,
yeN
! r#st;r=0,1,...,p,

P
94) > > [flt,ysn) — fly, 57 — aly, 1)] + v(p) = 0,

7=0 yeN

(9.5) 0 < flx,y;7) < ez, y).
144

§9. MAXIMAL DYNAMIC FLOW

Here a(x, x) = 1, ¢(x, x) = oo for hold-overs at node z. It is also tacitly
assumed that a variable f(z, y; 7) is suppressed if r < 0, or if, for x # y,
(x,) is not an arc of the given network G. Then the constraints (9.3)
assert that for each intermediate node x and each time 7, the amount of
flow that “enters” x at time 7 (including the amount held over at x from
time 7 — 1) is equal to the amount that “leaves” z at time 7 (including the
hold-over at z until time r + 1). Similarly (9.2) says that «(p) is the net
flow leaving s during the p periods, and (9.4) insists that v(p) is the net flow
arriving at ¢ within the time interval. We could, of course, omit from G
inward pointing arcs at s, outward pointing arcs at ¢.

If f(z, y; 7) and v(p) satisfy (9.2)-(9.5), we call f a dynamic flow from s
to t (for p periods) and say that f has value v(p). If also v(p) is maximal, then
f is a maximal dynamic flow.

Although the constraints that describe dynamic flows may appear
complicated, they are, in actuality, no more so than the simpler appearing
ones for static flows. Indeed, a p-period dynamic flow through a network
@ corresponds to a static flow in a time-expanded version G(p) of G. Here
the network G(p) may be constructed from @ as follows. Corresponding to
node x of G, G(p) has p + 1 nodes z(r), = 0, 1, ..., p; corresponding to
arc (z, y) of G, G(p) has arcs [2(7), y(r + a(z, ¥))], 0 < 7 < p — a(x, y);
in addition, we put in arcs [2(7), (r + 1)], 0 < 7 < p — 1, to represent
hold-overs at node x. A replica [z(r), y(r + a(z, y))] of (x, y) has capacity
¢(x, y), whereas we have assumed that a hold-over arc has infinite capacity.
(It will turn out that there always exists a maximal dynamic flow that
avoids hold-overs at intermediate nodes, so the capacities placed on these
latter are of no consequence.) If we take s(0), s(1), ..., s(p) as sources in
G(p), £(0), t(1),...,t(p) as sinks, then the constraints characterizing a
p-period dynamic flow from s to ¢ in G are just those for a static flow from
sources to sinks in G(p). (In view of the existence of hold-over arcs at s and
t, we could equally well take s(0) as the only source, ¢(p) as the only sink
in G(p).)

Figure 9.7 shows the 5-period dynamic version of the network of Fig.
9.1, together with the (static) flow in this network that corresponds to
Figs. 9.2 through 9.6. All ares are directed from left to right. Using Fig. 9.7,
it can be checked that the flow shown there is maximal. A minimal cut
% = (X, X) is given by taking the set X to consist of the nodes

s(7), +=0,1,...,5,
z(7), T=3,4,5,
y(r), T=3,4,5.

By expanding the network in the fashion described, the maximal
dynamic flow problem can always be solved as a maximal static flow

145

III. MINIMAL COST FLOW PROBLEMS

Figure 9.7

problem in the enlarged network. Moreover, it may be noted that blowing
the problem up into an equivalent static problem does not require keeping
arc capacities and traversal times fixed over time, as we have done. But
these simplifying assumptions are essential for the much more efficient
solution process to be described, which will deal only with static flows in
the smaller network G.

Specifically, it will be shown that a maximal dynamic flow can always
be generated from a static flow by the following device. Let f be a static
flow from s to ¢ in @ that maximizes the linear function

(96) (p+ 1 = 2 a(@)@ y).
The problem of constructing such an f has been solved in § 3. It is a simple
matter to decompose f into a set of chain-flows from s to ¢, that is, one can
easily obtain from the node arc flow f a corresponding arc-chain flow (see
1.2). For example, a labeling procedure can be described to effect such a
decomposition of f. Then, roughly speaking, a dynamic flow can be
generated from the chain decomposition of f by starting each chain flow
at time zero, and repeating each so long as there is enough time left in the
p periods for the flow along the chain to arrive at the sink. This dynamic
flow will be maximal for p periods.

For example, in the network G of Fig. 9.1, an f that maximizes (9.6)
with p = 4 has a chain decomposition

(s, z,t; 1), (s,y,t; 1), (8,9, x, t5 1);
146

§9. MAXIMAL DYNAMIC FLOW

that is, a flow of 1 unit along each of the indicated chains. The traversal
times of these chains are respectively 4, 4, 3. Consequently the first two
chain flows can be repeated once in 4 periods, the last chain flow twice,
giving a total flow into ¢ of 4 units in the time interval 0 to 4. This (maxi-
mal) flow in G(4) is shown in Fig. 9.8.

0 | 2 3 4

Figure 9.8

We shall call a dynamic flow (that is, a static flow in G(p)) that can be
generated by repeating chain flows of a static flow in G, a temporally
repeated flow. Notice that the maximal dynamic flow shown in Fig. 9.7 is
not a temporally repeated flow.

The fact that there always exists a maximal dynamic flow within the
subclass of temporally repeated flows is not evident. But if one knew a
priort that this were the case, it is not difficult to see that (9.6) is the
appropriate function to maximize over static flows. For if f maximizes (9.6),
then (9.6) can be rewritten, in terms of a chain decomposition of f, as

9.7) D (p+ 1= ophy

T
Here o, is the traversal time of the rth chain in the decomposition, k, the
amount of flow along this chain. (From the discussion in I.2, we would
have only (9.7) > (9.6). Actually equality holds if f maximizes (9.6),
but in the formal proof to follow later, the inequality suffices.) Since
f maximizes (9.6), it follows that o, < p + 1, and hence the coefficient of

147

III. MINIMAL COST FLOW PROBLEMS

hy in (9.7) counts the number of times the rth chain flow can be repeated in
p periods. That is, (9.7) or (9.6) is the value v(p) of the temporally repeated
flow generated by f.

This provides the heuristic background for examining static flows that
maximize (9.6).

Suppose that fp41 (notation as in § 3) has been constructed using the
minimal cost flow routine discussed in § 3. Thus fp 1 maximizes (9.6). In
this construction, certain node and arc numbers mp1(), yp+1(2, y) are
produced. The key to proving that f;1 generates a temporally repeated
flow that is maximal in G(p) lies in these node and arc numbers, since they
can be used to single out a cut in G(p) that has capacity equal to v(p)
given by (9.6), thus proving that the flow is maximal and the cut minimal.

We proceed to a formal proof.

Decompose the flow fj ;1 into a collection of chain flows from s to ¢. Let

(9.8) (xl, X2, ..., %k, h), xr =8, x5 =t h > O,

be any one of the chain flows in this decomposition, and define correspon-
dents of this chain flow in G(p), namely

(9.9) (w1(r1), Za(r2), . . ., Tr(Tk); B).
Here

(9.10) T4l = 7i + (¥, Tit1)
and

(9.11) T 2 0, Tk < P-

This is to be done for all chain flows in the decomposition of f;,;. (Al-
though a chain decomposition of a flow fis not necessarily unique, this need
cause no concern. Any decomposition will serve.)

That such chains exist in G(p) follows from the second part of Theorem
3.6 by taking r; = 0. Then, since 7 is the traversal time of the chain (9.8),
we have

k-1
(9.12) e+ D yp(@n Te) =p + 1,

i=1
and since some arc number in this sum is positive (by virtue of the condi-
tion & > 0), it follows that 74 < p.

Hence, the number of correspondents (9.9) of (9.8) is given by
k-1

(9.13) p+1—m= 2 ypul@,) > 0.

t=1

148

§9. MAXIMAL DYNAMIC FLOW

It is readily checked that the temporally repeated flow equal to the sum
of all of the chain flows thus defined in G(p) is really a flow in G(p) from
sources to sinks; the only thing remaining to be verified is that arc
capacities in G(p) are not violated. But this follows at once from the fact
that f,, 41 violates no arc capacity in . From (9.13), the value v(p) of this
temporally repeated flow is

(9.14) v(p) =2 (p + 1 = or)hy.

Here o, is the traversal time of the 7t chain in the decomposition of fj41
and h;, is the amount of flow along this chain. It follows that

(9.15) wp) > (p + Vops1 — 2 al@, y)fpa(=, y).
<7

Here vy, is the value of f,11. By (9.15) and Corollary 3.2, we have
(9.16) v(p) > ;yml(w, y)e(@, y).

Now define the following set of arcs in G(p):
917) € = {{z(r), y(r + a(z, y)][mpr1(@) < 7 < 7par(2) — al=, y)}.
In other words, % is the set of arcs that lead from any node of
(9.18) X = {x()|mpsi(x) < 7}

to its complement X. Since every source of G(p) is in X (because mp+1(s)
= 0) and every sink is in X (because mp41(t) = p + 1), it follows that
% = (X, X) is a cut in G(p). (Notice that this cut contains no hold-over
arcs.) But from (9.17) and the definition of the arc numbers, the capacity
of % is equal to

(9.19) > yor(®, ylola, y).
K4

Hence from (9.16), the temporally repeated flow generated by fpi1 is a
maximal dynamic flow in G(p), and the cut (9.17) is minimal. This proves

THEOREM 9.1. The static flow fpy1 generates a temporally repeated
dynamic flow that is maximal over all dynamic flows for p periods. This
dynamic flow has value v(p) = (p +)vp+1 — 2 a(x, ¥)fp+1(x, y), where
vp+118the value of fpi1. The cut € defined by (9.17) ts a minimal dynamic cut
for p pertods.

A verbal way of describing the minimal dynamic cut % in terms of the
arcs of the original network G is to say that the arc (x, y) of G first becomes

149

III. MINIMAL COST FLOW PROBLEMS

a member of the cut at time 7 = mp41(x) and remains in the cut for
yp+1(, ¥) periods.

Since the routine of § 3 eventually stabilizes on a maximal static flow
that minimizes total flow time > a(x, y)f(x, y) over all maximal static
flows, it follows that for all sufficiently large p, such a static flow generates
maximal dynamic flows. Thus the maximal dynamic flow problem can be
solved for all p by a finite (and efficient) process.

The following fact is worth mentioning. If %(p) denotes the maximal
dynamic flow value for p periods, then we have, in view of Theorem 9.1
and Corollary 3.2,

(9.20) B(p) — %p — 1) = vper.

Thus, since the sequence v, is monotone non-decreasing in p, so are
successive differences of o(p). In other words, the piecewise linear curve
obtained from the sequence of points (p, 7(p)), by joining adjacent points
with line segments is convex.

We turn now to a different question concerning maximal dynamic flows,
one that was raised and answered by Gale [32]. Consider a maximal
dynamic flow for p periods, or equivalently, a maximal static flow in G(p).
What happens if we restrict this flow to p’ < p periods, that is, to G(p’).
Will it still be maximal? The answer is no, in general. For example, a
temporally repeated flow generated by fp+1 is maximal in G(p), but may
not be in G(p’). Even more, it can be seen that if there were a maximal
dynamic flow for p periods whose restrictions are also maximal for all
fewer periods, one may be forced to look outside the class of temporally
repeated flows. The example of Fig. 9.1 is a case in point, since for p = 5,
there is no temporally repeated flow in G(5) that sends 1 unit into ¢(3), 3
more units into ¢ (4), and 4 more units into ¢ (5), as does the flow of Fig. 9.7.
It is true, nonetheless, that such ‘“universal” maximal dynamic flows
always exist.

An easy proof of this can be given from the second version of the
supply-demand theorem (Corollary II.1.2) by setting up the demand
schedule in G(p):

%(0) at £(0),
(1) — 5(0) at ¢(1),
(9.21) 32) — (1) at ¢(2),

¥(p) —v(p—1) ati(p).

Here %(7) is the value of a maximal dynamic flow in G(7), which can be
assumed to be from s(0) to (7). Now let X be an arbitrary subset of the

150

§10. PROJECT COST CURVES

sinkst(r), = 0,1,..., p, and let k be the largest value of 7 for which ¢ ()
is in X. Then the aggregate demand over X does not exceed

v(k) = v(0 i’l_)f)—’l)f—l)]

But there is a flow from s(0) to ¢(k) in G(p) that has value 5(k). Hence, by
the supply-demand theorem, the demands (9.21) are feasible.

It should be observed that this result makes no use of the simplifying
assumptions that arc capacities and traversal times are independent of
time, but rather holds for the more general case where these quantities
change with time.

10. Project cost curves

A problem of some practical importance that has been discussed by
Kelley and Walker [53] and Kelley [52] involves computing the cost curve
for a “project” composed of many individual “jobs” or “activities.”
Here a project is a partially ordered set of jobs, the partial ordering arising
from technological restrictions that force certain jobs to be finished before
others can be started. It is assumed that each job has an associated normal
completion time and a crash completion time, and that the cost of doing the
job varies linearly between these two extreme times. Then it would be
desirable to calculate the least project cost, given that the entire project
must be completed in a preseribed time interval. This would yield one
point on the project cost curve. Solving the problem for all feasible time
intervals produces the complete project cost curve. With this information
at hand, the project planner can answer either the question posed above,
or the related question: given a fixed budget, what is the earliest project
completion date?

We shall show how the project cost curve can be easily computed using
network flows [29, 52].

There are at least two alternate ways of depicting the project as a
directed network. For example, suppose the project consists of jobs 1, 2, 3,
4, 5 and that the only order relations are:

1 precedes 3,4,
2 precedes 4,
3,4 precede 5,

and those implied by transitivity. A usual way of picturing this partially
ordered set is shown in Fig. 10.1, where nodes correspond to jobs and di-
rected arcs to the displayed order relations. Another way is shown in Fig.
10.2, where some of the arcs represent jobs, and the nodes may be thought

151

III. MINIMAL COST FLOW PROBLEMS

Figure 10.2

of as events in time; the existence of a node stipulates that all inward
pointing jobs at the node must be completed before any outward pointing
job can be started. Notice that the second of these two representations of
the project uses an arc (the dotted one of Fig. 10.2) not corresponding to
any job. This need cause no concern, since a dummy job can be added to
the project to correspond to such an arc, and the assumption made that
dummy jobs have zero completion time and zero cost. It is not difficult to
see that allowing dummy jobs permits such a network representation for
any project. Indeed, one could merely take the kind of network shown in
Fig. 10.1, replace each node x by a pair of nodes z’, " and add arcs (2, ")
to the network. Correspondents (z”, y’) of the original arcs (z, y) then
become dummies. But this is not, in general, efficient in terms of the num-
ber of nodes and arcs.

Using either of these network representations of the project, the
problem of computing the cost curve can be shown to be a flow problem.
We shall assume that a latter representation is at hand. Thus we take as
given a directed network in which arcs correspond to jobs and nodes to
events. This network contains no directed cycles. We may also assume, by
adding beginning and terminal nodes s, ¢, if necessary, together with
appropriate arcs pointing out from s and into ¢, that each arc is contained
in some directed chain from s to t. We suppose that each arc (z, y) has
associated with it three non-negative integers : a(z,), b(z, y), c(z, y), with
a(x, y) < b(x, y), the interpretation being that a(z, y) is the crash time for

152

§10. PROJECT COST CURVES

(z, ¥), b(z, y) the normal completion time, while ¢(x, y) is the decrease in
cost of doing job («, y) per unit increase in time from a(x, y) to b(z, y). In
other words, the cost of doing (z, y) in 7(, ¥) units of time is given by the
known linear function

(101) k(x’ y) - c(x, y)T(x’ .TI)
over the interval
(10.2) a(z,y) < 7(x, y) < bz, y).

Then, given A units of time in which to finish the project, the problem is to
choose, for each job (z, y), a time 7(x, y) satisfying (10.2) in such a way that
the resulting project cost

(10.3) > [k(z, y) — c(@, y)r(=, y)]
=y
is minimized ; or equivalently, the function
(10.4) > o=, y)r(@, y)
zy

is maximized. Thus, letting 7(x) be the (unknown) time of occurrence of
event x, we wish to maximize (10.4) subject to the inequalities

(10.5) (@, y) + 7(z) — 7(y) <0,
(10.6) —2(s) + 7(t) < A,
(10.7) (2, y) < bz,),
(10.8) —7(x, 9) < —a(z, y).

Then the project cost P(A) corresponding to the assigned value of A in (10.6)
is given by

(10.9) P(A) = Z k(x, y) — max z c(x, y)r(z, y),
zy z,Y

the maximum being taken over all 7(z, y), 7(x) that satisfy the constraints.
Here we assume the constraints are feasible, which will certainly be the
case for large A. Indeed, for given r(x, y) satisfying (10.7) and (10.8), the
constraints are feasible if and only if A is at least equal to the r-length of a
longest chain from s to ¢. The proof of this relies on the fact that the project
network contains no directed cycles.

Dummy jobs can be assumed to have lower bounds a(x, y) = 0, upper
bounds b(x, y) = 0, and costs ¢(z, y¥) = 0 in this program.

It may be observed preliminarily that P(X), which is well defined for
some A-interval, is convex. For if A, Ag are two given values of A that make
the constraints feasible, and if m1(x, y), 71(z), 72(x, y), ra(x) represent

153

III. MINIMAL COST FLOW PROBLEMS

optimal solutions to the two corresponding programs, then averaging these
two solutions gives a feasible solution to the constraints corresponding to
the A-value 4(A1 + A2). Hence, since we are minimizing,

P(“ t Az) < 1PN + FP(h).

In addition, P(X) is piecewise linear, as will be apparent later on.

We may set 7(s) = 0, since adding a constant to all event times does not
alter the program. With this normalization, it follows from (10.5) that all
7(x) are non-negative, since the job times are non-negative by (10.8), and
since each node is contained in some directed chain from s to ¢.

Let us examine the dual of the project cost program. If we assign non-
negative multipliers f(z, y), v, g(z, y), h(x, y) to the constraints (10.5),
(10.6), (10.7), (10.8), respectively, the dual of the program, for fixed A and
7(s) = 0, has constraints

0, Jt
(10.11) 2 U@y = f(y,)] ={ x;_és
v -v r=h
subject to which
(10.12) o+ > b, y)g(x, y) — » alx, Y)h(z, y)
z,y Yy

is to be minimized. Here, we repeat, all variables are non-negative.
Equalities appear in the constraints since variables of the primal program
are not explicitly restricted in sign.

It follows immediately that at least one of g(x, y), h(z, y) can be taken
zero in an optimal dual solution, and hence we may assume

(10.13) g(z, y) = max [0, c(z, y) — flx, y)],
(10.14) h(z, y) = max [0, f(z, y) — c(z, y)].

Thus the dual problem becomes : find non-negative numbers f(z, y), one for
each arc of the project network, and a non-negative number v, that
satisfy the flow equations (10.11) and minimize the non-linear function

(10.15) Mo+ > b(x, y) max [0, c(x, y) — f(=, y)]
zy

— > alz, y) max [0, f(z, y) — c(z, y)].
Yy

The key observation at this point is that a function of f of the form
(10.16) bmax (0,¢c — f) — amax (0, f — ¢)
154

§10. PROJECT COST CURVES

(sketched in Fig. 10.3) is convex, and of course, piecewise linear. The
convexity of (10.16) follows from the assumption @ < b. Thus, even though

blc - f)

(¢,0) f

-alf -¢)

Figure 10.3

(10.15) is non-linear, it is the next best thing (for minimizing), namely, a
sum of piecewise linear, convex functions of the individual variables. It is
a well-known fact in linear programming theory that such a function can
be dealt with by linear methods.}

Here one replaces each f(x, y) by a sum of two non-negative variables,

say

(10.17) f@y) =fley; 1) + flx,y;2),

the new variables being subject to the capacity constraints
(10.18) [, y; 1) < c(zy),

(10.19) flx,y;2) < 0.

Then f(x, y; 1) has coefficient —b(zx,), f(z, y; 2) has coefficient —a(z, y)
in the new minimizing form. Thus, if we define

c(x, y), k=1,

10.20 c(x,y; k) =
(10.20) (@, y; k) {Oo, k=2,
t The idea is simply this. Replace each variable by a sum of bounded non-negative
variables, where each variable in the sum corresponds to one of the pieces of the
cost function for the original variable. Make up a new, linear cost function by assign-
ing each of the new variables a cost coefficient equal to the slope of its linear piece of
the original cost form. Thus, for example, if the original cost function for the non-

negative variable x of the program has breakpoints at 0 < by < b < ... < b, one
makes the replacement z = x; + z3 + ... + x+1, where 0 < 23 < b3, 0 < 22
< by —b1,...,0 < < b — br-1, 0 < 241 < 00 — by = 0. Since the costs of

the new variables are monotone increasing, it follows that in a minimizing solution, if
some z; > 0, then all preceding z; are at their upper bounds. Hence the replacement
is legitimate.

155

III. MINIMAL COST FLOW PROBLEMS

b(z, y), k=1,
10.21 Ly k) =
() a/(x ?/) {a(x, y)’ k = 2,
the dual program has constraints

0’ x # 'g? t,

10.22 i k) — s k)] =
(10.2) Sy k) - fwesh ={” Ty
(10.23) 0 < flx,y; k) < cx, y;5 k),
and minimizing form
(10.24) o= > a(x, y; k)f(x, y; k).

z,y,k

This program has the following flow interpretation. First enlarge the
project network by doubling the number of arcs: corresponding to each
arc (x,y) of the project network there are now two arcs (z,y;1) and
(®, y; 2) from z to y (see Fig. 10.4). Each arc (z, y; k) of the new network
has an assigned capacity ¢ (z, y; k). The problem is to construct a flow from
s to ¢t of value v in the new network that minimizes (10.24).

Figure 10.4

Except for the details that minimization has replaced maximization in
(10.24), and pairs of arcs join nodes, the problem is now in familiar form.
The second of these minor differences could be eliminated, if desired, by
inserting an additional node in the ‘“middle” of one arc of each pair.
However, this greatly increases the number of nodes and arcs needlessly. A
better way to handle multiple arcs joining nodes is simply to augment the
information contained in the labels assigned to nodes during the labeling
process by indicating which arc produced the label. We do this in the
algorithm, outlined below, which is also designed to minimize (10.24).

156

§10. PROJECT COST CURVES

This algorithm, like the one of § 3, solves the problem for all A and thus
generates the complete project cost curve. One other slight variation which
deserves preliminary mention is that, before performing the usual labeling
process, a check is made (using a labeling process) to see whether ““infinite
breakthrough’ is possible, that is, whether there is a chain of admissible
arcs from s to ¢, each of which has infinite capacity. For the existence of
such a chain means that further decrease in A would make the constraints
(10.5)-(10.8) infeasible, and this signals termination of the computation.

We use the notation r(x) for node numbers in the algorithm, instead of
our usual =(z), because these node numbers do indeed have the interpreta-
tion of event times in the original program. The algorithm begins with the
zero flow and an assignment of node numbers produced by finding a chain
of maximal b-length from s to ¢. Thus 7(s) = 0 and 7(¢) equals the length of
this chain. Then A = 7(t) is the largest A of interest, since the project can
be completed in A time units even if all job times are at their upper bounds.
The node numbers partition the arcs into admissible and inadmissible
classes in the usual way, and the labeling process (modified as mentioned
above) is then performed on admissible arcs. Following non-breakthrough,
the node numbers (event times) are changed by subtracting a positive
integer from those corresponding to unlabeled nodes. This produces a
smaller value of A, namely the new =(¢), and consequently another point on
the project cost curve P()). Moreover, optimal job times 7(x, y) corre-
sponding to A = 7(t) are given simply by defining

(10.25) (@, y) = min [b(z, y), 7(y) — 7(x)].

We shall discuss these assertions in more detail following the algorithm
statement.

That the project network contains no directed cycles comes into play in
starting the algorithm for the dual low problem, since this means that the
method of § 5 can be used to find an initial assignment of node numbers.
Indeed, were it not for the absence of directed cycles, the constraints
(10.5)—(10.8) would be infeasible in general, as is easily seen by summing
(10.5) around a directed cycle. This is also reflected in the dual problem,
as the form (10.24) would be unbounded on its constraint set if the project
network contained a directed cycle. For an infinite amount of flow could
be sent around this cycle without changing v, so that (10.24) would, in
general, be negatively infinite.

Optimality properties for the program (10.22)—(10.24) are

(10.26) 7(8) = 0, () = A,

(10.27) a(x,y; k) + 7(x) — 1(y) < 0= f(zx,y; k) =0,

(10.28) a(z, y; k) + 7(x) — 7(y) > 0 = f(z,y; k) = c(x, y; k).
157

III. MINIMAL COST FLOW PROBLEMS

Here (10.27) and (10.28) are just the reverse of (3.19) and (3.20), as is to be
expected. The algorithm below produces successive flows and node num-
bers satisfying these properties for decreasing values of A.

To shorten the notation, we set

(10.29) a(x, y; k) = a(@, y; k) + 7(x) — 7(y).

Arcs for which a(z, y; k) = 0 are admissible.

Start. (Finding a chain of maximal b-length.) Use the shortest chain
algorithm of § 5, where each arc (z, y) of the project network is assigned
the length —b(x, y). At the conclusion of this routine, (negative) node
numbers m(z) will have been generated, with #(s) = 0. Set r(z) = —n(z).
Take all f(z,y; k) = 0. (The properties (10.26)-(10.28) now hold for
A =7(t).)

Iterative procedure. Enter with an integral flow f(z, y; k) and node
integers 7(x) satisfying (10.26)-(10.28) for some A. (During the iterative
procedure, a label assigned to node y will be of the form [z, k*, ¢(y)]. Here
x is a node, k+ indicates that the arc (z, y; k) was used to label y from z; k-
that the arc (y, z; k) was used to label y from z; and ¢(y) indicates the
largest flow change along the path from s to y.)

First labeling. Start by labeling s with [—, —, &(s) = 0]. The only
labeling rule is: node y can be labeled from (labeled) node z if (z, y; 2) is
admissible; ¥ then receives the label [z, 2+, ¢(y) = o0]. If breakthrough,
terminate. If non-breakthrough, go on to the second labeling.

Second labeling. Nodes labeled above retain their labels, and the labeling
process continues as follows. All nodes revert to the unscanned state.
When scanning a labeled node x, the labeling rules are: y can be labeled
from « if either

(@) (x, y; k) is admissible and f(x, y; k) < ¢(x, y; k),

(b) (y, z; k) is admissible and f(y, x; k) > 0.

In case (a), y receives the label [z, k*, £(y)] where &(y) = min [e(z),
c(x, y; k) — f(x, y; k)]; in case (b), y receives the label [z, k-, &(y)], where
&(y) = min [g(x), f(y, x; k)]. If breakthrough, change the flow by adding
and subtracting ¢(¢) along the path from s to ¢ picked out by the labels. If
non-breakthrough, single out the following subsets of arcs:

&1 = {(z, y; k)|x labeled, y unlabeled, a(z, y; k) < 0},

2 = {(x, y; k)|x unlabeled, y labeled, a(z, y; k) > 0},

and define
81 = min [—a(z, y; k)],
82 = min [a(x, y; k)],

min (81, 82).

158

8

§10. PROJECT COST CURVES

Change the node numbers 7(x) by subtracting 8 from all 7(x) corresponding
to unlabeled z. Discard the old labels and repeat.

That the algorithm produces successive flows and node numbers
satisfying the optimality properties (10.26), (10.27), (10.28) is readily
checked, just as in the mininal cost flow routine of § 3. It is also easy to see
that termination occurs; that is, at some stage, the first labeling results in
(infinite) breakthrough. For, suppose that the algorithm fails to terminate,
so that an infinite sequence of finite breakthroughs and non-breakthroughs
occurs. The number of breakthroughs in this sequence is finite. For
otherwise, flows having arbitrarily large values » would be produced. But
such a flow must contain a chain flow along admissible arcs corresponding
to k = 2 (the infinite capacity arcs). Hence at some stage there is a chain
from s to ¢ of admissible arcs corresponding to & = 2, and thus the first
labeling would produce breakthrough. This leaves only the possibility that
infinitely many successive non-breakthroughs occur. This possibility is
eliminated, just asin § 3, by the fact that at least one more node can always
be labeled following non-breakthrough.

It may also be checked that the sets 271, 272 that define the node number
change 8 cannot both be empty. (In fact, .&7; cannot be empty.) For if both
&/1 and o7 are empty, the flow at that stage is maximal, hence has infinite
value. But this is absurd, as termination would have occurred. Thus 8 is a
positive integer.

As was remarked earlier, each new set of event times 7(x) yields a new
point on the project cost curve by defining =(x, y) as in (10.25) and cal-
culating

P(N) = Plr(y)] = D [k(x,y) — e(=, y)r(=, y)].
z.y

We now verify that (10.25) does define optimal job times corresponding to

A = 7(t). To this end, we go back to the original pair of dual programs

(10.4)-(10.8) and (10.10)-(10.12), using also (10.13), (10.14) todefinegand A,
and (10.17) to define f. It suffices to show that

(10.30) 7z, y) + 7(x) — 7(y) < 0= f(z,y) =0,
(10.31) (2, y) < b(x, y) = g(z, y) = 0,
(10.32) 7(x, y) > a(x,y) = h(z, y) = 0,

since (with 7(s) = 0, 7(t) = A) these are optimality properties for primal
and dual. If the hypothesis of (10.30) holds, then r(z, y) = b(z, y), hence
b(x,y) + r(x) — 7(y) < 0. Consequently a(z,y) + v(x) — 7(y) < 0 also.
It then follows from (10.27) that f(z,y; k) =0, ¥ =1 and 2, hence
f@,y) =fx, y;1) + f(z,y; 2) = 0, verifying (10.30). Suppose next that

159

ITII. MINIMAL COST FLOW PROBLEMS

7(x, y) < b(x, y). Then 7(x, y) = 7(y) — 7(x) < b(x, y), hence by (10.28),
fx,y;1) = ¢(=, y). Then f(z, y) > c(x, y), hence g(r, y) = max [0, c(x, y)
— f(xz,)] = 0, proving (10.31). Finally, assume +(z,y) > a(x,y). If
7(x, y) = 7(y) — 7(x), then a(z,y) + 7(x) — 7(y) < 0, hence by (10.27),
flx,y;2) = 0. Consequently f(z,y) < c(x,y), so that h(z,y)=
max [0, f(z, y) — c(x, y)] = 0. If, on the other hand, r(z, y) = b(z, y) <
7(y) — 7(x), then a(x, y) < 7(y) — 7(z), and again we deduce k(z, y) = 0.
This completes the proof that 7(z, y) defined by (10.25), together with the
event times 7(x), solves the original project cost program.

The function P(A) is linear between successive values of A = 7(¢)
generated by the algorithm. We shall show how to pick out the break-
points of the convex, piecewise linear P(A). Not every value of 7(f) is
necessarily a breakpoint.

Suppose that A; > A are two successive A’s, and let Asatisfy A = A > Aq.
Let f be the flow that produced the node number change yielding A from
A1, and suppose f has value v. Since f minimizes (10.24) for A = Ay, it follows
that

(10.33) Ph) = K — (Mo — > alx, y; k)f(x, y; k).

z,y,k

Here K is the constant 3. , [k(x, y) — b(z, y)c(x, y)]. But f also minimizes
(10.24) for any Ain theinterval A; > X > Aq. (Thisis analogous to Corollary
3.4.) Hence

(10.34) P(\) = K — ()w —- > alz,y; Bf(z,y; k)),

.Y,k

and consequently
(10.35) P(A) — P(A1) = (A1 — A, AL 2 A2 A

Thus P(A) is linear between successive values of 7(t). Now suppose
A1 > Az > Ag are three successive values of 7(¢) generated in the computa-
tion, and let v be as defined above. Suppose also that v’ is the value of the
flow that produced the non-breakthrough yielding A3. Then

P(X2) — P(A1) = (A1 — Ao,
P(X3) — P(A2) = (A2 — Ag)".
Consequently A is a breakpoint of P(A) if and only if v. < v’; that is, if and

only if there is an intervening breakthrough between the two non-break-
throughs that yield Az and As.

160

§10. PROJECT COST CURVES

For example, if a problem computation results in the sequence of
breakthroughs and non-breakthroughs (indicated by B and N)

B@BBN@BNN@B,

then the circled non-breakthroughs suffice to define P(]).

At the conclusion of the computation, a chain of admissible links
corresponding to £ = 2 has been located. Summing the equalities a(z, ¥)
+ 7(z) = 7(y) along this chain shows that A = 7(¢) is equal to the a-length
of this chain. Consequently the project cannot be completed in any smaller
time interval.

The method of this section can also be used to compute project cost
curves in case the given job costs are assumed piecewise linear and convex
between crash and normal completion times a(z,y) and b(z, y). This
merely introduces more arcs from « to y into the flow network; in fact, one
more arc for each additional breakpoint of the function giving the cost of
job (2, y).

We conclude this section with Table 10.1 summarizing the solution of the
numerical example shown in Fig. 10.5. Note the behavior of the optimal

(1) 0 0 0 0 0 0 0 —
7(2) 3 3 3 3 2 2 1 —
7(3) 5 4 3 3 2 2 2 —
7(4) = A 11 10 9 8 7 4 3 —
7(1, 2) 3 3 3 3 2 2 1 —
(1, 3) 4 4 3 3 2 2 2 —
7(2, 3) 2 1 0 0 0 0 1 —
(2, 4) 5 5 5 5 5 2 2 —
7(3, 4) 6 6 6 5 5 2 1 —
f(1,2) 0 1 1 2 3 3 3 @
(1, 3) 0 0 1 1 1 1 2 @
f(2,3) 0 1 1 2 2 2 1 1
f(2, 4) 0 0 0 0 1 1 2 0
f(3, 4) 0 1 2 3 3 3 3 o

v 0 1 2 3 4 4 5 o
P\ — K 0 1 3 6 10 22 27 —

Table 10.1

job times 7(2, 3) as A varies from 11 to 3 in this example. For A = 4, it is
optimal to take 7(2, 3) at its lower bound, but further decrease in A implies
an increase in (2, 3) away from its lower bound. This kind of behavior

161

ITI. MINIMAL COST FLOW PROBLEMS

Figure 10.5

may go against one’s intuition at first, but a little reflection shows that it is
not, after all, surprising.

11. Constructing minimal cost circulations [28]

The method presented here for computing optimal network flows is more
general than those described earlier in at least three ways:

(a) lower bounds as well as capacities are assumed for each arc flow,
and are dealt with directly;

(b) the cost coefficient for an arc is arbitrary in sign;

(c) the method can be initiated with any circulation, feasible or not,
and any set of node numbers.

(It is convenient to describe the computation in terms of circulations,
rather than flows from sources to sinks.) The freedom to begin with any
circulation and node numbers, instead of starting with particular ones
which satisfy certain optimality properties, as has been the case before, is
perhaps the most important practical feature of the method. For example,
in actual applications, one is often interested in seeing what changes will
oceur in an optimal solution when some of the given data are altered. This
method is tailored for such an examination, since the old optimal primal
and dual solutions can be used to start the new problem, thereby greatly
decreasing computation time.

An interesting feature of the method is that, loosely speaking, the status
of no arc of the network is worsened at any step of the computation. We
shall make this statement more precise later on.

162

§11. CONSTRUCTING MINIMAL COST CIRCULATIONS

We take the problem in circulation form. That is, we want to construct f
that satisfies

(11.1) flx, N) — f(N,z) =0, allze N,
(11.2) Uz, y) < flx,y) < ez, 9), all (z,y) e &
and minimizes the linear cost function
(11.3) > a(@, y)f (=, y).

r7

(Here 0 < Iz, y) < c(z, y), and as usual, we assume integral data.) Thus,
if it is desired to construct a feasible flow from s to ¢ of given value v that
minimizes (11.3), one can merely add a return flow arc (¢, s) with (¢, s)
= c(t, 8) = v, a(t, s) = 0, to get the problem in circulation form. Or, if it is
desired to construct a maximal feasible flow from s to ¢ that minimizes
(11.3), one can take I(t, s) = 0, c(¢, s) large, a(t, s) negatively large.

Of course feasible circulations may not exist. In this case the algorithm
terminates with the location of a subset X of nodes for which the condition
of Theorem I1.3.1 is violated.

For given node numbers 7, we set

(11.4) a(x, y) = a(x,y) + =(x) — =(y).

Then, for given = and circulation f, an arc (z, y) is in just one of the
following states :

(«) alz,y) > 0, flz,y) = Uz, y),
(B) a(z, y) =0, Uz, y) < flx,y) < clz, y),
() alz,y) <0, f(z, y) = ¢z,),
(e1) (e, y) >0, f(z,y) < Uz, y),
(B1) a(x,y) = 0, f(x y) < U=, y),
(y1) a(x,y) <0, fz,y) < c(z,y),
(22) @(x, y) > 0, f(x,y) > Uz, y),
(B2) a(x, y) =0, f(x,y) > c(x,),
(y2) a(x, y) < 0, f(x,y) > c(x, y).

We say that an arc is in kilter if it is in one of the states «, 8, y; otherwise
the arc is out of kilter. Thus to solve the problem, it suffices to get all arcs
in kilter, since optimality properties are

(11.5) a(z,y) < 0= f(x,y) = cz, y),
(11.6) az,y) > 0= f(z,y) = Uz, y).

With each state that an arc (z, y) can be in, we associate a non-negative
number, called the kilter number of the arc in the given state. An in-kilter

163

III. MINIMAL COST FLOW PROBLEMS

arc has kilter number 0; the arc kilter numbers corresponding to each
out-of-kilter state are listed below :

(1) or (B1): U(x, 9) — [z,),

(v1): a(x, y)lf(x, y) — clz, y)),
(a2): (=, Y)[f(x, y) — Uz, y)),
(Bz) or (y2): f(x, y) — c(@,y).

Thus out-of-kilter arcs have positive kilter numbers. The kilter numbers
for states a1, B1, B2, y2 measure infeasibility for the arc flow f(z, y), while
the kilter numbers for states y1, «2 are, in a sense, a measure of the degree
to which the optimality properties (11.5), (11.6) fail to be satisfied.

The algorithm concentrates on a particular out-of-kilter arc and attempts
to put it in kilter. It does this in such a way that all in-kilter arcs stay in
kilter, whereas the kilter number for any out-of-kilter arc either decreases
or stays the same. Thus all arc kilter numbers are monotone non-increasing
throughout the computation. (This is the interesting feature of the method
that was mentioned previously.) However, steps can occur that change
no kilter number, and this somewhat complicates the proof of termination.
But if the process begins with a feasible circulation, the monotone prop-
erty is stronger : at least one arc kilter number decreases at each step, thus
providing a simpler proof of finiteness in this case.

A basic notion underlying the method is to utilize the labeling process of
I1.3, modified appropriately, for increasing or decreasing a particular
arc flow in a circulation. The appropriate modification this time will not
be in terms of the notion of ““admissibility”” for an arc, used previously,
but will rather be more general.

We now state the algorithm.

The out-of-kilter algorithm.t Enter with any integral circulation f and
any set of node integers 7. Next locate an out-of-kilter arc (s, ¢) and go on
to the appropriate case below.

(1) @(s, t) > 0, f(s,¢) < (s, t). Start a labeling process at ¢, trying to
reach s, first assigning ¢ the label [s*, e(t) = I(s,t) — f(s, ¢)]. The labeling
rules are:

1
1

(11.7) If z is labeled [2%, &(z)], ¥ is unlabeled, and if (z, y) is an arc such
that either

(a) a(z,y) > 0, f(x.y) < Uz, y),
(b) a(z,y) < 0, f(z,y) < c(z,y),

t An IBM 704 code based on this algorithm has been prepared by J.D.Little. A
FORTRAN-FAP revision for the IBM 7090 has been written by R.Clasen. This code,
identified as RS OKF1, is available through SHARE. A sample problem involving
2900 arcs and 775 nodes required 1139 breakthroughs, 411 non-breakthroughs. Total
computing time was 5 minutes, exclusive of an input-output time of 3.2 minutes.

164

§11. CONSTRUCTING MINIMAL COST CIRCULATIONS
then y receives the label [+, ¢(y)], where
&(y) = min [¢(x), Iz, y) — f(x, y)] in case (a),
é(y) = min [&(2), ¢(z, y) — f(x,)] in case (b).

(11.8) If z is labeled [z, ¢(x)], y is unlabeled, and if (y, z) is an arc such
that either

(

a) a(y, x) = 0, f(y, z) > Uy, »),
(b) a(y,

z) < 0, f(y, 2) > c(y, 2),

then y receives the label [z~ &(y)], where
&(y) = min [e(x), f(y, ®) — U(y,)] in case (a),
&(y) = min [&(z), f(y,) — ¢(y, x)] in case (b).

If breakthrough occurs (that is, s receives a label), so that a path from ¢ to
s has been found, change the circulation f by adding &(s) to the flow in
forward arcs of this path, subtracting ¢(s) from the flow in reverse arcs,
and finally adding &(s) to f(s, t). If non-breakthrough, let X and X denote
labeled and unlabeled sets of nodes, and define two subsets of arcs:

(11.9) 1 = {(xylre X, ye X, axy) > 0,f(z,y) < ¢, y)},
(11.10) 7> = {(y,x)|xre X,ye X, a(y,x) < 0, f(y, x) > l(y, x)}.
Then let

(11.11) 81 = min [a(z, y)],
o,

(11.12) 82 = min[—a(y,)],
&y

(11.13) 8 = min (81, 82).

(Here 8; is a positive integer or co according as .27; is non-empty or empty.)
Change the node integers by adding 8 to all #(x) for x € X.

(B1) or (y1). a(s, t) =0, f(s,t) < l(s,t) or a(s,t) < 0, f(s,t) < c(s, t).
Same as (o), except £(t) = c(s, t) — f(s,).

(ec2) or (Bo). a@(s, t) > 0, f(s,t) > l(s, t), or @(s, t) = 0, f(s, t) > ¢(s, t).
Here the labeling process starts at s, in an attempt to reach t. Node s is
assigned the label [t—, ¢(s) = f(s,t) — I(s, t)]. The labeling rules are (11.7)
and (11.8) again. If breakthrough, change the circulation by adding and
subtracting &(t) to arc flows along the path from s to ¢; then subtract &(t)
from f(s, ¢). If non-breakthrough, change the node numbers as above.

(y2). a@(s,t) <0, f(s,t) > c(s,t). Same as (ag) or (Bz2), except &(s)
= f(s,t) — c(s, t).

The labeling process is repeated for the arc (s, t) until either (s, t) is in
kilter, or until a non-breakthrough occurs for which 6 = co. In the latter

165

III. MINIMAL COST FLOW PROBLEMS

case, stop. (There is no feasible circulation.) In the former case, locate
another out-of-kilter arc and continue.

We show that the out-of-kilter algorithm terminates, and that all arc
kilter numbers are monotone non-increasing throughout the computation.

Suppose that arc (s, ¢) is out of kilter, say in state «;. The origin for
labeling is ¢, the terminal s. The arc (s, t) cannot be used to label s directly
since neither (11.8a) nor (11.8b) is applicable. Consequently, if break-
through occurs, the resulting path from ¢ to s, together with the arc (s, t),
is a cycle. Then the flow changes that are made on ares of this cycle again
yield a circulation. Moreover, the labeling rules have been selected in such
a way that kilter numbers for arcs of this cycle do not increase, and at
least one, namely, for arc (s, ¢), decreases by a positive integer. Kilter num-
bers for arcs not in the cycle of course do not change.

Similar remarks apply if (s, £) is in one of the other out-of-kilter states.

We summarize the possible effects of a breakthrough on an are (z, y) in
Fig. 11.1, which shows the state transitions that may occur following
breakthrough. If a transition is possible, the number recorded beside the
corresponding arrow represents the change in kilter number. (Here ¢ is the
flow change.)

Oor-asc 0 Oor-¢

SN e T S
ap > a7 ¢ d Q)

Oor-¢ (o] Oor-¢
c-f m -1 ﬂ

(B} > B -+ B|

Oor-¢ Oorac

0
_S ~
) O P o

Figure 11.1 Breakthrough diagramn

Verification of the breakthrough diagram is straightforward. For
example, suppose arc (z, y) is in state «o, with @a(x, y) > 0, f(x, y) > Uz, y),
and kilter number a(x, y) [f(z, y) — U=, y)] > 0. If (z, y) is not an arc of
the cycle of low changes, then (z, y) remains in state «p with zero change in

166

§11. CONSTRUCTING MINIMAL COST CIRCULATIONS

kilter number. If the flow in arc (z, y) has changed as a result of the break-
through, then either (z, y) is the arc (s, t) or, by the labeling rules, (z, y) is
a reverse arc of the path from origin to terminal. Specifically, x was
labeled from y using (11.8a). In either case, f(z, y) decreases by the positive
integer ¢ < f(z,y) — U, y), the new state for (z, y) is « or o, and hence
the kilter number for (z, y) has decreased by ea(x, y) > 0. The rest of the
diagram may be verified similarly.

The state transitions and changes in kilter number that may occur
following a non-breakthrough with 8 < oo are indicated in Fig. 11.2.

Oor-8(f-1) O)
D0 O
e |\ I
S0 | Nz 0 |° °
/

f-c
-a(r-1)

Figure 11.2 Non-breakthrough diagram

Again we omit a detailed verification, but consider, for example, an arc
(x,y) in state y1, so that a(z,y) < 0, f(x,y) < c(z, y), having kilter
number a(z, y) [f(z, y) — c(z, y)] > 0 before the node number change is
made. If both x and y are in X or both in X, then @(x, y) remains the same
after the node number change, and consequently (z, y) stays in state y;
with no change in kilter number. We cannot have z in X, y in X (labeling
rule (11.7b)), and hence the remaining possibility is z in X, in X. Then
@(x, y) is increased by 8 > 0. Consequently the arc (z, y) either remains in
state y1 (if 8 < —a(x, y)), goes into state B (if § = —a(x, y) and f(x, y)
> l(z, y)), into state By (if 8 = —a(zx, y) and f(z, y) < l(z, y)), or into state

167

III. MINIMAL COST FLOW PROBLEMS

oy (if 8 > —a(x, y) and f(x, y) < l(z, y)), and the corresponding changes in
kilter number are respectively

f(x,y) — clx,)] <0,

8[f(x, y) — clz, y)] <O,

Uz, y) — f(z, y) + 3[f(x,y) — c(z,)] <0,

Uz, y) — flx,y) — a@, y) [f(x, y) — clx, y)] <O.

(The remaining logical possibility 8§ > —a(x, y), f(z, y) = l(z, y) cannot
occur, since if f(x, y) > l(z, y), then (z, y) is in &7 defined by (11.10) and
hence 6§ < —a(z, y).)

It follows from the breakthrough and non-breakthrough diagrams that
kilter numbers are monotone non-increasing throughout the computation.
Moreover, if breakthrough occurs, at least one arc kilter number decreases
by a positive integer. Thus to establish termination, it suffices to show that
an infinite sequence of consecutive non-breakthroughs, each with 6 < oo, is
impossible. To show this, let us suppose that a labeling resulting in non-
breakthrough with § < oo has occurred, and let X, X denote labeled and
unlabeled sets of nodes. After changing the node numbers, the new function
@'(xz, y) is given by

a(x,y) — 8 for z in X, y in X,
(11.14) a'(x,y) =<alx,y) + 8 forxin X, y in X,
az, y) otherwise.

If the arc (s, t) is still out of kilter, then the origin is the same for the next
labeling, and it follows from (11.14) and the labeling rules that every node
of X will again be labeled. Thus if the new labeling results in non-break-
through with labeled set X', we have X = X'. Let ./}, &/} denote the new
sets defined in terms of X', @', and f by (11.9), (11.10), and suppose X = X'.
Then from (11.14) we have &/ < &7, &5 < .7, and at least one of these
inclusions is proper by (11.11), (11.12), (11.13). Hence the new labeling
either assigns a label to at least one more node, or failing this, an arc is
removed from one of the sets .&/; or o7s. It follows that, after finitely many
non-breakthroughs with § < oo, we either get the arc (s, ¢) in kilter, obtain
a breakthrough, or obtain a non-breakthrough with § = co.

If a non-breakthrough with 8 = oo occurs, there is no feasible cir-
culation. For if § = o0, then from the definitions of .27, 272 and the label-
ing rules, we have f(z,y) > c(x,¥), f(y,x) < l(y,z) for xe X, yeX.
Moreover, for the arc (s,), either ¢ is in X, s in X with f(s,) < I(s, t), ors
isin X, tinX with f(s,) > ¢(s, t). (This is immediate for cases «1, B1, B2, v2
of the algorithm, and follows from (11.9) and the assumption § = oo for
case ag, from (11.10) and the assumption & = co for case y;.) Hence,

168

§11. CONSTRUCTING MINIMAL COST CIRCULATIONS

summing the conservation equations (11.1) over = in X, we obtain in all
cases

0=fX,X)-fX,X)>cX,X) - X, X).

But this violates the feasibility condition of Theorem II.3.1. Thus § = o
implies there is no feasible circulation.

THEOREM 11.1. The out-of-kilter algorithm either solves the problem (11.1),
(11.2), (11.3) in finitely many applications of the labeling process or terminates
with the conclusion that no feasible circulation exists. All arc kilter numbers
are monotone non-increasing throughout the computation. In addition, if the
algorithm is initiated with a feasible circulation, at least one arc kilter number
decreases with each labeling.

The only part of Theorem 11.1 that remains to be checked is the last
assertion. If the computation begins with a feasible circulation, the states
a1, B1, Be, y2 are empty to begin with, and consequently remain empty
through the computation. Hence, at each non-breakthrough (as well as
each breakthrough), the kilter number for at least one arc, namely (s, t),
decreases by a positive integer.

It is worth while to point out how the out-of-kilter algorithm generalizes
the method of § 3 for constructing a maximal flow from source s to sink ¢
that minimizes cost over all maximal flows. Here we suppose ! = 0,a > 0,
asin § 3. Now add the arc (t,) to the network with I(¢, s) = 0, c(t, s) large,
and a(t, s) negatively large. If we start with the zero circulation and all
node numbers zero, as in § 3, then the only out-of-kilter arc is (¢, s) (it is in
state y1) and hence it remains the only out-of-kilter arc throughout the
computation. Then the origin for the labeling process is always s, the
terminal ¢, and the labeling rules, flow change, and node number change all
reduce to those of § 3.

References

1. R. Bellman, “On a Routing Problem,” Quart. Appl. Math. 16 (1958),
87-90.

. C. Berge, Theorie des Graphes et ses Applications, Dunod, Paris, 1958.

. R. G. Busacker and P. J. Gowen, “A Procedure for Determining a
Family of Minimal-Cost Network Flow Patterns,” O.R.O. Technical
Paper 15, 1961.

4. A. 8. Cahn, “The Warehouse Problem,” Bull. Amer. Math. Soc. 54 (1948),
1073 (abstract).

. T. F. Cartaino and 8. E. Dreyfus, ‘“ Application of Dynamic Programming
to the Airplane Minimum Time-to-climb Problem,” Aero. Engr. Rev.
16 (1957), 74-717.

6. A. Charnes and W. W. Cooper, ‘Generalizations of the Warehousing

Model,” Op. Res. Quart. 6 (1955), 131-172.

169

w N

[

N

10.

11.

12

13

14

15

16

17

18

19.

20

21.

22.

23.

24.

25

26

27.

28.

. G.

. G.

..

. 8.

. Al

. P.

. J.

III. MINIMAL COST FLOW PROBLEMS

B. Dantzig, ‘“ Application of the Simplex Method to a Transportation
Problem,” Activity Analysis of Production and Allocation, Cowles
Commission Monograph 13, Wiley, 1951, 359-373.
, “Upper Bounds, Secondary Constraints, and Block Triangularity
in Linear Programming,” Econometrica 23 (1955), 174-183.
, “Discrete Variable Extremum Problems,” Op. Res. 5 (1957),
266-277.
, “On the Status of Multi-stage Linear Programming Problems,”
1.8.1. Bull. 36, 303-320.
, L. R. Ford, Jr., and D. R. Fulkerson, ‘‘A Primal-dual Algorithm,”
Linear Inequalities and Related Systems, Annals of Mathematics Study
38, Princeton University Press, 1956, 171-181.

B. Dantzig, D. R. Fulkerson, and S. Johnson, ‘“Solution of a Large
Scale Traveling Salesman Problem,” Op. Res. 2 (1954), 393-410.

B. Dennis, Mathematical Programming and Electrical Networks, Wiley,
New York, 1959.

E. Dreyfus, “An Analytic Solution of the Warehouse Problem,”
Management Sci. 4 (1957), 99-104.

L. Dulmage and I. Halperin, “On a Theorem of Frobenius-Kénig
and J. von Neumann’s Game of Hide and Seek,” Trans. Royal Soc.
Canada 49 (1955), 23-29.

S. Dwyer, ‘“The Solution of the Hitchcock Transportation Problem
with a Method of Reduced Matrices,” University of Michigan, 1955.
Egervary, ‘‘Matrixok Kombinatorikus Tulajdonsagairél,” Mat. es Fiz.
Lapok 38 (1931), 16-28. Translation by H. W. Kuhn, ‘“On Combina-
torial Properties of Matrices,” George Washington University Logistic
Papers 11 (1955).

. M. M. Flood, “On the Hitchcock Distribution Problem,” Pacific J. Math.

. L.

. T.

. D.

3 (1953), 369-386.

, ‘““A Computational Algorithm for the Hitchcock Distribution
Problem, University of Michigan (1959).

R. Ford, Jr., “Network Flow Theory,” The RAND Corporation,
Paper P-923, July 14, 1956.

and D. R. Fulkerson, “A Simple Algorithm for Finding Maximal
Network Flows and an Application to the Hitchcock Problem,”
Canad. J. Math. 9 (1957), 210-218.

, “Solving the Transportation Problem, Management Sci. 3 (1956),
24-32.

, ‘““A Primal-dual Algorithm for the Capacitated Hitchcock
Problem,” Naval Res. Logist. Quart. 4 (1957), 47-54.

, “‘Constructing Maximal Dynamic Flows from Static Flows,” Op.
Res. 6 (1958), 419-433.

Fujisawa, “A Computational Method for the Transportation Problem
on a Network,” J. Op. Res. Soc. Japan 1 (1959), 157-173.

R. Fulkerson, ‘““The Hitchcock Transportation Problem,” The RAND
Corporation, Paper P-890, July 9, 1956.

, ‘“Increasing the Capacity of a Network: the Parametric Budget
Problem,” Management Sci. 5 (1959), 472—483.

, ‘“An Out-of-Kilter Method for Minimal Cost Flow Problems,”
J. Soc. Indust. Appl. Math. 9 (1961), 18-27.

170

29

30.

31

32

33.

34

35.

36

37

38

39.

40.

4].

42

43

44

45.

46

47

48.

49.

50

51.

REFERENCES

. D. R. Fulkerson, ‘“ A Network Flow Computation for Project Cost Curves,”
Management Sci. 7 (1961), 167-178.

, ““On the Equivalence of the Capacity-constrained Transshipment
Problem and the Hitchcock Problem,” The RAND Corporation,
Research Memorandum RM-2480, January 13, 1960.

. J. W. Gaddum, A. J. Hoffman, and D. Sokolowsky, ‘“On the Solution of
the Caterer Problem,” Naval Res. Logist. Quart. 1 (1954), 222-229.

. D. Gale, “Transient Flows in Networks,” Michigan Math. J. 6 (1959),
59-63.

, The Theory of Linear Economic Models, McGraw-Hill, 1960.

. T. Gallai, ‘““Maximum-minimum Sétze iiber Graphen,” Acta Math. Hung. 9
(1958), 395-434.

, “Uber Regulidre Kettengruppen,” Acta Math. Hung. 10 (1959),
227-240.

. B. A. Galler and P. S. Dwyer, “Translating the Method of Reduced
Matrices to Machines,”” Naval Res. Logist. Quart. 4 (1957), 55-71.

. A. N. Gleyzal, “An Algorithm for Solving the Transportation Problem,”
Research Paper 2583, Nat. Bur. Standards J. 54 (1955), 213-216.

. I. Heller, “On Linear Systems with Integral Valued Solutions,” George
Washington University Logistics Seminar, 1956.

, “‘Constraint Matrices of Transportation-type Problems,” Naval

Res. Logist. Quart. 4 (1957), 73-78.

, “On the Traveling Salesman’s Problem,” Proceedings Second

Symposium tn Linear Programming 2 (1955), 643—665.

and C. B. Tompkins, ‘“An Extension of a Theorem of Dantzig,”
Linear Inequalities and Related Systems, Annals of Mathematics Study
38, Princeton University Press, 1956, 247-254.

. F. L. Hitchcock, ‘‘The Distribution of a Product from Several Sources to
Numerous Localities,” J. Math. Phys. 20 (1941), 224-230.

. A. J. Hoffman and J. B. Kruskal, Jr., “Integral Boundary Points of
Convex Polyhedra,” Linear Inequalities and Related Systems, Annals
of Mathematics Study 38, Princeton University Press, 1956, 223-246.

. M. Iri, ““Algebraic and Topological Theory of Problems of Transportation
Networks with the Help of Electric Circuit Models,”” R.A.A4.G. Research
Note 13, 1959.

, ““A New Method of Solving Transportation-Network Problems,”
J. Op. Res. Soc. Japan. 3 (1960), 27-87.

. W. Jacobs, ‘“The Caterer Problem,” Naval Res. Logist. Quart. 1 (1954),
154-165.

. W. 8. Jewell, “Warehousing and Distribution of a Seasonal Product,”
Naval Res. Logist. Quart. 4 (1957), 29-34.

, “Optimal Flow Through Networks,” Interim Technical Report

No. 8, Massachusetts Institute of Technology, 1958.

, “Optimal Flow Through Networks with Gains,” prezented at
Second International Conference on Operations Research, Aix-en-
Provence, France, 1960.

. L. Kantorovitch, ‘“On the Translocation of Masses,
(Doklady) Acad. Sci. 37 (1942), 199-201.

and M. K. Gavurin, “The Application of Mathematical Methods

in Problems of Freight Flow Analysis,” Collection of Problems

171

3

”

Compt. Rend.

52

53.

54.

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.

68.

69.

70

III. MINIMAL COST FLOW PROBLEMS

Concerned with Increasing the Effectiveness of Transports, Publication of
the Akademii Nauk SSSR, Moskow-Leningrad, 1949, 110-138.

. J. E. Kelley, Jr., “Critical Path Planning and Scheduling : Mathematical
Basis,”” Op. Res. 9 (1961), 296-320.

and M. R. Walker, “Critical Path Planning and Scheduling,”
Proc. of Eastern Joint Computer Conference, Boston, 1959.

T. C. Koopmans and S. Reiter, ‘A Model of Transportation,” Activity
Analysis of Production and Allocation, Cowles Commission Monograph
13, Wiley, 1951, 222-259.

D. Kénig, Theorie der Endlichen und Unendlichen Graphen, Chelsea
Publishing Co., New York, 1950.

H. W. Kuhn, “The Hungarian Method for the Assignment Problem,”
Naval Res. Logist. Quart. 2 (1955), 83-97.

, “Variants of the Hungarian Method for Assignment Problems,”
Naval Res. Logist. Quart. 3 (1956), 253—-258.

G. J. Minty, “A Comment on the Shortest Route Problem,” Op. Res. 5
(1957), 724.

——, “Monotone Networks,”” Proc. Roy. Soc. London, Ser. A, 257
(1960), 194-212.

T. S. Motzkin, ‘“The Assignment Problem,”” Proceedings Stxth Symposium
in Applied Mathematics, McGraw-Hill, 1956, 109-125.

J. Munkres, ‘“Algorithms for the Assignment and Transportation Prob-
lems,” J. Soc. Indust. Appl. Math. 5 (1957), 32-38.

A. Orden, “The Transshipment Problem,” Management Sci. 3 (1956),
276-285.

W. Prager, “On the Caterer Problem,” Management Sci. 3 (1956), 15-23.

, “On Warehousing Problems,” Op. Res. 5 (1957), 504-512.

L. W. Smith, Jr., “Current Status of the Industrial Use of Linear Pro-
gramming,”’ Management Sci. 2 (1956), 156-158.

A. N. Tolstoi, ‘“Methods of Removing Irrational Shipments in Planning,”
Sotsialisticheskit Transport 9 (1939), 28-51.

A. W. Tucker, ‘“Analogues of Kirchhoff’'s Laws,” George Washington
University Logistic Paper 3 (1950).

J. von Neumann, “A Certain Zero-sum Two-person Game Equivalent to
the Optimal Assignment Problem,”” Contributions to the Theory of Games,
Annals of Mathematics Study 28, Princeton University Press, 1953,
5-12.

D. F. Votaw, Jr., and A. Orden, ‘“The Personnel Assignment Problem,”
Project scoop, Manual 10, 1952, 155-163.

. H. M. Wagner, “On a Class of Capacitated Transportation Problems,”

Management Sci. 5 (1959), 304-318.

172

CHAPTER 1V

MULTI-TERMINAL MAXIMAL FLOWS

Introduction

In this short concluding chapter we return to the topic discussed in
Chapter I, but here a different point of view will predominate. Instead of
focusing on the value of a maximal flow from one specified node to another,
the primary concern will be with certain problems that arise when atten-
tion is shifted to all pairs of nodes. For example, how does one determine
maximal flow values between all pairs of nodes in a network with capacity
constraints on arcs? Does this necessitate solving all pairs of flow problems,
or will something simpler suffice? Or, a more basic question: what are
necessary and sufficient conditions for a given set of numbers to represent
maximal flow values between pairs of nodes in some network ? In addition
to these questions, one other problem will be discussed : that of synthesiz-
ing a network which meets specified lower bounds on all maximal flow
values, and at minimal total network capacity. These questions have been
considered very recently by Mayeda [5], Chien [1], and Gomory and Hu [2].
Our exposition closely follows that of Gomory and Hu, who have given
concise and elegant answers to all the questions posed above.

Throughout this chapter we shall deal only with undirected networks,
for which the multi-terminal theory assumes a particularly simple and
appealing form.

1. Forests, trees, and spanning subtrees

In this section we introduce and discuss briefly a few elementary notions
concerning undirected graphs that have not been required heretofore.
The first of these is that of a tree. A tree is simply a connected graph
G = [N; &/] that contains no cycles. Thus a tree has the property that
there is a unique chain or path joining each pair of nodes, since the exis-
tence of two or more paths between the same pair of nodes implies the
existence of a cycle in the graph. More generally, a graph, connected or not,
without cycles, is called a forest; each connected piece of a forest is con-
sequently a tree, when considered as a graph in its own right. It is easy to
show, for example by induction on the number of nodes, that a tree

173

IV. MULTI-TERMINAL MAXIMAL FLOWS

on n nodes has precisely n — 1 arcs. Indeed, any two of the three
conditions :

(a) @ is connected,

(b) G has no cycles,

(e) || = |N| -1,
implies the third and characterizes G as a tree.

Given a connected graph G on n nodes, one can delete arcs from G until
a tree remains. Such a tree is called a spanning subtree of G. For example, a
spanning subtree of the graph of Fig. 1.1 is shown in heavy arcs. If a graph
G and a spanning subtree 7' of G are specified, we refer to the arcs of T' as

Figure 1.1

“in-tree”’ arcs, the others as ‘“‘out-of-tree’’ arcs. Observe that if an out-
of-tree arc is added to a spanning subtree, the resulting graph has just one
cycle, consisting of the out-of-tree arc and the unique chain of in-tree arcs
joining its end nodes. If any arc of this cycle is now deleted, the new graph
is again a spanning subtree.

Suppose that each arc (z, y) of a connected graph G has associated with
it a real number a(z, y), which we might think of for the moment as the
“length” of (z, y). Among all the spanning subtrees of G there is then a
‘“‘longest”” one; that is, one that maximizes the sum of the numbers a(x, y)
associated with arcs of the subtree (see Fig. 1.2 for an example). In
studying multi-terminal network flows, maximal spanning subtrees turn
out to be of considerable use. We shall therefore state and prove a
maximality criterion for a spanning subtree, and then describe one of
a number of simple algorithms that have been devised for construct-
ing maximal spanning subtrees. We begin by noting an obvious necessary
condition in order that a spanning subtree be maximal. Thus, suppose T'
is a maximal spanning subtree of @, and let z;, xq, . . ., x3 be the chain of
in-7T arcs joining z; and zy. Here (1, i) is an out-of-7" arc. Then clearly

(11) a(xly xk) < min [a(xly x2)> a(x2> x3)) e a’(xk‘b xk)]x

for otherwise we could replace one of the in-7 arcs of this chain by (z1, x)
to obtain a longer spanning subtree of G. On the other hand, if the condition
(1.1) holds for each out-of-T' are, then the spanning subtree 7' is maximal.

174

§1. FORESTS, TREES, AND SPANNING SUBTREES

This is not obvious, although it can be demonstrated in several ways. We
shall sketch a proof showing, in fact, that if 7'; and T's are two spanning
subtrees of G, and if cach satisfies the assumption (1.1), then 7'; and T’z are
equal in length. This wiil certainly establish sufficiency. Given 7'y and T's,
we divide all of their ar~s into three classes: arcs that belong to 7'; only
(T1-arcs), arcs that belong to T2 only (T's-arcs), and arcs that belong to
both 7'y and T'¢ (T, Te-arcs). Suppose that T'; and 7'; are distinct and
take any T'g-arc, say (x1, i), then look at the chain of in-7"; ares (x1, 2),
..+, (xk—1, xk); some of these, but not all, may be T'1, T'2-arcs. Thus there
are T'j-arcs in this chain. By (1.1) applied to T';, each of these 7T'j-arcs has
length at least a(x1, xx). We shall show that at least one of them has length
equal to a(x;, zx). For suppose each of them had length greater than
a(x1, zx). Then, taking each of them in turn, its end nodes are joined by a
chain of in-7'; arcs not containing the arc (i1, xx), since T2 satisfies the
hypothesis (1.1). It follows that T's contains a cycle, a contradiction.
Hence some one of the 7T'y-arcs in the chain of in-7'; ares joining x; and zy,
say (zp, p+1), has length equal to a(zj, i), as asserted. Now remove
(%p, p+1) from 7'y and replace it by (x1, ;). This yields a new spanning
subtree 7'} that has the same length as 7', and has one more arc in common
with T,. Moreover, the hypothesis (1.1) is again satisfied for 7T'j, as is
readily verified. Hence the argument can be repeated, obtaining a succes-
sion of equal length trees T, T, T7, ..., the last of which is T,. This
proves

THEOREM 1.1. A necessary and sufficient condition that a spanning
subtree be maximal is that (1.1) hold for each out-of-tree arc.

An analogous theorem holds for minimal spanning subtrees, as can be
seen either directly or by replacing each a(z, y) by its negative.

Figure 1.2
175

IV. MULTI-TERMINAL MAXIMAL FLOWS

Kruskal [4] and Prim [6] have described several simple and direct
algorithms for constructing a maximal (or minimal) spanning subtree of a
given graph G. The validity of the following method, due to Kruskal, can
be verified using Theorem 1.1. Begin by selecting a longest arc of G; at
each successive stage, select (from all arcs not previously selected) a
longest arc that completes no cycle with previously selected ares, that is,
keep the subgraph of selected arcs a forest at each stage. After » — 1 ares
have been selected, a longest spanning subtree has been constructed. For
example, the construction might lead to the maximal spanning subtree
indicated by heavy arcs in Fig. 1.2.

2. Realization conditions

For a given undirected network G with arc capacity function ¢, denote
the maximal flow value from one node z to another node y by v(z, y). Thus
v is symmetric : v(z, y) = v(y, x). We call v the flow value function of G, or
more briefly, the flow function. (It is convenient in the sequel to put
v(z,) = 00.) The first question that comes up is that of determining
conditions under which a given symmetric function v can be realized as the
flow function of some network. A first step in answering this question is
provided by Lemma 2.1.

Lemma 2.1, If v is the flow function of a network, then for all nodes
z, Y, 2,
(2.1) v(x, y) 2 min [v(z, 2), v(2, y)].

Before proving Lemma 2.1, we note that condition (2.1), a kind of
“triangle” inequality, puts severe limitations on the function v. For
instance, applying (2.1) to each “side of the triangle” shows that, among
the three functional values appearing in (2.1), two must be equal and the
third no smaller than their common value. A further consequence of (2.1)
is that if the network has n nodes, then » can have at most n — 1 numeri-
cally distinet functional values. We shall not prove this assertion here,
since it will be a by-product of the proof of Lemma 2.2 below.

Notice that taking v(x,) = co eliminates the necessity of insisting that
z, ¥, z be distinet in (2.1).

To prove Lemma 2.1, we use the max-flow min-cut theorem to pick out
a minimal cut (X, X) with z in X, y in X, and v(z, y) = ¢(X, X). Now z is
either in X or X. If z is in X, then

vz y) < o(X, X) = v(z, y),
and (2.1) holds. If, on the other hand, z is in X, then
v(z, 2) < (X, X) = v(z, y),
and again (2.1) holds.
176

§3. EQUIVALENT NETWORKS

We point out that the proof uses the strong half of the max-flow min-cut
theorem.
It follows inductively from (2.1) that

(2.2) v(xy, x) = min [v(21, Ta), v(2, 23), . . ., V(Tk_1, Tk)].

Here 1, g, . . ., xj is any sequence of nodes of the network.

The importance of conditions (2.1) is considerably enhanced by the
fact that, not only are they necessary for realizability, they are also
sufficient.

LemMa 2.2. If the non-negative, symmetric function v satisfies (2.1) for all
z, Y, 2, there 1s an undirected network having flow function v.

The discussion of § 1 can be brought into play in proving Lemma 2.2.
Associate with each unordered pair (z, y) the number v(z, y) to obtain an
undirected graph each of whose arcs has a ‘“length.” Now let T be a
maximal spanning subtree of this graph. It follows from (1.1) and (2.2)
that if zy, s, . . ., 2 is the chain of in-tree arcs from z; to xx, then

(2.3) v(z1, ¥x) = min [v(zy, X2), v(T2, X3), - . -, V(Tk-1, Tk)]-

Hence, if each in-tree arc is now assigned the capacity c(z, y) = v(z, y),
while each out-of-tree arc is deleted from the network, the flow network 7'
has flow function .

Thus if v is realizable, it is realizable by a tree.

We may summarize the discussion of this section in

THEOREM 2.3. A4 non-negative symmetric function v is realizable as the
flow function of an undirected network if and only if v satisfies (2.1). If v is
realizable, it is realizable by a tree.

3. Equivalent networks

We turn next to the problem of analysis of a flow network : to determine
the flow function » in an efficient manner. We have just seen that v is
realizable by a tree and hence that v can take on at most » — 1 numerically
different values, where n is the number of nodes in the given network.

Suppose we call two n-node networks flow-equivalent, or briefly, equiva-
lent, if they have the same flow function ». Thus every network is equiva-
lent to a tree. Is there some way of constructing an equivalent tree that is
better than first determining v explicitly by solving a large number of flow
problems, and then constructing a v-maximal spanning tree?

Gomory and Hu have answered this question decidedly in the affirma-
tive. Their procedure involves the successive solution of precisely n — 1
maximal flow problems. Moreover, many of these problems involve smaller
networks than the original one. Thus one could hardly ask for anything
better.

177

IV. MULTI-TERMINAL MAXIMAL FLOWS

To begin the discussion of this method, let us suppose that a maximal
flow problem has been solved with some node s as source, another node ¢ as
sink, thereby locating a minimal cut (X, X) with sin X, ¢in X (see Fig. 3.1).

Figure 3.1

Suppose that we wish to find v(x, y) where both z and y are on the same
side of the s,f minimal cut (X, X), say both z and y are in X. We first show
that, for this purpose, all the nodes of X can be ‘condensed” into a single
node to which all the arcs of the minimal cut are attached. (Several arcs
joining the same pair of nodes can be replaced by a single are, as in Fig.
3.2.) We call the network so obtained the condensed network. (Another

Figure 3.2

way of thinking of the condensed network is to imagine arcs joining all
pairs of nodes of X with infinite capacity.)

178

§3. EQUIVALENT NETWORKS

LemMA 3.1. The maximal flow value v'(x, y) between two ordinary nodes
x and y of the condensed network is equal to the maximal flow value v(z, y) in
the original network.

Proor. Let (Y, Y) be a minimal cut separating x and y in the original
network and define sets

A=XNnY, A=XNnY,
B=XNnY, B=XnY.

Here 4 is the complement of 4 in X, B is the complement of B in X. We
may assume that z€ 4, ye 4, s€ A.

Case 1. t € B. Now

o(X, X) = c(d, B) + o(4, B) + ¢(4, B) + ¢(4, B),
(Y, Y) = c(A4, 4) + c¢(A4, B) + ¢(B, 4A) + ¢(B, B).

Since (¥, Y)is a minimal cut separating and y, and since (4 U B U B, 4)
separates x and y, we have

(3.1) ¢(Y,Y)— ¢4V BU B, 4) = ¢(A, B) + ¢(B, B) — ¢(4, B) < 0.

Since (X, X) is a minimal cut separating s and ¢, and since (4 U 4 U B, B)
separates s and ¢, then

(3.2) ¢(X,X) — (AU AU B, B) = ¢(4, B) + ¢(4, B) — ¢(B, B) < 0.

Adding (3.1) and (3.2) shows that ¢(4, B) < 0, and hence ¢(4, B) = 0. It
then follows from (3.1) and (3.2) that ¢(B, B) — c¢(4, B) = 0 also. Hence
(AU BU B, 4) = (AU X, A) is also a minimal cut separating x and y.

Case 2. t € B. A similar proof shows that (4, 4 U X) is a minimal cut
separating # and y in this case.

In other words, there is always a minimal cut separating x and y such
that the set of nodes X is on one side of this cut. Consequently, condensing
X to a single node does not affect the value of a maximal flow from z to y.

Lemma 3.1 plays a fundamental role in the Gomory-Hu procedure for
constructing an equivalent tree.

We now describe their construction.

Select two nodes arbitrarily and solve a maximal flow problem between
them. This locates a minimal cut (X, X), which we represent symbolically
by two nodes connected by an arc of capacity »; = ¢(X, X), as in Fig. 3.3.

O——0

Figure 3.3
179

IV. MULTI-TERMINAL MAXIMAL FLOWS

In one node, the individual nodes of X are listed; in the other, those of X.
Next choose two nodes in X, say, and solve the resulting maximal flow
problem in the X-condensed network. The resulting minimal cut has
capacity ve, and is represented by an arc of this capacity connecting the
two parts into which X is divided by the cut, say X; and X,. The node X is
attached to X if it is in the same part of the cut as X;; to X, otherwise.
(See Fig. 3.4.)

@ Vo @ 4 @

Figure 3.4

This process is continued. At each stage of the construction, some set Y,
consisting of more than one node, is chosen from the tree diagram at that
stage. The set Y will have a certain number of arcs attached to it in this
tree. All of the sets (nodes of the tree) that can be reached from Y by paths
using one of these arcs are condensed into a single node for the next
maximal flow problem. This is done for each arc attached to Y in the tree.
In the resulting network a maximal flow problem is solved between two
nodes of Y. The set Y is partitioned into Y; and Y3 by the minimal cut
thus found; this is represented in the new tree by an arc having capacity
equal to the cut capacity joining ¥; and Y3; the other nodes of the old tree
are attached to Y, if they are in the Y; part of the cut; to Y2 otherwise.

To illustrate the general step of the construction, suppose we have
arrived at the tree diagram of Fig. 3.5, with Y to be split. Removal of the

Figure 3.5
180

§3. EQUIVALENT NETWORKS

arcs attached to Y leaves the connected components Y; X1; Xo, X3; X4,
X5, Xg. Then in the original network, the nodes of X; are condensed, as
are those of X5 U X3, and X4 U X5 U Xs. Solving a maximal flow problem
between two nodes of Y in the condensed network might then lead to the
new tree shown in Fig. 3.6.

Figure 3.6

The process is repeated until all the sets consist of one node each. If the
original network has »n nodes, this point is reached after » — 1 maximal
flow problems have been solved, since the final diagram is a tree on » nodes,
each arc of which has been created by solving a flow problem. The
number v; attached to the ith arc of the final tree 7' is the capacity of this
arc.

It is not at all evident that the tree T constructed in this manner is
equivalent to the original network. That this is the case follows from
Lemma 3.2.

Lemma 3.2. The mazximal flow value between any two nodes of the
original network is equal to

min (vg, vg,, - - -5 V1),

where 11, 13, . . ., iy are arcs of the unique path joining the two nodes in the
Jinal tree T.

181

IV. MULTI-TERMINAL MAXIMAL FLOWS

Proor. Consider two nodes x and y. We show first that
(3.3) v(x, y) < min (v, vi,, ..., V).

Here 11, 19, . . ., ¢y are arcs of the path joining x and y in 7'. To see the
validity of (3.3), it suffices to observe that the ith arc of T represents a cut
(X, X) in the original network having capacity v;, and that the sets X, X
are determined from 7 as follows. Delete the ¢th arc from T, leaving a forest
of two trees; then X consists of all the nodes in one of these trees, X all
the nodes of the other. This implies that x and y in (3.3) are separated by
all the cuts corresponding to the arcs 1, @2, . . ., ¢, and (3.3) follows. (That
the final tree 7T does represent cuts in the manner described above is
immediate from the construction, since each new tree produced in the
construction represents cuts in this way provided the old tree does.)

To establish the reverse inequality is more difficult. This will be accom-
plished by showing that, at any stage of the construction, if an arc of
capacity v joins nodes X and Y in the tree, then thereisan xin X and a y
in Y such that v(x, y) = v. This is certainly true at the first stage. We
prove that the property is maintained. Consider a node Y about to be split,
with X attached by an arc of capacity v. By the induction hypothesis there
isanzin X and a y in Y with v(x, y) = v. Let s and ¢ be the two nodes of
Y for the next maximal flow problem. (We do not exclude the possibility
s = y ort = y in what follows.) The set Y then divides into Y; and Y,
with sin Y1, ¢in Y. We may assume that X is attached to Yy (see Fig. 3.7).

Figure 3.7

Of course s and ¢ provide the two nodes such that v(s, t) = v’ for the new
arc. As to the old arc of capacity v, there are two cases to consider. If y is
in Y, then x and y provide the two nodes. The case in which y is in Y, is
a little more troublesome. Here we shall show that-s and x provide the
required nodes. Notice that x and s are on one side of the minimal s, ¢ cut
of capacity v, and y and ¢ are on the other. Thus, by Lemma 3.1, condensing

182

§3. EQUIVALENT NETWORKS

Y3 to a single node in the original network does not change v(z, s); that is,
v(x, 8) remains unaffected if all pairs of nodes of Y5 are joined by arcs of
infinite capacity. Letting bars denote maximal flow values in the network
thus obtained, we have

(z, 8) = v(zx, 8),

oz, y) 2 vz, y) = v,
oy, t) = oo,

o(t, 8) = v(t, 8) = v,

Hence from (2.2),
?(x, 8) = min [v(z, ¥), v(y, t), 9(¢, s)] = min [3(z, y), v(¢, s)],

and consequently
v(z, 8) = ?(x, 8) = min [v, v'].

Now v’ > vsince the cut of capacity v’ separates x and y. Hence v(z, s) > v.
But equality must hold here because the cut of capacity v separates and
s. Thus v(z, s) = v, as was to be shown.

Consequently the capacities of the arcs in the final tree 7' actually
represent maximal flow values between adjacent nodes of 7'. Using (2.2),
this implies that

(3.4) v(z, y) = min (v, vy, - - -, V1),

r

where i1, 99, . . ., i, are arcs of the path joining x and y in the final tree 7'.
This, with (3.3), establishes Lemma 3.2 and shows that the construction
produces an equivalent tree.

The beauty of the construction rests not only in the fact that an
equivalent tree is produced with a minimum of effort, but also in the kind
of equivalent tree; that is, one whose arcs represent the relevant n — 1 cuts
in the original network. There are usually many trees equivalent to a
network; for example, any maximal spanning subtree of the weighted
graph corresponding to the flow function. In fact, it can be shown that
every flow network is equivalent to a chain. But a tree produced by the
construction is more than just equivalent to the starting network. Its
structure corresponds precisely to the multi-terminal cut structure of the
network. Gomory and Hu have called such a tree a cut-tree of the network.
The same network may have more than one cut-tree, but in a sense this
can happen only “by accident.” That is, if we start with a connected
graph G with arc capacity function ¢, and perturb its arc capacities by, say,
adding & to the ith arc capacity for small ¢, then all cuts have distinct
capacities, and the network will have a unique cut-tree. For surely only
one set of cuts (X1, X1), (X2, X2),..., (Xn-1, Xn—1) corresponds to the
n — 1 different values taken on by the flow function, and this list of cuts

183

IV. MULTI-TERMINAL MAXIMAL FLOWS

determines a unique cut-tree by the rule: nodes x and y are joined by an
arc if and only if they lie on opposite sides of precisely one cut in the list.
The arc (z, y) then has capacity equal to this cut capacity.

ExXAMPLE.

\ 4
Figure 3.8
To begin the analysis for the network of Fig. 3.8, arbitrarily select nodes

1 and 6 for the first flow problem. This yields the cut ({1, 3}, {2, 4, 5, 6})
represented by the tree of Fig. 3.9.

Figure 3.9

Taking 1 and 3 for the next flow problem and condensing 2, 4, 5, 6 gives
the network of Fig. 3.10 and subsequent cut ({1}, {3, 2, 4, 5, 6}).

Figure 3.10

184

§3. EQUIVALENT NETWORKS
Hence the tree of Fig. 3.9 becomes Fig. 3.11.

Figure 3.11

Next choose 2 and 4, giving the condensed network shown in Fig. 3.12
and cut ({1, 3, 2, 5}, {4, 6}).

Figure 3.12

Hence Fig. 3.11 becomes Fig. 3.13.

O—CO—Co—C=

Figure 3.13

Selecting 2 and 5 for the next flow problem and condensing yields Fig.
3.14, with cut ({2}, {1, 3, 5, 4, 6}).

Figure 3.14
185

IV. MULTI-TERMINAL MAXIMAL FLOWS

Thus the tree diagram at this stage is as shown in Fig. 3.15.

Figure 3.15

Finally choose 4 and 6 to get the condensed network of Fig. 3.16, and cut
({1, 2, 3, 5, 4}, {6}).

Figure 3.16

Consequently the final cut-tree is as shown in Fig. 3.17.

O——CO———O—0O

[3)]

Figure 3.17
186

§4. NETWORK SYNTHESIS

In the original network, the cuts picked out by the final cut-tree are shown
in Fig. 3.18.

Figure 3.18

4. Network synthesis

Given a symmetric function r defined for all pairs of nodes of an
n-node network, we shall call the network feasible if its flow function v
satisfies

(4.1) v(z, y) = r(z, y), all z, y.

One problem that immediately suggests itself is that of constructing a
feasible network which minimizes some prescribed function of the arc
capacities, for example
42) > al=, y)e(x, y).

zy
Here a(z, y) = a(y,) may be thought of as the known cost of installing
one unit of arc capacity between x and y. This is a linear program, since the
conditions (4.1) can be represented by writing down 27-1 — 1 linear
inequalities :
(4.3) c(X, X) > max r(z, y),

reX
yeX

corresponding to all cuts of the network. Of course, for even moderate
values of n, the number of constraints makes it prohibitive to deal with
this program explicitly. However, Gomory and Hu [3] have suggested
simplex methods for the program that do not require an explicit enumera-
tion and usage of all the constraints (4.3). We shall not discuss this rather
general synthesis problem here, but shall look instead at the simpler
version of the problem when all unit costs a(x, y) are equal and may be
assumed to be 1. For this problem, there is a remarkably simple and purely
combinatorial method of synthesis.

187

IV. MULTI-TERMINAL MAXIMAL FLOWS

To facilitate the description of this combinatorial method of synthesizing
a minimal capacity feasible network, we shall carry along the example of
Fig. 4.1, in which the requirements r(z, y) are as indicated.

Figure 4.1

Let T be a dominant requirement tree; that is, a maximal spanning sub-
tree of the requirement graph. We may construct 7' by the Kruskal
algorithm, for instance. (In the example, a dominant requirement tree is
shown by heavy arcs.) Then a necessary and sufficient condition that a
network be feasible is that (4.1) hold for arcs of 7'. The necessity is of
course obvious. For the sufficiency, suppose (z, z) is an out-of-7" arc. Then
it follows from (2.2), (4.1), and (1.1) that

v(2, 2) = min [v(x, ¥), v(y, u), ..., v(w, 2)]
(4.4) > min [r(x, ¥), r(y, u), . .., r(w, 2)]
> r(z, 2).
Here 2, y, u, . . ., w, z is the chain of in-7" arcs joining x and z.

The synthesis uses only the dominant requirement tree 7'. First T is
decomposed into a “sum’ of a “uniform” requirement tree 7' plus a
remainder (which is a forest of two or more trees) by subtracting the
smallest in-7' requirement from all other in-7 requirements. Thus, the
dominant requirement tree of Fig. 4.1 decomposes into that of Fig. 4.2.

o 40N

O—

Figure 4.2
188

(5}

§4. NETWORK SYNTHESIS

Each remaining non-uniform subtree is then further decomposed in the
same way, and the process is repeated until 7' has been expressed as a sum
of uniform requirement subtrees. In the example, this is achieved in one
more step as shown in Fig. 4.3.

Figure 4.3

Each uniform tree of this decomposition is then synthesized by a cycle
through its nodes (in any order), each arc of which has capacity equal to
of the (uniform) requirement. (Clearly such a cycle will satisfy all require-
ments of a uniform tree.) The resulting cycles are then superposed to form
a network G*; that is, corresponding arc capacities are added. For example,
doing this for Fig. 4.3 could give the cycles

1,2,3,4,5 (capacity 2})

1,2,3 (capacity %)
4,5 (a single link of capacity 2)
1,3 (a single link of capacity 3)

and resulting network G* shown in Fig. 4.4.

IV. MULTI-TERMINAL MAXIMAL FLOWS
THEOREM 4.1. The network G* is a feasible minimal capacity network.

Proor. To see that G* is feasible, it suffices to show that all require-
ments of the dominant tree 7' are met. This follows at once from the
observations:

(a) a uniform requirement tree having requirements ¢ is synthesized by
a cycle through its nodes, each arc of which has capacity ¢/2,

(b) if two networks G’ and G” are superposed to form G, then v(z, y)
2 v'(z, y) + V(= y).

It remains to prove that G* is minimal; that is, the sum of the arc
capacities of G* is no larger than the corresponding sum for any feasible
network. To this end, first define numbers, one for each node z,

(4.5) u(x) = max r(x, y).

yizr
Thus u(x) is the largest flow requirement out of . (The same %(x) results if
the maximum in (4.5) is taken only over those y adjacent to z in the
dominant requirement tree, as will be seen later on.) Now any feasible
network with node set IV and capacity function ¢ must have

(4.6) c(x, N) = u(z);

hence for any feasible network,

(4.7) ¢(N, N) = u(N).

Here ¢(N, N) is twice the sum of the arc capacities of the network. We

shall show that the lower bound %(XN) in (4.7) is achieved by the network
G*; that is,

(4.8) c*(N, N) = u(N),
whence G* is a minimal capacity network.
To establish (4.8), first define u'(x) as in (4.5), except that the maximum

is taken over in-7 arcs emanating from z. Then u'(x) < u(x). But it is also
clear from the construction of G* that

(4.9) c*x, N) = u'(x),
and hence
(4.10) c¢*¥(N, N) = w'(N) < u(N).

Hence c¢*(N, N) = u(N), as was to be shown. This completes the proof of
Theorem 4.1.

It follows from this argument that «’(x) = u(x), as was asserted earlier.
This fact can also be seen directly without difficulty.

190

§4. NETWORK SYNTHESIS

A consequence of Theorem 4.1 is: the linear program (4.2), (4.3), with
all unit costs a(x, y) = 1, always has an optimal solution in which arc
capacities are either integers or half-integers, provided the requirements
are integers.

In general, there is a super-abundance of minimal capacity networks
that can be obtained from the construction, since a uniform requirement
tree can be synthesized by any cycle through its nodes. (Of course, if there
are two distinct minimal capacity networks, there are infinitely many,
because any convex combination of two such is also minimal.) Among all
of these, there is one whose flow function dominates all others; that is,
there is a feasible, minimal capacity network @ such that

(4.11) oz, y) = vz, y), all z, y,
where v(z, y) is the flow function for any other feasible, minimal capacity

network. To construct @, one can go back to the original requirement
network and revise each r(x, y) upward to

(4.12) 7z, y) = min [u(z), u(y)].
Observe that this does not change the lower bound u(N), since #(z) = u(z).

If the requirements (4.12) are used in the synthesis, the network @ thereby
obtained meets all requirements exactly :

(4.13) vz, y) = 7(x, y).

For suppose u(x) < u(y) and strict inequality held in (4.13). Then
c(z, N) = v(x, y) > u(x) = u(x),

contradicting the fact that ¢(IV, N) is equal to the lower bound #%(N).

In the same way, one can see that G has the dominance property (4.11).
For if there were a feasible minimal network G' with

v(r, y) > oz, y) = 7(2, y)
and 7(x, y) = u(x), say, then
c(x, N) = v(x, y) > u(x),

and the same contradiction results. In other words, more flow between any
pair of nodes can be obtained only by increasing total network capacity.

References

1. R. T. Chien, ‘“Synthesis of a Communication Net,” I.B.M. J. 4 (1960),
311-320.

2. R. E. Gomory and T. C. Hu, ‘“Multi-terminal Network Flows,” I.B.M.
Research Report, 1960 ; to appear in J. Soc. Indust. Appl. Math.

191

IV. MULTI-TERMINAL MAXIMAL FLOWS

, ““An Application of Generalized Linear Programming to Network
Flows,” I.B.M. Research Report, 1960.

4. J. B. Kruskal, Jr., ““On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem,” Proc. Amer. Math. Soc. 7 (1956), 48-50.

5. W. Mayeda, ‘‘Terminal and Branch Capacity Matrices of a Communication
Net,” I.R.E. Trans. on Circuit Theory 7 (1960), 251-269.

6. R. C. Prim, ‘“‘Shortest Connection Networks and Some Generalizations,”
Bell System Tech. J. 36 (1957), 1389-1401.

3.

192

Algorithm
for circulation, 52-53

for Hitchcock problem, 98-99, 108
for maximal dynamic flow, 116, 149

for maximal static flow, 17-19
for maximal tree, 175

for minimal cost flow, 116, 164-166

for multi-terminal flow, 179-181
for network synthesis, 188-189
for project scheduling, 158
for shortest chain, 131
for zero-one matrix, 83
Arc, 2-4
capacity of, 4
flowless, 13
forward, 3
reverse, 3
saturated, 13
Arc numbers, 114

Bipartite graph, 49-50, 54

Capacity

of are, 4

critical, 30

cut, 10

node, 23
Capacity function, 4
Caterer problem, 140-142
Chain, 3

in partially ordered set, 61
Chain decomposition, 8
Circulation, 50

minimal cost, 162-163
Circulation theorem, 51
Condensed network, 178
Conjugate sequence, 80, 86
Conservation equation, 4
Cut, 10-11

capacity of, 10

minimum, 11-14
Cut tree, 183
Cycle, 3

directed, 3

Demands, 36
Disconnecting set, 14-15
Dominant requirement tree, 188
Dual
of Hitchcock problem, 96-97
of linear program, 27
Dualitly theorem, 28
Dynamic flow, 145
maximal, 145

INDEX

temporally repeated, 147
value, 145

Edge (see Arc)
Equivalent networks, 177

Feasible solution to linear program, 28

Fixed schedules, 64-67
Flow
arc, 5
chain, 6
dynamic, 145
maximal, 11-14
minimal cost, 113, 163
multi-terminal, 173-192
static, 4
value of, 4
Flow function, 175
Forest, 173

Graph (see Network)

Hall’s theorem, 68
Hitchcock problem, 95-111
dual of, 96-97

Incidence matrix
arc-chain, 6
node-arc, 3
set-element, 79

Integrity theorem, 19

Konig-Egervdry theorem, 54

Labeling method, 17-19
Latin rectangle, 71
Linear program, 27

dual of, 27

feasible solution to, 28

optimal solution to, 28
Link (see Arc)

Marginal elements, 71-72
Matrix
permutation, 70, 111
of zeros and ones, 79-91
feasibility theorems, 81, 86
term rank of, 89
width of, 89
(see also Incidence matrix)
Max-flow min-cut theorem, 11
Menger theorem, 55
Minimal cost circulation, 163

Minimal cost flow problem, 113-114
equivalent Hitchcock problem, 129

Multi-terminal flow, 173-192

INDEX

Network, 2-4
for caterer problem, 141
condensed, 178
connected, 59-60
directed, 2
equivalent, 177
mixed, 2
for project scheduling, 152
realizable, 176-177
synthesis of, 187
undirected, 2
for warehousing problem, 138, 140
Node, 2-4
capacity of, 23
Node numbers, 114

Optimal assignment problem, 111-112

Partially ordered set, 61
chain in, 61
decomposition of, 61
Path, 3
cost of, 117
flow augmenting, 12
Point (see Node)
Project, 151
cost of, 153
minimal cost schedule for, 158

network for, 151-152
program for, 153

Representatives of sets, 67-75
distinct, 67-68
restricted, 70

Shortest chain problem, 130-133

Sink, 4

Source, 4

Subgraph problem, 75-79

Supplies, 36

Supply-demand theorems, 38, 40, 42, 48,
49

Transportation problem (see Hitchcock
problem)
Trans-shipment problem, 113
Tree, 173
cut, 183
dominant requirecment, 188
spanning, 174
maximal, 174
Triangle inequality, 176

Unicursal graph, 59
Vertex (see Node)
Warehousing problem, 137-140

194

