exercise data and results

GETTING TO KNOW

Programming ArcGIS® with VBA

For ESRI® ArcView®, ArcEditor™, and Arcinfo™

* Learn Microsoft® Visual Basic® for Applications
» Create your own buttons and tools

* Program dozens of everyday GIS tasks with ArcObjects

Build custom ArcMap™ applications

Robert Burke

rcObjects

RS

——
CD—ROM includes the complete set of
ArcObjects object model diagrams plus

ArcObj

Programming ArcGIS® with VBA

o

—

[

For ESRI® ArcView®, ArcEditor™, and Arclnfo™

=

ArcObjects

Programming ArcGIS® with VBA

For ESRI® ArcView®, ArcEditor™, and Arcinfo™

ESRI Press

Copyright © 2003 ESRI. All rights reserved.

The information contained in this document is the exclusive property of ESRI. This work s protected under United States copyright law
the copyright laws of the given countries of origin and applicable international laws, treaties, and/or conventions. No part of this work may
reproduced or transmitted in any form or by any means, electronic ar mechanical, including photocopying or recording, or by any info :
storage or retrieval system, except as expressly permitted in writing by ESRI. All reguests should be sent to Attention: Contracts Manager,
380 New York Street, Redlands, California 92373-8100, USA.

The information cortained in this document is subject to change without notice.

1.5, GOVERNMENT RESTRICTED/LIMITED RIGHTS: Any software, documentation, and/or data delivered hereunder is subject to the terms
the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/IMITED RIGHTS. At a minimum, use.
duplication, or disclosure by the U.5. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates 1, Il, and Il JUN 1
FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commaercial Technical Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York
Street, Rediands, California 92373-8100, USA.

ESRI, ArcGlS, ArcView, ArcSDE, SDE, ArcObjects, ArcMap, ArcCatalog, ArcEditor, Arcinfo, ArcScene, 3D Analyst, the ESRI Press logo,
Geography Netwaork, and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United States, the Eurg,
Community, or certain other jurisdictions. Other companies and products mentioned herein are trademarks or registered trademarks of
respective trademark owners.

First printing September 2003.
Printed in the United States of America.

Library of Congress Cataloging-in-Publication Data
Burke, Robert, 1963~
Getting to know arcobjects : programming ArcGIS with VBA / Robert Burke.
p. om.
ISBN 1-58948-018-X (pbk. - alk. paper)
1. Geographic information systems. 2. ArcGIS. 3. Microsoft Visual Basic for applications.
4. Graphical user interfaces (Computer systems) 1. Title.
G70.212.B86 2003
910'.285'536—dc22 2003019217

Published by ESRI, 380 New York Street, Redlands, California 92373-8100.

Books from ESRI Press are available 1o resellers worldwide through independent Publishers Group {IPG). For irformation on volume discoul
or to place an order, call IPG at 1-800-888-4741 in the United States, or at 312-337-0747 cutside the United States.

ACKNOWLEDGMENTS

This book was crafted by a team of dedicated and talented individuals. Without
their skill, patience, and expertise, Getting to Know ArcObjects would only be an idea.

Thad Tilton and Andrew Arana gave the book its initial push. They helped design
it and plan its exercise scenarios, and they wrote early drafts of several chapters.
Helpful advice came from Gary Amdahl, Michael Zeiler, Tom Gross, Euan Cameron,
Jack Horton, Glenn Meister, Matt Crowder, Jerry Sommerfeld, and Brian Golden.

Several rounds of edits by Michael Karman created the book’s logical flow. Tim
Ormsby helped write the final draft and created the index.

Tom Brenneman, Brian Parr, Tim Ormsby, Sheila Ferguson, Janis Davis, Sally
Swenson, Tom Hurst, Jovanna Leonardo, Brandon Whitehead, Tiffany Modlin,
and Michael Waltuch reviewed, tested, and technically edited every exercise. Brian
Parr took care of the behind-the-scenes details, making sure each milestone was met
in order to finish on schedule.

A special thanks to Doug Huibregtse for creating such an engaging book cover; to
Michael Hyatt for book design, production, and copyediting; and to Steve Hegle for
handling any and all administrative and distribution issues.

For their support and daily heroic efforts, | am grateful to my wife Suzanne and sons
Ryan and Ethan.

And finally, my deep appreciation to Christian Harder, Judy Boyd, Nick Frunzi, and
Jack Dangermond for helping me carry out a dream.

Robert Burke
October 2003

Data ackknowledgments
ESRI thanks the organizations listed below for providing data used in the exercises.

The City of Manhattan, Kansas, and Riley County, Kansas, provided Manhattan,
Kansas, data (chapters 2, 3, 4, 5, 13).

The U.S. Census Bureau provided the Washington, D.C., streets and landmarks data
(chapters 6, 10, 11) and the attributes for the U.S. counties (chapters 7, 8).

The U.S. Geological Survey, EROS Data Center provided the Grand Canyon
elevation data (chapter 12).

The David Rumsey Map Collection provided the 1887 historical map of Manhattan,
Kansas (chapter 13). The David Rumsey Map Collection (www.davidrumsey.com)
is one of the largest private map collections in the United States.

The Wilson County Mapping Department provided the Wilson County, North
Carolina, data (chaprers 14, 15, 16).

The U.S. Environmental Protection Agency provided the U.S. toxic sites data
(chapters 17, 18, 19).

The U.S. Forest Service, Tongass National Forest, Ketchikan Area provided the
Tongass National Forest, Alaska, forest stand data (chapter 20).

ACKNOWLEDGMENTS

CONTENTS

Section 1

Chapfter

1

Acknowledgments
Introduction xI

Programming with objects

Understanding VBA

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

£

(Ue}

4

wun

Building a custom application 5

Exercise 2a Organizing commands on a toolbar 7
Exercise 2b Making your own commands 16
Exercise 2c Storing values with variables 24

Creating a dialog box 37
Exercise 3 Using controls to build a form 38

Programming with objects 51
Exercise 4a Programming with methods 53
Exercise 4b Getting and setting an object’s properties 59

Code for making decisions 65
Exercise 5a Making a Case for branching 66
Exercise 50 Coding an If Then statement 71

Using subroutines and functions 77

Exercise 6a Calling a subroutine 79

Exercise 6b Passing values to a subroutine 86

Exercise 6¢ Making several calls to a single subroutine 91
Exercise 6d Returning values with functions 98

Looping your code 103
Exercise 7a Coding a For loop 104
Exercise 7b Coding a Doloop 111

Fixing bugs 119
Exercise 8 Using the debug tools 122

Making your own objects
Exercise 9a Creating classes 136
Exercise 9b Creating cbjects 142

Programming with interfaces
Exercise 10a Using IApplication and IDocument 151
Exercise 10b Using multiple interfaces 159

Navigating object model diagrams
Exercise 11a Getting layers 178
Exercise 11b Creating and assigning colors 188

Making tools
Exercise 12a Reporting coordinates 200
Exercise 12b Drawing graphics 211

Exercise 12¢ Using TypeOf statements 221

Executing commands
Exercise 13 Using Commandltems and CommandBars 228

Adding layers to a map
Exercise 14a Adding a geodatabase feature class 242
Exercise 14b Adding a raster data set 254

Setting layer symbaology

Exercise 15a Setting layer color 265

Exercise 15b Setting layer symbols 273

Exercise 15¢ Creating a class breaks renderer 285

Using ArcCataleg objects in ArcMap
Exercise 16a Adding layer files to ArcMap 299
Exercise 16b Making your own Add Data dialog box 305

Controlling feature display
Exercise 17a Making definition queries 318
Exercise 17b Selecting features and setting the selection color

Working with selected features
Exercise 18a Using selection sets 342
Exercise 18b Using cursors 348

332

CONTENTS

CONTENTS

enaix t

Making dynamic layouts
Exercise 19a Naming elements 362
Exercise 19b Manipulating text elements 370

Editing tables
Exercise 20a Adding fields 379
Exercise 20b Getting and setting values 390

What's next?

Data license agreement

Installing the data 40¢

Index

INTRODUCTION

Why learn how to program ESRI” ArcObjects 7

Think of ArcGIS” as a house that someone else has built and furnished for you. You
move in and find that it has lots of rooms, great furniture, all the conveniences,
artwork hanging on the walls, a swimming pool out back, everything you could ever
want . . . except your own personal touch.

Learning how to program ArcObjects with VBA means learning how to make
ArcMap™ and ArcCatalog" your own. You may not even want to change them too
much. Maybe remove a tool that you never use from a toolbar. Or take a certain
menu choice and put it on a button. Or reduce some repetitive task to a single
button click.

On the other hand, you might have plans to remodel the whole house.

Whatever the scope of your ambition, getting to know ArcObjects—and the
concepts behind programming them—will give you a new level of confidence in
your relationship with the software.

If you have little or no programming experience, begin with the book’s first section,
“Understanding VBA.” There you’ll learn about objects, properties, and methods;
how to set variables; how to write procedures and link them to buttons on the user
interface; how to use simple objects like message boxes; and how to employ program-
ming constructs like If Then statements and Do While loops.

If you are already comfortable with an object-oriented language, especially Visual
Basic” for Applications (VBA) or Microsoft” Visual Basic, you may want to start
with the second section, “Understanding ArcObjects.” There you'll learn about

the ArcObjects architecture, how to read object model diagrams, and how to use

programming interfaces. (If you have a good idea what the last sentence is talking
about, you probably know enough to skip the first section.)

The third section of the book, “Using ArcObjects,” leads you through a number of
GIS programming tasks, such as adding layers to maps, symbolizing and classifying
data, making feature selections, querying data, and editing feature attributes.

This is a workbook of hands-on exercises, supported by introductory discussions,
diagrams, and screen captures. The exercises proceed step-by-step, showing every
line of code that needs to be written and explaining its purpose. You will type lots
and lots of code in this book. Please be assured that all the exercise code has been
rigorously tested to work as instructed. Exercise code can fail, however, with even
the smallest of typing mistakes. (But every mistake is an opportunity to learn.) If
exercise code does fail, you can go through it yourself to check for typos. At different
stages in the book, you will be introduced to many of VBA’s error identification
techniques.

You are encouraged to save your work along the way, but you don’t have to because
each exercise is a new starting point, already prepared with maps, data, and any
VBA code you need. This is true even when the exercises build, as they often do, on
work you have done previously. Every exercise also includes a map document with
the correct results, in case you get stuck. Each chapter has from one to four exercises
(except for chapter 1, which has none). The exercise length varies, but as a rule,
chapters should take two to four hours to complete.

To use this book, you must have a copy of ArcView", ArcEditor ", or Arclnfo™
version 8.3 (or a later version) running on your computer. The map documents used
in the exercises will not open on earlier versions of the software. The CD that comes
with the book conrains the exercise data you need, plus additional resources, but
does not include the software itself. For instructions on installing the data, refer to
appendix B.

For the latest information, Q & A’s, addenda, and errata, visit the book’s companion
Web site at www.esri.com/ GTKArcObjects.

INTRODUCTION

Programming with objects

In this book, you will learn how to program ArcObjects with Visual Basic for
Applications (VBA). This raises two questions: what are ArcObjects and what is
Visual Basic for Applications? You could say that ArcObjects is a set of program-
mable objects and Visual Basic for Applications is an object-oriented programming
language. That's true, but not very helpful unless you know what object-oriented
programming Is.

Object-oriented programming

Object-oriented programming is a structure or design for computer programming
languages. It resembles our own experience of the world. We see the world as divided
into objects that have qualities, or properties, that behave in certain ways. For
instance, a tree is an object. It has properties like a type (it could be an oak, a
eucalyptus, or a palm), a height, an age, and lots of other things you could specify
(evergreen—yes or no! fruit-bearing—yes or no? and so on). A tree also has behav-
iors. It may rustle in the wind or shed leaves in the fall. It grows from a little seed.
One day it dies.

Similarly, in an object-oriented programming language, you work with objects that
have properties and behaviors (which are called methods). Lots of these objects are
familiar elements of software applications: buttons, tools, windows, and dialog boxes.
Some are complex and specialized. Depending on your programming job, you might
use computer objects that represent heart valves, honey bee hives, or hurricanes.

Computer programs solve problems or accomplish tasks: they beat you at chess, they
guide rockets to Mars, they simulate a wide variety of human and natural processes.
In object-oriented programming, you accomplish these tasks by giving instructions

to objects that make them carry out their methods.

The syntax of these instructions varies somewhat from language to language, but the
basic form is “Object.Method.” (The period is pronounced “dot.”) First comes the
name of the object, then comes the behavior that you want from it. For example, to
add a record to a table object, you would write something like:

Table.AddRecord
To make a tree object drop its leaves, you would write something like:
Tree.DroplLeaves

Some methods take along extra information, called parameters or arguments. For
example, in an instruction like:

Tree.Grow(10)
the argument tells the tree how much to grow—ten units of some kind or other.

What makes object-oriented programming interesting and rich is that objects have
relationships to one another and effects on one another. In the real world, a tree has
branches and branches have apples on them. These relationships are mirrored by
computer objects. For example, you might be able to write an instruction to create a
tree object (Tree.Create) but not to create a branch object. Branch.Create doesn’t
work because branches don’t exist independently of trees—and this is defined by the
properties and methods of your objects. Instead, to make a branch, you first create a
tree and then run its GrowBranch method.

Tree.Create
Tree.GrowBranch

If you want to make an apple, it might be Tree.Create, followed by Tree.GrowBranch,
followed by Branch.GrowApple.

Suppose you want to be elaborate and make a boy object eat an apple object. You
would first write a series of instructions, like those above, to make an apple, and then
another series to make a boy. Having produced these two objects, you would write an
instruction like:

Boy.Eat (AnApple)

When the boy eats the apple, consequences ensue. For example, the apple will no
longer exist and the boy’s [sHungry property might change from Yes to No.

You can see that in object-oriented programming, it's important to learn the
relationships among the objects you work with: which ones you can make, which
ones make others, which ones have which properties and methods, and which ones
are affected by the properties and methods of others. The need to understand these
relationships—which can be very complicated—has led to the creation of a special
system for diagramming them. You will start seeing these diagrams in the second part

of the book. They look like this:

CHAPTER 1 © PROGRAMMING WITH OBJECTS

Farm *_ Orchard

i

Tree

T

Branch i] Apple

Leaf

A

Once you know what all the arrows, boxes, diamonds, lines, and stars mean, you'll be
able to tell from a diagram that a branch object can make an apple object; that apple
and leaf objects can exist independently of tree and branch objects; and that if you
want a tree to do something, you first have to specify which orchard the tree is in
and which farm the orchard is on. In other words, diagrams give you the rules you
need to follow when you write code.

When you get to the second part of this book, it will be helpful to have printed
copies of some of these diagrams, including the ones called ArcMap, Geodatabase,
Display, Geometry, and Styles. All the ArcObjects diagrams are included as PDF
files on the CD that comes with this book. Some of the diagrams are poster-sized.
If your printer cannot accommodate them, you can purchase a bundle of printed
copies at www.esri.com/ExploringArcObjects.

Visual Basic for Applications (VBA)

Visual Basic for Applications, a simplified version of Visual Basic, is one of many
object-oriented programming languages. You can use other languages to program
ArcObjects (like C++ or Visual Basic), but VBA comes included with ArcGIS
Desktop. If ArcMap and ArcCatalog are loaded on your computer, so is VBA.

The main difference between VBA and other object-oriented programming
languages is that VBA was designed to be embedded within applications. Program-
mers working in languages like C++ typically build software applications from
scratch with a set of objects, while VBA programmers customize applications, like
ArcMap, that come with VBA inside them. VBA programmers can use as much of
the application’s built-in functionality as they want.

VBA has its own set of development tools, many of which you will use in this book.
For example, it has windows for organizing and storing the code you write; tools for
creating dialog boxes and their components (buttons, drop-down lists, scrolling
boxes, and so on); and tools for debugging code.

Code is organized in procedures. A procedure includes all the instructions needed to
accomplish some clearly defined task, like printing a map or making a boy eat an
apple. Procedures can be linked to each other so that when one finishes it tells

another to begin. For example, when a procedure that spell checks a document is
finished, it might “call” another procedure that prints the document.

You may sometimes have a chain of procedures calling one another, but the first link
in the chain requires a human touch. Actions like opening an application, clicking
a button, or moving the mouse pointer are called “events” and events are what make
procedures run. The example below shows the procedure that runs when a person
clicks the Full Extent button in ArcMap.

User clicks button Code runs
’, | %, Project - ThisDocument (Code) = o]]
@ Q lZuumEntems :ﬂ! iclu:k L}
Public Sub ZoomExtents Click() |
K EX Dim pMapDocument iz INxDocument
AL Dim phctiveView s IletiveView
@9 Q ' Set pHapDocument = ThisDocument
* Q Set phctiveView = pNapDocument.FocusNap
phetiveViev.Extent = pletiveView.FullExtent
LE k pictiveView.Refresh
5
ﬁ M End Sub
-
=F L|—|
i3
& 7
=
ArcOhjects

ArcObjects are a set of computer objects specifically designed for programming with
ArcGIS Desktop applications. ArcObjects include things like data frames, layers,
features, tables, cartographic symbols, and the pieces that make up these things:
points, lines, polygons, records, fields, colors, and so on.

As an ArcGIS user, you have been using ArcObjects all along. Click the Save button
in ArcMap and a procedure runs to save your map document. Click the Draw Point
tool on a map and a procedure runs to draw a point graphic where you clicked. The
map document, the Save button, the Draw Point tool, and the point graphic are all
ArcObjects. In fact, ArcMap and ArcCatalog are both built from ArcObjects.

In this book, you will use ArcObjects to customize and enhance ArcMap (and also
just to get underneath the hood and see how ArcMap works). ArcObjects can be
used to program other applications as well. Thanks to a design standard called
COM, which provides guidelines to the programmers who develop objects, you can
use ArcObjects to put map functionality in applications like Microsoft Word or
Microsoft Excel (and you can also put word-processing or spreadsheet functionality
in ArcMap).

One thing you won’t do in this book is master the universe of ArcObjects—there are
far too many of them. You will get to know a lot of the common ones, however.
More importantly, you'll get to know the principles of working with them and you'll
learn how to read object model diagrams, so that when you're done with the book,
you'll be ready to explore ArcObjects on your own.

CHAPTER 1 © PROGRAMMING WITH OBJECTS

Section 1:

CHAPTER2

Building a custom application

Organizing commands on a toolbar
Making your own commands

Storing values with variables

ArcMap and ArcCatalog have plenty of toolbars, menus, and commands (buttons
and tools), enough and more for most users’ needs. However, they will never have
everything that everyone needs, and will always have something that some people
simply do not. Fortunately, with a little training you will be able to change things
around, move toolbars, menus, and commands, delete ones you don’t use, and create
the ones that no one could ever have predicted you'd need.

Main menu toolbar

commands

[EE Thewarld - 3‘- S 5 = Custom toolbar
| =M Counbry i ﬁ* : == E :
| Country nams ﬁ — == z with custom

Some of your ArcObjects work isn’t programming at all, but customizing the user
interface. Objects, like toolbars, buttons, and tools, can be created and rearranged
without any programming. Of course, if you create a new button and want it to do
something, then you have to write the code that runs when the user clicks it.

If you've used any software package long enough, there are probably some repetitive
actions you do on a daily or weekly basis. Maybe you make a lot of feature selec-
tions in ArcMap and you'd like to be able to do that by clicking buttons instead of
choosing items from the Selection menu. So you make a toolbar and put all the
selection choices on it. You don't do any programming, because the Selection buttons
already have code.

Main Menu = x
File Edit Yiew Insert Selection Tools MWindow Help

Select By Attributes...
Selection menu B Select By Location, ..

% Select By Graphics

@ zoom To Selected Features

New Selection toolbar

o Custom Selection Taolbar B X
2 Statistics.., . ;
— —— B & Z | Set Selectable Layers | optinns
Sek Selectable Lavers...

[Clear Selected Features

Interactive Selection Method — »

Options. ..

When you need a completely new function, you can create your own buttons and
tools and put them on toolbars. And then you get to write code for them.

g S |
@ uu@it*@kﬂﬁ&?@@

Your new button

CHAPTER 2 BUILDING A CUSTOM APPLICATION

The graphic user interface (GUI) for ArcMap and ArcCatalog is made up of
toolbars, menus, and commands. Toolbars contain commands or menus. Commands
come as either buttons or tools. Menus provide pull-down lists of commands or of
other menus.

ArcMap toolbar —-T (=

Taw v | o (71T 8

Command Iy [haroug Command
Drder »
[iz) R
Align » 51 Hudge Right
Distribute » Hudae Up Command

Rotatzor Flip »] Mudge Down

Menu Menu

To make changes to the user interface, you use the Customize dialog box, shown
below. You use the Toolbars tab to create, delete, rename, and reset toolbars, and to
turn them on and off. The Commands tab displays commands and menus, which you
can drag from the Customize dialog box onto toolbars. The Options tab contains
security and other settings.

2l

Toolbars i Cummands] Options |

Toolbars:

dhain Menu MNew...
[viStandard

Wi Tools FIETEE !
(v Diraw

_ [Context Mehus I:
,JElfecis o Resls
|Genstatistical Analyst eznginliE

| 13D Analyst
[IGeoreferencing
D ata Frame Tools
_ILayout
|Ltility Netwark Analpst
_|Spatial Analpst Li

Keyboard.. l Addhumﬁ\e‘..j Close

Orpanizing commaneds on a toolbar

Exercise 2a

You are a GIS programmer for the planning department of Manhattan, Kansas.
When people come to the planning department office for parcel maps, a planning
department staff member uses ArcMap to locate the parcels and print the maps.

To free up staff members’ time, you have been asked to create a parcel viewer
application that anyone can use.

Users of the parcel viewer application will need to find parcels, label them with
identification numbers and values, zoom in on them, pan to center them, and print
a map. They’ll also need to zoom back out to see the entire city. In ArcMap, you'll
create a toolbar with commands for only those actions.

\rcMap ar

A d open ex02a.mxd in the C:\ArcObjects\Chapter(2 folder.
CA\ArcObjects is !

1
the assumed installation folder for this book’s exercise and

le data. If you installed your data in a different folder or drive, go there
now, locate the Chapter02 folder, and open the map.

The map contains layers for the city boundary, parcels, and streets.

Click the Tools menu and click Customize. Click the Toolbars tab, unless it’s
already active.

On the Toolbars tab, checked toolbars are visible, unchecked are not. Your list of
toolbars will vary according to which ArcGIS extensions you have loaded.

2l

Toalbats ICommands] C!pl\uns]

Toolbars:

L L T

v Standard

v Tools IEETE

v Draw

[|Context Menus
[Eltects

_ Geostatistical Analyst _E’f—,

13D Analust

| |Georeferencing

|_|Data Frame Tools

[ILapout

| 1Utility Netwark Analyst

| 1Spatial Analyst _'.j

Keyboard...] Addfmmﬁle..‘J Close]

Click New.

x| The New Toolbar

dialog box opens.

Toolbar Name:

IEustnm Toolbar 1

Savein
I ex02a mxd :_]

CHAPTER 2 = BUILDING A CUSTOM APPLICATION

Replace the toolbar name with Parcel Viewer. Make sure ex02a.mxd is selected
under Save in.

New Toolbar % : x|
Toolbar Name:
;F'alcel Viewer
The new toolbar will be saved in T
the ex02a.mxd map document {esi2amid =

Click OK.

Parcel Viewer is added to the list of toolbars in the Customize dialog box. The small,
empty undocked toolbar will expand as you add commands to it.

i&:a-l

You'll now move the Find command from the Tools toolbar to the Parcel Viewer
toolbar. People will use the Find dialog box to locate a parcel by typing a
parcel ID number.

With the Customize dialog box open, drag Find from the Tools toolbar to the
Parcel Viewer toolbar. (If your Tools toolbar is not displayed, you can go to the
Toolbars tab of the Customize dialog box and check its box.)

e ' 21
= & Todhars | Commands | Gptions |
K mA
s Toolbars:
@‘7 a Main Menu s 1
* * (V| Standard
(v Tools e
[@ k (v Draw
_’ E 3 [Context Menus
0] Effects —
& F | Geostatistical Analpst = l
e 13D Analyst
| Georeferencing
1Data Frame Tools
ILayout
[Utility Network Analyst
[1Spatial Analyst el

Keyboad | Addfomfie. | Clse |

Organizing commands on a toolbar

Find is no longer on the Tools toolbar, because moving a command from one toolbar
to another doesn’t make a copy of it. In the following steps, you will learn how to put

copies of a command on different toolbars. That way Find can be on both the Tools
toolbar and the Parcel Viewer toolbar.

D
M
C
v}
0

> LOIMMHMa

The Commands tab displays two lists, Categories and Commands. Categories
organizes commands by their functionality. Your list of categories may vary accord-
ing to which ArcGIS extensions you have loaded.

The Commands list contains commands that you drag onto toolbars. Unlike
dragging from one toolbar to another, commands remain in the Commands list.
So you can drag as many copies to as many toolbars as you need.

2%

Toobars Commands | Opiors |

Categories: Eommands:
Q 3D Analyst Layer List Cantral -
2= dd Fealures o TIN
CaD &
Data Converlers i _A:ea and Volume...
Data Frames /2 Contour Toal
Binoharans Create TIN From Features..
Developer Samples
Edit Features to 3D...
Editor = Interpolate Line Tool
Flie & Interpolate Point Taal
Geocoding e
Georelerencing = Interpolate Polpgon Tool
Help »| |@Line of Sight Tool =i

Savein [edzamed ¥| Keboad. | Addfomfie. | ks |

In the following steps, you will drag commands to the Parcel Viewer toolbar to zoom
in on the map, pan around it, print it, and zoom out to the full extent of the city.

CHAPTER 2 =~ BUILDING A CUSTOM APPLICATION

Tookars Commands] Options |

Categories: Commands:
1) Clear Rotation -
Report Object @ Continuous Zoom and Pan

Selection
Spalial Analyst
Surface

A ¥ Fived Zoom In
%3 Fixed Zoom Qut
O Full Extent

ﬁ GoBack To Previous Extent

Tools =D Go ToNext Extent
UlControls 10 Map Secal
Utility MNetwork Analyst Te a8];:a &
Wersioning L RRIEL L
View 4 Page Lsit
Savein [sizamd =] Kesbosc. | Addfomfie. | Closa

Commands:

Next, you will add the Data View and Layout View commands to the Parcel Viewer
toolbar. This way users can go back and forth between looking at the data and seeing
how the map will look on paper with all its cartographic components like north

arrow, scale, and title.

Organizing commands on a toolbar

Parcat]
(@) Clzar Rotation = 4 a
‘ @ Continuous Zoom and Pan
Report Object i
Selection ax Fised Zoom In
Spatial Analyst % 2 Fixed Zoom Out
?::‘tace ©Full Extent o
TIN 0 Go Back To Previous Extent
Tools *Go To Mest Extent
UICantals 1t Map Scal
tility Network Analyst Te ot DES i
ersioning a0e Hown
View ~| | PageLett _vJ
Desciiption
Keyboard... | Add from file.., 1 Close %
and Pan commands to match the g

[

jraphic below.

In the Categories list, click View. Drag the Data View command from the
Commands list onto the Parcel Viewer toolbar. Do the same for the Layout View
command. Your toolbar should look like the one shown below.

Parcel Viewer

Ao

Since some people may not be familiar with the ArcMap icons, you will use text
instead of icons for the Data and Layout View commands.

On the Parcel Viewer toolbar, right-click Data View and click Text Only.

parcel viewsr 3
nOQan

Qdete .

I&Data Wiew
Change Button Imags »

The icon is gone and only text displays. To keep all the commands on the same line,
you may have to widen the toolbar.

ﬁﬂ@i@n&am[&

Right-click Layout View and click Text Only.

The two commands are now displayed on the toolbar with their names. To make
them look more like buttons, you will add separator lines.

On the Parcel Viewer toolbar, right-click Data View and click Begin a Group. Do
the same for Layout View.

Your toolbar should now look like this:

HO@@\M‘&W.WM

In the Categories list, click File. From the Commands list, drag Print to the Parcel
Viewer toolbar.

Parcel Viewer i |
B @ 3 M pataview Laryout\ilew =1

CHAPTER 2 = BUILDING A CUSTOM APPLICATION

Right-click Print and click Begin a Group.

Parcel Yiewer £

AP A | ataview | Layoutview | &

The Parcel Viewer toolbar now contains the commands you need to find a parcel
and print a map. All other toolbars can be turned off.

In the Customize dialog box, click the Toolbars tab. Uncheck all toolbars except
Main Menu and Parcel Viewer.

Although you don’t need it, ArcMap requires the Main Menu toolbar to be turned on.
In the Customize dialog box, click Close.

Dock the Parcel Viewer toolbar below the Main Menu.

Your ArcMap application should look like the graphic below.

& ex0Z2a.mud - ArcMap - ArcView

| Hle Edt Viow Insert Selsction Tooks Window Help

' J # a@ {"7‘ Qata.%w ‘ Layout View I é'

Test the Parcel Viewer toolbar by following the instructions below.

— On the Parcel Viewer toolbar, click Find.

— If needed, click the Features tab.

— In the Find drop-down area, type the parcel ID, 71400.

— Click the Find button. The parcel record appears in the object found list.

2ix|
Features } Route Locations I Addresses !
Fink [71a00 =) o |
In layers:] <Visible layers> _'_] New Search
IV Find features that are similar to or contain the search string
Search: & Al fielde a
© Infields [0 =]
" Each layer's pimaty display field
Cancel]
Right-click a row to show context menu.
Val | Laver | Fietd |
71400 Parcels Parcel D ————— The parcel record

One object faund.

anizing commdnds on a toolbar

Fealures ! Route Locations | Addrassasi

Find: [71400

In layers: [<iciole layers>

IV Find features that are similar to or contain the search string

Search: & Aj fields

L L]

O Infields [OEUET

" Each laper's primany display field

Cancel |
Right-click a row to show context menu,
Valus] Layer | Field ash feature
71400 Parcels Parcel D Zoom to featurels)
Telenitify Feature(s)
Set Bookmark
Select featura(s)
One abiect found Unselect feature(s)
— If needed, move the Find window so you see the parcel flash in the
display area.

The parcel flashes

T
|

— In the dialog,
— Right-click the

— Close the Find

— On the Parcel Viewer toolbar, clic

right-click the parcel row agai
parcel again and click Select feature(s)
window.
k Layout View to see what the map looks like.

BUILDING A CUSTOM APPLICATION

CHAPTER 2

The parcel map displays, ready to print.

| et ey G ANMATTAN

| K ANSAS

(3o
4T

s

(3
haiecriaet

(S
e A28

[
e e

e =
i s e et
[EE———— Fut 1 gl doan s 8o Bl oDt

During the exercise, vou turned off all toolbars except Main Menu and Parcel
Viewer. You can turn them back on at any time, but you won’t need them in the
following exercises.

You can use a shorteut to open the Customize dialog box. Double-click on a blank
area in the toolbar area.

% WorldCountries.mud - ArcMap - ArcYiew B - —|oix|

| Ble Edt Yow [rsert Solcton Took ndow Hep |

|D@& @ =By - o onmss o] &R ———— Double<lick here to
S — = open the Customize
=& The World ﬂ dialog box
= Country
Country name
|1 Afghanistan
[Albania
[Algeria
[American Samos
[Andarra
|71 Angola
] Anguifia
[T Antarctica
{5 Antigus and Barbud:
1 Argentina
[Armenia
71 Aruba
1 Australia
[Austria
[Azerbaiian
| [1Bzhamas, The
[T 1Bahrain
| . 7] Baker Tsland -
o » =l

i _Displey [Souce] sa 24 e
[omig = k) O~ A~ [A =y A STE s

[siS72E LeteTslASN | 4

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter02. Rename the file my ex02a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

anizing commands on a toolbar

Making your own commands

In the previous exercise, you made a toolbar and added some preprogrammed
ArcMap commands to it. When your application has to perform tasks that aren’t
already part of ArcMap, you make your own commands and write code to make
them work.

You use the Customize dialog box to create commands called user interface controls,
or UIControls for short. UTButton, UlTool, UlComboBox, and UIEditBox are the
four types of UIControl you can make.

b |

Example Toolbar of UIControls

- E—— W—
l ' !

UlButton UlTool UlComboBox UIEditBox

As with any button, clicking a UIButton malkes something happen. For example,
when you click the Save button, the map is saved. UlTools work by clicking them
and then clicking in the map display area. Only one can be active at a time. After
you've clicked on a tool, its cursor symbol appeats when you move into the map dis-
play area. For example, when you click the Pan tool, the cursor you move over the
map looks like a hand. You click and drag on the map to pan to different locations.

¥ nutled -ArcMap-Arciofo________ SRS =l
Fie Edt View Insert Selection Tooks Window Help
NeU&: Eex|ea| tieme o2& =
= e 4
£ Layers
R ; —— Map display area
! o Tool’s cursor symbol
B o B e =
g~ K Gr 0= Alfiezpa S0 8z gl &= ="
B e

To get a UIControl to do something, you write code with Visual Basic Editor. There,
VBA organizes your code into projects, code modules, and procedures.

CHAPTER 2 BUILDING A CUSTOM APPLICATION

Projects Code module Procedure Visual Basic Editor

£ Micrasoft Visual Basic - ex02b.mxd : e ”1_;‘; e =iofx!
Format Debug Run | Tools AddIns Window
EM oo

[@a-u =

Praject - Project - -

i 154 ex02b.mxd - ThisDocument .Code)

[[General)

+ B Normal (Normal.mxt}
= &k Project (ex02b.mxd)
B #3 ArcMap Objects

@ ThisDocument
& (7] References

F‘rpez ties - ThisDocument X|
[ThisDocument MxDocument = |
Alphabetic | Caregorized |

J

Private Sub Help Click()

End Sub

Projects are files where your UIControls and VBA code are stored. There are three
types of projects: map documents (.mxd files), base templates (.mxt files), and the
normal template (the Normal.mxt file stored in your personal profiles folder).

Say you have a map document called rivers.mxd and it contains rivers and other

water-related layers. And you need to make a UIButton to calculate water flow rates.

| You would put the Flow Rate button and its code in the rivers.mxd project. It

| wouldn’t make sense to put the button into other map documents, since its code
will be specific to calculate flow on rivers.

Say you need to make a UITool that reports any polygon’s area in square feet, acres,
and hectares. This tool is not specific to any project. In fact you want it available
whenever you have polygon layers displayed in any map document. You would put
this Area Reporter tool and its code in the Normal.mxt project. Every time ArcMap
starts up, it reads the normal template to see if it contains any UlControls and code
that needs to be available at all times. If your organization uses base templates, you
can also store UIControls and code in them.

Projects organize code with code modules, windows that you type into. You make

| as many code modules as you want or need. However, every project has a code
module called ThisDocument. The ThisDocument code module is the place for you
to write code for any UIControls that you make in a particular project.

we your own commands

Within each code module, your VBA code is organized into procedures, lists of VBA
instructions that perform a task. A procedure to cut the lawn might look like this:

Start CutTheLawn
Get lawn mower from garage, fill with fuel if needed
Remove sticks and other debris from lawn
Start lawn mower and cut grass
Turn mower off, clean, and return it to garage
Drink cool beverage
End CutTheLawn

VBA has four types of procedures: event, subroutine, function, and property. Event
procedures correspond to user actions. For example, a UlButton has an event pro-
cedure called Click. You code the click event procedure so it will run when the user
clicks the button. The other three procedures are all called into action by event pro-
cedures. So no code runs unless the user does something (causes an event).

All procedures have a first and last line, which are called wrapper lines. Your code
goes between them. The first line contains either the Public or Private keyword.
Private procedures can only be called on by procedures in the same code module.
Public procedures can be called on by procedures in other code modules. The first
line also contains a keyword identifying the type of procedure (Sub, Function,

Y ying YP P
Property), the name of the procedure (for instance, cmdQuit_Click), and parentheses.
(VBA identifies both subroutine and event procedures with the Sub keyword.) The
parentheses are required. Here they're empty, but in later exercises, you'll learn what
can go into them.

Public Sub cmdQuit_Click ()
MsgBox "ArcMap is about to close™
End Sub

The last line in a procedure contains the End keyword and the keyword identifying
the type of procedure. The click event procedure above has one indented line of
code. Indenting makes your code easier to read without slowing it down.

MseBox is a Visual Basic function that displays the quoted text message in a dialog box.
When someone clicks the Quit button, the MsgBox line of code is exccuted, and the
dialog box below appears. Visual Basic comes with many prewritten functions like
MsgBox. You'll learn how to use it and other tunctions, and how to write your own, too.

ArcMap is about to dose

CHAPTER 2 =~ BUILDING A CUSTOM APPLICATION

F—

Exercise 2b

People are now using the Parcel Viewer application to print their parcel maps.
Occasionally, some people need help finding their parcel and making a map. You will
create a button to tell people who to contact if they need help.

In this exercise, you will make a button. You will write code in the button’s click
event, so someone can click it to get assistance with their map.

Start ArcMap and open ex02b.mxd in the C:\ArcObjects\Chapter02 folder.
When the map opens, you see the parcels of Manhattan and the Parcel Viewer toolbar.

In ArcMap, click the Tools menu and click Customize. Click the Commands tab.

In the Categories list, scroll down and click UlControls. Make sure ex02b.mxd is
selected under Save in.

The Commands list is empty. As you make UlControls, they will be listed there.

[

Customize
Tookars Commands | ptions |

Categories: Commands:
Survey Data Exchenge -]
Survey Editor

Survey Explorer

Survey Feature Tools

Text

TIN

Tools Commands list
Topology
Tracking Analyst

Utility Metwork Analyst
ersioning
Wiew *

Save i exUZtI;.rmd - Kgymé.d;[Addfonfle. | Coe |
|

Save in: ex02b.mxd

NewUiConial.. |

Click the New UlControl button.

New UIControl X|

-~ UlContol Type————— e -— |
& UlguttonContrl (UIEditBosContral |
| € UiToolContiol UlComboBoxContiol

i Creste I CseataandEﬁJ Cancal ;

With the radio button next to UlButtonControl selected, click Create.

You see the new button, Project.UIButtonControll, in the Commands list. Its name
has the “Project” prefix, because you selected ex02b.mxd in the Save in combo box.

your own commands

Had you selected Normal.mxt for Save in, the button’s name would have “Normal”
as a prefix. UIControls saved in a base template have a “TemplateProject” prefix.
Since you saved the button in the ex02b.mxd file, you and your users must open
ex02b.mxd to see and use this new button. The Normal.mxt file is a file that
ArcMap reads every time it starts up. Any UlControls you save in Normal.mxt
always appear, regardless of the .mxd file you open.

In the Commands list, click Project.UiButtonControi1 and change the name to
Project.Help.

Categories: Command

Page Layou =] [m[fuictiep T————— Type anewname

Pan/Zoom
Fepart Object
Selection
Spatial Analyst
Surface

Tent

TIN

Tools

Ltility Metwork Analyst
‘Versioning
Yiew =

Mew UiConirol, | Delete UlContol | Deserption 1

Parcel Yiewer i £ s}
3 @ G I pataview | LayoutView : & Add the button here

You will change the button’s icon to display text only.

Right-click the new Help button and click Text Only.

Right-click the Help button and click Begin a Group to add a separator line.

Parcel Viewer i =

84 @ & I petaview | Layouk iew & | reb

Now you will write some VBA code to make the new Help button work.
Right-click the Help button and click View Source.

The Visual Basic Editor window opens. It contains other windows, like Project,
Properties, and a code window called ThisDocument. Depending on your VBA set-
tings, these windows may be different sizes or in different positions compared to the
ones in the following graphic.

CHAPTER 2 BuiLDING A CUSTOM APPLICATION

The Project window below, sometimes called the Project Explorer, shows two
projects: Normal (Normal.mxt) and Project (ex02b.mxd). Although the Normal b
project is always present, you will add UIControls and write code in the current E}_Ei‘;
project that corresponds to the currently opened map document, ex02b.mxd. =

Event procedures for the project’s UIControls are stored in a code window called
ThisDocument. That’s why when you right-click on a UIControl and click View
Source, the ThisDocument code module opens. If it is a new UlButton, wrapper
lines for the button’s click event procedure are automatically added.

@i Microsoft Yisual Basic - exnzb.mud = = k= !I:Ilﬁ
| Ble £dt Yiew Insert Format Debug Run Took Add-Ins Window Help |
@a-dr=ealoc b on el NEY?2 0w

: X
=]

" ex02b.mud - ThisDocument {Code)}

j itﬂeclaraliuns)

x|

& &% Normal (Normal.mxt) [tGeneran !
& Project (en02b.mxd) 1
:]‘
- Private Sub Help Click() 2]

& ThisDocument:
=[] References

End Sub

Properiies - ThisDocument
[Thisbocument MxDocument <
Alphabetic | Categorized |

Between the wrapper lines, indent for-a new line of code. Type msgbox, press
the space bar, and stop typing for a moment.

msgbox

A vellow help tip pops up to display help for using the MsgBox. The words and
phrases separated by commas are called arguments. To make unique-looking message
boxes, you fill in different information for each argument.

4 ex02b.mxd - ThisDocument {Code)

IHeIp . :I iT:lick g - j y

Private Sub Help Click()
msghox
End MsgBou(Prompt [Butions As VhMsgBoxStyle = vhOKOnl], [Titie], [HelpFile], [Contexd)

-

sl L3P

(1 YO OWR COMMands

The word “Prompt” is bold because it is the first argument you should type. For
Promp, you type a text string to be displayed in the message box's dialog box. Argu-
ments in square brackets are optional. For a description of each argument, look up
MsgBox in the online help.

Editer]E;ﬁml Format | General | Docking |

~Code Settings = == = =
i I/ £ putoioymtex Clieck [V Auto Indent
[~ Requirs Variable Dedaration Sl r__:‘ ct

[V Auto List Members
[¥ &uto Quick Info
¥ Auto Data Tips

—\Window Settings ————
| = Drag-and-Drop Text Editing

[V Default to Full Module Yiew
¥ Procedure Separator

Gk | Cancel Heb |

msgbox "For help dial extension 25"

The click event procedure is now ready to test.

VBA checks your syntax and, when it’s okay, converts it to uppercase for you as
needed. You typed msgbox and VBA changed it to MsgBox. It’s a good idea to do
your typing in lowercase and let VBA check your syntax and handle capitalization.

Private Sub Help Clickf(]
MsgBox "For help dial extension 25"

CHAPTER 2 BUILDING A CUSTOM APPLICATION

On the Standard toolbar, click the Run button (or press F5).

The Visual Basic Editor Standard toolbar has a button that looks like a VCR’s Run
button. Clicking that button tells VBA to start executing the lines of code in the
selected procedure.

@3- B s2@8 2| 1 a ¥HF? O
.

The line of code runs, ArcMap comes to the foreground, and the help message appears.

For help dial extension 25

==

Highlighting a procedure and clicking the Run button is one way to test a procedure
without leaving Visual Basic Editor. Parcel Viewer users, however, will not use the
Run button to run this procedure. So next you'll use the Help button just like a
user would.

Click OK on the message box.
Close Visual Basic Editor.

On the Parcel Viewer toolbar, click Help.

};_ ﬁ
ryout View | é i Help

The message displays.

Parcel Viewer

84 @ & | pataview

For help dial extension 25

Click OK.

In this exercise you made a UIButton, put it on a toolbar, and wrote VBA code in its
click event procedure.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter02. Rename the file my_ex02b.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it. '

Malkzing your own commands

les

g

Storing values with varia

In the previous exercise you made a button and named it Project.Help. The button’s
name is a value that gets stored in and saved with the map document. Values like a
button’s will probably never change. Some values, however, do change. Say you
want to keep track of the temperature outside your home. As it gets warmer or colder
outside, the temperature value changes. You use variables to store values that might
change over time.

To make a variable you write a line of code. In the line, you make up a variable name

and use the equals sign to assign it a value. The line below makes a variable named
Temperature and sets it equal to 32.

Temperature = 32

This line of code is called an assignment statement because you assigned a number
to the variable using an equals sign. After the code runs, Temperature contains or
represents the number 32. In any subsequent lines of code, if you need the tempera-
ture value, you use the Temperature variable. For example, you could display the
value in a message box with the following line of code:

MsgBox Temperature

arcviop T

32— 1 Thevalue inside the Temperature variable displays here

As the day goes on, the number stored for Temperature will vary depending on the
weather. Because the value will vary, Temperature is called a variable.

The Temperature variable currently contains 32. A variable’s contents can change
by the mere writing of another assighment statement. As it gets warmer outside, a
new number is assigned. When the line of code below runs, the old number is
cleared out and the new number is assigned.

Temperature = 50
The Temperature variable now contains 50.

A variable can be assigned a value that is the result of a math equation. Equations
are arranged to the right of the equals sign using operators like +, —, ¥, and /. The
equation below subtracts 5 from the current temperature. The resulting value of 45
is assigned to the variable. '

Temperature = 50 - 5

The temperature dropped five degrees, the new value is assigned, and Temperature
now contains 45.

CHAPTER 2 © DUILDING A CUSTOM APPLICATION

Variables can be substituted for numbers. For example, you could have subtracted 5
from the current temperature with the following line of code. The math equation,
Temperature — 5, is solved before the variable’s value is assigned.

Temperature = Temperature - 5

All math is performed from left to right, except for operations in parentheses, which
are evaluated first. In complex equations you use parentheses to control the order of
evaluation.

In places where it gets really cold (below 50 degrees Fahrenheit) and windy (wind
speeds above 5 miles per hour), temperature gets measured in wind chill factor, a
measure of how fast your body loses heat. With a temperature of 35° F and a wind
speed of 20 mph, the temperature feels like 24° F to your body, but water will not
freeze.

The equation below computes the wind chill factor given temperature (T) and wind
velocity (V); the result is assigned to the Chill variable. The operations inside the
three sets of parentheses below are evaluated first, and the results are added to 35.74.

ghill = 35.74 + (0.621 #* T) + (B5.75 * 'V} + (0.4275 & T * V)

Besides numbers, variables can contain other values, like character strings (text). In
an assighment statement to create a string variable, the characters must be quoted.
The colon and space after is have been added so that a number can go there.

Message = "The current temperature is: "

To add the temperature next to the message, you use the ampersand character (&),
which concatenates the two values.

MsgBox Message & Temperature

When this line of code runs, the message and temperature display as one value.

The current temperature is: 32

To keep the temperature updated, someone must enter new numbers. A dialog box,
called InputBox, has an area to type in values.

Enter temperature

———— User types here

Storing values with variables

An InputBox can be used in an assignment statement. The value typed in the input
area is assigned to the variable. When you set variable values with an InputBox, its
arguments, like the text message below, go in parentheses.

Temperature = InputBox ("Enter temperature")
x|
Enter temperature
Cancel 1
fos — User types 85

When the user types 85 and clicks OK, the Temperature variable contains 85.

Unless otherwise instructed, VBA sets aside 16 bytes of space to store a variable’s
value. With that much space, you can store the number 1.797693134862315 E308.
E308 means that the decimal place in 1.797693134862315 can be moved 308 places
to the right. That's like taking away the decimal place and adding 293 zeros to the
end of that number. If the variable only needs to store a temperature, that’s a lot of
wasted space.

You cut down a variable’s storage space to size by telling VBA what values the
variable should accommodate. This is called declaring or dimensioning a variable.
You tell VBA the variable name and its data type, which could be number, string,
date, or any of several other data types.

Declaring a variable takes one line of code: here it’s the Dim keyword (for
dimension), Temperature (the variable name), As (a keyword), and Integer (the
data type).

Dim Temperature As Integer

Dim is only one of several keywords used to declare variables. You'll learn about
others—public, privare, and static—in later chapters.

Now that Temperature is declared as an Integer data type, it will only require 2 bytes
of storage space, a savings of 14 bytes. You can learn more about VBA’s data types
and their storage requirements in the online help. Fora list of sizes and value ranges,
search for Data Type Summary, as shown in the following graphic.

CHAPTER 2 BUILDING A CUSTOM APPLICATION

7 visual Basic Reference

S T

Hide' Locate Frevious et Back Fomward Stop Refresh Home Font Print
T =
Contents | Index Search |Favur_ih?ss { Storage size Range e
Type in the word(s] to search for: Byte 1 byte 0to 255
L
=1 Boolean 2 bytes True or False
; . 3 |
Lt Fupics I Display 1/l nteger 2 bytes -32,768 to 32,767
Selectiopic; Found & Long 4 bytes -2,147,483,648 to 2,147 483,647
Title Location | Rank (long
Data Type Sum... Visual.. 1 integer)
Data T! Key.. Visual.. 2 5
G Rpes oy single 4 bytes 3.402623E38 to -1,401298E-45 for
Conversion Key... Visual .. 3 : 3 2
Vit andC.. Misudl 1 (single- negative values; 1,401298E-45 to
precision 3.402823E38 for positive values

flaating-

point)

Double 8 bytes -1.79769313486231E308 to

({double- -4,940656456841247E-324 for negative

precision values; 4.94065645841247E-324 to

floating- 1.79769313486232E308 for positive
point) values

Currency 3 bytes -922,337,203,685,477.5308 to

(scaled 922,337,203,685,477.5807

integer)

Decimal 14 bytes +/-
79,228,162,514,264,337,593,543,950,37
with no decimal point;
+£-7.8228162514264337593543950335
with 28 places to the right of the decimz

smallest non-zero number is
+/-0.0000000000000000000000000001

| Date & bytes January 1, 100 to December 31, 9999
| Object 4 bytes Any Object reference
!
| String 10 bytes + 0 to approximately 2 billion
(variable- string length
length)
String Length of 1 to approximately 65,400
(fixed- string
length)

™ Search previous results | . :
¥ Match similar words { variant 16 bytes any numeric value up to the range of a

I~ Seaich tiles orly | ‘l(“‘”th_ . Double . =
1

Exercise 2¢

People are using the Parcel Viewer application to locate parcels and print their maps
but using pocket calculators to compute the tax for a parcel. They'd like the applica-
tion to compute the taxes for them. In this exercise, you'll create a UIButton that
calculates a parcel’s tax. You'll make an input box that asks the user for the parcel’s
value and then displays a message box with the tax.

Start ArcMap and open ex02c.mxd in the C:\ArcObjects\Chapter02 folder.

When the map opens, you see the parcels of Manhattan and the Parcel Viewer toolbar.
In ArcMap, click the Tools menu and click Customize. Click the Commands tab.

In the Categories list, scroll down and click UlControls. Make sure ex02c.mxd is
selected under Save in.

Storing valies with variables

Toolbars Commands i Uptiuns'

Pan/Zoom
Report Object
Selection
Spatial Analyst
Surface

Teut

TIN

Tools

Utility MNetwark Analyst

Versioning
View ¥

Categaries: Commands:
Page Layout .AJ 1 PrajectHelp ‘

NewUlCortiol, | Delee il |

’Sa:ieini]exﬂhmxd 7] Keposc. | Addfomie. | Gl |

Click the New UiControl button.

i~ UiControl Type =

| & UButorConiol ¢ UlEdiBoxControl ‘
] © UlTeolCantel UlComboBosContial |

Cieste | Ceesteandfdi | Cancel |

With the radio button next to UlButtonControl selected, click Create.

In the Commands list, you see a new button named Project.UIButtonControll.

2|

Tockars Commands | Dptions |

Categories: Commands:
Page Layout ﬂ 1 Project Help
Pan/Zoom

Report Obiject I Froject. UlButtonControll
Selection
Spatial Analyst
Surface

Text

TIN

Tools

Utility Network Analpst
Versioning
Wigw s

NewUCortio,. | DeleleUlContiol | Desciplion |
Savein | ex02c mxd vl Keyboard...] Addlromﬁlu...i Close E

In the Commands list, click Project.UIButtonControl1 and change the name to
Project.CaiculateTax.

CHAPTER 2 BUILDING A CUSTOM APPLICATION

Drag Project.CalculateTax to the Parcel Viewer toolbar and drop it to the right of
the Pan tool.

Parcel ¥iewer £

BB R | patoven ‘Lvout\fm; |§ relp

You will change the button’s icon.
Right-click the new button, point to Change Button Image, and click Browse.

In the Open file browser, navigate to C:\ArcObjects\Data and click Dollar.bmp.
Click Open.

The dollar sign appears.

Parcel Yiewer =

|
HDE S pravien | Lovotvien | & Hep

Now you will write code to make the Calculate Tax button work.

Right-click the Calculate Tax button and click View Source.

The Visual Basic Editor window opens. You see the empty wrapper lines for the
Calculate Tax click event procedure in the ThisDocument code window. You also
see the Help click event procedure you coded in the previous exercise.

&, ex02c.mud - ThisDocument {Code)

Iculoulate'l‘un - i l(:lick ;’

Privare Sub CalculateTax_Click() = Calculate Tax click
event procedure

_End Sub

Private Sub Help_click ()

MsgBox "For help dial extension 25" Help click event
End Sub | procedure
-~
el 2

Between the wrapper lines, indent and declare the following variables.

Dim curParcelValue As Currency
Dim curTaxValue As Currency
Dim datToday As Date

The Currency data type has two zeros to the right of a decimal to store dollars-and-
cents values. The Date data type is capable of storing the current time, day, date,
month, and year.

ing values with variables

Variable names must begin with a character and not exceed 255 characters. They
cannot contain spaces, periods, or special characters (%, *, &), or be the same as a

VBA keyword like If, Then, Sub, And, Or.

Within the rules, you can name variables as you like. Some programmers add a prefix
to variable names to indicate the variable’s data type. For example, all string variables
might be named with the prefix “str’: strtName, strAddress, strPhoneNumber. In the
code above, cur is a prefix for Currency variables and dat for Date variables.

Next you will use an InputBox to set the parcel value variable. Since InputBox has
three arguments—user message, window title, and default value—the line of code
that creates it will be rather long. To make it easier to read, you'll use the line con-
rinuation character (an underscore) to put each argument on its own line.

line of code, p

curParcelValue = InputBox |
"Enter a parcel value",
"Parcel Viewer",
100000)

Even though you see four lines, VBA recognizes them as one line of code and
executes it as such. You can only use the line continuation character between argu-
ments. You will get an error if you try to break a text string as shown below.

"Parcel
Viewer",

curTaxValue = (curParcelvValue * 0.02) + 8.55 + 11

Residential parcels are taxed at 2 percent of their value, plus an $8.55 convention
center fee, and $11.00 for the city’s new fire truck.

The number in the input box is multiplied by 0.02, then 8.55 and 11 are added. The
result of the calculation is assigned to curTaxValue.

datToday = Now

“Now” is a Visual Basic function.You'll learn how functions work in a few chapters.
For the time being, you can think of “Now” as a predefined variable that contains
the current date and time.

All the necessary information has been gathered and evaluated. What remains is to
cive the information to the user in a message box.

CHAPTER 2 BuUILDING A CUSTOM APPLICATION

Enter the following code to display a message with the parcel’s tax amount and
today’s date. Use the vbinformation constant for the type of message box.

MsgBox "The tax value is: $" & curTaxValue,
vbInformation, _
datToday ’|

Normally, after you type the first argument and a comma, you see a list of message
hox types to be used for the second argument, as shown below. You didn’t see the list
because you used line continuation.

MsgBox "The tax value is: $" & curTaxValue, = vhDefaullButtons |
= vhExclamation
B} oroaion
viMsgBoxHelpButton __|
viMsgBoxRight
vhmsgBoxRlIReading
vhisgBoxSetForeground =]

o oRoNo!

The choices in the list are called constants. Each has a vb prefix and produces a
different dialog box. Examples of vbCeritical, vbQuestion, and vbExclamation are
shown below.

x{ 3/27/2002 11:05: xf 3/27/2002 11:05:0 xi

3/27/2002 11:04:

e The bax value is: $2019.55 \‘:) The tax value is: $2019.55 |§ The tax valug is: $2019.55
===

vbCritical vbQuestion vbExclamation

The third argument, datToday, is the message box’s title. The datToday variable,

created in the previous step, contains today’s date. Without the third argument, the
message box title will read either “ArcMap” or “ArcCatalog,” depending on which
application you wrote the procedure in. Your code should match that shown below.

', ex02c.mrd - ThisDocument (Code)’ - Vi =0 xi
[catcutateTex x| [ciiek =
Frivate Sub CalculateTax Click() e
Dim curParcelValue As Currency =
Dim gurTaxValue Ls Currsncy
Dim datToday As Date
curParcelValue = InputBox(_
"Enter a parcel value®, -
"Parcel Viewer”, _
100000)
curTaxValue = (curParcelValue ¥ 0,02) + 8.55 + 11
datToday = Now =4
MsgBox "The tax wvalue is: §" & curTaxValue, _
vbInformation,
datToday
End Sub -
=[E 4 { vl

Storing values with variables

T e

Before testing the code, you will add a line of code to help identify errors.

Move to the top of the code module and type the following line so that it is the
first line of code. Press Enter to add an empty line between Option Explicit and
the first procedure.

Option Explicit

The top of the code module is called the General Declarations area. In this area you
can declare variables and set options like Option Explicit.

», ex0Zc.mud - ThisDocument (Code)

Fneclarminns) r ;I

Option Explicit

Private 3Sub CalculateTax_Click()
Dim curParcelValue As Currency
Dim curTaxValue As Currency
Dim datToday is Date

curParcelValue = InputBox({ _
"Enter a parcel wvalue",

"Parcel Viewer”,
= ~
A s

With Option Explicit on, your code will not run if you have any undeclared variables.
This is VBA’s way of automatically locating spelling mistakes. In the following code,
one line declares the variable (Test), one sets it, and the other uses it.

On the third line, the variable has been intentionally misspelled Fest.

. -Project - Test ke =[Ofxi
|(General) ~| [Test_ciick =l
Private Sub Test_Click() :{‘
Dim Test is String
Test = "This is a test”
MsgBox Fest
End Sub
-
= H

Fest should be Test

Without Option Explicit, the three lines of code above execute without error and
result in the following empty message box. Fest is recognized as a variable, but
because it isn’t declared or set it contains no value.

CHAFPTER 2 = BUILDING A CUSTOM APPLICATION

With Option Explicit on, when an attempt is made to execute the code, Fest is
identified as an undeclared variable, and the following error message displays:

Microsoft Visual Basic:
ol ‘Compile error:
7 Y
Y Variable not defined

[Eofw

In the code window, VBA highlights the misspelled variable.

' Project - Test (Code} L T =10 x|
i{General] vi |rest_ c =

Option Explicit SR

@ Private Sub Test Click()

Dim Test As Sctring
Test = "This is a test”

M=agBox

End Sub

-

== 3

With Option Explicit added to the code module, the Calculate Tax button is ready
to test.

Close Visual Basic Editor.

Test the Calculate Tax button by following the instructions below.

— On the Parcel Viewer toolbar, click Calculate Tax ($).

— For the value, replace 100000 with 150000. (If you enter text instead of a
number, or if you click the Cancel button, an error message will appear. In
chapter 5, you'll learn how to use branching statements to help avoid these

errors.)
Parcel Viewer : = i
Enter a parcel value
ST
[150000
— Click OK.

— Click OK.

ring values with variables

You have now created two UIButtons and coded their click event procedures. Users
click the buttons and your code runs. Next you are going to code a second type of
procedure called Tool Tip.

Code in a ToolTip event procedure runs when a user moves their mouse over the top
of a command. There is no clicking involved. Below, a user hovers the mouse over
the Zoom In command and a yellow tooltip appears with the name of the command.

_@\L@::EWO'F.,. oM

Right-click the Calculate Tax button and click View Source.

CalculateTax is selected in the object list, because you right-clicked it. You see
Calculate Tax’s click event procedure and the code you already added. To add other
event procedures for CalculateTax, you select them from the procedure list. You will
add the ToolTip event procedure.

_inlxl
—=|—1— Procedure list

_—

%, exn02cmxd - ThisDocument (Code)

CalculateTax ~] [ciie

Option Explicit

Object list

Private Sub CalculateTax_Click(]
Dim curParcelValue As Currency
Dim curTaxValue As Currency
Dim datToday is Date

purParcelValue = InputBox(_
"Enter a parcel value”, _
"Parcel Viewer™, _

E[%_J' =l 3y

In the procedure list, click the drop-down arrow and click ToolTip.
p

The wrapper lines for the ToolTip event procedure are added.

™, ex02cmxd - ThisDocument (Code) 2
ICaI-:ulateTax ~| |ToolTip _'J
100000) j

curTaxValue = (curParcelValus * 0.02) + B:55 + 11
datToday = Now
MsgBox "The tax value is: §" & curTaxValue, _
vbInformation, _
datToday
End 3ub

Private Function CalculateTax_ToolTip() is String
— ToolTip wrapper lines
| End Function

==l | 4

CHAPTER 2 =~ DUILDING A CUSTOM APPLICATION

Add the following line of code to set the tooltip’s help string.

CalculateTax_ToolTip = "Calculate Tax"

Code in a ToolTip event procedure will not run if Visual Basic Editor is open.
Close Visual Basic Editor.

Hover your mouse over the Calculate Tax button to see its tooltip.

Parcel Viewer iz

BB § | saven Lorsven B 1o :

Calculate Tax

if you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter02. Rename the file my_ex02c.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

ng values with variables

S e cti&'n 1: Understanding VBA
CHAPTER 3

Creating a dialog box

Lsing controls to build a form

In the previous chapter, you called up message boxes and input boxes just by using
MsgBox or InputBox in lines of code. You could do that because both of them are
canned dialog boxes—precoded, preset, prefab. But because they’re canned, they
can only do so much. You can’t add buttons, slider bars, or input boxes to them. To
get a user’s name, address, and phone number, you'd have to call three different
input boxes.

Fortunately, there’s a better way to do it. You can make your own dialog boxes with
as many input boxes, check boxes, and slider bars as you need.

ACME Map Maker

ACME Home Buying Surve:

Using controls to build a form

No matter what they look

programmers. The form below has five input boxes and three buttons. After filling
out the form, the user clicks Add Customer to enter the data into a customer

database.

Acme Customer Datahase

like to a user, all these dialog boxes are called forms by

—— Form

In Visual Basic Editor, the

form. The objects on a for

K] Project - UscerForm (Userform)

blank canvas for making a user dialog box is also called a
m, like buttons, input boxes, and text, are called controls.

=lalx
— Form

Form window

=

In the same way that you drag commands from the Customize dialog box onto a

toolbar, you drag controls

Toolbox — A

Contiols]
k A abl B E

onto a form from Visual Basic Editor’s Toolbox.

=10f %

v &
EERE =

Toolbox]
Label Eonidi |
control ——R—+A

V &
e R
=

Drag and
drop

ok

B T

nm-mwwmmmm:' [
iy

CHAPTER 3 CREATING A DIALOG BOX

Text boxes provide an area for the user to type in information.

TextBox

control %L;ﬁ\

ComboBox
control

While designing the form, you don’t see values in the combo box. Values appear
when the form is running and the user is setting or entering values as shown below.

Nairie

Fhaone

State |

Alabama
Alaska

Arizona

Toolbox]

Contiols]

V&
-
ol

:

Contrals]
¥ &

=

ESRI
Address 380 few York 5t

909-793-2853

-

California

As you add controls to a form, you set their properties in the Visual Basic Editor
Properties window. Properties determine the appearance of a control, including its
height, width, color, and text. Below, the Add button’s BackColor property has been
set to green and its ForeColor property to white. The word “Add” has been typed in

e
L3
Bd

o i
AR B L

for the Caption property.

L sing controls to build a form

copertics — cmdhdd.
[emdadd Commandsuttan |
Alphabstic | Catagorized |
(hame) emdadd
Accelerator

AutoSize False
BackColor— [eroooos =]
1 - fmBackStyleC

False

Caption— add

False

True

Arial
ForeColor —— [ewoorrerer

24 ;I

- — 0 s T

After setting the properties for a control, you then write its VBA code. Controls
have procedures that are coded to run when the control is used. For example, when
a user clicks the Add button, your coded procedure runs to add a record into a data-
base table.

Since a dialog box will fill a particular need for collecting data or performing a task,
it is helpful to begin its design by talking to the people who will use it. For the
moment, suppose that these people are city workers who repair streetlights. They
have laptops in their trucks and use ArcMap to locate light poles. After a repair,
they write the repair record on a paper form, which is given to someone in the office
to enter into a database. Workers could save time if they had an ArcMap form to use
in the field.

By examining the existing system of getting repair data into the database, you can
determine the information that gets collected (repair date, type of repair, light iden-
tification number) and the tasks that are performed (add a record into the darabase
for each repair).

Refore making the form with Visual Basic Editor, sketch it out on paper to show to
the work crews and data entry staff to see if it contains all the controls that they
would expect.

City Power and Light

Once your paper design receives everyone's approval, you can start Visual Basic
Editor, open a blank form, and drag controls onto it from the Toolbox. Then for each
control you can set properties to get it to look like the paper design.

Controls l

' k A abl B8 EB

V=
iz

o
=

Wk L

CHAPTER 3 = CREATING A DIALOG BOX

-

Exercise 3

When Parcel Viewer users click the Calculate Tax button (created in exercise 2c)
and enter a parcel value, the tax that is calculated and displayed is the residential
rate of 2 percent. However, while most parcels in the city are zoned residential, some
are zoned commercial or industrial and each zone has a different tax rate. To calcu-
late taxes more accurately, users need to be able to choose their parcel’s zoning code.

In this exercise, you will create a tax calculator dialog box that looks like the sketch
below. It will contain a TextBox to enter a parcel value, a ComboBox with a list of
zoning values, and a Label for the calculated tax amount. In chapters 4 and 5, you
will write the VBA code to make it all work.

Image e N Y S

|
enkerarcetVabe: T Zppooe 1 TextBox
Label — zoringiyee: ["Rerdental [A— ComboBox
Estimeted tax is. 100.00

CommandButton —'{- Catculate Tax l r it I

Start ArcMap and open ex03a.mxd in the C:\ArcObjects\Chapter03 folder.

Only the Main Menu and Parcel Viewer toolbars need to be turned on for this
exercise.

Click the Tools menu, point to Macros, and click Visual Basic Editor {or press
Alt + F11).

You are going to create the new form in the project for ex03a.mxd.

Project - Project
| |

Mormal (Normal.mxt)

’+ &é Project {er03a.myrd)

Project

controls to build a form

In the Project window, right-click Project (ex03a.mxd), point to Insert, and click
UserForm.

A new form called UserForm1 opens, along with the Toolbox of controls.

'l = & ex03%a.mnd - UserForm1 (UserForm) ! =lgixi
Contrals | :
'k AabEEE
Fle oA
|

Form

—— Form window

When you create forms and controls, VBA assigns them a variable name. For
example, if you were to write code with the new form above, you would refer to it
as UserForm1. You will write that kind of code in the next chapter.

Since the name UserForm1 isn’t very meaningful, you will change it by setting the
Name property in the Properties window.

In the Properties window, type frmTax for the Name property. Press Enter.

Properties - frmTasx %]
frmTax UserForm - ’

Alphabetic | Catagorized |

= Name property
BackColor [a+E000000F:
ordercolor M 30000012
BorderStyls 0 - FmBorderStyk
Caption UserForml

Cycle 0 - fmCycledliFor
CrawBuffer 32000

Enabled Trug

Font Tahoma

ForeColor M s+80000012
Height 180

HelbComtestln 0
KeepScrofBarsyisi 3 - fms:raHEarss_ﬂ

Next you will use the Properties window to change the form’s gray color to white.

CHAPTER 3 - CREATING A DIALOG BOX

Click the BackColor property.
The property highlights and a drop-down arrow appears.

Properties frmtar A

frmTax UserForm =

Alphabetic | Cateqorized |

arme) FrmTax ~
[000000+ [~ BackColor property

BorderColor W 54500000128

|Borderstyle 0 - FmBorderStylenc

Caption UserForml —d

Cydle 0 - fmCycleAlForms

IDrawBuffer 32000

Enabled True

Fant Tahoma

ForeCalor [l e+z00000128 i

Height 160

HelpContextiD o

oenserolarsvishie 3 - FscrolBarstott. 7]

In the BackColor property, click the drop-down arrow and click the Palette tab.
Click the white square in the upper left corner of the color palette.

You see the form change color from gray to white.

Click white

In the Properties window, set the following form properties by clicking on each
one and typing the listed value.

— For Caption, type Tax Calculator
— For Height, type 192.75
— For Width, type 255.75 and press Enter

The numbers you entered for height and width are in pixels. The size of the form and
its controls are all given in pixel units.

Next you will add a city logo to the form and set its properties.

Click the form window to make it active.

™

¥ If the Toolbox has closed, reopen it.

Sometimes, all you need to do to reopen the Toolbox is make the form window
active. If the form window is active and the Toolbox is still not open, click the
Toolbox button on the Standard toolbar.

» 1 | ME YR O =
-~

g s e o o

controls to build a form

1] Drag an Image control from the Toolbox to the form.

Don'’t worry about where you put the control on the form because you will set its
position in the following step.

x

ST

Tax Calculator

sisd@

NAsmE S
T.?“#I’fl-’"-_/!, g cHiinnidn i

In the Properties window, set the following properties for the Image control.

The Top and Left properties that you will set below refer to the coordinates on
the form where the upper left corner of the image will be placed. Like Height
and Width, the Top and Left properties are set in pixel units.

— For Name, type imglLogo

—_ Click BackColor, click the drop-down arrow, click Palette, and click white

— Click BorderColor, click the drop-down arrow, click Palette, and click white
— For Height, type 60

— For Left, type 18

— For Top, type 6

— For Width, type 216 and press Enter

The image control is resized and its color is white.

Tax Calculator

Next you will specify the location of an image file to draw in the rectangle.

CHAPTER 3 - CREATING A DIALOG BOX

In the Properties window, click the Picture property and click the Ellipsis button
that appears.

[Properties -imglogo (%1

|imgLogo Image =
Alphabetic Icawgor‘med[
Height 60 |
Left 18

{Mouselcon (None)
{MousePainter 0 - fmMousePainte
(Nore) d—— Ellipsis button
PickureAlignment 2 - FmPictureAlignn
{PictureSizeMode 0 - FnPictureSizeM
TPictureTilng False
SpecialEffact 0 - FmSpecialEffact

Tag

Ton 6

isible Trus

width 216 =

In the Load Picture file browser, navigate to C:\ArcObjects\Data\Manhattan_KS
and click Logo.jpg. Click Open.

The picture needs to be shrunk so you can see the entire logo.

To shrink it, you will set the Image control’s PictureSizeMode property.

In the Properties window, click the PictureSizeMode property and click the drop-
down arrow.

Properties - imglogo [X]
Iimglnqn Image _-_I
Aiphabetic | Categorized |
BorderStyle 1 - fmBorderStyleSingle Al
ConkrolTipTest
Enabled True
Height]
Left 18

Mouselcon (None)
MousePointer 0 - fmMouseFointerDefault
lPicture (Bitmap)

PicturTilng |0 - fmPictureSizeModaClip
speciaffect |LofmPicture: eStretch
Tag 3 - fmPictLireSizeModeZon!

+— PictureSizeMode property

Click 3-fmPictureSizeModeZoom.

The fmPictureSizeModeZoom option forces the picture to fit inside the rectangle
without stretching or distortion. The other options either clip or stretch it.

controls to build a form

There is an apple in the logo because Manhattan is nicknamed the Little Apple.

Next you will add a text box, a combo box, and a label. Users will enter parcel values
into the text box, the combo box will display a list of zoning choices, and the label
will be used to display the calculated tax amount.

Make the form window active and open the Toolbox. From the Toolbox, drag a
TextBox, ComboBox, and Label and drop them anywhere on the form.

Tax Calculator x|
(124 ‘-
O TANHATTAN
K A NS AS bl
S e TextBox

——— ComboBox ER

Select each control, one at a time, and set the following properties for each.

TextBox

— Name: txtParcelValue '
— Height: 18

— Left: 96

— Top: 78

— Width: 150 and press Enter
ComboBox

— Name: choZoning

— Height: 18

— Left: 96

— Top: 102

— Width: 150 and press Enter

— Name: IblTaxAmount
— Height: 18; Width: 72
— Left: 96

— Top: 126 and press Enter

— Caption: (remove all te

+
Y
[0
Tl
o

— Click Font and click the nt dialog box, click Bold for

Font Style. Click OK.

CHAPTER 3 = (CREATING A DIALOG BOX

You see the three controls with the properties applied. They’re all aligned because
you set their Left property to 96.

.|

Tax Calculator = x|

- ST

From the Toolbox, add three labels. Position them as shown below.
|

In the Properties window, set the Name and Caption properties for the three
labels as follows.

— Name: IblValue; Caption: Enter parcel value:
— Name: IblZoning; Caption: Zoning type:
— Name: IbiTax; Caption: Estimated tax:

Tax Calculator 2 x|

L

© Enter parcel value: . i

i e
' ™ | o B

The purpose of these three labels is to display descriptive text next to the Parcel Value
text box, Zoning combo box, and Tax Amount label. As they are just labels for the
other controls (they don’t do anything), you won’t be writing any code for them.

Iﬂiﬂg controls to build a form

- . .

Next you will select all three labels to right-justify them.

Drag a box around all three labels.

T

K.A N 3 .A.3.

Three labels
selected

In the Properties window, click the TextAlign property, click the drop-down
arrow, and click 3-fmTextAlignRight.

x|

ST

Tax Calculator

You will now complete the form by adding a button to display the tax and a button
to close the dialog box when the user is done.

From the Toolbox, drag two CommandButtons to the form and position them as
shown below.

Tax Calculator ; X

'gnnnummn
Erﬁ;rp;,(a‘v‘?wu;:é- [- b 5

zonate: [Saeiaad |

Estimated tax:. - -

— CommandButton

CommandButton

CHAPTER 3 + CREATING A DIALOG BOX

For each CommandButton, set the following properties.

Tax button (on the left)

— Name: cmdCalculateTax
— Caption: Calculate Tax
Quit button (on the right)

— Name: emdQuit

— Caption: Quit

Tax Calculator : k|

\ - EntErDar:elvdue ZZI

Zonlngtype i I_ —

Estimated bac:. -

The form has all its controls and is ready for a test run.

Click the form's window to make it active. Click the Run Sub/User Form button.

p o1 om BE

-

NE YR E s

The form appears as a dialog box.

Tax Calculator x|

T

Enter parcel value: I

Zoning type: | :_!

Calculate TaLI Quit J

Estimated bax:

No code runs, because you haven’t written any. You do a test run to see how the dialog
hox will look to the user, without any selected controls and without any grid dots.

g controls to build a form

"1 Click the x in the upper right corner of the dialog box to close it.

Normally, you would also be able to click the Quit button on the dialog box, but
since you haven't added any VBA code, it doesn’t work yet.

| Close Visual Basic Editor.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter03. Rename the file my_ex03a.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

CHAPTER 3 - CREATING A DIALOG BOX

Programming with objects

iProgramming with methods

Getting and setting an object’s properties

You worked with objects in the previous chapter when you made a user form and
added controls to it. The form is an object and so are its controls. (These are VBA
objects, not ArcObjects. They come with any application that includes VBA.) You
didn’t do any programming, however, so the form and control objects don’t work yet.
To get these objects to do what you want, you write code for their events, methods,
and properties.

An event is a user action (like a mouse click) that happens to an object. An event
procedure is code that runs when the action occurs. You worked with events and
event procedures in chapter 2 when you created the Help and Tax Calculator
UlButtons and coded their click event procedures. When someone clicks either
button, your code runs.

A property is a characteristic or an attribute of an object. In a way, properties are like
variables because they both store a value that you can change. You set an object’s
properties to make it look different from other objects. For instance, if you had some
otherwise identical buttons, you could tell them apart by setting each one’s Caption
property differently.

In the previous exercise, you used the Properties window to set property values. For
example, after you added the cboZoning combo box to the form, you set its name,
left, top, and width properties.

An object’s property values can also be set by writing lines of code that look like a
sentence mixed with a math equation. This programmer’s grammar, shown in the
sample code that follows, is called the “object dot property” syntax. To set an object’s
property with a line of code, you begin with the object’s name, a dot, and the prop-
erty you want to set. Then you use the equals sign and the value you want to set the
property to. It’s similar to setting a variable’s value. ’

——

Object.Property = "SomeValue"

Instead of using the Properties window to set the choZoning combo box’s left, top,
and width properties, you could set them with the following three lines of code:

cboZoning.Left = 96
cboZoning.Top = 102
cboZoning.Width = 150

Methods, also called behaviors, are the things that an object can do. A form object,
for example, has the following methods: Copy, Cut, Hide, Move, Paste, PrintForm,
and Show (to name a few). Each method is a block of code that runs when called
into action.

The syntax for calling a method into action is:
Object.Method

Suppose you have a form object called frmAddRecord and you want to run its Show
method. (The Show method opens the given form.) You would write the following
line of code:

frmAddRecord. Show

When the line of code runs, the form opens to the user.

——frmAddRecord

Methods are like events in that calling them into action causes a block of code to
run. The difference is that while event procedures are empty until you write the code
for them, the procedures that go with methods have already been written for you.

For the time being, you will only call methods into action. In chapter 9, you will
learn how to write the code for a method.

In the next two exercises, you'll work first with methods, then with properties.

CHAPTER 4 PROGRAMMING WITH OBJECTS

Programming with methods

The captain of the spaceship Atlantis sits on the bridge and gives orders: beam up
some crew members, put the deflector shields down, go to warp speed. If you think of
the spaceship as an object, then the various orders it carries out are its methods. For
example,

Atlantis.WarpSpeed

is the method that makes the spaceship go faster than light. Of course, going to warp
speed isn’t a one-step task. A whole series of things takes place—people in the
engine room flip switches, push levers, and monitor temperature levels; other people
in navigation check the route and locate obstacles.

A method, in other words, entails a procedure—a list of things to do. It may be a
long list or it may be a short list, but either way you always use the object.method
syntax to call it into action.

Some methods have variations that you specify with arguments you add after the
method. The spaceship’s Shields method, for example, has an argument to control
the shield status, which can be either up or down. The status argument has two set-
tings. To put the shields down you would write:

Atlantis.Shields Down

Other methods, like the BeamUp method, have multiple arguments. When you
write a line of code with arguments, you separate them with commas.

Atlantis.BeamUp Andrew, Thad, Michael

A page or two ago, you learned that methods are procedures that have already been
coded for you. You may be wondering—by whom? The methods that belong to
VBA objects, like forms and controls, were coded by Microsoft programmers. The
methods for GIS objects, like UIControls, maps, and layers, were coded by ESRI™
programmers. Regardless of who does the coding—even if it’s you—methods are
always called with the same object.method syntax in VBA.

Exercise 4a

In chapter 3, you created the Tax Calculator dialog box by dragging controls onto it
and setting their properties. However, you didn’t write any code there. In this exer-
cise you are going to write code to get the dialog box to work.

Your first task will be to write code for the Calculate Tax button on the Parcel Viewer
toolbar, so users can click this button to open the dialog box. Next, you will write
code for the dialog box’s Quit button, so users can click Quit to close the dialog box.

ramming with methods

Finally, you will write code to add the words Residential, Commercial, and
Industrial to the zoning combo box. These words will become selectable choices
on the combo box’s drop-down list.

* cboZoning
Fesidential
Cormercial
Industrial

Start ArcMap and open ex04a.mxd in the C:\ArcObjects\Chapter04 folder.

When the map opens, you see the Manhattan city parcels and the Parcel Viewer toolbar.

On the Parcel Viewer toolbar, right-click the Calculate Tax button and click View
Source.

= Z X
hO@ﬂ$mewww§%J

The ThisDocument code module opens. You see several procedures that you coded
in previous exercises. However, the Calculate Tax button’s click event procedure is

empty. In exercise 2c, you wrote code that used an input box to do tax calculations.
Since you created the Tax Calculator dialog box, that code has become obsolete, so
it was deleted for you.

In chapter 3, you created the Tax Calculator dialog box and named it frmTax. This
is the name that you will use in your code to refer to the Tax Calculator form. In the
next line of code, you will use the Show method to open the form.

-,

iax

e

In the Calculate Tax click event, indent for a new line of code and type frm

e

and a dot.
frmTax.

After you type the dot, a drop-down list of the form object’s properties and methods

appears (unless you've turned the Auto List Members option off under Tools >
Options).

Jcons to the left of each item indicate whether it is a property or method. Properties
look like a hand and finger pointing at a database table. Methods look like a flying
green brick.

4 exDda.mwd - ThisDocument (Code}’ =1oi x|
CalculateTax =] [ctiek -
_Option Ex M o a =
Private Sub CalculaceTax Click()
LrmTax .
_End Sue o Caption af -
' choZoning)
Private L cmocaleulateTax olTip({) &s String
Caltlzm crdauit ulate Tax'"
End FUNSTe Gontrols — —
& Copy -
ER & cut - P

CHAPTER 4 PROGRAMMING WITH OBJECTS

Scroll down in the list and double-click the Show method. (You could also
type Show.)

When this line of code runs, the Show method opens the tax form.

4 exl4amud - ThisDocument (Code) : ol x| |
CalculateTax =] [otieie > |
Option Explicit . -

Frivate Sub CalculateTax Clicki)
frmTax.Show
|_End Sub e —
Private Function CalculsteTax ToolTip{) As String
CalculateTax_ToolTip = "Calculate Tax'"
_End Function . .

=l | i |

Now that you have programmed a way for users to open the Tax Calculator, you will
also program a way for them to close it. You will add code to the dialog box’s Quit
button.

n the Project window, under Project (ex04a.mxd), double-click frmTax in the
Forms folder to open the Tax Calculator form.

Project - Project X

2] Normal (Normal.mxt)
=] &ﬁ. Project {ex04a.mxd)
=i-£% ArcMap Objects

&) ThisDocument

-@‘

+ [References

On the form, right-click the Quit button and click View Code.

The form’s code window opens and you see the wrapper lines for the Quit button’s
click event procedure.

In the click event, add the following line of code.
frmTax.Hide

Again, you are using the object.method syntax, where frmTax is the object and Hide
is the method. When a user clicks the Quit button, this code will run.

P8 ex04a.mud - frmTax (Code) ' =0 x|
cmdouit =] feic &
Private Sub cmdQuit_Click() -
LrmTax.Hide
End Sub

2| of

Frogramming with methods

Next, you will write code to add the zoning names to the zoning combo box. The
code will be written in the form’s initialize event procedure. In the following steps,
you will navigate to that procedure and write code in it

In the code window for frmTax, click the object list drop-down arrow and click
UserForm.

The object list contains the names of each object (control) on the form, as well as
the form object itself. You might expect to see frmTax in the list—since that’s what
you named the form—but instead you see UserForm. No matter what name you give
the form, VBA always displays it as UserForm in the object list.

Before you have a chance to do anything, Click is selected in the Procedure drop-
down list and its wrapper lines are added in the code window.

Object list

8 ex04a.mud - frmTax (Code)

=loix
+|—+— Click is selected

— Wrapper lines are added

End Sub

A <l L

Click is the form’s default event procedure. When you select an object in the object
list, its default event procedure’s wrapper lines are automatically added (unless they
are already there). You are not going to code the UserForm’s click event, so ignore
these lines or remove them.

With UserForm selected in the object list, if you click the drop-down arrow in the
procedure list you'll see the rest of the UserForm’s event procedures. You will add its
initialize event procedure next.

Click the procedure list drop-down arrow and click initialize.
The initialize event wrapper lines are added.

Procedure list

P er04a.mud - frmTax (Code)

Private Sub cmdQuit_Click()
frmTax.Hide
End’ Subs — — _

Private Sub UserForm Click()

| End Sup - =

Private Sub UserForm Initialize()

= Wrapper lines are added

End Sub

CHAPTER 4 PROGRAMMING WITH OBJECTS

Normally, you can set an object’s properties with Visual Basic Editor’s Properties
window. However, combo boxes don’t have a property to hold the values that appear
in their drop-down lists. For this, you have to write code.

You add values to a combo box’s list with the AddItem method. For example, to add
the color choices Red, Green, and Blue to a combo box called choColor, you would
write the following three lines of code:

- Project - PickColors {Code} =1gix]

(General) ...3 (Declarations) ¥

-

cboColor. AddItem "Red”
cboColor. AddItem "Green'
cboColor. AddItem "Blue™

= |

You put these three lines of AddItem code in a form’s initialize event, because code
in the initialize event runs in the moments before the form opens to the user. That
way, the combo box is filled with choices before the user sees the form. When the
user clicks the drop-down list, the choices are there and ready to be selected.

In the UserForm’s initialize event, add the following three lines of code.

The AddItem method adds one value to the combo box’s drop-down list. To add
three values, you have to use the AddItem method three times.

cboZoning.AddItem "Residential"
cboZoning.AddItem "Commercial"
cboZoning.AddItem "Industrial"

P exd4a.mxd - frmTax (Code) = = e X

s <] oo 5

Private Sub UserForm_Click()

ERds

Private Sub Userform Initialize()
eboZoning. AddItem "Residential”
cboZoning. Addltem “Commercial”
choZoning. AddItem "Industrial”™

End Sub

=] Xz

Close Visual Basic Editor.

You have written procedures to help the user open and close the Tax Calculator
dialog box and to add values to the zoning combo box. Next you will test all three
procedures.

ramming with methods

AP H S patavew Lay’nutv»ew &E b

-*

The form’s Show method runs and the dialog box opens.

The zoning types appear in the list and can be selected. You see the choices in the
list, because they were added as the form initialized. (These choices don’t actually do
anything yet, because there is no code behind them.)

x

® 1

Enter parcel value: 4

R - ‘

Estimated tax:

CalculateTax

The form’s Hide method runs and the form closes.

In the next exercise, you will continue to code the dialog box.

CHAPTER 4 PROGRAMMING WITH OBJECTS

In the Properties window below, you see properties for the Quit command button.
The caption property is, naturally enough, the word Quit. Naturally, that is, if you
speak English. If your users are Spanish speakers, you would want the button to say
Terminar instead. And you could easily make this change just by typing Terminar
where Quit is now.

Properties - crndfuit X

[emdquit Commandeutton =
Aphabetic | Categorized |
[(ame) et
|Accelerator
\AutoSize Falss
iBackColor [0 e+aoooooor:
BackStyle 1 - FmBackStyleC
Cancel False
fcapion [—+— Caption property
CantrolTipText
Diefault False
Enabled True Caption on
Font Tahoma
ForeColor W 53000001217 | command button

But suppose your users included both English and Spanish speakers. You might want
to create a bilingual dialog box in which captions switch from one language to
another depending on who’s using the application. To do that, you would first have
to write some code that asks the user for their language preference and stores the
value in a variable. You would then go on to set the appropriate caption property
with a line of code.

The code to set a caption property would look something like this:

cmdQuit.Caption = "Terminar"

+— Caption changes to Terminar

In this example, you were concerned with setting the value of a property. In other
situations, you may want to find out the value of a property that has already been set.
It may be a property that changes according to user input, and you need to know
what it is so that you can use it in another calculation. Finding out a property’s value
and storing it in a variable is called getting a property.

Getting and setting an object’s properiies

B e I

Suppose you're writing a handy little tool to convert feet to meters. Your dialog has
a few-different controls—a couple of text boxes and a button. The top text box is
called txtFeet and its Text property is set to whatever value the user types in. The
bottom text box is called txtMeters and its Text property will be set programmati-
cally after the user clicks the Convert to Meters button.

Convert Feet to Mek

Enter Elevation n Fest; rgggn — — txtFeet text box
M —— txtMeters text box

To get a property, you use a variable and an assignment statement with the following
syntax:

variable = object.property

Here, you want to get the Text property of the txtFeet object. In the next line, the
variable is called Feet, but it could be called anything.

Feet = txtFeet.Text

After the line runs, the variable will contain the value typed in by the user (5280 in
this example).

Now, where does this line of code go exactly? It goes inside the click event procedure
of the Convert to Meters button.

public Sub cmdConvertToMeters Click()
Feet = txtFeet.Text
txtMeters.Text = Feet * 0.3048
End Sub

When the user clicks the Convert to Meters button, the first line of code gets the
Text property from the txtFeet object, assigning this value to the variable Feet. In
the second line of code, to the right of the equals sign, the variable value is multi-
plied by the conversion factor. The line as a whole sets the result as the Text property
of the txtMeters object.

When the event procedure runs, the value (1609) displays in the txtMeters text box.

; x
Enter Elevation nFest: | szan —— txtFeet text box

|Tsc;

cmdConvertToMeters —— @ertw eters | +— txtMeters text box

An experienced programmer could bypass the explicit variable assignments and
write the code more efficiently in a single line: txtMeters. Text = txtFeet. Text *

0.3048.

CHAPTER 4 PROGRAMMING WITH OBJECTS

Exercise 4b
In this exercise, you will write code for the Tax Calculator dialog box to get the
user’s parcel value, calculate its tax, and display that amount.

Start ArcMap and open ex04b.mxd in the C:\ArcObjects\Chapter04 folder.
\ When the map opens, you see the Manhattan city parcels and the Parcel Viewer toolbar.
\
i Click the Tools menu, point to Macros, and click Visual Basic Editor.

In the Project window, under Project (ex04b.mxd), open the Forms folder, and
double-click frmTax to open the Tax Calculator.

On the form, right-click the Calculate Tax button and click View Code.

The form’s code module opens to the button’s click event wrapper lines. You also see
the events you added in the previous exercise.

P8 ex04b.mxd - frmTax (Code) =10l x|
[emaCateulateTox =] [oiex |
[8] Private sub cmaCaleulateTax Click() p
[CEnd Suly =1 S

Privace Sub cmdQuit Click()
frmTax.Hide
| -End. Sl S—— a —
Private Sub UserForm Click()
Ind Suly B e e
Privare Sub UserForm Initialize()
cboZoning. iddItem "Residencial”
choZoning. AddItem "Commercial” =
S| 47

You are about to create a variable to store the parcel values and you need to choose
its data type. The Currency data type can store values up to 922 trillion, but requires
8 bytes. The Long data type can store values up to 2.1 billion and takes up just

4 bytes. Since all the parcels in your area are well under 2.1 billion, you’ll use Long.

In the Calculate Tax click event procedure, add two lines of code to declare and
set a Long variable to hold the user’s parcel value. To get the parcel value, use
the text box's Text property.

Dim userValue As Long

userValue = txtParcelValue.Text
@ NANUATTAN
K A N S8 A S
Enter parcel value: 250000 —+— txtParcelValue
Zonigtype: [Resdentia =]
Estimated tax: 5020
|

g and seiting an object’s properties

L. .

eak rarr ol s ®a caleiilata and hold
set a variable to calculate and hoid

D

Add two more lines of code to declare anc

the tax amount.

(

Dim taxAmount As Long
taxAmount = (userValue * 0.02) + 8.55 + 11

This is the same equation you used in chapter 2 when you created the Tax
Calculator button. There is a 2-percent residential zoning charge (0.02), an
$8.55 convention center fee, and an $11.00 fire truck fee.

Instead of 0.02, it would be ideal to use a variable that changes to represent
residential, commercial, or industrial tax rates. In the next chapter, you'll learn how
to do this as you finish the Tax Calculator dialog.

comment

Comments begin with an apostrophe and appear green in the code window. Since
VBA ignores comments, they won't slow your code.

'zoning values will be determined later.
'Residential tax rate ig assumed in calculation below.

Next you'll add a line of code to display the tax amount. You'll do it by setting the
Caption property of the IbITaxAmount label, shown below with a value of 5020

@ NANHATTAN

K A N S A S
mepsle [Emo

Zonngtvpe: [pesidential -]

Estinated tax: 5020 IblTaxAmount

+14 Sl Fidai: vtk
ne calcul: d tax amount.

1blTaxAmount.Caption = taxAmount

The Quit button’s click event uses the Hide method to close the dialog box. Hiding a
dialog box keeps it, its controls, and all their property settings in memory. When a
hidden dialog box is reopened, the UserForm initialize event procedure doesn’t run
again. That means its most recent settings reappear. Were a user to select Industrial
in the zoning combo box and then click Quit, Industrial would appear when the
dialog box was reopened.

CHAPTER 4 PROGRAMMING WITH OBJECTS

You will write code in the Quit button’s click event to clear the combo box’s
selection area, the text box’s text area, and the label’s caption, so that they will be
empty each time the dialog box is reopened.

In the cmdQuit_Click event, add the following three lines of code.

This code sets the Text property of the combo box and text box and the Caption
property of the label to a blank text string. g

cboZoning.Text = " "
txtParcelValue.Text = "
1blTaxAmount.Caption = " "

M exd4b.mxd - frmTax (Code) - W =l x|
[emdauit EIRET =l
Privare Sub cmdQuit_Click() Z‘
frmTax. Hide
cboZoning.Text = " "

IblTaxAmount.Caption = " "
End Hulb

T |] — =

The code is ready to test.

\
‘ txtParcelValue.Text = " " |
|

Close Visual Basic Editor.

In ArcMap, on the Parcel Viewer toolbar, click Calculate Tax.

For parcel value, type 250000.

For Zoning type, click the drop-down arrow and click Residential.

Your coded calculation uses the Residential tax value of 2 percent, so even if you
select Commercial or Industrial the same value will be calculated.

Click Calculate Tax.

The estimated tax, 5020, appears.

Tax Calculator. Sar o _BQ
=4
@ :TLANHATTAN
K A N S A 5
Enter parcel value: IEUUU
Zoring type: [Residential =
Estimatedtax; 5020
—

ing and setting an object’s properties

F e

Next you will test to see that the parcel value, zoning type, and estimated tax are
cleared when the dialog box is closed and reopened.

' Click Quit.
On the Parcel Viewer toolbar, click Calculate Tax.

As the form opens, its initialize event does not run. The code that you added to the
Quit button’s click event clears the parcel value text box, the zoning combo box’s
selection area, and the tax amount label.

=4
@ :TANHATTAN
K A N S A §
Evter pocelvae: [
Foring type! I j
Estimated taxi
w |

Click Quit.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter04. Rename the file my_ex04b.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

CHAPTER 4 - PROGRAMMING WITH OBJECTS

ode for making decisions

aking a Case for branching

oding an If Then statement

Unless otherwise directed, lines of code in a procedure run, in order, from first to
last. However, lines of code can be grouped into blocks, and decision-making state-
ments, called Case and If Then, can control which blocks run and which don’t.

Case statements handle multiple-choice situations. Suppose you have a dialog box
that asks “What layer do you want to add to the map?” A combo box after the ques-
tion contains five choices: Roads, Rivers, Lakes, Soils, and Elevation. If the user picks
Roads, a block of code runs to add the roads layer to the map. If the user picks Lakes,
a different block of code runs to add the lakes layer. Each choice causes different code
to Tun.

In a Case statement, you write a block of code to run for each possible choice.
Depending on the choice, the appropriate block (and only that block) runs.

If Then statements handle true-false situations. Suppose you have a dialog box that
asks “Do you want to print the map?” and contains a Yes button and a No button. If
the user clicks Yes, one block of code runs and a map is printed. If the user clicks No,
no code runs and no map prints.

In an If Then statement, you write two blocks of code. One runs when the statement
is true and the other runs when the statement is false.

Making a Case for branching

Case statements process multiple-choice situations just like you do when you
approach a traffic signal: when the light is red, you stop; when the light is green, you
proceed with caution; when the light is yellow, you slow down and stop unless you
can get into the intersection before the light turns red. When the light is flashing
red, or when the lights are out, you treat the intersection as if it had a stop sign.

A Case statement starts with the Select Case keywords and a variable that contains
a value, which for the status of a traffic light might be red, green, or yellow. For each
possible value, there is a Case keyword and the value. After that, you add all the
code necessary for that value. The End Select keywords end the statement.

Select Case theTrafficSignalValue
Case Red
Stop the car
Case Green
Continue with caution
Case Yellow
Stop the car if you can't make it before red

End Select

The Case statement above assumes that theTrafficSignalValue has only three
possibilities: red, green, or yellow. But if there’s a power failure in the area, the lights
won't work. To account for any odd or unexpected values, you can use the Else key-
word. Below, Case Else is a fourth case added to handle a traffic signal value other
than red, green, or yellow.

Case Else
Treat the Intersection as if it has a stop sign

Exercise 5a

Parcels in the city have one of three zoning types, residential, commercial, or indus-
trial, and each zoning type has a different tax rate. In this exercise, you'll create a
Case statement to determine the user’s zoning type and apply the appropriate tax rate.

Start ArcMap and open ex05a.mxd in the C\ArcObjects\Chapter05 folder.
When the map opens, you see the Manhattan city parcels and Parcel Viewer toolbar.

Click the Tools menu, point to Macros, and click Visual Basic Editor.

CHAPTER 5 (CODE FOR MAKING DECISIONS

You see the Tax Calculator form.

double-click the Calculate Tax button to opet

On the form,
window.

Double-clicking a control opens the form’s code window (or brings it to the front if
it’s already open). It opens to the control’s default event procedure, which, for the
Calculate Tax CommandButton, is the click event.

M ex05amxd - frmTax {Code) = > =18 x|
[emadCalculateTax =] [ce |

Private Sub cmdCalculateTax Click()
Dim userValue 4z Long
userValue = txtParcelValue.Text

Dim taximount Long
taxhimount = userValue * 0.02 + B8.55 + 11

I1blTaxAmount.Caption = caximount
 End Sub .
=l .

Now you’ll add some code at the top of the click event procedure to include the
zoning type in the calculation. You'll need a variable to hold the tax rate (which
changes) and a Case statement that assigns a value to this variable according to the
user’s selection in the zoning combo box. If the user picks Residential, the variable
value will be 0.02; if they pick Commercial, it will be 0.023; and if they pick
Industrial, it will be 0.0275.

tanewl e Pi Dim st ent
P exD5a.mud - frmiax (Code). =10 x|
[emacatculateTax ~] [etiek B
Private Sub cmdCalculateTax Click() i

New line

Dim userValue ks Long
userValue = txtParcelValue.Text

alues

U iwial
Dim taxAmount As Leong
taximount = userValue * 0.02 + 8.55 + 11

= ol | .

On the new line, ac
Dim sngTaxRate As Single

The Single data type only requires four bytes of space and can hold decimal values.

It’s the most efficient numeric data type for storing small numbers that have decimal

places.

Next, you'll code the Case statement. In exercise 4a, you used the AddItem method
to populate the combo box with choices. When the user makes one of these choices,
it is set as the combo box’s Value property. The possible values of that property
determine the cases you need to code.

Waking a Case for branching

In each branch of the Case statement, sngTaxRate will be set to the tax rate for the
selected zoning type. (The Industrial type is selected in the graphic below.)

=

Tax Calculator

o aNATION

K A N § A S

meepaclvie [
2ol type; ——+— choZoning combo box
Residential
Commercial
Industrial = S :
Calculte Tax

Estimated tax:

After the line of code declaring the sngTaxRate variable, add the first and last
lines of a Case statement. For the Case statement’s value, use choZoning.Value.

Select Case cboZoning.Value

End Select
Next vou will add three blocks of code, one for each type of zoning.

Inside the Case statement, add a Case to check for Residential value. Add a
second line of code to set the tax rate variable to 0.02.

Case "Residential"
sngTaxRate = 0.02

Fach case is indented from the main Select Case statement and each case’s block of
code is indented to make it easy to read.

Add two more Cases to check for Commercial and Industrial values and set the
tax rate variable for each.

Case "Commercial"
sngTaxRate = 0.023

Case "Industrial"
sngTaxRate = 0.0275

R exSamyd - frmTax {(Code) = =|ol x|
cmdCalculateTax =l e |
Drivare Sub cmdCalculateTax Click() T
Dim sngTaxRate is Single
Select Case cboZoning.Valus
Case "Residential'
sngTaxRace = 0.02
Case "Commercilal’
sngTaxRate = 0.023
Caze "Industrial”
sngTaxBate = 0.0275
End Select
Dim userValue 4s Long _
= H .z

CHAPTER §5 CODE FOR MAKING DECISIONS

Scroll down in the code to find the two comments about residential zoning and

delete them.

Pl ex05a,mxd - femTax {(Code)

 [emaCalculateTax =] [oek

End Selesct

Dim userValue Ls Long
userValue = txtParcelValue.Text

esidential rax
Dim taximount ks Long
taxAmount = userValus * 0.02 + 8.55 + 11

1blTaximount.Caption = taximount
End Sub

=l

Locate the line that calculates the tax amount. Replace 0.02 with the variable,

sngTaxRate.
R ex05a.msd - TrmTax {Eode) 4 N =
cmdCalculateTax +1 [ciick =]

End Select

Dim userValue is Long
userValue = txtParcelValue.Text

Dim taximount is Long
taxkmount = userValue * CERRERREMAS + 8.55 + 11

1blTaximount.Caption = taximount
End Sub

=l

L4

— Tax value
calculated here

The code is now ready to test.

Close Visual Basic Editor.

On the Parcel Viewer toolbar, click the Calculate Tax button.

For parcel value, type 400000.

For Zoning type, click the drop-down arrow and click Industrial.

x|

Tax Calculator

1A

Enter parcel value:

Iacmuo

Zoring type: Y
Esmatedtar | oot
Calculate Tax. Quit

ing a Case for branching

The estimated tax, 11020, appears. To test your Case staterment with the other
zoning types, you will switch zoning types and recalculate the tax.

The estimated tax, 8020, appears.

Depending on the user’s zoning, your Case statement runs the appropriate block of
code to calculate the tax rate.

CHAPTER 5 CODE FOR MAKING DECISIONS

Coding an If Then statement

Qut driving, you approach a fork in the road where going left takes you into the city
and right takes you into the countryside. You need to make a decision on which way
to turn and to do that you ask yourself a true-or-false question. Is today a work day?
If it’s a work day you go left to your office in the city. If it’s not a work day, you go
right and take a relaxing drive in the countryside.

You can write code to process this decision with the If Then statement below.
The first line in an If Then statement contains an expression (below, it’s Today =
aWorkDay) between the keywords If and Then. If the expression is true, the block of
code between If Then and the Else keyword runs. If the expression is false, the block
of code between Else and End If runs. The End If keywords end the statement.

If Today = aWorkDay Then

Turn left to work in the city
Else

Turn right to drive in the countryside
End If

The essential thing about If Then expressions (also called Boolean or logical
expressions) is that they are either true or false. For example, 4 < 5,20 > 40, 2 <=2,
and “Hello” = “Good bye” are all logical expressions, because when you evaluate
their logic they result in either a true or false answer. But 4 + 5, on the other hand,
is not a logical expression. When you evaluate 4 + 5, you get 9, and the number 9 is
not the same thing as true or false.

Logical expressions can compare two values using math symbols called comparison
operators. These include the equals sign (=), greater than (>), less than (<), greater
than or equal to (>=), less than or equal to (<=), and not equal to (<>). In the
expression below, if x is 10 and y is 5, the expression is true. If x is 2 and y is 15, the
expression is false.

S Sy

Logical expressions can be combined with logical connectors, which are English
words like AND and OR. Below, AND combines two expressions into one larger
expression. In order for the full expression to be true, both smaller expressions must
be true.

x >y AND a = b
With OR, only one of the expressions must be true for the full expression to be true.

x>y ORa=>»

Coding an If Then statement

Another way to create an expression is with a function. VBA comes with a variety
of predefined functions including a group that are named with the Is prefix: IsDate,
[sEmpty, IsError, IsMissing, IsNull, IsNumeric, and IsObject. The Is functions all
result in true or false. For example, the IsNumeric function tests a variable to see if iz
contains a number. If x contains a number, the expression below evaluates to true;
otherwise, it's false.

If IsNumeric(x) Then

A third way to create an expression is by getting an object’s property. CommandButtons
have many true or false properties, as shown in the Properties window below.

|(mdl1uit CommandButton ;J
plphabetic Categorized |
Caption Quit]
ControlTipText
FareColor B &Hz000001
Visible True
El Behavior
AutoSize False
Cancel False
The Enabled property Default False
is set to True ——— Enabled Trus
Locked False
TakeFocusOnClic Trug Quit button
WordWrap False LI

You can use the object.property syntax to create an expression. When the Quit
button’s Enabled property is True, the following expression is true:

If cmdQuit.Enabled Then

An If Then statement can evaluate multiple expressions with the Elself keyword.
Below, two Elselfs are used to evaluate expressions for alkaline and neutral pH levels.
If the If Then expression is true, or if either of the Elself expressions are true, the
code after that expression runs. If a non-pH value is entered (less than zero or greater
than 14), the code after the Else keyword runs.

If intPHLevel < 7 And intPHLevel >= 0 Then
MsgBox "You have an acid"
ElseIf intpHLevel > 7 And intPHLevel <= 14 Then
MsgBox "You have an alkaline"
ElseIf intpHLevel = 7 Then
MsgBox "The value is neutral’
Else
MsgBox "The value is outside the pH scale’
End If

CHAPTER 5 CODE FOR MAKING DECISIONS

Exercise 5b

If users enter nonnumeric values in the Parcel Value text box, they get a type
mismatch error when they click the Calculate Tax button. Below, the user types
«“$200,000” (with quotation marks) into the text box, clicks Calculate Tax, and gets

an error message.

Tax Calculator: i x|

o :ANATION

K A N S A 5

Enter parcel value: I_W—'_—.f User types in text
Zaning type: | Residential =l

Estimated tax: Microsoft Yisual Basic

CaleulateTax Quit Rurvtime error ‘13"
\ Type mismatch
Error appears ——’

s e | [Coemg] e |

The error appears because the quotation marks make $200,000 a string instead of a
number. VBA cannot multiply a string and a number:

nE200, 00gT * Q.02

In this exercise, you will code the Parcel Value text box’s Change event. Each letter
or number that the user types into the text box causes code in the Change event

procedure to run. Whenever the user makes a change to the text box, the code runs.

You'll put code in there to determine if users are typing letters or numbers. If they
type letters, your code will disable the Calculate Tax button by setting its Enabled
property to false. When a button is disabled, it is grayed out.

Enabled = False —— 4

Start ArcMap and open ex05b.mxd in the C:\ArcObjects\Chapter05 folder.

When the map opens, you see the Manhattan city parcels and the Parcel Viewer toolbar.

Click the Tools menu, point to Macros and click Visual Basic Editor.

ing an If Then statement

in the Project window, under Project (@XGEDHFTEXd",. double-click frmTax under
4 J /
orms to open it.

T

You see the Tax Calculator. You will write code that validates the values that are
typed into the Parcel Value text box.

EEEEIET
s 3
@ ANuATIN
K A N S A.S. -
enter parcel vl | ‘ = ——1 parcel Value text box

Zoning type: =

Estimated tax::

CaoulateTax I Quit. J

On the form, double-click the Parcel Value text box (txtParcelV

The form’s code module opens to the text box’s change event procedure. Change is
the default event for text boxes and it’s the one you will write code in.

8 ex05b.vxd - frmTax (Code) 5 i —|of =i
[tarceivalue k| Jcnanoe -
Privats Sub txcParcelValue_Change () j
Change event
End Suk . o =
Private Suh UserForm Click()
i e Sub UserForm_Initialize() J
choZoning. AddItem "Residential”
=
=R | _tl_‘

oo idlas Penmitsis e R
or the logical expression,

ext box's Text property
If IsNumeric(txtParcelValue.Text) Then

The IsNumeric function is true when the user enters a number and false when any
other values are entered.

cmdCalculateTax.Enabled = True

As long as the user types numbers into the Parcel Value text box, the Calculate Tax
button will be enabled.

Else

CHAPTER 5 CODE FOR MAKING DECISIONS

cmdCalculateTax.Enabled = False

When the user types anything other than a number into the Parcel Value text box,
the Calculate Tax button will be disabled (grayed out).

1!1{\Pan;el\fa!ue ~| [cnange =
Private Sub txtParcelValue_Change (] =
Tf TsMumeric(rxtParcelValue.Text) Then

cmdCalculaceTax.Enabled = True
Else

| o

The If Then statement is ready to test.

As soon as you type any text, Calculate Tax is disabled.

Disabled — faiciaeTt I Quit I

You type a lot of variable, method, and property names. To help minimize typing
mistakes, you can let VBA’s code completion option type for you. For example,

you type
cmdC

as if you are going to type cmdCalculateTax.

~wding an If Then statement

But after typing just cmdC, you press Contol + spacebar on the keyboard. This calls
VBA’s code completion option into action. It finishes the typing for you:

cmdCalculateTax

Use code completion to reduce typing mistakes in variable, method, and property
names.

If you want to save your work, click the File menu in ArcMap, and click Save As.
Navigate to C:\ArcObjects\Chapter05. Rename the file my_ex05b.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

CHAPTER 5 (CODE FOR MAKING DECISIONS

ection I'Und r : ndlng VBA :_'

sing subroutines and
functions

alling a subroutine
Passing values to a subroutine
aking several calls to a single subroutine

Reiumning values with functions

Up to this point, you've been working mostly with event procedures, which run in
response to a user action or a change in the system state. In this chapter, you'll take
a closer look at subroutines and functions.

Like an event procedure, a subroutine is a list of instructions that carries out a task.
The task may be to print a map, buffer a feature, add a field to a table, or any number
of things. What distinguishes a subroutine from an event is the cue that sets it in
action. An event procedure runs when its event occurs. A subroutine runs when it is
called by another procedure. A call is a line of code that says, “Procedure So-and-so,
it's your turn to run.”

The calling procedure may be an event or it may be another subroutine. For example,
an event procedure could call Subroutine A, which calls Subroutine B, which calls
Subroutine C, and so on.

Like a subroutine, a function is a procedure that waits to be called. It’s different from
a subroutine in this respect: when it’s finished, it returns a value to the line of code
that called it. A subroutine might assign symbology to world countries based on
their population values. A function might sum the population value for each coun-
try and return the earth’s population.

Instead of having lots of different procedures calling each other, you might be
wondering why you couldn’t put them all into one big block. In the example above,
why not take all the code for Subroutines A, B, and C and put it right inside the
event procedure? That way, when the event occurs, all the code runs and nobody has
to call anybody.

In fact, you could write code that way—it’s just not efficient. Writing code in discrete
blocks that call other discrete blocks has several advantages. For one thing, it makes
it edsier to reuse the code. Suppose you've made three buttons with different click
event procedures. One draws buffer zones, another intersects two layers, and the
third uses one layer to clip another. In each case, you want to print the map after the
operation. You could copy and paste your map-printing code into all three event
procedures, but it’s simpler to write the code once and run it with a call from each of
the event procedures.

Suppose you decided to do the copy and pasting anyway, and then found that your
map-printing code had an error. [nstead of debugging it once in a subroutine or funec-
tion, you'd have to debug it in three different event procedures. The same goes for
updarting it. Say you want to change the way maps are printed—you’d have to make
the change in three places instead of one.

Subroutines and functions also keep your code organized. If you have several tasks to
petform in sequence and you code them all in a single long block, it's easy to lose
track of what a particular line of code is doing and what has already been done.

In this chapter’s four exercises, you will call and modify subroutines and write a function.

CHAPTER 6 UsING SUBROUTINES AND FUNCTIONS

ICalling a subroutine

You tell a subroutine to run with the Call statement.

Public Sub GetMessages ()
Call Message
End Sub

The subroutine above is called GetMessages, and it does only one thing: it tells
another subroutine, called Message, to run. When called, the Message subroutine
runs and displays a message box.

Public Sub Message()
MsgBox "Geography is terrific"
End Sub

Any procedure that wants to display the words “Geography is terrific” can call the
| Message procedure. Below, the DailyQuote subroutine calls Message.

\ Public Sub DailyQuote()
| Call Message
End Sub

One procedure can call many others. Below, MakeMap_Click is a button’s click event
procedure. It tells three subroutines to run. As one finishes, the next one begins.

Public Sub MakeMap_ Click()
Ccall AddCartographicComponents
Call CheckForPrinter
Call PrintMap

End Sub

A procedure may call a procedure that calls another procedure. Below,
cmdMessage_Click calls Test2, which calls Test3.

Public Sub cmdMessage Click()
Call Test?2
frmGIS.Hide

End Sub

Public Sub Test2()

Call Test3

MsgBox "VBA is fun"
End Sub

Public Sub Test3()
MsgBox "I'd rather be writing procedures”
End Sub

ing a subroutine

The chain of called procedures begins with an event. As each procedure is called, its
code runs; when it finishes, control returns to the calling procedure.

Below, comments identify the order in which the lines of code run. To begin with,
the first two lines of the click event run. The second line of the click event calls
Test2, and its first two lines run. The second line of Test2 calls Test3, and its three
lines run. When Test3 finishes, control returns to Test2 and its last two lines run.
When Test2 finishes, control returns to the click event and its last two lines run.

Public Sub cmdMessage_Click() Nl
Call Test?2 ' 2
frmGIS.Hide vl

End Sub LT i

Public Sub Test2 () "3
Call Test3 Ji
MsgBox "VBA is fun" '8

End Sub '9

Public Sub Test3 () v
MsgBox "I'd rather be writing procedures" '6

End Sub LT

This means that the message “I'd rather be writing procedures” displays before the
message “VBA is fun.” The “VBA is fun” message displays before the Hide method
runs on frmGIS.

Exercise 6a

You work as a programmer on the Washington, D.C., Police Department’s Crime
Analysis team. Each week, your team meets with the mayor, police chief, and pre-
cinct captains to discuss how to reduce crime.

During the meetings, analysts display maps showing where crimes have occurred.
But as they zoom in on a crime, everyone else loses their sense of where in the city
it’s located. They'd like a second window that displays the entire city, with a marker
showing where they’re zoomed to.

You have been reading the book Exploring ArcObjects (part of the ArcGIS software
documentation available at www.esri.com/ExploringArcObjects). In the book, you
have found a sample subroutine called CreateOverviewWindow that does just what
you need. Part of being a good programmer is being a good thief. Stealing this code
will save you a lot of programming time.

In this exetcise, you will import the CreateOverviewWindow subroutine and call it
from a click event.

CHAPTER 6~ USING SUBROUTINES AND FUNCTION

- 49

Start ArcMap and open ex06a.mxd in the C:\ArcObjects\Chapter06 folder.

When the map opens, you see Washington, D.C., layers and the Crime Analysis
toolbar, which contains several buttons that you will code in this chapter.

| % entba.mu- Archap - Arciiew : i i =101 X
| He £t eow It Seection Toos Window Lilp [
[DeE&|F Bex|o « &[hws 72 &

= H _‘EJ

istrict of Columigy
= [Arsons
#
= [Assaults
~
: = O Burglaries
: -
Crime Analysis = M Citystreets

toolbar .
[Landmarks

: - ¥ ets == s
Overvien | Chart | 500 | 1000 | 1500 | KiosToPounds A oo s

= M Precncts
Precinct

TS . P 5P
| rowng ~ & 7 O~ A~ Sfo <] Bzu Av B~ d- =~
[7ees534.52W 36°5920.00M | V)

If you have worked through the first five chapters of the book, most of your toolbars
may be turned off.

If they're off, turn on the Standard, Tools, and Draw toolbars.
On the Crime Analysis toolbar, right-click the Overview button and click View Source.

In the ThisDocument code window, you see the Overview click event. This is where
you will write the line of code that calls the CreateOverviewWindow subroutine.
First, however, you will import the subroutine.

& en06a.mud - ThisDocument (Code} i =10 x|
' [overview 3 Click :J
=
Private Sub Overview Click()
End Sub
=
= Y

a subroutine

In the Project window, right-click Project (ex06a.mxd) and click Import File.

The code you are going to import was obtained from the Exploring ArcObjects book.
Since some people may not have the book, the sample code to create an overview
window has been provided with this book’s data CD.

In the Import File dialog box, click the Files of type drop-down arrow and click
All Files. Navigate to C:\Achbjects\Data\SampleskExpioringArcObéects and click
CreateOverviewWindow.ixt. Click Open.

You didn’t see anything happen, but a new standard code module has been added to
the project. Code modules are the windows in which you write and store procedures.
When you import code, a new standard module is automatically created to hold it.

In the Project window, under Project (ex06a.mxd), click the plus sign next to the
Modules folder to open it.

Project - Project [x]

¥ &2 Normal (Normal.mst)
= & Project (ex06a.mxd)
= 25 ArcMap Obijects

2 ThisDocument
= &3 Modules

A ——— New module
- References added here

In the Modules folder, double-click Module1 to open it.

You might recognize, in a general way, what the code in CreateOverview Window
Jdoes. The first lines are comments followed by several Dim statements for declaring
variables. The next lines set those variables with the Set keyword. (You will learn
how to set object variables in chapter 9.) The last lines use the familiar object.property
syntax to set properties for a blue outline symbol on the rectangle that shows where
the ArcMap display area is zoomed to.

The subroutine uses some ArcObjects code that you won't learn about until chapter 10.

Ir's OK if you don’t understand the details. In this situation, all you need to know is that
when you tell the subroutine to run, it runs and opens an overview window.

*% ex06a.mxd - Modulel (Code)

{General) = ‘(Detlnraiiuns) - | ;

Public Sub CreateOverviewWindow()

Declare variables

Dim pOverview Ls IOverview

Dim pOverviewUindow As I0vervievindow

Dim pDataWindowFactory As IbatalindowFactory
Dim pFillSymbol &s ISimpleFi1llSyubol

=

CHAPTER O USING SUBROUTINES AND FUNCTIONS

lCal!ing a subroittine

In the Properties window, replace the module’s name, Module1, with
CrimeAnalysisTasks. Press Enter.

In the other exercises of this chapter, you will add more subroutines to the
CrimeAnalysisTasks module. You could store every subroutine in its own module,
but since these are all about the same topic, it’s logical to store them together.

The event procedures for your UIControls (like the Overview button’s click event)
are stored in the ThisDocument code module. This means that procedures in one
code module (ThisDocument) will be calling procedures from another code module
(CrimeAnalysisTasks). For this to work, the called procedure must be declared
Public. CreateOverviewWindow above is already declared Public. Procedures that
are declared Private can only be called by other procedures in the same module.

-

Make the ThisDocument code window active.

You are ready to code the click event procedure of the Overview UlButton.
In the Overview click event of ThisDocument, add the following line of code.

Call CreateOverviewWindow

The Call statement tells the CreateOverviewWindow subroutine to run.

I, exDBa.mxd - ThisDocument (Code) s T =10] x|

{Overwiew :J]CIick = ;i

Private Sub Overview Click()
Call CreatelverviewWindow
End Sub

You could have copied all the code in the CreateOverviewWindow subroutine into
the click event procedure, dispensing with the Call statement. But by keeping the
subroutine and the click event separate, the click event stays uncluttered.

Another benefit of keeping the procedures separate is that you can call
CreateOverviewWindow from procedures other than the click event.

Close Visual |

There have been several recent burglaries near the Holy Name College. You will test
the subroutine by examining the area around the college.

m

| click Holy Name Colleg

ew menu, p

Because you're zoomed in, it's hard to tell where in the District the college is located.

Lt Joseph P Kennedy Int

= s

Haly #arme College

Oyn the Cri
Jn the

You may have to move or resize the Overview window to see ArcMap. In the
Overview window, you see a blue box that shows you are zoomed in on a northeast
section of the District.

To see crimes in other parts of the city, you can move or resize the blue box in the \
Overview window. Any changes you make to the blue box affect the ArcMap window.

CHAPTER 6 ~ USING SUBROUTINES AND FUNCTIONS

In the Overview window, drag the blue box to the eastern corner of the District,
as shown.

The ArcMap display pans to the new area. The extent of the blue box in the
Overview window always matches the extent of the ArcMap display. When you
make a change to one, the other reacts.

=0l x|
oo SR xl
© Gverview | Chart | 500 | 1000 | 1500 | KiosToPounds
=
=] Burglaries o
@
= M CityStreets - J
B Landmarks
= M DCarea
= M Main Strests
=] Precincks
Precinct
1
z - = H
Sewfmsl jewiey 2
[pwms~ k(3| O~ A~ i [S
[7es59.65W seS3seseN | 7

In this exercise, you imported and called a subroutine written by someone else.
Programmers do this all the time to make life easier. Sharing code can be as easy as
copying it and calling it. Of course, you'll have to alter the code sometimes, but as
you become more fluent in VBA and ArcObjects, that will get easier. You'll do more
copying and calling in the following exercises.

GET MORE FREE CODE SAMPLES

Close the overview window.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter06. Rename the file my_ex06a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise

close it.

ing a subroutine

Sometimes procedures perform their task without any arguments. In the last exercise,
you called the CreateOverviewWindow subroutine and it opened an overview
window. That subroutine has no arguments. When called, it runs the same way
every time.

Arguments provide information to a procedure so that it can run with some variation.
Suppose you want to create a subroutine that prints a map at a page size specified by
the user (letter-, legal-, C-, D-, or E-size paper). When you code the subroutine, you
define an argument with a name and data type in parentheses. I¢’s like declaring a
variable, but without the Dim keyword.

public Sub PrintMap (aPageSize As String)
End Sub

When you call the PrintMap subroutine, you must enter a value for its argument.
This is called passing a value to a subroutine. The code below passes the “Letter”
page size to the PrintMap subroutine.

Call PrintMap ("Letter")

As the PrintMap subroutine runs, the variable declared in its arguments list is set to
hold the passed value. Code inside the subroutine can use the variable to respond
differently according to which value is passed. For example, your code might use a
Case statement to evaluate the variable and run different blocks of code.

Public Sub PrintMap (aPageSize As String)
Select Case aPageSize
Case "Letter"
MsgBox "The page size is " & aPageSize
Case "Legal"
Scme other code runs
End Select
End Sub

When PrintMap is called and passed the Letter value, the code in its Letter Case runs.

R

The page size is Letter

CHAPTER 6 USING SUBROUTINES AND FUNCTIONS

e N e =

Exercise 6b

Up to now, crime analysts have used the ArcMap graph tool to make bar charts.
However, to use the graph tool, an analyst must fill out three dialog boxes. They
have made a request to speed this process up.

Instead of writing the new code yourself, you go to ESRI's ArcObjects developer
help Web site (arcobjectsonline.esri.com). There you do a search and find a sample
subroutine called CreateNewChart, which has code to make a chart with one but-
ton click. When you get a free sample of code, it probably won’t do exactly what you
want. This one’s flaw is that every chart it produces is called My Chart.

In this exercise, you will import the CreateNewChart subroutine and modify it to
accept an argument for the chart title. That way, anyone making a chart can give it the
name they want. You'll test the new subroutine by making a chart of arsons per precinct.

Start ArcMap and open ex06b.mxd in the C:\ArcObjects\Chapter06 folder.
When the map opens, you see the District layers and the Crime Analysis toolbar.
On the Crime Analysis toolbar, right-click the Chart button and click View Source.

In the ThisDocument code module, you see the empty Chart click event procedure.
First, you will import the sample code for creating charts, then you will tell it to run
from this click event.

 ex06h.mxd- ThisDocument (Code) 2 B i3] x|
[enart =] [ciex =
Private Sub Chart_Click() = |
_End Sub iy —
Private Sub Overview_Click()
Call CreateCverviewWindow
End Sub
>
= e | o[

In the Project window, right-click Project (ex06b.mxd) and click Import file.
The code you are going to import was obtained from the developer help Web site.
Since some people may not have an Internet connection, the sample code to make

charts has been provided with this book’s data CD.

In the Import File dialog box, click the Files of type drop-down arrow and click
All Files. Navigate to C:\ArcObjects\Data\Samples\ArcObjectsOnline and click
CreateNewChart.txt. Click Open.

A new standard code module is added to the project. To see it, you will open the
Modules folder under Project (ex06b.mxd).

[§o]

In the Project window, under Project (ex06b.mxd), click the plus sign next to th
Modules folder to open it.

ing values to a subroutine

In the Modules folder, double-click Module1 to cpen it.

Highlight the entire subroutine from the Public Sub line to the End Sub line.
Then right-click the code and click Copy.

You will open the CrimeAnalysisTasks code module so you can paste the code in it

In the Project window, under Project (ex06b.mxd), under Modules, double-click
CrimeAnalysisTasks to open it.

You see the sample CreateOverviewWindow subroutine from the last exercise.

With the cursor at the top of the module, above the CreateOverview\Window
subroutine, right-click and click Paste.

£, en06b.mud - CrimeAnalysisTasks (Code): =10 x|
1((;eneral) j ic:zateOuermeuMﬁndnw _j
Public Sub CreateMewChart () =
Dim pHlxDoc Az IMxDocument
Dim phataGraph Az IDataGraph
Dim plDataGraphProperties Ls IDataGraphProperties

Dim pGraphWindow is IDataGraphWindow
Dim pDataGraphs is IDataGraphs

Set pMzDoc = Application.Document
If pMxDoc.SelectedLayer Is Nothing Then Exit Sub
If Not TypeOf pHxDoc.SelectedLayer Is IFeaturelLaye

'Create a new graph
Ser pDataGraph = New DataGraph

tSet the defsulr Table, DataGraph will select a deg
._i‘ A

= =]

The CreateNewChart code is now in the CrimeAnalysisTasks module. You will edit
the subroutine and add che chart title variable to its arguments list, but before you
do, you will remove the module that was added to your project when you imported
the CreateNewChart sample code.

In the Modules folder, under Project (ex06b.mxd), right-click Module1 and click
Remove Module1. Click No on the dialog that asks if you want to export the
module.

In the CrimeAnalysisTasks module, inside the CreateNewChart subroutine’s
arguments list (between the parentheses), type strTitle As String. This declares
a string variable for the chart title.

Public Sub CreateNewChart (strTitle As String)

Next you will ind and edit the line of code that sets the chart’s Title property. You
will replace My Chart with the strTitle variable.

Scroll down in the CreateNewChart subroutine and locate the following line.

pDataGraphProperties.Title = "My Chart"

CHAPTER 6 + USING SUBROUTINES AND FUNCTIC =

iE] In that line, change “My Chart” to strTitle.

A5

pDataGraphProperties.Title = strTitle

Make sure to use only the variable name and no quotes. Now when any procedure
calls CreateNewChart and passes it a text string, the subroutine will store that string
in the strTitle variable and use it to set the chart’s Title property.

" Make the ThisDocument code window active.

In the Chart click event procedure, add the following two lines of code to
declare a string variable and use an InputBox to get a chart title from the user.

Dim userTitle As String
userTitle = InputBox ("Enter a chart title")

(13 In the click event, add one more line of code to call the CreateNewChart
subroutine and pass it the user’s title.

Call CreateNewChart (userTitle)

| & ex06b.mxd - ThisDocument (Code) Sl & =lex
- Icnck -vl
ﬁ.
Frivate Sub Chart_Click()

Lim userTitle As String _I
userTitle = InpucBox ("Enter & chart title”) i

Call CreateNewChart (userTitle)
End Sub =

The code is now ready to test.
Close the Visual Basic Editor window.

In the ArcMap table of contents, click the Precincts layer to select it.

= x|
i
I= £F District of Columbia &
= O Arsons :
#
= [0 Assaults
~
= O Burglaries

=
=] CityStreets

O Landmarks
= DC Area
= & Main Streets

Kl

Selected layer is blue

114 values to a subroutine

1

The CreateNewChart code runs on the selected layer.

On the Crime Analysis toolbar, click the Chart button. |

In the dialog box, type Arsons in 2002. ‘

Enter a chart thle Ii

Cancel
IAlsuns in 2002
|
Click OK. |

The CreateNewChart subroutine uses the selected layer’s attribute table to make the
chart. The chart values, showing the number of arsons, are taken from the first
aumeric field in the table. The chart labels, identifying the precincts, are taken from
the first string field in the table.

The chart shows the number of arson cases by precinct. Precinct 4 (the red bar) has
twenty cases and Precinct 6 has none. If it had any, you would see a yellow bar.

Precincts Chart :

Arsons in 2002

&
o 2
5 F
i]

Arsons vs. Precinct

21

1

1

Close the chart.

If you want to save your work, click the File menu in ArcMap and click Save As:
Navigate to C:\ArcObjects\Chapter06. Rename the file my_ex06b.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Ctherwise

close it.

CHAPTER 6 USING SUBROUTINES AND FUNCT

Making several

}umu'.m

Sometimes you design a user interface with two controls that do the same thing.
ArcMap, for example, has the Layout View menu choice on the View menu and the
Layout View minibutton in the lower left corner of the map display. Both switch the
view to Layout View.

Since they do the same thing, you don’t have to write the same code twice. You can
write a single “Switch to Layout View” subroutine and call it from the event proce-
dures of the two controls.

=101 x|

% Untitled - ArcMap - ArcInfo

Fle Edit View Insert Selection Tools Window Help

DSES - =m

Switch to

B — ‘Q Data Yiew

Layout View

| (o]

<

Zoom Dats

Zoom Layout
Bookmarks
Toolbars

Table Of Zontents
Status Bar
CQverflaw Labels

e S0 e e

———=ap
g Lay

v v v ¥

Mitary

- R
#,

W

e

Identify Results
[T Scrobbars

Data Frams Properties... |

Display - e n|=

Display and set the map scale |

|
.
77°2:36,67°W 38°57'51.00°N % ‘

Switch to Layout View

Arsonists commonly don’t stop with setting just one fire, and, oddly enough, they
don't generally go very far afield. So the people who analyze arsons typically start by
drawing buffer zones to see if there are similar arsons near each other.

Instead of writing the code yourself, a search of the developer help yields a sample
subroutine called BufferFeatures. It buffers each selected feature in the focus map
and stores the results as polygons.

In this exercise, you will import the subroutine into Visual Basic Editor and call it
from three different buttons. Once again, you will modify the code to accept an
argument. This time, each button will pass a different butfer value: 500, 1,000, or
1,500 meters.

Naking several calls to a single subroutine

Start ArcMap and open ex06c.mxd in the C:\ArcObjects\Chapter06 folder.

When the map opens, you see the District layers and the Crime Analysis toolbar.
The Arsons layer is turned on.

On the Crime Analysis toolbar, right-click the 500 button and click View Source.

In the ThisDocument code module, you see the empty Buffer500 click event
procedure. After importing and copying the procedure for drawing buffers, you will
call it from this click event.

In the Project window, right-click Project (ex06c.mxd) and click Import file.

The code you are going to import was obtained from the ArcObjects developer help.
Since some people using this book may not have this help system installed on theis
computer, the sample code to buffer selected features has been provided with this
book’s data CD.

In the Import File dialog box, click the Files of type drop-down arrow and click
All Files. Navigate to C:\ArcObjects\Data\SampIes\ArcObjectsDeveloperHelp
and click BufferFeatures.txt. Click Open.

A new code module is added to the project. To see it, you will open the Modules
folder under Project (ex06c.mxd).

In the Project window, under Project (ex06c.mxd), click the plus sign next to the
Modules folder to open it.

In the Modules folder, double-click Module1 to open it.

Highlight the entire subroutine from the Public Sub line to the End Sub line.
Then right-click on the code and click Copy.

You will open the CrimeAnalysis Tasks code module, so you can paste the code in it.

In the Project window, under Project (ex06b.mxd), under Modules, double-click
CrimeAnalysisTasks to open it.

You see the subroutines from the previous exercises.

CHAPTER 6 USING SUBROUTINES AND FUNCTI

' With the cursor at the top of the CrimeAnalysisTasks module, above the
CreateNewChart subroutine, right-click and click Paste.

‘- enD6c.mud - CrimeAnalysisTasks (Code)
(General) :J jﬂuﬁerFeatures

Dim pMxDoc iz IMxDocument

Dim plctiveView A= IhctiveView

Dim pGraphicsContainer As IGraphicsContainer
Dim pEnumFeature As IEnumFeature

Dim pFeature is IFeature Y
Dim pTopoOp As ITopologicalOperator
Dim pElement iz IElement

Dim strBufferDistance As String

Public Sub BufferFeatures(strBufferDistance ks String) ﬂ

! Set pMxDoc = Application.Document
Ser plActiveView = pMxzDoc.FocusMap
Set pGraphicsContainer = pMxDoc.FocusHap

'"Verify there is a feature selection -

== 47

The first line of the subroutine has an empty arguments list. You will add an argument
. to allow the passing of a buffer distance. The 500, 1000, and 1500 buttons on the
' Crime Analysis toolbar will each call this subroutine and pass it different distance
values.

Before you adjust the code to suit your needs, you will remove the module that was
added to your project when you imported the BufferFeatures sample code.

In the Modules folder, under Project (ex06c.mxd), right-click Module1 and click
Remove Modulel. Click No on the dialog that asks if you want to export the
module.

inside the argument list of the BufferFeatures subroutine (between the
parentheses), type strBufferDistance As String. This declares a string variable
to hold the buffer distance.

[Public Sub BufferFeatures(strBufferDistance As String)

Recall that the chart title argument from the last exercise gave the user more freedom;
here, your buffer distance argument will be used to restrict their freedom. Instead of
giving the user an input box to enter a distance, your code will pass one of three
predefined values.

By the way, it may seem odd to work with distance as a string, but the existing code
is written to expect a string. You could change it so that it expects a number, but
leaving it as a string is easier and will get the job done just as well.

You have to make one other change. The BufferFeatures subroutine already has two
lines of code that declare and set a buffer distance variable. Since you have put your
own buffer distance variable in the arguments list, you will find and delete these two
(nonadjacent) lines of code that are no longer needed.

ing several calls to a single subroutine

At the top of the subroutine, locate the following line of code.

Dim strBufferDistance As String

‘- ex06c.mxd - CrimeAnalysisTasks (Code) 2
[(Genera]) j !CmﬁtENewChan _'.1

Public Sub BufferFeatures() ﬂ

Dim pMxDoc Ais INxDocument

Dim pheciveView As IkctiveView

Dim pGraphicsContainer As IGraphicsContainer
Dim pEnwnFeature is IEnumFeature

Dim pFeature A=z IFeature

Dim pTopoOp As ITopologicalOperator

Dim pElement 43 IElement
Dim strBufferDistence Ais String
Set pMxDoc = Application.Document

Set pletiveView = pHxDoc.FocusHap
Set pGraphicsContainer = plxDoc.FocusMap

‘Yerify there is a feature selection =

i S | [

This is the line that declares a buffer distance variable.

Delete the line of code.

Scroll down in the subroutine and locate the following line of code.

strBufferDistance = InputBox("Enter Distance:", "Buffer")

! ex06c.mud - CrimeAnalysisTasks (Code)

i[(;_enelalj _:g }B_uﬁertﬂlures

=
Dim pTopoOp is ITopologicalOperator Zl

Dim pElement iz IElement

Set pMxDoc = Application.Document
Set pleriveView = pHxDoc.Focuslap
Set pGraphicsContainer = pHxDoc.Focusllap

"Verify there iz a feature selection -
If pMxDoc.FocusHMap.SelectionCount = 0 Then Exit Sub

get a buffer distance from the user
strEufferDistance = InputBox["Enter Distence:”, "Buf
If strBufferDistance = "7 Or Not IsNumeric(strBuffer

=

This is the line where the user sets a buffer distance. In your code, the buffer distance
will be passed in from other procedures.

Delete this line of code, too.

Make the ThisDocument code window active.

CHAPTER 6~ USING SUBROUTINES AND FUNCTIONS

Next you will go to the click events of the three buffer buttons and add a line of code
that calls the BufferFeatures subroutine.

In the ThisDocument module, add the following line of code to the Buffer500
click event to call the BufferFeatures subroutine and pass it 500 as a text string.

Call BufferFeatures("500")

W en06c.mxd - ThisDocument {Code) Todk -f':'-: : ;lﬂl!;]
[Butrerson =] Jetiei =l
Frivate Sub Buffer500 Click() j
Call BufferFeatures (”500")
_End Sub
Private Sub Chart_Click() _l
Dim userTitle Ais String
userTitle = InputBox ("Enter a chart title™) =
= gl .4 97

At the top left of the ThisDocument code window, click the object list drop-down
arrow and click Buffer1000. In the Buffer1000 click event, add the following line
of code to call the BufferFeatures subroutine and pass it 1000.

Call BufferFeatures("1000")

Click the object list drop-down arrow and click Buffer1500. In the Buffer1500
click event, add the following line of code to call the BufferFeatures subroutine
and pass it 1500.

Call BufferFeatures("1500")
Close Visual Basic Editor.

In the past year, many arsons have occurred near Howard University. You will use
the buffer buttons to analyze them.

In ArcMap, click the View menu, point to Bookmarks, and click Howard
University to zoom to it.

You will select the university and bulfter it.

If your Tools toolbar is turned off, turn it on now.

ing several calls to a single subroutine

On the Tools toolbar, click Select Features. Then click on Howard University (the
long yellow feature) to select it.

o gﬂ&c.mu '_'E':_[Mﬂ'?f rcln[o £k 2 s §
| oe gt wow srsent seection Zoos wandow e _ |
| O FHSE i mBx|o - | & [7=550 =12 & k_‘?"

| j 2=es,

—————— ey ‘|.

= £F District of Columbia =] | Catholic Univessity

=1 M Arsons 54

& | i

= O Assautts A~ 4 $
-~) | Trifity College:

E O Burglaries :

® |
& @ CiryStrests |
] Landmarks f
= M pCarea "‘

El [Main Streets |

|

= M Precincts ‘

Precinct ‘ ¥ =y |

! L% At S ‘
} T 3

= Fat ot -
= = (L ; !ﬁ | = Gallaudes iliversity |

sy [Sonce] 502 ' —— _*J‘i
| o~ K 0[O~ Al B Sl sl ®»ru |_$--"&+..;:£'__;*'] :
— [rrieasw seseraan | o

S S Y

On the Crime Analysis toolbar, click the 1500 button. Click the 1000 button. Click
the 500 button.

The buffer zones draw in blue. In later chapters, you will write code to control the
symbols and colors used for drawing. For now, you will select the three buffer graphics
and change their symbology manually.

Click the Edit menu and click Select All Elements.

Right-click inside any buffer zone and click Properties. In the Common Properties
for Selected Elements dialog box, click Change Symbol.

Scroll to the bottom of the Symbol Selector and double-click the symbol called
Crime Reporting Sector. Click OK on the Common Properties dialog box.

Several arsons have occurred within each buffer zone around the university.

cHAPTER 6 © USING SUBROUTINES AND FUNCTIONS

= ex0Gcmud-ArcMap-Arcview (o =i

Iﬁf_ Edt gsw ool Bctiort ok Wk ok |
|D=E& i BB X v | § [

T mmm"ggi‘" .vaim;cha*:_]mhwa\.-mmmmmﬁs

Crime Analysis e =

[i# @55
—— &
= £F District of Columbia |
= b Arsons
¥
= O Assauls
~
& O Burglaries J

o
=] CityStrests

M Landmarks
= M DC area
[B Main Streets

= M Precincts

Precinct
1
>] o
0) Y =
| prawng ~ [k G301~ A~ | =t =zl B 7 uA- B~
[[400572.97 137780.60 Meters | =

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter06. Rename the file my_ex06c.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

wking several calls to a single subroutine

e

Returning values with functions

In the previous exercises in this chapter, you called subroutines and passed values to
them with arguments. Functions work similarly, except that (as mentioned at the
start of the chapter) a function returns a value. To be more specific, a function
returns a value to the same line of code that calls it. You'll see how this works in

a moment.

such as 1 and 2, and to define an operation, such as addition. The calculator then
Joes some arithmetic and returns a new value (with any luck, it will be 3). When
you call a function, you pass it a value with a line of code, it carries out some opera-
tion on that value, and it passes a new value back.

|
|
|
) A function is like a calculator. You push buttons on a calculator to pass values to it,

You have already worked with a couple of VBA functions: MsgBox and InputBox.
The line of code below calls the InputBox function. You pass the InputBox function
a text string inside its parentheses. The string displays in a dialog box that prompts
the user to type in a value. Once a value is entered, it is passed back out of the
InputBox function and assigned to the strValue variable.

strvalue = InputBox("Enter a Parcel Value")

This line of code calls the function and passes it a value (to the right of the equals
sign), and it receives a new value back from the function and holds it in a variable

(to the left of the equals sign).

The code behind VBA's built-in functions is hidden from you. When you make your
own function, you have to write the code yourself (or steal it).

Suppose you want to make a function that converts kilometers to miles. The function
will receive an input value in kilometers, do some arithmetic, and pass back the
equivalent in miles. To code a function, you start with its wrapper lines:

Public Function KilometersToMiles (km As Double) As Double
End Function

The first line includes the name of the function (KilometersToMiles); an argument
declaring a variable and data type for the input value (km As Double); and the As
keyword followed by a data type for the returned value (As Double, shown here in

holdface).

Although they are of the same data type here, the input value and the returned
value do not have to be. Say you were creating a function to calculate someone’s age
based on the date they were born. The input value might be of the data type Date
and the return value might be of the data type Integer.

public Function AgeInYears (age As Date) As Integer

End Function

CHAPTER O UJsING SUBROUTINES AND FUNCTIONS

To complete the code for the KilometersToMiles function, you need a conversion
formula to change kilometers into miles (1 kilometer equals 0.621371 miles) and
you need to pass the new value out of the function and back to the line that called
it. You can do all that with one line of code.

To pass a value out of a function, you use the function’s name like a variable. The
line of code below sets KilometersToMiles equal to the miles equivalent of kilometers.

Public Function KilometersToMiles (km As Double) As Double
KilometersToMiles = km * 0.621371
End Function

Setting KilometersToMiles as if it were a variable allows the line of code that calls
the function to receive the feturned value.

When you call functions you don’t use the Call keyword as you do with subroutines.
Instead, you typically use two lines of code. The first declares a variable to hold the
value that the function will return. The second sets this variable equal to the func-
tion name and passes a value into the function (10 in the example below). The
second line is the one that actually calls the function. In the example below, the
variable’s data type is Double because the function’s return value is a Double.

Dim x As Double
x = KilometersToMiles (10)

The following diagram illustrates the process. The function is coded in the
ConversionTasks module and called from the ThisDocument module, where the
value 10 is passed into it. In the function, this input value is stored in the km variable
and converted to 6.21371 miles. Then KilometersToMiles is set equal to 6.21371,
which causes the value to be passed out of the function back to the line of code that
called the function. There the returned value is set equal to the variable x. When all
is said and done, x holds the value 6.21371.

I Project - ThisDocument {Code) .
i(GeneIaD :i ‘(Decfanﬂmns) L{

x As Double j
ilometersToHill @

—

== 2 b7

Avalue is passed from the calling
line of code to the function

The converted
value is returned

4 —lolx
from the function : = B
3 3 KilometersToMiles =
to the calling line
of code =
Double) As Double __J

Pl Ly mgetersToli
KilometersToliles £ D

End

Declaring and setting a variable isn’t the only way to handle a function’s returned
value. Since a function returns a value, the function can be used anywhere that that
value is accepted. For example, message boxes display a value, so you can use the

wrning values with functions

KilometersToMiles function as a message box’s first argument as shown on the
line below.

MsgBox KilometersToMiles (10)

Exercise 6d

During the crime analysis meetings, the group reviews recent drug busts. The
amount of drugs confiscated is typically reported in kilograms, and someone always
asks, “How much is that in pounds?”

In this exercise, you will make a function to convert kilograms to pounds. You will
call the function from a button on the Crime Analysis toolbar, Once the function is
written, you will be able to call it from any other procedures that have a use for it.

Start ArcMap and open ex06d.mxd in the C:\ArcObjects\Chapter06 folder.

When the map opens, you see the familiar District layers and the Crime Analysis
toolbar.

Click the Tools menu, point to Macros, and click Visual Basic Editor.

In the Project window, expand Project (ex06d.mxd) and expand the Modules
folder underneath it. Double-click CrimeAnalysisTasks to open the code module.

In the CrimeAnalysisTasks module, you see the other subroutines that you have
worked with in this chapter.

With the CrimeAnalysisTasks module active, click the Insert menu and click
Procedure.

In the Add Procedure dialog box, type KilogramToPound as the name. For the
type, click Function. Leave the scope set to Public.

Add Procedure

M:W

e
¥ Function ‘
‘r‘Pi’UI!BﬁY |

e e
= Public
| © Private

T Al Local wariables as Statics

Click OK.

The new function is added to the bottom of the CrimeAnalysisTasks module. You'll
define its arouments and returned value data type in the next two steps.

cHAPTER 6« USING SUBROUTINES AND FUNCTIONS!

- -exn0bd.mud - CrimeAnalysisTasks (Code) -

I(Gmeuﬂ =] [KilogramToPound =]

pLineSyukol.Color = pRobColor Z]

pFillSymbol.Style = esriSFSNull
pFillSymbol.Outline = pLineSymbol
pOverview, RoiFillSymbol = pFillSymbol

End Sub S e

Public Function KilogramToPound()

End Function =
s LH

In the function’s arguments list (between the parentheses), type dblKilos As
Double.

This defines a variable to hold the value that is passed in to the function and specitfies
its data type as Double.

Public Function KilogramToPound (dblKilos As Double)

Define the data type of the function’s returned value by typing As Double after
the function’s arguments list.

Public Function KilogramToPound (dblKilos As Double) As Double

Next you will code the conversion formula. There are 2.2046 pounds to a kilogram,
so the formula is pounds = kilograms * 2.2046.

Inside the function, set the function name equal to the formula to convert
kilograms to pounds.

KilogramToPound = dblKilos * 2.2046
dblKilos holds the kilograms value that is passed into the function. This value is
converted into pounds by multiplying it by 2.2046. To return a value from the func-

tion to the line of code that called it, you set the function’s name equal to a value.
Here it’s the formula’s result value.

- exO6d.mud - CrimeAnalysisl asks (Code) o 1o} x}
|(—Gen=m|)] [KitogramToPound |
Public Funcrion KilogramToPound({dblKilos As Doubls) Az Double j

EilogramToPound = dblKilos * 2.2046

End Function
| =
=1 L7

The function is now complete. All that remains is to code the KilosToPounds
button’s click event procedure to call the function and pass it a value.

Make the ArcMap application window active. On the Crime Analysis toolbar,
right-click KilosToPounds and click View Source.
g

You will use an InputBox to get a kilogram value from the user. Whatever value the user
types into the InputBox is the value that will be passed to the KilogramToPound func-
tion. Since this value is not predetermined, you will declare and set a variable for it.

wrning values with functions

Inside the KilosToPounds click event, declare a variable for the user’s kilogram
value and set it using the InputBox function.

Dim userKilos As Double
userKilos = Inputbox ("Enter the number of kilograms")

You are ready to call the KilogramToPound function. This includes declaring a
variable to hold the function’s returned value.

Declare a variable for the KilogramToPound function’s returned value and set it
by calling the KilogramToPound function.

Dim userPounds As Double
UserPounds = KilogramToPound (userKilos)

Add a final line of code that uses a message box to report the converted value.

MsgBox userKilos & " kilograms is " &
userPounds & " pounds"

4 ex06d.mud - ThisDocument (Eode) ' -;:_; 3 -igj_x_c_l
[ﬁusTnPnunds j Click -
Private Sub KilosToPounds Click() j
Dim userKilos is Double
userKiles = InputBox("Enter the number of kilogrsms'")
Dim userPounds ks Double
userPounds = KilogramToPound (userKilos)
MagBox userKilos & " kilograms is " & _ _l
userPounds & " pounds”
End Sub -
L 571

The button and the function are ready to test.

Close Visual Basic Editor.

On the Crime Analysis toolbar, click the KilosToPounds button.

In the input dialog box, type 14 and click OK.

You see a message box that shows the kilogram value compared to the pound value.
T <

14 Klograms is 30.8644 pounds

Click OK on the message.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter06. Rename the file my_ex06d.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

cHAPTER 6~ USING SUBROUTINES AND FUNCTIO}

I ooping your code

In VBA programming, tasks can be run repeatedly with looping statements. Loops
can be as simple as “Print ten copies of the same map,” or as complex as “For each
vacant parcel in the city, get its acreage, add that to a running sum, and report the
total acreage of vacant land.” VBA has two kinds of looping statements: For loops
and Do loops. For loops run a given number of times and Do loops run until the
value of a logical expression changes.

You are going to make lunch for yourself and two friends. All three of you will have
a peanut butter and jelly sandwich. To make the sandwiches, you repeat the follow-
ing process three times: get two slices of bread, spread peanut butter on one, spread
jelly on the other, slap them together, cut them in half, and put them on a plate
for serving.

The sandwich loop above is a For loop. You are making one sandwich for each person,
and so the loop runs a specified number of times. When everyone has a sandwich,
the loop ends (and the eating subroutine begins).

A Do loop evaluates a logical expression and then decides whether to run its block
of code. A Do loop will run its code until the expression’s true or false status changes.

You are so good at making peanut butter and jelly sandwiches that now it’s your job
to make them from 8 to 5. When the expression “time > 5:00 p.m.” changes from
false to true, your sandwich-making stops for the day. So every time you finish a sand-
wich, you look up at the clock to check the time. If it’s not yet five o’clock, you have
to make another sandwich. If it’s five, you get to stop.

The mechanics of a For loop are simple. You set a variable equal to a start value,
like 1. Each time your block of code runs, the variable value increments by 1 until it 3
reaches an end value, like 10.

A For loop begins with the For keyword and ends with the Next keyword. The For

keyword on the first line is followed by the variable and its start and end values. The
block of code between this line and the Next keyword runs repeatedly until the vari-
able exceeds the end value.

For variable = StartValue To EndValue
Block of code here
Next

The For loop below would print a map ten times. The first time through the loop.
the variable x is set equal to 1 (the start value) and the block of code runs to print
the first map. The second time through the loop, x is set equal to 2 and a second mag
prints. The third time, x changes to 3 and a third map prints. The loop stops running
after the tenth map is printed.

For x = 1 to 10 |
'Code here to print map
MsgBox "Printing Map " & X

Next

[t is common to begin with 1 and end with the number of times that you need the
loop to run; however, you can use any starting and ending values you like.

If your loop is processing a list of items, you can also skip over items using the Step
keyword. Suppose you have a database of 10,000 customers and you only have
enough money to mail a coupon to 5 percent of them. Your oldest customer is .
customer 1 and your newest is customer 10,000. You want the coupons to go to a
mixture of new and old customers.

The loop below is designed to go to every twentieth record starting with record 1.
For every twentieth record, the customer’s address is printed on a mailing label.

For x = 1 to 10000 Step 20
‘in the customer table go to record x
'get address for x
'print a mailing label

Next

Looping statements are also useful for populating lists, like those in combo boxes.
The only way to add values to a combo box is with the ComboBox’s AddItem
method. Suppose you wanted to make a combo box in which the user can choose
a number from one to ten.

CHAPTER 7 -~ LOOPING YOUR CODE

Pick your favorite number IE ==

To put the numbers one through ten in the combo box, you could write ten lines of

code with the AddItem method.

cbhoFavoriteNumber .AddItem
choFavoriteNumber .AddItem
cboFavoriteNumber.AddItem
choFavoriteNumber .AddItem
cbhoFavoriteNumber.AddItem
cbhboFavoriteNumber .AddItem
cboFavoriteNumber.AddItem
cboFavoriteNumber .AddItem
cbhoFavoriteNumber.AddItem
cboFavoriteNumber .AddItem

W oo ~]o U WD

0

Luckily, there’s a faster way—you can write a For loop and reduce those ten lines of
code to three. The loop below increments from 1 to 10, adding those values to the
combo box’s list.

For = = 1 te 10
cboFavoriteNumber .AddItem x
Next

Exercise 7a

As a GIS programmer for the U.S. Census Bureau, you are developing an application
to help people view county-level population trends. Your application will display
population values for each census year from 1930 to 2000. When a user chooses a
vear, and picks a number of population classes for the legend, a map is created.

The Quit and MakeMap buttons on the dialog box below are already coded; the two
combo boxes, however, are not. In this exercise, you will code two For loops to add
values to the combo boxes. The box called choYears will contain a list of the census
decades from 1930 to 2000. The box called choClasses will contain a list of numbers
that sets the number of population classes in the legend.

Census Population Maps

Chaose a Census year v —— —— cbhoYears

Choose a number of dasses gl————— 1 _ choClasses

PakeMap i Quit

Legend with 3 classes Legend with 5 classes

= £F Layers = £F Layers
= & Counties = Counties
1930 1930
[lo - 265804 [10-7123%5
[265804 - 1374410 71235 -252312
B 1374410 - 3982123 [T 252312 - 634394

B 634394 - 1374410
B 1374410 - 3982123

Start ArcMap and open ex07a.mxd in the C:\ArcObjects\Chapter07 folder.

When the map opens, you see a layer of U.S. counties. On the Standard toolbar, to
the right of the Add Data button, is a button called CensusMaps.

=S =
2

[rEaree = | 8| &K

DEHS % BEAX oo b B

Click the CensusMaps button.

On the Census Population Maps dialog box, you see the choYears and choClasses
combo boxes. If you clicked their drop-down arrows, you would see that both are
empty. You will write two loops to fill these combo boxes with values.

Click Quit to close the dialog box.
Click the Tools menu, point to Macros, and click Visual Basic Editor.

In the Project window, under Project (ex07a.mxd), under Forms, double-click
frmCensus to open it.

Before writing any code, you will make a property setting for the two combo boxes to
help eliminate user typing errors.

iCensus Population Maps 2 _XJ
Chaose a Census year =i _choYears
Choose a number of classes = L choClasses

e

On the form, click the combo box choYears to select it. In the Properties window,
set its Style property to 2-fmStyleDropDownlList.

This option forces the user to pick a decade from the drop-down list. Otherwise,
they could type in any value they liked. Since you only have data for the census

years between 1930 and 2000, you don’t want the user to type in a number (like

1981 or 1920) that will cause an error.

CHAPTER 7 = LOOPING YOUR CODE

Next, you will set the same Style property for choClasses to keep users from making
maps with fewer than three or more than eight classes.

e i - I +} Pronartiac
On the torm In the Properties
C B

window, s nStyleDropDownlList.

Now you will write the code for the looping statements.

5 £ Dyt b indmwn flick the Vi ; Ae +
At the top of the Project window, click the View Code button.

= | |
y o ;

The frmCensus code module becomes active. It has code in it for the MakeMap
and Quit buttons. The Quit button’s click event has code to close the form. The
MakeMap button’s click event has code to call the RenderMap subroutine.

The RenderMap code uses the selected combo box values to get census data from
the Counties layer attribute table and create a legend for it. You'll learn to write this
type of code using ArcObjects later in the book.

= A alrl 1 e arEArs il ¥ io
v and click UserForm (unless it is

s [Lraarocl v A ~licle
, click the drop-down arrow and click

Since the initialize event runs just before the form opens to the user, this is where
you will add the two loops to fill the combo boxes with years and numbers.

M ex07a.mxd - frmCensus {Code}

[userForm =] [mitiatize —————— Initialize event

Private Sub UserForm Inivialize()

End Sub
~
== v

In the initialize event, declare the For loop’s v

ri
i

43

ble

ja)]
M
)

1S an integer.

As the loop runs, this variable will change its value for each integer in the range
hetween the start and end value. You'll set up that range in the next step.

Dim intClass As Integer

Coding a For loop

Add the following For loop. Use 3 and 8 for the start and end values.

A legend with fewer than three classes doesn’t convey much information, and a
legend with more than eight is hard to interpret. Visually, the shades of a color start
to look alike, and conceptually, the distinctions between classes become less
meaningful.

For 1intClass = 3 To 8
Next

When a user clicks 3 in choClasses, a legend with three classes will be created, like
the one below.

Table of Contents

= £F Layers
= M Courties
1980
[<= 13490.000000
I > 13490.000000 AND 1980 <= 36455,000000
B > 36455.000000 AND 1980 <= 7477239,000000

Display E‘iméel

Inside the loop, add the following line that uses the Additem method on the
combo box to add the numbers from three to eight.

cboClasses.AddItem intClass

This line of code will run six times, adding the numbers 3, 4, 5, 6, 7, and 8 as choices
to the combo box’s drop-down list.

™ ex07a.med - frmCensus (Code} ; :" L =0
Userform :j !Tn'ltiaﬁze d
=

Private Sub UserForm Initialize()
Dim intClass As Integer

For intClass = 3 To ©

choClasses. AddIten intClass
Hext _|
End Sub
-
| 7

Now you will code a second For loop to add census decades to the choYears drop-
down list.

After the code for the first loop, declare an integer variable to hold the For loop
numbers for each year.

Dim intYear As Integer

CHAPTER 7 © LOOPING YOUR CODE

Add the second For loop. Use 1930 and 2000 for the start and end values and
make it step every 10 years.

For intYear = 1930 To 2000 Step 10

Next

Inside the loop, add the following line that uses the Additem method on the
combo box to add the year for each decade.

cbhoYears.AddItem intYear

This line of code will run eight times because there are eight census years from 1930
to 2000. Each year will be added to the combo box’s drop-down list.

So far, when the dialog box opens, the combo boxes are empty until the user clicks
the drop-down arrow to make a selection. You will set a property for the combo
boxes so they have initial values.

78 ex07a.mxd - frmCensus (Code) : = o]
ill:mrfmm -1]Ir_ﬂllaltze j
B
Dim intYear As Integer
For intYear = 1930 To 2000 Step 10
choYears. AddItem intYear
Next
End Sub
-
] 7

After the two loops, add the following two lines of code to set the default
values for each combo box.

You will set the number of classes to 3 and the year to 2000. Users can accept these
defaults or use the drop-down lists to change them.

choClasses.Value = 3
cboYears.Value = 2000

The code is ready to test.

Close Visual Basic Editor.

Click the CensusMaps button.

The Census Population Maps dialog box opens with initial values in each combo box.
Set the year to 1930 and number of classes to 7.

Click MakeMap. Move the dialog box so you can see the map.

ing a For loop

Many western counties are yellow, which means they are in the lowest population
category for 1930. Next you will look at the populations for 2000.

Change the year to 2000 while leaving the number of classes set to 7.
Click Make Map.

More western counties are now red and more midwestern counties are yellow. Maybe
there was a migration from the midwest to the west. For a more specific analysis, you
could zoom in to a specific state and compare population values for different
decades.

In the next exercise, you will work with a combo box that does just that. You will
populate the combo box with a list of state names and, when the user picks a state,
the view will zoom to it.

Click Quit.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter07. Rename the file my_ex07a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

CHAPTER 7 -~ LOOPING YOUR CODE

Do loops come in two types: While and Until. Do While loops run while a logical
expression is true; Do Until loops run until a logical expression is true (which
amounts to running while an expression is false).

Do Loops begin with the Do keyword and end with the Loop keyword. On the first line,
the Do keyword is followed by either While or Until and a logical expression. These
logical expressions are just like the ones you learned about with If Then statements.

Do While Expression
'Code here runs as long as the expression is true
Loop

Do Until Expression
‘Code here runs as long as the expression is false
Loop

The Do While loop below uses a vbYesNo message box in its expression. MsgBox is
a VBA function; when used with the vbYesNo argument, it offers a choice of some
kind and presents the user with two buttons. Depending on which button the user

clicks, the function returns the value vbYes or vbNo.

The following expression checks to see if the value returned by the MsgBox function
is equal to vbYes. If it is, the expression is true and the loop’s block of code runs.

Do While Msgbox ("Print the map?", vbYesNc) = vbYes
'Code here to print map
MggBox "Printing Map"

Loop

In the previous exercise, you created For loops to add lists of numbers to combo
boxes. For loops are good at building lists of this kind, but what if you want to build
a list of words, such as a variety of color choices a user can pick for a legend?

To add color names to a combo box, you would have to use the AddItem method for
each color. So to put five colors in a drop-down list, you would use Addltem five times.

cboColor.AddItem "Red"
cboColor.AddItem "Green"
cboColor.AddItem "Blue"
cboColor.AddItem "Gray"
cboColor.AddItem "Purple'

lc‘oding a Do loop

With five colors, this isn't a problem. But what if you wanted to build a combo box
list of one hundred colors? You could type in one hundred AddItem lines of code,
but that would take a while.

A better way is to access a text file that has all the color names in it. You could then write
a Do loop to read the text file, get the names from it, and add them to a combo box.

The process for reading values from a text file goes like this:

open the file
check to see if there is a lime in the file
read the line, do something with it
repeat these two steps until the end of the file
close the file

Let’s analyze this process in detail. To open a file, you use VBA's Open function,
which has five arguments:

Open "c:\names.txt" For Input As #1

The first argument is a string with a path to the file. The second argument is the For
keyword. The third argument is another keyword: either Input, Output, or Append.
(Input is used to read a file, Output to write values to a new file, and Append to
add lines to an existing file.)

The fourth argument is the As keyword. The fifth argument (#1) is a file number you
assign. In any given session, your code may read informarion from many different
files, so you need a simple way to tell them apart.

When your loop is done reading values, you use the Close function to close the file.
The Close function has an argument to specify which file to close.

Close #1

How do you know when your loop has read all the values? You use the VBA function
called End of File (EOF). EOF returns True when the end of a file is reached and
False as long as there are more lines to read. Because it returns True or False, it can
be used as the Do loop's expression.

In the example below, the Do Until loop applies the EOF function to file number 1.
The loop runs as long as EOF is false. When the last line has been read, the EOF

function returns True and the loop ends.

Do Until EOF (1)
'Read lines from the file
Loop

Inside the loop, you use the Input statement to read the file. Input has two arguments,
the file number and a variable. As each line is read, its contents are put into the
variable (strName, in this example).

CHAPTER 7 © LOOPING YOUR CODE

Input #1 strName

Suppose the line being read from the text file consists of the word “Blue.” After the
line of code above runs, strtName will hold the value “Blue.” The variable holds
whatever text string it finds in each successive line of the file. In a list of colors, it
will hold values like “Blue,” “Orange,” and “Maroon.” In a list of businesses, it would
hold values like “ESRI, 380 New York St, Redlands, 92373.”

With each iteration of the loop, Input goes to the next line in the text file, gets the
value from thart line, and sets the variable with that value. When the end of the file
is reached, the process stops.

Once you have read the value into the variable, you can do whatever you want with
it. In the following example, you use it to add a choice to a combo box.

The code opens a file called names.txt and loops through it. Each line of the text file
is successively stored in the variable strName. The AddItem method then takes the
variable value and adds it as an item to the combo box. When the end of the file is
reached, the loop ends and the text file is closed.

Open "c:\names.txt" For Input As #1

Do Until EOF(1)
Input #1 strName
cboName .Additem strName
Loop

Close #1

Exercise 7b
In this exercise you will write a Do loop to read the fifty U.S. state names from a text
file and put them in a combo box’s drop-down list.

Start ArcMap and open ex07b.mxd in the C:\ArcObjects\Chapter07 folder.
When the map opens, you see a layer of U.S. counties with each state outlined.

Click the CensusMaps button. Move the dialog box, so you can see it and the
map at the same time.

Most of the code behind the dialog box has already been written. When the user
picks a state from the States combo box, the view will zoom in on that state.

This combo box itself, however, has not been coded, so its drop-down list is empty.
Its drop-down style hasn’t been set either, so you can still type into it. Before adding
items to the combo box, or setting its Style property, you will make sure the zoom
functionality is working.

oding a Do loop

In the Choose a state box, click the drop-down arrow to confirm that it is empty,
then type Utah.

Census Population Maps = A 5-'

Choose a Census ysar 2000 =

Choose a number of categories 3 =

Choose a state Ltah

= cboStates

takeMap I Quit

Click MakeMap.

MakeMap gets Utah from the combo box, zooms to it, and draws its outline.

Click Quit to close the dialog box.

Using a file browser, like Windows Explorer, navigate to C:\ArcObjects\Data\USA.
Double-click StateNames.txt to open it.

This is the text file your Do loop will read. Each line in the text file contains a single
state name.

BN C:\ArcObjects\Data\USA =])
| Fle Edt View Fevorbes Took el -
S - o o)) Qe Gy B BT X0 @
|Add'asil-_q uss & stateNames bat - Notepad : : I [3]
| Folders X | | name - | File Edt Format Help :
T | | " chanterzn | A Tabama <
1 chapter2n = #counies.she lﬁT S
H] Chapterz1 =] schema.ini fArizona
li =11 pata & Arﬁg?sas'
i = [california
olec [#] States,dbf o2 Tern
1 GrandCayrion] States.prj [cornect jcut
] Manhsttan_KS (#]States.son Delaware
= = = Florida
#{_] Samples e Georgia
S sa 2] . Hawa'd
~] whilson_NC o1 |2 5tates,shp.l 1¢zho
| N = e A I1Tinois
|2 | Lt | ‘i | Indiana
Typs: Text Document Size! 520 bytes S20bykes L My Compute |- a
- - : Kansas
kentucky
Louisiana
Maine
Maryland |

Close the text file and file browser windows.

Before writing the Do loop, you'll set the combo box’s Style property so that users
can’t type in the box.

CHAPTER 7 - LOOPING YOUR COLS

In ArcMap, click the Tools menu, point to Macros, and click Visual Basic Editor.

In the Project window, under Project (ex07b.mxd), under Forms, double-click |
frmCensus to open it. |

The combo box for state names is called choStates. |

Census Pnpulatlen Maps

i:lmua&nsu;ye&r 1 -l — cboYears

— cboClasses ? =

+— cboStates Lo

Click the cboStates combo box to select it. In the Properties window, set its Style
property to 2-fmStyleDropDownList.

At the top of the Project window, click the View Code button.

OE|a
B

The frmCensus code module opens and you see the code from the previous exercise.
The initialize event contains your two looping statements for the year and class combo
boxes. Now you'll add a third loop to build the states combo box drop-down list.

P ex07h.mxd - frmCensus {Code) ajﬂlﬂ
I(Gmnﬂ) I (Declarations) .ﬂ
| Option Explicic FT

Private Sub cmdMakeMap Click()

Call DrawTasks.RenderMap

Call ZoomTasks.ZoomToState [choStates.Value)
| End sun

Private Sub cmdQuit Click()
Unload frmCensus
| End Sub

Private Sub UserForm Initialize(} Initialize event
Dim intClass As Integer
For intClass = 3 To &
choClasses. AddItem intClass
Next =

== | _ o7

At the bottom of the UserForm_|nitialize event, just before the End Sub line,
add the following two lines of code to declare and set a string variable to hold
the text file's path. (If you have loaded your data in a different location, you will
have to alter the path below.)

This is the full path to where the text file is located and it includes the name of the
text file and its .txt extension. Quotation marks are put around the path to indicate

that it is a string.

Dim strFile As String

strFile = "c:\arcobjects\data\usa\statenames.txt"
Add a line of code to declare a string variable to hold the state names.

This variable will hold one state name at a time. Its value will change with each run

of the loop.

Dim strStateName As String

Add a line of code to open the text file strf
the file’s identification number.

Open strFile For Input As #1

Add a Do Until loop that continues until EOF is true.

The EOF function uses the file number as its argument; in the previous step, you

designated the file number as 1.

Do Until EOF (1)

Loop
M ex07b.mxud - frmCensus (Code) i , i =1alx]
UserForm :l Fﬁializa :J
=
Dim strFile As String
strFile = "r::\arcubjects\data\usa\stsnanames.txt"

Dim strStateName is String
Open strFile For Inmput is E1

Do Until EOF (1)

ile. Use the Input option and #1 as

Loop

. End Sub
1_l| »

U oy

Loop

ENDLESS LOOPS

lowing loap. The logical expression will never be true, be
expression is always false, it will run forever.
Do Until 5
Loop

The question is, if you accidentally put yourself into an e
to simultaneously press the Ctrl and Break keys on your

An endless loop means that for some reason the logic behind your loop has no way out. Consider the fol-

cause five will never equal ten. Since this loop’s
= 10

ndless loop, how da you escape? One way out is
keyboard. This aperation is called Control-Break.

CHAPTER 7 ~ LOOPING YOUR

| |

Inside the loop add the following line of code.
Input #1, strStateName

As the loop runs, this line of code processes each line in the state names text file.
The first time through, the strStateName variable is set to hold the first name in the
file (Alabama). The second time, the variable is reset to hold the second name
(Alaska). The loop ends when the EOF function returns true (there are no more
lines to read).

| i1 Add one more line of code inside the loop that uses the Addltem method to add
| the statement to the combo box.

cboStates.AddItem strStateName

Qutside the loop, after the Loop keyword, add a line of code to close the file.

Close #1

M ex07b.mxd - frmCensus (Code) =

= Il.lserFurm ﬂ Ilnilialize _v_j
Dim strFile As String “
atrFile = "g:larcobjects\data)usa)statenames.oxt"

Dim strScateName As String
Cpen sctrFile For Input As #1

Do Until EOF (1)
Input #1, scr5tateNames
choStates. AddItem str3tateName

Loop ‘

Cloze #1| Close
End Sub =
=
EE | 27

Add one last line of code to set the combo box’s default value to Alabama.

cboStates.Value = "Alabama"
Close Visual Basic Editor.
Click CensusMaps. Move the dialog box so you can see the map.

Set the year to 1930, the number of classes to 3, and the state to Nevada.

Click MakeManp.

All Nevada counties are in the lowest population category (yellow), except Washoe
county in the northwest. It has a high population because Reno, Sparks, and Lake Tahoe
are located there. In 1930, a lot of people were there because of the mining industry.

Next you'll compare the 1930 and 2000 populations.

Set the year to 2000. Don’t change the state name or number of categories.
Click MakeMap.

Three counties are in the highest third of all U.S. counties (red) and several counties
fall in the middle third (orange). Nevada’s population is on the rise.

Click Quit.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter07. Rename the file my_ex07b.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

CHAPTER 7 = LOOPING YOUR CODE

Working through the exercises in this book, you have very likely gotten a few error
messages. It was probably easy enough to fix your mistakes by comparing what you
ryped with what was written in the book. As you begin to write your own code, fix-
ing mistakes may not be so simple. However, VBA comes with a Debug toolbar that
has several buttons to help you find and fix bugs.

In VBA there are three types of errors: Compile, Run-time, and Logic. In this chapter
you will learn what they are, why they happen, and how to find and fix them.

Before your VBA code runs, it is automatically translated into machine language
(a language consisting entirely of zeroes and ones, which is all your computer really
understands). This translation is called compiling. When there is a problem in the
translation, you get a compile error and the code does not run. Compile errors occur
because you make mistakes with VBA syntax—forgetting to include the Next key-
word in a For loop, for instance, or typing a method without the name of an object
and a dot, as in the example below.

Show

If vou run code with syntax mistakes, you get a com ile error message.
yE g

Microsoft Yisual

'\j Compile ertor:
/- .

Sub or Function not defined

[=

Besides giving you the error message, VBA highlights the offending procedure in
vellow and the error itself in blue.

=10ix|

' ex06b.mxd - ThisDocument (Code)

[(Ganarnl) L’ [CensusMaps _:]

Public Sub CensusNapsi)
frmCensus.5hov modeless

End Sub

In contrast to compile errors, run-time errors occur after the code has successfully
compiled and is being run. A run-time error means that your VBA code is syntacti-
cally correct, but that the instructions themselves are impossible to carry out.

The following line of code compiles, because there are two numbers on either side of
the division symbol:

Acres = 40000 / O

When the line of code runs, however, it causes a run-time error. Division by zero is
acceptable syntax, but illegal math.

' Rurvtime error 11"
1Y

Division by zero

The following line also compiles, but causes a run-time error:
Acres = "SguareFeet" / 43560

Here, the type mismatch error appears, because a text string can’t be divided by a
number.

' Run-time error 13%

Type mismatch

e |

VBA can’t miss compile and run-time errors, and it kindly alerts you to them with
error messages. Unfortunately, VBA cannot detect the third type of error, which is a
flaw in your program logic. Code that has a logic error compiles and runs, but pro-
duces incorrect results—or at least not the results you were aiming for. It's sort of like
telling your dog to fetch a ball when you really wanted it to fetch a stick.

cHaPTER 8 -« FIXING BUGS

Earlier, you saw that trying to divide by zero produces a run-time error. Not all math
mistakes will stop your code from running. The line of code below attempts to con-
vert a parcel’s square footage to acres. The code compiles and runs, but has a logic
error that produces the wrong result every time.

aParcelsAcres = aParcelsSquareFeet / 4356

The correct formula for acreage is square feet divided by 43560, not 4356. This is an
example of a logic error. The syntax is good, the math is legal, but the result is incorrect.

The looping statement below tries to loop until 10 equals 100. Since a Do Until loop
runs until the logical expression is true, this loop will run forever.

Do Until 10 = 100
MsgBox x
Loop

Simple errors in logic can often be caused by typing mistakes. In chapter 2, you
learned that Option Explicit can find typographical errors in variable names.
Unfortunately, Option Explicit won’t help you with the logic errors above, since
no variables are involved.

Logic errors are pesky. The only way to catch them is to test your code with several
different inputs for which you already know the correct output. Then have someone
else test your code with input values and results that they know.

¥)
g
Jeatl
o

), S,

—
—

¢ the debug tools

When you get a compile or run-time error, or when a weird result suggests a logic
error, you use VBA’s Debug toolbar to find and fix your mistake. Sometimes, after
reading an error message, you know exactly where the problem is and how to fix it.
When you don’t, the Step Into button (the Step button, for short) is a good place to
start the debugging process.

M|y u IE@“EEE“—;E@W&,

Step

The Step button runs one line of code at a time, while highlighting the line that is

about to be run. Suppose you have a ten-line procedure that results in a run-time error.
As you step line by line through the code, you will eventually hit the bad line that gen-
erates the error message, so you know right where the problem is. Clicking the Run Sub/
UserForm button (the Run button, for short) at any time will run the rest of the code.

' Project - ThisDocument (Code} = =15
[(General) j]Ge‘tncres _-:J
| Public Sub Getdcres() j

DIim intSquareFeet As Integer

Dim incAcres As Integer

intSguareFeet = InputBox ("Please enter square feet')

intdcres = intSquareFeet / O

MsgBox "Nunber of acres: " & intlcres

End Sub
-

= i ﬁ_‘

But what if you have a procedure with more than a hundred lines? Stepping through
each line could take a long time. You can speed things up by using breakpoints,
which pause your code at a specific line. If you suspect an error on or after line 50,
you can put a breakpoint at line 49. When you click the Run button, all the code
runs up to that breakpoint. Then the code pauses and line 49 is highlighted. From
there, you could use Step to run one line at a time until you see the error.

You add a breakpoint by highlighting a line and clicking the Toggle Breakpoint
button on the Debug toolbar.

« Debug

BE |y I m (Z2= BB & ér B

1
Ik
Tl

Toggle Breakpoint

You can also add a breakpoint by clicking in the code window’s margin. Either way,
a red circle marks the spot and the line of code turns red.

CHAPTER 8 = FixinG BUGS

% Project - ThisDocument (Code} oy e 101 x|
!16enera|) -] |Ge!m:res =
Public Sub Gecicres () j
C||Ck in margin Dim incSguareFeet is Integer
to add a Dim inticres As Integer
breakpoint — intSquareFeet = InputBox{"Please enter square feet™)
inthlcres = incSguareFeet / O
H=gBox "Number of acres: " £ inticres
End Sub =

When trying to locate an error where a looping statement is involved, you use a
combination of stepping, running, and breakpoints. The loop below runs from O
to 1000. Stepping through it line by line would take about two thousand clicks. (For
each iteration of the loop, you would have to click once to enter it and again to

finish it.)

Putting breakpoints before and after a loop avoids this problem. Clicking Run on
the code below runs it to the first breakpoint. Clicking Run again runs the code to
the second breakpoint. Clicking Run a third time runs the code to completion.

% Project - ThisDocument {Eode) ol x|
[tceneml) l] |Tes¢Luup L]
Public Sub TestLoop()

HsagBox "Start loop

For i = 0 To 1000

First
breakpoint —1@

MagBox 1
Second Next i
breakpoint —(# HsgBox "Loop done
End Sub >
4l v

At a breakpoint, you can either click Step to run the present line and highlight the
next line or click Run to run all the code up to the next breakpoint.

Sometimes, seeing a line of code and an error message isn’t enough to determine the
cause of the error. While your code is paused on a line, you can view the contents of
a variable by hovering the mouse cursor over the variable.

Below, as the mouse is hovered over the intSquareFeet variable in the paused yellow
line, a tip appears with the variable’s current value of 32000. You can hover over any
variable in the procedure, not just those in the paused line of code. If the variable’s
contents dor’t match what you expect, you have found the potential cause of an error.

4 Project - ThisDocument (Code}

!TGenelal) L‘ i F;e!ntres

Public Sub Gethcres()

=
3
Dim intScquareFeet As Integer
Dim intAcres As Integer

intSquareFeet = InputBox ("Please enter sguare feet™)

inthores = intSguareFeet / O

MsgBox "NulintSquareFeet = 32000(" & intderes

-
»

End Sub

I_l'sfng the debuig tools

Exercise 8

After a two-week vacation, you return to your GIS programming job at the U.S.
Census Bureau to find that a coworker has tried to customize your Census Popula-
tion Maps dialog box. Unfortunately, many mistakes were made and the dialog box
no longer works.

In this exercise, you are going to find and fix the compile, run-time, and logic errors
introduced by your coworker.

Start ArcMap and open ex08a.mxd in the C:\ArcObjects\Chapter08 folder.

When the map opens, you see U.S. counties and the CensusMaps button on the
ArcMap Standard toolbar.

This exercise assumes you are using Visual Basic Editor’s default error-trapping
option, so you will confirm your setting.

Click the Tools menu, point to Macros, and click Visual Basic Editor.

In Visual Basic Editor, click the Tools menu and click Options. On the Options
dialog, click the General tab. Make sure the Error Trapping option is set to Break
on Unhandled Errors.

: x|
Edtor | Editer Fomat General | Docking |
~FoméardSettings |~ Edicand Continue —
¥ Show Grid || [Moty Before State Loss |
| Grid Units: Paints | Er Teapag ——
i widthi |6 | Breakon All Errors W
| et]S | Breskin Class Moddle
¥ align Controls to Grid | ¥ Bresk on Unhandied Ervors {
reompls ———— _l
I¥ show TealTips IV Compile On Demand |
W Collapse Proj. Hides Windows | ¥ Background Compie ‘
oK | Cweel | Hep |

Click OK. Then close Visual Basic Editor.
Click CensusMaps.

Before your code could compile, a VBA syntax error was located. When a compile
error is located, an error message appears, the code stops running, and Visual Basic
Editor opens.

Compile error:
Sub or Function net defined

e =

CHAPTER 8 -« FIXING BUGS

Click OK on the error

The error is highlighted in blue and its procedure in yellow. For some reason, the
Show method is on a line by itself without a corresponding form. What can this

mean?! s the line supposed to display a form? Was the word “Show” accidentally

typed in, or is it a remnant of a previous line of code!

Some comment lines here might have helped answer these questions. [t doesn’t look
as if this Show method has any purpose, but for now, you'll turn it into a comment
instead of deleting it.

44, ex0Ba.mxd - ThisDocument (Code)
i((;em:ril) :; ;CensusMaps :!

e Publie Suk Censuslapsi) =]
frmCensus.Shov modeless |

End Sub

Comment out Show by putting an apostrophe in front of it.

' Show

The commented line turns green. Normally, you use comments to make notes to
yourself and other programmers. Comments are also useful if you want to leave in
optional lines of code. For example, you might have three blocks of code that do the
same task in different ways. You can keep all three, and comment out two of them.
Only the uncommented block will run.

Now that you've fixed the compile error, you'll run the code again.

! E This command wil stop the debugger.

| oo

Click OK on the User Interrupt message.

Your code was trying to compile and run. You are interrupting that process so you
can return to ArcMap and retest the CensusMaps button.

L Sing the debug tools

R

Click the CensusMaps button.

Another error appears; this time, it’s a run-time error. The message indicates an error
in the Project. ThisDocument.CensusMaps procedure.

! : Type mismatch : Project. ThisDocument, CensusMaps

The type mismatch error means your code uses a data type that VBA is not expecting.
For example, you may be using a number where VBA needs a string.

VBA usually highlights the line of code that contains the error. Some errors, however,
span more than one line of code and more than one procedure. When that happens,
all VBA can do is show you the procedure where it had to stop running.

Click OK on the Type mismatch error.

Right-click the CensusMaps button and click View Source.

Visual Basic Editor opens to the CensusMaps macro. To help find the error, you will
turn on the Debug toolbar and step through the code.

In Visual Basic Editor, click the View menu, point to
Debug toolbar is checked to open it.

In the ThisDocument code window, click your cursor inside the CensusMaps
procedure. Then, on the Debug toolbar, click Step.

~ Debug

B » n -i@"%ﬁé%!ﬂﬁl&‘@a

Step

The first line of code in the macro turns yellow. This line will run as soon as you
click Step again.

% exDBa.mxd - ThisDecument (Code)

I(Ganernl) j |Cr:nsusMaps

o3| Public Sub CensusMaps()
frmCensus.Show modeless

'Show

CHAPTER 8 = FIxiNG BUGS

Click Step.

The procedure’s first line runs. The second line is yellow and ready to run.

& exD8a.mxd - ThisDocument (Code) S =|of xi
|(Genetal) _v_! ;CensusMaps _vj
[Fublic Sub CensusMaps () zj
= frmCensus.3hoy modeless
' Shaw
End Sub
-
== 35
Click Step.

After you click Step, a form’s code window opens and the first line of code in its
initialize event procedure turns yellow. Your stepping has taken you into a second
procedure in a second code window. The Show method opens a form, but before the
form opens, its UserForm_Initialize event must run. So the first line of the initialize
event is now yellow and ready to run with the next step.

%4 ex08a.mxrd - ThisDocument {Code) S l_ _ (ol x|
[(Generan =] [censusmaps -]
Public Sub CensusHaps() j

= frrCensus.Shov modeless

' Show

d Sub ; L)
£ PR exDBa. xd - frmCensus {Code) SR & =10l x|
lugngo* j]Iniﬁalizs j
==l | Private Suh UserForm Initialize() z‘

Dim intClass Ais Integer

For intClass = 3 To "Eight"
choClasses. AddItem intClass

Hext

Dim intYear Ls Integer

For intYear = 1930 To 2000
frmCensus=.cboYears. AddItem intYear

Hext

== ol==l oy

You now see that this error is a bit complicated. For some reason, the Show method
was unable to run to completion to open the form. That’s why the error message
gave the error location as Project. ThisDocument.CensusMaps. However, there isn’t
anything wrong with the Show line of code. The bad line is actually inside the
form’s initialize event.

12 the debug tools

When an error spans multiple procedures, you can see a list of them by clicking the
Call Stack button. Call Stack lists the procedures that you are currently stepping
through. The initialize event procedure (the current procedure) is at the top of
the list.

), 1 a?M=EE B &R

v

e
Project Madule, Funcion
Project. frmCensus.Liser Form_Initialize .
[<Hon-Basic Code] Clase 1
Project. ThisDocumenk.CensusMaps

Click Step.

The first line of the initialize procedure runs and the first line in the For loop is
highlighted. (Dim and other declaration statements are skipped.)

M ex(8a.mxd - frmCensus (Code) T -0l =
iUseanrm j ilmtlallze _:]
Priwvate Sub UEean[m_]nltiﬁlize[J E}
Dim intClass As Integer
=23 For intClass = 3 To "Eight"

choClasses. Additem intClass

Next -J

Dim int¥ear ks Integer
For incYear = 1930 To 2000
frmCensus.cbao¥ears. iddItem intYear

A type mismatch appears because the code tries to use a string where an integer is
expected. The StartValue is 3, but the EndValue is “Eight”. The EndValue should be

a number, not a string.

) Run-time error ‘13
1Y

Type mismatch

[o] |

For a detailed description of this error, you can click the error message’s Help button.
The type mismarch error above is error number 13. Common errors like this have an
identification number that you can look up. You can see a list of all errors by search-
ing the Microsoft Visual Basic online help for Trappable Errors.

CHAPTER 8 « FIXING BUGS

Click OK.
Change “Eight” to 8.
You have fixed the run-time error. The code is now ready to test again.

On the Debug toolbar, click Run. (This Run button works just the same as the
one on the Standard toolbar.)

~ Debug

B | » o m M ELEE DR &
|

Run

ArcMap and the Census Population Maps dialog box appear. If you click MakeMap,
it will make a map. However, some people have complained that they get an error
message when they pick certain years.

Census Population Maps 2 = x|

Choose & Census year 2000 -

Choose a number of classes 3 -
Choose a state &labama -

Maketap I Quik |

Click the Choose a Census year drop-down arrow to see the years that can be
selected.

Census Population Maps . ‘. i ¢ -Ei

Choose a Census vear [zpon =

1993 -

Choose a number of classs 1994
1995
1996

Choose a state 1997
Alath {955

2000 -2
MakeMap |

In your original code, only the decade years were added to the drop-down list, but
now every year between 1930 and 2000 is there. The Counties layer attribute table,
however, only has data for each decade. Having all those extra years in the drop-
down list is a logic error—a flaw in the program design—but it leads to a run-time
error. If the user picks a nondecade year, there is no corresponding data to display.
(It would be a pure logic error if incorrect data was shown and no error message was
generated.)

Click Quit.

sing the debug lools

Next, you will add a breakpoint and step through the code to find the logic error.
Make sure the code module for frmCensus is active.

in the UserForm_Initialize event, add a breakpoint by clicking in the margin, to
the left of the first line of the Years loop.

The line turns red.

P exDBa.mxd - frmCensus (Code) S 2 B
[Userrorm =] [wtorzs]

Dim intClass As Integer :{l
For intClass = 3 To 8

choClasses. Addlten intClass
MNext

Dim intYear As Integer _I

Breakpoint — @ For intYear = 1930 To 2000

frmCensus.cboYears. AddItem int¥ear

Now you will run all the code up to that line.

On the Debug toolbar, click Run.

Your code runs to the breakpoint. The code pauses and that line turns yellow. While
it's paused you can run, step, or view variable values.

Click Step. Then hover your mouse over the intYear variable.

The variable contains 1930, the first value in the loop.
P ex08a.mxd - frmCensus (Code) : 2 il =loix |
[ugerForrn '1 Tln'ltialize j

Dim intClass As Integer j

For intClass = 3 To ©

choClasses. hddItern intClass

Next

Dim intYear is Integer ‘l
P
=% frmCensus.cho¥ears . iddIten int¥ear

Next
- -
=l K 27

Everything looks normal so far. You'll run the loop again.

CHAPTER 8 ~ FIXING BUGS!

Click Step twice to run through the loop again. Hover your mouse over the
intYear variable.

You expect to see 1940, but you see 1931. A logic error is adding every year to the
choYears combo box. The loop is running as told, but it’s not incrementing by 10,
because the Step keyword and 10 are missing from the loop’s first line (the red line).

B ex08a.mud - frmCensus (Code) =123

UserForm x| |ittiatize =l
Dim intClass is Integer j
For intClass = 3 To 8
choClasses. AddItem intClass
Next

{
Dim inc¥ear Ls Integer J

For intYear = 1930 To 2000 Step 10 is

L]
= frmCensus.choYears. AddItem intYear missing

Next hare
FEi|]

Add Step 10 at the end of the first line of the For loop.

For intYear = 1930 To 2000 Step 10
. In the margin, click the red circle to remove the breakpoint.
. On the Debug toolbar, click the Reset butten.

The code is reset back to its first line.

|
' M)y admEES: OO0 & %

Reset

. Click the Run button.
The dialog box appears.

Census Population Maps o X[

Choose a Census year 2000 =

Choose a number of dasses 3 -l
Choose a state Alabama [

|
1 Haketap | Quit
|

Click the Choose a Census year drop-down arrow and click 1950.

Now, only the decade years appear as choices.

ing the debug lools

Set the number of classes to 5 and the state to Texas. Click MakeMap.

i Census Population Maps

Choose a Census year 1950 =

Choose a number of classes 5
Chonse a state I Teas =

You have fixed the errors introduced by your coworker while you were on vacation.
Tactfully, you leave a copy of Getting to Know ArcObjects on his desk.

Click Quit.

The suggestions below can minimize errors in your code.

» Turn on Option Explicit to identify typing mistakes in variable names.

¢ Run the code and decipher any error messages.

e Use the Debug toolbar to isolate bad lines of code.

o Test for logic errors by entering values for which you already know the correct
results.

¢ Try all combinations of options on dialog box controls.

» Have someone else test the logic and try all the controls.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter08. Rename the file my_ex08a.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

ction 2% Ifﬁdg;
HAPTER9

At an early age children inevitably ask, “Where do babies come from?” In VBA
years, you are at that age and ready to ask a similar question, namely, “Where do
objects come from?” Fortunately, it’s less awkward to answer the second question
than the first. Objects come from classes.

You can make a new object with two lines of code. The ones below make a new dog
object.

Dim dl As Dog
Set dl = New Dog

Later in the chapter, we'll talk about this code in more detail; right now, the point is
that you can make a dog object because somebody somewhere has already made a
Dog class. Your dog object comes out of that class. The person who made the class
defined what dogs are and what they do. They may have decided thar dogs have a
Name property and a Bark method. That allows you to write code like:

dl.Name = "Sparky"
dl.Bark

A class is like a blueprint or template—you can make as many objects from it as you
like. Every new object that comes from the Dog class has the same collection of
properties and runs the same methods. The code below makes a second dog, sets its
name, and makes it bark.

Dim d2 As Dog
Set d2 = New Dog
d2.Name = "Rex"
d2.Bark

Mavhe vou're thinking that if objects come from classes, that just raises another
¥ J]
question: where do classes come from? Programmers make them, of course—but how?

A class is basically a container full of properties and methods. The container is a
code module and the properties and methods are procedures.

You already know about storing procedures in code modules. In chapter 4, you wrote
procedures for a Tax Caleulator form and stored them in a module called a form
module. In chapter 6, you wrote procedures for a CrimeAnalysis toolbar and stored
them in a module called a standard module. It’s the same thing with classes. You
declare variables and write procedures that become the properties and methods of
the class, and you store them in a module called a class module.

The following graphic shows the code module for the Dog class, along with its
properties and methods:

& Project - Dog {Code) S s
!tc:neral) _v_]]Bnrk Li

Dam Neme he String

Public Sub Bark()
HMsgBox "Roof, Roof, Roof”
End Sub

A o

To create a property, you declare a variable and specify a data type. The first line of
code in the example creates a Name property that accepts any text string as a value.

Dim Name As String

To create a method, you write a subroutine or function. The next lines in the
example create a Bark method.

Public Sub Bark()
MsgBox "Roof, Roof, Roof"
End Sub

Running this method displays a message box.

Every object you make accesses the code in the class module it comes from. When
you create a d1 dog and set its Name property to “Sparky,” VBA looks at the Name
property code in the Dog class module and makes sure that a string is expected.
When vou tell the dog to bark, your code calls the Bark() subroutine in the Dog class
module and runs it.

You can think of object-oriented programming as having two tiers: a lower tier of
creating and using objects from existing classes, and an upper tier of creating the
classes themselves by writing the code for properties and methods in a class module.
Programmers refer to these tiers as client and server programming. A class is called a
server since it provides services to clients. When you make a class, you are doing

CHAPTER g = MAKING YOUR OWN OBJECTS

server-side programming. When you write code to create an object from a class and
use its properties and methods, you are doing client-side programming. Your code is
like a client receiving services.

This book is mainly about client-side programming with ArcObjects servers.
However, knowing a bit about server-side programming can only help make you a
better client-side programmer.

r———i

L reating

L=

4

1
Cclaggpes
classes

 Je | W

| {)
e

Microsoft programmers have already created classes for all the VBA objects like
forms and controls. ESRI programmers have already created classes for all the GIS
ohjects like maps and layers. You may wonder if there’s anything left for you. Luckily,
there are plenty of classes to be created that are specific to the problems you must
solve in your work.

Say you work for a city and you are building an application to help manage rax
assessment and collection. It might be useful to model the city’s land parcels in
ArcMap. Neither VBA nor ArcGIS has a parcel object. Sure, you could make a
Parcel layer from a Parcel Feature Class in a geodatabase and query its attributes. But
still, there is no programmable object called a parcel. So you couldn’t write a line of
code like the one below to display a parcel’s value;

MsgBox myParcel.Value
And you couldn’t write a line to display a parcel’s zoning code:
MsgBox myParcel.Zoning

That may give you a reason to create a parcel class of your own. Before you do the
programming, however, you need to do some planning. What properties should
parcel objects have and what methods should they run?

Say you decide that parcel objects should have a Value property. You want this
property to have the Currency data type (since the parcel value is monetary) and
you want to be able to get or set it. You also decide that parcels should have a Zoning
propetty. This property will have a String data type (to hold values like “residential”
or “commercial”) that you also want to be able to get or set. Finally, you want a
method that calculates the tax on a parcel.

At first, you might sketch your ideas on paper, but sooner or later it’s a good idea to
represent them with Unified Modeling Language (UML). UML is a diagramming
technique that programmers use to draw classes, properties, and methods with stan-
dard symbols. For example, classes (like Parcel) are drawn as rectangles, properties
(like Value and Zoning) appear next to barbells, and methods (like CalculateTax)
appear next to arrows. These UML pictures are called object model diagrams.

Parcel

=8 Value: Currency
=& Zoning: String -
-4— CalculateTax (): Currency

In the diagram, data types are listed to the right of properties and methods. For
example, you see Zoning: String which means that the Zoning property is stored as
a string.

CHAPTER Q MAKING YOUR OWN OBJECTS

There are several software packages that draw UML symbols. If you code applications
with the participation of other people—especially other programmers—it’s probably
worthwhile to buy one of them. Whether you use UML or not, it’s essential to
diagram your class before you begin coding it.

The diagrams are most useful after your coding work is done. People who are new to
your classes can look at your diagrams to understand how they work. In the following
chapters, you will look ar ArcObjects diagrams to learn how those classes work.

In VBA, you create a new class by making a new class module. You can store the
module in any of the three projects: the current map document, the normal tem-
plate, or a base template. If you create the class in the current map document, like
the Parcel class module below, client-side programmers will only be able to create
parcel objects in that map document. If you want the class to be available to any
map document, you should store the class module in the Normal project.

+ Normal {Normal.mst)

; &é Project
& [Archap Objects
e R g Project - Parcel (Code) S =10
i (] References {General) | |meciarations) =

To make a property for a class, you simply declare a variable with a data type. You've
decided that the Parcel class will have two properties. You create them by by declar-
ing variables in the class module.

& Project - Parcel (Code) i = ; ol x|
i(General) _‘_’j (Declarations) _vj
]

Public Value ks Currency

Public Zoning As String

Unlike the variables you've worked with so far, these variables are declared outside a
procedure and with the Public keyword, instead of inside a procedure with the Dim
keyword. Variables declared with Dim can only be used in the procedure they are
declared in. The Value and Zoning variables, however, do not belong to a specific
procedure. Declaring them outside a procedure and with Public allows them to be

Creating classes g

used by any procedure in any code module (as long as the procedure is in the current
map document, since that’s where you are storing the class).

Properties can also be created by the more advanced method of writing property
procedures. (In chapter 2, you read that there are four types of procedures: event,
subroutine, function, and property.) With property procedures, you can write more
detailed code to control the getting and setting of properties. For example, you
might write a procedure that retrieves property values from a database table. While
this book does not go into the subject of property procedures, you can learn more
about them by searching the Visual Basic online help for the Property keyword.

To make a method for a class, you code a subroutine or a function, depending on
whether the method returns a value. The Calculate Tax method will return a tax
amount, so it would be coded as a function. (The code would be similar to the code
you wrote in chapters 4 and 5 to calculate taxes. The difference is that instead of
putting it in a click event procedure, which requires user interaction to run, you
would make it one of the object’s methods, so it could be run behind the scenes.)

4 Project - Parcel (Code) = RN _igix|
(General) =] [cakculateTax =l
Public Value As Currency ‘;{

Public Zoning &s String

Public Function CalculateTax()

The CalculateTax function

End Function

=

On the UML diagram of the Parcel class, the data type returned by the method is
listed after its name. CalculateTax(): Currency translates to “The CalculateTax
method returns the Currency data type.” So you add As Currency to the function’s
code as shown below. The method has no arguments, so its parentheses are empty.

& Project - Parcel (Code) 1o} x|
I(—Genernl) :j
Public Value Az C Ti

Public Zoning &
Public Function CaleoulsteTax () As Currency

End Function

The CalculateTax function's return
value is the Currency data type

CHAPTER 9 MAKING YOUR OWN OBJECTS

Classes are code modules, properties are variables (or property procedures), and
methods are subroutine or function procedures. The objects that come out of the
class may be simple or complex, depending on the code you write for each property
and method. Client-side programmers never know the difference, because they get
all of that code to run by using the object.property and object.method syntax.

Exercise 9a

As a programmer for a wildlife conservation project, you work with biologists who
observe elephants. Currently, the scientists use notebooks to keep track of their ele-
phants. They also record each elephant’s trumpeting sound in a .wav file. Your job is
to create an ArcMap environment for their work. Since elephant objects don’t exist
in VBA or ArcGIS, you will program a new elephant class.

The biologists want to store and retrieve elephant names and ages. They also want
to be able to hear an elephant’s trumpet sound. You can use that information to
make a UML diagram of the Elephant class.

Elephant

B Age: Integer
m— Name: String

-4— Trumpet

In this exercise, you will do the server-side programming to make an Elephant class
based on the diagram. Your elephant class will consist of two variables and a proce-
dure that plays a sound file. In the next exercise, you will do the client-side program-
ming and write code to create elephant objects out of the class and use their
properties and methods.

tart ArcMap and open ex09a.mxd in the C:\ArcObjects\Chapter09 folder.

The map is empty because the Elephant class you are about to create won’t be linked
to any geographic location. In later chapters, you will learn how to create geographic
features like points, lines, and polygons, and assign their geographic coordinates and
attribute values.

Click the Tools menu, point to Macros, and click Visual Basic Editor.

In the Project window, right-click Project (ex09a.mxd), point to Insert, and click
Class Module.

Class] opens and looks just like any other code module. This one will store your
Elephant class and the code for its properties and methods.

realing classes

In the Properties window, for the Name property, replace Class1 with Elephant.
Press Enter.

Properties - Elephant]

|Elephant ClassModule _:_]
. Alphabetk | Cotegorized |

’ Elephiant
stancing 1 - Private

The Elephant class is created. Now you will add its properties.

In the Elephant class module, add the following two lines of code to declare age
and name variables.

Public Age As Integer
Public Name As String

Notice that you do not write code to set these variables. That’s because they will be
set by client-side programmers (including you) who make elephant objects out of
your Elephant class. For example, after creating a new elephant, a client-side
programmer might write

myElephant .Name = "Benny"
or
myElephant.Age = 10
Now that the properties are done, you will code the Trumpet method.

With the Elephant code module active, click the Insert menu and click
Procedure.

In the Add Procedure dialog box, type Trumpet as the name. Make sure the Type
is set to Sub and the Scope to Public.

If the Trumpet method were going to return a value, like a decibel level, you would
make it a function. Since it just plays a sound file, you'll make it a subroutine.

Name: | Trumpet o l

e

| & s ,._.cfi]

| Function

| ;
T property
SR —— 1
& {

| € Private ‘

[~ All Local variables as Statics

CHAPTER g -~ MAKING YOUR OWN OBJECTS

Click OK.

Inside the Trumpet subroutine, add the following code. (If you have installed the
I = J
data at a different location, you will need to modify the path accordingly.)

sndPlaySound __
"C:\ArcObjects\Data\elephant.wav",
SND_ASYNC

This code is a bit different from anything you've seen before. The sndPlaySound
function does not come from either VBA or ArcObjects, but is a Microsoft Windows
Application Programming Interface (API) function. API functions carry out operat-
ing system operations like playing sound files, finding out who is logged on to a
computer, or retrieving the path to the Temp folder.

To call an API function in VBA, you first have to declare it in another code module.
(You did this in chapter 6 when you declared the KilogramToPound function in one
module and called it from another.) In this exercise, the function has already been

declared for you in the standard module called PlaySounds.

The sndPlaySound function has two arguments: the first is a path to a .wav sound file,
and the second is a constant, which can be either SND_SYNC or SND_ASYNC.
The SND_SYNC option pauses the code until the sound file has finished playing.
The SND_ASYNC option lets more code run while the sound file plays.

Functions return a value, but you don’t always have to use it. The sndSoundPlay
function returns True if the sound plays and False if it doesn’t. To keep the Elephant
code simple, you aren’t going to use the returned value.

To learn more about the sndPlaySound function and its options, go to
msdn.microsoft.com and search for sndPlaySound.

Your elephant class is now complete. Granted, it's a pretty simple class, but it relies
on the same coding principles you would use to create more robust classes. You are
now ready to make elephant objects.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter09. Rename the file my ex09%a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

Credating classes

Creating objects

Up to now, you have created objects with the aid of a user interface. For example, in
chapter 3, you created a new form object from the Insert menu, and you then created
CommandButton objects by dragging them from the Visual Basic Editor Toolbox
onto the form.

Now you will create objects with code, by declaring and setting variables. Variables
represent not only basic data types like numbers, dates, and strings, but can also
represent objects.

Variables that represent basic data types are called intrinsic variables. You declare
and set them with code like the following:

Dim X As Integer
% = 365

Then you use them. .
MsgBox X

Variables that represent objects are called object variables. These variables are also
declared and set, but the code is a little different. When you declare an object vari-
able, you use the class name as the data type. For an elephant object, you would
declare the variable as Elephant.

Dim E As Elephant

The line of code to set an object variable begins with the Set keyword. If you are

creating a new object, you also use the New keyword between the equals sign and
the class name. So to create a new elephant object, you would write the following

line of code:

Set E = New Elephant

Now that you have an object variable called E, which refers to a new elephant, you
can use the variable to set the elephant’s properties and run its methods.

E.Name = "Mark"
E.Trumpet

Then, if you want, you can create some more elephants.

Dim El1 2As Elephant
Dim E2 As Elephant

Set El = New Elephant
Set E2 = New Elephant

CHAPTER Q MAKING YOUR OWN OBJECTS

After creating them, you can set their properties so that each one is unique.

El.Name = "Jerry"
El.Age = 24

EZ2.Name = "Ron"
E2.Age = 28

What about objects you create through the user interface? You don’t have to declare
and set object variables for them because VBA does it for you. When you use Visual
Basic Editor to create a form object, for example, and you set its Name property in
the Properties window, that name becomes the form’s variable name. Suppose you
name the form frmXYZ. You can now proceed to set its properties and run its
methods with code like the following:

frmX¥YZ.Show

Exercise 9b

In the previous exercise, you made an Elephant class and programmed its properties
and methods. In this exercise, you will make new objects out of this class and use
their properties and methods.

Start ArcMap and open ex09b.mxd in the C:\ArcObjects\Chapter09 folder.
On the Standard toolbar you see the AddElephant button next to the Add Data

button.

DEEHS & BB X |0 ~|& 9o RaREY-AF IR
r

Right-click the AddElephant button and click View Source.

You see the AddElephant button’s empty click event. You will write code there to
create elephant objects from the Elephant class.

In the ThisDocument code module, in the AddElephant click event, add the
following line of code to declare an object variable.

Dim theElephant As Elephant

Add the following line of code to create a new elephant object.
Set theElephant = New Elephant

After the Dim and Set lines run, a new object is in your computer’s memory and you
have a variable (theElephant) to refer to it.

reating objects

Type theelephant. (including the dot).

Your Elephant class is recognized by VBA as a full-fledged class. As with any other
object variable, after you type the dot you see the drop-down list of its properties and
methods.

% ex09b.mxd - ThisDocument (Code} :
]MdElwhan(=] fouek |
Private Jub AddElephant Clickli) i

Dim theElephant Ls Elephant
Set theElephant = Ney Elephant

theelephant.
End Sub

& Trumpet

= 4| B

Next, you will write code to set this new elephant’s properties.

Finish the line of code you started above by using an input box to set the
elephant's name property.

theFElephant .Name = InputBox("Enter name: ")

Then set the elephant’s age property.
theElephant.Age = InputBox("Enter age:")

When these two lines run, input boxes appear to your biologist-users. Next, you will
write a line of code that displays the values back to the user.

Add a line of code to display the new elephant’s name and age.

In the message box, the elephant’s name will be on the top line. vbCrLf (carriage
return line feed) will put the elephant’s age on the second line.

MsgBox "Name: " & theElephant.Name & vBECYLE & .
"Age: " & theElephant.Age, _
vbInformation, "Add Elephant”

s, ex09b.mxud - ThisDocument (Code) e ={01 %}
[AddEiephant =] [ciick =
Private Sub AddElephant Click() =

Dim theElephant As Elephant
Set theElephent = New Elephant

theElephant .Hamse = InputBox ("Enter name:")
theElephant.ige = InputBox("Enter age:")

HMsgBox "Name: " & theElephant.Name £ vbCrLf & _
rige: " & theElephant.ige,
vbInformation, "Add Elephant™

End Sub

=

CHAPTER § MAKING YOUR OWN OBJECTS

EJ At the end of the AddElephant procedure, just before the End Sub line, add the
following line of code to run the Trumpet method.

theElephant . Trumpet

Now you will test the AddElephant button.

Close Visual Basic Editor.
On the ArcMap Standard toolbar, click AddElephant.

In the first input box, type Jack for the name. Click OK.

EEEBE

In the second input box, type 35 for the age. Click OK.

You see the new elephant’s data display. = 9

E Click OK on the Add Elephant message box.

After clicking OK, you hear the elephant trumpet. If you don’t hear the trumpert,
check your computer’s volume, speakers, and sound card.

[8 If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter09. Rename the file my_ex09b.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

In the last chapter, you saw that objects come from classes and you learned how to make
a VBA class of your own. In this chapter, you'll make the transition from working with
VBA objects, like forms, combo boxes, and your own custom objects (the elephants), to
working with ArcObjects, like maps and layers. To do that, you have to learn a new
concept—the concept of a programming interface. This is something very different
from a user interface.

Suppose you added a couple more properties and methods to the Elephant class from
the last chapter and then decided to group them in some logical way. One group
consists of properties and methods that are specific to elephants and the other group
applies to animals in general.

Elephant

=8 TuskLength: Integer
-— Trumpst

8 Age: Inleger ‘

=8 Name: String
-<t— Sleep

An interface is a logical grouping of properties and methods for a class. It might be
based on the level of generality or on some other similarity of use or purpose.

The Elephant class in this example has two interfaces. By convention, interface
names start with the letter “1,” so these interfaces might be called IElephant and
[Animal. On a UML diagram, interfaces are shown with lollipops.

Elephant

|Elephant =8 TuskLength: Intager
~— Trumpet

IAnimal =-a Age: Integer
=8 Name: String
-4— Slesp

You may be thinking that if that's all there is to an interface, it's pretty simple. In
fact, there’s more to it, but for this book, you don’t need all the details. Briefly, inter-
faces are part of the Component Object Model (COM), a set of programming stan-
dards developed by Microsoft. A major benefit of COM is that it allows code written
in one language, like Visual Basic, to work with code written in another language,
like C++. The ArcObjects interfaces and classes, for example, are created with C++
and you can program with them using VBA.

In this book, yowll work with existing ArcObjects classes and interfaces, but you
won't make any of your own. When you're ready to do that, you'll need a deeper
understanding of interfaces. You can get that from the book Exploring ArcObjects.

Programming with classes that have interfaces is justa bit different from programming
with classes that don't. Here's how you made an elephant object and set its Name
property with the interfaceless Elephant class from the last chapter:

Dim e As Elephant
Set e = New Elephant
e.Name = "Ethan"

You didn't have to know anything about interfaces to use the elephant’s Name
property. As you work with classes that have interfaces, you have to find out which
interface a property or method is on before you use it.

The Map class below has two interfaces: IMap and [ActiveView. As you declare a
Map variable, you have to choose one of its interfaces.

Map

IMap O——=— Layer: lLayer
B MapScale: Double
B8 Name: String ‘ Name property

-— AddlLayer: [Layer
-a— Movelayer: ILayer

o . =& Extent: [Envelope
|ActiveView B8 ShowSelection: Boolean J

CHAPTER 10~ PROGRAMMING WITH INTERFACES

Say you want to create a map and set its Name property, just as you did with the
elephant a moment ago. The Name property is on the IMap interface. When you
declare the Map variable, you use the interface name (IMap) instead of the class
name (Map). So you declare the variable as IMap. The rest of the code is the same
as the elephant code. The variable is set with the New keyword, and the Name prop-
erty is set equal to a string.

Dim pMap As IMap
Set pMap = New Map
pMap.Name = "Ryan’s Map"

Had you wanted the Map class’s Extent property, you would have declared the
variable as IActiveView, since Extent is on the IActiveView interface.

Dim pActiveView As IActiveView
Set pActiveView = New Map
pActiveView.Extent = someNewExtent

You only have access to the properties and methods of the interface to which a
variable is declared. So with pMap you only have access to IMap’s properties and
methods, and with pActiveView you only have access to [ActiveView’s properties
and methods. For now you will use one interface at a time. In the second exercise of
this chapter, you'll learn how to use more than one interface at a time.

Variables like pMap and pActiveView are called pointer variables because they point
to a specific interface. You can say that pMap points to the IMap interface and
pActiveView points to the [ActiveView interface. By convention, pointer variable
names have a “p” prefix.

Map

pMap — IMap O——{®m— Layer: ILayer
=8 MapScale: Double
m—8 Name: String

-4— AddLayer: ILayer
-a— Movelayer: ILayer

. " - " B8 Extent: [Envelope
pActiveView — IActiveView O——{:- ShowSelection: Boolean J

You may be wondering why you haven’t had to use interfaces with VBA objects.
Don’t they have them? As a matter of fact they do, but whereas ArcObjects inter-
faces are exposed, VBA interfaces are hidden by the programmers who created them.
When you use VBA objects, variables point to interfaces, but it’s done for you
behind the scenes.

That’s an advantage in one way, because you don’t have to think about it, but it’s
a disadvantage in another way. When interfaces are exposed, they can be shared.
That means you can create your own custom classes and have those classes use
interfaces created by someone else.

For example, you can create a class and tell it to use the ArcObjects IContentsView
interface. The tabs in the ArcMap table of contents each have the [ContentsView inter-
face. When your class uses that ArcObjects interface, it fits in with other ArcObjects.
[ContentsView on your object is recognized by ArcMap and becomes another tab in the
ArcMap table of contents. The custom tab shown below also has some ArcCatalog
interfaces. The result is a new tab that contains a fully functional ArcCatalog tree.

.ol

. DataDC.mxd - ArcMap - ArcInfo

! Fie Edit Yiew Insert Selection Tools Window Help.
‘\Dﬁﬂ@‘i s@% e = Eime - ‘:‘4"@‘*?i :
= . . T ¥

) Catdlog 4 - ™ e

4] arcgis
£ {3 ArcObjects s
[+] Chapterds
i {20 Chapter09
#1110 Chapterin
] Chapteril
{1 Chapteri2
[l 1 Chapterl3
B (] Chapterl4
{13 Chapterts
{1 Chapteris
{Z] Chapteri?
] Chapter18
% _1 Chapter12
&] Chapter20
= Data
-] Belize
=453 DC

ssault.shp

g burglaries shp ~
Display | Soutce Catalog o= Li

O A= Ao =l B z u A~ &~ £~ _;_v| =

| 39198475 137921.10 Meters | : 7

[Daving ¥ K

Custom tab

When interfaces are hidden, you can’t use them to make your own custom classes. In
this book, you won’t reap the benefits of exposed interfaces—that harvest will have

to wait until you start programming your own ArcObjects.

CHAPTER 10 PROGRAMMING WITH INTERFA

I,Iring IApplication and IDoctment

a0

lUsing IApplication and IDocument

Normally, when you use objects, you declare and set variables for them. When you
start ArcMap and open a map document, however, a couple of objects are already in
use. This is because you can’t do anything at all until you have a document open

in ArcMap.

The two special objects already in use are the Application object and the
MxDocument object. Since these objects are in use, it follows that variables have
already been declared for them. The name of the Application object variable is
Application. The name of the MxDocument object variable is ThisDocument.
These two are the only predefined object variables there are.

Application

ThisDocument ¥ Unt e = A it A THEEL = . =lolxj
| Fie Edt Yew Insert Selection Tooks Window bl ;
IDER& FE@|x|o - g|ias ']1;@‘@\':?%
—— — F T T ! ,,,;‘ = T |
=l £ City Map m b [4 i 3
= M Roads | L Ik
 Displey sl 24 ‘ o LN IS
[omna~ kOO~ A~ & o =B ro A- &~ . F~,
T 17e12IB AW 345430.15°N |

All ArcObjects classes have intetfaces; therefore, all ArcObjects variables are
pointer variables that point to interfaces. Application and ThisDocument point

to interfaces on the Application and MxDocument classes. (These two special vari-
ables don’t observe the convention of beginning with a lowercase “p.”)

The Application variable points to the IApplication interface on the Application
class. The variable has access to all the IApplication properties and methods, among

which is the Caption property.

l Application

Application — lApplication ©—{ !Application: IDispatch .
m—a Caption: String Caption property
®m-1 CurrentTeol: ICommandltemn
B— Document: IDocument

»— hWnd: Long

m— Name: String

m— StatusBar: IStatusBar

m— Templates: [Templates
m— VBE: Object

m—m Visible: Boolean

- FindExtensionByCLSID (in extensionCLSID:
IUID) : |Extension

- FindExtensionByName (in extensionName:
String) : IExtension

-a— IsDialogVisible (in dialoglD: Long) : Boolean

a— LockCustomization (in password: String,
custFilter: [CustomizalionFilter)

-— NewDocumenl {selectTemplate: Boolean,
templatePath: String)

-— OpenDocument (Path: String}

-a— PrintDocument

—— PrintPreview

-a— RefreshWindow

-4— SaveAsDocument (saveAsPath: String,
saveAsCopy: Boolean)

—— SaveDocument (saveAsPath: String)

-— ShowDialeg (in dialoglD: Long, bShow:
Wariant) . Variant

-«— Shutdown

- UnlockCustomization (in passward: String}

The code below uses the predefined Application variable to set the ArcMap window’s
caption.

Application.Caption = "Save Elephants”

In class diagrams, the barbells next to a property tell you whether you can get or set
the property. A two-sided barbell, like the one by the Caption property, means that
you can both get and set the property. A left-sided barbell, like the one by the Name
property, means you can get the property, but you can’t set it to something new. A
right-sided barbell means that you can set the property but not get it.

m—a Caption: String m— Name: String

Two-sided barbell Left-sided barbell

The ThisDocument variable points to the [Document interface on the MxDocument
class. The variable has access to all the IDocument properties and methods, among
which is the Title property.

MxDocument

ThisDocument — |Document IDocument : IDispatch
m— Accelerators: IAcceleratorTable
B— CommandBars: ICommandBars
B— |D: IUID

m— Parent: |Application

m— Title: Slring

B— Type: esrilocumentType
®— VBProject: [Dispatch

Title property
on IDocument

CHAPTER 10 PROGRAMMING WITH INTERFACES

In the diagram, all of IDocument’s properties have left-sided barbells, which means
you can only get their values. Say you want to display the title of the current map
document in a message box. The Title property is shown as Title: String, which means
that the Title property returns a string. You can display the map document’s file name
with the following code. No need to declare or set the ThisDocument variable.

Msgbox ThisDocument.Title

Exercise 10a

You have been asked to make some changes to the Washington, D.C., Police
Department’s Crime Analysis toolbar (the one you worked on in chapter 6). In this
exercise, you will add some security to the map document—since it contains sensitive
data—and you'll give the application a more meaningful title.

Because the crime map contains data that should only be seen by certain detectives,
you'll write an If Then statement to check the user’s identity. As the crime map
opens, your code will ask for a password. Users who know it are authorized to open
the map; others will get a warning and be sent to a less sensitive city street map.

When ArcMap starts up, its title bar contains three elements: the name of the .mxd
file, the name ArcMap, and the name of the current software license (ArcView,
ArcEditor, or ArcInfo). Your first task will be to use the Application object’s Caption
property to set a title that will be more meaningful to police personnel.

Application title

. ex10a.mxd - ArcMap - ArcView

:‘ Flie Edit Yiew Insert Selection Tools Window Help

IDBE& > b @x |« | [1ea]2 &N =

e — =7 =

=i £ District of Columbia
= 0O Arsons

s
€0 ks ; F

- Overview | Chart | 500 | 1000 | 1500 KiosToPounds

= [Burglaries
= @ Citystreets
O Lendmarks
[M DC Area

= & Main Streets

= B Predncts
Precinct

N MW N =

il [Sovce] Sole B

[puess k1O~ A-p=[fa S0 =l n 7 g| A== £ 5~

39695951 19626920 Meters | 7

Lsing IApplication and IDocument

Start ArcMap and open ex10a.mxd in the C:\ArcObjects\Chapter10 folder.

You see the District crime map, and you see that the ArcMap title is “ex10a.mxd -
ArcMap - ArcView” (or ArcEdit or Arclnfo depending on your license).

Click the Tools menu, point to Macros, and click Visual Basic Editor.

Unless the ThisDocument code module is already open, go to the Project window.
Under Project (ex10a.mxd), under ArcMap Objects, double-click ThisDocument.

The ThisDocument code window opens, and you see the code you wrote in
chapter 6 for the buttons on the Crime Analysis toolbar.

Click the object list drop-down arrow and click MxDocument. Click the
procedure list drop-down arrow and click OpenDocument.

% ex10a.myd - ThisDocum(Code) : B .:JQL’E!I
Object list —————[MxDocument =l | Procedure list

H

The OpenDocument event is to the map document as the Initialize event is to the
UserForm. These two events happen just before the user sees a map document or a
dialog box.

The code you are about to write in the OpenDocument event will ask the user fora
password. If they know the password, the map will open and the ArcMap title will be
replaced by a new one. Otherwise, a warning will appear, and a less sensitive street

map will open.

In the OpenDocument event, add two lines of code to declare a string variable
and set it with an input box that asks the user for the password.

Dim strPassword As String
strPassword = InputBox("Enter password")

You will set up an If Then statement to verify the password.

In the OpenDocument event, enter the following If Then statement.
If "Carter" = strPassword Then
Else
End If

Next, you will write code to run when the statement is true. You will use the predefined
Application variable and its Caption property to change the ArcMap application title.

After the Then and before the Else, type Application. (including the dot).

CHAPTER 10 =~ PROGRAMMING WITH INTERFACES

After typing the dot, you see a list of Application’s properties and methods.

% ex10a.mxd - ThisDocument {Code)

iManmmem . |Bpenl] ocument) _'J

Private Function HxDocument._OpenDacu.menc() ks Boolean

Dim strPassword As String
strPassuord = InputBox("Enter password”)
If "Carter” = strPassword Then

Application.
Else [n
B E&* CurrentTool
End If B Docurment

% FindExtensionByCLSID
% FindExtensionByName
& hvind

o P i | & [sDialogvisible

| End Function

Since the Application variable points to the [Application interface, the properties
and methods in the drop-down list above match those in the IApplication diagram.

Application

Application

variable — |Application O—— 'Application: IDispateh =
m—a Caption: Strin%
m-0 CurreniTool: ICommanditern
m— Document: [Document

m— hWnd: Long

m— Name: String

m— StatusBar: IStatusBar

m— Templates: [Templates

B— VBE: Object

m—m Visible: Boolean

-&— FindExtensionByCLSID (in extensicnCLSID:
1UID) : |Extensian

4 FindExiensicnByName (in extensionNams: |
String) : |Extension |

-4 IsDialogVisible (in dialoglD: Long) : Boolean

-— LockCustomization (in password: String,
custFilter: |CustomizationFilter)

-a— NewDocument (selectTemplate: Boolean,
templatePath: String)

-— OpenDocument (Path: String)

-4 PrintDocument

-4— PrintPreview

—a— RefreshWindow

-a— SaveAsDocument (saveAsPath: String,
saveAsCopy: Boolean)

Caption property

-a— SaveDocument (saveAsPath: String)
-s— ShowDialog (in dialoglD: Long, bShow:
Variant) : Variant
‘ —— Shutdown
—a— UnleckCustomization (in password: String)

Finish the line above i

he Caption property to Distric

Application.Caption = "District Crime"

When the wrong password is entered, your code will warn the unauthorized user that
they can’t open the crime map’s .mxd file. To make the warning message, you will
use the IDocument interface’s Title property to get the .mxd file name.

ThisDocument MxDocument

variable — IDocument O—— IDocument : IDispatch

m— Acceleralors: |AcceleratorTable
®— CommandBars: ICommandBars
= |D: IUID

®— Parent: [Application .
®— Title: String Title property
m— Type: esriDocumeniType
®— VBProject: [Dispatch

[sing IApplication and IDocument

After the Else keyword, add the following code to concatenate the map
document’s title with the warning instructions.

Msgbox ThisDocument.Title & " is a secure map. &
"A street map will be opened for you."

To send unauthorized users into another map, you will use the IApplication’s
NewDocument method. Given a path to a map template (.mxt file), this method
opens the specified map. Because NewDocument is on the [Application interface,
you can still use the predefined Application variable.

Application

\

Application

variable — IApplication ©——{ !Application : IDispatch

m—a Gaption: Strin

= CurrentTool: IGCommanditemn
m— Document: IDocument

m— hWnd: Long

m— Name: String

m— StatusBar: 1StatusBar

m— Templates: ITemplates
m— VBE: Object

=& Visible: Boolean

— FindExtensionByCLSID (in extensionGLSID:

IUID) : [Extension

-a— FindExtensionByName (in extensionName:
String) : |Extension

— IsDialogVisible (in dialoglD: Long) : Boolean

-a— LockCustomization (in password: String,
custFilter: ICustomizationFilter]

a— NewDocument (selectT}emp\ala‘ Boolsan, NewDocument
templatePath: String|

— OpenDocument (Path: String) method

~&— PrinlDocument

-t PrintPreview

-4— RefreshWindow

-g— SaveAsDocumen! (saveAsPalh: String,
saveAsCopy: Boolean)

& SaveDocument (saveAsPath: String)

-4— ShowDialag (in dialoglD: Long, bShow:
Variant) : Variant

-4— Shutdown

- UnlockCustomization (in passwerd: String)

Add the following line of code that uses the NewDocument method and a path
to the map template file. (If you installed the data at another location, type the
appropriate path.)

The streets.mxt file in the Data folder contains the District’s boundaries and streets
but no sensitive crime data.

Application.NewDocument _
False, _
"C:\ArcObjects\Data\dc\streets.mxt"

NewDocument’s first argument is either true or false. If true, the New template dialog
hox opens before a map opens. Your users don’t need to see any dialog boxes, so you
use false.

CHAPTER 10 - PROGRAMMING WITH INTERFACES

T

The second argument is the path to the template .mxt file. Whenever you type path
and file names in code, you should double-check your typing and use a file browser or
ArcCatalog to confirm the file’s location. Second only to typos, incorrect path and

file names are probably the greatest source of VBA errors.

%, ex10a,mved - ThisDocument (Code)

!M:I]ncumem :J lOpenunnument) :i

Private Function MxDocument OpenDocument() is Boolesn j

Dim strPassword As String
strPaszsword = InputBox ("Enter password")
If "Carter” = strPassword Then
Application.Caption = "District Crime"
Else
MsgEox ThisDocument.Title & " is a securs wap. L -
"i street map will be opened for you.”
Application.NevDocument
False, _
roiharcobjectsidataldel streste . mxt”
End IT

End Function

EE ﬂ_......l = Xz

The OpenDocument event procedure’s code runs when a map document opens. So
to test it, you will save your work, close the map document, and then reopen it.

Close Visual Basic Editor.

In ArcMap, click the File menu and click Save As. Navigate to
C:\ArcObjects\Chapter10. Rename the file my_ex10a.mxd and click Save.

Instead of quitting and restarting ArcMap, you will open a blank map document and
then reopen the crime map you just saved.

In ArcMap, click the New Map File button on the Standard toolbar.

A new map document opens. To simulate an unauthorized user, you will try to open
the crime map with an incorrect password.

Click the File menu and click Open. Open my_ex10a.mxd in the
C:\ArcObjects\Chapter10 folder.

For the password, type ArcObjects. Click OK.

A message wamns that a streets map will be opened.

my._ex10a.mxd is & secure map, A street map will be opened for you.

==

1 sing IApplication and IDocument

»

Click OK on the warning message.

A new map opens with the streets and precincts layer. No sensitive data layers

are shown.

®_ Untitled - ArcMap - ArcWiew

} Fils Edic View Insert Selection Iocls Windaw Help

[Deaas|r =8x - -

& [958 >l g &N
————— — : ; : o ;
= £# District of Columbia | i |
= M CityStreets
= M DCarea
= [Main Streets

= @ Predincts [t pa=E 4]
Precinct i Sevr | AaT |
1 ol

s W N

iy [oee]

[395356,87 13992648 Meters | === 7

Next, you will open the crime map with the correct password.

Click the File menu and click Open. Open my_ex10a.mxd in the

C:\ArcObjects\Chapter10 folder.

For the password, type Carter. Your If Then statement is case sensitive, so make

sure the “C" in Carter is uppercase. Click OK.

The crime map document opens. The application title is now District Crime.

% Districk Crime

| e Edt Yew Insert Selection Tooks Window Help

Deus|lbex |-« |(sf 12 &8

If you are continuing with the next exercise, leave ArcMap open. Otherwise

close it.

If you leave ArcMap open, the application title will remain District Crime. The title
stays until you run code to change it, or until you quit ArcMap.

CHAPTER IO

PROGRAMMING WITH INTERFACES

Using multiple interfaces

In the previous exercise, you used the Application and ThisDocument predefined
variables. The interfaces they point to, [Application and IDocument, don't have
many properties or methods. It’s great to have these two variables as starting points,
but there are other interfaces out there with lots of other properties and methods
that you might find useful.

As you know, ArcObjects classes can have several interfaces. If you have a variable
pointing to one interface on an object, you can write two lines of code to declare and
set a second variable to point to one of that object’s other interfaces. You end up
with two variables and access to the properties and methods of two interfaces.

In the example below, you are working with the Dog class. You want to create a new
dog and get it to bark. The Bark method is on the IDog interface, so you declare a
variable to that interface. In accordance with convention, you name the variable
pDogl. Then you use Set and New to create a new dog object. Finally, you run the
Bark method with a 2 to make the dog bark twice.

Dim pDogl As IDog
Set phogl = New Dog
pDogl.Bark 2

Dog
pDog1— IDog #8 Color: someColor
<— Bark (In Count: Integer) Bark method
IPet ®-8 Name: String J
=8 |DTag: Integer

Say you want to create a second dog and name it Rex. The Name property is on the
[Pet interface, so you declare a variable to that interface and you call it pPetZ. You
use Set and New to create the second dog and then, with a third line of code, you set
its Name property to Rex.

Dim pPet2 As IPet
Set pPet2 = New Dog

pPet2 .Name = "Rex"
Dog
IDog 58 Color: someColor |
~— Bark (In Count: Integer)

R F T
B2 |DTaq: Integer

I sing multiple inierfaces

You now have two dogs. The first dog, referred to with the pDogl variable, is
nameless but barked twice. The second dog, referred to with the pPet? variable, is
named Rex and has not yet barked.

Now what if you want Rex to bark? The pPet2 variable points to the [Pet interface,
which only gets you to the Name and IDTag properties.

You might be wondering if you can use the pDogl variable, and write:
pDogl.Bark

You can, but that will only make the nameless dog bark. What you need to do is set
up a second variable that points to Rex’s IDog interface. This switching of interfaces
takes two lines of code: one to declare a variable to the second interface and another
to set that variable equal to the variable you already have. Switching interfaces is
called Querylnterface, or QI for short.

To get Rex to bark, you declare a second pointer variable to the [Dog interface,
which has the Bark method.

Dim pDog2 As IDog

Instead of setting the variable equal to a New Dog (which would create a third dog),
you set it equal to pPet2.

Set pDog2 = pPet2

Now the pPet2 and pDog2 variables both refer to the same object (Rex); each,
however, points to a different interface.

Dog
pDog2 — IDog &8 Color: someColor
-¢— Bark (\Féounl: Integer) —
pPETZ IPet 8 Name: String j
=1 |DTag: Integer

Since pDog? points to the IDog interface, you can use the Bark method. The next
line of code gets Rex to bark three times.

pDog2 .Bark 3

CHAPTER IO PROGRAMMING WITH INTERFACES

The pPet2 variable points to Rex’s [IPet interface. So you could use pPet2 to set Rex’s
[DTag property with the line of code below.

pPet2.IDTag = 714

You have created a dog, named him Rex, got him to bark, and given him an IDTag
number. Now how about getting back to the other dog and giving it a name? The
variable pDogl points to the nameless dog’s IDog interface, but the Name property
s on the IPet interface. So to set the dog’s name, you have to switch interfaces. This
time you have to declare a new variable that points to the IPet interface, then set
that variable equal to the one you already have.

Dim pPetl As IPet
Set pPetl = pDogl

Both pDogl and pPet! refer to the nameless dog, but point to different interfaces.
You can now set the nameless dog’s Name property with the pPetl variable. =ik

pPetl.Name = "Radar"
And, of course, you can still make Radar bark (again) with the original pDog1 variable.
pDhogl.Bark 4

In all, you have four variables referring to the two dogs. You can use any of the four
variables with the properties and methods on their respective interfaces.

[sing multiple interfaces

Exercise 10b

Over time, the crime map will be updared and used by many different people. In this
exercise, you will write code to keep track of which users open it. This will help you
see which members of the department are getting the most value from the map.

You'll store the information in the map document’s Properties dialog box, which has
input boxes for things like the map’s title, subject, and author. Specifically, your code
will write each user’s password and access time into the map’s Comments area.

ex10b.mud Properties o %
Summary I
Tits: Iesﬂ Db.rmxd
Subject: [
Author: ;—
Categon i
Kepwmords: l
Comments:
The Comments area of
the Properties dialog box
Hypeilink base: L
Template: Mormalmst
[V Save thumbnail image with map Dala Source Options...
_ Cencd |

Also, for the benefit of people sitting in the back of the room, you’d like to make the
crime map as big as you can. At the start of this exercise, you’ll write code to make
the ArcMap window fill the display screen.

Start ArcMap and open ex10b.mxd in the C:\ArcObjects\Chapter10 folder.
For the password, type Carter. Click OK.

You see the District Crime map.

Click the Tools menu, point to Macros, and click Visual Basic Editor.

The current password code is located in the OpenDocument event procedure in the
ThisDocument code module. You'll go there to write more code.

Unless ThisDocument is already open, go to the Project window under Project
(ex10b.mxd) and double-click ThisDocument under ArcMap Objects.

The ThisDocument code window opens and you see your code from earlier exercises.

CHAFTER 10 PROGRAMMING WITH INTERFACES

—7

Click the object list drop-down arrow and click MxDocument. Click the procedure
list drop-down arrow and click OpenDocument.

You see the If Then statement that checks for the user’s password.

\; ex10b.mzd - ThisDocument (Code} = -1o ‘ﬂl
} Fllxl]m:urnen(j |0pen|]ol:umen1
Private Function]V[xDDcwnenr__OpEnDocumEnt.() ks Boolean j

Dim scrPassword As String
scrPassword = InputBox ("Enter password”)

If "Carter" = strPassword Then
Application.Caption = "District Crime"
Elze
MsgBox ThisDocument.Title £ " is a secure wap. P
") street map will be opened for you.”
Application.NeyDocument _
False, _
", .\data\de) streets.oxe”
| End If
End Function > -
=)

In the last exercise, you used the predefined Application variable, which points to
the Application class’s IApplication interface. In this exercise, you will switch to the
[WindowPosition interface, also on the Application class. IWindowPosition has
properties for controlling the size and position of the ArcMap window.

When class diagrams are shown in this book, some of their interfaces, properties,
and methods may be omitted to save space. For example, the Application class has
ten interfaces, but only two are shown in the following diagram. Also, all of the
[Application interface’s methods have been omitted.

Application

1Application : IDispatch

Application variable —— I|Application

=8 Caption: String

®— CurrentTool: [Commandltem
®— Document: IDocument

®— hWnd: OLE_HANDLE

m— Name: Strin

E— SiatusBar: iglatusﬂar

m— Templates: [Templates
m— VBE: IDispatch

=—m Visible: Boolean

IWindowPosition interface —— IWindowPosition O—r IWindowPosition : [Unknown

= Height: Long

== Left Long

=& State: esrWindowState
=& Top: Long

= Width: Long

Long, in Height: Long)

‘ _-1_— Move {in Left: Long, in Top: Long, in Width:

To get to the properties for setting the window size, you need a variable that points
to the IWindowPosition interface. You can start from the predefined Application
variable, but then you'll need to use Querylnterface to switch from IApplication to
[WindowPosition. This means declaring a variable for [WindowPosition and setting
it equal to the Application variable.

L sing mudtiple inlerfaces

After the If Then line, but before the Application.Caption line, add the following
line of code to declare a variable that points to the IWindowPosition interface.

Dim pWindow As IWindowPosition

% en10b.mxd - ThisDocument (Code) : R B
Iﬁmn:ument - 10penﬂunumzm _7_"

Private Function HxDucusern&:iOpenDocumem.tj 43 Boolean }jj

Dim strPassvord is Jtring
strPassword = InputBox ("Enter password")

Declare 1f "Carter" = strPassword Then
here Dim pWindow Ls IWindowPosition
Application.Caption = "District Crime"
Elae
] M=gBox ThisDocument.Title & " i3 @ secure map. " & _ J

i street map will be opened for you."
Application.NewDocument

Falsé; _

", .\data\dc)streecs.mxt"

-

S o

Relow the Dim statement, add the following line of code to set the variable
equal to Application.

Set pWindow = Application

You now have two variables pointing to two different Application interfaces, as
shown in the following graphic:

Application Application
variable — |Application | 1Application : IDispatch

=—m Caption: String

=0 CurrentTool: [Commandliem
®— Document: [Document

#— hWnd: OLE_HANDLE

®— Name: String

B— StatusBar: [SlatusBar

®— Templates: [Templates
®m— VBE: [Dispatch

=8 Visible: Boolean

pWindow —— IWindowPosition O—- \WindowPosition : [Unknown
= Height: Long

=& Laft: Long

m—8 Staie: esnWindowState
=8 Top: Long

== Widih: Long

-&— Move (in Left: Long, in Top: Long, in Width:
Long, in Height: Leng)

Add the following line of code to set the Application window’s State property to
esri\WSMaximize.

pWindow.State = esriWSMaximize

This code will maximize the ArcMap window for the District Crime application. To
learn more about the options for the State property, you could highlight State in the
code window and press F1 to open the ArcObjects developer help window.

CHAPTER 10 - PROGRAMMING WITH INTERFACES

Next you will write code to track the map’s users. As you recall, you'll do this by
writing the user’s password and access time into the map document’s Properties
dialog box. All the input boxes on this dialog box are controlled by properties on
the MxDocument class’s IDocumentlnfo interface, shown below. You will set the
Comments property.

MxDocument
IMxDocument O—— IMxDocument : IUnknawn

B— ActivatedView: |ActiveView

m-—0 ActiveView: IActiveView

B— ActiveViewCommand: ICommand

B— ContentsView {in Index: Long): IContantsView

®— ContentsViewCounl: Long

=@ Contextitem: IUnknown

=0 CurrentContentsView: IContentsView

=—m CurrentLocation: IPoint

== DefaultColor (in Type:
esriMxDefaultColorTypes): ICalor

=8 DefaultTextFont: IFoniDisp

=@ DefauliTextFontSize: IFontSize

— DelayUpdateContents: Boolean

#— FocusMap: IMap

®m— Maps: IMaps

m— OperationStack: 10perationStack

m—0 Pagelayout: IPagelayout

=8 RelativePaths: Boclean

m— SearchTolerance: Double

m—= SearchTolerancePixels: Long

m— Selecteditem: IUnknown

B— SelectedlLayer: ILayer

m— StyleGallery: IStyleGallery

®— TableProperties: |TableProperties

-4— AddLayer (in Layer: |Layer)

-— CaninsertObject (pEnabled: Boolean)
-%— |nsertObject

-a— UpdateContents

ThisDocument
variable

IDocument O—— IDocument : IDispatch

s— Accelerators: IAcceleratorTable
®m— CommandBars; ICommandBars
=— |D: IUID

m— Parent: |Application

m— Title: String
m— Type: esriDocumentType

®— VBProject: IDispatch

IDocumentinfo
interface — IDocumentinfo ©—— 'Documentinfo : Lnknown

m— Author: String

m—a Category: Sting

=8 Comments: String Comments
=8 DocumentTitle: String
-8 HyperlinkBase: String property
=8 Keywords: String

=8 SavePraview: Boolean
=& Subject: String

||

Once again, you will start with a predefined variable and use Querylnterface. This
time, the predefined variable is ThisDocument and you are switching from the
[Document interface to the IDocumentlnfo interface. To make the switch, you'll
Jdeclare a variable for [DocumentInfo and set it equal to the ThisDocument variable.

I sing mudltiple interfaces

Dim pInfo As IDocumentInfo

% ex10b.mxd - ThisDocument (Code) : B I e
}Mxl]ucument lj iOpenBucumem L‘
Private Function M:—:Dccumenticp&nDc\rumenr,H 43 Boolean j
Dim strPassword is Straing
strPasaword = InputBox("Enter password"”)
Declare
here Dim pInfo is IDocumentInfo
If "Carter” = strPassword Then
Dim pVindow As IVindowPosition
Set pUindow = ipplicavion
pUindow.3tate = esriWsHaximize
Application.Caption = "District Crime"
MsgBox ThisDocument,Title & " is z secure map. " & _
nL street map will he opensd for you."
Application.MewDocument _—I,"J
»

Set pInfo = ThisDocument

You now have two variables pointing to two different interfaces. As shown in the
simplified MxDocument class diagram below, ThisDocument points to the
IDocument interface and plnfo points to the IDocumentlnfo interface.

MxDocument

|Document 0—-17 J
plnfo — IDocumentinfo O—r \

ThisDocument

(1%

pInfo.Comments = pInfo.Comments
& " " & Now
& " " & strPassword _
& " Authorized" & vbCrLf

The empty quotes separate the entries and put spaces between the time and the user
name. You won't see what the full comment looks like until after the code runs and
you have a chance to open the Properties dialog box.

CHAPTER 10 PROGRAMMING WITH INTERFACES

% ex10b.mxd - ThisDocument {Code) Al e
lﬁxﬂocumenﬁ :J Openbocument _ﬂ

Privace Function MxDocument_OpenDocwent () L= Boolean j

Dim strPassword is String
strPassvord = InputBox("Enter password")

pim pInfo ks IDocwmencInfo
set pInfo = ThisDocument

Dim pUindow ks IWindowPosition
Set pWindow = Application
] pUindov.State = esrilsNaximize

1f "Carter" = strPassword Then J

3 pInfo.Comments = pInfo.Comments

& " " & Now _
£ m » g strPassword _
L_ & " authorized” & vbCrLf -
== | e

To guarantee that the comments are saved into the .mxd file, you will add a line of
code to save the file automatically. Otherwise, a user could open the map document
and quit without saving, and their name wouldn’t be added to the comments. You
will use IApplication’s SaveDocument method, shown below.

| Application

IApplication IApplication : IDispateh T
m—m Caption: String

m—0 CurrentTool: IGommanditem ‘

m— Document: IDocument
m— hWnd: Long

m— Name: String

®— StatusBar: 15tatusBar
®— Templates: [Templates
m— VBE: Object

m—a. Visible: Boolean

-«— NewDocument {selectTemplate: Boolean,
templatePath: String) |

—a— OpenDocument (Path: String)

-4 PrintDocument

—4— PrintPreview

-a— RefrashWindow

< SaveAsDocument (saveAsPath: Stiing,
saveAsCopy: Boolean)

a— SaveDocument (saveAsPalh: String) SaveDocument

a— ShowDialog (in dialogD: Long, bShow | method

Variant) : Variant
-4— Shutdown

a— UnlockCustomization (in password: String)

Add the following line of code to save the map document.
application.SaveDocument

You would also like comments to be added when an unauthorized user tries to open
the map. You'll add that code next.

After the Else keyword, |

following line of code
b |

word Unauthorized into the map document’s comments area.

pInfo.Comments = pInfo.Comments
& " " & Now _
& " " & strPassword _
& " Unauthorized" & vbCrLf

¢ sing mudtiple inferfaces

Add the following line of code to save the unauthorized user's information.
Application.SaveDocument

When the user enters an incorrect password, their password and time are added to the
comments area and the SaveDocument method runs to save the .mxd file. Then the
warning appears and the NewDocument method runs to open the streets.mxt file.

% ext10b.mxd - ThisDocument {(Code} : =loix
rMxDocument _v_l oOpenDocument :j
Else }j
pInfo.Comments = pInfo.Comuents
g ™" g Now _
€ " " &£ strPassword _
& " Unauthorized"” & vbCrLi
i Application.SaveDocument
MsgBox ThisDocument.Title & " iz a secure wap. " & _

1} street map will be opened for you. "
hpplication.NewDocuwent _

False, _
7. Adatatde\streecs.mxt”

End If

End Function
== L . = = =
= 4! 7

Because your code is in the map document’s OpenDocument event, you need to
open the document to test it. So you'll save your work, close the map document,
open a new one, and then reopen this one.

Close Visual Basic Editor.

In ArcMap, click the File menu and click Save As. Navigate to
C:\ArcObjects\Chapter10. Rename the file my_ex10b.mxd and click Save.

in ArcMap, click the New Map File button on the Standard toolbar.

A new empty map document opens. Next, you will try to open the crime map, but
with an incorrect password to simulate an unauthorized user.

Click the File menu and click Open. Open my_ex10b.mxd in the
C:\ArcObjects\Chapter10 folder.

For the password, type ArcObjects. Click OK.
Click OK on the warning message.

A new map opens with the streets and precincts from the Streets.mxt remplate.
Next, you will open the document with the correct password.

Click the File menu and click Open. Open my_ex10b.mxd in the
C:\ArcObjects\Chapter10 folder.

For the password, type Carter. Click OK.

CHAPTER 10 = PROGRAMMING WITH INTERFA

I R O e —————

The District Crime document opens and its window is maximized.
Click the File menu and click Map Properties.

In the Comments area, you see that the first user was the unauthorized ArcObjects
and the second user was the authorized Carter.

x|
Summary l
Title: Imy_exmb med
Subject:]
Authar, [
Category: 1’
Keywords: r
LCommerts: 57972003 5:56:52 PM ArcObjects Unauthorized i
5/9/2003 501,33 PM Catter Authorized User access times and
passwords are here
Hyperlink bass: l
Template: Normal mat
¥ Save thumbnail image with map Data Scurce Options

il AT -1 s D P 2 o Bvre Frinas
Click Cancel to close the Properties dialog box.

Now that you have programmed with interfaces you are ready to learn about another
COM rule: Once an interface is published it won’t be altered in future releases of the
software. That means an interface will always have the same properties and methods.
Properties and methods will always have the same arguments and return values.
Arguments and return values will always be of the same data type.

If ESRI programmers want to enhance something about the IMap interface in a
future release of the software, they never change IMap. Instead they create another
interface called IMap2 and make changes to it.

Map

IMap o—'ﬁ J
IMap2 o——{ J

With this development approach, your existing code that works with the Map class
and the IMap interface will continue to work in the future with the next version of
the software. At that time, if you like, you could edit your code to point to the new

interface, but it’s all up to you.

e g + ~bharmtar lnave ArcMan opan Otharwi
nuing with tne next chapter, leave ArcMap open. Otherwise ¢

I sing muiltiple interfaces

As you wrote code for this exercise, you may have noticed that the path to the streets.mxt file was
different than the one you typed in the previous exercise.
In exercise 10a, you typed:

"C:\ArcObjects\Data\dc\streets.mxt"
This is a hard-coded (or absolute) path. The path begins with a drive letter and lists each subsequent
folder that leads to the streets.mxt file. A hard-coded path will locate the target data as long as it is
stored in the specified location. If the target data is stored somewhere else (if it is moved, for example),
the path will break and the data will not be found.
In exercise 10b, the hard-coded path has been changed to:

". . \Data\dc\streets.mxt"

This is a relative path. It leads from the file that contains the code (in this case, ex10b.mxd) to the

target data. The two dots mean “go up one folder in the directory structure.” Since ex10b.mxd is in the

Chapter10 folder, the dots direct the code up one level to the ArcObjects folder. From there, the rest of the
path is hard-coded.
You can go up as many levels as you want by using sets of dots:

", .\--\..\streets.mxt"

Relative paths make your code and data more portable. You can move the ArcObjects folder to any
location you want. The code will always find streets.mxt, because the target data stays in the same loca-
tion relative to ex10b.mxd—up one folder to ArcObjects, then down to Data, and down to dc.

When you know that your data structure isn‘t going to change, use hard-coded paths. For data that may
move, use relative paths.

CHAPTER 10 ~ PROGRAMMING WITH INTERFACES

diagrams

tting layers

veating and assigning colors

So far, as you've worked with objects—getting and setting their properties, running
methods, even switching interfaces—you’ve worked with one class at a time. But
you know, of course, that there are hundreds and hundreds of ArcObjects classes.

The ArcObjects you're familiar with, like Application and ThisDocument, are
always right there waiting for you, like a limousine at your door. Typically, however,
you need to work with objects that are not quite so obligingly at your service. For
example, suppose you want to program a button to change the color of a Rivers layer.
A layer’s color is an object (created from a class like RGBColor below) with proper-
ties to mix different amounts of red, green, and blue.

RgbColor

IRgbColor IRgbColor : IColor

=—m Blue: Long
=& Green: Long
=& Red: Long

Even though you have never used RGBColor before, you know from the last two
exercises that to make any new object you declare a variable to one of its interfaces,
you set the variable to a new object with the New keyword, and after that you can
get and set properties and run methods.

Dim pColor As IRGBColor
Set pColor = New RGBColor
pColor.Blue = 180

But your goal is to make the Rivers layer blue. How does the code know which layer,
in which data frame, you want to change? It’s a different situation when, instead of

creating new objects, you want to do something with an object that’s already in play
somewhere in your application. To do that, you have to find your way to the object.

It’s kind of like hopping to a marker in a game of hopscotch, or swinging from one
vine to another in the jungle. The hopscotch squares (or the vines) are classes, and
you hop from one to the next until you get to the one you want.

For example, to change the River layer’s color, you would make your way from the
MxDocument class (MxDocument is the map document or currently opened .mxd
file), to the Map class (the Map class in ArcObjects refers to a data frame), to the
FeatureLayer class, to the Renderer class (renderer is a fancy word for a layer’s leg-
end), to the Symbol class, and to the Color class, and there, at last, you would
change the properties of the color object.

MxDocument = Map — Layer = Renderer = Symbol — Color

Now, because you have to make a particular series of hops to get from your starting
point to your destination, you can infer that there are certain special connections or
relationships between classes. The MxDocument class is associated with the Map
class, or connected to it, and that’s why you can go from one to the other. However,
the MxDocument class is not connected to the Color class. And therefore you can’t
g0 straight from MxDocument to Color.

In UML, associared classes are connected with a solid gray line. The line means you
can get from one class to another. This relationship can usually be expressed in plain
English by saying that objects in one class have objects in the connected class. For

example, the MxDocument class is connected to the Map class, and it’s also natural
to say that map documents have data frames. The Symbol class is connected to the
Color class, and it's also natural to say that symbols have colors.

MxDocument Map
IMxDocument O— IMap O—

&>

®— FocusMap: IMap

Other symbols on the diagram give you additional information about how the classes
are related. The asterisk by the Map class means multiplicity. In other words, a map
document can have many maps in it. The relationship between the Application
class and the MxDocument class would not have an asterisk because you can’t show
two .mxd files in one ArcMap window.

The black diamond tells you that the object with the diamond is composed of the
associated objects. You can think of the object with the diamond as a container. The
map document contains maps. If you delete the map document, any maps inside it
are deleted too.

Navigating object model diagrams means hopping around from one class to another.
Now we'll consider how this hopping is accomplished technically.

Classes have properties on their interfaces. When you set a property, you have to use
the right type of value. For example, on the ILayer interface of the Layer class below,
there is a Name property and its value must be set to a string. ILayer also has a
Visible property, which must be set to a Boolean value (true or false).

CHAPTER 11 NAVIGATING OBJECT MODEL DIAGRAMS

e

| Layer

ILayer 0 ‘ m—m Name: String |
=& Visible: Boolean

When you get property values you have to be ready to receive the right type of value.
A programmer would say that the Name property returns a string and the Visible
property returns a Boolean.

Some properties return interfaces. For example, the MxDocument class below has
a property called FocusMap that returns an [Map. (FocusMap tells you which data
frame in the document is active.) What this means is that FocusMap doesn’t return
a map object, but it returns a pointer to a map object’s IMap interface. Through that
pointer, you have access to the object’s IMap properties and methods.

MxDocument Map

IMxDocument IMap
m— FocusMap: IMap *

On the diagram, a line connecting two classes tells you that you can get one object
(well, the interface of the object) from another. To make the connection, a property
on the one object will return an interface of the connected object. Here the
FocusMap property on IMxDocument returns the IMap interface of the connected
map object. If you want to hop from the MxDocument class to the Map class, you
oet the FocusMap property.

Let's look at how to write the code that takes you from MxDocument to Map.
Your starting point is the predefined ThisDocument variable, which points to the
IDocument interface on MxDocument.

MxDocument

IMxDocument IMxDocument : IUnknown
B— ActivatedView: [ActiveView

&0 ActiveView: |ActiveView
#— ActiveViewCommand: ICommand
m— ContentsView (in Index: Long): IContentsView
B— ContentsViewGount: Long
== Contextitem: |Unknown
=0 CurrentContentsVisw: IContantsView
=& CurreniLocation: IPoint
w8 DefaultColor (in Type:

esriMxDefaultColorTypes): IColor
=& DefaultTextFont: IFontDisp
==& DelauliTextFoniSize: IFoniSize
—a DelayUpdateContents: Boolean

®— FocusMap: IMap —————— | FocusMap
.I: gggrsétlig:waspéck' [OperationStack Dmperty
ThisDocument L._D PagelLayout: [Pagelayoul
predefined
variable — IDocument ©—— IDocument : IDispaich

B— Accelerators: |AcceleratorTable
B— CommandBars: iCommandBars
= |D:IUID

m— Parent: |Application

=— Title: Sring

®— Type: esriDocumentType
®— VBProject: Dispatch J

L

Since the FocusMap property is on IMxDocument, you first have to use Querylnterface
to switch interfaces. Declare a variable to the interface you need, and set it equal to
the variable you already have.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Now that you have a variable that points to IMxDocument, you can get the
FocusMap property. Since this property returns an IMap interface, you declare a new
variable to IMap.

Dim pMap As IMap
Set pMap = pMxDoc.FocusMap

That's it. You've just hopped from MxDocument to Map. If you wanted to go on to
work with a laver object, you would do the same thing: find a property in the Map
class (IMap has a Layer property) that returns an interface of the Layer class (the
Lavyer property returns [Layer). Since Querylnterface isn’t needed here, it only takes
two lines of code to go from Map to Layer.

Dim plLayer As ILayer
Set pLayer = pMap.Layer (1)

As long as classes are associated (connected with a line on an object model diagram),
there will be some property that takes you from one to the other.

Maybe you are wondering how you're supposed to know which classes are associated
and which are not? You find out by looking at object model diagrams, which are
poster-sized drawings that show not only classes with their properties and methods,
but also the relationships between classes.

A single diagram is not big enough to hold all the ArcObjects classes and their
interfaces. In fact, there are many diagrams, organized by categories of classes. For
example, the Geometry diagram contains classes for points, lines, and polygons. The
Geodatabase diagram contains classes for tables, feature classes, rows, and fields. Ifa
class on one diagram is connected to a class on a different diagram, you will be
referred to that diagram (just as an atlas may refer you to a map on another page).

The following object model diagram shows more than a hundred classes, one of
which is the Map class and its interfaces.

CHAPTER 11 = NAVIGATING OBJECT MODEL DIAGRAMS

Aeebap” Objuct Mosel

Ma;
Map o—]

IRasichap O—
IConnoctionPointContainer

';"- Layer in
Map Layer

S

[ors
IMapBookmarks
MapGoographicTransformations

~+ o oval indicates that the Map class is associated with the Layer class, diagram.
Object model diagrams are pretty detailed, but they only use about eight different
symbols. Once you learn these symbols, and get a little practice, you'll be able to

follow a diagram as easily as you would a street map. (Or maybe more easily!)

Object model diagrams are located in the developer help. If you don’t have the help
loaded on your computer, you can get the diagrams from the online developer help
(arcobjectsonline.esri.com). If you have some wall space, you can buy printed posters
from ESRI (Www.esri.com/ExploringArcObjects). And, finally, all the diagrams are
included on the Getting to Know ArcObjects data CD as PDF files.

You now have the central idea about how to navigate ArcObjects classes. As usual,
it’s not quite the whole story. The association relationship that you've been learning
about is actually just one of three class relationships. Now we'll talk a little bit about
the other two.

Instantiation, also called the Creates relationship, is a relationship in which one class
has a method that creates new objects from another class. Imagine a Shoemaker
class with a CreateShoes method. Running this method creates a new object from
the Shoes class and returns you its IShoes interface. In UML, this relationship is
shown by a dashed black line with an arrow that points to the created object. You
won't instantiate any objects in this chapter, but you will later in the book.

ShoeMaker — — —— > Shoes ‘

The third type of class relationship is inheritance. Inheritance is when a particular
class uses an interface (programmers say “implements” an interface) from a more
general class.

Remember when in the last chapter we talked about grouping the Elephant class'’s
properties onto different interfaces? Properties specific to elephants went on the
[Elephant interface, and properties that applied to all animals went on IAnimal,
where they could be used by the Giraffe class, the Moose class, and so on. On an
object model diagram, it wouldn't be convenient to draw the [Animal interface on
every class that used it—it would take up too much space. So programmers make a
so-called abstract class, and call it something like Animal, and draw the [Animal
interface on this class.

| Animal

|Animal O——— w-a Name: String
=& Weight: Double

- N
Elephant | Moose |
s I Ny

— 'Eraffe

b I

The point here is that Animal isn’t a full-blooded class. There are no Animal objects:
there are only Elephant objects, Giraffe objects, Moose objects, and so on. The Animal
class is nothing more than a schematic convenience, a parking place for an interface
that is used by many different classes.

Inheritance is shown with solid black lines and a triangle. Below, the triangle is on
the Layer class, which means that the other connected classes inherit all of Layer’s
interfaces (which in this case is just ILayer).

Layer ‘

lLayer O— |gu Name: String
m—a Visible: Boolean

&

- _ - l_—
| FeatureLayer | TINLayer !

IFeatural ayer O-—l:l Tikkayer O—|:|
RasterLayer | :

|RasterLayar |

CHAPTER 11 = NAVIGATING OBJECT MODEL DIAGRAMS

Since you're going to work with abstract classes in this chapter, let’s see how you
write code for them. Suppose you want to create a new FeatureLayer and set its
Name property. The Name property is on the [Layer interface, which is shown on
the abstract Layer class. But since the FeatureLayer class inherits this interface, you
write your code as if you were seeing the interface on the FeatureLayer class.

Dim pLaver As ILayer
Set pLayer = New FeaturelLayer
pLayer.Name = "USA"

This leads to a final point. The fact that there are different class relationships means
that there are different ways to diagram classes. (You might have noticed this in the
previous diagrams.)

| Abstract class | Class | Coclass
Interface O—- 48 Property Interface & -4 Property ‘ Interface © B8 Property
<— Method ~— Method \ < Method
=== .|
2-D gray box 3-D white box 3-D gray box

Abstract classes, like the Layer class you were just looking at, are drawn as 2-D gray
boxes. As mentioned before, no objects come out of abstract classes. They are just
parking spots for common interfaces.

Classes (which it’s sometimes convenient to call regular classes, to distinguish them
from classes in general) are drawn as 3-D white boxes. Objects from regular classes
have to be instantiated—you can’t create them yourself with the New keyword. If
you want an object from a regular class, you have to find another class that knows
how (has a property or method) to make or get these objects.

Coclasses are drawn as 3-D gray boxes. These are the kinds of classes you're already
familiar with. You can create objects from coclasses with the New keyword. You can
also get these objects by using properties of other objects that return them.

Getting layers

In this exercise, you'll write some code that gets the layers in a data frame and turns
them off. This involves navigating from a starting point through several classes to
get to the layer objects you want. You'll follow the path shown below, except that
you'll start with MxDocument (where the predefined ThisDocument variable is
waiting for you) and skip the step of hopping from Application to MxDocument. |

| Application

— !

MxDocument ‘ e LIQJ_’E!
e — | Eie Edit View Insert Selection Tooks Window Help
;* [02E& » s @ |« | & owma =] 7|8k
1 |
b=y - A — % B
Map —‘g US - Populati =
— = = [Lakes
¢ =

= US States
B Ocean

=) Population Density
Value

FeaturelLayer

Mms00-13,771 _|
= Country

|4 Ll_l [
Digey w | :
gﬁ'rawingv k --ED-Av:E:i}-’ﬁfial A (RS B ¢ Eé-v e -
| F2162116,58 1926706.72 Mete| - 4

Along the way, you'll do a couple of fun things. You'll write a For Each loop that
cycles through each layer in the data frame to trn it off. And you'll set object prop-
erties to update the table of contents and the map display after the layers have been
turned off.

You may be wondering how you'll ever learn all the class relationships on your own
and be able to navigate easily from one class to another. It can be a little overwhelm-
ing at first, but it’s like learning your way around a network of hiking trails. You make
some wrong turns, get lost a few times, but then you develop a sense of how every-
thing is connected and it starts to become automatic.

|
Surprisingly, you probably know more than you think about class relationships, :
because you have been an ArcGIS user. For example, you might not need the diagram
above to tell you that Maps contain Layers, because in your ArcGIS experience you
have added hundreds of layers to maps. You already know they have a relationship.
If you've ever deleted a map, you know the layers get deleted too.

CHAPTER 11 NAVIGATING OBJECT MODEL DIAGRAMS

During a crime analysis session, you turn many crime layers on. To get a fresh start on
analyzing the next crime, you turn them all off again. To save a bit of time, you are
ooing to create a button to do that for you. Before writing the code, you'll look at a
couple of object model diagrams to see the class relationships. This means you'll need
Adobe” Acrobat Reader”. If you don’t have it, you can download the latest version for
free at www.adobe.com.

»

Maps sometimes have a big red dot that says “You are here.” On the ArcMap diagram,
MxDocument (with its ThisDocument variable) is your big red dot.

MxDocument Layer Map

ArcMsp Cbjscl Boxs

== l'
.
E =
E e ——

rg

E= = —
Since your goal is to turn layers off, you need to find a path from the MxDocument
class to the Layer class. To do this, you will zoom in on the diagram.

:—-E EE

L

lmmlnlmlismlsplsl

e el

I meETT
mirmmr

\ Getting layers
|
B = e e ———————~ ________________J}

——

In Acrobat Reader, zoom in on the Map class, near the Layer oval, to match the
graphic below. (The Zoom In tool looks like a magnifying glass. If necessary, adjust
the zoom level using the other tools.)

The Map class is connected to the Layer class by a gray line with a diamond and a star.
The diamond tells you maps have layers; the star says a map can have many layers.

The Layer class is not shown on this diagram. Instead, it appears inside an oval (also
known as a wormhole) with the name of the diagram, Map Layer, that includes it.

Acrobat Reader - [Arcap Object Model.pd -10) x|
PV o e Y oA —
NeaEFa B 1«00 %6 &

IActiveViaw O——| ctiveView : inknown ﬂ

Map class

MxDocument class

Layer class

‘ K—\
| =,
u

IActiveViewEvonts @ lActivaVieaEvents : Unknown X
|[FEeenin | E.[14] [b

(ArcMap diagram)

In Acrobat Reader, open Map Layer Object Model.pdf in the C:\ArcObjects
\Diagrams folder.

Layer gets a diagram to itself because it has so many coclasses.

Acrobat Reader - [Map Layer Object Model.pdf]
= Fle Edt Document View Window Help

RNes BT Ky vies D]

=10t

Miap Layer Dbject Model

— Coclasses of layer

EE%%
==

CHAPTER 11 = NAVIGATING OBJECT MODEL DIAGRAMS

Next you'll take a closer look at the class properties to see how you can hop from one
class to another.

Start ArcMap and open ex11a.mxd in the C:\ArcObjects\Chapter11 folder.
When prompted for a password, enter Carter.

The ArcMap window maximizes and you see the streets of Washington, D.C., and
several crime layers. On the Crime Analysis toolbar, a UlButton called ClearCrime
has been added for you. This is the button that will turn off all the layers.

On the Crime Analysis toolbar, right-click ClearCrime and click View Source.

Visual Basic Editor opens and you see the ClearCrime click event procedure. It is
empty at the moment.

To start writing code, you need to locate a property on MxDocument that gets an
object of the Map class. The FocusMap property returns the IMap interface for the
active map. (Remember, when we’re using ArcObjects, a map is a data frame.)

MxDocument
IMxDocument IMxDocument : IUnknown

m— ActivatedView: |ActiveView

B0 ActiveView: lActiveView

®— ActiveViewCommand: ICommand

B— ContentsView (in Index: Long): IContentsView

®— ContentsViewCount: Long

=8 Contextltem: |Unknown

®-0 CurrentContentsView: IContentsView

=@ CurrentLocation: IPoint

=8 DefaultColor (in Type:
esriMxDefaultColorTypes): IColor

=@ DefauliTextFont; IFontDisp

B8 DefaultTextFontSize: IFontSize

—=a DelayUpdateContents: Boolean

=— FocusMap: IMap FocusMap returns IMap

®— Maps: IMaps

m— OperationStack: IOperationStack

@0 Pagelayout: IPageLayout

m—a RelativePaths: Boolean

®— SearchTolerancs: Double

B—# ScarchTolerancePixels: Lang

®— Selectedltem: |Unknown

®— SelectedLayer: ILayer

m— StyleGallery: IStyleGallery

®— TableProperties: ITableProperties

-4— AddLayer (in Layer: ILayer]

-4— CaninsertObject (pEnabled: Boolean)
-— InsertObject
-— UpdateContents

IDocument IDocument : IDispatch

®— Accelerators: |AcceleratorTable
®— CommandBars: ICommandBars
=— |D: IUID

®— Parent: |Application

m— Title: String

B— Type: esriDocumentType
®— VBProject: [Dispaich

Since the FocusMap property is on the IMxDocument interface and the predefined
ThisDocument variable points to the IDocument interface, you have to switch
interfaces.

I Geiting layers

Add two lines of code to switch to the IMxDocument interface.

Dim pMxDcc As IMxDocument
Set pMxDoc = ThisDocument

Now that you have a variable pointing to the IMxDocument interface, you can get
a map object in two lines of code, by declaring a variable and setting it. You declare
the variable as IMap, because the FocusMap property returns the IMap interface.

Add two lines of code to get the active map from the map document.

Dim pMap As IMap
Set pMap = pMxDoc.FocusMap

Once you have a map object, you can get layers from that map with the Layer prop-
erty, which is on the IMap interface of the Map class. The Layer property has an
argument that specifies the layer’s position in the table of contents. The top layer is
at position 0, the second layer is at position 1, and sa on.

BB/ Acrobat Reader - [ArcMap Dbject Modelpdf]
T Flle Edt Document Wiew Window Help _i@] x|

Nec BTy «» OO0 &

Map ﬂ

iMap IMap : lUnknown
w00 ActveGraphicsLayer. Layer L
w0 AnnolationEnging. lAnnolsteMap
—a ArepOfinteres] [Envelons
B— Berriers (pExtent [Envelope)
{BamierCalisction I |
— Bmﬂﬁcﬁw GraphicsLayer
w—m ChpBordar, lar
|BasicMap O— | == CapGeomatry: (Geamelry
y 3 m—m Description: St
pnnectionPointContainer O— Hu«.ranlgegﬁuc oteUnts
|DisplayAdmin ©O— | m=M Expandad. Bodlean
FoatureS
IDisplayEvents O— .-n-- |3arlamen?lmlmlf’mmn
IGraphicsContainer O— | #— Layer (v Indax. Long). Layer Layer property returns ILayer
3F3?h'CSCD?$mg:E|Eﬁ o— -—-,a:grs(muwn "o, in secursive: Boolean):
pBarriers O— [Enuml
m—m MapScale. Double
" L?.iapE:aukmarks o— .—taég&m.mznnham Long): IMapSureund
bgraphicTran — MapSurrcundCount: Long
et o om e et
1t In:
|PersistStream C— ::ﬂ;{f;‘fﬁﬂf‘mﬁimm
3 cthonCount:
ahunshiDClassCoillEechon o— 0 SpaeiRelersncs |SpetiaReforance
|SelactionEvents O— | B8 SpalsiRalerancelacked: Boolean
LrdaloneTableCollection O— | T Deesymbolevels: Badisan
3 = pddiayer (in Layer: ILayer,
ITableCallection O i—AudLayslsiml_:i!s,lénu:mLayer in
|TransformEvents ©— um&g:ruje,&mla,an]s
i - AcdMapSurround (in MapSurround:
\ViewManager O— mif!;wmw:d!' P o
-l—}C‘ndeysrs

3201 x 34010 | [

[7am =i e |k

Declare an ILayer variable.

You declare the variable as [Layer because the Layer property returns the [Layer
interface.
Dim player As ILayer

You will set the pLayer variable inside a For Each loop. Each time the loop runs, the
variable will be reset to a different layer, until all layers are turned off.

CHAPTER 11 = INAVIGATING OBJECT MODEL DIAGRAMS

Start a For loop that begins with 0 and ends with the position number of the
map's last layer.

For i = 0 to pMap.LayerCount - 1
Next i

The formula pMap.LayerCount — 1 gives you the index position of the last layer, no
matter how many layers a map contains. For example, in a map with ten layers, the
first layer is at position O (the first item in most ArcObjects lists is number zero) and
the last is at position 9. LayerCount — 1 equals 9.

Inside the loop (before Next i), add a line of code to set the layer variable.
Set pLayer = pMap.Layer (i)

The layer’s index number is stored in the variable i, which contains a 0 the first time
through the loop. That will get the first layer on the map. The value of i will incre-
ment by 1 until there are no more layers in the map.

On the Layer diagram below, you can see that the [Layer interface has a Visible
property. You turn layers on and off by setting the Visible property to true or false.

Acrobat Reader - [Map Layer Object] 3 (ol x|
T Fle Edt Document View Window Help 18] x|

Nes BHAUR > «» DOE| A
»
Layer

*
P
ILayer : iUnkaown

m— ArpaOfintarest IEnvelope ‘_s

B Cached. Boolean

BB MaxiriomScale: Double

-8 MininumScala: Double
Name: S

W ShowTips Boolsan

—f1 Spatiaifeference: ISpatmlRelorence
B— SupporiedDrawPhases: Long

m— Tiplaxt {in X: Double. in Y: Doubie. n
ILayer C— Tolerance: Doubie). String

B Vaiic: Boolean i e
BB Visibie, Boolean Visible property

Add another line of code to turn the layer off.

plLayer.Visible = False

&4 ex11a.mud - ThisDocument (Code) e i =1ofx|
ClearCrime :_] F:link _-d
Private Suk ClearCrime Click() j

Dim pMxDoc is IHxDocument
Set pHMxDoc = ThisDocument

Dim pMap As INap
Zet pMap = pMxDoc.FocusHap

Dim pLayer is ILayer

For i = 0 To pMap.LayerCount - 1
Set pLayer = pMap.Laver (i)
pLayer.Visible = False

Next i

End Sub = S — o =
== | 0%

I.Gem'ng layers

Although your code affects both the ArcMap table of contents and the map display,
these parts of the application do not change unless explicitly told to do so. You will
add some code to redraw these areas.

® pistrict Crime R =ioix
| File Edit Yiew Insert Zelection Tools ‘Window Help
DR & ¢ g R T =2 ,&,‘EN.L
| | N
— =]
= £F District of Columbi = |
= O arsons
¥
= [0 Assaults
=
= O surglaries
Table of E B Ctystreets . Map
contents — display
[Landmarks £
= [DCArea
=] Main Streets
E Precincks
Precinct
1
3 s
3 =
‘ 3| !
Dnpay] = E oA |»
gos~ k0~ A~ 5 Sfe =l 820 A & £,
BEroat iee. o etes L. 2
Outside the loop, after the Next i line and before the End Sub line, add the

following line of code.
pMxDoc .UpdateContents

The UpdateContents method on the IMxDocument interface redraws the table of
contents, but not the map display.

To redraw the map display, you need the IActiveView interface on the Map class.
You can get there using the ActiveView property on IMxDocument.

MxDocument
IMxDocument ©— IMxDocument : IUnknown

B— ActivatedView: |ActiveView " =

B0 ActiveView: lActiveView ——————— ActiveView property

B— ActiveViewCommand: ICammand

®— ContenisView (in Index: Long): [ContentsView

®— ContentsViewCount: Long

=8 Contextltem: |Unknown

=0 CurrentContentsView: ContentsView

=& CurrentLocation: IPeint

B8 DefaultGolor (in Type:
ssriMxDefaultColorTypes): ICalor

=8 DefaullTextFont: IFontDisp

B8 DefaultTextFontSize: IFontSize

—a DelayUpdateContents: Boclean

®m— FocusMap: IMap

m— Maps: IMaps

B— OperationStack: [OperationStack

B0 Pagelayout: IPageLayout

=& RefativePaths: Boolean

®— SearchTolerance: Double

B8 SearchTolerancePixels: Long

B— Selscteditem: [Unknown

B— SelecledLayer: |Layer

®— StyleGallery: IStyleGallery

m— TableProperties: ITableProperties

-4— AddLayer (in Layer: [Layer)

-4— CaninsertObject (pEnabled: Boolean)
-a— |nsertObject

- UpdateContents UpdateContents method

CHAPTER 1T = NAVIGATING OBJECT MODEL DIAGRAMS

I Cetting layers

Once you get to [ActiveView, you run its Refresh method to redraw the map display.
(Since the [ActiveView interface is found on both the Map and the PageLayout
classes as shown below, the ClearCrime button will work whether the user is in data
view or layout view. In one case, the map display redraws; in the other, the virtual
page redraws.)

Map
IActiveView O—' e Refresh method
PagelLayout
|ActiveVi
ctiveView O——‘ I i Refresh method

Declare and set a variable for the map display.

Dim pActiveView As IActiveView L ' l
Set pActiveView = pMxDoc .ActiveView

You can do this because the pMxDoc variable points to the IMxDocument interface,
which has the ActiveView property.

Add a line of code to redraw the map display.
pActiveView.Refresh

After this line of code runs, all layers disappear from the map display.

& ex11a.mud- ThisDocument (Code) = =10 x|
ClearCrime vl cli =]
|
For i = 0 To pMap.LayerCount - 1
Sat pLayer = pMap.Layer (i)
plLayer.Visible = False
Next 1
plxDoc. UpdateContents
Dim plotiveView 4= IicriveView
Set pActiveView = pHxDoc. ActiveView
pActiveView.Refresh
| End Sub P — e g
-

The code is ready to test.
Close Visual Basic Editor.
Turn all layers on by checking their boxes.

Click the ClearCrime button.

All the layers turn off.

Turn all the layers back on by checking their boxes.

Now that you have a button to turn off all the layers, you no longer need the table
of contents for this purpose. You'll get rid of the table of contents and test the
button again.

Click the View menu and click Table of Contents.

Turning off the table of contents leaves you with more viewing space. If you had a
button to turn the layers back on, you could use the application without the TOC.

Click the ClearCrime button.
All the layers tum off again.

Turn the table of contents back on and turn all the layers back on.

% pistrict Crime ,=J,g;_)_q
Sl LRSS .= MR o P = =
| Fle Edic Vew Tnsert Selection Teoks Window Help
== i =T - = I
D& i x| = $ e 5.2 & w2
——— = =
= £ District of Columbia = PEE)
= [Arsons e tp.
¥ G @ﬁ‘m W
= M Assauls =" - w W g T
G S D
A § i
~ o5 =" el S T
= Surglaries PR o
3 K& 3
= [Ctystreets R
M Landmarks
=] DC area
a8 Main Streets
= Predincts
Predinct e
1
2
3 ¥ i
4] r : = g =
Dispay [Saurce] 5 ol 1+
| orowing ~ N | O > Al¥] 72 o Zn 5 Br u[Ar & i 2
[[56093.06 145629.51 Meters | =15

As an experiment, go back to the code and comment out the line that runs the
UpdateContents method. Then click the ClearCrime button again to see that the
table of contents check boxes remain checked. Click the Source and Display tabs at
the bottom of the table of contents to force it to redraw. Go back and uncomment
the UpdateContents line of code.

CHAPTER 11 = NAVIGATING OBJECT MODEL DIAGRAMS

As another experiment, make a second button called AllCrime. Copy all the code
from ClearCrime’s click event to AllCrime’s click event. Find the line of code in the
For Each loop that sets layer visibility to False and change it to True. Try using your
two new buttons together.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter11. Rename the file my_ex11a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

lGetting leayers

Creating and assigning colors

Color is an integral part of making a map. You assign color to a layer’s features, to
text and graphics on a layout’s page, and to the layout page itself. In ArcObjects,
each color is an object that you create and then set properties for. The simplified
diagram below shows the Color abstract class and five coclasses.

Color
maef
| [B | N)
CmykColor

; HisColor ' RgbColor

Gk TN | et I

GrayColor HsvColor |
IGrayCoiuro—1:| | IHsvColor

Each coclass represents a color model. Computer monitors display color with red,
green, and blue light, so if you are making maps for the Internet, you would make
colors with the RghColor coclass. If your maps will be printed on paper, you wouls
make colors with the CmykColor coclass because CMYK (cyan, magenta, yellow.
black) is a color model standard in the print industry.

Each color coclass has properties that you set to mix and make a color. The RghColoe
coclass has red, green, and blue properties.

RgbColor
IRgbColor IRgbColor : IColor
=8 Blue: Long

=& Green: Long
=@ Red: Long

The values for each property range from 0 to 255. (Why this range! Because a
computer stores 256 values in one byte of memory.)

To make a sandy yellow color with the ArcMap user interface, you would set slides
bars (or type in values) as shown below.

CHAPTER 11 + NAVIGATING OBJECT MODEL D

To make the same color with code, you set the properties of an RgbColor object:

pRgbColor.Red = 255
pRgbColor.Green = 255
pRgbColor.Blue = 190

In this exercise, you will change the background color of a layout page. By default
this color is white, but you can change it to anything you like.

Potential Tourist Sites in Belize

P

The layout page color has been changed from white to blue.

As in the previous exercise, you have to navigate to the object you want to work
with—in this case, a color object on the layout page.

Application

1

MxDocument

PagelLayout

FeatureLayer

Color on the
Display diagram

As before, you'll start with the MxDocument class, but this time you'll hop to Page
Layout, and then to Page. At that point, you'll need to look at another diagram to
see the Color classes.

ing and assigning colors

When you get to the RghColor class, you'll create a new color and set it equal to the
Page’s background property. After that, you'll refresh the display as you did in the
last exercise.

2 o AL

Exercise 11b

You work for an adventure recreation company that organizes vacations to interest-
ing places for windsurfing, desert survival hikes, and other rugged activities. For each
trip that gets organized, you make the supporting maps. You want the background
color of your map to reflect the theme of the vacation. If it's near water, the page
color should be blue: if it’s a desert tour, the page color should be sandy brown.

Before writing any code, you will examine the ArcMap object model diagram to
determine which objects to use.

To change the page color, you need to find a path from MxDocument to Page. On
the large diagram below, MxDocurment is connected to PageLayout, and PageLayout
is connected to Page. So in two lines of code you can hop from MxDocument to
PageLayout, and in two more lines you can hop from Pagelayout to Page.

Archiap” Objec) Boss

MxDocument

1

Pagelayout

o EREGED

mEmm e

CHAPTER 1T = NAVIGATING OBJECT MODEL DIAGRAMS

Zoom in on the Page coclass.

The Page class has the BackgroundColor property, which is what you want to set.

Since the BackgroundColor property requires the IColor interface, you need to get
an object that has this interface.

Page
|Page O— [IPage : lUnknown

m—& Background: |Background

m— BackgroundCalor: [Color ———————

B—8 Border: |Border

m—8 DelayEvents: Boolean

= FormlD: esriPageFormiD

= [sPrintableAreaVisible: Boolean

E—8 Qrientation: integer

=8 PageToPrinterMapping:
esriPageToPrinterMapping

B— PrintableBounds: |Envelope

= StretchGraphicsWithPage: Boolean

=8 Units: esriUnits

BackgroundColor property

-4— DrawBackground (in Display: IDisplay)

-4— DrawBorder (in Display: 1Display)

-~a— DrawPaper (in Display: |Display, in
eraseCalor: ICalor}

~4— DrawPrintableArea (in Display: IDisplay)

-a— GetDeviceBounds (in Printer: IPrinter, in
currentPage: Integer, in Qverlap: Double,
in Resolution: Integer, in deviceBounds:
|Envelope)

-4— GetPageBounds (in Printer: [Printer, in
currentPage: Integer, in Overlap: Double,
in pageBounds: IEnvelope)

-4— PrinterChanged (in Printer: [Printer)

~a— PrinterPageCount (in Printer: |Printer, in

Qverlap: Double, out pageCount: Integer)

-4— PutCustomSize (in Width: Double, in Height:

ouble
-a4— QuerySize (out Width: Double, out Height:
Double)

In theory, you should see a line connecting the Page class to a class that implements
IColor. But you don’t, because on crowded diagrams, like this one, some connected
classes can’t be shown. To find classes that implement [Color, you might highlight

IColor in the code window and press F1 to open the IColor page in the ArcObjects
developer help, shown below.

&7 ArcObjects Developer Help T : =k
Fle Fdt Vew Go = =

g ¢ = [0 6 & & 6
_ Hide Back Fowad Refresh Home Font Pnt D
Conterts llen | Semch] Favones] || MOMPOTS =
Typs in the keyword to find | All = Description

=—a CMYK The CMYK value of color,

THIT piopey = || «— GetCIELAB The CIELAB value of color,

GEiCIELAB method | m-m Nulicolor Indicates whather this color is null.

NulCalor property |

RGB property { RGE The RGE value of color,

SalCIELAR method il

Transparency properly 4— SetCIELAB The CIELAB value of color.

UseWindowsDithering propesty
|ColoBawssr Interface -8 iransparancy The alpha Blending value. (0 for transparent, 255

Color property for opague)

DoMadal method = | ¥ 5
|ColorConection Interface =8 UseWindowsDithering Indicates if colors should be dithered to simulate

CMYKCorection property colors that aren't supported by the display. This

Lighiness property only applies on displays that have 256 or fewer

Saturation praperly ’

SupportedCalarCarrections propert colors.

UnderColoremoval prapety
ColorPaletts Interface CoClasses that implement 1Color

Color property

TrackPapuphenu method
|CalorRamp Interface CoClasses and Classes Description

En}crwwwy

olors property “

Coaatationh rdthéid | cmykColor ESRI CMYK Color,

Narns property i

S DfUDgf\? - GrayCaolor ESRI Gray Color.
ColorFl ol Interf, o

E‘ﬁ:’s@ﬁmvl e HisColor ESRI HLS Calor. Five color

egendGroup propert =
CoboéianeliL sje0csioup ety HsvColor ESRL HSV Color, coclasses
sl
BT | [ESRI RGE Color, |

Creating and assigning colors

[

The help page shows five color coclasses. You can click each of them to see which
interfaces they support and lists of properties and methods. But what if you want to
see these color classes on an object model diagram!

Locating a class on one of the twenty or so object model diagrams can be like finding
a needle in a haystack. Fortunately, there is an easy search method. |

In Acrobat Reader, open AIIOMDs.pdf in the C:\ArcObjects\Diagrams folder.
In the AIIOMDs.pdf file, each diagram is bookmarked in the list at the left.

Acrobat Reader - [AlOMDs.pdf] i g =lolx]
=\ Fle Edt Document View Window Help =l
Bookmarks for N & @Iilﬁ@\. Tl 4 b Men ‘D|:| i
each diagram — Bookmarks " Gnumbnsiz [] : SR
it cciucion RS
L] Application Framework
| Jarccatalog
L] Arcap
[] ArcMap Editor
|] Arcobjects Controls
L] Display
[] Geocoding
|] Geodatabase
| 5eodatabase Supplerr
[] Geometry
B
] Laneling and Annotatio
[] Map Layer
| Netwark
] output
] Raster
_] Spalial Reference
] styles

Chrmi

< B

AreObjects Object Modst Disgrumns
)

-

The Find button (called the Search button in Adobe Reader” 6.0) will ind any word
on any diagram and highlight it in blue. Before doing any finding, you will need to
zoom in far enough to read the words.

In Acrobat Reader, click the View Menu and click Actual Size.

Click the Find button (the binoculars icon at the top). In the Find dialog box,
type RgbColor and click Find.

The Acrobat Reader display area centers on the RgbColor coclass, which is also
highlighted for you.

CHAPTER 11 = NAVIGATING OBJECT MODEL DIAGRAMS

B Acrobat Reader - [AllOMDs.pdf] oy B =1oi x|
T Fle Edt Document Yiew Window Help =181 x|

Nea B O E M d > ¥ o« 0O
| Bookmarks “\ Thumbnails [»! I
[] Introduction afjcoer P
[_‘] Application Framework—
[ArcCatalog
[] Arcmap
[Archap Editor
] ArcObjects Controls
[Display
[] Geocoding l

[Geodatat A |
[T Gendatabase Supplerr | oo RgbColor coclass
[Fpemcmae = —— | -

M3 |
| Laheling and Annotatio

") Map Laver

| Metwork

] Output

) Raster

] Spatial Reference
L] styles

Th v

[«] v B # 1oox i';"«[« 7orzs |»|m|[asxassen | ELl4] = | Llll

HswColor
IHavColer S G intotince
irserfocel}

Use the Hand tool (it looks and works like the ArcMap Pan tool) to move the
RgbColor coclass to the lower right corner of the display, so you can see all the
Color classes.

B Acrabat Reader - [AlIOMDs.pdf} =z l:i[x|
ﬂﬁle Edt Document View Window Help | ,_1

Neo BFHA T KN «» 00
Buokmarks “WThumbhals_, | ¥]

[} Introduction -]
[Application Framewark_|
) ArcCatalog

[Arcwiap

[] Archap Editar

[ArcObjects Controls

__] Display

) ceocoding

] Geodatabase

] Gendatabase Supplerr
) Geometry

[]ms

[Labeling and Annotatio
[Map Layer

[] Network |

L] outout ot ©
[Raster e — .
[] Bpatial Reference

[)stvles =

g Lol . El»r i [Troos v 1] 4 oras | v]m|[E5sczsssn | @ .114] 2 —"'J

v

Color abstract
class has IColor

——— Five color coclasses
all inherit the IColor
interface

You now know which classes (MxDocument, Pagelayout, Page, and RgbColor) are
needed to get the layout page and set its color. Next you will write the code to set a
new page color.

Creating and assigning colors

Start ArcMap and open ex11b.mxd in the C:\ArcObjects\Chapter11 folder.

When the map opens vou see potential vacation sites in the country of Belize.

S _exi1b.mxd - ArcMap - Arc¥iew ;i&
| Fle Edt View Insert Selection Tools Window Hslp
[DzEa =8|~ | d[Eme 5|4 &k
— ———— 7 gborozal 2|
= £ Belize
= Proposed resort sites Neica i Orange Walk
Ve [
Bl ~ 7 5 L]
= - o
v) (
= [Rivers =i { |
iz w -8
= | Administrative Unit | i)
= |~
= Country st
=5 T
E &Belmnpan
«. _Flofes Sl deize S
Guatemala [1 I
|
L N <<)
: o
o g
o Punta Gorda
< | e]
'A-u_.- = = | P
‘ e R e Hondues
Display [Soee | 2024 | ¥
[Bovzeal 49w 182281137 = ey

Switch from Data View to Layout View.

On the Layout toolbar, a new menu called Page Color has been added for you. It
contains one choice, a UlButton called BluePage. You will code this button to set
the background color of your layout page.

ER® B B0 E ¢S |6 e |

Click the Tools menu and click Customize.

On the Layout toolbar, click Page Color, right-click on BluePage, and click View
Source.

You see an empty click event procedure.

Add the following code to get to IMxDocument.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Add two more lines to get the page layout.

Dim pPageLayout As IPageLayout
Set pPagelLavyout = pMxDoc.PageLayout

CHAPTER 11 =~ NAVIGATING OBJECT MODEL DIAGRAMS

-

Add two more lines to get the page.

Dim pPage As IPage
Set pPage = pPagelayocut.Page

To make a color object, you use the Set and New keywords.
Create an RgbColor object to serve as the background color of the page.

Dim pRgbColor As IRghColor
Set pRgbColor = New RgbColor

i, ex11b.msd - ThisDocument {Code) B =100 x|
rﬂluepage ;! |Click LI
3
Private Sub BluePage Click()

Dim pMxDoc A3 IMxDocument

Zet pMxDoc = ThisDocument

Dim pPagelavout ks IPagelLayout

3et pPageLayout = pMxDoc.PageLayout

Dim pPage As IPage

Set pPage = pPagelayout.Page

Dim pRgbColor &= IRghColor

Set pRgbColor = New RgbColor
=5 .

Set the Red, Green, and Blue properties to get the desired shade of biue.

pRgbColor.Red = 100
pRgbColor.Green = 150
pPRgbColor.Blue = 255

RgbColor

IRghColor O0—— IRgbColor : ICclor

= Blue: Long
=—m Green: Long
B8 Red: Long

The color properties you just set are found on the IRgbColor interface. But recall
from step 2 that the BackgroundColor property returns the IColor interface. This
means you must use Querylnterface to switch from [RgbColor to IColor. (The prin-
ciple of inheritance tells you that you can do this. The RgbColor coclass implements
all the interfaces shown on the IColor abstract class.)

Declare an IColor variable and set it equal to the variable that is already pointing
to the RgbColor object.

Dim pColor As IColor
Set pColor = pRgbColor

Assign the color to the page’s BackgroundColor property.

pPage.BackgroundColor = pColor

Creating and assigning colors

EI] Get and refresh the page layout’s display. (As with the map display, you use the
|ActiveView interface to do this.)

Dim pActiveView As IActiveView
Set pActiveView = pPagelayout

pActiveView.Refresh

M, exl !IJ.mx - ThisDocument (-(ude)

IBIunPage

pRogbColor.Red = 100
pRoghColor.Green = 150
pRgbColor.Blue = 255

Dim pColor ks IColor
Set pColor = pRgbColor

pPage. BackgroundColor = pColor

Dim phctiveView iz IActiveView
Set pheotiveView = pPagelayout

p.ﬂ.c:iVEView.Reszshl

End Sub
_(I [

The code is ready to test.

Close Visual Basic Editor.
In ArcMap, on the Layout toolbar, click Page Color and click BluePage.
The page color changes to blue.

% exllbmud - ArcMop-—drciew
DEEa|fEex|s - ¢z 2 &8
BER BEBDCE BB | & el

e

L [2

= £ Belize
= [Proposed resort sites

L]
E & Ciies
(=]
= [Rivers

= M Administrative Urit

L |
= M Country

To change the color back to white, you could make a second UlButton called
WhitePage, add it to the Page Color menu, and copy all the code from BluePage’s
click event to WhitePage’s click event. Then you would edit the property values for
pRgbColor as shown:

pColor.Red = 255
pColor.Green = 255
pColor.Blue = 255

For desert area maps where you want a sand color, you could make a third UlButton
called SandPage, add it to the menu, copy the code, and edit the color values as
shown:

pColor.Red = 215
pColor.Green = 194
pColor.Blue = 158

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter11. Rename the file my_ex11b.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

r‘mating and assigning colors

ectiom 23 ta . g/ COb]ectS

"HAPTER 1271 = L8

aking tools

Reporting coordinates

Prawing graphics

Ising TypeOf statements

Back in chapter 2, you learned about making commands when you created the
TaxCalculator UIButton. You may be wondering why you are just now learning how
to make a UlTool. It’s because coding a tool requires working with a variety of
objects, including maps, layers, and geometry objects like points. You wouldn’t have
been ready without first getting some experience in working with classes and inter-
faces, and reading object model diagrams.

When you coded the TaxCalculator UlButton, you put the code in the button’s
click event. When you write code for a tool, there’s more to it, because the user
interacts with the tool. They might pan the map extent, draw graphics, select fea-
tures, or drag a zoom rectangle. In all these situations, the user moves the mouse
pointer around the map, sometimes clicking or double-clicking on a location.

For you, the programmer, this means that a tool has more events to code than a button.
Instead of click events, tools have MouseDown, MouseUp, and MouseMove events
that run when the user interacts with the map display. They have CursorlD events that
define the appearance of the mouse pointer in the display. (For example, the Pan tool
cursor looks like a hand and the Measure tool cursor looks like a ruler.) They also have
Enabled events that can be used to disable the tool under specific conditions.

In this chapter, you will create a UlTool and code some of its events. Your tool will
report coordinates of the cursor’s location and draw graphic points wherever the user
clicks on the map display. If the map is in layout view, the tool will be grayed out.

Code in a tool’s MouseMove event procedure runs whenever the user, with the tool
selected, moves the mouse pointer in the map display. As shown below, the procedure
has four variables in its argument list.

Private Sub UIToolControll MouseMove (_
button As Long, shift As Long, x As Long, ¥ As Long)

End Sub

Oddly enough, it’s the user who sets these variables. The x and y variables represent
the location of the mouse pointer on the map display. Since this is the MouseMove
event, as the user moves the mouse the values of x and y change. The variable values
are in the pixel units of the user’s computer’s monitor.

The button and shift variables let you code alternative situations. For example, you
could write an If Then statement that runs one block of code if the user is holding
down the left mouse button and a different block if they are holding down the right
button.

The button variable has a value of 1 or 2. The value is | when the user is holding
down the lefc mouse button (while moving the mouse); the value is 2 when they are
holding down the right button. The shift variable has a value of O or 1. The value is
0 when the Shift key is not depressed; the value is 1 when it is depressed.

The MouseDown and MouseUp events have the same four variables as the
MouseMove event. Code in a tool’s MouseDown and MouseUp event procedures
runs when the user, with the tool selected, clicks in the map display or releases a
mouse button.

Suppose you wanted to make a tool that used a message box to display the coordinates
of a location the user clicked on. You might code the tool's MouseDown event
procedure like this:

Private Sub UIToolControll_MouseDown (
button As Long, shift As Long, x As Long, y As Long)

MsgBox "X: " & X & ", Y: " &y
End Sub

A user clicking on Buenos Aires would get a result like the one in the following
graphic.

CHAPTER 12 =~ MAKING TOOLS

%_ worldMap.myd - ArcMap - Arelnfo E =10lx|
| e Edt yew Insert Selection Tooks Window Help
| B g | o o | B ([i7em e AL
Tosky
e Lundun. .I\d iy
= @ Count .
R ersid-atds Seoul | Osaka
= M Gaid W k.-.
Mexico City % okyo
s Calcutta
Sao Paulo e
Rio de Janeiro ® R
t@ ; %118, ¥: 281
uenos Aires
Display 30 &4 | Lrj
!\Erminu" kGO~ A~ = |[ail o 7l Bz o A&~ £ =~
[1157732298 -2647376.01 Met _— ==

That's useful if the user wants to know how many pixels Buenos Aires is from the
edge of the display. To get meaningful geographic units, however, will take some
ArcObjects programming.

The IMxDocument interface has a property called CurrentLocation that gets the
location of the mouse pointer in map units (meters or feet for projected data;
latitude—longitude for unprojected data).

MxDocument
IMxDocument O——{ iMxDocument : IUnknown

B— ActivatedView: |ActiveView

m—0 ActiveView: IActiveView

®— ActiveViewCommand: |Command

m— ContentsView (in Index: Long): IContentsView

®— ContentsViewCount: Long

= Contextltem: IUnknown

m-0 CurrentContentsView; ICantentsView

=8 CurrentLocation: IPaint

m—a DefaultCalor (in Type:
esriMxDefauliColorTypes): IColor

B—& DefauliTextFont: IFontDisp

=& DefauliTextFontSize: IFoniSize

—a DelayUpdateContents: Boolean

®— FocusMap: IMap

m— Maps: IMaps

®— OperationStack: [OperationStack

®0 Pagelayout: IPageLayout

= RelativePaths: Boolean

®— SearchTolerance: Double

CurrentLocation property

Since the CurrentLocation property requires the [Point interface, there should be
a line connecting MxDocument to a class that implements [Point. There isn’t,
however, because MxDocument is connected to more than thirty classes and the
diagram isn’t big enough to show them all.

Reporting coordinates

Instead, you can look up the [Point interface in the developer help.

&7 ArcObjects Developer Help R e =l x|

File Edt View Go

Hee o [N & & &

_ Hide Back ~ou:d Refesh Home Font Print__ Options

Qun!anlsll_grisx iealChiFavajle:| mmterface ﬂ

Type in the word(s] to search for

= Provides access to members that define two dimensional points,
List Topics ' Dicplay

Selecttopic. Found: 500

online

Description

4 Point is a zero-dimensional object that represents a specific (X, ¥)

= = location in a the two-dimensional X¥-Plane. A Point may also have Z,
{gi:;izfﬁif;:_ :Zlfﬁi gi | 14, and 10 sttributes associated with it. Existence of attributes does
IPoirt Interface Eaiicoras: W not alter the dimensionality of & Paint nor does it alter geometric
|Paint prop Exam... esncore 98 calculations performed on the Point. attributes are only considered for
IPoint:Compare .. esicore 304 attribute calculations when the Point is Zaware, Maware, or
Sk I]’J DontiDAw=are. Points may be constructed using PutCoords, individually

cattinn the % and ¥ nrnnerties ar Geinn the 10mnstrosiBnint interface |

If you scroll to the bottom of the topic, you'll see a list of the coclasses that

implement [Point.

£? ArcObjects Developer Help cEss e =13
Filze Edt WView Go

g e =0 @ £ &0

_Hide Back Fowad Refresh Home Prnt _ Oplions

. ®-0O SpatialReference The spatial reference associatad A
;m“l o ey lFawﬂssl with this geometry.

Typzin i to search for: .
e he word(s} to search for . X The X coordinate.
ipont x _?__l

.Y The ¥ coordinate,
List Topics | Display] ol The 2 attribute.

Select topic. Found: 500

Tite Location | Rai = Inherited Interfaces

IPath:SetChordl... esicore 332

IPiecewiseTranst.. esicore 312

Paint Interface ewcore 10¢ Interfaces Description

IPoint prop Exam... emicaore 98

IPoint:Compate ... esicore 300 IGeometry Brovides access to members that describe
IPoint: Constraind... esicore 30¢ proparties and behavior of all geometric
IPoint:Constrain... esicore 347 obects,

IPaint:ID Propeity esicote 1?5"‘J

IPoint::PutCoords... esricore 10E cocClasses that implement 1Point

|Paint.QuenCoor... esicore 112

|Paint. ¥ Propeity esticore 470 ||

Bl s EJ | CoClasses and

Classes Description
™ Search pievious 1esults |

I Match similar words n An twa dimensional point, optionally with
[~ Seach titles only measure, height, and ID attributes.

— Point coclass

The only coclass that implements IPoint is Point. The Point coclass,

shown below,

has x and y properties that store coordinates in map units. The double barbells tell

you that you can both get and set these properties.

CHAPTER 12

MAKING TOOLS

Point

IPoint CG—— IPcint : IGeometry

B8 D: Long

=& I Double

=8 X: Double

=8 Y: Double

BB 7: Double

~a— Compare (in pOtherPaint; IPaint) : Lang

-&— ConstrainAngle (constraintAngle: Double,
Anchor: IPaint, allowOpposite: Boolean)

-a— ConstrainDistance (constrainiRadius: Double,
Anchaor: [Point)

-a— PutCoords (in X: Double, in ¥: Double)
-=— QueryCoords (out X: Double. out ¥: Double)

To get the mouse pointer’s current location in map units, you navigate from
MxDocument to Point. Then you use object.property syntax to get the point’s x and
y values. Starting from the predefined ThisDocument variable, your MouseDown

event procedure would look like this:

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pPoint As IPoint
Set pPoint = pMxDoc.CurrentLocation

& pPoint.X &
& pPoint.Y

MsgBox "Longitude: "
", Latitude: "

Now, when the user clicks on Buenos Aires, they see a message like the one below.

a _orldMaJ_).mxdfArl:Map-ﬂrcIrlfo : = de = ﬂ[_ﬂ
| Fle Edt View [nsert Selection Inols Window Help
w o | EfmasE A &R
=
Moskva
Lundun’ ®
= M Countrie: o [ork
A Gochizies l‘iewintk. Seuul. (saka
= Grid T _"
3 - okyo
Mexiro City : o Y
° Calcutta
Sao Paunlo =t
Rio de Janeiro
Langltude: -58.403304682223, Latitude: -34,6656537273418
TKSU enos Aires
Disply [Sourez | LAy | i |
| oo = & 0| 1> A~ (| S =B £ U |A- &> v = <
1157732298 -2647376.00 Mebl : =

[f you were using projected data, you would change the message box text accordingly.

Reporting coordinates

Exercise 12a

You work as a GIS specialist for the Grand Canyon search and rescue team. The
canyon’s rugged terrain can make it hard to find hikers in distress and just as hard to
airlift them out. If an airlift isn’t feasible, their location is captured with a GPS unit
on hoard a helicopter. The latitude—longitude coordinates are then sent to a dis-
patcher, who pinpoints the location on a paper map, decides which rescuers to send,
and directs the team to the scene.

The dispatcher and the rescue team describe their positions in various ways, from
the familiar “We are one kilometer south of the bridge,” to reading off the GPS unit
“Latitude 36, longitude —112.” Tt would be useful to have an application that could
report locations in both meters and latitude—longitude.

In this exercise, you'll make a RescueSite tool that displays latitude—longitude
coordinates in ArcMap. You'll add a new tool to a toolbar and choose a cursor for it.
Since the dispatchers need to see coordinates while moving the tool around the map,
youll write the code in the MouseMove event and display the values in the ArcMap
status bar.

Start ArcMap and open ex12a.mxd in the C:\ArcObjects\Chapter12 folder.
) ¥ s L}

When the map opens, you see an area of the Grand Canyon centered on Hopi Point.

%, ex12a.mud - ArcMap - ArcYiew

| Bie Edi ew Insert Selection Toos Window Help

| o= g3 =@ Y {I-; R !:_6_'?@; o

x -

= £ Grand Canyon

= M HopiPoint

= Eridge
- -

W Colorado River
=)

Elevation - Camp &
Value 1 ;
Hopl P ant
High : 2270.000000 =

™ Low : 725 000000

_Disply [Sowrce jeoiea p;ﬂ
| rawo > R = O= A~ (= |[oial i [AeBagdr o]

[12469175.85 5011317.41 Mete.

CHAPTER 12 = MAKING TOOLS

to meters, so these are the values that you see in the status bar. You won't replace
these units, but you'll add a second display of lat-long coordinates.

| 1246720870 400276490 Mete|
| Your code will display Location coordinates in
lat-long units here meters display here

' Click the Tools menu and click Customize. Click the Commands tab. In the
Categories list, click UlControls.

By default, your customizations will be saved to the current map document
(ex12a.mxd).

Click the New UlControl button. For the UlControl type, click UlToolControl.

New LIConttol :: xi

fum};m-me'—f—
| © UButonContel ¢ UIEGEoaConrol ‘

| * & UlToalContisl UiCambaBorContol J

[Geme || Ceseandta | Comedl |

Click Create.
In the Commands list, you see a new tool named Project.UIToolControll.

Click on Project.UIToolControl1 and replace the text with Project.RescueSite.

Customize ﬂzj
Toolbars Commands]Elp_t@unsl
; gargﬁo;ias: : Commands:
New Men 2| [[BIProject Rescuesite Change the name

Our Company Name of Functional gre

Aeport Object
Selection
Spatial Analyst

=
HowllContal, | Deisl=UiContal | Deseiplion |
Saveln [sizamg 7| Fesboad. I |

Utility Network. Analyst

riing coordinates

Although the source data is unprojected, the data frame’s display units have been set

Drag Project.RescueSite to the bottom of the Tools toolbar as shown in the
following graphic. (If your toolbar is horizontal, add the new tool at the end.)

| Tools
® g
XK KA
AR KM

@
L
K
(il]
=y
[Bl ——— Add tool

Next you will change the tool’s icon.

Right-click on the new tool, point to Change Button image, and click Browse.

In the Open file browser, navigate to C:\ArcObjects\Data and click
Helicopter.bmp. Click Open.

You see a helicopter icon on the tool.

1
A
Now you will code the tool’s CursorID event procedure. This defines the appearance
of the cursor when the tool is used in the map display.

Right-click the RescueSite tool and click View Source.

Visual Basic Editor opens with the ThisDocument code module open. Code for all
UIControls is stored in the ThisDocument module.

With RescueSite selected in the object list, click the procedure list drop-down
arrow and click CursoriD.

You see the Cursor]D event wrapper lines. Before going any further, you'll get some
online help.

CHAPTER 12 - MAKING TOOLS

B @

Use your mouse to highlight CursorID as shown below.

& ex12a.mxd - ThisDocument {Cade) =10 _)_Ej

W ‘:i ;Emsnrlﬂ ;l :

| Option Explicit

Private Function RESCUESitEMU As Variant

_End Function

Private Sub RescueSite Select()

I~ Highlight CursorlD

End Sub

=] 35

Press the F1 key.

F1 searches for the highlighted term in the help system. If the term is found, its help
page opens. If it’s an ArcObjects term, the ArcObjects developer help opens. If it’s
a VBA term, the Visual Basic help opens.

The CursorlD Event help page shows the available icons and their ID numbers. You
will use cursor 3, which looks like a crosshair.

E? ArcObjects Developer Help =10l x|
B s I A S a7
“Hide' Baok Fomd Refiesh Home Font Print Options
P
Dortents | imdex Search | Favortes | CursorID Event =
Iynein he voski] g seaichloc il Example ApplesTo oOnline
vl
»:-I—I {| The mouse pointer used for the tool.
L.‘s”"pic‘i = I || syntax
Select topic: Found 0 private Function object_CursorID() As Variant
Tile foealion | Beck The object placehalder represents an object expression that
evaluates to an object in the Applies To list.
]
Description
The values for CursorlD are:
0 L% B "y
AN o
2 g
I~ Search previous results 3 a 1 Cursor 3
v Match similar words =
¥ Seach titles only
4 r
Al |

If you scroll down the help page, you will find code for using cursor icons other than
the ten shown here.

Close the help window.

riing coordinates

In the CursorlD event, add the following line of code to set the cursor ID to icon
number 3.

RescueSite CursorID = 3

% ex12a.mxd - ThisDocument (fﬂé): =
RescueSite = iCurlnrlD ﬂ

Option Explicit

Private Function RescueSite CursorID() &= Variantc
RescusSite_CursorID = 3
| End Function

Cursor 3

Private Sub RescueS:ﬂ:E_SElecti}

Close Visual Basic Editor.

Visual Basic Editor must be closed for a tool’s CursorID event to run. Now you will
test the cursor.

Click the RescueSite (Helicopter) tool and move the cursor over the map. It

changes to a crosshair.

Hogi Paint
@

-+ — Cursor 3

The ArcMap status bar displays meters in message pane 2. You'll add lat-long values
in message pane 0.

 1Z451069.67 400855935 Mete|

| | ! |

Pane 0 Pane 1 Pane 2 Pane 3

ht-click the RescueSite tool and click View Source to open the ThisDocument

Bir
Rig

ode module.

CHAPTER 12 = MAKING TOOLS

With RescueSite selected in the object list, click the procedure list drop-down
arrow and click MouseMove.

In the MouseMove event procedure, add the followin
map document variable that points to IMxDocument.

(o]
M
Q
@]
m
-+
o]
.
[}
Q.
W
[0
©
=3
o
wy
)
L
i)

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Add two lines to declare a point variable and set it with IMxDocument'’s
CurrentLocation property.

Dim pPoint As IPoint
Set pPoint = pMxDoc.CurrentLocation

This code stores the current location of the cursor in the pPoint variable. Now you
need to get this information into the ArcMap status bar.

The StatusBar class has a Message property on its IStatusBar interface for displaying
text strings. To get the status bar, you use the StatusBar property on [Application.
You may recall from chapter 10 that the Application class has a predefined object
variable called Application. That will be your starting point.

. Application

IApphcatlon O—m ®m— StatusBar: |StatusBar ——}>— StatusBar property

StatusBar

|
IStatusBar O~ m—m Message (in pane: Long) : String Message property
=@ Panes: Long
m— ProgressAnimation: lAnimationProgressor
®— ProgressBar: |StepProgressor
=@ Visible: Boolean

Add two lines of code to declare and set a status bar variable.

Dim pStatus As IStatusBar
Set pStatus = Application.StatusBar

Now that you have the status bar, you can set its Message property. The Message
property has an argument for specifying which pane, or section, of the status bar to
use. (The ArcMap status bar has four panes; you will use the left-most pane, which
is identified as 0.)

repoﬁing coordinates

|

Add the following line of code to report latitude and longitude in the status
bar's first message pane. Use an underscore for line continuation. Use & to
coricatenate text and location values.

pStatus.Message (0) = _
"Latitude: " & pPoint.y & ", Longitude: " & pPoint.x

&4 ex1Zb.mud - ThisDocument {Code) ” : 2 D{E
RescueSite vE {MouseMuve :J
Private Sub Rescues-.v,t:e_ﬂmusenuw: (ByVal button A= Long, ByVal shift j

Dim pMxDoc ks INMxDocument
Sert pMxDoc = ThisDocwment

Dim pPoint As TPoint
St pPoint = pHMxDoc.CurrentLocation

Dim pScacus ks IStatusBar
Set pStatus = Application.StatusBar

pStatus.Message (0) = _
#Laritude: " & pPoint.y & ", Longitude: " & pPoint.x

| End Sub

==l | 3 7

— —= S -

Close Visual Basic Editor.

If necessary, click the RescueSite tool in ArcMap to select it. Move the mouse
over Hopi Point.

You don't have to click to see the coordinates because your code is in the MouseMove
event procedure.

L atitude: 36,0000797194126, Longitude; -112.073595242625 | [12482676.50 4003024.34 Mete| i &

Your code displays
lat-long units here

Hopi Point’s latitude and longitude (about 36, —~112) appear in the first message
pane in the status bar. As you move the mouse, the coordinates change.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter12. Rename the file my_ex12a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

CHAPTER 12 = MAKING TOO!

Drawing grapl

To make a direction map, you might use a streets layer for reference and then draw
graphics on it, like the circles, red line, and text labels on the map below.

|i§=;f'§;r}i sueet | University
ESRIO

You can also add graphics to layouts, like the title and directions in the next example.
The main difference between graphics on a map and graphics on a layout are their
coordinates. Map graphics have coordinates in map units like feet or meters, while
layout graphics have page coordinates like inches or centimeters.

Directions to get from ESRI to the University

Drive North on New Y ork Street
Tumn Right (East) on Colton
Drive for about two miles N

i

1 inch equals 0344314 miles

You've probably used graphics on many occasions. You know how to make them and
set their properties from the user interface. One of the challenges, and part of the

fun, of ArcObjects programming is finding familiar objects on a diagram and figuring
out how to make them, set their properties, and run their methods by writing code.

Graphics belong to an abstract class called Element. As shown on the diagram below,
both Maps and PageLayouts are composed of Elements. Each has an IGraphicsContainer
interface with methods, like AddElement, to add, delete, and move its elements.

Dirawing graphics

MxDocument

IMxDocument =— FocusMap: Map
=0 Pagelayout: |Pagelayout

¢ ¢

*

Map PagelLayout
|GraphicsContainer |GraphicsContainer

I L L ol B

Element | Etement i

The next diagram shows that the Element class has two abstract subclasses:
GraphicElement and FrameElement. To make graphics on a map, you create objects
out of the coclasses under GraphicElement. These include LineElement, TextElement,
and MarkerElement. (You'll learn more about the FrameElement class—which is
used to make data frames, legends, north arrows, and scale bars—in chapeer 19.)

Geometry Element
i = I |
Color | Symbol || GraphicElement FrameElement ‘

LineElement TextElement MarkerElement PolygonElement

The diagram also shows that graphic elements have a symbol and that symbols have
a color. You made colors in chapter 11 and you will make symbols in chapter 15. In
chis exercise, you'll use default values (for marker elements, the default is a red
square) and not worry about making symbols and colors.

The last thing the diagram shows is that Element is connected to Geometry. This
means that elements are associated with geometry objects, like points, lines, and
polygons, as shown below.

Geometry

IGeometryO—l:||
gl
I i S N

Line | Polygon !

S I e TR

Point

CHAPTER 12 + MAKING TOOLS

Geometry objects, then, are your starting point to create graphic elements, Geometry
objects have to be compatible with their associated element. If you are making a
polygon element, you would begin by making a polygon geometry.

Say you want to create a marker element to mark the city of London. The geometry
for a marker element is a point, so you begin by creating a point with the code below.

Dim pPoint As IPoint
Set pPoint = New Point

To define the point’s location, you set its x and y properties. The following code puts
the point in London, at O degrees longitude and 53.5 degrees north latitude:

pPoint.X = 0
pPoint.¥ = 53.5

Having created or gotten a point (in the last exercise you got a point with the
CurrentLocation property), you make a marker element (the point’s visual represen-
tation). The MarkerElement coclass is shown below.

MarkerElement
IMarkerElement O—— IMarkerElement : IUnknown

i—l Symbol: IMarkerSyth

The following code makes a new marker element:

Dim pMarkerElement As IMarkerElement
Set pMarkerElement = New MarkerElement

Next, you associate the point with the marker element. The abstract Element class
has a Geometry property on its [Element interface to do this.

Element
|[Element i IElement : IUnknown

=8 Geomelry: 1Geomely ————————— Geometry property
B8 Locked: Boolean
| | #— SelectionTracker: |SelectionTracker

-a— Activate (in Display: IDisplay)

~a— Deaclivate

~a— Draw (in Display: IDisplay, in trackCancel
ITrackCancel)

-a— HifTest (in X: Double, in Y: Double, in
Tolerance: Double): Boolean

-a— QueryBounds (in Display: IDisplay, in Bounds:
|Envelope)

~a— QueryOutline (in Display: IDisplay, in Qutlins:
|Polygon)

L

Since the new marker element was declared to the IMarkerElement interface, you
would switch interfaces to [Element. Then you use the point to set [Element’s
Geometry property.

Dim pElement As IElement
Set pElement = pMarkerElement

pElement .Ceometry = pPoint

wwing graphics

Once you have made the graphic, you still have to store it in the map’s graphics
container. The graphics container is the collection of all graphics in the map.
Shown below, the Map class’s IGraphicsContainer interface has the AddElement
method to add graphics to the map.

MxDocument

IMxDocument HP FocusMap: IMap J

*

Map

IMap O—
|GraphicsContainer Q—‘:AdEELemanl {in Element: IElement, in zcrderj—‘ AddElement method
ang)

To get the graphics container, you use the IMxDocument'’s FocusMap property,
which returns the map’s IMap interface.

Dim pMap As IMap
Set pMap = pMxDoc.FocusMap

FocusMap returns IMap, so you switch interfaces to the map’s IGraphicsContainer
interface.

Dim pGraphics As IGraphicsContainer
Set pGraphics = pMap

You are probably getting familiar with using QueryInterface. You use a property that
returns an interface you don’t need, and you switch interfaces to get the interface
you do need. It always takes four lines of code: two to declare and set the interface
variable that you don’t need and two more to declare and set the interface variable
that you want.

You are now ready to learn a shortcut. VBA knows how to do the Querylnterface for
you. Any time a property returns an object’s interface, you can declare your variable
to any interface of that object and VBA will get it for you.

In the example above, FocusMap returns a map's IMap interface. You have no use for
IMap because you want to work with graphics and the map’s IGraphicsContainer
interface. You don’t need ro declare an IMap variable. You can declare the
[GraphicsContainer variable and set it with the FocusMap property, as shown below.

Dim pCraphics As IGraphicsContainer
Set pGraphics = pMxDoc.FocusMap

FocusMap returns IMap. VBA sees, however, that you want IGraphicsContainer (you
declared a variable for it), so it does the Querylnterface for you and sets the variable
correctly. The shortcut saves you two lines of code. The four-line QI technique is fine,
especially when you are not used to switching interfaces, but if you don’t need an
[Map variable, you shouldn’t always have to write two lines of code to make one.

CHAPTER 12 =~ MAKING TOOLS

Whichever method you use to get the graphics container, the next thing to do is
to store the graphic in it. To do that, you run the IGraphicsContainer interface’s
AddElement method.

pGraphics.AddElement pElement, 0

After storing the graphic, you refresh the display. You did this in the last chapter
after writing code to turn off all the layers in the table of contents. In this situation,
however, where you’re just adding a graphic, it’s not efficient to redraw the entire
map display.

The PartialRefresh method, located on the Map class’s [ActiveView interface shown
below, saves you from having to refresh the entire display after minor changes. It has
arguments to control which caches are refreshed (phase), which individual layers or
elements are refreshed (data), and which parts of the screen are refreshed (envelope).

Map

1ActiveView O— _ i
-4— PartialRefresh (in phase: esriViewDrawPhase,
in data: IUnknown, in Envelope: IEnvelope)

A cache is sort of like a screen capture or photo image of what’s displayed in a map’s
active view area. ArcMap uses caches to redraw itself more quickly.

Say, for example, that you cover the ArcMap window with another window (like the
VBA window). When ArcMap comes forward again, everything in the active view
must be redrawn, even though nothing has changed. Now say that the map contains
several layers that display hundreds of features. It’s not efficient for ArcMap to go to
each layer, locate its source data, and redraw each feature’s geometry. The cache
remembers what the data looks like, and can draw it fast since it is only an image.

At any given time, maps have several caches: one for graphics, one for layers, and
one for selected features. The Refresh method that you have been using redraws
every cache. The PartialRefresh method, on the other hand, can redraw just one
cache. Suppose that you have code that changes the selected set of features.
PartialRefresh can redraw just the cache with the selected features, saving the time
of redrawing the graphics and layers caches.

PartialRefresh’s data and envelope arguments help make redraws even faster. With
the data areument, you can specify a particular layer or graphic to redraw. In this
exercise, you are creating a tool to draw a graphic point. You will use PartialRefresh
to redraw that single graphic on the graphics cache with code like the line below.

pActiveView.PartialRefresh _
esriViewGraphics, pElement, Nothing

Instead of redrawing the entire active view area, PartialRefresh’s envelope argument
lets you specify a rectangle to redraw. For example, if your code adds a cluster of five

awing graphics

polygon graphics, you can get their combined extent rectangle, or envelope, and
redraw just that area. If you don’t want to use the data or envelope arguments, you
use the Nothing keyword.

In this exercise, you will add code to the RescueSite tool. The code will let the user
draw markers on the map and refresh the display for each one.

Exercise 12b

As dispatchers identify a location with the RescueSite tool, coordinates appear in
the status bar. Besides seeing the rescue site’s coordinates, dispatchers want to be
able to mark the site. In this exercise, you will add code to the RescueSite tool’s
MouseDown event to draw graphic points on the map.

Start ArcMap and open ex12b.mxd in the C:\ArcObjects\Chapter12 folder.

When the map opens, you see the Grand Canyon and the RescueSite tool.

= ex12b.mnd - ArcMap - ArcYiew

Fie Edb View Insert Selection Tools Window Help

oz@Es =8 % [va |¢,“| e =l = el

————— . %

= SR
£ £ Grand Canyon . @ G oA @& = ok @& MG 4 S

= CampSites

= M HopiPoint 4 Camp 3
e

= Bridge

= Colorado River
=
= M Eevation i b
Value i JHopl Peint =
High : 2270.000000 = % . i

-
Low : 726.000000

Display - 30|24 [+f
pavwing e Xk 0 O~ A~ = |[a o =zl m r g A & de 2=
| 1247025587 4011544.05 Mete| =

Right-click the RescueSite tool and click View Source.

In the ThisDocument code module, you see the code for the CursorlD and MouseMove
event procedures you wrote in the last exercise.

With RescueSite selected in the object list, click the procedure list drop-down
arrow and click MouseDown.

CHAPTER I2 MAKING TOOLS

Add four lines to declare and set variables for the map document and a point.

Dim pMxDoc As IMxDocument

Set pMxDoc = ThisDocument

Dim pPoint As IPoint

Set pPoint = pMxDoc.CurrentLocation

This is the same code you used in the last exercise to get the coordinates of the point
at the current mouse location. This time, you will create a marker element and
assign it the geometry of this point. As shown below, [Element has the Geometry
property you need.

iEhwnent

IElement O—w = Geometry: IGeometry 4'—— Geometry property
| |

MarkerElement

IMarkerElement O—
=8 Symbol: IMarkerSymbol

It might look as if you have ro declare a variable to IMarkerElement and then switch
to the [Element interface. Because of class inheritance, however, you can declare the
variable directly to IElement. (If you were going to set your own symbology, instead
of using the default, you would declare the variable to IMarkerElement, because it
has the Symbol property.)

Declare a variable and create a new marker element.

Dim pElement As IElement
Set pElement = New MarkerElement

Set the marker element's Geometry property equal to the point returned by the
CurrentlLocation property.

pElement.Geometry = pPoint

| [\ en12b.mrd - ThisDocument (Code) =1nfx

Wz ll [uusennwn — Z’

Private Sub RascuaSizE_HmuseDuwn(Ey'u'al button As Long, ByVal shifc Jj
Dim pMxDoc ks INxDocument
Set pMxDoc = ThisDocument

Dim pPoint ks IFoint
Zer pPoint = pMxDoc.CurrentLocation

Dim pElement As IElemenc
Set pElement = New MarkerElement

pElement .Geometry = pFoint

=Ed| 3 7

wing graphics

Now you want to get the map’s graphics container. Here is your chance to use

the QI shorteut. To get a map, you usually would use the FocusMap property on
IMxDocument. FocusMap returns the IMap interface. Then you switch interfaces to
[GraphicsContainer.

This time, however, you will declare an IGraphicsContainer variable and set it with
the FocusMap property and let VBA take care of the Querylnterface for you.

Declare and set an |GraphicsContainer varianle.

Dim pGraphics As IGraphicsContainer
Set pCGraphics = pMxDoc.FocusMap

You store the element in the map’s graphics container with the AddElement method.

AddElement has two arguments: an IElement object (which you just made in step 5)
and an index number, which defines the element’s ordered position in the graphics
container. The O position is in the front. (It’s the position a selected graphic has
when you click Bring to Front.)

Write a line of code

pGraphics.AddElement pElement, O

So far you have made a marker element, associated it with point geometry, and
added it to the map’s graphics container. The last thing to do is refresh the display.

You want the user to see each graphic they add, so you'll refresh the display every
time the AddElement method runs. Instead of refreshing the entire display area, you
will use the PartialRefresh method’s second argument, to refresh just the new graphic.

Since the PartialRefresh method is on the map’s [ActiveView interface, you need
to declare and set an [ActiveView variable. The pGraphics variable (from step 7)
points to the map’s IGraphicsContainer interface, so you can use it to Querylnrerface.

Declare ana set an [Active

Dim pActiveView As IActiveView
Set pActiveView = pGraphics

pActiveView Map

variable —— IActiveView O—

-a— PartialReiresh (in phase: esriViewDrawPhase, PartialRefresh

in data; IUnknown, in Envelope: IEnvelope) method
pGraphics —— IGraphicsContainer
variable

CHAPTER 12 MAKING TOOLS

o A 143 i
Add a line oT Co

T S
on the graphics cache

pActiveView.PartialRefresh _
esriViewCraphics, pElement, Nothing

4 ex12b.mxd - ThisDocument (Code) = =10} x|
RescueSite :! IM“usenuwn :J
pElement.Geowerry = pPoint j
Dim pGraphics ks IGraphicsContainer
Szt pGraphics = pMxDoc.FocusHap
pGraphics. iddElement pElement, 0
Dim pActiveView As IictiveView
Set pActiwveView = pGraphics
pictiveView.PartialRefresh _
esriViewGraphics, pElement, Nothing
_End Sub - B i 5
==« [

For the names of other draw phases (that control which caches are refreshed), see
the topic esriViewDrawPhase Constants in the developer help. 1

The code is ready to test. ,

Click to add some
sites around here

Early in this chapter, you learned that mouse events have button variables. You could
make the RescueSite tool more useful by using the two mouse buttons for different
tasks. For example, while the left button draws red squares for rescue sites, you could
use the right button to draw blue circles for trail obstructions, like Iandslides and

fallen trees.

Dirving graphics

Although you haven’t yet learned how to set symbology, you can try out the code
below to see mouse button variables in action. Add the following If Then statement
to the MouseDown event just before the PartialRefresh method. The code checks to
see which mouse button has been clicked (1 is left and 2 is right). If the left button
is clicked, the code doesn’t run and the default red square is drawn. If the right
button is clicked, the code below runs and a blue circle is added to the map.

If button = 2 Then
Dim pSymbol As IMarkerSymbol
Set pSymbol = New SimpleMarkerSymbol

Dim pCeolor As IRgbColor
Set pColor = New RgbColor
pColor.RGB = vbBlue

pSymbol .Color = pColor

Dim pMElement As IMarkerElement
Set pMElement = pElement
pMElement .Symbol = pSymbol

End If

The default symbol for a SimpleMarkerSymbol is a black circle. The code above
changes the circle’s color to blue.

S— Blue circles

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter12. Rename the file my_ex12b.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

CHAPTER 12 = MAKING TOOLS

B @9

Using TypeOf statements

In chapter 8, you learned about the Type Mismatch error message, which occurs
when your code encounters an unexpected data type, such as a string where an
integer is required.

Type mismatches can occur in lots of different situations. One example is when you
are working with different layer types (like feature layers and raster layers) in the
same map document. Suppose you have some code that displays the name of any
layer a user selects. It looks like this:

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim plLayer As ILaver
Set pLayer = pMxDoc.SelectedLayer

MsgBox pLayer.Name

You decide to write some additional code that switches interfaces and reports the
number of rows in the matrix of any selected raster layer.

Dim pRasterLayer As IRasterlayer
Set pRasterlLayer = player
MsgBox pRasterlayer.RowCount & " rows"

Everything works fine as long as the selected layer is in fact a raster layer. But if it’s a
feature layer, or some other kind of layer, you get a type mismatch.

'E:.Grandliamﬂjm.mud - ArcMap - Arc¥iew

=i

! Ele Edi Yiew Insert Selection ook Window Help

[DEEa !

— e [

= 5 Grand Canyon
= [Camp Sites

= M Elevations
Yalue
High ; 2270.00000

i Low | 726000000

Rl e e |
) o R LAY
| pang ~ & | DI A= = [o -] B 7 U|A~ - d- =

 403049.73 399762439 Meters | = 7

g TypeOf statements

TypeOf statements are designed to help you avoid type mismatches and other runtime
problems. They check to see whether an object variable points to a particular inter-
face (or whether it can point to that interface through Querylnterface). If it does,
the TypeOf statement returns true. If it doesn’t, the statement returns false.

The syntax for a TypeOf statement looks like this:
TypeOf pLayer Is IRasterLayer

If pLayer is pointing to the interface of an object that also has the IRasterLayer
interface, the statement returns truc.

Since TypeOf returns true or false, it can be used in If Then statements like the one
below. If the selected layer is a raster layer, you run the code you've already written.
If it isn’t, you display a message box that tells the user what to do.

If TypeOf plaver Is IRasterLayver Then

Dim pRasterLayer As IRasterLaver

Set pRasterlayer = plLayer

MsgBox pRasterLayer.RowCount & " rows"
Else

MsgBox "Please select a raster layer"
End If

In the next exercise, you will use the TypeOf statement with the RescueSite tool to
test whether the user is in data view or layout view.

The RescueSite tool draws graphics at locations specified in map units. Since layouts
are in page units, like inches or centimeters, the RescueSite tool is of no use there
and should be disabled (grayed out). You will write the code to do this in the tool’s
Enabled event procedure. This event procedure can be used to make any UlControl
available or unavailable to the user.

Tools

QU PeEDs I EROMD T X

L

Disabled Enabled

CHAPTER 12 ~ MAKING TOOLS

Exercise 12c

The RescueSite tool assumes that the user is in data view. Once in a while, dispatch-
ers try to use the tool in layout view by mistake. They get an error because the
CurrentLocation property encountets page units instead of map units. (If you try it
yourself, you'll find that clicking to dismiss the error message gets a new pair of page
coordinates from the layout and causes another error. To get out of the loop, move
the error message away from the layout.)

Start ArcMap and open ex12c.mxd in the C:\ArcObjects\Chapter12 folder.

When the map opens, you see the Grand Canyon and the RescueSite tool.

!E[

W ex12c.myd - ArcMap - ArcView

| Elle Edit View Insert Selection Tocks Window Help

DeEs| fEr s HIET o quno@eEs @ ROMNG X

—— — x

=l £ Grand Canyon
= ¥ CampSites

= M HopiPoint
@

= B Bridge
-
= M Colorado River
=
=2 Elevation
Value
-. High ¢ 2270.000000

™ Low : 726,000000

Dty [Souce] B LI s
[peiiia~ K GO~ A = 1= [Tt FCEr u A=l

12469716,26 4D09463,07 Mete

X

tool and click View Source.

Right-click tt

The ThisDocument code module contains the CursorlD, MouseDown, and
MouseMove event procedures that you have written in the last exercises. You will
code a TypeOf statement in the Enabled event procedure.

ect list, click the procedure list drop-down

You see the Enabled event procedure’s wrapper lines added to the ThisDocument
code module. You will write code to get the active view, so you can test it with the
TypeOf statement.

L sing TypeOf statementis

Declare and set a variable to get to the IMxDocument interface.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

IMxDocument has the ActiveView property.

Get the active view.

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.ActiveView

This code gets the active view, whether it is layout view or data view. You will add a
TypeOf statement to check which it is.

Begin an If Then statement. For its expression, use the TypeOf statement to see
if pActiveView also has the IPagelayout interface.

If TypeOf pActiveView Is IPagelLayout Then
End If

You are testing the pActiveView variable to see if it points to the interface of an
object that also has the [PageLayout interface. If the statement returns true, it means
that the object has [PageLayout and therefore that the user is in layout view.

Inside the If Then statement, indent and add a line of code to disable the tool.
RescueSite_Enabled = False

If you look at the Enabled event procedure’s wrapper lines, you will see that it is
defined as a function. As you know from chapter 6, functions return a value. When
a control’s Enabled event returns false, VBA grays out the control.

You will add an Else to the If Then statement so that you can add a line of code to
enable the tool when the user is not in layout view.

Outdent and add the Else statement.

Else

CHAPTER 12 =~ MAKING TOOLS

Indent and add the following line to enable the tool if the user is in data view.

RescueSite Enabled = True

& ex12c,;mud - ThisDocument (Code) [=[0[X]
RescueSite - I-E;-bled ;1

Private Function RescueSite Enabled() is Eoolean
Dim pMxDoc is IMxDocument
Set pMxDoc = ThisDocument

B
Dim pActiveView As IheriveView
Set phetiveView = pHxDoc.heotiveView

If TypeOf plhctiveView Is IPageLayout Then
RescueSite_Enabled = False

Else
RescueSite Enabled = True

End IT

Funccion

Private Sub RescueSite MouseDown{ByVal button is Long, ByVal shift i
Dim pMxDoc As IMxDocument

o 2 R [

Close Visual Basic Editor.

Click the RescueSite tool and click the map a few times with both the left and
right mouse buttons.

Click the View menu and click Layout View.

The RescueSite tool is grayed out. The tool and its code are protected from misuse.

QUL M@PES I ROHD T
|

Disabled

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter12. Rename the file my_ex12c.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

ing TypeOf statements

ArcGIS toolbars are composed of commands. The UIControls that you create and
drag to toolbars are commands, and so are all the tools, buttons, and menu choices
that make up the ArcMap and ArcCatalog toolbars.

Every command has source code behind it. You can view the source code for UlControls
that you make yourself, not for the controls that ESRI programmers have made for
ArcMap and ArcCatalog. Even though the code for the predefined controls is not
directly accessible to you (and is mostly written in C++, anyway), you can call it and
tell it to run, almost as if you were calling a subroutine.

Commands have an interface called ICommandItem and this interface has an
Execute method. When you run the method, the command executes—just as if you
had clicked a button or made a menu choice on the user interface.

The ability to execute commands saves you from having to write new code for
common operations. For example, instead of writing a procedure from scratch to
print a map, you could write:

PrintButton.Execute

Or say that your users always finish making a map by clicking the same three buttons:
Full Extent, Save, and Print. You could consolidate that process into a single button
click by making a UIButton and writing three lines of code that run the Execute
method on each button.

Toolbars, unlike commands, do not carry out operations, but sometimes you want to
manipulate them in your code—for instance, to specify that a certain toolbar always
opens with a map document or docks in a definite position. A lot of the code you
write to work with toolbars is the same that you use to execute commands.

ot

-

== :
f AT TS gﬁﬂ— -
Lomiman {EM drs

Commz

' 2

Say that you've written some code to zoom to a selected feature. When the code
zooms in on a country— Bolivia, for example—the edges of the feature might touch
corners of the data frame’s neatline. In addition, you can't see the names of the
neighboring countries.

i

Bolivia

L

>
5

P

Users compensate for these unwanted effects by clicking the Fixed Zoom Out button
on the Tools toolbar.

@@x@@@ﬁ#@kﬁMé?

Fixed Zoom Out

As a programmer, you would like to automate this process, so that whenever a user
zooms to a feature, they then zoom out by one increment without having to click
another button. You can do this by executing the Fixed Zoom Out command in
your code.

On the diagram below, four classes are involved in the process. All commands,
including the Fixed Zoom Out button, belong to the Commandltem class. You use
the Execute method on the ICommandltem interface to tell a command to run

its code.

Toolbars belong to the CommandBar class. A diamond, line, and star connect
CommandBar with CommandItem. That means a CommandBar is composed of
Commandltems (or, as you've known all along, a toolbar is made up of commands).

CommandBars is a collection object that keeps track of every toolbar and its
commands. You use its Find method (on the ICommandBars interface) to get the
[Commandltem interface of a command or toolbar. The Find method has an argu-
ment for specifying the command item or command bar you want. You get the
CommandBars object, with IDocument’s CommandBars property.

CHAPTER I3 ExecuTtmnG coMMANDS

|Document MxDocument i
|
|

®— CommandBars:
ICommandBars

;

ICommandBars C—— CommandBars

-— Find (in Identifier):
ICommandlitem

*
|Commanditem 0— Commanditem ICommandBar O &g manapar
- Execute * ICommanditem O—=

B

The Find method takes an Identifier number as its required argument. Every
command item and command bar—in fact, every COM class—has such a unique
identification number. This number is called a GUID (rhymes with squid and stands
for “globally unique identifier”) or sometimes just a UID.

GUID:s for all the ArcMap commands are listed in a table in the developer help under
the help topic ArcMap: Names and IDs of commands and commandbars. (You can find
the table by doing a search for ArcMap IDs.) In the table, buttons are listed by their
tooltip name in the Caption column and GUIDs are listed in the GUID column.

Captions GUIDs
1 ¥
ﬁ:"a’;‘e'::"wd GUID (CLSID / ProgID)

& {1E739F59-E45F-11D1-9496-080009EE
Toolbar Main Menu Main Menu none esHCore.MiuManuBar

-
Type Caption Name

{56599DD3-E464-11D1-9496-080009EE

Menu File Fils_Menu il esriCore.MuFileMenu

{119531DB-0255-11D2-8D20-080009EE

Command New File_tiew b ssriCore.MuFileMenultem
_— {119591DB-0255-11D2-8D20-080009EE

Command Open File_Opan Hlz esriCore,MuFileMenultem
ol — o {119591DB-0255-11D2-8D20-080009EE

Commana | Save RoRdve e esriCaore,MuFileMenultem
o B EESn Tl {119591DB-0255-11D2-8D20-080009EE

esriCore,MuFileMenultem

i . {ELF29C6B-4E6B-11D2-AE2C-080009E¢
Command Add Data File addDacy File ssriCors.AddDataCommand

e -.-..._l:l
4 | 2

Since you want to execute the Fixed Zoom Out command, you scroll down in the
ArcMap IDs table to locate it.

Fixed Zoom Out button Fixed Zoom Out button's GUID

{ELF29CTS-4EERB-11D2-AE2C-080009ECT22A}

Toolbar Tools Tools_Toolbar none esriCore BrowseToolpar

Canmand zese T Panzoar_Zoomin Funizous, |(ABIBSIEN-TETS 1 100 b 7C 000G TARETO)
il
Command Fiked Zoom|In PanZeom_ZoemInFined Pan/Zoom nggszagf;;ff:;z;gfma aEnCd’DBDDDBECHM}
I e Lo S Taor 2 Som Ut PaniZbom {0830FB34-7EE6-11D0-87EC-080009ECTE2A}

esriCore.ZoomOutFiredCommand

g Commandltems and CommandBers

To get the command, you could type in the GUID as the Find method’s Identifier
argument. However, GUIDs are made up of thirty-two numbers and letters, and are
a great place to make mistakes. Fortunately, you never have to type a GUID because
ESRI has written procedures to get them for you. These procedures are stored in
the ArcID code module found in every Normal.mxt project.

Project - Normal X

= & Normal (Normal.mxt)
4 (7 ArcMap Objects
= &3 Modules
AL TEs ——— ArcID code module
(7] Class Modules
Project
7 ArcMap Objects
[References

i
[GRCR A

The ArcID module is a class module filled with property procedures, each of which,
given a command’s name, returns a different GUID. You may find it more conve-
nient to think of it as an object with a different property for each command.

In the ArclD code module below, you see a property procedure called PanZoom_
ZoomOutFixed and in the procedure you see the Fixed Zoom Out button’s GUID.

* - NormaL.mxt - ArcID (Code} b =0/
(General) ~| [Panzoom_ZoominFixed (PropertyGet] |
Public Property Get Fanzanm_ZUﬂmOutFlked:J As UID zl
Dim u ks New UID =
w = 7(DB30FB34-7EE6-11D0-87EC-080009EC7324) " ———— Returns the GUID for
Ser PanZoom ZoomQutFixed = u the Fixed Zoom Out

End Properts - — command
Public Property Get PanZoom_FullEy.r_En:() is UID
Dam u is New UID

u = "{D830FB35-7EE6-11D0-B7EC-0B000SECT732A} "
Set PanZoom FullExtent = u

End Property

Public Property Get PanZomn_Rntacet) L= UID

Dim u &= New UID
u = "{D830FB36-7EE6-11D0-B7EC-0OS8000IECT3IZAL™

S PanZoom Rotate = u
End Property -
== 4 L‘_I

You can write a line of code to get the GUID, using ArcID as an object and the
command’s name (as it appears in the Name column of the table) as the property.
The line of code below returns the Fixed Zoom Qut command’s GUID.

ArcID.PanZoom ZoomOutFixed

You would never open the ArcID module and scroll through its hundreds of
procedures to find the one you want. Instead you would look in the ArcMap 1Ds
table, where all the names are listed in its third column.

CHAPTER 13 EXECUTING COMMAN

Fixed Zoom OQut button’s name

{E1F29C75-4E6E-1 1D2-AE2C-080009ECTI2AY

Toolbar Toals Tools_Toolbar pant asriCore.BrowseToolBar

Command|Zsomi 10 Panzoom_2domn Ll e
T T e PaniZoom Ezig\i):}.:?:;ﬁé?\f%uluﬁDl-873a-UﬁﬂﬂF8751720}
Gormmand | Fived Zoom In PanZeom_zominFised Pz | emadcommand o

. ; {0830FB34-7EES-1 1D0-B7EC-080009ECT32A}
Command Fixed Zoom Out PanZoom_ZoomOutFised Panfeaam esriCore.2osmOutFixedCommand

Since the Find method requires a GUID, you can insert this line of code as Find’s
Identifier argument, as shown below.

Dim pCommandItem As ICommandItem
Set pCommandItem = CommandBars.Find _
(ArcID.PanZoom_ ZoomOutFixed)

Once you have the command item, you can run its Execute method.
pCommandItem.Execute

This last line makes the Fixed Zoom Out button’s source code run. The map zooms
out, just as if the user had clicked the button on the interface.

Brazil

Bolivia

Argentina

You get toolbars in the same way. Suppose you do a lot of editing in a certain map
document, and you want the Editor toolbar to appear whenever you open that .mxd
file. Just as you do with commands, you use ArcID and a name to get a toolbar’s

GUID. In the ArcMap IDs table, the Editor toolbar’s name is “Editor_EditorToolbar.’

b

Editor toolbar’s caption Editor toolbar's name

) g o {C671BE640-83B9-11D2-850C-D000F87SBICE}
Editor Editor_EditorToclbar none SehtoreEditarToolBer

sing Commandltems and CommandBars

In the Find method, you use ArclD and the toolbar’s name to return its GUID.

Set pCommandItem = CommandBars.Find _
(ArcID.Editor_ EditorToolbar)

Once you have gotten the toolbar, working with it is a litcle different. Toolbar
properties and methods are located on the [CommandBar interface, not on
[Commandltem, so you do Querylnterface to access them.

Dim pCommandBar As ICommandBar
Set pCommandBar = pCommandItem

The [CommandBar interface is shown below. Its Dock method has a dockFlags
argument that rakes values like esriDockFloat, esriDockHide, esriDockLeft,
esriDockRight, esriDockShow, esriDockToggle, and estiDockTop. These values
dock the toolbar in different positions, hide it, and toggle its visibility.

| CommandBar

|CommandBar O ICommandBar : IUnknown

#— Count: Long
B— ltern (in Index: Long): ICommandltem

pCommandltem — ICommanditem O—

-a— Add (in cmdID: IUID, in Index: Variant):
i iti O ICemmandltem

IWindowPaosition «&— CreateMacroltem (in Mame: String, in FacalD:
Variant, in Action: String, in Index: Variant):
ICommanditem

~#— CreateMenu (in Name: String, in Index:
Variant): ICommandBar

-a— Dock (in dockFlags: esriDockFlags, in - Dock method
referenceBar: [CommandBar) ‘

-— Find (in identifier: Variant, in noRecurse: |
Boolean): [Commanditem |

-— |sVisible: Boolean

~e— Popup (in X: Lang, in Y: Leng):
ICommanditem

So if you wanted to make the Editor toolbar open in a centered floating position, you
would write:

pCommandBar .Dock esriDockFloat

Exercise 13
You are a historian working with old maps of a hundred or so different cities. Each

map has been scanned into an image file. Your project involves georeferencing each
city’s current data to the scanned maps to see what changes have occurred over time.

To begin to georeference two data sets, you make a data frame, add the data, and turn
on the ArcMap Georeferencing toolbar. Since you have to go through this process
about a hundred times (in fiction, not in the exercise), you'll code a UlButton to
accomplish all three tasks in one click.

You will look up the GUIDs for the Add Data button, the Data Frame menu choice
on the Insert menu, and the Georeferencing toolbar. Then you'll write code to run
the Execute method on each of the command items and to open the toolbar.

CHAPTER 13 ExECcUTING COMMANDS

At the end of the exercise, you'll compare new and old data for the city of Manhattan,
Kansas. The actual georeferencing will already have been done for you.

Start ArcMap and open ex13a.mxd in the C:\ArcObjects\Chapter13 folder.

The map document itself is empty. On the Standard toolbar, a UlButton has been
added for you next to the Add Data button. You will write code for its click event.

New button

IDERa|s B@x|o | &t = L:_.g_r[,g“?J

Right-click the new button and click View Source.

You see the button’s empty click event, AddMyData_Click.

Starting from ThisDocument, you will first get the CommandBars property (located
on the IDocument interface), which returns the ICommandBars interface.

Inside the click event, add the following two lines of code to declare and set a
CommandBars variable.

Dim pCommandBars As ICommandBars
Set pCommandBars = ThisDocument .CommandBars

[CommandBars has the Find method to get commands and toolbars. Before writing
any more code, you will locate the GUID for the Data Frame menu choice on the

Insert menu, shown below.

! File Edit iew Insert | Selection Tocls Window Help

Data Frame command

In the code window, double-click ICommandBars to highlight it.

You are going to open the online help.

'\ ex13a.mud - ThisDocument (Code) ; 7 -oi x|
IAddMyBaln =l |E1ick =l
=
Privace Sub lddHyDa\:a_ClicktJ
Dim pComwandBars Az High”ght
Set pCommandBars = ThisDocument . Commandbars
End Sub
=
== | M

r'ing Commanditems and CommandBears

Press F1 on the keyboard to open the ArcObjects developer help.
The help opens to the ICommandBars Interface topic, but that’s not what you want.

in the help window, with the Search tab active, check Search titles only and
search for ArcMap IDS. (You may have to click Display to show the topic.)

Scroll down the help page to the beginning of the table.

Type Caption Name t::;;:“ﬂ" GUID (CLSID / ProgID)
Toolbar Main Menu Main Menu e E;:gjf:m;:iﬁ;l,l D1-9496-080003EEBECE]}
Meny File File_Menu s S:g;’z{:gf;::;:ﬂ-ul 101-9496-080009EERECB}
I T
A |G e
Command Save File_Save File E::.3f:x&?;‘?ﬁm;ﬁ:BDQU'U&OOEQEHH1}
Command Save As File_SaveAs File E;éggiﬁs;ﬁ:;;:&ggBozu-nsoougaaqss1}

" {EIFZ?CEB‘QEBB-l1D2-AE2C*DBUDU9ECT32R}
Command Add Data File_AddData File estiCore,AddDataCommand

In the table, toolbars are blue, menus are gray, and commands are white,
Keep scrolling until you come to the Insert menu.

“Data Frame” is the menu choice’s caption. (The caption reflects the way the

. 143 b I &
command appears on the user interface.) “PageLayout_NewMap” is its name. You
use the name with the ArcID module to get the GUID.

Caption Name
x
Menu Inze Insert_Magu nona {11'9591‘._’
asriCora.h
{c225791 4
Command Data Frame Pagelayout_MewMap Pagelavout L ficore,l
3 {EB7ODOI
GCommand Title Pagelayour_[nsentTitle Page Layout o e
{=870001
Command Text PageLayout_InsertTest Page Layout | . iicore.l
- {FOST7FE
Command Meatline PageLayout_Neatline Page Layout L_ooo 0
(390210
Command Legend PageLayout_NewLegend Page Layout | (opicoral
1890210
Command North Arraw PageLayout_MewHorthArrew Page Layout | [e are .k
{99021D
Command Scale Bar Pagelayout_MewScaleBar Page Layout esriCora,M
..... A Erala Tane Planal anait MauCealnTne Sl s, |{99D21D38
of [L

Leave the help window open and bring Visual Basic Editor forward.

Declare and set a Commanditem variable using the Find property, ArciD, and the
newly found name of the Data Frame menu choice.

Dim pCommandItem As ICommandItem
Set pCommandItem = _
pCommandBars . Find (ArcID. PageLayout_NewMap)

CHAPTER I3 ExecuTiNG cOMMA

-

Find returns the ICommandItem interface of the specified command.

Use ICommandltem’s Execute method to run the command'’s code.

pCommandItem.Execute

=10l xi

W ex13amrd - ThisDocument {Code) C
[adamypata =] [cuek

Private Sub AddHyData Click()
Dim pCo 3 As ICo s
Set pCommandBars = ThisDocument . CommandBars

Dim pCommandItem is ICommandItem
Set pCommandItem = _
pCommandEBars.Find (ArcID. PageLayout_Newllap)
pComnandItem. Execute
End Sub

==

Next you will look up the name of the Add Data button.

§E Bring the help window forward. Scroll down to locate the Standard toolbar
(blue) and the Add Data command beneath it.

The command’s caption is “Add Data” and its name is “File_AddData.” S

Toolbar Standard Standard_Toolbar none ggéf,‘gbs_:]

Command | New File_Hew File fiaes

Command Open File_Open File E:;g:zllg__l

Command Save File_Save Fils i

Command Print File_Print File E;‘.é:?elr[\ I
|

| Command| cue Ediou edr pu o |

Command | Capy Edit_Copy Edic ﬁ:,?é?:‘g

| Command | Paste Edit_Paste Edie B!

Command Dalete Edit_Clesr Edit f::gf’l,‘;

command Undo Edit_Undo Edre f:f.i:if:

cemmand Redo Edit_Redo Edit E:&:Sf:

LF29
‘ Command | Add Data File_addDasa Fila G
i | _>I'J

Leave the help window open and bring Visual Basic Editor forward.

Set the pCommandlitem variable equal to the Add Data command using the Find
property.

Set pCommandItem = _
pCommandBars .Find (ArcID. File_ AddData)

You don’t need to declare a second ICommandItem variable. You can just reassign |
pCommandltem to point to the Add Data command’s [Commandltem interface.

ing Commandlitems and CommandBars

= = @ |

Use ICommanditem’s Execute method to run the command'’s code.
pCommandItem.Execute

Next you will get the GUID for the Georeferencing toolbar.
Bring the help window forward. Scroll down to locate the Georeferencing toolbar.

[ts caption is “Georeferencing” and its name is “Georeferencing_Toolbar.”

=
468107
ﬂ ST e e Geie
)) {663CE:
Menu Gearefarencing Georeferencing_Menu none SRriCore
Command Update Georeferencing Georeferencing_Saveltem Georeferencing E::z::—-—l
Command | Rectify Georsferencing_SaveAsitem Georefarencing Efjgfi'
= 72640
Cemmand Fit To Display Georeferencing_FrrToDisplaylzem Georeferencing Esr\Care
{81751¢
Menu Flip or Ratate Flip or &Rotate flene esriCore
. T9RES:
Command Rotate Right Georeferencing_RotatzRightItem Georeferencing Esncnre
. , TIAES:
Command | Rotate Left Georefarencing_RotateleftIrem Georeferencing isrwcam"’
4 | v

Leave the help window open and bring Visual Basic Editor forward.

Set the pCommandItem variable equal to the Georeferencing toolbar using the
Find property.

Set pCommandItem = _
pCommandBars.Find (ArcID.Georeferencing Toolbar)

As in step 14, you can keep using the same object variable.

Now that you have the toolbar, you want to run its Dock method so that it opens
in the desired position when the AddMyData button is clicked. Since the Dock
method is on the ICommandBar interface (and the Find method returns
ICommandltem), you need to switch interfaces.

CommandBar

|CommandBar O—— -s— Dock (in dockFlags: esriDockFlags, in
raferenceEar;?Commandﬁar)g Dock method

ICommanditem O—

Declare an ICommandBar variable and set it equal to the ICommanditem
variable.

Dim pGRCommandBar As ICommandBar
Set pGRCommandBar = pCommandItem

CHAPTER 13 - EXECUTING COMMANDS

Use the Dock method to open the toolbar as a floating toolbar.

You will set the DockFlags argument to esriDockFloat, which opens the toolbar in a
floating position over ArcMap. You can read about the other esriDockFlag options

in the online help.

pGRCommandBar .Dock esriDockFloat

% ex13a.myd - ThisDacument (Code) =i ={oix|
lAauMynm vI |click ﬁ
Set pCommandItem = ZI

pCommandBars.Find (ArcID.File kddData)
pConmandItem.Execute

Ser pCommandItem =
pCommandBars.Flnd(m:cID.GeureferencingﬁTcole:)

Dim pGRCommandBar As ICormandBar
Set pGRCormandBar = pCommandItem
pGRCormandBar . Dock esriDockFloat

End Sub

-,:E.‘_i__l L4 B

The code is ready to test.

Close Visual Basic Editor and the help window.

On the Standard toolbar in ArcMap, click the AddMyData button. In the Add
Data dialog box, navigate to the C:\ArcObjects\Data\Manhattan_KS folder.

Highlight CityOutline2003.lyr, manhattan1890.sid, and Streets.lyr, as shown in
the graphic below. Click Add.

%

Name: [Ciudine2003 y; manhattan] 890 id, Siests b
Cance|

Showof type: | Datasets and Lapers *) =l

The layers are added to a new data frame. The Georeferencing toolbar floats above
the ArcMap application. (Yours may be in a different position than the one in the

graphic.)

g Commandltems and CommandBars

*_exl3a.mxkd - ArcMap - ArcView

~— —— e : :

[DE@8 | tmx|n - i gmn 58w
—_——— x|
3 § Layers eoreferencins

New data S :

1

frame ——1 = £ NewData Frame
= B streets

Georeferencing
toolbar

= M CibyOutline2003

= M manhattan1890.sd
RGE Composite

Ered: Band 1

B Green: Band_2

B Blue: Band_3

=
| L] [. s -

va W@ J_EIJ_'_!A’W ﬁ.ﬁl’m

EE] In the table of contents, right-click manhattan1890.sid and click Zoom to Layer.

EZ Zoom in on the 2nd Ward on the east-central side of manhattan1890.sid.

1887 Manhattan, Kansas, map,
courtesy of the David Rumsey Map
Collection, www.davidrumsey.com

Surprisingly, the map compiled in the 1800s matches well with the streets of 2003,
but notice that where the Big Blue River once flowed there are now streets. Over the

last century, several floods have caused the river channel to migrate eastward, allow-
ing development where the river once flowed.

B2 If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter13. Rename the file my_ex13.mxd and click

Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

ection 33 "U";i«'h'g.zi?'chEfecf.s
HAPTER 14

dding layers to a map

ddding a geodatabase feature class

ing a raster data set

You might think the process of adding a layer to a map goes pretty fast, and it probably
does if all your data is in one folder. But what if the data is scattered across many
computers! What if you connect to ArcSDE" databases and enter password and
connection information? What if you get data from Web sites such as Geography
Network"? Navigating to data locations, entering passwords, and browsing Web
sites takes time. What if everyone in your organization has to do the same?

In this chapter, you will make some layers available from a menu, so that users can
just click to add them to a map, and save themselves the time of navigating to the
data. Your code will perform four steps. First, it will create a layer from one of the
many layer coclasses below; second, it will get a data set from a storage location on a
computer; third, it will associate the data set with the layer; and, fourth, it will add

the layer to a map.

T - T \ ,
FeatureLayer | CadAnnotationLayer | RasterLayer | DimensionLayer | | GraphicsLayer
§] :

[1) |
CadFeatureLayer ;.. EoverageAnnomtion ~ IMSMapLayer . TinLayer
i ayer £
| | | — :
GroupLayer ~ CadLayer . RasterCatalogLayer EomposlteGraphics f‘ FDOGraphicsLayer
: ~ Layer i
: |

The first step is easy because new layers are created from coclasses in the usual way.
The type of layer you create depends on the data source you are going to associate
with it. Say the layer’s data source will be an ArcInfo grid. A grid is a raster data ser,
so you make a raster layer.

Dim pRLayer As IRasterlLayer
Set pRLayer = New Rasterlayer

Or say your data source is a shapefile. Shapefiles are feature data sets, so you make a
feature layer.

Dim pFlayer As IFeaturelayer
Set pFlayer = New Featurelayer

The second step is more involved. ArcGIS data sets come in a variety of file formats,
but they all have one thing in common—they are stored somewhere on a computer.
That storage location is called a workspace. It may be a folder (for shapefiles), a
Microsoft Access file (for geodatabase feature classes), a pair of linked folders (for
Arclnfo coverages and grids), or even a relational database or a Web site.

To get a data set, no matter how it is stored, you first get its workspace. Workspaces,
however, are regular classes, so you can’t make or get them yourself. Instead, you get
a workspace from a coclass called a workspace factory. So the process is to create a
workspace factory, use it to get a workspace, and then get the data set you want from
the workspace.

The following diagram illustrates the class relationships. Workspace factories get
workspaces. Workspaces are composed of data sets. Dataset is an abstract class with
many subclasses. Only one (FeatureClass) is shown here, but there are others for
raster data sets, standalone tables, and so on.

WorkspaceFactory Workspace

IFeatureWorkspace O——

IWorkspaceFactory O— ~4— OpenFeaturaClass (in Nama:

~&— OpenFromFile (in Filename: String | -—~=-="—=="=======--=-== > String): IFeatureClass
OLE_HANDLE): IWorkspace i

|Workspace O—
AL
Dataset
IDataset ¢)—-4
FeatureClass

IFeatureClass O— |

Like the Layer class shown above, WorkspaceFactory is an abstract class with many
coclasses, and the workspace factory you make depends on the data set you want
to get.

CHAPTER 14 ADDING LAYERS TO A MAP

WorkspaceFactory ‘

B

[[] T =)

Access Cad OLEDB Raster
WorkspaceFactory WorkspaceFactory WorkspaceFactory WorkspaceFactory
i | | \
Arcinfo IMS TextFile Tin
WorkspaceFactory WorkspaceFactory WorkspaceFactory WorkspaceFactory
| I | h
Shapefile SDE PCCoverage VPF
WorkspaceFactory WorkspaceFactory WorkspaceFactory WorkspaceFactory

If you compare the workspace factory diagram to the layer diagram, you'll see that
the classes don’t correspond exactly. For example, you use different workspace facto-
ries to get shapefiles (ShapefileWorkspaceFactory) and geodatabase feature classes
(AccessWorkspaceFactory), but both are added as feature layers.

When you have got a workspace from a workspace factory, you get a data set from
the workspace. Dataset is yet another abstract class with different subclasses for
different types of data. For example, feature-based data sets belong to a class called
FeatureClass, while raster-based data sets belong to a class called RasterDataset.

After this second step, the third and fourth steps are again pretty easy. It takes one
line of code to associate a layer with a data set and one more to add the layer to a map.

In the next two exercises, you'll go through the process of adding layers with two
different kinds of data: first, a geodatabase feature class, and then a raster. You'll see
that the process is similar, but that some of the classes, interfaces, properties, and
methods you use vary.

Adding a geodatabase feature class

When you add a layer to ArcMap, you need to know the format of the data that will
go with it, since this affects your code. As long as you know the data type, it doesn’t
matter whether you create the layer first or get the data first.

Say you have a Streets feature class ina personal geodatabase, and you want to make
a layer from it. You might decide to create the layer first.

Dim pFLayer As IFeaturelLayer
Set pFLayer = New Featurelayer

With that done, you can turn your attention to the data. The process of getting a
data set begins with creating a workspace factory. Personal geodatabases are stored
in Microsoft Access file format, so in this situation, you want a Microsoft Access
workspace factory.

Dim pAWFactory As IWorkspaceFactory

Set pAWFactory = New AccessiorkspaceFactory

Although you are creating a Microsoft Access workspace factory, the variable is
declared to TWorkspaceFactory on the abstract WorkspaceFactory class. {Class
inheritance says it's okay to do this.) You want [WorkspaceFactory because it has
a method called OpenFromFile that gets workspaces.

WorkspaceFactory
IWorkspaceFacto ; " -
i Y O < penFromFile (in Filenzme: String «‘* The OpenFromFile method is

BLE. HANDLE): \Workspace
5) Mlattapas on IWorkspaceFactory

—

AccessWorkspaceFactory

WLocaIDatabaseCompacto—r]

You use the OpenFromFile method to specify the path to the workspace. (In spite of
its name, OpenFromFile is used to get any kind of workspace, whether it’s a file, a
folder, a database, or whatever.) As the preceding diagram shows, OpenFromkFile’s
first argument is a file name as a string. In this case, the string is the path to an .mdb
fle. So if the Streets feature class was stored in a geodatabase called City.mdb in the
D:\ Data folder, you would get the workspace with the following code:

Dim pFWorkspace As IFeatureWorkspace
Set pFWorkspace = pAWFactory.OpenFromFile =
("D:\Data\City.mdb",0)

OpenFromFile’s second argument is a window handle (or OLE_HANDLE). This is
a number assigned by the operating system to identify each open window on your
computer. The value O is not the actual handle, but a default number that tells VBA
to get the ArcMap window handle for you. You can also get the handle with the
IApplication interface’s hWnd property {Application.hWnd).

CHAPTER 14 ADDING LAYERS TO A M

Window handles are important when you get workspaces that have connection
propetties. For example, to get an ArcSDE workspace, you have to set a user name
and password. If the connection fails, the OpenFromFile method pops up a
Connection dialog box to prompt for the correct information. That dialog box needs
to know who its “parent” window is (which application window it belongs to), so
that it displays in front of that window and opens and closes with that window. The
window handle provides that information.

As a VBA programmer, you don’t have to worry about window handles because the
only one you need is that of ArcMap, and VBA gets it for you. Programmers working
outside VBA, however, may access workspaces from custom application windows
that they themselves create. In that case they must get their window’s handle to pass
to the OpenFromFile method.

If you look again at the diagram above, you'll see that OpenFromFile returns
[Workspace. Then why is the variable declared to [FeatureWorkspace? Here is a
case where you can apply the shortcut you learned in chapter 12. You don’t need
IWorkspace, but you do need IFeature Workspace, which has an OpenFeatureClass
method to get the data set from the workspace. So you declare the variable to the
interface you want and let VBA do Querylnterface for you.

[Workspace

IFeatureWorkspace < OpenFeatureClass (in Name: Sting): —'— The OpenFeatureClass method
IWorkspace O— Irgekmthe is on IFeatureWorkspace

Now that you have the workspace, you can get the data set by running the
OpenFeatureClass method. The diagram above shows that this method takes a
string as its argument. The string is the name of the feature class, which in this case
is Streets.

Dim pFClass As IFeatureClass

Set pFClass = pFWorkspace.OpenFeatureClass ("Streets")

That takes care of the first two steps in the process. You still have to associate the
layer you made with the data set and then add the layer to ArcMap.

You associate a feature class with a layer by setting the FeatureClass property on
[FeatureLayer. (You have a variable pointing to this interface from when you created
the layer.)

FeatureLayer

IFeatureLayer FeatureClass
®-0 FeatureClass: IFeatureClass

The FeatureClass property is different from other properties you have used so far. In
the diagram above, you see that the right side of the barbell is open instead of solid.

ing a geodatabase featire class

=

Properties with two solid barbells, like the ones you're used to, are called Set By
Value properties (or byVal for short). Properties with an open barbell on the right
are called Set By Reference properties (byRef for short).

The technical differences between these two kinds of properties don’t really affect
VBA programmers. What you need to know is that the code for setting them is slightly
different. To set a byRef property, you use the Set keyword at the start of the line.

Set pFLayer.FeatureClass = pFClass

A property that is set by value does not change if the object used to set it is later assigned a new value. For
example, say you have a color object called pColor that stores a certain shade of blue. You go on to use
that color object to set a symbol’s calor property with a line of cade like *pSymbal.Colar = pCalor.” Now
say that you replace pColor’s blue value with a shade of red. The symbol remains blue (as long as you
don't run the code again to reset the property).

A property that is set by reference changes whenever the object that sets it is assigned a new value. If the
Color property were set by reference, then the symbal would become red when you changed the value
of pColor.

Technically, when a byVal property is set, VBA makes a copy of the object. The copy is used to set the
property. When a byRef property is set, a pointer is used to point to the original object. Thus, if the object's
value changes, the property setting changes with it.

Finally, you add the layer to a map. You get a map with the FocusMap property on
IMxDocument. The code should be familiar to you from chapters 11 and 12.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pMap As IMap
Set pMap = pMxDoc.FocusMap

You add the layer with the AddLayer method on [Map.

pMap .AddLayer pFLayer

Exercise 14a

You are a GIS programmer for the Emergency Management office of Wilson County.
North Carolina. During emergencies, analysts in your group make maps for police
officers, firefighters, and other public safety officials.

Every emergency is different and so are the maps they require. Analysts might load
any number of layers in different data formats from computers across their internal
network and the Internet. Currently, to add a layer to a map, an analyst clicks the

Add Data button, then navigates through folders and disk connections. During an
emergency, this process consumes valuable time.

In this exercise, you will write code so that analysts can add layers directly from a
menu. This will be useful for common data sets like streets, parcels, and utility

CHAPTER 14 © ADDING LAYERS TO A

networks. First, you will create the menu itself and a Railroads menu choice for it.
Then you will write code to get the data, make the layer, associate the layer with the
data, and add the layer to the map.

Start ArcMap and open ex14a.mxd in the C:\ArcObjects\Chapter14 folder.

When the map opens, you see the county outline, along with streets and fire stations
layers.

% exlda.mxd - ArcMap - ArcView

[Flle Ed\t Miew Insert Ssle(Hnn Toals Window I_-{eLp

o e

| + 1455552 - w.J-'Z}v\'{?

L]
= Streets

£ M County °

Uisp@ﬂv‘- JEoe 4 o
Ei;g'ammv hf,‘[]vA',_-—_-:“Anal J]ﬂ]_}n;g A,v&v_}v;v:

| 227252649 71739520 Feet

J

In ArcMap, click the Tools menu and click Customize. Click the Commands tab.

Make sure that the Save in drop-down list at the bottom of the dialog box is set
to ex14a.mxd. In the Ce egories li st, cmH down and click New Menu.

21

Toolars Commands i Dptions |

Categories: Commands:

e a] [NewMero New Menu appears in
aper .
Linear Referencing the Commands list
Macros
tenus

Page Layout
Fan/Zaom
Publisher

Report Object

Fouts Editing Commands

Selection

Spatial Analyst :_I 4 LI
Savein {ex]damsd - Keyboard... i Addfmmfﬂa..i Close I

ing a geoddatabase feature class

From the Commands list, drag New Menu to the ArcMap main menu. Drop it
between the Tools and Window menus.

| Ele g Viow Insert Selection Toos |r

On the ArcMap main menu, right-click New Menu. Highlight the “New Menu”
text and replace it with Add Layers.

HESeD
iﬁd Layers Change text
Change Bukton Image b

Press Enter.

The new name displays on the menu.

] fie Edit Wew Inssrt Selection Tools |AddLayers

Next, you will add a choice to the menu.

In the Customize dialog box, in the Categories list, click UlControls. Make sure
that the Save in drop-down list is set to ex14a.mxd.

Click New UlControl. In the NewUIControl dialog box, the UlButtonControl
option is selected. Click Create.

In the Commands list, you see a new button named Project.UIButtonControll.

In the Commands list, click UIButtonControl1 and change its name to
Project.Railroads. Press Enter.

EIRE] Foicot Raiiosc | Change name

NewliContiol, | DeletelUlContal | Descipion |

Sevein [oritamed 7] Keowd. | Addfomie. | Do |

CHAPTER 14 =~ ADDING LAYERS TO A MA

From the Commands list, drag Project.Railroads to the Add Layers menu.

i File Edit Wiew Insert Selection }'_ﬁulslA‘dd Lawrslﬂindow Help

—— Drop it here

The Railroads choice is added. Next, you will write code for it.

i File Edit View Insert Selection Tools {Add Layers | Windaw Help

—1 Railroads

Click the Add Layers menu, right-click Railroads, and click View Source.

You see the ThisDocument code module and the empty Railroads click event
procedure. Your code here will get a railroads data set, create a new layer, associate
the data and the layer, and add the layer to the map.

The data set you want is a feature class within the Wilson County geodatabase
(Wilson.mdb). Geodatabases are stored as Microsoft Access files. To get the work-
space, then, you make a Microsoft Access workspace factory.

=1-£53 wilson.mdb ——— Workspace
O waker
B county
; 5] Electric
L[] Firestations
Parcels
-7} RAILROAD —— Feature class
] Streets

In the Railroads click event, declare and set a variable to create a Microsoft Access
workspace factory object.

Dim pAWFactory As IWorkspaceFactory
Set pAWFactory = New AccessWorkspaceFactory

You will get the workspace using the OpenFromFile method on IWorkspaceFactory.
This method returns [Workspace, but the interface you really want is

[Feature Workspace. You will therefore declare the variable to [FeatureWorkspace
and let VBA take care of the Querylnterface.

-

pFeatureWorkspace —— IFeatureWorkspace O—“

Workspace

-a— OpenFeatureClass (in Name:
String): IFeatureClass

IWorkspace O——

——i N

FeatureClass

ing a geodatabase feature class

ot

Declare an [FeatureWorkspace variable.
Dim pFeatureWorkspace As IFeatureWorkspace

The OpenFromFile method requires the full path to the workspace. You could type
this in, but it’s easy to make mistakes. Instead, you'll open ArcCatalog and copy
the path from its Location toolbar. ‘

Start ArcCatalog. |

In ArcCatalog, click the View menu, point to Toolbars, and click Location ifitis
not already checked.

In the ArcCatalog tree, navigate to C:\ArcObjects\Data\Wilson_NC. (If you |
installed the data for this book to a different path, use that path instead.) In the
catalog tree, click the Wilson geodatabase.

23 ArcCatalog - ArcView - C\ArcObjects Data\Wilson_NC\Wils . =18
| tle £t Yew Go Teos tick |
|ea® BE X |HE 63 6[A8 N
 Localon. [C-ArcObiects\Datatwiser_NCWWisanndb = 1 |
= %[Conters | Preview | Metadata |
1 Chaptert5 Al -
] Chepterté i [Type 1 |
=] Chapter17 L;_il\l\#ater Personal Geodatabase Feature Dataset |
& (] Chapteri8 = county Personal Geodatabase Feature Class
. @ (] Chapteri9 Electric Personal Geadatabase Feature Class
(0] Chapterz0 (I FireStations Personal Geodatabase Feature Class
= Data Hparcels Persanal Geodatsbase Featurs Class
(] Belize ERAIROAD Personal Geodatabase Feature Class
B30 dstrests Personal Geodatabase Feature Class
(] GrandCaynon
(L] Manhattan KS
. @1 Samples
#- usa
=1 Wikson_HC
|_] AirPhotos
&) Wisanmdb |
[+ (& airport. dxf |
& ‘@ schools =l !
. ’ ,
4

The path to the workspace appears in the Location toolbar’s drop-down list.

Highlight the path as shown. Right-click in the blue highlighted area and
click Copy.

Bring Visual Basic Editor forward.

CHAPTER 14 = ADDING LAYERS TO A

Set the workspace variable with the OpenFromFile method. For the first
argument, paste the path you copied from ArcCatalog and add quote marks
around it. Use 0 for the second argument.

Set pFeatureWorkspace = pAWFactory.OpenFromFile _
("C:\ArcObjects\Data\Wilson NC\Wilson.mdb", 0)

Now that you have the workspace, you can get the railroads feature class. To do this,
you run the OpenFeatureClass method, which is on [Feature Workspace. The argu-
ment for OpenFeatureClass is the name of the feature class in quotes. The name
must be an exact match, but is not case-sensitive.

Declare and set a variable to get the railroad feature class.

Dim pFClass As IFeatureClass
Set pFClass = pFeatureWorkspace.OpenFeatureClass _
("Railroad")

4 enl1da.mud - ThisDocument (Code) :] =
Railroads vl Click =
| Private Sub Railroads Click() b

Dim phWFactory ks IWorkspaceFactory
Ser pAWFactory = Hew hccesslUorkspaceFactory

Dim pFeatureWorkspace As IFeaturelorkspace
Zer pFeaturelorkspace = piWFactory.OpenFromFile
("C:\Arcobjec';s\Dat.a\Uilsnn_NC\U‘llsan.mdb", o)

Dim pFClass iz IFeatureClass
Ser pFfClass = pFeaturelorkspace . OpenFeatureClass _
{"Railroad")

End Sub

-

e

' In the introduction to this exercise, you learned that it doesn’t matter whether you
make the layer first and then get the data, or do it the other way around. In this case,
. vyou got the data first. Now it is time to make the layer.

Declare and set a variable to create a feature layer.

Dim pFLayer As IFeaturelayer
Set pFLayver = New Featurelayer

To associate the layer with the data, you use IFeatureLayer’s FeatureClass property.
This is a byRef property (open barbell), so it requires the Set keyword.

FeatureLayer

|FeatureLayer C—
=m0 FeatureClass: IFeatureClass

ding a geodatabase feature cleass

Set the FeatureLayer’s FeatureClass property equal to the railroad feature class.
Set pFLayer.FeatureClass = pFClass

Before adding the layer to the map, you will give it a name. The Name property

is found on the abstract Layer class’s ILayer interface, shown below. The
pFLayer variable points to FeatureLayer’s [FeatureLayer interface. Since Layer is
FeatureLayers superclass you can use Querylnterface to switch from [FeatureLayer
to [Layer.

Layer |
ILayer ILayer : IUnknown
m— AreaOfinterest: IEnvelope

=8 Cached: Boolean ‘

B8 MaximurnScale: Double

= MinimumScale: Double

=8 Name: String Name property

B8 ShowTips: Boolean ‘

—0O SpatialReference: ISpatialReference

®— SupportedDrawPhases: Long

m— TipText (in X: Double, in Y: Double. in

Telerance: Double): String ‘
|
|

#— Valid: Beolean
=8 Visible: Boolean

-a— Draw (in drawPhase: esriDrawPhass, in
Display: IDisplay, in trackGCancel:
ITrackCancel)

Declare an ILayer variable, set it with a Ql, and then set the layer's name.

Dim pLayer As ILayer
Set plLayer = pFLaver
player .Name = "Railroads"

Now you can add the layer to a map.

Declare and set an IMxDocument variable.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Get the active map and add the layer to it.

Dim pMap As IMap
Set pMap = pMxDoc.FocusMap

pMap.AddLaver pFLayer

To draw the layer, you have to refresh the map display. Back in chapter 11, you did
this by getting the active view and refreshing it with the following code:

'Dim pActiveView as IActiveView
'Set pActiveView = pMxDoc.ActiveView

'pActiveView.Refresh

CHAPTER 14 =~ ADDING LAYERS TO A

Now you have an opportunity to slip in another shortcut. You can cut these three
lines down to one with a technique called chaining. Chaining allows you to
extend the object.property syntax with forms like object.property.property and
object.property.method.

'pMxDoc.ActiveView.Refresh

When VBA runs a chained line of code, it evaluates the first object.property part of
the statement to see which interface is returned. The next property or method in
the chain is then issued to that interface. In the line above, pMxDoc.ActiveView
returns IActiveView, which is then issued the Refresh method. As long as each new
property or method is appropriate to the interface returned by the previous link, you
can take chaining as far as you want.

Refresh the map display area and update the table of contents.

pMxDoc.ActiveView.Refresh
pMxDoc .UpdateContents

a4 ex14a.mxd - ThisDocument {Code)

Railroads - lcli-:k -

Dim pFLayer k= IFeatureLayer g
Set pFLayer = New FeaturelLayer

Set pFLayer.FeatureClass = pFClass . T 1.!
B |

Dim pLayer is ILayer
Zet plLayer = pFlLayer
pLayer.Neme = "Railroads"

Dim pHxDoc Az IMxDocument
Set pHxDoc = ThisDocument

Dim pMap is IMap
Set pHap = pHxDoc.FocusHap

pHap. AddLayer pFlayer
pMxDoc. ActiveView.Refresh

pMxDoc.UpdateContents
End Sub

=4 2

IE!‘L

The Railroads UlButton is ready to test.

Close Visual Basic Editor.

ing a geodalabase featire class

In ArcMap, click the Add Layers menu and click Railroads.

B ex14amud - ArcMap -Arcliew LR _ 2 B
Iﬁ'}eiﬁtwewmtie}ecﬁonlmkadduyus!ﬁndwﬁeb. ‘
D& s x| oo & lEn o] | (a2

x|

- £ wilson County
= M Rairoads
—
= M Fire Stations

e
= M Strests

= County

NS
:“m :J B I ﬂ-.é_*.' &vﬁv;vi

[eeesi.el 7ER6.67Feet | 4

The Railroads layer is added to the map and draws with appropriate symbology.

When the name of a feature class matches the name of an ArcGIS symbol, that
symbol is automatically used to draw the layer. As the following graphic shows, the
Symbol Selector contains a Railroad symbol. (Note that the symbol name has to
match the name of the feature class—not the name of the layer—and the match
does not have to be case-sensitive.)

Symbol Selector] _'Ll}.!
Category: | Al R ———————y
S—— S, —_—
Highway Highway Ramp Expiessway
S ==
coor [N ;:l
Expressway Ramp Major Hoad Auterial Strest widh |40 =
Collector Stiest Flesidential Strest TR The feature class name and
symbol name are both Railroad
—— e Pl Properies.. I
River Bounday, Boundary, State LRI =

CHAPTER 14 ° ADDING LAYERS TO A MAP

You have added the first of many possible menu choices to the Add Layers menu.
You will add another one in the next exercise, but this book can’t take you through
every data formart supported by ArcGIS. To help you explore them on your own, you
will find a text file on the CD that comes with this book at C:\ ArcObjects\ Data
\Samples\ AddDataSubs.txt. The file contains three sample subroutines to create
layers from a CAD .dxf file, a shapefile, and an Arclnfo coverage feature class. The
corresponding data sets are also included on the CD.

As an experiment, you could create three more menu choices on the Add Layers
menu. Then, for each choice, you could call a different procedure from the samples
in the text file.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter14. Rename the file my_ex14a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

ing a geodatabase feature class

Adding a raster data set

Working with raster layers is similar to working with feature layers. In both cases,
you locate a workspace that contains a data set, get the data set by name, associate
the data set with a new layer, and add the layer to a map.

In the previous exercise, you worked with a Microsoft Access workspace, which is an
.mdb file. In this exercise, you will work with a raster workspace, which is a folder. In
the following graphic, the AirPhotos folder contains several images, each of which
is a raster data set. (The image files are in MrSID" format, which has the sid file
extension.)

x|

|
=

1 Chapterd?
E-53 Data

= (11 ArPhotos — Raster workspace

23 Northo1.sid E

28 Northo2.sid

23 Northo3d sid

8 Northod.sid

—— Raster data sets (MrSID files)

In the previous exercise, you learned that to create or get a workspace you need a
workspace factory. For raster data, you begin with a RasterWorkspaceFactory. The
diagram below shows the relevant class relationships.

[1
WorkspaceFactory | RasterWorkspace

IWaorkspaceFactory O |RasterWarkspace O—j
& OpenFromFilz (in Filename: Strin ~e— OpenfasterDaltaset (in Name|
BUE ‘DIANDLE): MWorkspace | T ===~ > String): IRasterDataset

| IWeorkspace O—

T

RasterWorkspaceFactory

RasterDataset

|RasterDataset O—‘

RasterLayer

|RasterLayer O——
-4— CrealeFromDataset: IRasterDataset

When you make a raster workspace factory, you declare the variable to
[WorkspaceFactory, just as you did in the last exercise, because IWorkspaceFactory
has the OpenFromFile method.

CHAPTER 14 ADDING LAYERS TO A MAP

After getting the workspace, you get the raster data set. When you got the feature
class in the last exercise, you switched from [Workspace to [FeatureWorkspace,
which had the OpenFeatureClass method you needed. In this situation, you switch
instead to IRasterWorkspace, which has the OpenRasterDataset method. Same idea,
different interface and method.

The OpenRasterDataset method takes the name of the raster as its argument.

Dim pRDataset As IRasterDataset
Set pRDataset = pRWorkspace.OpenRasterDataset("air.sid")

Once you have the data set, you create a raster layer. (Or, if you prefer, do it the
other way around.)

Dim pRLayer As IRasterLayer
Set pRLayer = New RasterlLayer

To associate the layer with the data set, you run the CreateFromDataset method on
the [RasterLayer interface. Again, it’s slightly different from the way things work
with feature classes.

RasterLayer

IRasterLayer O -4— CreateFromDataset: IRasterDataset

pRLaver .CreateFromDataset pRDataset

You add the raster layer to a map in the usual way.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

pMxDoc .AddLayer pRLayer

ing a raster data set

Exercise 14b
In émergencies like floods and fires, the area being burned or flooded constantly

changes. Air photos help analysts predict what might happen next because they
show terrain and familiar reference points.

In this exercise, you will make a submenu of air photos for the Add Layers menu.
Then you will code a menu choice to add an air photo to the map.

Start ArcMap and open ex14b.mxd in the C:\ArcObjects\Chapter14 folder.

When the map opens, you see the airport, schools, fire stations, and streets layers,
plus an orange graphic representing the location of a train crash and a plume of
smoke coming from a burning tanker car.

®_exidb.mxd - ArcMap - ArcView el %
} Fie Edt View Insert Selection Tools AddLayers Window Help

Egné; ¥ j— Bl & 1:152,3-13 - 7:... "‘_‘*‘7J

x|

= £ Wilson County
=1 @ schools point

& &

Fire Stations By .
e S
airport.dxf Polyline
airport.dxf Polygon

<,

ls,_t.l
reets g g
s
County @ i ¥ gi
ST L

It
Kl

m @

[
B BE

Train crash

]
&

| EX A

&
E

= : - = : =

prawirg v R 0|7 AT A =0 =t U Ay Gex @l ~

l2297077,37 71672671 Feet |

Click the Tools menu and click Customize. Click the Commands tab. Make sure
that the Save in drop-down list is set to ex14b.mxd.

In the Categories list, scroll down and click New Menu.

You see a New Menu listed in the Commands list.

From the Commands list, drag the New Menu to the top of the Add Layers
menu. Drop it above Railroads, as shown.

} Mew Menu »

Railroads

CHAPTER 14 ADDING LAYERS TO A MAFP

EJ Right-click New Menu and replace the text with Air Photos. Press Enter.

The new name displays on the menu.

Next you will add a choice (a UlButton) to the Air Photos submenu.

J In the Customize dialog box, in the Categories list, click UlControls. Make sure
that the Save in drop-down list is set to ex14b.mxd.

¥3 Click New UlControl. In the NewUIControl dialog box, the UlButtonControl
option is selected. Click Create.

In the Commands list, you see a new button named Project.UIButtonControll, as
well as the Project.Railroads button.

I3 In the Commands list, click on Project.UIButtonControl1 and rename it by typing
Project.WilsonWest. Press Enter.

EJ From the Commands list, drag Project.WilsonWest to the Air Photos submenu.

stos bt WilsonWest Drop it here

Ef Right-click WilsonWest and click View Source.

You see the ThisDocument code module and the empty WilsonWest click event
procedure. You will write code to get an image file from a raster workspace and add it
as a layer to ArcMap.

This time, your starting point is the RasterWorkspaceFactory coclass.

i In the click event, add the following two lines of code to create a raster
workspace factory.

Dim pRWFactory As IWorkspaceFactory
Set pRWFactory = New RasterWorkspaceFactory

[F] Declare and set a variable to get the workspace using the OpenFromFile method.
(If you installed the data for this book to a different path, use that path instead.)

Dim pRasterWorkspace As TRasterWorkspace
Set pRasterWorkspace = pRWFactory.OpenFromFile _
("C:\ArcObjects\Data\Wilson_NC\AirPhotos", 0)

iding a raster data set

OpenFromFile returns [Workspace, but here again, you have declared the variable
to the interface you really want. In this case, it’s [RasterWorkspace, which has che
OpenRasterDataset method.

Get the raster data set using the OpenRasterDataset method.

Dim pRDataset As IRasterDataset
Set pRDataset = pRasterWorkspace.OpenRasterDataset _
("wilsonwest.sid")

% exl4b.mud - ThisDocument (Code) =R
WilsonWest = [otiek =l
Private Sub UilsonWest Click()

Dim pRWFactory As IWorkspaceFactory

Set pRWFactory = New RasterUorkspaceFactory

Dim pRasterWorkspace is IRasterWorkspace

Set pRasterWorkspace = pRUFactory.OpenFromFile

("C:\ ArcObjects)\DatalWilson NC\AirPhotos”, 0O)

Dim pRDataset Ls IRasterDataset

Set pRDataset = pRasterVorkspace.OpenRasterDataset _

("wilsonwest.sid")

-

=l | JJ

Now that you've got a darta set, you can make a new raster layer and then associate
the two.

Create a new raster layer.

Dim pRLayer As IRasterLayer
Set pRLayer = New RasterLayer

To associate the layer with the data set, you run the CreateFromDataser method.
Running this method on a raster layer is equivalent to setting the FeatureClass
property on a feature layer.

Add a line to associate the raster data set with the raster layer.
pRLayer.CreateFromDataset pRDataset

Add another line to set the layer’s name.
pRLaver.Name = "Wilson West"

The Name property is on ILayer. The pRLayer variable points to [RasterLayer. You
would normally have to QI from IRasterLayer to ILayer and then set the Name prop-
erty. In this case, a shortcut called interface inheritance is available. You will learn
about it soon in chapter 15.

Now you will get the active map from the map document and add the layer to it.

CHAPTER 14 ADDING LAYERS TO A MAP

—

Declare and set an IMxDocument variable.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Get the active map and add the layer to it.
Dim pMap As IMap
Set pMap = pMxDoc.FocusMap
pMap.AddLayer pRLayver

You can'’t see through the image, so you need to make sure it goes to the bottom of
the table of contents.

Use the map's Movelayer method to move the raster layer to the bottom of the
table of contents.

pMap.Movelayer pRLayer, pMap.lLayerCount - 1

MovelLayer has two arguments, the name of the layer you want to move, and the
index position you want to move it to. The first index position, at the top of the
table of contents, is 0.

Since a user can freely add or remove layers, you have no way of knowing how many
layers will be on the map. So how can you move a layer to the bottom? Map has a
LayerCount property that returns the number of layers on the map. LayerCount
minus 1 returns the position of the bottom layer.

Add two lines of code to refresh the map’s active view area and the table of
contents.

pMxDoc.ActiveView.Refresh
pMxDoc .UpdateContents

i ex14b.mxd - ThisDocument (Code) : B =oi x|
i‘mlsnnWesl j icli:l(:[
Dim pRLayer Ls IRasterLayer j

Zer pRLayer = Newv Rasterlayer

pRLaver.CreateFrombataset pRDataset
pRLayer.Name = "Wilson West”

Dim pMxDoc is IMxDocument
Set pHMxDoc = ThisDocwuwent

Dim pHMap Az INap
Zet pMap = pMxDoc.Focuslap
pMap. AddLayer pRLaver

pMap.Hovelayer pRLayer, pMap.LayerCount — 1
pHxDoc. dctiveViey.Refresh

plxDoc.UpdateContents
End Sub

==] L5

ding a raster dala set

The menu choice is ready to test.
Close Visual Basic Editor.

There has been a train crash on the northwest side of the city. You will use the new
menu choice to create a map of the crash site.

Click the View menu, point to Bookmarks, and click Train wreck overview.

The map zooms to the train wreck area. Two polygons show the crash site (pale
orange) and a plume of smoke (dark orange) coming from a burning tanker car. ‘

Click the Add Layers menu and click Railroads to add the layer to the map.

¥ ex1d4b.mxd - ArcMap - ArcView

File Edt View Insert Selection Tools AddLayers Window Help

| e S
B A e I

= ——
= £# wilson County S 7 g
= M Rairoads b%
—+ 3 |
= schoals point i |
& |

Fire Stations

®
airpart, dxf Polyline ;
alrport.dxf Polygon 3

Streets

il
&3]

=
[0

I
€

i
]

County

E]
Q_isuie_w- o=« E——— | H
el = = B 2 u‘é..'&'.;—i'_'..'_|

[220001240 735298.13 Feet

_!-Qrawino' [N & O~ A==

3

The airport is probably far enough away, but a neighborhood and a school only
blocks away will probably have to be evacuated with the help of nearby fire stations.

Click the View menu, point to Bookmarks, and click Train wreck detail.

The map zooms in on the area right around the crash.

CHAPTER 14 =~ ADDING LAYERS TO A

Click the Add Layers menu, point to Air Photos, and click Wilson West.

It looks like the plume is already within a residential area and is nearing the school
to the northwest. The area needs to be evacuated until the plume clears. !

exld4b.mxud - ArcMap - ArcView

Insert Selection Tooks Add Layers Window o

B ¢.E[1:n,73 : ’HJ@H‘? : = — !

= B Railroads

—
= M schocls point

&

= B Fire Stations

®

B airport. dxf Polyline

= [airport, dxf Polygon
O

I B Streets

= M County
1 & Wikson West

‘alue
High : 255

: 2m (24 —
“|0~ A~ =ipd

| ;
S 8z u A B Lx o
[mumag eserzeerest | 7

B3 If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter14. Rename the file my_ex14b.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

118 a raster data set

ection 3: Us

Setting layer symbology

Betting laver color
Setting layer symbols

veating a class breaks renderer

Layers on a map have instructions that define the symbols and colors used to draw
features. In the map of Mexico below, the Roads layer draws as a wide red line. The
Cities layer draws capitals as green stars and other cities as green circles. The States
layer represents population density in shades of yellow to brown.

Users tell a layer how to draw by working with layer legends. Programmers call the
legend a renderer and control it with code. In this chapter, you'll learn how to sym-
bolize layers by making renderers and setting their properties.

o Tz

=] [

= £F Mexico
i = M dties

£ +r Capital
: ® Cities
g = Roads

[k

=1 M Rivers

= M Lakes
=

|5

= M States

Population per squ ||

B 1200 - 15000
751 - 1200
[251 - 750
[T1126- 250

[T]10- 125 |

= M Central Americabnd ||
- =

=|4

ﬂls

.|2

= USABrd 1400000

& H[v S
=0 414 8,64 Inches

Back in chapter 12, you learned that VBA can do QueryInterface for you, and
you've used this shortcut in a couple of places. In this chapter, you will use another
coding shortcut called interface inheritance.

You already know about class inheritance, which means that a class has all the
interfaces of its superclasses. For example, the FeatureLayer class has all the inter-
faces of its superclass Layer. With interface inheritance, one interface inherits the
properties and methods of another interface. In looking at different diagrams in this
book, you may have noticed that each interface’s name appears at the top of its
white box, followed by a colon and the name of another interface. This notation
means that the first interface inherits from the second, as shown below.

SimpleLineSymbol
ISimpleLineSymbol Q— 'SimpleLineSymbol : ILineSymbol —— ISimpleLineSymbol
=@ Style: esrSimpleLineStyle inherits from ILineSymbol

The properties on ILineSymbol can be used as if they were on [SimpleLineSymbol.

LineSymbol
ILineSymbol ILineSymbal : lUnknown
_I—l Color: ICDI; S o ; .
=& Vi Doutle ———————— You can set this property with a
SR o variable declared to ISimpleLineSymbol

If you have a variable pointing to ISimpleLineSymbol, you can use it to set any
ILineSymbol property.

Dim pSimplelLineSymbol As ISimpleLineSymbol
Set pSimplelineSymbol = New SimpleLineSymbol
pSimpleLineSymbol.Width = 3

Interface inheritance can only be used with a few interfaces. Most interfaces, like
[LineSymbol, above, inherit from an interface called IUnknown, which sits at the
top of the interface hierarchy (all classes have it). Although it has no practical use
for most VBA programmers, IUnknown provides every class with Querylnterface
capability. You can read more about IUnknown in the developer help and at the
msdn.microsoft.com Web site.

CHAFPTER 15 SETTING LAYER SYMBOLOGY

iSetting layer color

When a user adds a feature layer to a map, ArcMap assigns a simple renderer that
draws the layer in a single randomly selected color. When a programmer adds a layer
to a map, they can use this same default renderer or write code to give the layer dif-
ferent drawing instructions.

The diagram below shows that every feature layer has a renderer, every renderer is
composed of symbols, and every symbol has a color. Renderer, Symbol, and Color are
all abstract classes, each of which has many subclasses.

FeatureLayer Renderer

* b

Symbol

Color

When you create a renderer, it doesn’t have any symbols. When you create a symbol,
it doesn’t have a color. So the best way to get started is to make colors. Then you can
make symbols and assign the colors to them. Finally, you make a renderer and add
the symbols to it.

In chapter 11, you learned about the Color class and its five color model subclasses.
You created an RgbColor object with the code below.

Dim pSalmon As IRgbColor
Set pSalmon = New RgbColor

Each color object has properties you set to get your desired color. With the RGB
color model, you set different amounts of red, green, and blue.

RgbColor

IRgbColor O—— IRgbColer : IColor

=8 Biue: Long
=8 Green: Long
== Red: Long

To make a salmon color, for example, you would set the properties as follows:

pSalmon.Red = 255
pSalmon.Green = 160
pSalmon.Blue = 122

To find out more about color models, names, and values, navigate to your
C:\ ArcObjects \ Data\ Samples folder and open the file colornames.txt.

ing layer color

Colors get assigned to symbols. The diagram below shows the Symbol abstract class
and three of its subclasses: MarkerSymbol, LineSymbol, and FillSymbol. These are

themselves abstract classes with their own subclasses. LineSymbol subclasses include
SimpleLineSymbol, MultiLayerLineSymbol, and PictureLineSymbol.

Symbol
o] By WO B
MarkerSymbol LineSymbol | FillSymbol |
= — == 4 = - T = = = |
SimpleMarkerSymbol SimpleLineSymbol SimpleFillSymbol
| | | | 1 | I 1 111

ArrowMarkerSymbol MultiLayerLineSymbol MarkerFillSymbol

| | | | T 1 11
MultiLayerMarkerSymbol PictureLineSymbol LineFilISymbol

— 1L I I 11
CartographicMarkerSymbol CartographicLineSymbol DotDensityFillSymbol

ﬁ 111
PictureFillSymbol
CharacterMarkerSymbol
HashLineSymbol

; 1 GradientFillSymbol
PictureMarkerSymbol

MarkerLineSymbol

You can create a SimpleLineSymbol with the code below.

Dim pLine As ISimplelLineSymbol
Set plLine = New SimpleLineSymbol

Some of the other line symbol coclasses do more than draw a simple line. For
example, PictureLineSymbol and MarkerLineSymbol let you choose an image file
or marker symbol that repeats along the length of the line.

To assign a color to a symbol, you set the Color property on the MarkerSymbol,
LineSymbol, or FillSymbol abstract classes. As shown below, LineSymbol has the
Color property on its ILineSymbol interface.

LineSymbol
ILineSymbol G— ILineSymbol : lunknawn |
=& Calor: ICelor — Color property

= Width: Double

CHAPTER 15 = SETTING LAYER SYMBOLOGY

The familiar way to get to this property is to do Querylnterface.

Dim pLineSym As ILineSymbol
Set pLineSym = pLine

Now you can set the line symbol’s color equal to the salmon color you made. You
might also set the Width property to draw the symbol in a thick line.

pLineSym.Color = pSalmon
pLineSym.Width 3

Alternatively, since ISimpleLineSymbol inherits the ILineSymbol interface, you could
accomplish the same thing with less code. pLine points to the ISimpleLineSymbol
interface, but can be used to set ILineSymbol’s Color and Width.

pLine.Color = pSalmon
pline.Width = 3

Having made a color and assigned it to a symbol, you must still assign the symbol to
a renderer.

The diagram below shows that FeatureRenderer is connected to FeatureLayer with one
line and no other symbols. That means that each FeatureLayer has a FeatureRenderer.

FeatureLayer FeatureRenderer '

|

| | | | | | | |
UniqueValueRenderer DotDensityRenderer SimpleRenderer

l | 1 | |
ClassBreaksRenderer ScaleDependent ChartRenderer

Renderer

| I

BiUniqueValueRenderer ProportionalSymbolRenderer

The FeatureRenderer abstract class has eight subclasses, representing different legend
types. A SimpleRenderer draws all features in one symbol and one color.

Dim pRender As ISimpleRenderer
Set pRender = New SimpleRenderer

Setting layer color

After creating a renderer, you set its Symbol and Label properties. The Symbol
property is a byRef property (open barbell), so you set it with the Set keyword.

SimpleRenderer

ISimpleRenderer O— ISimpleRenderer : IUnknown
B8 Description: String

B8 | abel: String

=1 Symbol: ISymbol

The next lines set the renderer’s Symbol property to the salmon line symbol, and ==
Label property to Salmon Streams.

Set pRenderer.Symbol = pLineSym
pRenderer.Label = "Salmon Streams"

The Label property sets the text that goes with the symbol in the ArcMap table o
contents.

= Streams —————————— Layer name
Salman Streams

Symbol Label
The renderer has been given a symbol, a color, and a label, but it must still be
associated with a feature layer. To make this association, you set the Renderer prog
erty on the FeatureLayer class's [GeoFeatureLayer interface.

FeatureLayer

|GeoFeatureLayer O—
B Renderer: IFeatureRenderer

IFeatureLayer O——

If you haven’t already created the feature layer, you make it with the code below:
(If the layer already exists, and you have a variable pointing to IFeatureLayer, you
would do Querylnterface to IGeoFeatureLayer.)

Dim pGFLayver As IGeoFeaturelayer
Set pGFLayer = New FeaturelLayer

The Renderer property is also a byRef property that requires the Set keyword.
Set pGFLayer.Renderer = pRenderer

Before you can see the results of your work, you have to refresh the map display anc
update the table of contents. The code to do this is familiar to you from the last
chapter.

CHAPTER 15 SETTING LAYER SYM

Exercise 15a

The Add Layers menu has helped the County’s emergency analysts make basemaps
much more quickly than before. They have noted one drawback, however. While
some layers, like the Railroads layer, are automatically symbolized (because the layer’s
feature class name matches the name of an ArcGIS symbol), other layers are not. For
example, the Water Lines layer draws with default symbology in a random color.

In this exercise, you will modify the code for the Water Lines choice on the Add
Layer menu. You will create a renderer, a line symbol, and a color to make the water

lines draw in blue.

Start ArcMap and open ex15a.mxd in the C:\ArcObjects\Chapter15 folder.

When the map document opens, you see the county outline and its streets.

Click the Add Layers menu and click Water Lines.

%, exl5amxd - ArcMap - ArcYiew

_E File Edit View Insert Selsction Tools AddLayers Window Help

|DSE& « =|x - x| b |[1:429.967 2 BEY-AR RN w3 =

s ——————

= & wilson County
= B Water Lines

= M Strests

= [County

Display AR S

i_—grm: k, .I,:“_.:v:"_'nmial =it =l B 1 U A_-—(ﬁ'__g-;-f
| [2299248.10 759915.10 Feet

The warer lines display in a single randomly selected color. (Your color may be

different.)

Click the Tools menu and click Customize.

I With the Customize dialog box open, click the Add Layers menu, right-click

Water Lines, and click View Source.

The WaterLines click event already has code to add a water lines layer to the map.
It’s similar to the code you wrote in chapter 14 to make a layer from a geodatabase

feature class and add it to a map. You will add code to set the layer’s color.

Seiting layer color

Find the following commented line near the end of the click event procedure.

'Add color code here.

154 ex15a.mxd - ThisDocument (Code) T - = Dl }J
]wmmjnes] [ctiek =
Dim pMxDoc As IMxDocument ﬁ
Set pHxDoc = ThisDocument
'idd color code here.
pFLayer.Name = "Water Lines"
pHExDoc.Focustap. AddLayer pFlayer
pHixDoc. LetiveView. Refresh
plxDoc. UpdateContents
End Sub v
= e 37

Add code here

After the comment, add the following lines to create an RgbColor object.

Dim pColor As IRghColor
Set pColor = New RgbColor

Set the color's properties to make steel blue.

pColor.Red = 70
pColor.Green = 130
pColor.Blue = 180

Now create a simple line symbol.

Dim pLineSym As TISimpleLineSymbol
Set pLineSym = New SimpleLineSymbol

To associate the symbol with the color, you need to set the Color property on
[LineSymbol. The diagram below shows that ISimpleLineSymbol inherits the
[LineSymbol interface, so you can use the interface inheritance shortcut.

LineSymbol
ILineSymbol ©—— ILineSymbol : IUnknown

=8 Calar IColor |
m—= Width: Double

= o
£|\

SimpleLineSymbol

ISimpleLineSymbol O—

Set the simple line symbol’s Color property.

pLineSym.Color = pColor

ymbol : ILineSymbol ISimpleLineSymbol
=8 Style: esriSimpleLineStyle inherits from ILineSymbol

CHAPTER 15 = SETTING LAYER SYMBOLOGY

Now create a simple renderer.

Dim pRenderer As ISimpleRenderer
Set pRenderer = New SimpleRenderer

To associate the renderer with the symbol, you set the simple renderer’s Symbol
property, which is a byRef property.

Set the simple renderer's Symbol property.
Set pRenderer.Symbol = pLineSym

Now that you have created a renderer, you can assign it to a layer. You do this by
setting the layer’s Renderer property on the IGeoFeatureLayer interface. As you
began this exercise and opened the code window, you saw that much of the click
event had already been written. If you look up in the code, you'll see a variable
called pFLayer that refers to the WaterLines layer. However, pFLayer points to
[FeatureLayer. You need to switch interfaces to IGeoFeatureLayer.

FeatureLayer

IGeoFeatureLayer O—]
=01 Renderer: IFeatureRenderer

pFLayer variable points here —— IFeatureLayer O——

Declare an IGeoFeatureLayer variable and switch interfaces.

Dim pGFLayer As IGeoFeaturelayer
Set pGFLayer = pFLayer

The Renderer property that you will set next is also a byRef property.

Assign the new renderer to the Water'Lines layer.

Set pGFLayer.Renderer = pRenderer

M ex15a.mxd - ThisDocument {Code)

1WmetLines vi Eclick 0 ‘j

pColor.Blue = 180 ZI

Dim pLineSym is ISimpleLineSymbol
Set pLineSym = New SimpleLineSymbol
pLineSym.Color = pColor

Dim pRenderer As ISimpleRenderer
Set pRenderer = New SimpleRenderer
Set pRenderer.Symbol = pLineSym

Dim pGFLayer is IGeoFeatureLayer
Set pGFLayer = pFlLayer
Set pGFLayer.Renderer = pRenderer

pFLayer.Name = "Water Lines"
plxDoc.FocusHtap. AddLayer pFlLayer

pMxDoc. ictiveView.Refresh
pMxDoc.UpdateContentsa
End Sub -

I T | 2

B

|ISetting layer color
|
l

The next four lines of code were already there. They set the layer name, add the
layer to the map (using the chaining technique you learned in chapter 14), refresh

the map display, and refresh the table of contents, making the new symbology appear.

. Close Visual Basic Editor.

You will remove the water lines layer that you added in step 2, then add it again to
see it draw with the new symbol and color.

In the ArcMap table of contents, right-click the Water Lines layer and click
Remove.

Click Add Layers and click Water Lines.
The layer is symbolized in steel blue in the legend and on the display.

For a closer look, right-click Water Lines in the table of contents and click Zoom
to Layer.

® _exl5amud - ArcMap - Arc¥iew

| e & gew oot Sekcion Teok AdiLayers Window bk

B lﬁm—j‘ .ﬂzwlvl

E County

J

4-&“\9' .kl';',nlgvAv;:z“And __j|1ujn;n|Av' -_-. -
[227583074 743810.00 Feet |

&;

| If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter15. Rename the file my_ex15a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap cpen. Otherwise
close it.

|
ISetting layer symbols

When you make a feature layer’s renderer, you can create your own symbology for it
(as you did in the last exercise), but you can also use symbols and colors created by
others. Getting symbols that already exist—and that look good—can save you a lot
of programming time.

ArcGIS symbols are stored in the Style Manager as styles, style gallery classes, and
style gallery items.

Style gallery items

Style Manager e 4 21x|
¥ [C:\Documents and Settingsvrobe < | Name | - Clase l
& ([ESRlstyle EMT1 Hazmat
-] Business style EMT 2 Hazmat Styles ~
Styles -1 Ciime Analysiz. style seenT 3 Hazmat
{1 Foresty.slyle - Fire Axe Hazmat
= [Hazmatstyle = Fire Hat Hazmat
L] Reference Systems & Fire Hydrant 1 Hazmat
{1 Shacoe 5 Fire Hydrant 2 Hazmat
(] Area Palches m' Fire Hudrant 3 H
1 Line Patches {re ydrant azmat
1 Labels {8 Fire Hydrant 4 Hazmat
1 North Aows . Fire Rescue 1 Hazmat
1 Seale Bars @Fwe Rescue 2 Hazmat
-] Legend ltems .'g)F\!e Rescue 3 Hazmat
Style gallery classes 1 Scale Texts 1§} Fire Rescus 4 Hazmat
{1 Caolor Ramps & Fite Truck 1 Hazmat
{1 Boiders = Fire Truck 2 Hazmat
|1 Backgrounds -@Elawng Agents Hazmat
¥ ::J Colors eﬁiasﬂng Agents 1 Hazmat
{1 Fil Symbols __| €8 Blasting Agents 1.5 Hazmat
(] Line Symi & Chigiine 1 Hazmat
= * <2 Chioiine 2 Hazmat
gl ﬁﬂ]ﬂ::ﬂfw mbioks - @ Combustible Hazmat » —
El I I » 4] | » !.u.l I-_;;é

The ESRI style contains symbols for all-purpose cartography. The other styles
contain symbols unique to an industry or discipline. You can also make your own
styles or add styles created by others.

Styles contain style gallery classes, which are groups of similar symbols or map
elements. Marker symbols are a style gallery class, and so are line symbols, colors,
and north arrows. (Here, a “class” just means a collection of similar things, not an

ArcObjects class.)

Style gallery classes contain style gallery items, which are individual symbols or
elements. In the right-hand window of the above graphic, you see the items in the
Marker Symbols class of the Hazmat (Hazardous Materials) style.

|Sert£ng layer symbols

The next graphic shows the items in the Colors style gallery class, again from the
Hazmat style. Within a style gallery class, items can belong to different categories,
like the ones here.

Category
Style Manager ﬂ E{

] Business.shyle _AJ Name 1 Categary | = Clos= I
3] Crime Analysis.style [Flood 1 W ater
w (1 Forestiy.syle [Flod 2 Water Shies -
i=-{ Hazmat siyle B Constivction 1 Defaul

|__| Reference Systeme B Constuction 2 Default

{1 Shadows M o= 1 Defauit

'i—,j A}ea Pelches O Noise 2 Default

1 Live Palches W Fune Pollutant

£1ikebels CFume 2 Pallutant

] Noith Amows

1 ScaleBars = Bloha?afd 1 Hasmat

7 Lsgand lterme E;h;mmal A :Dliulani

(] Scale Texts adiation azmat

j Color Ramps EI Radiation 2 Hazmat

{1 Borders Poison Hazmat

{_1 Backgrounds MWEmMT1 Fire Inci..

= Cemt 2 Fire Inci...

{1 Vectorization Setting WEmMT 3 Frre Inci.

-;__] Fill Symbols W Fie Fire Inci. ==

;] Line Symbals [Blasting Agents Fire Inci.

1 Marker Symbole [Combustible 1 Fire Inci.

(1 Text Symbols —41 Ml Dangerous Fire Inci..
=S ﬁ..:“fﬁhl? —':I Flammable Fire Inzi..
4 f » M Flammable Gas Fire Inci..

[f you have made colors you want to keep for future maps, you can create a new style
and save the colors in its Colors style gallery class.

When you want to use a symbol from an existing style, you follow these three steps:

First, you get the style gallery. This is the object that contains all the styles, like
ESRI, Business, and Crime Analysis.

Second, you get a list, or enumeration, of style gallery items. The enumeration is
called an “Enum” for short.

Third, you get the specific style gallery item you want.

Although a StyleGallery is composed of many StyleGalleryClasses, you don’t have
to get a style gallery class along the way. As the next diagram shows, you can go
straight from the gallery to the Enum to the item. To get the Enum, you use the
[StyleGallery interface’s Items property. This property has arguments that specify
both the style and the style gallery class you want.

CHAPTER 15 © SETTING LAYER SYMBOLOGH

MxDocument
IMxDocument O—I m—m StyleGallery: IStyleGallery

!

StyleGallery

IStyleGallery O— *
B8 Items (in ClassName: String, ->— StyleGalleryClass
In StyleSet: String, in Category:
String): IEnumStyleGalleryltem | —

EnumStyleGalleryltem

IEnumStyleGalleryltem O—{ < Next: IStyleGalleryltem
(8

StyleGalleryltem

In the following code, the IMxDocument interface’s StyleGallery property is used to
get the style gallery:

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pStyleGallery As IStyleGallery \
Set pStyleGallery = pMxDoc.StyleGallery !

The Items property on IStyleGallery returns an Enum of symbols. The Items property
has three arguments for specifying the style gallery class, the style, and the symbol
category. The code below returns an Enum of line symbols in the ESRI style that
belong to the Dashed category.
Dim pEnumStyleGallery As IEnumStyleGalleryItem :

Set pEnumStyleGallery = pStyleGallery.Items _
("Line Symbols", "ESRI.style", "Dashed")

The next graphic shows the Enum returned by the code.

| - Contour, Topogra... Dashed |
--- Contour, Bathymet... Dashed

—- Dashed 6:1 Dashed
-- Dashed 4:1 Dashed
- Dashed 2:1 Dashed
— pE StyleGall
w — Dashed £:6 Dashed pEnumStyleGallery
} - - Dashed 4:4 Dashed
J --- Dashed 2.2 Dashed

-Dashed 1 Long1... Dashed
-Dashed1Long2... Dashed |

Seiting layer symbols

To make your way through the Enum, you use the Next and Reset methods on the
EnumStyleGalleryltem coclass.

EnumStyleGalleryliem

WEnumStyieGallery\tem IEnumStyleGalleryltemn : IlUnknown

~4— Next: |StyleGalleryltem
-— Rasat

When you first get the Enum, a pointer is pointing to the top of the list (before the
first symbol). You move the pointer to get to each symbol.

Pointing to the top of the list ==
-~ Contour, Topagra... Dashed
--- Contour, Bathymet... Dashed

—- Dashed 6:1 Dashed
—- Dashed 4:1 Dashed
--- Dashed 21 Dashed

The Enum’s Next method moves the pointer down one symbol in the list, returning
that symbol’s IStyleGalleryltem interface.

Dim pStyvleItem As IStyleGalleryItem
Set pStyleltem = pEnumStyleGallery.Next

pStyleltem —’ -~ Contaur, Topogra... Dashed
--- Contour, Bathpmet... Dashed

—- Dashed B:1 Dashed
-- Dashed 4.1 Dashed
-~ Dashed 2.1 Dashed

When you run the Next method on the last symbol in the Enum, the pointer drops
off the list and points at a value called Nothing.

--- Contour, Topogra... Dashed
--- Contour, Bathymet... Dashed

—- Dashed B:1 Dashed
~~ Dashed 41 Dashed
--= Dashed 2:1 Dashed
— Dashed BB Dashed
- - Dashed 4:4 Dashed
--- Dashed 2:2 Dashed

pStyleltem == Pointing to Nothing at the bottom

You can move the pointer back to the top of the list by running the Reset method.

pEnumStyleGallery.Reset

CHAPTER 15 SETTING LAYER SYMBO

To move through the Enum, you put the Next method inside a Do Until loop. The
loop below stops when the pointer is at the bottom of the Enum, pointing at
Nothing.

Do Until pStylelItem Is Nothing

'Do something to each symbol

Set pStyleltem = pEnumStyleGallery.Next
Loop

How do you know when you are pointing at the symbol you want to get! The
IStyleGalleryltem interface has a Name property, which gives you a way to test each
item in the Enum. (An item’s name is the name that appears in the Style Manager.)

StyleGalleryltem

|1StyleGalleryltem == ltlem: |Unknown
=@ Name: String

Name property

Say you want the Dashed 4:4 line symbol. Inside the loop, you could use an If Then
statement to test each item for that name.

If pStyleItem.Name = "Dashed 4:4" Then

Once you find the symbol, you get it (that is, you get one of its interfaces) using
IStyleGalleryltem’s Item property, shown in the diagram above. Most likely, you
have plans for this symbol, like adding it to a renderer, that require the ILineSymbol
interface. The Item property, however, returns [Unknown.

When you learned about interface inheritance at the beginning of this chapter, you
learned that every class has [Unknown. The Item property takes advantage of this
fact. It is able to return such a wide variety of symbols—including line symbols,
marker symbols, colors, and color ramps—because it returns their [Unknown
interface.

To get an interface to the Dashed 4:4 symbol, you could declare a variable to
[Unknown, set it with the Item property, declare an ILineSymbol variable, and set
it by doing Querylnterface from [Unknown to ILineSymbol.

Or, more conveniently, you could let VBA do the Querylnterface for you with the code
below. You just declare the variable to ILineSymbol and set it with the Item property.

Dim pLineSym As ILineSymbol
Set pLineSym = pStyleltem.Item
End If

After getting the symbol, you could assign it to a layer’s renderer as you did in the
previous exercise.

lSeItr'ng layer symbols

Exercise 15b

The county’s emergency analysts have a layer of fire hydrants. Right now, fire
hydrants are drawn with a simple point symbol in a random color. In this exercise,
you will write code that gets Fire Hydrant 4 from the Hazmat style and assigns it to
the layer’s renderer. Fire Hydrant 4 looks like a red fire hydrant.

Start ArcMap and open ex15b.mxd in the C:\ArcObjects\Chapter15 folder.
When ArcMap opens, you see the county’s streets and water lines.

Click the Add Layers menu and click Fire Hydrants.

#_ ex15b.mnd - ArcMap - Arc¥iew 2 = l'_‘l_'}_,]
| Hle Ede wiew Insert seection Tools acdLayers Window Hep ‘
CERa » 8% s = e vf:gﬁlgj"ﬁ?
——— x| \ _‘_!
= £ wilson County =
= [Fire Hydrants
°
= [Water Lines
= Strests
= ™ County
| >
Diply [Souce] | _ | ’
[orewng > & 0[O = A= 2|l D = Bz u|A~ & 2~
| 2284133.76 74650651 Feet | = 7

Hydrants display in a random color. The analysts who use the application want the
hydrants to look like hydrants. You’ll look at the fire hydrant symbols in the Style
Manager.

Click Tools, point to Styles, and click Style Manager.

The Styles button contains a drop-down list of available styles. A check mark
appears to the left of a currently loaded style. Each style can contain hundreds of
symbols, so you only load the ones you need.

CHAPTER 15 = SETTING LAYER SYMBO

L) Click the Styles button. In the list of available styles, click Hazmat unless it is
already checked. (Depending on your settings, your styles may not match the
graphic exactly.)

Style Manager T =2 '—TI x|

& (1 ESRLstyle Marme C: Close l

) 1 C:\Documents and Settings\ioherth*

R |

Next you will open the Hazmat style and look at its symbols.

In the Style Manager, click the plus sign next to Hazmat.Style to expand its
contents.

You see the Hazmat style’s style gallery classes represented by folders. A white folder
means that a class is empty.

Style Manager

(] ESRLstyle
(] C\Documents and Setlings\roberth’
=-{] Hazmat style

{1 Reference Systems
(] Shadows
{1 &rea Patches
{ 1] Line Patches
{7 Labels
- North Arows
{7 ScaleBars
{_1 Legend ltems
- 1 Scale Tests
{1 Color Ramps
] Barders
] Backgrounds
(11 Colors
{7 Fill Symbols

wting layer symbols

Click the Marker Symbols style gallery class folder to open it. Then click the
Details button to show the categories.

Style Manager . _?L)ﬂ
=] E5Alstie :l_ﬂame Colegoy | =l [ke |
-] C:ADocuments and Settingsioberth’ EMT 1 Hazmat = .
= (23 Hazmat siyle EMT 2 Hazmat — Slylee ~

;_J Reference Systems * EMT 3 Hazmat Z
-] Shadows - Fire Axe Hazmat
'LJ Afea Patches T Fire Hat Hazmat
- e Palckes & Fie Hydrant 1 Hazmat
:j ::;::ﬂwg £ Fire Hydrant 2 Hazmat
{7 Scale Bars ‘m‘ Fire Hydrant 3 Hazmat
{7 Legend ltems ' Fire Hydrant 4 3 Hazmat
(] Scale Tests @ Fire Rescue 1 : Hazmat
{3 Color Ramps &Fme Rescus 2 Hazmat
L[] Borders [g)Fie Rescue 3 Haemat
- |_] Backgrounds {3} Fir= Rescue 4 Hazmat
{1 Colors & Fire Truck 1 Hazmat
- [Fill Symbals =% Fire Truck 2 Hazmat
i @ Blasting Agents Hazmat
A RE £ Blasting Agents 1 Hazmzt
1 (1 Text Symbols @ Blasting Agents 1.5 Hazmat
Chionne 1 Hazmat
S Chilorine 2 Hazmat

© Combustible Hazmat -
< i] | ¥ Combusibie 3 Hazmat i Details button

The Hazmat marker symbols, including several fire hydrant symbols, are displayed by
name and category. To get the Enum, you will use the Hazmat style, the Marker
Symbols class, and the Hazmat category.

Close the Style Manager.

Click the Tools menu and click Customize.

Click the Add Layers menu, right-click Fire Hydrants, and click View Source.

You see the FireHydrants click event, which adds the Fire Hydrants layer to the map.

Scroll down in the code to find the following commented line.

'Add hydrant symbol code here.

After the comment, add the following lines to get the map document’s style
gallery.

Dim pStyvleGallery As IStyleGallery
Set pStyleGallery = pMxDoc.StyleGallery

Get an Enum of marker symbols from the Hazmat style’s Hazmat category.

Dim pEnumMarkers As IEnumStyleGalleryItem
Set pEnumMarkers = pStyleGallery.Items _
("Marker Symbols", "Hazmat.style", "Hazmat")

CHAPTER 15 -~ SETTING LAYER SYM

Reset the Enum to be sure that the pointer points to the top of the list of marker
symbols.

pEnumMarkers.Reset

Declare a variable to hold a style gallery item, and issue a Next to get the first
marker symbol from the Enum.

Dim pStyleltem As IStyleGalleryItem
Set pStyleltem = pEnumMarkers.Next

W, ex15b.mxd - ThisDocument {(Code} e % =
Firehydrants =]cnnk |

t4dd hydrant symbol code here. g

Dim pStyleGallery is IStyleGallery
Ser pStyleGallery = pMxDoc.StyleGallery

Dim pEnwnMarkers iz IEnumStyleGalleryitem
get pEnumMarkers = pStyleGallery.Items _
("Marker Sywbols", rHazmat.3tyle”, "Hazmat")

pEnuwnlarkers.Reset
Dim pStyleltem is IStyleGalleryIltem
Set pScyleltem = pEnumlarkers.Next

== 7

Declare a marker symbol variable.

Dim pMarker As IMarkerSymbol

You will set this variable when the loop you are about to write finds Fire Hydrant 4.
I3 Start a loop to get each marker symbol in the Enum.

The loop will stop when there are no more items, because the last Next on an Enum
returns Nothing.

Do Until pStylelItem Is Nothing

Loop

Inside the loop, add an If Then statement to check each marker symbol's name
to see if it is Fire Hydrant 4.

If pStyleltem.Name = "Fire Hydrant 4" Then
End If

f £71 Inside the If Then statement, set the marker symbol variable and set the marker
size to 14.

These two lines of code run only when the marker symbol’s name is Fire Hydrant 4.

Set pMarker = pStyleltem.Item
pMarker.Size = 14

ing layer symbols

Once the loop has found Fire Hydrant 4, you can stop it.

After setting the marker size, add Exit Do.

Exit Do

After the End If and before the Loop statement, add the following line to get
the next marker symbol.

Set pStyleltem = pEnumMarkers.Next

*, ex15b.mud - ThisDocument (Code)) i =10ix]
FireHydrants vI Icﬁd« S
Set pStyleltem - pEnumbarkers.Next |

Dim pMarker ks IMarkerSymbol

Do Uatil pStyleltem Is Nothing
If pSctyleltem.Name = "Fire Hydrant 4" Then _..]
3et pMarker = pStyleltem.Item
plarker.5ize = 14
Exit Do
End If
Next here Set pStyleltem = pEnumMarkers.Next
Loop

= EETES] 357

After the loop, create a simple renderer and set its Symbol property to the Fire
Hydrant 4 marker symbol.

Dim pRenderer As ISimpleRenderer
Set pRenderer = New SimpleRenderer

Set pRenderer.Symbol = pMarker

As in the previous exercise, you will assign the renderer to the layer using the
Renderer property on [GeoFeatureLayer. Again, the existing code in the click event
has a pFlayer variable pointing to IFeatureLayer, so you can do Querylnterface.

Get the layer’s IGeoFeatureLayer interface and set its Renderer property to the
renderer you just created.

Dim pGFLayer As IGeoFeaturelayer
Set pGFLayer = pFlLayer

Set pGFLayver.Renderer = pRenderer

When the map is zoomed out to the entire county, fire hydrants will draw in a messy
blob. To see individual hydrants, you need to be zoomed in closer than 1:24,000.
In the next step, you will set the layer’s scale dependency.

CHAPTER 15 = SETTING LAYER SYMBOLOGY

23

E5 In the ArcMap table of contents, right-click the Fire Hydrants layer and click

Click Add Layers and click Fire Hydrants.

| Close Visual Basic Editor.

':}ayem_ymbols

Add one more line to set the layer's MinimumScale property.

pFLayer .MinimumScale = 24000

,=- exlSh.mrd - ThisDazumzn {Code) G
-~ i — . = = :
_ |Firetydrants - iclil;k v{
i Dim pRenderer 1z ISimpleRenderer g

Set pRenderer = New SimpleRenderer
Set pRenderer.Symbol = pMarker

Dim pGFLayer is IGeoFeaturslLayer

Set pGFLayer = pFlLayer

Set pGFLayer.Renderer = pRenderer

o it pFlayer.HinimmScale = 24000 —l
pFlLayer .Name = "Fire Hydrants"

pMxDoc.Focustap. AddLayer pFLayer

pMxDoc. ActiveView, Refresh

plxDoc.UpdateContencs
End Sub g
21 : =

= R = L

The code is ready to test.

As in the previous exercise, you'll remove the layer that you added in step 2, then
add it again.

Remove.

The layer is added to the map, but it doesn’t draw because the map’s scale is zoomed
out beyond 1:24,000.

DeE8|: =|x - - I\tlFﬁTﬁ—_ﬂ || &

—— |

= £# Wilson County
1=l [l Fire Hydrants

Depending on your ArcMap window
size, your scale may not match
= [4 Water Lines

= @ Streets

in the Scale box, click the drop-down arrow and click 1:24,000.

The- Fire Hydrants draw with the Fire Hydrant 4 symbol from the Hazmat style.

Scale is 1:24,000

._ gb.mnd ArcMap - Arcview £ s :
| Fie £ vew Ineert Selection Tooks Ads Layers Window e |
in@ag!k}i@xm---i¢,|r—“““‘j1;z4,nm SIA L

srta ettt

= £ Wilson County
= Fire Hydrants
= B water Lines

= B Streets

= M County

Doy [Sowea]
| pranng = kO A~ = |fai Elilv slEmr s A i =i
| 231504236 72390258 Fest | o

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter15. Rename the file my_ex15b.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise

close it.

CHAPTER 15 ~ SETTING LAYER SYMBOLOG:

Creating a class breaks renderer

When you map numeric attributes, such as population or income, you divide the
range of values into classes and assign a different symbol to each class. (Here again,
“class” just means a group of similar values, not an ArcObjects class.) From the user
interface, you use the layer properties to set the number of classes, the value ranges,
and the symbols for each class. As a programmer, you accomplish the same thing
with a class breaks renderer.

Table of Contents

= £ World Map
= M Southwest Europe
1930 Papulation

[1387064 - 3416945
[T] 3416946 - 6713839
[[[] 6713840 - 10307460
[10307461 - 39267780
5139267781 - 81436300

— Five classes of
population values

Each class in a legend has a range of beginning and ending values called break
points. Records whose value falls within a class’s break points belong to that class
and are symbolized with that class’s symbol.

butes of SouthwestE 1o x|
Name P 1 Classification field
L it 387064
Montenearo 535442
[]387064 - 3416945 Slovenia |1351443
|| Macedonia 2104035
Albania 3416945 BraaliBaEinE
Dermatk 4867750 P
| |Croatia 5004112 |
13416946 - 5713839 | |ireland ~ |5015975 |
| Slovakia 5374362
Switzerland 6713833 <
Bustia 7755406 Brslcponnt
Portugal 19625516
[16713840 - 10307460 || Serbia EEIE
Belgium 10032460 |
Greece 10307460 .
Hungary 10310410 Sl
Czech Republic | 10321120
] 10307461 - 39267760 || Netherlands 15447470
" |Polend 791870
Spain 39267780 .
| |Unted Kingdom 56420180 | Bréakipait
France 57757060
0139267751 - 81436300 iy 57908880 —
Gemany | 81436300 Break point
Record. 14] 4] 0 _rfri] Show| Al

Creating a class breaks renderer

You can create a ClassBreaksRenderer with the code below.

Dim pCBR As IClassBreaksRenderer
Set pCBR = New ClassBreaksRenderer

[ClassBreaksRenderer’s Field property is used to specify an attribute to classify.

ClassBreaksRenderer

IClassBreaksRenderer IC! eaksF H

=8 BackgroundSymbol: IFillSymbal
®-# Break (in Index: Long): Double

B8 BreakCount: Long

m—a Descriptian (in Index: Long): String
B8 Field: Sting ——————————
B8 Label (in Index: Long): String

=& MinimumBreak: Double

=& NormField: String

B SortClassesAscending: Boolean

=8 Symbal (in Index: Long): 1Symbal

Field property

If you wanted to create classes of population values, for example, you would set the
Field property equal to the Population field in the layer’s attribute table.

pCBR.Field = "Population”
The BreakCount property sets the number of classes.

pCBR.BreakCount = 5
Each class is identified by an index position, starting with 0.

Index p‘»osition Break points are on the right
|
0 [1387064 - 3416945
1 []3416946 - 6713539
2 16713840 - 10307460
3 []10307461 - 39267780
4 39267781 - 51436300

You set class break points with the Break property. This property uses the class’s
index position as an argument. Any values that are smaller than the first break point
(341645 in the code below) will be included in the first class. Any values larger than
the last break point (81436300) will not be symbolized.

PCBR.Break(0) = 341645
PCBR.Break(l) = 6713838
PCBR.Break(2) = 10307460

pCBR.Break(3) = 39267780
pPCBR.Break(4) = 81436300

CHAPTER 15 SETTING LAYER SYMBOLOGY

By default, the break point numbers are used to label each symbol. You can change
the labels with IClassBreaksRenderer’s Label property.

pCEBR.Label (0) = "Very low"
pCBR.Label (1) = "Low"
pCBR.Label (2) = "Medium"
pCBR.Label (3) = "High"
pCBR.Label (4) = "Very high"

Like the Break property, Label uses index position numbers to set each class’s label.

Labels

|
{1 Wery low
[Low
[Medium
[High
1 very high

The last thing to do is set symbols for each class. In this chapter’s first exercise, you
made a blue line symbol. In the second exercise, you got a fire hydrant marker
symbol from the style gallery. Now you will be symbolizing polygons, which use fill
symbols. You can create a simple fill symbol with the code below.

Dim pFill As ISimpleFillSymbol
Set pFill = New SimpleFillSymbol

Say you wanted to make a blue color and assign it to the first class. You would make
a new color object and set its blue property.

Dim pBlue As IRgbCclor
Set pBlue = New RgbColor
pBlue.Blue = 255

Then you would assign the color to the fill symbol and assign the fill symbol to the
renderer’s first class at the 0 position.

pFill.Color = pBlue
pCBR.Symbol (0) = pFill

B very low
7] Low

1 Medium
[High
very high

You would finish up by making four other colors and assigning them to the fill
symbols of the other four classes.

I(:rean‘ ng a class breaks renderer

Exercise 15¢

During fires, floods, or similar emergencies, the county’s emergency analysts make
estimates of damage. In their work, they use a parcels layer in which parcels are
classified as having low, medium, or high value.

In this exercise, you will modify the Parcels choice on the AddLayers menu.
Currently, the layer draws in a single, random color. You will create a class breaks
renderer to draw parcels in different colors depending on their value.

Start ArcMap and open ex15c.mxd in the C:\ArcObjects\Chapter15 folder.
When ArcMap opens, you see the county boundary and a streams layer.

Click the Add Layers menu and click Parcels.

& _ex15c.mxd - ArcMap - ArcView

\ﬁeg&ﬁwwmﬁe&unmmkmmnwmwp
]Dii“ﬂé|-¥.ﬂ?—1>-”-" | i3 SRR T
i =
= £3 wilson County

= & Parcels

=

= M STREAMS

= @ County
oy (Sl [soiel : .-
[awea~ WO a~mlpn Flfo Avdlhe o g oo |

| zzmess.e6 Azim.s4Fee | =

The parcels display in a random color.

In the table of contents, right-click the Parcels layer and click Open Attribute
Table.

The third field in the table is called ParcelValue. Your code will symbolize the parcels
according to the values in this field.

CHAPTER 15 = SETTING LAYER SYMBOLOGY

] DBJECTID=| Shape® ParcelValue | Shape. Shape_Area ParcellD -
2 Polygon ~ B4050] 794553194 29691075264 1010M315)
3| Polygan 000 836533815 25317.407002) 10101316
4|Polygon | 7550 1412635562 83683064334 10101317
B 5Poygon | 657210 2EORO77220 233135736333 10101318)
B & Palygon 4000 SSHEB0BTE| 19463447367 10101313)
i 7lPoygon | 48250 SuGGE5e3 15BA0.019618] 10701320
3 8|Polygon 4375 1215190516 70904057717 1moazi |
"': ~3|Palygon 42930 522391620) 15210764508 10101322
10|Polygon S’ZBU: 534243583 18‘331._5?_?505 10101323

11|Poygon | 4160, 521262468 15909058637 10101324 -l

Record: 14 1] 20 ¥ nl Ehowlm Selected | Recods (0 out of *2000 Selected | Optiors ~

Close the attribute table.

Click the Tools menu and click Customize.

Click the Add Layers menu, right-click Parcels, and click View Source.

You see the Parcels click event. As in the previous exercises, the code to make the
Parcels layer and associate it with a data source has already been written. The
pFLayer variable, which is declared to IFeatureLayer, will again be useful for

Querylnterface.

Scroll down to find the following commented line.

'add class breaks renderer code here.

After the comment, add the following lines of code to create a class breaks

renderer.

Dim pCBR As IClassBreaksRenderer
Set pCBR = New ClassBreaksRenderer

A4 ex15c.mxd - ThisDocument (Eode) § ¥] g}ﬂ
[parcets | [eriek =l
' Add class breaks renderer code here. ZI
Dim pCBR As IClassBreaksRenderer
Set pCBR = Mew ClassBreaksRenderer =
pFlLayer.Nawe = "Parcels”
pMxDoc . FocusMap . LddLayer pFlayer
plixDoc, ActiveView.Refresh
pHMxDoc. UpdateContents
End Sub i) .
M= 217

ing d class breaks renderer

Next, you will specify the field you want to classify and how many class breaks
you want.

Set the classification field to ParcelValue and the number of breaks to 3.

pCBR.Field = "ParcelValue"
PCBR.BreakCount = 3

You are creating three classes because you want to show high, medium, and low
values.

Set the break point values.

pPCBR.Break (0) = 50000
pCBR.Break (1) 100000
pPCBR.Break(2) = 9000000

The parcels range in value from $0 to over $8 million. The code here assigns parcel
values between $0 and $50,000 to the first class, which has the index position of 0.
Values between $50,001 and $100,000 are assigned to the second class, and values
between $100,001 and $9 million to the third class.

i ex15c_results.mrd - ThisDocument (Eode) o o =10 x|
Parcels j lm:k j
'Add class breaks renderer code here. j
Dim pCBR Ais IClassBreaksRenderer
Set pCBR = New ClassBreaksRenderer =t
pCBR.Field = "ParcelValue"”
pCBR.BreakCount = 3
pCBR.Break (D) = 50000
pCBR.Break(1l) = 100000
pCBR.Break(2) = 9000000 =
ﬂiﬂ_l L2 5

Next, you will set the renderer’s Label property. If you don’t set this property, the
break values become the default labels. The Label property takes the same index
position argument as the Break property.

Set the legend label values for the three classes.

PCBR.Label (0) = "Low"
pCBR.Label (1) = "Medium"
pCBR.Label (2) = "High"

In the next steps, you will create three shades of green for the renderer’s three
classes.

CHAPTER 15 = SETTING LAYER SYMBOLOGY

Make three RGB color objects.

Dim pGreenLight As IRgbColor
Dim pGreenMedium As IRgbColor
Dim pGreenDark As IRgbColor

Set pGreenLight = New RgbColor
Set pCGreenMedium = New RgbColor
Set pGreenDark = New RgbColor

To assign color values to RghColor objects, you usually set their Red, Green, and
Blue color properties. That means writing nine more lines of code to make the three
green colors. Once again, however, a shorteut is available. By using interface inher-
itance and a Visual Basic function, you will only need three lines of code.

As shown in the diagram below, the IColor Interface on the Color class has an RGB
property. This property can be set with a VBA function also called RGB, which takes
three color values as input and returns an OLE_COLOR object. (An OLE_COLOR
is a number that represents a color’s red, green, and blue values.) Specifying the three
color values you want as arguments to a function allows you to put them all in the
same line of code. For more information about the RGB function, see the Visual
Basic help.

Since IRgbColor inherits from IColor (interface inheritance), you can use IColor’s
RGB property with the three IRghColor variables you already have.

Color

|Color O—- ICalor : IUnknown
: == RGB: OLE_COLOR

RgbColor
IRgbColor O—— IRgbColor : IColor IRgbCalor inherits from ICelor
= Blue: Long

m—® Green: Long
m—=® Red: Long

B fiinrtion to malea thres
B TUNCTION TO mMakKe th

pGreenLight .RGB = RGB(220,245,233)
pCGreenMedium.RGE = RGB(118,168,130)
pGreenDark.RGB = RGB(34,102,51)

The class breaks renderer is almost complete. You have set its Break, BreakCount,
Field, and Label properties. Next, you will set its Symbol property, which takes the
same index position argument as the Break and Label properties.

veating e class breaks venderer

Set the fill symbol for each class with a shade of green.

Dim pFill As ISimpleFillSymbol
Set pFill = New SimpleFillSymbol

pFill.Color = pGreenLight
PCBR.Symbol (0) = pFill

pFill.Color = pGreenMedium
PCBR.Symbol (1) = pFill

pFill.Coleor = pGreenDark
pCBR.Symbol (2) = pFill

Assign the renderer to the Parcels layer.

As in the previous exercises, you need to get the IGeoFeatureLayer interface to set
its Renderer property. You will switch interfaces from IFeatureLayer.

Dim pGFLayer As IGeoFeaturelayer
Set pGFLayer = pFlLayer

Set pGFLayer.Renderer = pCBR

4, ex15c_results.mxd - ThisDocument {Code} R —|Oi x|
Parcels _«J [(:En:k _:l
DCBR. Symbol(2) = pFill ZI
Dim pGFLayer As IGeoFeaturelayer
Zer pGFlayer = pFlayer
et pGFLayer.Renderer = pCER =)
pFLayer.Name = "Parcels"
pExDoc.Focushap. AddLayer pFlayer
plixDoc. ActiveView.Refresh
plixDoc.UpdateContents
End Sub
= o .
== [z

The code is ready to test.

Close Visual Basic Editor.

In the ArcMap table of contents, right-click the Parcels layer and click Remove.
Click Add Layers and click Parcels.

The layer is added to the map, and the parcels draw in three shades of green. In the
table of contents, you see their legend and labels.

CHAPTER 15 © SETTING LAYER SYMBOL!

E Click the View menu, point to Bookmarks, and click Downtown Wilson City.

% ex15c.mud - ArcMap - ArcVi

| Be Bt vew sert selectin Took AddLayers Window teb =

DEE&| B s =] 4|88
R S AR NS [[e

=] £F Wilson County
= M Parcels
ParcelValue
[JLow
[Medium

B High
£ [STREAMS

= [County

= w7 o]|A- &~ 2~
| [2321431.17 726343.13Fesk | 7

By overlaying layers of fire or flood data on the parcels, analysts can get a quick sense
of how severe the property damage is likely to be.

1] If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter15. Rename the file my_ex15c.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

reating d class breaks renderer

cction 33 Using ArcObjects

"HAPTER 16

sing ArcCatalog objects
in ArcMap

dding laver files to ArcMap

gking your own Add Data dialog box

Up to this point, you haven’t worked with any ArcCatalog objects. Although you won’t
customize ArcCatalog in this book, you will learn how to program some of its objects

in ArcMap.

No matter which ArcGIS application you are working in (ArcMap, ArcCatalog, or
ArcScene ', if you have the ArcView 3D Analyst * extension), you have access to all
the ArcObjects classes. Just because classes appear on a certain diagram doesn’t
mean they are limited to use in a particular application. Diagrams are just conve-
nient, more or less logical, groupings of the thousands of different ArcObjects classes
and interfaces. Theoretically, there could be one huge, wall-sized diagram called

ArcObjects.

ArcCatalog and ArcMap have similar starting points. In the diagram below, you see
that the ArcCatalog application is composed of a document called GxDocument.
Just like ArcMap, ArcCatalog has two predefined variables, Application and
ThisDocument, that refer to the application and the document.

Application — | Application GxDocument . — ThisDocument
GxCatalog p | GxObject
],E’ *
=1

Despite this similarity, there are some differences. For one thing, customizations
in ArcMap can be made to a map document, to a base template (a class.of map
documents), or to the normal template (the class of all map documents). That
means that the ThisDocument variable in ArcMap may refer to someMap.mxd,
someTemplate.mxt, or normal.mxt, depending on where you are saving your
customizations.

ArcCatalog, on the other hand, doesn’t have documents or base templates. All it
has is a normal template. Any customizations you make are applied whenever the
application is opened. That means that the ThisDocument variable in ArcCatalog
always refers to its normal template, normal.gxt.

If you look at the tree view (the left-hand pane) in ArcCatalog, you'll see that it
consists of files and folders organized below an object called Catalog. This structure is
reflected in the other part of the diagram above. It shows that the ArcCatalog appli-
cation is also composed of a GxCatalog object, which in turn is composed of many
GxObjects. A GxObject is any file, folder, disk connection, or other object you can
click in the tree view.

B Catalog
= (@ C\ESRIESRIDATALCANADA
= (@ CESRIESRIDATA\EURCPE
£ (@ CH\ESRUESRIDATAMEXICO
5] cities.shp
. & drainage.shp
GxObjects B lokes.shp
= rivers.shp
& roads.shp e
55 roads_rt.shp
B states.shp
[+ (13 Database Connections :J

i’\u

GxCatalog

All ArcCatalog objects that can be displayed in the tree view share the abstract
GxObject class. The IGxObject interface on this class has properties and methods
for getting basic information about objects, like their names.

GxObject _!

1GxObject C—— IGxObject : IUnknown

w— BaseName: String

m— Category: String

m— ClasslD: IUID

m— FullName: String

B— InternalObjectMame: IName
m— IsValid: Boolean

=— Name: Slrmg

m— Parent: IGxObject

— Aftach (in Parent: IGxObject, in pCatalog:
IGxCatalog) |

-a— Detach

-4— Refresh

By now, you have probably noticed that many ArcCatalog objects have a Gx prefix,
just as many ArcMap objects have an Mx prefix. These prefixes don’t mean anything
special—they just save you some typing. It's easier to use names like MxDocument,
GxDocument, and GxObject than it would be to use names like ArcMapDocument,
ArcCatalogDocument, and ArcCatalogObject.

CHAPTER 16 « Using ArcCaTaroG osjeets IN ARcMar

The simplified diagram below shows that one of the types of GxObject is a GxFile.
GxFile is a coclass and so are its subclasses. GxFiles represent the various types of
files that ArcMap or ArcCatalog can create.

|
| GxObject

GxLayer GxMap

GxTextfile GxPrjFile

In the first exercise of this chapter, you will work with one of these subclasses—the
GxLayer class, which represents layer files (files with the lyr extension). You will
write code to make a GxLayer object and add it to ArcMap.

In addition to various GxObject classes, the ArcCatalog diagram also contains five
coclasses that represent dialog boxes. These coclasses, shown below, are not con-

nected to other classes and are not hierarchically related. They stand by themselves.

GxDialog ProjectedCoordinate GeographicCoordinate
SystemDialog SystemDialog
TableDefinitionDialog SpatialReference
Dialog

The dialog boxes that you make from these coclasses are forms. They are like the
VBA forms you worked with early in this book, but they have been given special
properties and methods by ESRI. TableDefinitionDialog, for example, is a predefined
form with input boxes that a user fills in to make a table. GxDialog is the Add Data
dialog box that you use to add layers to ArcMap. You will use GxDialog in the
second exercise to make a customized Add Data dialog box.

In chapter 10, you learned that all the ArcObjects classes are COM classes, and
you learned about some of the advantages of COM. An advantage that was not
mentioned is that COM classes are not tied into any one application—they can be
used in any COM application.

That means that you can use ArcObjects outside of ESRI applications. Say you want
to add mapping functionality to a word-processing document. If you have Microsoft
Word—also a COM-based application with built-in VBA—you can do it. Open a
new Word document, use its Customize dialog box to make a button, open Visual
Basic Editor to the button’s click event procedure, make a reference to ESRI
ArcObjects, and write VBA code using ArcObjects. (When you are programming in
Word, the predefined Application and ThisDocument variables refer to the Word
application and its document, not to the ArcMap application and a map document. |
You can also use ArcObjects in other Microsoft applications, like Microsoft Excel,
Microsoft PowerPoint”, and Microsoft Access.

The reverse is also true. Those applications all have object model diagrams of their
classes, and you can use their classes in ESRI applications. To see how it’s done, go to
arcobjectsonline.esri.com. Type spell check into the search box. There you'll see
sample VBA code that gets the Microsoft Word application and uses its spell checker
inside ArcMap to check the spelling of text elements on a layout page.

The VBA coding techniques you have learned in this hook are the same in any
COM application that uses VBA. To program in Microsoft Word, you don’t have o
relearn any syntax or coding rechniques. All you have to do is look at Word’s object
model diagram to see what classes are available and what their properties and
methods are.

CHAPTER 16 + Using ARCCATALOG OBJECTS IN AR

Adding layer files to ArcMap

As you know from chapter 15, when a layer is added to ArcMap, it is assigned a
default symbol and a random color. A user might go on to symbolize the layer in
some way and then save the map. Saving the map saves both the layer’s symbology
and the path to its data set into the current .mxd file. When the user closes and
reopens the map document, the layer is there, displaying its data with the symbol
and color previously assigned.

Suppose a coworker sees that layer and wants to use it in their own map document.
How can you move a layer to another map document and preserve its symbology?
You do it by making a layer file from the ArcMap user interface. A layer file, which
has the extension .lyr, is like a miniature map document. It stores information spe-
cific to a single layer—its symbology, the path to its data set, and any other informa-
tion that can be set in the Layer Properties dialog box. Layer files are portable and
can be added to other map documents, where they look just the same as they did in
the original.

In chapter 14, you went through the process of creating a new feature layer, getting
a data set for it, associating the layer with the data, and adding the layer to ArcMap.
When you add a layer file to ArcMap, you get to skip the first three steps. A layer file
already is a layer, it already knows the path to its data set, and it’s already associated
with the data. As a programmer, all you have to do is get the file from its location
on disk and add it to ArcMap.

The following diagram shows that a GxLayer is a type of GxFile and that both are
GxObjects:

GxObject ‘

4??

1GxFile o— CXFile

“

It ayer (O RLAYSE

Since both GxFile and GxLayer are coclasses, you can create either one directly.

Dim pGxLayer As IGxLayer
Set pGxLayer = New GxLayer

‘g layer files to ArcMap

To get a layer file from disk, you need the IGxFile interface’s Path property, which is
a string consisting of a path.

 GxFile
IGxFile. 0— IGxFile : IUnknown

| == Patn: Sting Path property

-4— Close (in saveChanges: Boolean)
-a— Edit

-— New

-&— Open

-4— Save

Since GxLayer is a type of GxFile, it has all the interfaces of GxFile. Therefore, you
can switch interfaces from IGxLayer to IGxFile.

Dim pGxFile As IGxFile
Set pGxFile = pGxLayer

You then set the Path property to the location you need.
pGxFile.Path = "C:\arcobjects\MyRiversLayer.lyr"

You add the layer to ArcMap with the AddLayer method on IMxDocument or
IMap. AddLayer takes an ILayer object as its argument. To get the layer file’s [Layes
interface, you could declare an ILayer variable and set it with the GxLayer’s Layer

property.

GxLayer
|GxLayer O— IGxLayer : lUnknown
= Layer: ILayer

Even more simply, you could use chaining and write the following single line of code
pMxDoc . AddLaver pGxLayer.Layer

You can do it that way because the Layer property returns ILayer, which is exactly
what the AddLayer method needs.

As you know, after adding a layer you have to refresh the table of contents and the
active view.

CHAPTER 16 -~ UsiNnG ARCCATALOG OBJECTS IN

Exercise 16a

In this exercise, you will write code that allows the emergency response analysts to
add a parcels layer file (*.Iyr) to ArcMap. You will begin by making the layer file
yourself from the ArcMap user interface.

You may wonder why you, as a programmer, should work from the user interface. It's
because some of your tasks can be accomplished without any programming. When
you can make something you need from the user interface, it saves you time because
you don’t have to write, update, or fix any code.

You will symbolize the parcels layer with the Sahara Sand color, turn its map tips on,
and label it with parcel identification numbers. Since there are thousands of parcels,
you would never be able to see all the IDs at once. You'll set them to display at scales
larger than 1:4,000. If a user is zoomed out beyond that scale, they can still use
map tips to see the IDs of individual parcels.

Start ArcMap and open ex16a.mxd in the C:\ArcObjects\Chapter16 folder.
You see the Parcels layer for Wilson County.

In the table of contents, right-click the Parcels symbol. In the color palette, click
Sahara Sand.

In the following steps, you will set the other properties for this layer: map tips, labels,
and the label display scale.

In the table of contents, right-click on the Parcels layer and click Properties to
open the Layer Properties dialog box.

Click the Display tab. Check the Show MapTips box.

The attribute you want to show up as a map tip has to be defined as the primary
display field. You make this setting on the Fields tab.

Click the Fields tab. In the drop-down list, click ParcellD.

The map tips are now set to show Parcel ID numbers.

Click the Labels tab. In the Label Field drop-down list, click ParcellD.
The parcels will also be labeled with their ID numbers.

At the bottom of the tab, click the Scale Range button to open the Scale Range
dialog box.

Click the “Don’t show labels when zoomed"” option. In the “Out beyond 1:” box,
type 4000. Click OK.

dding layer files to ArcMap

| Hover your mouse pointer over any parcel to see its parcel ID in a map tip.

[Tl Click the View menu, point to Bookmarks, and click Downtown Wilson City. (iF

]

FE] Rename the new folder Layers and press Enter. Double-click the Layers folder %8

At the top of the Label tab, check the box to label features in this layer. Click o] &

The parcels display in the Sahara Sand color, but you don't see any labels because
you are zoomed too far out.

Now you will zoom in to display the labels.

your map is still zoomed out too far, set the map scale to 1:4000 on the Standarg
toolbar and press Enter.)

You see the parcels labeled with their ID numbers. This is how you want the layer o8
look, so you will now make a layer file from it.

In the table of contents, right-click the Parcels layer and click Save As Layer File&s
Navigate to C:\ArcObjects\Chapter16 (or the iocation where you installed the
data for this book). On the Save Layer dialog box, click the New Folder buttomn

New Folder
Save Layer | : ﬂ
Lookin: [Chaprerts = ol ol = Els]
Mame: _F‘;cels,l_m . | Save
Saveastyper |Layer fies () _:[' Cance!

You are going to save the layer file into its own folder.
open it.

At the bottom of the dialog, in the Name box, rename the layer file ParcellDs.
Click Save.

CHAPTER 16 - UsinG ARCCATALOG OBJECTS

Now you can write the code to add this layer file to ArcMap.

'I1 Open the Customize dialog box.

{13 Click the Add Layers menu, right-click Parcel IDs, and click View Source.

You will write your code in the ParcellDs click event procedure. The first thing you
need to do is make a GxLayer object.

=

] In the click event procedure, create a new GxlLayer object that points to the
IGxLayer interface.

Dim pGxLayer As IGxLayer
Set pGxLayer = New GxLayer

You will use this variable later to add the layer to ArcMap. Right now, you will
switch interfaces to IGxFile, which has the Path property you need to get the layer.

il Declare an IGxFile variable and set it equal to pGxLayer.

Dim pGxFile As IGxFile
Set pGxFile = pGxLayer

i) Set the layer file's Path property. (If you saved the layer file to a different |
location, use your path here.) |

pGxFile.Path = _
"C:\arcobjects\chapterlé\layers\parcelids.lyr"

The layer can now be added to the map.

1 Declare and set a variable to the IMxDocument interface.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

[IMxDocument has the AddLayer method.

] Write a line of code to add the layer to the map.

pMxDoc .AddLayer pGxLayer.Layer

) @ layer files to ArcMap

71 Add two lines of code to redraw the table of contents and the map display area

pMxDoc.ActiveView.Refresh
pMxDoc .UpdateContents

3 ex16a_results.mxd - ThisDocument {Code) - P ;IE] ,Zi
lFarcelms _v]: 'lcﬁck Vl
Private Suk ParcellDs Click() :_j

Dim pGxLayer As IGxLayer
Set pGxLayer = New GxLayer

Dim pGxFile is IGxFile
Set pGxFile = pGxlLaver

g

pGxFile.Path = _
nc:\arcobjects)\chapterl6) layers)parcelids. iye"

Dim pMxDoc Az INxDocument
Set pMxDoc = ThisDocument

pMxDoc. AddLayer pGxLayer.Layer

pMxDoc. ActiveView.Refresh
pHxDoc. UpdateContents

End Sub =

Your code is finished.

Close Visual Basic Editor.

Before testing the menu choice, you will zoom out to the full extent of the parce!
layer and then delete the original Parcels layer.

7] On the Tools toolbar, click the Full Extent button. In the table of contents, rights
click Parcels and click Remove.

In ArcMap, click the Add Layers menu and click Parcel IDs.

The parcel layer draws but you don’t see any ID numbers, because you are zoomed
too far out. However, the layer’s map tips are turned on.

7§ Hover your mouse over any parcel to see its ID in a map tip.
Click the View menu, point to Bookmarks, and click Downtown Wilson City.

The parcel ID labels display (provided your scale is greater than 1:4,000).

If you want to save your work, click the File menu in ArcMap and click Save AS
Navigate to C:\ArcObjects\Chapter16. Rename the file my_ex16a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Othenais
close it.

cHAPTER 16 + Using ARcCaTALOG OBJECTS IN

Making your own Add Data dialog box

Since chapter 14, you have written code to add different types of layers to ArcMap. In
each case, your code has contained a path to data. In some emergencies, however, the
data is updated so often that you can’t code the paths in advance. A toxic plume, for
instance, may be represented by dozens of layers as it changes its direction, height,
size, speed, and concentration.

In situations like these, users will have to rely on the Add Data dialog box to navigate
to the latest data. You can make their job easier, however, with a little customization.
For example, you can make the Add Data dialog box open to a specific folder or set
it to display only a certain file type, such as .lyr files.

The Add Data dialog box is an ArcCatalog object called a GxDialog. Basically, it is
a form that displays ArcCatalog’s tree view inside ArcMap. It has also been coded by
ESRI to take user-selected data sets and add them as layers to ArcMap.

s JDatabase Connections

|52 Coordinate Systems
Geocoding Services

ZEf Internet Servers
Search Results

T

Show of tppe: | Datasets and Layers 1) H i

As shown below, GxDialog is a coclass with properties that you can set including
AllowMultiSelect, ButtonCaption, Name, ObjectFile, RememberLocation,
StartingLocation, and Title. You can customize the dialog box within the limits
of these properties. You create one with the following code:

Dim pGxDialog As IGxDialog
Set pGxDialog = New GxDialog

IGxDialog O— IGxDialog : lUnknown

—a AllowMultiSelect: Boolean
—m ButtonCaption: String

m— FinalLocation: IGxObject
B— IntermalCatalog: IGxCatalog
=—m Name: String

m-0) ObjectFilter: 1GxObjectFilter
—a RememberLocation: Boolean

|
:
‘ GxDialog
|
:

B— ReplacingObject: Boolean

—a StartingLocation: Variant

—m Title: String

~s— DoModalQOpen (in parentWindow:
OLE _HANDLE, out Selection:
|EnumGxObject): Boolean

-4— DoModalSave (in parentWindow:
OLE_HANDLE}: Boolean

ng your own Add Data dialog box

Setting the ButtonCaption, StartingLocation, and Title properties with the next
three lines of code produces the dialog box that follows. The dialog box opens at
Catalog (the top level).

pGxDialog.ButtonCaption = "Add"
pGxDialog.StartingLocation = "Catalog"
pGxDialog.Title = "Add Data"

Title — ERLREE] : e
Starting — ki [© Cataloa = =l 3/s |

location @ C\ESRIESRIDATAICANADA
| @ C:\ESRIESRIDATAEUROPE
| @ C\ESRIESRIDATAWMERICO
| B)Database Connections

:{;3! Coordinate Systems
FGeocuﬁlng Services
.Ealntamst Servers

I\ Search Results

Name: » [_## 1 Button caption
Cancel

Show of type: | Datasets and Laysrs (] _"_i

Normally, the user can select multiple objects in the dialog box by holding down the
Shift or Control keys. This is because the AllowMultiSelect property is set to True.

ﬁ-:wr.l:«g»-.\;—.-n'
&4 Population Density, byr

Name: [USstates shp; Population Density Lr: Country by lakespi

Show of type: iDaIasE(s and Lapers [~lyr] :j Cancel

You can restrict the user to a single selection by setting this property to False.

pGxDialog.AllowMultiSelect = False

The dialog box above displays coverages, layer files, a raster data set, and a shapenle.
What if you want the user to see only raster data sets? The GxObjectFilter class,
associated with GxDialog, allows you to control the types of data that are displayeds

GxDialog
IGxDialogy O—— IGxDialog : IUnknown

—am AllowMultiSelect: Boolean
—a ButtonCaption: String

m— FinalLecation: 1GxObject
B— IntemalCatalog: 1GxCatalog
m—m Name: String

=0 ObjectFilter: 1GxObjeciFiltar
—m Rememberlocation: Boolean
m— ReplacingObject: Boolean
—a StartingLocation: Variant
—m Title: String

-#— DoMadalOpen (in parentWindow:
OLE_HANDLE, out Selection;
IEnumGxQObject): Boolean

-— DoModalSave (in parentwindow:
CLE_HANDLE}: Boolean

GxObjectFilter ————— Every GxDialog has one filter

1GxObjectFilter IGxObjectFilter : IlUnknown

m— Description: String

m— Name: String

< CanChooseQbject (in Object: IGxObject,
result: esriDoubleClickResult): Boclean

GxObjectFilter is an abstract class with more than thirty different filters, each of
which is a coclass.

GxObjeciFilter

jectFilter + nknawn

IGxCEjectFiter

[TTTTTTTITI 100 0 T o e I [TTTTTTTTTT

GxFilterBasicTypes GxFilterDatasets GxFilterCantainers
L R T S S R T T | o W, P S e, (T T S T T T S S S
GxFilterFeatureClasses GxFilterFeatureDatasets GxFilterPersonalGeodatabases
| e, e e e e e f e e et o, b e | S " T
GxFilterFiles GxFilterLayers GxFilierPGDBFeatureClasses
e e] N e], T | | e g g e e
GxFilterPointFeatureClasses GxFilterPolygonFeatureClasses GxFilterPGDBFeatureDatasets
e e e e, et o By o s (R S S S
GxFilterRasterDatasets GxFilterSpatialReferences GxFilterPGDBTables
] 1 1 1 L} 1 L] L] L] 1 1 L} 1 ' L} ' 1 1 1
GxFilterTablesAndFeatureClasses GxFilterTINDatasets GxFilterSDEFeatureClasses
L] L]) 1 1 L] L} 1 1 L]] L] L] ' ' 1
GxFilterWorkspaces GxFilterDatasetsAndLayers GxFilterSDEFeatureDatasets
" p— { e e PR T
GxFilterFeatureDatasetsAndFeatureClasses GxFilterMaps GxFilterSDETables
{] oy [
GxFilterCoverageAnnotationClasses GxFilterTables GxFilterAnnotationFeatureClasses
[[| (R |
GxFilterPolylineFeatureClasses GxFilterCadDrawingDatasets GxFilterDimensionFeatureClasses
1 ' [
GxFilterTextFiles GxFilterGeoDatasets GxFilterRelationshipClasses

GxFilterGeometrichNetworks

To make the Add Data dialog box display only raster data sets, you would create a
raster data set filter (GxFilterRasterDatasets). Similarly, to display only layer files,
you would create a layer file filter with the following code:

Dim pLFilter As IGxFilterLayers
Set pLFilter = New GxFilterLayers

g your own Add Data dialog box

You associate a filter with a GxDialog using IGxDialog’s ObjectFilter property. This
is a byRef property and requires the Set keyword.

GxDialog
IGxDialog O— IGxDialog : IUnknown

—a AllowMultiSelect: Boolean
—a ButtonCaption: String

m— FinalLocation: 1GxObject
s— InternalCatalog: IGxCatalog
m—m Name: String 5 .
B ObjeciFiter: 1Gx0nectFiler ———————— Object filter property
—m RemsmberLocation: Boolean
B— ReplacingObject: Boalzan
—am StartingLocation: Variant
—a Title: String

-a— DoModalOpen (in parentWindow:
OLE_HANDLE, out Selection:
IEnumGxObjact): Boalsan

-— DoModalSave (in parentWindow:
OLE_HANDLE): Boolean

The following line of code sets the ObjectFilter property:

Set pGxDialog.ObjectFilter = pLFilter

When the dialog box opens, the user selects objects from the tree view. When the
user clicks OK, the dialog box closes. Any selected objects are stored in an Enum.
like the one you used in the last chapter to hold style gallery items.

In this case, the Enum is called an EnumGxObject. Its [EnumGxObject interface has
the familiar Next and Reset methods, which you might use in a loop to get individ-
ual objects. Since the dialog box displays the ArcCatalog tree view, the objects that
can be selected to fill the Enum are all GxObjects and have the IGxObject interface.

EnumGxObject
|EnumGxObject IEnumGxObiject : [Unknown ’

| | -a— Next IGxObject
| | --— Reset

Before you code the GxDialog to open, you declare a variable for the Enum.
Dim pLayerFiles As IEnumGxObject

You would normally write another line of code to set this variable, but EnumGxObject
is a little different. As you'll see in a moment, the variable is set for you when you (of
your users) open and close the dialog box.

To open a GxDialog, you run the DoModalOpen method on the IGxDialog interface.
(This is a lictle different from the Show method you used to open a simple VBA
form in chapter 4.) DoModalOpen has two arguments. The first is a window handle.
which you can set to 0, as you did in chapter 14. The second is the Enum variable
that will hold the selected layer files.

pGxDialog.DoModalCOpen O, plLayerFiles

The DoModalOpen method has been coded by ESRI to set the Enum variable for
you. When the method runs, it will not only open the dialog box, but also set
pLayerFiles equal to the collection of GxObjects that the user selects.

CHAPTER 16 = UsiNGg ARcCATALOG OBJECTS IN ARCM:

To get individual layer files out of the Enum, you use the Next method. Since the
Next method returns IGxObject, you declare an IGxObject variable and set it with
the Next method.

Dim pLayerFile As IGxObject
Set plLayerFile = pLayerFiles.Next

In the previous chapter, you wrote a looping statement to process each item in the
Enum. In this exercise, you are going to restrict the user to selecting a single object,
so you won't need a loop.

Exercise 16b

In exercise 14b, you wrote code to add an air photo to a map. At that time, a train
had crashed and a broken car was emitting a plume of toxic smoke. Now the plume’s
movement is being monitored with new air photos taken every hour. The photos are
used to digitize the plume’s outline into polygon feature classes. These feature classes
are then symbolized and saved as layer (.lyr) files.

In this exercise, you will create a GxDialog that is customized to save time for the
emergency analysts who work with the plume layer files. The dialog will open at the
location where the layer files are stored, and will display only lyr files. It will also
restrict the user to making a single selection from the dialog box.

Start ArcMap and open ex16b.mxd in the C:\ArcObjects\Chapter16 folder.

The map shows layers of schools, fire stations, and railroads, as well as a graphic
marking the train crash site.

¥ exttbb.mxd - Archap - ArcView o e ~ioi x|
| Ele Edi Yiew [nsert Selection Tooks Add Layers window Help
DEE&|» =2/x|a o &5] a2 &N
B — |
| = £ wilson County
= B school é
& =
1= M Fire Station
g
= M Rairoad &
s
P
Crash site
Diply [t oz P

I_QI‘M' &.;".!ﬁi:‘;_'-_‘;i,&,@ =0 = Blgsgv&v__é'-v;v.

| 231872349 73253640 Feet

rnking your own Add Data dialog box

Open the Customize dialog box.
Click the Add Layers menu, right-click Toxic Layers, and click View Source.

Inside the Toxic Layers click event procedure, create a new GxDialog object.

Dim pGxDialog As IGxDialog
Set pGxDialog = New GxDialog

In the following steps, you will customize the dialog box by setting its properties.

Set the dialog box’s title to Add Toxic Layer.

pGxDialog.Title = "Add Toxic Layer"

Set the button'’s caption to Add Layer.
pGxDialog.ButtonCaption = "Add Layer"

Set the AllowMultiSelect property to False.
pGxDialog.AllowMultiselect = False

Set the dialog box's StartingLocation property. (If you installed the data for this
book in a different location, type the correct path.)

pGxDialog.StartingLocation =
"c.\arcobjects\data\wilson_nc"

Since every toxic plume is represented by a layer file, you don’t need to show any
other types of data in the dialog box. You will create a new object filter to filter out

everything except .lyr files.
Declare and set a variable to create a new object filter.

Dim pGxFilter As IGxObjectFilter
Set pGxFilter = New GxFilterLayers

cHAPTER 16 « UsING ARrcCATALOC OBJECTS TN ARC

Set the dialog box’s ObjectFilter property equal to the filter.

Set pGxDialog.0ObjectFilter = pGxFilter

% ex16b.mxd - ThisDocument (Code). 5 R =10 x|
ToxicLayers =] [etiek =
Private Sub ToxicLayers Click() Ej

Dim pGxDialoy is IGxDialoy
Sev pGxDialoy = New GxDialog

pGxDimlog.Title = "hdd Toxic Layer”
pGxDialog.ButtonCaption = "Add Layer®
pGxDialog.AllovHultiSelect = False

pGxDialog.Startinglocation = _
"C:\arcobjects\data\wilson _nc®

Dim pGxFilter is IGxObjectFilter __]
Set pGxFilter = New GxFilterLayers

Set pGxDialog.ObjectFilter = pGxFilter
End Sub B

= RTI| = 37

Before running the method to open the dialog box, you need to declare an Enum
variable. This variable will hold the layer files that the user selects. (In this case,
because AllowMultiSelect is False, the Enum can only contain one object.)

Declare an Enum variable to hold the user’s selected layer file.

Dim pLayerFiles As IEnumGxObject

Add a line of code to open the dialog box.
pGxDialog.DoModalOpen 0, pLayerFiles

When this line runs, the dialog box opens and the code pauses until the user makes
a selection. When the user clicks the Add Layer button, the pLayerFiles variable is
set automatically, and the procedure resumes.

What happens if the user clicks the Cancel button instead of selecting a layer file?
In that case, the Enum will be empty. To deal with this possibility, you’ll write an
If Then statement. You'll declare and set a variable to hold the layer file that you
expect the Enum to contain. If the Enum is empty, however, you'll exit the proce-
dure. (Enums are usually used with looping statements, but in this case, all you need
to know is whether there is an object in the Enum or not.)

Declare and set a variable to hold a GxObject. Use the Next method on the Enum
to get its first object.

Dim pLayerFile As IGxObject
Set pLayerFile = pLayerFiles.Next

ing your own Add Data dialog box

Use an If Then statement to test whether pLayerFile is Nothing. If it is Nothing
(the Enum is empty), exit the procedure.

If playerFile Is Nothing Then
Exit Sub
End If

| ‘s, ex16b.mxd - ThisDocument {Code) " "
IToaicLuyars E Eclick :I

Set pGxFilter = New GxFilterlLayers j

Set pGxDialog.ObjectFilter = pGxFilter

Dim pLayerFiles ks IEnumGxChject
pGxbialoy.DoModalOpen O, playerFiles

Dim playerFile L= IGxkObject
Set playerFile = plaverFiles.Next

1f pLayerFile Is Mothing Then
Exit Sub
End If

-

==l | : Hz

As long as the Enum is not empty, you can safely assume that the user has selected =
layer file, and that the pLayerFile variable is now holding it.

Now you want to add the layer file to ArcMap. The process is the same one that
you used in the last exercise. You set a variable to the IGxLayer interface so you cas
then get its Layer property, which returns ILayer. You can then run the AddLaver
method on IMxDocument, using [Layer as its argument.

Since the pLayerFile variable is pointing to IGxObject, and you need 1GxLayer, you
have to switch interfaces.

Declare a variable to IGxLayer and set it equal to the layer file variable you
already have.

Dim pGxLayver As IGxLayer
Set pGxLayer = pLayerFile

Create an IMxDocument variable.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Add the layer to the active map.

pMxDoc . AddLayer pGxLayer.Layer

CHAPTER 16 * UsiNg ARcCATALOG OBJECTS IN A

[E] Refresh the table of contents and map display.

pMxDoc .ActiveView.Refresh
pMxDoc .UpdateContents

4 ex16b.mxd - ThisDocument (Code) .—JQL’..‘J

-,1'Ioa'|nL-yers r] [Cl'w:k :i
= 1 pLayerFile Is Nothing Then g

Exic Sub
End If

Dim pGxLayer Ais IGxLayer
Set pGxLayer = playerFile

Dim pMxDoc is IMxDocument
Set pMxDoc = ThisDocument

pMxDoc. AddLayer pGxLayer.Layer

pMxDoc. ActiveView.Refresh
plxDoc. UpdaceContents

| End Sub e

The code is ready to test.
i Close Visual Basic Editor.
F] Click the Add Layers menu and click Toxic Layers.

The Add Toxic Layer dialog box opens to the Wilson_NC data folder, and only
plume layer files are available. There are four layer files that were created at one-

hour intervals beginning at 1 p.M.

Ad Toxic Layer
Lﬁﬁkfm 1 Wilson_NC

I — Wilson_NC data folder

> Plumed. lyr
& Plume3. lyr
5 Plumez. lyr
& Plume lyr
{1 airPhotos

— Only shows layer files

Show ol pe: [Layer les (bl] ﬂ-]

Fil In the Add Toxic Layer dialog box, click Plume4.lyr.

If you like, try holding down the Shift or Control keys and clicking another layer.
You can select only one at a time.

s your own Add Deta dialog box

1 With Plume4.lyr selected, click Add Layer.

i 3 eulﬁh mnd - : ArcMap - Arcinfo t =
| Bl €6t ow Dt Selection Tooks AddLayers Wndow e

IDER&|) L% |0~ & iﬁ'ﬁml:ﬁ\@\\?ﬁ —
=T 5

B 5 Wilson County
= & schoal

i &
= B Fire Station

= | $ &

= M Ralroad
—
= M Plumed

Crash site

@

%TM“J w‘w—-—-J
lﬁ’mv k (O~ Al (i A8 zu &~ &~ 4

T [sivezm.al 73216l 26Fest | e

The layer for Plume4 is added to the map. You see that it almost covers the sch
Next, you will test the Cancel button.

7] Click the Add Layers menu and click Toxic Layers.
FI] Click Cancel.
The dialog box disappears and no layers are added to the map.

7 If you want to save your work, click the File menu in ArcMap and click Save

Navigate to C:\ArcObjects\Chapter16. Rename the file my_ex16b.mxd and ci
Save, If you are continuing with the next chapter, leave ArcMap open. Otherws
close it.

cHAPTER 16 = UsING ARCCATALOG OB

tion 3: Using ArcObjects
{APTER 17 '

ontrolling feature display

king definition queries

ting features and setting the selection color

In this and the next two chapters, you will cover some old ground from early in the
book and also learn a lot of new things as you code an application that displays toxic
waste sites for selected U.S. states. The application will consist of two maps, or data
frames: one will be an overview map of the United States and the other will be a
detail map of a selected state. When the user picks a state from a drop-down list, the
selected state will highlight on the overview map. On the detail map, only counties
and EPA-designated toxic waste sites for the selected state will draw—all other fea-
tures (except for some background layers) will be filtered out. The detail map will
z00m to the selected state and the map’s title will change to reflect the selection.

Pick a state

Use the state i
name for the ﬁ ¢
map's title ——— Wisconsin R Overview map
1163 Tosc Sites

Zoom to the
selected state and
draw its toxic sites
and counties

Detail map

Some of the work has already been done for you. A toolbar for the application has
been created and a combo box has been populated with U.S. state names. (You
wrote similar code to populate a combo box in chapter 7.) In this chapter, you'll
concentrate on code to do two related tasks: create a definition query for the derai’
map, and select a feature for the overview map.

The code for these two tasks uses different interfaces and properties and merhods.
but conceptually they have one important thing in common: they are both based oo
queries.

A common type of GIS question is “Which features meet such-and-such criteria”
To get an answer, you have to phrase your question using the special syntax of a
query. For example, if the question is “Which states in the United States have a
population over twelve million?”, the query statement would be:

"State_Population > 12000000"

A query statement is a text string made up of a field name, an operator, and a valus
In the example above, State_Population is a field in a layer attribute table, the
greater than sign (>) is the operator, and 12000000 is the value. ArcGIS users and
programmers alike use query statements to make definition queries and to select
features. In a definition query, only those features that meet the query statement’s
criteria are displayed. In a feature selection, features that meet the criteria are high-
lighted in a special color (a red outline in the graphic below).

il vie

Definition query Selected features

In this chapter, you will learn how to make these two types of selections. In
chapter 18, you will perform operations on the selected features, such as counting
them and zooming to them. In chapter 19, you will get attribute information from
selected features and use that information to title the map.

A major challenge in coding this application will be working with two maps thar
have to be kept in synch: whenever the user selects a stare, the overview map will
redraw to highlight that state and the detail map will redraw so that only that state s
teatures display. When the user clears the selection, it will have to be cleared in bots
maps. This means that you'll have to juggle pairs of variables and pay close attentios

to the order in which your lines of code execute.

CHAPTER 17 CONTROLLING FEATURE DI

You will write your code in an event procedure that you haven't used before: a
SelectionChange event. Just as buttons have a click event, and tools have MouseUp,
MouseDown, and MouseMove events, so combo boxes have a SelectionChange
event. Code in a combo box’s SelectionChange event procedure runs whenever a
user makes a new selection in the combo box.

Pick a State combo box —

Making definition queries

In this exercise, you will write code for the detail map that shows counties and toxic
waste sites. You'll code the overview map in the next exercise. Since the code for
both maps goes in the same SelectionChange event procedure, in this exercise you
will set up variables to work with both maps.

In previous chapters, you've worked with map documents that contain only a single
data frame, which you could get with the FocusMap property on IMxDocument. In
this application, you need to get two maps. IMxDocument has another property, the
Maps property, that lets you do this. The Maps property returns the IMaps interface
of a map collection object. A map collection is like the Enums you've worked with
in the last two chapters—it’s a list of objects. The IMaps interface has properties and
methods to work with each map in the collection.

MxDocument
IMxDocument =— Focushap: IMap I

=— Maps: IMaps

Assurning that you already have a pMxDoc variable referencing ThisDocument, the
following code gets the IMaps interface of the map collection:

Dim pMaps As IMaps
Set pMaps = pMxDoc.Maps

You can learn more about the IMaps interface and its properties and methods by
reading about IMap in the ArcObjects developer help (shown below).

E? ArcObjects Developer Help e = =lolx]
B e o[- g aF I
Hide Hac Foward Refiesh Home Fant Frint Options
ontents | index | Search i | =
Corterts | ipdes | Seach| Favaes | IMaps Interface
=0 \Eapslnlallac& _‘_l Biiliris
|21 IMaps Interf:
|5] Add Method || Provides access to members that control the maps collection.
2] Count Prope b
[E] Create MethJ Merbers
£] Item Property
5] Bemove Me All = Description
Z] Removelt b <+ Add Adds a map to the collection,
] Resst Methe
= @ IMapSunound Ir || ®— Count Number of maps.
= @ IMapSuncundes «— Create Creates & new map.
B Q It apSunoundFz) y ==
= @ IMapSunoundi. — iten The map at the given index, ———————— Item property
= @ MakeBackgt | | g— Remove Removes s map from the collection.
2] IMarkeiBackgror |)y
+ @ IMarkerElement || 4— Removeht Removes 3 map at the specified index,
q 3 ’[‘”"”‘”F“E”’ﬁﬂ ‘ 4— Reset Removes all maps from the collection,
: =
I ' 3

CHAPTER 17 © CONTROLLING FEATURE DI

IMaps doesn’t have a Next method to move through the map collection, but each
map in the collection does have an index position number. If you know a map’s
index number, you can get the map with the Item property on IMaps. This property
returns a map’s IMap interface given its index position number. (IMaps and IMap
are two different interfaces.)

Online

B— Read only,

Syntax

object An ohje

Item Property

The map at the given index,

object. Item(index)
The Item property syntax has these parts:

Part Description

jes To list.

1 that evaluates to an ohject in the

Appl
varisble A reference to an object that implements 1%1ap, ——————— Returns IMap interface
Index Required. A Long that represents the Index. =

=

As shown below, the maps are numbered starting with 0. The EPA map at the top of
the table of contents is at position 0, and the USA map is at position 1.

=

Position 0 —

Position 1 ——

L= £7 EPA
=] Toxic sites

= Counties
I
B States
Background layers

B £F Usa
= States

Background layers

Display I Source I

To get the EPA map’s IMap interface, you would write the following code using the

Item prope

rty:

Dim pEPAMap as IMap
Set pEPAMap = pMaps.Item(0)

Once you have a variable referring to a map, you can get specific layers from it with
the Layer property on IMap. In fact, you have already done this (in chapter 11), so

ing definition qgue

ries

you may recall that layers have index position numbers just as maps do. In the
graphic above, the States layer is at position 2 in the EPA map. To get this layer, you
would write the following code:

Dim pStateslLayer As lLayer
Set pStatesLayer = pEPAMap . Layer (2)

Once you have a layer, you can make a definition query. You make a definition query
by setting the DefinitionExpression property on the [FeatureLayerDefinition inter-
face. The property is set to a string that represents a query statement.

FeatureLayer
|IFeatureLayerDefinition |FeatureLayerDefinition : lUnknown
m—a Definitior 1: String DefinitionExpression property

m— DefinitionSelectionSet: ISelectionSet
m—0 RelationshipClass: IRslationshipClass

—4— CreateSelactionLayer (in LayerName: String,
in useCurrentSelaction: Boolean, in
joinTableNames: String, in Expressien:
String): IFeatursLayer

[FeatureLayerDefinition is on the FeatureLayer class, which inherits from the
abstract Layer class. Since you already have a variable pointing to [Layer, you can
switch interfaces.

Dim pStatesLayerDef As IFeatureLayerDefinition
Set pStatesLayerDef = pStatesLayer

Say that you wanted to display only those states with a population greater than
twelve million. You would set the DefinitionExpression property equal to the query
statement string that you saw in this chapter’s introduction.

pStateLayerDef.DefinitionExpression Lo
"State_Population > 12000000"

Or say that you wanted to display just the state of Arizona. Then you would set the
DefinitionExpression property as follows:

pStateLayerDef.DefinitionExpression =
"State Name = 'Arizona'"

The entire query statement is double quoted because it’s a string. Atrizona is single
quoted because it’s a string within a string.

In the application you are developing, users pick a state from a combo box. You don’s
know in advance which state will be picked, so the query statement string will use
variable for the state name.

]

choStateNames

CHAPTER 17 CONTROLLING FEATURE DIS

Combo boxes have an EditText property that returns whatever value the user selects
as a string. In the graphic above, Hawaii is selected. The second line of code below
returns Hawaii as a string and assigns it to the strState variable.

Dim strState As String
strState = cboStateNames.EditText

(You may remember from the early chapters of this book that when you declare an
intrinsic variable, like a string, you don’t declare it to an interface or use the Set
keyword to set it.)

Your query statement’s search value, then, is stored in the strState variable. Since
this variable represents a state name, you might expect to put single quotes around
it, as in the Arizona example. In fact, however, this doesn’t work because VBA
interprets anything inside quotation marks as a literal string.

Say you set a variable X equal to the string “Hello”. If you then attempt to display
“Hello” in a MsgBox with the line of code

MsgBox "X"

you will get the result shown below.

The solution is to break the query statement into three separate strings and
concatenate them. That way, VBA can evaluate the variable and the result can
end up being single quoted (since it’s a string inside another string).

The first part of the query consists of the field name, the operator, and the first single
' quote:

"State_Name = '"
Then comes the variable containing the state name string:
strState
The last part of the query is a single quote surrounded by double quotes:
You will form the query statement by concatenating (&) these three strings.
"State_Name = '" & strState & "'"

When VBA reads the line of code above, the strState variable is evaluated first to
get the state name string, which is then concatenated with the first and last parts of
the query to make the full query statement.

‘ng definition queries

Since this query statement is pretty long and your code is going to use it in a couple
of different places, it will be convenient to set the entire string equal to a variable
and use the variable instead.

Dim strQuery As String
strOuery = "State_Name = '" & strState &

nan

When you set the DefinitionExpression properties for the Toxic sites and Counties

layers equal to this variable, only the features for the state picked from the combo
box will draw; the others will be filtered out.

pStatelayerDef.DefinitionExpression = strQuery

Every time the user picks a new state from the combo box, the SelectionChange
event procedure runs again, and the layers’ DefinitionExpression properties are resss
Your code also has to be able to remove a layer’s DefinitionExpression property, s&
that all features from the layer can be displayed again. When the user wants the
toxic sites for all states to appear in the detail map, they pick <Show All> in the
combo box. Your code handles this choice by setting the DefinitionExpression pregs
erty to a blank string.

pStateLayerDef.DefinitionExpression =

You can write an If Then statement to test whether the user has picked a state o
<Show All>. If they pick a state, you set the definition expression to strQuery. If
they pick <Show All>, you set the expression equal to blank quotes.

There is one more thing to do. After the If Then statement runs, you need to refress
the EPA map. You could do this by running the Refresh method on [ActiveView
(which you get with the ActiveView property on IMxDocument). However, when
the user is working in layout view, as in this exercise, the Refresh method refreshes
the entire layout page—both maps (data frames) as well as other elements on the
layout.

In this case, you have made a change to just one map and that’s all you want to
refresh. You can do this because maps also have the IActiveView interface.

Map

IActiveView O_l —— J
IMap &—

With a variable pointing to IMap, you can do Querylnterface to [ActiveView and
then run the Refresh method on a particular map.

Dim pEPRActiveView As TActiveView
Set pEPAActiveView = pEPAMap

pEPAActiveView.Refresh

CHAPTER 17 CONTROLLING FEATURE DI

Exercise 17a

Your company cleans up toxic sites in the contiguous United States. You have a
database of more than fourteen thousand such sites as defined by the U.S. Environ-
mental Protection Agency (EPA). Project managers at your company want to be
able to pick a U.S. state and immediately see a map of it and its toxic sites.

Over the next three chapters, you will write code for the Pick a State combo box
shown below on the Make a map toolbar. With this toolbar, a manager will be able
to select a state and get a detailed map of its toxic sites. An overview map will high-
light the state, and the map’s title information will reflect the state’s name, the
number of toxic sites it has, and the current dare.

In this exercise, you will write code to determine which U.S. state is selected in the
Pick a State combo box. Using the state’s name, you'll create a query statement to
set DefinitionExpression properties for the toxic sites and counties within the state.
When finished, you will be able to pick a state and see its toxic sites and county
outlines in the detail map.

Use a state name
for the map’s title "
(chapter 19) ——— Wisconsin

—+— Highlight a state in
an overview map
(exercise 17b)

1168 Toxe Sites

Draw a state’s
toxic sites
(exercise 17a)

—f— Zoom to a state in
a detail map
(chapter 18)

sene definilion queries

Start ArcMap and open ex17a.mxd in the C:\ArcObjects\Chapter17 folder.

The map opens in layout view. The USA map displays in the top data frame while
the EPA map displays in the bottom frame.

Map title

— USA map

998 Toxic Sites

mmam

—4&— EPA map

On the Make a map toolbar, click the Pick a State drop-down arrow to see
state names.

Makeamap L
Pick a State |<Show Al — Pick a State combo box

=

Alabama =

Arizona

Arkansas

Califormia b

Colorado

Connecticut

Delaware

Florida

Geogia

Idaho

linois

Indiana

lowa -

The code that adds the <Show All> choice and the state names to the combo 5os
list has been provided for you. Next, you will write code to make it work.,

Open the Customize dialog box.

On the Make a Map toolbar, right-click the Pick a State combo box and click

View Source.
. gt
Picka State |<Show AD —=l—+— Right-click here

CHAPTER 17 + CONTROLLING FEATURE

You see the ThisDocument code module and wrapper lines for the combo hox’s
SelectionChange event procedure. Code in SelectionChange runs when the user
clicks a name in the drop-down list. (You also see code in the OpenDocument event
that adds state names to the combo box with the AddItem method.)

I ex17a.mxd - ThisDocument {€ode) S =10f x|
[ubumteuums -1 |5e1ecuonc:hm _v_j
Private 3ub cboStateNames_SelectionChange (ByVal newlIndex ks Long) ‘

ctnee ity

J SelectionChange event

Private Function MxDocument OpenDocument () As Boolean

cboStateNeames. EditText = "<Show ills"
choStateNemes. AddItem "<Show A11>"

cboStateNames, AddIten "ilabama

choStateNames. AddItem "Arizona'

choStateNawmes. AddItem "Arkansas™

choStateNames. AddItem "California™ &

-fEu.l | Xz

In the next step, you will declare and set a variable for the map document’s
IMxDocument interface. After that, you will set up IMap variables for the USA
overview map and the EPA detail map.

In the SelectionChange event, declare and set a variable for the map document.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

The IMxDocument interface has the Maps property, which returns the IMaps
interface of the collection of maps.

Declare and set a variable to get the map collection from IMxDocument.

Dim pMaps As IMaps
Set pMaps = pMxDoc.Maps

The IMaps interface has the Item property to get a map given its index position.
The Item property returns IMap.

definition queries

Declare and set two IMap variables for the EPA and USA maps.

Dim pEPAMap As IMap
Set pEPAMap = pMaps.Item{0)

Dim pUSAMap As IMap
‘Set pUSAMap = pMaps.Item(1)

4 exl7a.muxd - ThisDocument {Code) : 3 = _nl | x|
lcbﬂSlileNames =l [selmioncr.ange =l
Private Suk cboSt.ar.ENames_Selectiunchange(Ey\fal newlndex Ls Long) j
Dim pMxDoc As INMxDocument
Sec pMxDoc = ThisDocument -j
Dim pHaps As INaps
Szt pMaps = pMxDoc.Maps
Dim pEPAHap ks IMsp
Set pEPAMap = plaps.Item(0)
Dim pUSAMap As IMap
Set pUSAMap = pHaps.Item(l)
End Sub . i
== _»rJ
GETTING THE RIGHT MAP
Users can add, delete, or move maps and thereby change a map's index position number. So before sefing
l the map variable, it's a good idea to confirm that you have the right map.
‘ You can write a loop that tests each map in the collection to see which one it is. The IMaps interface

doesn't have a Next method, like Enums do, so you can't use a Do While loop. However, since there is 2
specific number of maps to process, a For loop will work just as well.

You want to assign a unique variable to each map (for instance, a pEPAMap variable to refer to the EF&
map and a pUSAMap variable to refer to the USA map). Since the Item property on IMaps returns IMag.
and IMap has the Name property, you can test each map to see what its name is. You can then use the
map's name to assign an appropriate variable.

Dim pMap As IMap
Fofe ke O e
Set pMap = pMaps.Item(X)
I1f pMap.Name = "EPA" Then
Set pEPAMap = pMap
End If
If pMap.Name = "USA" Then
Set pUSAMap = pMap
End If
Next

With two distinct map variables, you can now get layers from either map. You will
write code to get the Toxic sites layer and the Counties layer from the EPA map.

You get layers with the Layer property on IMap. (You did this in chapter 11, when
you got layers to turn off their visibility.) The Layer property takes a layer’s index
position as an argument and returns the layer’s [Layer interface.

CHAPTER 17 + CONTROLLING FEATURE DISFLS

Although ILayer is the returned interface, it doesn’t have any properties or methods
you want to use. You want IFeatureLayerDefinition for its DefinitionExpression
property. Since the feature layers you are getting have access to both these inter-
faces, you can take the shortcut of letting VBA do Querylnterface for you. Instead of
declaring variables to ILayer, you'll declare them directly to [FeatureLayerDefinition.

Declare and set IFeatureLayerDefinition variables for the Toxic sites layer and
the Counties layer.

Dim pToxicLayerDef As IFeatureLayerDefinition
Set pToxicLayerDef = pEPAMap.Layer(0)

Dim pCountyLayerDef As IFeatureLayerDefinition
Set pCountyLayerDef = pEPAMap.Layer (1)

You now have a variable for each layer in the EPA map, pointing to the
[FeatureLayerDefinition interface on FeatureLayer.

Layer property Layer

Map returns lLayer |
! lMapO—l B— Layer (in index): ILayer -—q ILayer O—| |
1
| Ql is done
for you
pToxicLayerDef R FeatureLayer

IFeatureLayerDefinition O—
B8 DefinitionExpression: String

pCountylLayerDef

You want to filter out all toxic site and county features except those in the state I
picked by the user. The following lines create the query statement you need and
assign it to a variable.

Declare and set a string variable to hold the query statement.

Dim strQuery As String
strQuery = "State_Name = '" & cboStateNames.EditText & "'"

=10fx]

o
3
B

Ins, el 7a.mxd - ThisDocument {Code)

choStateHames ¥| [setectionChange

Dim pUSAMap Lis IHap
Set pUSAMap = pMaps.Item(l)

Dim pToxicLayerDef Ais IFeatureLayerDefinition
set pToxicLayerDef = pEPAMap.Layer (0)

Dim pCountyLayerDef is IFeaturelLayerDefinition
Set pCountylLayerDef = pEPANap.Layer (1)

Dim strQuery is String
strQuery = "State Name = '" £ choStateNames.EditText & "'"
End Sub : = -

== | 37

The user can display toxic sites and counties for all states by picking <Show All>.
You will add an If Then statement that applies a definition query if a state is clicked
and removes it if <Show All> is clicked.

Add the following If Then statement to determine if the user clicked <Show All>
Include the two comments.

If choStateNames.EditText = "<Show All>" Then
'This code rung when the user clicks <Show All>

Else
'This code runs when the user clicks a state

End If

In this and the following exercises you will add code in the two commented areas.

Inside the If Then statement, after the first comment, set both layer definitions
equal to an empty text string (empty double quotes with no space between themg

pToxicLayeIDef.DefinitionExpression =
pCountyLayerDef.DefinitionExpression =5

If the user clicks <Show All>, these two lines of code remove the definition queries
from both layers, thereby displaying every state’s toxic sites and counties.

After the Else keyword and the second comment, set each layer's
DefinitionExpression property equal to the query string.

pToxicLayerDef.DefinitionExpression = strQuery
pCountyLayerDef.DefinitionExpression = gtrQuery

If the user clicks a state, these two lines of code set the definition query to show only
the toxic states and counties for that state.

In the previous three chapters, every time you added a layer to a map, you refreshed
the table of contents (pMxDoc.UpdateContents) and the map display (pMxDoc.
ActiveView.Refresh). You haven't added a new layer here, so you don’t need to do
anything to the table of contents. You have changed the way layers draw, however.
so you need to refresh the map display.

Instead of refreshing the layout’s entire display area, you can get each map's
[ActiveView interface and refresh each map separately. The next two lines declare 2
variable to the EPA map’s IActiveView and do QueryInterface from the pEPAMap

variable that you declared to IMap in step 7.

Before the If Then statement, add the following lines of code to declare and set
a variable for the EPA map's IActiveView interface.

Dim pEPAActiveView As IActiveView
Set pEPAActiveView = pEPAMap

CHAPTER 17 (CONTROLLING FEATURE DISP

TF—

In the next chapter, you will write code in the If Then statement that references this
variable. That’s why you need to put these lines before the If Then statement. The

line of code that runs the Refresh method goes after the If Then statement because
you want the display to redraw after the user picks a state or <Show All>.

After the If Then statement, use the Refresh method.

pEPAActiveView.Refresh

¥, ex17a.mud - ThisDocument {Code) : i —iofx|
Ichnstatellnmes ‘E ISelemiunChﬂnge _:I
Dim strQuery As String Ej
strQuery = "State Name = '" & choStateNames.EditText & "'"
Dim pEPAictiveView As IkctiveView
Set pEPAActiveView = pEPANap
If choStateNanes.EditText = "<Show All>" Then
| This code runs when the user clicks <Show 411>

pToxicLayerDef.DefinitionExpression = *"
pCountylLayerDef.DefinitionExpression = "
Else
This code runs when the user c¢licks a state
pToxicLayerDef.DefinitionExpression = strQuery
pCountyLayerDef.DefinitionExpression = steQuery
End I

pEPAActiveView.Refresh

End Sub

. — -
ﬂé‘ﬂ..__! A7

The code is ready to test.

Close Visual Basic Editor.

You will select a state from the combo box to test the SelectionChange event.

On the Make a map toolbar, click the Pick a State drop-down arrow and click
Texas.

In the EPA map, only the counties and toxic sites in Texas draw. The view doesn’t
yet zoom in on Texas—you’ll write that code in the next chapter.

e

‘ng definition queries

When you set a feature layer’s DefinitionExpression property, its query statement
gets stored with the layer. You can see the query statement by opening the layer's
Layer Properties window and looking at the Definition Query tab. The query for the
Counties layer is shown below.

Layer Properties)] s _ﬂ&
Gonersl| Souce | Selecton| Disply | Symbology | Fieds Defiiton Quey | Label | dois sRolstes]
Defintion Query: ' s S
State_Neme = Texas' ——————+— Query statement

R I

Now you will make sure the user can display the toxic sites and counties of all the
states.

Click the Pick a State drop-down arrow, scroll to the top of the list, and click
<Show All>.

After clicking <Show All>, all the counties and toxic sites draw.

CHAPTER 17 -~ CONTROLLING FEATURE DI

section three

If you looked at the Counties layer’s Definition Query tab now, it would have no
query statement.

Empty query statement

EE] If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter17. Rename the file my_ex17a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

17

Selecting features and setting the selection color

In the last exercise, you wrote part of the code for the EPA detail map. In this
exercise, you'll work on the USA overview map.

The overview map will highlight in red the U.S. state picked by the user. Since this
map changes according to the same user selection as the EPA map, you'll be able to
use the same strQuery variable you created in the previous exercise. Remember that
you have also already set up a variable (pPUSAMap) for working with the USA map.

You will write the code for making a feature selection. In a feature selection, all
features draw, but the ones that are selected draw in a different color. To select and
highlight features, you will use the SelectFeatures method on the [FeatureSelection
interface. (As you'll see in chapter 18, this is not the only way to make a feature
selection.)

The SelectFeatures method has three arguments: a query filter, a selection method,
and the justOne argument.

FeatureLayer

IFeatureLayerDefinition O— 5 i 4
¥ B DefinitionExprassion: Sting — DefinitionExpression

property

IFeatureSelection L SelectFeatures method

-s— SclectFeatures (in Filtar: IQueryFiller, in
Method: esriSelectionResultEnum, in
justOne: Boolean)

The first argument is a query filter, which is an object that you use to build and store
query statements. (You can build queries without a query filter—you just did it in the
last exercise—but query filters have useful properties when your queries become
complex.) A query filter stores query statements in its WhereClause property.

QueryFilter
IQueryFilter IQueryFilter : [Unknown
w0 OutputSpatialReference (in FieldName:
String) : 1SpatialRsference
m—a SubFiglds: String
m—& WhereClause: Sting ——— —— WhereClause property

-— AddField (in subField: String)

You create a query filter with the code below.

Dim pFilter As IQueryFilter
Set pFilter = New QueryFilter

CHAPTER 17 © CONTROLLING FEATURE DISP

To select Arizona, you would set the query filter’s WhereClause property as follows:
pFilter.WhereClause = "State Name = 'Arizona'"

The second SelectFeatures argument is a selection method, which has five settings:
esriSelectionResultNew, esriSelectionResultAdd, esriSelectionResultSubtract,
esriSelectionResultAnd, and esriSelectionResultXOR.

Four of the five settings should be familiar, since they correspond to the interactive
selection methods on the user interface.

I Fle Edit Yiew Insert Selection Tools Window Help

Select By Attributes...
% Select By Location. ..

% Seless By Graphics
@ Zoom ToSelected Featires
E Statistics.
Set Selectable Layers. ., !
- = E} Create Mew Selection esriSelectionResultNew
Seie e Add to Current: Selection —1— esriSelectionResultAdd
Interactive Selection Method Remove From Currert Selection ——— esriSelectionResultSubtract
Options... Select Fram Current Selection ——+— esriSelectionResultAnd

The fifth setting, esriSelectionResultXOR, performs an “exclusive or.” This means
that it reverses the current selection status of all features that satisfy the query.

The third argument is a Boolean (true/false) argument called justOne. When

justOne is False, all features in the feature class are processed to see if they satisfy the

query. When justOne is True, processing stops after the first feature that meets the

query is found. The usual value is False, but True can be used when you know in

advance that only one feature satisfies the query. (This saves unnecessary searching.)

You can also use True if you simply want to confirm that a feature class is not empty
. of features that meet the query.

The code below shows the SelectFeatures method and its three arguments.

pFSLayer.SelectFeatures
pFilter,
esriSelectionResultNew,
| True

fing features and setting the selection color

Exercise 17b
In this exercise, you will continue developing the Toxic Sites application. You will
write code to draw the selected U.S. state in red in the USA overview map.

Start ArcMap and open ex17b.mxd in the C:\ArcObjects\Chapter17 folder.

You see the EPA and USA maps, and the Make a map toolbar. You will locate the
Pick a State combo box’s SelectionChange event procedure and add code to it.

Open the Customize dialog box.

On the Make a map toolbar, right-click the Pick a State combo box and click
View Source.

You see the ThisDocument code module and the combo box’s SelectionChange
event procedure.

In the SelectionChange event procedure, scroll down until you locate the If Then
statement.

You will add code before, inside, and after the If Then statement. Before the
statement, your code will get the States layer from the USA map. Inside the state-
ment, you'll clear the user-selected state when the user clicks <Show All> or high-
light the user-selected state in red. After the statement, you'll refresh the USA map.

To get the States layer, you'll use IMap’s Layer property. (Your pUSAMap variable
from the previous exercise already points to this interface.) As before, you don't
have any need for the ILayer interface that the Layer property returns. This means
that you can again skip over this interface by letting VBA do Querylnterface for
you. In the last exercise, you took the shortcut by declaring your layer variables
directly to IFeaturcLayerDefinition. This time, you'll declare a layer variable to
[FeatureSelection, which has the SelectFeatures and Clear methods you need.

FeatureLayer

|IFeatureSelection ~a— Clear

-a— SelectFeatures (in Filter; IQueryFilter, in
|IFeatureLayer O0— Method: esriSelectionResultEnum, in

"_ayer fe justOne: Boolean)

Immediately before the If Then statement, declare an IFeatureSelection variable

I I
and set it equal to the States layer in the USA map.
Dim pUSALayer As IFeatureSelection
Set pUSALayer = pUSAMap.Layer(0)

Next you will write code in both parts of the If Then statement. You will start by
writing code that clears the selected state when the user clicks <Show All>.

CHAPTER 17 CONTROLLING FEATURE DISPLA

T T Dy

Scroll down in the If Then statement and locate the line of code that clears the
definition expression for the Counties layer. (It's the last line in the first part of
the If Then statement.)

4, ex17b.mud - ThisDocument (Code) : i = =oiE
 [cbostatetiames = |s=iecuoncn-nue =l
"Q‘ Dim pUSALayer As IFeatursSelection ‘g
{ Set pUSALayer = pUSAMap.Layer (0)
If choStateNames.EditText = "<Show All>" Then
'This code runs when the user clicks <Show A11>
pToxicLayerDef,.DefinitionExpression = "" —J
pCountyLayerDef,.DefinitionExpression = "*
Else
'This code runs when the user clicks a state
pToxicLayerDef.DefinitionExpression = strQuery
pCountylLayerDef.DefinitionExpression = strQuery
End If
pEPAActiveView.Refresh
| [End 3w . -
=E O

You will add code after this line to clear the selection in the overview map when the
user clicks <Show All>. The code that is there from the previous exercise clears the
definition queries on the EPA map. The line you are adding now keeps the USA and
EPA maps in synch.

il Immediately before the Else keyword, add the following line to clear any
selected state in the USA map’s States layer.

pUSALayer .Clear

Next you will add code to the other part of the If Then statement to select (highlight)
the state picked by the user and set its color to red.

In the If Then statement, locate the line of code that sets the definition query
for the Counties layer. (It's the last line in the second part of the If Then
statement.)

/& ex17b.mud - ThisDocument {Code) : = -lalx|
 [cpostateNames =] [selectionChange =l
If cboStateNemes.EditTaxt = "<Show Al1>" Then z[
'This code runs when the user clicks <Show R11>
pToxicLayerDef.DefinitionExpression = *"
pCountylLayerDef.DefinitionExpression = "7
pUSALayer.Clear -'-j
Else
'This code runs when the user clicks a state
pToxicLayerDef.DefinitionExpression = strQuery
pCountyLayerDef.DefinitionExpression = strQuery
End If =
== 1| A

The code from the previous exercise sets the definition queries for the EPA map.
Again, your new code will keep the maps in synch.

cting features and setting the selection color

The SelectFeatures method takes a query filter as its first argument, so you need o
create a query filter. You'll set the filter’s WhereClause property equal to the query
statement you wrote in the last exercise.

Immediately before the End If keywords, create a query filter.

Dim pFilter As IQueryFilter
Set pFilter = New QueryFilter

Add a line of code to set the query filter’s WhereClause equal to the query
string.

pFilter.WhereClause = strQuery

Now you can run the SelectFeatures method on the States layer.

Malke the selection with the SelectFeatures method.

pUSALaver.SelectFeatures _
pFilter, esriSelectionResultNew, True

The first argument is the query filter. The second argument is esriSelectionResultiNes
because you want a brand new selection each time the user picks a different state-
The third areument is set to True because only one feature meets the query. (These
is no need to search for more than one state called New Mexico, for example.) Set=
ting this argument to False would give the same result—the search would just take &
liccle longer.

Selected features draw in the current selection color (by default, a cyan outline.)
You will set the SelectionColor property, shown below on [FeatureSelection, to

FeatureLayer

IFeatureSelection 0—

=0 SelectionColor: IColar SelectionColor property

-— Clear

-4— SelectFeatures (in Filter: IQueryFilter, in
Methed: esriSelectionResultEnum, in
justOne: Boolean)

Create an RgbColor and set its Red property to 200.

Dim pRedColor As IRgbCoclor
Set pRedColor = New RgbColor
pRedColor.Red = 200

CHAPTER 17 © CONTROLLING FEATURE DISF

Set the States layer’s SelectionColor property equal to the RgbColor object.

Set pUSALayer.SelectionColor = pRedColor

% ex17h.mud - ThisDocument {Code) R = -1o) x|
choStateHames :J |Selectinnchange _v_]
Else :;'

'This code rung when the user clicks a state
pToxicLayerDef.DefinitionExpression = strQuery
pCouncylayerDef.DefinitionExpression = strQuery

Dim pFilter is IQueryFilter
Set pFilter = New QueryFilter -J

pFilter, WhereClause = strQuery
pUSALayer,SelectFeatures _
pFilter, esriSelectionResultNew, True

Dim pRedColor Ais IRghColor
Set pRedColor = New RghColor
pRedColor.Red = 200

Set pUSiLayer.SeleccionColor = pRedColor
End I

o S | W

To see your drawing instructions take effect, you have to refresh the USA map’s
display.

Your pUSAMap variable still points to IMap, so you will use Querylnterface to get
its IActiveView interface.

Immediately after the If Then statement, add the following code to get the USA
map’s IActiveView interface and run its Refresh method.

Dim pUSAActiveView As IActiveView
Set pUSAActiveView = pUSAMap

pUSAActiveView.Refresh

In the previous exercise, you declared the pEPA ActiveView variable before the

If Then statement and ran its Refresh method after the statement. You did that
because, in the next chapter, you will use pEPAActiveView inside the If Then state-
ment. That’s not the case with pUSAActiveView, so you can keep these three lines
together and all after the If Then statement.

Close Visual Basic Editor.

You will test the code by picking a state in the combo box.

ting featires and setting the selection color

On the Make a map toolbar, click the Pick a State drop-down arrow and click
New Mexico.

In the overview map, New Mexico draws in red. In the detail map, New Mexico's
toxic sites and counties are displayed. In the next chapter, you will add code to make
the detail map zoom in on the selected state.

3
b
e

Map ttle

New Mexico is red in the USA map

New Mexico only

Counties and toxic sites draw for

Now you'll select another state to make sure that both maps update and refresh
correctly.

Click the Pick a State drop-down arrow and click Wyoming.

Wyoming highlights in the overview map and displays its counties and toxic sites in
the detail map. Next, you will click <Show All> to make sure that the USA map

clears the feature selection.

Click the Pick a State drop-down arrow, scroll all the way to the top, and click
<Show All>.

In the USA map, no states are highlighted. In the EPA map, all counties and toxic
sites display.
If you want to save your work, click the File menu in ArcMap and click Save As.

Navigate to C:\ArcObjects\Chapter17. Rename the file my_ex17b.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise

close it.

CHAPTER 17 © (CONTROLLING FEATURE DISP

vection

orking with selected features

Jsing selection sets

ISINg CUTSOTS

In the last chapter, you wrote code to select features, but you didn’t do anything with
these features except draw them. In this chapter, you will go further and work with
selected features both as a group and individually.

To work with selected features as a group, you get or make a selection set. A selec-
tion set is not too glamorous—it’s just a container that you can put selected features
in or take them out of. Unlike other collection objects you've worked with (Enums
and map collections), a selection set doesn’t have a method for getting individual
objects from the collection. In fact, there isn’t a whole lot you can do with it, but it
does have one important property: it can give you a count of the features it contains.
You'll use this Count property to report the number of toxic sites for the U.S. state
picked by the user.

To work with selected features individually, you make a cursor. A cursor is like an
Enum, with a pointer and a method to move from one object to the next. (A cursor
could have been called EnumSelectedFeatures, or something like that, but “cursor”
is a standard term in the database world for this kind of an object collection.)

Cursors give you access to a feature’s spatial and attribute information. Say you get
the Arizona feature from a cursor of selected U.S. states. You could go on to find out
things like its area, perimeter, centroid, and the x,y coordinates that make up its
polygon vertices. Or you could find out its population, per capita income, or number
of mobile homes—anything that is stored in the attribute table. You can also set the
spatial and attribute information. You might replace an old population figure with a
new one, for example. You'll get a chance to edit data values in chapter 20.

You might think of selection sets as Clark Kent and cursors as Superman—one is
weak and the other is powerful, and you can make a cursor from a selection set. You

can also make a cursor independently of a selection set, however, which is the way
you'll do it in this chapter.

Selection sets and cursors are made up of records. That may sound a bit odd, consic-
ering that we've been talking about features, but the term “record” actually refers
both to rows in a table and to features in a feature class. That’s because, as the fol-
lowing diagram shows, a feature class is really a type of table and a feature is a type of
row. The diagram also shows that feature classes are composed of features just as
tables are composed of rows.

Row

|
]

Table %

@
ITable O——||] o O—l

T WL

FeatureClass * + Feature
|IFeatureClass :
|Feature

From the user’s point of view, a feature class can be displayed either as features on &
map or as records in a table. A selected feature can be displayed as a highlighted
piece of geometry or as a highlighted row in a table.

FeatureClass table

— 'l ™ ~
Ve FID Shape* STATE_NAME SUB_REGION | POP1990] ~
b 17 Polygon | Connecticut NEng | mETile
30 Polygon Colorada mn | 3294a
| 44 Polygon | South Carolins sad | 34s6703
Feature __FJ
31 Polygon Kentucky ESCen | 36E5295
B 41 Polygon Alabama ~ ESCen | <os0eE7)
46 |Polygon \Louisiana . W S Cen | 4219973 &
4 | ,LrJ
Recod W]« 0 |n| Show[Al Gelected | Recodk (1 outof 43Sekected)

CHAPTER 18 + WORKING WITH SELECTED FEA

In this chapter, you will continue building the toxic sites application. In the first
exercise, you will use a selection set to get a count of toxic sites in the U.S. state
picked by the user. In the second exercise, you will use a cursor to get information
about the selected state’s spatial extent. You'll use that information to zoom the
detail map in on the selected state.

Wisconsin

4188 Tosxdc Sites

Get a state’s spatial
extent and zoom
inon it ——

Get a count of toxic sites
in a given state

ArcMap B <

\Wiscansin has 1762 toxic sites

Using selection sets

-

Every feature layer has a selection set. [t may contain a single feature, many featur%
or every feature in the layer. If no features are selecred, the selection set is still these
but it is empty.

When a user clicks on features with the Select Features tool or uses the Selection
menu, they are defining a selection set. Programmers define a selection set when

they write code to select features, as you did in the last chapter. No matter how
selection set is built, you can get it with the SelectionSet property on FeatureLa\'-:ra
IFeatureSelection interface.

FeatureLayer [SelectionSet
ISelectionSet ISelectionSet : IUnknown “

®— Count: Long
®— FullName: IName

IFeatureSelection C— .
B0 SelectionSet: [SelectionSet

®— IDs: IEnumiDs

~— SelectFeatures (in Filter: IQueryFilter, in B— Target: ITable
Method: esriSelectionResultEnum, in == = L
justOne: Boolean) -a— Add (in OID; Long

)
—-— AddList (in Count: Long, in OIDList: Long)
‘ —a— Combine (in otharSet: [SelectionSet, in sel0p:

esrSetOperalion, out resultSet:
I1SalectionSet)

-a— MakePermanent

-4— Refresh

-s— Removelist (in Count: Long, in OIDList: Leng)

~a— Search (in pQueryFilter: IQueryFilter, in
Recycling: Boalean, out ppCursor: 1Cursor)

-— Select (in QueryFilter: 1QueryFilter, in
selType: esrSelectionType, in selOptian:
ssriSelectionOpticn, in selectionContainer:
IWorkspace): ISelectionSet

Say you wanted to get the selection set shown in the following graphic:

In the last chapter, you used [FeatureSelection for its SelectFeatures method, so the
code to get this interface should look familiar. You get the layer by using the Layes
property on IMap. Then you declare a variable to IFeatureSelection and let VBA &8
Querylnterface from [Layer.

Dim pMxDoc As IMxDocument

Set pMxDoc = ThisDocument

Dim pMap As IMap

Set pMap = pMxDoc.FocusMap

Dim pFLayer As IFeatureSelection
Set pFLayer = pMap.Laver (0)

CHAPTER 18 « WORKING WITH SELECTED FEA

To get the selection set, you then declare a variable to ISelectionSet and set it equal
to the SelectionSet property.

Dim pWestSelectionSet As ISelectionSet
Set pWestSelectionSet = pFLayer .SelectionSet

A layer is not limited to a single selection set. It can have as many as you want to
make variables for. Say a user working with the U.S. states layer decides to make a
new feature selection.

You could get this selection set, too, and store it in a second variable.

Dim pEastSelectionSet As ISelectionSet
Set pEastSelectionSet = pFLayer.SelectionSet

Although a feature layer can have more than one selection set, only one can be
displayed at a time. To switch back and forth between selection sets, you set the
feature layer’s SelectionSet property. This is a byRef property (open barbell) that
requires the Set keyword.

Set pFLayer.SelectionSet = pWestSelectionSet
To see the new selection set display, you have to refresh the map’s active view.

pMxDoc .ActiveView. Refresh

In the example above, it was assumed that a user was making the selections on the
user interface. You can also create a selection set directly with a query filter and a
table, as shown in the following diagram.

Fsing selection sets

SelectionSet
e B

P iisicimii. DI |
4 |

QueryFilter

FeatureClass

i L

SpatialFilter

This is the first time you have seen the open diamond symbol. It means that two
objects are needed to create a third. Dashed arrows point from Table and QueryFilter
to the diamond, and from the diamond ro SelectionSet. This means that to crearte =
selection set, you need both a query flter and a table (or a feature class, since it is a
type of table).

(%]

When you have these objects, you make the selection set by running the Select
method on I[FeatureClass, as shown below. The Select method has four arguments
and returns the 1SelectionSet interface of a selection set.

FeatureLayer

|IFeatureLayer O—
4 B0 FeatreClass: IFeatureClass

FeatureClass
_n IFeatureClass C—— [iFcatureClass : 10bjectClass

SelectionSet |
| | <a— Select (in QueryFilter: IQueryFilter, in selType:
ISelectionSet O— Bl o esriSelactionType, in selCption:
| esriSelectionOption, in selectionContainer:
| i IWorkspace); I5elsctionSet

lQueryEiter o— QueryFilter

The first argument is a query filter, which you know about from the last chapter.

The second argument is a selection type, which has three choices. The first choice,
esriSelection TypelDset, specifies that the ID numbers of features in the selection
set be written to a database table, such as an SDE” logfile. The second choice,
esriSelection TypeSnapshor, specifies that these IDs be held in computer memory
instead. (The first choice is better for large selection sets and the second for small
ones.) The third choice, esriSelectionTypeHybrid, makes the decision for you based
on the size of the selection set.

The third argument is a selection option, which also has three choices:
esriSelectionOptionNormal, esriSelectionOptionOnlyOne, and esriSelection-
OptionEmpty. This argument is similar to the justOne argument that you used with
the SelectFeatures method in the last chapter. The Normal choice selects all fea-
tures that meet the query filter’s criteria.

CHAPTER 18 © WORKING WITH SELECTED FEATU

The fourth areument specifies a workspace for storing the table created by the second
argument. The value Nothing puts the table into the same workspace as the feature
class. (This argument is required even if you use esriSelectionTypeSnapshot as the
selection type.)

Exercise 18a

In this exercise, you will write code to create a selection set and get a count of all
toxic sites in the state picked by the user. For now, you'll report the count in a mes-
sage box. In the next chapter, you will integrate the count as text graphics on a map.

Start ArcMap and open ex18a.mxd in the C:\ArcObjects\Chapter18 folder.
You see the USA and EPA maps on the layout and the Make a map toolbar.

Open the Customize dialog box. On the Make a map toolbar, right-click the Pick
a State combo box and click View Source.

You see the ThisDocument code module and the SelectionChange event procedure.

In the SelectionChange event, scroll down to the last line of the If Then
statement (the one that sets the selection color of the USA map’s States layer).

% ex18a.mxd - ThisDocument (Code) H=E
lcbostatellsmes :] SelectionChange - l
Zet pFilter = New QueryFilter 3

pFilter.WhereClause = sStrouery

pUSiALayer.SelectFeatures

pFilter, esriSelectionResultNew, True

et pRedColor = New RgbColor

Dim pRedColor As IRghColor J
pRedColor.Red = 200

Ser pUSALayer.SelectionColor = pRedColor (
End If

Dim pUSAictiveView is IRctiveView
Set pUSiictiveView = pUSAHap

pUSilctiveView.Refresh

s KE S

You will add code after this line to create a selection set.

A selection set requires a query filter and a table. Part of the work is already done,
because you can use the query filter (pFilter) that you made in the last chapter. Its
query statement finds features whose State_Name attribute matches the state picked
in the combo box. When you apply pFilter to the Toxic sites layer, it will find all
toxic sites within the selected state.

The other component you need is the feature class of the Toxic sites layer. If you
scroll up toward the top of the SelectionChange event procedure, you'll see that you
already have a variable for this layer, pToxicLayerDef, which you set in the last
chapter.

Fi‘ing selection sels

pToxicLayerDef is declared to [FeatureLayerDefinition, but to get the layer’s feature
class, you need IFeatureLayer. So you will switch interfaces.

You need a variable to point here FeatureLayer
to get to the FeatureClass property —————— IFeatureLayer O—
®—0 FeatureClass: IFeatureClass
pToxicLayerDef —— IFeatureLayerDefinition O—

After the line above that sets the selection color to red, and immediately before
the End If keywords, declare an IFeatureLayer variable and set it equal to
pToxicLayerDef.

Dim pToxicFLayer As IFeaturelayer
Set pToxicFLayer = pToxicLayerDef

Now you can get the feature class of the Toxic sites layer, using the FeatureClass
property on IFeatureLayer.

Declare and set an IFeatureClass variable.

Dim pToxicFClass As IFeatureClass
Set pToxicFClass = pToxicFLayer.FeatureClass

You have the two objects you need. To make the selection set, you'll run the Select
method on the feature class. For the method’s first argument, you'll use pFilter (your
query filter). For the second argument, you'll use the hybrid choice and let VBA
decide how to store the IDs of the selected features. For the third argument, you'll
choose the normal option, which selects all features that satisfy the query (all toxic
sites within the U.S. state the user picks). You'll set the fourth argument to Nothing

Declare and set an ISelectionSet variable.

Dim pSelectionSet As ISelectionSet

Set pSelectionSet = pToxicFClass.Select _
(pFilter, _
esriSelectionTypeHybrid,
esriSelectionOptionNormal,
Nothing)

You will use ISelectionSet’s Count property to find out how many toxic sites are in
the selection set. You'll report the count in a message box.

Use a message box to display the state name and the number of toxic sites it
contains.

MsgBox cboStateNames.EditText & " has "
& pSelectionSet.Count & " toxic sites"

CHAPTER 18 © WORKING WITH SELECTED FEATU

| s ex18a.mxd - ThisDocument (Code) [_[Ofx]
cboStateNames :J |Sela|:ﬁnnchmge Ll

Set pUSilayer.SelectionColor = pRedColor j

Dim pToxicFLayer As IFeaturelLayer
Set pToxicFLayer = pToxicLayerDef

Dim pToxicFClass Ls IFeatureClass
Ser pToxicFClass = pToxicFLayer.FeatureClass

Dim pSelectionSet Ls ISelectionSet _l
Set pSelectionSet = pToxicFClass.Select
(pFilter,

esriSeleccionTypeHybrid, _
esriSelectionOptionNormal,
HWothing)
HsgBox cboStateNames.EditText & " has "
& pSelectionSet.Count & " toxic sites”
End If

2=] 47

The code is ready to test.
Close Visual Basic Editor.

Click the Pick a State drop-down arrow and click California.

California has 1168 toxic sites

In the next chapter, you will write code to put this number in the map’s title area.
Click OK.

The message box closes. California is highlighted in the overview map and its
counties and toxic sites display in the detail map.

Although the California toxic sites are contained in this selection set, they do not
highlight on the EPA map. Creating (or getting) a selection set does not highlight
features. If you want the features to draw in the selection color, you could set the
SelectionSet property on [FeatureSelection. That would mean declaring a variable
to [FeatureSelection and setting it equal to your pToxicFLayer variable, then setting
the SelectionSet property equal to your pSelectionSet variable.

Dim pToxicFeatSel As IFeatureSelection
Set pToxicFeatSel = pToxicFLaver
Set pToxicFeatSel.SelectionSet = pSelectionSet

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter18. Rename the file my_ex18a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

ing selection seis

Using cursors

To work with individual records or features—to get or set their attribute and spatial
information—you create a cursor, A cursor is a group of records organized in rows.
It’s like a table that you would open in ArcMap, except that you don’t actually see it-

A cursor, like a selection set, is created from a query filter and a table. A feature
cursor is a special type of cursor that you use with feature classes.

SelectionSet

Cursor

B D g Table

il * TR T

FeatureCursor QueryFilter FeatureClass ‘

i [

SpatialFilter

In the last exercise, you ran the Select method on IFeatureClass to make a selection
set. The same interface has various methods to make a feature cursor.

FeatureClass
|IFeatureClass - IFeatureClass : IObjectClass |

m— AresField: IField

B— FeatureClassiD: Long

®— FeatureDataset: IFeatureDataset
®— FeatureType: esriFeaturaType
®m— LengthField: IField

®— ShapeFieldName: String

E— ShapsType: esriGeomelryType

-&— CreateFeatursButter: [FeatureBuffer

-— FeatureCount (in QueryFilier: IQueryFilter):
Lon

-a— GeiFeature (in ID: Long): IFeature

-&— GetFeatures (in fids: Variant, in Recycling:
Boolean): IFeatureCursar

< Insert (in U ing: Boolean): Insert method
IFeatureCursor

~&— Search {in Filter: IQueryFilter, in Recycling: — Search method
Boolean): IFeatureCursor

- Select (in QueryFilter: IQueryFilter, in selType: | |
esriSelection Type, in selOption:

esriSelectionOption, in selectionContainer: |
IWerkspace): ISelectionSet
~a— Updatz (In Filter: IQueryFilter, in Recycling: — Update method

-4— CreateFeatura: [Feature ‘

Boolean): [FeaturaCursor

The Insert and Update methods let you add new features to a feature class or edit

existing features. You'll use the Update method in chaprer 20. In this exercise, you
will use the Search method, which makes a cursor that contains all features satisfying
a query statement. You use this method when you want to get the attribute or spatial
information of particular features but don’t intend to make new features. Although
Insert, Update, and Search are the names of methods that create cursors, the cursoss

themselves are often called by these names. For instance, a cursor created by the

CHAPTER 18 © WORKING WITH SELECTED FEATL

Insert method can be called an insert cursor. Given a feature class, pStatesFClass,
and a query filter, pFilter, you create a search cursor with the two lines of code below.

Dim pFCursor As IFeatureCursor
Set pFCursor = pStatesFClass.Search(pFilter, True)

Once you have created a cursor, you work with it in the same way you work with an
Enum (like the one in chapter 15). The cursor has a pointer that starts off pointing
at the top of the collection of features.

Paointer ——’ Pointing to nothing at the top of the cursor

: STATE. NAME] STATE FIPs | POP1997 | POPIO_SQMI|

| alabara] o1 | 4e9amis 78

Vﬁrizuna 04 4558866 | 32! Cursor object
Arkansas) 05 2529864 44 | contains a
Calfarnia] 06 32197302 189 collection of
Colorado ;] 3585615 32 records from
Conneckicut 0 1 3277113 661 a table
Delaware 10 731218 ﬂ

There is a NextFeature method, on the IFeatureCursor interface, that lets you move
through the features.

FeatureCursor
|FeatureCursor
r-d— MextFeature: |Feature ——‘Hf NextFeature method

The following code takes you from the starting point to the first feature in the cursor:

Dim pFeature As IFeature
Set pFeature = pFCursor.NextFeature

F ETATE, NAME] STATE_FIPs | POP1997 | POP9D_SQMI |
pFeature — |Alsbama o1 | 4zem7is 76|
prizona o4 _ 4526866 32l
Arkansas |05 2529864 44
Calfornia s 32197302 129
\Colorado s 3885615 22|
|Connacticut _— 09 T 661
Delaware 10] \ 731218 324|

The NextFeature method returns a feature’s [Feature interface. As the following diagram
shows, this interface gives you access to the spatial properties of a feature. One of these
is the Extent property, which returns a feature’s envelope. Every feature has an extent
envelope that represents the smallest possible rectangle that can surround the feature.

l\ Feature

|Feature

\
m— Extent: |[Envelope
- FeatureType: esriFeatureType
B0 Shape: |Geometry
m— ShapeCopy: IGeomelry |
!

IFeature : |IObject

Si7g CUTSOFS

The graphic below illustrates the envelope for a polygon feature of Wisconsin.

Envelope

Polygon geometry

Say you are pointing at this feature (pFeature) with a cursor. The next lines of code
get its envelope.

Dim pEnvelope As IEnvelope
Set pEnvelope = pFeature.Extent

Features have envelopes and so do layers and the active view. Zooming in and out o
a map depends on envelopes. The current zoom setting is determined by the active
view’s extent envelope illustrated below.

®: StateShapeEnvelope.mud - ArcMap - ArcInfo —{of x|
= e

| e EdE View Inssrt Selection ook Window Help

D& e8> |» - |&[2EE PRl vl

"

Envelope of the

& Background layers map’s active view

~
: = Jeilena] =
|orawg ~ ke 00| Ol Al faid =ft =l B 7 0 A~ &~ Hv o~ |

]
-

 [SB45.03 9513,27 Miles] 7

When you want to zoom in or out, you set the active view’s envelope equal to some
new envelope, such as the Wisconsin feature’s envelope (pEnvelope).

You get or set the active view’s envelope with the Extent property on [ActiveView:

Map

IactveView O— w—a gxent: IEnvelope ———————— Extent property

CHAPTER 18 WORKING WITH SELECTED FEA

As long as you already have a variable, pMap, that points to [Map, you can do
Querylnterface to switch to the map’s [ActiveView interface.

Dim pMapsActiveView As IActiveView
Set pMapsaActiveView = pMap

You can then set the active view’s envelope.
pMapsActiveView.Extent = pEnvelope

After you refresh the view, you will be zoomed in on Wisconsin.

&, stateshapeEnvelope mud - Arcap = = 2 S _ =18 x|
| Ble Edt View Insert Selection Took Window Help i
Dggg‘x%gm{n,‘\t[umm ||-\£\§J

= £ PA
(= M Toxic stes

The state’s envelope
is equal to the active

= M Counties
= :
view's envelope

=M Statss

¥ B Background layers

| Q-!nggsam:ei : 20 -J = = = s : 2

e R ﬂvll_\g?'—‘—_jru s B u|AY & ,..-;
| 6131,70 3229.40 tles == =

Exercise 18b

In this exercise, you will write more code for the EPA detail map. You will make a
feature cursor that contains the U.S. state chosen by the user. You will get this state’s
envelope and set the envelope of the map’s active view equal to it. The result will be
that the detail map zooms in on the state that the user picks. When the user picks
<Show All>, you will zoom back out to the extent of the States layer.

Start ArcMap and open ex18b.mxd in the C:\ArcObjects\Chapter18 folder.
You see the USA and EPA maps on the layout and the Make a map toolbar.

Open the Customize dialog box. On the Make a map toolbar, right-click the Pick
a State combo box and click View Source.

You see the ThisDocument code module and the SelectionChange event procedure.

You will write the code that zooms out to the extent of the States layer first. To do
that, you need a variable that refers to the States layer in the EPA map. (You have
variables for the Counties and Toxic sites layers, but not the States layer.)

Fﬂg CUFSOTS

In the SelectionChange event procedure, find the line of code that sets the
pCountyLayerDef variable for the Counties layer in the EPA map. {It's about the
twelfth line of code in the procedure.)

* ex18h.mud - ThisDocurnent (Code) =iofx|
choStateHames - |5eleﬂinnthange v,]
Dim pToxicLayerDef Ais IFeatureLayerDefinition j

Set pToxiclLayerDef = pEPANap.Layer (0)

Dim pCouncyLayerDef As IFesturelayerbDefinicio J
Set pCountylLayerDef = pEPAMap.Layer (1)

Dim strQuery A3 String

strQuery = "State Newe = '" & choStatelanes.EdicText & "'"
Dim pEPlictiveView iz IhetiveView

Set pEPAActiveView = pEPAMap

Dim pUSALayer is IFeatureSelection
Set pUSALayer = pUSANap.Layer (0)

If choStateNames.EditText = "<Show A11>" Then
'This code runs when the user clicks <Show i11> =

== o

You will add code after this line.

Declare and set a variable for the States layer using the ILayer interface.

Dim pStatesLayer As ILaver
Set pStateslayer = pEPAMap . Laver (2)

Since the States layer is the third layer on the EPA map, you use position 2 as the
Layer property’s argument.

Now you will add code to the If Then statement. When the user clicks <Show All>;
you will get the States layer’s envelope and use it to set the extent of the active view

Features and the active view have an Extent property to return their envelopes.
Layers have a property called AreaOfInterest that does the same thing.

Inside the If Then statement, locate the line of code that clears the selection in
the USA map when the user clicks <Show All>.

4 ex18b.mud - ThisDocument (Code)

[Dhoﬂatellames -B hange e ﬁ

If cboStateNawes.EditcText = "<Show il
'This code runs vhen the ser clicks
pToxicLayerDef.DefinitionExpression
pCountyLayerDef.DefinicionExpression =

"
pUSALayer.Clear _.]
Else 3

)
IThis code runs when the user clicks a state
pToxicLayerDef.DefinitionExpression = strQuery
pCountyLayerDef.DefinitionExpression = strQuery 1
i

Dim pFilter As IQueryFilter
Set pFilter = New QueryFilter

2= s= 5

CHAPTER 18 + WORKING WITH SELECTED FEAT

Your code will go after this line.

You don’t need to declare a variable to the map’s [ActiveView, because you already
have one (pEPA ActiveView). You set it up in the previous chapter to refresh the
view when the user picked a new state. You may recall that you were going to refer-
ence this variable from inside the If Then statement in this chapter. This is where
you do it. Inside the two parts of the If Then statement, you will change the active
view's extent envelope, causing it to zoom in or out.

Immediately after the Clear method and before the Else keyword, set the map’s
active view extent equal to the area of interest of the States layer.

pEPAActiveView.Extent = pStatesLayer.AreaOfInterest

% ex18b.mzd - ThisDocument (Code) = = 0 [

lchuS(aIeNnmes _:| SelectionChange :_l

If choStateNawes.EditText = "<Show A11>" Then _—‘_l

'Thisg runs when the cl ¢Show All>
pToxicLayerDef.DefinicionExpression
pCountyLayerDef.DefinitionExpression = ""

pUSilayer.Clear H

pEPAlctiveView.Extent = pStatesLayer.lireaOfInteresc {

Else 1

'This code runs when the user clicks a state
pToxicLayerDef.DefinitionExpression = strQuery
pCountyLayerDef.DefinitionExpression = strQuery

Dim pFilter As IQueryFilter
Set pFilter = New QueryFilter

= P

Now you'll add the code for zooming in on a U.S. state to the second part of the
If Then statement.

Scroll down to the message box lines of code at the end of the If Then 18 |

statement.
&4 ex18b.mud - ThisDocument (Code) Hi[=1E3 -
fcbn‘:‘-talemmcs _:I ISeIeciionChange :]

Dim pToxicFClass As IFeatureClass
Set pToxieFClass = pToxicFLayer.FeatureClass

Dim pSelectionSet ks ISelectionSet
Set pSelectionSet = pToxicFClass.Select _
(pFilter, _

egriSelectionTypeHybrid, _
esriSelectionOptionNormal,

Mothing) - _I

MsgBox choStateNemes.EditText & " has " _ 4
& pSelectionSet.Count & " toxic sites” ‘
End If

Dim pUSAkctiveView Ls IAdctiveView
Set pUSAkctiveView = pUSAMap

i R IS wz

Your code will go after this line.

Lsing cursors

To create a cursor, you need a query filter and a table (feature class). These are the
same objects you needed for a selection set in the previous exercise. Once again, you
will use the existing query filter and, once again, you will switch interfaces, this time
from [Layer to IFeatureLayer to get the layer’s feature class.

Immediately after the MsgBox code and before the End If keywords, declare ang
set an IFeatureLayer variable for the States layer.

Dim pStatesFLayver As IFeaturelayer
Set pStatesFLayer = pStateslayer

Now you can get the feature class of the States layer.

Declare and set a variable for the States layer’s feature class.

Dim pStatesFClass As IFeatureClass
Set pStatesFClass = pStatesFLayer.Featureclass

You have both the objects you need and can run the Search method to create a
feature cursor.

Declare and set a variable to create a feature cursor with the FeatureClass and
QueryFilter objects.

Dim pFCursor As IFeatureCursor
Set pFCursor = pStatesFClass.Search(pFilter, True)

The Search method has two arguments. The first is the query filter. The second,
called recycling, specifies the way in which features in a cursor are held in memory
during processing. You will learn about the recycling argument in chapter 20; for
now, just set it to true.

The cursor you have made contains only a single feature. (In the States layer, there
is only one feature corresponding to each State_Name attribute value.) Even so, you
still deal with the cursor as a collection. Therefore, you will move the pointer with
the NextFeature method, which returns IFeature.

Declare an IFeature variable for the selected U.S. state and use the NextFeaturd
method to set it.

Dim pFeature As IFeature
Set pFeature = pFCursor.NextFeature

Now you are pointing to the feature object in the cursor. You want to get its
envelope and set the extent of the map’s active view equal to it.

Declare and set a variable to hold the selected U.S. state’s envelope.

Dim pEnvelope As IEnvelope
Set pEnvelope = pFeature.Extent

CHAPTER 18 WORKING WITH SELECTED FEA

If you use this envelope as is to set the active view’s extent, the corners of the state
might touch the sides of the map, as in the following graphic:

%, StateShapeEnvelope.mxd - ArcMap - Arcinfo § = S —lof x|
| Ele Edt Wew Dnsert Selection Tools Window Help

DSBS & t@» |« | & [0 = |2 & K2
X 7 =

EF=1"7Y]
2 M Toxic sites

i= M Counties
=
= M States

State boundary touches
edge of the active view

@ M Background layers

Display | Souce o
Jmmv k Olr A~ e 5]t =] B r g | A~ &~ £~ ¢ ~
P et e e

You will put a little space between the feature envelope and the edge of the map.
One way to do this would be to run the Execute method on the Fixed Zoom Out
command. (You learned this technique in chapter 13.)

Another way is to use I[Envelope’s Expand method to expand the envelope. The

Expand method has three arguments. The first two are width and height settings.

The first value expands the envelope in the x direction, the second in the y direc-

tion. (The center point does not change.) The third argument interprets the two

values as ratios or as map units. It is a Boolean argument and you will use True to I
get ratios. ‘

Expand the envelope to 1.1 times its original size.

pEnvelope.Expand 1.1, 1.1, True

Sing Cursors

(71 Set the extent of the map’s active view equal to the expanded envelope.

pEPAActiveView.Extent = pEnvelope

) eulﬂb.mndfThisDncun {Code) : T
inhnstmeﬂames _'-_l lSeIeclinnchange
Dim pStatesFClass Ais IFeatureClass

et pStatesFClass = pStatesFLayer.FeatureClass

Dim pFCursor is IFeatureCursor
Set pFCursor = pStatesFClass.Search(pFilter, True)

DPim pFeature As IFeature
Set pFeature = pFCursor.NextFeature

Dim pEnvelope 4is IEnvelope
Set pEnvelope = pFeature.Extent

pEnvelope.Expand 1.1, 1.1, True J
pEPARctiveView.Extent = pEnvelaope
End If

Dim pUSkictiveView As IkctiveView
Set pUSAlctiveView = pUSLMap
pUSikcriveView. Refresh

pEPAActiveView.Refresh
End Sub

=

The code to refresh the EPA map is already there, after the If Then statement. ¥
wrote this code in the previous chapter.

The code is ready to test.
[l Close Visual Basic Editor.

On the Make a map toolbar, click the Pick a State drop-down arrow and click
Wisconsin.

o

MWisconsin has 1762 toxic sites.

~ cHaPTER 18 + WORKING WITH

kil Click OK.

The EPA map zooms in on Wisconsin and you see its counties and toxic sites. You
also see that it is zoomed a little bit to leave space between Wisconsin’s polygon
boundary and the map edge.

Map title

932 Toxic Stes

—f— The EPA map zooms in
on the selected state

[1 Click the Pick a State drop-down arrow and click <Show All>.

The EPA map zooms out and you see all counties and all toxic sites. In the following
chapter, you will finish your work on the application by coding the map title and
other elements to update according to the user’s selection.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter18. Rename the file my_ex18b.mxd and click
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwise
close it.

ln'ng CUTSOrS

HAPTER

aking dynamic layouts

ing elements

anipulating text elements

Everything you add to a layout—a data frame, a scale bar, a north arrow, text, a
picture, a neatline, and so on—is an element. In other words, a layout is composed
of elements. The abstract Element class has FrameElement and GraphicElement
below it. (You may recall this from chapter 12, when you worked with marker ele-
ments, a type of graphic element.)

Frame elements include both data frames and elements related to them. Data frames
are represented by the MapFrame subclass. Associated with a Mapkrame are its
MapSurroundFrames, which are elements that change along with the data frame.
When the data frame below is rotated and zoomed to Italy, its north arrow and scale
bar (map surround frames) change to reflect the new orientation and scale.

Europe . Europe
1:26,000,000 1 1:7,000,000
N

L%

¥

The map title, however, does not change, even though the map is now a map of Italy
rather than Europe. Graphic elements, such as text, graphics, pictures, and fills, are
not associated with map frames or other layout elements. Once set, they don’t
change unless they are told to.

Your job in this chapter is to make graphic elements (specifically, text elements)
change in response to what is being displayed in a map frame. When the user picks &
U.S. state in the combo box, your code will display the state name as the map title
and the number of its toxic sites as the subtitle.

The following diagram shows the relationship of elements on the layout page.
FrameElement has several subclasses, but only MapFrame and MapSurroundFrame
are shown. The line connecting MapFrame and MapSurroundFrame tells you that
they are associated. (That’s why when you rotate a map frame, for example, its north
arrow rotates with it.)

GraphicElement also has many subclasses, but TextElement is the only one you'll
use in this chapter.

PagelLayout o : Element
N ‘f|5_
i

Sl - i

FrameElement I GraphicElement
\
I %Y 1
MapFrame MapSurroundFrame TextElement

When you work with layout elements, some of the things you do are specific to the
properties and methods of the element. For example, you might get a line elements
Symbol property to change its color, or a marker element’s Symbol property to
change its size. But you also work with elements in a more general way by selecting
and unselecting them, adding and deleting them, bringing them forward, sending
them back, and so on.

The PageLayout coclass (below) has two interfaces for working with elements at this
general level: IGraphicsContainer and IGraphicsContainerSelect. In spite of their
names, these interfaces apply to all layout elements, frame elements and graphic ele
ments alike.

CHAPTER 19 = MAKING DYNAMIC LAYO

PageLayout

IGraphicsContainer O——{ IGraphiesContainer : IUnknown

~#— AddElement (in Element: IElement, in zorder:

Long|

-&— AddElements (in Elements:
IElementCallection, in zorder: Long)

—-a— BringForward (in Elements: IEnumElemant)

~— BringToFront (in Elements: IEnumElement)

~<4— DeleteAllElements

-a— DeleteElement (in Element: IElemeant)

~— FindFrame (in frameCbject: Variant):
IFrameElement

-a— GetElementOrder (in Elements:
IEnumElement): Variant

-#— LocateElements (in Point: IPoint, in Tolerance:
Double): IEnumElement

- LocateElementsByEnvelope (in Envelope:
|Envelope): IEnumElement

-&— MoveElementFromGroup (in Group
|GroupElement, in Element: IElement, in
zorder: Long)

-s— MoveElemeniToGraup (in Element: IElement,
in Group: IGroupElement)

~&— Mext: I[Element

-4— PutElementOrder (in order: Variant)

~— Reset

~4— SendBackward (in Elements: IEnumElement)

~&— SendToBack (in Elements: IEnumElement)

~#— UpdateElemenl! (in Element: |Element)

|Graphi

IGraphicsContainerSelect O— ~

&1 DominantElement; |IElement

B— ElementSelectionCount: Long

®— SelectedElements: IEnumElement

®— SelecticnBounds (in Display: |Display):
IEnvelope

Wtair M

~4— ElementSelected (in Element: IElement):
Boolean

-— SelactAllElements

~&— SelectedElement (in Index: Long): IElement

—— SeleclElement (in Element: IElement)

-4— SelectElements (in Elements: IEnumElement)

~&— SelectionTracker (in Index: Long):
ISelectionTracker

~&— UnszelectAllElements

-#— UnselectElement (in Element: IElement)

~a— UnselectElements (in Elements:
IEnumElement)

IGraphicsContainer has methods for adding, deleting, and reordering elements. Like
the Enums and cursors that you have used before, it also has a Next method for mov-
ing through a collection of elements one at a time. (Although IGraphicsContainer
is an interface, not an object, it is commonly called “the graphics container” as if it
were an object.)

IGraphicsContainerSelect has a DominantElement property for getting the selected
element. It also has an ElementSelectionCount property that tells you how many
elements are selected.

In this chapter, you'll use both these interfaces to help you get and update the text
elements on the map.

Naming elements

In this chapter, you will update the text elements shown below based on the code
you've written in the previous two chapters.

Use the state name for the map title —1—— Map title

938 Toxic Stes

Use the number of toxic sites for the subtitle —
Add the current date ——— o=

It sounds pretty easy. You have a layout full of different elements and you have to get
a few of them and update them. That should be a simple matter of picking the right
elements out of the layout’s graphics container, and setting the relevant properties
equal to your existing variables for the state name and toxic site counts.

The complication is that layout elements don’t have unique identifiers built in to
them. So although it’s easy for you to tell one element from another when you look
at the user interface, it’s not easy for VBA. You can’t get an element by an index
position number, like you can with maps or layers. And elements don't have pre-
defined names the way style gallery items do.

One idea that might occur to you is writing some TypeOf statements, like you did in
chapter 12, to see what interfaces an element has. That could work to tell different
types of elements apart—map frame elements from text elements, for example. Bug
in this situation, the elements you need to update (title, subritle, and date) are all
text elements. A Type Of statement won't help you there.

Fortunately, all layout elements have an interface called IElementProperties2, on
the Element abstract class, that can be of service. This interface has a Name prop-
erty you can set and get. Setting an element’s name gives you a unique characteristia
by which to get it from the graphics container.

CHAPTER 109 MAKING DYNAMIC LAYOL

| Element

|IElement O—H

IElementProperties2 O— |ElementProperties2 : IUnknown

| | m—m AutoTransform: Boolean
B CustomProperty. Variant
=8 Name: String Name property
B8 ReferanceScale: Double
| | m—m Type: String

-4— CanRotate: Boolean

A handy way to employ this property could be with a UlButton. After interactively
selecting the element you want on the layout, you could click the button to open
an input box and set the element’s name. It would also be nice to have a GetName
button, so you could check and see whether or not you've already named an element.

Making these two buttons is what you're going to do in this exercise. For the SetName
button, you'll use the DominantElement property on IGraphicsContainerSelect to
get whichever element is selected on the layout. You'll make an input box to type in
a name for this element, then you'll set the Name property on [ElementProperties2.
You'll enclose your code in an If Then statement that makes sure only one element
is selected at a time.

PageLayout

|GraphicsContainerSelect O—F—G DominantElement: IElement

Your code for the GetName button will be very similar. You’ll get the selected
element, get its name, and report the name in a message box.

Besides working with a couple of new interfaces and objects, this exercise gives you
a chance to practice some things you did earlier in the book, like making UIButtons
and using input boxes. For the first time, you'll be saving your work to the normal
template, rather than to an .mxd file.

Exercise 19a

By assigning names to elements, you make it possible to get the ones you want from
the graphics container. Since ArcMap doesn’t have buttons to set or get an element’s
name, you'll make these buttons yourself. Then you'll use them to set the names of
the title, subtitle, and date elements on the toxic sites map.

Start ArcMap and open ex19a.mxd in the C:\ArcObjects\Chapter19 folder.
When the map opens, you see the toxic sites map from the previous chapters.

Open the Customize dialog box. Click the Commands tab. In the Categories list,
click UlControls. -

aniing elementis

The buttons you're about to create can help you in other projects when you need t&
get elements from a layout. You'll save the customizations to your normal templare
(Normal. mxt), so you'll have these buttons on your layout toolbar no matter which’
map document you open.

Not saving the buttons to the .mxd file also means that the user won't see them.
(Your normal template is specific to your installation of ArcMap, so the user has a
different one.) That’s good—the user doesn’t have any need for these buttons.

For Save in, select Normal.mxt.

Now you'll create the first button.

Click the New UlControl button and click Create.

And now the second button.

Click the New UlControl button again and click Create.

In the Commands list, you see Normal.UIButtonControll and
Normal . UlButtonControlZ.

In the Commands list, rename the two new buttons Normal.SetElementName
and Normal.GetElementName.

Drag both buttons onto the right side of the Layout toolbar.

BEERR EE0EESE &6

SetElementName GetElementName

You will put text on each button and add line separators.

On the Layout toolbar, right-click the first button and click Text Only. Right-click
it again and click Begin a Group. Do the same for the second button.

_‘ @ E @l G K r |Ii|28°/o ."i ‘ B4 I SetElementName ‘ GetElementhame

Now you will write code for the two buttons.
Right-click SetElementName and click View Source.

Visual Basic Editor opens and you see the button’s empty click event procedure.
You'll write code to get the map document, its page layout, and the selected elemens
in the graphics container.

CHAPTER 19 ~ MAKING DYNAMIC LAYO

In the SetElementName click event procedure, declare and set a variable to get
the map document.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Declare and set a variable to get the page layout.

Dim pLayout As IPagelLayout
Set pLayout = pMxDoc.PagelLayout

As you name elements, you want to be sure that only one is selected at a time. You'll
use the ElementSelectionCount property on IGraphicsContainerSelect to find out
how many elements are selected. Then you'll write an If Then statement so your
code runs only when the count is equal to 1.

Declare and set a variable to get the layout's |GraphicsContainerSelect interface.

Here you are switching interfaces from [PageLayout to IGraphicsContainerSelect.

Dim pGraphics As IGraphicsContainerSelect
Set pGraphics = pLayout

Start an If Then statement to determine how many elements are selected.

If pGraphics.ElementSelectionCount <> 1 Then

End If

Inside the If Then statement, use a message box to warn that only one element
should be selected. Then use Exit Sub to exit the procedure.

MsgBox "Select one element"
Exit Sub

Now you can write the code to set a name for the selected element.

The DominantElement property on [GraphicsContainerSelect returns the [Element
interface of a selected element. This isn’t the interface you want, however. You want
[ElementProperties? for its Name property.

aming elements

Since all elements have IElementProperties2, and since you don’t need IElement
itself, you can declare your variable directly to [ElementProperties2 and let VBA
switch interfaces for you.

DominantElement Element
returns this interface —— |Element O—|~ IElement : IUnknown

=@ Geometry; [Geometry

=@ Locked: Boolean

m— SelectionTracker: [SelectionTracker

-4— Activate {in Display: IDisplay)

~a— Deaclivale

-=— Draw (in Display: IDisplay, in trackCancel:
TrackCancal)

-a— HitTest {in X: Deuble, in ¥: Double, in
Tolerance: Double): Boolean

- QueryBounds (in Display: IDisplay. in Bounds:

|Envelope)
~&— QueryOutline (in Display: |Display, in Outline:
. 7 IPolygon)
You need this interface’s
Name property IElementProperties? O |ElementProperties2 : IUnknown

m—8 AutoTransform: Boolean
m—m CustomPraoperty: Variant
=8 Nams: String

=& ReferenceScals: Double
= Type: Slring

-&— CanRotate: Boolean

After the If Then statement, declare and set a variable to get the selected
element’s [ElementProperties2 interface using the DominantElement property.

Dim pElementProp As IElementProperties?2
Set pElementProp = pGraphics.DominantElement

Next you will make an input box so you can type the selected element’s name.

Declare a string variable and use an input box to set its value.

Dim strName As String
strName = InputBox("Enter a name", "Name the Graphic")

Use the string variable to set the selected element’s name.

pElementProp.Name = strName

You are finished coding the SetElementName button. Now you'll code the
GetElementName button, which is similar. In fact, to save time, you'll copy and
paste most of the code.

Normally, you don’t copy code from one procedure to another. As a rule, it's best &
make one subroutine with common code that you then call from both click events
In the interest of finishing the exercise in the fewest number of steps, you will vio-
late the rule.

CHAPTER 19 MAKING DYNAMIC LAYOL

In the SetElementName click event procedure, highlight the first twelve lines of
code as shown below. Click the Edit menu and click Copy.

& Normal.mut - ThisDocument (Code) R =lofx{

SetElementHame | |ciiek

Private Sub SetElementName Cliclk()
Dim pHxDoc As IMxDOCUMEnt
ThisDocument

pLavout ks IPageLayout
Set playout = pHxDoc.PageLayout

s IGraphicsContainerSelect

&

<> 1 Then

Dim pElementProp As IElementProperties?2
Set pElementProp = pGraphics.DominantElement]

Dim strName Ais Scring
strName = InputBox ("Enter name”, "Name the Graphic™)

pElementProp.Name = strName

=

Click the object list drop-down arrow and click GetElementName.

The wrapper lines for the GetElementiNName button’s click event procedure are added.

Click your mouse between the wrapper lines. Click the Edit menu and click Paste.

You will add a line of code to get the element’

At the bottom of the click event procedure,

s name and report it in a message box.

after the pasted code, add the

following line to report the element’s name in a message box. 9 !

MsgBox "The element's name is:

% Normal.mxt - ThisDocument (Code) i '. = [a] P

" & pElementProp.Name l

GetElementHame -i ICIil:k

=

Private Sub GetElementName Click({)
Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pLayout L= IPageLayout
Set pLayout = pMxDoc.PageLayout

Dim pGraphics Az IGraphicsContainerSelect
Set pGraphics = pLayout
If pGraphics.ElementSelectionCount <> 1 Then
MsgBox "Select one element"™
Exit Sub
End If

Dim pElementProp A= IElementPropertiesZ
Set pElementProp = pGraphics.DominantElement

MsgBox "The element's name is: " & pElementProp.Name

End Sub

o SIS

B

The two buttons are ready to test.
Close Visual Basic Editor.

On the Tools toolbar in ArcMap, click the Select Elements tool. On the layout
page, click the map title to select it.

Select the title

Map title
999 Toxic Sites

On the Layout toolbar, click SetElementName. Type ToxicMapTitle.

Name the Graphic : x|
B
Cancel

|TuxicMapTit|e

Click OK.

The text element representing the map title has now been named, which means it
can be distinguished from other elements in the graphics container. You didn’t
change the title’s text, which still reads “Map title.” In the next exercise, you will
associate the title’s text with the user'’s choice in the Pick A State combo box.

Next, you will use the GetElementName button to confirm that the title’s name has
been set.

With the title selected, click GetElementName.

x|
The elemenit's name is: ToxicMapTitie
Click OK.

Now you will set the subtitle name.

On the layout page, click the map’s subtitle (999 Toxic Sites) to select it. Click
SetElementName and type ToxicMapSubtitle.

CHAPTER 10 = MAKING DYNAMIC LA

Name the Graphic e l‘.]

Map title Enter a name

999 Toxic Sites ——P

ITnxl:M apSubtitlie
03/03/2003

Click OK.
Finally, you will set the text element representing the date.

On the layout page, select the map’s date. Click SetElementName and type
ToxicMapDate.

Click OK.

You have selected three elements and set their names. In the next exercise, you will
write code to get these elements by name and update their text.

Since the buttons you created and the code you wrote for them are stored in your
normal template, there is no need to save this map document in order to save the
buttons and code. When working with the normal template, your edits are saved
directly to the Normal.mxt file. There is no Save Normal button to click.

After creating the buttons, however, you used them to set the Name property of the
three text elements. The text elements are part of the map document. To save those
names you have to save the map document.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter19. Rename the file my_ex19a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

If you no longer want the two UlButtons to appear, you can remove them by opening
the Customize dialog box and dragging them off the Layout toolbar. To remove them
completely from your Normal.mxt file, use the Delete UIControl button on the
Commands tab of the Customize dialog box. You should complete exercise 19b before
doing this, however, just in case you need to get or set the element names again.

rammg elements

Manipulating text elements

The application you have been building over the last three chapters is almost done-
In the last exercise, you created two buttons to get and set the names of the three
text elements you want to update. In this exercise, you will get those elements by
looping through the graphics container and checking each element’s Name prop-
erty. After getting the map’s title and subtitle, you'll change them to match the users
combo box selection. You'll also change the date to reflect the current date.

You loop through the elements on a layout using the [GraphicsContainer interface.
[ts Next and Reset methods work just as they do with an Enum.

Pagelayout

; |IGraphicsContainer C——
IPageLayout O—

~4— Nexl: [Element
-4— Reset

You get the IGraphicsContainer interface by using the IMxDocument interface’s
PageLayout property as you did in step 11 of exercise 19a. The PageLayout propertys
however, returns [PageLayout and you need IGraphicsContainer. That’s OK,
because VBA can do the QI for you, as shown with the code below.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pGraphics As IGraphicsContainer
Set pGraphics = pMxDoc.PagelLayout

You can now get elements from the graphics container using the Next method. The
first Next returns the first element’s IElement interface. You don’t need [Element,
but you do need the Name property on IElementProperties2. Just as in the last
exercise, you can declare a variable to [ElementProperties2 and let VBA do
Querylnterface for you.

Dim pElementProp As IElementProperties?Z
Set pElementProp = pGraphics.Next

When you get an element, you check its name. The following line of code uses an
If Then statement to see if the element is the map title text:

If pElementProp.Name = "ToxicMapTitle" Then

Since you have three different elements to get, you'll use a Case statement in this
exercise rather than an If Then statement.

CHAPTER 109 MAKING DYNAMIC LAYOL

Each of the elements you want to update comes from the TextElement class, shown
below. The ITextElement interface has a Text property for setring text.

TextElement
ITextElement O— ITextElement : IUnknown
= ScaleText: Boolean

=8 Symbol: [TextSymbol
B—& Taxt: String Text property

When you ind an element you want, such as the map title, you switch interfaces
from [ElementProperties? to ITextElement.

Dim pTextElement As ITextElement
Set pTextElement = pElementProp

Then you can set the Text property to a string or variable.

pTextElem.Text = "Rhode Island"

Rhode Island
31 Toxic Sites

7/16/2003 43826 PM

Exercise 12b

In this exercise, you will use the element names you set in the last exercise to get the
map’s title, subtitle, and date. Then you'll write code that sets the title to the name
of the U.S. state selected by the user, the subtitle to the number of toxic sites in the
state, and the date to the current date. Your code, like the code you wrote in the
previous two chapters, goes in the combo box’s SelectionChange event procedure.

Start ArcMap and open ex19b.mxd in the C\ArcObjects\Chapter19 folder.
When ArcMap opens, you see the toxic sites layout.
Open the Customize dialog box.

On the Make a map toolbar, right-click the Pick a State combo box and click
View Source.

You see the ThisDocument code module and the combo box’s SelectionChange
event procedure.

coripudleating text elements

—

r

Scroll toward the bottom of the procedure. At the end of the If Then statemen®
locate the line of code that sets the extent of the active view for the EPA map-

& en19b.mud - ThisDocument (Code) =1
i cboStateHames :! Eeleﬂinncmnge ;I
Dim pEnvelope Ais IEnvelope }j

Set pEnvelope = pFeature.Extent

pEnvelope.Expand 1.1, 1.1, Trus i
pEPAkoriveView.Extent = pEnvelope ‘

End If

Dim pUSAActiveview As IActiveView =i
Set pUShlctiveVisw = pUSANap

pUSkictiveView.Refresh

pEPLActiveView.Refresh =

== 4| o

After this line, you will write code to get the layout’s [GraphicsContainer interface,
The PageLayout property returns [Pagelayout, so you'll let VBA QI for you to get
[GraphicsContainer.

Declare and set a variable to get the layout’s IGraphicsContainer interface.

Dim pGraphics As IGraphicsContainer
Set pGraphics = pMxDoc.Pagelayout

You'll write a Do Until loop and use the Next method on IGraphicsContainer o
move through the elements on the layout page. You'll check the Name properey of
each element, and when you find the names you set in the last exercise, you will @
those elements and update their Text property.

Before coding the loop, however, you have a couple of things to do. First, you'll res
the graphics container’s pointer. Elements on a layout page are always being select
and changing their front-to-back position, and this affects which element is being
pointed at. Although you haven’t rearranged any elements, and the pointer is pre
ably at the top of the list already, it's a good idea to make sure.

Reset the graphics container’s pointer to the top of the list.
pGraphics.Reset |

Now that the pointer is reset, you’ll run the Next method one time to get the firs®
element in the container. The Next method returns the IElement interface, but v
want [ElementProperties2, which has the Name property. As in the last exercise,
you'll declare a variable to IElementProperties2, and let VBA do Querylnterface
for you.

Declare and set a variable for the first element in the graphics container.

Dim pElementProp As IElementProperties?2
Set pElementProp = pGraphics.Next

CHAFPTER 10 *® MAKING DYNAMIC L&

%, ex19b.mud - ThisDocument {Code)

m;n:;_- 3 ;Iccﬁ.iunchange j

pEPRActiveView.Extent = pEnvelope E;

Dim pGraphics is IGraphicsContainer
Get pGraphics = pMxDoc.PagesLayout

pGraphics.Reset
Dim pElementProp is IElementPropertiesz

Set pElementProp = pGraphics.Next
End If

% il rz

You now have the first element in the graphics container. If that element is one of
the three you are looking for, you will set its Text property on the [TextElement
interface. You will declare a variable to [TextElement here and switch to this inter-
face inside the Do Until loop when you need it.

Declare a variable to the ITextElement interface.
Dim pTextElement As ITextElement

Now that you have variables pointing to the two interfaces you need, you can code
the looping statement. The loop will test the pElementProp variable to see if it does
indeed contain an element. If it contains Nothing, that means that the pointer has
moved past the last element in the graphics container.

Start a Do Until loop that tests for Nothing.

Do Until pElementProp Is Nothing

Loop
Inside the loop, start a Case statement to see if the element is either the map's
title, subtitle, or date.

Select Case pElementProp.Name

End Select

You may recall from chapter 5 that Case statements are used in multiple-choice
situations. There, you used a Case statement to apply different tax rates to property
types. Here, you will assign different text strings to elements depending on their
names. Since you have three elements with names (and you don’t care about the
rest), your statement will have three cases.

inside the Case statement, add a case to test for the map title. When the
element is the map title, switch to the element’s [TextElement interface and set
its Text property equal to the combo box’'s EditText property.

Case "ToxicMapTitle"
Set pTextElement = pElementProp
pTextElement.Text = cboStateNames.EditText

lanipulating text elements

The combo box’s EditText property holds the name of whichever U.S. state the use
picks. The code above assigns this name to the map title’s Text property. |

Add a second case to test for the map’s subtitle. Set its Text property to the
Selection Set count. ;

Case "ToxicMapSubtitle" !
Set pTextElement = pElementProp
pTextElement .Text = _

pSelectionSet.Count & " Toxic Sites"

In the previous chapter, you created a selection set of toxic sites and used its Couns
property to display the number of sites in a message box. The code above uses that
same Count property to set the subtitle’s text.

Add a third case to test for the map’s date. Set its Text property to today’s dat&
with VBA's Now function, which returns the current date.

Case "ToxicMapDate"
Set pTextElement = pElementProp |
pTextElement .Text = Now

Back in chapter 2, you used the Now function in the title bar of a message box.

Outside the Case statement (after the End Select line, but before the Loop
keyword), add a Next method to move to the next element in the graphics
container.

Set pElementProp = pGraphics.Next

You now need to refresh the layout. You could refresh the entire layout page, but it
will be more efficient to use [ActiveView's PartialRefresh method, which you used

before in chapter 12.

You need the page layout’s [ActiveView interface. Since you already have a variablg
pointing to the page layout’s [GraphicsContainer interface (from step 5), you can
switch interfaces.

Immediately after the Loop keyword but before the End If statement, add the}
following code to get the page layout’s active view and use its PartialRefresh §
method.

Dim pActiveView As IActiveView
Set pActiveView = pGraphics

pActiveView.PartialRefresh _
esriViewGraphics, Nothing, Nothing

CHAPTER 19 ~ MAKING DYNAMIC LAYO

The arguments specify that all graphic elements on the layout page (but no other
elements) will be refreshed. There aren’t many graphic elements on this layout, so
the redraw speed isn’t an issue. However, when it is, you can refresh just one graphic.
To do that, you specify the element as PartialRefresh’s second argument:
pActiveView.PartialRefresh esriViewGraphics, pElement, Nothing. You could get
the ActiveView before the Case statement, and then inside each case, do a
PartialRefresh on each element.

&, ex19b.mud - ThisDocument (Code) = =181 x|
cboStateNames - |5elemonchnnne _v_j
Do Until pElementProp Ts Nothing j

Select Caze pElementProp.Neme
Caze "ToxicHMapTitle”
Set pTextElement = pElementProp
pTextElement. Text = choStateNames.EditText
Caze "ToxicHMapSubtitle”
Set pTextElement = pElementPrap
pTextElement. Text = _
pSelectionSec.Count & " Toxic Sites"
Case "ToxicMapDate®
Set pTextElement = pElementProp
pTextElement.Text = Now

End Select
Set pElemencProp = pGraphics.Next
Loop

Dim phetiveView As IActiveView
Set plotiveView = pGraphics

pletiveView.PartialRefresh =
esriViewGraphics, Nothing, Nothing

End If %
== 1% » 7

The code is almost ready to test. In the previous chapter, you used a message box to
report the number of toxic sites in a state. Now your code puts that number right on
the map, so you'll comment out the message box line.

Scroll up through the code until you find the message box that reports the
number of toxic sites.

i, ex19b.mxd - ThisDocument {Code) [_[Ofx]
1v:hu'staieﬂames ~| [setectionChange =]

Dim pSelectionSet is ISelectionSet
Set pSelectionSet = pToxicFClass.Select -
{pFilter,

esriSelectionTypelybrid,

esriSelectionOptionNormal, _
Hothing) =

x

HsgBox choStateNames.EditcText € " has * 7(
& pSeleccionSet,.Count & " toxic sites”W

Set pStatesFlLayer = pStateslLayer

Dim pStatesFlayer Ls IFeaturelayer
:J

\Manipulating text elements

Ef] Put a single quote in front of the line to comment it out.

71 Close Visual Basic Editor.

‘71 On the Make a map toolbar, click the Pick a State drop-down arrow and click

] On the Layout toolbar (not the Tools toolbar), click the Zoom In tool. Zoom in

'MsgBox cboStateNames.EditText & " has " _
& pSelectionSet.Count & " toxic sites"

Arizona.

The detail and overview maps update. In the upper left corner of the map, the itl
subritle, and date change as well. You'll zoom in to see this better.

the upper left corner of the map.

Arizona
140 Toxic Sites
4/15/2003 10:52:13 AM

] If you want to save your work, click the File menu in ArcMap and click Save As
Navigate to C:\ArcObjects\Chapter19. Rename the file my_ex1 9h.mxd and cli
Save. If you are continuing with the next chapter, leave ArcMap open. Otherwi
close it.

CHAPTER 19 © MAKING DYNAMIC LA

cction 3: Using ArcObjects
HAPTER 20 : .

diting tables

idding fields

Betting and setting values

The features you manage in a GIS, such as land parcels, cities, streets, crime scenes,
and customer addresses, appear as rows (records) in a table. The columns (fields) in
the table represent categories of information. A land parcel table, for example, has a
unique record for every parcel in a data set. It has fields for things like the parcel size,
the address, the owner’s name, and the zoning code. The intersection of a record and
a field is a cell. A cell holds a particular piece of information (a value) about a
record. :

In this chapter, you will edit cell values. To edit a cell value, you get an existing
value from a table and set it to the new value you want. This process involves mak-
ing a cursor, moving its pointer to a particular record, and specifying a particular
field. You know from chapter 18 how to make cursors and move their pointers. Fields
are specified by their index position numbers. The first field in a table has position 0,
the second field has position 1, and so on.

The graphic below illustrates the idea of getting a cell value from a cursor. A variable,
pFeature, is set up to point at a record, and a field’s index position is specified. The
combination of the first record and the fifth field identifies a unique cell value—

in this case, “Florin.”

pFeature

0 1 2 3 5 6
[Attributes of country : SEER : X M
FID Shape* Name Population | Persons =Mile _ _Continent -
0 Folygon Arubs | 67074 70,628 Florin outh Amerlca |
Hj 1 Polygon Antigua and Barbuda | _es212| B 178,52 oller | Horth America
2 Polygen Afghanistan 17250390 247825,703 Afgheni | Asla 2
=] 3 Palygon Algerla 27459230 896127,312 Dinar Africa
] 4 |Polygon hzerbaifan 5487866 33130,551 Manat Asia i
| sPoygon Abena 3416945 1110211 [Lek Europe 1
& Palygon Armenia “arvezs| 1153376 Dram Asla |
7 Polygon |andarra 55335 174,704 |Peseta Europs
8 Polygon |Angola 11527260 © 483959.812 Kwanza Arica |
B 9 Polygen £raentina 33796870 1073749 Pesa South Ametica |
T 10/ Polygan ‘australia 17827520 | 2975342 Austrelis Od lar |AustraliajOceana | ~
Record 14] <] 0 (m| Show[Al Selected | Records (Cioutol 219 Selected] upg;m:]

Cell value for pFeature, Field 5

In the first exercise of this chapter, you will add a new field to a table. In the secomi
exercise, you will get cell values from two existing fields and use them to calculate:
values for the new field.

CHAPTER 20 -~ EDITING T

Adding fields

The classes on the diagram below, with the exception of Field and Fields, should be
familiar to you. The diagram shows that a feature class has a fields object, which is
a collection of its fields. You have worked with collection objects before. For exam-
ple, in chapter 17, you used the maps collection object to get the EPA and USA
maps by their index numbers. The fields object serves the same purpose for fields:
it gives you a way to access fields in a feature class, in this case, with a method called

FindField.

MxDocument

IMxDocument e FoseMapEIMan ‘
IDocument o——
1.

Map
Map © m— Layer (in Index: Long): ILayer ‘

?* Field

FeatureLayer IField O—{

IFeatureLayer O ®{ FeatureClass: IFeatureClass |

1

FeatureClass Fields

IFgaieClass ~— AddField (in Field: IField) ‘ IFields O—] 4 FindFleld (in Name: String):

Long

To add a field to a feature class (which is a specific type of table), you start by creating
a new field from the Field coclass with the standard two lines of code.

Dim pField As IField
Set pField = New Field

Next, you set the field’s properties. You have to do that before adding the field to the
table, because once the field has been added, its properties can’t be changed.

The following diagram shows that the Field coclass has two nearly identical interfaces:
[Field and IFieldEdit. The difference between them is that [Field has only left-hand
barbells, so you can get properties but not set them, and IFieldEdit has only right-
hand barbells, so you can set properties but not get them. The interfaces are designed
to keep the actions of getting and setting properties separate. (But if you remember
interface inheritance, you will see a loophole: IFieldEdit inherits from [Field.)

Adding fields

Field

|Field ©——] [Field :IUnknown

m— AliasName: String
m— DefaultValue: Variant
®— Domain: |Domain
m— DomainFixed: Boolean
m— Editable: Boolean
m— GeometryDef: IGeomeiryDef
®— IsNullable: Boolean
m— Length: Long

m— Name: String

®— Precision: Long

m— Required: Boolean
m— Scale: Lon

m— Type: esriFieldType
m— VarType: Long

-a— CheckValue (in Value: Variant) : Boolean

|IFieldEdit IFieldEdit : IField

— AliasName: String
—a& DefaultValue: Variant
—1 Domain; [Domain
—& DomainFixed: Boolean
— Editable: Boolean
—0 GeometryDef: IGeometryDef
—= IsNullable: Ecolean
— Length: Long

—a Nama: String

—& Precision: Long

—& Required: Beolean
—a Scale: Long

—m Type: esriFieldType

After creating a field, you switch to its [FieldEdit interface to set properties. (You
could also have declared a variable directly to [FieldEdit when you created the new

field.)

Dim pFieldEdit As IFieldrEdit
Set pFieldEdit = pField

Fields have many properties, but you don’t always need to set all or even most of
them. The two that are essential are the name and the data type. You set the fields
Name property equal to a string.

pFieldEdit.Name = "Population"

The data type determines what kind of values the field will hold—strings, numbers,
dates, and so on. You set the Type property with esriField Type constants like
esriFieldTypeDate, esriField TypeString, or esriFieldTypelnteger. You can find a
complete list of these constants in the developer help.

pFieldEdit.Type = esriFieldTypelnteger

At this point, you could go ahead and add the field to the table. It’s a good idea,
though, to make sure thar a field with the same name doesn’t already exist. Here’s
where the Fields collection object and its FindField method are useful. To get the
fields collection, you use the Fields property on the IFeatureClass interface. For the
moment, you'll skip over the code that gets the feature class (which you learned hos
to write in chapter 18) and just assume that you have a pFClass variable pointing t&
IFeatureClass. You then get the fields collection with the following code:

Dim pFields As IFields
Set pFlields = pFClass.Fields

CHAPTER 20 - EDITING TAB

The FindField method on IFields takes a field name as its argument and searches for
this field in the collection. If it finds it, it returns the field’s index position number.
If the field isn't there, it returns the value —1. The code below declares an integer
variable to hold the returned value and searches the fields collection for a field called
Population.

Dim intPosPopField As Integer
intPosPopField = pFields.FindField("Population")

You can write an If Then statement that tests for the returned value. If the value is —1,
you can add the new field to the map with full confidence that it's not already there.

If intPosPopField = -1 Then
End If
To add the field, you run the AddField method on [FeatureClass. Your pFClass

variable (the one you are assuming you already have) points to this interface.

pFClass.AddField pField

In the exercise, you will run code like this from a UlButton, which you might call the
Add Field button. (Actually, you'll give it a different name in the exercise, because it
will end up doing a lot more than just adding a field, but that’s all it will do at first.)

If you wanted to add your new field to a specific feature class, you might put the
button on a toolbar or menu, and code its click event to get the feature class you
want from the layer you want.

But say that you want the code to work on any feature layer in the map. That calls
for a different strategy. One thing you could do is code the Add Field button’s
enabled event procedure with some If Then and TypeOf statements to gray out the
button unless a feature layer was selected in the table of contents.

A better solution, however, is to put the button on the feature layer context menu.
Unlike a toolbar or menu, a context menu is not always available from the interface—
it only appears when the user has right-clicked an object. Putting the Add Field button
on the context menu means you don’t have to worry about how and when to enable it.
The button will be available only when a feature layer has been right-clicked.

e %
=l £5 Layers Copy

—— Feature layer context menu
X Remove

= LeaseD [E] Open Aktribute Table
B Lo (MU Sk
(7] @ Zoom To Layer

|

Selection 3

Label Features

M Cerieer Lebels b okt

-~ i “ZF Convert Features to Graphics...
Data »
Save As Layer File...

Properties,.,

dding fields

Adding UIControls to toolbars and menus is easy for you by now. Adding a UlButton
to a context menu is a little different because of the way context menus work—
you have to be right-clicking the mouse to see them. But since you have to be left-
clicking to drag a control from the Customize dialog box, you can’t drag a control ta
a context menu.

ESRI programmers have designed a way around this, of course. A copy of every
context menu is stored on a special toolbar called the Context Menu toolbar. Whent
you want to add a control to a context menu, you add it to this toolbar. ArcMap
then automatically takes care of putting it on the correct context menu for you.

Context menus might seem a little magical in that whenever you right-click an
object on the interface, the appropriate context menu appears. But it’s not magic.
just logic. ArcMap has been programmed to know where you right-click on the
screen. It gets the screen coordinates of your click, uses them to deduce which object
you clicked on, and displays that object’s context menu.

Since ArcMap knows which object you've right-clicked on, it seems reasonable that
you could ask for that object. You can. The Contextltem property on IMxDocument
returns whichever object a user has right-clicked on. This gives you a convenient
way to work with objects that the user selects and spares you the trouble of trying
anticipate and control their choices in your code.

MxDocument

IMxDocument
M m—a Contextltem: [Unknown
ThisDocument —— IDocument O—

The Contextltem property returns an object’s [Unknown interface. Why IUnknowns
Because on the one hand, Contextltem can get a wide variety of objects—layers,
maps, active views, points, lines, and polygons—depending on where the user right
clicks. But on the other hand, programming logic requires that all properties and
methods return a single, specified interface. [Unknown is used in this situation
hecause it’s the one interface that all objects share.

So far (in theory), you have made an Add Field button and put it on the feature
layer context menu. When the user right-clicks a feature layer and clicks this but-
ton, code in the button’s click event procedure runs. You have seen the part of the
code that makes the new field, sets its properties, checks to make sure that the field
doesn’t already exist, and adds the field to the layer’s feature class.

You also assumed that you had already gotten the feature class and had a variable
pointing to [FeatureClass. Now you'll drop this assumption and look at the code tha
actually gets the feature class using the Contextltem property you just learned abou

First, you get the IMxDocument interface, because it has the Contextltem propers

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

CHAPTER 20 = EDITING TA

Then you declare a variable to [Unknown and set it with Contextltem.

Dim pUnknown As IUnknown
Set pUnknown = pMxDoc.ContextItem

You know that pUnknown points to a feature layer. How? Because the Add Field
button’s code—the code you're looking at now—can’t be running unless the button
has been clicked. The button can’t be clicked, however, unless the context menu
that it’s located on has been opened. But the context menu only opens when a fea-
ture layer has been right-clicked. So if the code is executing, and the Contextltem
property has returned an object, the object has to be a feature layer.

Since you are pointing at the [Unknown interface of a feature layer, you can do
Querylnterface to get its [FeatureLayer interface.

Dim pFLaver As IFeaturelayer
Set pFLayer = pUnknown

FeatureLayer

IFeatureLayer O—I |
IUnknown O—

Alternatively, you could shorten the last four lines to two by letting VBA do the
Querylnterface for you.

Dim pFLaver As IFeatureLayer
Set pFLayer = pMxDoc.ContextItem

Finally, you get the feature class from the layer with the FeatureClass property.

Dim pFClass As IFeatureClass
Set pFClass = pFlayer.FeatureClass

Exercise 20a

Foresters group areas of similar trees into units called stands, which are assessed and
given a dollar value. A healthy stand, for example, might be worth sixty dollars or
more per square meter. Stands, in turn, are aggregated into larger entities called leases.
The right to harvest a lease is auctioned by landowners to the highest bidder. When a
lease goes out to bid, GIS data describing the stands is distributed to the bidders.

A stand within a lease

Adding fields

You are a programmer for a lumber company that bids on leases for the right to
harvest trees. When you get a map layer of the lease, it contains a record for each
stand. The attribute table has two fields: ValuePerMeter and Shape_Area (the
stand’s area in square meters). Multiplying the values in these two fields gives you
the stand’s total value.

In the graphic below, the first stand has a value of $64 per square meter. Since its
area is 15,680 square meters, the stand is worth just over a million dollars.

Value per meter Area
es of Stand = =10l
aluePerMeter StandiD Shape_iLength Shape_Area =l ﬂ
|| ﬁ__{UUUDUU 622_‘? 769.689245 | 15680, 172005
42,000000 | 1184] 2164.996511 175721.964087
63.000000 | e eso.odseiz| 14867084324
30.000000 B N 1159 5261256657 | 352276403512
= 63.390_099 = | 17 ! . 776‘797031‘1 | awﬁ%ﬁﬁa:
£3.000000 | um| 1307 944741 T Grzrasieess|
|_|53.000000 1150 176624000] 95401656306 |
(" |52.000000 1209 946578676 . 52427.342650
|53.000000 1z1e| 714.853307 2??74.295_13;‘
Er ; 1z 4421068632 349366.263451 | =
[l jer
Record 14] 4 0w Showan smm! Records (0 out of 1405 Selected] Options =

The bidders at your company need to know not just the values of individual standsy
but the total lease value, which is the sum of the stand values. Since this is a routing
you go through every time a new lease hits your desk (or hard drive), you have
decided to automate the task.

In this exercise, you will create a UIButton and add it to the feature layer context
menu. That way, your code will work on any feature layer in the map document,
which will be useful if there are multiple leases to evaluate. Then you will write cods
in the UlButton’s click event procedure to add a new field to the layer’s attribute
table. The field will eventually hold the dollar value of each stand.

In the second exercise, you'll write the code that calculates the value of each stand,
totals these values into a lease value, and reports the lease value in a message box.

Start ArcMap and open ex20a.mxd in the C:\ArcObjects\Chapter20 folder.
The map opens and you see three layers: LeaseC, LeaseD), and LeaseE.

Open the Customize dialog box. Click the Commands tab. In the Categories lis§
click UlControls,

Make sure the Save in drop-down list is set to ex20a.mxd. Click New UlContro
and click Create.

In the list of commands, you see the new control. (If you haven't removed them, vox
also see the GetElementName and SetElementName controls you made in the lasg
chapter.)

CHAPTER 20 - EDITING T.

Rename the new UlButton Project.LeaseValue. Press Enter.
Now you'll drag the new UlButton to the Context Menus toolbar.

in the Customize dialog box, click the Toolbars tab. Check the box next to the
Context Menus toolbar.

The Context Menus toolbar displays.

' If necessary, move the Customize dialog box so it doesn’t overlap the Context
Menus toolbar.

(Customize EJ}Q
I Toobars |Cmmands| Options |
Taolbars:
l _lAicPad Tools = N
i | 1Spatial Analpst
[|Georeferencing i I
I I |Effects =
| [1Dimensioning e l
| [1Data Frame Tools e
| [Uitiity Network Analyst
([Versioning
1S patial Adjustment
| Graphics
[JEdit Cache
[Coritext Menus
i Kesboard, | Acdiemile. |[Cos |

In the next step, you'll drag the button to the Context Menu toolbar. As you do so,
you will see a list of every ArcMap context menu. The Feature Layer Context Menu
is about halfway down, and you may have to scroll down to see it.

Click the Commands tab and drag the LeaseValue button to the Context Menu
toolbar. Drag down until you see the Feature Layer Context Menu, then drop
the button under the Open Attribute Table choice.

S o < oemove

! Data Frame Cantext Menu y [E Open Attribute Tabls
] OLE Element Context Menu b [Leasevale — Add here
| Tin Layer Context Menu. » Joins and Relates
! IMS Sublayer Context Meni » KB Zoom To Layer

Raster Layer Context Menu F ¥isible Scale Range

Table cell eontexk menu, ¥l= idmhﬂ =

Table option context menu, » ER i

Data >
\ Layout Context Meny » = Congvert Labels ta Annotation, ..
} Feature Layer Element Context Menu y i CONCILESAETasio G ien)

Context Menu Feature Layer Context Menu y Dats

I Rolksltookivg Mok P SevedstayerFie..
| Tahle :M conkest menu. » g R =

Graphic Operations »
l Related Tables 3
E Joins and Relates »

ing fields

On the Feature Layer Context Menu, right-click LeaseValue and click Text Only.
Right-click again and change the text to Report Lease Value. Press Enter.

Button names can't have spaces, and as far as VBA is concerned, the button’s name
is still LeaseValue. Your users, however, will see the more descriptive words Report
Lease Value on the context menu.

B2 copy

¥ gemove

T Open Atiriauke Table
Report Lease Yaius
Joins and Relates

LeaseValue UIButton

Next you will write the code for this button.
Right-click Report Lease Value and click View Source.

As Visual Basic Editor opens, the Context Menu toolbar automatically closes. (Th#
toolbar is available only when the Customize dialog box is open.) You sce the emps
LeaseValue click event procedure.

% ex20a.mxd - ThisDocument (Code) _AQI.*J

Private Sub LeaseValue Click()

-

End Sub

-

b =] o

In the next three steps, you will set up variables to get the map document, the
feature layer, and the layer’s feature class.

In the click event procedure, declare and set a variable for the map document

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

You want to get the feature layer that the user right-clicks so that you can get its
feature class. The Contextltem property on IMxDocument gets this layer’s [Unknowt
interface, but you need IFeaturcLayer, which has a property to get the feature class

You'll declare a variable to IFeatureLayer, and let VBA switch interfaces from
[Unknown to [FeatureLayer for you.

Declare an IFeaturelLayer variable and set it with the Contextltem property.

Dim pFLayer As IFeaturelayer
Set pFlLayer = pMxDoc.ContextItem

CHAPTER 20 = EDITING T

The FeatureClass property on [FeatureLayer returns the layer’s feature class.

Declare and set a variable for the layer’s feature class.

Dim pFClass As IFeatureClass
Set pFClass = pFLayver.FeatureClass

Before adding a field to the feature class, you'll make sure that a field with the same
name doesn't already exist. To do that, you'll get the feature class’s Fields collection,
which has the FindField method on its [Fields interface.

Declare and set a variable for the Fields collection.

Dim pFields As IFields
Set pFields = pFClass.Fields

|~|'lg

W4 ex20a.mxd - ThisDocument (Code) =
[Leasevalue =] [ctiex

Private Sub LeaseValue Click()
Dim pMxDoc A= IMxDocument
Set pHxDoc = ThisDocument

Dim pFLayer is IFeaturelayer
et pFLayer = pMxDoc.ContextItem

Dim pFClass ks IFeatureClass
Set pFClass = pFlLayer.FestureClass

Dim pFields is IFields
Set pFields = pFClass.Fields
End Sub =)

-

==l | 1y

FindField takes a field name as its argument and returns the field’s index position.
If the field isn’t found, a value of =1 is returned.

The field name you'll search for is StandValue, because this is going to be the name
of the new field you add. Obviously, this field will not be found the first time the
code runs (since you haven’t created it yet), but you are guarding against future
possibilities.

Declare and set an integer variable to hold the StandValue field's index position
number.

Dim intPosStandvValue Ag Integer
intPosStandvValue = pFields.FindField("StandvValue")

Begin an If Then statement to check whether the field exists.
If intPosStandValue = -1 Then
End If

After confirming that there is no field with that name, you'll write code inside the
If Then statement to create the field. When creating a field, you can declare its vari-
able to either IField or IFieldEdit. Since you can’t set a field’s properties with the
[Field interface, you will use IFieldEdit.

dding fields

Inside the If Then statement, declare and set a variable to create a new field.

Dim pFieldEdit As IFieldEdit
Set pFieldkEdit = New Field 1

Now you will set the field’s Name and Type properties and add it to the feature class J

Set the field's Name and Type properties.

pFieldEdit.Name = "StandValue"
pFieldEdit.Type = esriFieldTypeDouble 1

Use the AddField method to add the field to the table.
pFClass.AddField pFieldEdit

% ex2Da.mud - ThisDocument (Code) . B, -{0] x|
[Lease\lalue j Click :_J
sec pFields = pFClass.Fields j |

Dim intPosStandvalus is Integer
intPosStandValue = pFiElds.FLndField("StandVa.luE"]

If intPosStandValus = -1 Then
Dim pFieldEdit As IFieldEdit
et pFieldEdit = New Field

pFieldEdic.Name = rStandialue
pFieldEdit.Type = esriFieldTypeDouble

pFClass.Addfield pFieldEdit
End If

End Sub -

== Yi

The code is ready to test.

kS

Close Visual Basic Editor. l

In the table of contents, right-click the LeaseC layer, and click Open Attribute J
Table. Scroll all the way to the right side of the table.

The StandValue field will be added here

£5 Attributes of Stands S =1ofx]
ValuePerMeter Shape_Length =
s4000000 6224 ~ 769.689245 ~ 15630.172005 J
" |42.000000 T et " aretowell] 175721964087
£3.000000 = 6223 | 650045632 14867.984924 ‘
| |20.000000 1163 5261.256657 1_ 352276409512
[55.000000 i 171] el T 3134562658
| |&3.000000 ~ um| — ismodral] Grz7estees
53,000000 | ites| 1768.134060 95401,656306
| {52.000000 B [1z09] T s4s57EETe 52427.342690
52000000 I 714.853307 27774,296185 |
Clesoooo0 | L) GarLseseaz 549366.263451 | -
&] : i IJ
Recor 1] ¢ 0_x|n sm{]ﬁ sml Fecards (0 out of 1405 Selected] Ghtione -;

CHAPTER 20 = EDITING T,

If necessary, move the table out of the way. In the table of contents, right-click
the LeaseC layer and click Report Lease Value.

The StandValue field is added to the table. By default, all the cell values are Null.
In the next exercise, you will set these values by multiplying each record’s
ValuePerMeter by its Shape_Area.

New field added

B Attributes of Lea e =10j x|
|| oB3ecTID | Shape* |valuePerMeter| StandID | Shape Length| Shape_area dvaly -]
1 |Polygon 32| 93| 3062.866195| 158705,375680 | <Null>
~ 2/Polygon 52 115 1610.580620| 114920218270 <Hul> ol
3|Polyaon | 3| 121 1745.766765| 160169.268034 <hull> |
4 Polygon | s 126 1250.656780| 47705.384241 | <Nul>)
B 5lPolygon | 12 124 6336.713968| 418949.497106 | <Nul>
_ 6/Polygon | 128 1138.476353| 44586.313107 | <hul>
B 7Polygon 31| 193] 2572.347274| 217903.629622 | <ull> |
8 Polygan 31| 48%| 638.283178| 11271638917 |<hul> B
| almolygon 5 46| 2180.264352| 123314.403526 <hul> |~ E|
Recod 34«0 »fpf Show[ar Selectod | Recards (0 outof 241 Seecied) Bt ,!

Close the table.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter20. Rename the file my_ex20a.mxd and click
Save. If you are continuing with the next exercise, leave ArcMap open. Otherwise
close it.

Saving an exercise map document with a new name usually means that you can
reopen the original document and do the exercise again whenever you like. In this
case, however, you have changed a feature class (by adding a field to it), and this
change is independent of the map document. If you open ex20a.mxd again, the
LeaseC attribute table will already contain the StandValue field. You can redo the
exercise by manually deleting this field from the table.

ding fields

Getting and setting values

In this exercise, you have two main tasks. First, you will replace all the Null values
in the StandValue field with calculated values. This means looping through a feature
cursor to set the cell value for each stand in turn. Second, you will sum the stand vals
ues to come up with a lease value. This means looping through each feature again
with a second cursor to get all the stand values and add them up.

In chapter 18, you used the Search method to make a cursor for reading values in

a table. In this exercise, however, you need to change values, so you will use the
Update method instead. Both methods require a feature class and a query filter to
create a cursor. You already have code from the last exercise that gets the feature
class. As for the query filter, you are not actually going to make one (even though
you know how). That’s because when you want a cursor to get every feature, you use
the Nothing keyword instead of a filter. The code below declares an IFeatureCursos
variable and sets it with the Update method.

Dim pFCursor As IFeatureCursor
Set pFCursor = pFClass.Update(Nothing, False)

After creating a feature cursor, you move through it with the NextFeature method.

Dim pFeature As IFeature
Set pFeature = pFCursor.NextFeature

The part that's new for you is the process of getting and setting cell values. The first
thing you do is move the pointer to the desired feature. Say that you want to get the
population value for Andorra in the example below. Since Andorra is the eighth
record in the table, you use the NextFeature method eight times (probably in a loop}
to get there.

Field 3
R =101x]
FID Shape® Name Population | PersonsPerSquareMile | Currency Continent | 3
El 0Falygon lAnuba 3| 67074 | 70,628 |Florin South America |
B 1Polygon |AntigusandBerbuds | gs212 . Cl torth America |
B 2 Polygon | Afgharistan i 17250330 ~ lasia
& 3 Polygon Algsria 27459230 96127.312 Dinar Africa -
4 Pnlyg_un _;az_erba\ian g 5487866 E 33150-.551 ‘M'ar;ati o As‘.ia‘ T
B 5 Polygon Albania. I seiemes| T 0201 lek " Europe B
S_Polygor\ Armenia ¥ 377228 ~ 11533.76 Dram s
pFeature = 7Pohgon |Andorra B 174,704 Paseta Ewope
| 8 Polygon Angola] 483559.812 Kwanza Africa
9 Palygon Argentina | - 10%574_9 Peso South America
10 Poygen Austtaia e owsaz pundiebols AustaialOceana |
Fecord 14] 4| 0 »{v| Show[Al Selected | Fiocords (Doul ol 218 Selected] Tinlione: ~

Cell value

CHAPTER 20 -~ EDITING TAS

To get a particular cell value for this record, you use a Value property. As shown
in the simplified geodatabase diagram below, the Value property is found on the
IRowBuffer interface of the RowBuffer class.

RowBuffer

IRowBuffer O—— IRowBuffer : IUnknown

B— Fields: IFields
= Value (in Index: Long): Variant

: R

Row

IRow O— IRow : IRowBuffer

m— HasOID: Boolean
m— OID: Long
m— Table: [Table

~a— Delete
-— Store

i

Object
I0bject | IObject : IRow

| | -— Class: 10bjeciClass
Feature

|Feature O—| IFeature : IObject

m— Extent: |Envelope

m— FealureType: esriFeatureType
B-0 Shape: IGeometry

m— ShapeCopy: IGeometry

At first glance, this might seem like a place for Querylnterface. Your pFeature variable
points to [Feature and the Value property you need is on an interface several classes
up in the hierarchy. But as it turns out, there is a chain of interface inheritance that

IFeatureCursor

Value property

IFeatureClass OH

FeatureClass

b

FeatureCursor

goes from [Feature all the way up to IRowBuffer, which means you can use the
Value property just as if it were on [Feature.

The Value property takes a field’s index position for its argument and returns a cell
value. Say that you want to get Andorra’s population. The Population field (in the
table above) is at index position 3. The following line of code gets this value and

displays it in a message box:

Msgbox "Andorra's population is: " & pFeature.Value(3)

Andorra’s population ist 55335

elting and setting valies

The Value property has left and right barbells, so you can set it just as easily as vou
can get it. Say that Andorra’s population has grown to 60,000. You write the follow
ing line of code to update that value:

pFeature.Value(3) = 60000

Although you are only working with features in this exercise, you may be curious
about the Object, Row, and RowBuffer classes in the previous diagram. The triangles
below each class mean that a feature is a type of object, an object is a type of row,
and a row is a type of row buffer.

Objects are like features, except they are nonspatial (they have no Shape field).
Both objects and features in a geodatabase can have subtypes and participate in ged
darabase relationship classes. Rows represent records in a table at a generic level
without the aforementioned geodatabase functionality.

RowBuffer has an interesting name. To GIS people, a buffer is a zone around a feature
but to programmers it means a location in memory. A row buffer is a record (with 2%
its attributes) that is stored somewhere in your computer’s active memory, but not
in a table. Because of the inheritance hierarchy described above, features are row
buffers and as such are stored in active memory.

This marks a milestone in your learning. The word “feature” has two meanings. It
has the general meaning of a location represented by geometry (for example, a lang
parcel may be represented by a polygon feature or a city by a point feature). Every
feature, in this sense, has a corresponding record in the layer’s attribute table. For
programmers, feature has a different meaning. It is an object returned by a feature
cursor; in other words, a type of rtow buffer object that only exists in memory.

It’s natural to talk abour the pointer in a feature cursor as if it points at features in
table. In reality, however, it points at the programmer’s kind of feature that is tempé
rarily stored in memory. Each time you move the pointer with the NextFeature
method, a feature is created in memory. Attribute values are copied into it from thi
corresponding record in the layer attribute table. Internally, a link is set up so the
in-memory feature knows where it came from in the table.

You might think that all this creating of features in memory and copying of attribut
values would slow your code down, but the effect is just the opposite. Actions on
features in active memory happen much faster than actions on features stored in @
table on a computer’s hard disk.

When you set a feature’s Value property, therefore, you are setting the value of the
in-memory feature, not the actual row in the table. This means that there is a nesl

for one more step. You have to tell the in-memory feature to write its values back &
the corresponding feature in the table. To do that, you use the UpdateFeature
method on the IFearureCursor interface.

FeatureCursor |
|FeatureCursor O—— \ ‘

-4— UpdateFeature

CHAPTER 20 ~ EDITING T

The code below updates pFeature’s values in the database table.

pFCursor .UpdateFeature pFeature

You now have an idea how to get and set cell values. When you want to process a
number of records, you write a Do Until loop, as you have done before with elements
in a graphics container and symbols in an Enum. In the loop, you set values for the

in-memory feature, update its corresponding feature in the feature class (table), and
get the next feature.

Do Until pFeature Is Nothing
'Do something to the feature
pFeature.Value(3) = 60000

'Write the feature's attributes to the table
pFCursor.UpdateFeature pFeature

'Get the next feature
Set pFeature = pCursor.NextFeature
Loop

Exercise 20b

In the previous exercise, you wrote code to add the StandValue field to a feature
class. In this exercise, you will write code to calculate the value of each stand. To do
that, you'll multiply values in the ValuePerMeter field by values in the Shape_Area
field and write the result to the StandValue field. You will use a feature cursor and
a loop to repeat the process for every stand. Then you'll write code to total the stand
values into a lease value (requiring another cursor and another loop). Finally, you'll
convert the result into currency format, and report it in a message box.

B A lleae :
ap g Shape_Area [StandYalue ﬂ
E 1 |Polygon a2 93 3062.866195 158705.,375680 | <Null>
B 2 |Palygon 52 115| 1619.680690 | 114920.216270 | <Nul>
] 3Polygon 32 121 1745766765 160169.268034 | <Nul>
4lPolygon | 53| 126] 1250.656780| 47705.93424L |<Nul>
5 Polygon 12 174 6336,713968| 418949.487108 | <Nul>
6 |Polygon 26 128 1138.476350 | 44586.813107 <Mul>
i | 7lPolygon | 3] 133| 2572347274 217903.829622 | <Null> e
B 8 Polygon 31 4892 630.260178| 11271,638917 | <Nul>
9Polygon | 52| 146] 2180,264852 | 123314.403526 | <Nul> | =l
Record 14] <] 0_#|#1] Show[Al Selected | Fecords (0 out of 241 Selected) oo~

Start ArcMap and open ex20b.mxd in the C\ArcObjects\Chapter20 folder.

You see the map of leases. You will locate the LeaseValue click event procedure and
add code to it.

Click the Tools menu, point to Macros, and click Visual Basic Editor. -

IGem'ng and setting valies

Usually you get to source code by opening the Customize dialog box, right-clicking
a control, and clicking View Source. You could do that here, too, but because of the
way context menus work, it's cumbersome. (You have to display the Context Menua
toolbar, scroll down to the Feature Layer context menu, and continue from there.)
The alternative of opening Visual Basic Editor from the Tools menu is always
available.

Make sure that the ThisDocument code module for the ex20b.mxd project is
open. Bring it forward if necessary. Scroll to the bottom of the LeaseValue click
event procedure and locate the End If line.

w, enz0b.mud - ThisDocument (Cade) : - -0l
I(_General:l j %Ese\ralua_click :J
=

Dim intPosStandValue As Integer
intPosStandValue = pFields.FindField("StandValue™)

If intPosStandValue = -1 Then
Dim pFieldEdit As IFieldEdit
Set pFieldEdit = New Field

pFieldEdit.Name = "StandValue”
pFieldEdit.Type = esriFieldTypeloubls

pFClass,. kddField pFieldEdit
End If 3

End Sub

=] |

B e

This is the end of the If Then statement that adds the StandValue field to the tablel
Before you can write the code to calculate each stand's value, you need the index
positions of the StandValue, ValuePerMeter, and Shape_Area fields. You can get
these numbers with the FindField method.

When the If Then statement runs, it means that the StandValue field doesn’t exisg
and therefore the value stored in intPosStandValue is —1. Code in the If Then state
ment adds the new field. The new field is assigned a position, but the value in the :
intPosStandValue variable is still =1. So at the end of the If Then statement, you
will write code to reset the intPosStandValue variable with the new field’s positios

Immediately before the End If statement, add a line to reset the variable that |
contains the StandValue field's index position number. (If you want, you can
copy the line from just before the If Then statement and paste it in the new ‘
location.)

intPosStandvalue = pFields.FindField("StandvValue")

Now you'll add code after the If Then statement to get the position numbers of £
other two fields.

Immediately after the End If statement, declare and set an integer variable to
hold the ValuePerMeter field’s index position number.

Dim intPosValuePerMeter As Integer
intPosvaluePerMeter = pFields.FindField("ValuePerMeter")

CHAPTER 20 - EDITING T.

Declare and set an integer variable to hold the Shape_Area field’s index position
number.

Dim intPosShape Area As Integer
intPosShape Area = pFields.FindField("Shape_ Area")

¥ ex20b.mxd - ThisDocument (Code) = 2 =10l x|
LeaseValue x| [etiek =l
3

pFClass.AddField pFieldEdit

intPosScandValue = pFields.FindField({"3tandValue™)
End If

Dim intPosValuePerMeter ALs Integer

intPosWaluePerMeter = pFields.FindField("ValuePerleter®)
Dim intPosShape Area RLs Integer J
intPosShape Area = pFields.FindField("Shape_Airea")

End Sub =

Next, you will create a feature cursor. In chapter 18, you used IFeatureClass’s Search
method to make a cursor. Here you will use the Update method (on the same inter-
face) because you plan to edit the features.

You need a feature class and a query filter. You already got the feature class in the
previous exercise, so you have a pFClass variable pointing to [FeatureClass. All you
have to worry about now is the query filter—or do you?

Since every stand value is going to be calculated, you want the cursor to contain
every feature in the feature class. When you want all features, you can use the key-
word Nothing as the query filter. This means that no filter is applied and all features
are included.

The Update method’s second argument, like the Search method’s, is for cursor
recycling. : #

| CURSOR RECYCLING

The recycling argument can be either true or false. When it is false (the cursor is nonrecycling), each time
you run the NextFeature method, a new in-memory feature is created and stored in a location separate
from the one before it.

Nonrecycling cursors let you hold many features in memory at the same time. You use them in situations
where you are making simultaneous edits. For example, if you created a collection of adjacent land parcels
that you wanted to offset a certain distance from the street, you would store each of those features in
memory at the same time. Then you would apply a method (MoveSet on IFeatureEdit) to move them all
at once.

When the argument is true (the cursor is recycling), a single feature is created in memory and reused. The
first time you run NextFeature a new in-memory feature is created and the first row’s data values are copied
from the table to the feature (just like with a nonrecycling cursor). With each subsequent NextFeature, the
next row's data values are copied to the same in-memory feature, overwriting the feature’s previous values.

Recycling cursors can be used whenever you are processing a single feature at a time. They run faster than
nonrecycling cursors because they require less memory.

Gelting and selting valies

In chis case, since vour code works on one feature at a time, you'll set the recycling
argument to true. (False would also work, but it would take a little longer.)

Declare and set a variable to create a feature cursor.

Dim pFCursor As IFeatureCursor
Set pFCursor = pFClass.Update(Nothing, True)

Declare an IFeature variable and set it with the cursor’s NextFeature method

Dim pFeature As IFeature
Set pFeature = pFCursor.NextFeature

The cursor’s pointer now points to the first feature.

Next, you'll start a Do Until loop to process each feature. The loop will end when
the pointer moves past the last feature and points at Nothing.

Start a Do Until loop that runs until there are no more features in the cursor.
Do Until pFeature Is Nothing
Loop

In steps 4 through 6 you set up (and reset) variables to hold the index positions of
the StandValue, ValuePerMeter, and Shape_Area fields. You will use these variables
now as arguments for the Value property. Your code will get the cell value in each
feature’s ValuePerMeter field, multiply it by the cell value in Shape_Area, and use
the result to set the cell value in StandValue.

Inside the loop, use the Value property to set the first feature’s StandValue equa
to the product of its ValuePerMeter and Shape_Area fields.

pFeature.Value (intPosStandvValue) = _
pFeature.Value (intPosValuePerMeter) * _
pFeature.Value (intPosShape_Area)

So far, the new stand value is only held in memory. To write it to the feature class,
you use the UpdateFeature method on [FeatureCursor. Your pFCursor variable from
step 7 already points to this interface.

Use the UpdateFeature method to write the new value to the feature class.
pFCursor .UpdateFeature pFeature

The only thing missing from your Do Until loop is a line to move the pointer to the
next feature in the cursor.

Use NextFeature to get the cursor’s next feature.

Set pFeature = pFCursor.NextFeature

CHAPTER 20 © EDITING T.

| Without this line, you would have an endless loop. pFeature would always point to

the first feature in the table and its stand value would be edited over and over again.
(If you ever get stuck in an endless loop, press Ctrl + Break on the keyboard to get

out of it.)
f & exzob.mud - ThisDocument {(€ode) e B =0
LeasaValue =] Jetiek |
Dim pFCursor is IFeatureCursor g

Set pFCursor = pFClasa.Update (Nothing, True)

Dim pFeature i= IFeature
Set pFeature = pFCursor.NextFeature

Do Until pFeature Is Nothing
pFeature.Value {intPosStandValue) =
pFeature.Value (intPosValuePerMeter) * _
pFeature.Value (intPosShape hirea)
pFCursor.UpdateFeature pFeature J

Set pFeature = pFCursor.NextFeature
Loop
End Sub

=Ed | oz

<4

The first part of the code is ready to test.

EDITING FEATURE GEOMETRY

i The Value property can he used to set any feature attribute value, including that of the Shape field. Say
you want to move one of the features in a point feature class to a new location. Outside the feature class,
you could create (or get) a point and set its x and y properties to the desired location. You could then use
that point to set the value of the point feature you want to move. In the code below, the index position of
the Shape field is assumed to be 1.

Dim pPoint As IPoint
Set pPoint - New Point
pPoint.X = 100
pPoint.¥ = 200

pFeature.Value(l) = pPoint

If you are not sure of the Shape field’s position, you can also set a feature’s shape with the IFeature
i interface’s Shape property.

pFeature.Shape = pPoint

Leave Visual Basic Editor open, but bring the ArcMap window forward.

Your If Then statement from the previous exercise checks whether a StandValue
' field already exists before it tries to add one. Thanks to this error checking, you can
run your new code on a Lease layer whether or not the field has been added to it.

In the ArcMap table of contents, right-click the LeaseC layer and click Report
Lease Value,

To see the new stand values, you need to open the attribute table.

Getting and selting values

In the ArcMap table of contents, right-click the LeaseC layer and click Open
Attribute table. Scroll to the right if necessary.

New values here

[Attributes of LeaseC

158705,375680 5078572021748 |
| 2 Pofygon 52 115 1619,680590 114920.218270 5975851350039
| alPoygon 3z 121 1745766785 160160,268034 5125416,577100 |
 4Povaen 53 125 1250656780 47705.984241 2526417.164764
B 5 |Poiygen 1z] 124 6336713968 416949487108 5027333.345301
N 6pdygon | 26 126 1138.475353| 44586.613107 1159257140784
B 7 |Palygon a1 133 2572347274 | 217905829622 | 6755018.718281 |
] & |Paygon) B 4892) 6oB.2esl78| 11271638917 349420806426
| slroben | = 146] 2180.264852| 123314,403526 | 6412318.98338| <]
Reced 14 4 1 vnil Show[Al Selecled | Fecorde (0out of 241 Selected] Opons - |

Close the table.

Now you will add code to sum the values in the StandValue field and report the total
lease value.

Bring the Visual Basic Editor window forward. Scroll to the bottom of the
LeaseValue click event procedure.

Your new code will go at the end of the procedure. You'll begin by declaring a
variable to hold the sum of the stand values.

After the Loop keyword, declare a Double variable.
Dim dblTotal As Double

You have already created an Update cursor to set the stand values for each feature.
Now you need a second cursor to get those values and total them. Since you aren’t
ooing to edit any cell values, you will use a Search cursor, as you did in chapeer 18.

You don’t have to declare any new variables—you can reuse the same ones that you
used for the Update cursor. As before, you'll use the Nothing keyword for the quers
filter to process every feature and you'll set cursor recycling to True, so that each
feature is processed in the same memory location as the one before it.

Set the IFeatureCursor variable to create a new feature cursor using the Search
method.

Set pFCurscr = pFClass.Search(Nothing, True)

CHAPTER 20 -~ EDITING TAE

| SEARCH VERSUS UPDATE

You use Search cursors to get features, Update cursors to change feature values, and Insert cursors to add
new features. Search cursors, however, can also be used to change feature values. With an Update cursor,
as you already knowy, you set an in-memory feature’s values with the Value method.

pFeature.Value(4) = 25

You then use the UpdateFeature method on the cursor to write the value to the table:
pFCursor.UpdateFeature pFeature

Setting a value with a Search cursor is the same.
pFeature.Value(4) = 25

However, to write the value to the table with a Search cursor, you use the Store method on the IRow
interface (instead of the UpdateFeature method on IFeatureCursor).

pFeature.Store

These two techniques yield the same result. So what's the difference? The Store method works on individ-
ual features, writing each row to the table as its edit is completed. The UpdateFeature method works on
the cursor. As edited rows are processed, they are stored in the cursor, When the process ends, all the rows
are written to the table together (or in batches of one thousand for large processes).

If you are processing only a handful of features, you can use either method and you won't notice the
difference. If you are processing thousands of features, an Update cursor will be faster.

Use the feature cursor's NextFeature method to get the first feature.

Set pFeature = pFCursor.NextFeature

Start another Do Until loop.
Do Until pFeature Is Nothing

Loop

Inside the loop, get the stand value of the feature that is being pointed at and
add it to a running total of all stand values.

dblTotal = dblTotal + pFeature.Value (intPosStandvalue)
Still inside the loop, use the cursor’s NextFeature method to get the next
feature.

Set pFeature = pFCursor.NextFeature

By the time the last feature is processed, dblTotal will contain a very large number.
(Trees are worth a lot of money, but it also costs a lot to harvest them.) Unfortu-
nately, the dblTotal value won’t be attractively formatted. It won’t have a dollar sign
or commas, and it will show more than two decimal places. It might end up looking
something like this: 12345678912.12345.

Getling and setting values

The CurrencyFormat coclass, one of several ArcObjects classes for formatting
numbers, can be useful here. Its INumberFormat interface has a ValueToString
method that takes a Double number as its argument. The method adds a dollar sign
and commas, shortens the decimal places to two, and returns the formatted numbes
as a string.

CurrencyFormat

INumberFormat -&— StringTeValue (in str: String): Double
-%— ValueToString (in Value: Double): String

After the Loop keyword, create a new CurrencyFormat object.

Dim pCurrency As INumberFormat
Set pCurrency = New CurrencyFormat

Use a message box to report the lease value.

MsgBox "The lease value is " _
& pCurrency.ValueToString(dblTotal)

4, ex0b.mud - ThisDocument {Code)

!Lelse\ialun vi k = :J
Loop j

Dim dblTotal As Double

Set pFCursor = pFClass.Search(Nothing, True)
Set pFeature = pFCursor.NextFeature

Do Until pFeature I= Nothing
dhlTotal = dblTotal + pFeacute.ValuE(intPosS:anﬂValue)
ser pFeature = pFCursor.NextFeature

Loop

Dim pCurrency is INunkerFormat
Set pCurrency = New CurrencyFormat

MsgBox "The lease value is "
£ pCurran:y.ValuaTuStrlng(dthn:al)
End Suk

& R S| L

4

S

Now you can test the entire LeaseValue code.
Close Visual Basic Editor.
In the table of contents, right-click the LeaseC layer and click Report Lease Valug

S
The lease value is $821,024,061.97

==

The value is displayed in a message box, so there is no need to open the table.

CHAPTER 20 ~ EDITING T

Click OK.
Now try the LeaseD layer.

In the table of contents, right-click the LeaseD layer, and click Report Lease Value.

ArcMap . i x|

The lease value is $900,421,930.85

Click OK.

As new lease layers come in, the bidders can calculate their value with your button.

Normally, to edit data in ArcGIS you add the Editor toolbar and start an edit session.
(Users do this from the interface; programmers do it with various classes, interfaces,
properties, and methods.) In this exercise, however, you edited attribute values
without starting an edit session. This makes the editing process faster because some
of the editing functionality is bypassed.

Edit sessions have some advantages. For example, you can enable the Undo and
Redo buttons. If you had used an edit session in this exercise, you could have written
code to let the user undo the add field operation or the stand value calculations.
Another advantage is that you can offer the user the choice of whether or not to
save changes at the end of the session.

On the other hand, there are also some advantages to working outside an edit session.
Not starting and stopping an edit session means you have less code to write and the
user doesn’t have to wait for the session to begin and end. Also, edits are usually
processed faster outside an edit session. (This is because, among other things, there
is no Undo/Redo information to store.) Working outside an edit session also allows
you to code the editing functionality without exposing the user to dialog boxes.

To learn more about editing, refer to the topics Editor Class and Editor Tips in the
developer help. Also, in the “Getting Started” section of the developer help, see the
topic Developing with ArcObjects and COM and the subtopic Edit Sessions.

If you want to save your work, click the File menu in ArcMap and click Save As.
Navigate to C:\ArcObjects\Chapter20. Rename the file my_ex20b.mxd and
click Save.

As in exercise 20a, you have made changes to a feature class that are independent of
the map document. If you want to do this exercise again, you'll need to delete the
StandValue fields from the LeaseC and LeaseD layers.

Gelting and setting values

In this book, you've learned the basics of customizing ArcMap. You know how to
add buttons and tools to toolbars, menus, and context menus. You can capture user
input with input boxes and display information with message boxes. You can make
dialog boxes and program them with combo boxes and other controls. You know
how to save your changes to a map document or a template.

You know the fundamental concepts of VBA programming. You know about objects,
properties, methods, and variables; you know the syntax of writing code. You know
what subroutines, functions, events, and property procedures are. You've worked
with a number of different event procedures (Click, Inirialize, MouseMove, and
SelectionChange, to name a few). You know how to call subroutines and functions
from event procedures.

You've also learned many important coding techniques: If Then statements, Case
statements, Do While and Do Until loops. You know about different kinds of errors
and how to debug your code.

From this foundation, you have gone on to learn about ArcObjects. You can navigate
object model diagrams and deal with the intricacies of interfaces. You've worked
with maps, layers, data sets, feature classes, and features. You can set symbology,
make graphics, select features, write queries, updare layout elements, and edit data.
You know how to put existing ArcGIS functionality into your code with Execute
statements. You feel good about yourself when you steal code. You know enough to
go ahead on your own.

You've done a lot, but even so, it’s just the beginning. (It’s no use protesting that
you're done with programming. You really can’t go back. You'll find yourself idly
looking at bits of sample code instead of playing Minesweeper. Then a coworker will

ask you to make a tool. One day some people will be standing around a cubicle,
trying to figure out why a subroutine won’t work, and a voice will say, “The cursor
needs to be reinitialized.” Much to your surprise, that voice will be your own.)

So whether you are reconciled to your fate or not, sooner or later you'll want to
know where to go next. One piece of advice: take it easy. Programming is fun and
fruitful when you go in slow, incremental steps. It can be frustrating if you try to d¢
too much too soon.

A good way to get started is to go back to some of the exercises in this book and
make modifications to them. Use a different color, a different symbol, a different
name. See if you can make a subroutine do a little more than it does, or work with &
different type of data; see if you can error-proof it against a certain type of mistake.
Look for ways to automate steps that you did manually or that depended on your
knowing things in advance about your data. And then?

¢ Go to the Samples section of the ArcObjects developer help. It contains hundreds
of sample procedures arranged by category. Use them, study them, modify them.

¢ Go to ArcObjects Online (arcobjectsonline.esri.com). You'll find more sample
code, technical papers, a discussion forum, and more.

s Join an e-mail discussion list, such as ArcView-L. It's a good way to ask questions
and get help. Better yet, start out by viewing the archives of these e-mail discus-
sion lists to see what kinds of questions are asked. Maybe you will find answers ta
your questions there. To learn how to join a discussion list and view archives, g¢
to support.esti.com/listserve.

 For a comprehensive reference on ArcObjects, the two-volume reference book
Exploring ArcObjects, edited by Michael Zeiler (ESRI Press, 2002), is available for

purchase at www.esti.com/ExploringArcObjects.

A complete digital copy of the book is also included as a set of PDF files with all
licensed copies of ArcGIS software. Chapter 2 of this work provides an excellent
overview of ArcObjects and the COM environment.

» Visit the ESRI Virtual Campus (campus.esri.com) to find out about live training
seminars and workshops on specific ArcObjects topics.

s If you are interested in programming ArcObjects with Visual Basic, NET, or C+=;
take one of the ESRI instructor-led courses in advanced ArcObjects component
development. To learn more about ESRI instructor-led training, go to
www.esri.com/training.

For the latest information, check the Web site for this book (www.esri.com/

GTKArcObjects).

WHAT'S NE

APPENDIX A

Data license agreement

important:
Read carefully before opening the sealed media package

ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE, INC. (ESRI), IS WILLING TO
LICENSE THE ENCLOSED DATA AND RELATED MATERIALS TO YOU ONLY UPON THE
CONDITION THAT YOU ACCEPT ALL OF THE TERMS AND CONDITIONS CONTAINED
IN THIS LICENSE AGREEMENT. PLEASE READ THE TERMS AND CONDITIONS CARE-
FULLY BEFORE OPENING THE SEALED MEDIA PACKAGE. BY OPENING THE SEALED
MEDIA PACKAGE, YOU ARE INDICATING YOUR ACCEPTANCE OF THE ESRI LICENSE
AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS AS STATED,
THEN ESRI IS UNWILLING TO LICENSE THE DATA AND RELATED MATERIALS TO
YOU. IN SUCH EVENT, YOU SHOULD RETURN THE MEDIA PACKAGE WITH THE SEAL
UNBROKEN AND ALL OTHER COMPONENTS TO ESRI.

ESRI License Agreement

This is a license agreement, and not an agreement for sale, between you (Licensee!
and Environmental Systems Research Institute, Ine. (ESRI). This ESRI License
Agreement (Agreement) gives Licensee certain limited rights to use the data and
related materials (Data and Related Materials). All rights not specifically granted in
this Agreement are reserved to ESRI and its Licensors.

Reservation of Ownership and Grant of License: ESRI and its Licensors
retain exclusive rights, title, and ownership to the copy of the Data and Related
Materials licensed under this Agreement and, hereby, grant to Licensee a personal.
nonexclusive, nontransferable, royalty-free, worldwide license to use the Data and
Related Materials based on the terms and conditions of this Agreement. Licensee
agrees to use reasonable effort to protect the Data and Related Materials from
unauthorized use, reproduction, distribution, or publication.

Proprietary Rights and Copyright: Licensee acknowledges that the Data
and Related Materials are proprietary and confidential property of ESRI and its
Licensors and are protected by United States copyright laws and applicable inter-
national copyright treaties and/or conventions.

Permitted Uses:
Licensee may install the Data and Related Materials onto permanent storage
device(s) for Licensee’s own internal use.

Licensee may make only one (1) copy of the original Data and Related Materials for
archival purposes during the term of this Agreement unless the right to make addi-
tional copies is granted to Licensee in writing by ESRL

Licensee may internally use the Data and Related Materials provided by ESRI for
the stated purpose of GIS training and education.

Uses Not Permitted:

Licensee shall not sell, rent, lease, sublicense, lend, assign, time-share, or transfer, in
whole or in part, or provide unlicensed Third Parties access to the Data and Related
Materials or portions of the Data and Related Materials, any updates, or Licensee’s
rights under this Agreement.

Licensee shall not remove or obscure any copyright or trademark notices of ESRI o2
its Licensors.

Term and Termination: The license granted to Licensee by this Agreement
shall commence upon the acceptance of this Agreement and shall continue until
such time that Licensee elects in writing to discontinue use of the Data or Related

APPENDIX A -~ DATA LICENSE AGREEM

—!:ﬁ_:m.;mn R L L i

Materials and terminates this Agreement. The Agreement shall automatically
terminate without notice if Licensee fails to comply with any provision of this
Agreement. Licensee shall then return to ESRI the Data and Related Materials.
The parties hereby agree that all provisions that operate to protect the rights of
ESRI and its Licensors shall remain in force should breach occur.

Disclaimer of Warranty: THE DATA AND RELATED MATERIALS CONTAINED
HEREIN ARE PROVIDED “AS-18,” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. ESRI does not warrant that the Data and Related Materials will meet
Licensee’s needs or expectations, that the use of the Data and Related Materials will
be uninterrupted, or that all nonconformities, defects, or errors can or will be cor-
rected. ESRI is not inviting reliance on the Data or Related Materials for commer-
cial planning or analysis purposes, and Licensee should always check actual data.

Data Disclaimer: The Data used herein for tutorial data, including but not
limited to spatial, geographic, map, tabular, statistical, or public-record information,
may be actual, fictionalized, and/or a combination thereof. In some cases, ESRI has
manipulated, supplemented, and/or applied certain assumptions, analyses, and opin-
ions to the Data solely for educational training purposes. Assumptions, analyses,
opinions applied, and actual outcomes may vary. Again, ESRI is not inviting reli-
ance on this Data, and the Licensee should always verify actual Data and exercise
their own professional judgment when interpreting any outcomes.

Limitation of Liability: ESRI shall not be liable for direct, indirect, special,
incidental, or consequential damages related to Licensee’s use of the Data and
Related Materials, even if ESRI is advised of the possibility of such damage.

o Implied Waivers: No failure or delay by ESRI or its Licensors in enforcing
any right or remedy under this Agreement shall be construed as a waiver of any
future or other exercise of such right or remedy by ESRI or its Licensors.

Order for Precedence: Any conflict between the terms of this Agreement and
any FAR, DFAR, purchase order, or other terms shall be resolved in favor of the
terms expressed in this Agreement, subject to the government’s minimum rights
unless agreed otherwise.

Export Regulation: Licensee acknowledges that this Agreement and the
performance thereof are subject to compliance with any and all applicable United
States laws, regulations, or orders relating to the export of data thereto. Licensee
agrees to comply with all laws, regulations, and orders of the United States in regard
to any export of such technical data.

ESRI License Agreement

= eaaa et I B

Severability: If any provision(s) of this Agreement shall be held to be invalid,
illegal, or unenforceable by a court or other tribunal of competent jurisdiction, the
validity, legality, and enforceability of the remaining provisions shall not in any way
be affected or impaired thereby.

Governing Law: This Agreement, entered into in the County of San Bernardino,
shall be construed and enforced in accordance with and be governed by the laws of
the United States of America and the State of California without reference to con-
flict of laws principles. The parties hereby consent to the personal jurisdiction of
the courts of this county and waive their rights to change venue.

Entire Agreement: The parties agree that this Agreement constitutes the sole
and entire agreement of the parties as to the matter set forth herein and supersedes
any previous agreements, understandings, and arrangements between the parties
relating hereto.

APPENDIX A - [JATA LICENSE AGREE

APPENDIX B

Installing the data

Getting to Know ArcObjects includes one CD that contains the exercise data. The
exercise data takes up about 100 megabytes of hard-disk space.

The data installation process takes about five minutes.

installing the data
Follow the steps below to install the exercise data. Do not copy the files directly from
the CD to your hard drive.

1 Put the data CD in your computer’s CD drive. In your file browser, click the icon
for your CD drive to see the folders on the CD. Double-click the Setup.exe file

to begin.
[ArcObjects File: Folder §/18/2003 1:58 FM
3 datat .cab 456KB WinZip File 8/18/2003 3:35 PM
datat.hdr 46KE HDR File £/15/2003 3:35 P
£ dataz.cab 41,160 KB WinZip File /182003 3:36 PM
] IKERMEL.EX_ 337KB EX_File 9j4/2001 9:24 P
lavout.bin 1KB BIN File &/18/2003 3:36 PM
ESETUP.EMP 709 KB Bitmap Image 11/6/2002 11:12 AM
|BMsetup.exe SSKE Application 9[5/2001 4:23 AM
Sebup.ini 1KE Corfiguration Settings 8/16/2003 3:34 PM
satup.inx 134KB INX File /16/2003 2116 PM

2 Read the Welcome.

Getting to Know ArcObjecks Exercise Data Setup : = _35.1

welcome to the Getting to Know ArcDbjects
exercise data setup.

This program will install the data for Getting ta Know
ArcObjects on your computer. Ta continue, click Mext.

¢ Back] MNest » I Cancel |

3 Click Next. Accept the default installation folder or navigate to the drive where you
want to install the darta.

Getting to Know ArcObjects Exercise Data Setup =

x|
Choose Destination Location

Select falder where Setup will instal files.

Setup will install Getting to Know ArcObjects exercize data in the following location.

To install to this location, click Nest. To install to a different location. click Browse and
select another folder.

‘, Destination Folder

C:AfrcObjects Browse... ‘ll

|

< Back I Next > l Cancel l

| statllat

APPENDIX B -~ INSTALLING THE D&

‘—:— - = R S L et Tt A

4 Click Next. The exercise data is installed on your computer in a folder called
ArcObjects. When the installation is finished, you see the following message:

Getting to Know ArcObjects Exercise Data Setup

InstallShield Wizard Complete

Setup has finished installing Getting to Know 2rcDbjects
Exercise Data on your computer.

; 5 Click Finish.

If you have a licensed version of ArcGIS Desktop installed on your computer, you
are ready to start Getting to Know ArcObjects.

Uninstalling the data

To uninstall the exercise data from your computer, open your operating system’s
control panel and click the Add/Remove Programs icon. In the Add/Remove
Programs Properties dialog, select the following entry and follow the prompts to
remove it:

e Getting to Know ArcObjects Exercise Data

Lninstalling the data

Abstract classes. See Classes: abstract
Active view
and caches, 215, 219
envelope of, 350-51
getting, 224
partially refreshing, 215-16, 218-19,
374-75
refreshing, 184—85
ActiveView property (IMxDocument),
184-85, 224
Add Data dialog box, 305
creating, 305
customizing, 305-14
filtering data sets in, 306-8
properties, setting, 306
AddElement method (IGraphicsContainer),
214,215,218
Adding fields. See Fields: adding to a table
Adding layers. See under Layers: adding to
maps
Addltem method (VBA form), 57, 105
Ampersand (&). See Concatenation
API functions, 141
Apostrophe ('). See Comments
Application class, 151. See also Application
variahle

Application variable
in ArcCatalog, 295
in ArcMap, 151, 154-55, 209
Application window size, setting, 163-64
ArcCatalog, 7, 295
copying paths from, 248
dialog boxes, 297 (see also Add Data
dialog box)
objects, 296-97
ArclD code module, 230
ArcMap, 4, 7
spell checking in, 298
status bar, 208
window size, setting, 163-04
ArcMap IDs table. See GUIDs: and
ArcMap IDs table
ArcObjects, 1, 4, 148, 149
and COM applications, 4, 297-98
developer help Web site, 87
Arguments, 2, 22, 53, 86
Assignment statements, 24, 26. See also
Variables
Association. See Class relationships:
association
Auto Quick Info, 22
Auto List Members, 54

Background color. See Page layout:
background color, setting
BackeroundColor property (IPage), 191, 195
Barbells. See UML: symbols: for properties
Base templates. See Map templates (.mxt
files)
BufferFeatures subroutine, 92-97
Buffering features. See BufferFeatures
subroutine
Bugs. See Errors
Buttons, 16. See also Commands; Click
event procedures
creating, 19-20, 364
Enabled property, 73
byRef properties. See Properties: by Ref
byVal properties. See Properties: byVal

Caches, 215, 219
Calculating field values. See Fields:
calculating values
Calls, 3-4, 77, 79-80, 83, 91, 95
Caption property (IApplication), 151-52,
155
Carriage return line feed (vbCrLf), 144
Case statements, 63, 66, 86
examples
text element name, 373-74
zoning type, 67-68
Cells, 377
getting values, 377-78, 390-91
setting values, 392, 394-99
writing values to disk, 392-93, 396
Chaining code, 251, 300
Change event procedures, 73, 74
Charts. See CreateNewChart subroutine
Class breaks renderers. See Renderers: class
breaks
Class relationships
association, 172, 174
composition, 172
inheritance, 176
and Querylnterface, 195, 217

instantiation, 179, 344

Classes, 133-35
abstract, 176-77 (see also Class
relationships: inheritance)
coclasses, 177
creating, 13641
regular, 177
Clear method (IFeatureSelection), 334
Click event procedures, 18
as default, 56
Client-server programming. See Object-
oriented programming
CMYK color. See Color models
Coclasses. See Classes: coclasses
Code. See also Sample code
chaining, 251, 300
completion, 75-76
copying and pasting, 83, 88, 366-67
debugging (see Debug toalbar; Errors:
debugging)
oreanizing, 77-78, 83
testing, 22-23, 49, 168
Code modules, 17
ArclD, 230
class, 134
creating, 139
form, 55
General Declarations area, 32
objecr list in, 34, 56
opening, 67
procedure list in, 34
removing from a project, 88, 93
renaming, 83
standard, 82
ThisDocument, 17, 21
Collection objects. See also Enums
(enumerations); Graphics containes
command bars, 228
fields, 379, 380
maps, 318-19
Color models, 188, 265
Color property (ILineSymbol), 266
Colors
assigning to symbaols, 26067
creating, 193, 265
properties, setting, 138-89, 195, 197, 263
(see also Page layout: backgrouns
color, secting)

INDEX

COM, 4, 148, 169, 297-98
Combo boxes, 39, 321. See also Forms: and
controls; SelectionChange event
procedures
adding items to, 57, 1045, 107-9, 111-13
properties, setting, 106-7, 109
Commands, 7, 16-17, 227. See also Buttons;
Context menus; Forms: controls;
Menus; Tools
adding, 10-12, 382, 38485
executing, 227-31, 233-36
getting, 228-31
icon, changing, 29, 206
moving to different toolbars, 9-10
naming conventions, 19-20
removing from toolbars, 10, 369 (see also
Normal template: deleting
comimands from)
renaming, 20
separating, 12-13, 20
text only, displaying, 12, 20
Comments, 62, 125, 375-76
Comments property (IDocumentInfo), 165,
166
Comparison operators, 71
Compile errors. See Errors: compile
Component Object Model. See COM
Composed of relationship. See Class
relationships: composition
Concatenation (&), 25, 321
Context Menu toolbar, 382, 386
Context menus, 381-83
adding commands to, 382, 384-85
and returned objects, 38283
Controls. See Commands; Forms: and
controls
Coordinates, reporting, 200203, 208-10
CreateNewChart subroutine, 87-90
CreateOverviewWindow subroutine, 82-85
Creates relationship. See Class
relationships: instantiation
CurrentLocation property (IMxDocument),
201, 209, 217
CursorlD event procedures, 206-8
Cursors. See Feature cursors

Customize dialog box, 7, 8, 10. See also
Buttons; Context menus; Forms;
Menus; Toolbars; Tools

Customizing the user interface. See User
interface: customizing

Data sets, 24041
getting (see Layers: data sets, getting for)
types of, 240
Data types, 26, 98
Currency, 29, 61
Date, 29
Integer, 26
Long, 61
Single, 67
Debug toolbar, 122, 126
Debugging code. See Debug toolbar; Errors:
debugging
Declaring variables. See Interfaces:
declaring variables to; Variables:
dimensioning
Definition queries, 316. See also Query
statements
creating, 320-22, 327-28
removing, 322
DefinitionExpression property
(IFeatureLayerDefinition), 320, 332
Dialog boxes. See Add Data dialog box;
ArcCatalog: dialog boxes; Forms
Dim keyword. See Variables: dimensioning
Do Until loops, 111
examples
moving through feature cursors, 396
moving through object collections,
281-82,373-74
reading text files, 112-13, 115-17
Do While loops, 111
Dock method (ICommandBar), 232
DominantElement property
(IGraphicsContainerSelect), 361
Drawing graphics. See Graphics, drawing
Dynamic layouts. See Graphic elements:
updating on page layout

Editing
cell values (see Cells: setting values)
and edit sessions, 401
feature geometry, 397
EditText property (VBA combo box), 321
Elements. See Frame elements; Graphic
elements
ElementSelectionCount property
(IGraphicsContainerSelect), 361
Enabled event procedures, 222, 22324
Endless loops, 116, 397
Enums (enumerations), 274
of data sets, 308-9
of symbols, 275-77
Envelopes, 349
of the active view, 350-51
expanding, 355
of fearures, 349-50
of layers, 352-53
and PartialRefresh method, 215-16
Error messages. See also Errors
Division by zero, 120
help on, 128
Sub or Function not defined, 119, 124
Type mismatch, 73, 120, 126, 221
Variable not defined, 32-33
Errors
compile, 119-20, 124-25
debugging, 122-23, 132
across procedures, 126, 127-28
stepping through code, 12628
User Interrupt message, 125
using breakpoints, 130, 131
viewing the contents of variables, 123,
130-31
logic, 121, 129
run-time, 120, 12632, 221-22
trapping options, 124
typographic, 157
Event procedures, 18, 51. See also names of
individual event procedures
Events, 4, 51

Executing commands. See Commands:
executing
Exploring ArcObjects, 80, 82, 148
Extent property
(IActiveView), 350
(IFeature), 349

Feature classes, 340. See also Layers: adding
to maps: geodatabase feature classes;
Tables
in feature cursors, 348
getting, 34546, 386-87
in selection sets, 344
Feature cursors, 339-41, 348, 377
creating, 349, 396
Insert, 348
moving through, 349
recycling, 395-96
Search, 348, 354, 398
compared to Update, 399
Update, 348, 390
Features, 377
clearing selected, 334-35
counting selected, 346, 374
extent of, 349 (see also Envelopes: of
features)
getting from a cursor, 349
highlighting, 347
in-memory, 392
selecting, 316, 332-33, 335-36 (see also
Query statements)
selection color, secting, 336-37
Field property (IClassBreaksRenderer), 286
Fields, 377. See also Collection objects: fields
adding to a table, 381, 388
calculating values, 394-99
creating, 379
finding, 381, 387
index positions of, 377
properties, setting, 379-80, 387-88
File formats of ArcGIS data. See Data sets:
types of

IND!

l INDEX

FocusMap property (IMxDocument),
181-82
For loops, 104-5
examples
adding items to a combo box, 107-9
turning layers off, 182-83
Forms, 3740
and controls, 38-39
adding, 44, 48
aligning, 48
properties, setting, 39, 44—47, 49,
62-63, 1067
viewing code, 55
creating, 41-42
designing, 40
hiding, 55, 62
naming conventions, 56
properties, setting, 4243
showing, 52, 55
viewing code, 107
Frame elements, 212, 359-60
Functions, 77-78, 98-100. See also API
functions; Procedures; VBA
functions
compared to subroutines, 77
creating, 100
examples
convert kilograms to pounds, 100—102
convert kilomerters to miles, 98—100
passing values to and from, 98-99

Geometry property (IElement), 217
Graphic elements, 212, 359-60
adding to graphics container, 215, 218
and geometry, 212-13
getting from graphics container, 370
getting selected, 366
markers
assigning geometry, 213, 217
creating, 213, 217
default symbol for, 219
naming, 362-63, 364-69
text, 360
updating on page layout, 370-76

Graphics container, 214, 361
adding elements to, 215, 218
getting, 214, 218, 370
moving through, 370, 372-73
Graphics, drawing, 216-19. See also
Graphic elements
GUIL. See User interface
GUIDs, 229-36
and ArcMap IDs rable, 229, 230-31
GxDialog object. See Add Data dialog box

Help tips, 21-22
Hide method (VBA form), 55, 62

[Application, 151-52. See also Application
variable
[Document, 152-53. See also
ThisDocument: variable
If Then statements, 69, 71, 72
examples
active view is data or layout, 224-25
enum is empty, 311-12
field exists in table, 387-88
layer type is raster, 222
map matches name, 326
marker symbol matrches name, 281
mouse button is left or right, 220
one graphic element is selected, 365
password is valid, 154-57
user input is numeric, 74—75
Image controls on forms, 44-45
Importing subroutines, 81-82, 87, 92.
See also Sample code
Inheritance. See Class relationships:
inheritance; Interfaces:
inheritance of
Initialize event procedures, 56-57, 62, 107
In-memory features. See Features: in-memory
Input boxes, 25-26, 30, 366. See also VBA
functions: InputBox
Insert cursors. See Feature cursors: Insert

Insert method (IFeatureClass), 348

Instantiation. See Class relationships:
instantiation
Interfaces, 147-50. See also Querylnterface
and COM, 148, 169
declaring variables to, 14849, 159
(see also Objects: creating from
classes)
exposing, 149-50
inheritance of, 264
examples, 270, 291, 391
returned, 173
switching (see Querylnterface)
Intrinsic variables. See Variables: intrinsic
Is functions. See VBA functions: Is

[Unknown, 264, 277, 382

Layer files (.lyr), 299
adding to maps, 300, 3034, 312
getting, 299-300
Layer property (IMap), 182-83
LayerCount property (IMap), 183
Layers, 239
adding to maps, 242
geodatabase feature classes, 242-44,
247-50
raster data sets, 254-55, 257-59
various data sets, 253
creating, 240, 242
data sets, getting for, 24041, 242-43, 258
envelope of, 352-53
getting, 182-83, 319-20
index positions of, 182
moving in the table of contents, 259
naming, 250, 258
scale dependency, setting, 282-83
symbolizing (see also Renderers; Symbols)
automatically, 252, 269
with class breaks, 285-92
default, 299
with predefined symbols, 273-84
by setting colors, 26572
turning off, 182-83
Layout page. See Page layout

Legends. See Renderers
Line continuation {_), 30
Location toolbar {ArcCaralog), 248
Logical connectors, 71
Logical expressions, 71-72, 111. See also
If Then statements; Do Until loops:
Do While loops
Loops, 103. See also Do Until loops;
Do While loops; For loops
debugging, 123, 130-32
endless, 116, 397

exiting, 282

Machine language, 119
Map documents (.mxd files), 17
saving, 167
Map templates (.mxt files), 17
Maps
data frames, equivalent to, 181
getting, 181-82, 319
index positions of, 319
refreshing, 322
Marker elements. See Graphic elements:
markers
Math, order of aperations, 25
Memory
and features (see Features: in-memory)
and variables (see Variables: space
allotred to)
Menus, 7. See also Commands; Context
menus
adding choices to, 246-47, 257
creating, 245, 256
Message hoxes, 21-22. See also VBA
functions: MsgBox
ritles for, 31
types of, 31, 111
Message property (IStatusBar), 209-10
Methods, 52, 53. See also names of individual
methods
as class procedures, 134, 138, 14041
Microsoft, 4
Microsoft Access, 240

IND!

l INDEX

MouseDown event procedures, 200, 203, 216
MouseMove event procedures, 200
MouseUp event procedures, 200
MxDocument class, 151. See also
ThisDocument: variable

Name property
(IElementProperties), 363
(ILayer), 221, 250
(IMap), 148-49
(IStyleGalleryltem), 277
Naming layout elements. See Graphic
elements: naming
NewDocument method (IApplication),
156-57
Next method (IGraphicsContainer), 361,
370
NextFeature method (IFeatureCursor), 349
Normal template (normal.mxt), 17, 20,
3064, 369
deleting commands from, 369
Now function. See VBA functions: Now
Numbers, formatting, 399-400

Object Model Diagrams, 3, 136, 174-75.
See also UML
and Adobe Acrobat Reader, 179-80,
192-93
navigating, 171-74, 179-80, 190-93
simplified in book, 163
wormholes in, 180
Object variables. See Variables: object
ObjectFilter property (IGxDialog), 308
Object-oriented programming, 1, 2, 134-35
Object-oriented syntax, 2, 51-52, 53, 251.
See also VBA
Objects
creating from classes, 133—34, 14243, 159
getting, 171-74
returned, 173
OLE_COLOR objects, 291
OpenDocument event procedures, 154, 168
OpenFeatureClass method
(IFeatureWorkspace), 243

OpenFromFile method
(IWorkspaceFactory), 242—43

Option Explicit, 32-33

Organizing code in procedures and
modules. See Code: organizing

Overview windows. See
CreateOverviewWindow subroutine

Page layourt
background color, setting, 194-95
getting, 194-95, 365
Parameters. See Arguments
Partially refreshing the active view. See
Active view: partially refreshing
PartialRefresh method (IActiveView), 215,
219
Passing values. See Functions: passing
values to and from; Subroutines:
passing values to
Passwords, capturing. See User information,
capturing
Path property (IGxFile), 300
Paths, absolute and relative, 170
Pointer variables. See Variables: pointer
Points, creating, 213
Procedures, 3—4, 18. See also Event
procedures; Functions; Property
procedures; Subroutines
calling, 3-4, 77, 79-80, 83, 91, 95
flow of control in, 80
public and private, 83
wrapper lines in, 18, 21, 56
Projects, 17, 21
Properties, 51-52. See also Forms:
properties, setting; Forms: and
controls: properties, setting; and
names of individual properties
byRef, 244
byVal, 244
as class variables, 134, 137-38, 140
getting, 59-60
setting, 59-60, 144
Property procedures, 138, 230

Queries. See Query statements
Query filters, 332
creating, 332
in feature cursors, 348
and Nothing keyword, 390, 395
in selection sets, 344
Query statements, 316, 320-22. See also
Query fhlters
viewing in Layer Properties, 330
Querylnterface, 159-61, 264
examples, 163-64, 165-66, 346
performed by VBA, 214
examples, 218, 327

Rasters, 221. See also Layers: adding to
maps: raster data sets
Recycling cursors, 395-90
Refresh method (IActiveView), 185
Refreshing
the active view, 184-85
maps, 322
Removing buttons and tools. See
Commands: removing from toolbars
Renderers, 263, 267. See also Layers:
symbolizing; Symbols
assigning labels to, 268
assigning symbols to, 268, 282, 287
associating with layers, 268, 282
class breaks, 285
creating, 286
properties, setting, 28687
creating, 267, 282
RenderMap subroutine, 107
Reporting coordinates. See Coordinates,
reporting
Reset method (IGraphicsContainer), 370
Returned objects. See Objects: returned;
Interfaces: returned
RGR color. See Color models
Row buffers, 392
Run button (VBE), 23, 49

Run-time errors. See Errors: run-time

Sample code, 85, 253, 298. See also
Subroutines: importing
BufferFeatures, 92-97
CreateNewChart, 87-90
CreateQverviewWindow, 82-85
modifying, 88-89, 93-95
RenderMap, 107
SaveDocument method (IApplication),
167
Saving map documents. See Map
documents (.mxd files): saving
Scale dependency. See Layers: scale
dependency, setting
Search cursors. See Feature cursors: Search
Search method (IFeatureClass), 348
SelectFeatures method (IFeatureSelection).
332,334
Selecting features. See Features: selecting
Selection color. See Features: selection
color, setting
Selection sets, 339-41, 342, 343
creating, 34345, 345406
getting, 342-43
SelectionChange event procedures, 317, 322
SelectionColor property
(IFeatureSelection), 336
SelectionSet property (IFeatureSelection),
342
Show method (VBA form), 52, 55
SndPlaySound function, 141
Status bar. See ArcMap: status bar
StatusBar property (IApplication), 209
Strings, quoting, 116, 320
Style gallery
classes, 273
getting, 275
items, 273, 27577
Styles, 274, 278-79. See also Style gallery
Subroutines, 77-78. See also Procedures
compared to functions, 77
creating, 140
exiting, 365

INDEX

INDEX

Subroutines (continued)
importing, 81-82, 87, 92 (see also Sample
code)
passing values to, 86, 89, 93-95
Superclasses. See Classes: abstract
Switching interfaces. See Querylnterface
Symbols, 266. See also Layers: symbolizing;
Renderers
assigned automatically to layers, 252, 269
assigning colors to, 26667
assigning to renderers, 268, 282, 287
creating, 266, 287
predefined (see Style gallery: classes;
Style gallery: items)
Syntax. See Object-oriented syntax

Table of contents, updating, 184
Tables, 377. See also Cells; Fields
Testing code, 22-23, 49, 168
Text elements. See Graphic elements: text
Text files, reading, 112—13, 115-17
Text property (ITextElement), 371
ThisDocument

code module, 17, 21

variable

in ArcCatalog, 295-96
in ArcMap, 151, 165, 203
Title property (IDocument), 152-53, 155-56
Toolbars, 5, 6. See also names of individual
toolbars

creating, 8-9

displaying, 9

docking, 231-32, 236-37

getting, 231-32

hiding, 13

removing commands from, 10

separating commands on, 12-13, 20
Tools, 16. See also Commands; MouseDown

event procedures

creating, 199, 205-6

disabling, 223-25

mouse pointers for, 2078
Tooltip event procedures, 34-35

Type mismatch errors. See Error messages:
Type mismatch

TypeOf statements, 222, 224

UlControls. See Commands
UIDs. See GUIDs
UML, 2-3, 136-37, 138. See also Object
Model Diagrams
symbols
for class relationships, 172, 175, 176
for classes, 177
for interfaces, 147-48
for multiplicity, 172
for properties, 152
for returned objects, 153
Underscore (_). See Line continuation
Unified Modeling Language. See UML
Update cursors. See Feature cursors: Update
Update method (IFeatureClass), 348
UpdateContents method (IMxDocument),
184
User information, capturing, 165-68
User interface, 7
customizing, 5-7

Value property (IRowBuffer), 391
ValueToString method (INumberFormat),
400
Variables, 24-26
button, 200, 220
data types for (see Data types)
declaring (see Interfaces: declaring
variables to; Variables:
dimensioning)
dimensioning, 26, 143
intrinsic, 142, 321
naming conventions, 30
object, 14243
pointer, 149, 151
predefined (see under Application variable;
ThisDocument: variable)

Variables (continued)
and quote marks, 89, 321 (see also Strings,
quoting)
reusing, 235-36
scope of, 137-38
shift, 200
space allotted to, 26
undeclared, 32-33
%y, 200
VBA, 1, 3, 16-17, 18, 51, 53, 149. See also
Object-oriented syntax
VBA functions
Close, 112
EOF (End of File), 112
InputBox, 98
Is, 72, 74
MsgBox, 18, 144
Now, 30, 166, 374
Open, 112
RGB, 291
vbCrLf (carriage return line feed), 144
VBE. See Visual Basic Editor

View Source. See Visual Basic Editor:
opening; Forms: controls: viewing
code

Visible property (ILayer), 183

Visual Basic Editor, 16

opening, 20, 41
Standard toolbar of, 23
Toolbox of, 38, 43
Visual Basic for Applications. See VBA

WhereClause property (IQueryFilter), 332
Window handles, 24243
Workspace factories, 24041

creating, 242, 247, 257
Workspaces, 24041

getting, 24243, 24749, 257-58
Wrapper lines, 18, 21, 56

Zooming on a map display, 350, 351-56

INDEX

ESRI Press publishes books about the science, application, and technology
of GIS. Ask for these titles at your local bookstore or order by calling
1-800-447-9778. You can also read book descriptions, read reviews,
and shop online at www.esri.com/fesripress. Qutside the United States,
contact your local ESRI distributor. ESRI Press titles are distributed to
the book trade by the Independent Publishers Group (800-888-4741 in
the United States, 312-337-0747 outside the United States).

@ ESRI PRESS
380 NEW YORK STREET, REDLANDS, CALIFORNIA 92373-8100
% www.esri.com/esripress

Category: Geographic Information Systems/VBA Programming

GETTING TO KNOW

Arco bi ec.ts Programming ArcGIS with VBA

ArcObjects are the building blocks of ArcGIS, geographic information system (GIS) software
from ESRI. With ArcObjects, you can create your own menus, tools, workflows, applications,
and custom feature classes for use with ArcGIS. Getting to Know ArcObjects is designed to
teach programmers of all skill levels, including absolute beginners, how to work with
ArcObjects using Microsoft Visual Basic for Applications (VBA).

Getting to Know ArcObjects teaches the basics of VBA programming, then progresses quickly
to ArcObjects. Readers learn what ArcObjects are, use object model diagrams to find out
what individual objects do, and program objects to execute specific GIS tasks, including:

¢ Adding layers to a map » Working with selected features
¢ Defining layer symbology * Creating dynamic layouts)
* Querying data » Editing feature attributes

Like other books in the ESRI Getting to Know series, Getting f::; Know ArcObjects uses a
proven learning method that combines focused conceptual material with step-based exercises.
Diagrams and color graphics enhance the concepts and provide direction and reinforcement
in the exercises. The complete set of object model diagrams, as well as all code written in
the exercises (which readers can adapt for their own projects), is included with the exercise
data on a companion CD-ROM. A companion Web site (www.esri.com/GTKArcObjects)
features additional learning resources and workbook updates.

Getting to Know ArcObjects supports the self-learner and makes a practical lab manual for
instructors in the classroom. Those who are new to programming, or just new to ArcObjects,
will find Getting to Know ArcObjects the perfect starting place for getting the most out of
ArcGIS and the objects on which it is built.

Required Software: ArcView 8.3, ArcEditor 8.3, or Arcinfo 8.3 software is required
to complete the exercises in this workbook. Earlier software releases are not compatible,
For information about using later releases, visit www.esri.com/GTKArcObjects.

CD-ROM includes the complete set of ArcObjects object model diagrams, spatial
data used in the exercises, and exercise code and results.

Robert Burke is a senior instructor and technical writer at ESRI and
teaches GIS and programming courses at the University of Redlands.

P
=3
Sl ISBN 1-58948-018-X
$59.95 Pprinted in the USA ESRI ll ”””" |I| ”"H”
87593-94014 DOME15M2/03dh PRESS 9lizg1s89las0186

B T e e T i Ui = = e = ST EVEE—

	0
	1
	cover

	part1
	1
	2
	3
	4
	5
	6
	7
	8
	9

	1
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	2
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29

	3
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39

	4
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49

	5
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59

	6
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69

	7
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79

	8
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89

	9
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99

	to
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	back

