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Preface

Preface to the second edition
In the second edition, we introduced new material to reflect recent developments in the area
of stochastic programming. Chapter 6 underwent substantial revision. In sections 6.3.4–
6.3.6, we extended the discussion of law invariant coherent risk measures and their Kusuoka
representations. In sections 6.8.2–6.8.6, we provided in-depth analysis of dynamic risk
measures and concepts of time consistency, including several new results.

In Chapter 4, we provided analytical description of the tangent and normal cones of
chance constrained sets in section 4.3.3. We extended the analysis of optimality conditions
in section 4.3.4 to non-convex problems.

In Chapter 5, we added section 5.10 with a discussion of the Stochastic Dual Dynamic
Programming method, which became popular in power generation planning. We also made
corrections and small additions in Chapters 3 and 7, and we updated the bibliography.

Preface to the first edition
The main topic of this book are optimization problems involving uncertain parameters,
for which stochastic models are available. Although many ways have been proposed to
model uncertain quantities, stochastic models have proved their flexibility and usefulness
in diverse areas of science. This is mainly due to solid mathematical foundations and
theoretical richness of the theory of probability and stochastic processes, and to sound
statistical techniques of using real data.

Optimization problems involving stochastic models occur in almost all areas of sci-
ence and engineering, so diverse as telecommunication, medicine, or finance, to name just
a few. This stimulates interest in rigorous ways of formulating, analyzing, and solving such
problems. Due to the presence of random parameters in the model, the theory combines
concepts of the optimization theory, the theory of probability and statistics, and functional
analysis. Moreover, in recent years the theory and methods of stochastic programming have
undergone major advances. All these factors motivated us to present in an accessible and
rigorous form contemporary models and ideas of stochastic programming. We hope that
the book will encourage other researchers to apply stochastic programming models and to
undertake further studies of this fascinating and rapidly developing area.

We do not try to provide a comprehensive presentation of all aspects of stochastic

iii
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iv Preface

programming, but we rather concentrate on theoretical foundations and recent advances in
selected areas. The book is organized in 7 chapters. The first chapter addresses modeling
issues. The basic concepts, such as recourse actions, chance (probabilistic) constraints
and the nonanticipativity principle, are introduced in the context of specific models. The
discussion is aimed at providing motivation for the theoretical developments in the book,
rather than practical recommendations.

Chapters 2 and 3 present detailed development of the theory of two- and multistage
stochastic programming problems. We analyze properties of the models, develop optimal-
ity conditions and duality theory in a rather general setting. Our analysis covers general
distributions of uncertain parameters, and also provides special results for discrete distri-
butions, which are relevant for numerical methods. Due to specific properties of two- and
multi-stage stochastic programming problems, we were able to derive many of these results
without resorting to methods of functional analysis.

The basic assumption in the modeling and technical developments is that the proba-
bility distribution of the random data is not influenced by our actions (decisions). In some
applications this assumption could be unjustified. However, dependence of probability dis-
tribution on decisions typically destroys the convex structure of the optimization problems
considered, and our analysis exploits convexity in a significant way.

Chapter 4 deals with chance (probabilistic) constraints, which appear naturally in
many applications. The chapter presents the current state of the theory, focusing on the
structure of the problems, optimality theory, and duality. We present generalized convexity
of functions and measures, differentiability, and approximations of probability functions.
Much attention is devoted to problems with separable chance constraints and problems
with discrete distributions. We also analyze problems with first order stochastic dominance
constraints, which can be viewed as problems with continuum of probabilistic constraints.
Many of the presented results are relatively new and were not previously available in stan-
dard textbooks.

Chapter 5 is devoted to statistical inference in stochastic programming. The starting
point of the analysis is that the probability distribution of the random data vector is ap-
proximated by an empirical probability measure. Consequently the “true” (expected value)
optimization problem is replaced by its sample average approximation (SAA). Origins of
this statistical inference are going back to the classical theory of the maximum likelihood
method routinely used in statistics. Our motivation and applications are somewhat differ-
ent, because we aim at solving stochastic programming problems by Monte Carlo sampling
techniques. That is, the sample is generated in the computer and its size is only constrained
by the computational resources needed to solve the constructed SAA problem. One of
the byproducts of this theory is the complexity analysis of two and multistage stochastic
programming. Already in the case of two stage stochastic programming the number of
scenarios (discretization points) grows exponentially with the increase of the number of
random parameters. Furthermore, for multistage problems, the computational complexity
also grows exponentially with the increase of the number of stages.

In Chapter 6 we outline the modern theory of risk averse approaches to stochastic
programming. We focus on the analysis of the models, optimality theory, and duality.
Static and two-stage risk-averse models are analyzed in much detail. We also outline a risk-
averse approach to multistage problems, using conditional risk mappings and the principle
of “time consistency.”
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Preface v

Chapter 7 contains formulations of technical results used in the other parts of the
book. For some of these, less known, results we give proofs, while others are referred to
the literature. The subject index can help the reader to find quickly a required definition or
formulation of a needed technical result.

Several important aspects of stochastic programming have been left out. We do not
discuss numerical methods for solving stochastic programming problems, with exception
of section 5.9 where the Stochastic Approximation method, and its relation to complex-
ity estimates, is considered. Of course, numerical methods is an important topic which
deserves careful analysis. This, however, is a vast and separate area which should be con-
sidered in a more general framework of modern optimization methods and to large extent
would lead outside the scope of this book.

We also decided not to include a thorough discussion of stochastic integer program-
ming. The theory and methods of solving stochastic integer programming problems draw
heavily from the theory of general integer programming. Their comprehensive presentation
would entail discussion of many concepts and methods of this vast field, which would have
little connection with the rest of the book.

At the beginning of each chapter we indicate the authors who were primarily respon-
sible for writing the material, but the book is the creation of all three of us, and we share
equal responsibility for errors and inaccuracies that escaped our attention.

We thank Stevens Institute of Technology and Rutgers University for granting sab-
batical leaves to Darinka Dentcheva and Andrzej Ruszczyński, during which a large portion
of this work was written. Andrzej Ruszczyński is also thankful to the Department of Oper-
ations Research and Financial Engineering of Princeton University for providing him with
excellent conditions for his stay during the sabbatical leave.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński
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Chapter 1

Stochastic Programming
Models

Andrzej Ruszczyński and Alexander Shapiro

1.1 Introduction
The readers familiar with the area of optimization can easily name several classes of op-
timization problems, for which advanced theoretical results exist and efficient numerical
methods have been found. In that respect we can mention linear programming, quadratic
programming, convex optimization, nonlinear optimization, etc. Stochastic programming
sounds similar, but no specific formulation plays the role of the generic stochastic program-
ming problem. The presence of random quantities in the model under consideration opens
the door to wealth of different problem settings, reflecting different aspects of the applied
problem at hand. The main purpose of this chapter is to illustrate the main approaches that
can be followed when developing a suitable stochastic optimization model. For the purpose
of presentation, these are very simplified versions of problems encountered in practice, but
we hope that they will still help us to convey our main message.

1.2 Inventory
1.2.1 The Newsvendor Problem

Suppose that a company has to decide about order quantity x of a certain product to satisfy
demand d. The cost of ordering is c > 0 per unit. If the demand d is larger than x, then
the company makes an additional order for the unit price b ≥ 0. The cost of this is equal to
b(d− x) if d > x, and is zero otherwise. On the other hand, if d < x, then holding cost of

1
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2 Chapter 1. Stochastic Programming Models

h(x− d) ≥ 0 is incurred. The total cost is then equal to1

F (x, d) = cx+ b[d− x]+ + h[x− d]+. (1.1)

We assume that b > c, i.e., the back order penalty cost is larger than the ordering cost.
The objective is to minimize the total cost F (x, d). Here x is the decision variable

and the demand d is a parameter. Therefore, if the demand is known, the corresponding
optimization problem can be formulated in the form

Min
x≥0

F (x, d). (1.2)

The objective function F (x, d) can be rewritten as

F (x, d) = max
{

(c− b)x+ bd, (c+ h)x− hd
}
, (1.3)

which is a piecewise linear function with a minimum attained at x̄ = d. That is, if the
demand d is known, then (as expected) the best decision is to order exactly the demand
quantity d.

Consider now the case when the ordering decision should be made before a real-
ization of the demand becomes known. One possible way to proceed in such situation is
to view the demand D as a random variable. By capital D we denote the demand when
viewed as a random variable in order to distinguish it from its particular realization d.
We assume, further, that the probability distribution of D is known. This makes sense in
situations where the ordering procedure repeats itself and the distribution of D can be esti-
mated from historical data. Then it makes sense to talk about the expected value, denoted
E[F (x,D)], of the total cost viewed as a function of the order quantity x. Consequently,
we can write the corresponding optimization problem

Min
x≥0

{
f(x) := E[F (x,D)]

}
. (1.4)

The above formulation approaches the problem by optimizing (minimizing) the total
cost on average. What would be a possible justification of such approach? If the process
repeats itself, then by the Law of Large Numbers, for a given (fixed) x, the average of the
total cost, over many repetitions, will converge (with probability one) to the expectation
E[F (x,D)], and, indeed, in that case the solution of problem (1.4) will be optimal on
average.

The above problem gives a very simple example of a two-stage problem or a problem
with a recourse action. At the first stage, before a realization of the demand D is known,
one has to make a decision about the ordering quantity x. At the second stage, after a
realization d of demand D becomes known, it may happen that d > x. In that case the
company takes the recourse action of ordering the required quantity d−x at the higher cost
of b > c.

The next question is how to solve the expected value problem (1.4). In the present
case it can be solved in a closed form. Consider the cumulative distribution function (cdf)
H(x) := Pr(D ≤ x) of the random variable D. Note that H(x) = 0 for all x < 0,

1For a number a ∈ R, [a]+ denotes the maximum max{a, 0}.
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1.2. Inventory 3

because the demand cannot be negative. The expectation E[F (x,D)] can be written in the
following form

E[F (x,D)] = bE[D] + (c− b)x+ (b+ h)

∫ x

0

H(z)dz. (1.5)

Indeed, the expectation function f(x) = E[F (x,D)] is a convex function.
Moreover, since it is assumed that f(x) is well defined and finite values, it is
continuous. Consequently for x ≥ 0 we have

f(x) = f(0) +

∫ x

0

f ′(z)dz,

where at nondifferentiable points the derivative f ′(z) is understood as the right
side derivative. Since D ≥ 0 we have that f(0) = bE[D]. Also we have that

f ′(z) = c+ E
[
∂

∂z
(b[D − z]+ + h[z −D]+)

]
= c− bPr(D ≥ z) + hPr(D ≤ z)
= c− b(1−H(z)) + hH(z)

= c− b+ (b+ h)H(z).

Formula (1.5) then follows.

We have that d
dx

∫ x
0
H(z)dz = H(x), provided that H(·) is continuous at x. In this

case, we can take the derivative of the right hand side of (1.5) with respect to x and equate it
to zero. We conclude that the optimal solutions of problem (1.4) are defined by the equation
(b + h)H(x) + c − b = 0, and hence an optimal solution of problem (1.4) is equal to the
quantile

x̄ = H−1 (κ) , with κ =
b− c
b+ h

. (1.6)

Remark 1. Recall that for κ ∈ (0, 1) the left side κ-quantile of the cdf H(·) is defined as
H−1(κ) := inf{t : H(t) ≥ κ}. In a similar way, the right side κ-quantile is defined as
sup{t : H(t) ≤ κ}. If the left and right κ-quantiles are the same, then problem (1.4) has
unique optimal solution x̄ = H−1 (κ). Otherwise the set of optimal solutions of problem
(1.4) is given by the whole interval of κ-quantiles.

Suppose for the moment that the random variable D has a finitely supported dis-
tribution, i.e., it takes values d1, ..., dK (called scenarios) with respective probabilities
p1, ..., pK . In that case its cdf H(·) is a step function with jumps of size pk at each dk,
k = 1, ...,K. Formula (1.6) for an optimal solution still holds with the corresponding
left side (right side) κ-quantile, coinciding with one of the points dk, k = 1, ...,K. For
example, the scenarios may represent historical data collected over a period of time. In
such case the corresponding cdf is viewed as the empirical cdf giving an approximation
(estimation) of the true cdf, and the associated κ-quantile is viewed as the sample estimate
of the κ-quantile associated with the true distribution.
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4 Chapter 1. Stochastic Programming Models

It is instructive to compare the quantile solution x̄ with a solution corresponding to
one specific demand value d := d̄, where d̄ is, say, the mean (expected value) of D. As
it was mentioned earlier, the optimal solution of such (deterministic) problem is d̄. The
mean d̄ can be very different from the κ-quantile x̄ = H−1 (κ). It is also worthwhile
to mention that sample quantiles are typically much less sensitive than sample mean to
random perturbations of the empirical data.

In applications, closed form solutions for stochastic programming problems such as
(1.4) are rarely available. In the case of finitely many scenarios it is possible to model the
stochastic program as a deterministic optimization problem, by writing the expected value
E[F (x,D)] as the weighted sum:

E[F (x,D)] =

K∑
k=1

pkF (x, dk).

The deterministic formulation (1.2) corresponds to one scenario d taken with probability
one. By using the representation (1.3), we can write problem (1.2) as the linear program-
ming problem

Min
x≥0, v

v

s.t. v ≥ (c− b)x+ bd,

v ≥ (c+ h)x− hd.

(1.7)

Indeed, for fixed x, the optimal value of (1.7) is equal to max{(c−b)x+bd, (c+h)x−hd},
which is equal to F (x, d). Similarly, the expected value problem (1.4), with scenarios
d1, ..., dK , can be written as the linear programming problem:

Min
x≥0, v1,...,vK

K∑
k=1

pkvk

subject to vk ≥ (c− b)x+ bdk, k = 1, ...,K,

vk ≥ (c+ h)x− hdk, k = 1, ...,K.

(1.8)

It is worth noting here the almost separable structure of problem (1.8). For a fixed x,
problem (1.8) separates into the sum of optimal values of problems of the form (1.7) with
d = dk. As we shall see later such decomposable structure is typical for two-stage stochas-
tic programming problems.

Worst Case Approach

One can also consider the worst case approach. That is, suppose that there are known lower
and upper bounds for the demand, i.e., it is unknown that d ∈ [l, u], where l ≤ u are given
(nonnegative) numbers. Then the worst case formulation is

Min
x≥0

max
d∈[l,u]

F (x, d). (1.9)

That is, while making decision x one is prepared for the worst possible outcome of the
maximal cost. By (1.3) we have that

max
d∈[l,u]

F (x, d) = max{F (x, l), F (x, u)}.
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Clearly we should look at the optimal solution in the interval [l, u], and hence problem (1.9)
can be written as

Min
x∈[l,u]

{
ψ(x) := max

{
cx+ h[x− l]+, cx+ b[u− x]+

}}
.

The function ψ(x) is a piecewise linear convex function. Assuming that b > c we
have that the optimal solution of problem (1.9) is attained at the point where h(x − l) =
b(u− x). That is, the optimal solution of problem (1.9) is

x∗ =
hl + bu

h+ b
.

The “worst case” solution x∗ can be quite different from the solution x̄ which is optimal
on average (given in (1.6)), and could be overall conservative. For instance, if h = 0, i.e.,
the holding cost is zero, then x∗ = u. On the other hand, the optimal on average solution x̄
depends on the distribution of the demand D which could be unavailable.

Suppose now that in addition to the lower and upper bounds of the demand we know
its mean (expected value) d̄ = E[D]. Of course, we have that d̄ ∈ [l, u]. Then we can
consider the following worst case formulation

Min
x≥0

sup
H∈M

EH [F (x,D)], (1.10)

where M denotes the set of probability measures supported on the interval [l, u] and having
mean d̄, and the notationEH [F (x,D)] emphasizes that the expectation is taken with respect
to the cumulative distribution function (probability measure)H(·) ofD. We study minimax
problems of the form (1.10) in section 6.7 (see also problem 6.8 on page 409).

1.2.2 Chance Constraints
We have already observed that for a particular realization of the demand D, the cost
F (x̄, D) can be quite different from the optimal-on-average cost E[F (x̄, D)]. Therefore
a natural question is whether we can control the risk of the cost F (x,D) to be not “too
high.” For example, for a chosen value (threshold) τ > 0, we may add to problem (1.4)
the constraint F (x,D) ≤ τ to be satisfied for all possible realizations of the demand D.
That is, we want to make sure that the total cost will not be larger than τ in all possible
circumstances. Assuming that the demand can vary in a specified uncertainty set D ⊂ R,
this means that the inequalities (c − b)x + bd ≤ τ and (c + h)x − hd ≤ τ should hold
for all possible realizations d ∈ D of the demand. That is, the ordering quantity x should
satisfy the following inequalities

bd− τ
b− c

≤ x ≤ hd+ τ

c+ h
, ∀d ∈ D. (1.11)

This could be quite restrictive if the uncertainty set D is large. In particular, if there is at
least one realization d ∈ D greater than τ/c, then the system (1.11) is inconsistent, i.e., the
corresponding problem has no feasible solution.

In such situations it makes sense to introduce the constraint that the probability of
F (x,D) being larger than τ is less than a specified value (significance level) α ∈ (0, 1).
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6 Chapter 1. Stochastic Programming Models

This leads to a chance (also called probabilistic) constraint which can be written in the
form

Pr{F (x,D) > τ} < α, (1.12)

or equivalently
Pr{F (x,D) ≤ τ} ≥ 1− α. (1.13)

By adding the chance constraint (1.13) to the optimization problem (1.4) we want to min-
imize the total cost on average, while making sure that the risk of the cost to be excessive
(i.e., the probability that the cost is larger than τ ) is small (i.e., less than α). We have that

Pr{F (x,D) ≤ τ} = Pr
{

(c+h)x−τ
h ≤ D ≤ (b−c)x+τ

b

}
. (1.14)

For x ≤ τ/c the inequalities on the right hand side of (1.14) are consistent and hence for
such x (assuming that H(·) is continuous),

Pr{F (x,D) ≤ τ} = H
(

(b−c)x+τ
b

)
−H

(
(c+h)x−τ

h

)
. (1.15)

The chance constraint (1.13) becomes:

H
(

(b−c)x+τ
b

)
−H

(
(c+h)x−τ

h

)
≥ 1− α. (1.16)

Even for small (but positive) values of α, it can be a significant relaxation of the corre-
sponding worst case constraints (1.11).

1.2.3 Multistage Models
Suppose now that the company has a planning horizon of T periods. We model the demand
as a random process Dt indexed by the time t = 1, ..., T . At the beginning, at t = 1, there
is (known) inventory level y1. At each period t = 1, ..., T the company first observes the
current inventory level yt and then places an order to replenish the inventory level to xt.
This results in order quantity xt − yt which clearly should be nonnegative, i.e., xt ≥ yt.
After the inventory is replenished, demand dt is realized2 and hence the next inventory
level, at the beginning of period t+ 1, becomes yt+1 = xt−dt. We allow backlogging and
the inventory level yt may become negative. The total cost incurred in period t is

ct(xt − yt) + bt[dt − xt]+ + ht[xt − dt]+,

where ct, bt, ht are the ordering, backorder penalty, and holding costs per unit, respectively,
at time t. We assume that bt > ct > 0 and ht ≥ 0, t = 1, . . . , T . The objective is
to minimize the expected value of the total cost over the planning horizon. This can be
written as the following optimization problem

Min
xt≥yt

T∑
t=1

E
{
ct(xt − yt) + bt[Dt − xt]+ + ht[xt −Dt]+

}
s.t. yt+1 = xt −Dt, t = 1, ..., T − 1.

(1.17)

2As before, we denote by dt a particular realization of the random variable Dt.
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For T = 1 problem (1.17) is essentially the same as the (static) problem (1.4) (the
only difference is the assumption here of the initial inventory level y1). However, for
T > 1 the situation is more subtle. It is not even clear what is the exact meaning of
the formulation (1.17). There are several equivalent ways to give precise meaning to the
above problem. One possible way is to write equations describing the dynamics of the
corresponding optimization process. That is what we discuss next.

Consider the demand process Dt, t = 1, ..., T . We denote by D[t] := (D1, ..., Dt)
the history of the demand process up to time t, and by d[t] := (d1, ..., dt) its particular re-
alization. At each period (stage) t, our decision about the inventory level xt should depend
only on information available at the time of the decision, i.e., on an observed realization
d[t−1] of the demand process, and not on future observations. This principle is called the
nonanticipativity constraint. We assume, however, that the probability distribution of the
demand process is known. That is, the conditional probability distribution of Dt, given
D[t−1] = d[t−1], is assumed to be known.

At the last stage t = T , for observed inventory level yT , we need to solve the prob-
lem:

Min
xT≥yT

cT (xT − yT ) + E
{
bT [DT − xT ]+ + hT [xT −DT ]+

∣∣D[T−1] = d[T−1]

}
. (1.18)

The expectation in (1.18) is conditional on the realization d[T−1] of the demand process
prior to the considered time T . The optimal value (and the set of optimal solutions) of
problem (1.18) depends on yT and d[T−1], and is denoted QT (yT , d[T−1]). At stage t =
T − 1 we solve the problem

Min
xT−1≥yT−1

cT−1(xT−1 − yT−1)

+ E
{
bT−1[DT−1 − xT−1]+ + hT−1[xT−1 −DT−1]+

+QT
(
xT−1 −DT−1, D[T−1]

) ∣∣D[T−2] = d[T−2]

}
.

(1.19)

Its optimal value is denoted QT−1(yT−1, d[T−2]). Proceeding in this way backwards in
time we write the following dynamic programming equations

Qt(yt, d[t−1]) = min
xt≥yt

ct(xt − yt) + E
{
bt[Dt − xt]+

+ ht[xt −Dt]+ +Qt+1

(
xt −Dt, D[t]

) ∣∣D[t−1] = d[t−1]

}
,

(1.20)

t = T − 1, ..., 2. Finally, at the first stage we need to solve problem

Min
x1≥y1

c1(x1 − y1) + E
{
b1[D1 − x1]+ + h1[x1 −D1]+ +Q2 (x1 −D1, D1)

}
. (1.21)

Let us take a closer look at the above decision process. We need to understand how
the dynamic programming equations (1.19)–(1.21) could be solved and what is the meaning
of the solutions. Starting with the last stage t = T , we need to calculate the value func-
tionsQt(yt, d[t−1]) going backwards in time. In the present case the value functions cannot
be calculated in a closed form and should be approximated numerically. For a generally
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8 Chapter 1. Stochastic Programming Models

distributed demand process this could be very difficult or even impossible. The situation
simplifies dramatically if we assume that the random process Dt is stagewise independent,
that is, if Dt is independent of D[t−1], t = 2, ..., T . Then the conditional expectations
in equations (1.18)–(1.19) become the corresponding unconditional expectations. Conse-
quently, the value functions Qt(yt) do not depend on demand realizations and become
functions of the respective univariate variables yt only. In that case by discretization of yt
and the (one-dimensional) distribution of Dt, these value functions can be calculated in a
recursive way.

Suppose now that somehow we can solve the dynamic programming equations (1.19)–
(1.21). Let x̄t be a corresponding optimal solution, i.e., x̄T is an optimal solution of (1.18),
x̄t is an optimal solution of the right hand side of (1.20) for t = T − 1, ..., 2, and x̄1 is an
optimal solution of (1.21). We see that x̄t is a function of yt and d[t−1], for t = 2, ..., T ,
while the first stage (optimal) decision x̄1 is independent of the data. Under the assumption
of stagewise independence, x̄t = x̄t(yt) becomes a function of yt alone. Note that yt, in
itself, is a function of d[t−1] = (d1, ..., dt−1) and decisions (x1, ..., xt−1). Therefore we
may think about a sequence of possible decisions xt = xt(d[t−1]), t = 1, ..., T , as func-
tions of realizations of the demand process available at the time of the decision (with the
convention that x1 is independent of the data). Such a sequence of decisions xt(d[t−1])
is called an implementable policy, or simply a policy. That is, an implementable policy is
a rule which specifies our decisions, based on information available at the current stage,
for any possible realization of the demand process. By definition, an implementable policy
xt = xt(d[t−1]) satisfies the nonanticipativity constraint. A policy is said to be feasible
if it satisfies other constraints with probability one (w.p.1). In the present case a policy is
feasible if xt ≥ yt, t = 1, ..., T , for almost every realization of the demand process.

We can now formulate the optimization problem (1.17) as the problem of minimiza-
tion of the expectation in (1.17) with respect to all implementable feasible policies. An
optimal solution of such problem will give us an optimal policy. We have that a policy
x̄t is optimal if it is given by optimal solutions of the respective dynamic programming
equations. Note again that under the assumption of stagewise independence, an optimal
policy x̄t = x̄t(yt) is a function of yt alone. Moreover, in that case it is possible to give the
following characterization of the optimal policy. Let x∗t be an (unconstrained) minimizer
of

ctxt + E
{
bt[Dt − xt]+ + ht[xt −Dt]+ +Qt+1 (xt −Dt)

}
, t = T, ..., 1, (1.22)

with the convention that QT+1(·) = 0. Since Qt+1(·) is nonnegative valued and ct + ht >
0, we have that the function in (1.22) tends to +∞ if xt → +∞. Similarly, as bt > ct,
it also tends to +∞ if xt → −∞. Moreover, this function is convex and continuous (as
long as it is real valued) and hence attains its minimal value. Then by using convexity of
the value functions it is not difficult to show that x̄t = max{yt, x∗t } is an optimal policy.
Such policy is called the basestock policy. A similar result holds without the assumption
of stagewise independence, but then the critical values x∗t depend on realizations of the
demand process up to time t− 1.

As it was mentioned above, if the stagewise independence condition is satisfied, then
each value function Qt(yt) is a function of the variable yt. In that case we can accurately
represent Qt(·) by discretization, i.e., by specifying its values at a finite number of points
on the real line. Consequently, the corresponding dynamic programming equations can
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be accurately solved recursively going backwards in time. The situation starts to change
dramatically with increase of the number of variables on which the value functions depend,
like in the example discussed in the next section. The discretization approach may still work
with several state variables, but it quickly becomes impractical when the dimension of the
state vector increases. This is called the “curse of dimensionality.” As we shall see it later,
stochastic programming approaches the problem in a different way, by exploring convexity
of the underlying problem, and thus attempting to solve problems with a state vector of
high dimension. This is achieved by means of discretization of the random process Dt in a
form of a scenario tree, which may also become prohibitively large.

1.3 Multi-Product Assembly
1.3.1 Two Stage Model
Consider a situation where a manufacturer produces n products. There are in total m
different parts (or subassemblies) which have to be ordered from third party suppliers. A
unit of product i requires aij units of part j, where i = 1, . . . , n and j = 1, . . . ,m. Of
course, aij may be zero for some combinations of i and j. The demand for the products
is modeled as a random vector D = (D1, . . . , Dn). Before the demand is known, the
manufacturer may pre-order the parts from outside suppliers, at the cost of cj per unit of
part j. After the demand D is observed, the manufacturer may decide which portion of
the demand is to be satisfied, so that the available numbers of parts are not exceeded. It
costs additionally li to satisfy a unit of demand for product i, and the unit selling price of
this product is qi. The parts which are not used are assessed salvage values sj < cj . The
unsatisfied demand is lost.

Suppose the numbers of parts ordered are equal to xj , j = 1, . . . ,m. After the
demand D becomes known, we need to determine how much of each product to make. Let
us denote the numbers of units produced by zi, i = 1, . . . , n, and the numbers of parts left
in inventory by yj , j = 1, . . . ,m. For an observed value (a realization) d = (d1, ..., dn) of
the random demand vectorD, we can find the best production plan by solving the following
linear programming problem

Min
z,y

n∑
i=1

(li − qi)zi −
n∑
j=1

sjyj

s.t. yj = xj −
n∑
i=1

aijzi, j = 1, . . . ,m,

0 ≤ zi ≤ di, i = 1, . . . , n, yj ≥ 0, j = 1, . . . ,m.

Introducing the matrix A with entries aij , where i = 1, . . . , n and j = 1, . . . ,m, we can
write this problem compactly as follows:

Min
z,y

(l − q)Tz − sTy

s.t. y = x−ATz,

0 ≤ z ≤ d, y ≥ 0.

(1.23)
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10 Chapter 1. Stochastic Programming Models

Observe that the solution of this problem, that is, the vectors z and y, depend on realization
d of the demand vector D as well as on x. Let Q(x, d) denote the optimal value of problem
(1.23). The quantities xj of parts to be ordered can be determined from the following
optimization problem

Min
x≥0

cTx+ E[Q(x,D)], (1.24)

where the expectation is taken with respect to the probability distribution of the random
demand vectorD. The first part of the objective function represents the ordering cost, while
the second part represents the expected cost of the optimal production plan, given ordered
quantities x. Clearly, for realistic data with qi > li, the second part will be negative, so that
some profit will be expected.

Problem (1.23)–(1.24) is an example of a two stage stochastic programming prob-
lem, with (1.23) called the second stage problem, and (1.24) called the first stage problem.
As the second stage problem contains random data (random demand D), its optimal value
Q(x,D) is a random variable. The distribution of this random variable depends on the first
stage decisions x, and therefore the first stage problem cannot be solved without under-
standing of the properties of the second stage problem.

In the special case of finitely many demand scenarios d1, . . . , dK occurring with
positive probabilities p1, . . . , pK , with

∑K
k=1 pk = 1, the two stage problem (1.23)–(1.24)

can be written as one large scale linear programming problem:

Min cTx+

K∑
k=1

pk
[
(l − q)Tzk − sTyk

]
s.t. yk = x−ATzk, k = 1, . . . ,K,

0 ≤ zk ≤ dk, yk ≥ 0, k = 1, . . . ,K,

x ≥ 0,

(1.25)

where the minimization is performed over vector variables x and zk, yk, k = 1, ...,K. We
have integrated the second stage problem (1.23) into this formulation, but we had to allow
for its solution (zk, yk) to depend on the scenario k, because the demand realization dk is
different in each scenario. Because of that, problem (1.25) has the numbers of variables
and constraints roughly proportional to the number of scenarios K.

It is worthwhile to notice the following. There are three types of decision variables
here. Namely, the numbers of ordered parts (vector x), the numbers of produced units
(vector z) and the numbers of parts left in the inventory (vector y). These decision variables
are naturally classified as the first and the second stage decision variables. That is, the
first stage decisions x should be made before a realization of the random data becomes
available and hence should be independent of the random data, while the second stage
decision variables z and y are made after observing the random data and are functions
of the data. The first stage decision variables are often referred to as “here-and-now”
decisions (solution), and second stage decisions are referred to as “wait-and-see” decisions
(solution). It can also be noticed that the second stage problem (1.23) is feasible for every
possible realization of the random data; for example, take z = 0 and y = x. In such a
situation we say that the problem has relatively complete recourse.
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1.3.2 Chance Constrained Model
Suppose now that the manufacturer is concerned with the possibility of losing demand. The
manufacturer would like the probability that all demand be satisfied to be larger than some
fixed service level 1 − α, where α ∈ (0, 1) is small. In this case the problem changes in a
significant way.

Observe that if we want to satisfy demand D = (D1, . . . , Dn), we need to have
x ≥ ATD. If we have the parts needed, there is no need for the production planning stage,
as in problem (1.23). We simply produce zi = Di, i = 1, . . . , n, whenever it is feasible.
Also, the production costs and salvage values do not affect our problem. Consequently, the
requirement of satisfying the demand with probability at least 1− α leads to the following
formulation of the corresponding problem

Min
x≥0

cTx

s.t. Pr
{
ATD ≤ x

}
≥ 1− α.

(1.26)

The chance (also called probabilistic) constraint in the above model is more difficult than in
the case of the newsvendor model considered in section 1.2.2, because it involves a random
vector W = ATD rather than a univariate random variable.

Owing to the separable nature of the chance constraint in (1.26), we can rewrite this
constraint in the following way:

HW (x) ≥ 1− α, (1.27)

where HW (x) := Pr(W ≤ x) is the cumulative distribution function of the n-dimensional
random vector W = ATD. Observe that if n = 1 and c > 0, then an optimal solution x̄
of (1.27) is given by the left side (1− α)-quantile of W , that is, x̄ = H−1

W (1− α). On the
other hand, in the case of multidimensional vector W its distribution has many “smallest
(left side) (1−α)-quantiles,” and the choice of x̄ will depend on the relative proportions of
the cost coefficients cj . It is also worth mentioning that even when the coordinates of the
demand vector D are independent, the coordinates of the vector W can be dependent, and
thus the chance constraint of (1.27) cannot be replaced by a simpler expression featuring
one dimensional marginal distributions.

The feasible set {
x ∈ Rm+ : Pr

(
ATD ≤ x

)
≥ 1− α

}
of problem (1.26) can be written in the following equivalent form{

x ∈ Rm+ : ATd ≤ x, d ∈ D, Pr(D) ≥ 1− α
}
. (1.28)

In the above formulation (1.28) the set D can be any measurable subset of Rn such that
probability of D ∈ D is at least 1 − α. A considerable simplification can be achieved by
choosing a fixed set Dα in such a way that Pr(Dα) ≥ 1 − α. In that way we obtain a
simplified version of problem (1.26):

Min
x≥0

cTx

s.t. ATd ≤ x, ∀ d ∈ Dα.
(1.29)
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12 Chapter 1. Stochastic Programming Models

The set Dα in this formulation is sometimes referred to as the uncertainty set, and the
whole formulation as the robust optimization problem. Observe that in our case we can
solve this problem in the following way. For each part type j we determine xj to be the
minimum number of units necessary to satisfy every demand d ∈ Dα, that is

xj = max
d∈Dα

n∑
i=1

aijdi, j = 1, . . . , n.

In this case the solution is completely determined by the uncertainty set Dα and it does not
depend on the cost coefficients cj .

The choice of the uncertainty set, satisfying the corresponding chance constraint, is
not unique and often is governed by computational convenience. In this book we shall be
mainly concerned with stochastic models, and we shall not discuss models and methods of
robust optimization.

1.3.3 Multistage Model

Consider now the situation when the manufacturer has a planning horizon of T peri-
ods. The demand is modeled as a stochastic process Dt, t = 1, . . . , T , where each
Dt =

(
Dt1, . . . , Dtn

)
is a random vector of demands for the products. The unused parts

can be stored from one period to the next, and holding one unit of part j in inventory costs
hj . For simplicity, we assume that all costs and prices are the same in all periods.

It would not be reasonable to plan specific order quantities for the entire planning
horizon T . Instead, one has to make orders and production decisions at successive stages,
depending on the information available at the current stage. We use symbol D[t] :=(
D1, . . . , Dt

)
to denote the history of the demand process in periods 1, . . . , t. In every

multistage decision problem it is very important to specify which of the decision variables
may depend on which part of the past information.

Let us denote by xt−1 =
(
xt−1,1, . . . , xt−1,n

)
the vector of quantities ordered at the

beginning of stage t, before the demand vector Dt becomes known. The numbers of unites
produced in stage t, will be denoted by zt and the inventory level of parts at the end of stage
t by yt, for t = 1, . . . , T . We use the subscript t − 1 for the order quantity to stress that it
may depend on the past demand realizations D[t−1], but not on Dt, while the production
and storage variables at stage t may depend on D[t], which includes Dt. In the special
case of T = 1, we have the two-stage problem discussed in section 1.3.1; the variable x0

corresponds to the first stage decision vector x, while z1 and y1 correspond to the second
stage decision vectors z and y, respectively.

Suppose T > 1 and consider the last stage t = T , after the demand DT has been
observed. At this time all inventory levels yT−1 of the parts, as well as the last order
quantities xT−1 are known. The problem at stage T is therefore identical to the second
stage problem (1.23) of the two stage formulation:

Min
zT ,yT

(l − q)TzT − sTyT

s.t. yT = yT−1 + xT−1 −ATzT ,

0 ≤ zT ≤ dT , yT ≥ 0,

(1.30)
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1.4. Portfolio Selection 13

where dT is the observed realization of DT . Denote by QT (xT−1, yT−1, dT ) the optimal
value of (1.30). This optimal value depends on the latest inventory levels, order quantities,
and on the present demand. At stage T − 1 we know realization d[T−1] of D[T−1], and
thus we are concerned with the conditional expectation of the last stage cost, that is, the
function

QT (xT−1, yT−1, d[T−1]) := E
{
QT (xT−1, yT−1, DT )

∣∣ D[T−1] = d[T−1]

}
.

At stage T − 1 we solve the problem

Min
zT−1,yT−1,xT−1

(l − q)TzT−1 + hTyT−1 + cTxT−1 +QT (xT−1, yT−1, d[T−1])

s.t. yT−1 = yT−2 + xT−2 −ATzT−1,

0 ≤ zT−1 ≤ dT−1, yT−1 ≥ 0.

(1.31)

Its optimal value is denoted byQT−1(xT−2, yT−2, d[T−1]). Generally, the problem at stage
t = T − 1, . . . , 1 has the form

Min
zt,yt,xt

(l − q)Tzt + hTyt + cTxt +Qt+1(xt, yt, d[t])

s.t. yt = yt−1 + xt−1 −ATzt,

0 ≤ zt ≤ dt, yt ≥ 0,

(1.32)

with
Qt+1(xt, yt, d[t]) := E

{
Qt+1(xt, yt, D[t+1])

∣∣ D[t] = d[t]

}
.

The optimal value of problem (1.32) is denoted by Qt(xt−1, yt−1, d[t]), and the backward
recursion continues. At stage t = 1, the symbol y0 represents the initial inventory levels of
the parts, and the optimal value function Q1(x0, d1) depends only on the initial order x0

and realization d1 of the first demand D1.
The initial problem is to determine the first order quantities x0. It can be written as

Min
x0≥0

cTx0 + E[Q1(x0, D1)]. (1.33)

Although the first stage problem (1.33) looks similar to the first stage problem (1.24) of the
two stage formulation, it is essentially different since the function Q1(x0, d1) is not given
in a computationally accessible form, but in itself is a result of recursive optimization.

1.4 Portfolio Selection
1.4.1 Static Model
Suppose that we want to invest capital W0 in n assets, by investing an amount xi in asset
i, for i = 1, ..., n. Suppose, further, that each asset has a respective return rate Ri (per one
period of time), which is unknown (uncertain) at the time we need to make our decision.
We address now a question of how to distribute our wealthW0 in an optimal way. The total
wealth resulting from our investment after one period of time equals

W1 =

n∑
i=1

ξixi,
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14 Chapter 1. Stochastic Programming Models

where ξi := 1+Ri. We have here the balance constraint
∑n
i=1 xi ≤W0. Suppose, further,

that one of possible investments is cash, so that we can write this balance condition as the
equation

∑n
i=1 xi = W0. Viewing returnsRi as random variables, one can try to maximize

the expected return on an investment. This leads to the following optimization problem

Max
x≥0

E[W1] subject to

n∑
i=1

xi = W0. (1.34)

We have here that

E[W1] =

n∑
i=1

E[ξi]xi =

n∑
i=1

µixi,

where µi := E[ξi] = 1 + E[Ri] and x = (x1, ..., xn) ∈ Rn. Therefore, problem (1.34)
has a simple optimal solution of investing everything into an asset with the largest expected
return rate and has the optimal value of µ∗W0, where µ∗ := max1≤i≤n µi. Of course, from
the practical point of view such solution is not very appealing. Putting everything into one
asset can be very dangerous, because if its realized return rate will be bad, then one can
lose much money.

An alternative approach is to maximize expected utility of the wealth represented by a
concave nondecreasing function U(W1). This leads to the following optimization problem

Max
x≥0

E[U(W1)] subject to

n∑
i=1

xi = W0. (1.35)

This approach requires specification of the utility function. For instance, let U(W ) be
defined as

U(W ) :=

{
(1 + q)(W − a), if W ≥ a,
(1 + r)(W − a), if W ≤ a, (1.36)

with r > q > 0 and a > 0. We can view the involved parameters as follows: a is the
amount that we have to pay after return on the investment, q is the interest rate at which we
can invest the additional wealth W − a, provided that W > a, and r is the interest rate at
which we will have to borrow if W is less than a. For the above utility function, problem
(1.35) can be formulated as the following two stage stochastic linear program

Max
x≥0

E[Q(x, ξ)] subject to
n∑
i=1

xi = W0, (1.37)

where Q(x, ξ) is the optimal value of the problem

Max
y,z∈R+

(1 + q)y − (1 + r)z subject to
n∑
i=1

ξixi = a+ y − z. (1.38)

We can view the above problem (1.38) as the second stage program. Given a realization
ξ = (ξ1, ..., ξn) of random data, we make an optimal decision by solving the corresponding
optimization problem. Of course, in the present case the optimal valueQ(x, ξ) is a function
of W1 =

∑n
i=1 ξixi and can be written explicitly as U(W1).
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Yet another possible approach is to maximize the expected return while controlling
the involved risk of the investment. There are several ways how the concept of risk could be
formalized. For instance, we can evaluate risk by variability ofW measured by its variance
Var[W ] = E[W 2] − (E[W ])2. Since W1 is a linear function of the random variables ξi,
we have that

Var[W1] = xTΣx =

n∑
i,j=1

σijxixj ,

where Σ = [σij ] is the covariance matrix of the random vector ξ (note that the covariance
matrices of the random vectors ξ = (ξ1, ..., ξn) and R = (R1, ..., Rn) are identical). This
leads to the optimization problem of maximizing the expected return subject to the addi-
tional constraint Var[W1] ≤ ν, where ν > 0 is a specified constant. This problem can be
written as

Max
x≥0

n∑
i=1

µixi subject to

n∑
i=1

xi = W0, xTΣx ≤ ν. (1.39)

Since the covariance matrix Σ is positive semidefinite, the constraint xTΣx ≤ ν is convex
quadratic, and hence (1.39) is a convex problem. Note that problem (1.39) has at least one
feasible solution of investing everything in cash, in which case Var[W1] = 0, and since
its feasible set is compact, the problem has an optimal solution. Moreover, since problem
(1.39) is convex and satisfies the Slater condition, there is no duality gap between this
problem and its dual:

Min
λ≥0

Max∑n
i=1

xi=W0
x≥0

{
n∑
i=1

µixi − λ
(
xTΣx− ν

)}
. (1.40)

Consequently, there exists Lagrange multiplier λ̄ ≥ 0 such that problem (1.39) is equivalent
to the problem

Max
x≥0

n∑
i=1

µixi − λ̄xTΣx subject to

n∑
i=1

xi = W0, (1.41)

The equivalence here means that the optimal value of problem (1.39) is equal to the optimal
value of problem (1.41) plus the constant λν, and that any optimal solution of problem
(1.39) is also an optimal solution of problem (1.41). In particular, if problem (1.41) has
unique optimal solution x̄, then x̄ is also the optimal solution of problem (1.39). The
corresponding Lagrange multiplier λ̄ is given by an optimal solution of the dual problem
(1.40). We can view the objective function of the above problem as a compromise between
the expected return and its variability measured by its variance.

Another possible formulation is to minimize Var[W1] keeping the expected return
E[W1] above a specified value τ . That is,

Min
x≥0

xTΣx subject to

n∑
i=1

xi = W0,

n∑
i=1

µixi ≥ τ. (1.42)

For appropriately chosen constants ν, λ̄ and τ , problems (1.39)–(1.42) are equivalent to
each other. Problems (1.41) and (1.42) are quadratic programming problems, while prob-
lem (1.39) can be formulated as a conic quadratic problem. These optimization problems
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16 Chapter 1. Stochastic Programming Models

can be efficiently solved. Note finally that these optimization problems are based on the
first and second order moments of random data ξ and do not require complete knowledge
of the probability distribution of ξ.

We can also approach risk control by imposing chance constraints. Consider the
problem

Max
x≥0

n∑
i=1

µixi subject to

n∑
i=1

xi = W0, Pr

{
n∑
i=1

ξixi ≥ b

}
≥ 1− α. (1.43)

That is, we impose the constraint that with probability at least 1 − α our wealth W1 =∑n
i=1 ξixi should not fall below a chosen amount b. Suppose the random vector ξ has

a multivariate normal distribution with mean vector µ and covariance matrix Σ, written
ξ ∼ N (µ,Σ). ThenW1 has normal distribution with mean

∑n
i=1 µixi and variance xTΣx,

and

Pr{W1 ≥ b} = Pr

{
Z ≥

b−
∑n
i=1 µixi√
xTΣx

}
= Φ

(∑n
i=1 µixi − b√
xTΣx

)
, (1.44)

where Z ∼ N (0, 1) has the standard normal distribution and Φ(z) = Pr(Z ≤ z) is the cdf
of Z.

Therefore we can write the chance constraint of problem (1.43) in the form3

b−
n∑
i=1

µixi + zα
√
xTΣx ≤ 0, (1.45)

where zα := Φ−1(1− α) is the (1− α)-quantile of the standard normal distribution. Note
that since matrix Σ is positive semidefinite,

√
xTΣx defines a seminorm on Rn and is a

convex function. Consequently, if 0 < α ≤ 1/2, then zα ≥ 0 and the constraint (1.45)
is convex. Therefore, provided that problem (1.43) is feasible, there exists a Lagrange
multiplier γ ≥ 0 such that problem (1.43) is equivalent to the problem

Max
x≥0

n∑
i=1

µixi − η
√
xTΣx subject to

n∑
i=1

xi = W0, (1.46)

where η = γzα/(1 + γ).
In financial engineering the (left side) (1− α)-quantile of a random variable Y (rep-

resenting losses) is called Value-at-Risk, i.e.,

V@Rα(Y ) := H−1(1− α), (1.47)

where H(·) is the cdf of Y . The chance constraint of problem (1.43) can be written in the
form of a Value at Risk constraint

V@Rα

(
b−

n∑
i=1

ξixi

)
≤ 0. (1.48)

3Note that if xTΣx = 0, i.e., Var(W1) = 0, then the chance constraint of problem (1.43) holds iff∑n
i=1 µixi ≥ b. In that case equivalence to the constraint (1.45) obviously holds.
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1.4. Portfolio Selection 17

It was possible to write chance (Value-at-Risk) constraint here in a closed form because
of the assumption of joint normal distribution. Note that in the present case the random
variables ξi cannot be negative, which indicates that the assumption of normal distribution
is not very realistic.

1.4.2 Multistage Portfolio Selection

Suppose we are allowed to rebalance our portfolio in time periods t = 1, ..., T − 1, but
without injecting additional cash into it. At each period t we need to make a decision about
distribution of our current wealth Wt among n assets. Let x0 = (x10, ..., xn0) be initial
amounts invested in the assets. Recall that each xi0 is nonnegative and that the balance
equation

∑n
i=1 xi0 = W0 should hold.

We assume now that respective return rates R1t, ..., Rnt, at periods t = 1, ..., T ,
form a random process with a known distribution. Actually we will work with the (vector
valued) random process ξ1, ..., ξT , where ξt = (ξ1t, ..., ξnt) and ξit := 1+Rit, i = 1, ..., n,
t = 1, ..., T . At time period t = 1 we can rebalance the portfolio by specifying the
amounts x1 = (x11, . . . , xn1) invested in the respective assets. At that time we already
know the actual returns in the first period, so it is reasonable to use this information in
the rebalancing decisions. Thus, our second stage decisions, at time t = 1, are actually
functions of realizations of the random data vector ξ1, i.e., x1 = x1(ξ1). And so on, at time
t our decision xt = (x1t, . . . , xnt) is a function xt = xt(ξ[t]) of the available information
given by realization ξ[t] = (ξ1, ..., ξt) of the data process up to time t. A sequence of
specific functions xt = xt(ξ[t]), t = 0, 1, ..., T − 1, with x0 being constant, defines an
implementable policy of the decision process. It is said that such policy is feasible if it
satisfies w.p.1 the model constraints, i.e., the nonnegativity constraints xit(ξ[t]) ≥ 0, i =
1, ..., n, t = 0, ..., T − 1, and the balance of wealth constraints

n∑
i=1

xit(ξ[t]) = Wt.

At period t = 1, ..., T , our wealth Wt depends on the realization of the random data
process and our decisions up to time t, and is equal to

Wt =

n∑
i=1

ξitxi,t−1(ξ[t−1]).

Suppose our objective is to maximize the expected utility of this wealth at the last period,
that is, we consider the problem

Max E[U(WT )]. (1.49)

It is a multistage stochastic programming problem, where stages are numbered from t = 0
to t = T − 1. Optimization is performed over all implementable and feasible policies.

Of course, in order to complete the description of the problem, we need to define
the probability distribution of the random process R1, ..., RT . This can be done in many
different ways. For example, one can construct a particular scenario tree defining time
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18 Chapter 1. Stochastic Programming Models

evolution of the process. If at every stage the random return of each asset is allowed to have
just two continuations, independently of other assets, then the total number of scenarios is
2nT . It also should be ensured that 1 + Rit ≥ 0, i = 1, ..., n, t = 1, ..., T , for all possible
realizations of the random data.

In order to write dynamic programming equations let us consider the above multi-
stage problem backwards in time. At the last stage t = T − 1 a realization ξ[T−1] =
(ξ1, ..., ξT−1) of the random process is known and xT−2 has been chosen. Therefore, we
have to solve the problem

Max
xT−1≥0,WT

E
{
U [WT ]

∣∣ξ[T−1]

}
s.t. WT =

n∑
i=1

ξiTxi,T−1,

n∑
i=1

xi,T−1 = WT−1,
(1.50)

where E{U [WT ]|ξ[T−1]} denotes the conditional expectation of U [WT ] given ξ[T−1]. The
optimal value of the above problem (1.50) depends on WT−1 and ξ[T−1], and is denoted
QT−1(WT−1, ξ[T−1]).

Continuing in this way, at stage t = T − 2, ..., 1, we consider the problem

Max
xt≥0,Wt+1

E
{
Qt+1(Wt+1, ξ[t+1])

∣∣ξ[t]}
s.t. Wt+1 =

n∑
i=1

ξi,t+1xi,t,

n∑
i=1

xi,t = Wt,
(1.51)

whose optimal value is denoted Qt(Wt, ξ[t]). Finally, at stage t = 0 we solve the problem

Max
x0≥0,W1

E[Q1(W1, ξ1)]

s.t. W1 =

n∑
i=1

ξi1xi0,

n∑
i=1

xi0 = W0.
(1.52)

For a general distribution of the data process ξt it may be hard to solve these dynamic
programming equations. The situation simplifies dramatically if the process ξt is stagewise
independent, i.e., ξt is (stochastically) independent of ξ1, ..., ξt−1, for t = 2, ..., T . Of
course, the assumption of stagewise independence is not very realistic in financial models,
but it is instructive to see the dramatic simplifications it allows. In that case the correspond-
ing conditional expectations become unconditional expectations and the cost-to-go (value)
function Qt(Wt), t = 1, ..., T − 1, does not depend on ξ[t]. That is, QT−1(WT−1) is the
optimal value of the problem

Max
xT−1≥0,WT

E {U [WT ]}

s.t. WT =

n∑
i=1

ξiTxi,T−1,

n∑
i=1

xi,T−1 = WT−1,
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1.4. Portfolio Selection 19

and Qt(Wt) is the optimal value of

Max
xt≥0,Wt+1

E{Qt+1(Wt+1)}

s.t. Wt+1 =

n∑
i=1

ξi,t+1xi,t,

n∑
i=1

xi,t = Wt,

for t = T − 2, ..., 1.
The other relevant question is what utility function to use. Let us consider the log-

arithmic utility function U(W ) := lnW . Note that this utility function is defined for
W > 0. For positive numbers a and w and for WT−1 = w and WT−1 = aw, there is a
one-to-one correspondence xT−1 ↔ axT−1 between the feasible sets of the correspond-
ing problem (1.50). For the logarithmic utility function this implies the following relation
between the optimal values of these problems

QT−1(aw, ξ[T−1]) = QT−1(w, ξ[T−1]) + ln a. (1.53)

That is, at stage t = T − 1 we solve the problem

Max
xT−1≥0

E

{
ln

(
n∑
i=1

ξi,Txi,T−1

)∣∣∣ξ[T−1]

}
s.t.

n∑
i=1

xi,T−1 = WT−1. (1.54)

By (1.53) its optimal value is

QT−1

(
WT−1, ξ[T−1]

)
= νT−1

(
ξ[T−1]

)
+ lnWT−1,

where νT−1

(
ξ[T−1]

)
denotes the optimal value of (1.54) forWT−1 = 1. At stage t = T−2

we solve problem

Max
xT−2≥0

E

{
νT−1

(
ξ[T−1]

)
+ ln

(
n∑
i=1

ξi,T−1xi,T−2

)∣∣∣ξ[T−2]

}

s.t.
n∑
i=1

xi,T−2 = WT−2.

(1.55)

Of course, we have that

E

{
νT−1

(
ξ[T−1]

)
+ ln

(
n∑
i=1

ξi,T−1xi,T−2

)∣∣∣ξ[T−2]

}

= E
{
νT−1

(
ξ[T−1]

) ∣∣∣ξ[T−2]

}
+ E

{
ln

(
n∑
i=1

ξi,T−1xi,T−2

)∣∣∣ξ[T−2]

}
,

and hence by arguments similar to (1.53), the optimal value of (1.55) can be written as

QT−2

(
WT−2, ξ[T−2]

)
= E

{
νT−1

(
ξ[T−1]

) ∣∣ξ[T−2]

}
+ νT−2

(
ξ[T−2]

)
+ lnWT−2,
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20 Chapter 1. Stochastic Programming Models

where νT−2

(
ξ[T−2]

)
is the optimal value of the problem

Max
xT−2≥0

E

{
ln

(
n∑
i=1

ξi,T−1xi,T−2

)∣∣∣ξ[T−2]

}
s.t.

n∑
i=1

xi,T−2 = 1.

An identical argument applies at earlier stages. Therefore, it suffices to solve at each stage
t = T − 1, ..., 1, 0, the corresponding optimization problem

Max
xt≥0

E

{
ln

(
n∑
i=1

ξi,t+1xi,t

)∣∣∣ξ[t]
}

s.t.
n∑
i=1

xi,t = Wt, (1.56)

in a completely myopic fashion.
By definition, we set ξ0 to be constant, so that for the first stage problem, at t = 0,

the corresponding expectation is unconditional. An optimal solution x̄t = x̄t(Wt, ξ[t]) of
problem (1.56) gives an optimal policy. In particular, first stage optimal solution x̄0 is given
by an optimal solution of the problem:

Max
x0≥0

E

{
ln

(
n∑
i=1

ξi1xi0

)}
s.t.

n∑
i=1

xi0 = W0. (1.57)

We also have here that the optimal value, denoted ϑ∗, of the optimization problem (1.49)
can be written as follows

ϑ∗ = lnW0 + ν0 +

T−1∑
t=1

E
[
νt(ξ[t])

]
, (1.58)

where νt(ξ[t]) is the optimal value of problem (1.56) for Wt = 1. Note that ν0 + lnW0

is the optimal value of problem (1.57) with ν0 being the (deterministic) optimal value of
(1.57) for W0 = 1.

If the random process ξt is stagewise independent, then conditional expectations in
(1.56) are the same as the corresponding unconditional expectations, and hence optimal
values νt(ξ[t]) = νt do not depend on ξ[t] and are given by the optimal value of the problem

Max
xt≥0

E

{
ln

(
n∑
i=1

ξi,t+1xi,t

)}
s.t.

n∑
i=1

xi,t = 1. (1.59)

Also in the stagewise independent case the optimal policy can be described as follows.
Let x∗t = (x∗1t, ..., x

∗
nt) be the optimal solution of (1.59), t = 0, ..., T − 1. Such optimal

solution is unique by strict concavity of the logarithm function. Then

x̄t(Wt) := Wtx
∗
t , t = 0, ..., T − 1,

defines the optimal policy.
Consider now the power utility function U(W ) := W γ , with 1 ≥ γ > 0, defined for

W ≥ 0. Suppose again that the random process ξt is stagewise independent. Recall that
this condition implies that the cost-to-go function Qt(Wt), t = 1, ..., T − 1, depends only
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on Wt. By using arguments similar to the analysis for the logarithmic utility function it is
not difficult to show that QT−1(WT−1) = W γ

T−1QT−1(1), and so on. The optimal policy
x̄t = x̄t(Wt) is obtained in a myopic way as an optimal solution of the problem

Max
xt≥0

E

{(
n∑
i=1

ξi,t+1xit

)γ}
s.t.

n∑
i=1

xit = Wt. (1.60)

That is, x̄t(Wt) = Wtx
∗
t , where x∗t is an optimal solution of problem (1.60) for Wt = 1,

t = 0, ..., T − 1. In particular, the first stage optimal solution x̄0 is obtained in a myopic
way by solving the problem

Max
x0≥0

E

{(
n∑
i=1

ξi1xi0

)γ}
s.t.

n∑
i=1

xi0 = W0.

The optimal value ϑ∗ of the corresponding multistage problem (1.49) is

ϑ∗ = W γ
0

T−1∏
t=0

ηt, (1.61)

where ηt is the optimal value of problem (1.60) for Wt = 1.
The above myopic behavior of multistage stochastic programs is rather exceptional.

A more realistic situation occurs in the presence of transaction costs. These are costs
associated with the changes in the numbers of units (stocks, bonds) held. Introduction of
transaction costs will destroy such myopic behavior of optimal policies.

1.4.3 Decision Rules

Consider the following policy. Let x∗t = (x∗1t, ..., x
∗
nt), t = 0, ..., T − 1, be vectors such

that x∗t ≥ 0 and
∑n
i=1 x

∗
it = 1. Define the fixed mix policy

xt(Wt) := Wtx
∗
t , t = 0, ..., T − 1. (1.62)

As it was discussed above, under the assumption of stagewise independence, such policies
are optimal for the logarithmic and power utility functions provided that x∗t are optimal
solutions of the respective problems (problem (1.59) for the logarithmic utility function
and problem (1.60) with Wt = 1 for the power utility function). In other problems, a
policy of form (1.62) may be non-optimal. However, it is readily implementable, once the
current wealth Wt is observed. As it was mentioned before, rules for calculating decisions
as functions of the observations gathered up to time t, similarly to (1.62), are called policies,
or alternatively decision rules.

We analyze now properties of the decision rule (1.62) under the simplifying assump-
tion of stagewise independence. We have

Wt+1 =

n∑
i=1

ξi,t+1xit(Wt) = Wt

n∑
i=1

ξi,t+1x
∗
it. (1.63)
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Since the random process ξ1, ..., ξT is stagewise independent, by independence of ξt+1 and
Wt we have

E[Wt+1] = E[Wt]E

(
n∑
i=1

ξi,t+1x
∗
it

)
= E[Wt]

n∑
i=1

µi,t+1x
∗
it︸ ︷︷ ︸

x∗Tt µt+1

, (1.64)

where µt := E[ξt]. Consequently, by induction,

E[Wt] =

t∏
τ=1

(
n∑
i=1

µiτx
∗
i,τ−1

)
=

t∏
τ=1

(
x∗Tτ−1µτ

)
.

In order to calculate the variance of Wt we use the formula

Var(Y ) = E(E[(Y − E(Y |X))2|X]︸ ︷︷ ︸
Var(Y |X)

) + E([E(Y |X)− EY ]2)︸ ︷︷ ︸
Var[E(Y |X)]

, (1.65)

where X and Y are random variables. Applying (1.65) to (1.63) with Y := Wt+1 and
X := Wt we obtain

Var[Wt+1] = E[W 2
t ]Var

(
n∑
i=1

ξi,t+1x
∗
it

)
+ Var[Wt]

(
n∑
i=1

µi,t+1x
∗
it

)2

. (1.66)

Recall that E[W 2
t ] = Var[Wt]+(E[Wt])

2 andVar (
∑n
i=1 ξi,t+1x

∗
it) = x∗Tt Σt+1x

∗
t , where

Σt+1 is the covariance matrix of ξt+1.
It follows from (1.64) and (1.66) that

Var[Wt+1]

(E[Wt+1])2
=
x∗Tt Σt+1x

∗
t

(x∗Tt µt+1)2
+
Var[Wt]

(E[Wt])2
, (1.67)

and hence

Var[Wt]

(E[Wt])2
=

t∑
τ=1

Var
(∑n

i=1 ξi,τx
∗
i,τ−1

)(∑n
i=1 µiτx

∗
i,τ−1

)2 =

t∑
τ=1

x∗Tτ−1Στx
∗
τ−1

(x∗Tτ−1µτ )2
, t = 1, ..., T. (1.68)

This shows that if the terms x∗Tτ−1Στx
∗
τ−1

(x∗Tτ−1µτ )2 are of the same order for τ = 1, ..., T , then

the ratio of the standard deviation
√
Var[WT ] to the expected wealth E[WT ] is of order

O(
√
T ) with increase of the number of stages T .

1.5 Supply Chain Network Design
In this section we discuss a stochastic programming approach to modeling a supply chain
network design. A supply chain is a network of suppliers, manufacturing plants, ware-
houses, and distribution channels organized to acquire raw materials, convert these raw
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materials to finished products, and distribute these products to customers. Let us first de-
scribe a deterministic mathematical formulation for the supply chain design problem.

Denote by S,P and C the respective (finite) sets of suppliers, processing facilities
and customers. The union N := S ∪ P ∪ C of these sets is viewed as the set of nodes of a
directed graph (N ,A), where A is a set of arcs (directed links) connecting these nodes in
a way representing flow of the products. The processing facilities include manufacturing
centersM, finishing facilities F and warehouses W , i.e., P = M∪ F ∪ W . Further, a
manufacturing center i ∈M or a finishing facility i ∈ F consists of a set of manufacturing
or finishing machines Hi. Thus the set P includes the processing centers as well as the
machines in these centers. Let K be the set of products flowing through the supply chain.

The supply chain configuration decisions consist of deciding which of the processing
centers to build (major configuration decisions), and which processing and finishing ma-
chines to procure (minor configuration decisions). We assign a binary variable xi = 1, if
a processing facility i is built or machine i is procured, and xi = 0 otherwise. The op-
erational decisions consist of routing the flow of product k ∈ K from the supplier to the
customers. By ykij we denote the flow of product k from a node i to a node j of the network
where (i, j) ∈ A. A deterministic mathematical model for the supply chain design problem
can be written as follows

Min
x,y

∑
i∈P

cixi +
∑
k∈K

∑
(i,j)∈A

qkijy
k
ij (1.69)

s.t.
∑
i∈N

ykij −
∑
`∈N

ykj` = 0, j ∈ P, k ∈ K, (1.70)∑
i∈N

ykij ≥ dkj , j ∈ C, k ∈ K, (1.71)∑
i∈N

ykij ≤ skj , j ∈ S, k ∈ K, (1.72)

∑
k∈K

rkj

(∑
i∈N

ykij

)
≤ mjxj , j ∈ P, (1.73)

x ∈ X , y ≥ 0. (1.74)

Here ci denotes the investment cost for building facility i or procuring machine i, qkij de-
notes the per-unit cost of processing product k at facility i and/or transporting product k
on arc (i, j) ∈ A, dkj denotes the demand of product k at node j, skj denotes the supply of
product k at node j, rkj denotes per-unit processing requirement for product k at node j,mj

denotes capacity of facility j, X ⊂ {0, 1}|P| is a set of binary variables and y ∈ R|A|×|K|
is a vector with components ykij . All cost components are annualized.

The objective function (1.69) is aimed at minimizing total investment and operational
costs. Of course, a similar model can be constructed for maximizing the profits. The set
X represents logical dependencies and restrictions, such as xi ≤ xj for all i ∈ Hj and
j ∈ P or j ∈ F , i.e., machine i ∈ Hj should only be procured if facility j is built (since
xi are binary, the constraint xi ≤ xj means that xi = 0 if xj = 0). Constraints (1.70)
enforce the flow conservation of product k across each processing node j. Constraints
(1.71) require that the total flow of product k to a customer node j, should exceed the
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demand dkj at that node. Constraints (1.72) require that the total flow of product k from a
supplier node j, should be less than the supply skj at that node. Constraints (1.73) enforce
capacity constraints of the processing nodes. The capacity constraints then require that
the total processing requirement of all products flowing into a processing node j should
be smaller than the capacity mj of facility j if it is built (xj = 1). If facility j is not
built (xj = 0) the constraint will force all flow variables ykij = 0 for all i ∈ N . Finally,
constraint (1.74) enforces feasibility constraint x ∈ X and the nonnegativity of the flow
variables corresponding to an arc (ij) ∈ A and product k ∈ K.

It will be convenient to write problem (1.69)–(1.74) in the following compact form

Min
x∈X , y≥0

cTx+ qTy (1.75)

s.t. Ny = 0, (1.76)
Cy ≥ d, (1.77)
Sy ≤ s, (1.78)
Ry ≤Mx, (1.79)

where vectors c, q, d and s correspond to investment costs, processing/transportation costs,
demands, and supplies, respectively, matrices N , C and S are appropriate matrices cor-
responding to the summations on the left-hand-side of the respective expressions. The
notation R corresponds to a matrix of rkj , and the notation M corresponds to a matrix with
mj along the diagonal.

It is realistic to assume that at time a decision about vector x ∈ X should be made,
i.e., which facilities to built and machines to procure, there is an uncertainty about param-
eters involved in operational decisions represented by vector y ∈ R|A|×|K|. This naturally
classifies decision variables x as the first stage decision variables and y as the second stage
decision variables. Note that problem (1.75)–(1.79) can be written in the following equiv-
alent form as a two stage program:

Min
x∈X

cTx+Q(x, ξ), (1.80)

where Q(x, ξ) is the optimal value of the second stage problem

Min
y≥0

qTy (1.81)

s.t. Ny = 0, (1.82)
Cy ≥ d, (1.83)
Sy ≤ s, (1.84)
Ry ≤Mx, (1.85)

with ξ = (q, d, s, R,M) being vector of the involved parameters. Of course, the above
optimization problem depends on the data vector ξ. If some of the data parameters are
uncertain, then the deterministic problem (1.80) does not make much sense since it depends
on unknown parameters.

Suppose now that we can model uncertain components of the data vector ξ as ran-
dom variables with a specified joint probability distribution. Then we can formulate the
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following stochastic programming problem

Min
x∈X

cTx+ E[Q(x, ξ)], (1.86)

where the expectation is taken with respect to the probability distribution of the random
vector ξ. That is, the cost of the second stage problem enters the objective of the first stage
problem on average. A distinctive feature of the stochastic programming problem (1.86) is
that the first stage problem here is a combinatorial problem with binary decision variables
and finite feasible set X . On the other hand, the second stage problem (1.81)–(1.85) is a
linear programming problem and its optimal value Q(x, ξ) is convex in x (if x is viewed as
a vector in R|P|).

It could happen that for some x ∈ X and some realizations of the data ξ the cor-
responding second stage problem (1.81)–(1.85) is infeasible, i.e., the constraints (1.82)–
(1.85) define an empty set. In that case, by definition, Q(x, ξ) = +∞, i.e., we apply an
infinite penalization for infeasibility of the second stage problem. For example, it could
happen that demand d is not satisfied, i.e., Cy ≤ d with some inequalities strict, for any
y ≥ 0 satisfying constraints (1.82), (1.84) and (1.85). Sometimes this can be resolved by a
recourse action. That is, if demand is not satisfied, then there is a possibility of supplying
the deficit d − Cy at a penalty cost. This can be modelled by writing the second stage
problem in the form

Min
y≥0,z≥0

qTy + hTz (1.87)

s.t. Ny = 0, (1.88)
Cy + z ≥ d, (1.89)
Sy ≤ s, (1.90)
Ry ≤Mx, (1.91)

where h represents the vector of (positive) recourse costs. Note that the above problem
(1.87)–(1.91) is always feasible, for example y = 0 and z ≥ d clearly satisfy the constraints
of this problem.

Exercises
1.1. Consider the expected value function f(x) := E[F (x,D)], where function F (x, d)

is defined in (1.1). (i) Show that function F (x, d) is convex in x, and hence f(x) is
also convex. (ii) Show that f(·) is differentiable at a point x > 0 iff the cdf H(·) of
D is continuous at x.

1.2. Let H(z) be the cdf of a random variable Z and κ ∈ (0, 1). Show that the minimum
in the definition H−1(κ) = inf{t : H(t) ≥ κ} of the left side quantile is always
attained.

1.3. Consider the chance constrained problem discussed in section 1.2.2. (i) Show that
system (1.11) has no feasible solution if there is a realization of d greater than τ/c.
(ii) Verify equation (1.15). (iii) Assume that the probability distribution of the de-
mand D is supported on an interval [l, u] with 0 ≤ l ≤ u < +∞. Show that if the
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significance level α = 0, then the constraint (1.16) becomes

bu− τ
b− c

≤ x ≤ hl + τ

c+ h
,

and hence is equivalent to (1.11) for D = [l, u].
1.4. Show that the optimal value functions Qt(yt, d[t−1]), defined in (1.20), are convex

in yt.
1.5. Assuming the stagewise independence condition, show that the basestock policy

x̄t = max{yt, x∗t }, for the inventory model, is optimal (recall that x∗t denotes a
minimizer of (1.22)).

1.6. Consider the assembly problem discussed in section 1.3.1 in the case when all de-
mand has to be satisfied, by making additional orders of the missing parts. In this
case, the cost of each additionally ordered part j is rj > cj . Formulate the problem
as a linear two stage stochastic programming problem.

1.7. Consider the assembly problem discussed in section 1.3.3 in the case when all de-
mand has to be satisfied, by backlogging the excessive demand, if necessary. In this
case, it costs bi to delay delivery of a unit of product i by one period. Additional or-
ders of the missing parts can also be made after the last demandDT becomes known.
Formulate the problem as a linear multistage stochastic programming problem.

1.8. Show that for utility functionU(W ), of the form (1.36), problems (1.35) and (1.37)–
(1.38) are equivalent.

1.9. Show that variance of the random return W1 = ξTx is given by formula Var[W1] =
xTΣx, where Σ = E

[
(ξ − µ)(ξ − µ)T

]
is the covariance matrix of the random

vector ξ and µ = E[ξ].
1.10. Show that the optimal value function Qt(Wt, ξ[t]), defined in (1.51), is concave in

Wt.
1.11. Let D be a random variable with cdf H(t) = Pr(D ≤ t) and D1, ..., DN be an iid

random sample of D with the corresponding empirical cdf ĤN (·). Let a = H−1(κ)
and b = sup{t : H(t) ≤ κ} be respective left and right-side κ-quantiles of H(·).
Show that min

{∣∣Ĥ−1
N (κ)− a

∣∣, ∣∣Ĥ−1
N (κ)− b

∣∣} tends w.p.1 to 0 as N →∞.
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Chapter 2

Two Stage Problems

Andrzej Ruszczyński and Alexander Shapiro

2.1 Linear Two Stage Problems
2.1.1 Basic Properties

In this section we discuss two-stage stochastic linear programming problems of the form

Min
x∈Rn

cTx+ E[Q(x, ξ)]

s.t. Ax = b, x ≥ 0,
(2.1)

where Q(x, ξ) is the optimal value of the second stage problem

Min
y∈Rm

qTy

s.t. Tx+Wy = h, y ≥ 0.
(2.2)

Here ξ := (q, h, T,W ) are the data of the second stage problem. We view some or all
elements of vector ξ as random and the expectation operator at the first stage problem (2.1)
is taken with respect to the probability distribution of ξ. Often, we use the same notation ξ
to denote a random vector and its particular realization. Which one of these two meanings
will be used in a particular situation will usually be clear from the context. If in doubt, then
we will write ξ = ξ(ω) to emphasize that ξ is a random vector defined on a corresponding
probability space. We denote by Ξ ⊂ Rd the support of the probability distribution of ξ.

If for some x and ξ ∈ Ξ the second stage problem (2.2) is infeasible, then by defini-
tionQ(x, ξ) = +∞. It could also happen that the second stage problem is unbounded from
below and hence Q(x, ξ) = −∞. This is somewhat pathological situation, meaning that

27
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for some value of the first stage decision vector and a realization of the random data, the
value of the second stage problem can be improved indefinitely. Models exhibiting such
properties should be avoided (we discuss this later).

The second stage problem (2.2) is a linear programming problem. Its dual problem
can be written in the form

Max
π

πT(h− Tx)

s.t. WTπ ≤ q.
(2.3)

By the theory of linear programming, the optimal values of problems (2.2) and (2.3) are
equal to each other, unless both problems are infeasible. Moreover, if their common optimal
value is finite, then each problem has a nonempty set of optimal solutions.

Consider the function

sq(χ) := inf
{
qTy : Wy = χ, y ≥ 0

}
. (2.4)

Clearly, Q(x, ξ) = sq(h− Tx). By the duality theory of linear programming, if the set

Π(q) :=
{
π : WTπ ≤ q

}
(2.5)

is nonempty, then
sq(χ) = sup

π∈Π(q)

πTχ, (2.6)

i.e., sq(·) is the support function of the set Π(q). The set Π(q) is convex, closed, and
polyhedral. Hence, it has a finite number of extreme points. (If, moreover, Π(q) is bounded,
then it coincides with the convex hull of its extreme points.) It follows that if Π(q) is
nonempty, then sq(·) is a positively homogeneous polyhedral function. If the set Π(q) is
empty, then the infimum on the right hand side of (2.4) may take only two values: +∞ or
−∞. In any case it is not difficult to verify directly that the function sq(·) is convex.

Proposition 2.1. For any given ξ, the function Q(·, ξ) is convex. Moreover, if the set
{π : WTπ ≤ q} is nonempty and problem (2.2) is feasible for at least one x, then the
function Q(·, ξ) is polyhedral.

Proof. Since Q(x, ξ) = sq(h − Tx), the above properties of Q(·, ξ) follow from the
corresponding properties of the function sq(·).

Differentiability properties of the function Q(·, ξ) can be described as follows.

Proposition 2.2. Suppose that for given x = x0 and ξ ∈ Ξ, the value Q(x0, ξ) is finite.
Then Q(·, ξ) is subdifferentiable at x0 and

∂Q(x0, ξ) = −TTD(x0, ξ), (2.7)

where
D(x, ξ) := arg max

π∈Π(q)
πT(h− Tx)

is the set of optimal solutions of the dual problem (2.3).
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Proof. Since Q(x0, ξ) is finite, the set Π(q) defined in (2.5) is nonempty, and hence sq(χ)
is its support function. It is straightforward to see from the definitions that the support
function sq(·) is the conjugate function of the indicator function

Iq(π) :=

{
0, if π ∈ Π(q),

+∞, otherwise.

Since the set Π(q) is convex and closed, the function Iq(·) is convex and lower semicontin-
uous. It follows then by the Fenchel–Moreau Theorem (Theorem 7.5) that the conjugate of
sq(·) is Iq(·). Therefore, for χ0 := h− Tx0, we have (see (7.24))

∂sq(χ0) = arg max
π

{
πTχ0 − Iq(π)

}
= arg max

π∈Π(q)
πTχ0. (2.8)

Since the set Π(q) is polyhedral and sq(χ0) is finite, it follows that ∂sq(χ0) is nonempty.
Moreover, the function s0(·) is piecewise linear, and hence formula (2.7) follows from (2.8)
by the chain rule of subdifferentiation.

It follows that if the function Q(·, ξ) has a finite value in at least one point, then it is
subdifferentiable at that point, and hence is proper. Its domain can be described in a more
explicit way.

The positive hull of a matrix W is defined as

posW := {χ : χ = Wy, y ≥ 0} . (2.9)

It is a convex polyhedral cone generated by the columns of W . Directly from the definition
(2.4) we see that dom sq = posW. Therefore,

domQ(·, ξ) = {x : h− Tx ∈ posW}.

Suppose that x is such that χ = h − Tx ∈ posW and let us analyze formula (2.7). The
recession cone of Π(q) is equal to

Π0 := Π(0) =
{
π : WTπ ≤ 0

}
. (2.10)

Then it follows from (2.6) that sq(χ) is finite iff πTχ ≤ 0 for every π ∈ Π0, that is, iff χ is
an element of the polar cone to Π0. This polar cone is nothing else but posW , i.e.,

Π∗0 = posW. (2.11)

If χ0 ∈ int(posW ), then the set of maximizers in (2.6) must be bounded. Indeed, if it was
unbounded, there would exist an element π0 ∈ Π0 such that πT

0 χ0 = 0. By perturbing χ0

a little to some χ, we would be able to keep χ within posW and get πT
0 χ > 0, which is a

contradiction, because posW is the polar of Π0. Therefore the set of maximizers in (2.6)
is the convex hull of the vertices v of Π(q) for which vTχ = sq(χ). Note that Π(q) must
have vertices in this case, because otherwise the polar to Π0 would have no interior.

If χ0 is a boundary point of posW , then the set of maximizers in (2.6) is unbounded.
Its recession cone is the intersection of the recession cone Π0 of Π(q) and of the subspace
{π : πTχ0 = 0}. This intersection is nonempty for boundary points χ0 and is equal to the
normal cone to posW at χ0. Indeed, let π0 be normal to posW at χ0. Since both χ0 and
−χ0 are feasible directions at χ0, we must have πT

0 χ0 = 0. Next, for every χ ∈ posW we
have πT

0 χ = πT
0 (χ− χ0) ≤ 0, so π0 ∈ Π0. The converse argument is similar.
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2.1.2 The Expected Recourse Cost for Discrete Distributions

Let us consider now the expected value function

φ(x) := E[Q(x, ξ)]. (2.12)

As before the expectation here is taken with respect to the probability distribution of the
random vector ξ. Suppose that the distribution of ξ has finite support. That is, ξ has a finite
number of realizations (called scenarios) ξk = (qk, hk, Tk,Wk) with respective (positive)
probabilities pk, k = 1, . . .,K, i.e., Ξ = {ξ1, . . ., ξK}. Then

E[Q(x, ξ)] =

K∑
k=1

pkQ(x, ξk). (2.13)

For a given x, the expectation E[Q(x, ξ)] is equal to the optimal value of the linear pro-
gramming problem

Min
y1,...,yK

K∑
k=1

pkq
T
k yk

s.t. Tkx+Wkyk = hk,

yk ≥ 0, k = 1, . . . ,K.

(2.14)

If for at least one k ∈ {1, . . . ,K} the system Tkx+Wkyk = hk, yk ≥ 0, has no solution,
i.e., the corresponding second stage problem is infeasible, then problem (2.14) is infeasible,
and hence its optimal value is +∞. From that point of view the sum in the right hand side
of (2.13) equals +∞ if at least one of Q(x, ξk) = +∞. That is, we assume here that
+∞+ (−∞) = +∞.

The whole two stage problem is equivalent to the following large-scale linear pro-
gramming problem:

Min
x,y1,...,yK

cTx+

K∑
k=1

pkq
T
k yk

s.t. Tkx+Wkyk = hk, k = 1, . . . ,K,

Ax = b,

x ≥ 0, yk ≥ 0, k = 1, . . . ,K.

(2.15)

Properties of the expected recourse cost follow directly from properties of parametric linear
programming problems.

Proposition 2.3. Suppose that the probability distribution of ξ has finite support Ξ =
{ξ1, . . ., ξK} and that the expected recourse cost φ(·) has a finite value in at least one
point x̄ ∈ Rn. Then the function φ(·) is polyhedral, and for any x0 ∈ domφ,

∂φ(x0) =

K∑
k=1

pk∂Q(x0, ξk). (2.16)
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Proof. Since φ(x̄) is finite, all values Q(x̄, ξk), k = 1, . . . ,K, are finite. Consequently, by
Proposition 2.2, every function Q(·, ξk) is polyhedral. It is not difficult to see that a linear
combination of polyhedral functions with positive weights is also polyhedral. Therefore, it
follows that φ(·) is polyhedral. We also have that domφ =

⋂K
k=1 domQk,whereQk(·) :=

Q(·, ξk), and for any h ∈ Rn, the directional derivatives Q′k(x0, h) > −∞ and

φ′(x0, h) =
K∑
k=1

pkQ
′
k(x0, h). (2.17)

Formula (2.16) then follows from (2.17) by duality arguments. Note that equation (2.16) is
a particular case of the Moreau–Rockafellar Theorem (Theorem 7.4). Since the functions
Qk are polyhedral, there is no need here for an additional regularity condition for (2.16) to
hold true.

The subdifferential ∂Q(x0, ξk) of the second stage optimal value function is de-
scribed in Proposition 2.2. That is, if Q(x0, ξk) is finite, then

∂Q(x0, ξk) = −TT
k arg max

{
πT(hk − Tkx0) : WT

k π ≤ qk
}
. (2.18)

It follows that the expectation function φ is differentiable at x0 iff for every ξ = ξk, k =
1, . . . ,K, the maximum in the right hand side of (2.18) is attained at a unique point, i.e.,
the corresponding second stage dual problem has a unique optimal solution.

Example 2.4 (Capacity Expansion) We have a directed graph with node set N and arc
set A. With each arc a ∈ A we associate a decision variable xa and call it the capacity of
a. There is a cost ca for each unit of capacity of arc a. The vector x constitutes the vector
of first stage variables. They are restricted to satisfy the inequalities x ≥ xmin, where xmin

are the existing capacities.
At each node n of the graph we have a random demand ξn for shipments to n (if ξn

is negative, its absolute value represents shipments from n and we have
∑
n∈N ξn = 0).

These shipments have to be sent through the network and they can be arbitrarily split into
pieces taking different paths. We denote by ya the amount of the shipment sent through arc
a. There is a unit cost qa for shipments on each arc a.

Our objective is to assign the arc capacities and to organize the shipments in such
a way that the expected total cost, comprising the capacity cost and the shipping cost,
is minimized. The condition is that the capacities have to be assigned before the actual
demands ξn become known, while the shipments can be arranged after that.

Let us define the second stage problem. For each node n denote by A+(n) and
A−(n) the sets of arcs entering and leaving node i. The second stage problem is the
network flow problem

Min
∑
a∈A

qaya (2.19)

s.t.
∑

a∈A+(n)

ya −
∑

a∈A−(n)

ya = ξn, n ∈ N , (2.20)

0 ≤ ya ≤ xa, a ∈ A. (2.21)
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This problem depends on the random demand vector ξ and on the arc capacities, x. Its
optimal value is denoted by Q(x, ξ).

Suppose that for a given x = x0 the second stage problem (2.19)–(2.21) is feasi-
ble. Denote by µn, n ∈ N , the optimal Lagrange multipliers (node potentials) associated
with the node balance equations (2.20), and by πa, a ∈ A the (nonnegative) Lagrange
multipliers associated with the constraints (2.21). The dual problem has the form

Max −
∑
n∈N

ξnµn −
∑

(i,j)∈A

xijπij

s.t. − πij + µi − µj ≤ qij , (i, j) ∈ A,
π ≥ 0.

As
∑
n∈N ξn = 0, the values of µn can be translated by a constant without any change in

the objective function, and thus without any loss of generality we can assume that µn0 = 0
for some fixed node n0. For each arc a = (i, j) the multiplier πij associated with the
constraint (2.21) has the form

πij = max{0, µi − µj − qij}.

Roughly, if the difference of node potentials µi − µj is greater than qij , the arc is satu-
rated and the capacity constraint yij ≤ xij becomes relevant. The dual problem becomes
equivalent to:

Max −
∑
n∈N

ξnµn −
∑

(i,j)∈A

xij max{0, µi − µj − qij}. (2.22)

Let us denote byM(x0, ξ) the set of optimal solutions of this problem satisfying the con-
dition µn0

= 0. Since TT = [0 − I] in this case, formula (2.18) provides the description
of the subdifferential of Q(·, ξ) at x0:

∂Q(x0, ξ) = −
{

(max{0, µi − µj − qij})(i,j)∈A : µ ∈M(x0, ξ)
}
.

The first stage problem has the form

Min
x≥xmin

∑
(i,j)∈A

cijxij + E[Q(x, ξ)]. (2.23)

If ξ has finitely many realizations ξk attained with probabilities pk, k = 1, . . . ,K, the
subdifferential of the overall objective can be calculated by (2.16):

∂f(x0) = c+

K∑
k=1

pk∂Q(x0, ξ
k).
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2.1.3 The Expected Recourse Cost for General Distributions

Let us discuss now the case of a general distribution of the random vector ξ ∈ Rd. The
recourse cost Q(·, ·) is the minimum value of the integrand which is a random lower semi-
continuous function (see section 7.2.3). Therefore, it follows by Theorem 7.42 that Q(·, ·)
is measurable with respect to the Borel sigma algebra of Rn × Rd. Also for every ξ the
function Q(·, ξ) is lower semicontinuous. It follows that Q(x, ξ) is a random lower semi-
continuous function. Recall that in order to ensure that the expectation φ(x) is well defined
we have to verify two conditions:

(i) Q(x, ·) is measurable (with respect to the Borel sigma algebra of Rd);

(ii) either E[Q(x, ξ)+] or E[(−Q(x, ξ))+] are finite.

The function Q(x, ·) is measurable, as the optimal value of a linear programming prob-
lem. We only need to verify condition (ii). We describe below some important particular
situations where this condition is satisfied.

The two-stage problem (2.1)–(2.2) is said to have fixed recourse if the matrix W is
fixed (not random). Moreover, we say that the recourse is complete if the system Wy = χ
and y ≥ 0 has a solution for every χ. In other words, the positive hull of W is equal to the
corresponding vector space. By duality arguments, the fixed recourse is complete iff the
feasible set Π(q) of the dual problem (2.3) is bounded (in particular, it may be empty) for
every q. Then its recession cone, Π0 = Π(0), must contain only the point 0, provided that
Π(q) is nonempty. Therefore, another equivalent condition for complete recourse is that
π = 0 is the only solution of the system WTπ ≤ 0.

A particular class of problems with fixed and complete recourse are simple recourse
problems, in which W = [I;−I], the matrix T and the vector q are deterministic, and the
components of q are positive.

It is said that the recourse is relatively complete if for every x in the set

X := {x : Ax = b, x ≥ 0}

the feasible set of the second stage problem (2.2) is nonempty for almost every (a.e.) ω ∈
Ω. That is, the recourse is relatively complete if for every feasible first stage point x the
inequality Q(x, ξ) < +∞ holds true for a.e. ξ ∈ Ξ, or in other words Q(x, ξ(ω)) < +∞
with probability one (w.p.1). This definition is in accordance with the general principle
that an event which happens with zero probability is irrelevant for the calculation of the
corresponding expected value. For example, the capacity expansion problem of Example
2.4 is not a problem with relatively complete recourse, unless xmin is so large that every
demand ξ ∈ Ξ can be shipped over the network with capacities xmin.

The following condition is sufficient for relatively complete recourse.

For every x ∈ X the inequality Q(x, ξ) < +∞ holds true for all ξ ∈ Ξ. (2.24)

In general, condition (2.24) is not necessary for relatively complete recourse. It becomes
necessary and sufficient in the following two cases:

(i) the random vector ξ has a finite support; or
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(ii) the recourse is fixed.

Indeed, sufficiency is clear. If ξ has a finite support, i.e., the set Ξ is finite, then the
necessity is also clear. To show the necessity in the case of fixed recourse, suppose the
recourse is relatively complete. This means that if x ∈ X then Q(x, ξ) < +∞ for all ξ in
Ξ, except possibly for a subset of Ξ of probability zero. We have that Q(x, ξ) < +∞ iff
h − Tx ∈ posW . Let Ξ0(x) = {(h, T, q) : h − Tx ∈ posW}. The set posW is convex
and closed and thus Ξ0(x) is convex and closed as well. By assumption, P [Ξ0(x)] = 1 for
every x ∈ X . Thus

⋂
x∈X Ξ0(x) is convex, closed, and has probability 1. The support of ξ

must be its subset.

Example 2.5 Consider

Q(x, ξ) := inf{y : ξy = x, y ≥ 0},

with x ∈ [0, 1] and ξ being a random variable whose probability density function is p(z) :=
2z, 0 ≤ z ≤ 1. For all ξ > 0 and x ∈ [0, 1], Q(x, ξ) = x/ξ, and hence

E[Q(x, ξ)] =

∫ 1

0

(x
z

)
2zdz = 2x.

That is, the recourse here is relatively complete and the expectation of Q(x, ξ) is finite. On
the other hand, the support of ξ(ω) is the interval [0, 1], and for ξ = 0 and x > 0 the value
of Q(x, ξ) is +∞, because the corresponding problem is infeasible. Of course, probability
of the event “ξ = 0” is zero, and from the mathematical point of view the expected value
function E[Q(x, ξ)] is well defined and finite for all x ∈ [0, 1]. Note, however, that arbitrary
small perturbation of the probability distribution of ξ may change that. Take, for example,
some discretization of the distribution of ξ with the first discretization point t = 0. Then,
no matter how small the assigned (positive) probability at t = 0 is, Q(x, ξ) = +∞ with
positive probability. Therefore, E[Q(x, ξ)] = +∞, for all x > 0. That is, the above
problem is extremely unstable and is not well posed. As it was discussed above, such
behavior cannot occur if the recourse is fixed.

Let us consider the support function sq(·) of the set Π(q). We want to find sufficient
conditions for the existence of the expectation E[sq(h−Tx)]. By Hoffman’s lemma (Theo-
rem 7.12) there exists a constant κ, depending on W , such that if for some q0 the set Π(q0)
is nonempty, then for every q the following inclusion is satisfied

Π(q) ⊂ Π(q0) + κ‖q − q0‖B, (2.25)

where B := {π : ‖π‖ ≤ 1} and ‖ · ‖ denotes the Euclidean norm. This inclusion allows to
derive an upper bound for the support function sq(·). Since the support function of the unit
ball B is the norm ‖ · ‖, it follows from (2.25) that if the set Π(q0) is nonempty, then

sq(·) ≤ sq0(·) + κ‖q − q0‖ ‖ · ‖. (2.26)

Consider q0 = 0. The support function s0(·) of the cone Π0 has the form

s0(χ) =

{
0, if χ ∈ posW,

+∞, otherwise.
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Therefore, (2.26) with q0 = 0 implies that if Π(q) is nonempty, then sq(χ) ≤ κ‖q‖ ‖χ‖
for all χ ∈ posW , and sq(χ) = +∞ for all χ 6∈ posW . Since Π(q) is polyhedral, if it is
nonempty then sq(·) is piecewise linear on its domain, which coincides with posW , and

|sq(χ1)− sq(χ2)| ≤ κ‖q‖ ‖χ1 − χ2‖, ∀χ1, χ2 ∈ posW. (2.27)

Proposition 2.6. Suppose that the recourse is fixed and

E
[
‖q‖ ‖h‖

]
< +∞ and E

[
‖q‖ ‖T‖

]
< +∞. (2.28)

Consider a point x ∈ Rn. Then E[Q(x, ξ)+] is finite if and only if the following condition
holds w.p.1:

h− Tx ∈ posW. (2.29)

Proof. We have that Q(x, ξ) < +∞ iff condition (2.29) holds. Therefore, if condition
(2.29) does not hold w.p.1, then Q(x, ξ) = +∞ with positive probability, and hence
E[Q(x, ξ)+] = +∞.

Conversely, suppose that condition (2.29) holds w.p.1. Then Q(x, ξ) = sq(h − Tx)
with sq(·) being the support function of the set Π(q). By (2.26) there exists a constant κ
such that for any χ,

sq(χ) ≤ s0(χ) + κ‖q‖ ‖χ‖.

Also for any χ ∈ posW we have that s0(χ) = 0, and hence w.p.1,

sq(h− Tx) ≤ κ‖q‖ ‖h− Tx‖ ≤ κ‖q‖
(
‖h‖+ ‖T‖ ‖x‖

)
.

It follows then by (2.28) that E [sq(h− Tx)+] < +∞.

Remark 2. If q and (h, T ) are independent and have finite first moments1, then

E
[
‖q‖ ‖h‖

]
= E

[
‖q‖
]
E
[
‖h‖
]

and E
[
‖q‖ ‖T‖

]
= E

[
‖q‖
]
E
[
‖T‖

]
,

and hence condition (2.28) follows. Also condition (2.28) holds if (h, T, q) has finite sec-
ond moments.

We obtain that, under the assumptions of Proposition 2.6, the expectation φ(x) is
well defined and φ(x) < +∞ iff condition (2.29) holds w.p.1. If, moreover, the recourse is
complete, then (2.29) holds for any x and ξ, and hence φ(·) is well defined and is less than
+∞. Since the function φ(·) is convex, we have that if φ(·) is less than +∞ on Rn and is
finite valued in at least one point, then φ(·) is finite valued on the entire space Rn.

Proposition 2.7. Suppose that: (i) the recourse is fixed, (ii) for a.e. q the set Π(q) is
nonempty, (iii) condition (2.28) holds.

1We say that a random variable Z = Z(ω) has a finite r-th moment if E [|Z|r] < +∞. It is said that ξ(ω)
has finite r-th moments if each component of ξ(ω) has a finite r-th moment.
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Then the expectation function φ(x) is well defined and φ(x) > −∞ for all x ∈ Rn.
Moreover, φ is convex, lower semicontinuous and Lipschitz continuous on domφ, and its
domain is a convex closed subset of Rn given by

domφ = {x ∈ Rn : h− Tx ∈ posW w.p.1} . (2.30)

Proof. By assumption (ii) the feasible set Π(q) of the dual problem is nonempty w.p.1.
Thus Q(x, ξ) is equal to sq(h− Tx) w.p.1 for every x, where sq(·) is the support function
of the set Π(q). Let π(q) be the element of the set Π(q) that is closest to 0. It exists,
because Π(q) is closed. By Hoffman’s lemma (see (2.25)) there is a constant κ such that
‖π(q)‖ ≤ κ‖q‖. Then for every x the following holds w.p.1:

sq(h− Tx) ≥ π(q)T(h− Tx) ≥ −κ‖q‖
(
‖h‖+ ‖T‖ ‖x‖

)
. (2.31)

Owing to condition (2.28), it follows from (2.31) that φ(·) is well defined and φ(x) > −∞
for all x ∈ Rn. Moreover, since sq(·) is lower semicontinuous, the lower semicontinuity
of φ(·) follows by Fatou’s lemma. Convexity and closedness of domφ follow from the
convexity and lower semicontinuity of φ. We have by Proposition 2.6 that φ(x) < +∞ iff
condition (2.29) holds w.p.1. This implies (2.30).

Consider two points x, x′ ∈ domφ. Then by (2.30) the following holds true w.p.1:

h− Tx ∈ posW and h− Tx′ ∈ posW. (2.32)

By (2.27), if the set Π(q) is nonempty and (2.32) holds, then

|sq(h− Tx)− sq(h− Tx′)| ≤ κ‖q‖ ‖T‖ ‖x− x′‖.

It follows that
|φ(x)− φ(x′)| ≤ κE

[
‖q‖ ‖T‖

]
‖x− x′‖.

Together with condition (2.28) this implies the Lipschitz continuity of φ on its domain.

Denote by Σ the support2 of the probability distribution (measure) of (h, T ). For-
mula (2.30) means that a point x belongs to domφ iff the probability of the event {h−Tx ∈
posW} is one. Note that the set {(h, T ) : h − Tx ∈ posW} is convex and polyhedral,
and hence is closed. Consequently x belongs to domφ iff for every (h, T ) ∈ Σ it follows
that h− Tx ∈ posW . Therefore, we can write formula (2.30) in the form

domφ =
⋂

(h,T )∈Σ

{x : h− Tx ∈ posW} . (2.33)

It should be noted that we assume that the recourse is fixed.
Let us observe that for any setH of vectors h, the set ∩h∈H(−h+ posW ) is convex

and polyhedral. Indeed, we have that posW is a convex polyhedral cone, and hence can

2Recall that the support of the probability measure is the smallest closed set such that the probability (measure)
of its complement is zero.
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be represented as the intersection of a finite number of half spaces Ai = {χ : aTi χ ≤ 0},
i = 1, . . . , `. Since the intersection of any number of half spaces of the form b + Ai, with
b ∈ B, is still a half space of the same form (provided that this intersection is nonempty),
we have the set ∩h∈H(−h + posW ) can be represented as the intersection of half spaces
of the form bi + Ai, i = 1, . . . , `, and hence is polyhedral. It follows that if T and W are
fixed, then the set at the right hand side of (2.33) is convex and polyhedral.

Let us discuss now the differentiability properties of the expectation function φ(x).
By Theorem 7.52 and formula (2.7) of Proposition 2.2 we have the following result.

Proposition 2.8. Suppose that the expectation function φ(·) is proper and its domain has a
nonempty interior. Then for any x0 ∈ domφ,

∂φ(x0) = −E
[
TTD(x0, ξ)

]
+Ndomφ(x0), (2.34)

where
D(x, ξ) := arg max

π∈Π(q)
πT(h− Tx).

Moreover, φ is differentiable at x0 if and only if x0 belongs to the interior of domφ and
the set D(x0, ξ) is a singleton w.p.1.

As we discussed earlier, when the distribution of ξ has a finite support (i.e., there is a
finite number of scenarios) the expectation function φ is piecewise linear on its domain and
is differentiable everywhere only in the trivial case if it is linear.3 In the case of a continuous
distribution of ξ the expectation operator smoothes the piecewise linear function Q(·, ξ)
out.

Proposition 2.9. Suppose the assumptions of Proposition 2.7 are satisfied, and the condi-
tional distribution of h, given (T, q), is absolutely continuous for almost all (T, q). Then φ
is continuously differentiable on the interior of its domain.

Proof. By Proposition 2.7, the expectation function φ(·) is well defined and greater than
−∞. Let x be a point in the interior of domφ. For fixed T and q, consider the multifunction

Z(h) := arg max
π∈Π(q)

πT(h− Tx).

Conditional on (T, q), the set D(x, ξ) coincides with Z(h). Since x ∈ domφ, relation
(2.30) implies that h − Tx ∈ posW w.p.1. For every h − Tx ∈ posW , the set Z(h) is
nonempty and forms a face of the polyhedral set Π(q). Moreover, there exists a set A given
by the union of a finite number of linear subspaces of Rm (where m is the dimension of h),
which are perpendicular to the faces of sets Π(q), such that if h− Tx ∈ (posW ) \A then
Z(h) is a singleton. Since an affine subspace of Rm has Lebesgue measure zero, it follows
that the Lebesgue measure of A is zero. As the conditional distribution of h, given (T, q),
is absolutely continuous, the probability that Z(h) is not a singleton is zero. By integrating
this probability over the marginal distribution of (T, q), we obtain that probability of the

3By linear we mean here that it is of the form aTx+ b. It is more accurate to call such a function affine.
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event “D(x, ξ) is not a singleton” is zero. By Proposition 2.8, this implies the differentia-
bility of φ(·). Since φ(·) is convex, it follows that for every x ∈ int(domφ) the gradient
∇φ(x) coincides with the (unique) subgradient of φ at x, and that ∇φ(·) is continuous at
x.

Of course, if h and (T, q) are independent, then the conditional distribution of h
given (T, q) is the same as the unconditional (marginal) distribution of h. Therefore, if
h and (T, q) are independent, then it suffices to assume in the above proposition that the
(marginal) distribution of h is absolutely continuous.

2.1.4 Optimality Conditions
We can now formulate optimality conditions and duality relations for linear two stage prob-
lems. Let us start from the problem with discrete distributions of the random data in (2.1)–
(2.2). The problem takes on the form:

Min
x

cTx+

K∑
k=1

pkQ(x, ξk)

s.t. Ax = b, x ≥ 0,

(2.35)

where Q(x, ξ) is the optimal value of the second stage problem, given by (2.2).
Suppose the expectation function φ(·) := E[Q(·, ξ)] has a finite value in at least one

point x̄ ∈ Rn. It follows from Propositions 2.2 and 2.3 that for every x0 ∈ domφ,

∂φ(x0) = −
K∑
k=1

pkT
T
k D(x0, ξk), (2.36)

where
D(x0, ξk) := arg max

{
πT(hk − Tkx0) : WT

k π ≤ qk
}
.

As before, we denote X := {x : Ax = b, x ≥ 0}.

Theorem 2.10. Let x̄ be a feasible solution of problem (2.1)–(2.2), i.e., x̄ ∈ X and φ(x̄)
is finite. Then x̄ is an optimal solution of problem (2.1)–(2.2) iff there exist πk ∈ D(x̄, ξk),
k = 1, . . . ,K, and µ ∈ Rm such that

K∑
k=1

pkT
T
k πk +ATµ ≤ c,

x̄T

(
c−

K∑
k=1

pkT
T
k πk −ATµ

)
= 0.

(2.37)

Proof. Necessary and sufficient optimality conditions for minimizing cTx + φ(x) over
x ∈ X can be written as

0 ∈ c+ ∂φ(x̄) +NX (x̄), (2.38)
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where NX (x̄) is the normal cone to the feasible set X . Note that condition (2.38) implies
that the setsNX (x̄) and ∂φ(x̄) are nonempty and hence x̄ ∈ X and φ(x̄) is finite. Note also
that there is no need here for additional regularity conditions since φ(·) and X are convex
and polyhedral. Using the characterization of the subgradients of φ(·), given in (2.36), we
conclude that (2.38) is equivalent to existence of πk ∈ D(x̄, ξk) such that

0 ∈ c−
K∑
k=1

pkT
T
k πk +NX (x̄).

Observe that
NX (x̄) = {ATµ− h : h ≥ 0, hTx̄ = 0}. (2.39)

The last two relations are equivalent to conditions (2.37).

Conditions (2.37) can also be obtained directly from the optimality conditions for the
large scale linear programming formulation

Min
x,y1,...,yK

cTx+

K∑
k=1

pkq
T
k yk

s.t. Tkx+Wkyk = hk, k = 1, . . . ,K,

Ax = b,

x ≥ 0,

yk ≥ 0, k = 1, . . . ,K.

(2.40)

By minimizing, with respect to x ≥ 0 and yk ≥ 0, k = 1, . . .,K, the Lagrangian

cTx+

K∑
k=1

pkq
T
k yk − µT(Ax− b)−

K∑
k=1

pkπ
T
k (Tkx+Wkyk − hk) =

(
c−ATµ−

K∑
k=1

pkT
T
k πk

)T

x+

K∑
k=1

pk
(
qk −WT

k πk
)T
yk + bTµ+

K∑
k=1

pkh
T
kπk,

we obtain the following dual of the linear programming problem (2.40):

Max
µ,π1,...,πK

bTµ+

K∑
k=1

pkh
T
kπk

s.t. c−ATµ−
K∑
k=1

pkT
T
k πk ≥ 0,

qk −WT
k πk ≥ 0, k = 1, . . .,K.

Therefore optimality conditions of Theorem 2.10 can be written in the following equivalent
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form

K∑
k=1

pkT
T
k πk +ATµ ≤ c,

x̄T

(
c−

K∑
k=1

pkT
T
k πk −ATµ

)
= 0,

qk −WT
k πk ≥ 0, k = 1, . . .,K,

ȳTk
(
qk −WT

k πk
)

= 0, k = 1, . . .,K.

The last two of the above conditions correspond to feasibility and optimality of multipliers
πk as solutions of the dual problems.

If we deal with general distributions of problem’s data, additional conditions are
needed, to ensure the subdifferentiability of the expected recourse cost, and the existence
of Lagrange multipliers.

Theorem 2.11. Let x̄ be a feasible solution of problem (2.1)–(2.2). Suppose that the ex-
pected recourse cost function φ(·) is proper, int(domφ)∩X is nonempty andNdomφ(x̄) ⊂
NX (x̄). Then x̄ is an optimal solution of problem (2.1)–(2.2) iff there exist a measurable
function π(ω) ∈ D(x̄, ξ(ω)), ω ∈ Ω, and a vector µ ∈ Rm such that

E
[
TTπ

]
+ATµ ≤ c,

x̄T
(
c− E

[
TTπ

]
−ATµ

)
= 0.

Proof. Since int(domφ) ∩ X is nonempty, we have by the Moreau-Rockafellar Theorem
that

∂
(
cTx̄+ φ(x̄) + IX (x̄)

)
= c+ ∂φ(x̄) + ∂IX (x̄).

Also ∂IX (x̄) = NX (x̄). Therefore we have here that (2.38) are necessary and sufficient
optimality conditions for minimizing cTx+φ(x) over x ∈ X . Using the characterization of
the subdifferential of φ(·) given in (2.34), we conclude that (2.38) is equivalent to existence
of a measurable function π(ω) ∈ D(x̄, ξ(ω)), such that

0 ∈ c− E
[
TTπ

]
+Ndomφ(x̄) +NX (x̄). (2.41)

Moreover, because of the condition Ndomφ(x̄) ⊂ NX (x̄), the term Ndomφ(x̄) can be
omitted. The proof can be completed now by using (2.41) together with formula (2.39) for
the normal cone NX (x̄).

The additional technical condition Ndomφ(x̄) ⊂ NX (x̄) was needed in the above
derivations in order to eliminate the term Ndomφ(x̄) in (2.41). In particular, this condition
holds if x̄ ∈ int(domφ), in which caseNdomφ(x̄) = {0}, or in case of relatively complete
recourse, i.e., when X ⊂ domφ. If the condition of relatively complete recourse is not
satisfied, we may need to take into account the normal cone to the domain of φ(·). In
general, this requires application of techniques of functional analysis, which are beyond
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the scope of this book. However, in the special case of a deterministic matrix T we can
carry out the analysis directly.

Theorem 2.12. Let x̄ be a feasible solution of problem (2.1)–(2.2). Suppose that the
assumptions of Proposition 2.7 are satisfied, int(domφ) ∩ X is nonempty and the matrix
T is deterministic. Then x̄ is an optimal solution of problem (2.1)–(2.2) iff there exist a
measurable function π(ω) ∈ D(x̄, ξ(ω)), ω ∈ Ω, and a vector µ ∈ Rm such that

TTE[π] +ATµ ≤ c,
x̄T
(
c− TTE[π]−ATµ

)
= 0.

Proof. Since T is deterministic, we have that E[TTπ] = TTE[π], and hence the optimality
conditions (2.41) can be written as

0 ∈ c− TTE[π] +Ndomφ(x̄) +NX (x̄).

Now we need to calculate the coneNdomφ(x̄). Recall that under the assumptions of Propo-
sition 2.7 (in particular, that the recourse is fixed and Π(q) is nonempty w.p.1), we have
that φ(·) > −∞ and formula (2.30) holds true. We have here that only q and h are random
while both matrices W and T are deterministic, and (2.30) simplifies to

domφ =
{
x : −Tx ∈

⋂
h∈Σ

(
− h+ posW

)}
,

where Σ is the support of the distribution of the random vector h. The tangent cone to
domφ at x̄ has the form

Tdomφ(x̄) =
{
d : −Td ∈

⋂
h∈Σ

(
posW + lin(−h+ T x̄)

)}
=
{
d : −Td ∈ posW +

⋂
h∈Σ

lin(−h+ T x̄)
}
.

Defining the linear subspace

L :=
⋂
h∈Σ

lin(−h+ T x̄),

we can write the tangent cone as

Tdomφ(x̄) = {d : −Td ∈ posW + L}.

Therefore the normal cone equals

Ndomφ(x̄) =
{
− TTv : v ∈ (posW + L)∗

}
= −TT

[
(posW )∗ ∩ L⊥

]
.

Here we used the fact that posW is polyhedral and no interior condition is needed for
calculating (posW + L)∗. Recalling equation (2.11) we conclude that

Ndomφ(x̄) = −TT
(
Π0 ∩ L⊥

)
.
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Observe that if ν ∈ Π0 ∩ L⊥ then ν is an element of the recession cone of the set D(x̄, ξ),
for all ξ ∈ Ξ. Thus π(ω)+ν is also an element of the set D(x, ξ(ω)), for almost all ω ∈ Ω.
Consequently

−TTE
[
D(x̄, ξ)

]
+Ndomφ(x̄) = −TTE

[
D(x̄, ξ)

]
− TT

(
Π0 ∩ L⊥

)
= −TTE

[
D(x̄, ξ)

]
,

and the result follows.

Example 2.13 (Capacity Expansion (continued)) Let us return to Example 2.13 and sup-
pose the support Ξ of the random demand vector ξ is compact. Only the right hand side ξ in
the second stage problem (2.19)–(2.21) is random and for a sufficiently large x the second
stage problem is feasible for all ξ ∈ Ξ. Thus conditions of Theorem 2.11 are satisfied. It
follows from Theorem 2.11 that x̄ is an optimal solution of problem (2.23) iff there exist
measurable functions µn(ξ), n ∈ N , such that for all ξ ∈ Ξ we have µ(ξ) ∈M(x̄, ξ), and
for all (i, j) ∈ A the following conditions are satisfied:

cij ≥
∫
Ξ

max{0, µi(ξ)− µj(ξ)− qij}P (dξ), (2.42)

(
x̄ij − xmin

ij

)cij − ∫
Ξ

max{0, µi(ξ)− µj(ξ)− qij}P (dξ)

 = 0. (2.43)

In particular, for every (i, j) ∈ A such that x̄ij > xmin
ij we have equality in equation (2.42).

Each function µn(ξ) can be interpreted as a random potential of node n ∈ N .

2.2 Polyhedral Two-Stage Problems
2.2.1 General Properties

Let us consider a slightly more general formulation of a two-stage stochastic programming
problem:

Min
x

f1(x) + E[Q(x, ω)], (2.44)

where Q(x, ω) is the optimal value of the second stage problem

Min
y

f2(y, ω)

s.t. T (ω)x+W (ω)y = h(ω).
(2.45)

We assume in this section that the above two-stage problem is polyhedral. That is, the
following holds.

• The function f1(·) is polyhedral (compare with Definition 7.1). This means that
there exist vectors cj and scalars αj , j = 1, . . . , J1, vectors ak and scalars bk, k =
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1, . . . ,K1, such that f1(x) can be represented as follows:

f1(x) =

{
max

1≤j≤J1

αj + cTj x, if aTkx ≤ bk, k = 1, . . . ,K1,

+∞, otherwise,

and its domain dom f1 =
{
x : aTkx ≤ bk, k = 1, . . . ,K1

}
is nonempty. (Note that

any polyhedral function is convex and lower semicontinuous.)

• The function f2 is random polyhedral. That is, there exist random vectors qj = qj(ω)
and random scalars γj = γj(ω), j = 1, . . . , J2, random vectors dk = dk(ω) and
random scalars rk = rk(ω), k = 1, . . . ,K2, such that f2(y, ω) can be represented as
follows:

f2(y, ω) =

{
max

1≤j≤J2

γj(ω) + qj(ω)Ty, if dk(ω)Ty ≤ rk(ω), k = 1, . . . ,K2,

+∞, otherwise,

and for a.e. ω the domain of f2(·, ω) is nonempty.

Note that (linear) constraints of the second stage problem which are independent of
x, as for example y ≥ 0, can be absorbed into the objective function f2(y, ω). Clearly,
the linear two-stage model (2.1)–(2.2) is a special case of a polyhedral two-stage problem.
The converse is also true, that is, every polyhedral two-stage model can be re-formulated
as a linear two-stage model. For example, the second stage problem (2.45) can be written
as follows:

Min
y,v

v

s.t. T (ω)x+W (ω)y = h(ω),

γj(ω) + qj(ω)Ty ≤ v, j = 1, . . . , J2,

dk(ω)Ty ≤ rk(ω), k = 1, . . . ,K2.

Here both v and y play the role of the second stage variables, and the data (q, T,W, h) in
(2.2) have to be re-defined in an appropriate way. In order to avoid all these manipulations
and unnecessary notational complications that come together with such a conversion, we
shall address polyhedral problems in a more abstract way. This will also help us to deal
with multistage problems and general convex problems.

Consider the Lagrangian of the second stage problem (2.45):

L(y, π;x, ω) := f2(y, ω) + πT
(
h(ω)− T (ω)x−W (ω)y

)
.

We have

inf
y
L(y, π;x, ω) = πT

(
h(ω)− T (ω)x

)
+ inf

y

[
f2(y, ω)− πTW (ω)y

]
= πT

(
h(ω)− T (ω)x

)
− f∗2 (W (ω)Tπ, ω),
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where f∗2 (·, ω) is the conjugate4 of f2(·, ω). We obtain that the dual of problem (2.45) can
be written as follows

Max
π

[
πT
(
h(ω)− T (ω)x

)
− f∗2 (W (ω)Tπ, ω)

]
. (2.46)

By the duality theory of linear programming, if, for some (x, ω), the optimal valueQ(x, ω)
of problem (2.45) is less than +∞ (i.e., problem (2.45) is feasible), then it is equal to the
optimal value of the dual problem (2.46).

Let us denote, as before, by D(x, ω) the set of optimal solutions of the dual problem
(2.46). We then have an analogue of Proposition 2.2.

Proposition 2.14. Let ω ∈ Ω be given and suppose that Q(·, ω) is finite in at least one
point x̄. Then the function Q(·, ω) is polyhedral (and hence convex). Moreover, Q(·, ω) is
subdifferentiable at every x at which the value Q(x, ω) is finite, and

∂Q(x, ω) = −T (ω)TD(x, ω). (2.47)

Proof. Let us define the function ψ(π) := f∗2 (WTπ) (for simplicity we suppress the
argument ω). We have that if Q(x, ω) is finite, then it is equal to the optimal value of
problem (2.46), and hence Q(x, ω) = ψ∗(h − Tx). Therefore Q(·, ω) is a polyhedral
function. Moreover, it follows by the Fenchel–Moreau Theorem that

∂ψ∗(h− Tx) = D(x, ω),

and the chain rule for subdifferentiation yields formula (2.47). Note that we do not need
here additional regularity conditions because of the polyhedricity of the considered case.

If Q(x, ω) is finite, then the set D(x, ω) of optimal solutions of problem (2.46) is
a nonempty convex closed polyhedron. If, moreover, D(x, ω) is bounded, then it is the
convex hull of its finitely many vertices (extreme points), and Q(·, ω) is finite in a neigh-
borhood of x. If D(x, ω) is unbounded, then its recession cone (which is polyhedral) is the
normal cone to the domain of Q(·, ω) at the point x.

2.2.2 Expected Recourse Cost

Let us consider the expected value function φ(x) := E[Q(x, ω)]. Suppose that the proba-
bility measure P has a finite support, i.e., there exists a finite number of scenarios ωk with
respective (positive) probabilities pk, k = 1, . . .,K. Then

E[Q(x, ω)] =

K∑
k=1

pkQ(x, ωk).

4Note that since f2(·, ω) is polyhedral, so is f∗2 (·, ω).
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For a given x, the expectation E[Q(x, ω)] is equal to the optimal value of the problem

Min
y1,...,yK

K∑
k=1

pkf2(yk, ωk)

s.t. Tkx+Wkyk = hk, k = 1, . . .,K,

(2.48)

where (hk, Tk,Wk) := (h(ωk), T (ωk),W (ωk)). Similarly to the linear case, if for at least
one k ∈ {1, . . .,K} the set

dom f2(·, ωk) ∩ {y : Tkx+Wky = hk}

is empty, i.e., the corresponding second stage problem is infeasible, then problem (2.48) is
infeasible, and hence its optimal value is +∞.

Proposition 2.15. Suppose that the probability measure P has a finite support and that the
expectation function φ(·) := E[Q(·, ω)] has a finite value in at least one point x ∈ Rn.
Then the function φ(·) is polyhedral, and for any x0 ∈ domφ,

∂φ(x0) =

K∑
k=1

pk∂Q(x0, ωk). (2.49)

The proof is identical to the proof of Proposition 2.3. Since the functions Q(·, ωk)
are polyhedral, formula (2.49) follows by the Moreau–Rockafellar Theorem.

The subdifferential ∂Q(x0, ωk) of the second stage optimal value function is de-
scribed in Proposition 2.14. That is, if Q(x0, ωk) is finite, then

∂Q(x0, ωk) = −TT
k arg max

{
πT
(
hk − Tkx0

)
− f∗2 (WT

k π, ωk)
}
. (2.50)

It follows that the expectation function φ is differentiable at x0 iff for every ωk, k =
1, . . .,K, the maximum at the right hand side of (2.50) is attained at a unique point, i.e.,
the corresponding second stage dual problem has a unique optimal solution.

Let us now consider the case of a general probability distribution P . We need to en-
sure that the expectation function φ(x) := E[Q(x, ω)] is well defined. General conditions
are complicated, so we resort again to the case of fixed recourse.

We say that the two-stage polyhedral problem has fixed recourse if the matrix W and
the set5 Y := dom f2(·, ω) are fixed, i.e., do not depend on ω. In that case,

f2(y, ω) =

{
max

1≤j≤J2

γj(ω) + qj(ω)Ty, if y ∈ Y,

+∞, otherwise.

Denote W (Y) := {Wy : y ∈ Y}. Let x be such that

h(ω)− T (ω)x ∈W (Y) w.p.1. (2.51)

5Note that since it is assumed that f2(·, ω) is polyhedral, it follows that the set Y is nonempty and polyhedral.
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This means that for a.e. ω the system

y ∈ Y, Wy = h(ω)− T (ω)x (2.52)

has a solution. Let for some ω0 ∈ Ω, y0 be a solution of the above system, i.e., y0 ∈ Y
and h(ω0)−T (ω0)x = Wy0. Since system (2.52) is defined by linear constraints, we have
by Hoffman’s lemma that there exists a constant κ such that for almost all ω we can find a
solution ȳ(ω) of the system (2.52) with

‖ȳ(ω)− y0‖ ≤ κ‖(h(ω)− T (ω)x)− (h(ω0)− T (ω0)x)‖.

Therefore the optimal value of the second stage problem can be bounded from above as
follows:

Q(x, ω) ≤ max
1≤j≤J2

{
γj(ω) + qj(ω)Tȳ(ω)

}
≤ Q(x, ω0) +

J2∑
j=1

|γj(ω)− γj(ω0)|

+ κ

J2∑
j=1

‖qj(ω)‖
(
‖h(ω)− h(ω0)‖+ ‖x‖ ‖T (ω)− T (ω0)‖

)
. (2.53)

Proposition 2.16. Suppose that the recourse is fixed and

E|γj | < +∞, E
[
‖qj‖ ‖h‖

]
< +∞ and E

[
‖qj‖ ‖T‖

]
< +∞, j = 1, . . . , J2. (2.54)

Consider a point x ∈ Rn. Then E[Q(x, ω)+] is finite if and only if condition (2.51) holds.

Proof. The proof uses (2.53), similarly to the proof of Proposition 2.6.

Let us now formulate conditions under which the expected recourse cost is bounded
from below. Let C be the recession cone of Y , and C∗ be its polar. Consider the conjugate
function f∗2 (·, ω). It can be verified that

domf∗2 (·, ω) = conv
{
qj(ω), j = 1, . . . , J2

}
+ C∗. (2.55)

Indeed, by the definition of the function f2(·, ω) and its conjugate, we have that f∗2 (z, ω)
is equal to the optimal value of the

Max
y,v

v

s.t. zTy − γj(ω)− qj(ω)Ty ≥ v, j = 1, . . . , J2, y ∈ Y.

Since it is assumed that the set Y is nonempty, the above problem is feasible, and since Y
is polyhedral, it is linear. Therefore its optimal value is equal to the optimal value of its
dual. In particular, its optimal value is less than +∞ iff the dual problem is feasible. Now
the dual problem is feasible iff there exist πj ≥ 0, j = 1, . . . , J2, such that

∑J2

j=1 πj = 1
and

sup
y∈Y

yT

z − J2∑
j=1

πjqj(ω)

 < +∞.
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The last condition holds iff z −
∑J2

j=1 πjqj(ω) ∈ C∗, which completes the argument.
Let us define the set

Π(ω) :=
{
π : WTπ ∈ conv {qj(ω), j = 1, . . . , J2}+ C∗

}
.

We may remark that in the case of a linear two stage problem the above set coincides with
the one defined in (2.5).

Proposition 2.17. Suppose that: (i) the recourse is fixed, (ii) the set Π(ω) is nonempty
w.p.1, (iii) condition (2.54) holds.

Then the expectation function φ(x) is well defined and φ(x) > −∞ for all x ∈
Rn. Moreover, φ is convex, lower semicontinuous and Lipschitz continuous on domφ, its
domain domφ is a convex closed subset of Rn and

domφ = {x ∈ Rn : h− Tx ∈W (Y) w.p.1} . (2.56)

Furthermore, for any x0 ∈ domφ,

∂φ(x0) = −E
[
TTD(x0, ω)

]
+Ndomφ(x0), (2.57)

Proof. Note that the dual problem (2.46) is feasible iff WTπ ∈ dom f∗2 (·, ω). By formula
(2.55) assumption (ii) means that problem (2.46) is feasible, and hence Q(x, ω) is equal to
the optimal value of (2.46), for a.e. ω. The remainder of the proof is similar to the linear
case (Proposition 2.7 and Proposition 2.8).

2.2.3 Optimality Conditions
The optimality conditions for polyhedral two-stage problems are similar to those for linear
problems. For completeness we provide the appropriate formulations. Let us start from
the problem with finitely many elementary events ωk occurring with probabilities pk, k =
1, . . . ,K.

Theorem 2.18. Suppose that the probability measure P has a finite support. Then a point
x̄ is an optimal solution of the first stage problem (2.44) iff there exist πk ∈ D(x̄, ωk),
k = 1, . . . ,K, such that

0 ∈ ∂f1(x̄)−
K∑
k=1

pkT
T
k πk. (2.58)

Proof. Since f1(x) and φ(x) = E[Q(x, ω)] are convex functions, a necessary and sufficient
condition for a point x̄ to be a minimizer of f1(x) + φ(x) reads

0 ∈ ∂
[
f1(x̄) + φ(x̄)

]
. (2.59)

In particular, the above condition requires for f1(x̄) and φ(x̄) to be finite valued. By the
Moreau–Rockafellar Theorem we have that ∂

[
f1(x̄) + φ(x̄)

]
= ∂f1(x̄) + ∂φ(x̄). Note



i
i

“SPbook” — 2013/12/24 — 8:37 — page 48 — #60 i
i

i
i

i
i

48 Chapter 2. Two Stage Problems

that there is no need here for additional regularity conditions because of the polyhedricity
of functions f1 and φ. The proof can be completed now by using formula for ∂φ(x̄) given
in Proposition 2.15.

In the case of general distributions, the derivation of optimality conditions requires
additional assumptions.

Theorem 2.19. Suppose that: (i) the recourse is fixed and relatively complete, (ii) the set
Π(ω) is nonempty w.p.1, (iii) condition (2.54) holds.

Then a point x̄ is an optimal solution of problem (2.44)–(2.45) iff there exists a mea-
surable function π(ω) ∈ D(x̄, ω), ω ∈ Ω, such that

0 ∈ ∂f1(x̄)− E
[
TTπ

]
. (2.60)

Proof. The result follows immediately from the optimality condition (2.59) and formula
(2.57). Since the recourse is relatively complete, we can omit the normal cone to the domain
of φ(·).

If the recourse is not relatively complete, the analysis becomes complicated. The nor-
mal cone to the domain of φ(·) enters the optimality conditions. For the domain described
in (2.56) this cone is rather difficult to describe in a closed form. Some simplification
can be achieved when T is deterministic. The analysis then mirrors the linear case, as in
Theorem 2.12.

2.3 General Two-Stage Problems
2.3.1 Problem Formulation, Interchangeability
In a general way two-stage stochastic programming problems can be written in the follow-
ing form

Min
x∈X

{
f(x) := E[F (x, ω)]

}
, (2.61)

where F (x, ω) is the optimal value of the second stage problem

Min
y∈G(x,ω)

g(x, y, ω). (2.62)

Here X ⊂ Rn, g : Rn × Rm × Ω → R and G : Rn × Ω ⇒ Rm is a multifunction. In
particular, the linear two-stage problem (2.1)–(2.2) can be formulated in the above form
with g(x, y, ω) := cTx+ q(ω)Ty and

G(x, ω) := {y : T (ω)x+W (ω)y = h(ω), y ≥ 0}.

We also use notation gω(x, y) = g(x, y, ω) and Gω(x) = G(x, ω).
Of course, the second stage problem (2.62) can be also written in the following equiv-

alent form
Min
y∈Rm

ḡ(x, y, ω), (2.63)
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where

ḡ(x, y, ω) :=

{
g(x, y, ω), if y ∈ G(x, ω)

+∞, otherwise.
(2.64)

We assume that the function ḡ(x, y, ω) is random lower semicontinuous. Recall that if
g(x, y, ·) is measurable for every (x, y) ∈ Rn × Rm and g(·, ·, ω) is continuous for a.e.
ω ∈ Ω, i.e., g(x, y, ω) is a Carathéodory function, then g(x, y, ω) is random lsc. Random
lower semicontinuity of ḡ(x, y, ω) implies that the optimal value function F (x, ·) is mea-
surable (see Theorem 7.42). Moreover, if for a.e. ω ∈ Ω function F (·, ω) is continuous,
then F (x, ω) is a Carathéodory function, and hence is random lsc. The indicator function
IGω(x)(y) is random lsc if for every ω ∈ Ω the multifunction Gω(·) is closed and G(x, ω) is
measurable with respect to the sigma algebra of Rn ×Ω (see Theorem 7.41). Of course, if
g(x, y, ω) and IGω(x)(y) are random lsc, then their sum ḡ(x, y, ω) is also random lsc.

Now let Y be a linear decomposable space of measurable mappings from Ω to Rm.
For example, we can take Y := Lp(Ω,F , P ;Rm) with p ∈ [1,+∞]. Then by the inter-
changeability principle we have

E
[

inf
y∈Rm

ḡ(x, y, ω)

]
︸ ︷︷ ︸

F (x,ω)

= inf
y∈Y

E
[
ḡ(x,y(ω), ω)

]
, (2.65)

provided that the right hand side of (2.65) is less than +∞ (see Theorem 7.92). This implies
the following interchangeability principle for two-stage programming.

Theorem 2.20. The two-stage problem (2.61)–(2.62) is equivalent to the following prob-
lem:

Min
x∈Rn,y∈Y

E [g(x,y(ω), ω)]

s.t. x ∈ X , y(ω) ∈ G(x, ω) a.e. ω ∈ Ω.
(2.66)

The equivalence is understood in the sense that optimal values of problems (2.61) and
(2.66) are equal to each other, provided that the optimal value of problem (2.66) is less
than +∞. Moreover, assuming that the common optimal value of problems (2.61) and
(2.66) is finite, we have at if (x̄, ȳ) is an optimal solution of problem (2.66), then x̄ is an
optimal solution of the first stage problem (2.61) and ȳ = ȳ(ω) is an optimal solution of
the second stage problem (2.62) for x = x̄ and a.e. ω ∈ Ω; conversely, if x̄ is an optimal
solution of the first stage problem (2.61) and for x = x̄ and a.e. ω ∈ Ω the second stage
problem (2.62) has an optimal solution ȳ = ȳ(ω) such that ȳ ∈ Y, then (x̄, ȳ) is an
optimal solution of problem (2.66).

Note that optimization in the right hand side of (2.65) and in (2.66) is performed over
mappings y : Ω → Rm belonging to the space Y. In particular, if Ω = {ω1, . . ., ωK} is
finite, then by setting yk := y(ωk), k = 1, . . .,K, every such mapping can be identified
with a vector (y1, . . ., yK) and the space Y with the finite dimensional space RmK . In that



i
i

“SPbook” — 2013/12/24 — 8:37 — page 50 — #62 i
i

i
i

i
i

50 Chapter 2. Two Stage Problems

case problem (2.66) takes the form (compare with (2.15)):

Min
x,y1,...,yK

K∑
k=1

pkg(x, yk, ωk)

s.t. x ∈ X , yk ∈ G(x, ωk), k = 1, . . .,K.

(2.67)

2.3.2 Convex Two-Stage Problems
We say that the two-stage problem (2.61)–(2.62) is convex if the set X is convex (and
closed) and for every ω ∈ Ω the function ḡ(x, y, ω), defined in (2.64), is convex in (x, y) ∈
Rn×Rm. We leave this as an exercise to show that in such case the optimal value function
F (·, ω) is convex, and hence (2.61) is a convex problem. It could be useful to understand
what conditions will guarantee convexity of the function ḡω(x, y) = ḡ(x, y, ω). We have
that ḡω(x, y) = gω(x, y) + IGω(x)(y). Therefore ḡω(x, y) is convex if gω(x, y) is convex
and the indicator function IGω(x)(y) is convex in (x, y). It is not difficult to see that the
indicator function IGω(x)(y) is convex iff the following condition holds for any t ∈ [0, 1]:

y ∈ Gω(x), y′ ∈ Gω(x′) ⇒ ty + (1− t)y′ ∈ Gω(tx+ (1− t)x′). (2.68)

Equivalently this condition can be written as

tGω(x) + (1− t)Gω(x′) ⊂ Gω(tx+ (1− t)x′), ∀x, x′ ∈ Rn, ∀t ∈ [0, 1]. (2.69)

Multifunction Gω satisfying the above condition (2.69) is called convex. By taking x = x′

we obtain that if the multifunction Gω is convex, then it is convex valued, i.e., the set Gω(x)
is convex for every x ∈ Rn.

In the remainder of this section we assume that the multifunction G(x, ω) is defined
in the following form

G(x, ω) := {y ∈ Y : T (x, ω) +W (y, ω) ∈ −C}, (2.70)

where Y is a nonempty convex closed subset of Rm and T = (t1, . . ., t`) : Rn × Ω→ R`,
W = (w1, . . ., w`) : Rm × Ω→ R` and C ⊂ R` is a closed convex cone. Cone C defines
a partial order, denoted “ �

C
”, on the space R`. That is, a �

C
b iff b − a ∈ C. In that

notation the constraint T (x, ω)+W (y, ω) ∈ −C can be written as T (x, ω)+W (y, ω) �
C

0. For example, if C := R`+, then the constraint T (x, ω) + W (y, ω) �
C

0 means that
ti(x, ω) + wi(y, ω) ≤ 0, i = 1, . . ., `. We assume that ti(x, ω) and wi(y, ω), i = 1, . . ., `,
are Carathéodory functions and that for every ω ∈ Ω, mappings Tω(·) = T (·, ω) and
Wω(·) = W (·, ω) are convex with respect to the cone C. A mapping G : Rn → R` is
said to be convex with respect to C if the multifunction M(x) := G(x) + C is convex.
Equivalently, mapping G is convex with respect to C if

G
(
tx+ (1− t)x′

)
�
C
tG(x) + (1− t)G(x′) ∀x, x′ ∈ Rn, ∀t ∈ [0, 1].

For example, mapping G(·) = (g1(·), . . ., g`(·)) is convex with respect to C := R`+ iff all
its components gi(·), i = 1, . . ., `, are convex functions. Convexity of Tω and Wω implies
convexity of the corresponding multifunction Gω .
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We assume, further, that g(x, y, ω) := c(x) + q(y, ω), where c(·) and q(·, ω) are real
valued convex functions. For G(x, ω) of the form (2.70), and given x, we can write the
second stage problem, up to the constant c(x), in the form

Min
y∈Y

qω(y)

s.t. Wω(y) + χω �C 0
(2.71)

with χω := T (x, ω). Let us denote by ϑ(χ, ω) the optimal value of problems (2.71). Note
that F (x, ω) = c(x) + ϑ(T (x, ω), ω). The (Lagrangian) dual of problem (2.71) can be
written in the form

Max
π�

C
0

{
πTχω + inf

y∈Y
Lω(y, π)

}
, (2.72)

where
Lω(y, π) := qω(y) + πTWω(y)

is the Lagrangian of problem (2.71). We have the following results (see Theorems 7.8 and
7.9).

Proposition 2.21. Let ω ∈ Ω and χω be given and suppose that the specified above con-
vexity assumptions are satisfied. Then the following statements hold true:

(i) The functions ϑ(·, ω) and F (·, ω) are convex.

(ii) Suppose that problem (2.71) is subconsistent. Then there is no duality gap between
problem (2.71) and its dual (2.72) if and only if the optimal value function ϑ(·, ω) is
lower semicontinuous at χω .

(iii) There is no duality gap between problems (2.71) and (2.72) and the dual problem
(2.72) has a nonempty set of optimal solutions if and only if the optimal value func-
tion ϑ(·, ω) is subdifferentiable at χω .

(iv) Suppose that the optimal value of (2.71) is finite. Then there is no duality gap between
problems (2.71) and (2.72) and the dual problem (2.72) has a nonempty and bounded
set of optimal solutions if and only if χω ∈ int(domϑ(·, ω)).

The regularity condition χω ∈ int(domϑ(·, ω)) means that for all small perturba-
tions of χω the corresponding problem (2.71) remains feasible.

We can also characterize the differentiability properties of the optimal value functions
in terms of the dual problem (2.72). Let us denote by D(χ, ω) the set of optimal solutions
of the dual problem (2.72). This set may be empty, of course.

Proposition 2.22. Let ω ∈ Ω, x ∈ Rn and χ = T (x, ω) be given. Suppose that the
specified convexity assumptions are satisfied and that problems (2.71) and (2.72) have finite
and equal optimal values. Then

∂ϑ(χ, ω) = D(χ, ω). (2.73)
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Suppose, further, that functions c(·) and Tω(·) are differentiable, and

0 ∈ int
{
Tω(x) +∇Tω(x)R` − domϑ(·, ω)

}
. (2.74)

Then
∂F (x, ω) = ∇c(x) +∇Tω(x)TD(χ, ω). (2.75)

Corollary 2.23. Let ω ∈ Ω, x ∈ Rn and χ = T (x, ω) and suppose that the specified
convexity assumptions are satisfied. Then ϑ(·, ω) is differentiable at χ if and only if D(χ, ω)
is a singleton. Suppose, further, that the functions c(·) and Tω(·) are differentiable. Then
the function F (·, ω) is differentiable at every x at which D(χ, ω) is a singleton.

Proof. If D(χ, ω) is a singleton, then the set of optimal solutions of the dual problem (2.72)
is nonempty and bounded, and hence there is no duality gap between problems (2.71) and
(2.72). Thus formula (2.73) holds. Conversely, if ∂ϑ(χ, ω) is a singleton and hence is
nonempty, then again there is no duality gap between problems (2.71) and (2.72), and
hence formula (2.73) holds.

Now if D(χ, ω) is a singleton, then ϑ(·, ω) is continuous at χ and hence the regularity
condition (2.74) holds. It follows then by formula (2.75) that F (·, ω) is differentiable at x
and formula

∇F (x, ω) = ∇c(x) +∇Tω(x)TD(χ, ω) (2.76)

holds true.

Let us focus on the expectation function f(x) := E[F (x, ω)]. If the set Ω is finite,
say Ω = {ω1, . . . , ωK} with corresponding probabilities pk, k = 1, . . . ,K, then f(x) =∑K
k=1 pkF (x, ωk) and subdifferentiability of f(x) is described by the Moreau-Rockafellar

Theorem (Theorem 7.4) together with formula (2.75). In particular, f(·) is differentiable
at a point x if the functions c(·) and Tω(·) are differentiable at x and for every ω ∈ Ω the
corresponding dual problem (2.72) has a unique optimal solution.

Let us consider the general case, when Ω is not assumed to be finite. By combining
Proposition 2.22 and Theorem 7.52 we obtain that, under appropriate regularity conditions
ensuring for a.e. ω ∈ Ω formula (2.75) and interchangeability of the subdifferential and
expectation operators, it follows that f(·) is subdifferentiable at a point x̄ ∈ dom f and

∂f(x̄) = ∇c(x̄) +

∫
Ω

∇Tω(x̄)TD(Tω(x̄), ω) dP (ω) +Ndom f (x̄). (2.77)

In particular, it follows from the above formula (2.77) that f(·) is differentiable at x̄ iff
x̄ ∈ int(dom f) and D(Tω(x̄), ω) = {π(ω)} is a singleton w.p.1, in which case

∇f(x̄) = ∇c(x̄) + E
[
∇Tω(x̄)Tπ(ω)

]
. (2.78)

We obtain the following conditions for optimality.

Proposition 2.24. Let x̄ ∈ X ∩ int(dom f) and assume that formula (2.77) holds. Then x̄
is an optimal solution of the first stage problem (2.61) iff there exists a measurable selection
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π(ω) ∈ D(T (x̄, ω), ω) such that

−c(x̄)− E
[
∇Tω(x̄)Tπ(ω)

]
∈ NX (x̄). (2.79)

Proof. Since x̄ ∈ X ∩ int(dom f), we have that int(dom f) 6= ∅ and x̄ is an optimal
solution iff 0 ∈ ∂f(x̄) + NX (x̄). By formula (2.77) and since x̄ ∈ int(dom f), this is
equivalent to condition (2.79).

2.4 Nonanticipativity
2.4.1 Scenario Formulation
An additional insight into the structure and properties of two-stage problems can be gained
by introducing the concept of nonanticipativity. Consider the first stage problem (2.61).
Assume that the number of scenarios is finite, i.e., Ω = {ω1, . . ., ωK} with respective
(positive) probabilities p1, . . ., pK . Let us relax the first stage problem by replacing vector
xwithK vectors x1, x2, . . . , xK , one for each scenario. We obtain the following relaxation
of problem (2.61):

Min
x1,...,xK

K∑
k=1

pkF (xk, ωk) subject to xk ∈ X , k = 1, . . .,K. (2.80)

We observe that problem (2.80) is separable in the sense that it can be split into K
smaller problems, one for each scenario:

Min
xk∈X

F (xk, ωk), k = 1, . . . ,K, (2.81)

and that the optimal value of problem (2.80) is equal to the weighted sum, with weights
pk, of the optimal values of problems (2.81), k = 1, . . .,K. For example, in the case of
two-stage linear program (2.15), relaxation of the form (2.80) leads to solving K smaller
problems

Min
xk≥0,yk≥0

cTxk + qTk yk

s.t. Axk = b, Tkxk +Wkyk = hk.

Problem (2.80), however, is not suitable for modeling a two stage decision process.
This is because the first stage decision variables xk in (2.80) are now allowed to depend on
a realization of the random data at the second stage. This can be fixed by introducing the
additional constraint

(x1, . . ., xK) ∈ L, (2.82)

where L := {x = (x1, . . ., xK) : x1 = . . . = xK} is a linear subspace of the nK-
dimensional vector space X := Rn×· · ·×Rn. Due to the constraint (2.82), all realizations
xk, k = 1, . . .,K, of the first stage decision vector are equal to each other, that is, they do
not depend on the realization of the random data. The constraint (2.82) can be written in
different forms, which can be convenient in various situations, and will be referred to as the
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nonanticipativity constraint. Together with the nonanticipativity constraint (2.82), problem
(2.80) becomes

Min
x1,...,xK

K∑
k=1

pkF (xk, ωk)

s.t. x1 = · · · = xK , xk ∈ X , k = 1, . . .,K.

(2.83)

Clearly, the above problem (2.83) is equivalent to problem (2.61). Such nonanticipativity
constraints are especially important in multistage modeling which we discuss later.

A way to write the nonanticipativity constraint is to require that

xk =

K∑
i=1

pixi, k = 1, . . . ,K, (2.84)

which is convenient for extensions to the case of a continuous distribution of problem data.
Equations (2.84) can be interpreted in the following way. Consider the space X equipped
with the scalar product

〈x,y〉 :=

K∑
i=1

pix
T
i yi. (2.85)

Define linear operator P : X→ X as

Px :=

(
K∑
i=1

pixi, . . . ,

K∑
i=1

pixi

)
.

Constraint (2.84) can be compactly written as

x = Px.

It can be verified thatP is the orthogonal projection operator of X, equipped with the scalar
product (2.85), onto its subspace L. Indeed, P (Px) = Px, and

〈Px,y〉 =

(
K∑
i=1

pixi

)T( K∑
k=1

pkyk

)
= 〈x,Py〉. (2.86)

The range space of P , which is the linear space L, is called the nonanticipativity subspace
of X.

Another way to algebraically express nonanticipativity, which is convenient for nu-
merical methods, is to write the system of equations

x1 = x2,

x2 = x3,

...
xK−1 = xK .

(2.87)

This system is very sparse: each equation involves only two variables, and each variable
appears in at most two equations, which is convenient for many numerical solution meth-
ods.
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2.4.2 Dualization of Nonanticipativity Constraints
We discuss now a dualization of problem (2.80) with respect to the nonanticipativity con-
straints (2.84). Assigning to these nonanticipativity constraints Lagrange multipliers λk ∈
Rn, k = 1, . . . ,K, we can write the Lagrangian

L(x,λ) :=

K∑
k=1

pkF (xk, ωk) +

K∑
k=1

pkλ
T
k

(
xk −

K∑
i=1

pixi

)
.

Note that since P is an orthogonal projection, I−P is also an orthogonal projection (onto
the space orthogonal to L), and hence

K∑
k=1

pkλ
T
k

(
xk −

K∑
i=1

pixi

)
= 〈λ, (I − P )x〉 = 〈(I − P )λ,x〉.

Therefore the above Lagrangian can be written in the following equivalent form

L(x,λ) =

K∑
k=1

pkF (xk, ωk) +

K∑
k=1

pk

λk − K∑
j=1

pjλj

T

xk.

Let us observe that shifting the multipliers λk, k = 1, . . . ,K, by a constant vector does not
change the value of the Lagrangian, because the expression λk−

∑K
j=1 pjλj is invariant to

such shifts. Therefore, with no loss of generality we can assume that

K∑
j=1

pjλj = 0.

or, equivalently, that Pλ = 0. Dualization of problem (2.80) with respect to the nonantici-
pativity constraints takes the form of the following problem

Max
λ

{
D(λ) := inf

x
L(x,λ)

}
subject to Pλ = 0. (2.88)

By general duality theory we have that the optimal value of problem (2.61) is greater than
or equal to the optimal value of problem (2.88). These optimal values are equal to each
other under some regularity conditions, we will discuss a general case in the next section.
In particular, if the two stage problem is linear and since the nonanticipativity constraints
are linear, we have in that case that there is no duality gap between problem (2.61) and its
dual problem (2.88) unless both problems are infeasible.

Let us take a closer look at the dual problem (2.88). Under the condition Pλ = 0,
the Lagrangian can be written simply as

L(x,λ) =

K∑
k=1

pk
(
F (xk, ωk) + λTkxk

)
.

We see that the Lagrangian can be split into K components:

L(x,λ) =

K∑
k=1

pkLk(xk, λk),
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where Lk(xk, λk) := F (xk, ωk) + λTkxk. It follows that

D(λ) =

K∑
j=1

pkDk(λk),

where
Dk(λk) := inf

xk∈X
Lk(xk, λk).

For example, in the case of the two-stage linear program (2.15), Dk(λk) is the optimal
value of the problem

Min
xk,yk

(c+ λk)Txk + qTk yk

s.t. Axk = b,

Tkxk +Wkyk = hk,

xk ≥ 0, yk ≥ 0.

We see that value of the dual function D(λ) can be calculated by solving K independent
scenario subproblems.

Suppose that there is no duality gap between problem (2.61) and its dual (2.88) and
their common optimal value is finite. This certainly holds true if the problem is linear, and
both problems, primal and dual, are feasible. Let λ̄ = (λ̄1, . . ., λ̄K) be an optimal solution
of the dual problem (2.88). Then the set of optimal solutions of problem (2.61) is contained
in the set of optimal solutions of the problem

Min
xk∈X

K∑
k=1

pkLk(xk, λ̄k) (2.89)

This inclusion can be strict, i.e., the set of optimal solutions of (2.89) can be larger than
the set of optimal solutions of problem (2.61) (see an example of linear program defined in
(7.32)). Of course, if problem (2.89) has unique optimal solution x̄ = (x̄1, . . ., x̄K), then
x̄ ∈ L, i.e., x̄1 = . . . = x̄K , and this is also the optimal solution of problem (2.61) with x̄
being equal to the common value of x̄1, . . ., x̄K . Note also that the above problem (2.89)
is separable, i.e., x̄ is an optimal solution of (2.89) iff for every k = 1, . . .,K, x̄k is an
optimal solution of the problem

Min
xk∈X

Lk(xk, λ̄k).

2.4.3 Nonanticipativity Duality for General Distributions
In this section we discuss dualization of the first stage problem (2.61) with respect to nonan-
ticipativity constraints in general (not necessarily finite scenarios) case. For the sake of
convenience we write problem (2.61) in the form

Min
x∈Rn

{
f̄(x) := E[F̄ (x, ω)]

}
, (2.90)

where F̄ (x, ω) := F (x, ω)+ IX (x), i.e., F̄ (x, ω) = F (x, ω) if x ∈ X and F̄ (x, ω) = +∞
otherwise. Let X be a linear decomposable space of measurable mappings from Ω to Rn.
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Unless stated otherwise we use X := Lp(Ω,F , P ;Rn) for some p ∈ [1,+∞] such that for
every x ∈ X the expectation E[F̄ (x(ω), ω)] is well defined. Then we can write problem
(2.90) in the following equivalent form

Min
x∈L

E[F̄ (x(ω), ω)], (2.91)

where L is a linear subspace of X formed by mappings x : Ω → Rn which are constant
almost everywhere, i.e.,

L := {x ∈ X : x(ω) ≡ x for some x ∈ Rn} ,

where x(ω) ≡ x means that x(ω) = x for a.e. ω ∈ Ω.
Consider the dual6 X∗ := Lq(Ω,F , P ;Rn) of the space X and define the scalar

product (bilinear form)

〈λ,x〉 := E
[
λTx

]
=

∫
Ω

λ(ω)Tx(ω)dP (ω), λ ∈ X∗, x ∈ X.

Also, consider the projection operator P : X→ L defined as [Px](ω) ≡ E[x]. Clearly the
space L is formed by such x ∈ X that Px = x. Note that

〈λ,Px〉 = E [λ]
T E [x] = 〈P ∗λ,x〉,

where P ∗ is a projection operator [P ∗λ](ω) ≡ E[λ] from X∗ onto its subspace formed by
constant almost everywhere mappings. In particular, if p = 2, then X∗ = X and P ∗ = P .

With problem (2.91) is associated the following Lagrangian

L(x,λ) := E[F̄ (x(ω), ω)] + E
[
λT(x− E[x])

]
.

Note that
E
[
λT(x− E[x])

]
= 〈λ,x− Px〉 = 〈λ− P ∗λ,x〉,

and λ−P ∗λ does not change by adding a constant to λ(·). Therefore we can setP ∗λ = 0,
in which case

L(x,λ) = E
[
F̄ (x(ω), ω) + λ(ω)Tx(ω)

]
for E[λ] = 0. (2.92)

This leads to the following dual of problem (2.90):

Max
λ∈X∗

{
D(λ) := inf

x∈X
L(x,λ)

}
subject to E[λ] = 0. (2.93)

In case of finitely many scenarios the above dual is the same as the dual problem (2.88).

6Recall that 1/p + 1/q = 1 for p, q ∈ (1,+∞). If p = 1, then q = +∞. Also for p = +∞ we use
q = 1. This results in a certain abuse of notation since the space X = L∞(Ω,F , P ;Rn) is not reflexive and
X∗ = L1(Ω,F , P ;Rn) is smaller than its dual. Note also that if x ∈ Lp(Ω,F , P ;Rn), then its expectation
E[x] =

∫
Ω x(ω)dP (ω) is well defined and is an element of vector space Rn.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 58 — #70 i
i

i
i

i
i

58 Chapter 2. Two Stage Problems

By the interchangeability principle (Theorem 7.92) we have

inf
x∈X

E
[
F̄ (x(ω), ω) + λ(ω)Tx(ω)

]
= E

[
inf
x∈Rn

(
F̄ (x, ω) + λ(ω)Tx

)]
.

Consequently
D(λ) = E[Dω(λ(ω))],

where Dω : Rn → R is defined as

Dω(λ) := inf
x∈Rn

(
λTx+ F̄ω(x)

)
= − sup

x∈Rn

(
−λTx− F̄ω(x)

)
= −F̄ ∗ω(−λ). (2.94)

That is, in order to calculate the dual function D(λ) one needs to solve for every ω ∈ Ω
the finite dimensional optimization problem (2.94), and then to integrate the optimal values
obtained.

By the general theory we have that the optimal value of problem (2.91), which is the
same as the optimal value of problem (2.90), is greater than or equal to the optimal value
of its dual (2.93). We also have that there is no duality gap between problem (2.91) and its
dual (2.93) and both problems have optimal solutions x̄ and λ̄, respectively, iff (x̄, λ̄) is a
saddle point of the Lagrangian defined in (2.92). By definition a point (x̄, λ̄) ∈ X× X∗ is
a saddle point of the Lagrangian iff

x̄ ∈ arg min
x∈L

L(x, λ̄) and λ̄ ∈ arg max
λ:E[λ]=0

L(x̄,λ). (2.95)

By the interchangeability principle (see equation (7.277) of Theorem 7.92) we have that
first condition in (2.95) can be written in the following equivalent form

x̄(ω) ≡ x̄ and x̄ ∈ arg min
x∈Rn

{
F̄ (x, ω) + λ̄(ω)Tx

}
a.e. ω ∈ Ω. (2.96)

Since x̄(ω) ≡ x̄, the second condition in (2.95) means that E[λ̄] = 0.
Let us assume now that the considered problem is convex, i.e., the set X is convex

(and closed) and Fω(·) is a convex function for a.e. ω ∈ Ω. It follows that F̄ω(·) is a convex
function for a.e. ω ∈ Ω. Then the second condition in (2.96) holds iff λ̄(ω) ∈ −∂F̄ω(x̄)
for a.e. ω ∈ Ω. Together with condition E[λ̄] = 0 this means that

0 ∈ E
[
∂F̄ω(x̄)

]
. (2.97)

It follows that the Lagrangian has a saddle point iff there exists x̄ ∈ Rn satisfying condition
(2.97). We obtain the following result.

Theorem 2.25. Suppose that the function F (x, ω) is random lower semicontinuous, the set
X is convex and closed and for a.e. ω ∈ Ω the function F (·, ω) is convex. Then there is no
duality gap between problems (2.90) and (2.93) and both problems have optimal solutions
iff there exists x̄ ∈ Rn satisfying condition (2.97). In that case x̄ is an optimal solution
of (2.90) and a measurable selection λ̄(ω) ∈ −∂F̄ω(x̄) such that E[λ̄] = 0 is an optimal
solution of (2.93).
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Recall that the inclusion E
[
∂F̄ω(x̄)

]
⊂ ∂f̄(x̄) always holds (see equation (7.133) in

the proof of Theorem 7.52). Therefore, condition (2.97) implies that 0 ∈ ∂f̄(x̄), which in
turn implies that x̄ is an optimal solution of (2.90). Conversely, if x̄ is an optimal solution
of (2.90), then 0 ∈ ∂f̄(x̄), and if in addition E

[
∂F̄ω(x̄)

]
= ∂f̄(x̄), then (2.97) follows.

Therefore, Theorems 2.25 and 7.52 imply the following result.

Theorem 2.26. Suppose that: (i) the function F (x, ω) is random lower semicontinuous,
(ii) the set X is convex and closed, (iii) for a.e. ω ∈ Ω the function F (·, ω) is convex, (iv)
problem (2.90) possesses an optimal solution x̄ such that x̄ ∈ int(domf). Then there is no
duality gap between problems (2.90) and (2.93) and the dual problem (2.93) has an optimal
solution λ̄, and the constant mapping x̄(ω) ≡ x̄ is an optimal solution of the problem

Min
x∈X

E
[
F̄ (x(ω), ω) + λ̄(ω)Tx(ω)

]
.

Proof. Since x̄ is an optimal solution of problem (2.90) we have that x̄ ∈ X and f(x̄)
is finite. Moreover, since x̄ ∈ int(domf) and f is convex, it follows that f is proper
and Ndomf (x̄) = {0}. Therefore, it follows by Theorem 7.52 that E [∂Fω(x̄)] = ∂f(x̄).
Furthermore, since x̄ ∈ int(domf) we have that ∂f̄(x̄) = ∂f(x̄) + NX (x̄), and hence
E
[
∂F̄ω(x̄)

]
= ∂f̄(x̄). By optimality of x̄, we also have that 0 ∈ ∂f̄(x̄). Consequently,

0 ∈ E
[
∂F̄ω(x̄)

]
, and hence the proof can be completed by applying Theorem 2.25.

If X is a subset of int(domf), then any point x ∈ X is an interior point of domf . In
that case condition (iv) of the above theorem is reduced to existence of an optimal solution.
The condition X ⊂ int(domf) means that f(x) < +∞ for every x in a neighborhood of
the set X . This requirement is slightly stronger than the condition of relatively complete
recourse.

Example 2.27 (Capacity Expansion (continued)) Let us consider the capacity expansion
problem of Examples 2.4 and 2.13. Suppose that x̄ is the optimal first stage decision and
let ȳij(ξ) be the corresponding optimal second stage decisions. The scenario problem has
the form

Min
∑

(i,j)∈A

[
(cij + λij(ξ))xij + qijyij

]
s.t.

∑
(i,j)∈A+(n)

yij −
∑

(i,j)∈A−(n)

yij = ξn, n ∈ N ,

0 ≤ yij ≤ xij , (i, j) ∈ A.

From Example 2.13 we know that there exist random node potentials µn(ξ), n ∈ N , such
that for all ξ ∈ Ξ we have µ(ξ) ∈ M(x̄, ξ), and conditions (2.42)–(2.43) are satisfied.
Also, the random variables gij(ξ) = −max{0, µi(ξ)−µj(ξ)− qij} are the corresponding
subgradients of the second stage cost. Define

λij(ξ) = max{0, µi(ξ)−µj(ξ)−qij}−
∫
Ξ

max{0, µi(ξ)−µj(ξ)−qij}P (dξ), (i, j) ∈ A.
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We can easily verify that xij(ξ) = x̄ij and ȳij(ξ), (i, j) ∈ A, are optimal solution of the
scenario problem, because the first term of λij cancels with the subgradient gij(ξ), while
the second term satisfies the optimality conditions (2.42)–(2.43). Moreover, E[λ] = 0 by
construction.

2.4.4 Value of Perfect Information
Consider the following relaxation of the two-stage problem (2.61)–(2.62):

Min
x∈X

E[F̄ (x(ω), ω)]. (2.98)

This relaxation is obtained by removing the nonanticipativity constraint from the formula-
tion (2.91) of the first stage problem. By the interchangeability principle (Theorem 7.92)
we have that the optimal value of the above problem (2.98) is equal to E

[
infx∈Rn F̄ (x, ω)

]
.

The value infx∈Rn F̄ (x, ω) is equal to the optimal value of problem

Min
x∈X , y∈G(x,ω)

g(x, y, ω). (2.99)

That is, the optimal value of problem (2.98) is obtained by solving problems of the form
(2.99), one for each ω ∈ Ω, and then taking the expectation of the calculated optimal
values.

Solving problems of the form (2.99) makes sense if we have a perfect information
about the data, i.e., the scenario ω ∈ Ω is known at the time when the first stage decision
should be made. The problem (2.99) is deterministic, e.g., in the case of two-stage linear
program (2.1)–(2.2) it takes the form

Min
x≥0,y≥0

cTx+ qTy subject to Ax = b, Tx+Wy = h.

An optimal solution of the second stage problem (2.99) depends on ω ∈ Ω and is called the
wait-and-see solution.

We have that for any x ∈ X and ω ∈ Ω, the inequality F (x, ω) ≥ infx∈X F (x, ω)
clearly holds, and hence E[F (x, ω)] ≥ E [infx∈X F (x, ω)]. It follows that

inf
x∈X

E[F (x, ω)] ≥ E
[

inf
x∈X

F (x, ω)

]
. (2.100)

Another way to view the above inequality is to observe that problem (2.98) is a relaxation
of the corresponding two-stage stochastic problem, which of course implies (2.100).

Suppose that the two-stage problem has an optimal solution x̄ ∈ arg minx∈X E[F (x, ω)].
As F (x̄, ω)− infx∈X F (x, ω) ≥ 0 for all ω ∈ Ω, we conclude that

E[F (x̄, ω)] = E
[

inf
x∈X

F (x, ω)

]
(2.101)

iff F (x̄, ω) = infx∈X F (x, ω) w.p.1. That is, equality in (2.101) holds iff

F (x̄, ω) = inf
x∈X

F (x, ω) for a.e. ω ∈ Ω. (2.102)
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In particular, this happens if F̄ω(x) has a minimizer independent of ω ∈ Ω. This, of course,
may happen only in rather specific situations.

The difference F (x̄, ω)− infx∈X F (x, ω) represents the value of perfect information
of knowing ω. Consequently

EVPI := inf
x∈X

E[F (x, ω)]− E
[

inf
x∈X

F (x, ω)

]
is called the expected value of perfect information. It follows from (2.100) that EVPI is
always nonnegative and EVPI=0 iff condition (2.102) holds.

Exercises
2.1. Consider the assembly problem discussed in section 1.3.1 in two cases:

(i) The demand which is not satisfied from the pre-ordered quantities of parts is
lost.

(ii) All demand has to be satisfied, by making additional orders of the missing
parts. In this case, the cost of each additionally ordered part j is rj > cj .

For each of these cases describe the subdifferential of the recourse cost and of the
expected recourse cost.

2.2. A transportation company has n depots among which they send cargo. The demand
for transportation between depot i and depot j 6= i is modeled as a random variable
Dij . The total capacity of vehicles currently available at depot i is denoted si,
i = 1, . . . , n. The company considers repositioning their fleet to better prepare to
the uncertain demand. It costs cij to move a unit of capacity from location i to
location j. After repositioning, the realization of the random vector D is observed,
and the demand is served, up to the limit determined by the transportation capacity
available at each location. The profit from transporting a unit of cargo from location
i to location j is equal qij . If the total demand at location i exceeds the capacity
available at location i, the excessive demand is lost. It is up to the company to decide
how much of each demand Dij be served, and which part will remain unsatisfied.
For simplicity, we consider all capacity and transportation quantities as continuous
variables.

(a) Formulate the problem of maximizing the expected profit as a two stage stochas-
tic programming problem.

(b) Describe the subdifferential of the recourse cost and the expected recourse
cost.

2.3. Show that the function sq(·), defined in (2.4), is convex.
2.4. Consider the optimal value Q(x, ξ) of the second stage problem (2.2). Show that

Q(·, ξ) is differentiable at a point x iff the dual problem (2.3) has unique optimal
solution π̄, in which case∇xQ(x, ξ) = −TTπ̄.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 62 — #74 i
i

i
i

i
i

62 Chapter 2. Two Stage Problems

2.5. Consider the two-stage problem (2.1)–(2.2) with fixed recourse. Show that the fol-
lowing conditions are equivalent: (i) problem (2.1)–(2.2) has complete recourse, (ii)
the feasible set Π(q) of the dual problem is bounded for every q, (iii) the system
WTπ ≤ 0 has only one solution π = 0.

2.6. Show that if random vector ξ has a finite support, then condition (2.24) is necessary
and sufficient for relatively complete recourse.

2.7. Show that the conjugate function of a polyhedral function is also polyhedral.
2.8. Show that if Q(x, ω) is finite, then the set D(x, ω) of optimal solutions of problem

(2.46) is a nonempty convex closed polyhedron.
2.9. Consider problem (2.63) and its optimal value F (x, ω). Show that F (x, ω) is convex

in x if ḡ(x, y, ω) is convex in (x, y). Show that the indicator function IGω(x)(y) is
convex in (x, y) iff condition (2.68) holds for any t ∈ [0, 1].

2.10. Show that equation (2.86) implies that 〈x− Px,y〉 = 0 for any x ∈ X and y ∈ L,
i.e., that P is the orthogonal projection of X onto L.

2.11. Derive the form of the dual problem for the linear two stage stochastic programming
problem in form (2.80) with nonanticipativity constraints (2.87).
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Chapter 3

Multistage Problems

Andrzej Ruszczyński and Alexander Shapiro

3.1 Problem Formulation
3.1.1 The General Setting
The two-stage stochastic programming models can be naturally extended to a multistage
setting. We already discussed examples of such decision processes in sections 1.2.3 and
1.4.2 for a multistage inventory model and a multistage portfolio selection problem, respec-
tively. In the multistage setting the uncertain data ξ1, . . ., ξT is revealed gradually over time,
in T periods, and our decisions should be adapted to this process. The decision process has
the form:

decision (x1) observation (ξ2) decision (x2) 
. . ...  observation (ξT ) decision (xT ).

We view the sequence ξt ∈ Rdt , t = 1, . . ., T , of data vectors as a stochastic process, i.e.,
as a sequence of random variables with a specified probability distribution. We use notation
ξ[t] := (ξ1, . . ., ξt) to denote the history of the process up to time t.

The values of the decision vector xt, chosen at stage t, may depend on the information
(data) ξ[t] available up to time t, but not on the results of future observations. This is the
basic requirement of nonanticipativity. As xt may depend on ξ[t], the sequence of decisions
is a stochastic process as well.

We say that the process {ξt} is stagewise independent if ξt is stochastically indepen-
dent of ξ[t−1], t = 2, . . ., T . It is said that the process is Markovian if for every t = 2, . . ., T ,
the conditional distribution of ξt given ξ[t−1] is the same as the conditional distribution of
ξt given ξt−1. It is evident that if a process is stagewise independent, then it is Markovian.

63
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As before, we often use the same notation ξt to denote a random vector and its particular
realization. Which of these two meanings will be used in a particular situation will be clear
from the context.

A T -stage stochastic programming problem can be written in the following general
nested formulation

Min
x1∈X1

f1(x1) +E
[

inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E
[
· · ·+ E

[
inf

xT∈XT (xT−1,ξT )
fT (xT , ξT )

]]]
,

(3.1)
driven by the random data process ξ1, ξ2, . . ., ξT . Here xt ∈ Rnt , t = 1, . . ., T , are decision
variables, ft : Rnt × Rdt → R are continuous functions and Xt : Rnt−1 × Rdt ⇒ Rnt ,
t = 2, . . ., T , are measurable closed valued multifunctions. The first stage data, i.e., the
vector ξ1, the function f1 : Rn1 → R, and the set X1 ⊂ Rn1 are deterministic. It is said
that the multistage problem is linear if the objective functions and the constraint functions
are linear (of affine). In a typical formulation,

ft(xt, ξt) := cTt xt, X1 := {x1 : A1x1 = b1, x1 ≥ 0} ,
Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt, xt ≥ 0} , t = 2, . . ., T,

(3.2)

Here, ξ1 := (c1, A1, b1) is known at the first stage (and hence is not random), and ξt :=
(ct, Bt, At, bt) ∈ Rdt , t = 2, . . ., T , are data vectors1 some (or all) elements of which may
be random.

There are basically two equivalent ways to make this formulation precise. One
approach is to consider decision variables xt = xt(ξ[t]), t = 1, . . ., T , as functions2

of the data process ξ[t] up to time t. Such a sequence of (measurable) mappings xt :

Rd1 × · · · × Rdt → Rnt , t = 1, . . ., T , is called an implementable policy (or simply a
policy, or a decision rule) (recall that ξ1 is deterministic). An implementable policy is
nonanticipative in the sense that decisions xt = xt(ξ[t]) are functions of a realization of
the data process available at time of decision and do not depend on future observations.
An implementable policy is said to be feasible if it satisfies the feasibility constraints for
almost every realization of the random data, i.e.,

xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T, w.p.1. (3.3)

The multistage problem (3.1) can be formulated in the following equivalent form

Min
x1,x2,...,xT

E
[
f1(x1) + f2(x2(ξ[2]), ξ2) + . . .+ fT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(3.4)

Note that optimization in (3.4) is performed over implementable and feasible policies
(x1,x2, . . .,xT ). That is, x2, . . .,xT are functions of the data process, and hence are
elements of appropriate functional spaces of measurable mappings (compare with discus-
sion of section 2.3.1), while x1 ∈ Rn1 is a deterministic vector. Therefore, unless the data
process ξ1, . . ., ξT has a finite number of realizations, formulation (3.4) leads to an infinite

1If data involves matrices, then their elements can be stacked columnwise to make it a vector.
2As before we use bold notation xt(·) to emphasize that this is a function rather than a deterministic vector.
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dimensional optimization problem. This is a natural extension of the formulation (2.66) of
the two-stage problem.

Nested formulation (3.1) allows to write the corresponding dynamic programming
equations. That is, consider the last stage problem

Min
xT∈XT (xT−1,ξT )

fT (xT , ξT ). (3.5)

The optimal value of this problem, denoted QT (xT−1, ξT ), depends on the decision vector
xT−1 and data ξT . At stage t = 2, . . ., T − 1, we formulate3 the problem:

Min
xt∈Rnt

ft(xt, ξt) + E
{
Qt+1

(
xt, ξ[t+1]

) ∣∣ξ[t]}
s.t. xt ∈ Xt(xt−1, ξt).

(3.6)

Its optimal value depends on the decision xt−1 ∈ Rnt−1 at the previous stage and real-
ization of the data process ξ[t], and is denoted Qt

(
xt−1, ξ[t]

)
. The idea is to calculate the

cost-to-go functions4 Qt
(
xt−1, ξ[t]

)
, recursively, going backward in time. At the first stage

we finally need to solve the problem:

Min
x1∈X1

f1(x1) + E [Q2 (x1, ξ2)] . (3.7)

The optimal value of (3.7) gives the optimal value of the corresponding multistage problem
(3.1).

For t = 2, ..., T the corresponding dynamic programming equations are

Qt
(
xt−1, ξ[t]

)
= inf
xt∈Xt(xt−1,ξt)

{
ft(xt, ξt) +Qt+1

(
xt, ξ[t]

) }
, (3.8)

where
Qt+1

(
xt, ξ[t]

)
:= E

{
Qt+1

(
xt, ξ[t+1]

) ∣∣ξ[t]} . (3.9)

For t = T the term QT+1 is omitted, and for t = 1 the set X1 depends only on ξ1 and
hence is deterministic. An implementable policy x̄t(ξ[t]), t = 1, . . ., T , is optimal iff x̄1 is
an optimal solution of the first stage problem (3.7) and for t = 2, . . ., T :

x̄t(ξ[t]) ∈ argmin
xt∈Xt(x̄t−1(ξ[t−1]),ξt)

{
ft(xt, ξt) +Qt+1

(
xt, ξ[t]

) }
, w.p.1. (3.10)

It could happen that the optimization problem in (3.10) has more than one optimal solution.
In that case x̄t(·) should be a measurable selection of the right hand side of (3.10) (see
section 7.2.3 for a discussion of measurability concepts).

In the dynamic programming formulation the problem is reduced to solving a family
of finite dimensional problems, indexed by t and by ξ[t]. It can be viewed as an extension
of the formulation (2.61)–(2.62) of the two-stage problem.

Remark 3. As it was pointed above, the formulations (3.1) and (3.4) are equivalent. The
nested formulation (3.1) can be written in the form of dynamic programming equations

3For random variables X and Y we denote by E[X|Y ] or E|Y [X] the conditional expectation of X given Y .
4The cost-to-go functions are also called value functions.
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(3.8)–(3.9), while formulation (3.4) leads to optimization over implementable policies. The
equivalence of these two formulations is based on the tower property E[X] = E

[
E[X|Y ]

]
of the expectation operator (here X and Y are two random variables). It is more accurate
to write the nested formulation (3.1) as

Min
x1∈X1

f1(x1)+E|ξ1
[

inf
x2∈X2(x1,ξ2)

f2(x2, ξ2)+· · ·+E|ξ[T−1]

[
inf

xT∈XT (xT−1,ξT )
fT (xT , ξT )

]]
,

(3.11)
by emphasizing the conditional structure of this formulation. Recall that ξ1 is deterministic,
therefore the conditional expectation E|ξ1 is the same as the corresponding unconditional
expectation; we write E|ξ1 for uniformity of the notation.

Consider now problem (3.4). We can write its objective function as

E
[
f1(x1) + f2(x2(ξ[2]), ξ2) + . . .+ fT

(
xT (ξ[T ]), ξT

) ]
=

E
[
E|ξ[T−1]

[
f1(x1) + f2(x2(ξ[2]), ξ2) + . . .+ fT

(
xT (ξ[T ]), ξT

) ]]
=

E
[
f1(x1) + f2(x2(ξ[2]), ξ2) + . . .+ E|ξ[T−1]

[fT (xT (ξ[T ]), ξT )]
]
.

(3.12)

First we perform minimization in (3.4) with respect to xT , which in view of (3.12) can be
written as

Min
xT

E
[
f1(x1) + f2(x2(ξ[2]), ξ2) + . . .+ E|ξ[T−1]

[fT (xT (ξ[T ]), ξT )]
]

s.t. xT (ξ[T ]) ∈ XT (xT−1(ξ[T−1]), ξT ).
(3.13)

Consequently problem (3.4) is reduced to minimization with respect to the remaining
variables x1, ...,xT−1 of the optimal value of the above problem (3.13); that is to the
problem

Min
x1,x2,...,xT−1

E
[
f1(x1) + · · ·+ fT−1

(
xT (ξ[T−1]), ξT−1

)
+ VT (xT−1(ξ[T−1]), ξ[T−1])

]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T − 1,

(3.14)
where VT (xT−1(ξ[T−1]), ξ[T−1]) is the optimal value of the problem

Min
xT

E|ξ[T−1]
[fT (xT (ξ[T ]), ξT )] s.t. xT (ξ[T ]) ∈ XT (xT−1(ξ[T−1]), ξT ). (3.15)

By interchanging5 the expectation and minimization operators in (3.15) (compare with the
discussion in section 2.3.1 of two stage stochastic programming) we can write

VT (xT−1(ξ[T−1]), ξ[T−1]) = QT (xT−1(ξ[T−1]), ξ[T−1]),

where
QT

(
xT−1, ξ[T−1]

)
= E|ξ[T−1]

[QT (xT−1, ξT )]

with QT (xT−1, ξT ) being the cost-to-go function at stage T , i.e., QT (xT−1, ξT ) is given
by the optimal value of the problem

Min
xT∈RnT

fT (xT , ξT ) s.t. xT ∈ XT (xT−1, ξT ). (3.16)

5In order to justify such interchangeability we need to assume that functions xt(·) belong to appropriate
decomposable spaces of measurable mappings, see Theorem 7.92.
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Also for a given x̄T−1(ξ[T−1]), the corresponding optimal solutions xT (ξ[T ]) are given by
measurable selections (compare with (3.10))

x̄T (ξ[T ]) ∈ argmin
xT∈XT (x̄T−1(ξ[T−1]),ξT )

fT (xT , ξT ), w.p.1. (3.17)

Next we can perform minimization in (3.14) with respect to xT−1, and so on by con-
tinuing this process backward in time we can derive the dynamic programming equations
(3.8)–(3.10), and can write the corresponding nested formulation (3.11).

Remark 4. Suppose that the process ξ1, . . . , ξT is stagewise independent. Then ξT is
independent of ξ[T−1] and hence the conditional expectation in the definition (3.9) of the
cost-to-go function QT becomes the unconditional expectation. That is, QT (xT−1) does
not depend on ξ[T−1]. By induction, going backward in time, it can be shown that if
the stagewise independence condition holds, then each expected value cost-to-go function
Qt (xt−1) does not depend on realizations of the random process and the dynamic pro-
gramming equations (3.8)–(3.9) can be written as

Qt (xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{
ft(xt, ξt) +Qt+1 (xt)

}
, (3.18)

with Qt+1 (xt) = E {Qt+1 (xt, ξt+1)} . Also the optimal policy can be defined in the
recursive way

x̄t ∈ argmin
xt∈Xt(x̄t−1,ξt)

{
ft(xt, ξt) +Qt+1 (xt)

}
, w.p.1, (3.19)

with x̄t being a function of x̄t−1 and ξt, t = 2, ..., T , and x1 being an optimal solution of
the first stage problem (3.7).

If the process ξ1, . . . , ξT is Markovian, then conditional distributions in the above
equations, given ξ[t], are the same as the respective conditional distributions given ξt. In
that case each cost-to-go function Qt depends on ξt rather than the whole ξ[t] and we can
write it as Qt (xt−1, ξt). Also the expected value cost-to-go function

Qt+1 (xt, ξt) = E
{
Qt+1 (xt, ξt+1)

∣∣ξt}
is a function of ξt rather than the whole history ξ[t] of the data process.

Remark 5. In some cases with stagewise dependent data it is possible to reformulate the
problem to make it stagewise independent by increasing the number of decision variables.
As an example, consider the linear multistage problem (3.2). Suppose only the right hand
side vectors bt are random and they can be modeled as a (first order) autoregressive process

bt = µ+ Φbt−1 + εt. (3.20)

Here µ and Φ are (deterministic) vector and regression matrix, respectively, and the error
process εt, t = 1, ..., T , is stagewise independent. The corresponding feasibility constraints
can be written in terms of xt and bt as

Btxt−1 +Atxt − bt = 0, xt ≥ 0,
Φbt−1 − bt + µ+ εt = 0.

(3.21)
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68 Chapter 3. Multistage Problems

That is, in terms of decision variables (xt, bt) this becomes a linear multistage stochastic
programming problem governed by the stagewise independent random process ε1, ..., εT .

3.1.2 The Linear Case
We discuss linear multistage problems in more detail. Let x1, . . . , xT be decision vectors
corresponding to time periods (stages) 1, . . . , T . Consider the following linear program-
ming problem

Min cT1x1 + cT2x2 + cT3 x3 + . . . + cTTxT
s.t. A1x1 = b1,

B2x1 + A2x2 = b2,
B3x2 + A3x3 = b3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BTxT−1 + ATxT = bT ,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, . . . xT ≥ 0.
(3.22)

We can view this problem as a multiperiod stochastic programming problem where c1, A1

and b1 are known, but some (or all) the entries of the cost vectors ct, matrices Bt and
At, and right hand side vectors bt, t = 2, . . . , T , are random. In the multistage setting
the values (realizations) of the random data become known in the respective time periods
(stages), and we have the following sequence of actions:

decision (x1)
observation ξ2 := (c2, B2, A2, b2)

decision (x2)
...

observation ξT := (cT , BT , AT , bT )
decision (xT ).

Our objective is to design the decision process in such a way that the expected value of the
total cost is minimized while optimal decisions are allowed to be made at every time period
t = 1, . . ., T .

Let us denote by ξt the data vector, realization of which becomes known at time
period t. In the setting of the multiperiod problem (3.22), ξt is assembled from the com-
ponents of ct, Bt, At, bt, some (or all) of which can be random, while the data ξ1 =
(c1, A1, b1) at the first stage of problem (3.22) is assumed to be known. The important con-
dition in the above multistage decision process is that every decision vector xt may depend
on the information available at time t (that is, ξ[t]), but not on the results of observations
to be made at later stages. This differs multistage stochastic programming problems from
deterministic multiperiod problems, in which all the information is assumed to be available
at the beginning of the decision process.

As it was outlined in section 3.1.1, there are two equivalent ways to formulate mul-
tistage stochastic programs in a precise mathematical form. In one such formulation xt =
xt(ξ[t]), t = 2, . . ., T , is viewed as a function of ξ[t], and the minimization in (3.22) is
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performed over appropriate functional spaces of such functions. If the number of scenar-
ios is finite, this leads to a formulation of the linear multistage stochastic program as one
large (deterministic) linear programming problem. We discuss that further in section 3.1.5.
Another possible approach is to write dynamic programming equations, which in a general
form we already derived in section 3.1.1. We are going to discuss this next.

Let us look at our problem from the perspective of the last stage T . At that time
the values of all problem data, ξ[T ], are already known, and the values of the earlier deci-
sion vectors, x1, . . . , xT−1, have been chosen. Our problem is, therefore, a simple linear
programming problem

Min
xT

cTTxT

s.t. BTxT−1 +ATxT = bT ,

xT ≥ 0.

(3.23)

The optimal value of this problem depends on the earlier decision vector xT−1 ∈ RnT−1

and data ξT = (cT , BT , AT , bT ), and is denoted by QT (xT−1, ξT ).
At stage T−1 we know xT−2 and ξ[T−1]. We face, therefore, the following stochastic

programming problem

Min
xT−1

cTT−1xT−1 + E
[
QT (xT−1, ξT )

∣∣ ξ[T−1]

]
s.t. BT−1xT−2 +AT−1xT−1 = bT−1,

xT−1 ≥ 0.

(3.24)

The optimal value of the above problem depends on xT−2 ∈ RnT−2 and data ξ[T−1], and
is denoted QT−1(xT−2, ξ[T−1]).

Generally, at stage t = 2, . . . , T − 1, we have the problem

Min
xt

cTt xt + E
[
Qt+1(xt, ξ[t+1])

∣∣ ξ[t]]
s.t. Btxt−1 +Atxt = bt,

xt ≥ 0.

(3.25)

Its optimal value, called cost-to-go function, is denoted Qt(xt−1, ξ[t]).
On top of all these problems is the problem to find the first decisions, x1 ∈ Rn1 ,

Min
x1

cT1x1 + E [Q2(x1, ξ2)]

s.t. A1x1 = b1,

x1 ≥ 0.

(3.26)

The optimal value of problem (3.26) gives the optimal value of the corresponding multi-
stage program. Note that all subsequent stages t = 2, . . ., T are absorbed in the above
multistage problem into the function Q2(x1, ξ2) through the corresponding expected val-
ues. Note also that since ξ1 is not random, the optimal valueQ2(x1, ξ2) does not depend on
ξ1. In particular, if T = 2, then (3.26) coincides with the formulation (2.1) of a two-stage
linear problem.
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The dynamic programming equations here take the form (compare with (3.8)):

Qt
(
xt−1, ξ[t]

)
= inf

xt

{
cTt xt +Qt+1

(
xt, ξ[t]

)
: Btxt−1 +Atxt = bt, xt ≥ 0

}
, (3.27)

where
Qt+1

(
xt, ξ[t]

)
:= E

{
Qt+1

(
xt, ξ[t+1]

) ∣∣ξ[t]} . (3.28)

Also an implementable policy x̄t(ξ[t]), t = 1, . . ., T , is optimal iff for t = 1, . . ., T the
condition

x̄t(ξ[t]) ∈ arg min
xt

{
cTt xt +Qt+1

(
xt, ξ[t]

)
: Atxt = bt −Btx̄t−1(ξ[t−1]), xt ≥ 0

}
,

(3.29)
holds for almost every (a.e.) realization of the random process (for t = T the term QT+1

is omitted and for t = 1 the term Btx̄t−1 is omitted).
If the process ξt is Markovian, then each cost-to-go function depends on ξt rather

than ξ[t], and we can simply write Qt(xt−1, ξt), t = 2, . . ., T . If, moreover, the stagewise
independence condition holds, then each expectation function Qt does not depend on real-
izations of the random process, and we can write it asQt(xt−1), t = 2, . . ., T (see Remark
4 on page 67).

The nested formulation of the linear multistage problem can be written as follows
(compare with (3.1) and (3.11)):

Min
A1x1=b1
x1≥0

cT1x1 + E

 min
B2x1+A2x2=b2

x2≥0

cT2x2 + · · ·+ E|ξ[T−1]

[
min

BT xT−1+AT xT=bT
xT≥0

cTTxT

] .
(3.30)

Suppose now that we deal with an underlying model with a full lower block triangular
constraint matrix:

Min cT1x1 + cT2x2 + cT3x3 + . . . + cTTxT
s.t. A11x1 = b1,

A21x1 + A22x2 = b2,
A31x1 + A32x2 + A33x3 = b3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AT1x1 + AT2x2 + . . . + AT,T−1xT−1 + ATTxT = bT ,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, . . . xT ≥ 0.

(3.31)
In the constraint matrix of (3.22) the respective blocksAt1, . . . , At,t−2 were assumed

to be zeros. This allowed us to express there the optimal value Qt of (3.25) as a function
of the immediately preceding decision, xt−1, rather than all earlier decisions x1, . . . , xt−1.
In the case of problem (3.31), each respective subproblem of the form (3.25) depends on
the entire history of our decisions, x[t−1] := (x1, . . . , xt−1). It takes on the form

Min
xt

cTt xt + E
[
Qt+1(x[t], ξ[t+1])

∣∣ ξ[t]]
s.t. At1x1 + · · ·+At,t−1xt−1 +At,txt = bt,

xt ≥ 0.

(3.32)
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Its optimal value (i.e., the cost-to-go function) Qt(x[t−1], ξ[t]) is now a function of the
whole history x[t−1] of the decision process rather than its last decision vector xt−1.

Sometimes it is convenient to convert such a lower triangular formulation into the
staircase formulation from which we started our presentation. This can be accomplished by
introducing additional variables rt which summarize the relevant history of our decisions.
We shall call these variables the model state variables (to distinguish from information
states discussed before). The relations that describe the next values of the state variables
as a function of the current values of these variables, current decisions and current random
parameters are called model state equations.

For the general problem (3.31) the vectors x[t] = (x1, . . . , xt) are sufficient model
state variables. They are updated at each stage according to the state equation x[t] =
(x[t−1], xt) (which is linear), and the constraint in (3.32) can be formally written as

[At1 At2 . . . At,t−1 ]x[t−1] +At,txt = bt.

Although it looks a little awkward in this general case, in many problems it is possible to
define model state variables of reasonable size. As an example let us consider the structure

Min cT1x1 + cT2x2 + cT3x3 + . . . + cTTxT
s.t. A11x1 = b1,

B1x1 + A22x2 = b2,
B1x1 + B2x2 + A33x3 = b3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B1x1 + B2x2 + . . . + BT−1xT−1 + ATTxT = bT ,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, . . . xT ≥ 0,

in which all blocks Ait, i = t + 1, . . . , T are identical and observed at time t. Then
we can define the state variables rt, t = 1, . . . , T recursively by the state equation rt =
rt−1 +Btxt, t = 1, . . . , T − 1, where r0 = 0. Subproblem (3.32) simplifies substantially:

Min
xt,rt

cTt xt + E
[
Qt+1(rt, ξ[t+1])

∣∣ ξ[t]]
s.t. rt−1 +At,txt = bt,

rt = rt−1 +Btxt,

xt ≥ 0.

Its optimal value depends on rt−1 and is denoted Qt(rt−1, ξ[t]).
Let us finally remark that the simple nonnegativity constraints xt ≥ 0 can be replaced

in our model by a general constraint xt ∈ Xt, where Xt is a convex polyhedron defined by
some linear equations and inequalities (local for stage t). The set Xt may be random, too,
but has to become known at stage t.

3.1.3 Scenario Trees
In order to proceed with numerical calculations one needs to make a discretization of the
underlying random process. It is useful and instructive to discuss this in detail. That is, we
consider in this section the case where the random process ξ1, . . ., ξT has a finite number of
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realizations. It is useful to depict the possible sequences of data in a form of scenario tree.
It has nodes organized in levels which correspond to stages 1, . . . , T . At level t = 1 we
have only one root node, and we associate with it the value of ξ1 (which is known at stage
t = 1). At level t = 2 we have as many nodes as many different realizations of ξ2 may
occur. Each of them is connected with the root node by an arc. For each node ι of level
t = 2 (which corresponds to a particular realization ξι2 of ξ2) we create at least as many
nodes at level 3 as different values of ξ3 may follow ξι2, and we connect them with the node
ι, etc.

Generally, nodes at level t correspond to possible values of ξ[t] that may occur. Each
of them is connected to a unique node at level t − 1, called the ancestor node, which
corresponds to the identical first t − 1 parts of the process ξ[t], and is also connected to
nodes at level t + 1, called children nodes, which correspond to possible continuations of
history ξ[t]. Note that, in general, realizations ξιt are vectors and it may happen that some of
the values ξιt , associated with nodes at a given level t, are equal to each other. Nevertheless,
such equal values may be represented by different nodes, because they may correspond to
different histories of the process (see Figure 3.1 in Example 3.1 of the next section).

We denote by Ωt the set of all nodes at stage t = 1, . . ., T . In particular, Ω1 consists
of the unique root node, Ω2 has as many elements as many different realizations of ξ[2]

may occur, etc. For a node ι ∈ Ωt we denote by Cι ⊂ Ωt+1, t = 1, . . ., T − 1, the set
of all children nodes of ι, and by a(ι) ∈ Ωt−1, t = 2, . . ., T , the ancestor node of ι. We
have that Ωt+1 = ∪ι∈ΩtCι and the sets Cι are disjoint, i.e., Cι ∩ Cι′ = ∅ if ι 6= ι′. Note
again that with different nodes at stage t ≥ 3 may be associated the same numerical values
(realizations) of the corresponding data process ξt. Scenario is a path from the root node at
stage t = 1 to a node at the last stage T . Each scenario represents a history of the process
ξ1, . . ., ξT . By construction, there is one-to-one correspondence between scenarios and the
set ΩT , and hence the total number K of scenarios is equal to the cardinality6 of the set
ΩT , i.e., K = |ΩT |.

Next, we define a probability distribution on a scenario tree. In order to deal with the
nested structure of the decision process we need to specify the conditional distribution of
ξt+1 given ξ[t], t = 1, . . ., T − 1. That is, if we are currently at a node ι ∈ Ωt, we need
to specify probability of moving from ι to a node η ∈ Cι. Let us denote this probability
by ριη . Note that ριη ≥ 0 and

∑
η∈Cι ριη = 1. Probabilities ριη , η ∈ Cι, represent

conditional distribution of ξt+1 given that the path of the process ξ1, . . ., ξt ended at the
node ι.

Every scenario can be defined by its nodes ι1, . . . ιT , arranged in the chronological
order, i.e., node ι2 (at level t = 2) is connected to the root node, ι3 is connected to the node
ι2, etc. The probability of that scenario is then given by the product ρι1ι2ρι2ι3 · · · ριT−1ιT .
That is, the conditional probabilities define a probability distribution on the set of scenarios.
Conversely, it is possible to derive these conditional probabilities from scenario probabili-
ties pk, k = 1, . . .,K, as follows. Let us denote by S(ι) the set of scenarios passing through
node ι (at level t) of the scenario tree, and let p(ι) := Pr[S(ι)], i.e., p(ι) is the sum of proba-
bilities of all scenarios passing through node ι. If ι1, ι2, . . ., ιt, with ι1 being the root node
and ιt = ι, is the history of the process up to node ι, then the probability p(ι) is given by

6We denote by |Ω| the number of elements in a (finite) set Ω.
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the product
p(ι) = ρι1ι2ρι2ι3 · · · ριt−1ιt

of the corresponding conditional probabilities. In another way we can write this in the
recursive form p(ι) = ρaιp

(a), where a = a(ι) is the ancestor of the node ι. This equation
defines the conditional probability ρaι from the probabilities p(ι) and p(a). Note that if a =
a(ι) is the ancestor of the node ι, then S(ι) ⊂ S(a) and hence p(ι) ≤ p(a). Consequently
if p(a) > 0, then ρaι = p(ι)/p(a). Otherwise S(a) is empty, i.e., no scenario is passing
through the node a, and hence no scenario is passing through the node ι.

If the process ξ1, . . . , ξT is stagewise independent, then the conditional distribution
of ξt+1 given ξ[t] is the same as the unconditional distribution of ξt+1, t = 1, . . ., T − 1. In
that case at every stage t = 1, . . ., T − 1, with every node ι ∈ Ωt is associated an identical
set of children, with the same set of respective conditional probabilities and with the same
respective numerical values.

Recall that a stochastic process Zt, t = 1, 2, . . ., that can take a finite number
{z1, . . ., zm} of different values, is a Markov chain if

Pr
{
Zt+1 = zj

∣∣Zt = zi, Zt−1 = zit−1
, . . ., Z1 = zi1

}
= Pr

{
Zt+1 = zj

∣∣Zt = zi
}
,

for all states zit−1
, . . ., zi1 , zi, zj and all t = 1, 2, . . . . Denote

pij := Pr
{
Zt+1 = zj

∣∣Zt = zi
}
, i, j = 1, . . .,m.

In some situations it is natural to model the data process as a Markov chain with the cor-
responding state space7 {ζ1, . . ., ζm} and probabilities pij of moving from state ζi to state
ζj , i, j = 1, . . .,m. We can model such a process by a scenario tree. At stage t = 1 there is
one root node to which is assigned one of the values from the state space, say ζi. At stage
t = 2 there are m nodes to which are assigned values ζ1, . . ., ζm with the corresponding
probabilities pi1, . . ., pim. At stage t = 3 there are m2 nodes, such that each node at stage
t = 2, associated with a state ζa, a = 1, . . .,m, is the ancestor of m nodes at stage t = 3
to which are assigned values ζ1, . . ., ζm with the corresponding conditional probabilities
pa1, . . ., pam. At stage t = 4 there are m3 nodes, etc. At each stage t of such T -stage
Markov chain process there are mt−1 nodes, the corresponding random vector (variable)
ξt can take values ζ1, . . ., ζm with respective probabilities which can be calculated from
the history of the process up to time t, and the total number of scenarios is mT−1. We
have here that the random vectors (variables) ξ1, . . ., ξT are independently distributed iff
pij = pi′j for any i, i′, j = 1, . . .,m, i.e., the conditional probability pij of moving from
state ζi to state ζj does not depend on i.

In the above formulation of the Markov chain the corresponding scenario tree repre-
sents the total history of the process with the number of scenarios growing exponentially
with the number of stages. Now if we approach the problem by writing the cost-to-go func-
tions Qt(xt−1, ξt) of the dynamic programming equations, going backwards, then we do
not need to keep track of the history of the process. That is, at every stage t the cost-to-go
function Qt(·, ξt) depends only on the current state (realization) ξt = ζi, i = 1, . . .,m,
of the process (compare with Remark 4 on page 63). On the other hand, if we want to
write the corresponding optimization problem (in the case of a finite number of scenarios)

7In our model, the values ζ1, . . ., ζm may be numbers or vectors.
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as one large linear programming problem, we still need the scenario tree formulation. This
is the basic difference between the stochastic and dynamic programming approaches to the
problem. That is, the stochastic programming approach does not necessarily rely on the
Markovian structure of the process considered. This makes it more general at the price of
considering a possibly very large number of scenarios.

3.1.4 Filtration Interpretation

We can interpret the scenario tree approach from a somewhat different and more abstract
point of view. Let us denote by Ω the set of all scenarios. As Ω is finite, each its subset
can be viewed as an event. The set of all subsets of Ω forms a sigma algebra, we denote it
by the symbol F . Particularly important are the events that can be observed up to time t,
that is, the events about which we know at time t whether they happened or not. The set
of such events is denoted by Ft, where t = 1, . . . , T . Each Ft forms a sigma algebra, and
F1 ⊂ F2 ⊂ · · · ⊂ FT = F . The sequence of nested sigma algebras Ft, t = 1, . . . , T , is
called a filtration. The corresponding scenario tree is a representation of this filtration.

We can view a node of the tree at level t as an elementary event in the subalgebra Ft.
At time t = 1 we have one root node corresponding to the sure event Ω. This is the only
nonempty event in F1; the other event is the empty set ∅. At time t = 2 we have K2 nodes
ι1, . . . , ιK2

; each node ι can be identified with the set of scenarios Ωι2 passing through this
node in the tree. Observe that Ωi2 ∩Ωj2 = ∅ for i 6= j, and that Ω = Ωι12 ∪ · · · ∪Ω

ιK2
2 . The

sub-algebra F2 contains all possible unions of these sets and the empty set. Generally, at
time t = 1, ..., T − 1 we have the set Ωt of possible nodes of cardinality Kt = |Ωt|. Each
node ι ∈ Ωt is identified with a set of scenarios Ωιt ⊂ Ω, which pass through node ι. The
tree structure specifies the set Cι ⊂ Ωt+1 of children nodes of node ι. This is equivalent
to saying that the set of scenarios Ωιt is the union of the sets of scenarios Ωηt+1 for η ∈ Cι.
On the other hand, if we have a filtration Ft, t = 1, . . . , T , then every elementary event
Ωit ∈ Ft is also a random event in Ft+1. This means that it is a union of some elementary
events Ωjt+1 ∈ Ft+1, where j is such that Ωjt+1 ⊂ Ωit. We can thus define Ci as the set of
all these j. Consequently, a finite filtration implies a tree structure.

So far no probabilistic or numerical structure was assumed for the constructed sce-
nario tree, and it simply represents possible states of the “nature” affecting our uncertain
process. In order to assign a probabilistic structure to the tree, we have to specify probabili-
ties of the scenarios ω ∈ Ω = ΩT . This means that we specify the corresponding probabil-
ity measure (distribution) P on the set ΩT , and hence (ΩT ,FT , P ) becomes a probability
space. Every such probability measure implies conditional probabilities of moving from a
node ι ∈ Ωt to a node η ∈ Ωt+1 as follows: pιη = P [Ωηt+1]/P [Ωιt]. Conversely, condi-
tional probabilities imply a probability measure on Ω.

A random variable X : ΩT → R is Ft-measurable iff X(·) is constant on every
elementary event of the sub-algebra Ft. Therefore there is one-to-one correspondence
between the spaces of Ft-measurable variables X : ΩT → R and functions Y : Ωt → R.
In particular, recall that F1 = {∅,ΩT }, and hence X : ΩT → R is F1-measurable iff
X(·) is constant on ΩT . We can view decisions of the corresponding multistage problem
as a sequence xt : ΩT → Rnt , t = 1, ..., T , of random vectors defined on the probability
space (ΩT ,FT , P ). The nonanticipativity condition means here that xt is Ft-measurable,
t = 1, ..., T . That is, a sequence of mappings xt : ΩT → Rnt , t = 1, . . . , T , is an
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implementable policy if it is adapted to the filtration F1 ⊂ · · · ⊂ FT .
The corresponding multistage stochastic program (compare with formulation (3.4))

can be written here as

Min
x1,x2,...,xT

E
[
f1(x1) + f2(x2(ω), ω) + . . .+ fT (xT (ω), ω)

]
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . ., T,

(3.33)

with the optimization performed over Ft-measurable mappings xt : ΩT → Rnt , t =
1, ..., T . Since the set ΩT is finite, the feasibility constraints in (3.33) should be satisfied for
every ω ∈ ΩT . Formulation (3.33) can also be considered for a general probability space
(Ω,F , P ) and a specified filtration F1 ⊂ · · · ⊂ FT of sigma algebras, with F1 = {∅,Ω}
and FT = F . For a general probability space the feasibility constraints should be satisfied
with probability one.

Consider, for example, the linear case discussed in section 3.1.2. Suppose that
the data process ξt(ω) = (ct(ω), Bt(ω), At(ω), bt(ω)) is defined on a probability space
(Ω,F , P ) and is adapted to a considered filtration F1 ⊂ · · · ⊂ FT , i.e., ξt(ω) is Ft-
measurable, t = 1, ..., T . Since F1 = {∅,Ω}, this implies that ξ1 is deterministic. Then the
cost-to-go function Qt(xt−1, ω), t = 2, ..., T , of the corresponding dynamic programming
equations (compare with (3.25)) is given by the optimal value of the problem8

Min
xt

cTt (ω)xt + E
[
Qt+1(xt, ω)

∣∣Ft]
s.t. Bt(ω)xt−1 +At(ω)xt = bt(ω),

xt ≥ 0,

(3.34)

where as before, QT+1(·, ·) ≡ 0. It follows that Qt(xt−1, ·) is a function of Ft-measurable
data and hence is Ft-measurable.

At the first stage the following problem should be solved.

Min
x1

cT1x1 + E [Q2(x1, ω)]

s.t. A1x1 = b1,

x1 ≥ 0.

(3.35)

3.1.5 Algebraic Formulation of Nonanticipativity Constraints

Suppose that in our basic problem (3.22) there are only finitely many, say K, different
scenarios the problem data can take. Recall that each scenario can be considered as a path
of the respective scenario tree. With each scenario, numbered k, is associated probability
pk and the corresponding sequence of decisions9 xk = (xk1 , x

k
2 , . . . , x

k
T ). That is, with

each possible scenario k = 1, . . .,K (i.e., a realization of the data process) we associate a
sequence of decisions xk. Of course, it would not be appropriate to try to find the optimal

8See section 7.2.2 for a definition of conditional expectation with respect to a sigma subalgebra.
9To avoid ugly collisions of subscripts we change our notation a little and we put the index of the scenario, k,

as a superscript.
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values of these decisions by solving the relaxed version of (3.22):

Min

K∑
k=1

pk

[
cT1x

k
1 + (ck2)Txk2 + (ck3)Txk3 + . . . + (ckT )TxkT

]
s.t. A1x

k
1 = b1,

Bk2x
k
1 + Ak2x

k
2 = bk2 ,

Bk3x
k
2 + Ak3x

k
3 = bk3 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BkTx

k
T−1 + AkTx

k
T = bkT ,

xk1 ≥ 0, xk2 ≥ 0, xk3 ≥ 0, . . . xkT ≥ 0,

(3.36)

k = 1, . . . ,K.

The reason is the same as in the two-stage case. That is, in problem (3.36) all parts of the
decision vector are allowed to depend on all parts of the random data, while each part xt
should be allowed to depend only on the data known up to stage t. In particular, problem
(3.36) may suggest different values of x1, one for each scenario k, while our first stage
decision should be independent of possible realizations of the data process.

In order to correct this problem we enforce the constraints

xk1 = x`1 for all k, ` ∈ {1, . . . ,K}, (3.37)

similarly to the two stage case (2.83). But this is not sufficient, in general. Consider the
second part of the decision vector, x2. It should be allowed to depend only on ξ[2] =

(ξ1, ξ2), so it has to have the same value for all scenarios k for which ξk[2] are identical. We
must, therefore, enforce the constraints

xk2 = x`2 for all k, ` for which ξk[2] = ξ`[2].

Generally, at stage t = 1, . . . , T , the scenarios that have the same history ξ[t] cannot be
distinguished, so we need to enforce the nonanticipativity constraints:

xkt = x`t for all k, ` for which ξk[t] = ξ`[t], t = 1, . . . , T. (3.38)

Problem (3.36) together with the nonanticipativity constraints (3.38) becomes equivalent
to our original formulation (3.22).

Remark 6. Let us observe that if in problem (3.36) only the constraints (3.37) are en-
forced, then from the mathematical point of view the problem obtained becomes a two-
stage stochastic linear program with K scenarios. In this two-stage program the first stage
decision vector is x1, the second stage decision vector is (x2, . . ., xK), the technology ma-
trix is B2 and the recourse matrix is the block matrix

A2 0 . . .. . . 0 0
B3 A3 . . .. . . 0 0

. . .. . .. . .. . .. . .. . .
0 0 . . .. . . BT AT

 .
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Since the two-stage problem obtained is a relaxation of the multistage problem (3.22), its
optimal value gives a lower bound for the optimal value of problem (3.22) and in that
sense it may be useful. Note, however, that this model does not make much sense in any
application, because it assumes that at the end of the process, when all realizations of the
random data become known, one can go back in time and make all decisions x2, . . ., xK−1.

Example 3.1 (Scenario Tree) As it was discussed in section 3.1.3 it can be useful to depict
the possible sequences of data ξ[t] in a form of a scenario tree. An example of such scenario
tree is given in Figure 3.1. Numbers along the arcs represent conditional probabilities of
moving from one node to the next. The associated process ξt = (ct, Bt, At, bt), t =
1, . . ., T , with T = 4, is defined as follows. All involved variables are assumed to be one
dimensional, with ct, Bt, At, t = 2, 3, 4, being fixed and only right hand side variables
bt being random. The values (realizations) of the random process b1, . . ., bT are indicated
by the bold numbers at the nodes of the tree. (The numerical values of ct, Bt, At are not
written explicitly, although, of course, they also should be specified.) That is, at level
t = 1, b1 has the value 36. At level t = 2, b2 has two values 15 and 50 with respective
probabilities 0.4 and 0.6. At level t = 3 we have 5 nodes with which are associated the
following numerical values (from left to right) 10, 20, 12, 20, 70. That is, b3 can take 4
different values with respective probabilities Pr{b3 = 10} = 0.4 · 0.1, Pr{b3 = 20} =
0.4 · 0.4 + 0.6 · 0.4, Pr{b3 = 12} = 0.4 · 0.5 and Pr{b3 = 70} = 0.6 · 0.6. At level
t = 4, the numerical values associated with 8 nodes are defined, from left to right, as
10, 10, 30, 12, 10, 20, 40, 70. The respective probabilities can be calculated by using the
corresponding conditional probabilities. For example,

Pr{b4 = 10} = 0.4 · 0.1 · 1.0 + 0.4 · 0.4 · 0.5 + 0.6 · 0.4 · 0.4.

Note that although some of the realizations of b3, and hence of ξ3, are equal to each other,
they are represented by different nodes. This is necessary in order to identify different
histories of the process corresponding to different scenarios. The same remark applies to
b4 and ξ4. Altogether, there are eight scenarios in this tree. Figure 3.2 illustrates the way in
which sequences of decisions are associated with scenarios from Figure 3.1.

The process bt (and hence the process ξt) in this example is not Markovian. For
instance,

Pr {b4 = 10 | b3 = 20, b2 = 15, b1 = 36} = 0.5,

while

Pr {b4 = 10 | b3 = 20} =
Pr{b4 = 10, b3 = 20}

Pr{b3 = 20}

=
0.5 · 0.4 · 0.4 + 0.4 · 0.4 · 0.6

0.4 · 0.4 + 0.4 · 0.6
= 0.44.

That is, Pr {b4 = 10 | b3 = 20} 6= Pr {b4 = 10 | b3 = 20, b2 = 15, b1 = 36}.

Relaxing the nonanticipativity constraints means that decisions xt = xt(ω) are
viewed as functions of all possible realizations (scenarios) of the data process. This was
the case in formulation (3.36) where the problem was separated into K different problems,
one for each scenario ωk = (ξk1 , . . ., ξ

k
T ), k = 1, . . .,K. There are several ways how the
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Figure 3.1. Scenario tree. Nodes represent information states. Paths from the root
to leaves represent scenarios. Numbers along the arcs represent conditional probabilities
of moving to the next node. Bold numbers represent numerical values of the process.

t t t t t t t t
t t t t t t t t
t t t t t t t t
t t t t t t t tt = 1

t = 2

t = 3

t = 4

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Figure 3.2. Sequences of decisions for scenarios from Figure 3.1. Horizontal
dotted lines represent the equations of nonanticipativity.

corresponding nonanticipativity constraints can be written. One possible way is to write
them, similarly to (2.84) for two stage models, as

xt = E
[
xt
∣∣ξ[t]] , t = 1, . . ., T. (3.39)

Another way is to use filtration associated with the data process. Let Ft be the sigma
algebra generated by ξ[t], t = 1, . . . , T . That is, Ft is the minimal subalgebra of the sigma
algebraF such that ξ1(ω), . . ., ξt(ω) areFt-measurable, denotedFt := σ(ξ1, ..., ξt). Since
ξ1 is not random, F1 contains only two sets: ∅ and Ω. We have that F1 ⊂ F2 ⊂ · · · ⊂
FT ⊂ F . We discussed construction of such a filtration in section 3.1.4. We can write
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(3.39) in the following equivalent form10

xt = E
[
xt
∣∣Ft] , t = 1, . . ., T. (3.40)

Condition (3.40) holds iff xt(ω) is measurable with respect Ft, t = 1, . . ., T . As it was
discussed in section 3.1.4, one can use this measurability requirement as a definition of the
nonanticipativity constraints.

Suppose, for the sake of simplicity, that there is a finite number K of scenarios.
To each scenario corresponds a sequence (xk1 , . . . , x

k
T ) of decision vectors which can be

considered as an element of a vector space of dimension n1 + · · · + nT . The space of all
such sequences (xk1 , . . . , x

k
T ), k = 1, . . . ,K, is a vector space, denoted X, of dimension

(n1 + · · ·+ nT )K. The nonanticipativity constraints (3.38) define a linear subspace of X,
denoted L. Define the following scalar product on the space X,

〈x,y〉 :=

K∑
k=1

T∑
t=1

pk(xkt )Tykt , (3.41)

and letP be the orthogonal projection of X onto L with respect to this scalar product. Then

x = Px

is yet another way to write the nonanticipativity constraints.
A computationally convenient way of writing the nonanticipativity constraints (3.38)

can be derived by using the following construction, which extends to the multistage case
the system (2.87).

Let Ωt be the set of nodes at level t. For a node ι ∈ Ωt we denote by S(ι) the set
of scenarios that pass through node ι and are, therefore, indistinguishable on the basis of
the information available up to time t. As explained before, the sets S(ι) for all ι ∈ Ωt are
the atoms of the sigma-subalgebra Ft associated with the time stage t. We order them and
denote them by S1

t , . . . ,S
γt
t .

Let us assume that all scenarios 1, . . . ,K are ordered in such a way that each set Sνt
is a set of consecutive numbers lνt , l

ν
t + 1, . . . , rνt . Then nonanticipativity can be expressed

by the system of equations

xst − xs+1
t = 0, s = lνt , . . . , r

ν
t − 1, t = 1, . . . , T − 1, ν = 1, . . . , γt. (3.42)

In other words, each decision is related to its neighbors from the left and from the right, if
they correspond to the same node of the scenario tree.

The coefficients of constraints (3.42) define a giant matrix

M = [M1 . . .MK ],

whose rows have two nonzeros each: 1 and -1. Thus, we obtain an algebraic description of
the nonanticipativity constraints:

M1x1 + · · ·+MKxK = 0. (3.43)

Owing to the sparsity of the matrix M , this formulation is very convenient for various
numerical methods for solving linear multistage stochastic programming problems: the
simplex method, interior point methods and decomposition methods.

10See section 7.2.2 for a definition of conditional expectation with respect to a sigma subalgebra.
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Figure 3.3. The nonanticipativity constraint matrix M corresponding to the
scenario tree from Figure 3.1. The subdivision corresponds to the scenario submatrices
M1, . . . ,M8.

Example 3.2 Consider the scenario tree depicted in Figure 3.1. Let us assume that the
scenarios are numbered from the left to the right. Our nonanticipativity constraints take on
the form:

x1
1 − x2

1 = 0, x2
1 − x3

1 = 0, . . . , x7
1 − x8

1 = 0,

x1
2 − x2

2 = 0, x2
2 − x3

2 = 0, x3
2 − x4

2 = 0,

x5
2 − x6

2 = 0, x6
2 − x7

2 = 0, x7
2 − x8

2 = 0,

x2
3 − x3

3 = 0, x3
3 − x4

3 = 0, x6
3 − x7

3 = 0.

Using I to denote the identity matrix of an appropriate dimension, we may write the con-
straint matrix M as shown in Figure 3.3. M is always a very sparse matrix: each row of
it has only two nonzeros, each column at most two nonzeros. Moreover, all nonzeros are
either 1 or −1, which is also convenient for numerical methods.

3.1.6 Piecewise Affine Policies
In some cases it is possible to give a qualitative characterization of optimal policies (deci-
sion rules). We already discussed such a situation in the inventory model in section 1.2.3,
where we showed, under the assumption of stagewise independence, that the basestock
policy is optimal. In this section we discuss forms of optimal policies of linear multistage
stochastic problems.

Two stage problems. Let us start with the two stage problem, discussed in section
2.1.1:
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Min
x∈X

cTx+ E[Q(x, ξ)], (3.44)

where X := {x : Ax = b, x ≥ 0} and Q(x, ξ) is the optimal value of the second stage
problem

Min
y∈Rm

qTy s.t. Tx+Wy = h, y ≥ 0. (3.45)

Denoting u := h− Tx, we can write the second stage problem (3.45) as

Min
y∈Rm

qTy s.t. Wy = u, y ≥ 0, (3.46)

and its dual (compare with (2.3))

Max
π

uTπ s.t. WTπ ≤ q. (3.47)

We make the following assumptions.

(i) The m × 1 vector q and ` × m matrix W are deterministic (not random), i.e., the
recourse is fixed, and matrix W has rank `, i.e., rows of W are linearly independent.

(ii) The feasible set {π : WTπ ≤ q} of the dual problem is nonempty.

(iii) The feasible set of the second stage problem (3.45) is nonempty for every x ∈ X and
ξ ∈ Ξ, where Ξ ⊂ Rd is the support of the distribution of the random data vector
ξ = (h, T ), i.e., the recourse is relatively complete.

It follows from condition (ii) that Q(x, ξ) > −∞ for all x and ξ, and from condition
(iii) that Q(x, ξ) < +∞ for all x ∈ X and ξ ∈ Ξ; the function Q(x, ξ) is finite valued
and the linear programming problem (3.45) has an optimal solution for all x ∈ X and
ξ ∈ Ξ. Moreover, the linear programming problem (3.46) has an optimal solution which
is an extreme point of its feasible set {y : Wy = u, y ≥ 0}. It is possible to choose the
optimal solutions in such a way that they form a continuous piecewise linear function of
u. This is a known result in the theory of parametric linear programming; let us quickly
outline the arguments.

For an index set I ⊂ {1, ...,m} denote by WI the submatrix of W formed by
columns of W indexed by I, and by yI the subvector of y formed by components yi,
i ∈ I. By a standard result of linear programming we have that a feasible point y is an
extreme point (basic solution) of the feasible set iff there exists an index set I ⊂ {1, ...,m}
of cardinality ` such that the matrix WI is nonsingular and yi = 0 for i ∈ {1, ...,m} \ I.
Consider the optimal set of problem (3.46), denoted O(u). It follows that if the optimal
set O(u) is nonempty, then it contains an extreme point ȳ = ȳ(u) and there is an index set
I = I(u) such that WI ȳI = u and ȳi = 0 for i ∈ {1, ...,m} \ I. This can be written
as ȳ(u) = RIu, where RI is m × ` matrix with the rows [RI ]i = [W−1

I ]i for i ∈ I, and
[RI ]i = 0 for i ∈ {1, ...,m} \ I.

We have that y and π are optimal solutions of problems (3.46) and (3.47), respec-
tively, iff these points are feasible and the complementarity condition holds, i.e.,

Wy = u, y ≥ 0, WTπ − q ≤ 0, yT(WTπ − q) = 0. (3.48)
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Thus for a given optimal solution π̄ = π̄(u) of the dual problem, the set O(u) is defined by
a finite number of linear constraints. We can choose a finite number of optimal solutions
of the dual problem (3.47) corresponding to different values of u. It follows by Hoffman’s
lemma (Theorem 7.12) that the multifunction O(·) is Lipschitz continuous in the following
sense: there is a constant κ > 0, depending only on matrix W , such that

dist(y,O(u′)) ≤ κ‖u− u′‖, ∀u, u′ ∈ domO, ∀y ∈ O(u).

In other words O(·) is Lipschitz continuous on its domain with respect to the Hausdorff
metric. If for some ū the optimal set O(ū) = {ȳ} is a singleton, then ȳ(u) is continuous
at ū for any choice of ȳ(u) ∈ O(u). In any case it follows that it is possible to choose an
extreme point ȳ(u) ∈ O(u) such that ȳ(u) is continuous on domO. Indeed, it is possible
to choose a vector a ∈ Rm such that aTy has unique minimizer over y ∈ O(u) for all
u ∈ domO. This minimizer is an extreme point of O(u) and is continuous in u ∈ domO.

It follows that we can choose a continuous policy ȳ(u), u ∈ domO, and a finite
collection I of index sets I ⊂ {1, ...,m}, of cardinality `, such that ȳ(u) = RIu for
some I = I(u) ∈ I. At an optimal solution x̄ of the first stage problem (3.44), setting
u = h − T x̄, we have a continuous optimal function of ξ = (h, T ) consisting of a finite
number of linear pieces: ȳ(ξ) = RI(h− T x̄), I ∈ I.

We say that a policy y(ξ), ξ ∈ Ξ, is piecewise linear (piecewise affine) if y(·) is
continuous on Ξ and there is a finite number of linear (affine11) functions ψI : Rd → Rm,
I ∈ I, such that for every ξ ∈ Ξ, ȳ(ξ) = ψI(ξ) for some I ∈ I. By the above discussion
we have the following result.

Proposition 3.3. Suppose that the assumptions (i)–(iii) hold and the first stage problem
(3.44) has an optimal solution x̄. Then the two stage problem (3.44)–(3.45) possesses a
piecewise linear optimal policy.

Note that if only the right hand side vector h is random, while q,W and T are deter-
ministic, then the corresponding policy ȳ(h) = RI(h − T x̄), I ∈ I, is a piecewise affine
rather than a piecewise linear function of h.

Multistage problems. Let us consider now the multistage linear problem (3.30) and
the corresponding dynamic programming equations (3.27)–(3.28). We say that a policy
xt(ξ[t]), t = 1, ..., T , of the problem (3.30), is piecewise affine if each xt(·) is a piecewise
affine function of the data.

Proposition 3.4. Suppose that: (i) the optimal value of problem (3.30) is finite, (ii) only
the right hand sides b2, ..., bT are random, (iii) the random process b2, ..., bT is stagewise
independent, (iv) the number of scenarios is finite. Then the multistage linear problem
(3.30) possesses a piecewise affine optimal policy.

Proof. The proof proceeds in a way similar to the arguments for the two stage case. Since
the number of scenarios is finite, problem (3.30) can be written as one large linear program-

11Recall that a function (mapping) ψ : Rd → Rm is said to be affine if it can be written as a linear function
plus a constant vector.
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ming problem. Since its optimal value is finite, it has an optimal solution, i.e., it possesses
an optimal policy. Because of the stagewise independence condition (iii), the expectation
cost-to-go functions Qt+1(xt) do not depend on the data process (see Remark 4 on page
63), and because of (iv) they are piecewise linear. Consequently, problem (3.30) has an
optimal policy x̄1, x̄2, ..., x̄T with x̄1 being an optimal solution of the first stage problem
and x̄t, t = 2, ..., T , being an optimal solution of the problem

Min
xt∈Rnt

cTxt +Qt+1(xt) s.t. Atxt = bt −Btx̄t−1, xt ≥ 0, (3.49)

and can be considered as a function of x̄t−1 and bt. Since the function Qt+1(·) is piece-
wise linear and convex, problem (3.49) can be written as a linear programming problem.
Hence similar to the arguments for two stage problems, x̄t can be taken to be a continuous
piecewise linear function of bt −Btx̄t−1, and hence is a piecewise affine function of x̄t−1

and bt. This completes the proof.

Compared to the case of two stage problems, the above analysis requires the addi-
tional condition of finite number of scenarios. This is needed in order to ensure that the
expectation cost-to-go functions Qt+1(xt) are piecewise linear.

3.2 Duality
3.2.1 Convex Multistage Problems
In this section we consider multistage problems of the form (3.1) with

Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt} , t = 2, . . ., T, (3.50)

X1 := {x1 : A1x1 = b1} and ft(xt, ξt), t = 1, . . ., T , being random lower semicontinuous
functions. We assume that functions ft(·, ξt) are convex for a.e. ξt. In particular, if

ft(xt, ξt) :=

{
cTt xt, if xt ≥ 0,
+∞, otherwise, (3.51)

then the problem becomes the linear multistage problem given in the nested formulation
(3.30). All constraints involving only variables and quantities associated with stage t
are absorbed in the definition of the functions ft. It is implicitly assumed that the data
(At, Bt, bt) = (At(ξt), Bt(ξt), bt(ξt)), t = 1, . . ., T , form a random process.

Dynamic programming equations take here the form:

Qt
(
xt−1, ξ[t]

)
= inf

xt

{
ft(xt, ξt) +Qt+1

(
xt, ξ[t]

)
: Btxt−1 +Atxt = bt

}
, (3.52)

where
Qt+1

(
xt, ξ[t]

)
:= E

{
Qt+1

(
xt, ξ[t+1]

) ∣∣ξ[t]} .
For every t = 1, . . ., T , and ξ[t], the function Qt(·, ξ[t]) is convex. Indeed,

QT (xT−1, ξT ) = inf
xT
φ(xT , xT−1, ξT ),
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where

φ(xT , xT−1, ξT ) :=

{
fT (xT , ξT ), if BTxT−1 +ATxT = bT ,
+∞, otherwise.

It follows from the convexity of fT (·, ξT ), that φ(·, ·, ξT ) is convex, and hence the optimal
value function QT (·, ξT ) is also convex. Convexity of functions Qt(·, ξ[t]) can be shown
in the same way by induction in t = T, . . ., 1. Moreover, if the number of scenarios is finite
and functions ft(xt, ξt) are random polyhedral, then the cost-to-go functionsQt(xt−1, ξ[t])
are also random polyhedral.

3.2.2 Optimality Conditions
Consider the cost-to-go functions Qt(xt−1, ξ[t]) defined by the dynamic programming
equations (3.52). With the optimization problem on the right hand side of (3.52) is as-
sociated the following Lagrangian,

Lt(xt, πt) := ft(xt, ξt) +Qt+1

(
xt, ξ[t]

)
+ πT

t (bt −Btxt−1 −Atxt) .

This Lagrangian also depends on ξ[t] and xt−1 which we omit for brevity of the notation.
Denote

ψt(xt, ξ[t]) := ft(xt, ξt) +Qt+1

(
xt, ξ[t]

)
.

The dual functional is

Dt(πt) := inf
xt
Lt(xt, πt)

= − sup
xt

{
πT
t Atxt − ψt(xt, ξ[t])

}
+ πT

t (bt −Btxt−1)

= −ψ∗t (AT
t πt, ξ[t]) + πT

t (bt −Btxt−1) ,

where ψ∗t (·, ξ[t]) is the conjugate function of ψt(·, ξ[t]). Therefore we can write the La-
grangian dual of the optimization problem on the right hand side of (3.52) as follows

Max
πt

{
−ψ∗t (AT

t πt, ξ[t]) + πT
t (bt −Btxt−1)

}
. (3.53)

Both optimization problems, (3.52) and its dual (3.53), are convex. Under various
regularity conditions there is no duality gap between problems (3.52) and (3.53). In partic-
ular, we can formulate the following two conditions.

(D1) The functions ft(xt, ξt), t = 1, . . ., T , are random polyhedral and the number of
scenarios is finite.

(D2) For all sufficiently small perturbations of the vector bt the corresponding optimal
value Qt(xt−1, ξ[t]) is finite, i.e., there is a neighborhood of bt such that for any b′t in
that neighborhood the optimal value of the right hand side of (3.52) with bt replaced
by b′t is finite.

We denote by Dt

(
xt−1, ξ[t]

)
the set of optimal solutions of the dual problem (3.53). All

subdifferentials in the subsequent formulas are taken with respect to xt for an appropriate
t = 1, . . ., T .
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Proposition 3.5. Suppose that either condition (D1) holds and Qt
(
xt−1, ξ[t]

)
is finite, or

condition (D2) holds. Then:
(i) there is no duality gap between problems (3.52) and (3.53), i.e.,

Qt
(
xt−1, ξ[t]

)
= sup

πt

{
−ψ∗t (AT

t πt, ξ[t]) + πT
t (bt −Btxt−1)

}
, (3.54)

(ii) x̄t is an optimal solution of (3.52) iff there exists π̄t = π̄t(ξ[t]) such that π̄t ∈ D(xt−1, ξ[t])
and

0 ∈ ∂Lt (x̄t, π̄t) , (3.55)

(iii) the function Qt(·, ξ[t]) is subdifferentiable at xt−1 and

∂Qt
(
xt−1, ξ[t]

)
= −BT

t Dt

(
xt−1, ξ[t]

)
. (3.56)

Proof. Consider the optimal value function

ϑ(y) := inf
xt

{
ψt(xt, ξ[t]) : Atxt = y

}
.

Since ψt(·, ξ[t]) is convex, the function ϑ(·) is also convex. Condition (D2) means that
ϑ(y) is finite valued for all y in a neighborhood of ȳ := bt−Btxt−1. It follows that ϑ(·) is
continuous and subdifferentiable at ȳ. By conjugate duality (see Theorem 7.8) this implies
assertion (i). Moreover, the set of optimal solutions of the corresponding dual problem
coincides with the subdifferential of ϑ(·) at ȳ. Formula (3.56) then follows by the chain
rule. Condition (3.55) means that x̄t is a minimizer of L (·, π̄t), and hence the assertion (ii)
follows by (i).

If condition (D1) holds, then the functions Qt
(
·, ξ[t]

)
are polyhedral, and hence ϑ(·)

is polyhedral. It follows that ϑ(·) is lower semicontinuous and subdifferentiable at any
point where it is finite valued. Again, the proof can be completed by applying the conjugate
duality theory.

Note that condition (D2) actually implies that the set Dt

(
xt−1, ξ[t]

)
of optimal solu-

tions of the dual problem is nonempty and bounded, while condition (D1) only implies that
Dt

(
xt−1, ξ[t]

)
is nonempty.

Now let us look at the optimality conditions (3.10), which in the present case can be
written as follows:

x̄t(ξ[t]) ∈ arg min
xt

{
ft(xt, ξt) +Qt+1

(
xt, ξ[t]

)
: Atxt = bt −Btx̄t−1(ξ[t−1])

}
, (3.57)

Since the optimization problem on the right hand side of (3.57) is convex, subject to linear
constraints, we have that a feasible policy is optimal iff it satisfies the following optimality
conditions: for t = 1, . . ., T and a.e. ξ[t] there exists π̄t(ξ[t]) such that the following
condition holds

0 ∈ ∂
[
ft(x̄t(ξ[t]), ξt) +Qt+1

(
x̄t(ξ[t]), ξ[t]

)]
−AT

t π̄t(ξ[t]). (3.58)

Recall that all subdifferentials are taken with respect to xt, and for t = T the term QT+1

is omitted.
We shall use the following regularity condition.
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(D3) For t = 2, . . ., T and a.e. ξ[t] the function Qt
(
·, ξ[t−1]

)
is finite valued.

The above condition implies, of course, that Qt
(
·, ξ[t]

)
is finite valued for a.e. ξ[t] con-

ditional on ξ[t−1], which in turn implies relatively complete recourse. Note also that con-
dition (D3) does not necessarily imply condition (D2), because in the latter the function
Qt
(
·, ξ[t]

)
is required to be finite for all small perturbations of bt.

Proposition 3.6. Suppose that either conditions (D2) and (D3) or condition (D1) are sat-
isfied. Then a feasible policy x̄t(ξ[t]) is optimal iff there exist mappings π̄t(ξ[t]), t =
1, . . ., T , such that the following condition holds true:

0 ∈ ∂ft(x̄t(ξ[t]), ξt)−AT
t π̄t(ξ[t]) + E

[
∂Qt+1

(
x̄t(ξ[t]), ξ[t+1]

) ∣∣ξ[t]] (3.59)

for a.e. ξ[t] and t = 1, . . ., T . Moreover, multipliers π̄t(ξ[t]) satisfy (3.59) iff for a.e. ξ[t] it
holds that

π̄t(ξ[t]) ∈ D(x̄t−1(ξ[t−1]), ξ[t]). (3.60)

Proof. Suppose that condition (D3) holds. Then by the Moreau–Rockafellar Theorem
(Theorem 7.4) we have that at x̄t = x̄t(ξ[t]),

∂
[
ft(x̄t, ξt) +Qt+1

(
x̄t, ξ[t]

)]
= ∂ft(x̄t, ξt) + ∂Qt+1

(
x̄t, ξ[t]

)
.

Also by Theorem 7.52 the subdifferential of Qt+1

(
x̄t, ξ[t]

)
can be taken inside the expec-

tation to obtain the last term in the right hand side of (3.59). Note that conditional on ξ[t] the
term x̄t = x̄t(ξ[t]) is fixed. Optimality conditions (3.59) then follow from (3.58). Suppose,
further, that condition (D2) holds. Then there is no duality gap between problems (3.52)
and (3.53), and the second assertion follows by (3.57) and Proposition 3.5(ii).

If condition (D1) holds, then functions ft(xt, ξt) and Qt+1

(
xt, ξ[t]

)
are random

polyhedral, and hence the same arguments can be applied without additional regularity
conditions.

Formula (3.56) makes it possible to write optimality conditions (3.59) in the follow-
ing form.

Theorem 3.7. Suppose that either conditions (D2) and (D3) or condition (D1) are satisfied.
Then a feasible policy x̄t(ξ[t]) is optimal iff there exist measurable π̄t(ξ[t]), t = 1, . . ., T ,
such that

0 ∈ ∂ft(x̄t(ξ[t]), ξt)−AT
t π̄t(ξ[t])− E

[
BT
t+1π̄t+1(ξ[t+1])

∣∣ξ[t]] (3.61)

for a.e. ξ[t] and t = 1, . . ., T , where for t = T the corresponding term T + 1 is omitted.

Proof. By Proposition 3.6 we have that a feasible policy x̄t(ξ[t]) is optimal iff conditions
(3.59) and (3.60) hold true. For t = 1 this means the existence of π̄1 ∈ D1 such that

0 ∈ ∂f1(x̄1)−AT
1 π̄1 + E [∂Q2 (x̄1, ξ2)] . (3.62)
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Recall that ξ1 is known, and hence the set D1 is fixed. By (3.56) we have

∂Q2 (x̄1, ξ2) = −BT
2 D2 (x̄1, ξ2) . (3.63)

Formulas (3.62) and (3.63) mean that there exists a measurable selection

π̄2(ξ2) ∈ D2 (x̄1, ξ2)

such that (3.61) holds for t = 1. By the second assertion of Proposition 3.6, the same
selection π̄2(ξ2) can be used in (3.59) for t = 2. Proceeding in that way we obtain existence
of measurable selections

π̄t(ξt) ∈ Dt

(
x̄t−1(ξ[t−1]), ξ[t]

)
satisfying (3.61).

In particular, consider the multistage linear problem given in the nested formulation
(3.30). That is, functions ft(xt, ξt) are defined in the form (3.51) which can be written as

ft(xt, ξt) = cTt xt + IRnt+
(xt).

Then ∂ft(xt, ξt) =
{
ct+NRnt+

(xt)
}

at every point xt ≥ 0, and hence optimality conditions
(3.61) take the form

0 ∈ NRnt+

(
x̄t(ξ[t])

)
+ ct −AT

t π̄t(ξ[t])− E
[
BT
t+1π̄t+1(ξ[t+1])

∣∣ξ[t]] .
3.2.3 Dualization of Feasibility Constraints
Consider the linear multistage program given in the nested formulation (3.30). In this
section we discuss dualization of that problem with respect to the feasibility constraints.
As it was discussed before, we can formulate that problem as an optimization problem with
respect to decision variables xt = xt(ξ[t]) viewed as functions of the history of the data
process. Recall that the vector ξt of the data process of that problem is formed from some
(or all) elements of (ct, Bt, At, bt), t = 1, . . ., T . As before, we use the same symbols
ct, Bt, At, bt to denote random variables and their particular realization. It will be clear
from the context which of these meanings is used in a particular situation.

With problem (3.30) we associate the following Lagrangian:

L(x,π) := E

{
T∑
t=1

[
cTt xt + πT

t (bt −Btxt−1 −Atxt)
]}

= E

{
T∑
t=1

[
cTt xt + πT

t bt − πT
t Atxt − πT

t+1Bt+1xt
]}

= E

{
T∑
t=1

[
bTt πt +

(
ct −AT

t πt −BT
t+1πt+1

)T
xt

]}
,

with the convention that x0 = 0 and BT+1 = 0. Here the multipliers πt = πt(ξ[t]), as well
as decisions xt = xt(ξ[t]), are functions of the data process up to time t.
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The dual functional is defined as

D(π) := inf
x≥0

L(x,π),

where the minimization is performed over variables xt = xt(ξ[t]), t = 1, . . . , T , in an
appropriate functional space subject to the nonnegativity constraints. The Lagrangian dual
of (3.30) is the problem

Max
π

D(π), (3.64)

where π lives in an appropriate functional space. Since, for a given π, the Lagrangian
L(·,π) is separable in xt = xt(·), by the interchangeability principle (Theorem 7.92) we
can move the operation of minimization with respect to xt inside the conditional expecta-
tion E

[
· |ξ[t]

]
. Therefore, we obtain

D(π) = E

{
T∑
t=1

[
bTt πt + inf

xt∈Rnt+

(
ct −AT

t πt − E
[
BT
t+1πt+1

∣∣ξ[t]] )Txt
]}

.

Clearly we have that infxt∈Rnt+

(
ct −AT

t πt − E
[
BT
t+1πt+1

∣∣ξ[t]])T xt is equal to zero if

AT
t πt + E

[
BT
t+1πt+1|ξ[t]

]
≤ ct, and to −∞ otherwise. It follows that in the present case

the dual problem (3.64) can be written as

Max
π
E

[
T∑
t=1

bTt πt

]
s.t. AT

t πt + E
[
BT
t+1πt+1|ξ[t]

]
≤ ct, t = 1, . . . , T,

(3.65)

where for the uniformity of notation we set all “T + 1” terms equal zero. Each multiplier
vector πt = πt(ξ[t]), t = 1, . . . , T , of problem (3.65) is a function of ξ[t]. In that sense
these multipliers form a dual implementable policy. Optimization in (3.65) is performed
over all implementable and feasible dual policies.

If the data process has a finite number of scenarios, then implementable policies xt(·)
and πt(·), t = 1, . . . , T , can be identified with finite dimensional vectors. In that case
the primal and dual problems form a pair of mutually dual linear programming problems.
Therefore, the following duality result is a consequence of the general duality theory of
linear programming.

Theorem 3.8. Suppose that the data process has a finite number of possible realizations
(scenarios). Then the optimal values of problems (3.30) and (3.65) are equal unless both
problems are infeasible. If the (common) optimal value of these problems is finite, then
both problems have optimal solutions.

If the data process has a general distribution with an infinite number of possible
realizations, then some regularity conditions are needed to ensure zero duality gap between
problems (3.30) and (3.65).
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3.2.4 Dualization of Nonanticipativity Constraints
In this section we deal with a problem which is slightly more general than linear problem
(3.36). Let ft(xt, ξt), t = 1, . . . , T , be random polyhedral functions, and consider the
problem

Min

K∑
k=1

pk

[
f1(xk1) + fk2 (xk2) + fk3 (xk3) + . . . + fkT (xkT )

]
s.t. A1x

k
1 = b1,

Bk2x
k
1 + Ak2x

k
2 = bk2 ,

Bk3x
k
2 + Ak3x

k
3 = bk3 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BkTx

k
T−1 + AkTx

k
T = bkT ,

xk1 ≥ 0, xk2 ≥ 0, xk3 ≥ 0, . . . xkT ≥ 0,

k = 1, . . . ,K.

Here ξk1 , . . ., ξ
k
T , k = 1, . . . ,K, is a particular realization (scenario) of the corresponding

data process, fkt (xkt ) := ft(x
k
t , ξ

k
t ) and (Bkt , A

k
t , b

k
t ) := (Bt(ξ

k
t ), At(ξ

k
t ), bt(ξ

k
t )), t =

2, . . . , T . This problem can be formulated as a multistage stochastic programming problem
by enforcing the corresponding nonanticipativity constraints.

As it was discussed in section 3.1.5, there are many ways to write nonanticipativ-
ity constraints. For example, let X be the linear space of all sequences (xk1 , . . . , x

k
T ),

k = 1, . . . ,K, and L be the linear subspace of X defined by the nonanticipativity con-
straints (these spaces were defined above equation (3.41)). We can write the corresponding
multistage problem in the following lucid form

Min
x∈X

f(x) :=

K∑
k=1

T∑
t=1

pkf
k
t (xkt ) subject to x ∈ L. (3.66)

Clearly, f(·) is a polyhedral function, so if problem (3.66) has a finite optimal value, then
it has an optimal solution and the optimality conditions and duality relations hold true. Let
us introduce the Lagrangian associated with (3.66):

L(x,λ) := f(x) + 〈λ,x〉,

with the scalar product 〈·, ·〉 defined in (3.41). By the definition of the subspace L, every
point x ∈ L can be viewed as an implementable policy. By L⊥ := {y ∈ X : 〈y,x〉 =
0, ∀x ∈ L} we denote the orthogonal subspace to the subspace L.

Theorem 3.9. A policy x̄ ∈ L is an optimal solution of (3.66) if and only if there exist a
multiplier vector λ̄ ∈ L⊥ such that

x̄ ∈ arg min
x∈X

L(x, λ̄). (3.67)

Proof. Let λ̄ ∈ L⊥ and x̄ ∈ L be a minimizer of L(·, λ̄) over X. Then by the first order
optimality conditions we have that 0 ∈ ∂xL(x̄, λ̄). Note that there is no need here for a
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constraint qualification since the problem is polyhedral. Now ∂xL(x̄, λ̄) = ∂f(x̄) + λ̄.
Since NL(x̄) = L⊥, it follows that 0 ∈ ∂f(x̄) + NL(x̄), which is a sufficient condition
for x̄ to be an optimal solution of (3.66). Conversely, if x̄ is an optimal solution of (3.66),
then necessarily 0 ∈ ∂f(x̄) + NL(x̄). This implies existence of λ̄ ∈ L⊥ such that 0 ∈
∂xL(x̄, λ̄). This, in turn, implies that x̄ ∈ L is a minimizer of L(·, λ̄) over X.

Also, we can define the dual function

D(λ) := inf
x∈X

L(x,λ),

and the dual problem
Max
λ∈L⊥

D(λ). (3.68)

Since the problem considered is polyhedral, we have by the standard theory of linear pro-
gramming the following results.

Theorem 3.10. The optimal values of problems (3.66) and (3.68) are equal unless both
problems are infeasible. If their (common) optimal value is finite, then both problems have
optimal solutions.

The crucial role in our approach is played by the requirement that λ ∈ L⊥. Let
us decipher this condition. For λ =

(
λkt
)
t=1,...,T, k=1,...,K

, the condition λ ∈ L⊥ is
equivalent to

T∑
t=1

K∑
k=1

pk〈λkt , xkt 〉 = 0, for all x ∈ L.

We can write this in a more abstract form as

E

[
T∑
t=1

〈λt, xt〉

]
= 0, for all x ∈ L. (3.69)

Since12 E|txt = xt for all x ∈ L, and 〈λt,E|txt〉 = 〈E|tλt, xt〉, we obtain from
(3.69) that

E

[
T∑
t=1

〈E|tλt, xt〉

]
= 0, for all x ∈ L,

which is equivalent to
E|t[λt] = 0, t = 1, . . . , T. (3.70)

We can now rewrite our necessary conditions of optimality and duality relations in a more
explicit form. We can write the dual problem in the form

Max
λ∈X

D(λ) subject to E|t[λt] = 0, t = 1, . . . , T. (3.71)

12In order to simplify notation we denote in the remainder of this section by E|t the conditional expectation,
conditional on ξ[t].
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Corollary 3.11. A policy x̄ ∈ L is an optimal solution of (3.66) if and only if there exist
multipliers vector λ̄ satisfying (3.70) such that

x̄ ∈ arg min
x∈X

L(x, λ̄).

Moreover, problem (3.66) has an optimal solution if and only if problem (3.71) has an
optimal solution. The optimal values of these problems are equal unless both are infeasible.

There are many different ways to express the nonanticipativity constraints, and thus
there are many equivalent ways to formulate the Lagrangian and the dual problem. In
particular, a dual formulation based on (3.42) is quite convenient for dual decomposition
methods. We leave it to the reader to develop the particular form of the dual problem in
this case.

Exercises
3.1. Consider the inventory model of section 1.2.3.

(a) Specify for this problem the variables, the data process, the functions, and
the sets in the general formulation (3.1). Describe the sets Xt(xt−1, ξt) as in
formula (3.50).

(b) Transform the problem to an equivalent linear multistage stochastic program-
ming problem.

3.2. Consider the cost-to-go function Qt(xt−1, ξ[t]), t = 2, . . ., T , of the linear multi-
stage problem defined as the optimal value of problem (3.25). Show thatQt(xt−1, ξ[t])
is convex in xt−1.

3.3. Consider the assembly problem discussed in section 1.3.3 in the case when all de-
mand has to be satisfied, by backlogging the orders. It costs bi to delay delivery of
a unit of product i by one period. Additional orders of the missing parts can also
be made after the last demand D(T ) is known. Write the dynamic programming
equations of the problem. How they can be simplified, if the demand is stage-wise
independent?

3.4. A transportation company has n depots among which they move cargo. They are
planning their operation in the next T days. The demand for transportation between
depot i and depot j 6= i on day t, where t = 1, 2 . . . , T , is modeled as a random
variable Dij(t). The total capacity of vehicles currently available at depot i is de-
noted si, i = 1, . . . , n. Before each day t, the company considers repositioning
their fleet to better prepare to the uncertain demand on the coming day. It costs cij
to move a unit of capacity from location i to location j. After repositioning, the
realization of the random variables Dij(t) is observed, and the demand is served,
up to the limit determined by the transportation capacity available at each location.
The profit from transporting a unit of cargo from location i to location j is equal
qij . If the total demand at location i exceeds the capacity available at this location,
the excessive demand is lost. It is up to the company to decide how much of each
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demand Dij will be served, and which part will remain unsatisfied. For simplicity,
we consider all capacity and transportation quantities as continuous variables.
After the demand is served, the transportation capacity of the vehicles at each loca-
tion changes, as a result of the arrivals of vehicles with cargo from other locations.
Before the next day, the company may choose to reposition some of the vehicles to
prepare for the next demand. On the last day, the vehicles are repositioned so that
initial quantities si, i = 1, . . . , n, are restored.

(a) Formulate the problem of maximizing the expected profit as a multistage stochas-
tic programming problem.

(b) Write the dynamic programming equations for this problem. Assuming that
the demand is stage-wise independent, identify the state variables and simplify
the dynamic programming equations.

(c) Develop a scenario tree based formulation of the problem.

3.5. Derive the dual problem to the linear multistage stochastic programming problem
(3.36) with nonanticipativity constraints in the form (3.42).

3.6. You have initial capitalC0 which you may invest in a stock or keep in cash. You plan
your investments for the next T periods. The return rate on cash is deterministic and
equals r per each period. The price of the stock is random and equals St in period
t = 1, . . . , T . The current price S0 is known to you and you have a model of the
price process St in the form of a scenario tree. At the beginning, several American
options on the stock prize are available. There are n put options with strike prices
p1, . . . , pn and corresponding costs c1, . . . , cn. For example, if you buy one put
option i, at any time t = 1, . . . , T you have the right to exercise the option and cash
pi − St (this makes sense only when pi > St). Also, m call options are available,
with strike prices π1, . . . , πm and corresponding costs q1, . . . , qm. For example, if
you buy one call option j, at any time t = 1, . . . , T you may exercise it and cash
St − πj (this makes sense only when πj < St). The options are available only at
t = 0. At any time period t you may buy or sell the underlying stock. Borrowing
cash and short selling, that is, selling shares which are not actually owned (with
the hope of repurchasing them later with profit), are not allowed. At the end of
period T all options expire. There are no transaction costs, and shares and options
can be bought, sold (in the case of shares), or realized (in the case of options) in
any quantities (not necessarily whole numbers). The amounts gained by exercising
options are immediately available for purchasing shares.
Consider two objective functions.

(i) The expected value of your holdings at the end of period T ;

(ii) The expected value of a piecewise linear utility function evaluated at the value
of your final holdings. Its form is

u(CT ) =

{
CT , if CT ≥ 0,

(1 +R)CT , if CT < 0,

where R > 0 is some known constant.
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For both objective functions:

(a) Develop a linear multistage stochastic programming model.

(b) Derive the dual problem by dualizing with respect to feasibility constraints.
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Chapter 4

Optimization Models with
Probabilistic Constraints

Darinka Dentcheva

4.1 Introduction
In this chapter, we discuss stochastic optimization problems with probabilistic (also called
chance) constraints of the form

Min c(x)

s.t. Pr
{
gj(x, Z) ≤ 0, j ∈ J

}
≥ p,

x ∈ X .
(4.1)

Here X ⊂ Rn is a nonempty set, c : Rn → R, gj : Rn × Rs → R, j ∈ J , with J being
an index set, Z is an s-dimensional random vector, and p ∈ (0, 1) is a modeling parameter.
the notation PZ stands for the probability measure (probability distribution) induced by the
random vector Z on Rs. The event A(x) =

{
gj(x, Z) ≤ 0, j ∈ J

}
in (4.1) depends

on the decision vector x, and its probability, Pr{A(x)} is calculated with respect to the
probability distribution PZ .

This model is in harmony with the statistical decisions, i.e., for a given point x, we do
not reject the statistical hypothesis of the constraints gj(x, Z) ≤ 0, j ∈ J , being satisfied.
We discussed this modeling approach in Chapter 1 in the contexts of inventory, multi-
product and portfolio selection models. Furthermore, imposing constraints on probability
of events is particularly appropriate whenever high uncertainty is involved and reliability is
a central issue. In those cases, constraints on the expected value may not reflect our attitude
to undesirable outcomes.

We also note that the objective function c(x) can represent an expected value function
or a measure of risk, i.e., c(x) = E[f(x, Z)] or c(x) = %(f(x, Z)). By virtue of Theorem

95
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Figure 4.1. Vehicle routing network

7.48, if the function f(·, Z) is continuous at x0 and an integrable random variable Ẑ exists
such that |f(x, Z(ω))| ≤ Ẑ(ω) for P -almost every ω ∈ Ω and for all x in a neighborhood
of x0, then for all x in a neighborhood of x0 the expected value function c(x) is well
defined and continuous at x0. Furthermore, convexity of f(·, z) implies convexity of the
expectation function c(x). Therefore, we can carry out the analysis of probabilistically
constrained problems using a general objective function c(x) with the understanding that
in some cases it may be defined as an expectation function. In this chapter, we focus on the
analysis of the probabilistic constraints.

Note that the probability Pr
{
A(x)} ca be represented as the expected value of the

indicator function of the event A(x), i.e., Pr
{
A(x)} = E

[
1A(x)

]
. The discontinuity of the

indicator function and the complexity of the eventA(x) make the constraints on probability
qualitatively different from the constraints on expected values of continuous functions. Let
us consider two examples.

Example 4.1 (Vehicle Routing Problem) Consider a network with m arcs on which a
random transportation demand arises. A set of n routes in the network is described by
the incidence matrix T . More precisely, T is an m× n dimensional matrix such that

tij =

{
1 if route j contains arc i,
0 otherwise.

We have to allocate vehicles to the routes so as satisfy transportation demand. Figure 4.1
depicts a small network, and the table provides the incidence information for 19 routes on
this network. For example, route 5 consists of the arcs AB, BC, and CA.

Our aim is to satisfy the demand with high prescribed probability p ∈ (0, 1). Let xj
be the number of vehicles assigned to route j, j = 1, . . . , n. The demand for transportation
on each arc is given by the random variablesZi, i = 1, . . . ,m. We setZ = (Z1, . . . , Zm)T.
A cost cj is associated with operating a vehicle on route j. Setting c = (c1, . . . , cn)T, the
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Arc Route
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

AB 1 1 1 1 1
AC 1 1 1 1 1
AD 1 1 1 1
AE 1 1 1 1 1
BA 1 1 1 1 1
BC 1 1 1 1
CA 1 1 1 1 1
CB 1 1 1 1
CD 1 1 1 1 1 1
DA 1 1 1 1
DC 1 1 1 1 1 1
DE 1 1 1 1
EA 1 1 1 1 1
ED 1 1 1 1

Figure 4.2. Vehicle routing incidence matrix

model can be formulated as follows1:

Min
x

cTx (4.2)

s.t. Pr{Tx ≥ Z} ≥ p, (4.3)
x ∈ Zn+. (4.4)

In practical applications, we may have heterogeneous fleet of vehicles with different capac-
ities; we may consider imposing constraints on transportation time or other requirements.

In the context of portfolio optimization, probabilistic constraints arise in a natural
way, as discussed in Chapter 1.

Example 4.2 (Portfolio Optimization with Value-at-Risk Constraint) We consider n in-
vestment opportunities, with random return rates R1, . . . , Rn in the next time period. Our
aim is to invest our capital in such a way that the expected value of our investment is max-
imized, under the condition that the chance of losing no more than a given fraction of this
amount is at least p, where p ∈ (0, 1). This requirement is called a Value-at-Risk (V@R)
constraint.

Denoting the fractions of our capital invested in the n instruments by x1, . . . , xn, th
value change of our investment changes in the next period of time is:

g(x,R) =

n∑
i=1

Rixi.

1The notation Z+ used to denote the set of nonnegative integer numbers.
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The following stochastic optimization problem constructs a portfolio maximizing the ex-
pected return rate under a V@R constraint :

Max

n∑
i=1

E[Ri]xi

s.t. Pr
{ n∑
i=1

Rixi ≥ η
}
≥ p,

n∑
i=1

xi = 1,

x ≥ 0.

(4.5)

For example, η = −0.1 may be chosen, if we aim at protecting against losses larger than
10%.

The constraint
Pr{gj(x, Z) ≤ 0, j ∈ J } ≥ p

is called a joint probabilistic constraint, while the constraints

Pr{gj(x, Z) ≤ 0} ≥ pj , j ∈ J , where pj ∈ [0, 1],

are called individual probabilistic constraints.
In the vehicle routing example, we have a joint probabilistic constraint. If we were to

cover the demand on each arc separately with high probability, then the constraints would
be formulated as follows:

Pr{T ix ≥ Zi} ≥ pi, i = 1, . . . ,m,

where T i denotes the ith row of the matrix T . However, the latter formulation would not
ensure reliability of the network as a whole.

Infinitely many individual probabilistic constraints appear naturally in the context
of stochastic orders. For an integrable random variable X , we consider its distribution
function FX(·).

Definition 4.3. A random variable X dominates in the first order a random variable Y
(denoted X �(1) Y ) if

FX(η) ≤ FY (η), ∀η ∈ R.

The left-continuous inverseF (−1)
X of the cumulative distribution function of a random

variable X is defined as follows:

F
(−1)
X (p) = inf {η : F1(X; η) ≥ p}, p ∈ (0, 1).

Given p ∈ (0, 1), the number q = q(X; p) is called a p-quantile of the random variable X
if

Pr{X < q} ≤ p ≤ Pr{X ≤ q}.
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For p ∈ (0, 1) the set of p-quantiles is a closed interval and F (−1)
X (p) represents its left end.

Directly from the definition of the first order dominance we see that

X �(1) Y ⇔ F
(−1)
X (p) ≥ F (−1)

Y (p) for all 0 < p < 1. (4.6)

The first order dominance constraint can be interpreted as a continuum of probabilistic
(chance) constraints.

Denoting F (1)
X (η) = FX(η), we define higher order distribution functions of a ran-

dom variable X ∈ Lk−1(Ω,F , P ) as follows:

F
(k)
X (η) =

∫ η

−∞
F

(k−1)
X (t) dt for k = 2, 3, 4, . . . .

We can express the integrated distribution function F (2)
X as the expected shortfall function.

Integrating by parts, for each value η, we have the following formula2:

F
(2)
X (η) =

∫ η

−∞
FX(α) dα = E

[
(η −X)+

]
. (4.7)

The function F (2)
X (·) is well defined and finite for every integrable random variable. It

is continuous, nonnegative and nondecreasing. The function F (2)
X (·) is also convex because

its derivative is nondecreasing as it is a cumulative distribution function. By the same argu-
ments, the higher order distribution functions are continuous, nonnegative, nondecreasing,
and convex as well.

Due to (4.7) second order dominance relation can be expressed in an equivalent way
as follows:

X �(2) Y iff E[(η −X)+] ≤ E[(η − Y )+] for all η ∈ R. (4.8)

The stochastic dominance relation generalizes to higher orders as follows:

Definition 4.4. Given two random variables X and Y in Lk−1(Ω,F , P ) we say that X
dominates Y in the kth order if

F
(k)
X (η) ≤ F (k)

Y (η), ∀η ∈ R.

We denote this relation by X �(k) Y .

We call the following semi-infinite (probabilistic) problem a stochastic optimization
problem with a stochastic-order constraint:

Min
x

E[f(x, Z)]

s.t. Pr {g(x, Z) ≤ η} ≤ FY (η), η ∈ [a, b],

x ∈ X .

(4.9)

2Recall that [a]+ = max{a, 0}.
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Here the dominance relation is restricted to an interval [a, b] ⊂ R. There are technical
reasons for this restriction, which will become apparent later. In the case of discrete distri-
butions with finitely many realizations, we can assume that the interval [a, b] contains the
entire support of the probability measures.

In general, we formulate the following semi-infinite probabilistic problem, which we
refer to as a stochastic optimization problem with a stochastic dominance constraint of
order k ≥ 2:

Min
x

c(x)

s.t. F (k)
g(x,Z)(η) ≤ F (k)

Y (η), η ∈ [a, b],

x ∈ X .

(4.10)

Example 4.5 (Portfolio Selection Problem with Stochastic-Order Constraints)
Returning to Example 4.2, we can require that the net profit on our investment dominates
certain benchmark outcome Y , which may be the return rate of our current portfolio or
the return rate of some index. Then the Value-at-Risk constraint has to be satisfied at a
continuum of points η ∈ R. Setting Pr

{
Y ≤ η

}
= pη , we formulate the following model:

Max

n∑
i=1

E[Ri]xi

s.t. Pr

{
n∑
i=1

Rixi ≤ η

}
≤ pη, ∀η ∈ R,

n∑
i=1

xi = 1,

x ≥ 0.

(4.11)

Using higher order stochastic dominance relations, we formulate a portfolio optimization
model of form:

Max

n∑
i=1

E[Ri]xi

s.t.
n∑
i=1

Rixi �(k) Y,

n∑
i=1

xi = 1,

x ≥ 0.

(4.12)

A second order dominance constraint on the portfolio return rate represents a constraint on
the shortfall function:

n∑
i=1

Rixi �(2) Y ⇐⇒ E

[(
η −

n∑
i=1

Rixi

)
+

]
≤ E

[
(η − Y )+

]
, ∀η ∈ R.
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The second order dominance constraint can also be viewed as a continuum of Average
Value-at-Risk3 (AV@R) constraints. We refer to Dentcheva and Ruszczyński [66] for more
information about this connection.

If a = b, then the semi-infinite model (4.9) reduces to a problem with a single proba-
bilistic constraint, and problem (4.10) for k = 2 becomes a problem with a single shortfall
constraint.

We shall pay special attention to problems with separable functions gi, i = 1, . . . ,m,
that is, functions of form gi(x, z) = ĝi(x) + hi(z). The probabilistic constraint becomes

Pr
{
ĝi(x) ≥ −hi(Z), i = 1, . . . ,m

}
≥ p.

We can view the inequalities under the probability as a deterministic vector function ĝ :
Rn → Rm, ĝ = [ĝ1, . . . , ĝm]T constrained from below by a random vector Y with Yi =
−hi(Z), i = 1, . . . ,m. The problem can be formulated as follows:

Min
x

c(x)

s.t. Pr
{
ĝ(x) ≥ Y

}
≥ p,

x ∈ X ,

(4.13)

where the inequality a ≤ b for two vectors a, b ∈ Rn is understood componentwise.
Problems with separable probabilistic constraints arise frequently in the context of

serving certain demand, as in the vehicle routing Example 4.1. Another type of examples
is an inventory problem, as the following one.

Example 4.6 (Cash Matching with Probabilistic Liquidity Constraint)
We have random liabilities Lt in periods t = 1, . . . , T . We consider an investment in a
bond portfolio from a basket of n bonds. The payment of bond i in period t is denoted
by ait. It is zero for the time periods t before purchasing of the bond is possible, as well
as for t greater than the maturity time of the bond. At the time period of purchase, ait is
the negative of the price of the bond. At the following periods, ait is equal to the coupon
payment, and at the time of maturity it is equal to the face value plus the coupon payment.
All prices of bonds and coupon payments are deterministic and no default is assumed. Our
initial capital equals c0.

The objective is to design a bond portfolio such that the probability of covering the
liabilities over the entire period 1, . . . , T is at least p. Subject to this condition, we want to
maximize the final cash on hand, guaranteed with probability p.

Let us introduce the cumulative liabilities

Zt =

t∑
τ=1

Lτ , t = 1, . . . , T.

Denoting by xi the amount invested in bond i, we observe that the cumulative cash flows
up to time t, denoted ct, can be expressed as follows:

ct = ct−1 +

n∑
i=1

aitxi, t = 1, . . . , T.

3Average Value-at-Risk is also called Conditional Value-at-Risk.
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Using cumulative cash flows and cumulative liabilities permits the carry-over of capital
from one stage to the next one, while keeping the random quantities at the right hand side
of the constraints. We represent the cumulative cash flow during the entire period by the
vector c = (c1, . . . , cT )T. Let us assume that we quantify our preferences by using concave
utility function U : R → R. We would like to maximize the final capital at hand in a risk-
averse manner. The problem takes on the form

Max
x,c

E [U(cT − ZT )]

s.t. Pr
{
ct ≥ Zt, t = 1, . . . , T

}
≥ p,

ct = ct−1 +

n∑
i=1

aitxi, t = 1, . . . , T,

x ≥ 0.

This optimization problem has the structure of model (4.13). The first constraint can be
called a probabilistic liquidity constraint.

4.2 Convexity in probabilistic optimization
Fundamental questions for every optimization model concern convexity of the feasible set,
as well as continuity and differentiability of the constraint functions. The analysis of mod-
els with probability functions is based on specific properties of the underlying probability
distributions. In particular, the generalized concavity theory plays a central role in proba-
bilistic optimization as it facilitates the application of powerful tools of convex analysis.

4.2.1 Generalized concavity of functions and measures

We consider various nonlinear transformations of functions f(x) : Ω → R+ defined on a
convex set Ω ⊂ Rs.

Definition 4.7. A nonnegative function f(x) defined on a convex set Ω ⊂ Rs is said to be
α-concave, where α ∈ [−∞,+∞], if for all x, y ∈ Ω and all λ ∈ [0, 1], the following
inequality holds

f(λx+ (1− λ)y) ≥ mα(f(x), f(y), λ),

where mα : R+ × R+ × [0, 1]→ R is defined as follows:

mα(a, b, λ) = 0, if ab = 0,

and if a > 0, b > 0, 0 ≤ λ ≤ 1, then

mα(a, b, λ) =


aλb1−λ, if α = 0,

max{a, b}, if α =∞,
min{a, b}, if α = −∞,
(λaα + (1− λ)bα)1/α, otherwise.
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In the case of α = 0, the function f is called logarithmically concave or log-concave
because ln f(·) is a concave function. In the case of α = 1, the function f is simply
concave.

It is important to note that if f and g are two measurable functions, then the function
mα(f(·), g(·), λ) is a measurable function for all α and for all λ ∈ (0, 1). Furthermore,
mα(a, b, λ) has the following monotonicity property:

Lemma 4.8. The mapping α 7→ mα(a, b, λ) is nondecreasing and continuous.

Proof. First we show the continuity of the mapping at α = 0. We have the following chain
of equations:

lnmα(a, b, λ) = ln(λaα + (1− λ)bα)1/α =
1

α
ln
(
λeα ln a + (1− λ)eα ln b

)
=

1

α
ln
(

1 + α
(
λ ln a+ (1− λ) ln b

)
+ o(α2)

)
.

Applying the l’Hospital rule to the right hand side in order to calculate its limit when
α→ 0, we obtain

lim
α→0

lnmα(a, b, λ) = lim
α→0

λ ln a+ (1− λ) ln b+ o(α)

1 + α
(
λ ln a+ (1− λ) ln b

)
+ o(α2)

= lim
α→0

ln(aλb(1−λ)) + o(α)

1 + α ln(aλb(1−λ)) + o(α2)
= ln(aλb(1−λ)).

Now, we turn to the monotonicity of the mapping. First, let us consider the case of
0 < α < β. We set

h(α) = mα(a, b, λ) = exp

(
1

α
ln
[
λaα + (1− λ)bα

])
.

Calculating its derivative, we obtain:

h′(α) = h(α)
( 1

α
· λa

α ln a+ (1− λ)bα ln b

λaα + (1− λ)bα
− 1

α2
ln
[
λaα + (1− λ)bα

])
.

We have to demonstrate that the expression on the right hand side is nonnegative. Substi-
tuting x = aα and y = bα, we obtain

h′(α) =
1

α2
h(α)

(λx lnx+ (1− λ)y ln y

λx+ (1− λ)y
− ln

[
λx+ (1− λ)y

])
.

Using the fact that the function z 7→ z ln z is convex for z > 0 and that both x, y > 0, we
have that

λx lnx+ (1− λ)y ln y

λx+ (1− λ)y
− ln

[
λx+ (1− λ)y

]
≥ 0.

As h(α) > 0, we conclude that h(·) is nondecreasing in this case. If α < β < 0, we have
the following chain of relations:

mα(a, b, λ) =

[
m−α

(1

a
,

1

b
, λ
)]−1

≤
[
m−β

(1

a
,

1

b
, λ
)]−1

= mβ(a, b, λ).
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In the case of 0 = α < β, we can select a sequence {αk}, such that αk > 0 and
limk→∞ αk = 0. We use the monotonicity of h(·) for positive arguments and the con-
tinuity at 0 to obtain the desired assertion. In the case α < β = 0, we proceed in the same
way, choosing appropriate sequence approaching 0.

If α < 0 < β, then the inequality

mα(a, b, λ) ≤ m0(a, b, λ) ≤ mβ(a, b, λ)

follows from the previous two cases. It remains to investigate how the mapping behaves
when α→∞ or α→ −∞. We observe that

max{λ1/αa, (1− λ)1/αb} ≤ mα(a, b, λ) ≤ max{a, b}.

Passing to the limit, we obtain that

lim
α→∞

mα(a, b, λ) = max{a, b}.

We also infer that

lim
α→−∞

mα(a, b, λ) = lim
α→−∞

[m−α(1/a, 1/b, λ)]−1 = [max{1/a, 1/b}]−1 = min{a, b}.

This completes the proof.

This statement has the very important implication thatα-concavity entails β-concavity
for all β ≤ α. Therefore, all α-concave functions are (−∞)-concave, that is, quasi-
concave.

Example 4.9 Consider the density of a nondegenerate multivariate normal distribution on
Rs:

θ(x) =
1√

(2π)sdet(Σ)
exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
,

where Σ is a positive definite symmetric matrix of dimension s × s, det(Σ) denotes the
determinant of the matrix Σ, and µ ∈ Rs. We observe that

ln θ(x) = − 1
2
(x− µ)TΣ−1(x− µ)− ln

(√
(2π)sdet(Σ)

)
is a concave function. Therefore, we conclude that θ is 0-concave, or log-concave.

Example 4.10 Consider a convex body (a convex compact set with nonempty interior)
Ω ⊂ Rs. The uniform distribution on this set has a density defined as follows:

θ(x) =

{
1

Vs(Ω) , x ∈ Ω,

0, x 6∈ Ω,

where Vs(Ω) denotes the Lebesgue measure of Ω. The function θ(x) is quasi-concave on
Rs and +∞-concave on Ω.
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We point out that for two Borel measurable sets A,B in Rs, the Minkowski sum
A+B = {x+ y : x ∈ A, y ∈ B} is Lebesgue measurable in Rs. Recall that for two sets,
A and B and a number λ ∈ (0, 1), the convex combination is define using the Minkowski
sum in the following way:

λA+ (1− λ)B = {λx+ (1− λ)y : x ∈ A, y ∈ B}.

Definition 4.11. A probability measure P defined on the Lebesgue subsets of a convex set
Ω ⊂ Rs is said to be α-concave if for any Borel measurable sets A,B ⊂ Ω and for all
λ ∈ [0, 1], the following inequality holds

P (λA+ (1− λ)B) ≥ mα

(
P (A), P (B), λ

)
.

We say that a random vector Z with values in Rs has an α-concave distribution if the
probability measure PZ induced by Z on Rs is α-concave.

Lemma 4.12. If a random vector Z has an α-concave probability distribution on Rs, then
its cumulative distribution function FZ is an α-concave function.

Proof. Indeed, for given points z1, z2 ∈ Rs and λ ∈ [0, 1], we define

A = {z ∈ Rs : zi ≤ z1
i , i = 1, . . . , s} and B = {z ∈ Rs : zi ≤ z2

i , i = 1, . . . , s}.

Then the inequality for FZ follows from the inequality in Definition 4.11.

Lemma 4.13. If a random vectorZ has independent components with log-concave marginal
distributions, then Z has a log-concave distribution.

Proof. For two Borel sets A,B ⊂ Rs with PZ(A) > 0 and PZ(B) > 0 and for a number
λ ∈ (0, 1), we define the set C = λA + (1 − λ)B. Each Borel measurable set can be
approximated by rectangular sets. Let the sets Aki , Bki , i = 1, . . . , s, be Borel sets on R
such that

Ak = ×si=1A
k
i , Bk = ×si=1B

k
i

and Ak ⊂ A, Bk ⊂ B. For any k = 1, 2 . . . , we can choose the sequences {Aki }, {Bki }
to be non-decreasing, i.e., Aki ⊆ Ak+1

i , Bki ⊆ Bk+1
i so that ∩∞k=1A

k = A, ∩∞k=1B
k = B.

We define the sets

Cki = λAki + (1− λ)Bki , Ck = ×si=1C
k
i .

Evidently, Ck ⊂ C for all k = 1, 2 . . . and ∩∞k=1C
k = C. We obtain

ln[PZ(C)] ≥ ln[PZ(Ck)] =

s∑
i=1

ln[PZi(C
k
i )] =

s∑
i=1

ln[PZi(λA
k
i + (1− λ)Bki )]

≥
s∑
i=1

(
λ ln[PZi(A

k
i )] + (1− λ) ln[PZi(B

k
i )]
)

= λ ln[PZ(Ak)] + (1− λ) ln[PZ(Bk)]



i
i

“SPbook” — 2013/12/24 — 8:37 — page 106 — #118 i
i

i
i

i
i

106 Chapter 4. Optimization Models with Probabilistic Constraints

We conclude that

ln[PZ(C)] ≥ lim sup
k→∞

(
λ ln[PZ(Ak)] + (1− λ) ln[PZ(Bk)]

)
= λ ln[PZ(A)] + (1− λ) ln[PZ(B)].

As usually, concavity properties of a function imply certain continuity of the function.

We formulate without proof two theorems addressing this issue.

Theorem 4.14 (Borell [28]). If P is a quasi-concave measure on Rs and the dimension of
its support is s, then P has a density with respect to the Lebesgue measure.

The α-concavity property of a measure can be related to a generalized concavity
property of its density (see Brascamp and Lieb [30], Prékopa [195], Rinott[204].)

Theorem 4.15. Let Ω be a convex subset of Rs and let m > 0 be the dimension of the
smallest affine subspace L containing Ω. The probability measure P on Ω is γ-concave
with γ ∈ [−∞, 1/m], if and only if its probability density function with respect to the
Lebesgue measure on L is α-concave with

α =


γ/(1−mγ), if γ ∈ (−∞, 1/m),

−1/m, if γ = −∞,
+∞, if γ = 1/m.

Corollary 4.16. Let an integrable function θ(x) be defined and positive on a non-degenerated
convex set Ω ⊂ Rs. Denote c =

∫
Ω
θ(x) dx. If θ(x) is α-concave with α ∈ [−1/s,∞] and

positive on the interior of Ω, then the measure P on Ω defined by setting

P (A) =
1

c

∫
A

θ(x) dx, A ⊂ Ω,

is γ-concave with

γ =


α/(1 + sα), if α ∈ (−1/s,∞),

1/s, if α =∞,
−∞, if α = −1/s.

In particular, if a measure P on Rs has a density function θ(x) such that θ−1/s is
convex, then P is quasi-concave.

Example 4.17 In Example 4.10, we have observed that the density of the unform distri-
bution on a convex body Ω is an∞-concave function. Hence, it generates an 1/s-concave
measure on Ω. On the other hand, the density of the normal distribution (Example 4.9) is
log-concave, and, therefore, it generates a log-concave probability measure.
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Example 4.18 Consider positive numbers α1, . . . , αs and the simplex

S =

{
x ∈ Rs :

s∑
i=1

xi ≤ 1, xi ≥ 0, i = 1, . . . , s

}
.

The density function of the Dirichlet distribution with parameters α1, . . . , αs is defined as
follows:

θ(x) =


Γ(α1 + · · ·+ αs)

Γ(α1) · · ·Γ(αs)
xα1−1

1 xα2−1
2 · · ·xαs−1

s , if x ∈ int S,

0, otherwise.

Here Γ(·) stands for the Gamma function Γ(z) =
∫∞

0
tz−1e−tdt.

Assuming that x ∈ int S, we consider

ln θ(x) =

s∑
i=1

(αi − 1) lnxi + ln Γ(α1 + · · ·+ αs)−
s∑
i=1

ln Γ(αi).

If αi ≥ 1 for all i = 1, . . . , s, then ln θ(·) is a concave function on the interior of S and,
therefore, θ(x) is log-concave on cl S. If all parameters satisfy αi ≤ 1, then θ(x) is log-
convex on cl (S). For other sets of parameters, this density function does not have any
generalized concavity properties.

The next results provide calculus rules for α-concave functions.

Theorem 4.19. If the function f : Rs → R+ is α-concave and the function g : Rs → R+ is
β-concave, where α, β ≥ 1, then the function h : Rs → R, defined as h(x) = f(x) + g(x)
is γ-concave with γ = min{α, β}.

Proof. Given points x, y ∈ Rs and a scalar λ ∈ (0, 1), we set z = λx + (1 − λ)y. Both
functions f and g are γ-concave by virtue of Lemma 4.8. Using the γ-concavity together
with the Minkowski inequality, which holds for γ ≥ 1, we obtain:

f(z) + g(z)

≥
[
λ
(
f(x)

)γ
+ (1− λ)

(
f(y)

)γ] 1
γ +

[
λ
(
g(x)

)γ
+ (1− λ)

(
g(y)

)γ] 1
γ

≥
[
λ
(
f(x) + g(x)

)γ
+ (1− λ)

(
f(y) + g(y)

)γ] 1
γ .

This completes the proof.

Theorem 4.20. Let f be a concave function defined on a convex setC ⊂ Rs and g : R→ R
be a nonnegative nondecreasing α-concave function, α ∈ [−∞,∞]. Then the function g◦f
is α-concave.

Proof. Given x, y ∈ Rs and a scalar λ ∈ (0, 1), we consider z = λx + (1 − λ)y. We
have f(z) ≥ λf(x) + (1− λ)f(y). By monotonicity and α-concavity of g, we obtain the
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following chain of inequalities:

[g ◦ f ](z) ≥ g(λf(x) + (1− λ)f(y)) ≥ mα

(
g(f(x)), g(f(y)), λ

)
.

This proves the assertion.

Theorem 4.21. Let the function f : Rs × Rm → R+ be such that for all y ∈ Y ⊂ Rm the
function f(·, y) is α-concave (α ∈ [−∞,∞]) on the convex set X ⊂ Rs. Then the function
ϕ(x) = infy∈Y f(x, y) is α-concave on X .

Proof. Let x1, x2 ∈ X and a scalar λ ∈ (0, 1) be given. We set z = λx1 + (1 − λ)x2. A
sequence of points yk ∈ Y exists such that

ϕ(z) = inf
y∈Y

f(z, y) = lim
k→∞

f(z, yk).

Using the α-concavity of the function f(·, y), we infer that

f(z, yk) ≥ mα

(
f(x1, yk), f(x2, yk), λ

)
.

The mapping (a, b) 7→ mα(a, b, λ) is monotonic for nonnegative a and b and λ ∈ (0, 1).
Therefore, the following inequality holds

f(z, yk) ≥ mα

(
ϕ(x1), ϕ(x2), λ

)
.

Passing to the limit, we obtain the desired relation.

Lemma 4.22. If αi > 0, i = 1, . . . ,m, and
∑m
i=1 αi = 1, then the function f : Rm+ → R,

defined as f(x) =
∏m
i=1 x

αi
i is concave.

Proof. We shall show the statement for the case of m = 2. For points x, y ∈ R2
+ and a

scalar λ ∈ (0, 1), we consider λx+ (1− λ)y. Define the quantities:

a1 = (λx1)α1 , a2 = ((1− λ)y1)α1 , b1 = (λx2)α2 , b2 = ((1− λ)y2)α2 ,

Using Hölder’s inequality, we obtain the following:

f(λx+ (1− λ)y) =

(
a

1
α1
1 + a

1
α1
2

)α1
(
b

1
α2
1 + b

1
α2
2

)α2

≥ a1b1 + a2b2 = λxα1
1 xα2

2 + (1− λ)yα1
1 yα2

2 .

The assertion in the general case follows by induction.

Theorem 4.23. If the functions fi : Rn → R+, i = 1, . . . ,m are αi-concave and αi are

such that
∑m
i=1 αi

−1 > 0, then the function g : Rnm → R+, defined as g(x) =

m∏
i=1

fi(xi)

is γ-concave with γ =
( m∑
i=1

αi
−1
)−1

.
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Proof. Fix points x1, x2 ∈ Rn+, a scalar λ ∈ (0, 1) and set xλ = λx1 + (1− λ)x2. By the
generalized concavity of the functions fi, i = 1, . . . ,m, we have the following inequality:

m∏
i=1

fi(xλ) ≥
m∏
i=1

(
λfi(x1)αi + (1− λ)fi(x2)αi

)1/αi
.

We denote yij = fi(xj)
αi , j = 1, 2. Substituting into the last displayed inequality and

raising both sides to power γ, we obtain( m∏
i=1

fi(xλ)
)γ
≥

m∏
i=1

(
λyi1 + (1− λ)yi2

)γ/αi
.

We continue the chain of inequalities using Lemma 4.22:
m∏
i=1

(
λyi1 + (1− λ)yi2

)γ/αi ≥ λ m∏
i=1

[
yi1
]γ/αi

+ (1− λ)

m∏
i=1

[
yi2
]γ/αi

.

Putting the inequalities together and using the substitutions at the right hand side of the last
inequality, we conclude that

m∏
i=1

[
f1(xλ)

]γ ≥ λ m∏
i=1

[
fi(x1)

]γ
+ (1− λ)

m∏
i=1

[
fi(x2)

]γ
,

as required.

In the special case, when the functions fi : Rn → R, i = 1, . . . , k are concave, we
can apply Theorem 4.23 consecutively, to conclude that f1f2 is 1

2 -concave and f1 . . . fk is
1
k -concave.

Lemma 4.24. If A is a symmetric positive definite matrix of size n × n, then the function
A 7→ det(A) is 1

n -concave.

Proof. Consider two n × n symmetric positive definite matrices A,B and γ ∈ (0, 1). We
note that for every eigenvalue λ of A, γλ is an eigenvalue of γA, and, hence, det(γA) =
γn det(A). We could apply the following Minkowski inequality for matrices:

[det (A+B)]
1
n ≥ [det(A)]

1
n + [det(B)]

1
n , (4.14)

which implies the 1
n -concavity of the function. As inequality (4.14) is not well-known,

we provide a proof of it. First, we consider the case of diagonal matrices. In this case
the determinants of A and B are products of their diagonal elements and inequality (4.14)
follows from Lemma 4.22.

In the general case, let A1/2 stand for the symmetric positive definite square-root of
A and let A−1/2 be its inverse. We have

det (A+B) = det
(
A1/2A−1/2(A+B)A−1/2A1/2

)
= det

(
A−1/2(A+B)A−1/2

)
det(A)

= det
(
I +A−1/2BA−1/2

)
det(A) (4.15)



i
i

“SPbook” — 2013/12/24 — 8:37 — page 110 — #122 i
i

i
i

i
i

110 Chapter 4. Optimization Models with Probabilistic Constraints

Notice that A−1/2BA−1/2 is symmetric positive definite and, therefore, we can choose an
n× n orthogonal matrix R, which diagonalizes it. We obtain

det
(
I +A−1/2BA−1/2

)
= det

(
RT
(
I +A−1/2BA−1/2

)
R
)

= det
(
I +RTA−1/2BA−1/2R

)
.

At the right hand side of the equation, we have a sum of two diagonal matrices and we can
apply inequality (4.14) for this case. We conclude that[

det
(
I +A−1/2BA−1/2

)] 1
n

=
[
det
(
I +RTA−1/2BA−1/2R

)] 1
n

≥ 1 +
[
det
(
RTA−1/2BA−1/2R

)] 1
n

= 1 + [det(B)]
1
n [det(A)]−

1
n .

Combining this inequality with equation (4.15), we obtain (4.14) in the general case.

Example 4.25 (Dirichlet distribution continued) We return to Example 4.18. We see
that the functions xi 7→ xβii are 1/βi-concave, provided that βi > 0. Therefore, the density
function of the Dirichlet distribution is a product of 1

αi−1 -concave functions, given that all
parameters αi > 1. By virtue of Theorem 4.23, we obtain that this density is γ-concave
with γ =

(
α1 + · · ·αm− s)−1 provided that αi > 1, i = 1, . . . ,m. Due to Corollary 4.16,

the Dirichlet distribution is a
(
α1 + · · ·αm

)−1
-concave probability measure.

Theorem 4.26. If the s-dimensional random vector Z has an α-concave probability distri-
bution, α ∈ [−∞,+∞], and T is a constantm×smatrix, then them-dimensional random
vector Y = TZ has an α-concave probability distribution.

Proof. Let A ⊂ Rm and B ⊂ Rm be two Borel sets. We define

A1 =
{
z ∈ Rs : Tz ∈ A

}
and B1 =

{
z ∈ Rs : Tz ∈ B

}
.

The sets A1 and B1 are Borel measurable as well due to the continuity properties of the
linear mapping z 7→ Tz. Furthermore, for λ ∈ [0, 1], the following inclusion holds:

λA1 + (1− λ)B1 ⊂
{
z ∈ Rs : Tz ∈ λA+ (1− λ)B

}
.

Denoting PZ and PY the probability measure of Z and Y respectively, we obtain,

PY
{
λA+ (1− λ)B

}
≥ PZ

{
λA1 + (1− λ)B1

}
≥ mα

(
PZ
{
A1

}
, PZ

{
B1

}
, λ
)

= mα

(
PY
{
A
}
, PY

{
B
}
, λ
)
.

This completes the proof.
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Example 4.27 A univariate Gamma distribution is given by the following probability den-
sity function

f(z) =


λϑzϑ−1e−λz

Γ(ϑ)
, for z > 0,

0 otherwise,

where λ > 0 and ϑ > 0 are constants. For λ = 1 the distribution is the standard gamma
distribution. If a random variable Y has the gamma distribution, then ϑY has the standard
gamma distribution. It is not difficult to check that this density function is log-concave,
provided ϑ ≥ 1.

A multivariate gamma distribution can be defined by a certain linear transformation
of m independent random variables Z1, . . . , Zm (1 ≤ m ≤ 2s − 1), that have the standard
gamma distribution. Let an s × m matrix A with 0–1 elements be given. Setting Z =
(Z1, . . . , Z2s−1), we define

Y = AZ.

The random vector Y has a multivariate standard gamma distribution.
We observe that the distribution of the vector Z is log-concave by virtue of Lemma

4.13. Hence, the s-variate standard gamma distribution is log-concave by virtue of Theo-
rem 4.26.

Example 4.28 The Wishart distribution arises in estimation of covariance matrices and can
be considered as a multidimensional version of the χ2- distribution. More precisely, let us
assume that Z is an s-dimensional random vector having multivariate normal distribution
with a nonsingular covariance matrix Σ and expectation µ. Given a sample with observed
values z1, . . . , zN from this distribution, we consider the matrix:

N∑
i=1

(zi − z̄)(zi − z̄)T,

where z̄ is the sample mean. This matrix has the Wishart distribution with N − 1 degrees
of freedom. We denote the trace of a matrix A by tr(A).

If N > s, the Wishart distribution is a continuous distribution on the space of sym-
metric square matrices with probability density function defined by

f(A) =


det(A)

N−s−2
2 exp

(
− 1

2 tr(Σ−1A)
)

2
N−1

2 s π
s(s−1)

4 det(Σ)
N−1

2

s∏
i=1

Γ
(
N−i

2

) , for A positive definite,

0, otherwise.

If s = 1 and Σ = 1 this density becomes the χ2- distribution density with N − 1 degrees
of freedom.

If A1 and A2 are two positive definite matrices and λ ∈ (0, 1), then the matrix
λA1 + (1 − λ)A2 is positive definite as well. Using Lemma 4.24 and Lemma 4.8 we
conclude that function A 7→ ln det(A), defined on the set of positive definite Hermitian
matrices, is concave. This implies that, if N ≥ s + 2, then f is a log-concave function on
the set of symmetric positive definite matrices. If N = s+ 1, then f is a log-convex on the
convex set of symmetric positive definite matrices.
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Recall that a function f : Rs → R is called regular in the sense of Clarke or Clarke-
regular if

f ′(x; d) = lim
t↓0

1

t

[
f(x+ td)− f(x)

]
= lim
y→x,t↓0

1

t

[
f(y + td)− f(y)

]
.

It is known that convex functions are regular in this sense. We call a concave function
f regular with the understanding that the regularity requirement applies to −f . In this
case, we have ∂◦(−f)(x) = −∂◦f(x), where ∂◦f(x) refers to the collection of the Clarke
generalized gradients of f at the point x. For convex functions ∂◦f(x) = ∂f(x).

Theorem 4.29. If f : Rs → R is α-concave (α ∈ R) on some open setU ⊂ Rs and f(x) >
0 for all x ∈ U , then f(x) is locally Lipschitz continuous, directionally differentiable, and
Clarke-regular. Its Clarke generalized gradients are given by the formula:

∂◦f(x) =

{
1
α

[
f(x)

]1−α
∂
[
(f(x))α

]
, if α 6= 0,

f(x)∂
(

ln f(x)
)
, if α = 0.

Proof. If f is an α-concave function, then an appropriate transformation of f , is a concave
function on U . We define

f̄(x) =

{
(f(x))α, if α 6= 0

ln f(x), if α = 0.

If α < 0, then fα(·) is convex. This transformation is well-defined on the open subset U
since f(x) > 0 for x ∈ U , and, thus, f̄(x) is subdifferentiable at any x ∈ U . Further, we
represent f as follows:

f(x) =

{(
f̄(x)

)1/α
, if α 6= 0,

exp(f̄(x)), if α = 0.

In this representation, f is a composition of a continuously differentiable function and a
concave function. By virtue of Clarke [45, Theorem 2.3.9(3)], the function f is locally
Lipschitz continuous, directionally differentiable, and Clarke-regular. Its Clarke general-
ized gradient set is given by the formula:

∂◦f(x) =

{
1
α

(
f̄(x)

)1/α−1
∂f̄(x), if α 6= 0,

exp
(
f̄(x)

)
∂f̄(x), if α = 0.

Substituting the definition of f̄ yields the result.

For a function f : Rn → R, we consider the set of points at which it takes positive
values. It is denoted by domposf , i.e.,

domposf := {x ∈ Rn : f(x) > 0}.

Recall that NX(x) denotes the normal cone to the set X at x ∈ X .
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Definition 4.30. We call a point x̂ ∈ Rn a stationary point of an α-concave function f , if
there is a neighborhood U of x̂ such that f is Lipschitz continuous on U , and 0 ∈ ∂◦f(x̂).
Furthermore, for a convex set X ⊂ domposf , we call x̂ ∈ X a stationary point of f
on X , if there is a neighborhood U of x̂ such that f is Lipschitz continuous on U and
0 ∈ ∂◦fX(x̂) +NX(x̂).

We observe that certain properties of the maxima of concave functions extend to
generalized concave functions.

Theorem 4.31. Let f be an α-concave function f and the set X ⊂ domposf be convex.
Then all the stationary points of f on X are global maxima and the set of global maxima
of f on X is convex.

Proof. First, assume that α = 0. Let x̂ be a stationary point of f on X . This implies that

0 ∈ f(x̂)∂
(

ln f(x̂)
)

+NX(x̂), (4.16)

Using that f(x̂) > 0, we obtain

0 ∈ ∂
(

ln f(x̂)
)

+NX(x̂), (4.17)

As the function f̄(x) = ln f(x) is concave, this inclusion implies that x̂ is a global maximal
point of f̄ on X . By the monotonicity of ln(·), we conclude that x̂ is a global maximal
point of f on X . If a point x̃ ∈ X is a maximal point of f̄ on X , then inclusion (4.17)
is satisfied. It entails (4.16) as X ⊂ domposf , and, therefore, x̃ is a stationary point of f
on X . Therefore, the set of maximal points of f on X is convex because this is the set of
maximal points of the concave function f̄ .

In the case of α 6= 0, the statement follows by the same line of argument using the
function f̄(x) =

[
f(x)

]α
.

Another important property of α-concave measures is the existence of so-called float-
ing body for all probability levels p ∈ ( 1

2
, 1).

Definition 4.32. A measure P on Rs has a floating body at level p > 0 if there exists a
convex body Cp ⊂ Rs such for all vectors z ∈ Rs:

P
{
x ∈ Rs : zTx ≥ s

Cp
(z)
}

= 1− p,

where s
Cp

(·) is the support function of the set Cp. The set Cp is called the floating body of
P at level p.

Symmetric log-concave measures have floating bodies. We formulate this result of
Meyer and Reisner [155] without proof.

Theorem 4.33. Any non-degenerate probability measure with symmetric log-concave den-
sity function has a floating body Cp at all levels p ∈ ( 1

2 , 1).

We see that α-concavity as introduced so far implies continuity of the distribution
function. As empirical distributions are very important in practical applications, we would
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like to find a suitable generalization of this notion applicable to discrete distributions. For
this purpose, we introduce the following notion.

Definition 4.34. A distribution function F is called α-concave on the set A ⊂ Rs with
α ∈ [−∞,∞], if

F (z) ≥ mα

(
F (x), F (y), λ

)
for all z, x, y ∈ A and λ ∈ (0, 1) such that z ≥ λx+ (1− λ)y.

Observe that if A = Rs, then this definition coincides with the usual definition of
α-concavity of a distribution function.

To illustrate the relation between Definition 4.7 and Definition 4.34 let us consider
the case of integer random vectors which are roundups of continuously distributed random
vectors.

Remark 7. If the distribution function of a random vector Z is α-concave on Rs then the
distribution function of Y = dZe is α-concave on Zs.

This property follows from the observation that at integer points both distribution
functions coincide.

Example 4.35 Every distribution function of an s-dimensional binary random vector is
α-concave on Zs for all α ∈ [−∞,∞].

Indeed, let x and y be binary vectors, λ ∈ (0, 1), and z ≥ λx + (1 − λ)y. As z is
integer and x and y binary, then z ≥ x and z ≥ y. Hence, F (z) ≥ max{F (x), F (y)} by
the monotonicity of the cumulative distribution function. Consequently, F is∞-concave.
Using Lemma 4.8 we conclude that FZ is α-concave for all α ∈ [−∞,∞].

For a random vector with independent components, we can relate concavity of the
marginal distribution functions to the concavity of the joint distribution function. Note that
the statement applies not only to discrete distributions, as we can always assume that the
set A is the whole space or some convex subset of it.

Theorem 4.36. Consider the s-dimensional random vector Z = (Z1, · · · , ZL), where the
sub-vectors Zl, l = l, · · · , L, are sl-dimensional and

∑L
l=1 sl = s. Assume that Zl, l =

l, · · · , L are independent and that their marginal distribution functions FZl : Rsl → [0, 1]
are αl-concave on the sets Al ⊂ Zsl . Then the following statements hold true:

1. If
∑L
l=1 α

−1
l > 0, l = 1, · · · , L, then FZ is α-concave on A = A1 × · · · × AL with

α = (
∑L
l=1 α

−1
l )−1;

2. If αl = 0, l = 1, · · · , L, then FZ is log-concave on A = A1 × · · · × AL.

Proof. The proof of the first statement follows by virtue of Theorem 4.23 using the mono-
tonicity of the cumulative distribution function.

For the second statement consider λ ∈ (0, 1) and points x = (x1, · · · , xL) ∈ A,
y = (y1, · · · , yL) ∈ A, and z = (z1, · · · , zL) ∈ A, such that z ≥ λx + (1 − λ)y. Using
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the monotonicity of the function ln(·) and of FZ(·), along with the log-concavity of the
marginal distribution functions, we obtain the following chain of inequalities:

ln[FZ(z)] ≥ ln[FZ(λx+ (1− λ)y)] =

L∑
l=1

ln
[
FZl(λx

l + (1− λ)yl)
]

≥
L∑
l=1

[
λ ln[FZl(x

l)] + (1− λ) ln[FZl(yl)]
]

= λ

L∑
l=1

ln[FZl(x
l)] + (1− λ)

L∑
l=1

ln[FZl(y
l)]

= λ[FZ(x)] + (1− λ)[FZ(y)].

This concludes the proof.

For integer random variables our definition of α-concavity is related to log-concavity
of sequences.

Definition 4.37. A sequence pk, k ∈ Z, is called log-concave, if

p2
k ≥ pk−1pk+1 for all k ∈ Z.

The following property is established in Prékopa [195, Thm 4.7.2].

Theorem 4.38. Suppose that for an integer random variable Y the probabilities pk =
Pr{Y = k}, k ∈ Z form a log-concave sequence. Then the distribution function of Y is
α-concave on Z for every α ∈ [−∞, 0].

4.2.2 Convexity of probabilistically constrained sets
One of the most general results in the convexity theory of probabilistic optimization is the
following theorem.

Theorem 4.39. Let the functions gj : Rn × Rs, j ∈ J , be quasi-concave. If Z ∈ Rs is a
random vector that has an α-concave probability distribution, then the function

G(x) = Pr{gj(x, Z) ≥ 0, j ∈ J } (4.18)

is α-concave on the set

D = {x ∈ Rn : ∃z ∈ Rs such that gj(x, z) ≥ 0, j ∈ J }.

Proof. Given the points x1, x2 ∈ D and λ ∈ (0, 1), we define the sets

Ai = {z ∈ Rs : gj(xi, z) ≥ 0, j ∈ J }, i = 1, 2,
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and B = λA1 + (1− λ)A2. We consider

G(λx1 + (1− λ)x2) = Pr{gj(λx1 + (1− λ)x2, Z) ≥ 0, j ∈ J }.

If z ∈ B, then points zi ∈ Ai, i = 1, 2, exist such that z = λz1 + (1 − λ)z2. Die to the
quasi-concavity of gj , we obtain that

gj(λx1 + (1−λ)x2, λz1 + (1−λ)z2) ≥ min{gj(x1, z1), gj(x2, z2)} ≥ 0 for all j ∈ J .

These inequalities imply that z ∈ {z ∈ Rs : gj(λx1 + (1− λ)x2, z) ≥ 0, j ∈ J }, which
entails that λx1 + (1− λ)x2 ∈ D and that

G(λx1 + (1− λ)x2) ≥ Pr{B}.

Using the α-concavity of the measure, we conclude that

G(λx1 + (1− λ)x2) ≥ Pr{B} ≥ mα{Pr{A1},Pr{A2}, λ} = mα{G(x1), G(x2), λ},

as desired.

Example 4.40 (The log-normal distribution) The probability density function of the one-
dimensional log-normal distribution with parameters µ and σ is given by

f(x) =

{
1√

2πσx
exp

(
− (ln x−µ)2

2σ2

)
, if x > 0,

0, otherwise.

This density is neither log-concave, nor log-convex. However, we can show that the cu-
mulative distribution function is log-concave. We consider the multidimensional case.
The m-dimensional random vector Z has the log-normal distribution, if the vector Y =
(lnZ1, . . . , lnZm)T has a multivariate normal distribution. Recall that the normal distri-
bution is log-concave. The distribution function of Z at a point z ∈ Rm, z > 0, can be
written as

FZ(z) = Pr
{
Z1 ≤ z1, . . . , Zm ≤ zm

}
= Pr

{
z1 − eY1 ≥ 0, . . . , zm − eYm ≥ 0

}
.

We observe that the assumptions of Theorem 4.39 are satisfied for the probability function
on the right hand side. Thus, FZ is a log-concave function.

As a consequence, under the assumptions of Theorem 4.39, we obtain convexity
statements for sets described by probabilistic constraints.

Corollary 4.41. Assume that the functions gj(·, ·), j ∈ J , are quasi-concave jointly in
both arguments, and that Z ∈ Rs is a random variable that has an α-concave probability
distribution. Then the following set is convex and closed:

X0 =
{
x ∈ Rn : Pr{gi(x, Z) ≥ 0, i = 1, . . . ,m} ≥ p

}
. (4.19)
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Proof. Let G(x) be defined as in (4.18), and let x1, x2 ∈ X0, λ ∈ [0, 1]. We have

G(λx1 + (1− λ)x2) ≥ mα{G(x1), G(x2), λ} ≥ min{G(x1), G(x2)} ≥ p.

The closedness of the set follows from the continuity of α-concave functions.

We consider the case of a separable mapping g, when the random quantities appear
only on the right hand side of the inequalities. Observe that the function (x, z) 7→ g(x)− z
is quasi-concave in both arguments whenever the function g is quasi-concave. Directly
from Corollary 4.41, we obtain

Corollary 4.42. Let the mapping g : Rn → Rm be such that each component gi is a
quasi-concave function. Assume that the random vector Z has α-concave distribution for
some α ∈ R. Then the set

X0 =
{
x ∈ Rn : Pr{g(x) ≥ Z} ≥ p

}
(4.20)

is convex.

We could adopt a weaker requirement on the probability distribution of the random
vector Z at the expense of a concavity assumption for the mapping g.

Theorem 4.43. Assume that each component gi of the mapping g : Rn → Rm is a concave
function and let the random vectorZ have α-concave distribution function for some α ∈ R.
Then the set X0, defined in (4.20) is convex.

Proof. Indeed, the probability function appearing in the definition of the set X0 can be
described as follows:

G(x) = Pr{g(x) ≥ Z} = FZ(g(x))

Due to Theorem 4.20, the function FZ ◦ g is α-concave. The convexity of X0 follows the
same way as in Corollary 4.41.

For vectors with independent components, we can state the following result.

Corollary 4.44. Assume that each component gi of the mapping g : Rn → Rm is a concave
function. If the random vector Z has independent components and the one-dimensional
marginal distribution functions FZi , i = 1, . . . ,m are αi-concave with

∑k
i=1 α

−1
i > 0,

then the set X0, defined in (4.20) is convex.

Proof. We can express the distribution function FZ(g(x)) = prodmi=1FZi(gi(xi)). The
functions FZi ◦ gi are αi-concave due to Theorem 4.20. Using Theorem 4.23, we conclude

that FZ ◦ g is γ-concave with γ =
(∑k

i=1 α
−1
i

)−1

. Hence, the set X0 is convex.

Under the same assumptions the set determined by the first order stochastic domi-
nance constraint with respect to any random variable Y is convex and closed.
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Theorem 4.45. Assume that g(·, ·) is a quasi-concave function jointly in both arguments,
and that Z has an α-concave distribution. Then the following sets are convex and closed:

Xd =
{
x ∈ Rn : g(x, Z) �(1) Y

}
,

Xc =
{
x ∈ Rn : Pr

{
g(x, Z) ≥ η

}
≥ Pr

{
Y ≥ η

}
, ∀η ∈ [a, b]

}
.

Proof. Let us fix η ∈ R and observe that the relation g(x, Z) �(1) Y can be formulated in
the following equivalent way:

Pr
{
g(x, Z) ≥ η

}
≥ Pr

{
Y ≥ η

}
for all η ∈ R.

Therefore, the first set can be defined as follows:

Xd =
{
x ∈ Rn : Pr

{
g(x, Z)− η ≥ 0

}
≥ Pr

{
Y ≥ η

}
∀η ∈ R

}
.

For any η ∈ R, we define the set

X(η) =
{
x ∈ Rn : Pr

{
g(x, Z)− η ≥ 0

}
≥ Pr

{
Y ≥ η

}}
.

This set is convex and closed by virtue of Corollary 4.41. The set Xd is the intersection of
the sets X(η) for all η ∈ R, and, therefore, it is convex and closed as well. Analogously,
the set Xc is convex and closed as Xc =

⋂
η∈[a,b]X(η).

Let us observe that affine in each argument functions gi(x, z) = zTx+bi are not nec-
essarily quasi-concave in both arguments (x, z). We can apply Theorem 4.39 to conclude
that the set

Xl =
{
x ∈ Rn : Pr{xTai ≤ bi(Z), i = 1, . . . ,m} ≥ p

}
(4.21)

is convex if ai, i = 1, . . . ,m are deterministic vectors. We have the following.

Corollary 4.46. The set Xl is convex whenever bi(·) are quasi-concave functions and Z
has a quasi-concave probability distribution function.

Example 4.47 (Vehicle Routing continued) We return to Example 4.1. The probabilistic
constraint (4.3) has the form:

Pr
{
Tx ≥ Z

}
≥ p.

If the vector Z of a random demand has an α-concave distribution function, then this con-
straint defines a convex set. For example, this is the case if each component Zi has a
uniform distribution and the components (the demand on each arc) are independent of each
other. If the vector Z has a multi-variate log-normal distribution, then this constraint de-
fines a convex set as well.

If the functions gi are not separable, we can invoke Theorem 4.33.

Theorem 4.48. Let pi ∈ (0.5, 1) for all i = 1, . . . , n. The following set is convex

Xp =
{
x ∈ Rn : PZi{xTZi ≤ bi} ≥ pi, i = 1, . . . ,m

}
, (4.22)
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whenever the vectors Zi have non-degenerated log-concave probability distribution, sym-
metric around some point µi ∈ Rn, i = 1, . . . ,m.

Proof. If the random vector Zi has a non-degenerated log-concave probability distribution,
which is symmetric around some point µi ∈ Rn, then the vector Yi = Zi − µi has a
symmetric and non degenerate log-concave distribution.

Given points x1, x2 ∈ Xp and a number λ ∈ [0, 1], we define

Ki(x) = {a ∈ Rn : aTx ≤ bi}, i = 1, . . . , n.

Let us fix an index i. The probability distribution of Yi satisfies the assumptions of Theorem
4.33. Thus, there is a convex set Cpi such that any supporting plane defines a half-plane
containing probability pi:

PYi
{
y ∈ Rn : yTx ≤ s

Cpi
(x)
}

= pi, ∀x ∈ Rn.

Thus,
PZi
{
z ∈ Rn : zTx ≤ s

Cpi
(x) + µT

i x
}

= pi, ∀x ∈ Rn. (4.23)

Since PZi
{
Ki(x1)

}
≥ pi and PZi

{
Ki(x2)

}
≥ pi by assumption, then

Ki(xj) ⊂
{
z ∈ Rn : zTx ≤ s

Cpi
(x) + 〈µi, x〉

}
, j = 1, 2,

bi ≥ s
Cpi

(x1) + µT
i xj , j = 1, 2.

The properties of the support function entail that

bi ≥ λ
[
s
Cpi

(x1) + µT
i x1

]
+ (1− λ)

[
s
Cpi

(x2) + µT
i x2

]
= s

Cpi
(λx1) + s

Cpi
((1− λ)x2) + µT

i λx1 + (1− λ)x2

≥ s
Cpi

(λx1 + (1− λ)x2) + µT
i λx1 + (1− λ)x2.

Consequently, the set Ki(xλ) with xλ = λx1 + (1− λ)x2 contains the set{
z ∈ Rn : zTxλ ≤ s

Cpi
(xλ) + µT

i xλ
}

and, therefore, using equation (4.23) we obtain that

PZi
{
Ki(λx1 + (1− λ)x2)

}
≥ pi.

Since i was arbitrary, we obtain that λx1 + (1− λ)x2 ∈ Xp.

Example 4.49 (Portfolio optimization continued) Let us consider the portfolio example
4.2 and assume that the random vectorR = (R1, . . . , Rn)T has a multidimensional normal
distribution or a uniform distribution. The value-at-risk constraint can be written as

Pr
{
−RTx ≤ η

}
≥ p

with p ∈ (0.5, 1). The feasible set in this example is convex by virtue of Theorem 4.48
because both distributions are symmetric and log-concave.
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An important relation is established between the sets constrained by first and second
order stochastic dominance relation to a benchmark random variable (see Dentcheva and
Ruszczyński [63]). We denote the space of integrable random variables by L1(Ω,F , P )
and set:

A1(Y ) = {X ∈ L1(Ω,F , P ) : X �(1) Y },
A2(Y ) = {X ∈ L1(Ω,F , P ) : X �(2) Y }.

Proposition 4.50. For every Y ∈ L1(Ω,F , P ) the set A2(Y ) is convex and closed.

Proof. By changing the order of integration in the definition of the second order function
F (2), we obtain

F
(2)
X (η) = E[(η −X)+]. (4.24)

Therefore, an equivalent representation of the second order stochastic dominance relation
is given by the relation

E[(η −X)+] ≤ E[(η − Y )+] for all η ∈ R. (4.25)

For every η ∈ R the functionalX → E[(η−X)+] is convex and continuous inL1(Ω,F , P ),
as a composition of a linear function, the “max” function and the expectation operator.
Consequently, the set A2(Y ) is convex and closed.

The set A1(Y ) is closed, because convergence in L1 implies convergence in proba-
bility, but it is not convex in general.

Example 4.51 Suppose that Ω = {ω1, ω2}, P{ω1} = P{ω2} = 1/2 and Y (ω1) = −1,
Y (ω2) = 1. Then X1 = Y and X2 = −Y both dominate Y in the first order. However,
X = (X1 +X2)/2 = 0 is not an element of A1(Y ) and, thus, the set A1(Y ) is not convex.
We notice that X dominates Y in the second order.

First order dominance relation implies the second order dominance as seen directly
from the definitions of these relations. Hence, A1(Y ) ⊂ A2(Y ). We have demonstrated
that the set A2(Y ) is convex; therefore, we also have

conv(A1(Y )) ⊂ A2(Y ). (4.26)

We find sufficient conditions for the opposite inclusion.

Theorem 4.52. Assume that Ω = {ω1, . . . , ωN},F contains all subsets of Ω, andP{ωk} =
1/N , k = 1, . . . , N . If Y : (Ω,F , P )→ R is a random variable, then

conv(A1(Y )) = A2(Y ).

Proof. We only need prove the inverse inclusion to (4.26). For this purpose, suppose
X ∈ A2(Y ). Under the assumptions of the theorem, we can identify X and Y with
vectors x = (x1, . . . , xN ) and y = (y1, . . . , yN ) such that xi = X(ωi) and yi = Y (ωi),
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i = 1, . . . , N . As the probabilities of all elementary events are equal, the second order
stochastic dominance relation coincides with the concept of weak majorization. Denoting
the kth smallest component of x by x[k], the vector x majorizes the vector y weakly if the
following system of inequalities is satisfied:

l∑
k=1

x[k] ≥
l∑

k=1

y[k], l = 1, . . . , N.

As established by Hardy, Littlewood and Polya [96], weak majorization is equivalent
to the existence of a doubly stochastic matrix Π such that

x ≥ Πy.

By virtue of Birkhoff’s Theorem [23], permutation matrices Q1, . . . , QM and nonnegative
reals α1, . . . , αM totaling 1 exist, such that

Π =

M∑
j=1

αjQ
j .

Setting zj = Qjy, we conclude that

x ≥
M∑
j=1

αjz
j .

Identifying random variables Zj on (Ω,F , P ) with the vectors zj , we also see that

X(ω) ≥
M∑
j=1

αjZ
j(ω),

for all ω ∈ Ω. Since each vector zj is a permutation of y and the probabilities are equal,
the distribution of Zj is identical to the distribution of Y . Thus

Zj �(1) Y, j = 1, . . . ,M.

Let us define

Ẑj(ω) = Zj(ω) +
(
X(ω)−

M∑
k=1

αkZ
k(ω)

)
, ω ∈ Ω, j = 1, . . . ,M.

Then the last two inequalities render Ẑj ∈ A1(Y ), j = 1, . . . ,M , and

X(ω) =

M∑
j=1

αjẐ
j(ω),

as required.

This result does not extend to general probability spaces, as the following example
illustrates.
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Example 4.53 We consider the probability space Ω = {ω1, ω2}, P{ω1} = 1/3, P{ω2} =
2/3. The benchmark variable Y is defined as Y (ω1) = −1, Y (ω2) = 1. It is easy to see
that X �(1) Y if and only if X(ω1) ≥ −1 and X(ω2) ≥ 1. Thus, A1(Y ) is a convex set.

Now, consider the random variable Z = E[Y ] = 1/3. It dominates Y in the second
order, but it does not belong to convA1(Y ) = A1(Y ).

It follows from this example that the probability space must be sufficiently rich to
observe our phenomenon. If we could define a new probability space Ω′ = {ω1, ω21, ω22},
in which the event ω2 is split in two equally likely events ω21, ω22, then we could use
Theorem 4.52 to obtain the equality convA1(Y ) = A2(Y ). In the context of optimization
however, the probability space has to be fixed at the outset and we are interested in sets of
random variables as elements of Lp(Ω,F , P ;Rn), rather than in sets of their distributions.

Theorem 4.54. Assume that the probability space (Ω,F , P ) is atomless. Then

A2(Y ) = cl{conv(A1(Y ))}.

Proof. If the space (Ω,F , P ) is atomless, we can partition Ω into N disjoint subsets, each
of the same P -measure 1/N , and we verify the postulated equation for random variables
which are piecewise constant on such partitions. This reduces the problem to the case
analyzed in Theorem 4.52. Passing to the limit with N →∞, we obtain the desired result.
We refer the interested reader to Dentcheva and Ruszczyński [65] for technical details of
the proof.

4.2.3 Connectedness of probabilistically constrained sets
Let X ⊂ Rn be a closed convex set. In this section we focus on the following set:

X =
{
x ∈ X : Pr

[
gj(x, Z) ≥ 0, j ∈ J

]
≥ p
}
, (4.27)

where J is an arbitrary index set. The functions gi : Rn × Rs → R are continuous, Z
is an s-dimensional random vector, and p ∈ (0, 1) is a prescribed probability. It will be
demonstrated later (Lemma 4.63) that the probabilistically constrained setX with separable
functions gj is a union of cones intersected by X . Thus, the set X could be disconnected.
The following result provides a sufficient condition for X to be topologically connected. A
more general version of this result is proved in Henrion [100].

Theorem 4.55. Assume that the functions gj(·, Z), j ∈ J , are quasi-concave and that they
satisfy the following condition: for all x1, x2 ∈ Rn, a point x∗ ∈ X exists such that

gj(x
∗, z) ≥ min{gj(x1, z), gj(x

2, z)} ∀z ∈ Rs, ∀j ∈ J .

Then the set X defined in (4.27) is connected.

Proof. Let x1, x2 ∈ X be arbitrary points. We construct a path joining the two points,
which is contained entirely in X . Let x∗ ∈ X be the point that exists according to the
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assumption. We set

π(t) =

{
(1− 2t)x1 + 2tx∗, for 0 ≤ t ≤ 1/2,

2(1− t)x∗ + (2t− 1)x2, for 1/2 < t ≤ 1.

First, we observe that π(t) ∈ X for every t ∈ [0, 1] since x1, x2, x∗ ∈ X and the set
X is convex. Furthermore, the quasi-concavity of gj , j ∈ J , and the assumptions of the
theorem imply for every j and for 0 ≤ t ≤ 1/2 the following inequality:

gj((1− 2t)x1 + 2tx∗, z) ≥ min{gj(x1, z), gj(x
∗, z)} = gj(x

1, z).

Therefore,

Pr{gj(π(t), Z) ≥ 0, j ∈ J } ≥ Pr{g(x1) ≥ 0, j ∈ J } ≥ p for 0 ≤ t ≤ 1/2.

Similar argument applies for 1/2 < t ≤ 1. Consequently, π(t) ∈ X , and this proves the
assertion.

4.3 Separable probabilistic constraints
We focus our attention on problems with separable probabilistic constraints. The problem
that we analyze in this section, is the following:

Min
x

c(x)

s.t. Pr
{
g(x) ≥ Z

}
≥ p,

x ∈ X .

(4.28)

We assume that c : Rn → R is a convex function and g : Rn → Rm is such that each com-
ponent gi : Rn → R is a concave function. We assume that the deterministic constraints
are expressed by a closed convex set X ⊂ Rn. The vector Z is an m-dimensional random
vector.

4.3.1 Continuity and differentiability properties of distribution
functions

When the probabilistic constraint involves inequalities with random variables on the right
hand side only as in problem (4.28), we can express it as a constraint on a distribution
function:

Pr
{
g(x) ≥ Z

}
≥ p ⇐⇒ FZ

(
g(x)

)
≥ p.

Therefore, it is important to analyze the continuity and differentiability properties of dis-
tribution functions. These properties are relevant to the numerical solution of probabilistic
optimization problems.

Suppose that Z has an α-concave distribution function with α ∈ R and that the sup-
port of it, suppPZ , has nonempty interior inRs. Then FZ(·) is locally Lipschitz continuous
on int suppPZ by virtue of Theorem 4.29.
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Example 4.56 We consider the following density function

θ(z) =

{
1

2
√
z
, for z ∈ (0, 1),

0, otherwise.

The corresponding cumulative distribution function is

F (z) =


0, for z ≤ 0,
√
z, for z ∈ (0, 1),

1, for z ≥ 1.

The density θ is unbounded. We observe that F is continuous but it is not Lipschitz continu-
ous at z = 0. The density θ is also not (−1)-concave and that means that the corresponding
probability distribution is not quasi-concave.

Theorem 4.57. Suppose that all one-dimensional marginal distribution functions of an
s-dimensional random vector Z are locally Lipschitz continuous. Then FZ is locally Lips-
chitz continuous as well.

Proof. The statement can be proved by straightforward estimation of the distribution func-
tion by its marginals for s = 2 and induction on the dimension of the space.

It should be noted that even if the multivariate probability measure PZ has a contin-
uous and bounded density, then the distribution function FZ is not necessarily Lipschitz
continuous.

Theorem 4.58. Assume that the random vector Z has a continuous density θ : Rs → R+

and ∀i = 1, . . . , s and for all points z ∈ Rs, z = (z1, . . . , zs), the functions

zi 7→
∫ z1

−∞
. . .

∫ zi−1

−∞

∫ zi+1

−∞
. . .

∫ zs

−∞
θ(t1 . . . , zi, . . . , ts) dt1 . . . , dti−1dti+1 . . . dts

are continuous as well. Then the distribution function FZ is continuously differentiable.

Proof. In order to simplify notation, we demonstrate the statement for s = 2. It will be
clear how to extend the proof for s > 2. The following identities hold:

FZ(z1, z2) = Pr(Z1 ≤ z1, Z2 ≤ z2) =

∫ z1

−∞

∫ z2

−∞
θ(t1, t2)dt2dt1 =

∫ z1

−∞
ψ(t1, z2)dt1,

where ψ(t1, z2) =
∫ z2
−∞ θ(t1, t2)dt2. Since ψ(·, z2) is continuous by assumption, we in-

voke the Newton-Leibnitz Theorem to obtain

∂FZ
∂z1

(z1, z2) = ψ(z1, z2) =

∫ z2

−∞
θ(z1, t2)dt2.

In a similar way
∂FZ
∂z2

(z1, z2) =

∫ z1

−∞
θ(t1, z2)dt1.
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Let us show continuity of ∂FZ
∂z1

(z1, z2). Given the points z ∈ R2 and yk ∈ R2, such
that limk→∞ yk = z, we have:

∣∣∣∂FZ
∂z1

(z)− ∂FZ
∂z1

(yk)
∣∣∣ =

∣∣∣ ∫ z2

−∞
θ(z1, t)dt−

∫ yk2

−∞
θ(yk1 , t)dt

∣∣∣
≤
∣∣∣ ∫ yk2

z2

θ(yk1 , t)dt
∣∣∣+
∣∣∣ ∫ z2

−∞
[θ(z1, t)− θ(yk1 , t)]dt

∣∣∣.
First, we observe that the mapping (z1, z2) 7→

∫ z2
a
θ(z1, t)dt is continuous for every a ∈ R

by the uniform continuity of θ(·) on compact sets in R2. Therefore,
∣∣∣ ∫ yk2z2 θ(yk1 , t)dt

∣∣∣ → 0

whenever k → ∞. Furthermore,
∣∣∣ ∫ z2−∞[θ(z1, t) − θ(yk1 , t)]dt

∣∣∣ → 0 as well, due to the

continuity assumptions. This proves that ∂FZ∂z1
(z) is continuous.

The continuity of the second partial derivative follows by the same line of argument.
As both partial derivatives exist and are continuous, the function FZ is continuously differ-
entiable.

Note that the continuity assumptions of the theorem are needed for the continuity of
the function

ψ(·, z2) =

∫ z2

−∞
θ(·, t2)dt2.

Assume that the density function θ is locally Hölder-continuous of power α > 0 with
respect to each argument and the corresponding Hölder-multipliers are integrable functions,
i.e., for any point t̄ ∈ R, a constant ε > 0 and an integrable function L(z) > 0, z ∈ R,
exist such that

|θ(t, z)− θ(τ, z)| ≤ L(z)|t− τ |α ∀t, τ ∈ [t̄− ε, t̄+ ε].

In that case, whenever τ → t, we obtain

|ψ(τ, z)− ψ(t, z)| ≤ |t− τ |α
∫ z

−∞
L(r)dr → 0.

The stronger continuity assumption about θ is a sufficient condition for the assumptions of
Theorem 4.58. Another sufficient condition, in addition to the continuity of θ, would be its
local domination by an integrable function. That is, for any point t̄ ∈ R, a constant ε > 0
and an integrable function L(z) > 0 exist such that

|θ(t, z)| ≤ L(z) ∀t ∈ [t̄− ε, t̄+ ε].

Then, the application of the Lebesgue dominated convergence theorem entails

ψ(tk, z) =

∫ z

−∞
θ(tk, r)dr →

∫ z

−∞
θ(t, r) dr = ψ(t, z) whenever tk → t.
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4.3.2 p-Efficient points

In this section, we derive an algebraic description of the feasible set of problem (4.28).
The p-level set of the distribution function FZ(z) = Pr{Z ≤ z} of Z is defined as

follows:
Zp =

{
z ∈ Rm : FZ(z) ≥ p

}
. (4.29)

Problem (4.28) can be formulated as

Min
x

c(x)

s.t. g(x) ∈ Zp,
x ∈ X .

(4.30)

Lemma 4.59. For every p ∈ (0, 1) the level set Zp is nonempty and closed.

Proof. The statement follows from the monotonicity and the right continuity of the distri-
bution function.

We introduce the key concept of a p-efficient point.

Definition 4.60. Let p ∈ (0, 1). A point v ∈ Rm is called a p-efficient point of the
probability distribution function F , if F (v) ≥ p and there is no z ≤ v, z 6= v such that
F (z) ≥ p.

The p-efficient points are minimal points of the level setZp with respect to the partial
order in Rm generated by the nonnegative cone Rm+ .

Note that for any scalar random variable Z and for all p ∈ (0, 1), exactly one p-
efficient point exists, which is the smallest v such that FZ(v) ≥ p, i.e., v = F

(−1)
Z (p).

Lemma 4.61. Given p ∈ (0, 1), we define

l =
(
F

(−1)
Z1

(p), . . . , F
(−1)
Zm

(p)
)
. (4.31)

Then every v ∈ Rm such that FZ(v) ≥ p satisfies the inequality v ≥ l.

Proof. Let vi = F
(−1)
Zi

(p) be the p-efficient point of the ith marginal distribution function.
We observe that FZ(v) ≤ FZi(vi) for every v ∈ Rm and i = 1, . . . ,m, and, therefore, we
obtain that the set of p-efficient points is bounded from below.

Let p ∈ (0, 1) and let vj , j ∈ E , be all p-efficient points of Z. Here E is an arbitrary
index set. We define the cones

Kj = vj + Rm+ , j ∈ E .

The following result can be derived from Phelps theorem [183, Lemma 3.12] about
the existence of conical support points, but we can easily prove it directly.
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Theorem 4.62. It holds that Zp =
⋃
j∈E Kj .

Proof. If y ∈ Zp then either y is p-efficient or there exists a vector w such that w ≤ y,
w 6= y, w ∈ Zp. By Lemma 4.61, one must have l ≤ w ≤ y. The set Z1 = {z ∈ Zp : l ≤
z ≤ y} is compact because the set Zp is closed by virtue of Lemma 4.59. Thus, there exists
w1 ∈ Z1 with the minimal first coordinate. If w1 is a p-efficient point, then y ∈ w1 +Rm+ ,
what had to be shown. Otherwise, we define Z2 = {z ∈ Zp : l ≤ z ≤ w1}, and choose
a point w2 ∈ Z2 with the minimal second coordinate. Proceeding in the same way, we
shall find the minimal element wm in the set Zp with wm ≤ wm−1 ≤ · · · ≤ y. Therefore,
y ∈ wm + Rm+ , and this completes the proof.

By virtue of Theorem 4.62, assuming 0 < p < 1, we obtain the following disjunctive
semi-infinite formulation of problem (4.30) :

Min
x

c(x)

s.t. g(x) ∈
⋃
j∈E

Kj ,

x ∈ X .

(4.32)

This formulation provides an insight into the structure of the feasible set and the nature
of its non-convexity. The main difficulty here is the implicit character of the disjunctive
constraint.

Let S stand for the simplex in Rm+1,

S =

{
α ∈ Rm+1 :

m+1∑
i=1

αi = 1, αi ≥ 0

}
.

Denote the convex hull of the p-efficient points by E, i.e., E = conv{vj , j ∈ E}. We
obtain a semi-infinite disjunctive representation of the convex hull of Zp.

Lemma 4.63. The following representation holds

convZp = E + Rm+ .

Proof. By Theorem 4.62 every point y ∈ convZp can be represented as a convex com-
bination of points in the cones Kj . By the theorem of Caratheodory the number of these
points is no more than m + 1. Thus, we can write y =

∑m+1
i=1 αi(v

ji + wi), where
wi ∈ Rm+ , α ∈ S and ji ∈ E . The vector w =

∑m+1
i=1 αiw

i belongs to Rm+ . Therefore,
y ∈

∑m+1
i=1 αiv

ji + Rm+ .

We also may set E =
{∑m+1

i=1 αiv
ji : α ∈ S, ji ∈ E

}
.

Theorem 4.64. For every p ∈ (0, 1) the set convZp is closed.
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Proof. Consider a sequence {zk} of points of convZp which is convergent to a point z̄.
Using Caratheodory’s theorem again, we have

zk =

m+1∑
i=1

αki y
k
i ,

with yki ∈ Zp, αki ≥ 0, and
∑m+1
i=1 αki = 1. By passing to a subsequence, if necessary, we

can assume that the limits
ᾱi = lim

k→∞
αki

exist for all i = 1, . . . ,m + 1. By Lemma 4.61 all points yki are bounded below by some
vector l. For simplicity of notation we may assume that l = 0.

Let I = {i : ᾱi > 0}. Clearly,
∑
i∈I ᾱi = 1. We obtain

zk ≥
∑
i∈I

αki y
k
i . (4.33)

We observe that 0 ≤ αki y
k
i ≤ zk for all i ∈ I and all k. Since {zk} is convergent and

αki → ᾱi > 0, each sequence {yki }, i ∈ I , is bounded. Therefore, we can assume that each
of them is convergent to some limit ȳi, i ∈ I . By virtue of Lemma 4.59 ȳi ∈ Zp. Passing
to the limit in inequality (4.33), we obtain

z̄ ≥
∑
i∈I

ᾱiȳi ∈ convZp.

Due to Lemma 4.63, we conclude that z̄ ∈ convZp.

In general the set of p-efficient points might be unbounded and not closed, as illus-
trated on Figure 4.3.

The next example demonstrates some properties of the set of p-efficient points and
its convex hull.

Example 4.65 Let Z be a random vector in R2 whose components Z1 and Z2 are inde-
pendent. The random variable Z1 is uniformly distributed in the interval [0, 1], and the
probability distribution function of Z2 is the following

F2(y) =


0 if z ≤ 0
4z if 0 < z < 0.2
0.8 if 0.2 ≤ z < 0.7
2z+1

3 if 0.7 ≤ z < 1
1 if y ≥ 1.

The set of 0.8-efficient points is illustrated in Fig 4.65. The point (1, 0.7) is not a p-efficient
point as it dominates the point (1, 0.2). However, the points of form vt = (t, 1.2/t − 0.5)
with t ∈ [0.8, 1) are p-efficient and (1, 0.7) = limt↑1 v

t. This shows that the set of p-
efficient points in the same example is not closed. The convex hull of p-efficient points, E
in this example is not closed either, because, it does not contain the pointswλ = λ(1, 0.7)+
(1−λ)(1, 0.2) for any λ ∈ (0, 1), while wλ = limt↑1 w

t
λ with wtλ = λvt + (1−λ)(1, 0.2)

belonging to E.
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 P { Y ≤ v }≥ p 

 v

Figure 4.3. Example of a set Zp with p-efficient points v.

Figure 4.4. Set of 0.8-efficient points of the random variable Z.
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We encounter also a relation between the p-efficient points and the extreme points of
the convex hull of Zp.

Theorem 4.66. For every p ∈ (0, 1) the set of extreme points of convZp is nonempty and
it is contained in the set of p-efficient points.

Proof. Consider the lower bound l defined in (4.31). The set convZp is included in l+Rm+ ,
by virtue of Lemma 4.61 and Lemma 4.63. Therefore, it does not contain any line. Since
convZp is closed by Theorem 4.64, it has at least one extreme point.

Let w be an extreme point of convZp. Suppose that w is not a p-efficient point. Then
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Theorem 4.62 implies that there exists a p-efficient point v ≤ w, v 6= w. Since w + Rm+ ⊂
convZp, the point w is a convex combination of v and w + (w − v). Consequently, w
cannot be extreme.

Example 4.65 continued. We notice that not every p-efficient point is an extreme
point of convZp. Indeed, we observe that the points (0.8, 1) and (1, 0.2) are p-efficient. We
shall show that all other p-efficient points dominate some convex combination of these two
points. For every point vt with 0.8 < t < 1, we consider the point vtλ = λ(0.8, 1) + (1 −
λ)(1, 0.2) with λ = 3

2t −
7
8 . Notice that 3

2t −
7
8 ∈ (0, 1) whenever t ∈ (0.8, 1). The second

coordinates of vt and vtλ are the same. The first coordinates satisfy the inequality t >
1−0.2λ, which means that vt  vtλ. This proves that the only extreme points of convZp are
the points (0.8, 1) and (1, 0.2). On the other hand, clE = conv{(0.8, 1), (1, 0.2), (1, 0.7)}
in this example.

The representations (4.62) and (4.63) become very helpful when the vector Z has a
discrete distribution on Zm, in particular, if the problem is of form (4.78). We shall discuss
this special case in more detail. Let us emphasize that our investigations extend to the case
when the random vector Z has a discrete distribution with values on a grid. Our further
study can be adapted to the case of distributions on non-uniform grids for which a uniform
lower bound on the distance of grid points in each coordinate exists. In this presentation,
we assume that Z ∈ Zm. In this case, we can establish that the distribution function FZ
has finitely many p-efficient points.

Theorem 4.67. For any p ∈ (0, 1), the set of p-efficient points of an integer random vector
is nonempty and finite.

Proof. First we shall show that at least one p-efficient point exists. Since p < 1, there exists
a point y such that FZ(y) ≥ p. By Lemma 4.61, the level set Zp is bounded from below
by the vector l of p-efficient points of one-dimensional marginals. Therefore, if y is not
p-efficient, one of finitely many integer points v such that l ≤ v ≤ y must be p-efficient.

Now we prove the finiteness of the set of p-efficient points. Suppose that there exists
an infinite sequence of different p-efficient points vj , j = 1, 2, . . . . Since they are integer,
and the first coordinate vj1 is bounded from below by l1, with no loss of generality we may
select a subsequence which is non-decreasing in the first coordinate. By a similar token,
we can select further subsequences which are non-decreasing in the first k coordinates
(k = 1, . . . ,m). Since the dimension m is finite, we obtain a subsequence of different
p-efficient points which is non-decreasing in all coordinates. This contradicts the definition
of a p-efficient point.

Note the crucial role of Lemma 4.61 in this proof. In conclusion, we have obtained
that the disjunctive formulation (4.32) of problem (4.30) has a finite index set E .

Figure 4.5 illustrates the structure of the probabilistically constrained set for a dis-
crete random variable.

The concept of α-concavity on a set can be used at this moment to obtain an equiva-
lent representation of the set Zp for a random vector with a discrete distribution.
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v
1

v
2

v
3

v
4

v
5 P { Y ≤ v }≥ p 

Figure 4.5. Example of a discrete set Zp with p-efficient points v1, . . . , v5.

Theorem 4.68. Let Zp be the set of all possible values of an integer random vector Z. If
the distribution function FZ of Z is α-concave on Zp + Zm+ , for some α ∈ [−∞,∞], then
for every p ∈ (0, 1) one has

Zp =

y ∈ Rm : y ≥ z ≥
∑
j∈E

λjv
j ,
∑
j∈E

λj = 1, λj ≥ 0, z ∈ Zm
 ,

where vj , j ∈ E , are the p-efficient points of F .

Proof. The representation (4.32) implies that

Zp ⊂

y ∈ Rm : y ≥ z ≥
∑
j∈E

λjv
j ,
∑
j∈E

λj = 1, λj ≥ 0, z ∈ Zm
 ,

We have to show that every point y from the set at the right hand side belongs to Zp.
By the monotonicity of the distribution function FZ , we have FZ(y) ≥ FZ(z) whenever
y ≥ z. Therefore, it is sufficient to show that Pr{Z ≤ z} ≥ p for all z ∈ Zm such that
z ≥

∑
j∈E λjv

j with λj ≥ 0,
∑
j∈E λj = 1. We consider five cases with respect to α.

Case 1: α =∞. It follows from the definition of α-concavity that

FZ(z) ≥ max{FZ(vj), j ∈ E : λj 6= 0} ≥ p.

Case 2: α = −∞. Since FZ(vj) ≥ p for each index j ∈ E such that λj 6= 0, the assertion
follows as in Case 1.
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Case 3: α = 0. By the definition of α-concavity, we have the following inequalities:

FZ(z) ≥
∏
j∈E

[FZ(vj)]λj ≥
∏
j∈E

pλj = p.

Case 4: α ∈ (−∞, 0). By the definition of α-concavity,

[FZ(z)]α ≤
∑
j∈E

λj [FZ(vj)]α ≤
∑
j∈E

λjp
α = pα.

Since α < 0, we obtain FZ(z) ≥ p.
Case 5: α ∈ (0,∞). By the definition of α-concavity,

[FZ(z)]α ≥
∑
j∈E

λj [FZ(vj)]α ≥
∑
j∈E

λjp
α = pα,

concluding that z ∈ Zp, as desired.

The consequence of this theorem is that under the α-concavity assumption all integer
point contained in convZp = E + Rm+ satisfy the probabilistic constraint. This demon-
strates the importance of the notion of α-concavity for discrete distribution functions as
introduced in Definition 4.34. For example, the set Zp illustrated in Figure 4.5 does not
correspond to any α-concave distribution function, because its convex hull contains integer
points which do not belong to Zp. These are the points (3,6), (4,5) and (6,2).

Using Theorems 4.68 and 4.43, we obtain the following statement.

Corollary 4.69. If the distribution function FZ of Z is α-concave on the set A for some
α ∈ [−∞,∞], then

Zp ∩ A = convZp ∩ A

Under the conditions of Theorem 4.68, problem (4.30) can be formulated in the fol-
lowing equivalent way:

Min
x,z,λ

c(x) (4.34)

s.t. g(x) ≥ z, (4.35)

z ≥
∑
j∈E

λjv
j , (4.36)

z ∈ A, (4.37)∑
j∈E

λj = 1, (4.38)

λj ≥ 0, j ∈ E , (4.39)
x ∈ X . (4.40)

In this way, we have replaced the probabilistic constraint by algebraic equations and
inequalities, together with the requirement (4.37). This condition cannot be dropped, in
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general. However, if other conditions of the problem imply that g(x) has values on the grid
A, then we may remove z entirely form the problem formulation. In this case, we replace
constraints (4.35)–(4.37) with

g(x) ≥
∑
j∈E

λjv
j .

For example, if A = Zn, the definition of X contains the constraint x ∈ Zn, and T is a
matrix with integer elements, then we can dispose of the variable z.

4.3.3 The tangent and normal cones of convZp
We use the notation TA(z), NA(z), and KA(z) for the tangent cone, the normal cone, and
the cone of feasible directions of a set A at a point z ∈ A, respectively. For a set A, we
denote the convex conical hull of A by coneA.

The set convZp has extreme points due to the existence of a lower bound l for all
points in it. We observe that the recession cone of convZp is Rm+ . Indeed, Lemma 4.63
implies that Rm+ is a subset of the recession cone. Assume that there exists a direction
d ∈ RconvZp \Rm+ , then d has a negative coordinate di0 . Fixing any point p-efficient point
v, we can find τ > 0 big enough such that vi0 + τdi0 < li0 , which is a contradiction.

Every z0 ∈ convZp has a representation z0 = w0 + y0 for some w0 ∈ E and
y0 ∈ Rm+ by virtue of Theorem 4.66. The cone of feasible directions can be described by
the following formula:

KconvZp(z0) =
{
d ∈ Rm : d = β(z − z0), z ∈ convZp, β ≥ 0

}
=
{
β(w + y − w0 − y0)), w ∈ E, y ∈ Rm+ , β ≥ 0

}
=
{
β(w − w0), w ∈ E, β ≥ 0

}
+
{
β(y − y0), y ∈ Rm+ , β ≥ 0

}
=KE(w0) +KRm+ (y0). (4.41)

For a point z ∈ E, we have z =
∑
j∈J αjv

j , where vj are p-efficient points, and
αj ≥ 0,

∑
j∈J αj = 1. We denote

Jα(z) = {j ∈ J : αj = 0}.

Proposition 4.70. Let z0 ∈ convZp be represented as z0 = w0 + y0 =
∑
j∈J αjv

j + y0,
where w0 ∈ E, y0 ∈ Rm+ , vj are p-efficient points, αj ≥ 0,

∑
j∈J αj = 1. The cone of

feasible directions of convZp at z0 has the following representation

KconvZp(z0) = cone{vj − w0 : vj ∈ J}+ {τy0, τ ∈ R}+ Rm+

=

∑
j∈J

γjv
j ,
∑
j∈J

γj = 0, γj ≥ 0 ∀j ∈ Jα(w0)

 (4.42)
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Proof. The cone KE(w0) can be described in the following way:

KE(w0) =
{
d ∈ Rm : d = β(

m+1∑
i=1

αiv
ji − w0), α ∈ Sm+1, ji ∈ J, β ≥ 0

}
=
{
β(

m+1∑
i=1

αi(v
ji − w0)), α ∈ Sm+1, ji ∈ J, β ≥ 0

}
=
{m+1∑
i=1

γi(v
ji − w0), γi ≥ 0, ji ∈ J

}
(4.43)

We observe that KRm+ (y0) = Rm+ + {τy0, τ ∈ R}. Using (4.41), we obtain that

KconvZp(z0) = KE(w0) +KRm+ (y0) = KE(w0) + Rm+ + {τy0, τ ∈ R}.

Now, the representation of KE(w0) yields the first equation in (4.42). Substituting the
representation ofw0 by p-efficient points at the right-hand side of formula (4.43), we obtain
that every direction w ∈ KE(w0) has the following form:

w =
∑
i∈J

γ̄i
(
vi −

∑
j∈J

αjv
j
)

=
∑
i∈J

γ̄iv
i −
∑
i∈J

∑
j∈J

γ̄iαjv
j .

Denoting β =
∑
i∈J γ̄i, we obtain

w =
∑
i∈J

γ̄iv
i −
∑
j∈J

βαjv
j =

∑
j∈J

(
γ̄j − βαj

)
vj =

∑
j∈J

γjv
j .

Notice that γj ≥ 0 for all j ∈ Jα(w0). Furthermore, the coefficients γi satisfy the equation∑
j∈J

γj =
∑
j∈J

γ̄j − β
∑
j∈J

αj = 0

We infer that

KE(w0) ⊆
{
d =

∑
j∈J

γjv
j ,
∑
j∈J

γj = 0, γj ≥ 0∀ j ∈ Jα(w0)
}
. (4.44)

Assume now, that w =
∑
j∈J γjv

j with
∑m+1
j=1 γj = 0 and γj ≥ 0 for all j ∈ Jα(w0). We

determine
β = max

{
− γj
αj

: j ∈ J and αj > 0
}

As the set {j ∈ J : γj < 0, αj > 0} is non-empty, β > 0. Setting γ̄j = γj +βαj , we have
γ̄j ≥ 0 for all j ∈ J . Summing up, we have∑

j∈J
γ̄j =

∑
j∈J

γj + β = β.
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Using this relation, we can represent w as follows:

w =
∑
j∈J

γjv
j =

∑
j∈J

(
γ̄j − βαj

)
vj =

∑
j∈J

(
γ̄j −

∑
i∈J

γ̄iαj
)
vj =

∑
j∈J

γ̄j
(
vj −

∑
i∈J

αiv
i
)
.

We conclude, that w ∈ KE(w0). Thus, we obtain a second representation of the cone of
feasible directions of E:

KE(w0) =
{
d =

∑
j∈J

γjv
j ,
∑
j∈J

γj = 0 γj ≥ 0 ∀j ∈ Jα(w0)
}
.

If z is an extreme point of convZp, then z is a p-efficient point as well, and the
representation of the cone of feasible directions simplifies considerably:

KconvZp(z) = cone{vj − z : vj ∈ J}+ Rm+ . (4.45)

We note that for a random vector Y with discrete distribution, the cone KE(w0) is
polyhedral. Define the vectors

di =
∑
j∈J\i

αj(v
i − vj) for all i ∈ J.

The first part of formula (4.42) takes on the form KE(w0) = cone{di, i ∈ J}. If Y has a
discrete distribution then the cone of feasible directions and the tangent cones coincide:

TconvZp(z0) = cone{di, i ∈ J}+ {τy0, τ ∈ R}+ Rm+ . (4.46)

Proposition 4.71. The normal cone of a point z0 ∈ convZp with representation z0 =
w0 + y0 =

∑
j∈J αjv

j + y0, where w0 =
∑
j∈J αjv

j ∈ E, y0 ∈ Rm+ , and αj ≥
0,
∑
j∈J αj = 1, is the following set:

NconvZp(z0) =
{
y ∈ Rm− : 〈vj , y〉 = 〈vi, y〉,∀i, j 6∈ Jα(z0),

〈vj , y〉 ≥ 〈vi, y〉,∀i 6∈ Jα(z0) and j ∈ Jα(z0)

yi.y
0
i = 0, i = 1, . . . ,m

} (4.47)

Proof. The normal cone at some z0 ∈ convZp is defined asNconvZp(z0) = [TconvZp(z0)]◦.
Using relation (4.41) an having in mind that the tangent cone is the closure of the cone of
feasible directions, we infer that the cone NconvZp(z0) has the form:

NconvZp(z0) =
[
KE(w0) +KRm+ (y0)

]◦
=
[
KE(w0)

]◦ ∩ [KRm+ (y0)]◦

= NE(w0) ∩NRm+ (y0).
(4.48)

Using (4.42), we obtain that NE(w0) is given by:

NE(w0) =
[
KE(w0)

]◦
= {y ∈ Rm : 〈vj , y〉 ≤ 〈w0, y〉,∀vj ∈ J}.
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Setting γi = 1 and γj = −1 for all pairs of indices i, j 6∈ Jα(z0) and all other coefficient
γ` = 0, we obtain the condition 〈vj , y〉 = 〈vi, y〉 for all i, j 6∈ Jα(z0). Furthermore, for
each pair of indices (i, j) with i ∈ Jα(z0) and j 6∈ Jα(z0), we set γi = 1, γj = −1, and
γ` = 0 for all other indices. Using 〈vj , y〉 ≤ 〈w0, y〉, we obtain 〈vj , y〉 ≥ 〈vi, y〉,∀i 6∈
Jα(z0) and j ∈ Jα(z0) as stated. Additionally, [KRm+ (y0)]◦ = {y ∈ Rm− : 〈y, y0〉 = 0}.
Putting this observations together completes the proof.

4.3.4 Optimality conditions and duality theory
In this section, we shall develop optimality conditions for problem (4.30). We shall con-
sider two sets of assumptions: the first set of assumptions will allow us to apply convex
analysis results and techniques, while the second one will rely on certain differentiability
properties and will allows to obtain necessary conditions of local optimality.

Optimality conditions and duality theory under convexity assumptions

We assume that c : Rn → R is a convex function. The mapping g : Rn → Rm has concave
components gi : Rn → R. The set X ⊂ Rn is closed and convex; the random vector Z
takes values in Rm. The set Zp is defined as in (4.29). We split variables and consider the
following formulation of the problem:

Min
x,z

c(x)

g(x) ≥ z,
x ∈ X ,
z ∈ Zp.

(4.49)

Associating a Lagrange multiplier u ∈ Rm+ with the constraint g(x) ≥ z, we obtain the
Lagrangian function:

L(x, z, u) = c(x) + uT(z − g(x)).

The dual functional has the form

Ψ(u) = inf
(x,z)∈X×Zp

L(x, z, u) = h(u) + d(u),

where

h(u) = inf{c(x)− uTg(x) : x ∈ X}, (4.50)

d(u) = inf{uTz : z ∈ Zp}. (4.51)

For any u ∈ Rm+ the value of Ψ(u) is a lower bound on the optimal value c∗ of the
original problem. The best Lagrangian lower bound will be given by the optimal value Ψ∗

of the problem:
sup
u≥0

Ψ(u). (4.52)

We call (4.52) the dual problem to problem (4.49). For u 6≥ 0 one has d(u) = −∞,
because the set Zp contains a translation of Rm+ . The function d(·) is concave. Note that
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d(u) = −sZp(−u), where sZp(·) is the support function of the set Zp. By virtue of
Theorem 4.64 and Hiriart-Urruty and Lemaréchal [107, Chapter V, Prop.2.2.1], we have

d(u) = inf{uTz : z ∈ convZp}. (4.53)

Let us consider the convex hull problem:

Min
x,z

c(x)

g(x) ≥ z,
x ∈ X ,
z ∈ convZp.

(4.54)

We impose the following constraint qualification condition:

There exist points x0 ∈ X and z0 ∈ convZp such that g(x0) > z0. (4.55)

If this constraint qualification condition is satisfied, then the duality theory in convex pro-
gramming Rockafellar [210, Corollary 28.2.1] implies that there exists û ≥ 0 at which
the minimum in (4.52) is attained, and Ψ∗ = Ψ(û) is the optimal value of the convex hull
problem (4.54).

Now, we study in detail the structure of the dual functional Ψ . We shall characterize
the solution sets of the two subproblems (4.50) and (4.51), which provide the values of the
dual functional. Observe that the normal cone to the positive orthant at a point u ≥ 0 is the
following:

NRm+ (u) = {d ∈ Rm− : di = 0 if ui > 0, i = 1, . . . ,m}. (4.56)

We define the set

V (u) = {v ∈ Rm : uTv = d(u) and v is a p-efficient point}. (4.57)

Lemma 4.72. For every u > 0 the solution set of (4.51) is nonempty. For every u ≥ 0 it
has the following form: Ẑ(u) = V (u)−NRm+ (u).

Proof. First we consider the case u > 0. Then every recession direction q of Zp satisfies
uTq > 0. Since Zp is closed, a solution to (4.51) must exist. Suppose that a solution z to
(4.51) is not a p-efficient point. By virtue of Theorem 4.62, there is a p-efficient v ∈ Zp
such that v ≤ z, and v 6= z. Thus, uTv < uTz, which is a contradiction. Therefore, we
conclude that there is a p-efficient point v, which solves problem (4.51).

Consider the general case u ≥ 0 and assume that the solution set of problem (4.51)
is nonempty. In this case, the solution set always contains a p-efficient point. Indeed,
if a solution z is not p-efficient, we must have a p-efficient point v dominated by z, and
uTv ≤ uTz holds by the nonnegativity of u. Consequently, uTv = uTz for all p-efficient
v ≤ z, which is equivalent to z ∈ {v} − NRm+ (u), as required.

If the solution set of (4.51) is empty, then V (u) = ∅ by definition and the assertion
is true as well.

The last result allows us to calculate the subdifferential of the function d in a closed
form.
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Lemma 4.73. For every u ≥ 0 one has ∂d(u) = conv(V (u)) − NRm+ (u). If u > 0 then
∂d(u) is nonempty.

Proof. From (4.51) we obtain d(u) = −sZp (−u), where sZp (·) is the support function of
Zp and, consequently, of convZp. Consider the indicator function IconvZp(·) of the set
convZp. By virtue of Corollary 16.5.1 in Rockafellar [210], we have

sZp (u) = I∗convZp(u),

where the latter function is the conjugate of the indicator function IconvZp(·). Thus,

∂d(u) = −∂I∗convZp(−u).

Recall that convZp is closed, by Theorem 4.64. Using Rockafellar [210, Thm 23.5], we
observe that y ∈ ∂I∗convZp(−u) if and only if I∗convZp(−u) + IconvZp(y) = −yTu. It
follows that y ∈ convZp and I∗convZp(−u) = −yTu. Consequently,

yTu = d(u). (4.58)

Since y ∈ convZp we can represent it as follows:

y =

m+1∑
j=1

αje
j + w,

where ej , j = 1, . . . ,m + 1, are extreme points of convZp and w ≥ 0. Using Theorem
4.66 we conclude that ej are p-efficient points. Moreover, applying u, we obtain

yTu =

m+1∑
j=1

αju
Tej + uTw ≥ d(u), (4.59)

because uTej ≥ d(u) and uTw ≥ 0. Combining (4.58) and (4.59) we conclude that
uTej = d(u) for all j, and uTw = 0. Thus y ∈ conv V (u)−NRm+ (u).

Conversely, if y ∈ conv V (u)−NRm+ (u) then (4.58) holds true by the definitions of
the set V (u) and the normal cone. This implies that y ∈ ∂d(u), as required.

Furthermore, the set ∂d(u) is nonempty for u > 0 due to Lemma 4.72.

Now, we analyze the function h(·). Define the set of minimizers in (4.50),

X(u) =
{
x ∈ X : c(x)− uTg(x) = h(u)

}
. (4.60)

Since the set X is convex and the objective function of problem (4.50) is convex for all
u ≥ 0, we conclude that the solution set X(u) is convex for all u ≥ 0.

Lemma 4.74. Assume that the set X is compact. For every u ∈ Rm, the subdifferential of
the function h is described as follows:

∂h(u) = conv {−g(x) : x ∈ X(u)}.
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Proof. The function h is concave on Rm. Since the set X is compact, c is convex, and gi,
i = 1, . . . ,m are concave, the set X(u) is compact. Therefore, the subdifferential of h(u)
for every u ∈ Rm is the closure of conv {−g(x) : x ∈ X(u)} (see Hiriart-Urruty and C.
Lemaréchal [107, Chapter VI, Lemma 4.4.2]). By the compactness of X(u) and concavity
of g, the set {−g(x) : x ∈ X(u)} is closed. Therefore, we can omit taking the closure in
the description of the subdifferential of h(u).

The last two results along with Moreau-Rockafellar’s theorem provide a description
of the subdifferential of the dual function.

Corollary 4.75. Assuming that the setX is compact, the subdifferential of the dual function
is nonempty for any u ≥ 0 and has the form

∂Ψ(u) = conv {−g(x) : x ∈ X(u)}+ conv V (u)−NRm+ (u)

Proof. Since int dom d 6= ∅ and domh = Rm, Moreau-Rockafellar’s theorem yields
∂Ψ(u) = ∂h(u) + ∂d(u). applying Lemma 4.73 and Lemma 4.74 we obtain the stated
formula.

The following necessary and sufficient optimality conditions for problem (4.52) are
established.

Theorem 4.76. Assume that the constraint qualification condition (4.55) is satisfied and
that the set X is compact. A vector u ≥ 0 is an optimal solution of (4.52) if and only if
there exists a point x ∈ X(u), points v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0

with
∑m+1
j=1 βj = 1, such that

m+1∑
j=1

βjv
j − g(x) ∈ NRm+ (u). (4.61)

Proof. Using Rockafellar [210, Thm. 27.4], the necessary and sufficient optimality condi-
tion for (4.52) has the form

0 ∈ −∂Ψ(u) +NRm+ (u). (4.62)

Applying Corollary 4.75, we conclude that there exist

p-efficient points vj ∈ V (u), j = 1, . . . ,m+ 1,

βj ≥ 0, j = 1, . . . ,m+ 1,

m+1∑
j=1

βj = 1,

xj ∈ X(u), j = 1, . . . ,m+ 1, (4.63)

αj ≥ 0, j = 1, . . . ,m+ 1,

m+1∑
j=1

αj = 1,
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such that

m+1∑
j=1

αjg(xj)−
m+1∑
j=1

βjv
j ∈ −NRm+ (u). (4.64)

If the function cwas strictly convex, or g was strictly concave, then the setX(u) would be a
singleton. In this case, all xj would be identical and the above relation would immediately
imply (4.61). Otherwise, let us define

x =

m+1∑
j=1

αjx
j .

By the convexity of X(u) we have x ∈ X(u). Consequently,

c(x)−
m∑
i=1

uigi(x) = h(u) = c(xj)−
m∑
i=1

uigi(x
j), j = 1, . . . ,m+ 1. (4.65)

Multiplying the last equation by αj and adding, we obtain

c(x)−
m∑
i=1

uigi(x) =

m+1∑
j=1

αj

[
c(xj)−

m∑
i=1

uigi(x
j)
]
≥ c(x)−

m∑
i=1

ui

m+1∑
j=1

αjgi(x
j).

The last inequality follows from the convexity of c. We have the following inequality:

m∑
i=1

ui

[
gi(x)−

m+1∑
j=1

αjgi(x
j)
]
≤ 0.

Since the functions gi are concave, we have gi(x) ≥
∑m+1
j=1 αjgi(x

j). Therefore, we
conclude that ui = 0 whenever gi(x) >

∑m+1
j=1 αjgi(x

j). This implies that

g(x)−
m+1∑
j=1

αjg(xj) ∈ −NRm+ (u).

Since NRm+ (u) is a convex cone, we can combine the last relation with (4.64) and obtain
(4.61), as required.

Now, we prove the converse implication. Assume that we have x ∈ X(u), points
v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0 with

∑m+1
j=1 βj = 1, such that (4.61)

holds true. By Lemma 4.73 and Lemma 4.74 we have

−g(x) +

m+1∑
j=1

βjv
j ∈ ∂Ψ(u).

Thus (4.61) implies (4.62), which is a necessary and sufficient optimality condition for
problem (4.52).
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Using these optimality conditions we obtain the following duality result.

Theorem 4.77. Assume that the constraint qualification condition (4.55) for problem (4.49)
is satisfied, the probability distribution function of the vector Z is α-concave for some
α ∈ [−∞,∞], and the set X is compact. If a point (x̂, ẑ) is an optimal solution of (4.49),
then there exists a vector û ≥ 0, which is an optimal solution of (4.52) and the optimal
values of both problems are equal. If û is an optimal solution of problem (4.52), then there
exist a point x̂, such that (x̂, g(x̂)) is a solution of problem (4.49), and the optimal values
of both problems are equal.

Proof. The α-concavity assumption implies that problems (4.49) and (4.54) are the same.
If û is optimal solution of problem (4.52), we obtain the existence of points x̂ ∈ X(û),
v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0 with

∑m+1
j=1 βj = 1, such that the

optimality conditions in Theorem 4.76 are satisfied. Setting ẑ = g(x̂) we have to show that
(x̂, ẑ) is an optimal solution of problem (4.49) and that the optimal values of both problems
are equal. First we observe that this point is feasible. We choose y ∈ −NRm+ (û) such that

y = g(x̂) −
∑m+1
j=1 βjv

j . From the definitions of X(û), V (û), and the normal cone, we
obtain

h(û) = c(x̂)− ûTg(x̂) = c(x̂)− ûT
(m+1∑
j=1

βjv
j + y

)

= c(x̂)−
m+1∑
j=1

βjd(û)− ûTy = c(x̂)− d(û).

Thus,
c(x̂) = h(û) + d(û) = Ψ∗ ≥ c∗,

which proves that (x̂, ẑ) is an optimal solution of problem (4.49) and Ψ∗ = c∗.
If (x̂, ẑ) is a solution of (4.49), then by Rockafellar [210, Thm. 28.4] there is a vector

û ≥ 0 such that ûi(ẑi − gi(x̂)) = 0 and

0 ∈ ∂c(x̂) + ∂ûTg(x̂)− ẑ +NX×Zp(x̂, ẑ).

This means that
0 ∈ ∂c(x̂)− ∂uTg(x̂) +NX (x̂) (4.66)

and
0 ∈ û+NZp(ẑ). (4.67)

The first inclusion (4.66) is optimality condition for problem (4.50), and thus x ∈ X(û). By
virtue of Rockafellar [210, Thm. 23.5] the inclusion (4.67) is equivalent to ẑ ∈ ∂I∗Zp(û).
Using Lemma 4.73 we obtain that

ẑ ∈ ∂d(û) = convV (û)−NRm+ (û).

Thus, there exists points v1, . . . , vm+1 ∈ V (u) and scalars β1 . . . , βm+1 ≥ 0 with
∑m+1
j=1 βj =

1, such that

ẑ −
m+1∑
j=1

βjv
j ∈ −NRm+ (û).
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Using the complementarity condition ûi(ẑi − gi(x̂)) = 0 we conclude that the optimality
conditions of Theorem 4.76 are satisfied. Thus, û is an optimal solution of problem (4.52).

Our duality theory finds interesting interpretation in the context of the cash matching
problem in Example 4.6.

Example 4.78 (Cash Matching continued) Recall the problem formulation

Max
x,c

E
[
U(cT − ZT )

]
s.t. Pr

{
ct ≥ Zt, t = 1, . . . , T

}
≥ p,

ct = ct−1 +

n∑
i=1

aitxi, t = 1, . . . , T,

x ≥ 0.

If the vector Z has a quasi-concave distribution (e.g., joint normal distribution), the result-
ing problem is convex.

The convex hull problem (4.54) can be written as follows:

Max
x,λ,c

E
[
U(cT − ZT )

]
(4.68)

s.t. ct = ct−1 +

n∑
i=1

aitxi, t = 1, . . . , T, (4.69)

ct ≥
T+1∑
j=1

λjv
j
t , t = 1, . . . , T, (4.70)

T+1∑
j=1

λj = 1, (4.71)

λ ≥ 0, x ≥ 0. (4.72)

In constraint (4.70) the vectors vj = (vj1, . . . , v
j
T ), for j = 1, . . . , T + 1, are p-efficient

trajectories of the cumulative liabilities Z = (Z1, . . . , ZT ). Constraints (4.70)–(4.72)
require that the cumulative cash flows are greater than or equal to some convex combination
of p-efficient trajectories. Recall that by Lemma 4.63, no more than T + 1 p-efficient
trajectories are needed. Unfortunately, we do not know the optimal collection of these
trajectories.

Let us assign non-negative Lagrange multipliers u = (u1, . . . , uT ) to the constraint
(4.70), multipliers w = (w1, . . . , wT ) to the constraints (4.69), and a multiplier ρ ∈ R to
the constraint (4.71). To simplify notation, we define the function Ū : R→ R as follows:

Ū(y) = E[U(y − ZT )].

It is a concave nondecreasing function of y due to the properties of U(·). We make the
convention that its conjugate is defined as follows:

Ū∗(u) = inf
y
{uy − Ū(y}.
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Consider the dual function of the convex hull problem:

D(w, u, ρ) = min
x≥0,λ≥0,c

{
−Ū(cT ) +

T∑
t=1

wt

(
ct − ct−1 −

n∑
i=1

aitxi

)

+

T∑
t=1

ut

T+1∑
j=1

λjv
j
t − ct

+ ρ

1−
T+1∑
j=1

λj


= −max

x≥0

n∑
i=1

T∑
t=1

aitwtxi + min
λ≥0

T+1∑
j=1

(
T∑
t=1

vjtut − ρ

)
λj + ρ

+ min
c

{
T−1∑
t=1

ct (wt − ut − wt+1)− w1c0 + cT (wT − uT )− Ū(cT )

}
= ρ− w1c0 + Ū∗(wT − uT ).

The dual problem becomes:

Min
u,w,ρ

− Ū∗(wT − uT ) + w1c0 − ρ (4.73)

s.t. wt = wt+1 + ut, t = T − 1, . . . , 1, (4.74)
T∑
t=1

wtait ≤ 0, i = 1, . . . , n, (4.75)

ρ ≤
T∑
t=1

utv
j
t , j = 1, . . . , T + 1. (4.76)

u ≥ 0. (4.77)

We can observe that each dual variable ut is the cost of borrowing a unit of cash for one
time period, t. The amount ut is to be paid at the end of the planning horizon. It follows
from (4.74) that each multiplier wt is the amount that has to be returned at the end of the
planning horizon if a unit of cash is borrowed at t and held until time T .

The constraints (4.75) represent the non-arbitrage condition. For each bond i we can
consider the following operation: borrow money to buy the bond and lend away its coupon
payments, according to the rates implied by wt’s. At the end of the planning horizon, we
collect all loans and pay off the debt. The profit from this operation should be non-positive
for each bond in order to comply with the “no free lunch” condition, which is expressed
via (4.75).

Let us observe that each product utv
j
t is the amount that has to be paid at the end,

for having a debt in the amount vjt in period t. Recall that vjt is the p-efficient cumulative
liability up to time t. Denote the implied one-period liabilities by

Ljt = vjt − v
j
t−1, t = 2, . . . , T,

Lj1 = vj1.
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Changing the order of summation, we obtain

T∑
t=1

utv
j
t =

T∑
t=1

ut

t∑
τ=1

Ljτ =

T∑
τ=1

Ljτ

T∑
t=τ

ut =

T∑
τ=1

Ljτ (wτ + uT − wT ).

It follows that the sum appearing on the right hand side of (4.76) can be viewed as the
extra cost of covering the jth p-efficient liability sequence by borrowed money, that is, the
difference between the amount that has to be returned at the end of the planning horizon,
and the total liability discounted by wT − uT .

If we consider the special case of a linear expected utility:

Û(cT ) = cT − E[ZT ],

Then we can skip the constant E[ZT ] in the formulation of the optimization problem. The
dual function of the convexified cash matching problem becomes:

D(w, u, ρ) = −max
x≥0

n∑
i=1

T∑
t=1

aitwtxi + min
λ≥0

T+1∑
j=1

(
T∑
t=1

vjtut − ρ

)
λj + ρ

+ min
c

{
T−1∑
t=1

ct (wt − ut − wt+1)− w1c0 + cT (wT − uT − 1)

}
= ρ− w1c0.

The objective function of the dual problem takes on the form:

Min
u,w,ρ

w1c0 − ρ

and the constraints (4.74) extends to all time periods:

wt = wt+1 + ut, t = T, T − 1, . . . , 1

with the convention wT+1 = 1.
In this case, the sum on the right hand side of (4.76) is the difference between the cost

of covering the jth p-efficient liability sequence by borrowed money and the total liability.
The variable ρ represents the minimal cost of this form, for all p-efficient trajectories.

This allows us to interpret the dual objective function in this special case as the amount
obtained at T for lending away our capital c0 decreased by the extra cost of covering a p-
efficient liability sequence by borrowed money. By duality this quantity is the same as cT ,
which implies that both ways of covering the liabilities are equally profitable. In the case
of a general utility function, the dual objective function contains an additional adjustment
term.

Optimality conditions for linear chance-constrained problems

For the special case of discrete distribution and linear constraints under the probability sign,
we can obtain more specific necessary and sufficient optimality conditions.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 145 — #157 i
i

i
i

i
i

4.3. Separable probabilistic constraints 145

In the linear probabilistic optimization problem, we have g(x) = Tx, where T is an
m × n matrix, and c(x) = cTx with c ∈ Rn. Furthermore, we assume that X is a closed
convex polyhedral set, defined by a system of linear inequalities. The problem reads as
follows:

Min
x

cTx

s.t. Pr{Tx ≥ Z} ≥ p,
Ax ≥ b,
x ≥ 0.

(4.78)

Here A is an s× n matrix and b ∈ Rs.
We say that problem (4.78) satisfies the dual feasibility condition if

Λ = {(u,w) ∈ Rm+s
+ : ATw + TTu ≤ c} 6= ∅. (4.79)

Theorem 4.79. Assume that the feasible set of problem (4.78) is nonempty and that Z has
a discrete distribution on Zm. Then problem (4.78) has an optimal solution if and only if it
satisfies condition (4.79).

Proof. If (4.78) has an optimal solution, then for some j ∈ E the linear optimization
problem

Min
x

cTx

s.t. Tx ≥ vj ,
Ax ≥ b,
x ≥ 0,

(4.80)

has an optimal solution. By duality in linear programming, its dual problem

Max
u,w

uTvj + bTw

s.t. TTu+ATw ≤ c,
u, w ≥ 0,

(4.81)

has an optimal solution and the optimal values of both programs are equal. Thus, the
dual feasibility condition (4.79) must be satisfied. On the other hand, if the dual feasibility
condition is satisfied, all dual programs (4.81) for j ∈ E have nonempty feasible sets, so the
objective values of all primal problems (4.80) for j ∈ E are bounded from below. At least
one of them has a nonempty feasible set by assumption and, hence, an optimal solution of
problem (4.78) exist.

Example 4.80 (Vehicle Routing continued) We return to the vehicle routing Example 4.1,
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introduced at the beginning of the chapter. The convex hull problem reads:

Min
x,λ

cTx

s.t.
n∑
i=1

tilxi ≥
∑
j∈E

λjv
j , (4.82)

∑
j∈E

λj = 1, (4.83)

x ≥ 0, λ ≥ 0.

We assign a Lagrange multiplier u to constraint (4.82) and a multiplier µ to constraint
(4.83). The dual problem has the form:

Max
u,µ

µ

s.t.
m∑
l=1

tilul ≤ ci, i = 1, 2, . . . , n,

µ ≤ uTvj , j ∈ E ,
u ≥ 0.

We see that ul provides the increase of routing cost if the demand on arc l increases by 1
unit, µ is the minimum cost for covering the demand with probability p, and the p-efficient
points vj correspond to critical demand levels, that have to be covered. The auxiliary
problem Min

z∈Zp
uTz identifies p-efficient points, which represent critical demand levels. The

optimal value of this problem provides the minimum total cost of a critical demand.

Optimality conditions under differentiability assumptions

We discuss the first and second order local optimality conditions for the following problem:

min c(x)

subject to g(x) ∈ convZp,
x ∈ X .

(4.84)

We assume that c and g are continuously differentiable and denote the gradient of the
function c calculated at x by ∇c(x) and the Jacobian of g calculated at x by g′(x). We do
not assume convexity or concavity for these functions.

First, we formulate a suitable constraint qualification condition at a given feasible
point x̂. Let g(x̂) = ŵ + ŷ with ŵ ∈ E and ŷ ∈ Rm+ . Let I0(x̂) be the set of active
constraints such that I0(x̂) = {1 ≤ i ≤ m : ŷi = 0}.

A vector δ ∈ KX (x̂) and a convex combination of p-efficient points w0 exist:

∀i ∈ I0(x̂) gi(x̂) + 〈∇gi(x̂), δ〉 > w0
i . (4.85)
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Recall that Robinson’s constraint qualification condition at x̂ for problem (4.84) is the
requirement

0 ∈int
{
g′(x̂)(x− x̂)− (z − g(x̂)) : x ∈ X , z ∈ convZp

}
. (4.86)

Lemma 4.81. Condition (4.85) is equivalent to Robinson’s constraint qualification condi-
tion for problem (4.84) at a feasible point x̂.

Proof. Assume that the Robinson’s constraint qualification holds at x̂ for problem (4.84).
Then we can find a vector ξ ∈ Rm with ξi > 0, as well as points x0 ∈ X and z0 ∈ convZp
such that

g′(x̂)(x0 − x̂)− (z0 − g(x̂)) = ξ.

We represent z0 =
∑
j∈J αjv

j + y0, where y0 ∈ Rm+ , αj ≥ 0,
∑
j∈J αj = 1, and vj are

p-efficient points. Substituting z0 in the last displayed equation, we obtain

g′(x̂)(x0 − x̂) + g(x̂)−
∑
j∈J

αjv
j = y0 + ξ.

As all components of y0 + ξ are positive, we infer that relation (4.85) holds.
Consider the opposite direction and assume that relation (4.85) holds, i.e., for some

points x0 ∈ X and w0 ∈ ε

g′(x̂)(x0 − x̂) + g(x̂)− w0 = η with ηi > 0, ∀i ∈ I0(x̂).

Let g(x̂) = ŵ + ŷ with ŵ ∈ ε and ŷ ∈ Rm+ . Consider the functions

yi(α) = (1− α)ŷi + αηi, i = 1, . . . ,m.

We have yi(α) > 0 for all i ∈ I0(x̂) for all α ∈ (0, 1]. Furthermore, for α = 0, we have
yi(α) > 0 for all i 6∈ I0(x̂). Thus, a number ᾱ ∈ (0, 1) exists such that yi(ᾱ) > 0 for all
i = 1, . . . ,m. We set ε = min1≤i≤m yi(ᾱ). We shall show that

B(0, ε) ⊂ {g′(x̂)(x− x̂)− (z − g(x̂)) : x ∈ X , z ∈ convZp},

where B(0, ε) denotes the open ball centered at 0 ∈ Rm with radius ε. Define x̄ = (1 −
ᾱ)x̂ + ᾱx0. It is sufficient to show that we can represent every vector ξ ∈ B(0, ε) as
follows:

ξ = g′(x̂)(x̄− x̂)− (zξ − g(x̂)) = g′(x̂)ᾱ(x0 − x̂)− (zξ − g(x̂))

for some zξ ∈ convZp. The equation is satisfied with

zξ = ᾱw0 + (1− ᾱ)ŵ + ᾱη + (1− ᾱ)ŷ − ξ.

Notice that ᾱη+ (1− ᾱ)ŷ− ξ ∈ Rm+ due to the choice of ε. This entails that zξ ∈ convZp
by virtue of Lemma 4.63. Consequently, Robinson’s constraint qualification condition is
satisfied at x̂.
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We denote the feasible set of problem (4.84) by Φ, i.e,

Φ = {x ∈ X : g(x) ∈ convZp} .

Proposition 4.82. Under constraint qualification (4.85) at a point x̂ ∈ Φ, the cone:

TΦ(x̂) =
{
δ ∈ TX (x̂) : ∃w ∈ E,∃β > 0 : gi(x̂) + 〈∇gi(x̂), βδ〉 ≥ wi ∀i ∈ I0(x̂)

}
(4.87)

is the tangent cone of the feasible set Φ at x̂.

Proof. Under constraint qualification condition (4.85) at any feasible point x̂, the tangent
cone has the form

TΦ(x̂) =
{
δ ∈ TX (x̂) : g′(x̂)δ ∈ TconvZp(g(x̂))

}
.

We use the representation g(x̂) = ŵ + ŷ with ŵ ∈ E an ŷ ≥ 0.
If δ belongs to the set at the right hand side of equation (4.87), we can verify that

g′(x̂)δ ∈ TconvZp(g(x̂)) in the following way. For all i ∈ I0(x̂), we define

yi = 〈∇gi(x̂), δ〉 − 1

β
(wi − gi(x̂)

)
> 0.

For all i 6∈ I0(x̂), we define yi such that

yi = 〈∇gi(x̂), δ〉 − 1

β
(wi − ŵ)− τ ŷi.

We choose τ ∈ R such that yi > 0. Consequently,

g′(x̂)δ =
1

β
(w − g(x̂)) + τ1ŷ + y,

where τ1 = τ + 1
β . Due to Proposition 4.70, g′(x̂)δ ∈ KconvZp(x̂).

In order to show the converse, we consider the case of g′(x̂)δ ∈ KconvZp(g(x̂)) first.
Due to Proposition 4.70, we can write

g′(x̂)δ =
∑
j∈J

γj(v
j − ŵ) + τ ŷ + y.

for some γj ≥ 0, j ∈ J not all equal to zero, a real number τ , and some vector y ∈ Rm+ .
For i ∈ I0(x̂), it holds that

〈∇gi(x̂), δ〉 ≥
∑
j∈J

γj(v
j
i − ŵi) and ŵi = gi(x̂).

Setting β = [
∑
j∈J γj ]

−1 > 0 and αj = γjβ, we conclude that

gi(x̂) + 〈∇gi(x̂), βδ〉 ≥
∑
j∈J

αjv
j
i ,
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as required.
Now, assume that g′(x̂)βδ = limk→∞ zk, where zk ∈ KconvZp(g(x̂)). For any

ε > 0, using the previous considerations, for all i ∈ I0(x̂) the following inequality holds:

gi(x̂) + 〈∇gi(x̂), βδ〉+ ε ≥ wεi , (4.88)

where wε ∈ E. We notice that the sequence {wε} is bounded from above due to (4.88)
as well as from below due to the existence of a lower bound for all p-efficient points.
Therefore, passing to the limit with ε → 0, {wε} has an accumulation point, which we
denote by w̃. The point w̃ ∈ convZp because this set is closed. Thus, a point v̄ ∈ E exists
such that w̃ ≥ v̄. This combined with (4.88) after limit passage yields:

gi(x̂) + 〈∇gi(x̂), βδ〉 ≥ v̄i ∀i ∈ I0(x̂).

We define the partial Lagrangian function:

Lr(x, u) = c(x)− 〈u, g(x)〉. (4.89)

We obtain the following form of first order necessary conditions of optimality for
problem (4.84).

Theorem 4.83. Assume that x̂ is a local optimal solution of problem (4.84) and that con-
dition (4.85) is satisfied at x̂. Then a vector û ∈ Rm+ , p-efficient points vj , j ∈ Ĵ , and
positive reals αj , j ∈ Ĵ exists such that

∑
j∈Ĵ αj = 1 such that the following conditions

are satisfied:
−∇xLr(x̂, û) ∈ NX (x̂),

〈g(x̂), û〉 = 〈vj , û〉 ≤ 〈vi, û〉,∀j ∈ Ĵ , ∀i ∈ J

g(x̂) ≥
∑
j∈Ĵ

αjv
j
i .

(4.90)

If the function c is convex, g is a concave mapping, and a point x̂ ∈ X satisfies conditions
(4.90) with some vector û ∈ Rm+ , then x̂ is global optimal solution of problem (4.84).

Proof. Condition (4.85) is equivalent to Robinson’s constraint qualification by virtue of
Lemma 4.81. The theory of smooth non-convex optimization problem of form (4.84) im-
plies that−∇xLr(x̂, û) ∈ NX (x̂) and−û ∈ NconvZp(g(x̂)). The form of the normal cone
is given in Proposition 4.71. It implies that a point ŵ ∈ E exists, so that g(x̂) ≥ ŵ and
ûi = 0 for all i such that g(x̂) > ŵ. The remaining conditions follow from the description
of the normal cone.

Observe that the condition −∇xLr(x̂, û) ∈ NX (x̂) implies that the point x̂ ∈ X(û),
where the set X(û) is defined in (4.60). The remaining two conditions of (4.90) imply that
x̂ is feasible and

g(x̂)−
∑
j∈Ĵ

αjv
j
i ∈ −NRm+ (û).
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Under the convexity assumptions of the theorem, the sufficiency of the conditions (4.90)
follows by virtue of Theorem 4.76.

The second order tangent set of convZp at a point z is

T 2
convZp(z, δ) = lim sup

t↓0

convZp − z − tδ
1
2 t

2
.

We define also the critical cone:

C(x0) = {δ ∈ TX (x̂) : g′(x̂)δ ∈ TconvZp(g(x̂)), 〈∇c(x̂), δ〉 = 0}.

For a point x̂ that satisfies (4.90), we denote the set of vectors û appearing in (4.90) by
Λ(x̂). Local second order necessary conditions of optimality for problem (4.84) are given
by the following theorem.

Theorem 4.84. Assume that a point x̂ ∈ Φ satisfies conditions (4.85) and (4.90). Then for
every nonzero δ ∈ C(x̂) and for every convex set C ⊂ T 2

X×convZp((x̂, g(x̂)), (δ, g′(x̂)δ)),
the following inequality is satisfied:

sup
u∈Λ(x̂)

{
〈δ,∇2

xLr(x̂, u)δ〉+ sup
z∈C
〈−(∇xLr(x̂, u), u), z〉

}
≥ 0. (4.91)

Proof. The statement follows from [26, Theorem 3.49] after an obvious adaptation with
the particular form of the constraint qualification condition, the form of cones and using
the first order optimality conditions (4.90).

If we assume that the random vector Y has a discrete distribution such that a strictly
positive lower bound on the distance between any two realizations of Y exists, then the set
convZp is polyhedral. The second order necessary conditions simplifies considerably.

Theorem 4.85. Assume that a point x̂ satisfies conditions (4.85) and (4.90) with points vj ,
j ∈ Ĵ and positive numbers αj . Then for all nonzero δ ∈ TX (x̂) such that 〈∇c(x̂), δ〉 = 0

and gi(x̂) + 〈∇gi(x̂), δ〉 ≥
∑
j∈Ĵ αjv

j
i for all i ∈ I0(x̂) the following inequality holds

sup
u∈Λ(x̂)

〈δ,∇2
xLr(x̂, u)δ〉 ≥ 0. (4.92)

Proof. Under the assumption of discrete distribution, we can apply Proposition 4.82 to
obtain the following representation of the set C(x̂):

C(x̂) = {δ ∈ TX (x̂) : gi(x̂) + 〈∇gi(x̂), βδ〉 ≥ wi ∀i ∈ I0(x̂), 〈∇c(x̂), δ〉 = 0}.

Evidently, the requirement (4.92) can be restricted to δ ∈ C(x̂) such that the corresponding
coefficient β = 1. Then the statement follows from [26, Theorem 3.53].

Second order sufficient conditions of optimality can be established for general prob-
ability distributions.
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Theorem 4.86. Assume that x̂ ∈ Φ satisfies conditions (4.85) and (4.90) and for some
u ∈ Λ(x̂)

〈δ,∇2
xLr(x̂, u)δ〉 > 0 (4.93)

for every nonzero δ ∈ TX (x̂) such that 〈∇c(x̂), δ〉 = 0 and 〈u, g′(x̂)δ〉 = 0. Then x̂ is a
local minimizer of (4.84).

Proof. Suppose that x̂ is not a local minimum of problem (4.84). Then, points xt ∈ X exist
such that x̂ = limt↓0 x

t, g(xt) ∈ convZp, and c(xt) < c(x̂). This implies, that δ ∈ TX (x̂)
exists such that xt = x̂+ tδ + o(t) and g(xt)− g(x̂) ∈ KconvZp(g(x̂)). As c(xt) < c(x̂),
we obtain that

〈∇c(x̂), δ〉 ≤ 0. (4.94)

Due to the first relation in (4.90), the following relation holds for all δ ∈ TX (x̂):

〈∇c(x̂), δ〉 − 〈[g′(x̂)]Tu, δ〉 ≥ 0.

Using this inequality together with (4.94), we obtain

〈u, g′(x̂)δ〉 = 〈[g′(x̂)]Tu, δ〉 ≤ 〈∇c(x̂), δ〉 ≤ 0.

On the other hand, conditions (4.90) imply that −u ∈ NconvZp(g(x̂)) due to Proposi-
tion 4.71. On the other hand, g′(x̂)δ ∈ TconvZp(g(x̂)) due to (4.85), which entails

〈u, g′(x̂)δ〉 ≥ 0.

Consequently, 〈u, g′(x̂)δ〉 = 0. Using (4.90), we obtain

0 ≤ 〈∇Lr(x̂, u), δ〉 = 〈∇c(x̂), δ〉

This and (4.94) yield 〈∇c(x̂), δ〉 = 0.
We consider the second order Taylor expansion of the function Lr(·, û) around x̂ and

use (4.94) again :

Lr(x
t, u) = Lr(x̂, u) + t〈∇Lr(x̂, u), δ〉+

t2

2
〈δ,∇2

xLr(x̂, u)δ〉+ o(t2)

≥ c(x̂)− 〈u, g(x̂)〉+
t2

2
〈δ,∇2

xLr(x̂, u)δ〉+ o(t2)

Rearranging terms, we obtain

c(xt) ≥ c(x̂) + 〈u, g(xt)− g(x̂)〉+
t2

2
〈δ,∇2

xLr(x̂, u)δ〉+ o(t2)

Using the second order condition (4.93) and the fact that −u ∈ NconvZp(g(x̂)), we obtain
the inequality c(xt) > c(x̂) in contradiction to our assumption.

Notice that if c is a convex function and g is concave mapping, then condition (4.93)
imply that x is a global solution of (4.84).
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4.4 Optimization problems with non-separable
probabilistic constraints

In this section, we concentrate on the following problem:

Min
x

c(x)

s.t. Pr
{
g(x, Z) ≥ 0

}
≥ p,

x ∈ X .

(4.95)

The parameter p ∈ (0, 1) denotes some probability level. We assume that the func-
tions c : Rn × Rs → R and g : Rn × Rs → Rm are continuous and the set X ⊂ Rn is a
closed convex set. We define the constraint function as follows:

G(x) = Pr
{
g(x, Z) ≥ 0

}
.

Recall that if G(·) is α-concave function, α ∈ R, then a transformation of it is a
concave function. In this case, we define

Ḡ(x) =


ln p− ln[G(x)], if α = 0,

pα − [G(x)]α, if α > 0,

[G(x)]α − pα, if α < 0.

(4.96)

We obtain the following equivalent formulation of problem (4.95):

Min
x

c(x)

s.t. Ḡ(x) ≤ 0,

x ∈ X .

(4.97)

Assuming that c(·) is convex, we have a convex problem.
Recall that Slater’s condition is satisfied for problem (4.95) if there is a point xs ∈

intX such that Ḡ(xs) > 0. Using optimality conditions for convex optimization problems,
we can infer the following conditions for problem (4.95):

Theorem 4.87. Assume that c(·) is a continuous convex function, the functions g : Rn ×
Rs → Rm are quasi-concave, Z has an α-concave distribution, and the set X ⊂ Rn is
closed and convex. Furthermore, let Slater’s condition be satisfied and int domG 6= ∅.

A point x̂ ∈ X is an optimal solution of problem (4.95) if and only if there is a number
λ ∈ R+ such that λ[G(x̂)− p] = 0 and

0 ∈∂c(x̂) + λ
1

α
G(x̂)1−α∂G(x̂)α +NX (x̂) if α 6= 0,

or

0 ∈∂c(x̂) + λG(x̂)∂
(

lnG(x̂)
)

+NX (x̂) if α = 0.
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Proof. Under the assumptions of the theorem problem (4.95) can be reformulated in form
(4.97), which is a convex optimization problem. The optimality conditions follow from
the optimality conditions for convex optimization problems using Theorem 4.29. Due to
Slater’s condition, we have that G(x) > 0 on a set with non-empty interior, and therefore,
the assumptions of Theorem 4.29 are satisfied.

4.4.1 Differentiability of probability functions and optimality
conditions

We can avoid concavity assumptions and replace them by differentiability requirements.
Under certain assumptions, we can differentiate the probability function and obtain opti-
mality conditions in a differential form. For this purpose, we assume that Z has a prob-
ability density function θ(z), and that the support of PZ is a closed set with a piece-wise
smooth boundary such that suppPZ = cl{int(suppPZ)}. For example, it can be the union
of several disjoint sets, but cannot contain isolated points, or surfaces of zero Lebesgue
measure.

Consider the multifunction H : Rn ⇒ Rs, defined as follows:

H(x) =
{
z ∈ Rs : gi(x, z) ≥ 0, i = 1, . . . ,m

}
.

We denote the boundary of a set H(x) by bdH(x). For an open set U ⊂ Rn containing
the origin, we set:

HU = cl
(⋃

x∈U H(x)
)

and 4HU = cl
(⋃

x∈U bdH(x)
)
,

VU = clU ×HU and 4VU = clU ×4HU .

For any of these sets, we indicate with upper subscript r its restriction to the suppPZ , e.g.,
Hr
U = HU ∩ suppPZ . Let

Si(x) =
{
z ∈ suppPZ : gi(x, z) = 0, gj(x, z) ≥ 0, j 6= i

}
, i = 1, . . . ,m.

We use the notation

S(x) = ∪Mi=1Si(x), 4Hi = int
(
∪x∈U

(
∂{gi(x, z) ≥ 0} ∩Hr(x)

))
.

The (m−1)-dimensional Lebesgue measure is denoted by Pm−1. We assume that the func-
tions gi(x, z), i = 1, ...,m, are continuously differentiable, and such that bdH(x) = S(x)
with S(x) being the (s− 1)-dimensional surface of the set H(x) ⊂ Rs. The set HU is the
union of all setsH(x) when x ∈ U , and, correspondingly,4HU contains all surfaces S(x)
when x ∈ U .

First we formulate and prove a result about the differentiability of the probability
function for a single constraint function g(x, z), that is, m = 1. In this case we omit the
index for the function g, as well as for the set S(x).

Theorem 4.88. Assume that:
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(i) the vector functions∇xg(x, z) and ∇zg(x, z) are continuous on4V rU ;
(ii) the vector functions∇zg(x, z) > 0 (componentwise) on the set4V rU ;

(iii) the function ‖∇xg(x, z)‖ > 0 on4V rU .
Then the probability function G(x) = Pr{g(x, Z) ≥ 0} has partial derivatives for almost
all x ∈ U that can be represented as a surface integral(

∂G(x)

∂xi

)n
i=1

=

∫
bdH(x)∩suppPZ

θ(z)

‖∇zg(x, z)‖
∇xg(x, z)dS.

Proof. Without loss of generality, we shall assume that x ∈ U ⊂ R.
For two points x, y ∈ U , we consider the difference:

G(x)−G(y) =

∫
H(x)

θ(z)dz −
∫
H(y)

θ(z)dz

=

∫
Hr(x)\Hr(y)

θ(z)dz −
∫
Hr(y)\Hr(x)

θ(z)dz. (4.98)

By the Implicit Function Theorem, the equation g(x, z) = 0 determines a differentiable
function x(z) such that

g(x(z), z) = 0 and ∇zx(z) = −∇zg(x, z)

∇xg(x, z)

∣∣∣∣
x=x(z)

.

Moreover, the constraint g(x, z) ≥ 0 is equivalent to x ≥ x(z) for all (x, z) ∈ U ×4Hr
U ,

because the function g(·, z) strictly increases on this set due to the assumption (iii). Thus,
for all points x, y ∈ U such that x < y, we can write:

Hr(x) \Hr(y) = {z ∈ Rs : g(x, z) ≥ 0, g(y, z) < 0} = {z ∈ Rs : x ≥ x(z) > y} = ∅,
Hr(y) \Hr(x) = {z ∈ Rs : g(y, z) ≥ 0, g(x, z) < 0} = {z ∈ Rs : y ≥ x(z) > x}.

Hence, we can continue our representation of the difference (4.98) as follows:

G(x)−G(y) = −
∫

{z∈Rs:y≥x(z)>x}

θ(z)dz.

Now, we apply Schwarz [232, Vol. 1, Theorem 108] and obtain

G(x)−G(y) = −
∫ y

x

∫
{z∈Rs:x(z)=t}

θ(z)

‖∇zx(z)‖
dS dt

=

∫ x

y

∫
bdH(x)r

|∇xg(t, z)|θ(z)
‖∇zg(x, z)‖

dS dt.

By Fubini’s theorem [232, Vol. 1, Theorem 77], the inner integral converges almost ev-
erywhere with respect to the Lebesgue measure. Therefore, we can apply Schwarz [232,
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Vol. 1, Theorem 90] to conclude that the difference G(x) − G(y) is differentiable almost
everywhere with respect to x ∈ U and we have:

∂

∂x
G(x) =

∫
bdHr(x)

∇xg(x, z)θ(z)

‖∇zg(x, z)‖
dS.

We have used assumption (ii) to set |∇xg(x, z)| = ∇xg(x, z).

Obviously, the statement remains valid, if the assumption (ii) is replaced by the oppo-
site strict inequality, so that the function g(x, z) would be strictly decreasing on U×4Hr

U .
We note, that this result does not imply the differentiability of the function G at

any fixed point x0 ∈ U . However, this type of differentiability is sufficient for many
applications as it is elaborated in Ermoliev [76] and Usyasev [261].

The conditions of this theorem can be slightly modified, so that the result and the
formula for the derivative are valid for piece-wise smooth function.

Theorem 4.89 (Raik [202]). Given a bounded open set U ⊂ Rn, we assume that:
(i) the density function θ(·) is continuous and bounded on the set 4Hi for each i =

1, . . . ,m;
(ii) the vector functions ∇zgi(x, z) and ∇xgi(x, z) are continuous and bounded on the

set U ×4Hi for each i = 1, . . . ,m;
(iii) the function ‖∇xgi(x, z)‖ ≥ δ > 0 on the set U ×4Hi for each i = 1, . . . ,m;
(iv) the following conditions are satisfied for all i = 1, . . . ,m and all x ∈ U :

Pm−1

{
Si(x) ∩ Sj(x)

}
= 0, i 6= j, Pm−1

{
bd(suppPZ ∩ Si(x))

}
= 0.

Then the probability function G(x) is differentiable on U and

∇G(x) =

m∑
i=1

∫
Si(x)

θ(z)

‖∇zgi(x, z)‖
∇xgi(x, z)dS. (4.99)

The precise proof of this theorem is omitted. We refer to Kibzun and Tretyakov
[126], and Kibzun and Uryasev [127] for more information on this topic.

For example, if g(x, Z) = xTZ, m = 1, and Z has a nondegenerate multivariate
normal distribution N (z̄, Σ), then g(x, Z) ∼ N

(
xTz̄, xTΣx

)
, and hence the probability

function G(x) = Pr{g(x, Z) ≥ 0} can be written in the form

G(x) = Φ

(
xTz̄√
xTΣx

)
,

where Φ(·) is the cdf of the standard normal distribution. In this case G(x) is continuously
differentiable at every x 6= 0.

For problem (4.95), we impose the following constraint qualification at a point x̂ ∈
X . There exists a point xr ∈ X such that:

m∑
i=1

∫
Si(x)

θ(z)

‖∇zgi(x̂, z)‖
(xr − x̂)T∇xgi(x̂, z)dS < 0. (4.100)
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This condition implies Robinson’s condition. We obtain the following necessary optimality
conditions.

Theorem 4.90. Under the assumption of Theorem 4.89, let the constraint qualification
(4.100) be satisfied, the function c(·) be continuously differentiable, and let x̂ ∈ X be an
optimal solution of problem (4.95). Then there is a multiplier λ ≥ 0 such that:

0 ∈∇c(x̂)− λ
m∑
i=1

∫
Si(x)

θ(z)

‖∇zgi(x, z)‖
∇xgi(x, z)dS +NX (x̂), (4.101)

λ
[
G(x̂)− p

]
= 0. (4.102)

Proof. The statement follows from the necessary optimality conditions for smooth opti-
mization problems and formula (4.99).

4.4.2 Approximations of non-separable probabilistic
constraints

Smoothing approximation via Steklov transformation

In order to apply the optimality conditions formulated in Theorem 4.87 we need to calcu-
late the subdifferential of the probability function Ḡ defined by the formula (4.96). The
calculation involves the subdifferential of the probability function and the characteristic
function of the event

{gi(x, z) ≥ 0, i = 1, . . . ,m}.

The latter function may be discontinuous. To alleviate this difficulty, we shall approximate
the function G(x) by smooth functions.

Let k : R→ R be a nonnegative integrable symmetric function such that∫ +∞

−∞
k(t)dt = 1.

It can be used as a density function of a random variable K, and, thus,

FK(τ) =

∫ τ

−∞
k(t)dt.

Taking the characteristic function of the interval [0,∞), we consider the Steklov-Sobolev
average functions for ε > 0:

F εK(τ) =

∫ +∞

−∞
1[0,∞)(τ + εt)k(t)dt =

1

ε

∫ +∞

−∞
1[0,∞)(t)k

(
t− τ
ε

)
dt. (4.103)
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We see that by the definition of F εK and 1[0,∞) and by the symmetry of k(·) we have:

F εK(τ) =

∫ +∞

−∞
1[0,∞)(τ + εt)k(t)dt =

∫ +∞

−τ/ε
k(t)dt

=

∫ τ/ε

−∞
k(−t)dt =

∫ τ/ε

−∞
k(t)dt

= FK

(τ
ε

)
.

(4.104)

Setting
gM (x, z) = min

1≤i≤m
gi(x, z),

we note that gM is quasi-concave, provided that all gi are quasi-concave functions. If the
functions gi(·, z) are continuous, then gM (·, z) is continuous as well.

Using (4.104), we can approximate the constraint function G(·) by the function:

Gε(x) =

∫
Rs

F εK
(
gM (x, z)− c

)
dPz

=

∫
Rs

FK

(
gM (x, z)− c

ε

)
dPz

=
1

ε

∫
Rs

∫ −c
−∞

k

(
t+ gM (x, z)

ε

)
dt dPz.

(4.105)

Now, we show that the functions Gε(·) uniformly converge to G(·) when ε converges to
zero.

Theorem 4.91. Assume that Z has a continuous distribution, the functions gi(·, z) are
continuous for almost all z ∈ Rs and that, for certain constant c ∈ R, we have

Pr{z ∈ Rs : gM (x, z) = c} = 0.

Then for any compact set C ⊂ X the functions Gε uniformly converge on C to G when
ε→ 0, i.e.,

lim
ε↓0

max
x∈C

∣∣Gε(x)−G(x)
∣∣ = 0.

Proof. Defining δ(ε) = ε1−β with β ∈ (0, 1), we have

lim
ε→0

δ(ε) = 0 and lim
ε→0

FK

(
δ(ε)

ε

)
= 1, lim

ε→0
FK

(
−δ(ε)
ε

)
= 0. (4.106)

Define for any δ > 0 the sets:

A(x, δ) = {z ∈ Rs : gM (x, z)− c ≤ −δ},
B(x, δ) = {z ∈ Rs : gM (x, z)− c ≥ δ},
C(x, δ) = {z ∈ Rs : |gM (x, z)− c| ≤ δ}.
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On the set A(x, δ(ε)) we have 1[0,∞)

(
gM (x, z)− c

)
=0 and, using (4.104), we obtain

F εK
(
gM (x, z)− c

)
= FK

(
gM (x, z)− c

ε

)
≤ FK

(
−δ(ε)
ε

)
.

On the set B(x, δ(ε)) we have 1[0,∞)

(
gM (x, z)− c

)
=1 and

F εK
(
gM (x, z)− c

)
= FK

(
gM (x, z)− c

ε

)
≥ FK

(
δ(ε)

ε

)
.

On the set C(δ(ε)) we use the fact that 0 ≤ 1[0,∞)(t) ≤ 1 and 0 ≤ FK(t) ≤ 1. We obtain
the following estimate:∣∣G(x)−Gε(x)

∣∣ ≤ ∫
Rs

∣∣1[0,∞)

(
gM (x, z)− c

)
− F εK

(
gM (x, z)− c

)∣∣dPz
≤ FK

(
−δ(ε)
ε

) ∫
A(x,δ(ε))

dPZ +

(
1− FK

(
δ(ε)

ε

)) ∫
B(x,δ(ε))

dPZ + 2

∫
C(x,δ(ε))

dPZ

≤ FK
(
−δ(ε)
ε

)
+

(
1− FK

(
δ(ε)

ε

))
+ 2PZ(C(x, δ(ε))).

The first two terms on the right hand side of the inequality converge to zero when ε→ 0 by
the virtue of (4.106). It remains to show that limε→0 PZ{C(x, δ(ε))} = 0 uniformly with
respect to x ∈ C. The function (x, z, δ) 7→ |gM (x, z)− c| − δ is continuous in (x, δ) and
measurable in z. Thus, it is uniformly continuous with respect to (x, δ) on any compact set
C × [−δ0, δ0] with δ0 > 0. The probability measure PZ is continuous, and, therefore, the
function

Θ(x, δ) = PZ{|gM (x, z)− c| − δ ≤ 0} = PZ
{
∩β>δ C(x, β)

}
is uniformly continuous with respect to (x, δ) on C× [−δ0, δ0]. By the assumptions of the
theorem

Θ(x, 0) = PZ{z ∈ Rs : |gM (x, z)− c| = 0} = 0,

and, thus,

lim
ε→0

PZ{z ∈ Rs : |gM (x, z)− c| ≤ δ(ε)} = lim
δ→0

Θ(x, δ) = 0.

As Θ(·, δ) is continuous, the convergence is uniform on compact sets with respect to the
first argument.

Now, we derive a formula for the Clarke generalized gradients of the approximation
Gε. We define the index set:

I(x, z) = {i : gi(x, z) = gM (x, z), 1 ≤ i ≤ m}.

Theorem 4.92. Assume that the density function k(·) is nonnegative, bounded, and con-
tinuous. Furthermore, let the functions gi(·, z) be concave for every z ∈ Rs, and their
subgradients be uniformly bounded as follows:

sup{s ∈ ∂gi(y, z), ‖y − x‖ ≤ δ} ≤ lδ(x, z), δ > 0, for all i = 1, . . . ,m,
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where lδ(x, z) is an integrable function of z for all x ∈ X . Then Gε(·) is Lipschitz contin-
uous, Clarke regular and its Clarke generalized gradient set is given by

∂◦Gε(x) =
1

ε

∫
Rs

k

(
gM (x, z)− c

ε

)
conv {∂gi(x, z) : i ∈ I(x, z)} dPZ .

Proof. Under the assumptions of the theorem, the function FK(·) is monotonic and contin-
uously differentiable. The function gM (·, z) is concave for every z ∈ Rs and its subdiffer-
ential are given by the formula:

∂gM (y, z) = conv{si ∈ ∂gi(y, z) : gi(y, z) = gM (y, z)}.

Thus the subgradients of gM are uniformly bounded:

sup{s ∈ ∂gM (y, z), ‖y − x‖ ≤ δ} ≤ lδ(x, z), δ > 0.

Therefore, the composite function FK
( gM (x,z)−c

ε

)
is subdifferentiable and its subdifferen-

tial can be calculated as:

∂◦FK

(
gM (x, z)− c

ε

)
=

1

ε
k

(
gM (x, z)− c

ε

)
· ∂gM (x, z).

The mathematical expectation function

Gε(x) =

∫
Rs

F εK(gM (x, z)− c)dPz =

∫
Rs

FK

(
gM (x, z)− c

ε

)
dPz

is regular by Clarke [45, Theorem 2.7.2] and its Clarke generalized gradient set has the
form:

∂◦Gε(x) =

∫
Rs

∂◦FK

(
gM (x, z)− c

ε

)
dPZ =

1

ε

∫
Rs

k

(
gM (x, z)− c

ε

)
· ∂gM (x, z)dPZ .

Using the formula for the subdifferential of gM (x, z), we obtain the statement.

Now we show that if we chooseK to have an α-concave distribution, and all assump-
tions of Theorem 4.39 are satisfied, the generalized concavity property of the approximated
probability function is preserved.

Theorem 4.93. If the density function k is α-concave (α ≥ 0), Z has γ-concave distribu-
tion (γ ≥ 0), the functions gi(·, z), i = 1, . . . ,m are quasi-concave, then the approximate
probability function Gε has a β-concave distribution, where

β =

{
(γ−1 + (1 + sα)/α)−1, if α+ γ > 0,
0, if α+ γ = 0.
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Proof. If the density function k is α-concave (α ≥ 0), then K has a γ- concave distribution
with γ = α/(1 + sα). If Z has γ′-concave distribution (γ ≥ 0), then the random vector
(Z,K)T has a β-concave distribution according to Theorem 4.36, where

β =

{
(γ−1 + γ′−1)−1, if γ + γ′ > 0,
0, if γ + γ′ = 0.

Using the definition Gε(x) of (4.105), we can write:

Gε(x) =

∫
Rs

F εK

(
gM (x, z)− c

ε

)
dPZ =

∫
Rs

∫ (gM (x,z)−c)/ε

−∞
k(t)dt dPZ

=

∫
Rs

∫ ∞
−∞

1{(gM (x,z)−c)/ε>t}dPK dPz =

∫
Rs

∫
Hε(x)

dPK dPz, (4.107)

where
Hε(x) = {(z, t) ∈ Rs+1 : gM (x, z)− εt ≥ c}.

Since gM (·, z) is quasi-concave, the setHε(x) is convex. Representation (4.107) ofGε and
the β-concavity of (Z,K) imply the assumptions of Theorem 4.39, and, thus, the function
Gε is β-concave.

This theorem shows that if the random vector Z has a generalized concave distribu-
tion, we can choose a suitable generalized concave density function k(·) for smoothing and
obtain an approximate convex optimization problem.

Theorem 4.94. In addition to the assumptions of Theorems 4.91, 4.92 and 4.93. Then on
the set {x ∈ Rn : G(x) > 0}, the function Gε is Clarke-regular and the set of Clarke
generalized gradients ∂◦Gε(xε) converge to the set of Clarke generalized gradients of G,
∂◦G(x), in the following sense: if for any sequences ε ↓ 0, xε → x and sε ∈ ∂◦Gε(xε)
such that sε → s, then s ∈ ∂◦G(x).

Proof. Consider a point x such that G(x) > 0 and points xε → x as ε ↓ 0. All points xε

can be included in some compact set containing x in its interior. The function G is gener-
alized concave by virtue of Theorem 4.39. It is locally Lipschitz continuous, directionally
differentiable, and Clarke-regular due to Theorem 4.29. It follows that G(y) > 0 for all
point y in some neighborhood of x. By virtue of Theorem 4.91, this neighborhood can be
chosen small enough, so that Gε(y) > 0 for all ε small enough, as well. The functions Gε
are generalized concave by virtue of Theorem 4.93. It follows that Gε are locally Lipschitz
continuous, directionally differentiable, and Clarke-regular due to Theorem 4.29. Using
the uniform convergence of Gε on compact sets and the definition of Clarke generalized
gradient, we can pass to the limit with ε ↓ 0 in the inequality

lim
t↓0,y→xε

1

t

[
Gε(y + td)−Gε(y)

]
≥ dTsε for any d ∈ Rn.

Consequently, s ∈ ∂◦G(x).
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Using the approximate probability function we can solve the following approxima-
tion of problem (4.95):

Min
x

c(x)

s.t. Gε(x) ≥ p,
x ∈ X .

(4.108)

Under the conditions of Theorem 4.94 the function Gε is β-concave for some β ≥
0. We can specify the necessary and sufficient optimality conditions for the approximate
problem.

Theorem 4.95. In addition to the assumptions of Theorem 4.94, assume that c(·) is a
convex function, the Slater condition for problem (4.108) is satisfied, and intGε 6= ∅. A
point x̂ ∈ X is an optimal solution of problem (4.108) if and only if a nonpositive number
λ exists such that

0 ∈ ∂c(x̂) + sλ

∫
Rs

k
(gM (x̂, z)− c

ε

)
conv

{
∂gi(x̂, z) : i ∈ I(x̂, z)

}
dPZ +NX (x̂),

λ[Gε(x̂)− p] = 0.

Here

s =

{
αε−1

[
Gε(x̂)

]α−1
, if β 6= 0,[

εGε(x̂)
]−1

. if β = 0.

Proof. We shall show the statement for β = 0. The proof for the other case is analogous.
Setting Ḡε(x) = lnGε(x), we obtain a concave function Ḡε, and formulate the problem:

Min
x

c(x)

s.t. ln p− Ḡε(x) ≤ 0,

x ∈ X .

(4.109)

Clearly, x̂ is a solution of the problem (4.109) if and only if it is a solution of problem
(4.108). Problem (4.109) is a convex problem and Slater’s condition is satisfied for it as
well. Therefore, we can write the following optimality conditions for it. The point x̂ ∈ X
is a solution if and only if a number λ0 > 0 exists such that

0 ∈ ∂c(x) + λ0∂
[
− Ḡε(x̂)

]
+NX (x̂), (4.110)

λ0[Gε(x̂)− p] = 0. (4.111)

We use the formula for the Clarke generalized gradients of generalized concave functions
to obtain

∂◦Ḡε(x̂) =
1

Gε(x̂)
∂◦Gε(x̂).

Moreover, we have a representation of the Clarke generalized gradient set of Gε, which
yields

∂◦Ḡε(x̂) =
1

εGε(x̂)

∫
Rs

k

(
gM (x̂, z)− c

ε

)
· ∂gM (x̂, z)dPZ .



i
i

“SPbook” — 2013/12/24 — 8:37 — page 162 — #174 i
i

i
i

i
i

162 Chapter 4. Optimization Models with Probabilistic Constraints

Substituting the last expression into (4.110), we obtain the result.

Normal approximation

In this section we analyze approximation for problems with individual probabilistic con-
straints, defined by linear inequalities. In this setting it is sufficient to consider a problem
with a single probabilistic constraint of form:

Max c(x)

s.t. Pr{xTZ ≥ η} ≥ p,
x ∈ X .

(4.112)

Before developing the normal approximation for this problem, let us illustrate its
potential on an example. We return to our Example 4.2, in which we have formulated a
portfolio optimization problem under a Value-at-Risk constraint.

Max

n∑
i=1

E[Ri]xi

s.t. Pr
{ n∑
i=1

Rixi ≥ −η
}
≥ p,

n∑
i=1

xi ≤ 1,

x ≥ 0.

(4.113)

We denote the net increase of the value of our investment after a period of time by

G(x,R) =

n∑
i=1

E[Ri]xi.

Let us assume that the random return rates R1, . . . , Rn have a joint normal probability dis-
tribution. Recall that the normal distribution is log-concave and the probabilistic constraint
in problem (4.113) determines a convex feasible set, according to Theorem 4.39.

Another direct way to see that the last transformation of the probabilistic constraint
results in a convex constraint is the following. We denote r̄i = E[Ri], r̄ = (r̄1, . . . , r̄n)T,
and assume that r̄ is not the zero-vector. Further, let Σ be the covariance matrix of the
joint distribution of the return rates. We observe that the total profit (or loss) G(x,R) is a
normally distributed random variable with expected value E

[
G(x,R)

]
= r̄Tx and variance

Var
[
G(x,R)

]
= xTΣx. Assuming that Σ is positive definite, the probabilistic constraint

Pr
{
G(x,R) ≥ −η

}
≥ p

can be written in the form (see the discussion on page 16)

zp
√
xTΣx− r̄Tx ≤ η.
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Hence problem (4.113) can be written in the following form:

Max r̄Tx

s.t. zp
√
xTΣx− r̄Tx ≤ η,

n∑
i=1

xi ≤ 1,

x ≥ 0.

(4.114)

Note that
√
xTΣx is a convex function, of x, and zp = Φ−1(p) is positive for p > 1/2,

and hence (4.114) is a convex programming problem.
Now, we consider the general optimization problem (4.112). Assuming that the n-

dimensional random vector Z has independent components and the dimension n is rela-
tively large, we may invoke the central limit theorem. Under mild additional assumptions,
we can conclude that the distribution of xTZ is approximately normal and convert the prob-
abilistic constraint into an algebraic constraint in a similar manner. Note, that this approach
is appropriate if Z has a substantial number of components and the vector x has appropri-
ately large number of non-zero components, so that the central limit theorem would be
applicable to xTZ. Furthermore, we assume that the probability parameter p is not too
close to one, such as 0.9999.

We recall several versions of the Central Limit Theorem (CLT). Let Zi, i = 1, 2, . . .
be a sequence of independent random variables defined on the same probability space. We
assume that each Zi has finite expected value µi = E[Zi] and finite variance σ2

i = Var[Zi].
Setting

s2
n =

n∑
i=1

σ2
i , and r3

n =

n∑
i=1

E
(
|Zi − µi|3

)
,

we assume that r3
n is finite for every n, and that

lim
n→∞

rn
sn

= 0. (4.115)

Then, the distribution of the random variable∑n
i=1(Zi − µi)

sn
(4.116)

converges towards the standard normal distribution as n→∞.
The condition (4.115) is called Lyapunov’s condition. In the same setting, we can

replace the Lyapunov’s condition with the following weaker condition, proposed by Linde-
berg. For every ε > 0 we define

Yi =

{
(Xi − µi)2/s2

n, if |Xi − µi| > εsn,

0, otherwise.

The Lindeberg’s condition reads:

lim
n→∞

n∑
i=1

E(Yi) = 0.
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Let us denote z̄ = (µ1, . . . , µn)T. Under the conditions of the Central Limit Theo-
rem, the distribution of our random variable xTZ is close to the normal distribution with
expected value xTz̄ and variance

∑n
i=1 σ

2
i x

2
i for problems of large dimensions. Our prob-

abilistic constraint takes on the form:

z̄Tx− η√∑n
i=1 σ

2
i x

2
i

≥ zp.

Define X =
{
x ∈ Rn+ :

∑n
i=1 xi ≤ 1

}
. Denoting the matrix with diagonal elements σ1,

. . . , σn by D, problem (4.112) can be replaced by the following approximate problem:

Min
x

c(x)

s.t. zp‖Dx‖ ≤ z̄Tx− η,
x ∈ X .

The probabilistic constraint in this problem is approximated by an algebraic convex con-
straint. Due to the independence of the components of the random vector Z, the matrix D
has a simple diagonal form. There are versions of the central limit theorem which treat the
case of sums of dependent variables, for instance the n-dependent CLT, the martingale CLT
and the CLT for mixing processes. These statements will not be presented here. One can
follow the same line of argument to formulate a normal approximation of the probabilistic
constraint, which is very accurate for problems with large decision space.

4.5 Semi-infinite probabilistic problems
In this section, we concentrate on the semi-infinite probabilistic problem (4.9). We recall
its formulation:

Min
x

c(x)

s.t. Pr
{
g(x, Z) ≥ η

}
≥ Pr

{
Y ≥ η

}
, η ∈ [a, b],

x ∈ X .

Our goal is to derive necessary and sufficient optimality conditions for this problem.
Denote the space of regular countably additive measures on [a, b] having finite variation by
M([a, b]), and its subset of nonnegative measures byM+([a, b]).

We define the constraint function G(x, η) = Pr{z : g(x, z) ≥ η}. As we shall
develop optimality conditions in differential form, we impose additional assumptions on
problem (4.9):

(i) The function c is continuously differentiable on X ;
(ii) The constraint function G(·, ·) is continuous with respect to the second argument and

continuously differentiable with respect to the first argument;
(iii) The reference random variable Y has a continuous distribution.

The differentiability assumption on G may be enforced taking into account the re-
sults in section 4.4.1. For example, if the vector Z has a probability density θ(·), the
function g(·, ·) is continuously differentiable with nonzero gradient ∇zg(x, z) and such
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that the quantity θ(z)
‖∇zg(x,z)‖∇xg(x, z) is uniformly bounded (in a neighborhood of x) by

an integrable function, then the function G is differentiable. Moreover, we can express its
gradient with respect to x a follows:

∇xG(x, η) =

∫
bdH(z,η)

θ(z)

‖∇zg(x, z)‖
∇xg(x, z) dPm−1,

where bdH(z, η) is the surface of the set H(z, η) = {z : g(x, z) ≥ η} and Pm−1 refers to
Lebesgue measure on the m-1-dimensional surface .

We define the set U([a, b]) of functions u(·) satisfying the following conditions:

u(·) is nondecreasing and right continuous;
u(t) = 0 for all t ≤ a;

u(t) = u(b), for all t ≥ b.

It is evident that U([a, b]) is a convex cone.
First we derive a useful formula.

Lemma 4.96. For any real random variable Z and any measure µ ∈M([a, b]) we have∫ b

a

Pr
{
Z ≥ η

}
dµ(η) = E

[
u(Z)

]
, (4.117)

where u(z) = µ([a, z]).

Proof. We extend the measure µ to the entire real line, by assigning measure 0 to sets
not intersecting [a, b]. Using the probability measure PZ induced by Z on R and applying
Fubini’s theorem we obtain∫ b

a

Pr
{
Z ≥ η

}
dµ(η) =

∫ ∞
a

Pr
{
Z ≥ η

}
dµ(η) =

∫ ∞
a

∫ ∞
η

dPZ(z) dµ(η)

=

∫ ∞
a

∫ z

a

dµ(η) dPZ(z) =

∫ ∞
a

µ([a, z]) dPZ(z) = E
[
µ([a, Z])

]
.

We define u(z) = µ([a, z]) and obtain the stated result.

Let us observe that if the measure µ in the above lemma is nonnegative, then u ∈
U([a, b]). Indeed, u(·) is nondecreasing since for z1 > z2 we have

u(z1) = µ([a, z1]) = µ([a, z2]) + µ((z1, z2]) ≥ µ([a, z2]) = u(z2).

Furthermore, u(z) = µ([a, z]) = µ([a, b]) = u(b) for z ≥ b.
We introduce the functional L : Rn × U → R associated with problem (4.9):

L(x, u) = c(x) + E
[
u(g(x, Z))− u(Y )

]
.

We shall see that the functional L plays the role of a Lagrangian of the problem.
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We also set v(η) = Pr
{
Y ≥ η

}
.

Definition 4.97. Problem (4.9) satisfies the differential uniform dominance condition at
the point x̂ ∈ X if there exists x0 ∈ X such that

min
a≤η≤b

[
G(x̂, η) +∇xG(x̂, η)(x0 − x̂)− v(η)

]
> 0.

Theorem 4.98. Assume that x̂ is an optimal solution of problem (4.9) and that the differ-
ential uniform dominance condition is satisfied at the point x̂. Then there exists a function
û ∈ U , such that

−∇xL(x̂, û) ∈ NX (x̂), (4.118)

E
[
û(g(x̂, Z))

]
= E

[
û(Y )

]
. (4.119)

Proof. We consider the mapping Γ : X → C([a, b]) defined as follows:

Γ(x)(η) = Pr
{
g(x, Z) ≥ η

}
− v(η), η ∈ [a, b]. (4.120)

We define K as the cone of nonnegative functions in C([a, b]). Problem (4.9) can be for-
mulated as follows:

Min
x

c(x)

s.t. Γ(x) ∈ K,
x ∈ X .

(4.121)

At first we observe that the functions c(·) and Γ(·) are continuously differentiable by the
assumptions made at the beginning of this section. Secondly, the differential uniform dom-
inance condition is equivalent to Robinson’s constraint qualification condition:

0 ∈ int
{

Γ(x̂) +∇xΓ(x̂)(X − x̂)−K
}
. (4.122)

Indeed, it is easy to see that the uniform dominance condition implies Robinson’s condition.
On the other hand, if Robinson’s condition holds, then there exists ε > 0 such that the
function identically equal to ε is an element of the set at the right hand side of (4.122).
Then we can find x0 such that

Γ(x̂)(η) +
[
∇xΓ(x̂)(η)

]
(x0 − x̂) ≥ ε for all η ∈ [a, b].

Consequently, the uniform dominance condition is satisfied.
By the Riesz representation theorem, the space dual to C([a, b]) is the spaceM([a, b])

of regular countably additive measures on [a, b] having finite variation. The Lagrangian
Λ : Rn ×M([a, b])→ R, for problem (4.121) is defined as follows:

Λ(x, µ) = c(x) +

∫ b

a

Γ(x)(η) dµ(η). (4.123)
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The necessary optimality conditions for problem (4.121) have the form: there exists a
measure µ̂ ∈M+([a, b]), such that

−∇xΛ(x̂, µ̂) ∈ NX (x̂), (4.124)∫ b

a

Γ(x̂)(η) dµ̂(η) = 0. (4.125)

Using Lemma 4.96, we obtain the equation for all x:∫ b

a

Γ(x)(η) dµ̂(η) =

∫ b

a

(
Pr
{
g(x, z) ≥ η

}
− Pr

{
Y ≥ η

})
dµ̂(η)

= E
[
û(g(x, Z))

]
− E

[
û(Y )

]
,

where û(η) = µ̂([a, η]). Since µ̂ is nonnegative, the corresponding utility function û is an
element of U([a, b]). The correspondence between nonnegative measures µ ∈ M([a, b])
and utility functions u ∈ U and the last equation imply that (4.125) is equivalent to (4.119).
Moreover,

Λ(x, µ) = L(x, u)

and, therefore, (4.124) is equivalent to (4.118).

We note that the functions u ∈ U([a, b]) can be interpreted as von Neumann-Morgenstern
utility functions of rational decision makers. The theorem demonstrates that one can view
the maximization of expected utility as a dual model to the model with stochastic domi-
nance constraints. Utility functions of decision makers are very difficult to elicit. This task
becomes even more complicated when there is a group of decision-makers who have to
come to a consensus. The model (4.9) avoids these difficulties, by requiring that a bench-
mark random outcome, considered reasonable, be specified. Our analysis, departing from
the benchmark outcome, generates the utility function of the decision maker. It is implicitly
defined by the benchmark used, and by the problem under consideration.

We will demonstrate that it is sufficient to consider only the subset of U([a, b] con-
taining piecewise constant utility functions.

Theorem 4.99. Under the assumptions of Theorem 4.98 there exist piecewise constant
utility function w(·) ∈ U satisfying the necessary optimality conditions (4.118)–(4.119).
Moreover, the function w(·) has at most n + 2 jump points: there exist numbers ηi ∈
[a, b], i = 1, . . . , k, such that the function w(·) is constant on the intervals (−∞, η1],
(η1, η2], . . . , (ηk,∞), and 0 ≤ k ≤ n+ 2.

Proof. Consider the mapping Γ defined by (4.120). As already noted in the proof of
the previous theorem, it is continuously differentiable due to the assumptions about the
probability function. Therefore, the derivative of the Lagrangian has the form

∇xΛ(x̂, µ̂) = ∇xc(x̂) +

∫ b

a

∇xΓ(x̂)(η) dµ̂(η).

The necessary condition of optimality (4.124) can be rewritten as follows

−∇xc(x̂)−
∫ b

a

∇xΓ(x̂)(η) dµ̂(η) ∈ NX (x̂).
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Considering the vector
g = ∇xc(x̂)−∇xΛ(x̂, µ̂),

we observe that the optimal values of multipliers µ̂ have to satisfy the equation∫ b

a

∇xΓ(x̂)(η) dµ(η) = g. (4.126)

At the optimal solution x̂ we have Γ(x̂)(·) ≤ 0 and µ̂ ≥ 0. Therefore, the complementarity
condition (4.125) can be equivalently expressed as the equation∫ b

a

Γ(x̂)(η) dµ(η) = 0. (4.127)

Every nonnegative solution µ of equations (4.126)–(4.127) can be used as the Lagrange
multiplier satisfying conditions (4.124)–(4.125) at x̂. Define

a =

∫ b

a

dµ̂(η).

We can add to equations (4.126)–(4.127) the condition∫ b

a

dµ(η) = a. (4.128)

The system of three equations (4.126)–(4.128) still has at least one nonnegative solution,
namely µ̂. If µ̂ ≡ 0, then the dominance constraint is not active. In this case, we can set
w(η) ≡ 0 and the statement of the theorem follows from the fact that conditions (4.126)–
(4.127) are equivalent to (4.124)–(4.125).

Now, consider the case of µ̂ 6≡ 0. In this case, we have a > 0. Normalizing by a, we
notice that equations (4.126)–(4.128) are equivalent to the following inclusion:[

g/a
0

]
∈ conv

{[
∇xΓ(x̂)(η)

Γ(x̂)(η)

]
: η ∈ [a, b]

}
⊂ Rn+1.

By Carathéodory’s Theorem, there exist numbers ηi ∈ [a, b], and αi ≥ 0, i = 1, . . . , k
such that [

g/a
0

]
=

k∑
i=1

αi

[
∇xΓ(x̂)(ηi)

Γ(x̂)(ηi)

]
,

k∑
i=1

αi = 1,

and
1 ≤ k ≤ n+ 2.
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We define atomic measure ν having atoms of mass cαi at points ηi, i = 1, . . . , k. It satisfies
equations (4.126)–(4.127):

∫ b

a

∇xΓ(x̂)(η) dν(η) =

k∑
i=1

∇xΓ(x̂)(ηi)cαi = g,

∫ b

a

Γ(x̂)(η) dν(η) =

k∑
i=1

Γ(x̂)(ηi)cαi = 0.

Recall that equations (4.126)–(4.127) are equivalent to (4.124)–(4.125). Now, applying
Lemma 4.96, we obtain the utility functions

w(η) = ν[a, η], η ∈ R.

It is straightforward to check that w ∈ U([a, b]) and the assertion of the theorem holds.

It follows from Theorem 4.99 that if the dominance constraint is active, then there
exist at least one and at most n+ 2 target values ηi and target probabilities vi = Pr

{
Y ≥

ηi
}

, i = 1, . . . , k which are critical for problem (4.9). They define a relaxation of (4.9)
involving finitely many probabilistic constraints:

Min
x

c(x)

s.t. Pr
{
g(x, Z) ≥ ηi

}
≥ vi, i = 1, . . . , k,

x ∈ X .

The necessary conditions of optimality for this relaxation yield a solution of the optimality
conditions of the original problem (4.9). Unfortunately, the target values and the target
probabilities are not known in advance.

A particular situation, in which the target values and the target probabilities can be
specified in advance, occurs when Y has a discrete distribution with finite support. Denote
the realizations of Y by

η1 < η2 < · · · < ηk,

and the corresponding probabilities by pi, i = 1, . . . , k. Then the dominance constraint is
equivalent to

Pr
{
g(x, Z) ≥ ηi

}
≥

k∑
j=i

pj , i = 1, . . . , k.

Here, we use the fact that the probability distribution function of g(x, Z) is continuous and
nondecreasing.

Now, we shall derive sufficient conditions of optimality for problem (4.9). We as-
sume additionally that the function g is jointly quasi-concave in both arguments, and Z has
an α-concave probability distribution.
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Theorem 4.100. Assume that a point x̂ is feasible for problem (4.9). Suppose that there
exists a function û ∈ U , û 6= 0, such that conditions (4.118)–(4.119) are satisfied. If
the functions c is convex, the function g satisfies the concavity assumptions above and the
variable Z has an α-concave probability distribution, then x̂ is an optimal solution of
problem (4.9).

Proof. By virtue of Theorem 4.45, the feasible set of problem (4.121)) is convex and closed.
Let the operator Γ and the cone K be defined as in the proof of Theorem 4.98. Using

Lemma 4.96, we observe that optimality conditions (4.124)–(4.125) for problem (4.121)
are satisfied. Consider a feasible direction d at the point x̂. As the feasible set is convex,
we conclude that

Γ(x̂+ τd) ∈ K,
for all sufficiently small τ > 0. Since Γ is differentiable, we have

1

τ

[
Γ(x̂+ τd)− Γ(x̂)]→ ∇xΓ(x̂)(d) whenever τ ↓ 0.

This implies, that
∇xΓ(x̂)(d) ∈ TK(Γ(x̂)),

where TK(γ) denotes the tangent cone to K at γ. Since

TK(γ) = K + {tγ : t ∈ R},

there exists t ∈ R such that

∇xΓ(x̂)(d) + tΓ(x̂) ∈ K. (4.129)

Condition (4.124) implies that there exists q ∈ NX (x̂) such that

∇xc(x̂) +

∫ b

a

∇xΓ(x̂)(η) dµ(η) = −q.

Applying both sides of this equation to the direction d and using the fact that q ∈ NX (x̂)
and d ∈ TX (x̂), we obtain:

∇xc(x̂)(d) +

∫ b

a

(
∇xΓ(x̂)(η)

)
(d) dµ(η) ≥ 0. (4.130)

Condition (4.125), relation (4.129), and the nonnegativity of µ imply that∫ b

a

(
∇xΓ(x̂)(η)

)
(d) dµ(η) =

∫ b

a

[(
∇xΓ(x̂)(η)

)
(d) + t

(
Γ(x̂)

)
(η)
]
dµ(η) ≤ 0.

Substituting into (4.130) we conclude that

dT∇xc(x̂) ≥ 0,

for every feasible direction d at x̂. By the convexity of c, for every feasible point x we
obtain the inequality

c(x) ≥ c(x̂) + dT∇xc(x̂) ≥ c(x̂),

as stated.
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Exercises
4.1. Are the following density functions α-concave and do they define a γ-concave prob-

ability measure? What are α and γ?

(a) If the m-dimensional random vector Z has the normal distribution with ex-
pected value µ = 0 and covariance matrix Σ, the random variable Y is inde-
pendent of Z and has the χ2

k distribution, then the distribution of the vector X
with components

Xi =
Zi√
Y/k

, i = 1, . . . ,m,

is called a multivariate Student distribution. Its density function is defined as
follows:

θm(x) =
Γ(m+k

2 )

Γ(k2 )
√

(2π)mdet(Σ)

(
1 +

1

k
xTΣ

1
2x
)−(m+k)/2

,

If m = k = 1, then this function reduces to the well-known univariate Cauchy
density

θ1(x) =
1

π

1

1 + x2
, −∞ < x <∞.

(b) The density function of the m-dimensional F -distribution with parameters
n0, . . . , nm, and n =

∑m
i=1 ni, defined as follows:

θ(x) = c

m∏
i=1

x
ni/2−1
i

(
n0 +

m∑
i=1

nixi

)−n/2
, xi ≥ 0, i = 1, . . . ,m,

where c is an appropriate normalizing constant.

(c) Consider another multivariate generalization of the beta distribution, which is
obtained in the following way. Let S1 and S2 be two independent sampling
covariance matrices corresponding to two independent samples of sizes s1 + 1
and s2+1, respectively, taken from the same q-variate normal distribution with
covariance matrix Σ. The joint distribution of the elements on and above the
main diagonal of the random matrix

(S1 + S2)
1
2S2(S1 + S2)−

1
2

is continuous if s1 ≥ q and s2 ≥ q. The probability density function of this
distribution is defined by

θ(X) =


c(s1, q)c(s2, q)

c(s1 + s2, q)
det(X)

1
2 (s2−q−1) det(I −X)

1
2 (s1−q−1),

for X, I −Xpositive definite,
0, otherwise.
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Here I stands for the identity matrix and the function c(·, ·) is defined as fol-
lows:

1

c(k, q)
= 2qk/2πq(q−1)/2

q∏
i=1

Γ

(
k − i+ 1

2

)
.

The number of independent variables in X is s = 1
2q(q + 1).

(d) The probability density function of the Pareto distribution is

θ(x) = a(a+ 1) . . . (a+ s− 1)

 s∏
j=1

Θj

−1 s∑
j=1

Θ−1
j xj − s+ 1

−(a+s)

for xi > Θi, i = 1, . . . , s and θ(x) = 0 otherwise. Here Θi, i = 1, . . . , s
are positive constants.

4.2. Assume that P is an α-concave probability distribution and A ⊂ Rn is a convex set.
Prove that the function f(x) = P (A+ x) is α-concave.

4.3. Prove that if θ : R → R is a log-concave probability density function, then the
functions

F (x) =

∫
t≤x

θ(t)dt and F̄ (x) = 1− F (x)

are log-concave as well.
4.4. Check that the binomial, the Poisson, the geometric, and the hypergeometric one-

dimensional probability distributions satisfy the conditions of Theorem 4.38 and
are, therefore, log-concave.

4.5. Let Z1, Z2, and Z3 be independent exponentially distributed random variables with
parameters λ1, λ2, and λ3, respectively. We define Y1 = min{Z1, Z3} and Y2 =
min{Z2, Z3}. Describe G(η1, η2) = P (Y1 ≥ η1, Y2 ≥ η2) for nonnegative scalars
η1 and η2 and prove that G(η1, η2) is log-concave on R2.

4.6. Let Z be a standard normal random variable, W be a χ2-random variable with one
degree of freedom, and A be an n× n positive definite matrix. Is the set{

x ∈ Rn : Pr
(
Z −

√
(xTAx)W ≥ 0

)
≥ 0.9

}
convex?

4.7. If Y is an m-dimensional random vector with a log-normal distribution, and g :
Rn → Rm is such that each component gi is a concave function, the show that the
set

C =
{
x ∈ Rn : Pr

(
g(x) ≥ Y

)
≥ 0.9

}
is convex.
(a) Find the set of p-efficient points for m = 1, p = 0.9 and write an equivalent

algebraic description of C.
(b) Assume that m = 2 and the components of Y are independent. Find a disjunc-

tive algebraic formulation for the set C.
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4.8. Consider the following optimization problem:

Max
x

cTx

s.t. Pr
{
gi(x) ≥ Yi, i = 1, 2

}
≥ 0.9,

x ≥ 0.

Here c ∈ Rn, gi : Rn → R, i = 1, 2 are concave functions, Y1 and Y2 are indepen-
dent random variables that have the log-normal distribution with parameters µ = 0,
σ = 2.
Formulate necessary and sufficient optimality conditions for this problem.

4.9. Assuming that Y and Z are independent exponentially distributed random variables,
show that the following set is convex:{

x ∈ R3 : Pr
(
x2

1 + x2
2 + x2x3 + x2

3 + Y (x2 + x3) + Y 2 ≤ Z
)
≥ 0.9

}
.

4.10. Assume that the random variable Z is uniformly distributed in the interval [−1, 1]
and u = (1, . . . , 1)T. Prove that the following set is convex:{

x ∈ Rn : Pr
(
ex

Ty ≥ (uTy)Z, ∀y ∈ Rn : ‖y‖ ≤ 1
)
≥ 0.95

}
.

4.11. Let Z be a two-dimensional random vector with Dirichlet distribution. Show that
the following set is convex:{
x ∈ R2 : Pr

(
min(x1 + 2x2 + Z1, x1Z2 − x2

1 − Z2
2 ) ≥ y

)
≥ e−y, ∀y ∈ [ 1

4
, 4]
}
.

4.12. Let Z be an n-dimensional random vector uniformly distributed on a set A. Check
whether the set {

x ∈ Rn : Pr
(
xTZ ≤ 1

)
≥ 0.95

}
is convex for the following cases:
(a) A = {z ∈ Rn : ‖z‖ ≤ 1}.
(b) A = {z ∈ Rn : −i ≤ zi ≤ i, i = 1, . . . ,m}.
(c) A = {z ∈ Rn : Tz = 0, −1 ≤ zi ≤ 1, i = 1, . . . ,m}, where T is an

(n− 1)× n matrix.
4.13. Assume that the two-dimensional random vector Z has independent components,

which have the Poisson distribution with parameters λ1 = λ2 = 2. Find all p-
efficient points of FZ for p = 0.8.
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Chapter 5

Statistical Inference

Alexander Shapiro

5.1 Statistical Properties of SAA Estimators
Consider the following stochastic programming problem

Min
x∈X

{
f(x) := E[F (x, ξ)]

}
. (5.1)

Here X is a nonempty closed subset of Rn, ξ is a random vector whose probability distri-
bution P is supported on a set Ξ ⊂ Rd, and F : X ×Ξ→ R. In the framework of two-stage
stochastic programming the objective function F (x, ξ) is given by the optimal value of the
corresponding second stage problem. Unless stated otherwise we assume in this chapter
that the expectation function f(x) is well defined and finite valued for all x ∈ X . This
implies, of course, that for every x ∈ X the value F (x, ξ) is finite for a.e. ξ ∈ Ξ. In
particular, for two-stage programming this implies that the recourse is relatively complete.

Suppose that we have a sample ξ1, ..., ξN of N realizations of the random vector ξ.
This random sample can be viewed as historical data of N observations of ξ, or it can be
generated in the computer by Monte Carlo sampling techniques. For any x ∈ X we can
estimate the expected value f(x) by averaging values F (x, ξj), j = 1, ..., N . This leads to
the following, so-called sample average approximation (SAA):

Min
x∈X

f̂N (x) :=
1

N

N∑
j=1

F (x, ξj)

 (5.2)

of the “true” problem (5.1). Let us observe that we can write the sample average function
as the expectation

f̂N (x) = EPN [F (x, ξ)] (5.3)

175
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taken with respect to the empirical distribution1 (measure)PN := N−1
∑N
j=1 δ(ξ

j). There-
fore, for a given sample, the SAA problem (5.2) can be considered as a stochastic program-
ming problem with respective scenarios ξ1, ..., ξN , each taken with probability 1/N .

As with data vector ξ, the sample ξ1, ..., ξN can be considered from two points of
view, as a sequence of random vectors or as a particular realization of that sequence. Which
one of these two meanings will be used in a particular situation will be clear from the
context. The SAA problem is a function of the considered sample, and in that sense is
random. For a particular realization of the random sample the corresponding SAA problem
is a stochastic programming problem with respective scenarios ξ1, ..., ξN each taken with
probability 1/N . We always assume that each random vector ξj , in the sample, has the
same (marginal) distribution P as the data vector ξ. If, moreover, each ξj , j = 1, ..., N , is
distributed independently of other sample vectors, we say that the sample is independently
identically distributed (iid).

By the Law of Large Numbers we have that, under some regularity conditions, f̂N (x)
converges pointwise w.p.1 to f(x) as N → ∞. In particular, by the classical LLN this
holds if the sample is iid. Moreover, under mild additional conditions the convergence is
uniform (see section 7.2.5). We also have that E[f̂N (x)] = f(x), i.e., f̂N (x) is an unbiased
estimator of f(x). Therefore, it is natural to expect that the optimal value and optimal
solutions of the SAA problem (5.2) converge to their counterparts of the true problem (5.1)
as N → ∞. We denote by ϑ∗ and S the optimal value and the set of optimal solutions,
respectively, of the true problem (5.1), and by ϑ̂N and ŜN the optimal value and the set of
optimal solutions, respectively, of the SAA problem (5.2).

We can view the sample average functions f̂N (x) as defined on a common probability
space (Ω,F , P ). For example, in the case of iid sample, a standard construction is to
consider the set Ω := Ξ∞ of sequences {(ξ1, ...)}ξi∈Ξ,i∈N, equipped with the product of
the corresponding probability measures. Assume that F (x, ξ) is a Carathéodory function,
i.e., continuous in x and measurable in ξ. Then f̂N (x) = f̂N (x, ω) is also a Carathéodory
function and hence is a random lsc function. It follows (see section 7.2.3 and Theorem
7.42 in particular) that ϑ̂N = ϑ̂N (ω) and ŜN = ŜN (ω) are measurable. We also consider a
particular optimal solution x̂N of the SAA problem, and view it as a measurable selection
x̂N (ω) ∈ ŜN (ω). Existence of such measurable selection is ensured by the Measurable
Selection Theorem (Theorem 7.39). This takes care of the measurability questions.

We are going to discuss next statistical properties of the SAA estimators ϑ̂N and ŜN .
Let us make the following useful observation.

Proposition 5.1. Let f : X → R and fN : X → R be a sequence of (deterministic) real
valued functions. Then the following two properties are equivalent: (i) for any x̄ ∈ X and
any sequence {xN} ⊂ X converging to x̄ it follows that fN (xN ) converges to f(x̄), (ii) the
function f(·) is continuous on X and fN (·) converges to f(·) uniformly on any compact
subset of X .

Proof. Suppose that property (i) holds. Consider a point x̄ ∈ X , a sequence {xN} ⊂ X
converging to x̄ and a number ε > 0. By taking a sequence with each element equal x1, we
have by (i) that fN (x1)→ f(x1). Therefore there existsN1 such that |fN1

(x1)−f(x1)| <

1Recall that δ(ξ) denotes measure of mass one at the point ξ.
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ε/2. Similarly there exists N2 > N1 such that |fN2(x2) − f(x2)| < ε/2, and so on.
Consider now a sequence, denoted x′N , constructed as follows, x′i = x1, i = 1, ..., N1,
x′i = x2, i = N1 + 1, ..., N2, and so on. We have that this sequence x′N converges to x̄ and
hence |fN (x′N ) − f(x̄)| < ε/2 for all N large enough. We also have that |fNk(x′Nk) −
f(xk)| < ε/2, and hence |f(xk) − f(x̄| < ε for all k large enough. This shows that
f(xk)→ f(x̄) and hence f(·) is continuous at x̄.

Now let C be a compact subset of X . Arguing by a contradiction suppose that fN (·)
does not converge to f(·) uniformly on C. Then there exists a sequence {xN} ⊂ C and
ε > 0 such that |fN (xN )− f(xN )| ≥ ε for all N . Since C is compact, we can assume that
{xN} converges to a point x̄ ∈ C. We have

|fN (xN )− f(xN )| ≤ |fN (xN )− f(x̄)|+ |f(xN )− f(x̄)|. (5.4)

The first term in the right hand side of (5.4) tends to zero by (i) and the second term tends to
zero since f(·) is continuous, and hence these terms are less that ε/2 for N large enough.
This gives a designed contradiction.

Conversely, suppose that property (ii) holds. Consider a sequence {xN} ⊂ X con-
verging to a point x̄ ∈ X . We can assume that this sequence is contained in a compact
subset of X . By employing the inequality

|fN (xN )− f(x̄)| ≤ |fN (xN )− f(xN )|+ |f(xN )− f(x̄)| (5.5)

and noting that the first term in the right hand side of this inequality tends to zero because
of the uniform convergence of fN to f and the second term tends to zero by continuity of
f , we obtain that property (i) holds.

5.1.1 Consistency of SAA Estimators

In this section we discuss convergence properties of the SAA estimators ϑ̂N and ŜN . It
is said that an estimator θ̂N of a parameter θ is consistent if θ̂N converges w.p.1 to θ as
N → ∞. Let us consider first consistency of the SAA estimator of the optimal value. We
have that for any fixed x ∈ X , ϑ̂N ≤ f̂N (x) and hence if the pointwise LLN holds, then

lim sup
N→∞

ϑ̂N ≤ lim
N→∞

f̂N (x) = f(x) w.p.1.

It follows that if the pointwise LLN holds, then

lim sup
N→∞

ϑ̂N ≤ ϑ∗ w.p.1. (5.6)

Without some additional conditions, the inequality in (5.6) can be strict.

Proposition 5.2. Suppose that f̂N (x) converges to f(x) w.p.1, as N → ∞, uniformly on
X . Then ϑ̂N converges to ϑ∗ w.p.1 as N →∞.

Proof. The uniform convergence w.p.1 of f̂N (x) = f̂N (x, ω) to f(x) means that for any
ε > 0 and a.e. ω ∈ Ω there is N∗ = N∗(ε, ω) such that the following inequality holds for
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all N ≥ N∗:
sup
x∈X

∣∣f̂N (x, ω)− f(x)
∣∣ ≤ ε. (5.7)

It follows then that |ϑ̂N (ω)− ϑ∗| ≤ ε for all N ≥ N∗, which completes the proof.

In order to establish consistency of the SAA estimators of optimal solutions we need
slightly stronger conditions. Recall that D(A,B) denotes the deviation of set A from set B
(see equation (7.4) for the corresponding definition).

Theorem 5.3. Suppose that there exists a compact set C ⊂ Rn such that: (i) the set S of
optimal solutions of the true problem is nonempty and is contained in C, (ii) the function
f(x) is finite valued and continuous onC, (iii) f̂N (x) converges to f(x) w.p.1, asN →∞,
uniformly in x ∈ C, (iv) w.p.1 for N large enough the set ŜN is nonempty and ŜN ⊂ C.
Then ϑ̂N → ϑ∗ and D(ŜN ,S)→ 0 w.p.1 as N →∞.

Proof. Assumptions (i) and (iv) imply that both the true and SAA problems can be re-
stricted to the set X ∩C. Therefore we can assume without loss of generality that the set X
is compact. The assertion that ϑ̂N → ϑ∗ w.p.1 follows by Proposition 5.2. It suffices show
now that D(ŜN (ω),S) → 0 for every ω ∈ Ω such that ϑ̂N (ω) → ϑ∗ and assumptions
(iii) and (iv) hold. This basically a deterministic result, therefore we omit ω for the sake of
notational convenience.

We argue now by a contradiction. Suppose that D(ŜN ,S) 6→ 0. Since X is compact,
by passing to a subsequence if necessary, we can assume that there exists x̂N ∈ ŜN such
that dist(x̂N ,S) ≥ ε for some ε > 0, and that x̂N tends to a point x∗ ∈ X . It follows that
x∗ 6∈ S and hence f(x∗) > ϑ∗. Moreover, ϑ̂N = f̂N (x̂N ) and

f̂N (x̂N )− f(x∗) = [f̂N (x̂N )− f(x̂N )] + [f(x̂N )− f(x∗)]. (5.8)

The first term in the right hand side of (5.8) tends to zero by the assumption (iii) and the
second term by continuity of f(x). That is, we obtain that ϑ̂N tends to f(x∗) > ϑ∗, a
contradiction.

Recall that, by Proposition 5.1, assumptions (ii) and (iii) in the above theorem are
equivalent to the condition that for any sequence {xN} ⊂ C converging to a point x̄ it
follows that f̂N (xN )→ f(x̄) w.p.1. The last assumption (iv) in the above theorem holds, in
particular, if the feasible setX is closed, the functions f̂N (x) are lower semicontinuous and
for some α > ϑ∗ the level sets

{
x ∈ X : f̂N (x) ≤ α

}
are uniformly bounded w.p.1. This

condition is often referred to as the inf-compactness condition (compare with Definition
7.22). Conditions ensuring the uniform convergence of f̂N (x) to f(x) (assumption (iii))
are given in Theorems 7.53 and 7.55, for example.

The assertion that D(ŜN ,S) → 0 w.p.1 means that for any (measurable) selection
x̂N ∈ ŜN , of an optimal solution of the SAA problem, it holds that dist(x̂N ,S)→ 0 w.p.1.
If, moreover, S = {x̄} is a singleton, i.e., the true problem has unique optimal solution x̄,
then this means that x̂N → x̄w.p.1. The inf-compactness condition ensures that x̂N cannot
escape to infinity as N increases.
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If the problem is convex, it is possible to relax the required regularity conditions. In
the following theorem we assume that the integrand function F (x, ξ) is an extended real
valued function, i.e., can also take values ±∞. Denote

F̄ (x, ξ) := F (x, ξ) + IX (x), f̄(x) := f(x) + IX (x), f̃N (x) := f̂N (x) + IX (x), (5.9)

i.e., f̄(x) = f(x) if x ∈ X , and f̄(x) = +∞ if x 6∈ X , and similarly for functions F (·, ξ)
and f̂N (·). Clearly f̄(x) = E[F̄ (x, ξ)] and f̃N (x) = N−1

∑N
j=1 F̄ (x, ξj). Note that if the

set X is convex, then the above ‘penalization’ operation preserves convexity of respective
functions.

Theorem 5.4. Suppose that: (i) the integrand function F is random lower semicontinuous,
(ii) for almost every ξ ∈ Ξ the function F (·, ξ) is convex, (iii) the set X is closed and
convex, (iv) the expected value function f is lower semicontinuous and there exists a point
x̄ ∈ X such that f(x) < +∞ for all x in a neighborhood of x̄, (v) the set S of optimal
solutions of the true problem is nonempty and bounded, (vi) the LLN holds pointwise. Then
ϑ̂N → ϑ∗ and D(ŜN ,S)→ 0 w.p.1 as N →∞.

Proof. Clearly we can restrict both the true and the SAA problems to the affine space
generated by the convex set X . Relative to that affine space the set X has a nonempty
interior. Therefore, without loss of generality we can assume that the set X has a nonempty
interior. Since it is assumed that f(x) possesses an optimal solution, we have that ϑ∗ is
finite and hence f(x) ≥ ϑ∗ > −∞ for all x ∈ X . Since f(x) is convex and is greater than
−∞ on an open set (e.g., interior of X ), it follows that f(·) is subdifferentiable at any point
x ∈ int(X ) such that f(x) is finite. Consequently f(x) > −∞ for all x ∈ Rn, and hence
f is proper.

Observe that the pointwise LLN for F (x, ξ) (assumption (vi)) implies the corre-
sponding pointwise LLN for F̄ (x, ξ). Since X is convex and closed, it follows that f̄
is convex and lower semicontinuous. Moreover, because of the assumption (iv) and since
the interior of X is nonempty, we have that domf̄ has a nonempty interior. By Theorem
7.54 it follows then that f̃N

e→ f̄ w.p.1. Consider a compact setK with a nonempty interior
and such that it does not contain a boundary point of domf̄ , and f̄(x) is finite valued onK.
Since domf̄ has a nonempty interior such set exists. Then it follows from f̃N

e→ f̄ , that
f̃N (·) converge to f̄(·) uniformly on K, all w.p.1 (see Theorem 7.31). It follows that w.p.1
for N large enough the functions f̃N (x) are finite valued on K, and hence are proper.

Now let C be a compact subset of Rn such that the set S is contained in the interior
of C. Such set exists since it is assumed that the set S is bounded. Consider the set S̃N
of minimizers of f̃N (x) over C. Since C is nonempty and compact and f̃N (x) is lower
semicontinuous and proper for N large enough, and because by the pointwise LLN we
have that for any x ∈ S , f̃N (x) is finite w.p.1 for N large enough, the set S̃N is nonempty
w.p.1 for N large enough. Let us show that D(S̃N ,S) → 0 w.p.1. Let ω ∈ Ω be such
that f̃N (·, ω)

e→ f̄(·). We have that this happens for a.e. ω ∈ Ω. We argue now by
a contradiction. Suppose that there exists a minimizer x̃N = x̃N (ω) of f̃N (x, ω) over
C such that dist(x̃N ,S) ≥ ε for some ε > 0. Since C is compact, by passing to a
subsequence if necessary, we can assume that x̃N tends to a point x∗ ∈ C. It follows that
x∗ 6∈ S. On the other hand we have by Proposition 7.30 that x∗ ∈ arg minx∈C f̄(x). Since
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arg minx∈C f̄(x) = S, we obtain a contradiction.
Now because of the convexity assumptions, any minimizer of f̃N (x) over C which

lies inside the interior of C, is also an optimal solution of the SAA problem (5.2). There-
fore, w.p.1 for N large enough we have that S̃N = ŜN . Consequently we can restrict both
the true and the SAA optimization problems to the compact set C, and hence the assertions
of the above theorem follow.

Let us make the following observations. Lower semicontinuity of f(·) follows from
lower semicontinuity F (·, ξ), provided that F (x, ·) is bounded from below by an integrable
function (see Theorem 7.47 for a precise formulation of this result). It was assumed in the
above theorem that the LLN holds pointwise for all x ∈ Rn. Actually it suffices to assume
that this holds for all x in some neighborhood of the set S. Under the assumptions of the
above theorem we have that f(x) > −∞ for every x ∈ Rn. The above assumptions do not
prevent, however, for f(x) to take value +∞ at some points x ∈ X . Nevertheless, it was
possible to push the proof through because in the considered convex case local optimality
implies global optimality. There are two possible reasons why f(x) can be +∞. Namely,
it can be that F (x, ·) is finite valued but grows sufficiently fast so that its integral is +∞, or
it can be that F (x, ·) is equal +∞ on a set of positive measure, and of course it can be both.
For example, in the case of two-stage programming it may happen that for some x ∈ X the
corresponding second stage problem is infeasible with a positive probability p. Then w.p.1
for N large enough, for at least one of the sample points ξj the corresponding second stage
problem will be infeasible, and hence f̂N (x) = +∞. Of course, if the probability p is very
small, then the required sample size for such event to happen could be very large.

We assumed so far that the feasible set X of the SAA problem is fixed, i.e., inde-
pendent of the sample. However, in some situations it also should be estimated. Then the
corresponding SAA problem takes the form

Min
x∈XN

f̂N (x), (5.10)

where XN is a subset of Rn depending on the sample, and therefore is random. As before
we denote by ϑ̂N and ŜN the optimal value and the set of optimal solutions, respectively,
of the SAA problem (5.10).

Theorem 5.5. Suppose that in addition to the assumptions of Theorem 5.3 the following
conditions hold:
(a) If xN ∈ XN and xN converges w.p.1 to a point x, then x ∈ X .
(b) For some point x ∈ S there exists a sequence xN ∈ XN such that xN → x w.p.1.
Then ϑ̂N → ϑ∗ and D(ŜN ,S)→ 0 w.p.1 as N →∞.

Proof. Consider an x̂N ∈ ŜN . By compactness arguments we can assume that x̂N con-
verges w.p.1 to a point x∗ ∈ Rn. Since ŜN ⊂ XN , we have that x̂N ∈ XN , and hence it fol-
lows by condition (a) that x∗ ∈ X . We also have (see Proposition 5.1) that ϑ̂N = f̂N (x̂N )

tends w.p.1 to f(x∗), and hence lim infN→∞ ϑ̂N ≥ ϑ∗ w.p.1. On the other hand, by
condition (b), there exists a sequence xN ∈ XN converging to a point x ∈ S w.p.1. Conse-
quently, ϑ̂N ≤ f̂N (x̂N )→ f(x) = ϑ∗ w.p.1, and hence lim supN→∞ ϑ̂N ≤ ϑ∗. It follows
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that ϑ̂N → ϑ∗ w.p.1. The remainder of the proof can be completed by the same arguments
as in the proof of Theorem 5.3.

The SAA problem (5.10) is convex if the functions f̂N (·) and the sets XN are convex
w.p.1. It is also possible to show consistency of the SAA estimators of problem (5.10)
under the assumptions of Theorem 5.4 together with conditions (a) and (b), of the above
Theorem 5.5, and convexity of the set XN .

Suppose, for example, that the set X is defined by the constraints

X := {x ∈ X0 : gi(x) ≤ 0, i = 1, ..., p} , (5.11)

where X0 is a nonempty closed subset of Rn and the constraint functions are given as the
expected value functions

gi(x) := E[Gi(x, ξ)], i = 1, ..., p, (5.12)

with Gi(x, ξ), i = 1, ..., p, being random lsc functions. Then the set X can be estimated by

XN :=
{
x ∈ X0 : ĝiN (x) ≤ 0, i = 1, ..., p

}
, (5.13)

where

ĝiN (x) :=
1

N

N∑
j=1

Gi(x, ξ
j).

If for a given point x ∈ X0, every function ĝiN converges uniformly to gi w.p.1 on a
neighborhood of x and the functions gi are continuous, then condition (a) of Theorem 5.5
holds.

Remark 8. Let us note that the samples used in construction of the SAA functions f̂N and
ĝiN , i = 1, ..., p, can be the same or can be different, independent of each other. That is,
for random samples ξi1, ..., ξiNi , possibly of different sample sizes Ni, i = 1, ..., p, and
independent of each other and of the random sample used in f̂N , the corresponding SAA
functions are

ĝiNi(x) :=
1

Ni

Ni∑
j=1

Gi(x, ξ
ij), i = 1, ..., p.

The question of how to generate the respective random samples is especially relevant for
Monte Carlo sampling methods discussed later. For consistency type results we only need
to verify convergence w.p.1 of the involved SAA functions to their true (expected value)
counterparts, and this holds under appropriate regularity conditions in both cases – of the
same and independent samples. However, from a variability point of view it is advanta-
geous to use independent samples (see Remark 12 on page 194).

In order to ensure condition (b) of Theorem 5.5 one needs to impose a constraint
qualification (on the true problem). Consider, for example, X := {x ∈ R : g(x) ≤ 0}
with g(x) := x2. Clearly X = {0}, while an arbitrary small perturbation of the function
g(·) can result in the corresponding set XN being empty. It is possible to show that if a
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constraint qualification for the true problem is satisfied at x, then condition (b) follows.
For instance, if the set X0 is convex and for every ξ ∈ Ξ the functions Gi(·, ξ) are convex,
and hence the corresponding expected value functions gi(·), i = 1, ..., p, are also convex,
then such a simple constraint qualification is the Slater condition. Recall that it is said that
the Slater condition holds if there exists a point x∗ ∈ X0 such that gi(x∗) < 0, i = 1, ..., p.

As another example suppose that the feasible set is given by probabilistic (chance)
constraints in the form

X =
{
x ∈ Rn : Pr

(
Ci(x, ξ) ≤ 0

)
≥ 1− αi, i = 1, ..., p

}
, (5.14)

where αi ∈ (0, 1) and Ci : Rn × Ξ → R, i = 1, ..., p, are Carathéodory functions. Of
course, we have that2

Pr
(
Ci(x, ξ) ≤ 0

)
= E

[
1(−∞,0]

(
Ci(x, ξ)

)]
. (5.15)

Consequently, we can write the above set X in the form (5.11)–(5.12) with X0 := Rn and

Gi(x, ξ) := 1− αi − 1(−∞,0]

(
Ci(x, ξ)

)
. (5.16)

The corresponding set XN can be written as

XN =

x ∈ Rn :
1

N

N∑
j=1

1(−∞,0]

(
Ci(x, ξ

j)
)
≥ 1− αi, i = 1, ..., p

 . (5.17)

Note that
∑N
j=1 1(−∞,0]

(
Ci(x, ξ

j)
)
, in the above formula, counts the number of

times that the event “Ci(x, ξ
j) ≤ 0”, j = 1, ..., N , happens. The additional difficulty here

is that the (step) function 1(−∞,0](t) is discontinuous at t = 0. Nevertheless, suppose that
the sample is iid and for every x in a neighborhood of the set X and i = 1, ..., p, the event
“Ci(x, ξ) = 0” happens with probability zero, and hence Gi(·, ξ) is continuous at x for
a.e. ξ. By Theorem 7.53 this implies that the expectation function gi(x) is continuous and
ĝiN (x) converge uniformly w.p.1 on compact neighborhoods to gi(x), and hence condition
(a) of Theorem 5.5 holds. Condition (b) could be verified by ad hoc methods.

Remark 9. As it was pointed out in the above Remark 8, it is possible to use different,
independent of each other, random samples ξi1, ..., ξiNi , possibly of different sample sizes
Ni, i = 1, ..., p, for constructing the corresponding SAA functions. That is, constraints
Pr
(
Ci(x, ξ) > 0

)
≤ αi are approximated by

1

Ni

Ni∑
j=1

1(0,∞)

(
Ci(x, ξ

ij)
)
≤ αi, i = 1, ..., p. (5.18)

From the point of view of reducing variability of the respective SAA estimators it could be
preferable to use this approach of independent, rather than the same, samples.

2Recall that 1(−∞,0](t) = 1 if t ≤ 0, and 1(−∞,0](t) = 0 if t > 0.
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5.1.2 Asymptotics of the SAA Optimal Value

Consistency of the SAA estimators gives a certain assurance that the error of the estima-
tion approaches zero in the limit as the sample size grows to infinity. Although important
conceptually, this does not give any indication of the magnitude of the error for a given
sample. Suppose for the moment that the sample is iid and let us fix a point x ∈ X . Then
we have that the sample average estimator f̂N (x), of f(x), is unbiased and has variance
σ2(x)/N , where σ2(x) := Var [F (x, ξ)] is supposed to be finite. Moreover, by the Central
Limit Theorem (CLT) we have that

N1/2
[
f̂N (x)− f(x)

]
D→ Yx, (5.19)

where “
D→ ” denotes convergence in distribution and Yx has a normal distribution with

mean 0 and variance σ2(x), written Yx ∼ N
(
0, σ2(x)

)
. That is, f̂N (x) has asymptotically

normal distribution, i.e., for large N , f̂N (x) has approximately normal distribution with
mean f(x) and variance σ2(x)/N .

This leads to the following (approximate) 100(1−α)% confidence interval for f(x):[
f̂N (x)−

zα/2σ̂(x)
√
N

, f̂N (x) +
zα/2σ̂(x)
√
N

]
, (5.20)

where zα/2 := Φ−1(1− α/2) and3

σ̂2(x) :=
1

N − 1

N∑
j=1

[
F (x, ξj)− f̂N (x)

]2
(5.21)

is the sample variance estimate of σ2(x). That is, the error of estimation of f(x) is (stochas-
tically) of order Op(N−1/2).

Consider now the optimal value ϑ̂N of the SAA problem (5.2). Clearly we have that
for any x′ ∈ X the inequality f̂N (x′) ≥ infx∈X f̂N (x) holds. By taking the expected value
of both sides of this inequality and minimizing the left hand side over all x′ ∈ X we obtain

inf
x∈X

E
[
f̂N (x)

]
≥ E

[
inf
x∈X

f̂N (x)

]
. (5.22)

Note that the inequality (5.22) holds even if f(x) = +∞ or f(x) = −∞ for some x ∈ X .
Since E[f̂N (x)] = f(x), it follows that ϑ∗ ≥ E[ϑ̂N ]. In fact, typically, E[ϑ̂N ] is strictly
less than ϑ∗, i.e., ϑ̂N is a downwards biased estimator of ϑ∗. As the following result shows
this bias decreases monotonically with increase of the sample size N .

Proposition 5.6. Let ϑ̂N be the optimal value of the SAA problem (5.2), and suppose that
the sample is iid. Then E[ϑ̂N ] ≤ E[ϑ̂N+1] ≤ ϑ∗ for any N ∈ N.

3Here Φ(·) denotes the cdf of the standard normal distribution. For example, to 95% confidence intervals
corresponds z0.025 = 1.96.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 184 — #196 i
i

i
i

i
i

184 Chapter 5. Statistical Inference

Proof. It was already shown above that E[ϑ̂N ] ≤ ϑ∗ for any N ∈ N. We can write

f̂N+1(x) =
1

N + 1

N+1∑
i=1

 1

N

∑
j 6=i

F (x, ξj)

 .
Moreover, since the sample is iid we have

E[ϑ̂N+1] = E
[
infx∈X f̂N+1(x)

]
= E

[
infx∈X

1
N+1

∑N+1
i=1

(
1
N

∑
j 6=i F (x, ξj)

)]
≥ E

[
1

N+1

∑N+1
i=1

(
infx∈X

1
N

∑
j 6=i F (x, ξj)

)]
= 1

N+1

∑N+1
i=1 E

[
infx∈X

1
N

∑
j 6=i F (x, ξj)

]
= 1

N+1

∑N+1
i=1 E[ϑ̂N ] = E[ϑ̂N ],

which completes the proof.

First Order Asymptotics of the SAA Optimal Value

We use the following assumptions about the integrand F :

(A1) For some point x̃ ∈ X the expectation E[F (x̃, ξ)2] is finite.

(A2) There exists a measurable function C : Ξ→ R+ such that E[C(ξ)2] is finite and

|F (x, ξ)− F (x′, ξ)| ≤ C(ξ)‖x− x′‖, (5.23)

for all x, x′ ∈ X and a.e. ξ ∈ Ξ.

The above assumptions imply that the expected value f(x) and variance σ2(x) are finite
valued for all x ∈ X . Moreover, it follows from (5.23) that

|f(x)− f(x′)| ≤ κ‖x− x′‖, ∀x, x′ ∈ X ,

where κ := E[C(ξ)], and hence f(x) is Lipschitz continuous on X . If X is compact, we
have then that the set S, of minimizers of f(x) over X , is nonempty.

Let Yx be random variables defined in (5.19). These variables depend on x ∈ X and
we also use notation Y (x) = Yx. By the (multivariate) CLT we have that for any finite
set {x1, ..., xm} ⊂ X , the random vector (Y (x1), ..., Y (xm)) has a multivariate normal
distribution with zero mean and the same covariance matrix as the covariance matrix of
(F (x1, ξ), ..., F (xm, ξ)). Moreover, by assumptions (A1) and (A2), compactness of X and
since the sample is iid, we have that N1/2(f̂N − f) converges in distribution to Y viewed
as a random element4 of C(X ). This is a so-called functional CLT (see, e.g., Araujo and
Giné [4, Corollary 7.17]).

4Recall that C(X ) denotes the space of continuous functions equipped with the sup-norm. A random element
of C(X ) is a mapping Y : Ω→ C(X ) from a probability space (Ω,F , P ) into C(X ) which is measurable with
respect to the Borel sigma algebra of C(X ), i.e., Y (x) = Y (x, ω) can be viewed as a random function.
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Theorem 5.7. Let ϑ̂N be the optimal value of the SAA problem (5.2). Suppose that the
sample is iid, the set X is compact and assumptions (A1) and (A2) are satisfied. Then the
following holds:

ϑ̂N = inf
x∈S

f̂N (x) + op(N
−1/2), (5.24)

N1/2
(
ϑ̂N − ϑ∗

)
D→ inf

x∈S
Y (x). (5.25)

If, moreover, S = {x̄} is a singleton, then

N1/2
(
ϑ̂N − ϑ∗

)
D→ N (0, σ2(x̄)). (5.26)

Proof. Proof is based on the functional CLT and Delta Theorem (Theorem 7.67). Con-
sider Banach space C(X ) of continuous functions ψ : X → R equipped with the sup-
norm ‖ψ‖ := supx∈X |ψ(x)|. Define the min-value function V (ψ) := infx∈X ψ(x).
Since X is compact, the function V : C(X ) → R is real valued and measurable (with
respect to the Borel sigma algebra of C(X )). Moreover, it is not difficult to see that
|V (ψ1)− V (ψ2)| ≤ ‖ψ1 − ψ2‖ for any ψ1, ψ2 ∈ C(X ), i.e., V (·) is Lipschitz continuous
with Lipschitz constant one. By Danskin Theorem (Theorem 7.25), V (·) is directionally
differentiable at any µ ∈ C(X ) and

V ′µ(δ) = inf
x∈X̄ (µ)

δ(x), ∀δ ∈ C(X ), (5.27)

where
X̄ (µ) := argmin

x∈X
µ(x).

Since V (·) is Lipschitz continuous, directional differentiability in the Hadamard sense fol-
lows (see Proposition 7.65). As it was discussed above, we also have here under assump-
tions (A1) and (A2) and since the sample is iid thatN1/2(f̂N−f) converges in distribution
to the random element Y of C(X ). Noting that ϑ̂N = V (f̂N ), ϑ∗ = V (f) and X̄(f) = S,
and by applying Delta Theorem to the min-function V (·) at µ := f and using (5.27) we
obtain (5.25) and that

ϑ̂N − ϑ∗ = inf
x∈S

[
f̂N (x)− f(x)

]
+ op(N

−1/2). (5.28)

Since f(x) = ϑ∗ for any x ∈ S , we have that assertions (5.24) and (5.28) are equivalent.
Finally, (5.26) follows from (5.25).

Under mild additional conditions (see Remark 57 in section 7.2.8 on page 470) it
follows from (5.25) that N1/2E

[
ϑ̂N − ϑ∗

]
tends to E

[
infx∈S Y (x)

]
as N →∞, that is

E[ϑ̂N ]− ϑ∗ = N−1/2E
[

inf
x∈S

Y (x)

]
+ o(N−1/2). (5.29)

In particular, if S = {x̄} is a singleton, then by (5.26) the SAA optimal value ϑ̂N has
asymptotically normal distribution and, since E[Y (x̄)] = 0, we obtain that in this case
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the bias E[ϑ̂N ] − ϑ∗ is of order o(N−1/2). On the other hand, if the true problem has
more than one optimal solution, then the right hand side of (5.25) is given by the mini-
mum of a number of random variables. Although each Y (x) has mean zero, their mini-
mum ‘ infx∈S Y (x)’ typically has a negative mean if the set S has more than one element.
Therefore, if S is not a singleton, then the bias E[ϑ̂N ] − ϑ∗ typically is strictly less than
zero and is of orderO(N−1/2). Moreover, the bias tends to be bigger the larger the set S is.
For a further discussion of the bias issue see Remark 10 on page 188, of the next section.

5.1.3 Second Order Asymptotics

Formula (5.24) gives a first order expansion of the SAA optimal value ϑ̂N . In this section
we discuss a second order term in an expansion of ϑ̂N . It turns out that the second order
analysis of ϑ̂N is closely related to deriving (first order) asymptotics of optimal solutions
of the SAA problem. We assume in this section that the true (expected value) problem (5.1)
has unique optimal solution x̄ and denote by x̂N an optimal solution of the corresponding
SAA problem. In order to proceed with the second order analysis we need to impose
considerably stronger assumptions.

Our analysis is based on the second order Delta Theorem 7.70 and second order
perturbation analysis of section 7.1.5. As in section 7.1.5 we consider a convex compact
set U ⊂ Rn such that X ⊂ int(U), and work with the space W 1,∞(U) of Lipschitz
continuous functions ψ : U → R equipped with the norm

‖ψ‖1,U := sup
x∈U
|ψ(x)|+ sup

x∈U ′
‖∇ψ(x)‖, (5.30)

where U ′ ⊂ int(U) is the set of points where ψ(·) is differentiable.
We make the following assumptions about the true problem.

(S1) The function f(x) is Lipschitz continuous on U , has unique minimizer x̄ over x ∈ X ,
and is twice continuously differentiable at x̄.

(S2) The set X is second order regular at x̄.

(S3) The quadratic growth condition (7.71) holds at x̄.

Let K be the subset of W 1,∞(U) formed by differentiable at x̄ functions. Note that
the set K forms a closed (in the norm topology) linear subspace of W 1,∞(U). Assumption
(S1) ensures that f ∈ K. In order to ensure that f̂N ∈ K w.p.1, we make the following
assumption.

(S4) Function F (·, ξ) is Lipschitz continuous on U and differentiable at x̄ for a.e. ξ ∈ Ξ.

We view f̂N as a random element of W 1,∞(U), and assume, further, that N1/2(f̂N − f)
converges in distribution to a random element Y of W 1,∞(U).

Consider the min-function V : W 1,∞(U)→ R defined as

V (ψ) := inf
x∈X

ψ(x), ψ ∈W 1,∞(U).
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By Theorem 7.27, under the above assumptions (S1)–(S3), the min-function V (·) is second
order Hadamard directionally differentiable at f tangentially to the set K and we have the
following formula for the second order directional derivative in a direction δ ∈ K:

V ′′f (δ) = inf
h∈C(x̄)

{
2hT∇δ(x̄) + hT∇2f(x̄)h− s

(
−∇f(x̄), T 2

X (x̄, h)
)}
. (5.31)

Here C(x̄) is the critical cone of the true problem, T 2
X (x̄, h) is the second order tangent set

to X at x̄ and s(·, A) denotes the support function of set A (see page 475 for the definition
of second order directional derivatives).

Moreover, suppose that the set X is given in the form

X := {x ∈ Rn : G(x) ∈ K}, (5.32)

where G : Rn → Rm is a twice continuously differentiable mapping and K ⊂ Rm is a
closed convex cone. Then, under Robinson constraint qualification, the optimal value of
the right hand side of (5.31) can be written in a dual form (compare with (7.89)), which
results in the following formula for the second order directional derivative in a direction
δ ∈ K:

V ′′f (δ) = inf
h∈C(x̄)

sup
λ∈Λ(x̄)

{
2hT∇δ(x̄) + hT∇2

xxL(x̄, λ)h− s
(
λ,T(h)

)}
. (5.33)

Here
T(h) := T 2

K

(
G(x̄), [∇G(x̄)]h

)
, (5.34)

and L(x, λ) is the Lagrangian and Λ(x̄) is the set of Lagrange multipliers of the true prob-
lem.

Theorem 5.8. Suppose that the assumptions (S1)–(S4) hold and N1/2(f̂N − f) converges
in distribution to a random element Y of W 1,∞(U). Then

ϑ̂N = f̂N (x̄) + 1
2
V ′′f (f̂N − f) + op(N

−1), (5.35)

and
N
[
ϑ̂N − f̂N (x̄)

] D→ 1
2
V ′′f (Y ). (5.36)

Moreover, suppose that for every δ ∈ K the problem in the right hand side of (5.31)
has unique optimal solution h̄ = h̄(δ). Then

N1/2
(
x̂N − x̄

) D→ h̄(Y ). (5.37)

Proof. By the second order Delta Theorem 7.70 we have that

ϑ̂N = ϑ∗ + V ′f (f̂N − f) + 1
2
V ′′f (f̂N − f) + op(N

−1),

and
N
[
ϑ̂N − ϑ∗ − V ′f (f̂N − f)

] D→ 1
2
V ′′f (Y ).
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We also have (compare with formula (5.27)) that

V ′f (f̂N − f) = f̂N (x̄)− f(x̄) = f̂N (x̄)− ϑ∗,

and hence (5.35) and (5.36) follow.
Now consider a (measurable) mapping x : W 1,∞(U)→ Rn, such that

x(ψ) ∈ arg min
x∈X

ψ(x), ψ ∈W 1,∞(U).

We have that x(f) = x̄ and by equation (7.87) of Theorem 7.27, we have that x(·) is
Hadamard directionally differentiable at f tangentially to K, and for δ ∈ K the directional
derivative x′(f, δ) is equal to the optimal solution in the right hand side of (5.31), provided
that it is unique. By applying Delta Theorem 7.69 this completes the proof of (5.37).

One of the difficulties in applying the above theorem is verification of convergence
in distribution of N1/2(f̂N − f) in the space W 1,∞(X ). Actually it could be easier to
prove asymptotic results (5.35) – (5.37) by direct methods. Note that formulas (5.31) and
(5.33), for the second order directional derivatives V ′′f (f̂N−f), involve statistical properties
of f̂N (x) only at the (fixed) point x̄. Note also that by the (finite dimensional) CLT we
have that N1/2

[
∇f̂N (x̄) − ∇f(x̄)

]
converges in distribution to normal N (0, Σ) with the

covariance matrix

Σ = E
[(
∇F (x̄, ξ)−∇f(x̄)

)(
∇F (x̄, ξ)−∇f(x̄)

)T]
, (5.38)

provided that this covariance matrix is well defined and E[∇F (x̄, ξ)] = ∇f(x̄), i.e., the
differentiation and expectation operators can be interchanged (see Theorem 7.49).

Let Z be a random vector having normal distribution, Z ∼ N (0, Σ), with covariance
matrixΣ defined in (5.38), and let the set X be given in the form (5.32). Then by the above
discussion and formula (5.33), we have that under appropriate regularity conditions,

N
[
ϑ̂N − f̂N (x̄)

] D→ 1
2
v(Z), (5.39)

where v(Z) is the optimal value of the problem:

Min
h∈C(x̄)

sup
λ∈Λ(x̄)

{
2hTZ + hT∇2

xxL(x̄, λ)h− s
(
λ,T(h)

)}
, (5.40)

with T(h) being the second order tangent set defined in (5.34). Moreover, if for all Z
problem (5.40) possesses unique optimal solution h̄ = h(Z), then

N1/2
(
x̂N − x̄

) D→ h(Z). (5.41)

Recall also that if the cone K is polyhedral, then the curvature term s
(
λ,T(h)

)
vanishes.

Remark 10. Note that E
[
f̂N (x̄)

]
= f(x̄) = ϑ∗. Therefore, under the respective regularity

conditions, in particular under the assumption that the true problem has unique optimal
solution x̄, we have by (5.39) that the expected value of the term 1

2
N−1v(Z) can be viewed
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as the asymptotic bias of ϑ̂N . This asymptotic bias is of order O(N−1). This can be
compared with formula (5.29) for the asymptotic bias of order O(N−1/2) when the set of
optimal solutions of the true problem is not a singleton. Note also that v(·) is nonpositive;
in order to see that just take h = 0 in (5.40).

As an example, consider the case where the set X is defined by a finite number of
constraints:

X := {x ∈ Rn : gi(x) = 0, i = 1, ..., q, gi(x) ≤ 0, i = q + 1, ..., p} , (5.42)

with the functions gi(x), i = 1, ..., p, being twice continuously differentiable. This is a
particular form of (5.32) with G(x) := (g1(x), ..., gp(x)) and K := {0q} × Rp−q− . Denote

I(x̄) := {i : gi(x̄) = 0, i = q + 1, ..., p}

the index set of active at x̄ inequality constraints. Suppose that the linear independence
constraint qualification (LICQ) holds at x̄, i.e., the gradient vectors∇gi(x̄), i ∈ {1, ..., q}∪
I(x̄), are linearly independent. Then the corresponding set of Lagrange multipliers is a
singleton, Λ(x̄) = {λ̄}. In that case

C(x̄) =
{
h : hT∇gi(x̄) = 0, i ∈ {1, ..., q} ∪ I+(λ̄), hT∇gi(x̄) ≤ 0, i ∈ I0(λ̄)

}
,

where

I0(λ̄) :=
{
i ∈ I(x̄) : λ̄i = 0

}
and I+(λ̄) :=

{
i ∈ I(x̄) : λ̄i > 0

}
.

Consequently problem (5.40) takes the form

Min
h∈Rn

2hTZ + hT∇2
xxL(x̄, λ̄)h

s.t. hT∇gi(x̄) = 0, i ∈ {1, ..., q} ∪ I+(λ̄), hT∇gi(x̄) ≤ 0, i ∈ I0(λ̄).
(5.43)

This is a quadratic programming problem. The linear independence constraint qualification
implies that problem (5.43) has a unique vector α(Z) of Lagrange multipliers, and that it
has a unique optimal solution h(Z) if the Hessian matrix H := ∇2

xxL(x̄, λ̄) is positive
definite over the linear space defined by the first q + |I+(λ̄)| (equality) linear constraints
in (5.43).

If, furthermore, the strict complementarity condition holds, i.e., λ̄i > 0 for all i ∈
I+(λ̄), or in other words I0(λ̄) = ∅ , then h = h(Z) and α = α(Z) can be obtained as
solutions of the following system of linear equations[

H A
AT 0

] [
h
α

]
=

[
Z
0

]
. (5.44)

Here H = ∇2
xxL(x̄, λ̄) and A is the n × (q + |I(x̄)|) matrix whose columns are formed

by vectors∇gi(x̄), i ∈ {1, ..., q} ∪ I(x̄). Then

N1/2

[
x̂N − x̄
λ̂N − λ̄

]
D→ N

(
0, J−1ΥJ−1

)
, (5.45)
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where

J :=

[
H A
AT 0

]
and Υ :=

[
Σ 0
0 0

]
,

provided that the matrix J is nonsingular.
Under the linear independence constraint qualification and strict complementarity

condition, we have by the second order necessary conditions that the Hessian matrix H =
∇2
xxL(x̄, λ̄) is positive semidefinite over the linear space {h : ATh = 0}. Note that this

linear space coincides here with the critical cone C(x̄). It follows that the matrix J is
nonsingular iff H is positive definite over this linear space. That is, here the nonsingularity
of the matrix J is equivalent to the second order sufficient conditions at x̄.

Remark 11. As it was mentioned earlier, the curvature term s
(
λ,T(h)

)
in the auxiliary

problem (5.40) vanishes if the cone K is polyhedral. In particular, this happens if K =
{0q}×Rp−q− , and hence the feasible set X is given in the form (5.42). This curvature term
can be also written in an explicit form for some nonpolyhedral cones; in particular for the
cone of positive semidefinite matrices (see [26, section 5.3.6]).

5.1.4 Minimax Stochastic Programs
Sometimes it is worthwhile to consider minimax stochastic programs of the form

Min
x∈X

sup
y∈Y

{
f(x, y) := E[F (x, y, ξ)]

}
, (5.46)

whereX ⊂ Rn and Y ⊂ Rm are closed sets, F : X×Y×Ξ→ R and ξ = ξ(ω) is a random
vector whose probability distribution is supported on set Ξ ⊂ Rd. The corresponding SAA
problem is obtained by using the sample average as an approximation of the expectation
f(x, y), that is

Min
x∈X

sup
y∈Y

f̂N (x, y) :=
1

N

N∑
j=1

F (x, y, ξj)

 . (5.47)

As before denote by ϑ∗ and ϑ̂N the optimal values of (5.46) and (5.47), respectively,
and by Sx ⊂ X and Ŝx,N ⊂ X the respective sets of optimal solutions. Recall that
F (x, y, ξ) is said to be a Carathéodory function, if F (x, y, ξ(·)) is measurable for every
(x, y) and F (·, ·, ξ) is continuous for a.e. ξ ∈ Ξ. We make the following assumptions.

(A′1) F (x, y, ξ) is a Carathéodory function.

(A′2) The sets X and Y are nonempty and compact.

(A′3) F (x, y, ξ) is dominated by an integrable function, i.e., there is an open set N ⊂
Rn+m, containing the set X × Y , and an integrable, with respect to the probability
distribution of the random vector ξ, function h(ξ) such that |F (x, y, ξ)| ≤ h(ξ) for
all (x, y) ∈ N and a.e. ξ ∈ Ξ.

By Theorem 7.48 it follows that the expected value function f(x, y) is continuous on
X × Y . Since Y is compact, this implies that the max-function

φ(x) := sup
y∈Y

f(x, y)
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is continuous onX . It also follows that the function f̂N (x, y) = f̂N (x, y, ω) is a Carathéodory
function. Consequently, the sample average max-function

φ̂N (x, ω) := sup
y∈Y

f̂N (x, y, ω)

is a Carathéodory function. Since ϑ̂N = ϑ̂N (ω) is given by the minimum of the Carathéodory
function φ̂N (x, ω), it follows that it is measurable.

Theorem 5.9. Suppose that assumptions (A′1) - (A′3) hold and the sample is iid. Then
ϑ̂N → ϑ∗ and D(Ŝx,N ,Sx)→ 0 w.p.1 as N →∞.

Proof. By Theorem 7.53 we have that, under the specified assumptions, f̂N (x, y) converges
to f(x, y) w.p.1 uniformly on X × Y . That is, ∆N → 0 w.p.1 as N →∞, where

∆N := sup
(x,y)∈X×Y

∣∣∣f̂N (x, y)− f(x, y)
∣∣∣ .

Consider φ̂N (x) := supy∈Y f̂N (x, y) and φ(x) := supy∈Y f(x, y). We have that

sup
x∈X

∣∣∣φ̂N (x)− φ(x)
∣∣∣ ≤ ∆N ,

and hence
∣∣ϑ̂N − ϑ∗∣∣ ≤ ∆N . It follows that ϑ̂N → ϑ∗ w.p.1.

The function φ(x) is continuous and φ̂N (x) is continuous w.p.1. Consequently, the
set Sx is nonempty and Ŝx,N is nonempty w.p.1. Now to prove that D(Ŝx,N ,Sx) → 0
w.p.1, one can proceed exactly in the same way as in the proof of Theorem 5.3.

We discuss now asymptotics of ϑ̂N in the convex-concave case. We make the fol-
lowing additional assumptions.

(A′4) The sets X and Y are convex, and for a.e. ξ ∈ Ξ the function F (·, ·, ξ) is convex-
concave on X × Y , i.e., the function F (·, y, ξ) is convex on X for every y ∈ Y , and
the function F (x, ·, ξ) is concave on Y for every x ∈ X .

It follows that the expected value function f(x, y) is convex concave and continuous
on X × Y . Consequently, problem (5.46) and its dual

Max
y∈Y

inf
x∈X

f(x, y) (5.48)

have nonempty and bounded sets of optimal solutions Sx ⊂ X and Sy ⊂ Y , respectively.
Moreover, the optimal values of problems (5.46) and (5.48) are equal to each other and
Sx × Sy forms the set of saddle points of these problems.

(A′5) For some point (x, y) ∈ X × Y , the expectation E[F (x, y, ξ)2] is finite, and there
exists a measurable function C : Ξ → R+ such that E[C(ξ)2] is finite and the
inequality

|F (x, y, ξ)− F (x′, y′, ξ)| ≤ C(ξ)
(
‖x− x′‖+ ‖y − y′‖

)
(5.49)

holds for all (x, y), (x′, y′) ∈ X × Y and a.e. ξ ∈ Ξ.
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The above assumption implies that f(x, y) is Lipschitz continuous on X × Y with
Lipschitz constant κ = E[C(ξ)].

Theorem 5.10. Consider the minimax stochastic problem (5.46) and the SAA problem
(5.47) based on an iid sample. Suppose that assumptions (A′1) - (A′2) and (A′4) - (A′5)
hold. Then

ϑ̂N = inf
x∈Sx

sup
y∈Sy

f̂N (x, y) + op(N
−1/2). (5.50)

Moreover, if the sets Sx = {x̄} and Sy = {ȳ} are singletons, then N1/2(ϑ̂N − ϑ∗) con-
verges in distribution to normal with zero mean and variance σ2 = Var[F (x̄, ȳ, ξ)].

Proof. Consider the space C(X ,Y), of continuous functions ψ : X × Y → R equipped
with the sup-norm ‖ψ‖ = supx∈X ,y∈Y |ψ(x, y)|, and setK ⊂ C(X ,Y) formed by convex-
concave on X × Y functions. It is not difficult to see that the set K is a closed (in the
norm topology of C(X ,Y)) and convex cone. Consider the optimal value function V :
C(X ,Y)→ R defined as

V (ψ) := inf
x∈X

sup
y∈Y

ψ(x, y), for ψ ∈ C(X ,Y). (5.51)

Recall that it is said that V (·) is Hadamard directionally differentiable at f ∈ K, tangen-
tially to the set K, if the following limit exists for any γ ∈ TK(f):

V ′f (γ) := lim
t↓0,η→γ
f+tη∈K

V (f + tη)− V (f)

t
. (5.52)

By Theorem 7.28 we have that the optimal value function V (·) is Hadamard directionally
differentiable at f tangentially to the set K and

V ′f (γ) = inf
x∈Sx

sup
y∈Sy

γ(x, y), (5.53)

for any γ ∈ TK(f).
By the assumption (A′5) we have that N1/2(f̂N − f), considered as a sequence of

random elements of C(X,Y ), converges in distribution to a random element of C(X ,Y).
Then by noting that ϑ∗ = f(x∗, y∗) for any (x∗, y∗) ∈ Sx × Sy and using Hadamard
directional differentiability of the optimal value function, tangentially to the setK, together
with formula (5.53) and a version of the Delta method given in Theorem 7.69, we can
complete the proof.

Suppose now that the feasible set X is defined by constraints in the form (5.11). The
Lagrangian function of the true problem is

L(x, λ) := f(x) +

p∑
i=1

λigi(x).

Suppose also that the problem is convex, that is the set X0 is convex and for all ξ ∈ Ξ the
functions F (·, ξ) and Gi(·, ξ), i = 1, ..., p, are convex. Suppose, further, that the functions
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f(x) and gi(x) are finite valued on a neighborhood of the set S (of optimal solutions of the
true problem) and the Slater condition holds. Then with every optimal solution x̄ ∈ S is
associated a nonempty and bounded set Λ of Lagrange multipliers vectors λ = (λ1, ..., λp)
satisfying the optimality conditions:

x̄ ∈ arg min
x∈X0

L(x, λ), λi ≥ 0 and λigi(x̄) = 0, i = 1, ..., p. (5.54)

The set Λ coincides with the set of optimal solutions of the dual of the true problem, and
therefore is the same for any optimal solution x̄ ∈ S.

Let ϑ̂N be the optimal value of the SAA problem (5.10) with XN given in the form
(5.13). That is, ϑ̂N is the optimal value of the problem

Min
x∈X0

f̂N (x) subject to ĝiN (x) ≤ 0, i = 1, ..., p, (5.55)

with f̂N (x) and ĝiN (x) being the SAA functions of the respective integrands F (x, ξ) and
Gi(x, ξ), i = 1, ..., p. Assume that conditions (A1) and (A2), formulated on page 184,
are satisfied for the integrands F and Gi, i = 1, ..., p, i.e., finiteness of the corresponding
second order moments and the Lipschitz continuity condition of assumption (A2) hold
for each function. It follows that the corresponding expected value functions f(x) and
gi(x) are finite valued and continuous on X . As in Theorem 5.7, we denote by Y (x)
random variables which are normally distributed and have the same covariance structure
as F (x, ξ). We also denote by Yi(x) random variables which are normally distributed and
have the same covariance structure as Gi(x, ξ), i = 1, ..., p.

Theorem 5.11. Let ϑ̂N be the optimal value of the SAA problem (5.55). Suppose that the
sample is iid, the problem is convex and the following conditions are satisfied: (i) the set
S, of optimal solutions of the true problem, is nonempty and bounded, (ii) the functions
f(x) and gi(x) are finite valued on a neighborhood of S , (iii) the Slater condition for the
true problem holds, (iv) the assumptions (A1) and (A2) hold for the integrands F and Gi,
i = 1, ..., p. Then

N1/2
(
ϑ̂N − ϑ∗

)
D→ inf

x∈S
sup
λ∈Λ

[
Y (x) +

p∑
i=1

λiYi(x)

]
. (5.56)

If, moreover, S = {x̄} and Λ = {λ̄} are singletons, then

N1/2
(
ϑ̂N − ϑ∗

)
D→ N (0, σ2), (5.57)

with

σ2 := Var

[
F (x̄, ξ) +

p∑
i=1

λ̄iGi(x̄, ξ)

]
. (5.58)

Proof. Since the problem is convex and the Slater condition (for the true problem) holds,
we have that ϑ∗ is equal to the optimal value of the (Lagrangian) dual

Max
λ≥0

inf
x∈X0

L(x, λ), (5.59)
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and the set of optimal solutions of (5.59) is nonempty and compact and coincides with
the set of Lagrange multipliers Λ. Since the problem is convex and S is nonempty and
bounded, the problem can be considered on a bounded neighborhood of S, i.e., without
loss of generality it can be assumed that the set X is compact. The proof can be now
completed by applying Theorem 5.10.

Remark 12. There are two possible approaches to generating random samples in construc-
tion of SAA problems of the form (5.55) by Monte Carlo sampling techniques. One is to
use the same sample ξ1, ..., ξN for estimating the functions f(x) and gi(x), i = 1, ..., p,
by their SAA counterparts, or to use independent samples, possibly of different sizes, for
each of these functions (see Remark 8 on page 181). The asymptotic results of the above
Theorem 5.11 are for the case of the same sample. The (asymptotic) variance σ2, given
in (5.58), is equal to the sum of the variances of F (x̄, ξ) and λ̄iGi(x̄, ξ), i = 1, ..., p, and
all their covariances. If we use the independent samples construction, then a similar result
holds but without the corresponding covariance terms. Since in the case of the same sample
these covariance terms could be expected to be positive, it would be advantageous to use
the independent, rather than the same, samples approach in order to reduce variability of
the SAA estimates.

5.2 Stochastic Generalized Equations
In this section we discuss the following so-called stochastic generalized equations. Con-
sider a random vector ξ, whose distribution is supported on a set Ξ ⊂ Rd, a mapping
Φ : Rn × Ξ → Rn and a multifunction Γ : Rn ⇒ Rn. Suppose that the expectation
φ(x) := E[Φ(x, ξ)] is well defined and finite valued. We refer to

φ(x) ∈ Γ(x) (5.60)

as true, or expected value, generalized equation and say that a point x̄ ∈ Rn is a solution
of (5.60) if φ(x̄) ∈ Γ(x̄).

The above abstract setting includes the following cases. If Γ(x) = {0} for every
x ∈ Rn, then (5.60) becomes the ordinary equation φ(x) = 0. As another example, let
Γ(·) := NX (·), where X is a nonempty closed convex subset of Rn and NX (x) denotes
the (outwards) normal cone to X at x. Recall that, by the definition, NX (x) = ∅ if x 6∈ X .
In that case x̄ is a solution of (5.60) iff x̄ ∈ X and the following, so-called variational
inequality, holds

(x− x̄)Tφ(x̄) ≤ 0, ∀x ∈ X . (5.61)

Since the mapping φ(x) is given in the form of the expectation, we refer to such variational
inequalities as stochastic variational inequalities. Note that ifX = Rn, thenNX (x) = {0}
for any x ∈ Rn, and hence in that case the above variational inequality is reduced to
the equation φ(x) = 0. Let us also remark that if Φ(x, ξ) := −∇xF (x, ξ), for some
real valued function F (x, ξ), and the interchangeability formula E[∇xF (x, ξ)] = ∇f(x)
holds, i.e., φ(x) = −∇f(x) where f(x) := E[F (x, ξ)], then (5.61) represents first order
necessary, and if f(x) is convex, sufficient conditions for x̄ to be an optimal solution for
the optimization problem (5.1).
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If the feasible set X of the optimization problem (5.1) is defined by constraints in the
form

X := {x ∈ Rn : gi(x) = 0, i = 1, ..., q, gi(x) ≤ 0, i = q + 1, ..., p} , (5.62)

with gi(x) := E[Gi(x, ξ)], i = 1, ..., p, then the corresponding first-order (KKT) optimality
conditions can be written in a form of variational inequality. That is, let z := (x, λ) ∈ Rn+p

and
L(z, ξ) := F (x, ξ) +

∑p
i=1 λiGi(x, ξ),

`(z) := E[L(z, ξ)] = f(x) +
∑p
i=1 λigi(x)

be the corresponding Lagrangians. Define

Φ(z, ξ) :=


∇xL(z, ξ)
G1(x, ξ)
· · ·

Gp(x, ξ)

 and Γ(z) := NK(z), (5.63)

where K := Rn × Rq × Rp−q+ ⊂ Rn+p. Note that if z ∈ K, then

NK(z) =

{
(v, γ) ∈ Rn+p :

v = 0 and γi = 0, i = 1, ..., q,
γi = 0, i ∈ I+(λ), γi ≤ 0, i ∈ I0(λ)

}
, (5.64)

where
I0(λ) := {i : λi = 0, i = q + 1, ..., p} ,
I+(λ) := {i : λi > 0, i = q + 1, ..., p} , (5.65)

and NK(z) = ∅ if z 6∈ K. Consequently, assuming that the interchangeability formula
holds, and hence E[∇xL(z, ξ)] = ∇`x(z) = ∇f(x) +

∑p
i=1 λi∇gi(x), we have that

φ(z) := E[Φ(z, ξ)] =


∇x`(z)
g1(x)
· · ·
gp(x)

 (5.66)

and variational inequality φ(z) ∈ NK(z) represents the KKT optimality conditions for the
true optimization problem.

We make the following assumption about the multifunction Γ(x).

(E1) The multifunction Γ(x) is closed, that is, the following holds: if xk → x, yk ∈ Γ(xk)
and yk → y, then y ∈ Γ(x).

The above assumption implies that the multifunction Γ(x) is closed valued, i.e., for any
x ∈ Rn the set Γ(x) is closed. For variational inequalities assumption (E1) always holds,
i.e., the multifunction x 7→ NX (x) is closed.

Now let ξ1, ..., ξN be a random sample of N realizations of the random vector ξ, and
φ̂N (x) := N−1

∑N
j=1 Φ(x, ξj) be the corresponding sample average estimate of φ(x). We

refer to
φ̂N (x) ∈ Γ(x) (5.67)
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as the SAA generalized equation. There are standard numerical algorithms for solving
nonlinear equations which can be applied to (5.67) in the case Γ(x) ≡ {0}, i.e., when (5.67)
is reduced to the ordinary equation φ̂N (x) = 0. There are also numerical procedures for
solving variational inequalities. We are not going to discuss such numerical algorithms but
rather concentrate on statistical properties of solutions of SAA equations. We denote by S
and ŜN the sets of (all) solutions of the true (5.60) and SAA (5.67) generalized equations,
respectively.

5.2.1 Consistency of Solutions of the SAA Generalized
Equations

In this section we discuss convergence properties of the SAA solutions.

Theorem 5.12. Let C be a compact subset of Rn such that S ⊂ C. Suppose that: (i) the
multifunction Γ(x) is closed (assumption (E1)), (ii) the mapping φ(x) is continuous on C,
(iii) w.p.1 for N large enough the set ŜN is nonempty and ŜN ⊂ C, (iv) φ̂N (x) converges
to φ(x) w.p.1 uniformly on C as N →∞. Then D(ŜN ,S)→ 0 w.p.1 as N →∞.

Proof. The above result basically is deterministic in the sense that if we view φ̂N (x) =

φ̂N (x, ω) as defined on a common probability space, then it should be verified for a.e.
ω. Therefore we omit saying “w.p.1”. Consider a sequence x̂N ∈ ŜN . Because of the
assumption (iii), by passing to a subsequence if necessary, we only need to show that if x̂N
converges to a point x∗, then x∗ ∈ S (compare with the proof of Theorem 5.3). Now since
it is assumed that φ(·) is continuous and φ̂N (x) converges to φ(x) uniformly, it follows
that φ̂N (x̂N ) → φ(x∗) (see Proposition 5.1). Since φ̂N (x̂N ) ∈ Γ(x̂N ), it follows by
assumption (E1) that φ(x∗) ∈ Γ(x∗), which completes the proof.

A few remarks about the assumptions involved in the above consistency result are
now in order. By Theorem 7.53 we have that, in the case of iid sampling, the assumptions
(ii) and (iv) of the above proposition are satisfied for any compact set C if the following
assumption holds.

(E2) For every ξ ∈ Ξ the function Φ(·, ξ) is continuous on C and ‖Φ(x, ξ)‖x∈C is domi-
nated by an integrable function.

There are two parts to the assumption (iii) of Theorem 5.12, namely, that the SAA gener-
alized equations do not have a solution which escapes to infinity, and that they possess at
least one solution w.p.1 for N large enough. The first of these assumptions can be often
verified by ad hoc methods. The second assumption is more subtle. We are going to discuss
it next. The following concept of strong regularity is due to Robinson [206].

Definition 5.13. Suppose that the mapping φ(x) is continuously differentiable. We say that
a solution x̄ ∈ S is strongly regular if there exist neighborhoodsN1 andN2 of 0 ∈ Rn and
x̄, respectively, such that for every δ ∈ N1 the following (linearized) generalized equation

δ + φ(x̄) +∇φ(x̄)(x− x̄) ∈ Γ(x) (5.68)
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has a unique solution in N2, denoted x̃ = x̃(δ), and x̃(·) is Lipschitz continuous on N1.

Note that it follows from the above conditions that x̃(0) = x̄. In case Γ(x) ≡ {0},
strong regularity simply means that the n×n Jacobian matrix J := ∇φ(x̄) is invertible, or
in other words nonsingular. Also in the case of variational inequalities, the strong regularity
condition was investigated extensively, we discuss this later.

Let V be a convex compact neighborhood of x̄, i.e., x̄ ∈ int(V). Consider the space
C1(V,Rn) of continuously differentiable mappings ψ : V → Rn equipped with the norm:

‖ψ‖1,V := sup
x∈V
‖φ(x)‖+ sup

x∈V
‖∇φ(x)‖.

The following (deterministic) result is essentially due to Robinson [207].
Suppose that φ(x) is continuously differentiable on V , i.e., φ ∈ C1(V,Rn). Let x̄

be a strongly regular solution of the generalized equation (5.60). Then there exists ε > 0
such that for any u ∈ C1(V,Rn) satisfying ‖u − φ‖1,V ≤ ε, the generalized equation
u(x) ∈ Γ(x) has a unique solution x̂ = x̂(u) in a neighborhood of x̄, such that x̂(·) is
Lipschitz continuous (with respect the norm ‖ · ‖1,V ), and

x̂(u) = x̃
(
u(x̄)− φ(x̄)

)
+ o(‖u− φ‖1,V). (5.69)

Clearly, we have that x̂(φ) = x̄ and x̂
(
φ̂N
)

is a solution, in a neighborhood of x̄, of the
SAA generalized equation provided that ‖φ̂N − φ‖1,V ≤ ε. Therefore, by employing the
above results for the mapping u(·) := φ̂N (·) we immediately obtain the following.

Theorem 5.14. Let x̄ be a strongly regular solution of the true generalized equation (5.60),
and suppose that φ(x) and φ̂N (x) are continuously differentiable in a neighborhood V of
x̄ and ‖φ̂N − φ‖1,V → 0 w.p.1 as N → ∞. Then w.p.1 for N large enough the SAA
generalized equation (5.67) possesses a unique solution x̂N in a neighborhood of x̄, and
x̂N → x̄ w.p.1 as N →∞.

The assumption that ‖φ̂N − φ‖1,V → 0 w.p.1, in the above theorem, means that
φ̂N (x) and ∇φ̂N (x) converge w.p.1 to φ(x) and ∇φ(x), respectively, uniformly on V . By
Theorem 7.53, in the case of iid sampling this is ensured by the following assumption.

(E3) For a.e. ξ the mapping Φ(·, ξ) is continuously differentiable on V , and ‖Φ(x, ξ)‖x∈V
and ‖∇xΦ(x, ξ)‖x∈V are dominated by an integrable function.

Note that the assumption that Φ(·, ξ) is continuously differentiable on a neighborhood of
x̄ is essential in the above analysis. By combining Theorems 5.12 and 5.14 we obtain the
following result.

Theorem 5.15. Let C be a compact subset of Rn and x̄ be a unique in C solution of
the true generalized equation (5.60). Suppose that: (i) the multifunction Γ(x) is closed
(assumption (E1)), (ii) for a.e. ξ the mapping Φ(·, ξ) is continuously differentiable on C,
and ‖Φ(x, ξ)‖x∈C and ‖∇xΦ(x, ξ)‖x∈C are dominated by an integrable function, (iii) the
solution x̄ is strongly regular, (iv) φ̂N (x) and∇φ̂N (x) converge w.p.1 to φ(x) and∇φ(x),
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respectively, uniformly on C. Then w.p.1 for N large enough the SAA generalized equation
possesses unique in C solution x̂N converging to x̄ w.p.1 as N →∞.

Note again that if the sample is iid, then the assumption (iv) in the above theorem is
implied by the assumption (ii) and hence is redundant.

5.2.2 Asymptotics of SAA Generalized Equations Estimators
By using the first order approximation (5.69) it is also possible to derive asymptotics of x̂N .
Suppose for the moment that Γ(x) ≡ {0}. Then strong regularity means that the Jacobian
matrix J := ∇φ(x̄) is nonsingular, and x̃(δ) is the solution of the corresponding linear
equations and hence can be written in the form

x̃(δ) = x̄− J−1δ. (5.70)

By using (5.70) and (5.69) with u(·) := φ̂N (·), we obtain under certain regularity condi-
tions which ensure that the remainder in (5.69) is of order op(N−1/2), that

N1/2(x̂N − x̄) = −J−1YN + op(1), (5.71)

where YN := N1/2
[
φ̂N (x̄)− φ(x̄)

]
. Moreover, in the case of iid sample, we have by

the CLT that YN
D→ N (0, Σ), where Σ is the covariance matrix of the random vector

Φ(x̄, ξ). Consequently, x̂N has asymptotically normal distribution with mean vector x̄ and
the covariance matrix N−1J−1ΣJ−1.

Suppose now that Γ(·) := NX (·), with the set X being nonempty closed convex and
polyhedral, and let x̄ be a strongly regular solution of (5.60). Let x̃(δ) be the (unique)
solution, of the corresponding linearized variational inequality (5.68), in a neighborhood
of x̄. Consider the cone

CX (x̄) :=
{
y ∈ TX (x̄) : yTφ(x̄) = 0

}
, (5.72)

called the critical cone, and the Jacobian matrix J := ∇φ(x̄). Then for all δ sufficiently
close to 0 ∈ Rn, we have that x̃(δ) − x̄ coincides with the solution d̃(δ) of the variational
inequality

δ + Jd ∈ NCX (x̄)(d). (5.73)

Note that the mapping d̃(·) is positively homogeneous, i.e., for any δ ∈ Rn and t ≥ 0,
it follows that d̃(tδ) = td̃(δ). Consequently, under the assumption that the solution x̄
is strongly regular, we obtain by (5.69) that d̃(·) is the directional derivative of x̂(u), at
u = φ, in the Hadamard sense. Therefore, under appropriate regularity conditions ensuring
functional CLT forN1/2(φ̂N−φ) in the space C1(V,Rn), it follows by the Delta Theorem
that

N1/2(x̂N − x̄)
D→ d̃(Y ), (5.74)

where Y ∼ N (0, Σ) and Σ is the covariance matrix of Φ(x̄, ξ). Consequently, x̂N is
asymptotically normal iff the mapping d̃(·) is linear. This, in turn, holds if the cone CX (x̄)
is a linear space.
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In the case Γ(·) := NX (·), with the set X being nonempty closed convex and poly-
hedral, there is a complete characterization of the strong regularity in terms of the so-called
coherent orientation associated with the matrix (mapping) J := ∇φ(x̄) and the critical
cone CX (x̄). The interested reader is referred to [208],[93] for a discussion of this topic.
Let us just remark that if CX (x̄) is a linear subspace of Rn, then the variational inequality
(5.73) can be written in the form

Pδ + PJd = 0, (5.75)

where P denotes the orthogonal projection matrix onto the linear space CX (x̄). Then x̄
is strongly regular iff the matrix (mapping) PJ restricted to the linear space CX (x̄) is
invertible, or in other words nonsingular.

Suppose now that S = {x̄} is such that φ(x̄) belongs to the interior of the set Γ(x̄).
Then, since φ̂N (x̄) converges w.p.1 to φ(x̄), it follows that the event “φ̂N (x̄) ∈ Γ(x̄)”
happens w.p.1 for N large enough. Moreover, by the LD principle (see (7.216)) we have
that this event happens with probability approaching one exponentially fast. Of course,
φ̂N (x̄) ∈ Γ(x̄) means that x̂N = x̄ is a solution of the SAA generalized equation (5.67).
Therefore, in such case one may compute an exact solution of the true problem (5.60),
by solving the SAA problem, with probability approaching one exponentially fast with
increase of the sample size. Note that if Γ(·) := NX (·) and x̄ ∈ S, then φ(x̄) ∈ int Γ(x̄)
iff the critical cone CX (x̄) is equal to {0}. In that case the variational inequality (5.73) has
solution d̄ = 0 for any δ, i.e., d̃(δ) ≡ 0.

The above asymptotics can be applied, in particular, to the generalized equation (vari-
ational inequality) φ(z) ∈ NK(z), where K := Rn × Rq × Rp−q+ and NK(z) and φ(z)
are given in (5.64) and (5.66), respectively. Recall that this variational inequality rep-
resents the KKT optimality conditions of the expected value optimization problem (5.1)
with the feasible set X given in the form (5.62). (We assume that the expectation func-
tions f(x) and gi(x), i = 1, ..., p, are continuously differentiable.) Let x̄ be an op-
timal solution of the (expected value) problem (5.1). It is said that the linear indepen-
dence constraint qualification (LICQ) holds at the point x̄ if the gradient vectors ∇gi(x̄),
i ∈ {i : gi(x̄) = 0, i = 1, ..., p}, (of active at x̄ constraints) are linearly independent.
Under the LICQ, to x̄ corresponds a unique vector λ̄ of Lagrange multipliers, satisfying the
KKT optimality conditions. Let z̄ = (x̄, λ̄) and I0(λ) and I+(λ) be the index sets defined
in (5.65). Then

TK(z̄) = Rn × Rq ×
{
γ ∈ Rp−q : γi ≥ 0, i ∈ I0(λ̄)

}
. (5.76)

In order to simplify notation let us assume that all constraints are active at x̄, i.e., gi(x̄) = 0,
i = 1, ..., p. Since for sufficiently small perturbations of x, inactive constraints remain
inactive, we do not lose generality in the asymptotic analysis by considering only active at
x̄ constraints. Then φ(z̄) = 0, and hence CK(z̄) = TK(z̄).

Assuming, further, that f(x) and gi(x), i = 1, ..., p are twice continuously differen-
tiable, we have that the following second order necessary conditions hold at x̄:

hT∇2
xx`(z̄)h ≥ 0, ∀h ∈ CX (x̄), (5.77)

where

CX (x̄) :=
{
h : hT∇gi(x̄) = 0, i ∈ {1, ..., q} ∪ I+(λ̄), hT∇gi(x̄) ≤ 0, i ∈ I0(λ̄)

}
.
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The corresponding second order sufficient conditions are

hT∇2
xx`(z̄)h > 0, ∀h ∈ CX (x̄) \ {0}. (5.78)

Moreover, z̄ is a strongly regular solution of the corresponding generalized equation iff the
LICQ holds at x̄ and the following (strong) form of second order sufficient conditions is
satisfied:

hT∇2
xx`(z̄)h > 0, ∀h ∈ lin(CX (x̄)) \ {0}, (5.79)

where
lin(CX (x̄)) :=

{
h : hT∇gi(x̄) = 0, i ∈ {1, ..., q} ∪ I+(λ̄)

}
. (5.80)

Under the LICQ, the set defined in the right hand side of (5.80) is, indeed, the linear space
generated by the cone CX (x̄). We also have here

J := ∇φ(z̄) =

[
H A
AT 0

]
, (5.81)

where H := ∇2
xx`(z̄) and A := [∇g1(x̄), ...,∇gp(x̄)].

It is said that the strict complementarity condition holds at x̄ if the index set I0(λ̄) is
empty, i.e., all Lagrange multipliers corresponding to active at x̄ inequality constraints are
strictly positive. We have here that CK(z̄) is a linear space, and hence the SAA estimator
ẑN =

[
x̂N
λ̂N

]
is asymptotically normal, iff the strict complementarity condition holds. If the

strict complementarity condition holds, then CK(z̄) = Rn+p (recall that it is assumed that
all constraints are active at x̄), and hence the normal cone to CK(z̄), at every point, is {0}.
Consequently, the corresponding variational inequality (5.73) takes the form δ + Jd = 0.
Under the strict complementarity condition, z̄ is strongly regular iff the matrix J is nonsin-
gular. It follows that under the above assumptions together with the strict complementarity
condition, the following asymptotics hold (compare with (5.45))

N1/2
(
ẑN − z̄

) D→ N (0, J−1ΣJ−1
)
, (5.82)

where Σ is the covariance matrix of the random vector Φ(z̄, ξ) defined in (5.63).

5.3 Monte Carlo Sampling Methods
In this section we assume that a random sample ξ1, ..., ξN , of N realizations of the ran-
dom vector ξ, can be generated in the computer. In the Monte Carlo sampling method this
is accomplished by generating a sequence U1, U2, ..., of independent random (or rather
pseudorandom) numbers uniformly distributed on the interval [0,1], and then constructing
the sample by an appropriate transformation. In that way we can consider the sequence
ω := {U1, U2, ...} as an element of the probability space equipped with the correspond-
ing product probability measure, and the sample ξj = ξj(ω), i = 1, 2, ..., as a function
of ω. Since computer is a finite deterministic machine, sooner or later the generated sam-
ple will start to repeat itself. However, modern random numbers generators have a very
large cycle period and this method was tested in numerous applications. We view now the
corresponding SAA problem (5.2) as a way of approximating the true problem (5.1) while
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drastically reducing the number of generated scenarios. For a statistical analysis of the con-
structed SAA problems a particular numerical algorithm applied to solve these problems is
irrelevant.

Let us also remark that values of the sample average function f̂N (x) can be computed
in two somewhat different ways. The generated sample ξ1, ..., ξN can be stored in the
computer memory, and called every time a new value (at a different point x) of the sample
average function should be computed. Alternatively, the same sample can be generated by
using a common seed number in an employed pseudorandom numbers generator (this is
why this approach is called the common random number generation method).

The idea of common random number generation is well known in simulation. That is,
suppose that we want to compare values of the objective function at two points x1, x2 ∈ X .
In that case we are interested in the difference f(x1)− f(x2) rather than in the individual
values f(x1) and f(x2). If we use sample average estimates f̂N (x1) and f̂N (x2) based on
independent samples, both of size N , then f̂N (x1) and f̂N (x2) are uncorrelated and

Var
[
f̂N (x1)− f̂N (x2)

]
= Var

[
f̂N (x1)

]
+ Var

[
f̂N (x2)

]
. (5.83)

On the other hand, if we use the same sample for the estimators f̂N (x1) and f̂N (x2), then

Var
[
f̂N (x1)− f̂N (x2)

]
= Var

[
f̂N (x1)

]
+ Var

[
f̂N (x2)

]
− 2Cov

(
f̂N (x1), f̂N (x2)

)
.

(5.84)
In both cases, f̂N (x1)− f̂N (x2) is an unbiased estimator of f(x1)−f(x2). However, in the
case of the same sample the estimators f̂N (x1) and f̂N (x2) tend to be positively correlated
with each other, in which case the variance in (5.84) is smaller than the one in (5.83). The
difference between the independent and the common random number generated estimators
of f(x1) − f(x2) can be especially dramatic when the points x1 and x2 are close to each
other and hence the common random number generated estimators are highly positively
correlated.

By the results of section 5.1.1 we have that, under mild regularity conditions, the op-
timal value and optimal solutions of the SAA problem (5.2) converge w.p.1, as the sample
size increases, to their true counterparts. These results, however, do not give any indication
of quality of solutions for a given sample of size N . In the next section we discuss expo-
nential rates of convergence of optimal and nearly optimal solutions of the SAA problem
(5.2). This allows to give an estimate of the sample size which is required to solve the true
problem with a given accuracy by solving the SAA problem. Although such estimates of
the sample size typically are too conservative for a practical use, they give an insight into
the complexity of solving the true (expected value) problem.

Unless stated otherwise, we assume in this section that the random sample ξ1, ..., ξN

is iid, and make the following assumption:

(M1) The expectation function f(x) is well defined and finite valued for all x ∈ X .

For ε ≥ 0 we denote by

Sε :=
{
x ∈ X : f(x) ≤ ϑ∗ + ε

}
and ŜεN :=

{
x ∈ X : f̂N (x) ≤ ϑ̂N + ε

}
the sets of ε-optimal solutions of the true and the SAA problems, respectively.
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5.3.1 Exponential Rates of Convergence and Sample Size
Estimates in Case of Finite Feasible Set

In this section we assume that the feasible set X is finite, although its cardinality |X | can be
very large. Since X is finite, the sets Sε and ŜεN are nonempty and finite. For parameters
ε ≥ 0 and δ ∈ [0, ε], consider the event {ŜδN ⊂ Sε}. This event means that any δ-optimal
solution of the SAA problem is an ε-optimal solution of the true problem. We estimate now
the probability of that event.

We can write{
ŜδN 6⊂ Sε

}
=

⋃
x∈X\Sε

⋂
y∈X

{
f̂N (x) ≤ f̂N (y) + δ

}
, (5.85)

and hence

Pr
(
ŜδN 6⊂ Sε

)
≤

∑
x∈X\Sε

Pr

⋂
y∈X

{
f̂N (x) ≤ f̂N (y) + δ

} . (5.86)

Consider a mapping u : X \ Sε → X . If the set X \ Sε is empty, then any feasible
point x ∈ X is an ε-optimal solution of the true problem. Therefore we assume that this
set is nonempty. It follows from (5.86 ) that

Pr
(
ŜδN 6⊂ Sε

)
≤

∑
x∈X\Sε

Pr
{
f̂N (x)− f̂N (u(x)) ≤ δ

}
. (5.87)

We assume that the mapping u(·) is chosen in such a way that

f(u(x)) ≤ f(x)− ε∗ for all x ∈ X \ Sε, (5.88)

and for some ε∗ ≥ ε. Note that such a mapping always exists. For example, if we use a
mapping u : X \ Sε → S, then (5.88) holds with

ε∗ := min
x∈X\Sε

f(x)− ϑ∗, (5.89)

and that ε∗ > ε since the set X is finite. Different choices of u(·) give a certain flexibility
to the following derivations.

For each x ∈ X \ Sε, define

Y (x, ξ) := F (u(x), ξ)− F (x, ξ). (5.90)

Note that E[Y (x, ξ)] = f(u(x))− f(x), and hence E[Y (x, ξ)] ≤ −ε∗ for all x ∈ X \ Sε.
The corresponding sample average is

ŶN (x) :=
1

N

N∑
j=1

Y (x, ξj) = f̂N (u(x))− f̂N (x).

By (5.87) we have

Pr
(
ŜδN 6⊂ Sε

)
≤

∑
x∈X\Sε

Pr
{
ŶN (x) ≥ −δ

}
. (5.91)
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Let Ix(·) denote the (large deviations) rate function of the random variable Y (x, ξ). The
inequality (5.91) together with the LD upper bound (7.198) implies

1− Pr
(
ŜδN ⊂ Sε

)
≤

∑
x∈X\Sε

e−NIx(−δ). (5.92)

Note that the above inequality (5.92) is valid for any random sample of size N . Let us
make the following assumption.

(M2) For every x ∈ X \ Sε the moment generating function E
[
etY (x,ξ)

]
, of the random

variable Y (x, ξ) = F (u(x), ξ)−F (x, ξ), is finite valued in a neighborhood of t = 0.

The above assumption (M2) holds, for example, if the support Ξ of ξ is a bounded
subset of Rd, or if Y (x, ·) grows at most linearly and ξ has a distribution from an exponen-
tial family.

Theorem 5.16. Let ε and δ be nonnegative numbers. Then

1− Pr(ŜδN ⊂ Sε) ≤ |X | e−Nη(δ,ε), (5.93)

where
η(δ, ε) := min

x∈X\Sε
Ix(−δ). (5.94)

Moreover, if δ < ε∗ and assumption (M2) holds, then η(δ, ε) > 0.

Proof. The inequality (5.93) is an immediate consequence of the inequality (5.92). If
δ < ε∗, then −δ > −ε∗ ≥ E[Y (x, ξ)], and hence it follows by assumption (M2) that
Ix(−δ) > 0 for every x ∈ X \ Sε (see discussion above equation (7.203)). This implies
that η(δ, ε) > 0.

The following asymptotic result is an immediate consequence of inequality (5.93),

lim sup
N→∞

1

N
ln
[
1− Pr(ŜδN ⊂ Sε)

]
≤ −η(δ, ε). (5.95)

It means that the probability of the event that any δ-optimal solution of the SAA problem
provides an ε-optimal solution of the true problem approaches one exponentially fast as
N →∞. Note that since it is possible to employ a mapping u : X \ Sε → S, with ε∗ > ε
(see (5.89)), this exponential rate of convergence holds even if δ = ε, and in particular if
δ = ε = 0. However, if δ = ε and the difference ε∗ − ε is small, then the constant η(δ, ε)
could be close to zero. Indeed, for δ close to −E[Y (x, ξ)], we can write by (7.203) that

Ix(−δ) ≈
(
− δ − E[Y (x, ξ)]

)2
2σ2

x

≥ (ε∗ − δ)2

2σ2
x

, (5.96)

where
σ2
x := Var[Y (x, ξ)] = Var[F (u(x), ξ)− F (x, ξ)]. (5.97)

Let us make now the following assumption.
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(M3) There is a constant σ > 0 such that for any x ∈ X \ Sε the moment generating
function Mx(t) of the random variable Y (x, ξ)− E[Y (x, ξ)] satisfies

Mx(t) ≤ exp
(
σ2t2/2

)
, ∀t ∈ R. (5.98)

It follows from the above assumption (M3) that

lnE
[
etY (x,ξ)

]
− tE[Y (x, ξ)] = lnMx(t) ≤ σ2t2/2, (5.99)

and hence the rate function Ix(·), of Y (x, ξ), satisfies

Ix(z) ≥ sup
t∈R

{
t(z − E[Y (x, ξ)])− σ2t2/2

}
=

(
z − E[Y (x, ξ)]

)2
2σ2

, ∀z ∈ R. (5.100)

In particular, it follows that

Ix(−δ) ≥
(
− δ − E[Y (x, ξ)]

)2
2σ2

≥ (ε∗ − δ)2

2σ2
≥ (ε− δ)2

2σ2
. (5.101)

Consequently the constant η(δ, ε) satisfies

η(δ, ε) ≥ (ε− δ)2

2σ2
, (5.102)

and hence the bound (5.93) of Theorem 5.16 takes the form

1− Pr(ŜδN ⊂ Sε) ≤ |X | e−N(ε−δ)2/(2σ2). (5.103)

This leads to the following result giving an estimate of the sample size which guarantees
that any δ-optimal solution of the SAA problem is an ε-optimal solution of the true problem
with probability at least 1− α.

Theorem 5.17. Suppose that assumptions (M1) and (M3) hold. Then for ε > 0, 0 ≤ δ < ε
and α ∈ (0, 1), and for the sample size N satisfying

N ≥ 2σ2

(ε− δ)2
ln

(
|X |
α

)
, (5.104)

it follows that
Pr(ŜδN ⊂ Sε) ≥ 1− α. (5.105)

Proof. By setting the right hand side of the estimate (5.103) to≤ α and solving the obtained
inequality, we obtain (5.104).

Remark 13. A key characteristic of the estimate (5.104) is that the required sample size N
depends logarithmically both on the size (cardinality) of the feasible set X and on the tol-
erance probability (significance level) α. The constant σ, postulated in assumption (M3),
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measures, in a sense, variability of a considered problem. If, for some x ∈ X , the ran-
dom variable Y (x, ξ) has a normal distribution with mean µx and variance σ2

x, then its
moment generating function is equal to exp

(
µxt+ σ2

xt
2/2
)
, and hence the moment gener-

ating function Mx(t), specified in assumption (M3), is equal to exp
(
σ2
xt

2/2
)
. In that case

σ2 := maxx∈X\Sε σ
2
x gives the smallest possible value for the corresponding constant in

assumption (M3). If Y (x, ξ) is bounded w.p.1, i.e., there is constant b > 0 such that∣∣Y (x, ξ)− E[Y (x, ξ)]
∣∣ ≤ b for all x ∈ X and a.e. ξ ∈ Ξ,

then by Hoeffding inequality (see Proposition 7.71 and estimate (7.211)) we have that
Mx(t) ≤ exp

(
b2t2/2

)
. In that case we can take σ2 := b2.

In any case for small ε > 0 we have by (5.96) that Ix(−δ) can be approximated from
below by (ε− δ)2/(2σ2

x).

Remark 14. For, say, δ := ε/2, the right hand side of the estimate (5.104) is proportional
to (σ/ε)2. For Monte Carlo sampling based methods such dependence on σ and ε seems
to be unavoidable. In order to see that consider a simple case when the feasible set X
consists of just two elements, i.e., X = {x1, x2}, with f(x2) − f(x1) > ε > 0. By
solving the corresponding SAA problem we make the (correct) decision that x1 is the ε-
optimal solution if f̂N (x2) − f̂N (x1) > 0. If the random variable F (x2, ξ) − F (x1, ξ)

has a normal distribution with mean µ = f(x2) − f(x1) and variance σ2, then f̂N (x2) −
f̂N (x1) ∼ N (µ, σ2/N) and the probability of the event {f̂N (x2) − f̂N (x1) > 0} (i.e., of
the correct decision) is Φ(µ

√
N/σ), where Φ(z) is the cumulative distribution function of

N (0, 1). We have that Φ(ε
√
N/σ) < Φ(µ

√
N/σ), and in order to make the probability

of the incorrect decision less than α we have to take the sample size N > z2
ασ

2/ε2, where
zα := Φ−1(1 − α). Even if F (x2, ξ) − F (x1, ξ) is not normally distributed, the sample
size of order σ2/ε2 could be justified asymptotically, say by applying the CLT. It also could
be mentioned that if F (x2, ξ)− F (x1, ξ) has a normal distribution (with known variance),
then the uniformly most powerful test for testing H0 : µ ≤ 0 versus Ha : µ > 0 is of
the form: “reject H0 if f̂N (x2) − f̂N (x1) is bigger than a specified critical value” (this is
a consequence of the Neyman-Pearson Lemma). In other words, in such situations if we
only have an access to a random sample, then solving the corresponding SAA problem is
in a sense a best way to proceed.

Remark 15. Condition (5.98) of assumption (M3) can be replaced by a more general
condition

Mx(t) ≤ exp (ψ(t)) , ∀t ∈ R, (5.106)

where ψ(t) is a convex even function with ψ(0) = 0. Then, similar to (5.100), we have

Ix(z) ≥ sup
t∈R
{t(z − E[Y (x, ξ)])− ψ(t)} = ψ∗

(
z − E[Y (x, ξ)]

)
, ∀z ∈ R, (5.107)

where ψ∗ is the conjugate of function ψ. Consequently the estimate (5.93) takes the form

1− Pr(ŜδN ⊂ Sε) ≤ |X | e−Nψ
∗(ε−δ), (5.108)

and hence the estimate (5.104) takes the form

N ≥ 1

ψ∗(ε− δ)
ln

(
|X |
α

)
. (5.109)
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For example, instead of assuming that condition (5.98) of assumption (M3) holds for all
t ∈ R, we may assume that this holds for all t in a finite interval [−a, a], where a > 0
is a given constant. That is, we can take ψ(t) := σ2t2/2 if |t| ≤ a, and ψ(t) := +∞
otherwise. In that case ψ∗(z) = z2/(2σ2) for |z| ≤ aσ2, and ψ∗(z) = a|z| − a2σ2/2 for
|z| > aσ2. Consequently the estimate (5.104) of Theorem 5.17 still holds provided that
0 < ε− δ ≤ aσ2.

5.3.2 Sample Size Estimates in General Case
Suppose now that X is a bounded, not necessarily finite, subset of Rn. and that f(x) is
finite valued for all x ∈ X . Then we can proceed in a way similar to the derivations of
section 7.2.10. Let us make the following assumptions.

(M4) For any x′, x ∈ X there exists constant σx′,x > 0 such that the moment generating
function Mx′,x(t) = E

[
etYx′,x

]
, of random variable Yx′,x := [F (x′, ξ) − f(x′)] −

[F (x, ξ)− f(x)], satisfies

Mx′,x(t) ≤ exp
(
σ2
x′,xt

2/2
)
, ∀t ∈ R. (5.110)

(M5) There exists a (measurable) function κ : Ξ → R+ such that its moment generating
function Mκ(t) is finite valued for all t in a neighborhood of zero and

|F (x′, ξ)− F (x, ξ)| ≤ κ(ξ)‖x′ − x‖ (5.111)

for a.e. ξ ∈ Ξ and all x′, x ∈ X .

Of course, it follows from (5.110) that

Mx′,x(t) ≤ exp
(
σ2t2/2

)
, ∀x′, x ∈ X , ∀t ∈ R, (5.112)

where
σ2 := supx′,x∈X σ

2
x′,x. (5.113)

The above assumption (M4) is slightly stronger than assumption (M3), i.e., assumption
(M3) follows from (M4) by taking x′ = u(x). Note that E[Yx′,x] = 0 and recall that if
Yx′,x has a normal distribution, then equality in (5.110) holds with σ2

x′,x := Var[Yx′,x].
The assumption (M5) implies that the expectation E[κ(ξ)] is finite and the function

f(x) is Lipschitz continuous on X with Lipschitz constant L = E[κ(ξ)]. It follows that the
optimal value ϑ∗ of the true problem is finite, provided the set X is bounded (recall that
it was assumed that X is nonempty and closed). Moreover, by Cramér’s Large Deviation
Theorem we have that for any L′ > E[κ(ξ)] there exists a positive constant β = β(L′)
such that

Pr (κ̂N > L′) ≤ exp(−Nβ), (5.114)

where κ̂N := N−1
∑N
j=1 κ(ξj). Note that it follows from (5.111) that w.p.1∣∣f̂N (x′)− f̂N (x)

∣∣ ≤ κ̂N‖x′ − x‖, ∀x′, x ∈ X , (5.115)

i.e., f̂N (·) is Lipschitz continuous on X with Lipschitz constant κ̂N .
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By D := supx,x′∈X ‖x′ − x‖ we denote the diameter of the set X . Of course, the
set X is bounded iff its diameter is finite. We also use notation a ∨ b := max{a, b} for
numbers a, b ∈ R.

Theorem 5.18. Suppose that assumptions (M1) and M(4)–(M5) hold, with the correspond-
ing constant σ2 defined in (5.113) being finite, the set X has a finite diameter D, and let
ε > 0, δ ∈ [0, ε), α ∈ (0, 1), L′ > L := E[κ(ξ)] and β = β(L′) be the corresponding
constants and % > 0 be a constant specified below in (5.118). Then for the sample size N
satisfying

N ≥ 8σ2

(ε− δ)2

[
n ln

(
8%L′D

ε− δ

)
+ ln

(
2

α

)]∨[
β−1 ln

(
2

α

)]
, (5.116)

it follows that
Pr(ŜδN ⊂ Sε) ≥ 1− α. (5.117)

Proof. Let us set ν := (ε − δ)/(4L′), ε′ := ε − L′ν and δ′ := δ + L′ν. Note that
ν > 0, ε′ = 3ε/4 + δ/4 > 0, δ′ = ε/4 + 3δ/4 > 0 and ε′ − δ′ = (ε − δ)/2 > 0. Let
x̄1, ..., x̄M ∈ X be such that for every x ∈ X there exists x̄i, i ∈ {1, ...,M}, such that
‖x− x̄i‖ ≤ ν, i.e., the set X ′ := {x̄1, ..., x̄M} forms a ν-net in X . We can choose this net
in such a way that

M ≤ (%D/ν)
n (5.118)

for a constant % > 0. If the X ′ \Sε′ is empty, then any point of X ′ is an ε′-optimal solution
of the true problem. Otherwise, choose a mapping u : X ′ \ Sε′ → S and consider the sets
S̃ := ∪x∈X ′{u(x)} and X̃ := X ′ ∪ S̃. Note that X̃ ⊂ X and |X̃ | ≤ (2%D/ν)n. Now
let us replace the set X by its subset X̃ . We refer to the obtained true and SAA problems
as respective reduced problems. We have that S̃ ⊂ S, any point of the set S̃ is an optimal
solutions of the true reduced problem and the optimal value of the true reduced problem is
equal to the optimal value of the true (unreduced) problem. By Theorem 5.17 we have that
with probability at least 1−α/2 any δ′-optimal solution of the reduced SAA problem is an
ε′-optimal solutions of the reduced (and hence unreduced) true problem provided that

N ≥ 8σ2

(ε− δ)2

[
n ln

(
8%L′D

ε− δ

)
+ ln

(
2

α

)]
(5.119)

(note that the right hand side of (5.119) is greater than or equal to the estimate

2σ2

(ε′ − δ′)2
ln

(
2|X̃ |
α

)
required by Theorem 5.17). We also have by (5.114) that for

N ≥ β−1 ln

(
2

α

)
, (5.120)

the Lipschitz constant κ̂N of the function f̂N (x) is less than or equal to L′ with probability
at least 1− α/2.
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Now let x̂ be a δ-optimal solution of the (unreduced) SAA problem. Then there is
a point x′ ∈ X̃ such that ‖x̂ − x′‖ ≤ ν, and hence f̂N (x′) ≤ f̂N (x̂) + L′ν, provided
that κ̂N ≤ L′. We also have that the optimal value of the (unreduced) SAA problem is
smaller than or equal to the optimal value of the reduced SAA problem. It follows that x′ is
a δ′-optimal solution of the reduced SAA problem, provided that κ̂N ≤ L′. Consequently,
we have that x′ is an ε′-optimal solution of the true problem with probability at least 1−α
provided that N satisfies both inequalities (5.119) and (5.120). It follows that

f(x̂) ≤ f(x′) + Lν ≤ f(x′) + L′ν ≤ ϑ∗ + ε′ + L′ν = ϑ∗ + ε.

We obtain that if N satisfies both inequalities (5.119) and (5.120), then with probability at
least 1− α any δ-optimal solution of the SAA problem is an ε-optimal solution of the true
problem. The required estimate (5.116) follows.

It is also possible to derive sample size estimates of the form (5.116) directly from
the uniform exponential bounds derived in section 7.2.10, see Theorem 7.75 in particular.

Remark 16. If instead of assuming that condition (5.110), of assumption (M4), holds for
all t ∈ R, we assume that it holds for all t ∈ [−a, a], where a > 0 is a given constant, then
the estimate (5.116) of the above theorem still holds provided that 0 < ε − δ ≤ aσ2 (see
Remark 15 on page 205).

In a sense the above estimate (5.116) of the sample size gives an estimate of complex-
ity of solving the corresponding true problem by the SAA method. Suppose, for instance,
that the true problem represents the first stage of a two-stage stochastic programming prob-
lem. For decomposition type algorithms the total number of iterations, required to solve
the SAA problem, typically is independent of the sample size N (this is an empirical ob-
servation) and the computational effort at every iteration is proportional to N . Anyway
size of the SAA problem grows linearly with increase of N . For δ ∈ [0, ε/2], say, the
right hand side of (5.116) is proportional to σ2/ε2, which suggests complexity of order
σ2/ε2 with respect to the desirable accuracy. This is in a sharp contrast with deterministic
(convex) optimization where complexity usually is bounded in terms of ln(ε−1). It seems
that such dependence on σ and ε is unavoidable for Monte Carlo sampling based methods.
On the other hand, the estimate (5.116) is linear in the dimension n of the first-stage prob-
lem. It also depends linearly on ln(α−1). This means that by increasing confidence, say,
from 99% to 99.99% we need to increase the sample size by the factor of ln 100 ≈ 4.6
at most. Assumption (M4) requires for the probability distribution of the random variable
F (x, ξ)−F (x′, ξ) to have sufficiently light tails. In a sense, the constant σ2 can be viewed
as a bound reflecting variability of the random variables F (x, ξ)−F (x′, ξ), for x, x′ ∈ X .
Naturally, larger variability of the data should result in more difficulty in solving the prob-
lem (see Remark 14 on page 205).

This suggests that by using Monte Carlo sampling techniques one can solve two-
stage stochastic programs with a reasonable accuracy, say with relative accuracy of 1% or
2%, in a reasonable time, provided that: (a) its variability is not too large, (b) it has rela-
tively complete recourse, and (c) the corresponding SAA problem can be solved efficiently.
And, indeed, this was verified in numerical experiments with two-stage problems having a
linear second stage recourse. Of course, the estimate (5.116) of the sample size is far too
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conservative for actual calculations. For practical applications there are techniques which
allow to estimate (statistically) the error of a considered feasible solution x̄ for a chosen
sample size N , we will discuss this in section 5.6.

We are going to discuss next some modifications of the sample size estimate. It
will be convenient in the following estimates to use notation O(1) for a generic constant
independent of the data. In that way we avoid denoting many different constants throughout
the derivations.

(M6) There exists constant λ > 0 such that for any x′, x ∈ X the moment generating
functionMx′,x(t), of random variable Yx′,x := [F (x′, ξ)−f(x′)]−[F (x, ξ)−f(x)],
satisfies

Mx′,x(t) ≤ exp
(
λ2‖x′ − x‖2t2/2

)
, ∀t ∈ R. (5.121)

The above assumption (M6) is a particular case of assumption (M4) with

σ2
x′,x = λ2‖x′ − x‖2,

and we can set the corresponding constant σ2 = λ2D2. The following corollary follows
from Theorem 5.18.

Corollary 5.19. Suppose that assumptions (M1) and (M5)–(M6) hold, the setX has a finite
diameter D, and let ε > 0, δ ∈ [0, ε), α ∈ (0, 1) and L = E[κ(ξ)] be the corresponding
constants. Then for the sample size N satisfying

N ≥ O(1)λ2D2

(ε− δ)2

[
n ln

(
O(1)LD

ε− δ

)
+ ln

(
1

α

)]
, (5.122)

it follows that
Pr(ŜδN ⊂ Sε) ≥ 1− α. (5.123)

For example, suppose that the Lipschitz constant κ(ξ), in the assumption (M5), can
be taken independent of ξ. That is, there exists a constant L > 0 such that

|F (x′, ξ)− F (x, ξ)| ≤ L‖x′ − x‖ (5.124)

for a.e. ξ ∈ Ξ and all x′, x ∈ X . It follows that the expectation function f(x) is also
Lipschitz continuous on X with Lipschitz constant L, and hence the random variable Yx′,x,
of assumption (M6), can be bounded as |Yx′,x| ≤ 2L‖x′ − x‖ w.p.1. Moreover, we have
that E[Yx′,x] = 0, and hence it follows by Hoeffding’s inequality (see the estimate (7.211))
that

Mx′,x(t) ≤ exp
(
2L2‖x′ − x‖2t2

)
, ∀t ∈ R. (5.125)

Consequently we can take λ = 2L in (5.121) and the estimate (5.122) takes the form

N ≥
(
O(1)LD

ε− δ

)2 [
n ln

(
O(1)LD

ε− δ

)
+ ln

(
1

α

)]
. (5.126)

Remark 17. It was assumed in Theorem 5.18 that the set X has a finite diameter, i.e.,
that X is bounded. For convex problems this assumption can be relaxed. Assume that the
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problem is convex, the optimal value ϑ∗ of the true problem is finite and for some a > ε
the set Sa has a finite diameter D∗a (recall that Sa := {x ∈ X : f(x) ≤ ϑ∗ + a}). We
refer here to the respective true and SAA problems, obtained by replacing the feasible set
X by its subset Sa, as reduced problems. Note that the set Sε, of ε-optimal solutions,
of the reduced and original true problems are the same. Let N∗ be an integer satisfying
the inequality (5.116) with D replaced by D∗a. Then, under the assumptions of Theorem
5.18, we have that with probability at least 1 − α all δ-optimal solutions of the reduced
SAA problem are ε-optimal solutions of the true problem. Let us observe now that in
this case the set of δ-optimal solutions of the reduced SAA problem coincides with the
set of δ-optimal solutions of the original SAA problem. Indeed, suppose that the original
SAA problem has a δ-optimal solution x∗ ∈ X \ Sa. Let x̄ ∈ arg minx∈Sa f̂N (x), such
a minimizer does exist since Sa is compact and f̂N (x) is real valued convex and hence
continuous. Then x̄ ∈ Sε and f̂N (x∗) ≤ f̂N (x̄) + δ. By convexity of f̂N (x) it follows that
f̂N (x) ≤ max

{
f̂N (x̄), f̂N (x∗)

}
for all x on the segment joining x̄ and x∗. This segment

has a common point x̂ with the set Sa \ Sε. We obtain that x̂ ∈ Sa \ Sε is a δ-optimal
solutions of the reduced SAA problem, a contradiction.

That is, with such sample size N∗ we are guaranteed with probability at least 1 −
α that any δ-optimal solution of the SAA problem is an ε-optimal solution of the true
problem. Also assumptions (M4) and (M5) should be verified for x, x′ in the set Sa only.

Remark 18. Suppose that the set S, of optimal solutions of the true problem, is nonempty.
Then it follows from the proof of Theorem 5.18 that it suffices in the assumption (M4) to
verify condition (5.110) only for every x ∈ X \Sε′ and x′ := u(x), where u : X \Sε′ → S
and ε′ := 3/4ε + δ/4. If the set S is closed, we can use, for instance, a mapping u(x)
assigning to each x ∈ X \ Sε′ a point of S closest to x. If, moreover, the set S is convex
and the employed norm is strictly convex (e.g., the Euclidean norm), then such mapping
(called metric projection onto S) is defined uniquely. If, moreover, the assumption (M6)
holds , then for such x and x′ we have σ2

x′,x ≤ λ2D̄2, where D̄ := supx∈X\Sε′ dist(x,S).
Suppose, further, that the problem is convex. Then (see Remark 17 on page 209), for any
a > ε, we can use Sa instead of X . Therefore, if the problem is convex and the assumption
(M6) holds, we can write the following estimate of the required sample size:

N ≥
O(1)λ2D̄2

a,ε

ε− δ

[
n ln

(
O(1)LD∗a
ε− δ

)
+ ln

(
1

α

)]
, (5.127)

where D∗a is the diameter of Sa and D̄a,ε := supx∈Sa\Sε′ dist(x,S).

Corollary 5.20. Suppose that assumptions (M1) and (M5)–(M6) hold, the problem is
convex, the “true” optimal set S is nonempty and for some γ ≥ 1, c > 0 and r > 0, the
following growth condition holds

f(x) ≥ ϑ∗ + c [dist(x,S)]γ , ∀x ∈ Sr. (5.128)

Let α ∈ (0, 1), ε ∈ (0, r) and δ ∈ [0, ε/2] and suppose, further, that for a := min{2ε, r}
the diameter D∗a of Sa is finite.
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Then for the sample size N satisfying

N ≥ O(1)λ2

c2/γε2(γ−1)/γ

[
n ln

(
O(1)LD∗a

ε

)
+ ln

(
1

α

)]
, (5.129)

it follows that
Pr(ŜδN ⊂ Sε) ≥ 1− α. (5.130)

Proof. It follows from (5.128) that for any a ≤ r and x ∈ Sa, the inequality dist(x,S) ≤
(a/c)1/γ holds. Consequently, for any ε ∈ (0, r), by taking a := min{2ε, r} and δ ∈
[0, ε/2] we obtain from (5.127) the required sample size estimate (5.129).

Note that since a = min{2ε, r} ≤ r, we have that Sa ⊂ Sr, and if S = {x∗} is a
singleton, then it follows from (5.128) that D∗a ≤ 2(a/c)1/γ . In particular, if γ = 1 and
S = {x∗} is a singleton (in that case it is said that the optimal solution x∗ is sharp), then
D∗a can be bounded by 4c−1ε and hence we obtain the following estimate

N ≥ O(1)c−2λ2
[
n ln

(
O(1)c−1L

)
+ ln

(
α−1

)]
, (5.131)

which does not depend on ε. For γ = 2 condition (5.128) is called the “second-order” or
“quadratic” growth condition. Under the quadratic growth condition the first term in the
right hand side of (5.129) becomes of order c−1ε−1λ2.

The following example shows that the estimate (5.116) of the sample size cannot be
significantly improved for the class of convex stochastic programs.

Example 5.21 Consider the true problem with F (x, ξ) := ‖x‖2m − 2mξTx, where m is
a positive constant, ‖ · ‖ is the Euclidean norm and X := {x ∈ Rn : ‖x‖ ≤ 1}. Suppose,
further, that random vector ξ has normal distribution N (0, σ2In), where σ2 is a positive
constant and In is the n × n identity matrix, i.e., components ξi of ξ are independent and
ξi ∼ N (0, σ2), i = 1, ..., n. It follows that f(x) = ‖x‖2m, and hence for ε ∈ [0, 1] the set
of ε-optimal solutions of the true problem is given by {x : ‖x‖2m ≤ ε}. Now let ξ1, ..., ξN

be an iid random sample of ξ and ξ̄N := (ξ1 + ... + ξN )/N . The corresponding sample
average function is

f̂N (x) = ‖x‖2m − 2m ξ̄ T
Nx, (5.132)

and the optimal solution x̂N of the SAA problem is x̂N = ‖ξ̄N‖−bξ̄N , where

b :=

{
2m−2
2m−1 , if ‖ξ̄N‖ ≤ 1,

1, if ‖ξ̄N‖ > 1.

It follows that, for ε ∈ (0, 1), the optimal solution of the corresponding SAA problem
is an ε-optimal solution of the true problem iff ‖ξ̄N‖ν ≤ ε, where ν := 2m

2m−1 . We
have that ξ̄N ∼ N (0, σ2N−1In), and hence N‖ξ̄N‖2/σ2 has a chi-square distribution
with n degrees of freedom. Consequently, the probability that ‖ξ̄N‖ν > ε is equal to the
probability Pr

(
χ2
n > Nε2/ν/σ2

)
. Moreover, E[χ2

n] = n and the probability Pr(χ2
n > n)

increases and tends to 1/2 as n increases. Consequently, for α ∈ (0, 0.3) and ε ∈ (0, 1),
for example, the sample size N should satisfy

N >
nσ2

ε2/ν
(5.133)
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in order to have the property: “with probability 1 − α an (exact) optimal solution of the
SAA problem is an ε-optimal solution of the true problem”. Compared with (5.116), the
lower bound (5.133) also grows linearly in n and is proportional to σ2/ε2/ν . It remains to
note that the constant ν decreases to one as m increases.

Note that in this example the growth condition (5.128) holds with γ = 2m, and that
the power constant of ε in the estimate (5.133) is in accordance with the estimate (5.129).
Note also that here

[F (x′, ξ)− f(x′)]− [F (x, ξ)− f(x)] = 2mξT(x− x′)

has normal distribution with zero mean and variance 4m2σ2‖x′ − x‖2. Consequently
assumption (M6) holds with λ2 = 4m2σ2.

Of course, in this example the “true” optimal solution is x̄ = 0, and one does not
need sampling in order to solve this problem. Note, however, that the sample average
function f̂N (x) here depends on the random sample only through the data average vector
ξ̄N . Therefore, any numerical procedure based on averaging will need a sample of size N
satisfying the estimate (5.133) in order to produce an ε-optimal solution.

5.3.3 Finite Exponential Convergence

We assume in this section that the problem is convex and the expectation function f(x) is
finite valued.

Definition 5.22. It is said that x∗ ∈ X is a sharp (optimal) solution, of the true problem
(5.1), if there exists constant c > 0 such that

f(x) ≥ f(x∗) + c‖x− x∗‖, ∀x ∈ X . (5.134)

The above condition (5.134) corresponds to the growth condition (5.128) with the
power constant γ = 1 and S = {x∗}. Since f(·) is convex finite valued we have that the
directional derivatives f ′(x∗, h) exist for all h ∈ Rn, f ′(x∗, ·) is (locally Lipschitz) con-
tinuous and formula (7.17) holds. Also by convexity of the set X we have that the tangent
cone TX (x∗), to X at x∗, is given by the topological closure of the corresponding radial
cone. By using these facts it is not difficult to show that condition (5.134) is equivalent to:

f ′(x∗, h) ≥ c‖h‖, ∀h ∈ TX (x∗). (5.135)

Since the above condition (5.135) is local in nature, we have that it actually suffices to
verify (5.134) for all x ∈ X in a neighborhood of x∗.

Theorem 5.23. Suppose that the problem is convex and assumption (M1) holds, and let
x∗ ∈ X be a sharp optimal solution of the true problem. Then ŜN = {x∗} w.p.1 for N
large enough. Suppose, further, that assumption (M4) holds. Then there exist constants
C > 0 and β > 0 such that

1− Pr
(
ŜN = {x∗}

)
≤ Ce−Nβ , (5.136)



i
i

“SPbook” — 2013/12/24 — 8:37 — page 213 — #225 i
i

i
i

i
i

5.4. Quasi-Monte Carlo Methods 213

i.e., probability of the event that “x∗ is the unique optimal solution of the SAA problem”
converges to one exponentially fast with increase of the sample size N .

Proof. By convexity of F (·, ξ) we have that f̂ ′N (x∗, ·) converges to f ′(x∗, ·) w.p.1 uni-
formly on the unit sphere (see the proof of Theorem 7.62). It follows w.p.1 for N large
enough that

f̂ ′N (x∗, h) ≥ (c/2)‖h‖, ∀h ∈ TX (x∗), (5.137)

which implies that x∗ is the sharp optimal solution of the corresponding SAA problem.
Now under the assumptions of convexity and (M1) and (M4), we have that f̂ ′N (x∗, ·)

converges to f ′(x∗, ·) exponentially fast on the unit sphere (see inequality (7.244) of The-
orem 7.77). By taking ε := c/2 in (7.244), we can conclude that (5.136) follows.

It is also possible to consider the growth condition (5.128) with γ = 1 and the set S
not necessarily being a singleton. That is, it is said that the set S of optimal solutions of the
true problem is sharp if for some c > 0 the following condition holds

f(x) ≥ ϑ∗ + c [dist(x,S)], ∀x ∈ X . (5.138)

Of course, if S = {x∗} is a singleton, then conditions (5.134) and (5.138) do coincide. The
set of optimal solutions of the true problem is always nonempty and sharp if its optimal
value is finite and the problem is piecewise linear in the sense that the following conditions
hold:

(P1) The set X is a convex closed polyhedron.

(P2) The support set Ξ = {ξ1, ..., ξK} is finite.

(P3) For every ξ ∈ Ξ the function F (·, ξ) is polyhedral.

The above conditions (P1)–(P3) hold in case of two-stage linear stochastic programming
problems with a finite number of scenarios.

Under conditions (P1)–(P3) the true and SAA problems are polyhedral, and hence
their sets of optimal solutions are polyhedral. By using polyhedral structure and finiteness
of the set Ξ it is possible to show the following result (cf., [251]).

Theorem 5.24. Suppose that conditions (P1)–(P3) hold and the set S is nonempty and
bounded. Then S is polyhedral and there exist constants C > 0 and β > 0 such that

1− Pr
(
ŜN 6= ∅ and ŜN is a face of S

)
≤ Ce−Nβ , (5.139)

i.e., probability of the event that “ŜN is nonempty and forms a face of the set S” converges
to one exponentially fast with increase of the sample size N .

5.4 Quasi-Monte Carlo Methods
In the previous section we discussed an approach to evaluating (approximating) expecta-
tions by employing random samples generated by Monte Carlo techniques. It should be
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understood, however, that when dimension d (of the random data vector ξ) is small, the
Monte Carlo approach may be not a best way to proceed. In this section we give a brief
discussion of the so-called quasi-Monte Carlo methods. It is beyond the scope of this book
to give a detailed discussion of that subject. This section is based on Niederreiter [167], to
which the interested reader is referred for a further reading on that topic. Let us start our
discussion by considering a one dimensional case (of d = 1).

Let ξ be a real valued random variable having cdf H(z) = Pr(ξ ≤ z). Suppose that
we want to evaluate the expectation

E[F (ξ)] =

∫ +∞

−∞
F (z)dH(z), (5.140)

where F : R → R is a measurable function. Let U ∼ U [0, 1], i.e., U is a random variable
uniformly distributed on [0, 1]. Then random variable5 H−1(U) has cdf H(·). Therefore,
by making change of variables we can write the expectation (5.140) as

E[ψ(U)] =

∫ 1

0

ψ(u)du, (5.141)

where ψ(u) := F (H−1(u)).
Evaluation of the above expectation by Monte Carlo method is based on generating an

iid sample U1, ..., UN , of N replications of U ∼ U [0, 1], and consequently approximating
E[ψ(U)] by the average ψ̄N := N−1

∑N
j=1 ψ(U j). Alternatively, one can employ the

Riemann sum approximation ∫ 1

0

ψ(u)du ≈ 1

N

N∑
j=1

ψ(uj) (5.142)

by using some points uj ∈ [(j − 1)/N, j/N ], j = 1, ..., N , e.g., taking midpoints uj :=
(2j − 1)/(2N) of equally spaced partition intervals [(j − 1)/N, j/N ], j = 1, ..., N . If the
function ψ(u) is Lipschitz continuous on [0,1], then the error of the Riemann sum approx-
imation6 is of order O(N−1), while the Monte Carlo sample average error is of (stochas-
tic) order Op(N−1/2). An explanation of this phenomenon is rather clear, an iid sample
U1, ..., UN will tend to cluster in some areas while leaving other areas of the interval [0,1]
uncovered.

One can argue that the Monte Carlo sampling approach has an advantage of the pos-
sibility of estimating the approximation error by calculating the sample variance

s2 := (N − 1)−1
N∑
j=1

[
ψ(U j)− ψ̄N

]2
,

and consequently constructing a corresponding confidence interval. It is possible, however,
to employ a similar procedure for the Riemann sums by making them random. That is,

5Recall that H−1(u) := inf{z : H(z) ≥ u}.
6If ψ(u) is continuously differentiable, then, e.g., the trapezoidal rule gives even a slightly better approxima-

tion error of order O(N−2). Also one should be careful in making the assumption of Lipschitz continuity of
ψ(u). If the distribution of ξ is supported on the whole real line, e.g., is normal, then H−1(u) tends to∞ as u
tends to 0 or 1. In that case ψ(u) typically will be discontinuous at u = 0 and u = 1.
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each point uj , in the right hand side of (5.142), is generated randomly, say uniformly
distributed, on the corresponding interval [(j − 1)/N, j/N ], independently of other points
uk, k 6= j. This will make the right hand side of (5.142) a random variable. Its variance can
be estimated by using several independently generated batches of such approximations.

It does not make sense to use Monte Carlo sampling methods in case of one dimen-
sional random data. The situation starts to change quickly with increase of the dimension
d. By making an appropriate transformation we may assume that the random data vector
is distributed uniformly on the d-dimensional cube Id = [0, 1]d. For d > 1 we denote
by (bold-faced) U a random vector uniformly distributed on Id. Suppose that we want
to evaluate the expectation E[ψ(U)] =

∫
Id
ψ(u)du, where ψ : Id → R is a measurable

function. We can partition each coordinate of Id into M equally spaced intervals, and
hence partition Id into the corresponding N = Md subintervals7 and use a corresponding
Riemann sum approximation N−1

∑N
j=1 ψ(uj). The resulting error is of order O(M−1),

provided that the function ψ(u) is Lipschitz continuous. In terms of the total number N
of function evaluations, this error is of order O(N−1/d). For d = 2 it is still compatible
with the Monte Carlo sample average approximation approach. However, for larger val-
ues of d the Riemann sums approach quickly becomes unacceptable. On the other hand,
the rate of convergence (error bounds) of the Monte Carlo sample average approximation
of E[ψ(U)] does not depend directly on dimensionality d, but only on the corresponding
variance Var[ψ(U)]. Yet the problem of uneven covering of Id by an iid sample U j ,
j = 1, ..., N , remains persistent.

Quasi-Monte Carlo methods employ the approximation

E[ψ(U)] ≈ 1

N

N∑
j=1

ψ(uj) (5.143)

for a carefully chosen (deterministic) sequence of points u1, ...,uN ∈ Id. From the nu-
merical point of view it is important to be able to generate such a sequence iteratively as an
infinite sequence of points uj , j = 1, ..., in Id. In that way one does not need to recalculate
already calculated function values ψ(uj) with increase of N . A basic requirement for this
sequence is that the right hand side of (5.143) converges to E[ψ(U)] as N → ∞. It is not
difficult to show that this holds (for any Riemann-integrable function ψ(u)) if

lim
N→∞

1

N

N∑
j=1

1A(uj) = Vd(A) (5.144)

for any interval A ⊂ Id. Here Vd(A) denotes the d-dimensional Lebesgue measure (vol-
ume) of set A ⊂ Rd.

Definition 5.25. The star discrepancy of a point set {u1, ...,uN} ⊂ Id is defined by

D∗(u1, ...,uN ) := sup
A∈I

∣∣∣∣∣∣ 1

N

N∑
j=1

1A(uj)− Vd(A)

∣∣∣∣∣∣ , (5.145)

7A set A ⊂ Rd is said to be a (d-dimensional) interval if A = [a1, b1]× · · · × [ad, bd].
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where I is the family of all subintervals of Id of the form
∏d
i=1[0, bi).

It is possible to show that for a sequence uj ∈ Id, j = 1, ..., condition (5.144) holds
iff limN→∞D∗(u1, ...,uN ) = 0. A more important property of the star discrepancy is
that it is possible to give error bounds in terms of D∗(u1, ...,uN ) for quasi-Monte Carlo
approximations. Let us start with one dimensional case. Recall that variation of a function
ψ : [0, 1] → R is the sup

∑m
i=1 |ψ(ti)− ψ(ti−1)|, where the supremum is taken over all

partitions 0 = t0 < t1 < ... < tm = 1 of the interval [0,1]. It is said that ψ has bounded
variation if its variation is finite.

Theorem 5.26 (Koksma). If ψ : [0, 1] → R has bounded variation V (ψ), then for any
u1, ..., uN ∈ [0, 1] we have∣∣∣∣∣∣ 1

N

N∑
j=1

ψ(uj)−
∫ 1

0

ψ(u)du

∣∣∣∣∣∣ ≤ V (ψ)D∗(u1, ..., uN ). (5.146)

Proof. We can assume that the sequence u1, ..., uN is arranged in the increasing order, and
set u0 = 0 and uN+1 = 1. That is, 0 = u0 ≤ u1 ≤ ... ≤ uN+1 = 1. Using integration by
parts we have∫ 1

0

ψ(u)du = uψ(u)
∣∣1
0
−
∫ 1

0

udψ(u) = ψ(1)−
∫ 1

0

udψ(u),

and summation by parts

1

N

N∑
j=1

ψ(uj) = ψ(uN+1)−
N∑
j=0

j

N
[ψ(uj+1)− ψ(uj)],

we can write

1
N

∑N
j=1 ψ(uj)−

∫ 1

0
ψ(u)du = −

∑N
j=0

j
N [ψ(uj+1)− ψ(uj)] +

∫ 1

0
udψ(u)

=
∑N
j=0

∫ uj+1

uj

(
u− j

N

)
dψ(u).

Also for any u ∈ [uj , uj+1], j = 0, ..., N , we have∣∣∣∣u− j

N

∣∣∣∣ ≤ D∗(u1, ..., uN ).

It follows that∣∣∣ 1
N

∑N
j=1 ψ(uj)−

∫ 1

0
ψ(u)du

∣∣∣ ≤ ∑N
j=0

∫ uj+1

uj

∣∣u− j
N

∣∣ dψ(u)

≤ D∗(u1, ..., uN )
∑N
j=0 |ψ(uj+1)− ψ(uj)| ,

and, of course,
∑N
j=0 |ψ(uj+1)− ψ(uj)| ≤ V (ψ). This completes the proof.
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This can be extended to a multidimensional setting as follows. Consider a function
ψ : Id → R. The variation of ψ, in the sense of Vitali, is defined as

V (d)(ψ) := sup
P∈J

∑
A∈P
|∆ψ(A)|, (5.147)

where J denotes the family of all partitions P of Id into subintervals, and for A ∈ P the
notation ∆ψ(A) stands for an alternating sum of the values of ψ at the vertices of A (i.e.,
function values at adjacent vertices have opposite signs). The variation of ψ, in the sense
of Hardy and Krause, is defined as

V (ψ) :=

d∑
k=1

∑
1≤i1<i2<···ik≤d

V (k)(ψ; i1, ..., ik), (5.148)

where V (k)(ψ; i1, ..., ik) is the variation in the sense of Vitali of restriction of ψ to the
k-dimensional face of Id defined by uj = 1 for j 6∈ {i1, ..., ik}.

Theorem 5.27 (Hlawka). If ψ : Id → R has bounded variation V (ψ) on Id in the sense
of Hardy and Krause, then for any u1, ...,uN ∈ Id we have∣∣∣∣∣∣ 1

N

N∑
j=1

ψ(uj)−
∫
Id
ψ(u)du

∣∣∣∣∣∣ ≤ V (ψ)D∗(u1, ...,uN ). (5.149)

In order to see how good the above error estimates could be let us consider the one di-
mensional case with uj := (2j− 1)/(2N), j = 1, ..., N . Then D∗(u1, ..., uN ) = 1/(2N),
and hence the estimate (5.146) leads to the error bound V (ψ)/(2N). This error bound gives
the correct order O(N−1) for the error estimates (provided that ψ has bounded variation),
but the involved constant V (ψ)/2 typically is far too large for practical calculations. Even
worse, the inverse functionH−1(u) is monotonically nondecreasing and hence its variation
is given by the difference of the limits limu→+∞H−1(u) and limu→−∞H−1(u). There-
fore, if one of this limits is infinite, i.e., the support of the corresponding random variable is
unbounded, then the associated variation is infinite. Typically this variation unboundedness
will carry over to the function ψ(u) = F (H−1(u)). For example, if the function F (·) is
monotonically nondecreasing, then

V (ψ) = F
(

lim
u→+∞

H−1(u)
)
− F

(
lim

u→−∞
H−1(u)

)
.

This overestimation of the corresponding constant becomes even worse with increase of
the dimension d.

A sequence {uj}j∈N ⊂ Id is called a low-discrepancy sequence if D∗(u1, ..., uN )
is “small” for all N ≥ 1. We proceed now to a description of classical constructions of
low-discrepancy sequences. Let us start with the one dimensional case. It is not difficult to
show that D∗(u1, ..., uN ) always greater than or equal to 1/(2N) and this lower bound is
attained for uj := (2j − 1)/2N , j = 1, ..., N . While the lower bound of order O(N−1) is
attained for some N -element point sets from [0,1], there does not exist a sequence u1, ...,
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in [0,1] such that D∗(u1, ..., uN ) ≤ c/N for some c > 0 and all N ∈ N. It is possible
to show that a best possible rate for D∗(u1, ..., uN ), for a sequence of points uj ∈ [0, 1],
j = 1, ..., is of order O

(
N−1 lnN

)
. We are going to construct now a sequence for which

this rate is attained.
For any integer n ≥ 0 there is a unique digit expansion

n =
∑
i≥0

ai(n)bi (5.150)

in integer base b ≥ 2, where ai(n) ∈ {0, 1, ..., b− 1}, i = 0, 1, ..., and ai(n) = 0 for all i
large enough, i.e., the sum (5.150) is finite. The associated radical-inverse function φb(n),
in base b, is defined by

φb(n) :=
∑
i≥0

ai(n)b−i−1. (5.151)

Note that

φb(n) ≤ (b− 1)

∞∑
i=0

b−i−1 = 1,

and hence φb(n) ∈ [0, 1] for any integer n ≥ 0.

Definition 5.28. For an integer b ≥ 2, the van der Corput sequence in base b is the sequence
uj := φb(j), j = 0, 1, ... .

It is possible to show that to every van der Corput sequence u1, ..., in base b, corre-
sponds constant Cb such that

D∗(u1, ..., un) ≤ CbN−1 lnN, for all N ∈ N.

A classical extension of van der Corput sequences to multidimensional settings is
the following. Let p1 = 2, p2 = 3, ..., pd be the first d prime numbers. Then the Halton
sequence, in the bases p1, ..., pd, is defined as

uj := (φp1
(j), ..., φpd(j)) ∈ Id, j = 0, 1, ... . (5.152)

It is possible to show that for that sequence

D∗(u1, ...,uN ) ≤ AdN−1(lnN)d +O(N−1(lnN)d−1), for all N ≥ 2, (5.153)

where Ad =
∏d
i=1

pi−1
2 ln pi

. By the bound (5.149) of Theorem 5.27, this implies that the
error of the corresponding quasi-Monte Carlo approximation is of order O

(
N−1(lnN)d

)
,

provided that variation V (ψ) is finite. This compares favorably with the boundOp(N−1/2)
of the Monte Carlo sampling. Note, however, that by the prime number theorem we have
that lnAd

d ln d tends to 1 as d→∞. That is, the coefficient Ad, of the leading term in the right
hand side of (5.153), grows superexponentially with increase of the dimension d. This
makes the corresponding error bounds useless for larger values of d. It should be noticed
that the above are upper bounds for the rates of convergence and in practice convergence
rates could be much better. It seems that for low dimensional problems, say d ≤ 20,
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quasi-Monte Carlo methods are advantageous over Monte Carlo methods. With increase
of the dimension d this advantage becomes less apparent. Of course, all this depends on a
particular class of problems and applied quasi-Monte Carlo method. This issue requires a
further investigation.

A drawback of (deterministic) quasi-Monte Carlo sequences {uj}j∈N is that there is
no easy way to estimate the error of the corresponding approximations N−1

∑N
j=1 ψ(uj).

In that respect bounds like (5.149) typically are too loose and impossible to calculate any-
way. A way of dealing with this problem is to use a randomization of the set {u1, ...,uN},
of generating points in Id, without destroying its regular structure. Such simple random-
ization procedure was suggested by Cranley and Patterson [46]. That is, generate a ran-
dom point u uniformly distributed over Id, and use the randomization8 ũj := (uj + u)
mod 1, j = 1, ..., N . It is not difficult to show that (marginal) distribution of each random
vector ũj is uniform on Id. Therefore each ψ(ũj), and hence N−1

∑N
j=1 ψ(ũj), is an

unbiased estimator of the corresponding expectation E[ψ(U)]. Variance of the estimator
N−1

∑N
j=1 ψ(ũj) can be significantly smaller than variance of the corresponding Monte

Carlo estimator based on samples of the same size. This randomization procedure can be
applied in batches. That is, it can be repeated M times for independently generated uni-
formly distributed vectors u = ui, i = 1, ...,M , and consequently averaging the obtained
replications of N−1

∑N
j=1 ψ(ũj). Simultaneously, variance of this estimator can be eval-

uated by calculating the sample variance of the obtained M independent replications of
N−1

∑N
j=1 ψ(ũj).

5.5 Variance Reduction Techniques
Consider the sample average estimators f̂N (x). We have that if the sample is iid, then the
variance of f̂N (x) is equal to σ2(x)/N , where σ2(x) := Var[F (x, ξ)]. In some cases it is
possible to reduce the variance of generated sample averages, which in turn enhances con-
vergence of the corresponding SAA estimators. In section 5.4 we discussed Quasi-Monte
Carlo techniques for enhancing rates of convergence of sample average approximations. In
this section we briefly discuss some other variance reduction techniques which seem to be
useful in the SAA method.

5.5.1 Latin Hypercube Sampling

Suppose that the random data vector ξ = ξ(ω) is one dimensional with the corresponding
cumulative distribution function (cdf) H(·). We can write then

E[F (x, ξ)] =

∫ +∞

−∞
F (x, ξ)dH(ξ). (5.154)

In order to evaluate the above integral numerically it will be much better to generate sample
points evenly distributed than to use an iid sample (we already discussed this in section 5.4).

8For a number a ∈ R the notation “a mod 1” denotes the fractional part of a, i.e., a mod 1 = a − bac,
where bac denotes the largest integer less than or equal to a. In vector case the “modulo 1” reduction is understood
coordinatewise.
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That is, we can generate independent random points9

U j ∼ U [(j − 1)/N, j/N ] , j = 1, ..., N, (5.155)

and then to construct the random sample of ξ by the inverse transformation ξj := H−1(U j),
j = 1, ..., N (compare with (5.141)).

Now suppose that j is chosen at random from the set {1, ..., N} (with equal prob-
ability for each element of that set). Then conditional on j, the corresponding random
variable U j is uniformly distributed on the interval [(j − 1)/N, j/N ], and the uncondi-
tional distribution of U j is uniform on the interval [0, 1]. Consequently, let {j1, ..., jN} be
a random permutation of the set {1, ..., N}. Then the random variables ξj1 , ..., ξjN have
the same marginal distribution, with the same cdf H(·), and are negatively correlated with
each other. Therefore the expected value of

f̂N (x) =
1

N

N∑
i=1

F (x, ξj) =
1

N

N∑
s=1

F (x, ξjs) (5.156)

is f(x), while

Var
[
f̂N (x)

]
= N−1σ2(x) + 2N−2

∑
s<t

Cov
(
F (x, ξjs), F (x, ξjt)

)
. (5.157)

If the function F (x, ·) is monotonically increasing or decreasing, than the random variables
F (x, ξjs) and F (x, ξjt), s 6= t, are also negatively correlated. Therefore, the variance of
f̂N (x) tends to be smaller, and in some cases much smaller, than σ2(x)/N .

Suppose now that the random vector ξ = (ξ1, ..., ξd) is d-dimensional, and that its
components ξi, i = 1, ..., d, are distributed independently of each other. Then we can use
the above procedure for each component ξi. That is, a random sample U j of the form
(5.155) is generated, and consequently N replications of the first component of ξ are com-
puted by the corresponding inverse transformation applied to randomly permuted U js . The
same procedure is applied to every component of ξ with the corresponding random samples
of the form (5.155) and random permutations generated independently of each other. This
sampling scheme is called the Latin Hypercube (LH) sampling.

If the function F (x, ·) is decomposable, i.e., F (x, ξ) := F1(x, ξ1) + ...+ Fd(x, ξd),
then E[F (x, ξ)] = E[F1(x, ξ1)] + ...+ E[Fd(x, ξd)], where each expectation is calculated
with respect to a one dimensional distribution. In that case the LH sampling ensures that
each expectation E[Fi(x, ξi)] is estimated in nearly optimal way. Therefore, the LH sam-
pling works especially well in cases where the function F (x, ·) tends to have a somewhat
decomposable structure. In any case the LH sampling procedure is easy to implement and
can be applied to SAA optimization procedures in a straightforward way. Since in LH
sampling the random replications of F (x, ξ) are correlated with each other, one cannot
use variance estimates like (5.21). Therefore the LH method usually is applied in several
independent batches in order to estimate variance of the corresponding estimators.

9For an interval [a, b] ⊂ R, we denote by U [a, b] the uniform probability distribution on that interval.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 221 — #233 i
i

i
i

i
i

5.5. Variance Reduction Techniques 221

5.5.2 Linear Control Random Variables Method
Suppose that we have a measurable function A(x, ξ) such that E[A(x, ξ)] = 0 for all
x ∈ X . Then, for any t ∈ R, the expected value of F (x, ξ) + tA(x, ξ) is f(x), while

Var
[
F (x, ξ) + tA(x, ξ)

]
= Var [F (x, ξ)] + t2Var [A(x, ξ)] + 2tCov

(
F (x, ξ), A(x, ξ)

)
.

It follows that the above variance attains its minimum, with respect to t, for

t∗ := −ρF,A(x)

[
Var(F (x, ξ))

Var(A(x, ξ))

]1/2

, (5.158)

where ρF,A(x) := Corr
(
F (x, ξ), A(x, ξ)

)
, and with

Var
[
F (x, ξ) + t∗A(x, ξ)

]
= Var [F (x, ξ)]

[
1− ρF,A(x)2

]
. (5.159)

For a given x ∈ X and generated sample ξ1, ..., ξN , one can estimate, in the standard
way, the covariance and variances appearing in the right hand side of (5.158), and hence to
construct an estimate t̂ of t∗. Then f(x) can be estimated by

f̂AN (x) :=
1

N

N∑
j=1

[
F (x, ξj) + t̂A(x, ξj)

]
. (5.160)

By (5.159), the linear control estimator f̂AN (x) has a smaller variance than f̂N (x) if F (x, ξ)
and A(x, ξ) are highly correlated with each other.

Let us make the following observations. The estimator t̂, of the optimal value t∗,
depends on x and the generated sample. Therefore, it is difficult to apply linear control
estimators in an SAA optimization procedure. That is, linear control estimators are mainly
suitable for estimating expectations at a fixed point. Also if the same sample is used in
estimating t̂ and f̂AN (x), then f̂AN (x) can be a slightly biased estimator of f(x).

Of course, the above Linear Control procedure can be successful only if a function
A(x, ξ), with mean zero and highly correlated with F (x, ξ), is available. Choice of such
a function is problem dependent. For instance, one can use a linear function A(x, ξ) :=
λ(ξ)Tx. Consider, for example, two-stage stochastic programming problems with recourse
of the form (2.1)–(2.2). Suppose that the random vector h = h(ω) and matrix T = T (ω),
in the second stage problem (2.2), are independently distributed, and let µ := E[h]. Then

E
[
(h− µ)TT

]
= E [(h− µ)]

T E [T ] = 0,

and hence one can use A(x, ξ) := (h− µ)TTx as the control variable.
Let us finally remark that the above procedure can be extended in a straightforward

way to a case where several functions A1(x, ξ), ..., Am(x, ξ), each with zero mean and
highly correlated with F (x, ξ), are available.

5.5.3 Importance Sampling and Likelihood Ratio Methods
Suppose that ξ has a continuous distribution with probability density function (pdf) h(·).
Let ψ(·) be another pdf such that the so-called likelihood ratio function L(·) := h(·)

ψ(·) is
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well defined. That is, if ψ(z) = 0 for some z ∈ Rd, then h(z) = 0, and by the definition,
0/0 = 0, i.e., we do not divide a positive number by zero. Then we can write

f(x) =

∫
F (x, ξ)h(ξ)dξ =

∫
F (x, ζ)L(ζ)ψ(ζ)dζ = Eψ[F (x, Z)L(Z)], (5.161)

where the integration is performed over the space Rd and the notation Eψ emphasizes that
the expectation is taken with respect to the random vector Z having pdf ψ(·).

Let us show that, for a fixed x, the variance of F (x, Z)L(Z) attains its minimal value
for ψ(·) proportional to |F (x, ·)h(·)|, i.e., for

ψ∗(·) :=
|F (x, ·)h(·)|∫
|F (x, ζ)h(ζ)|dζ

. (5.162)

Since Eψ[F (x, Z)L(Z)] = f(x) and does not depend on ψ(·), we have that the variance
of F (x, Z)L(Z) is minimized if

Eψ[F (x, Z)2L(Z)2] =

∫
F (x, ζ)2h(ζ)2

ψ(ζ)
dζ, (5.163)

is minimized. Furthermore, by Cauchy inequality we have(∫
|F (x, ζ)h(ζ)|dζ

)2

≤
(∫

F (x, ζ)2h(ζ)2

ψ(ζ)
dζ

)(∫
ψ(ζ)dζ

)
. (5.164)

It remains to note that
∫
ψ(ζ)dζ = 1 and the left hand side of (5.164) is equal to the

expected value of squared F (x, Z)L(Z) for ψ(·) = ψ∗(·).
Note that if F (x, ·) is nonnegative valued, then ψ∗(·) = F (x, ·)h(·)/f(x) and for

that choice of the pdf ψ(·), the function F (x, ·)L(·) is identically equal to f(x). Of course,
in order to achieve such absolute variance reduction to zero we need to know the expecta-
tion f(x) which was our goal in the first place. Nevertheless, it gives the idea that if we
can construct a pdf ψ(·) roughly proportional to |F (x, ·)h(·)|, then we may achieve a con-
siderable variance reduction by generating a random sample ζ1, ..., ζN from the pdf ψ(·),
and then estimating f(x) by

f̃ψN (x) :=
1

N

N∑
j=1

F (x, ζj)L(ζj). (5.165)

The estimator f̃ψN (x) is an unbiased estimator of f(x) and may have significantly smaller
variance than f̂N (x) depending on a successful choice of the pdf ψ(·).

Similar analysis can be performed in cases where ξ has a discrete distribution by
replacing the integrals with the corresponding summations.

Let us remark that the above approach, called importance sampling, is extremely sen-
sitive to a choice of the pdf ψ(·) and is notorious for its instability. This is understandable
since the likelihood ratio function in the tail is the ratio of two very small numbers. For a
successful choice of ψ(·), the method may work very well while even a small perturbation
of ψ(·) may be disastrous. This is why a single choice of ψ(·) usually does not work for
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different points x, and consequently cannot be used for a whole optimization procedure.
Note also that Eψ [L(Z)] = 1. Therefore, L(ζ)− 1 can be used as a linear control variable
for the likelihood ratio estimator f̃ψN (x).

In some cases it is also possible to use the likelihood ratio method for estimating first
and higher order derivatives of f(x). Consider, for example, the optimal value Q(x, ξ)
of the second stage linear program (2.2). Suppose that the vector q and matrix W are
fixed, i.e., not stochastic, and for the sake of simplicity that h = h(ω) and T = T (ω) are
distributed independently of each other. We have then that Q(x, ξ) = Q(h− Tx), where

Q(z) := inf
{
qTy : Wy = z, y ≥ 0

}
.

Suppose, further, that h has a continuous distribution with pdf η(·). We have that

E[Q(x, ξ)] = ET
{
Eh|T [Q(x, ξ)]

}
,

and by using the transformation z = h− Tx, since h and T are independent we obtain

Eh|T [Q(x, ξ)] = Eh[Q(x, ξ)]
=

∫
Q(h− Tx)η(h)dh =

∫
Q(z)η(z + Tx)dz

=
∫
Q(ζ)L(x, ζ)ψ(ζ)dζ = Eψ [L(x, Z)Q(Z)] ,

(5.166)

where ψ(·) is a chosen pdf and L(x, ζ) := η(ζ+Tx)/ψ(ζ). If the function η(·) is smooth,
then the likelihood ratio function L(·, ζ) is also smooth. In that case, under mild additional
conditions, first and higher order derivatives can be taken inside the expected value in the
right hand side of (5.166), and consequently can be estimated by sampling. Note that
the first order derivatives of Q(·, ξ) are piecewise constant, and hence its second order
derivatives are zeros whenever defined. Therefore, second order derivatives cannot be taken
inside the expectation E[Q(x, ξ)] even if ξ has a continuous distribution.

5.6 Validation Analysis
Suppose that we are given a feasible point x̄ ∈ X as a candidate for an optimal solution
of the true problem. For example, x̄ can be an output of a run of the corresponding SAA
problem. In this section we discuss ways to evaluate quality of this candidate solution. This
is important, in particular, for a choice of the sample size and stopping criteria in simulation
based optimization. There are basically two approaches to such validation analysis. We
can either try to estimate the optimality gap f(x̄) − ϑ∗ between the objective value at the
considered point x̄ and the optimal value of the true problem, or to evaluate first order
(KKT) optimality conditions at x̄.

Let us emphasize that the following analysis is designed for the situations where the
value f(x̄), of the true objective function at the considered point, is finite. In the case of two
stage programming this requires, in particular, that the second stage problem, associated
with first stage decision vector x̄, is feasible for almost every realization of the random
data.
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5.6.1 Estimation of the Optimality Gap
In this section we consider the problem of estimating the optimality gap

gap(x̄) := f(x̄)− ϑ∗ (5.167)

associated with the candidate solution x̄. Clearly, for any feasible x̄ ∈ X , gap(x̄) is non-
negative and gap(x̄) = 0 iff x̄ is an optimal solution of the true problem.

Consider the optimal value ϑ̂N of the SAA problem (5.2). We have that ϑ∗ ≥ E[ϑ̂N ]

(see the discussion following equation (5.22)). This means that ϑ̂N provides a valid statis-
tical lower bound for the optimal value ϑ∗ of the true problem. The expectation E[ϑ̂N ] can
be estimated by averaging. That is, one can solve M times sample average approximation
problems based on independently generated samples each of sizeN . Let ϑ̂1

N , ..., ϑ̂
M
N be the

computed optimal values of these SAA problems. Then

v̄N,M :=
1

M

M∑
m=1

ϑ̂mN (5.168)

is an unbiased estimator of E[ϑ̂N ]. Since the samples, and hence ϑ̂ 1
N , ..., ϑ̂

M
N , are indepen-

dent and have the same distribution, we have that Var [v̄N,M ] = M−1Var
[
ϑ̂N
]
, and hence

we can estimate variance of v̄N,M by

σ̂2
N,M :=

1

M

[ 1

M − 1

M∑
m=1

(
ϑ̂mN − v̄N,M

)2

︸ ︷︷ ︸
estimate of Var[ϑ̂N ]

]
. (5.169)

Note that the above make sense only if the optimal value ϑ∗ of the true problem is finite.
Note also that the inequality ϑ∗ ≥ E[ϑ̂N ] holds and ϑ̂N gives a valid statistical lower bound
even if f(x) = +∞ for some x ∈ X . Note finally that the samples do not need to be iid
(for example, one can use Latin Hypercube sampling), they only should be independent of
each other in order to use estimate (5.169) of the corresponding variance.

In general the random variable ϑ̂N , and hence its replications ϑ̂ jN , does not have a
normal distribution, even approximately (see Theorem 5.7 and the following afterwards
discussion). However, by the CLT, the probability distribution of the average v̄N,M be-
comes approximately normal as M increases. Therefore, we can use

LN,M := v̄N,M − tα,M−1σ̂N,M (5.170)

as an approximate 100(1− α)% confidence10 lower bound for the expectation E[ϑ̂N ].
We can also estimate f(x̄) by sampling. That is, let f̂N ′(x̄) be the sample average es-

timate of f(x̄), based on a sample of size N ′ generated independently of samples involved
in computing x̄. Let σ̂2

N ′(x̄) be an estimate of the variance of f̂N ′(x̄). In the case of iid
sample, one can use the sample variance estimate

σ̂2
N ′(x̄) :=

1

N ′(N ′ − 1)

N ′∑
j=1

[
F (x̄, ξj)− f̂N ′(x̄)

]2
. (5.171)

10Here tα,ν is the α-critical value of t-distribution with ν degrees of freedom. This critical value is slightly
bigger than the corresponding standard normal critical value zα, and tα,ν quickly approaches zα as ν increases.
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Then
UN ′(x̄) := f̂N ′(x̄) + zασ̂N ′(x̄) (5.172)

gives an approximate 100(1 − α)% confidence upper bound for f(x̄). Note that since N ′

typically is large, we use here critical value zα from the standard normal distribution rather
than a t-distribution.

We have that

E
[
f̂N ′(x̄)− v̄N,M

]
= f(x̄)− E[ϑ̂N ] = gap(x̄) + ϑ∗ − E[ϑ̂N ] ≥ gap(x̄),

i.e., f̂N ′(x̄)− v̄N,M is a biased estimator of the gap(x̄). Also the variance of this estimator
is equal to the sum of the variances of f̂N ′(x̄) and v̄N,M , and hence

f̂N ′(x̄)− v̄N,M + zα

√
σ̂2
N ′(x̄) + σ̂2

N,M (5.173)

provides a conservative 100(1− α)% confidence upper bound for the gap(x̄). We say that
this upper bound is “conservative” since in fact it gives a 100(1 − α)% confidence upper
bound for the gap(x̄) + ϑ∗ − E[ϑ̂N ], and we have that ϑ∗ − E[ϑ̂N ] ≥ 0.

In order to calculate the estimate f̂N ′(x̄) one needs to compute the value F (x̄, ξj) of
the objective function for every generated sample realization ξj , j = 1, ..., N ′. Typically
it is much easier to compute F (x̄, ξ), for a given ξ ∈ Ξ, than to solve the corresponding
SAA problem. Therefore, often one can use a relatively large sample size N ′, and hence
to estimate f(x̄) quite accurately. Evaluation of the optimal value ϑ∗ by employing the
estimator v̄N,M is a more delicate problem.

There are two types of errors in using v̄N,M as an estimator of ϑ∗, namely the bias
ϑ∗−E[ϑ̂N ] and variability of v̄N,M measured by its variance. Both errors can be reduced by
increasingN , and the variance can be reduced by increasingN andM . Note, however, that
the computational effort in computing v̄N,M is proportional to M , since the corresponding
SAA problems should be solved M times, and to the computational time for solving a
single SAA problem based on a sample of size N . Naturally one may ask what is the best
way of distributing computational resources between increasing the sample size N and the
number of repetitions M . This question is, of course, problem dependent. In cases where
computational complexity of SAA problems grows fast with increase of the sample sizeN ,
it may be more advantageous to use a larger number of repetitions M . On the other hand it
was observed empirically that the computational effort in solving SAA problems by ‘good’
subgradient algorithms grows only linearly with the sample size N . In such cases one can
use a larger N and make only a few repetitions M in order to estimate the variance of
v̄N,M .

The bias ϑ∗ − E[ϑ̂N ] does not depend on M , of course. It was shown in Proposition
5.6 that if the sample is iid, then E[ϑ̂N ] ≤ E[ϑ̂N+1] for any N ∈ N. It follows that the bias
ϑ∗ − E[ϑ̂N ] decreases monotonically with increase of the sample size N . By Theorem 5.7
we have that, under mild regularity conditions,

ϑ̂N = inf
x∈S

f̂N (x) + op(N
−1/2). (5.174)

Consequently, if the set S of optimal solutions of the true problem is not a singleton, then
the bias ϑ∗ − E[ϑ̂N ] typically converges to zero, as N increases, at a rate of O(N−1/2),
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and tends to be bigger for a larger set S (see equation (5.29) and the following afterwards
discussion). On the other hand, in well conditioned problems, where the optimal set S is
a singleton, the bias typically is of order O(N−1) (see Theorem 5.8), and the bias tends
to be of a lesser problem. Moreover, if the true problem has a sharp optimal solution x∗,
then the event “x̂N = x∗”, and hence the event “ϑ̂N = f̂N (x∗)”, happens with probability
approaching one exponentially fast (see Theorem 5.23). Since E

[
f̂N (x∗)

]
= f(x∗), in

such cases the bias ϑ∗ − E[ϑ̂N ] = f(x∗)− E[ϑ̂N ] tends to be much smaller.
In the above approach the upper and lower statistical bounds were computed inde-

pendently of each other. Alternatively, it is possible to use the same sample for estimating
f(x̄) and E[ϑ̂N ]. That is, for M generated samples each of size N , the gap is estimated by

ĝapN,M (x̄) :=
1

M

M∑
m=1

[
f̂mN (x̄)− ϑ̂mN

]
, (5.175)

where f̂mN (x̄) and ϑ̂mN are computed from the same sample m = 1, ...,M . We have that
the expected value of ĝapN,M (x̄) is f(x̄) − E[ϑ̂N ], i.e., the estimator ĝapN,M (x̄) has the
same bias as f̂N (x̄)− v̄N,M . On the other hand, for a problem with sharp optimal solution
x∗ it happens with high probability that ϑ̂mN = f̂mN (x∗), and as a consequence f̂mN (x̄) tends
to be highly positively correlated with ϑ̂mN , provided that x̄ is close to x∗. In such cases
variability of ĝapN,M (x̄) can be considerably smaller than variability of f̂N ′(x̄) − v̄N,M .
This is the idea of common random number generated estimators.

Remark 19. Of course, in order to obtain a valid statistical lower bound for the optimal
value ϑ∗ we can use any (deterministic) lower bound for the optimal value ϑ̂N of the
corresponding SAA problem instead of ϑ̂N itself. For example, suppose that the problem
is convex. By convexity of f̂N (·) we have that for any x′ ∈ X and γ ∈ ∂f̂N (x′) it holds
that

f̂N (x) ≥ f̂N (x′) + γT(x− x′), ∀x ∈ Rn. (5.176)

Therefore, we can proceed as follows. Choose points x1, ..., xr ∈ X , calculate sub-
gradients γ̂iN ∈ ∂f̂N (xi), i = 1, ..., r, and solve the problem

Min
x∈X

max
1≤i≤r

{
f̂N (xi) + γ̂TiN (x− xi)

}
. (5.177)

Denote by λ̂N the optimal value of (5.177). By (5.176) we have that λ̂N is less than or
equal to the optimal value ϑ̂N of the corresponding SAA problem, and hence gives a valid
statistical lower bound for ϑ∗. A possible advantage of λ̂N over ϑ̂N is that it could be
easier to solve (5.177) than the corresponding SAA problem. For instance, if the set X is
polyhedral, then (5.177) can be formulated as a linear programming problem.

Of course, this approach raises the question of how to choose the points x1, ..., xr ∈
X . Suppose that the expectation function f(x) is differentiable at the points x1, ..., xr.
Then for any choice of γ̂iN ∈ ∂f̂N (xi) we have that subgradients γ̂iN converge to∇f(xi)

w.p.1. Therefore λ̂N converges w.p.1 to the optimal value of the problem

Min
x∈X

max
1≤i≤r

{
f(xi) +∇f(xi)

T(x− xi)
}
, (5.178)
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provided that the set X is bounded. Again by convexity arguments the optimal value of
(5.178) is less than or equal to the optimal value ϑ∗ of the true problem. If we can find such
points x1, ..., xr ∈ X that the optimal value of (5.178) is less than ϑ∗ by a ‘small’ amount,
then it could be advantageous to use λ̂N instead of ϑ̂N . We also should keep in mind that
the number r should be relatively small, otherwise we may loose the advantage of solving
the ‘easier’ problem (5.177).

A natural approach to choosing the required points and hence to apply the above
procedure is the following. By solving (once) an SAA problem, find points x1, ..., xr ∈ X
such that the optimal value of the corresponding problem (5.177) provides with a high
accuracy an estimate of the optimal value of this SAA problem. Use some (all) these
points to calculate lower bound estimates λ̂mN ,m = 1, ...,M , probably with a larger sample
size N . Calculate the average λ̄N,M together with the corresponding sample variance and
construct the associated 100(1− α)% confidence lower bound similar to (5.170).

Estimation of Optimality Gap of Minimax and Expectation-Constrained Prob-
lems

Consider a minimax problem of the form (5.46). Let ϑ∗ be the optimal value of this (true)
minimax problem. Clearly for any ȳ ∈ Y we have that

ϑ∗ ≥ inf
x∈X

f(x, ȳ). (5.179)

Now for the optimal value of the right hand side of (5.179) we can construct a valid sta-
tistical lower bound, and hence a valid statistical lower bound for ϑ∗, as before by solving
the corresponding SAA problems several times and averaging calculated optimal values.
Suppose, further, that the minimax problem (5.46) has a nonempty set Sx×Sy ⊂ X ×Y of
saddle points, and hence its optimal value is equal to the optimal value of its dual problem
(5.48). Then for any x̄ ∈ X we have that

ϑ∗ ≤ sup
y∈Y

f(x̄, y), (5.180)

and the equalities in (5.179) and/or (5.180) hold iff ȳ ∈ Sy and/or x̄ ∈ Sx. By (5.180) we
can construct a valid statistical upper bound for ϑ∗ by averaging optimal values of sample
average approximations of the right hand side of (5.180). Of course, quality of these bounds
will depend on a good choice of the points ȳ and x̄. A natural construction for the candidate
solutions ȳ and x̄ will be to use optimal solutions of a run of the corresponding minimax
SAA problem (5.47).

Similar ideas can be applied to validation of stochastic problems involving constraints
given as expected value functions (see equations (5.11)–(5.13)). That is, consider the fol-
lowing problem

Min
x∈X0

f(x) subject to gi(x) ≤ 0, i = 1, ..., p, (5.181)

where X0 is a nonempty subset of Rn, f(x) := E[F (x, ξ)] and gi(x) := E[Gi(x, ξ)],
i = 1, ..., p. We have that

ϑ∗ = inf
x∈X0

sup
λ≥0

L(x, λ), (5.182)
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where ϑ∗ is the optimal value and L(x, λ) := f(x) +
∑p
i=1 λigi(x) is the Lagrangian of

problem (5.181). Therefore, for any λ̄ ≥ 0, we have that

ϑ∗ ≥ inf
x∈X0

L(x, λ̄), (5.183)

and the equality in (5.183) is attained if the problem (5.179) is convex and λ̄ is a Lagrange
multipliers vector satisfying the corresponding first-order optimality conditions. Of course,
a statistical lower bound for the optimal value of the problem in the right hand side of
(5.183), is also a statistical lower bound for ϑ∗.

Unfortunately an upper bound which can be obtained by interchanging the ‘inf’ and
‘sup’ operators in (5.182) cannot be used in a straightforward way . This is because if, for
a chosen x̄ ∈ X0, it happens that ĝiN (x̄) > 0 for some i ∈ {1, ..., p}, then

sup
λ≥0

{
f̂N (x̄) +

p∑
i=1

λiĝiN (x̄)

}
= +∞. (5.184)

Of course, in such a case the obtained upper bound +∞ is useless. This typically will be the
case if x̄ is constructed as a solution of an SAA problem and some of the SAA constraints
are active at x̄. Note also that if ĝiN (x̄) ≤ 0 for all i ∈ {1, ..., p}, then the supremum in the
left hand side of (5.184) is equal to f̂N (x̄).

If we can ensure, with a high probability 1−α, that a chosen point x̄ is a feasible point
of the true problem 5.179), then we can construct an upper bound by estimating f(x̄) using
a relatively large sample. This, in turn, can be approached by verifying, for an independent
sample of size N ′, that ĝiN ′(x̄) + κσ̂iN ′(x̄) ≤ 0, i = 1, ..., p, where σ̂2

iN ′(x̄) is a sample
variance of ĝiN ′(x̄) and κ is a positive constant chosen in such a way that the probability
of gi(x̄) being bigger that ĝiN ′(x̄) + κσ̂iN ′(x̄) is less than α/p for all i ∈ {1, ..., p}.

5.6.2 Statistical Testing of Optimality Conditions

Suppose that the feasible set X is defined by (equality and inequality) constraints in the
form

X :=
{
x ∈ Rn : gi(x) = 0, i = 1, ..., q; gi(x) ≤ 0, i = q + 1, ..., p

}
, (5.185)

where gi(x) are smooth (at least continuously differentiable) deterministic functions. Let
x∗ ∈ X be an optimal solution of the true problem and suppose that the expected value
function f(·) is differentiable at x∗. Then, under a constraint qualification, first order
(KKT) optimality conditions hold at x∗. That is, there exist Lagrange multipliers λi such
that λi ≥ 0, i ∈ I(x∗) and

∇f(x∗) +
∑

i∈J (x∗)

λi∇gi(x∗) = 0, (5.186)

where I(x) := {i : gi(x) = 0, i = q + 1, ..., p} denotes the index set of inequality con-
straints active at a point x ∈ Rn, and J (x) := {1, ..., q} ∪ I(x). Note that if the constraint
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functions are linear, say gi(x) := aTi x + bi, then ∇gi(x) = ai and the above KKT condi-
tions hold without a constraint qualification. Consider the (polyhedral) cone

K(x) :=

z ∈ Rn : z =
∑

i∈J (x)

αi∇gi(x), αi ≤ 0, i ∈ I(x)

 . (5.187)

Then the KKT optimality conditions can be written in the form∇f(x∗) ∈ K(x∗).
Suppose now that f(·) is differentiable at the candidate point x̄ ∈ X , and that the

gradient ∇f(x̄) can be estimated by a (random) vector γN (x̄). In particular, if F (·, ξ) is
differentiable at x̄ w.p.1, then we can use the estimator

γN (x̄) :=
1

N

N∑
j=1

∇xF (x̄, ξj) = ∇f̂N (x̄) (5.188)

associated with the generated11 random sample. Note that if, moreover, the derivatives can
be taken inside the expectation, that is,

∇f(x̄) = E[∇xF (x̄, ξ)], (5.189)

then the above estimator is unbiased, i.e., E[γN (x̄)] = ∇f(x̄). In the case of two-stage
linear stochastic programming with recourse, formula (5.189) typically holds if the corre-
sponding random data have a continuous distribution. On the other hand if the random data
have a discrete distribution with a finite support, then the expected value function f(x) is
piecewise linear and typically is nondifferentiable at an optimal solution.

Suppose, further, that VN := N1/2 [γN (x̄)−∇f(x̄)] converges in distribution, as N
tends to infinity, to multivariate normal with zero mean vector and covariance matrix Σ,
written VN

D→ N (0, Σ). For the estimator γN (x̄) defined in (5.188), this holds by the CLT
if the interchangeability formula (5.189) holds, the sample is iid, and ∇xF (x̄, ξ) has finite
second order moments. Moreover, in that case the covariance matrix Σ can be estimated
by the corresponding sample covariance matrix

Σ̂N :=
1

N − 1

N∑
j=1

[
∇xF (x̄, ξj)−∇f̂N (x̄)

] [
∇xF (x̄, ξj)−∇f̂N (x̄)

]T
. (5.190)

Under the above assumptions, the sample covariance matrix Σ̂N is an unbiased and con-
sistent estimator of Σ.

We have that if VN
D→ N (0, Σ) and the covariance matrix Σ is nonsingular, then

(given a consistent estimator Σ̂N of Σ) the following holds

N
(
γN (x̄)−∇f(x̄)

)T
Σ̂−1
N

(
γN (x̄)−∇f(x̄)

) D→ χ2
n, (5.191)

11We emphasize that the random sample in (5.188) is generated independently of the sample used to compute
the candidate point x̄.
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where χ2
n denotes chi-square distribution with n degrees of freedom. This allows to con-

struct the following (approximate) 100(1− α)% confidence region12 for ∇f(x̄):{
z ∈ Rn :

(
γN (x̄)− z)

)T
Σ̂−1
N

(
γN (x̄)− z)

)
≤
χ2
α,n

N

}
. (5.192)

Consider the statistic

TN := N inf
z∈K(x̄)

(
γN (x̄)− z

)T
Σ̂−1
N

(
γN (x̄)− z

)
. (5.193)

Note that since the cone K(x̄) is polyhedral and Σ̂−1
N is positive definite, the minimization

in the right hand side of (5.193) can be formulated as a quadratic programming problem,
and hence can be solved by standard quadratic programming algorithms. We have that the
confidence region, defined in (5.192), does not have common points with the cone K(x̄)
iff TN > χ2

α,n. We can also use the statistic TN for testing the hypothesis:

H0 : ∇f(x̄) ∈ K(x̄) against the alternative H1 : ∇f(x̄) 6∈ K(x̄). (5.194)

The TN statistic represents the squared distance, with respect to the norm13 ‖ · ‖Σ̂−1
N

, from

N1/2γN (x̄) to the cone K(x̄). Suppose for the moment that only equality constraints are
present in the definition (5.185) of the feasible set, and that the gradient vectors ∇gi(x̄),
i = 1, ..., q, are linearly independent. Then the set K(x̄) forms a linear subspace of Rn
of dimension q, and the optimal value of the right hand side of (5.193) can be written in
a closed form. Consequently, it is possible to show that TN has asymptotically noncentral
chi-square distribution with n− q degrees of freedom and the noncentrality parameter14

δ := N inf
z∈K(x̄)

(
∇f(x̄)− z

)T
Σ−1

(
∇f(x̄)− z

)
. (5.195)

In particular, under H0 we have that δ = 0, and hence the null distribution of TN is
asymptotically central chi-square with n− q degrees of freedom.

Consider now the general case where the feasible set is defined by equality and in-
equality constraints as in (5.185). Suppose that the gradient vectors∇gi(x̄), i ∈ J (x̄), are
linearly independent and that the strict complementarity condition holds at x̄, that is, the
Lagrange multipliers λi, i ∈ I(x̄), corresponding to the active at x̄ inequality constraints,
are positive. Then for γN (x̄) sufficiently close to ∇f(x̄) the minimizer in the right hand
side of (5.193) will be lying in the linear space generated by vectors ∇gi(x̄), i ∈ J (x̄).
Therefore, in such case the null distribution of TN is asymptotically central chi-square
with ν := n − |J (x̄)| degrees of freedom. Consequently, for a computed value T ∗N of the
statistic TN we can calculate (approximately) the corresponding p-value, which is equal

12Here χ2
α,n denotes the α-critical value of chi-square distribution with n degrees of freedom. That is, if

Y ∼ χ2
n, then Pr

{
Y ≥ χ2

α,n

}
= α.

13For a positive definite matrix A, the norm ‖ · ‖A is defined as ‖z‖A := (zTAz)1/2.
14Note that under the alternative (i.e., if ∇f(x̄) 6∈ K(x̄)), the noncentrality parameter δ tends to infinity

as N → ∞. Therefore, in order to justify the above asymptotics one needs a technical assumption known as
Pitman’s parameter drift.
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to Pr {Y ≥ T ∗N}, where Y ∼ χ2
ν . This p-value gives an indication of the quality of the

candidate solution x̄ with respect to the stochastic precision.
It should be understood that by accepting (i.e., failing to reject) H0, we do not claim

that the KKT conditions hold exactly at x̄. By acceptingH0 we rather assert that we cannot
separate ∇f(x̄) from K(x̄), given precision of the generated sample. That is, statistical
error of the estimator γN (x̄) is bigger than the squared ‖ · ‖Σ−1 -norm distance between
∇f(x̄) and K(x̄). Also rejecting H0 does not necessarily mean that x̄ is a poor candi-
date for an optimal solution of the true problem. The calculated value of TN statistic can
be large, i.e., the p-value can be small, simply because the estimated covariance matrix
N−1Σ̂N of γN (x̄) is “small”. In such cases, γN (x̄) provides an accurate estimator of
∇f(x̄) with the corresponding confidence region (5.192) being “small”. Therefore, the
above p-value should be compared with the size of the confidence region (5.192), which
in turn is defined by the size of the matrix N−1Σ̂N measured, for example, by its eigen-
values. Note also that it may happen that |J (x̄)| = n, and hence ν = 0. Under the strict
complementarity condition, this means that ∇f(x̄) lies in the interior of the cone K(x̄),
which in turn is equivalent to the condition that f̄ ′(x̄, d) ≥ c‖d‖ for some c > 0 and all
d ∈ Rn. Then, by the LD principle (see (7.217) in particular), the event γN (x̄) ∈ K(x̄)
happens with probability approaching one exponentially fast.

Let us remark again that the above testing procedure is applicable if F (·, ξ) is differ-
entiable at x̄w.p.1 and the interchangeability formula (5.189) holds. This typically happens
in cases where the corresponding random data have a continuous distribution.

5.7 Chance Constrained Problems
Consider a chance constrained problem of the form

Min
x∈X

f(x) subject to p(x) ≤ α, (5.196)

where X ⊂ Rn is a closed set, f : Rn → R is a continuous function, α ∈ (0, 1) is a given
significance level and

p(x) := Pr
{
C(x, ξ) > 0

}
(5.197)

is the probability that constraint is violated at point x ∈ X . We assume that ξ is a random
vector, whose probability distribution P is supported on set Ξ ⊂ Rd, and the function
C : Rn × Ξ → R is a Carathéodory function. The chance constraint “p(x) ≤ α” can be
written equivalently in the form

Pr
{
C(x, ξ) ≤ 0

}
≥ 1− α. (5.198)

Let us also remark that several chance constraints

Pr
{
Ci(x, ξ) ≤ 0, i = 1, ..., q

}
≥ 1− α, (5.199)

can be reduced to one chance constraint (5.198) by employing the max-functionC(x, ξ) :=
max1≤i≤q Ci(x, ξ). Of course, in some cases this may destroy a ‘nice’ structure of consid-
ered functions. At this point, however, this is not important.
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5.7.1 Monte Carlo Sampling Approach

We discuss now a way of solving problem (5.196) by Monte Carlo sampling. For the sake
of simplicity we assume that the objective function f(x) is given explicitly and only the
chance constraints should be approximated.

We can write the probability p(x) in the form of the expectation,

p(x) = E
[
1(0,∞)(C(x, ξ))

]
,

and to estimate this probability by the corresponding SAA function (compare with (5.14)–
(5.16))

p̂N (x) := N−1
N∑
j=1

1(0,∞)

(
C(x, ξj)

)
. (5.200)

Recall that 1(0,∞) (C(x, ξ)) is equal to 1 if C(x, ξ) > 0, and it is equal 0 otherwise.
Therefore, p̂N (x) is equal to the proportion of times that C(x, ξj) > 0, j = 1, ..., N .
Consequently we can write the corresponding SAA problem as

Min
x∈X

f(x) subject to p̂N (x) ≤ α. (5.201)

Proposition 5.29. Let C(x, ξ) be a Carathéodory function. Then the functions p(x) and
p̂N (x) are lower semicontinuous. Suppose, further, that the sample is iid. Then p̂N

e→ p
w.p.1. Moreover, suppose that for every x ∈ X it holds that

Pr
{
ξ ∈ Ξ : C(x, ξ) = 0

}
= 0, (5.202)

i.e., C(x, ξ) 6= 0 w.p.1. Then the function p(x) is continuous on X and p̂N (x) converges
to p(x) w.p.1 uniformly on any compact subset of X .

Proof. Consider function ψ(x, ξ) := 1(0,∞)

(
C(x, ξ)

)
. Recall that p(x) = EP [ψ(x, ξ)] and

p̂N (x) = EPN [ψ(x, ξ)], where PN := N−1
∑N
j=1 δ(ξ

j) is the respective empirical mea-
sure. Since the function 1(0,∞)(·) is lower semicontinuous and C(x, ξ) is a Carathéodory
function, it follows that the function ψ(x, ξ) is random lower semicontinuous. Lower semi-
continuity of p(x) and p̂N (x) follows by Fatou’s lemma (see Theorem 7.47). If the sample
is iid, the epiconvergence p̂N

e→ p w.p.1 follows by Theorem 7.56. Note that the domi-
nance condition, from below and from above, holds here automatically since |ψ(x, ξ)| ≤ 1.

Suppose, further, that condition (5.202) holds. Then for every x ∈ X , ψ(·, ξ) is
continuous at x w.p.1. It follows by the Lebesgue Dominated Convergence Theorem that
p(·) is continuous at x (see Theorem 7.48). Finally, the uniform convergence w.p.1 follows
by Theorem 7.53.

Since the function p(x) is lower semicontinuous and the set X is closed, it follows
that the feasible set of problem (5.196) is closed. If, moreover, it is nonempty and bounded,
then problem (5.196) has a nonempty set S of optimal solutions (recall that the objective
function f(x) is assumed to be continuous here). The same applies to the corresponding
SAA problem (5.201). We have here the following consistency properties of the optimal
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value ϑ̂N and the set ŜN of optimal solutions of the SAA problem (5.201) (compare with
Theorem 5.5).

Proposition 5.30. Suppose that the set X is compact, the function f(x) is continuous,
C(x, ξ) is a Carathéodory function, the sample is iid and that the following condition
holds: (a) there is an optimal solution x̄ of the true problem such that for any ε > 0 there
is x ∈ X with ‖x − x̄‖ ≤ ε and p(x) < α. Then ϑ̂N → ϑ∗ and D(ŜN ,S) → 0 w.p.1 as
N →∞.

Proof. By condition (a), the set S is nonempty and there is x′ ∈ X such that p(x′) < α.
By the LLN we have that p̂N (x′) converges to p(x′) w.p.1. Consequently p̂N (x′) < α, and
hence the SAA problem has a feasible solution, w.p.1 for N large enough. Since p̂N (·) is
lower semicontinuous, the feasible set of SAA problem is closed and hence compact, and
thus ŜN is nonempty w.p.1 for N large enough. Of course, if x′ is a feasible solution of an
SAA problem, then f(x′) ≥ ϑ̂N , where ϑ̂N is the optimal value of that SAA problem.

For a given ε > 0 let x′ ∈ X be a point sufficiently close to x̄ ∈ S such that
p̂N (x′) < α and f(x′) ≤ f(x̄) + ε. Since f(·) is continuous, existence of such point is
ensured by condition (a). Consequently

lim sup
N→∞

ϑ̂N ≤ f(x′) ≤ f(x̄) + ε = ϑ∗ + ε w.p.1. (5.203)

Since ε > 0 is arbitrary, it follows that

lim sup
N→∞

ϑ̂N ≤ ϑ∗ w.p.1. (5.204)

Now let x̂N ∈ ŜN , i.e., x̂N ∈ X , p̂N (x̂N ) ≤ α and ϑ̂N = f(x̂N ). Since the set X is
compact, we can assume by passing to a subsequence if necessary that x̂N converges to a
point x̄ ∈ X w.p.1. Also by Proposition 5.29 we have that p̂N

e→ p w.p.1, and hence

lim inf
N→∞

p̂N (x̂N ) ≥ p(x̄) w.p.1.

It follows that p(x̄) ≤ α and hence x̄ is a feasible point of the true problem, and thus
f(x̄) ≥ ϑ∗. Also f(x̂N )→ f(x̄) w.p.1, and hence

lim inf
N→∞

ϑ̂N ≥ ϑ∗ w.p.1. (5.205)

It follows from (5.204) and (5.205) that ϑ̂N → ϑ∗ w.p.1. It also follows that the point x̄
is an optimal solution of the true problem and consequently we obtain that D(ŜN ,S)→ 0
w.p.1.

The above condition (a) is essential for the consistency of ϑ̂N and ŜN . Think, for
example, about a situation where the constraint p(x) ≤ α defines just one feasible point x̄
such that p(x̄) = α. Then arbitrary small changes in the constraint p̂N (x) ≤ α may result
in that the feasible set of the corresponding SAA problem becomes empty. Note also that
condition (a) was not used in the proof of inequality (5.205). Verification of this condition
(a) can be done by ad hoc methods.
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We have that, under mild regularity conditions, optimal value and optimal solutions
of the SAA problem (5.201) converge w.p.1, as N → ∞, to their counterparts of the true
problem (5.196). There are, however, several potential problems with the SAA approach
here. In order for p̂N (x) to be a reasonably accurate estimate of p(x), the sample size
N should be significantly bigger than α−1. For small α this may result in a large sample
size. Another problem is that typically the function p̂N (x) is discontinuous and the SAA
problem (5.201) is a combinatorial problem which could be difficult to solve. Therefore
we consider the following approach.

Convex Approximation Approach

For a generated sample ξ1, ..., ξN consider the problem:

Min
x∈X

f(x) subject to C(x, ξj) ≤ 0, j = 1, ..., N. (5.206)

Note that for α = 0 the SAA problem (5.201) coincides with the above problem (5.206).
If the set X and functions f(·) and C(·, ξ), ξ ∈ Ξ, are convex, then (5.206) is a convex
problem and could be efficiently solved provided that the involved functions are given in
a closed form and the sample size N is not too large. Clearly, as N → ∞ the feasible set
of the above problem (5.206) will shrink to the set of x ∈ X determined by the constraints
C(x, ξ) ≤ 0 for a.e. ξ ∈ Ξ, and hence for large N will be overly conservative for the true
chance constrained problem (5.196). Nevertheless, it makes sense to ask the question for
what sample size N an optimal solution of problem (5.206) is guaranteed to be a feasible
point of problem (5.196).

We need the following auxiliary result.

Lemma 5.31. Suppose that the set X and functions f(·) and C(·, ξ), ξ ∈ Ξ, are convex
and let x̄N be an optimal solution of problem (5.206). Then there exists an index set J ⊂
{1, ..., N} such that |J | ≤ n and x̄N is an optimal solution of the problem

Min
x∈X

f(x) subject to C(x, ξj) ≤ 0, j ∈ J. (5.207)

Proof. Consider sets A0 := {x ∈ X : f(x) < f(x̄N )} and Aj := {x ∈ X : C(x, ξj) ≤
0}, j = 1, ..., N . Since X , f(·) and C(·, ξj) are convex, these sets are convex. Now we
argue by a contradiction. Suppose that the assertion of this lemma is not correct. Then
the intersection of A0 and any n sets Aj is nonempty. Since the intersection of all sets
Aj , j ∈ {1, ..., N}, is nonempty (these sets have at least one common element x̄N ), it
follows that the intersection of any n + 1 sets of the family Aj , j ∈ {0, 1, ..., N}, is
nonempty. By Helly’s theorem (Theorem 7.3) this implies that the intersection of all sets
Aj , j ∈ {0, 1, ..., N}, is nonempty. This, in turn, implies existence of a feasible point x̃ of
problem (5.206) such that f(x̃) < f(x̄N ), which contradicts optimality of x̄N .

We will use the following assumptions.

(F1) For any N ∈ N and any (ξ1, ..., ξN ) ∈ ΞN , problem (5.206) attains unique optimal
solution x̄N = x̄(ξ1, ..., ξN ).
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Recall that sometimes we use the same notation for a random vector and its particular
value (realization). In the above assumption we view ξ1, ..., ξN as an element of the set
ΞN , and x̄N as a function of ξ1, ..., ξN . Of course, if ξ1, ..., ξN is a random sample, then
x̄N becomes a random vector.

Let J = J (ξ1, ..., ξN ) ⊂ {1, ..., N} be an index set such that x̄N is an optimal
solution of the problem (5.207) for J = J . Moreover, let the index set J be minimal in
the sense that if any of the constraints C(x, ξj) ≤ 0, j ∈ J , is removed, then x̄N is not
an optimal solution of the obtained problem. We assume that w.p.1 such minimal index set
is unique. By Lemma 5.31, we have that |J | ≤ n. By PN we denote here the product
probability measure on the set ΞN , i.e., PN is the probability distribution of the iid sample
ξ1, ..., ξN .

(F2) There is an integer n ∈ N such that, for any N ≥ n, w.p.1 the minimal set J =
J (ξ1, ..., ξN ) is uniquely defined and has constant cardinality n, i.e., PN {|J | = n} =
1.

By Lemma 5.31, we have that n ≤ n.
Assumption (F1) holds, for example, if the set X is compact and convex, functions

f(·) and C(·, ξ), ξ ∈ Ξ, are convex, and either f(·) or the feasible set of problem (5.206) is
strictly convex. Assumption (F2) is more involved, it is needed in order to show an equality
in the estimate (5.209) of the following theorem.

The following result is due to Campi and Garatti [34], building on work of Calafiore
and Campi [33]. Denote

b(k;α,N) :=

k∑
i=0

(
N

i

)
αi(1− α)N−i, k = 0, ..., N. (5.208)

That is, b(k;α,N) = Pr(W ≤ k), where W ∼ B(α,N) is a random variable having
binomial distribution.

Theorem 5.32. Suppose that the set X and functions f(·) and C(·, ξ), ξ ∈ Ξ, are convex
and conditions (F1) and (F2) hold. Then for α ∈ (0, 1) and for an iid sample ξ1, ..., ξN of
size N ≥ n we have that

Pr
{
p(x̄N ) > α

}
= b(n− 1;α,N). (5.209)

Proof. Let Jn be the family of all sets J ⊂ {1, ..., N} of cardinality n. We have that
|Jn| =

(
N
n

)
. For J ∈ Jn define the set

ΣJ :=
{

(ξ1, ..., ξN ) ∈ ΞN : J (ξ1, ..., ξN ) = J
}
, (5.210)

and denote by x̂J = x̂J(ξ1, ..., ξN ) an optimal solution of problem (5.207) for J = J . By
condition (F1), such optimal solution x̂J exists and is unique, and hence

ΣJ =
{

(ξ1, ..., ξN ) ∈ ΞN : x̂J = x̄N
}
. (5.211)
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Note that for any permutation of vectors ξ1, ..., ξN , problem (5.206) remains the same.
Therefore, any set from the family {ΣJ}J∈Jn

can be obtained from another set of that
family by an appropriate permutation of its components. Since PN is the direct product
probability measure, it follows that the probability measure of each set ΣJ , J ∈ Jn, is the
same. The sets ΣJ are disjoint and, because of condition (F2), union of all these sets is
equal to ΞN up to a set of PN -measure zero. Since there are

(
N
n

)
such sets, we obtain that

PN (ΣJ) =
1(
N
n

) . (5.212)

Consider the optimal solution x̄n = x̄(ξ1, ..., ξn), for N = n, and let H(z) be the cdf
of the random variable p(x̄n), i.e.,

H(z) := P n {p(x̄n) ≤ z} . (5.213)

Let us show that for N ≥ n,

PN (ΣJ) =

∫ 1

0

(1− z)N−ndH(z). (5.214)

Indeed, for z ∈ [0, 1] and J ∈ Jn consider the sets

∆z := {(ξ1, ..., ξN ) : p(x̄N ) ∈ [z, z + dz]} ,
∆J,z := {(ξ1, ..., ξN ) : p(x̂J) ∈ [z, z + dz]} . (5.215)

By (5.211) we have that ∆z ∩ ΣJ = ∆J,z ∩ ΣJ . For J ∈ Jn let us evaluate probability
of the event ∆J,z ∩ ΣJ . For the sake of notational simplicity let us take J = {1, ..., n}.
Note that x̂J depends on (ξ1, ..., ξn) only. Therefore ∆J,z = ∆∗z × ΞN−n, where ∆∗z is a
subset of Ξn corresponding to the event “p(x̂J) ∈ [z, z+ dz]”. Conditional on (ξ1, ..., ξn),
the event ∆J,z ∩ ΣJ happens iff the point x̂J = x̂J(ξ1, ..., ξn) remains feasible for the
remaining N − n constraints, i.e., iff C(x̂J , ξ

j) ≤ 0 for all j = n+ 1, ..., N . If p(x̂J) = z,
then probability of each event “C(x̂J , ξ

j) ≤ 0” is equal to 1 − z. Since the sample is iid,
we obtain that conditional on (ξ1, ..., ξn) ∈ ∆∗z , probability of the event ∆J,z ∩ΣJ is equal
to (1− z)N−n. Consequently, the unconditional probability

PN (∆z ∩ΣJ) = PN (∆J,z ∩ΣJ) = (1− z)N−ndH(z), (5.216)

and hence equation (5.214) follows.
It follows from (5.212) and (5.214) that(

N

n

)∫ 1

0

(1− z)N−ndH(z) = 1, N ≥ n. (5.217)

Let us observe that H(z) := zn satisfies equations (5.217) for all N ≥ n. Indeed, using
integration by parts, we have(

N
n

) ∫ 1

0
(1− z)N−ndzn = −

(
N
n

)
n

N−n+1

∫ 1

0
zn−1d(1− z)N−n+1

=
(

N
n−1

) ∫ 1

0
(1− z)N−n+1dzn−1 = · · · = 1.

(5.218)
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We also have that equations (5.217) determine respective moments of random variable
1− Z, where Z ∼ H(z), and hence (since random variable p(x̄n) has a bounded support)
by the general theory of moments these equations have unique solution. Therefore we
conclude that H(z) = zn, 0 ≤ z ≤ 1, is the cdf of p(x̄n).

We also have by (5.216) that

PN
{
p(x̄N ) ∈ [z, z + dz]

}
=
∑
J∈Jn

PN (∆z ∩ΣJ) =

(
N

n

)
(1− z)N−ndH(z). (5.219)

Therefore, since H(z) = zn and using integration by parts similar to (5.218), we can write

PN
{
p(x̄N ) > α

}
=
(
N
n

) ∫ 1

α
(1− z)N−ndH(z) =

(
N
n

)
n
∫ 1

α
(1− z)N−nzn−1dz

=
(
N
n

)
n

N−n+1

[
−(1− z)N−n+1zn−1

∣∣1
α

+
∫ 1

α
(1− z)N−n+1dzn−1

]
=
(

N
n−1

)
(1− α)N−n+1αn−1 +

(
N

n−1

) ∫ 1

α
(1− z)N−n+1dzn−1

= · · · =
∑n−1
i=0

(
N
i

)
αi(1− α)N−i.

(5.220)

Since Pr
{
p(x̄N ) > α

}
= PN

{
p(x̄N ) > α

}
, this completes the proof.

Of course, the event “p(x̄N ) > α” means that x̄N is not a feasible point of the true
problem (5.196). Recall that n ≤ n. Therefore, given β ∈ (0, 1), the inequality (5.209)
implies that for sample size N ≥ n such that

b(n− 1;α,N) ≤ β, (5.221)

we have with probability at least 1 − β that x̄N is a feasible solution of the true problem
(5.196).

Recall that
b(n− 1;α,N) = Pr(W ≤ n− 1),

where W ∼ B(α,N) is a random variable having binomial distribution. For “not too
small” α and large N , good approximation of that probability is suggested by the Central
Limit Theorem. That is, W has approximately normal distribution with mean Nα and
variance Nα(1− α), and hence15

b(n− 1;α,N) ≈ Φ

(
n− 1−Nα√
Nα(1− α)

)
. (5.222)

For Nα ≥ n− 1, Hoeffding inequality (7.213) gives the estimate

b(n− 1;α,N) ≤ exp

{
−2(Nα− n+ 1)2

N

}
, (5.223)

and Chernoff inequality (7.215) gives

b(n− 1;α,N) ≤ exp

{
− (Nα− n+ 1)2

2αN

}
. (5.224)

15Recall that Φ(·) is the cdf of standard normal distribution.
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The estimates (5.221) and (5.224) show that the required sample size N should be of order
O(α−1). This, of course, is not surprising since just to estimate the probability p(x), for
a given x, by Monte Carlo sampling we will need a sample size of order O(1/p(x)). For
example, for n = 100 and α = β = 0.01, bound (5.221) suggests estimate N = 12460 for
the required sample size. Normal approximation (5.222) gives practically the same estimate
of N . The estimate derived from the bound (5.223) gives significantly bigger estimate of
N = 40372. The estimate derived from Chernoff inequality (5.224) gives much better
estimate of N = 13410.

Anyway this indicates that the “guaranteed” estimates like (5.221) could be too con-
servative for practical calculations. Note also that Theorem 5.32 does not make any claims
about quality of x̄N as a candidate for an optimal solution of the true problem (5.196), it
only guarantees its feasibility.

5.7.2 Validation of an Optimal Solution
We discuss now an approach to a practical validation of a candidate point x̄ ∈ X for an
optimal solution of the true problem (5.196). This task is twofold, namely we need to verify
feasibility and optimality of x̄. Of course, if a point x̄ is feasible for the true problem, then
ϑ∗ ≤ f(x̄), i.e., f(x̄) gives an upper bound for the true optimal value.

Upper bounds

Let us start with verification of feasibility of the point x̄. For that we need to estimate the
probability p(x̄) = Pr{C(x̄, ξ) > 0}. We proceed by employing Monte Carlo sampling
techniques. For a generated iid random sample ξ1, ..., ξN , let m be the number of times
that the constraints C(x̄, ξj) ≤ 0, j = 1, ..., N , are violated, i.e.,

m :=

N∑
j=1

1(0,∞)

(
C(x̄, ξj)

)
.

Then p̂N (x̄) = m/N is an unbiased estimator of p(x̄), and m has Binomial distribution
B (p(x̄), N).

If the sample size N is significantly bigger than 1/p(x̄), then the distribution of
p̂N (x̄) can be reasonably approximated by a normal distribution with mean p(x̄) and
variance p(x̄)(1 − p(x̄))/N . In that case one can consider, for a given confidence level
β ∈ (0, 1/2), the following approximate upper bound for the probability16 p(x̄):

p̂N (x̄) + zβ

√
p̂N (x̄)(1− p̂N (x̄))

N
. (5.225)

Let us discuss the following, more accurate, approach for constructing an upper con-
fidence bound for the probability p(x̄). For a given β ∈ (0, 1) consider

Uβ,N (x̄) := sup
ρ∈[0,1]

{
ρ : b(m; ρ,N) ≥ β

}
. (5.226)

16Recall that zβ := Φ−1(1− β) = −Φ−1(β), where Φ(·) is the cdf of the standard normal distribution.
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We have that Uβ,N (x̄) is a function of m and hence is a random variable. Note that
b(m; ρ,N) is continuous and monotonically decreasing in ρ ∈ (0, 1). Therefore, in fact,
the supremum in the right hand side of (5.226) is attained, and Uβ,N (x̄) is equal to such ρ̄
that b(m; ρ̄, N) = β. Denoting V := b(m; p(x̄), N), we have that

Pr {p(x̄) < Uβ,N (x̄)} = Pr
{
V >

β︷ ︸︸ ︷
b(m; ρ̄, N)

}
= 1− Pr {V ≤ β} = 1−

N∑
k=0

Pr
{
V ≤ β

∣∣m = k
}
Pr(m = k).

Since

Pr
{
V ≤ β

∣∣m = k
}

=

{
1, if b(k; p(x̄), N) ≤ β,
0, otherwise,

and Pr(m = k) =
(
N
k

)
p(x̄)k(1− p(x̄))N−k, it follows that

N∑
k=0

Pr
{
V ≤ β

∣∣m = k
}
Pr(m = k) ≤ β,

and hence

Pr {p(x̄) < Uβ,N (x̄)} ≥ 1− β. (5.227)

That is, p(x̄) < Uβ,N (x̄) with probability at least 1 − β. Therefore we can take Uβ,N (x̄)
as an upper (1− β)-confidence bound for p(x̄). In particular, if m = 0, then

Uβ,N (x̄) = 1− β1/N < N−1 ln(β−1).

We obtain that if Uβ,N (x̄) ≤ α, then x̄ is a feasible solution of the true problem with
probability at least 1− β. In that case we can use f(x̄) as an upper bound, with confidence
1− β, for the optimal value ϑ∗ of the true problem (5.196). Since this procedure involves
only calculations of C(x̄, ξj), it can be performed with a large sample size N , and hence
feasibility of x̄ can be verified with a high accuracy provided that α is not too small.

It also could be noted that the bound given in (5.225), in a sense, is an approxima-
tion of the upper bound ρ̄ = Uβ,N (x̄). Indeed, by the CLT the cumulative distribution

b(k; ρ̄, N) can be approximated by Φ
(

k−ρ̄N√
Nρ̄(1−ρ̄)

)
. Therefore, approximately ρ̄ is the so-

lution of the equation Φ
(

m−ρN√
Nρ(1−ρ)

)
= β, which can be written as

ρ =
m

N
+ zβ

√
ρ(1− ρ)

N
.

By approximating ρ in the right hand side of the above equation by m/N we obtain the
bound (5.225).
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Lower Bounds

It is more tricky to construct a valid lower statistical bound for ϑ∗. One possible approach
is to apply a general methodology of the SAA method (see discussion at the end of section
5.6.1). We have that for any λ ≥ 0 the following inequality holds (compare with (5.183)):

ϑ∗ ≥ inf
x∈X

[
f(x) + λ(p(x)− α)

]
. (5.228)

We also have that expectation of

v̂N (λ) := inf
x∈X

[
f(x) + λ(p̂N (x)− α)

]
(5.229)

gives a valid lower bound for the right hand side of (5.228), and hence for ϑ∗. An unbiased
estimate of E[v̂N (λ)] can be obtained by solving the right hand side problem of (5.229)
several times and averaging calculated optimal values. Note, however, that there are two
difficulties with applying this approach. First, recall that typically the function p̂N (x) is
discontinuous and hence it could be difficult to solve these optimization problems. Second,
it may happen that for any choice of λ ≥ 0 the optimal value of the right hand side of
(5.228) is smaller than ϑ∗, i.e., there is a gap between problem (5.196) and its (Lagrangian)
dual.

We discuss now an alternative approach to construction statistical lower bounds. For
chosen positive integers N and M , and constant γ ∈ [0, 1), let us generate M independent
samples ξ1,m, ..., ξN,m, m = 1, ...,M , each of size N , of random vector ξ. For each
sample solve the associated optimization problem

Min
x∈X

f(x) subject to

N∑
j=1

1(0,∞)

(
C(x, ξj,m)

)
≤ γN, (5.230)

and hence calculate its optimal value ϑ̂mγ,N , m = 1, ...,M . That is, we solve M times the
corresponding SAA problem at the significance level γ. In particular, for γ = 0 problem
(5.230) takes the form

Min
x∈X

f(x) subject to C(x, ξj,m) ≤ 0, j = 1, ..., N. (5.231)

It may happen that problem (5.230) is either infeasible or unbounded from below,
in which case we assign its optimal value as +∞ or −∞, respectively. We can view
ϑ̂mγ,N , m = 1, ...,M , as an iid sample of the random variable ϑ̂γ,N , where ϑ̂γ,N is the
optimal value of the respective SAA problem at significance level γ. Next we rearrange the
calculated optimal values in the nondecreasing order as follows ϑ̂(1)

γ,N ≤ ... ≤ ϑ̂
(M)
γ,N , i.e.,

ϑ̂
(1)
γ,N is the smallest, ϑ̂(2)

γ,N is the second smallest etc, among the values ϑ̂mγ,N ,m = 1, ...,M .

By definition, we choose an integer L ∈ {1, ...,M} and use the random quantity ϑ̂(L)
γ,N as a

lower bound of the true optimal value ϑ∗.
Let us analyze the resulting bounding procedure. Let x̃ ∈ X be a feasible point of

the true problem, i.e.,
Pr{C(x̃, ξ) > 0} ≤ α.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 241 — #253 i
i

i
i

i
i

5.7. Chance Constrained Problems 241

Since
∑N
j=1 1(0,∞)

(
C(x̃, ξj,m)

)
has binomial distribution with probability of success equal

to the probability of the event {C(x̃, ξ) > 0}, it follows that x̃ is feasible for problem
(5.230) with probability at least17

bγNc∑
i=0

(
N

i

)
αi(1− α)N−i = b (bγNc;α,N) =: θN .

When x̃ is feasible for (5.230), we of course have that ϑ̂mγ,N ≤ f(x̃). Let ε > 0 be an
arbitrary constant and x̃ be a feasible point of the true problem such that f(x̃) ≤ ϑ∗ + ε.
Then for every m ∈ {1, ...,M} we have

θ := Pr
{
ϑ̂mγ,N ≤ ϑ∗ + ε

}
≥ Pr

{
ϑ̂mγ,N ≤ f(x̃)

}
≥ θN .

Now, in the case of ϑ̂(L)
γ,N > ϑ∗ + ε, the corresponding realization of the random se-

quence ϑ̂1
γ,N , ..., ϑ̂

M
γ,N contains less than L elements which are less than or equal to ϑ∗+ ε.

Since the elements of the sequence are independent, the probability of the latter event is
b(L − 1; θ,M). Since θ ≥ θN , we have that b(L − 1; θ,M) ≤ b(L − 1; θN ,M). Thus,
Pr
{
ϑ̂

(L)
γ,N > ϑ∗ + ε

}
≤ b(L − 1; θN ,M). Since the resulting inequality is valid for any

ε > 0, we arrive at the bound

Pr
{
ϑ̂

(L)
γ,N > ϑ∗

}
≤ b(L− 1; θN ,M). (5.232)

We obtain the following result.

Proposition 5.33. Given β ∈ (0, 1) and γ ∈ [0, 1), let us choose positive integers M,N
and L in such a way that

b(L− 1; θN ,M) ≤ β, (5.233)

where θN := b (bγNc;α,N). Then

Pr
{
ϑ̂

(L)
γ,N > ϑ∗

}
≤ β. (5.234)

For given sample sizesN andM it is better to take the largest integer L ∈ {1, ...,M}
satisfying condition (5.233). That is, for

L∗ := max
1≤L≤M

{
L : b(L− 1; θN ,M) ≤ β

}
,

we have that the random quantity ϑ̂(L∗)
γ,N gives a lower bound for the true optimal value ϑ∗

with probability at least 1 − β. If no L ∈ {1, ...,M} satisfying (5.233) exists, the lower
bound, by definition, is −∞.

The question arising in connection with the outlined bounding scheme is how to
choose M , N and γ. In the convex case it is advantageous to take γ = 0, since then we

17Recall that the notation bac stands for the largest integer less than or equal to a ∈ R.
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need to solve convex problems (5.231), rather than combinatorial problems (5.230). Note
that for γ = 0, we have that θN = (1− α)N and the bound (5.233) takes the form

L−1∑
k=0

(
M

k

)
(1− α)Nk[1− (1− α)N ]M−k ≤ β. (5.235)

Suppose that N and γ ≥ 0 are given (fixed). Then the larger is M , the better. We
can view ϑ̂mγ,N , m = 1, ...,M , as a random sample from the distribution of the random
variable ϑ̂N , with ϑ̂N being the optimal value of the corresponding SAA problem of the
form (5.230). It follows from the definition that L∗ is equal to the (lower) β-quantile of the
binomial distribution B(θN ,M). By the CLT we have that

lim
M→∞

L∗ − θNM√
MθN (1− θN )

= Φ−1(β),

and L∗/M tends to θN as M →∞. It follows that the lower bound ϑ̂(L∗)
γ,N converges to the

θN -quantile of the distribution of ϑ̂N as M →∞.
In reality, however, M is bounded by the computational effort required to solve M

problems of the form (5.230). Note that the effort per problem is larger the larger is the
sample sizeN . For L = 1 (which is the smallest value of L) and γ = 0 the left hand side of
(5.235) is equal to [1−(1−α)N ]M . Note that (1−α)N ≈ e−αN for small α > 0. Therefore
if αN is large, then one will need a very large M to make [1− (1− α)N ]M smaller than,
say, β = 0.01, and hence to get a meaningful lower bound. For example, for αN = 7 we
have that e−αN = 0.0009, and we will need M > 5000 to make [1− (1− α)N ]M smaller
than 0.01. Therefore, for γ = 0 it is recommended to take N not larger than, say, 2/α.

5.8 SAA Method Applied to Multistage Stochastic
Programming

Consider a multistage stochastic programming problem, in the general form (3.1), driven
by the random data process ξ1, ξ2, ..., ξT . The exact meaning of this formulation was dis-
cussed in section 3.1.1. In this section we discuss application of the SAA method to such
multistage problems.

Consider the following sampling scheme. Generate a sample ξ1
2 , ..., ξ

N1
2 of N1 re-

alizations of random vector ξ2. Conditional on each ξi2, i = 1, ..., N1, generate a random
sample ξij3 , j = 1, ..., N2, of N2 realizations of ξ3 according to conditional distribution
of ξ3 given ξ2 = ξi2. Conditional on each ξij3 generate a random sample of size N3 of ξ4
conditional on ξ3 = ξij3 , and so on for later stages. (Although we do not consider such
possibility here, it is also possible to generate at each stage conditional samples of different
sizes.) In that way we generate a scenario tree with N =

∏T−1
t=1 Nt number of scenarios

each taken with equal probability 1/N . We refer to this scheme as conditional sampling.
Unless stated otherwise18, we assume that, at the first stage, the sample ξ1

2 , ..., ξ
N1
2 is iid

18It is also possible to employ Quasi-Monte Carlo sampling in constructing conditional sampling. In some
situations this may reduce variability of the corresponding SAA estimators. In the following analysis we assume
independence in order to simplify statistical analysis.
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and the following samples, at each stage t = 2, ..., T − 1, are conditionally iid. If, more-
over, all conditional samples at each stage are independent of each other, we refer to such
conditional sampling as the independent conditional sampling. The multistage stochastic
programming problem induced by the original problem (3.1) on the scenario tree gener-
ated by conditional sampling is viewed as the sample average approximation (SAA) of the
“true” problem (3.1).

It could be noted that in case of stagewise independent process ξ1, ..., ξT , the inde-
pendent conditional sampling destroys the stagewise independence structure of the original
process. This is because at each stage conditional samples are independent of each other
and hence are different. In the stagewise independence case an alternative approach is to
use the same sample at each stage. That is, independent of each other random samples
ξ1
t , ..., ξ

Nt−1

t of respective ξt, t = 2, ..., T , are generated and the corresponding scenario
tree is constructed by connecting every ancestor node at stage t − 1 with the same set of
children nodes ξ1

t , ..., ξ
Nt−1

t . In that way stagewise independence is preserved in the sce-
nario tree generated by conditional sampling. We refer to this sampling scheme as the
identical conditional sampling.

5.8.1 Statistical Properties of Multistage SAA Estimators
Similar to two stage programming it makes sense to discuss convergence of the optimal
value and first stage solutions of multistage SAA problems to their true counterparts as
sample sizes N1, ..., NT−1 tend to infinity. We denote N := {N1, ..., NT−1} and by ϑ∗

and ϑ̂N the optimal values of the true and the corresponding SAA multistage programs,
respectively.

In order to simplify the presentation let us consider now three stage stochastic pro-
grams, i.e., T = 3. In that case conditional sampling consists of sample ξi2, i = 1, ..., N1,
of ξ2 and for each i = 1, ..., N1 of conditional samples ξij3 , j = 1, ..., N2, of ξ3 given
ξ2 = ξi2. Let us write dynamic programming equations for the true problem. We have

Q3(x2, ξ3) = inf
x3∈X3(x2,ξ3)

f3(x3, ξ3), (5.236)

Q2(x1, ξ2) = inf
x2∈X2(x1,ξ2)

{
f2(x2, ξ2) + E

[
Q3(x2, ξ3)

∣∣ξ2]} , (5.237)

and at the first stage we solve the problem

Min
x1∈X1

{
f1(x1) + E [Q2(x1, ξ2)]

}
. (5.238)

If we could calculate values Q2(x1, ξ2), we could approximate problem (5.238) by
the sample average problem

Min
x1∈X1

{
f̂N1(x1) := f1(x1) + 1

N1

∑N1

i=1Q2(x1, ξ
i
2)
}
. (5.239)

However, values Q2(x1, ξ
i
2) are not given explicitly and are approximated by

Q̂2,N2
(x1, ξ

i
2) := inf

x2∈X2(x1,ξi2)

{
f2(x2, ξ

i
2) + 1

N2

∑N2

j=1Q3(x2, ξ
ij
3 )
}
, (5.240)
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i = 1, ..., N1. That is, the SAA method approximates the first stage problem (5.238) by the
problem

Min
x1∈X1

{
f̃N1,N2

(x1) := f1(x1) + 1
N1

∑N1

i=1 Q̂2,N2
(x1, ξ

i
2)
}
. (5.241)

In order to verify consistency of the SAA estimators, obtained by solving problem
(5.241), we need to show that f̃N1,N2

(x1) converges to f1(x1) + E [Q2(x1, ξ2)] w.p.1 uni-
formly on any compact subset X of X1 (compare with analysis of section 5.1.1). That is,
we need to show that

lim
N1,N2→∞

sup
x1∈X

∣∣∣ 1
N1

∑N1

i=1 Q̂2,N2
(x1, ξ

i
2)− E [Q2(x1, ξ2)]

∣∣∣ = 0 w.p.1. (5.242)

For that it suffices to show that

lim
N1→∞

sup
x1∈X

∣∣∣ 1
N1

∑N1

i=1Q2(x1, ξ
i
2)− E [Q2(x1, ξ2)]

∣∣∣ = 0 w.p.1, (5.243)

and

lim
N1,N2→∞

sup
x1∈X

∣∣∣ 1
N1

∑N1

i=1 Q̂2,N2
(x1, ξ

i
2)− 1

N1

∑N1

i=1Q2(x1, ξ
i
2)
∣∣∣ = 0 w.p.1. (5.244)

Condition (5.243) can be verified by applying a version of uniform Law of Large
Numbers (see section 7.2.5). Condition (5.244) is more involved. Of course, we have that

supx1∈X

∣∣∣ 1
N1

∑N1

i=1 Q̂2,N2
(x1, ξ

i
2)− 1

N1

∑N1

i=1Q2(x1, ξ
i
2)
∣∣∣

≤ 1
N1

∑N1

i=1 supx1∈X

∣∣∣Q̂2,N2
(x1, ξ

i
2)−Q2(x1, ξ

i
2)
∣∣∣ ,

and hence condition (5.244) holds if Q̂2,N2
(x1, ξ

i
2) converges toQ2(x1, ξ

i
2) w.p.1 asN2 →

∞ in a certain uniform way. Unfortunately an exact mathematical analysis of such condi-
tion could be quite involved. The analysis simplifies considerably if the underline random
process is stagewise independent. In the present case this means that random vectors ξ2
and ξ3 are independent. In that case distribution of random sample ξij3 , j = 1, ..., N2,
does not depend on i (in both sampling schemes whether samples ξij3 are the same for all
i = 1, ..., N1, or independent of each other), and we can apply Theorem 7.53 to establish
that, under mild regularity conditions, 1

N2

∑N2

j=1Q3(x2, ξ
ij
3 ) converges to E[Q3(x2, ξ3)]

w.p.1 as N2 → ∞ uniformly in x2 on any compact subset of Rn2 . With an additional
assumptions about mapping X2(x1, ξ2), it is possible to verify the required uniform type
convergence of Q̂2,N2

(x1, ξ
i
2) to Q2(x1, ξ

i
2). Again a precise mathematical analysis is

quite technical and will be left out. Instead in section 5.8.2 we discuss a uniform expo-
nential convergence of the sample average function f̃N1,N2

(x1) to the objective function
f1(x1) + E[Q2(x1, ξ2)] of the true problem.

Let us make the following observations. By increasing sample sizesN1, ..., NT−1, of
conditional sampling, we eventually reconstruct the scenario tree structure of the original
multistage problem. Therefore it should be expected that in the limit, as these sample sizes
tend (simultaneously) to infinity, the corresponding SAA estimators of the optimal value
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and first stage solutions are consistent, i.e., converge w.p.1 to their true counterparts. And,
indeed, this can be shown under certain regularity conditions. However, consistency alone
does not justify the SAA method since in reality sample sizes are always finite and are
constrained by available computational resources. Similar to the two stage case we have
here that (for minimization problems)

ϑ∗ ≥ E[ϑ̂N ]. (5.245)

That is, the SAA optimal value ϑ̂N is a downwards biased estimator of the true optimal
value ϑ∗.

Suppose now that the data process ξ1, ..., ξT is stagewise independent. As it was
discussed above in that case it is possible to use two different approaches to conditional
sampling, namely to use at every stage independent or the same samples for every ancestor
node at the previous stage. These approaches were referred to as the independent and iden-
tical conditional samplings, respectively. Consider, for instance, the three stage stochastic
programming problem (5.236)–(5.238). In the second approach of identical conditional
sampling we have sample ξi2, i = 1, ..., N1, of ξ2 and sample ξj3, j = 1, ..., N2, of ξ3
independent of ξi2. In that case formula (5.240) takes the form

Q̂2,N2(x1, ξ
i
2) = inf

x2∈X2(x1,ξi2)

{
f2(x2, ξ

i
2) + 1

N2

∑N2

j=1Q3(x2, ξ
j
3)
}
. (5.246)

Because of independence of ξ2 and ξ3 we have that conditional distribution of ξ3 given
ξ2 is the same as its unconditional distribution, and hence in both sampling approaches
Q̂2,N2(x1, ξ

i
2) has the same distribution independent of i. Therefore in both sampling

schemes 1
N1

∑N1

i=1 Q̂2,N2
(x1, ξ

i
2) has the same expectation, and hence we may expect that

in both cases the estimator ϑ̂N has a similar bias. Variance of ϑ̂N , however, could be quite
different. In the case of independent conditional sampling we have that Q̂2,N2(x1, ξ

i
2),

i = 1, ..., N1, are independent of each other, and hence

Var
[

1
N1

∑N1

i=1 Q̂2,N2
(x1, ξ

i
2)
]

= 1
N1
Var

[
Q̂2,N2

(x1, ξ
i
2)
]
. (5.247)

On the other hand in the case of identical conditional sampling the right hand side of
(5.246) has the same component 1

N2

∑N2

j=1Q3(x2, ξ
j
3) for all i = 1, ..., N1. Consequently

Q̂2,N2
(x1, ξ

i
2) would tend to be positively correlated for different values of i, and as a re-

sult ϑ̂N will have a higher variance than in the case of independent conditional sampling.
Therefore from a statistical point of view it is advantageous to use the independent condi-
tional sampling.

Example 5.34 (Portfolio Selection) Consider the example of multistage portfolio selec-
tion discussed in section 1.4.2. Suppose for the moment that the problem has three stages
t = 0, 1, 2. In the SAA approach we generate sample ξi1, i = 1, ..., N0, of returns at stage
t = 1, and conditional samples ξij2 , j = 1, ..., N1, of returns at stage t = 2. The dynamic
programming equations for the SAA problem can be written as follows (see equations
(1.50)–(1.52)). At stage t = 1 for i = 1, ..., N0, we have

Q̂1,N1
(W1, ξ

i
1) = sup

x1≥0

{
1
N1

∑N1

j=1 U
(
(ξij2 )Tx1

)
: eTx1 = W1

}
, (5.248)
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where e ∈ Rn is vector of ones, and at stage t = 0 we solve the problem

Max
x0≥0

1

N0

N0∑
i=1

Q̂1,N1

(
(ξi1)Tx0, ξ

i
1

)
s.t. eTx0 = W0. (5.249)

Now let U(W ) := lnW be the logarithmic utility function. Suppose that the data
process is stagewise independent. Then the optimal value ϑ∗ of the true problem is (see
(1.58))

ϑ∗ = lnW0 +

T−1∑
t=0

νt, (5.250)

where νt is the optimal value of the problem

Max
xt≥0

E
[
ln
(
ξTt+1xt

)]
s.t. eTxt = 1. (5.251)

Let the SAA method be applied with the identical conditional sampling, with respec-
tive sample ξjt , j = 1, ..., Nt−1 of ξt, t = 1, ..., T . In that case the corresponding SAA
problem is also stagewise independent and the optimal value of the SAA problem

ϑ̂N = lnW0 +

T−1∑
t=0

ν̂t,Nt , (5.252)

where ν̂t,Nt is the optimal value of the problem

Max
xt≥0

1

Nt

Nt∑
j=1

ln
(

(ξjt+1)Txt

)
s.t. eTxt = 1. (5.253)

We can view ν̂t,Nt as an SAA estimator of νt. Since here we solve a maximization rather
than a minimization problem, ν̂t,Nt is an upwards biased estimator of νt, i.e., E[ν̂t,Nt ] ≥ νt.
We also have that E[ϑ̂N ] = lnW0 +

∑T−1
t=0 E[ν̂t,Nt ], and hence

E[ϑ̂N ]− ϑ∗ =

T−1∑
t=0

(
E[ν̂t,Nt ]− νt

)
. (5.254)

That is, for the logarithmic utility function and identical conditional sampling, bias of the
SAA estimator of the optimal value grows additively with increase of the number of stages.
Also because the samples at different stages are independent of each other, we have that

Var[ϑ̂N ] =

T−1∑
t=0

Var[ν̂t,Nt ]. (5.255)

Let now U(W ) := W γ , with γ ∈ (0, 1], be the power utility function and suppose
that the data process is stagewise independent. Then (see (1.61))

ϑ∗ = W γ
0

T−1∏
t=0

ηt, (5.256)
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where ηt is the optimal value of problem

Max
xt≥0

E
[(
ξTt+1xt

)γ]
s.t. eTxt = 1. (5.257)

For the corresponding SAA method with the identical conditional sampling, we have that

ϑ̂N = W γ
0

T−1∏
t=0

η̂t,Nt , (5.258)

where η̂t,Nt is the optimal value of problem

Max
xt≥0

1

Nt

Nt∑
j=1

(
(ξjt+1)Txt

)γ
s.t. eTxt = 1. (5.259)

Because of the independence of the samples, and hence independence of η̂t,Nt , we can
write E[ϑ̂N ] = W γ

0

∏T−1
t=0 E[η̂t,Nt ], and hence

E[ϑ̂N ] = ϑ∗
T−1∏
t=0

(1 + βt,Nt), (5.260)

where βt,Nt :=
E[η̂t,Nt ]−ηt

ηt
is the relative bias of η̂t,Nt . That is, bias of ϑ̂N grows with

increase of the number of stages in a multiplicative way. In particular, if the relative biases
βt,Nt are constant, then bias of ϑ̂N grows exponentially fast with increase of the number
of stages.

Statistical Validation Analysis

By (5.245) we have that the optimal value ϑ̂N of SAA problem gives a valid statistical
lower bound for the optimal value ϑ∗. Therefore in order to construct a lower bound for ϑ∗

one can proceed exactly in the same way as it was discussed in section 5.6.1. Unfortunately,
typically the bias and variance of ϑ̂N grow fast with increase of the number of stages,
which makes the corresponding statistical lower bounds quite inaccurate already for a mild
number of stages.

In order to construct an upper bound we proceed as follows. Let xt(ξ[t]) be a feasible
policy. Recall that a policy is feasible if it satisfies the feasibility constraints (3.3). Since
the multistage problem can be formulated as the minimization problem (3.4) we have that

E
[
f1(x1) + f2(x2(ξ[2]), ξ2) + ...+ fT

(
xT (ξ[T ]), ξT

) ]
≥ ϑ∗, (5.261)

and equality in (5.261) holds iff the policy xt(ξ[t]) is optimal. The expectation in the left
hand side of (5.261) can be estimated in a straightforward way. That is, generate random
sample ξj1, ..., ξ

j
T , j = 1, ..., N , of N realizations (scenarios) of the random data process

ξ1, ..., ξT and estimate this expectation by the average

1

N

N∑
j=1

[
f1(x1) + f2

(
x2(ξj[2]), ξ

j
2

)
+ ...+ fT

(
xT (ξj[T ]), ξ

j
T

)]
. (5.262)
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Note that in order to construct the above estimator we do not need to generate a scenario
tree, say by conditional sampling, we only need to generate a sample of single scenarios of
the data process. The above estimator (5.262) is an unbiased estimator of the expectation in
the left hand side of (5.261), and hence is a valid statistical upper bound for ϑ∗. Of course,
quality of this upper bound depends on a successful choice of the feasible policy, i.e., on
how small is the optimality gap between the left and right hand sides of (5.261). It also
depends on variability of the estimator (5.262), which unfortunately often grows fast with
increase of the number of stages.

We also may address the problem of validating a given feasible first stage solution
x̄1 ∈ X1. The value of the multistage problem at x̄1 is given by the optimal value of the
problem

Min
x2,...,xT

f1(x̄1) + E
[
f2(x2(ξ[2]), ξ2) + ...+ fT

(
xT (ξ[T ]), ξT

) ]
s.t. xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, ..., T.

(5.263)

Recall that the optimization in (5.263) is performed over feasible policies. That is, in
order to validate x̄1 we basically need to solve the corresponding T − 1 stage problems.
Therefore, for T > 2 validation of x̄1 can be almost as difficult as solving the original
problem.

5.8.2 Complexity Estimates of Multistage Programs
In order compute value of two stage stochastic program minx∈X E[F (x, ξ)], where F (x, ξ)
is the optimal value of the corresponding second stage problem, at a feasible point x̄ ∈ X
we need to calculate the expectation E[F (x̄, ξ)]. This, in turn, involves two difficulties.
First, the objective value F (x̄, ξ) is not given explicitly, its calculation requires solution
of the associated second stage optimization problem. Second, the multivariate integral
E[F (x̄, ξ)] cannot be evaluated with a high accuracy even for moderate values of dimension
d of the random data vector ξ. Monte Carlo techniques allow to evaluate E[F (x̄, ξ)] with
accuracy ε > 0 by employing samples of size N = O(ε−2). The required sample size N
gives, in a sense, an estimate of complexity of evaluation of E[F (x̄, ξ)] since this is how
many times we will need to solve the corresponding second stage problem. It is remarkable
that in order to solve the two stage stochastic program with accuracy ε > 0, say by the SAA
method, we need a sample size basically of the same orderN = O(ε−2). These complexity
estimates were analyzed in details in section 5.3. Two basic conditions required for such
analysis are that the problem has relatively complete recourse and that for given x and ξ the
optimal value F (x, ξ) of the second stage problem can be calculated with a high accuracy.

In this section we discuss analogous estimates of complexity of the SAA method
applied to multistage stochastic programming problems. From the point of view of the
SAA method it is natural to evaluate complexity of a multistage stochastic program in
terms of the total number of scenarios required to find a first stage solution with a given
accuracy ε > 0.

In order to simplify the presentation we consider three stage stochastic programs, say
of the form (5.236)–(5.238). Assume that for every x1 ∈ X1 the expectation E[Q2(x1, ξ2)]
is well defined and finite valued. In particular, this assumption implies that the problem
has relatively complete recourse. Let us look at the problem of computing value of the first
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stage problem (5.238) at a feasible point x̄1 ∈ X1. Apart from the problem of evaluating
the expectation E[Q2(x̄1, ξ2)], we also face here the problem of computing Q2(x̄1, ξ2) for
different realizations of random vector ξ2. For that we need to solve the two stage stochastic
programming problem given in the right hand side of (5.237). As it was already discussed,
in order to evaluate Q2(x̄1, ξ2) with accuracy ε > 0 by solving the corresponding SAA
problem, given in the right hand side of (5.240), we also need a sample of size N2 =
O(ε−2). Recall that the total number of scenarios involved in evaluation of the sample
average f̃N1,N2

(x̄1), defined in (5.241), is N = N1N2. Therefore we will need N =
O(ε−4) scenarios just to compute value of the first stage problem at a given feasible point
with accuracy ε by the SAA method. This indicates that complexity of the SAA method,
applied to multistage stochastic programs, grows exponentially with increase of the number
of stages.

We discuss now in details sample size estimates of the three stage SAA program
(5.239)–(5.241). For the sake of simplicity we assume that the data process is stagewise
independent, i.e., random vectors ξ2 and ξ3 are independent. Also similar to assumptions
(M1)–(M5) of section 5.3 let us make the following assumptions.

(M′1) For every x1 ∈ X1 the expectation E[Q2(x1, ξ2)] is well defined and finite valued.

(M′2) The random vectors ξ2 and ξ3 are independent.

(M′3) The set X1 has finite diameter D1.

(M′4) There is a constant L1 > 0 such that∣∣Q2(x′1, ξ2)−Q2(x1, ξ2)
∣∣ ≤ L1‖x′1 − x1‖ (5.264)

for all x′1, x1 ∈ X1 and a.e. ξ2.

(M′5) There exists a constant σ1 > 0 such that for any x1 ∈ X1 it holds that

M1,x1
(t) ≤ exp

{
σ2

1t
2/2
}
, ∀ t ∈ R, (5.265)

where M1,x1
(t) is the moment generating function of Q2(x1, ξ2)− E[Q2(x1, ξ2)].

(M′6) There is a set C of finite diameter D2 such that for every x1 ∈ X1 and a.e. ξ2, the
set X2(x1, ξ2) is contained in C.

(M′7) There is a constant L2 > 0 such that∣∣Q3(x′2, ξ3)−Q3(x2, ξ3)
∣∣ ≤ L2‖x′2 − x2‖ (5.266)

for all x′2, x2 ∈ C and a.e. ξ3.

(M′8) There exists a constant σ2 > 0 such that for any x2 ∈ X2(x1, ξ2) and all x1 ∈ X1

and a.e. ξ2 it holds that

M2,x2
(t) ≤ exp

{
σ2

2t
2/2
}
, ∀ t ∈ R, (5.267)

where M2,x2
(t) is the moment generating function of Q3(x2, ξ3)− E[Q3(x2, ξ3)].
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Theorem 5.35. Under assumptions (M′1)–(M′8) and for ε > 0 and α ∈ (0, 1), and
the sample sizes N1 and N2 (using either independent or identical conditional sampling
schemes) satisfying[

O(1)D1L1

ε

]n1

exp
{
−O(1)N1ε

2

σ2
1

}
+
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ2
2

}
≤ α, (5.268)

we have that any ε/2-optimal solution of the SAA problem (5.241) is an ε-optimal solution
of the first stage (5.238) of the true problem with probability at least 1− α.

Proof. Proof of this theorem is based on the uniform exponential bound of Theorem 7.75.
Let us sketch the arguments. Assume that the conditional sampling is identical. We have
that for every x1 ∈ X1 and i = 1, ..., N1,∣∣∣Q̂2,N2

(x1, ξ
i
2)−Q2(x1, ξ

i
2)
∣∣∣ ≤ supx2∈C

∣∣∣ 1
N2

∑N2

j=1Q3(x2, ξ
j
3)− E[Q3(x2, ξ3)]

∣∣∣,
where C is the set postulated in assumption (M′6). Consequently

supx1∈X1

∣∣∣ 1
N1

∑N1

i=1 Q̂2,N2
(x1, ξ

i
2)− 1

N1

∑N1

i=1Q2(x1, ξ
i
2)
∣∣∣

≤ 1
N1

∑N1

i=1 supx1∈X1

∣∣∣Q̂2,N2(x1, ξ
i
2)−Q2(x1, ξ

i
2)
∣∣∣

≤ supx2∈C

∣∣∣ 1
N2

∑N2

j=1Q3(x2, ξ
j
3)− E[Q3(x2, ξ3)]

∣∣∣. (5.269)

By the uniform exponential bound (7.242) we have that

Pr
{

supx2∈C

∣∣∣ 1
N2

∑N2

j=1Q3(x2, ξ
j
3)− E[Q3(x2, ξ3)]

∣∣∣ > ε/2
}

≤
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ2
2

}
,

(5.270)

and hence

Pr
{

supx1∈X1

∣∣∣ 1
N1

∑N1

i=1 Q̂2,N2(x1, ξ
i
2)− 1

N1

∑N1

i=1Q2(x1, ξ
i
2)
∣∣∣ > ε/2

}
≤
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ2
2

}
.

(5.271)

By the uniform exponential bound (7.242) we also have that

Pr
{

supx1∈X1

∣∣∣ 1
N1

∑N1

i=1Q2(x1, ξ
i
2)− E[Q2(x1, ξ2)]

∣∣∣ > ε/2
}

≤
[
O(1)D1L1

ε

]n1

exp
{
−O(1)N1ε

2

σ2
1

}
.

(5.272)

Let us observe that if Z1, Z2 are random variables, then

Pr(Z1 + Z2 > ε) ≤ Pr(Z1 > ε/2) + Pr(Z2 > ε/2).

Therefore it follows from (5.271) and (5.271) that

Pr
{

supx1∈X1

∣∣f̃N1,N2
(x1)− f1(x1)− E[Q2(x1, ξ2)]

∣∣ > ε
}

≤
[
O(1)D1L1

ε

]n1

exp
{
−O(1)N1ε

2

σ2
1

}
+
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ2
2

}
,

(5.273)
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which implies the assertion of the theorem.
In the case of the independent conditional sampling the proof can be completed in a

similar way.

Remark 20. We have, of course, that∣∣ϑ̂N − ϑ∗∣∣ ≤ sup
x1∈X1

∣∣f̃N1,N2
(x1)− f1(x1)− E[Q2(x1, ξ2)]

∣∣. (5.274)

Therefore bound (5.273) also implies that

Pr
{∣∣ϑ̂N − ϑ∗∣∣ > ε

}
≤

[
O(1)D1L1

ε

]n1

exp
{
−O(1)N1ε

2

σ2
1

}
+
[
O(1)D2L2

ε

]n2

exp
{
−O(1)N2ε

2

σ2
2

}
.

(5.275)

In particular, suppose that N1 = N2. Then for

n := max{n1, n2}, L := max{L1, L2}, D := max{D1, D2}, σ := max{σ1, σ2},

the estimate (5.268) implies the following estimate of the required sample size N1 = N2:(
O(1)DL

ε

)n
exp

{
−O(1)N1ε

2

σ2

}
≤ α, (5.276)

which is equivalent to

N1 ≥
O(1)σ2

ε2

[
n ln

(
O(1)DL

ε

)
+ ln

(
1

α

)]
. (5.277)

The estimate (5.277), for 3-stage programs, looks similar to the estimate (5.116), of The-
orem 5.18, for two-stage programs. Recall, however, that if we use the SAA method with
conditional sampling and respective sample sizes N1 and N2, then the total number of sce-
narios is N = N1N2. Therefore, our analysis indicates that for 3-stage problems we need
random samples with the total number of scenarios of order of the square of the correspond-
ing sample size for two-stage problems. This analysis can be extended to T -stage problems
with the conclusion that the total number of scenarios needed to solve the true problem with
a reasonable accuracy grows exponentially with increase of the number of stages T . Some
numerical experiments seem to confirm this conclusion. Of course, it should be mentioned
that the above analysis does not prove in a rigorous mathematical sense that complexity of
multistage programming grows exponentially with increase of the number of stages. It only
indicates that if we measure computational complexity in terms of the number of generated
scenarios, the SAA method, which showed a considerable promise for solving two stage
problems, could be practically inapplicable for solving multistage problems with a large
(say greater than 3) number of stages.
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5.9 Stochastic Approximation Method
To an extent this section is based on Nemirovski et al [161]. Consider stochastic optimiza-
tion problem (5.1). We assume that the expected value function f(x) = E[F (x, ξ)] is well
defined, finite valued and continuous at every x ∈ X , and that the set X ⊂ Rn is nonempty,
closed and bounded. We denote by x̄ an optimal solution of problem (5.1). Such an optimal
solution does exist since the set X is compact and f(x) is continuous. Clearly, ϑ∗ = f(x̄)
(recall that ϑ∗ denotes the optimal value of problem (5.1)). We also assume throughout
this section that the set X is convex and the function f(·) is convex. Of course, if F (·, ξ)
is convex for every ξ ∈ Ξ, then convexity of f(·) follows. We assume availability of the
following stochastic oracle:

• There is a mechanism which for every given x ∈ X and ξ ∈ Ξ returns value F (x, ξ)
and a stochastic subgradient, a vector G(x, ξ) such that g(x) := E[G(x, ξ)] is well
defined and is a subgradient of f(·) at x, i.e., g(x) ∈ ∂f(x).

Remark 21. Recall that if F (·, ξ) is convex for every ξ ∈ Ξ, and x is an interior point of
X , i.e., f(·) is finite valued in a neighborhood of x, then

∂f(x) = E [∂xF (x, ξ)] (5.278)

(see Theorem 7.52). Therefore, in that case we can employ a measurable selectionG(x, ξ) ∈
∂xF (x, ξ) as a stochastic subgradient. Note also that for an implementation of a stochastic
approximation algorithm we only need to employ stochastic subgradients, while objective
values F (x, ξ) are used for accuracy estimates in section 5.9.4.

We also assume that we can generate, say by Monte Carlo sampling techniques, an
iid sequence ξj , j = 1, ...., of realizations of the random vector ξ, and hence to compute a
stochastic subgradient G(xj , ξ

j) at an iterate point xj ∈ X .

5.9.1 Classical Approach
We denote by ‖x‖2 = (xTx)1/2 the Euclidean norm of vector x ∈ Rn, and by

ΠX (x) := arg min
z∈X
‖x− z‖2 (5.279)

the metric projection of x onto the set X . Since X is convex and closed, the minimizer
in the right hand side of (5.279) exists and is unique. Note that ΠX is a nonexpanding
operator, i.e.,

‖ΠX (x′)−ΠX (x)‖2 ≤ ‖x′ − x‖2, ∀x′, x ∈ Rn. (5.280)

The classical Stochastic Approximation (SA) algorithm solves problem (5.1) by mim-
icking a simple subgradient descent method. That is, for chosen initial point x1 ∈ X and a
sequence γj > 0, j = 1, ..., of stepsizes, it generates the iterates by the formula

xj+1 = ΠX (xj − γjG(xj , ξ
j)). (5.281)

The crucial question of that approach is how to choose the stepsizes γj . Also the set X
should be simple enough so that the corresponding projection can be easily calculated. We
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are going now to analyze convergence of the iterates, generated by this procedure, to an
optimal solution x̄ of problem (5.1). Note that the iterate xj+1 = xj+1(ξ[j]), j = 1, ..., is
a function of the history ξ[j] = (ξ1, ..., ξj) of the generated random process and hence is
random, while the initial point x1 is given (deterministic). We assume that there is number
M > 0 such that

E
[
‖G(x, ξ)‖22

]
≤M2, ∀x ∈ X . (5.282)

Note that since for a random variable Z it holds that E[Z2] ≥ (E|Z|)2, it follows from
(5.282) that E‖G(x, ξ)‖ ≤M .

Denote

Aj := 1
2
‖xj − x̄‖22 and aj := E[Aj ] = 1

2
E
[
‖xj − x̄‖22

]
. (5.283)

By (5.280) and since x̄ ∈ X and hence ΠX (x̄) = x̄, we have

Aj+1 = 1
2

∥∥ΠX
(
xj − γjG(xj , ξ

j)
)
− x̄
∥∥2

2

= 1
2

∥∥ΠX
(
xj − γjG(xj , ξ

j)
)
−ΠX (x̄)

∥∥2

2

≤ 1
2

∥∥xj − γjG(xj , ξ
j)− x̄

∥∥2

2
= Aj + 1

2
γ2
j ‖G(xj , ξ

j)‖22 − γj(xj − x̄)TG(xj , ξ
j).

(5.284)

Since xj = xj(ξ[j−1]) is independent of ξj , we have

E
[
(xj − x̄)TG(xj , ξ

j)
]

= E
{
E
[
(xj − x̄)TG(xj , ξ

j) |ξ[j−1]

]}
= E

{
(xj − x̄)TE[G(xj , ξ

j) |ξ[j−1]]
}

= E
[
(xj − x̄)Tg(xj)

]
.

Therefore, by taking expectation of both sides of (5.284) and since (5.282) we obtain

aj+1 ≤ aj − γjE
[
(xj − x̄)Tg(xj)

]
+ 1

2
γ2
jM

2. (5.285)

Suppose, further, that the expectation function f(x) is differentiable and strongly
convex on X with parameter c > 0, i.e.,

(x′ − x)T(∇f(x′)−∇f(x)) ≥ c‖x′ − x‖22, ∀x, x′ ∈ X . (5.286)

Note that strong convexity of f(x) implies that the minimizer x̄ is unique, and that because
of differentiability of f(x) it follows that ∂f(x) = {∇f(x)} and hence g(x) = ∇f(x).
By optimality of x̄ we have that

(x− x̄)T∇f(x̄) ≥ 0, ∀x ∈ X , (5.287)

which together with (5.286) implies that

E
[
(xj − x̄)T∇f(xj)

]
≥ E

[
(xj − x̄)T (∇f(xj)−∇f(x̄))

]
≥ cE

[
‖xj − x̄‖22

]
= 2caj .

(5.288)

Therefore it follows from (5.285) that

aj+1 ≤ (1− 2cγj)aj + 1
2
γ2
jM

2. (5.289)
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In the classical approach to stochastic approximation the employed stepsizes are
γj := θ/j for some constant θ > 0. Then by (5.289) we have

aj+1 ≤ (1− 2cθ/j)aj + 1
2
θ2M2/j2. (5.290)

Suppose now that θ > 1/(2c). Then it follows from (5.290) by induction that for j = 1, ...,

2aj ≤
max

{
θ2M2(2cθ − 1)−1, 2a1

}
j

. (5.291)

Recall that 2aj = E
[
‖xj − x̄‖2

]
and, since x1 is deterministic, 2a1 = ‖x1 − x̄‖22. There-

fore, by (5.291) we have that

E
[
‖xj − x̄‖22

]
≤ Q(θ)

j
, (5.292)

where
Q(θ) := max

{
θ2M2(2cθ − 1)−1, ‖x1 − x̄‖22

}
. (5.293)

The constant Q(θ) attains its optimal (minimal) value at θ = 1/c.
Suppose, further, that x̄ is an interior point of X and∇f(x) is Lipschitz continuous,

i.e., there is constant L > 0 such that

‖∇f(x′)−∇f(x)‖2 ≤ L‖x′ − x‖2, ∀x′, x ∈ X . (5.294)

Then
f(x) ≤ f(x̄) + 1

2
L‖x− x̄‖22, ∀x ∈ X , (5.295)

and hence by (5.292)

E
[
f(xj)− f(x̄)

]
≤ 1

2
LE

[
‖xj − x̄‖22

]
≤ Q(θ)L

2j
. (5.296)

We obtain that under the specified assumptions, after j iterations the expected error
of the current solution in terms of the distance to the true optimal solution x̄ is of order
O(j−1/2), and the expected error in terms of the objective value is of order O(j−1), pro-
vided that θ > 1/(2c). Note, however, that the classical stepsize rule γj = θ/j could be
very dangerous if the parameter c of strong convexity is overestimated, i.e., if θ < 1/(2c).

Example 5.36 As a simple example consider f(x) := 1
2
κx2, with κ > 0 and X :=

[−1, 1] ⊂ R, and assume that there is no noise, i.e., G(x, ξ) ≡ ∇f(x). Clearly x̄ = 0
is the optimal solution and zero is the optimal value of the corresponding optimization
(minimization) problem. Let us take θ = 1, i.e., use stepsizes γj = 1/j, in which case the
iteration process becomes

xj+1 = xj − f ′(xj)/j =

(
1− κ

j

)
xj . (5.297)

For κ = 1 the above choice of the stepsizes is optimal and the optimal solution is obtained
in one iteration.
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Suppose now that κ < 1. Then starting with x1 > 0, we have

xj+1 = x1

j∏
s=1

(
1− κ

s

)
= x1 exp

{
−

j∑
s=1

ln

(
1 +

κ

s− κ

)}
> x1 exp

{
−

j∑
s=1

κ

s− κ

}
.

Moreover,

j∑
s=1

κ

s− κ
≤ κ

1− κ
+

∫ j

1

κ

t− κ
dt <

κ

1− κ
+ κ ln j − κ ln(1− κ).

It follows that

xj+1 > O(1) j−κ and f(xj+1) > O(1)j−2κ, j = 1, ... . (5.298)

(In the first of the above inequalities the constantO(1) = x1 exp{−κ/(1−κ)+κ ln(1−κ)},
and in the second inequality the generic constant O(1) is obtained from the first one by
taking square and multiplying it by κ/2.) That is, the convergence becomes extremely
slow for small κ close to zero. In order to reduce the value xj (the objective value f(xj))
by factor 10, i.e., to improve the error of current solution by one digit, we will need to
increase the number of iterations j by factor 101/κ (by factor 101/(2κ)). For example, for
κ = 0.1, x1 = 1 and j = 105 we have that xj > 0.28. In order to reduce the error of
the iterate to 0.028 we will need to increase the number of iterations by factor 1010, i.e., to
j = 1015.

It could be added that if f(x) loses strong convexity, i.e., the parameter c degenerates
to zero, and hence no choice of θ > 1/(2c) is possible, then the stepsizes γj = θ/j may
become completely unacceptable for any choice of θ.

5.9.2 Robust SA Approach

It was argued in the previous section 5.9.1 that the classical stepsizes γj = O(j−1) can
be too small to ensure a reasonable rate of convergence even in the “no noise” case. An
important improvement of the SA method was developed by Polyak [188] and Polyak and
Juditsky [189], where longer stepsizes were suggested with consequent averaging of the ob-
tained iterates. Under the outlined “classical” assumptions, the resulting algorithm exhibits
the same optimal O(j−1) asymptotical convergence rate, while using an easy to imple-
ment and “robust” stepsize policy. The main ingredients of Polyak’s scheme (long steps
and averaging) were, in a different form, proposed already in Nemirovski and Yudin [163]
for problems with general type Lipschitz continuous convex objectives and for convex-
concave saddle point problems. Results of this section go back to Nemirovski and Yudin
[163],[164].

Recall that g(x) ∈ ∂f(x) and aj = 1
2
E
[
‖xj − x̄‖22

]
, and we assume the bounded-

ness condition (5.282). By convexity of f(x) we have that f(x) ≥ f(xj)+(x−xj)Tg(xj)
for any x ∈ X , and hence

E
[
(xj − x̄)Tg(xj)

]
≥ E

[
f(xj)− f(x̄)

]
. (5.299)
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Together with (5.285) this implies

γjE
[
f(xj)− f(x̄)

]
≤ aj − aj+1 + 1

2
γ2
jM

2.

It follows that whenever 1 ≤ i ≤ j, we have

j∑
t=i

γtE
[
f(xt)− f(x̄)

]
≤

j∑
t=i

[at − at+1] + 1
2
M2

j∑
t=i

γ2
t ≤ ai + 1

2
M2

j∑
t=i

γ2
t . (5.300)

Denote
νt :=

γt∑j
τ=i γτ

and DX := max
x∈X
‖x− x1‖2. (5.301)

Clearly νt ≥ 0 and
∑j
t=i νt = 1. By (5.300) we have

E

[
j∑
t=i

νtf(xt)− f(x̄)

]
≤
ai + 1

2
M2

∑j
t=i γ

2
t∑j

t=i γt
. (5.302)

Consider points

x̃i,j :=

j∑
t=i

νtxt. (5.303)

Since X is convex it follows that x̃i,j ∈ X and by convexity of f(·) we have

f(x̃i,j) ≤
j∑
t=i

νtf(xt).

Thus, by (5.302) and in view of a1 ≤ D2
X and ai ≤ 4D2

X , i > 1, we get

E [f(x̃1,j)− f(x̄)] ≤
D2
X +M2

∑j
t=1 γ

2
t

2
∑j
t=1 γt

, for 1 ≤ j, (5.304)

E [f(x̃i,j)− f(x̄)] ≤
4D2
X +M2

∑j
t=i γ

2
t

2
∑j
t=i γt

, for 1 < i ≤ j. (5.305)

Based of the above bounds on the expected accuracy of approximate solutions x̃i,j , we can
now develop “reasonable” stepsize policies along with the associated efficiency estimates.

Constant stepsizes and error estimates

Assume now that the number of iterations of the method is fixed in advance, say equal to
N , and that we use the constant stepsize policy, i.e., γt = γ, t = 1, ..., N . It follows then
from (5.304) that

E [f(x̃1,N )− f(x̄)] ≤ D2
X +M2Nγ2

2Nγ
. (5.306)
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Minimizing the right hand side of (5.306) over γ > 0, we arrive at the constant stepsize
policy

γt =
DX

M
√
N
, t = 1, ..., N, (5.307)

along with the associated efficiency estimate

E [f(x̃1,N )− f(x̄)] ≤ DXM√
N

. (5.308)

By (5.305), with the constant stepsize policy (5.307), we also have for 1 ≤ K ≤ N ,

E [f(x̃K,N )− f(x̄)] ≤ CN,KDXM√
N

, (5.309)

where
CN,K :=

2N

N −K + 1
+

1

2
.

When K/N ≤ 1/2, the right hand side of (5.309) coincides, within an absolute constant
factor, with the right hand side of (5.308). If we change the stepsizes (5.307) by a factor of
θ > 0, i.e., use the stepsizes

γt =
θDX

M
√
N
, t = 1, ..., N, (5.310)

then the efficiency estimate (5.309) becomes

E [f(x̃K,N )− f(x̄)] ≤ max
{
θ, θ−1

} CN,KDXM√
N

. (5.311)

The expected error of the iterates (5.303), with constant stepsize policy (5.310), after
N iterations is O(N−1/2). Of course, this is worse than the rate O(N−1) for the classical
SA algorithm as applied to a smooth strongly convex function attaining minimum at an
interior point of the set X . However, the error bound (5.311) is guaranteed independently
of any smoothness and/or strong convexity assumptions on f(·). Moreover, changing the
stepsizes by factor θ results just in rescaling of the corresponding error estimate (5.311).
This is in a sharp contrast with the classical approach discussed in the previous section,
when such change of stepsizes can be a disaster. These observations, in particular the
fact that there is no necessity in “fine tuning” the stepsizes to the objective function f(·),
explains the adjective “robust” in the name of the method.

It can be interesting to compare sample size estimates derived from the error bounds
of the (robust) SA approach with respective sample size estimates of the SAA method
discussed in section 5.3.2. By Chebyshev (Markov) inequality we have that for ε > 0,

Pr {f(x̃1,N )− f(x̄) ≥ ε} ≤ ε−1E [f(x̃1,N )− f(x̄)] . (5.312)

Together with (5.308) this implies that, for the constant stepsize policy (5.307),

Pr {f(x̃1,N )− f(x̄) ≥ ε} ≤ DXM

ε
√
N
. (5.313)
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It follows that for α ∈ (0, 1) and sample size

N ≥ D2
XM

2

ε2α2
(5.314)

we are guaranteed that x̃1,N is an ε-optimal solution of the “true” problem (5.1) with prob-
ability at least 1− α.

Compared with the corresponding estimate (5.126) for the sample size by the SAA
method, the above estimate (5.314) is of the same order with respect to parameters DX ,M
and ε. On the other hand, the dependence on the significance level α is different, in (5.126)
it is of order O

(
ln(α−1)

)
, while in (5.314) it is of order O(α−2). It is possible to derive

better estimates, similar to the respective estimates of the SAA method, of the required
sample size by using Large Deviations theory, we will discuss this further in the next section
(see Theorem 5.41 in particular).

5.9.3 Mirror Descent SA Method
The robust SA approach discussed in the previous section is tailored to Euclidean structure
of the space Rn. In this section we discuss a generalization of the Euclidean SA approach
allowing to adjust, to some extent, the method to the geometry, not necessary Euclidean, of
the problem in question. A rudimentary form of the following generalization can be found
in Nemirovski and Yudin [164], from where the name “Mirror Descent” originates.

In this section we denote by ‖ · ‖ a general norm on Rn. Its dual norm is defined as

‖x‖∗ := sup‖y‖≤1 y
Tx.

By ‖x‖p :=
(
|x1|p + · · · + |xn|p

)1/p
we denote the `p, p ∈ [1,∞), norm on Rn. In

particular, ‖ · ‖2 is the Euclidean norm. Recall that the dual of ‖ · ‖p is the norm ‖ · ‖q ,
where q > 1 is such that 1/p+1/q = 1. The dual norm of `1 norm ‖x‖1 = |x1|+· · ·+|xn|
is the `∞ norm ‖x‖∞ = max

{
|x1|, . . . , |xn|

}
.

Definition 5.37. We say that a function d : X → R is a distance generating function with
modulus κ > 0 with respect to norm ‖ · ‖ if the following holds: d(·) is convex continuous
on X , the set

X ? := {x ∈ X : ∂ d(x) 6= ∅} (5.315)

is convex, d(·) is continuously differentiable on X ?, and

(x′ − x)T(∇d(x′)−∇d(x)) ≥ κ‖x′ − x‖2, ∀x, x′ ∈ X ?. (5.316)

Note that the set X ? includes the relative interior of the set X , and hence condition (5.316)
implies that d(·) is strongly convex on X with the parameter κ taken with respect to the
considered norm ‖ · ‖.

A simple example of a distance generating function (with modulus 1 with respect to
the Euclidean norm) is d(x) := 1

2
xTx. Of course, this function is continuously differen-

tiable at every x ∈ Rn. Another interesting example is the entropy function

d(x) :=

n∑
i=1

xi lnxi, (5.317)
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defined on the standard simplex X := {x ∈ Rn :
∑n
i=1 xi = 1, x ≥ 0} (note that by con-

tinuity, x lnx = 0 for x = 0). Here the set X ? is formed by points x ∈ X having all
coordinates different from zero. The set X ? is the subset of X of those points at which the
entropy function is differentiable with ∇d(x) = (1 + lnx1, . . . , 1 + lnxn). The entropy
function is strongly convex with modulus 1 on standard simplex with respect to ‖·‖1 norm.

Indeed, it suffices to verify that hT∇2d(x)h ≥ ‖h‖21 for every h ∈ Rn and
x ∈ X ?. This, in turn, is verified by[∑

i |hi|
]2

=
[∑

i(x
−1/2
i |hi|)x1/2

i

]2 ≤ [∑i h
2
ix
−1
i

][∑
i xi
]

=
∑
i h

2
ix
−1
i = hT∇2d(x)h,

(5.318)

where the inequality follows by Cauchy inequality.

Let us define function V : X ? ×X → R+ as follows

V (x, z) := d(z)− [d(x) +∇d(x)T(z − x)]. (5.319)

In what follows we refer to V (·, ·) as prox-function19 associated with distance generating
function d(x). Note that V (x, ·) is nonnegative and is strongly convex with modulus κwith
respect to the norm ‖ · ‖. Let us define prox-mapping Px : Rn → X ?, associated with the
distance generating function and a point x ∈ X ?, viewed as a parameter, as follows

Px(y) := arg min
z∈X

{
yT(z − x) + V (x, z)

}
. (5.320)

Observe that the minimum in the right hand side of (5.320) is attained since d(·) is con-
tinuous on X and X is compact, and a corresponding minimizer is unique since V (x, ·)
is strongly convex on X . Moreover, by the definition of the set X ?, all these minimizers
belong to X ?. Thus, the prox-mapping is well defined.

For the (Euclidean) distance generating function d(x) := 1
2
xTx, we have thatPx(y) =

ΠX (x− y). In that case the iteration formula (5.281) of the SA algorithm can be written as

xj+1 = Pxj (γjG(xj , ξ
j)), x1 ∈ X ?. (5.321)

Our goal is to demonstrate that the main properties of the recurrence (5.281) are inherited
by (5.321) for any distance generating function d(x).

Lemma 5.38. For every u ∈ X , x ∈ X ? and y ∈ Rn one has

V (Px(y), u) ≤ V (x, u) + yT(u− x) + (2κ)−1‖y‖2∗. (5.322)

Proof. Let x ∈ X ? and v := Px(y). Note that v is of the form argminz∈X
[
hTz + d(z)

]
and thus v ∈ X?, so that d(·) is differentiable at v. Since ∇vV (x, v) = ∇d(v) − ∇d(x),
the optimality conditions for (5.320) imply that

(∇d(v)−∇d(x) + y)T(v − u) ≤ 0, ∀u ∈ X . (5.323)

19The function V (·, ·) is also called Bregman divergence.
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Therefore, for u ∈ X we have

V (v, u)− V (x, u) = [d(u)−∇d(v)T(u− v)− d(v)]− [d(u)−∇d(x)T(u− x)− d(x)]
= (∇d(v)−∇d(x) + y)T(v − u) + yT(u− v)− [d(v)−∇d(x)T(v − x)− d(x)]
≤ yT(u− v)− V (x, v),

where the last inequality follows by (5.323).
For any a, b ∈ Rn we have by the definition of the dual norm that ‖a‖∗‖b‖ ≥ aTb

and hence
(‖a‖2∗/κ+ κ‖b‖2)/2 ≥ ‖a‖∗‖b‖ ≥ aTb. (5.324)

Applying this inequality with a = y and b = x− v we obtain

yT(x− v) ≤ ‖y‖
2
∗

2κ
+
κ

2
‖x− v‖2.

Also due to the strong convexity of V (x, ·) and since V (x, x) = 0 we have

V (x, v) ≥ V (x, x) + (x− v)T∇vV (x, v) + 1
2
κ‖x− v‖2

= (x− v)T(∇d(v)−∇d(x)) + 1
2
κ‖x− v‖2

≥ 1
2
κ‖x− v‖2,

(5.325)

where the last inequality holds by convexity of d(·). We get

V (v, u)− V (x, u) ≤ yT(u− v)− V (x, v) = yT(u− x) + yT(x− v)− V (x, v)
≤ yT(u− x) + (2κ)−1‖y‖2∗,

as required in (5.322).

Using (5.322) with x = xj , y = γjG(xj , ξ
j) and u = x̄, and noting that by (5.321)

xj+1 = Px(y) here, we get

γj(xj − x̄)TG(xj , ξ
j) ≤ V (xj , x̄)− V (xj+1, x̄) +

γ2
j

2κ
‖G(xj , ξ

j)‖2∗. (5.326)

Let us observe that for the Euclidean distance generating function d(x) = 1
2
xTx, one has

V (x, z) = 1
2
‖x− z‖22 and κ = 1. That is, in the Euclidean case (5.326) becomes

1
2
‖xj+1 − x̄‖22 ≤ 1

2
‖xj − x̄‖22 + 1

2
γ2
j ‖G(xj , ξ

j)‖22 − γj(xj − x̄)TG(xj , ξ
j). (5.327)

The above inequality is exactly the relation (5.284), which played a crucial role in the
developments related to the Euclidean SA. We are about to process, in a similar way, the
relation (5.326) in the case of a general distance generating function, thus arriving at the
Mirror Descent SA.

Specifically, setting
∆j := G(xj , ξ

j)− g(xj), (5.328)

we can rewrite (5.326), with j replaced by t, as

γt(xt− x̄)Tg(xt) ≤ V (xt, x̄)−V (xt+1, x̄)− γt∆T
t (xt− x̄) +

γ2
t

2κ
‖G(xt, ξ

t)‖2∗. (5.329)
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Summing up over t = 1, ..., j, and taking into account that V (xj+1, u) ≥ 0, u ∈ X , we get

j∑
t=1

γt(xt − x̄)Tg(xt) ≤ V (x1, x̄) +

j∑
t=1

γ2
t

2κ
‖G(xt, ξ

t)‖2∗ −
j∑
t=1

γt∆
T
t (xt − x̄). (5.330)

Set νt := γt∑j
τ=1 γτ

, t = 1, ..., j, and

x̃1,j :=

j∑
t=1

νtxt. (5.331)

By convexity of f(·) we have f(xt)− f(x̄) ≤ (xt − x̄)Tg(xt), and hence∑j
t=1 γt(xt − x̄)Tg(xt) ≥

∑j
t=1 γt [f(xt)− f(x̄)]

=
(∑j

t=1 γt

) [∑j
t=1 νtf(xt)− f(x̄)

]
≥

(∑j
t=1 γt

)
[f(x̃1,j)− f(x̄)] .

Combining this with (5.330) we obtain

f(x̃1,j)− f(x̄) ≤
V (x1, x̄) +

j∑
t=1

(2κ)−1γ2
t ‖G(xt, ξ

t)‖2∗ −
j∑
t=1

γt∆
T
t (xt − x̄)∑j

t=1 γt
. (5.332)

• Assume from now on that the procedure starts with the minimizer of d(·), that is

x1 := argminx∈X d(x). (5.333)

Since by the optimality of x1 we have that (u − x1)T∇d(x1) ≥ 0 for any u ∈ X , it
follows from the definition (5.319) of the function V (·, ·) that

max
u∈X

V (x1, u) ≤ D2
d,X , (5.334)

where

Dd,X :=

[
max
u∈X

d(u)−min
x∈X

d(x)

]1/2

. (5.335)

Together with (5.332) this implies

f(x̃1,j)− f(x̄) ≤
D2

d,X +
j∑
t=1

(2κ)−1γ2
t ‖G(xt, ξ

t)‖2∗ −
j∑
t=1

γt∆
T
t (xt − x̄)∑j

t=1 γt
. (5.336)

We also have (see (5.325)) that V (x1, u) ≥ 1
2
κ‖x1−u‖2, and hence it follows from (5.334)

that for all u ∈ X :

‖x1 − u‖ ≤
√

2

κ
Dd,X . (5.337)
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Let us assume, as in the previous section (see (5.282)), that there is a positive number
M∗ such that

E
[
‖G(x, ξ)‖2∗

]
≤M2

∗ , ∀x ∈ X . (5.338)

Proposition 5.39. Let x1 := argminx∈X d(x) and suppose that condition (5.338) holds.
Then

E [f(x̃1,j)− f(x̄)] ≤
D2

d,X + (2κ)−1M2
∗
∑j
t=1 γ

2
t∑j

t=1 γt
. (5.339)

Proof. Taking expectations of both sides of (5.336) and noting that: (i) xt is a deterministic
function of ξ[t−1] = (ξ1, ..., ξt−1), (ii) conditional on ξ[t−1], the expectation of ∆t is 0, and
(iii) the expectation of ‖G(xt, ξ

t)‖2∗ does not exceed M2
∗ , we obtain (5.339).

Constant stepsize policy

Assume that the total number of steps N is given in advance and the constant stepsize
policy γt = γ, t = 1, ..., N , is employed. Then (5.339) becomes

E [f(x̃1,j)− f(x̄)] ≤
D2

d,X + (2κ)−1M2
∗Nγ

2

Nγ
. (5.340)

Minimizing the right hand side of (5.340) over γ > 0 we arrive at the constant stepsize
policy

γt =

√
2κDd,X

M∗
√
N

, t = 1, ..., N, (5.341)

and the associated efficiency estimate

E [f(x̃1,N )− f(x̄)] ≤ Dd,XM∗

√
2

κN
. (5.342)

This can be compared with the respective stepsize (5.307) and efficiency estimate (5.308)
for the robust Euclidean SA method. Passing from the stepsizes (5.341) to the stepsizes

γt =
θ
√

2κDd,X

M∗
√
N

, t = 1, ..., N, (5.343)

with rescaling parameter θ > 0, the efficiency estimate becomes

E [f(x̃1,N )− f(x̄)] ≤ max
{
θ, θ−1

}
Dd,XM∗

√
2

κN
, (5.344)

similar to the Euclidean case. We refer to the SA method based on (5.321),(5.331) and
(5.343) as Mirror Descent SA algorithm with constant stepsize policy.

Comparing (5.308) to (5.342), we see that for both the Euclidean and the Mirror
Descent SA algorithms, the expected inaccuracy, in terms of the objective values of the
approximate solutions is O(N−1/2). A benefit of the Mirror Descent over the Euclidean
algorithm is in potential possibility to reduce the constant factor hidden inO(·) by adjusting
the norm ‖ · ‖ and the distance generating function d(·) to the geometry of the problem.
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Example 5.40 Let X := {x ∈ Rn :
∑n
i=1 xi = 1, x ≥ 0} be the standard simplex.

Consider two setups for the Mirror Descent SA. Namely, the Euclidean setup where the
considered norm ‖ · ‖ := ‖ · ‖2 and d(x) := 1

2x
Tx, and `1-setup where ‖ · ‖ := ‖ · ‖1 and

d(·) is the entropy function (5.317). The Euclidean setup leads to the Euclidean Robust SA
which is easily implementable. Note that the Euclidean diameter of X is

√
2 and hence is

independent of n. The corresponding efficiency estimate is

E [f(x̃1,N )− f(x̄)] ≤ O(1) max
{
θ, θ−1

}
MN−1/2, (5.345)

with M2 = supx∈X E
[
‖G(x, ξ)‖22

]
.

The `1-setup corresponds to X ? = {x ∈ X : x > 0}, Dd,X =
√

lnn,

x1 := argmin
x∈X

d(x) = n−1(1, ..., 1)T,

‖x‖∗ = ‖x‖∞ and κ = 1 (see (5.318) for verification that κ = 1). The associated Mirror
Descent SA is easily implementable. The prox-function here is

V (x, z) =

n∑
i=1

zi ln
zi
xi
,

and the prox-mapping Px(y) is given by the explicit formula

[Px(y)]i =
xie
−yi∑n

k=1 xke
−yk

, i = 1, ..., n.

The respective efficiency estimate of the `1-setup is

E [f(x̃1,N )− f(x̄)] ≤ O(1) max
{
θ, θ−1

}
(lnn)1/2M∗N

−1/2, (5.346)

withM2
∗ = supx∈X E

[
‖G(x, ξ)‖2∞

]
, provided that the constant stepsizes (5.343) are used.

To compare (5.346) and (5.345), observe that M∗ ≤ M , and the ratio M∗/M can
be as small as n−1/2. Thus, the efficiency estimate for the `1-setup is never much worse
than the estimate for the Euclidean setup, and for large n can be far better than the latter
estimate. That is, √

1

lnn
≤ M√

lnnM∗
≤
√

n

lnn
,

with both the upper and the lower bounds being achievable. Thus, when X is a standard
simplex of large dimension, we have strong reasons to prefer the `1-setup to the usual
Euclidean one.

Comparison with the SAA approach

Similar to (5.312)–(5.314), by using Chebyshev (Markov) inequality, it is possible to derive
from (5.344) an estimate of the sample size N which guarantees that x̃1,N is an ε-optimal
solution of the true problem with probability at least 1−α. It is possible, however, to obtain
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much finer bounds on deviation probabilities when imposing more restrictive assumptions
on the distribution of G(x, ξ). Specifically, assume that there is constant M∗ > 0 such that

E
[
exp

{
‖G(x, ξ)‖2∗ /M

2
∗

}]
≤ exp{1}, ∀x ∈ X . (5.347)

Note that condition (5.347) is stronger than (5.338). Indeed, if a random variable Y satisfies
E[exp{Y/a}] ≤ exp{1} for some a > 0, then by Jensen inequality

exp{E[Y/a]} ≤ E[exp{Y/a}] ≤ exp{1},

and therefore E[Y ] ≤ a. By taking Y := ‖G(x, ξ)‖2∗ and a := M2, we obtain that (5.347)
implies (5.338). Of course, condition (5.347) holds if ‖G(x, ξ)‖∗ ≤ M∗ for all (x, ξ) ∈
X × Ξ.

Theorem 5.41. Suppose that condition (5.347) is fulfilled. Then for the constant stepsizes
(5.343), the following holds for any Θ ≥ 0 :

Pr

{
f(x̃1,N )− f(x̄) ≥ C(1 + Θ)√

κN

}
≤ 4 exp{−Θ}, (5.348)

where C :=
(
max

{
θ, θ−1

}
+ 8
√

3
)
M∗Dd,X /

√
2.

Proof. By (5.336) we have

f(x̃1,N )− f(x̄) ≤ A1 +A2, (5.349)

where

A1 :=

D2
d,X + (2κ)−1

N∑
t=1

γ2
t ‖G(xt, ξ

t)‖2∗∑N
t=1 γt

and A2 :=

N∑
t=1

νt∆
T
t (x̄− xt).

Consider Yt := γ2
t ‖G(xt, ξ

t)‖2∗ and ct := M2
∗γ

2
t . Note that by (5.347),

E [exp{Yi/ci}] ≤ exp{1}, i = 1, ..., N. (5.350)

Since exp{·} is a convex function we have

exp
{∑N

i=1 Yi∑N
i=1 ci

}
= exp

{∑N
i=1

ci(Yi/ci)∑N
i=1 ci

}
≤
∑N
i=1

ci∑N
i=1 ci

exp{Yi/ci}.

By taking expectation of both sides of the above inequality and using (5.350) we obtain

E
[
exp

{∑N
i=1 Yi∑N
i=1 ci

}]
≤ exp{1}.

Consequently by Chebyshev’s inequality we have for any number Θ:

Pr
[
exp

{∑N
i=1 Yi∑N
i=1 ci

}
≥ exp{Θ}

]
≤ exp{1}

exp{Θ} = exp{1−Θ},
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and hence

Pr
{∑N

i=1 Yi ≥ Θ
∑N
i=1 ci

}
≤ exp{1−Θ} ≤ 3 exp{−Θ}. (5.351)

That is, for any Θ:

Pr
{∑N

t=1 γ
2
t ‖G(xt, ξ

t)‖2∗ ≥ ΘM2
∗
∑N
t=1 γ

2
t

}
≤ 3 exp {−Θ} . (5.352)

For the constant stepsize policy (5.343), we obtain by (5.352) that

Pr
{
A1 ≥ max{θ, θ−1}M∗Dd,X (1+Θ)√

2κN

}
≤ 3 exp {−Θ} . (5.353)

Consider now the random variable A2. By (5.337) we have that

‖x̄− xt‖ ≤ ‖x1 − x̄‖+ ‖x1 − xt‖ ≤ 2
√

2κ−1/2Dd,X ,

and hence ∣∣∆T
t (x̄− xt)

∣∣2 ≤ ‖∆t‖2∗‖x̄− xt‖2 ≤ 8κ−1D2
d,X ‖∆t‖2∗.

We also have that

E
[
(x̄− xt)T∆t

∣∣ξ[t−1]

]
= (x̄− xt)TE

[
∆t

∣∣ξ[t−1]

]
= 0 w.p.1,

and by condition (5.347) that

E
[
exp

{
‖∆t‖2∗ /(4M

2
∗ )
} ∣∣ξ[t−1]

]
≤ exp{1} w.p.1.

Consequently by applying inequality (7.219) of Proposition 7.72 with φt := νt∆
T
t (x̄−xt)

and σ2
t := 32κ−1M2

∗D
2
d,X ν

2
t , we obtain for any Θ ≥ 0:

Pr

{
A2 ≥ 4

√
2κ−1/2M∗Dd,XΘ

√∑N
t=1 ν

2
t

}
≤ exp

{
−Θ2/3

}
. (5.354)

Since for the constant stepsize policy we have that νt = 1/N , t = 1, ..., N , by changing
variables Θ2/3 to Θ and noting that Θ1/2 ≤ 1 + Θ for any Θ ≥ 0, we obtain from (5.354)
that for any Θ ≥ 0:

Pr
{
A2 ≥ 8

√
3M∗Dd,X (1+Θ)√

2κN

}
≤ exp {−Θ} . (5.355)

Finally, (5.348) follows from (5.349), (5.353) and (5.355).

By setting ε = C(1+Θ)√
κN

, we can rewrite the estimate (5.348) in the form20

Pr {f(x̃1,N )− f(x̄) > ε} ≤ 12 exp
{
− εC−1

√
κN
}
. (5.356)

20The constant 12 in the right hand side of (5.356) comes from the simple estimate 4 exp{1} < 12.
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For ε > 0 this gives the following estimate of the sample size N which guarantees that
x̃1,N is an ε-optimal solution of the true problem with probability at least 1− α:

N ≥ O(1)ε−2κ−1M2
∗D

2
d,X ln2

(
12/α

)
. (5.357)

This estimate is similar to the respective estimate (5.126) of the sample size for the SAA
method. However, as far as complexity of solving the problem numerically is concerned, it
could be mentioned that the SAA method requires a solution of the generated optimization
problem, while an SA algorithm is based on computing a single subgradient G(xj , ξ

j) at
each iteration point. As a result, for the same sample size N it typically takes consider-
ably less computation time to run an SA algorithm than to solve the corresponding SAA
problem.

5.9.4 Accuracy Certificates for Mirror Descent SA Solutions
We discuss now a way to estimate lower and upper bounds for the optimal value of problem
(5.1) by employing SA iterates. This will give us an accuracy certificate for obtained solu-
tions. Assume that we run an SA procedure with respective iterates x1, ..., xN computed
according to formula (5.321). As before, set

νt :=
γt∑N
τ=1 γτ

, t = 1, ..., N, and x̃1,N :=

N∑
t=1

νtxt.

We assume now that the stochastic objective value F (x, ξ), as well as the stochastic sub-
gradient G(x, ξ), are computable at a given point (x, ξ) ∈ X × Ξ.

Consider

fN∗ := min
x∈X

fN (x) and f∗N :=

N∑
t=1

νtf(xt), (5.358)

where

fN (x) :=

N∑
t=1

νt
[
f(xt) + g(xt)

T(x− xt)
]
. (5.359)

Since νt > 0 and
∑N
t=1 νt = 1, by convexity of f(x) we have that the function fN (x)

underestimates f(x) everywhere on X , and hence21 fN∗ ≤ ϑ∗. Since x̃1,N ∈ X we also
have that ϑ∗ ≤ f(x̃1,N ), and by convexity of f that f(x̃1,N ) ≤ f∗N . It follows that
ϑ∗ ≤ f∗N . That is, for any realization of the random process ξ1, ..., we have that

fN∗ ≤ ϑ∗ ≤ f∗N . (5.360)

It follows, of course, that E[fN∗ ] ≤ ϑ∗ ≤ E[f∗N ] as well.
Along with the “unobservable” bounds fN∗ , f∗N , consider their observable (com-

putable) counterparts

fN := minx∈X

{∑N
t=1 νt[F (xt, ξ

t) +G(xt, ξ
t)T(x− xt)]

}
,

f
N

:=
∑N
t=1 νtF (xt, ξ

t),
(5.361)

21Recall that ϑ∗ denotes the optimal value of the true problem (5.1).
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which will be referred to as online bounds. The bound f
N

can be easily calculated while
running the SA procedure. The bound fN involves solving the optimization problem of
minimizing a linear in x objective function over set X . If the set X is defined by linear
constraints, this is a linear programming problem.

Since xt is a function of ξ[t−1] and ξt is independent of ξ[t−1], we have that

E
[
f
N]

=

N∑
t=1

νtE
{
E[F (xt, ξ

t)|ξ[t−1]]
}

=

N∑
t=1

νtE [f(xt)] = E[f∗N ]

and

E
[
fN
]

= E
[
E
{

minx∈X
{∑N

t=1 νt[F (xt, ξ
t) +G(xt, ξ

t)T(x− xt)]
}∣∣ξ[t−1]

}]
≤ E

[
minx∈X

{
E
[∑N

t=1 νt[F (xt, ξ
t) +G(xt, ξ

t)T(x− xt)]
]∣∣ξ[t−1]

}]
= E

[
minx∈X f

N (x)
]

= E
[
fN∗
]
.

It follows that
E
[
fN
]
≤ ϑ∗ ≤ E

[
f
N]
. (5.362)

That is, on average fN and f
N

give, respectively, a lower and an upper bound for the
optimal value ϑ∗ of the optimization problem (5.1).

In order to see how good are the bounds fN and f
N

let us estimate expectations of
the corresponding errors. We will need the following result.

Lemma 5.42. Let ζt ∈ Rn, v1 ∈ X ? and vt+1 = Pvt(ζt), t = 1, ..., N . Then

N∑
t=1

ζTt (vt − u) ≤ V (v1, u) + (2κ)−1
N∑
t=1

‖ζt‖2∗, ∀u ∈ X . (5.363)

Proof. By the estimate (5.322) of Lemma 5.38 with x = vt and y = ζt we have that the
following inequality holds for any u ∈ X ,

V (vt+1, u) ≤ V (vt, u) + ζTt (u− vt) + (2κ)−1‖ζt‖2∗. (5.364)

Summing this over t = 1, ..., N , we obtain

V (vN+1, u) ≤ V (v1, u) +

N∑
t=1

ζTt (u− vt) + (2κ)−1
N∑
t=1

‖ζt‖2∗. (5.365)

Since V (vN+1, u) ≥ 0, (5.363) follows.

Consider again condition (5.338), that is

E
[
‖G(x, ξ)‖2∗

]
≤M2

∗ , ∀x ∈ X , (5.366)

and the following condition: there is a constant Q > 0 such that

Var[F (x, ξ)] ≤ Q2, ∀x ∈ X . (5.367)



i
i

“SPbook” — 2013/12/24 — 8:37 — page 268 — #280 i
i

i
i

i
i

268 Chapter 5. Statistical Inference

Note that, of course, Var[F (x, ξ)] = E
[
(F (x, ξ)− f(x))2

]
.

Theorem 5.43. Suppose that conditions (5.366) and (5.367) hold. Then

E
[
f∗N − fN∗

]
≤

2D2
d,X + 5

2κ
−1M2

∗
∑N
t=1 γ

2
t∑N

t=1 γt
, (5.368)

E
[∣∣fN − f∗N ∣∣] ≤ Q

√√√√ N∑
t=1

ν2
t , (5.369)

E
[∣∣ fN − fN∗ ∣∣] ≤ (Q+ 4

√
2κ−1/2M∗Dd,X

)√√√√ N∑
t=1

ν2
t

+
D2

d,X + 2κ−1M2
∗
∑N
t=1 γ

2
t∑N

t=1 γt
. (5.370)

Proof. If in Lemma 5.42 we take v1 := x1 and ζt := γtG(xt, ξ
t), then the corresponding

iterates vt coincide with xt. Therefore, we have by (5.363) and since V (x1, u) ≤ D2
d,X

that
N∑
t=1

γt(xt − u)TG(xt, ξ
t) ≤ D2

d,X + (2κ)−1
N∑
t=1

γ2
t ‖G(xt, ξ

t)‖2∗, ∀u ∈ X . (5.371)

It follows that for any u ∈ X (compare with (5.330)),

N∑
t=1

νt
[
− f(xt) + (xt − u)Tg(xt)

]
+

N∑
t=1

νtf(xt)

≤
D2

d,X + (2κ)−1
∑N
t=1 γ

2
t ‖G(xt, ξ

t)‖2∗∑N
t=1 γt

+

N∑
t=1

νt∆
T
t (xt − u),

where ∆t := G(xt, ξ
t)− g(xt). Since

f∗N − fN∗ =

N∑
t=1

νtf(xt) + max
u∈X

N∑
t=1

νt
[
− f(xt) + (xt − u)Tg(xt)

]
,

it follows that

f∗N − fN∗ ≤
D2

d,X + (2κ)−1
∑N
t=1 γ

2
t ‖G(xt, ξ

t)‖2∗∑N
t=1 γt

+ max
u∈X

N∑
t=1

νt∆
T
t (xt − u). (5.372)

Let us estimate the second term in the right hand side of (5.372). By using Lemma
5.42 with v1 := x1 and ζt := γt∆t, and the corresponding iterates vt+1 = Pvt(ζt), we
obtain

N∑
t=1

γt∆
T
t (vt − u) ≤ D2

d,X + (2κ)−1
N∑
t=1

γ2
t ‖∆t‖2∗, ∀u ∈ X . (5.373)
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Moreover,
∆T
t (vt − u) = ∆T

t (xt − u) + ∆T
t (vt − xt),

and hence it follows by (5.373) that

max
u∈X

N∑
t=1

νt∆
T
t (xt−u) ≤

N∑
t=1

νt∆
T
t (xt−vt)+

D2
d,X + (2κ)−1

∑N
t=1 γ

2
t ‖∆t‖2∗∑N

t=1 γt
. (5.374)

Moreover, E
[
∆t|ξ[t−1]

]
= 0 and vt and xt are functions of ξ[t−1], and hence

E
[
(xt − vt)T∆t

]
= E

{
(xt − vt)TE[∆t|ξ[t−1]]

}
= 0. (5.375)

In view of condition (5.366) we have that E
[
‖∆t‖2∗

]
≤ 4M2

∗ , and hence it follows from
(5.374) and (5.375) that

E

[
max
u∈X

N∑
t=1

νt∆
T
t (xt − u)

]
≤
D2

d,X + 2κ−1M2
∗
∑N
t=1 γ

2
t∑N

t=1 γt
. (5.376)

Therefore, by taking expectation of both sides of (5.372) and using (5.366) together with
(5.376) we obtain (5.368).

In order to proof (5.369) let us observe that

f
N − f∗N =

N∑
t=1

νt(F (xt, ξ
t)− f(xt)),

and that for 1 ≤ s < t ≤ N ,

E
[
(F (xs, ξ

s)− f(xs))(F (xt, ξ
t)− f(xt))

]
= E

{
E
[
(F (xs, ξ

s)− f(xs))(F (xt, ξ
t)− f(xt))|ξ[t−1]

]}
= E

{
(F (xs, ξs)− f(xs))E

[
(F (xt, ξ

t)− f(xt))|ξ[t−1]

]}
= 0.

Therefore

E
[(
f
N − f∗N

)2]
=

∑N
t=1 ν

2
t E
[(
F (xt, ξ

t)− f(xt)
)2]

=
∑N
t=1 ν

2
t E
{
E
[(
F (xt, ξ

t)− f(xt)
)2∣∣ξ[t−1]

]}
≤ Q2

∑N
t=1 ν

2
t ,

(5.377)

where the last inequality is implied by condition (5.367). Since for any random variable Y
we have that

√
E[Y 2] ≥ E[|Y |], the inequality (5.369) follows from (5.377).

Let us now look at (5.370). Denote

f̃N (x) :=

N∑
t=1

νt[F (xt, ξ
t) +G(xt, ξ

t)T(x− xt)].

Then ∣∣∣fN − fN∗ ∣∣∣ =

∣∣∣∣min
x∈X

f̃N (x)−min
x∈X

fN (x)

∣∣∣∣ ≤ max
x∈X

∣∣∣f̃N (x)− fN (x)
∣∣∣



i
i

“SPbook” — 2013/12/24 — 8:37 — page 270 — #282 i
i

i
i

i
i

270 Chapter 5. Statistical Inference

and
f̃N (x)− fN (x) = f

N − f∗N +
∑N
t=1 νt∆

T
t (xt − x),

and hence ∣∣∣fN − fN∗ ∣∣∣ ≤ ∣∣∣fN − f∗N ∣∣∣+

∣∣∣∣∣max
x∈X

N∑
t=1

νt∆
T
t (xt − x)

∣∣∣∣∣ . (5.378)

For E
[∣∣fN − f∗N ∣∣] we already have the estimate (5.369).
By (5.373) we have∣∣∣∣∣max

x∈X

N∑
t=1

νt∆
T
t (xt − x)

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
t=1

νt∆
T
t (xt − vt)

∣∣∣∣∣+
D2

d,X + (2κ)−1
∑N
t=1 γ

2
t ‖∆t‖2∗∑N

t=1 γt
.

(5.379)
Let us observe that for 1 ≤ s < t ≤ N ,

E
[
(∆T

s (xs − vs))(∆T
t (xt − vt))

]
= E

{
E
[
(∆T

s (xs − vs))(∆T
t (xt − vt))|ξ[t−1]

]}
= E

{
(∆T

s (xs − vs))E
[
(∆T

t (xt − vt))|ξ[t−1]

]}
= 0.

Therefore, by condition (5.366) we have

E
[(∑N

t=1 νt∆
T
t (xt − vt)

)2
]

=
∑N
t=1 ν

2
t E
[∣∣∆T

t (xt − vt)
∣∣2]

≤
∑N
t=1 ν

2
t E
[
‖∆t‖2∗ ‖xt − vt‖2

]
=
∑N
t=1 ν

2
t E
[
‖xt − vt‖2E[‖∆t‖2∗|ξ[t−1]

]
≤ 4M2

∗
∑N
t=1 ν

2
t E
[
‖xt − vt‖2

]
≤ 32κ−1M2

∗D
2
d,X
∑N
t=1 ν

2
t ,

where the last inequality follows by (5.337). It follows that

E
[∣∣ ∑N

t=1 νt∆
T
t (xt − vt)

∣∣] ≤ 4
√

2κ−1/2M∗Dd,X

√∑N
t=1 ν

2
t . (5.380)

Putting together (5.378),(5.379),(5.380) and (5.369) we obtain (5.370).

For the constant stepsize policy (5.343), all estimates given in the right hand sides
of (5.368),(5.369) and (5.370) are of order O(N−1/2). It follows that under the specified
conditions, difference between the upper f

N
and lower fN bounds converge on average to

zero, with increase of the sample sizeN , at a rate ofO(N−1/2). It is also possible to derive
respective large deviations rates of convergence (Lan, Nemirovski and Shapiro [140]).

Remark 22. The lower SA bound fN can be compared with the respective SAA bound
ϑ̂N obtained by solving the corresponding SAA problem (see section 5.6.1). Suppose that
the same sample ξ1, ..., ξN is employed for both the SA and SAA methods, that F (·, ξ) is
convex for all ξ ∈ Ξ, and G(x, ξ) ∈ ∂xF (x, ξ) for all (x, ξ) ∈ X × Ξ. By convexity of
F (·, ξ) and definition of fN , we have

ϑ̂N = minx∈X

{
N−1

∑N
t=1 F (x, ξt)

}
≥ minx∈X

{∑N
t=1 νt

[
F (xt, ξ

t) +G(xt, ξ
t)T(x− xt)

]}
= fN .

(5.381)
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Therefore, for the same sample, the SA lower bound fN is weaker than the SAA lower
bound ϑ̂N . However, it should be noted that the SA lower bound can be computed much
faster than the respective SAA lower bound.

5.10 Stochastic Dual Dynamic Programming Method
The analysis of section 5.8.2 gives quite a pessimistic view of numerical complexity in
terms of number of scenarios required for solving multistage stochastic programming prob-
lems. On the other hand the dynamic programming approach suffers from the famous
“curse of dimensionality”, the term coined by Bellman. One of the main difficulties in
applying the dynamic programming is how to represent the cost-to-go functions in a com-
putationally tractable way when the number of state variables is large. In this section we
discuss an approach which can be considered as a variant of approximate dynamic pro-
gramming.

In the subsequent analysis we distinguish between cutting and supporting planes (hy-
perplanes) of a convex function Q : Rn → R. We say that an affine function `(x) =
α+βTx is a cutting plane of Q(x), if Q(x) ≥ `(x) for all x ∈ Rn. Note that cutting plane
`(x) can be strictly smaller than Q(x) for all x ∈ Rn. If, moreover, Q(x̄) = `(x̄) for some
x̄ ∈ Rn, it is said that `(x) is a supporting plane of Q(x) at x = x̄. This supporting plane
is given by `(x) = Q(x̄) + gT(x− x̄) for some subgradient g ∈ ∂Q(x̄).

Consider multistage stochastic programs of the form discussed in section 3.2, which
in the nested form can be written as

Min
A1x1=b1
x1∈X1

f1(x1) + E
[

min
B2x1+A2x2=b2

x2∈X2

f2(x2, ξ2) + · · ·+ E
[

min
BT xT−1+AT xT=bT

xT∈XT

fT (xT , ξT )
]]
.

(5.382)
Here ft : Rnt × Rdt → R and Xt ⊂ Rnt . The data vectors ξt ∈ Rdt can include
components of matrices Bt, At and vectors bt and some additional parameters. Unless
stated otherwise we make the following assumptions throughout this section.

(i) The functions ft(xt, ξt), t = 1, ..., T , are random lower semicontinuous and ft(·, ξt)
are convex for a.e. ξt.

(ii) The sets Xt ⊂ Rnt , t = 1, ..., T , are closed and convex.

(iii) The random process ξt, t = 1, ..., T , is stagewise independent.

(iv) The problem has relatively complete recourse.

Recall that in some cases with stagewise dependent data it is possible to reformu-
late the problem to make it stagewise independent by increasing the number of decision
variables (see Remark 5 on page 67).

5.10.1 Approximate Dynamic Programming Approach
The dynamic programming equations for problem (5.382) can be written (compare with
equations (3.52)) as

Qt (xt−1, ξt) = inf
xt∈Xt

{
ft(xt, ξt) +Qt+1 (xt) : Btxt−1 +Atxt = bt

}
, (5.383)
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where
Qt+1 (xt) := E [Qt+1 (xt, ξt+1)] , (5.384)

t = 2, ..., T , and QT+1(·) ≡ 0. At the first stage the following problem should be solved

Min
x1∈X1

f1(x1) +Q2(x1) s.t. A1x1 = b1. (5.385)

Note that because of the stagewise independence assumption (ii), the cost-to-go functions
Qt+1(xt) do not depend on the data process (see Remark 4 on page 67).

The basic idea is to approximate the (convex) cost-to-go functionsQt(·, ξt) andQt(·)
by maxima of finite families of linear functions. First we need to discretize the data process
ξt. We approach this by constructing a scenario tree employing the identical conditional
sampling method. That is, a sample ξ1

t , ..., ξ
Nt
t of random vector ξt, t = 2, ..., T , is gen-

erated and the corresponding scenario tree is constructed by connecting every ancestor
node at stage t − 1 with the same set of children nodes ξ1

t , ..., ξ
Nt
t (see the discussion at

the beginning of section 5.8). Recall that the identical conditional sampling preserves the
stagewise independence in the constructed SAA problem. The total number of scenarios
of the obtained SAA problem is N =

∏T
t=2Nt. In order for the optimal value ϑ̂N of the

SAA problem to converge to the optimal value ϑ∗ of the true problem, all sample sizes Nt
should increase. Therefore the total number of scenarios N quickly becomes astronom-
ically large with increase of the number of stages T even for moderate values of sample
sizes Nt. In such cases it will be hopeless to solve the SAA problem by enumerating all
scenarios. Nevertheless, we can proceed to solving the SAA problem by approximating the
dynamic programming equations.

For the SAA problem the corresponding dynamic programming equations take the
form

Qjt (xt−1) = inf
xt∈Xt

{
ft(xt, ξ

j
t ) +Qt+1 (xt) : Bjtxt−1 +Ajtxt = bjt

}
, (5.386)

j = 1, ..., Nt, with

Qt+1(xt) =
1

Nt+1

Nt+1∑
j=1

Qjt+1(xt). (5.387)

At the last stage the cost-to-go functions QjT (xT−1), j = 1, ..., NT , are given by the opti-
mal value of the respective problems

Min
xT∈XT

fT (xT , ξ
j
T ) s.t. BjTxT−1 +AjTxT = bjT . (5.388)

Under mild regularity conditions there is no duality gap between problem (5.388) and
its dual, and a subgradient of QjT (·) at a point x̄T−1 ∈ RnT−1 is given by gjT = −BjTπ

j
T ,

where πjT is an optimal solution of the dual of problem (5.388) for xT−1 = x̄T−1 (see
Propositions 2.21 and 2.22). In particular, this holds if the function fT (·, ξjT ) and the set
XT are polyhedral and problem (5.388) has a finite optimal value (see Proposition 2.14).
In that case problem (5.388) can be formulated as a linear programming problem.

By solving the dual of problem (5.388), and hence computing the subgradient gjT , for
every j = 1, ..., NT , we can compute the corresponding subgradient gT = 1

NT

∑NT
j=1 g

j
T of
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the cost-to-go functionQT (·) at the point x̄T−1. This gives us the corresponding supporting
plane

`T (xT−1) := QT (x̄T−1) + gTT (xT−1 − x̄T−1)

toQT (·) at x̄T−1. Computing several such supporting planes, at different points of RnT−1 ,
we obtain a piecewise linear approximation of the cost-to-go function QT (·) by taking
maximum of these supporting planes. We denote this piecewise linear approximation
function by QT (xT−1). Note that by the construction QT (xT−1) ≥ QT (xT−1) for all
xT−1 ∈ RnT−1 .

At stage t = T −1 the cost-to-go functionsQjT−1(xT−2), j = 1, ..., NT−1, are given
by the optimal value of the respective problems

Min
xT−1∈XT−1

fT−1(xT−1, ξ
j
T−1) +QT (xT−1)

s.t. BjT−1xT−2 +AjT−1xT−1 = bjT−1.
(5.389)

The cost-to-go function QT (·) is not known in a closed form. So we replace it by the
computed approximation QT (·), and hence approximate problem (5.389) by the problem

Min
xT−1∈XT−1

fT−1(xT−1, ξ
j
T−1) + QT (xT−1)

s.t. BjT−1xT−2 +AjT−1xT−1 = bjT−1.
(5.390)

Note that by the construction the function QT (·) is polyhedral, and hence if the function
fT−1(·, ξjT−1) and the setXT−1 are also polyhedral, then the objective function of problem
(5.390) is polyhedral and this problem can be formulated as a linear programming problem.

Denote by Qj
T−1

(xT−2) the optimal value of problem (5.390) and

QT−1(xT−2) =
1

NT−1

NT−1∑
j=1

Qj
T−1

(xT−2).

Since QT (xT−1) ≥ QT (xT−1), it follows that

QjT−1(xT−2) ≥ Qj
T−1

(xT−2) and QT−1(xT−2) ≥ QT−1(xT−2) (5.391)

for all xT−2 ∈ RnT−2 . By computing a solution πjT−1 of the dual of problem (5.390), for
a given value xT−2 = x̄T−2, we obtain a subgradient gjT−1 = −BjT−1π

j
T−1 of Qj

T−1
(·) at

x̄T−2 ∈ RnT−2 .
By computing such subgradients for all j = 1, ..., NT−1, we obtain the correspond-

ing subgradient gT−1 = 1
NT−1

∑NT−1

j=1 gjT−1 and the supporting plane

`T−1(xT−2) := QT−1(x̄T−2) + gTT−1(xT−2 − x̄T−2)

of QT−1(·) at x̄T−2. By (5.391) we have that `T−1(·) is a cutting plane for QT−1(·)
in the sense that QT−1(·) ≥ `T−1(·). Note, however, that QT−1(x̄T−2) can be strictly
bigger than `T−1(x̄T−2). That is, `T−1(·) is a supporting plane of QT−1(·), but could be
only a cutting plane of QT−1(·). By computing such supporting planes of QT−1(·), at
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different points of RnT−2 , and taking their maximum we obtain an approximation, denoted
QT−1(·), of the functionQT−1(·) and hence ofQT−1(·). By the construction we have that
the function QT−1(·) is polyhedral andQT−1(·) ≥ QT−1(·). Continuing this backward in
time we construct the respective (approximate) dynamic programming problems

Min
xt∈Xt

ft(xt, ξ
j
t ) + Qt+1 (xt) s.t. Bjtxt−1 +Ajtxt = bjt , (5.392)

j = 1, ..., Nt, and eventually the approximation

Min
x1

f1(x1) + Q2(x1) s.t. A1x1 = b1 (5.393)

of the first stage problem.
The computed approximations Q2(·), ...,QT (·), with QT+1(·) ≡ 0 by definition,

and a feasible first stage solution x̄1, define a feasible policy. That is, for a given realization
ξ2, ..., ξT of the data process, going forward in time, decisions x̄t = x̄t(x̄t−1, ξt), t =
2, ..., T , are computed recursively as a solution of the approximate dynamic programming
problem

Min
xt∈Xt

ft(xt, ξt) + Qt+1 (xt) s.t. Btxt−1 +Atxt = bt, (5.394)

for xt−1 = x̄t−1. Of course, this procedure can be performed only if problems (5.394)
have optimal solutions. The problem (5.394) has an optimal solution if its feasible set
is nonempty and bounded. Note that the feasible set of problem (5.394) is given by the
intersection of the set Xt with the set of solutions of the equation Btxt−1 + Atxt = bt,
and is the same as the feasible set of the respective SAA problem.

5.10.2 The SDDP algorithm
In order to implement the approximate dynamic programming approach, outlined in the
above section 5.10.1, we face two questions. Namely, how to generate (trial) points where
the corresponding cutting planes are computed, and how to estimate value of the con-
structed policy. The following procedure was suggested in Pereira and Pinto [178], and is
known as the Stochastic Dual Dynamic Programming (SDDP) Method. The SDDP algo-
rithm, applied to the SAA problem, consists of backward and forward steps. In the back-
ward step the approximate cost-to-go functions Q2(·), ...,QT (·) and the first stage solution
x̄1 are constructed in the way described in the previous section 5.10.1. These approxima-
tions are updated at successive iterations of the algorithm using trial points computed at the
respective forward steps of the algorithm.

At a current iteration of the algorithm, given approximate functions Q2(·), ...,QT (·)
and a feasible first stage solution x̄1, the forward step of the SDDP algorithm proceeds in
generating M random realizations (scenarios) ξ2i, ..., ξTi, i = 1, ...,M , from the scenario
tree of the SAA problem. Recall that the total number of scenarios N =

∏T
t=2Nt of

the SAA problem is very large, so for moderate values of M probability of generating
same scenarios is practically negligible. By computing solutions x̄ti of respective problems
(5.394) for xt−1 = x̄t−1,i and ξt = ξti, t = 2, ..., T , the corresponding value

ϑi := f1(x̄1) +

T∑
t=2

ft(x̄ti, ξti), i = 1, ...,M,
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of the current policy, for the realization ξ2i, ..., ξTi of the data process, is calculated. As
such, ϑi is an unbiased estimate of expected value of that policy, i.e.,

E[ϑi] = f1(x̄1) + E

[
T∑
t=2

ft(x̄ti, ξti)

]
.

The forward step has two objectives. First, some (all) of computed solutions x̄ti,
i = 1, ...,M , can be used as trial points in the next iteration of the backward step of the
algorithm. Second, these solutions can be employed for constructing a statistical upper
bound for the optimal value of the corresponding multistage program.

Consider the average (sample mean) ϑ̄M := M−1
∑M
i=1 ϑi and the standard error

σ̂M :=

√√√√ 1

M − 1

M∑
i=1

(ϑi − ϑ̄M )2 (5.395)

of the computed values ϑi. Since ϑi is an unbiased estimate of the expected value of the
constructed policy, we have that ϑ̄M is also an unbiased estimate of the expected value of
that policy. By invoking the Central Limit Theorem we can say that ϑ̄M has an approxi-
mately normal distribution provided thatM is reasonably large. This leads to the following
(approximate) (1− α)-confidence upper bound for the value of that policy

uα,M := ϑ̄M + zα
σ̂M√
M
. (5.396)

Here 1− α ∈ (0, 1) is a chosen confidence level and zα = Φ−1(1− α), where Φ(·) is the
cdf of standard normal distribution. For example, for α = 0.05 the corresponding critical
value z0.05 = 1.64. That is, with probability approximately 1 − α the expected value of
the constructed policy is less than the upper bound uα,M . Since the expected value of the
constructed (feasible) policy is bigger than or equal to the optimal value of the considered
multistage problem, we have that uα,M also gives an upper bound for the optimal value of
the multistage problem with confidence at least 1− α.

Since Qt(·) is the maximum of cutting planes of the cost-to-go function Qt(·) we
have that Qt(·) ≥ Qt(·), t = 2, ..., T . Therefore the optimal value of the approximate
problem computed at a backward step of the algorithm (i.e., the optimal value of problem
(5.393)), gives a lower bound for the optimal value ϑ̂N of the SAA problem. This lower
bound is deterministic (i.e., is not based on sampling) when applied to the considered SAA
problem. Since at the backward step of every iteration of the algorithm more cutting planes
are added, while no cutting planes are discarded, values of the approximate functions Qt(·)
are monotonically nondecreasing from one iteration to the next. As a consequence the
computed lower bounds are monotonically nondecreasing with increase of the number of
iterations. On the other hand, the upper bound uα,M is a function of generated scenarios
and thus is stochastic even for fixed SAA problem. This upper bound may vary for different
sets of random samples, in particular from one iteration to the next of the forward step of
the algorithm.

Remark 23. Note that the scenarios ξ2i, ..., ξTi, i = 1, ...,M , can be also sampled from
the original data process. Consequently the upper bound uα,M can be used for the original



i
i

“SPbook” — 2013/12/24 — 8:37 — page 276 — #288 i
i

i
i

i
i

276 Chapter 5. Statistical Inference

Figure 5.1. Typical behavior of the lower and upper bounds. The considered
SAA problem has 8 state variables, T = 120 stages, Nt = 100 sample sizes per stage and
N = 100119 total number of scenarios (taken from [252, section 6.2]).

(true) or the SAA problem depending on from what distribution the sampled scenarios were
generated.

As far as the true problem is concerned, recall that ϑ∗ ≥ E[ϑ̂N ] (see (5.245)). There-
fore on average the lower bound of the SAA problem is also a lower bound for the optimal
value of the true problem.

Cutting plane elimination procedure

With increase of the number of iterations, as more cuts are added at the backward step of the
SDDP algorithm, some of these cuts become redundant. That is, one of the cutting planes
could become smaller than maximum of the other cutting planes. Clearly such cutting
plane can be removed without altering the corresponding lower bound.

Let `i(x) = αi+β
T
i x, i = 1, ...,m, be a collection of cutting planes of the cost-to-go

function at some stage of the problem. Then, say, `1 cutting plane is redundant if

`1(x) < max
2≤i≤m

`i(x), ∀x ∈ X,

whereX is the corresponding feasible set. This means that there does not exist x ∈ X such
that `1(x) ≥ `i(x), i = 2, ...,m. That is, the following system is infeasible

α1 + βT
1 x ≥ αi + βT

i x, i = 2, ...,m,
x ∈ X. (5.397)
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Checking redundancy of the cutting plane `1 is reduced to verification of infeasibility of
the system (5.397). When the set X is defined by a finite number of linear constraints, this
can be formulated as a linear programming problem.

Markovian Data Process

So far we assumed that the data process is stagewise independent. Suppose now that the
data process ξ2, ..., ξT is Markovian. That is, the conditional distribution of ξt+1, given
ξ[t] = (ξ1, ..., ξt), does not depend on (ξ1, ..., ξt−1), i.e., is the same as the conditional dis-
tribution of ξt+1, given ξt, t = 1, ..., T −1. Then the corresponding dynamic programming
equations take the form (compare with (5.383)–(5.384))

Qt (xt−1, ξt) = inf
xt∈Xt

{
ft(xt, ξt) +Qt+1 (xt, ξt) : Btxt−1 +Atxt = bt

}
, (5.398)

Qt+1 (xt, ξt) = E
[
Qt+1 (xt, ξt+1)

∣∣ξt] . (5.399)

Here the cost-to-go functions Qt (xt−1, ξt) and Qt+1 (xt, ξt) depend on ξt, but not on
(ξ1, ..., ξt−1).

Suppose, further, that the process ξ2, ..., ξT can be reasonably approximated by a
discretization so that it becomes a (possibly nonhomogeneous) Markov chain. That is, at
stage t = 2, ..., T , the data process can take values ξ1

t , ..., ξ
Kt
t , with specified probabilities

of going from state ξjtt , at stage t, to state ξjt+1

t+1 , at stage t + 1, jt = 1, ...,Kt, jt+1 =
1, ...,Kt+1. If the numbers Kt are reasonably small, then we still can proceed with the
SDDP method by constructing cuts, and hence piecewise linear approximations, of the
cost-to-go functions Qt+1

(
·, ξjtt

)
, jt = 1, ...,Kt. Note that in the backward step of the

algorithm the cuts for Qt+1

(
xt, ξ

jt
t

)
, with respect to xt, should be constructed separately

for every jt = 1, ...,Kt. Therefore computational complexity of backward steps of the
SDDP algorithm grows more or less linearly with increase of the numbers Kt.

If a sample path is generated from the original (may be continuous) distribution of the
data process (rather than its Markov chain discretization), then the computed cuts cannot
be used for this sample path unless it coincides with one of the sample paths of the Markov
chain. That is, in this approach the SDDP algorithm does not generate a policy for the
corresponding original (true) problem, at least not in a direct way. In order to have a policy
for the true problem we can proceed as follows. For a sample path of the true problem
choose in some sense close to it sample path of the Markov chain. Consequently compute
the policy values iteratively going forward and using the computed cuts of the cost-to-go
functionsQt+1

(
·, ξjtt

)
associated with the corresponding sample path of the Markov chain.

.

5.10.3 Convergence Properties of the SDDP Algorithm
Let us first consider the SDDP algorithm applied to the two stage linear stochastic pro-
gramming problem (2.1)–(2.2). Let us assume that: (i) the feasible set X := {x : Ax =
b, x ≥ 0}, of the first stage problem, is nonempty and bounded, (ii) the matrix W and
vector q are deterministic (not random), and the feasible set {π : WTπ ≤ q} of the dual
(2.3), of the second stage problem, is nonempty and bounded. Consider SAA problem
based on a sample ξ1, ..., ξN of the random data vector ξ. Under the above assumption
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(ii), the corresponding sample average function Q(x) = N−1
∑N
j=1Q(x, ξj) is convex,

finite valued and piecewise linear. The backward step of the SDDP algorithm, applied to
the SAA problem, becomes the classical Kelley’s cutting plane algorithm, [125]. That is,
let at k-th iteration, Qk(·) be the corresponding approximation ofQ(·) given by maximum
of supporting planes of Q(·). At the next iteration the backward step solves the problem

Min
x∈X

cTx+ Qk(x), (5.400)

and hence compute its optimal value vk+1, an optimal solution xk+1 of (5.400) and a
subgradient gk+1 ∈ ∂Q(xk+1). Consequently the supporting plane

`(x) := Q(xk+1) + (gk+1)T(x− xk+1)

is added to the collection of cutting (supporting) planes ofQ(·). Note that for the two stage
SAA problem, the backward step of the SDDP algorithm does not involve any sampling
and the forward step of the algorithm is redundant.

Since the function Q(·) is piecewise linear, it is not difficult to show that Kelley’s
algorithm converges in a finite number of iterations. Arguments of that type are based
on the observation that Q(·) is the maximum of a finite number of its supporting planes.
However, the number of supporting planes can be very large and these arguments do not
give an idea about rate of convergence of the algorithm. So let us look at the following
proof of convergence which uses only convexity of the function Q(·) (cf., [222, p.160]).

Denote f(x) := cTx+Q(x) and by f∗ the optimal value of the first stage problem.
Let xk, k = 1, ..., be a sequence of iteration points generated by the algorithm, γk = c+gk

be the corresponding subgradients used in construction of the supporting planes and vk be
the optimal value of the problem (5.400). Note that since xk ∈ X we have that f(xk) ≥ f∗,
and since Qk(·) ≤ Q(·) we have that vk ≤ f∗ for all k. Note also that since Q(·) is
piecewise linear and X is bounded, the subgradients of f(·) are bounded on X , i.e., there
is a constant C such that ‖γ‖ ≤ C for all γ ∈ ∂f(x) and x ∈ X (such boundedness of
gradients holds for a general convex function provided the function is finite valued on a
neighborhood of the set X ). Choose the precision level ε > 0 and denote

Kε := {k : f(xk)− f∗ ≥ ε}.

For k < k′ we have
f(xk) + (γk)T

(
xk
′
− xk

)
≤ vk

′
≤ f∗,

and hence

f(xk)− f∗ ≤ (γk)T
(
xk − xk

′)
≤ ‖γk‖ ‖xk − xk

′
‖ ≤ C‖xk − xk

′
‖.

This implies that for any k, k′ ∈ Kε the following inequality holds

‖xk − xk
′
‖ ≥ ε/(2C). (5.401)

Since the set X is bounded, it follows that the set Kε is finite. That is, after a finite number
of iterations, f(xk)− f∗ becomes less than ε, i.e., the algorithm reaches the precision ε in
a finite number of iterations.
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For η > 0 denote by N(X , η) the maximal number of points in the setX such that the
distance between any two of these points is not less than η. The inequality (5.401) implies
that N(X , η), with η = ε/(2C), gives an upper bound for the number of iterations required
to obtain an ε-optimal solution of the problem by Kelley’s algorithm. Unfortunately, for
a given η and X ⊂ Rn say being a ball of fixed diameter, the number N(X , η), although
is finite, grows exponentially with increase of the dimension n. Worst case analysis of
Kelley’s algorithm is discussed in [165, pp. 158-160], with the following example of a
convex problem

Min
x∈Rn+1

f(x) s.t. ‖x‖ ≤ 1, (5.402)

where f(x) := max
{
x2

1 + ...+ x2
n, |xn+1|

}
. It is shown there that Kelley’s algorithm

applied to problem (5.402) with starting point x0 := (0, ..., 0, 1), requires at least

ln(ε−1)

2 ln 2

(
2√
3

)n−1

(5.403)

calls of the oracle to obtain an ε-optimal solution, i.e., the number of required iterations
grows exponentially with increase of the dimension n of the problem. It was also observed
empirically that Kelley’s algorithm could behave quite poorly in practice.

The above analysis suggests quite a pessimistic view on Kelley’s algorithm for con-
vex problems of large dimension n. Unfortunately it is not clear how more efficient, bun-
dle type algorithms, can be extended to a multistage setting. On the other hand, from the
number-of-scenarios point of view complexity of multistage SAA problems grows very fast
with increase of the number of stages even for problems with relatively small dimensions
of the involved decision variables. It is possible to extend the above analysis to the multi-
stage setting to show, under regularity conditions of boundedness and relatively complete
recourse, that the SDDP algorithm applied to the SAA problem converges (w.p.1) with in-
crease of the number of iterations (cf., [87]). However, the convergence can be very slow
and it should be remembered that such mathematical proofs of convergence do not give
guarantees that the algorithm will produce an accurate solution in a reasonable computa-
tional time. The analysis of two stage problems indicates that the SDDP method could give
reasonable results for problems with a not too large number of decision (state) variables;
this seems to be confirmed by numerical experiments. Of course, these considerations are
problem dependent.

5.10.4 Risk Averse SDDP Method

In formulation (5.382) the expected value of the total cost (objective value) is minimized
subject to the feasibility constraints. That is, the total cost is optimized (minimized) on
average. Since the costs are functions of the random data process, they are random and
hence are subject to random perturbations. For a particular realization of the data process
these costs could be much bigger than their average (i.e., expectation) values. We will refer
to the formulation (5.382) as risk neutral as opposed to risk averse approaches which we
will discuss below. The goal of a risk averse approach is to avoid large values of the costs
for some possible realizations of the data process at every stage of the considered time
horizon. In the following Chapter 6 we will discuss a general theory of risk measures. The
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reader is advised to read relevant parts of Chapter 6 before reading the remainder of this
section.

For chosen law invariant risk measures %t and their conditional analogues %t|ξ[t−1]
,

and constants γt, consider the following extension of the multistage problem (5.382), in the
nested form, with added risk averse constraints (see section 6.8.4)

Min
A1x1=b1
x1∈X1

f1(x1)+E|ξ1
[

inf
B2x1+A2x2=b2

x2∈X2

f2(x2, ξ2) + . . .

%2|ξ1(f2(x2,ξ2))≤γ2

+E|ξ[T−2]

[
inf

BT−1xT−2+AT−1xT−1=bT−1
xT−1∈XT−1

fT−1(xT−1, ξT−1)

%T−1|ξ[T−2]
(fT−1(xT−1, ξT−1)) ≤ γT−1

+E|ξ[T−1]
[ inf
BT xT−1+AT xT=bT

xT∈XT

fT (xT , ξT )]
]]

%T |ξ[T−1]
(fT (xT , ξT )) ≤ γT .

(5.404)

A natural choice of the risk measures is

%t(·) := V@Rαt(·), αt ∈ (0, 1). (5.405)

That is, at stage t = 2, ..., T , the additional constraint (conditional on ξ[t−1])

V@Rαt|ξ[t−1]

(
ft(xt, ξt)

)
≤ γt, (5.406)

is added to the optimization problem. The constraints (5.406) can be interpreted as (condi-
tional) chance constraints

Pr|ξ[t−1]

(
ft(xt, ξt) ≤ γt

)
≥ 1− αt. (5.407)

Note that in (5.404)–(5.407), xt = xt(ξ[t]), t = 2, ..., T , are a functions of the data process.
By using risk measures of the form (5.405) we try to enforce the constraints that

(conditional) probabilities of costs ft(xt, ξt) being bigger than the specified upper bounds
γt will be less than the chosen significance level αt. Since risk measure V@Rα is not con-
vex, in order to make the corresponding optimization problem computationally tractable, it
is natural to replace V@Rα by AV@Rα. That is, let

%t(·) := AV@Rαt(·), t = 2, ..., T. (5.408)

With risk measures (5.408) the dynamic programming equations for problem (5.404) can
be written as follows. At the last stage t = T the cost-to-go function QT (xT−1, ξT ) is
given by the optimal value of the problem

Min
xT∈XT

fT (xT , ξT ) s.t BTxT−1 +ATxT = bT . (5.409)

At stage t = T − 1, ..., 2, the cost-to-go function Qt(xt−1, ξ[t]) is given by the optimal
value of problem

Min
xt∈Xt

ft(xt, ξt) + E|ξ[t]
[
Qt+1

(
xt, ξ[t+1]

)]
s.t. Btxt−1 +Atxt = bt,

AV@Rαt+1|ξ[t]
[
Qt+1

(
xt, ξ[t+1]

)]
≤ γt.

(5.410)
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Finally at the first stage the following problem should be solved

Min
x1∈X1

f1(x1) + E[Q2(x1, ξ2)]

s.t. A1x1 = b1,

AV@Rα2
[Q2 (x1, ξ2)] ≤ γ1.

(5.411)

It could happen that problems (5.410) become infeasible for some realizations of
the random data even if the original problem (5.382) had relatively complete recourse. In
order to deal with such infeasibility we move the constraints into the objective in a form
of penalty. That is, let the cost-to-go functions be defined as QT+1(·, ·) ≡ 0 and for
t = T − 1, ..., 2,

Qt(xt−1, ξ[t]) = inf
xt∈Xt

{
ft(xt, ξt) +Qt+1(xt, ξ[t]) : Btxt−1 +Atxt = bt

}
, (5.412)

where
Qt+1(xt, ξ[t]) := ρt+1|ξ[t] [Qt+1(xt, ξ[t+1])] (5.413)

and
ρt(·) := (1− λt)E(·) + λtAV@Rαt(·) (5.414)

for some λt ∈ (0, 1). At the first stage the following problem should be solved

Min
x1∈X1

f1(x1) +Q2(x1) s.t. A1x1 = b1. (5.415)

If the data process is stagewise independent, then the cost-to-go functionsQt(xt−1, ξt)
depend only on ξt, rather than ξ[t], the functions Qt+1(xt) do not depend on the data pro-
cess and the conditional expectations and risk measures become the corresponding uncon-
ditional ones.

Dynamic equations (5.412)–(5.413) correspond to the following risk averse stochas-
tic program in the nested form (see section 6.8.4)

Min
A1x1=b1
x1∈X1

f1(x1) + ρ2|ξ1

[
inf

B2x1+A2x2=b2
x2∈X2

f2(x2, ξ2) + . . .

+ρT−1|ξ[T−2]

[
inf

BT−1xT−2+AT−1xT−1=bT−1
xT−1∈XT−1

fT−1(xT−1, ξT−1)

+ρT |ξ[T−1]
[ inf
BT xT−1+AT xT=bT

xT∈XT

fT (xT , ξT )]
]]
.

(5.416)

Recall that (see (6.23))

AV@Rα(Z) = inf
u∈R

{
u+ α−1E[Z − u]+

}
. (5.417)

Using this variational representation of AV@Rα it is also possible to write dynamic pro-
gramming equations for problem (5.416) in the following form. By (5.417) it follows that
Qt+1

(
xt, ξ[t]

)
is equal to the optimal value of the problem

Min
ut
E|ξ[t]

[
(1− λt+1)Qt+1

(
xt, ξ[t+1]

)
+ λt+1

(
ut + α−1

t+1[Qt+1

(
xt, ξ[t+1]

)
− ut]+

) ]
.

(5.418)
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Thus we can write the corresponding dynamic programming equations as follows. At the
last stage t = T we have that QT (xT−1, ξT ) is equal to the optimal value of problem

Min
xT∈XT

fT (xT , ξT ) s.t. BTxT−1 +ATxT = bT , (5.419)

and QT
(
xT−1ξ[T−1]

)
is equal to the optimal value of problem

Min
uT−1

E|ξ[T−1]

[
(1− λT )QT (xT−1, ξT ) + λTuT−1 + λT

αT
[QT (xT−1, ξT )− uT−1]+

]
.

(5.420)
At stage t = T − 1 we have that QT−1(xT−2, ξ[T−1]) is equal to the optimal value

of problem
Min

xT−1∈XT−1

fT−1(xT−1, ξT−1) +QT (xT−1, ξ[T−1])

s.t. BT−1xT−2 +AT−1xT−1 = bT−1.
(5.421)

By using (5.420) and (5.421) we can write thatQT−1(xT−2, ξ[T−1]) is equal to the optimal
value of problem

Min
xT−1∈XT−1
uT−1∈R

fT−1(xT−1, ξT−1) + λTuT−1 + VT (xT−1, uT−1, ξ[T−1])

s.t. BT−1xT−2 +AT−1xT−1 = bT−1,
(5.422)

where VT (xT−1, uT−1, ξ[T−1]) is equal to the following conditional expectation

E|ξ[T−1]

[
(1− λT )QT (xT−1, ξT ) + λTα

−1
T [QT (xT−1, ξT )− uT−1]+

]
. (5.423)

By continuing this process backward we can write dynamic programming equations
for t = T, ..., 2 as

Qt
(
xt−1, ξ[t]

)
= inf
xt∈Xt,ut∈R

{
ft(xt, ξt) + λt+1ut + Vt+1(xt, ut, ξ[t]) :

Btxt−1 +Atxt = bt

}
,

(5.424)

where VT+1(xT , uT , ξ[T ]) ≡ 0, λT+1 := 0 and for t = T − 1, ..., 2,

Vt+1

(
xt, ut, ξ[t]

)
:= E|ξ[t]

[
(1− λt+1)Qt+1

(
xt, ξ[t+1]

)
+λt+1α

−1
t+1

[
Qt+1

(
xt, ξ[t+1]

)
− ut

]
+

]
.

(5.425)

At the first stage problem

Min
x1∈X1,u1∈R

f1(x1) + λ2u1 + V2(x1, u1) s.t. A1x1 = b1, (5.426)

should be solved. Note that functions Vt+1

(
xt, ut, ξ[t]

)
are convex in (xt, ut). In this

formulation there are additional state variables ut. By solving the above dynamic pro-
gramming equations we find an optimal policy x̄t = x̄t(ξ[t]) and (1 − αt+1)-quantile
ūt = ūt(ξ[t]) of the cost-to-go function Qt+1(x̄t, ξ[t+1]).

As it was pointed before, if the data process is stagewise independent, then the cost-
to-go functions Qt(xt−1, ξt) depend only on ξt, and the functions

Qt+1(xt) = ρt+1[Qt(xt, ξt+1)]

and Vt+1 (xt, ut) do not depend on the random data.
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The SDDP Algorithm

In order to apply the backward step of the SDDP algorithm we need to know how to con-
struct cuts for the cost-to-go functions. Let us start by considering the static case of two
stage programming. Consider the following optimization problem

Min
x∈X

{
Q(x) := ρ[Q(x, ξ)]}, (5.427)

where X ⊂ Rn is a nonempty closed convex set, ξ is a random vector with probability
distribution having finite support {ξ1, ..., ξN} with equal probabilities 1/N , Q(x, ξ) is a
real valued function convex in x and

ρ(·) := (1− λ)E(·) + λAV@Rα(·), λ ∈ (0, 1). (5.428)

Recall that minimum in the right hand side of (5.417) is attained at a (1−α)-quantile
of the distribution of Z. Therefore we have that

Q(x) =
1− λ
N

N∑
j=1

Qj(x) + λQ(ι)(x) +
λ

αN

N∑
j=1

[Qj(x)−Q(ι)(x)]+, (5.429)

where Qj(x) := Q(x, ξj) and Q(ι)(x) is the left side (1 − α)-quantile of the distribution
of Q(x, ξ). That is, numbers Qj(x), j = 1, ..., N , are arranged in the increasing order
Q(1)(x) ≤ · · · ≤ Q(N)(x), and ι is the smallest integer such that ι ≥ (1 − α)N . In
particular, if N < α−1, then ι = N and Q(ι)(x) = max1≤j≤N Q

j(x).
Suppose that (1− α)N is not an integer and the (1− α)-quantile Q(ι)(x) is defined

uniquely, i.e., Q(ι)(x) is different from the other values ofQj(x). Then the index ι remains
the same for small perturbations of x and hence a subgradient of Q(x) is given by

∇Q(x) = 1−λ
N

N∑
j=1

∇Qj(x) + λ∇Q(ι)(x)

+ λ
αN

N∑
j=ι

[
∇Q(j)(x)−∇Q(ι)(x)

]
,

(5.430)

where∇Qj(x) is a subgradient of Qj(x). In fact by continuity arguments, formula (5.430)
gives a subgradient of Q(x) in general.

Alternatively using (5.417) we can write problem (5.427) in the following equivalent
form

Min
x∈X ,u∈R

1

N

N∑
j=1

V j(x, u), (5.431)

where
V j(x, u) := (1− λ)Qj(x) + λ

(
u+ α−1[Qj(x)− u]+

)
. (5.432)

The functions V j(x, u) are convex with respective subgradients

∇xV j(x, u) = (1− λ)∇Qj(x) + λα−1Ij(x, u)∇Qj(x),
∇uV j(x, u) = λ− λα−1Ij(x, u),

(5.433)
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where Ij(x, u) = 1 if Qj(x) − u > 0, Ij(x, u) = 0 if Qj(x) − u < 0, and Ij(x, u) can
be any number between 0 and 1 if Qj(x)− u = 0.

Consider now the multistage risk averse problem (5.416). Suppose that the data pro-
cess is stagewise independent. There are two possible approaches to proceed with the back-
ward and forward steps of the SDDP algorithm for solving this problem. The first approach
is based on the dynamic programming equations (5.412)–(5.413). Formula (5.430) can be
adjusted in a straightforward way for computing subgradients of the cost-to-go functions
Qt+1(xt) given in (5.413). This in turn can be used for constructing cuts of the cost-to-
go functions in the backward steps of the SDDP algorithm in the same way as in the risk
neutral case. Also the forward steps of the algorithm can be performed in the same way
as in the risk neutral case. Recall that in the risk neutral case the forward steps have two
functions - to produce trial points, used in the consequent backward steps, and to estimate
objective value of the constructed policy. For a feasible first stage solution x̄1 and a feasible
policy x̄t = x̄t(ξ[t]), t = 2, ..., T , the corresponding objective value of problem (5.416) is
given in the nested form

f1(x̄1)+ρ2|ξ1

[
f2(x̄2, ξ2)+ ...+ρT−1|ξ[T−2]

[
fT−1(x̄T−1, ξT−1)+ρT |ξ[T−1]

fT (x̄T , ξT )
]]
.

(5.434)
Unfortunately, it is not clear here how this objective value can be estimated in the forward
steps of the algorithm.

The other approach is based on the dynamic equations (5.418)–(5.426). Formulas
(5.433) can be adjusted for computing subgradients of the respective functions Vt+1(xt, ut),
and hence to construct their lower piecewise linear (affine) approximations Vt+1(xt, ut).
In a forward step of the algorithm the values (x̄t, ūt) of the respective policy, for a gen-
erated scenario ξ2, ..., ξT and feasible first stage solution x̄1, are computed iteratively for
t = 2, ..., T , as optimal solutions of problems

Min
xt∈Xt,ut∈R

ft(xt, ξt) + λt+1ut + Vt+1(xt, ut)

s.t. Atxt = bt −Btx̄t−1.
(5.435)

The objective value of this policy is given in the nested form (5.434). It can be
estimated as follows. For the sake of simplicity suppose for the moment that λt = 1,
t = 2, ..., T , i.e., consider nested AV@R measures. Since for any u ∈ R,

AV@Rα(Z) ≤ E
[
u+ α−1[Z − u]+

]
,

we have that

ρT |ξ[T−1]

[
fT (x̄T , ξT )

]
≤ E|ξ[T−1]

[
ūT + α−1

T [fT (x̄T , ξT )− ūT ]+

]
. (5.436)
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Denote νT := ūT + α−1
T [fT (x̄T , ξT )− ūT ]+. We have then that

ρT−1|ξ[T−2]

[
fT−1(x̄T−1, ξT−1) + ρT |ξ[T−1]

[fT (x̄T , ξT )]
]

≤ E|ξ[T−2]

[
ūT−1 + α−1

T−1

[
E|ξ[T−1]

[νT ] + fT−1(x̄T−1, ξT−1)− ūT−1

]
+

]
≤ E|ξ[T−2]

[
ūT−1 + α−1

T−1E|ξ[T−1]

[
νT + fT−1(x̄T−1, ξT−1)− ūT−1

]
+

]
= E|ξ[T−2]

[
ūT−1 + α−1

T−1

[
νT + fT−1(x̄T−1, ξT−1)− ūT−1

]
+

]
,

(5.437)

where the last inequality follows because ψ(·) := [ · ]+ is a convex function and hence by
Jensen inequality

[
E[Z]

]
+
≤ E

[
[Z]+

]
.

This suggests the following estimator. Set νT+1 = 0 and compute iteratively for
t = T, ..., 2,

νt = (1− λt)[νt+1 + ft(x̄t, ξt)] + λt
[
ūt + α−1

t [νt+1 + ft(x̄t, ξt)− ūt]+
]
. (5.438)

By the above analysis we have that E[ν2] gives an upper bound for the objective value of
the constructed policy, and hence for the optimal value of the multistage problem (5.416).
Note that since the last inequality in (5.437) could be strict (it is based on the Jensen in-
equality), E[ν2] could be strictly bigger than the objective value of the considered policy.
The expected value E[ν2] can be estimated by averaging the computed values (realizations)
of ν2 in the forward steps of the SDDP algorithm in the same way as in the risk neutral case.
This average provides an unbiased estimate of E[ν2], and can be used for construction of a
statistical upper bound for the objective value of the multistage problem (5.416).

Exercises
5.1. Suppose that set X is defined by constraints in the form (5.11) with constraint func-

tions given as expectations as in (5.12) and the set XN defined in (5.13). Show that
if sample average functions ĝiN converge uniformly to gi w.p.1 on a neighborhood
of x and gi are continuous, i = 1, ..., p, then condition (a) of Theorem 5.5 holds.

5.2. Specify regularity conditions under which equality (5.29) follows from (5.25).
5.3. Let X ⊂ Rn be a closed convex set. Show that the multifunction x 7→ NX (x) is

closed.
5.4. Prove the following extension of Theorem 5.7. Let g : Rm → R be continuously

differentiable function, Fi(x, ξ), i = 1, ...,m, be random lower semicontinuous
functions, fi(x) := E[Fi(x, ξ)], i = 1, ...,m, f(x) = (f1(x), ..., fm(x)), X be a
nonempty compact subset of Rn and consider the optimization problem

Min
x∈X

g (f(x)) . (5.439)

Moreover, let ξ1, ..., ξN be an iid random sample, f̂iN (x) := N−1
∑N
j=1 Fi(x, ξ

j),

i = 1, ...,m, f̂N (x) =
(
f̂1N (x), ..., f̂mN (x)

)
be the corresponding sample average
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functions and
Min
x∈X

g
(
f̂N (x)

)
(5.440)

be the associated SAA problem. Suppose that conditions (A1) and (A2) (used in
Theorem 5.7) hold for every function Fi(x, ξ), i = 1, ...,m. Let ϑ∗ and ϑ̂N be the
optimal values of problems (5.439) and (5.440), respectively, and S be the set of
optimal solutions of problem (5.439). Show that

ϑ̂N − ϑ∗ = inf
x∈S

(
m∑
i=1

wi(x)
[
f̂iN (x)− fi(x)

])
+ op(N

−1/2), (5.441)

where

wi(x) :=
∂g(y1, ..., ym)

∂yi

∣∣∣
y=f(x)

, i = 1, ...,m.

Moreover, if S = {x̄} is a singleton, then

N1/2
(
ϑ̂N − ϑ∗

)
D→ N (0, σ2), (5.442)

where w̄i := wi(x̄) and

σ2 = Var
[∑m

i=1 w̄iFi(x̄, ξ)
]
. (5.443)

Hint: consider function V : C(X )×· · ·×C(X )→ R defined as V (ψ1, . . . , ψm) :=
infx∈X g(ψ1(x), . . . , ψm(x)), and apply the functional CLT together with Delta and
Danskin Theorems.

5.5. Consider matrix
[
H A
AT 0

]
defined in (5.44). Assuming that matrix H is positive

definite and matrix A has full column rank, verify that[
H A
AT 0

]−1

=

[
H−1 −H−1A(ATH−1A)−1ATH−1 H−1A(ATH−1A)−1

(ATH−1A)−1ATH−1 −(ATH−1A)−1

]
.

Using this identity write the asymptotic covariance matrix of N1/2

[
x̂N − x̄
λ̂N − λ̄

]
,

given in (5.45), explicitly.
5.6. Consider the minimax stochastic problem (5.46), the corresponding SAA problem

(5.47) and let
∆N := sup

x∈X ,y∈Y

∣∣∣f̂N (x, y)− f(x, y)
∣∣∣ . (5.444)

(i) Show that
∣∣∣ϑ̂N − ϑ∗∣∣∣ ≤ ∆N , and that if x̂N is a δ-optimal solution of the SAA

problem (5.47), then x̂N is a (δ + 2∆N )-optimal solution of the minimax problem
(5.46).
(ii) By using Theorem 7.73 conclude that, under appropriate regularity conditions,
for any ε > 0 there exist positive constants C = C(ε) and β = β(ε) such that

Pr
{∣∣ϑ̂N − ϑ∗∣∣ ≥ ε} ≤ Ce−Nβ . (5.445)
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(iii) By using bounds (7.241) and (7.242) derive an estimate, similar to (5.116), of
the sample size N which guarantees with probability at least 1− α that a δ-optimal
solution x̂N of the SAA problem (5.47) is an ε-optimal solution of the minimax
problem (5.46). Specify required regularity conditions.

5.7. Consider multistage SAA method based on iid conditional sampling. For corre-
sponding sample sizes N = (N1, ..., NT−1) and N ′ = (N ′1, ..., N

′
T−1) we say that

N ′ � N if N ′t ≥ Nt, t = 1, ..., T − 1. Let ϑ̂N and ϑ̂N ′ be respective optimal
(minimal) values of SAA problems. Show that if N ′ � N , then E[ϑ̂N ′ ] ≥ E[ϑ̂N ].

5.8. Consider the following chance constrained problem

Min
x∈X

f(x) subject to Pr
{
T (ξ)x+ h(ξ) ∈ C

}
≥ 1− α, (5.446)

where X ⊂ Rn is a closed convex set, f : Rn → R is a convex function, C ⊂ Rm
is a convex closed set, α ∈ (0, 1), matrix T (ξ) and vector h(ξ) are functions of
random vector ξ. For example, if

C :=
{
z : z = −Wy − w, y ∈ R`, w ∈ Rm+

}
, (5.447)

then, for a given x ∈ X , the constraint T (ξ)x + h(ξ) ∈ C means that the system
Wy + T (ξ)x + h(ξ) ≤ 0 has a feasible solution. Extend the results of section 5.7
to the setting of problem (5.446).

5.9. Consider the following extension of the chance constrained problem (5.196):

Min
x∈X

f(x) subject to pi(x) ≤ αi, i = 1, ..., p, (5.448)

with several (individual) chance constraints. Here X ⊂ Rn, f : Rn → R, αi ∈
(0, 1), i = 1, ..., p, are given significance levels, and

pi(x) = Pr{Ci(x, ξ) > 0}, i = 1, ..., p,

with Ci(x, ξ) being Carathéodory functions.

Extend the methodology of constructing lower and upper bounds, discussed in sec-
tion 5.7.2, to the above problem (5.448). Use SAA problems based on independent
samples (see Remark 9 on page 182, and equation (5.18) in particular). That is,
estimate pi(x) by

p̂iNi(x) :=
1

Ni

Ni∑
j=1

1(0,∞)

(
Ci(x, ξ

ij)
)
, i = 1, ..., p.

In order to verify feasibility of a point x̄ ∈ X , show that

Pr
{
pi(x̄) < Ui(x̄), i = 1, ..., p

}
≥

p∏
i=1

(1− βi),

where βi ∈ (0, 1) are chosen constants and

Ui(x̄) := sup
ρ∈[0,1]

{ρ : b (mi; ρ,Ni) ≥ βi} , i = 1, ..., p,
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with mi := p̂iNi(x̄).
In order to construct a lower bound, generate M independent realizations of the
corresponding SAA problems, each of the same sample size N = (N1, ..., Np)
and significance levels γi ∈ [0, 1), i = 1, ..., p, and compute their optimal values
ϑ̂1
γ,N , ..., ϑ̂

M
γ,N . Arrange these values in the increasing order ϑ̂(1)

γ,N ≤ ... ≤ ϑ̂
(M)
γ,N .

Given significance level β ∈ (0, 1), consider the following rule for choice of the
corresponding integer L:

• Choose largest integer L ∈ {1, ...,M} such that

b(L− 1; θN ,M) ≤ β, (5.449)

where θN :=
∏p
i=1 b(ri;αi, Ni) and ri := bγiNic.

Show that with probability at least 1 − β, the random quantity ϑ̂(L)
γ,N gives a lower

bound for the true optimal value ϑ∗.
5.10. Consider the SAA problem (5.241) giving an approximation of the first stage of the

corresponding three stage stochastic program. Let

ϑ̃N1,N2
:= inf

x1∈X1

f̃N1,N2
(x1)

be the optimal value and x̃N1,N2 be an optimal solution of problem (5.241). Con-
sider asymptotics of ϑ̃N1,N2

and x̃N1,N2
as N1 tends to infinity while N2 is fixed.

Let ϑ∗N2
be the optimal value and SN2

be the set of optimal solutions of the problem

Min
x1∈X1

{
f1(x1) + E

[
Q̂2,N2(x1, ξ

i
2)
]}
, (5.450)

where the expectation is taken with respect to the distribution of the random vector(
ξi2, ξ

i1
3 , ..., ξ

iN2
3

)
.

(i) By using results of section 5.1.1 show that ϑ̃N1,N2
→ ϑ∗N2

w.p.1 and distance
from x̃N1,N2 to SN2 tends to 0 w.p.1 as N1 → ∞. Specify required regularity
conditions.
(ii) Show that, under appropriate regularity conditions,

ϑ̃N1,N2
= inf
x1∈SN2

f̃N1,N2
(x1) + op

(
N
−1/2
1

)
. (5.451)

Conclude that if, moreover, SN2
= {x̄1} is a singleton, then

N
1/2
1

(
ϑ̃N1,N2

− ϑ∗N2

) D→ N (0, σ2(x̄1)
)
, (5.452)

where σ2(x̄1) := Var
[
Q̂2,N2(x1, ξ

i
2)
]
. Hint: use Theorem 5.7.
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Chapter 6

Risk Averse Optimization

Andrzej Ruszczyński and Alexander Shapiro

6.1 Introduction
So far, we discussed stochastic optimization problems, in which the objective function was
defined as the expected value f(x) := E[F (x, ω)]. The function F : Rn × Ω → R mod-
els the random outcome, for example, the random cost, and is assumed to be sufficiently
regular so that the expected value function is well defined. For a feasible set X ⊂ Rn, the
stochastic optimization model

Min
x∈X

f(x) (6.1)

optimizes the random outcome F (x, ω) on average. This is justified when the Law of Large
Numbers can be invoked and we are interested in the long term performance, irrespective
of the fluctuations of specific outcome realizations. The shortcomings of such an approach
can be clearly illustrated by the example of portfolio selection discussed in section 1.4.
Consider problem (1.34) of maximizing the expected return rate. Its optimal solution sug-
gests to concentrate the investment in the assets having the highest expected return rate.
This is not what we would consider reasonable, because it leaves out all considerations of
the involved risk of losing all or a large portion of the capital invested. In this section,
we discuss stochastic optimization from a new point of view which takes into account risk
aversion.

A classical approach to risk-averse preferences is based on the expected utility theory,
which has its roots in mathematical economics (we already touched upon this subject in
section 1.4). In this theory, in order to compare two random outcomes we consider expected
values of some scalar transformations u : R → R of the realization of these outcomes. In
a minimization problem, a random outcome Z1 (understood as a scalar random variable) is

289
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preferred over a random outcome Z2, if

E[u(Z1)] < E[u(Z2)].

The function u(·), called the disutility function, is assumed to be nondecreasing and convex.
Following this principle, instead of problem (6.1), we construct the problem

Min
x∈X

E[u(F (x, ω))]. (6.2)

Observe that it is still an expected value problem, but the function F is replaced by the
composition u ◦ F . Since u(·) is convex, we have by Jensen’s inequality that

u(E[F (x, ω)]) ≤ E[u(F (x, ω))].

That is, a sure outcome of E[F (x, ω)] is at least as good as the random outcome F (x, ω).
In a maximization problem, we assume that u(·) is concave (and still nondecreasing). We
call it a utility function in this case. Again, Jensen’s inequality yields the preference in
terms of expected utility:

u(E[F (x, ω)]) ≥ E[u(F (x, ω))].

One of the basic difficulties in using the expected utility approach is specifying the
utility or disutility function. They are very difficult to elicit; even the authors of this book
cannot specify their utility functions in simple stochastic optimization problems. Moreover,
using some arbitrarily selected utility functions may lead to solutions which are difficult to
interpret and explain. Modern approach to modeling risk aversion in optimization problems
uses the concept of risk measures. These are, generally speaking, functionals which take
as their argument the entire collection of realizations Z(ω) = F (x, ω), ω ∈ Ω, understood
as an object in an appropriate vector space. In the following sections we introduce this
concept in a more formalized way.

6.2 Mean–risk models
6.2.1 Main ideas of mean–risk analysis
The main idea of mean–risk models is to characterize the uncertain outcome Zx(ω) =
F (x, ω) by two scalar characteristics: the mean E[Zx] describing the expected outcome,
and the risk (dispersion measure) D[Zx] which measures the uncertainty of the outcome.
In the mean–risk approach, we select from the set of all possible solutions those that are
efficient: for a given value of the mean they minimize the risk and for a given value of risk
– minimize the mean. Such an approach has many advantages: it allows one to formulate
the problem as a parametric optimization problem, and it facilitates the trade-off analysis
between mean and risk.

Let us describe the mean–risk analysis on the example of the minimization problem
(6.1). Suppose that the risk functional is defined as the variance D[Z] := Var[Z], which
is well defined for Z ∈ L2(Ω,F , P ), i.e., for Z having a finite second order moment. The
variance, although not the best choice, is easiest to start from. It is also important in finance.
Later in this chapter, we discuss in much detail desirable properties of the risk functionals.
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In the mean–risk approach, we aim at finding efficient solutions of the problem with
two objectives, namely, E[Zx] and D[Zx], subject to the feasibility constraint x ∈ X . This
can be accomplished by techniques of multi-objective optimization. Most convenient, from
our perspective, is the idea of scalarization. For a coefficient c ≥ 0, we form a composite
objective functional

ρ[Z] := E[Z] + cD[Z]. (6.3)

The coefficient c plays the role of the price of risk. We formulate the problem

Min
x∈X

E[Zx] + cD[Zx]. (6.4)

By varying the value of the coefficient c, we can generate in this way a large ensemble of
efficient solutions. We already discussed this approach for the portfolio selection problem,
with D[Z] := Var[Z], in section 1.4.

An obvious deficiency of variance as a measure of risk is that it treats the excess over
the mean equally as the shortfall. After all, in a minimization case, we are not concerned
if a particular realization of Z is significantly below the mean of Z; we do not want it to
be too large. Two particular classes of risk functionals, which we discuss next, play an
important role in the theory of mean–risk models.

6.2.2 Semideviations
An important group of risk functionals (representing dispersion measures) are central semide-
viations. The upper semideviation of order p is defined as

σ+
p [Z] :=

(
E
[(
Z − E[Z]

)p
+

])1/p

, (6.5)

where p ∈ [1,∞) is a fixed parameter. It is natural to assume here that the random variables
(uncertain outcomes) Z : Ω → R considered belong to the space Lp(Ω,F , P ), i.e., that
they have finite p-th order moments. That is, σ+

p [Z] is well-defined and finite-valued for all
Z ∈ Lp(Ω,F , P ). The corresponding mean–risk model has the general form

Min
x∈X

E[Zx] + cσ+
p [Zx]. (6.6)

The upper semideviation measure is appropriate for minimization problems, where
Zx(ω) = F (x, ω) represents a cost, as a function of ω ∈ Ω. It is aimed at penalization of
an excess of Zx over its mean. If we are dealing with a maximization problem, where Zx
represents some reward or profit, the corresponding risk functional is the lower semidevia-
tion

σ−p [Z] :=
(
E
[(
E[Z]− Z

)p
+

])1/p

, (6.7)

where Z ∈ Lp(Ω,F , P ). The resulting mean–risk model has the form

Max
x∈X

E[Zx]− cσ−p [Zx]. (6.8)

In the special case of p = 1, both left and right first order semideviations are related to the
mean absolute deviation

σ1(Z) := E
∣∣Z − E[Z]

∣∣. (6.9)
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Proposition 6.1. The following identity holds

σ+
1 [Z] = σ−1 [Z] = 1

2
σ1[Z], ∀Z ∈ L1(Ω,F , P ). (6.10)

Proof. Denote by H(·) the cumulative distribution function (cdf) of Z and let µ := E[Z].
We have

σ−1 [Z] =

∫ µ

−∞
(µ− z) dH(z) =

∫ ∞
−∞

(µ− z) dH(z)−
∫ ∞
µ

(µ− z) dH(z).

The first integral on the right hand side is equal to 0, and thus σ−1 [Z] = σ+
1 [Z]. The identity

(6.10) follows now from the equation σ1[Z] = σ−1 [Z] + σ+
1 [Z].

We conclude that using the mean absolute deviation instead of the semideviation in
mean–risk models has the same effect, just the parameter c has to be halved. The identity
(6.10) does not extend to semideviations of higher orders, unless the distribution of Z is
symmetric.

6.2.3 Weighted mean deviations from quantiles
Let HZ(z) = Pr(Z ≤ z) be the cdf of the random variable Z, and let α ∈ (0, 1). Recall
that the left-side α-quantile of HZ is defined as

H−1
Z (α) := inf{t : HZ(t) ≥ α}, (6.11)

and the right-side α-quantile as

sup{t : HZ(t) ≤ α}. (6.12)

If Z represents losses, the (left-side) quantile H−1
Z (1−α) is also called Value-at-Risk and

denoted V@Rα(Z), i.e.,

V@Rα(Z) := H−1
Z (1− α) = inf{t : Pr(Z ≤ t) ≥ 1− α}

= inf{t : Pr(Z > t) ≤ α}. (6.13)

Its meaning is the following: losses larger than V@Rα(Z) occur with probability not ex-
ceeding α. Note that

V@Rα(γZ + τ) = γV@Rα(Z) + τ, ∀γ, τ ∈ R, γ ≥ 0. (6.14)

The weighted mean deviation from a quantile is defined as follows:

qα[Z] := E
[
max

{
(1− α)(H−1

Z (α)− Z), α(Z −H−1
Z (α))

}]
. (6.15)

The functional qα[Z] is well defined and finite valued for all Z ∈ L1(Ω,F , P ). It can be
easily shown that

qα[Z] = min
t∈R

{
ϕ(t) := E

[
max {(1− α)(t− Z), α(Z − t)}

]}
. (6.16)
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Indeed, the right and left side derivatives of the function ϕ(·) are

ϕ′+(t) = (1− α)Pr[Z ≤ t]− αPr[Z > t],

ϕ′−(t) = (1− α)Pr[Z < t]− αPr[Z ≥ t].

At the optimal t the right derivative is nonnegative and the left derivative nonpositive, and
thus

Pr[Z < t] ≤ α ≤ Pr[Z ≤ t].

This means that every α-quantile is a minimizer in (6.16).
The risk functional qα[ · ] can be used in mean–risk models, both in the case of mini-

mization
Min
x∈X

E[Zx] + c q1−α[Zx], (6.17)

and in the case of maximization

Max
x∈X

E[Zx]− c qα[Zx]. (6.18)

We use 1− α in the minimization problem and α in the maximization problem, because in
practical applications we are interested in these quantities for small values of α.

6.2.4 Average Value-at-Risk

The mean–deviation from quantile model is closely related to the concept of Average Value-
at-Risk1. Suppose that Z represents losses and we want to satisfy the chance constraint

V@Rα[Zx] ≤ 0. (6.19)

Recall that
V@Rα[Z] = inf{t : Pr(Z ≤ t) ≥ 1− α},

and hence constraint (6.19) is equivalent to the constraint Pr(Zx ≤ 0) ≥ 1 − α. We have
that2 Pr(Zx > 0) = E

[
1(0,∞)(Zx)

]
, and hence constraint (6.19) can also be written as

the expected value constraint:

E
[
1(0,∞)(Zx)

]
≤ α. (6.20)

The source of difficulties with probabilistic (chance) constraints is that the step function
1(0,∞)(·) is not convex and, even worse, it is discontinuous at zero. As a result, chance
constraints are often nonconvex, even if the function x 7→ Zx is convex almost surely. One
possibility is to approach such problems by constructing a convex approximation of the
expected value on the left of (6.20).

1Average Value-at-Risk is often called Conditional Value-at-Risk. We adopt here the term ‘Average’ rather
than ‘Conditional’ Value-at-Risk in order to avoid awkward notation and terminology while discussing later con-
ditional risk mappings.

2Recall that 1(0,∞)(z) = 0 if z ≤ 0, and 1(0,∞)(z) = 1 if z > 0.
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Let ψ : R → R be a nonnegative valued, nondecreasing, convex function such that
ψ(z) ≥ 1(0,∞)(z) for all z ∈ R. By noting that 1(0,∞)(tz) = 1(0,∞)(z) for any t > 0 and
z ∈ R, we have that ψ(tz) ≥ 1(0,∞)(z) and hence the following inequality holds

inf
t>0
E [ψ(tZ)] ≥ E

[
1(0,∞)(Z)

]
.

Consequently, the constraint
inf
t>0
E [ψ(tZx)] ≤ α (6.21)

is a conservative approximation of the chance constraint (6.19) in the sense that the feasible
set defined by (6.21) is contained in the feasible set defined by (6.19).

Of course, the smaller the function ψ(·) is the better this approximation will be.
From this point of view the best choice of ψ(·) is to take piecewise linear function ψ(z) :=
[1 + γz]+ for some γ > 0. Since constraint (6.21) is invariant with respect to scale change
of ψ(γz) to ψ(z), we have that ψ(z) := [1 + z]+ gives the best choice of such a function.
For this choice of function ψ(·), we have that constraint (6.21) is equivalent to

inf
t>0
{tE[t−1 + Z]+ − α} ≤ 0,

or equivalently
inf
t>0

{
α−1E[Z + t−1]+ − t−1

}
≤ 0.

Now replacing t with −t−1 we get the form:

inf
t<0

{
t+ α−1E[Z − t]+

}
≤ 0. (6.22)

The quantity
AV@Rα(Z) := inf

t∈R

{
t+ α−1E[Z − t]+

}
(6.23)

is called the Average Value-at-Risk3 of Z (at level α). Note that AV@Rα(Z) is well defined
and finite valued for every Z ∈ L1(Ω,F , P ).

The function ϕ(t) := t + α−1E[Z − t]+ is convex. Its derivative at t is equal to
1 + α−1[HZ(t)− 1], provided that the cdf HZ(·) is continuous at t. If HZ(·) is discontin-
uous at t, then the respective right and left side derivatives of ϕ(·) are given by the same
formula with HZ(t) understood as the corresponding right and left side limits. Therefore
the minimum of ϕ(t), over t ∈ R, is attained on the interval [t∗, t∗∗], where

t∗ := inf{z : HZ(z) ≥ 1− α} and t∗∗ := sup{z : HZ(z) ≤ 1− α} (6.24)

are the respective left and right side quantiles. Recall that the left-side quantile t∗ =
V@Rα(Z).

Since the minimum of ϕ(t) is attained at t∗ = V@Rα(Z), we have that AV@Rα(Z)
is larger than V@Rα(Z) by the nonnegative amount of α−1E[Z − t∗]+. Therefore

inf
t∈R

{
t+ α−1E[Z − t]+

}
≤ 0 implies that t∗ ≤ 0,

3In some publications the above concept of ‘Average Value-at-Risk’ is called ‘Conditional Value-at-Risk’ and
is denoted CV@Rα.
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and hence constraint (6.22) is equivalent to AV@Rα(Z) ≤ 0. Therefore, the constraint

AV@Rα[Zx] ≤ 0 (6.25)

is equivalent to the constraint (6.22) and gives a conservative approximation4 of the chance
constraint (6.19).

The function ρ(Z) := AV@Rα(Z), defined on a space of random variables, is convex,
i.e., if Z and Z ′ are two random variables and t ∈ [0, 1], then

ρ (tZ + (1− t)Z ′) ≤ tρ(Z) + (1− t)ρ(Z ′).

This follows from the fact that the function t+α−1E[Z − t]+ is convex jointly in t and Z.
Also ρ(·) is monotonic, i.e., if Z and Z ′ are two random variables such that with probability
one Z ≥ Z ′, then ρ(Z) ≥ ρ(Z ′). It follows that if G(·, ξ) is convex for a.e. ξ ∈ Ξ, then
the function ρ[G(·, ξ)] is also convex. Indeed, by convexity of G(·, ξ) and monotonicity of
ρ(·), we have for any t ∈ [0, 1] that

ρ[G(tZ + (1− t)Z ′), ξ)] ≤ ρ[tG(Z, ξ) + (1− t)G(Z ′, ξ)],

and hence by convexity of ρ(·) that

ρ[G(tZ + (1− t)Z ′), ξ)] ≤ tρ[G(Z, ξ)] + (1− t)ρ[G(Z ′, ξ)].

Consequently, (6.25) is a convex conservative approximation of the chance constraint (6.19).
Moreover, from the considered point of view, (6.25) is the best convex conservative approx-
imation of the chance constraint (6.19).

We can now relate the concept of Average Value-at-Risk to mean deviations from
quantiles. Recall that (see (6.15))

qα[Z] := E
[
max

{
(1− α)(H−1

Z (α)− Z), α(Z −H−1
Z (α))

}]
.

Theorem 6.2. Let Z ∈ L1(Ω,F , P ) and H(·) = HZ(·) be its cdf. Then the following
identities hold true

AV@Rα(Z) =
1

α

∫ 1

1−α
V@R1−τ (Z) dτ = E[Z] +

1

α
q1−α[Z]. (6.27)

Moreover, if H(z) is continuous at z = V@Rα(Z), then

AV@Rα(Z) =
1

α

∫ +∞

V@Rα(Z)

zdH(z) = E
[
Z
∣∣Z ≥ V@Rα(Z)

]
. (6.28)

Proof. As discussed before, the minimum in (6.23) is attained at t∗ = H−1(1 − α) =
V@Rα(Z). Therefore

AV@Rα(Z) = t∗ + α−1E[Z − t∗]+ = t∗ + α−1

∫ +∞

t∗
(z − t∗)dH(z).

4It is easy to see that for any τ ∈ R,

AV@Rα(Z + τ) = AV@Rα(Z) + τ. (6.26)

Consequently the constraint AV@Rα[Zx] ≤ τ gives a conservative approximation of the chance constraint
V@Rα[Zx] ≤ τ .
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Moreover, ∫ +∞

t∗
dH(z) = Pr(Z ≥ t∗) = 1− Pr(Z ≤ t∗) = α,

provided that Pr(Z = t∗) = 0, i.e., that H(z) is continuous at z = V@Rα(Z). This shows
the first equality in (6.28), and then the second equality in (6.28) follows provided that
Pr(Z = t∗) = 0.

The first equality in (6.27) follows from the first equality in (6.28) by the substitution
τ = H(z). Finally, we have

AV@Rα(Z) = t∗ + α−1E[Z − t∗]+ = E[Z] + E
{
−Z + t∗ + α−1[Z − t∗]+

}
= E[Z] + E

[
max

{
α−1(1− α)(Z − t∗), t∗ − Z

}]
.

This proves the last equality in (6.27).

The first equation in (6.27) motivates the term Average Value-at-Risk. The last equa-
tion in (6.28) explains the origin of the alternative term Conditional Value-at-Risk.

Remark 24. By (6.27) we have that for α = 1,

AV@R1(Z) =

∫ 1

0

V@R1−τ (Z) dτ =

∫ 1

0

H−1(τ)dτ =

∫ +∞

−∞
z dH(z) = E[Z].

For α tending to zero we have

lim
α↓0

AV@Rα(Z) = lim
α↓0

1

α

∫ 1

1−α
H−1(τ) dτ = ess sup(Z),

where ess sup(Z) is the essential supremum of Z(ω). Therefore we set

AV@R0(·) := ess sup(·).

It follows from (6.23) that AV@Rα(Z) is monotonically decreasing in α, i.e., for
0 < α < α′ ≤ 1 we have AV@Rα(Z) ≥ AV@Rα′(Z). In particular AV@Rα(Z) ≥ E[Z]
for any α ∈ (0, 1]. Also it follows from (6.27) that for a given Z ∈ Z , AV@Rα(Z) is a
continuous function of α ∈ (0, 1].

Theorem 6.2 allows us to show an important relation between the absolute semidevi-
ation σ+

1 [Z] and the mean deviation from quantile qα[Z].

Corollary 6.3. For every Z ∈ L1(Ω,F , P ) we have

σ+
1 [Z] = max

α∈[0,1]
qα[Z] = min

t∈R
max
α∈[0,1]

E {(1− α)[t− Z]+ + α[Z − t]+} . (6.29)

Proof. From (6.27) we get

q1−α[Z] =

∫ 1

1−α
H−1
Z (τ) dτ − αE[Z].
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The right derivative of the right hand side with respect to α equals H−1
Z (1 − α) − E[Z].

As it is nonincreasing, the function α 7→ q1−α[Z] is concave. Moreover, its maximum is
achieved at α∗ for which E[Z] is the (1 − α∗)-quantile of Z. Substituting the minimizer
t∗ = E[Z] into (6.23) we conclude that

AV@Rα∗(Z) = E[Z] +
1

α∗
σ+

1 [Z].

Comparison with (6.27) yields the first equality in (6.29). To prove the second equality we
recall relation (6.16) and note that

max
(
(1− α)(t− Z), α(Z − t)

)
= (1− α)[t− Z]+ + α[Z − t]+.

Thus
σ+

1 [Z] = max
α∈[0,1]

min
t∈R

E {(1− α)[t− Z]+ + α[Z − t]+} .

As the function under the “max-min” operation is linear with respect to α ∈ [0, 1] and
convex with respect to t, the “max” and “min” operations can be exchanged. This proves
the second equality in (6.29).

It also follows from (6.27) that the minimization problem (6.17) can be equivalently
written as follows

min
x∈X

E[Zx] + c q1−α[Zx] = min
x∈X

(1− cα)E[Zx] + cαAV@Rα[Zx] (6.30)

= min
x∈X , t∈R

E
[
(1− cα)Zx + c

(
αt+ [Zx − t]+

)]
.

Both x and t are variables in this problem. We conclude that for this specific mean–risk
model, an equivalent expected value formulation has been found. If c ∈ [0, α−1] and the
function x 7→ Zx is convex, problem (6.30) is convex.

The maximization problem (6.18) can be equivalently written as follows:

max
x∈X

E[Zx]− c qα[Zx] = −min
x∈X

E[−Zx] + c q1−α[−Zx] (6.31)

= − min
x∈X , t∈R

E
[
−(1− cα)Zx + c

(
αt+ [−Zx − t]+

)]
= max
x∈X , t∈R

E
[
(1− cα)Zx + c

(
αt− [t− Zx]+

)]
. (6.32)

In the last problem we replaced t by−t to stress the similarity with (6.30). Again, if c ∈
[0, α−1] and the function x 7→ Zx(ω) is convex for a.e. ω ∈ Ω, problem (6.31) is convex.

6.3 Coherent Risk Measures
Let (Ω,F) be a sample space, equipped with the sigma algebra F , on which uncertain
outcomes (random functions Z = Z(ω)) are defined. By a risk measure we understand
a function5 ρ(Z) which maps Z into the extended real line R = R ∪ {+∞} ∪ {−∞}.

5The concept of risk measure should not be confused with the concept of probability measure.
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In order to make this concept precise we need to define a space Z of allowable random
functions Z(ω) for which ρ(Z) is defined. It seems that a natural choice of Z will be the
space of all F-measurable functions Z : Ω→ R. However, typically, this space is too large
for development of a meaningful theory (we will discuss this later, see Proposition 6.31 in
particular). Unless stated otherwise, we deal in this chapter with spacesZ := Lp(Ω,F , P ),
where p ∈ [1,∞) (see section 7.3 for an introduction to these spaces). By assuming that
Z ∈ Lp(Ω,F , P ), we assume that the random variable Z has a finite p-th order moment
with respect to the reference probability measure P . Also by considering a function ρ
defined on the space Lp(Ω,F , P ), it is implicitly assumed that actually ρ is defined on
classes of functions which may differ on sets of P -measure zero, i.e., ρ(Z) = ρ(Z ′) if
P{ω : Z(ω) 6= Z ′(ω)} = 0. We also consider the space L∞(Ω,F , P ) of essentially
bounded functions.

We assume throughout this chapter that risk measures ρ : Z → R are proper. That
is, ρ(Z) > −∞ for all Z ∈ Z and the domain

dom(ρ) := {Z ∈ Z : ρ(Z) < +∞}

is nonempty. For Z,Z ′ ∈ Z we denote by Z � Z ′ the pointwise partial order6 meaning
Z(ω) ≥ Z ′(ω) for P -almost all ω ∈ Ω. We also assume that the smaller the realizations of
Z, the better; for example Z may represent a random cost.

We consider the following axioms associated with a risk measure ρ.

(R1) Convexity:
ρ(tZ + (1− t)Z ′) ≤ tρ(Z) + (1− t)ρ(Z ′)

for all Z,Z ′ ∈ Z and all t ∈ [0, 1].

(R2) Monotonicity: If Z,Z ′ ∈ Z and Z � Z ′, then ρ(Z) ≥ ρ(Z ′).

(R3) Translation Equivariance: If a ∈ R and Z ∈ Z , then ρ(Z + a) = ρ(Z) + a.

(R4) Positive Homogeneity: If t > 0 and Z ∈ Z , then ρ(tZ) = tρ(Z).

Definition 6.4. It is said that risk measure ρ is convex if it satisfies the conditions (R1)–
(R3); it is said that ρ is coherent if it satisfies the conditions (R1)–(R4).

An example of a coherent risk measure is the Average Value-at-Risk measure ρ(Z) :=
AV@Rα(Z) (further examples of risk measures will be discussed in section 6.3.2). It
is natural to assume in this example that Z has a finite first order moment, i.e., to use
Z := L1(Ω,F , P ). For such space Z in this example, ρ(Z) is finite (real valued) for all
Z ∈ Z .

It follows from the convexity condition (R1) that ρ(Z+Z′

2 ) ≤ ρ(Z)+ρ(Z′)
2 . Thus

conditions (R1) and (R4) imply that

ρ(Z + Z ′) ≤ ρ(Z) + ρ(Z ′), Z, Z ′ ∈ Z. (6.33)

6This partial order corresponds to the cone C := L+
p (Ω,F , P ), see the discussion of section 7.3, page 495,

following equation (7.274).
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Conversely, the positive homogeneity condition (R4) and the subadditivity condition (6.33)
imply convexity of ρ(·). Therefore condition (R1) in the definition of a coherent risk mea-
sure ρ can be replaced by condition (6.33).

If the random outcome represents a reward, i.e., larger realizations of Z are preferred,
we can define a risk measure %(Z) = ρ(−Z), where ρ satisfies axioms (R1)–(R4). In this
case, the function % also satisfies (R1) and (R4). The axioms (R2) and (R3) change to:

(R2a) Monotonicity: If Z,Z ′ ∈ Z and Z � Z ′, then %(Z) ≤ %(Z ′).

(R3a) Translation Equivariance: If a ∈ R and Z ∈ Z , then %(Z + a) = %(Z)− a.

All our considerations regarding risk measures satisfying (R1)–(R4) have their obvious
counterparts for risk measures satisfying (R1)-(R2a)-(R3a)-(R4).

With each space Z := Lp(Ω,F , P ), p ∈ [1,∞), is associated its dual space Z∗ :=
Lq(Ω,F , P ), where q ∈ (1,∞] is such that7 1/p+ 1/q = 1.

It is convenient to consider a bilinear form 〈·, ·〉 on the product Z × Z∗. For Z ∈ Z
and ζ ∈ Z∗ the value of the bilinear form is defined as follows:

〈ζ, Z〉 :=

∫
Ω

ζ(ω)Z(ω)dP (ω). (6.34)

Recall that the conjugate function ρ∗ : Z∗ → R of a risk measure ρ is defined as

ρ∗(ζ) := sup
Z∈Z

{
〈ζ, Z〉 − ρ(Z)

}
, (6.35)

and the conjugate of ρ∗ (the biconjugate function) as

ρ∗∗(Z) := sup
ζ∈Z∗

{
〈ζ, Z〉 − ρ∗(ζ)

}
. (6.36)

By the Fenchel-Moreau Theorem (Theorem 7.82) we have that if ρ : Z → R is
convex, proper and lower semicontinuous, then ρ∗∗ = ρ, i.e., ρ(·) has the representation

ρ(Z) = sup
ζ∈Z∗

{
〈ζ, Z〉 − ρ∗(ζ)

}
, ∀Z ∈ Z. (6.37)

Conversely, if the representation (6.37) holds for some proper function ρ∗ : Z∗ → R,
then ρ is convex and lower semicontinuous. Note that if ρ is convex, proper and lower
semicontinuous, then its conjugate function ρ∗ is also proper. Clearly, we can write the
representation (6.37) in the following equivalent form

ρ(Z) = sup
ζ∈A

{
〈ζ, Z〉 − ρ∗(ζ)

}
, ∀Z ∈ Z, (6.38)

where A := dom(ρ∗) is the domain of the conjugate function ρ∗.
The following basic duality result for convex risk measures is a direct consequence

of the Fenchel-Moreau Theorem.
7Recall that unless stated otherwise it is assumed that p ∈ [1,∞). For p = 1 we have that q = ∞, i.e, the

dual space of L1(Ω,F , P ) is the space L∞(Ω,F , P ).
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Theorem 6.5. Suppose that ρ : Z → R is convex, proper and lower semicontinuous. Then
the representation (6.38) holds with A := dom(ρ∗). Moreover, we have that: (i) Condition
(R2) holds iff every ζ ∈ A is nonnegative, i.e., ζ(ω) ≥ 0 for a.e. ω ∈ Ω; (ii) Condition
(R3) holds iff

∫
Ω
ζdP = 1 for every ζ ∈ A; (iii) Condition (R4) holds iff ρ(·) is the support

function of the set A, i.e., it can be represented in the form

ρ(Z) = sup
ζ∈A
〈ζ, Z〉, ∀Z ∈ Z. (6.39)

Proof. If ρ : Z → R is convex, proper, and lower semicontinuous, then representation
(6.38) is valid by virtue of the Fenchel-Moreau Theorem (Theorem 7.82).

Now suppose that assumption (R2) holds. It follows that ρ∗(ζ) = +∞ for every
ζ ∈ Z∗ which is not nonnegative. Indeed, if ζ ∈ Z∗ is not nonnegative, then there exists
a set ∆ ∈ F of positive measure such that ζ(ω) < 0 for all ω ∈ ∆. Consequently, for
Z̄ := 1∆ we have that 〈ζ, Z̄〉 < 0. Take any Z in the domain of ρ, i.e., such that ρ(Z) is
finite, and consider Zt := Z − tZ̄. Then for t ≥ 0, we have that Z � Zt, and assumption
(R2) implies that ρ(Z) ≥ ρ(Zt). Consequently,

ρ∗(ζ) ≥ sup
t∈R+

{
〈ζ, Zt〉 − ρ(Zt)

}
≥ sup
t∈R+

{
〈ζ, Z〉 − t〈ζ, Z̄〉 − ρ(Z)

}
= +∞.

Conversely, suppose that every ζ ∈ A is nonnegative. Then for every ζ ∈ A and Z � Z ′,
we have that 〈ζ, Z ′〉 ≥ 〈ζ, Z〉. By (6.38), this implies that if Z � Z ′, then ρ(Z) ≥ ρ(Z ′).
This completes the proof of assertion (i).

Suppose that assumption (R3) holds. Then for every Z ∈ dom(ρ) we have

ρ∗(ζ) ≥ sup
a∈R

{
〈ζ, Z + a〉 − ρ(Z + a)

}
= sup

a∈R

{
a

∫
Ω

ζdP − a+ 〈ζ, Z〉 − ρ(Z)

}
.

It follows that ρ∗(ζ) = +∞ for any ζ ∈ Z∗ such that
∫

Ω
ζdP 6= 1. Conversely, if∫

Ω
ζdP = 1, then 〈ζ, Z + a〉 = 〈ζ, Z〉 + a, and hence condition (R3) follows by (6.38).

This completes the proof of (ii).
Clearly, if (6.39) holds, then ρ is positively homogeneous. Conversely, if ρ is posi-

tively homogeneous, then its conjugate function is the indicator function of a convex subset
of Z∗. Consequently, the representation (6.39) follows by (6.38).

It follows from the above theorem that if ρ is a convex risk measure (i.e., satisfies
conditions (R1)–(R3)) and is proper and lower semicontinuous, then the representation
(6.38) holds with A being a subset of the set of probability density functions,

P :=

{
ζ ∈ Z∗ :

∫
Ω

ζ(ω)dP (ω) = 1, ζ � 0

}
. (6.40)

If, moreover, ρ is positively homogeneous (i.e., condition (R4) holds), then its conjugate
ρ∗ is the indicator function of a convex set A ⊂ Z∗, and A is equal to the subdifferential
∂ρ(0) of ρ at 0 ∈ Z . Furthermore, ρ(0) = 0 and hence by the definition of ∂ρ(0) we have
that

A = {ζ ∈ P : 〈ζ, Z〉 ≤ ρ(Z), ∀Z ∈ Z} . (6.41)
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The set A is weakly∗ closed. Recall that if the space Z , and hence Z∗, is reflexive, then
a convex subset of Z∗ is closed in the weak∗ topology of Z∗ iff it is closed in the strong
(norm) topology of Z∗. If ρ is positively homogeneous and continuous, then A = ∂ρ(0) is
a bounded (and weakly∗ compact) subset of Z∗ (see Proposition 7.85). We refer to the set
A as the dual set of the corresponding coherent risk measure ρ.

We have that if ρ is a coherent risk measure, then the corresponding set A is a set of
probability density functions. Thus for any ζ ∈ A we can view 〈ζ, Z〉 as the expectation
EQ[Z] taken with respect to the probability measure dQ = ζdP , defined by the density
ζ, i.e., Q is absolutely continuous with respect to P and dQ/dP = ζ. Consequently, the
representation (6.39) can be written in the form

ρ(Z) = sup
dQ
dP ∈A

EQ[Z], ∀Z ∈ Z. (6.42)

Definition of a risk measure ρ depends on a particular choice of the corresponding
space Z . In many cases there is a natural choice of Z which ensures that ρ(Z) is finite
valued for all Z ∈ Z . We shall see such examples in section 6.3.2. By Theorem 7.91
we have the following result which shows that for real valued convex and monotone risk
measures, the assumption of lower semicontinuity in Theorem 6.5 holds automatically.

Proposition 6.6. Let Z := Lp(Ω,F , P ), with p ∈ [1,∞], and ρ : Z → R be a real valued
risk measure satisfying conditions (R1) and (R2). Then ρ is continuous and subdifferen-
tiable on Z .

Theorem 6.5 together with Proposition 6.6 imply the following basic duality result.

Theorem 6.7. Let ρ : Z → R, where Z := Lp(Ω,F , P ) with p ∈ [1,∞). Then ρ is a
real valued coherent risk measure iff there exists a convex bounded and weakly∗ closed set
A ⊂ P such that the representation (6.39) holds. In the later case, for every Z ∈ Z the
maximum in (6.39) is attained at some point of A.

Proof. If ρ : Z → R is a real valued coherent risk measure, then by Proposition 6.6 it is
continuous, and hence by Theorem 6.5 the representation (6.39) holds with A = ∂ρ(0).
Moreover, the subdifferential of a convex continuous function is bounded and weakly∗

closed (and hence is weakly∗ compact).
Conversely, if the representation (6.39) holds with the set A being a convex subset of

P and weakly∗ compact, then ρ is real valued and satisfies conditions (R1)–(R4). It follows
by compactness of A that the maximum in (6.39) is attained for every Z ∈ Z .

The following result shows that if ρ is a proper convex risk measure, then either it is
finite valued and continuous on Z or it takes value +∞ on a dense subset of Z . Recall that
risk measure ρ is said to be convex if it satisfies conditions (R1),(R2) and (R3).

Proposition 6.8. Let Z := Lp(Ω,F , P ), with p ∈ [1,∞), and ρ : Z → R be a proper
convex risk measure. Suppose that the domain of ρ has a nonempty interior. Then ρ is finite
valued and continuous on Z .



i
i

“SPbook” — 2013/12/24 — 8:37 — page 302 — #314 i
i

i
i

i
i

302 Chapter 6. Risk Averse Optimization

Proof. By Theorem 7.91 we have that ρ is continuous on the interior of its domain. Con-
sider a point Z0 in the interior of dom(ρ). Since ρ is continuous at Z0 it follows that there
exists r > 0 such that |ρ(Z)− ρ(Z0)| < 1 for all Z such that ‖Z −Z0‖ ≤ r. By changing
variables Z 7→ Z − Z0, we can assume without loss of generality that Z0 = 0.

Now let us observe that for any Z ∈ Z and Z+
c (ω) := [Z(ω) − c]+, c ∈ R, it holds

that
lim

c→+∞

∥∥Z+
c

∥∥p = lim
c→+∞

∫
Z(ω)≥c

|Z(ω)− c|pdP (ω) = 0.

Therefore there exists c ∈ R (depending on Z) such that
∥∥Z+

c

∥∥ < r, and hence

ρ(Z+
c ) ≤ ρ(0) + 1 < +∞.

Noting that Z � c+ Z+
c , we can write

ρ(Z) ≤ ρ(Z+
c + c) = ρ(Z+

c ) + c < +∞.

This shows that ρ(Z) is finite valued for any Z ∈ Z . Continuity of ρ(·) follows by Propo-
sition 6.6.

Remark 25. The analysis simplifies considerably if the space Ω is finite, say Ω :=
{ω1, . . . , ωn} equipped with sigma algebra of all subsets of Ω and respective (positive)
probabilities p1, . . . , pn. Then every function Z : Ω → R is measurable and the space
Z of all such functions can be identified with Rn by identifying Z ∈ Z with the vector
(Z(ω1), . . . , Z(ωn)) ∈ Rn. The dual of the space Rn can be identified with itself by using
the standard scalar product in Rn, and the set P becomes

P =

{
ζ ∈ Rn :

n∑
i=1

piζi = 1, ζ ≥ 0

}
. (6.43)

The above set P forms a convex bounded subset of Rn, and hence the set A is also
bounded.

Spaces of Essentially Bounded Variables

Consider now the space Z := L∞(Ω,F , P ) of essentially bounded random variables Z :
Ω → R. Let ρ : Z → R be a convex risk measure having a finite value in at least one
point Z̄ ∈ Z . For a random variable Z ∈ Z we have that Z � Z̄ + c and Z̄ − c � Z for
sufficiently large c ∈ R (this follows because of the essential boundedness of Z). Hence by
conditions (R2) and (R3) it follows that ρ(Z) ≤ ρ(Z̄) + c < +∞ and −∞ < ρ(Z̄)− c ≤
ρ(Z). This shows that here any convex risk measure ρ having a finite value in at least one
point, is finite valued.

Thus by Proposition 6.6 it follows that ρ is continuous in the norm (strong) topology
of L∞(Ω,F , P ). In fact ρ is Lipschitz continuous. Indeed, for any Z1, Z2 ∈ Z we have
that Z1 � Z2 +‖Z1−Z2‖∞, and hence it follows by (R2) and (R3) that ρ(Z1) ≤ ρ(Z2) +
‖Z1 − Z2‖∞. Similarly ρ(Z2) ≤ ρ(Z1) + ‖Z2 − Z1‖∞ and hence

|ρ(Z1)− ρ(Z2)| ≤ ‖Z1 − Z2‖∞. (6.44)
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It follows that any coherent risk measure ρ, defined on the space Z = L∞(Ω,F , P ),
has the dual representation (6.39) for some A ⊂ Z∗. However, the dual Z∗ of the space
L∞(Ω,F , P ) is inconvenient to work with (the dual space Z∗ is formed by finitely addi-
tive measures). Therefore a general practice is to pair space L∞(Ω,F , P ) with the space
L1(Ω,F , P ), rather than Z∗. That is, L1(Ω,F , P ) and L∞(Ω,F , P ) are viewed as paired
locally convex topological vector spaces with respect to the bilinear form

〈ζ, Z〉 :=

∫
Ω

ζ(ω)Z(ω)dP (ω), ζ ∈ L1(Ω,F , P ), Z ∈ L∞(Ω,F , P ). (6.45)

The spaceL1(Ω,F , P ) is equipped with its strong (norm) topology and the spaceL∞(Ω,F , P )
is equipped with its weak∗ topology (see section 7.3.2).

In order to ensure that a convex proper function ρ : Z → R has the dual representa-
tion of the form (6.37):

ρ(Z) = sup
ζ∈L1(Ω,F,P )

{
〈ζ, Z〉 − ρ∗(ζ)

}
, ∀Z ∈ Z, (6.46)

with respect to pairing of Z = L∞(Ω,F , P ) with L1(Ω,F , P ), we need the additional
condition for ρ to be lower semicontinuous with respect to the weak∗ topology rather than
the norm (strong) topology of Z . Consider the following probability space.

Definition 6.9. We say that probability space (Ω,F , P ) is standard uniform if Ω = [0, 1]
equipped with its Borel sigma algebra and uniform probability measure P .

Of course, the standard uniform probability space is nonatomic. Consider the es-
sential supremum risk measure ρ(Z) := ess sup(Z). This is a coherent risk measure
ρ : L∞(Ω,F , P )→ R. It has the dual representation (of the form (6.39))

ρ(Z) = sup
ζ∈A
〈ζ, Z〉, Z ∈ Z, (6.47)

with the dual set A ⊂ L1(Ω,F , P ) being the set of all density functions, i.e., A = P,
where (as before)

P :=

{
ζ ∈ L1(Ω,F , P ) :

∫
Ω

ζdP = 1, ζ � 0

}
.

Thus ρ can be represented as maximum of weakly∗ continuous (linear) functions, and hence
ρ is lower semicontinuous with respect to the weak∗ topology of L∞(Ω,F , P ) (see Propo-
sition 7.24). Note, however that ρ is not continuous in the weak∗ topology ofL∞(Ω,F , P ).

Although the dual representation (6.47) holds for this ρ, the maximum in the right
hand side of (6.47) may be not attained. For example, let Z : [0, 1] → R be a continuous
function attaining its maximum at a unique point ω̄ ∈ [0, 1]. For such Z ∈ Z the maximum
in (6.47) is not attained.

6.3.1 Differentiability Properties of Risk Measures
Recall that unless stated otherwise we assume that Z = Lp(Ω,F , P ), with p ∈ [1,∞).
Let ρ : Z → R be a convex proper lower semicontinuous risk measure. By convexity and



i
i

“SPbook” — 2013/12/24 — 8:37 — page 304 — #316 i
i

i
i

i
i

304 Chapter 6. Risk Averse Optimization

lower semicontinuity of ρ we have that ρ∗∗ = ρ, and hence by Proposition 7.84 that

∂ρ(Z) = argmax
ζ∈A

{〈ζ, Z〉 − ρ∗(ζ)} , (6.48)

provided that ρ(Z) is finite. If, moreover, ρ is positively homogeneous, then A = ∂ρ(0)
and

∂ρ(Z) = argmax
ζ∈A

〈ζ, Z〉. (6.49)

The conditions (R1)–(R3) imply that A is a subset of the set P of probability density
functions. Consequently, under conditions (R1)–(R3), ∂ρ(Z) is a subset of P as well.

We can summarize this as follows.

Theorem 6.10. Let ρ : Z → R be a convex proper lower semicontinuous risk measure,
which is finite valued and continuous at a point Z ∈ Z . Then the following holds: (i)
the subdifferential ∂ρ(Z) is a nonempty bounded and weakly∗ compact subset of Z∗, (ii)
the subdifferential ∂ρ(Z) is given by (6.48), and if furthermore ρ is positively homoge-
neous, then the subdifferential ∂ρ(Z) is given by (6.49), (iii) ρ is Hadamard directionally
differentiable at Z and

ρ′(Z,H) = sup
ζ∈∂ρ(Z)

〈ζ,H〉, ∀H ∈ Z. (6.50)

(iv) if, moreover, ∂ρ(Z) is a singleton, i.e., ∂ρ(Z) = {∇ρ(Z)} for some ∇ρ(Z) ∈ Z∗,
then ρ is Hadamard differentiable at Z and

ρ′(Z, ·) = 〈∇ρ(Z), ·〉. (6.51)

Remark 26. Let ρ : Z → R be a (real valued) coherent risk measure. By Proposition 6.6
we have that ρ is continuous and hence formula (6.49) applies for every Z ∈ Z . It follows
that ∂ρ(Z) = {ζ̄} is a singleton iffZ exposes A at ζ̄. Thus, by Theorem 7.81 a dense subset
D of Z exists such that ∂ρ(Z) is a singleton, and hence ρ is Hadamard differentiable, at
every Z ∈ D.

We often have to deal with composite functions ρ◦F : Rn → R, where F : Rn → Z
is a mapping. We write f(x, ω), or fω(x), for [F (x)](ω), and view f(x, ω) as a random
function defined on the measurable space (Ω,F). We say that the mapping F is convex if
the function f(·, ω) is convex for every ω ∈ Ω.

Proposition 6.11. If the mapping F : Rn → Z is convex and ρ : Z → R satisfies
conditions (R1) and (R2), then the composite function φ(·) := ρ(F (·)) is convex.

Proof. For any x, x′ ∈ Rn and t ∈ [0, 1], we have by convexity of F (·) and monotonicity
of ρ(·) that

ρ(F (tx+ (1− t)x′)) ≤ ρ(tF (x) + (1− t)F (x′)).

Hence convexity of ρ(·) implies that

ρ(F (tx+ (1− t)x′)) ≤ tρ(F (x)) + (1− t)ρ(F (x′)).
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This proves convexity of ρ(F (·)).

It should be noted that the monotonicity condition (R2) was essential in the above
derivation of convexity of the composite function.

Let us discuss differentiability properties of the composite function φ = ρ ◦ F at a
point x̄ ∈ Rn. As before, we assume that Z := Lp(Ω,F , P ), p ∈ [1,∞). The mapping
F : Rn → Z maps a point x ∈ Rn into a real valued function (or rather a class of functions
which may differ on sets of P -measure zero) [F (x)](·) on Ω, also denoted f(x, ·), which
is an element of Lp(Ω,F , P ). If F is convex, then f(·, ω) is convex real valued and hence
is continuous and has (finite valued) directional derivatives at x̄, denoted f ′ω(x̄, h). These
properties are inherited by the mapping F .

Lemma 6.12. Let Z := Lp(Ω,F , P ), p ∈ [1,∞), and F : Rn → Z be a convex mapping.
Then F is continuous, directionally differentiable and its directional derivative at a point
x̄ ∈ Rn is given by

[F ′(x̄, h)](ω) = f ′ω(x̄, h), ω ∈ Ω, h ∈ Rn. (6.52)

Proof. In order to show continuity of F we need to verify that, for an arbitrary point x̄ ∈
Rn, ‖F (x) − F (x̄)‖p tends to zero as x → x̄. By the Lebesgue Dominated Convergence
Theorem and continuity of f(·, ω) we can write that

lim
x→x̄

∫
Ω

∣∣f(x, ω)− f(x̄, ω)
∣∣pdP (ω) =

∫
Ω

lim
x→x̄

∣∣f(x, ω)− f(x̄, ω)
∣∣pdP (ω) = 0, (6.53)

provided that there exists a neighborhood U ⊂ Rn of x̄ such that the family {|f(x, ω) −
f(x̄, ω)|p}x∈U is dominated by a P -integrable function, or equivalently that {|f(x, ω) −
f(x̄, ω)|}x∈U is dominated by a function from the space Lp(Ω,F , P ). Since f(x̄, ·) be-
longs to Lp(Ω,F , P ), it suffices to verify this dominance condition for {|f(x, ω)|}x∈U .

Now let x1, . . . , xn+1 ∈ Rn be such points that the set U := conv{x1, . . . , xn+1}
forms a neighborhood of the point x̄, and let g(ω) := max{f(x1, ω), . . . , f(xn+1, ω)}. By
convexity of f(·, ω) we have that f(x, ·) ≤ g(·) for all x ∈ U . Also since every f(xi, ·),
i = 1, . . . , n + 1, is an element of Lp(Ω,F , P ), we have that g ∈ Lp(Ω,F , P ) as well.
That is, g(ω) gives an upper bound for {|f(x, ω)|}x∈U . Also by convexity of f(·, ω) we
have that

f(x, ω) ≥ 2f(x̄, ω)− f(2x̄− x, ω).

By shrinking the neighborhoodU if necessary, we can assume thatU is symmetrical around
x̄, i.e., if x ∈ U , then 2x̄ − x ∈ U . Consequently, we have that g̃(ω) := 2f(x̄, ω) −
g(w) gives a lower bound for {|f(x, ω)|}x∈U , and g̃ ∈ Lp(Ω,F , P ). This shows that the
required dominance condition holds and hence F is continuous at x̄ by (6.53).

Now for h ∈ Rn and t > 0 denote

Rt(ω) := t−1 [f(x̄+ th, ω)− f(x̄, ω)] and Z(ω) := f ′ω(x̄, h), ω ∈ Ω.

Note that f(x̄+ th, ·) and f(x̄, ·) are elements of the space Lp(Ω,F , P ), and hence Rt(·)
is also an element of Lp(Ω,F , P ) for any t > 0. Since for a.e. ω ∈ Ω, f(·, ω) is convex
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real valued, we have that Rt(ω) is monotonically nonincreasing and converges to Z(ω) as
t ↓ 0. Therefore we have that Rt(·) ≥ Z(·) for any t > 0. Again by convexity of f(·, ω),
we have that for t > 0,

Z(·) ≥ t−1 [f(x̄, ·)− f(x̄− th, ·)] .

We obtain that Z(·) is bounded from above and below by functions which are elements of
the space Lp(Ω,F , P ), and hence Z ∈ Lp(Ω,F , P ) as well.

We have that Rt(·)−Z(·), and hence |Rt(·)−Z(·)|p, are monotonically decreasing
to zero as t ↓ 0 and for any t > 0, E [|Rt − Z|p] is finite. It follows by the Monotone
Convergence Theorem that E [|Rt − Z|p] tends to zero as t ↓ 0. That is, Rt converges to
Z in the norm topology of Z . Since Rt = t−1[F (x̄ + th) − F (x̄)], this shows that F is
directionally differentiable at x̄ and formula (6.52) follows.

The following theorem can be viewed as an extension of Theorem 7.51 where a
similar result is derived for ρ(·) := E[ · ].

Theorem 6.13. Let Z := Lp(Ω,F , P ), p ∈ [1,∞), and F : Rn → Z be a convex
mapping. Suppose that ρ is convex, finite valued and continuous at Z̄ := F (x̄). Then the
composite function φ = ρ ◦ F is directionally differentiable at x̄, φ′(x̄, h) is finite valued
for every h ∈ Rn and

φ′(x̄, h) = sup
ζ∈∂ρ(Z̄)

∫
Ω

f ′ω(x̄, h)ζ(ω)dP (ω). (6.54)

Proof. Since ρ is continuous at Z̄, it follows that ρ subdifferentiable and Hadamard direc-
tionally differentiable at Z̄ and formula (6.50) holds. Also by Lemma 6.12, mapping F
is directionally differentiable. Consequently, we can apply the chain rule (see Proposition
7.66) to conclude that φ(·) is directionally differentiable at x̄, φ′(x̄, h) is finite valued and

φ′(x̄, h) = ρ′(Z̄, F ′(x̄, h)). (6.55)

Together with (6.50) and (6.52), the above formula (6.55) implies (6.54).

It is also possible to write formula (6.54) in terms of the corresponding subdifferen-
tials.

Theorem 6.14. Let Z := Lp(Ω,F , P ), p ∈ [1,∞), and F : Rn → Z be a convex map-
ping. Suppose that ρ satisfies conditions (R1) and (R2) and is finite valued and continuous
at Z̄ := F (x̄). Then the composite function φ = ρ ◦ F is subdifferentiable at x̄ and

∂φ(x̄) = cl

 ⋃
ζ∈∂ρ(Z̄)

∫
Ω

∂fω(x̄)ζ(ω)dP (ω)

 . (6.56)

Proof. Since, by Lemma 6.12, F is continuous at x̄ and ρ is continuous at F (x̄), we have
that φ is continuous at x̄, and hence φ(x) is finite valued for all x in a neighborhood of x̄.
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Moreover, by Proposition 6.11, φ(·) is convex, and hence is continuous in a neighborhood
of x̄ and is subdifferentiable at x̄. Also formula (6.54) holds. It follows that φ′(x̄, ·) is
convex, continuous, positively homogeneous and

φ′(x̄, ·) = sup
ζ∈∂ρ(Z̄)

ηζ(·), (6.57)

where

ηζ(·) :=

∫
Ω

f ′ω(x̄, ·)ζ(ω)dP (ω). (6.58)

Because of the condition (R2) we have that every ζ ∈ ∂ρ(Z̄) is nonnegative. Conse-
quently the corresponding function ηζ is convex continuous and positively homogeneous,
and hence is the support function of the set ∂ηζ(0). The supremum of these functions,
given by the right hand side of (6.57), is the support function of the set ∪ζ∈∂ρ(Z̄)∂ηζ(0).
Applying Theorem 7.52 and using the fact that the subdifferential of f ′ω(x̄, ·) at 0 ∈ Rn
coincides with ∂fω(x̄), we obtain

∂ηζ(0) =

∫
Ω

∂fω(x̄)ζ(ω)dP (ω). (6.59)

Since ∂ρ(Z̄) is convex, it is straightforward to verify that the set ∪ζ∈∂ρ(Z̄)∂ηζ(0) is also
convex. Consequently it follows by (6.57) and (6.59) that the subdifferential of φ′(x̄, ·) at
0 ∈ Rn is equal to the topological closure of the set ∪ζ∈∂ρ(Z̄)∂ηζ(0), i.e., is given by the
right hand side of (6.56). It remains to note that the subdifferential of φ′(x̄, ·) at 0 ∈ Rn
coincides with ∂φ(x̄).

Under the assumptions of the above theorem we have that the composite function φ
is convex and is continuous (in fact even Lipschitz continuous) in a neighborhood of x̄. It
follows that φ is differentiable8 at x̄ iff ∂φ(x̄) is a singleton. This leads to the following
result, where for ζ � 0, we say that a property holds for ζ-a.e. ω ∈ Ω if the set of points
A ∈ F where it does not hold has ζdP measure zero, i.e.,

∫
A
ζ(ω)dP (ω) = 0. Of course,

if P (A) = 0, then
∫
A
ζ(ω)dP (ω) = 0. That is, if a property holds for a.e. ω ∈ Ω with

respect to P , then it holds for ζ-a.e. ω ∈ Ω.

Corollary 6.15. Let Z := Lp(Ω,F , P ), p ∈ [1,∞), and F : Rn → Z be a convex map-
ping. Suppose that ρ satisfies conditions (R1) and (R2) and is finite valued and continuous
at Z̄ := F (x̄). Then the composite function φ = ρ◦F is differentiable at x̄ if and only if the
following two properties hold: (i) for every ζ ∈ ∂ρ(Z̄) the function f(·, ω) is differentiable
at x̄ for ζ-a.e. ω ∈ Ω, (ii)

∫
Ω
∇fω(x̄)ζ(ω)dP (ω) is the same for every ζ ∈ ∂ρ(Z̄).

In particular, if ∂ρ(Z̄) = {ζ̄} is a singleton, then φ is differentiable at x̄ if and only
if f(·, ω) is differentiable at x̄ for ζ̄-a.e. ω ∈ Ω, in which case

∇φ(x̄) =

∫
Ω

∇fω(x̄)ζ̄(ω)dP (ω). (6.60)

8Note that since φ(·) is Lipschitz continuous near x̄, the notions of Gâteaux and Fréchet differentiability at x̄
are equivalent here.
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Proof. By Theorem 6.14 we have that φ is differentiable at x̄ iff the set on the right hand
side of (6.56) is a singleton. Clearly this set is a singleton iff the set

∫
Ω
∂fω(x̄)ζ(ω)dP (ω)

is a singleton and is the same for every ζ ∈ ∂ρ(Z̄). Since ∂fω(x̄) is a singleton iff fω(·) is
differentiable at x̄, in which case ∂fω(x̄) = {∇fω(x̄)}, we obtain that φ is differentiable
at x̄ iff conditions (i) and (ii) hold. The second assertion then follows.

Of course, if the set inside the parentheses on the right hand side of (6.56) is closed,
then there is no need to take its topological closure. This holds true in the following case.

Corollary 6.16. Suppose that the assumptions of Theorem 6.14 are satisfied and for every
ζ ∈ ∂ρ(Z̄) the function fω(·) is differentiable at x̄ for ζ-a.e. ω ∈ Ω. Then

∂φ(x̄) =
⋃

ζ∈∂ρ(Z̄)

∫
Ω

∇fω(x̄)ζ(ω)dP (ω). (6.61)

Proof. In view of Theorem 6.14 we only need to show that the set on the right hand side
of (6.61) is closed. As ρ is continuous at Z̄, the set ∂ρ(Z̄) is weakly∗ compact. Also the
mapping ζ 7→

∫
Ω
∇fω(x̄)ζ(ω)dP (ω), from Z∗ to Rn, is continuous with respect to the

weak∗ topology of Z∗ and the standard topology of Rn. It follows that the image of the set
∂ρ(Z̄) by this mapping is compact and hence is closed, i.e., the set at the right hand side of
(6.61) is closed.

6.3.2 Examples of Risk Measures

In this section we discuss several examples of risk measures which are commonly used in
applications. In the following examples it is natural to use the space Z := Lp(Ω,F , P )
for an appropriate p ∈ [1,∞). Note that if a random variable Z has a p-th order finite
moment, then it has finite moments of any order p′ smaller than p, i.e., if 1 ≤ p′ ≤ p and
Z ∈ Lp(Ω,F , P ), thenZ ∈ Lp′(Ω,F , P ). This gives a natural embedding ofLp(Ω,F , P )
into Lp′(Ω,F , P ) for p′ < p. Unless stated otherwise, all expectations and probabilistic
statements will be made with respect to the probability measure P .

Before proceeding to particular examples let us consider the following construction.
Let ρ : Z → R and define

ρ̃(Z) := E[Z] + inf
t∈R

ρ(Z − t). (6.62)

Clearly we have that for any a ∈ R,

ρ̃(Z + a) = E[Z + a] + inf
t∈R

ρ(Z + a− t) = E[Z] + a+ inf
t∈R

ρ(Z − t) = ρ̃(Z) + a.

That is, ρ̃ satisfies condition (R3) irrespectively whether ρ does. It is not difficult to see that
if ρ satisfies conditions (R1) and (R2), then ρ̃ satisfies these conditions as well. Also if ρ is
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positively homogeneous, then so is ρ̃. Let us calculate the conjugate of ρ̃. We have

ρ̃∗(ζ) = sup
Z∈Z

{
〈ζ, Z〉 − ρ̃(Z)

}
= sup
Z∈Z

{
〈ζ, Z〉 − E[Z]− inf

t∈R
ρ(Z − t)

}
= sup
Z∈Z,t∈R

{
〈ζ, Z〉 − E[Z]− ρ(Z − t)

}
= sup
Z∈Z,t∈R

{
〈ζ − 1, Z〉+ t(E[ζ]− 1)− ρ(Z)

}
.

It follows that

ρ̃∗(ζ) =

{
ρ∗(ζ − 1), if E[ζ] = 1,

+∞, if E[ζ] 6= 1.

The construction below can be viewed as a homogenization of a risk measure ρ :
Z → R. Define

ρ̌(Z) := inf
τ>0

τρ(τ−1Z). (6.63)

For any t > 0, by making change of variables τ 7→ tτ , we obtain that ρ̌(tZ) = tρ̌(Z).
That is, ρ̌ is positively homogeneous whether ρ is or isn’t. Clearly, if ρ is positively homo-
geneous to start with, then ρ = ρ̌.

If ρ is convex, then so is ρ̌. Indeed, observe that if ρ is convex, then function
ϕ(τ, Z) := τρ(τ−1Z) is convex jointly in Z and τ > 0. This can be verified directly
as follows. For t ∈ [0, 1], τ1, τ2 > 0 and Z1, Z2 ∈ Z , and setting τ := tτ1 + (1− t)τ2 and
Z := tZ1 + (1− t)Z2, we have

t[τ1ρ(τ−1
1 Z1)] + (1− t)[τ2ρ(τ−1

2 Z2)] = τ

[
tτ1
τ
ρ(τ−1

1 Z1) +
(1− t)τ2

τ
ρ(τ−1

2 Z2)

]
≥ τρ

(
t

τ
Z1 +

(1− t)
τ

Z2

)
= τρ(τ−1Z).

Minimizing convex function ϕ(τ, Z) over τ > 0, we obtain a convex function. It is also
not difficult to see that if ρ satisfies conditions (R2) and (R3), then so is ρ̌.

Let us calculate the conjugate of ρ̌. We have

ρ̌∗(ζ) = sup
Z∈Z

{
〈ζ, Z〉 − ρ̌(Z)

}
= sup
Z∈Z,τ>0

{
〈ζ, Z〉 − τρ(τ−1Z)

}
= sup
Z∈Z,τ>0

{
τ [〈ζ, Z〉 − ρ(Z)]

}
.

It follows that ρ̌∗ is the indicator function of the set

A := {ζ ∈ Z∗ : 〈ζ, Z〉 ≤ ρ(Z), ∀Z ∈ Z} . (6.64)

If, moreover, ρ̌ is lower semicontinuous, then ρ̌ is equal to the conjugate of ρ̌∗, and hence
ρ̌ is the support function of the above set A.

Example 6.17 (Utility model) It is possible to relate the theory of convex risk measures
with the utility model. Let g : R→ R be a proper convex nondecreasing lower semicontin-
uous function such that the expectation E[g(Z)] is well defined for all Z ∈ Z (it is allowed
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here for E[g(Z)] to take value +∞, but not −∞ since the corresponding risk measure is
required to be proper). We can view the function g as a disutility function9.

Proposition 6.18. Let g : R→ R be a proper convex nondecreasing lower semicontinuous
function. Suppose that the risk measure

ρ(Z) := E[g(Z)] (6.65)

is well defined and proper. Then ρ is convex, lower semicontinuous, satisfies the mono-
tonicity condition (R2) and the representation (6.37) holds with

ρ∗(ζ) = E[g∗(ζ)]. (6.66)

Moreover, if ρ(Z) is finite, then

∂ρ(Z) = {ζ ∈ Z∗ : ζ(ω) ∈ ∂g(Z(ω)) a.e. ω ∈ Ω} . (6.67)

Proof. Since g is lower semicontinuous and convex, we have by Fenchel-Moreau Theorem
that

g(z) = sup
α∈R
{αz − g∗(α)} ,

where g∗ is the conjugate of g. As g is proper, the conjugate function g∗ is also proper. It
follows that

ρ(Z) = E
[

sup
α∈R
{αZ − g∗(α)}

]
. (6.68)

By the interchangeability principle (Theorem 7.92) for the space M := Z∗ = Lq(Ω,F , P ),
which is decomposable, we obtain

ρ(Z) = sup
ζ∈Z∗

{
〈ζ, Z〉 − E[g∗(ζ)]

}
. (6.69)

It follows that ρ is convex and lower semicontinuous, and representation (6.37) holds with
the conjugate function given in (6.66). Moreover, since the function g is nondecreasing, it
follows that ρ satisfies the monotonicity condition (R2).

Since ρ is convex proper and lower semicontinuous, and hence ρ∗∗ = ρ, we have by
Proposition 7.84 that

∂ρ(Z) = arg max
ζ∈A

{
E[ζZ − g∗(ζ)]

}
, (6.70)

assuming that ρ(Z) is finite. Together with formula (7.277) of the interchangeability prin-
ciple (Theorem 7.92) this implies (6.67).

The above risk measure ρ, defined in (6.65), does not satisfy condition (R3) unless
g(z) ≡ z. We can consider the corresponding risk measure ρ̃, defined in (6.62), which in
the present case can be written as

ρ̃(Z) = inf
t∈R
E[Z + g(Z − t)]. (6.71)

9We consider here minimization problems, and that is why we speak about disutility. Any disutility function
g corresponds to a utility function u : R → R defined by u(z) = −g(−z). Note that the function u is concave
and nondecreasing since the function g is convex and nondecreasing.
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We have that ρ̃ is convex since g is convex, that ρ̃ is monotone (i.e., condition (R2) holds) if
z + g(z) is monotonically nondecreasing, and that ρ̃ satisfies condition (R3). If, moreover,
ρ̃ is lower semicontinuous, then the dual representation

ρ̃(Z) = sup
ζ∈Z∗
E[ζ]=1

{
〈ζ − 1, Z〉 − E[g∗(ζ)]

}
(6.72)

holds.

Example 6.19 (Average Value-at-Risk) The risk measure ρ associated with disutility func-
tion g, defined in (6.65), is positively homogeneous only if g is positively homogeneous.
Suppose now that g(z) := max{az, bz}, where b ≥ a. Then g(·) is positively homoge-
neous and convex. It is natural here to use the space Z := L1(Ω,F , P ), since E [g(Z)]
is finite for every Z ∈ L1(Ω,F , P ). The conjugate function of g is the indicator function
g∗ = I[a,b]. Therefore it follows by Proposition 6.18 that the representation (6.39) holds
with

A = {ζ ∈ L∞(Ω,F , P ) : ζ(ω) ∈ [a, b] a.e. ω ∈ Ω} .

Note that the dual space Z∗ = L∞(Ω,F , P ), of the space Z := L1(Ω,F , P ), appears
naturally in the corresponding representation (6.39) since, of course, the condition that
“ζ(ω) ∈ [a, b] for a.e. ω ∈ Ω” implies that ζ is essentially bounded.

Consider now the risk measure

ρ̃(Z) := E[Z] + inf
t∈R
E
{
β1[t− Z]+ + β2[Z − t]+

}
, Z ∈ L1(Ω,F , P ), (6.73)

where β1 ∈ [0, 1] and β2 ≥ 0. This risk measure can be recognized as risk measure defined
in (6.71), associated with function g(z) := β1[−z]+ + β2[z]+. For specified β1 and β2,
the function z + g(z) is convex and nondecreasing, and ρ̃ is a continuous coherent risk
measure. For β1 ∈ (0, 1] and β2 > 0, the above risk measure ρ̃(Z) can be written in the
form

ρ̃(Z) = (1− β1)E[Z] + β1AV@Rα(Z), (6.74)

where α := β1/(β1 + β2). Note that the right hand side of (6.73) attains its minimum at
t∗ = V@Rα(Z). Therefore the second term on the right hand side of (6.73) is the weighted
measure of deviation from the quantile V@Rα(Z), discussed in section 6.2.3.

The respective conjugate function is the indicator function of the set A := dom(ρ̃∗),
and ρ̃ can be represented in the dual form (6.39) with

A = {ζ ∈ L∞(Ω,F , P ) : ζ(ω) ∈ [1− β1, 1 + β2] a.e. ω ∈ Ω, E[ζ] = 1} . (6.75)

In particular, for β1 = 1 we have that ρ̃(·) = AV@Rα(·), and hence the dual representation
(6.39) of AV@Rα holds with the set

A =
{
ζ ∈ L∞(Ω,F , P ) : ζ(ω) ∈ [0, α−1] a.e. ω ∈ Ω, E[ζ] = 1

}
. (6.76)

Since AV@Rα(·) is convex and continuous, it is subdifferentiable and its subdiffer-
entials can be calculated using formula (6.49). That is,

∂(AV@Rα)(Z) = arg max
ζ∈Z∗

{
〈ζ, Z〉 : ζ(ω) ∈ [0, α−1] a.e. ω ∈ Ω, E[ζ] = 1

}
. (6.77)



i
i

“SPbook” — 2013/12/24 — 8:37 — page 312 — #324 i
i

i
i

i
i

312 Chapter 6. Risk Averse Optimization

Consider the maximization problem on the right hand side of (6.77). The Lagrangian of
that problem is

L(ζ, λ) = 〈ζ, Z〉+ λ(1− E[ζ]) = 〈ζ, Z − λ〉+ λ,

and its (Lagrangian) dual is the problem:

Min
λ∈R

sup
ζ(·)∈[0,α−1]

{〈ζ, Z − λ〉+ λ} . (6.78)

We have that
sup

ζ(·)∈[0,α−1]

〈ζ, Z − λ〉 = α−1E([Z − λ]+),

and hence the dual problem (6.78) can be written as

Min
λ∈R

α−1E([Z − λ]+) + λ. (6.79)

The set of optimal solutions of problem (6.79) is the interval with the end points given by
the left and right side (1 − α)-quantiles of the cdf HZ(z) = Pr(Z ≤ z) of Z(ω). Since
the set of optimal solutions of the dual problem (6.78) is a compact subset of R, there is
no duality gap between the maximization problem on the right hand side of (6.77) and its
dual (6.78) (see Theorem 7.11). It follows that the set of optimal solutions of the right hand
side of (6.77), and hence the subdifferential ∂(AV@Rα)(Z), is given by such feasible ζ̄ that
(ζ̄, λ̄) is a saddle point of the Lagrangian L(ζ, λ) for any (1−α)-quantile λ̄. Recall that the
left-side (1−α)-quantile of the cdf HZ(z) is called Value-at-Risk and denoted V@Rα(Z).
Suppose for the moment that the set of (1−α)-quantiles of HZ is a singleton, i.e., consists
of one point V@Rα(Z). Then we have

∂(AV@Rα)(Z) =

ζ : E[ζ] = 1,
ζ(ω) = α−1, if Z(ω) > V@Rα(Z),
ζ(ω) = 0, if Z(ω) < V@Rα(Z),
ζ(ω) ∈ [0, α−1], if Z(ω) = V@Rα(Z).

(6.80)

If the set of (1 − α)-quantiles of HZ is not a singleton, then the probability that Z(ω) be-
longs to that set is zero. Consequently, formula (6.80) still holds with the left-side quantile
V@Rα(Z) can be replaced by any (1− α)-quantile of HZ .

It follows that ∂(AV@Rα)(Z) is a singleton, and hence AV@Rα(·) is Hadamard dif-
ferentiable at Z, iff the following condition holds:

Pr(Z < V@Rα(Z)) = 1− α or Pr(Z > V@Rα(Z)) = α. (6.81)

Again if the set of (1−α)-quantiles is not a singleton, then the left-side quantile V@Rα(Z)
in the above condition (6.81) can be replaced by any (1 − α)-quantile of HZ . Note that
condition (6.81) is always satisfied if the cdf HZ(·) is continuous at V@Rα(Z), but may
also hold even if HZ(·) is discontinuous at V@Rα(Z).

Example 6.20 (Entropic risk measure) Consider utility risk measure ρ, defined in (6.65),
associated with the exponential disutility function g(z) := ez . That is, ρ(Z) := E[eZ ]. A
natural question is what space Z = Lp(Ω,F , P ) to use here. Let us observe that unless
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the sigma algebra F has a finite number of elements, in which case the space Lp(Ω,F , P )
is finite dimensional, there exist such Z ∈ Lp(Ω,F , P ) that E[eZ ] = +∞. In fact for any
p ∈ [1,∞) the domain of ρ forms a dense subset of Lp(Ω,F , P ) and ρ(·) is discontinuous
at every Z ∈ Lp(Ω,F , P ) unless Lp(Ω,F , P ) is finite dimensional. Nevertheless, for any
p ∈ [1,∞) the risk measure ρ is proper and, by Proposition 6.18, is convex and lower
semicontinuous. Note that if Z : Ω → R is an F-measurable function such that E[eZ ] is
finite, then Z ∈ Lp(Ω,F , P ) for any p ≥ 1. Therefore, by formula (6.67) of Proposition
6.18, we have that if E[eZ ] is finite, then ∂ρ(Z) = {eZ} is a singleton. It could be men-
tioned that although ρ(·) is subdifferentiable at every Z ∈ Lp(Ω,F , P ) where it is finite
and has unique subgradient ∇ρ(Z) = eZ , it is discontinuous and nondifferentiable at Z
unless Lp(Ω,F , P ) is finite dimensional.

The above risk measure associated with the exponential disutility function is not
positively homogeneous and does not satisfy condition (R3). Let us consider instead the
following risk measure (called entropic)

ρent
τ (Z) := τ−1 lnE[eτZ ], τ > 0. (6.82)

On the space Z := L∞(Ω,F , P ) this risk measure is finite valued. As it was discussed
at the end of section 6.3, it is natural to pair Z with the space L1(Ω,F , P ). In the weak∗

topology this risk measure is lower semicontinuous.
It can be verified that ρent

τ (·) is convex (this can be shown in a way similar to the proof
of convexity of the logarithmic moment-generating function in section 7.2.9). Moreover,
for any a ∈ R,

τ−1 lnE
[
eτ(Z+a)

]
= τ−1 ln

(
eτaE[eτZ ]

)
= τ−1 lnE[eτZ ] + a,

i.e., ρent
τ satisfies condition (R3). Clearly the monotonicity condition (R2) also holds, and

hence ρent
τ is a convex risk measure.

Let us calculate the conjugate of ρent
τ . We have that

(ρent
τ )∗(ζ) = sup

Z∈Z

{
E[ζZ]− τ−1 lnE[eτZ ]

}
, ζ ∈ L1(Ω,F , P ). (6.83)

Since ρent
τ satisfies conditions (R2) and (R3), it follows that dom(ρent

τ ) ⊂ P, where P is
the set of density functions (see (6.40)). By writing (first-order) optimality conditions for
the optimization problem on the right hand side of (6.83), it is straightforward to verify
that for ζ ∈ P such that ζ(ω) > 0 for a.e. ω ∈ Ω, a point Z̄ is an optimal solution of
that problem if Z̄ = ln ζ + a for some a ∈ R. Substituting this into the right hand side of
(6.83), and noting that the obtained expression does not depend on a, we obtain

(ρent
τ )∗(ζ) =

{
τ−1E[ζ ln ζ], if ζ ∈ P,
+∞, if ζ 6∈ P.

(6.84)

Note that x lnx tends to zero as x ↓ 0. Therefore, we set 0 ln 0 = 0 in the above formula
(6.84).

Clearly for any ζ ∈ P, the value (ρent
τ )∗(ζ) is monotonically decreasing with in-

crease of τ . By the dual representation of ρent
τ , it follows that for any Z ∈ Z the value

ρent
τ (Z) is monotonically increasing with increase of τ . By l’Hôpital’s rule we have

lim
τ↓0

lnE[eτZ ]

τ
= lim

τ↓0

d
(
lnE[eτZ ]

)
dτ

= lim
τ↓0

E[ZeτZ ]

E[eτZ ]
= E[Z],
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that is
lim
τ↓0

ρent
τ (Z) = E[Z]. (6.85)

On the other hand, by (6.84) we have that

lim
τ→+∞

(ρent
τ )∗(ζ) =

{
0, if ζ ∈ P,
+∞, if ζ 6∈ P.

Together with the corresponding dual representation of ρent
τ this implies

lim
τ→+∞

ρent
τ (Z) = sup

ζ∈P
E[ζZ]. (6.86)

Recall that the right hand side of (6.86) is equal to ess sup(Z) (see (6.47)). It follows that
in the limit, as τ → +∞, the entropic risk measure becomes the essential supremum risk
measure

lim
τ→+∞

ρent
τ (Z) = ess sup(Z). (6.87)

Example 6.21 (Mean-variance risk measure) Consider

ρ(Z) := E[Z] + cVar[Z], (6.88)

where c ≥ 0 is a given constant. It is natural to use here the space Z := L2(Ω,F , P ) since
for any Z ∈ L2(Ω,F , P ) the expectation E[Z] and variance Var[Z] are well defined and
finite. We have here that Z∗ = Z (i.e., Z is a Hilbert space) and for Z ∈ Z its norm is
given by ‖Z‖2 =

√
E[Z2]. We also have that

‖Z‖22 = sup
ζ∈Z

{
〈ζ, Z〉 − 1

4
‖ζ‖22

}
. (6.89)

Indeed, it is not difficult to verify that the maximum on the right hand side of (6.89) is
attained at ζ = 2Z.

We have that Var[Z] =
∥∥Z − E[Z]

∥∥2

2
, and since ‖ · ‖22 is a convex and continuous

function on the Hilbert spaceZ , it follows that ρ(·) is convex and continuous. Also because
of (6.89), we can write

Var[Z] = sup
ζ∈Z

{
〈ζ, Z − E[Z]〉 − 1

4
‖ζ‖22

}
.

Since
〈ζ, Z − E[Z]〉 = 〈ζ, Z〉 − E[ζ]E[Z] = 〈ζ − E[ζ], Z〉, (6.90)

we can rewrite the last expression as follows:

Var[Z] = sup
ζ∈Z

{
〈ζ − E[ζ], Z〉 − 1

4
‖ζ‖22

}
= sup
ζ∈Z

{
〈ζ − E[ζ], Z〉 − 1

4
Var[ζ]− 1

4

(
E[ζ]

)2}
.
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Since ζ − E[ζ] and Var[ζ] are invariant under transformations of ζ to ζ + a, where a ∈ R,
the above maximization can be restricted to such ζ ∈ Z that E[ζ] = 0. Consequently

Var[Z] = sup
ζ∈Z

E[ζ]=0

{
〈ζ, Z〉 − 1

4
Var[ζ]

}
.

Therefore the risk measure ρ, defined in (6.88), can be expressed as

ρ(Z) = E[Z] + c sup
ζ∈Z

E[ζ]=0

{
〈ζ, Z〉 − 1

4
Var [ζ]

}
,

and hence for c > 0 (by making change of variables ζ ′ = cζ + 1) as

ρ(Z) = sup
ζ∈Z

E[ζ]=1

{
〈ζ, Z〉 − 1

4c
Var[ζ]

}
. (6.91)

It follows that for any c > 0 the function ρ is convex, continuous and

ρ∗(ζ) =

{
1
4cVar[ζ], if E[ζ] = 1,

+∞, otherwise.
(6.92)

The function ρ satisfies the translation equivariance condition (R3), e.g., because the do-
main of its conjugate contains only ζ such that E[ζ] = 1. However, for any c > 0 the
function ρ is not positively homogeneous and it does not satisfy the monotonicity condi-
tion (R2), because the domain of ρ∗ contains density functions which are not nonnegative.

Since Var[Z] = 〈Z,Z〉−(E[Z])2, it is straightforward to verify that ρ(·) is (Fréchet)
differentiable and

∇ρ(Z) = 2cZ − 2cE[Z] + 1. (6.93)

Example 6.22 (Mean-deviation risk measures of order p) For Z := Lp(Ω,F , P ) and
Z∗ := Lq(Ω,F , P ), with p ∈ [1,∞) and c ≥ 0, consider

ρ(Z) := E[Z] + c
(
E
[
|Z − E[Z]|p

])1/p
. (6.94)

We have that
(
E
[
|Z|p

])1/p
= ‖Z‖p, where ‖·‖p denotes the norm of the spaceLp(Ω,F , P ).

The function ρ is convex continuous and positively homogeneous. Also

‖Z‖p = sup
‖ζ‖q≤1

〈ζ, Z〉, (6.95)

and hence(
E
[
|Z − E[Z]|p

])1/p
= sup
‖ζ‖q≤1

〈ζ, Z − E[Z]〉 = sup
‖ζ‖q≤1

〈ζ − E[ζ], Z〉. (6.96)

It follows that representation (6.39) holds with the set A given by

A = {ζ ′ ∈ Z∗ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ c} . (6.97)
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We obtain here that ρ satisfies conditions (R1), (R3) and (R4).
The monotonicity condition (R2) is more involved. Suppose that p = 1. Then q =∞

and hence for any ζ ′ ∈ A and a.e. ω ∈ Ω we have

ζ ′(ω) = 1 + ζ(ω)− E[ζ] ≥ 1− |ζ(ω)| − E[ζ] ≥ 1− 2c.

It follows that if c ∈ [0, 1/2], then ζ ′(ω) ≥ 0 for a.e. ω ∈ Ω, and hence condition (R2)
follows. Conversely, take ζ := c(−1A + 1Ω\A), for some A ∈ F , and ζ ′ = 1 + ζ − E[ζ].
We have that ‖ζ‖∞ = c and ζ ′(ω) = 1 − 2c + 2cP (A) for all ω ∈ A It follows that if
c > 1/2, then ζ ′(ω) < 0 for all ω ∈ A, provided that P (A) is small enough. We obtain
that for c > 1/2 the monotonicity property (R2) does not hold if the following condition is
satisfied:

For any ε > 0 there exists A ∈ F such that ε > P (A) > 0. (6.98)

That is, for p = 1 the mean-deviation measure ρ satisfies (R2) if, and provided that condi-
tion (6.98) holds only if, c ∈ [0, 1/2]. (The above condition (6.98) holds, in particular, if
the measure P is nonatomic.)

Suppose now that p > 1. For a set A ∈ F and α > 0 let us take ζ := −α1A and
ζ ′ = 1 + ζ − E[ζ]. Then ‖ζ‖q = αP (A)1/q and ζ ′(ω) = 1 − α + αP (A) for all ω ∈ A.
It follows that if p > 1, then for any c > 0 the mean-deviation measure ρ does not satisfy
(R2) provided that condition (6.98) holds.

Since ρ is convex continuous, it is subdifferentiable. By (6.49) and because of (6.97)
and (6.90) we have here that ∂ρ(Z) is formed by vectors ζ ′ = 1 + ζ − E[ζ] such that
ζ ∈ arg max‖ζ‖q≤c〈ζ, Z − E[Z]〉. That is,

∂ρ(Z) =
{
ζ ′ = 1 + c ζ − cE[ζ] : ζ ∈ SY

}
, (6.99)

where Y (ω) ≡ Z(ω)− E[Z] and SY is the set of contact points of Y (see (7.251) for the
definition of contact points). If p ∈ (1,∞), then the set SY is a singleton, i.e., there is
unique contact point ζ∗Y , provided that Y (ω) is not zero for a.e. ω ∈ Ω. In that case ρ(·) is
Hadamard differentiable at Z and

∇ρ(Z) = 1 + c ζ∗Y − cE[ζ∗Y ] (6.100)

(an explicit form of the contact point ζ∗Y is given in equation (7.259)). If Y (ω) is zero for
a.e. ω ∈ Ω, i.e., Z(ω) is constant w.p.1, then SY = {ζ ∈ Z∗ : ‖ζ‖q ≤ 1}.

For p = 1 the set SY is described in equation (7.260). It follows that if p = 1,
and hence q = ∞, then the subdifferential ∂ρ(Z) is a singleton iff Z(ω) 6= E[Z] for a.e.
ω ∈ Ω, in which case

∇ρ(Z) =

{
ζ :

ζ(ω) = 1 + 2c
(
1− Pr(Z > E[Z])

)
, if Z(ω) > E[Z],

ζ(ω) = 1− 2cPr(Z > E[Z]), if Z(ω) < E[Z].
(6.101)

Example 6.23 (Mean-upper-semideviation of order p) Let Z := Lp(Ω,F , P ) and for
c ≥ 0 consider10

ρ(Z) := E[Z] + c
(
E
[[
Z − E[Z]

]p
+

])1/p

. (6.102)

10We denote [a]p+ := (max{0, a})p.
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For any c ≥ 0 this function satisfies conditions (R1), (R3) and (R4), and similarly to the
derivations of Example 6.22 it can be shown that representation (6.39) holds with the set A
given by

A =
{
ζ ′ ∈ Z∗ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ c, ζ � 0

}
. (6.103)

Since |E[ζ]| ≤ E|ζ| ≤ ‖ζ‖q for any ζ ∈ Lq(Ω,F , P ), we have that every element of
the above set A is nonnegative and has its expected value equal to 1. This means that the
monotonicity condition (R2) holds, if and, provided that condition (6.98) holds, only if
c ∈ [0, 1]. That is, ρ is a coherent risk measure if c ∈ [0, 1].

Since ρ is convex continuous, it is subdifferentiable. Its subdifferential can be cal-
culated in a way similar to the derivations of Example 6.22. That is, ∂ρ(Z) is formed by
vectors ζ ′ = 1 + ζ − E[ζ] such that

ζ ∈ arg max {〈ζ, Y 〉 : ‖ζ‖q ≤ c, ζ � 0} , (6.104)

where Y := Z − E[Z]. Suppose that p ∈ (1,∞). Then the set of maximizers on the
right hand side of (6.104) is not changed if Y is replaced by Y+, where Y+(·) := [Y (·)]+.
Consequently, if Z(ω) is not constant for a.e. ω ∈ Ω, and hence Y+ 6= 0, then ∂ρ(Z) is a
singleton and

∇ρ(Z) = 1 + c ζ∗Y+
− cE[ζ∗Y+

], (6.105)

where ζ∗Y+
is the contact point of Y+ (note that the contact point of Y+ is nonnegative since

Y+ � 0).
Suppose now that p = 1 and hence q = ∞. Then the set on the right hand side of

(6.104) is formed by ζ(·) such that: ζ(ω) = c if Y (ω) > 0, ζ(ω) = 0, if Y (ω) < 0, and
ζ(ω) ∈ [0, c] if Y (ω) = 0. It follows that ∂ρ(Z) is a singleton iff Z(ω) 6= E[Z] for a.e.
ω ∈ Ω, in which case

∇ρ(Z) =

{
ζ :

ζ(ω) = 1 + c
(
1− Pr(Z > E[Z])

)
, if Z(ω) > E[Z],

ζ(ω) = 1− cPr(Z > E[Z]), if Z(ω) < E[Z].
(6.106)

It can be noted that by Lemma 6.1

E
(
|Z − E[Z]|

)
= 2E

(
[Z − E[Z]]+

)
. (6.107)

Consequently, formula (6.106) can be derived directly from (6.101).

Example 6.24 (Mean-upper-semivariance from a target) Let Z := L2(Ω,F , P ) and
for a weight c ≥ 0 and a target τ ∈ R consider

ρ(Z) := E[Z] + cE
[[
Z − τ

]2
+

]
. (6.108)

This is a convex and continuous risk measure. We can now use (6.69) with g(z) := z +
c[z − τ ]2+. Since

g∗(α) =

{
(α− 1)2/4c+ τ(α− 1), if α ≥ 1,

+∞, otherwise,



i
i

“SPbook” — 2013/12/24 — 8:37 — page 318 — #330 i
i

i
i

i
i

318 Chapter 6. Risk Averse Optimization

we obtain that

ρ(Z) = sup
ζ∈Z, ζ(·)≥1

{
E[ζZ]− τE[ζ − 1]− 1

4c
E[(ζ − 1)2]

}
. (6.109)

Consequently, representation (6.38) holds with A = {ζ ∈ Z : ζ − 1 � 0} and

ρ∗(ζ) = τE[ζ − 1] + 1
4c
E[(ζ − 1)2], ζ ∈ A.

If c > 0 then conditions (R3) and (R4) are not satisfied by this risk measure.
Since ρ is convex continuous, it is subdifferentiable. Moreover, by using (6.67) we

obtain that its subdifferentials are singletons and hence ρ(·) is differentiable at every Z ∈
Z , and

∇ρ(Z) =

{
ζ :

ζ(ω) = 1 + 2c(Z(ω)− τ), if Z(ω) ≥ τ,
ζ(ω) = 1, if Z(ω) < τ.

(6.110)

The above formula can be also derived directly and it can be shown that ρ is differentiable
in the sense of Fréchet.

Example 6.25 (Mean-upper-semideviation of order p from a target) LetZ be the space
Lp(Ω,F , P ), and for c ≥ 0 and τ ∈ R consider

ρ(Z) := E[Z] + c
(
E
[[
Z − τ

]p
+

])1/p

. (6.111)

For any c ≥ 0 and τ this risk measure satisfies conditions (R1) and (R2), but not (R3) and
(R4) if c > 0. We have(

E
[[
Z − τ

]p
+

])1/p

= sup
‖ζ‖q≤1

E
(
ζ[Z − τ ]+

)
= sup
‖ζ‖q≤1, ζ(·)≥0

E
(
ζ[Z − τ ]+

)
= sup
‖ζ‖q≤1, ζ(·)≥0

E
(
ζ[Z − τ ]

)
= sup
‖ζ‖q≤1, ζ(·)≥0

E
[
ζZ − τζ

]
.

We obtain that representation (6.38) holds with

A = {ζ ∈ Z∗ : ‖ζ‖q ≤ c, ζ � 0}

and ρ∗(ζ) = τE[ζ] for ζ ∈ A.

6.3.3 Law Invariant Risk Measures
As in the previous sections, unless stated otherwise we assume here thatZ = Lp(Ω,F , P ),
p ∈ [1,∞). We say that random outcomes (random variables) Z ∈ Z and Z ′ ∈ Z have
the same distribution, with respect to the reference probability measure P , if P (Z ≤ z) =
P (Z ′ ≤ z) for all z ∈ R. We also say that Z and Z ′ are distributionally equivalent

and write this relation as Z D∼ Z ′. The risk measures ρ(Z) discussed in all examples
considered in section 6.3.2 were dependent only on the distribution of Z. That is, each risk
measure ρ(Z), considered in section 6.3.2, could be formulated in terms of the cumulative
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distribution function (cdf)HZ(t) := P (Z ≤ t) associated withZ ∈ Z . Such risk measures
are called law invariant.11

Definition 6.26. A risk measure ρ : Z → R is said to be law invariant, with respect to the
reference probability measure P , if for all Z,Z ′ ∈ Z the following implication holds{

Z
D∼ Z ′

}
⇒
{
ρ(Z) = ρ(Z ′)

}
.

Remark 27. Since a law invariant risk measure ρ(Z) depends only on the cdf H = HZ

we also write ρ(HZ) or ρ(H) rather than ρ(Z). It should be remembered that the class
of the corresponding cumulative distribution functions depends on the considered space
Z = Lp(Ω,F , P ) of random variables. Therefore the notion of law invariance of risk
measure ρ : Z → R is associated with the space Z , and in particular with the choice of the
reference probability space (Ω,F , P ).

Let us have a careful look at what does it mean that two random variables Z,Z ′ ∈ Z
are distributionally equivalent. Let us start with finite probability space Ω = {ω1, . . . , ωn}
equipped with the sigma algebra of all its subsets and probability measure P assigning
equal probabilities pi = 1/n to each element of Ω. Consider a permutation π of the set
Ω, i.e., π : Ω → Ω is a one-to-one and onto mapping, and denote by G the set of all
these permutations. Note that π ∈ G preserves the probability measure P , i.e., for any set
A ⊂ Ω we have that P (A) = P (π(A)), where π(A) = {π(ω) : ω ∈ A}. It follows that
if Z : Ω → R is a random variable and12 Z ′ = Z ◦ π for some π ∈ G, then Z and Z ′

are distributionally equivalent. In fact it is not difficult to see that two random variables
Z,Z ′ : Ω→ R are distributionally equivalent iff there exists permutation π ∈ G such that
Z ′ = Z ◦ π.

Now let (Ω,F , P ) be a general probability space. Recall that a transformation T :
Ω → Ω is said to be measurable if T−1(A) ∈ F for any A ∈ F , where T−1(A) = {ω ∈
Ω : T (ω) ∈ A}.

Definition 6.27. We say that a mapping T : Ω→ Ω is a measure-preserving transformation
if T is measurable and for any A ∈ F it follows that P (A) = P (T−1(A)), and T is one-
to-one and onto. We denote by G the set of measure-preserving transformations.

This definition of measure-preserving transformations is slightly stronger than the
standard one in that we assume that T is one-to-one and onto; hence T is invertable and
P (A) = P (T (A)) for any A ∈ F . The set G forms a group of transformations, i.e., if
T1, T2 ∈ G, then their composition T1 ◦ T2 ∈ G, and if T ∈ G then its inverse T−1 ∈ G.
In the case of finite space Ω with equal probabilities, the group of measure-preserving
transformations coincides with the group of permutations of Ω. As it was pointed above,
in that case random variables Z,Z ′ are distributionally equivalent iff there exists π ∈ G
such that Z ′ = Z ◦ π. This characterization of distributional equivalence can be extended
to general nonatomic spaces.

11Some authors also use terms distribution based or version independent.
12By Z′ = Z ◦ π we denote the composition Z′(ω) = Z(π(ω)).
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Proposition 6.28. If Z ∈ Z and Z ′ = Z ◦ T for some T ∈ G, then Z ′ ∈ Z and Z and
Z ′ are distributionally equivalent. If, moreover, the space (Ω,F , P ) is nonatomic, then the
converse implication holds, i.e., if Z ∈ Z and Z ′ ∈ Z are distributionally equivalent, then
there exists a measure-preserving transformation T ∈ G such that13 Z ′ = Z ◦ T .

Proof. Let Z ∈ Z and Z ′ = Z ◦ T for some T ∈ G. Then∫
|Z ′(ω)|pdP (ω) =

∫
|Z(T (ω))|pdP (ω) =

∫
|Z(ω)|pdP (ω),

and hence Z ′ ∈ Z . Furthermore, for t ∈ R consider A := {ω ∈ Ω : Z(ω) ≤ t}. We have
that

T−1(A) = {T−1(ω) : ω ∈ A} = {T−1(ω) : Z(ω) ≤ t} = {ω : Z(T (ω)) ≤ t}.

Thus

Pr(Z ′ ≤ t) = P (T−1(A)) = P (A) = Pr(Z ≤ t),

and hence Z and Z ′ are distributionally equivalent.
The converse implication can be proved by partitioning Ω into a finite number of

subsets of equal probabilities, applying an appropriate permutation of these sets and then
passing to the limit. For a formal proof we may refer, e.g., to [119, lemma A.4].

Remark 28. Suppose that the space (Ω,F , P ) is nonatomic. Consider measurable sets
A,B ∈ F , and Z := 1A and Z ′ := 1B . Note that Z and Z ′ are distributionally equivalent
iff P (A) = P (B), and Z ◦ T = 1T−1(A) for T ∈ G. Hence it follows by the above
proposition that there exists a measure-preserving transformation T ∈ G such that B =
T (A) iff P (A) = P (B).

Remark 29. The assumption in the above proposition for the probability space to be
nonatomic is essential for the converse implication. Consider, for example, finite space
Ω := {ω1, ω2, ω3} with respective probabilities p1 = p2 = 1/4 and p3 = 1/2, and
random variables Z,Z ′ : Ω → R defined as Z(ω1) = Z(ω2) = 1, Z(ω3) = 0, and
Z ′(ω1) = Z ′(ω2) = 0, Z ′(ω3) = 1. These two random variables are distributionally
equivalent, but cannot be transformed one into another by a measure-preserving transfor-
mation.

Proposition 6.29. Let ρ : Z → R be a proper lower semicontinuous convex risk measure.
Then the following holds. If ρ is law invariant, then its conjugate function ρ∗ is invariant
with respect to measure-preserving transformations, i.e., for any T ∈ G and ζ ∈ Z∗ it
follows that ρ∗(ζ ◦ T ) = ρ∗(ζ). Moreover, if the space (Ω,F , P ) is nonatomic, then ρ is
law invariant iff its conjugate function ρ∗ is invariant with respect to measure-preserving
transformations.

13The equality Z′ = Z ◦ T is understood, of course, as that Z′(ω) = Z(T (ω)) for a.e. ω ∈ Ω.
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Proof. For any ζ ∈ Z∗ and T ∈ G we have that ζ ◦ T ∈ Z∗ and

ρ∗(ζ ◦ T ) = supZ∈Z
{∫

ζ(T (ω))Z(ω)dP (ω)− ρ(Z)
}

= supZ∈Z
{∫

ζ(ω)Z(T−1(ω))dP (ω)− ρ(Z)
}

= supZ′∈Z
{∫

ζ(ω)Z ′(ω)dP (ω)− ρ(Z ′ ◦ T )
}
,

(6.112)

where we made change of variables Z ′ = Z ◦ T−1. If ρ is law invariant and hence is
invariant with respect to measure-preserving transformations, then ρ(Z ′ ◦ T ) = ρ(Z ′) and
thus it follows that ρ∗(ζ ◦ T ) = ρ∗(ζ).

Conversely, suppose that the space (Ω,F , P ) is nonatomic and ρ∗ is invariant with
respect to measure-preserving transformations. By Fenchel-Moreau Theorem we have

ρ(Z) := sup
ζ∈Z∗

{
〈ζ, Z〉 − ρ∗(ζ)

}
. (6.113)

Consider distributionally equivalent Z,Z ′ ∈ Z . Then by Proposition 6.28 there exists
T ∈ G such that Z ′ = Z ◦T . Similar to (6.112) by using (6.113) and invariance of ρ∗ with
respect to measure-preserving transformations, we obtain that ρ(Z) = ρ(Z ′). This shows
that ρ is law invariant.

If risk measure ρ : Z → R is coherent, then its conjugate function ρ∗ is the in-
dicator function of the set A = dom(ρ∗). In that case invariance of ρ∗ with respect
to measure-preserving transformations means that the set A is invariant with respect to
measure-preserving transformations, i.e., for any T ∈ G and ζ ∈ A it follows that ζ ◦ T ∈
A. Therefore we have the following consequence of Proposition 6.29.

Corollary 6.30. Let ρ : Z → R be a proper lower semicontinuous coherent risk measure.
Then the following holds. If ρ is law invariant, then its dual set A is invariant with respect
to measure-preserving transformations. Moreover, if the space (Ω,F , P ) is nonatomic,
then ρ is law invariant iff its dual set A is invariant with respect to measure-preserving
transformations.

As it was pointed above we can consider a law invariant risk measure as a func-
tion ρ(H) defined on an appropriate set of cumulative distribution functions. If Z =
Lp(Ω,F , P ), p ∈ [1,∞), and the space (Ω,F , P ) is nonatomic, then the corresponding
set of cumulative distribution functions H = HZ , Z ∈ Z , consists of the set of monoton-
ically nondecreasing, right side continuous functions H : R → R such that the integral∫ +∞
−∞ |z|

pdH(z) is finite. By making change of variables t = H(z) we can write this inte-

gral condition as
∫ 1

0
|H−1(t)|pdt <∞. We can viewH−1 as a random variable defined on

the standard uniform probability space14 and having finite p-th order moment. Therefore
in the case of nonatomic probability space we can assume without loss of generality that
(Ω,F , P ) is the standard uniform probability space.

Remark 30. Let us observe that a random variable Z : Ω → R, defined on the standard
uniform probability space, has the same probability distribution as H−1

Z . Hence by Propo-
sition 6.28 there exists a measure-preserving transformation T ∈ G such thatH−1

Z = Z◦T .
14Recall that the standard uniform probability space is the space Ω = [0, 1] equipped with its Borel sigma

algebra and uniform probability measure P .
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Thus for any random variable Z, defined on the standard uniform probability space, there
exists a measure-preserving transformation T ∈ G such that Z ◦T is monotonically nonde-
creasing. Note that we view Z and Z ′ = Z ◦ T as random variables, i.e., Z is represented
by a class of functions which may differ from each other on sets of measure zero. By saying
that Z ′ is monotonically nondecreasing we mean that there is a monotonically nondecreas-
ing element in the corresponding class of functions. Since a monotonically nondecreasing
function has at most a countable number of discontinuity points, we can take Z ′ = Z ◦ T
to be left side or right side continuous. In particular if Z : Ω → R is a monotonically
nondecreasing random variable, then Z = H−1

Z in the sense that there is an element in the
corresponding class of functions such that this equality holds.

By Proposition 6.8 we know that if ρ : Lp(Ω,F , P ) → R, with p ∈ [1,∞), is
a proper convex risk measure, then either ρ(·) is finite valued and continuous on Z , or
ρ(Z) = +∞ on a dense set of points Z ∈ Z . In all examples considered in section 6.3.2
it was possible to find an appropriate space Lp(Ω,F , P ) on which the considered risk
measure was finite valued. The following result shows that it is not possible to construct a
finite valued law invariant convex risk measure on a space larger than L1(Ω,F , P ). This
indicates that it does not make much sense to consider convex risk measures on spaces
larger than L1(Ω,F , P ).

Proposition 6.31. Let (Ω,F , P ) be a nonatomic probability space and Z be a linear space
of random variables Z : Ω → R such that Lp(Ω,F , P ) ⊂ Z , for some p ∈ [1,∞), and
such that if Z ∈ Z , then [Z]+ ∈ Z . Suppose that there exists a real valued law invariant
convex risk measure ρ : Z → R. Then Z ⊂ L1(Ω,F , P ).

Proof. We may assume without loss of generality that (Ω,F , P ) is the standard uniform
probability space. We argue by a contradiction. Suppose that Z is not a subspace of
L1(Ω,F , P ), i.e., there exists Z̄ ∈ Z \ L1(Ω,F , P ). Then Z̄ = [Z̄]+ − [−Z̄]+ and
at least one of the integrals

∫ 1

0
[Z̄(t)]+dt or

∫ 1

0
[−Z̄]+(t)dt is +∞. Hence we can take

Z̄ ∈ Z \ L1(Ω,F , P ) such that Z̄ ≥ 0 and
∫ 1

0
Z̄(t)dt = +∞.

Now let ρ̂ : Lp(Ω,F , P )→ R be the restriction of ρ to the space Lp(Ω,F , P ). Since
ρ̂ is a real valued convex risk measure, by Proposition 6.6 ρ̂ is continuous, and thus has the
dual representation (6.37). Moreover, we have that (see equation (6.126) below)

ρ̂(Z) = sup
σ∈Fq

{∫ 1

0

σ(t)H−1
Z (t)dt− ρ̂∗(σ)

}
, Z ∈ Lp(Ω,F , P ), (6.114)

where Fq is the set of right side continuous, monotonically nondecreasing functions σ :

[0, 1) → R+ such
∫ 1

0
σ(t)dt = 1 and

∫ 1

0
σ(t)qdt < ∞ (see Definition 6.32). Since ρ̂ is

real valued, there is σ̄ ∈ Fq such that κ := ρ̂∗(σ̄) is finite. It follows that

ρ̂(Z) ≥
∫ 1

0

σ̄(t)H−1
Z (t)dt− κ, Z ∈ Lp(Ω,F , P ). (6.115)

Consider the sequence Zn(ω) := min{Z̄(ω), n}, n ∈ N. Clearly Zn ≥ 0 and is
bounded and hence Zn ∈ Lp(Ω,F , P ). We are going to show that ρ̂(Zn) tends to +∞
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as n → ∞. Since Z̄ ≥ Zn, and hence ρ(Z̄) ≥ ρ(Zn) = ρ̂(Zn), this will imply that
ρ(Z̄) = +∞, the required contradiction.

ConsiderZ ′n distributionally equivalent toZn and monotonically nondecreasing (such
Z ′n does exist, see Remark 30). Since

∫ 1

0
σ̄(t)dt = 1 and σ̄(·) is monotonically nondecreas-

ing, it follows that there exist constants a ∈ (0, 1) and b > 0 such that σ̄(t) ≥ b for all
t ∈ [a, 1]. Together with (6.115) this implies

ρ̂(Z ′n) ≥
∫ 1

0

σ̄(t)Z ′n(t)dt− κ ≥ b
∫ 1

a

Z ′n(t)dt− κ ≥ b(1− a)

∫ 1

0

Z ′n(t)dt− κ,

where the last inequality follows since Z ′n(·) is monotonically nondecreasing. Recall that∫ 1

0
Z̄(t)dt = +∞. It follows that

∫ 1

0
Zn(t)dt, and hence

∫ 1

0
Z ′n(t)dt, tends to +∞. Thus

ρ̂(Zn) tends to +∞ as well. This completes the proof.

6.3.4 Spectral Risk Measures

Unless stated otherwise we assume in this section that (Ω,F , P ) is the standard uniform
probability space andZ = Lp(Ω,F , P ), p ∈ [1,∞). Consider a (real valued) law invariant
coherent risk measure ρ : Z → R. As we know it has the dual representation

ρ(Z) = sup
ζ∈A

∫ 1

0

ζ(t)Z(t)dt, Z ∈ Z. (6.116)

Since Z D∼ H−1
Z , and ρ(Z) = ρ(Z ◦ T ) for any Z ∈ Z and measure-preserving transfor-

mation T ∈ G, we can write

ρ(Z) = sup
ζ∈A, T∈G

∫ 1

0

ζ(T (t))H−1
Z (t)dt, Z ∈ Z. (6.117)

Recall that here the dual set A is invariant with respect to measure-preserving transforma-
tions (see Corollary 6.30). It is also not difficult to see that since H−1

Z (·) is monotonically
nondecreasing, the maximum in the right hand side of (6.117), with respect to T ∈ G,
is attained if ζ ′ = ζ ◦ T is monotonically nondecreasing. This motivates the following
definitions.

Definition 6.32. We say that σ : [0, 1) → R+ is a spectral function if σ(·) is right side
continuous, monotonically nondecreasing and such that

∫ 1

0
σ(t)dt = 1. We denote by F

the set of spectral functions, and by Fq := F ∩ Lq(Ω,F , P ) the set of spectral functions
with finite q-th moment.

Definition 6.33. We say that a set Υ ⊂ Fq is a generating set of proper lower semicontinu-
ous law invariant coherent risk measure ρ : Z → R if

ρ(Z) = sup
σ∈Υ

∫ 1

0

σ(t)H−1
Z (t)dt, Z ∈ Z. (6.118)
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Recall that if ρ : Z → R is a lower semicontinuous coherent risk measure and
C ⊂ Z∗ is such that

ρ(Z) = sup
ζ∈C
〈ζ, Z〉, Z ∈ Z, (6.119)

then C is a subset of the dual set A. Therefore it follows from (6.118) that Υ ⊂ A. By the
above discussion such generating set Υ always exists. However, it is not defined uniquely.
Indeed, let us observe that if σ1, σ2 ∈ Fq are two spectral functions such that15

∫ 1

η

σ1(t)dt ≤
∫ 1

η

σ2(t)dt, ∀η ∈ (0, 1), (6.120)

then ∫ 1

0

σ1(t)H−1
Z (t)dt ≤

∫ 1

0

σ2(t)H−1
Z (t)dt, Z ∈ Z. (6.121)

Therefore we always can add to the generating set Υ a spectral function which is dominated
in the increasing convex order by one of the spectral functions already in Υ. In particular
we can take as generating set the set of all spectral functions σ ∈ A. This raises the question
of existence in some sense of minimal generating set. We address this question below.

Proposition 6.34. Let ρ : Z → R be a (real valued) law invariant coherent risk measure
and Exp(A) be the set of exposed points of its dual set A. Then Exp(A) is invariant
under measure-preserving transformations and the representation (6.119) holds with C :=
Exp(A). Moreover, if the representation (6.119) holds for some weakly∗ closed set C, then
Exp(A) ⊂ C.

Proof. Recall that by Corollary 6.30, for T ∈ G we have that

〈ζ ◦ T,Z〉 =

∫ 1

0

ζ(T (t))Z(t)dτ =

∫ 1

0

ζ(t)Z(T−1(t))dt = 〈ζ, Z ◦ T−1〉.

Thus ζ̄ ∈ A is a maximizer of 〈ζ, Z〉 over ζ ∈ A, iff ζ̄ ◦ T is a maximizer of 〈ζ, T−1 ◦ Z〉
over ζ ∈ A. Consequently we have that if ζ̄ ∈ Exp(A), then ζ̄ ◦ T ∈ Exp(A). This shows
that Exp(A) is invariant under G.

Now consider the set

D := {Z ∈ Z : Z exposes A at a point ζ̄}.

By Theorem 7.81 this set is dense in Z . So for Z ∈ Z fixed, let {Zn} ⊂ D be a sequence
of points converging (in the norm topology) to Z. Let {ζn} ⊂ Exp(A) be a sequence of
the corresponding maximizers, i.e., ρ(Zn) = 〈ζn, Zn〉. Since A is bounded, we have that
‖ζn‖∗ is uniformly bounded. Since ρ : Z → R is real valued it is continuous, and thus
ρ(Zn)→ ρ(Z). We also have that

|ρ(Zn)− 〈ζn, Z〉| = |〈ζn, Zn〉 − 〈ζn, Z〉| ≤ ‖ζn‖∗‖Zn − Z‖ → 0.

15As we will discuss later, condition (6.120) means that σ2 dominates σ1 in the increasing convex order.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 325 — #337 i
i

i
i

i
i

6.3. Coherent Risk Measures 325

It follows that
ρ(Z) = sup{〈ζn, Z〉 : n = 1, 2, . . . },

and hence the representation (6.119) holds with C = Exp(A).
Let C be a weakly∗ closed set such that the representation (6.119) holds. It follows

that C is a subset of A and is weakly∗ compact. Consider a point ζ ∈ Exp(A). By the
definition of the set Exp(A), there is Z ∈ D such that ρ(Z) = 〈ζ, Z〉. Since C is weakly∗

compact, the maximum in (6.119) is attained and hence ρ(Z) = 〈ζ ′, Z〉 for some ζ ′ ∈ C.
By the uniqueness of the maximizer ζ it follows that ζ ′ = ζ. This shows that Exp(A) ⊂ C.

The result of Proposition 6.34 shows that the set Exp(A) ∩ F, of monotonically
nondecreasing elements of Exp(A), is a minimal generating set in the following sense.

Theorem 6.35. Let ρ : Z → R be a (real valued) law invariant coherent risk measure
and Exp(A) be the set of exposed points of its dual set A. Then the set Ῡ := Exp(A) ∩ F
is a generating set of ρ, and moreover this generating set is minimal in the sense that it is
contained in any weakly∗ closed generating set.

Remark 31. Recall that ζ̄ is an exposed point of A iff ∂ρ(Z) = {ζ̄} is a singleton for some
Z ∈ Z (see Remark 26 on page 304). Therefore in order to compute Exp(A) we can use
formulas derived in section 6.3.2 for subdifferentials of coherent risk measures.

Consider ρ := AV@R1−α, α ∈ [0, 1), risk measure.16 A general formula for sub-
differentials of the Average Value-at-Risk measures is given in equation (6.80). By this
formula we have that the set Exp(A), of exposed points of the dual set of ρ, consists of
functions (1 − α)−11A with A ⊂ [0, 1] being set of measure 1 − α. Thus the minimal
generating set Ῡ = Exp(A) ∩ F consists of unique spectral function (1− α)−11[α,1]. We
can write the corresponding spectral representation as

AV@R1−α(Z) =
1

1− α

∫ 1

α

H−1
Z (t)dt. (6.122)

Recall that H−1
Z (t) = V@R1−t(Z). Therefore the above formula (6.122) is equivalent to

(6.27).

Definition 6.36. It is said that risk measure ρ : Z → R is spectral, with spectral function
σ ∈ Fq , if

ρ(Z) =

∫ 1

0

σ(t)H−1
Z (t)dt, Z ∈ Z. (6.123)

That is, a spectral risk measure ρ : Z → R, with spectral function σ ∈ Fq , is a (real
valued) law invariant coherent risk measure whose minimal generating set is the singleton
{σ}. Note that since H−1

Z ∈ Z and the spectral function σ is supposed to belong to the

16It will be convenient here to deal with AV@R1−α, rather than AV@Rα, formulation of Average Value-at-
Risk measures. We will comment on that later.
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dual space Z∗ = Lq(Ω,F , P ), the integral in the right hand side of (6.123) is well defined
and finite valued.

Remark 32. Consider now a proper lower semicontinuous law invariant convex risk mea-
sure ρ : Z → R. Since Z ∈ Z is distributionally equivalent to H−1

Z and ρ is law invariant
we have that ρ(Z) = ρ(H−1

Z ). Thus by invoking Fenchel-Moreau Theorem we can write

ρ(Z) = sup
ζ∈Z∗

{∫ 1

0

ζ(t)H−1
Z (t)dt− ρ∗(ζ)

}
, Z ∈ Z. (6.124)

Recall that dom(ρ∗) is a subset of the set P of density functions (see Theorem 6.5). Now
for any ζ ∈ Z∗ and measure-preserving transformation T ∈ G we have by Proposition
6.29 that ρ∗(ζ ◦ T ) = ρ∗(ζ). Therefore we can write (6.124) as

ρ(Z) = sup
ζ∈P∩Z∗, T∈G

{∫ 1

0

ζ(T (t))H−1
Z (t)dt− ρ∗(ζ ◦ T )

}
, Z ∈ Z. (6.125)

As it was pointed before, since H−1
Z (·) is monotonically nondecreasing, the maxi-

mum in the right hand side of (6.125) with respect to T ∈ G is attained if ζ ′ = ζ ◦ T
is monotonically nondecreasing. Note that Fq is a subset of P ∩ Z∗ consisting of mono-
tonically nondecreasing right side continuous functions of P ∩ Z∗. Therefore it follows
that

ρ(Z) = sup
σ∈Fq

{∫ 1

0

σ(t)H−1
Z (t)dt− ρ∗(σ)

}
, Z ∈ Z. (6.126)

In a similar way, by noting that for σ ∈ Fq we have that σ = H−1
σ (see Remark 30 on page

321), the conjugate ρ∗ can be written as

ρ∗(σ) = sup
Y ∈Fp

{∫ 1

0

Y (t)σ(t)dt− ρ(Y )

}
, σ ∈ Fq. (6.127)

Remark 33. Sometimes we will need a property slightly stronger than the monotonicity
condition (R2). For two random variables Z,Z ′ ∈ Z we write Z � Z ′ if Z � Z ′ and
Z 6= Z ′, i.e., if Z � Z ′ and Z > Z ′ with positive probability. Consider the following
condition.

(R?2) Strict Monotonicity: If Z,Z ′ ∈ Z and Z � Z ′, then ρ(Z) > ρ(Z ′).

Proposition 6.37. Let ρ : Z → R be a spectral risk measure with spectral function σ ∈ Fq .
Then the strict monotonicity condition (R?2) holds iff σ(t) > 0 for all t ∈ (0, 1).

Proof. Let Z � Z ′, i.e., Z − Z ′ � 0 and Z(t) − Z ′(t) > 0 for t ∈ A ⊂ (0, 1) with
P (A) > 0. Suppose that σ(t) > 0 for all t ∈ (0, 1). It follows that σ(Z − Z ′) � 0 and
σ(t)[Z(t)− Z ′(t)] > 0 for t ∈ A, and hence∫ 1

0

σ(t)[Z(t)− Z ′(t)]dt > 0.
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By applying a measure preserving transformation T ∈ G to Z and Z ′ if necessary, we can
assume that Z ′ is monotonically nondecreasing, i.e., Z ′ = H−1

Z′ . Then

ρ(Z) =

∫ 1

0

σ(t)H−1
Z (t)dt ≥

∫ 1

0

σ(t)Z(t)dt >

∫ 1

0

σ(t)Z ′(t)dt = ρ(Z ′).

Conversely suppose that σ(t) = 0 for all t ∈ (0, a) and some a ∈ (0, 1). Consider
Z := 1[0,1] and Z ′ := 1[a,1]. Clearly Z � Z ′, while ρ(Z) = ρ(Z ′).

By the above proposition we have that risk measure ρ := AV@Rα, α ∈ (0, 1),
does not satisfy the strict monotonicity condition (R?2). On the other hand risk measure
ρ(·) := (1− β)E[·] + βAV@Rα(·) does satisfy (R?2) for any α ∈ (0, 1) and β ∈ [0, 1).

For a general coherent risk measure we can give the following sufficient conditions
for strict monotonicity. Recall that if ρ : Z → R is a real valued coherent risk measure,
than it is continuous, subdifferentiable and for any Z ∈ Z ,

∂ρ(Z) = argmax
ζ∈A

∫
Ω

ζ(ω)Z(ω)dP. (6.128)

Proposition 6.38. Let ρ : Z → R be a coherent risk measure. Suppose that for every
Z ∈ Z there is ζ ∈ ∂ρ(Z) such that ζ(ω) > 0 for a.e. ω ∈ Ω. Then the strict monotonicity
condition (R?2) holds.

Proof. Let Z � Z ′ and ζ ∈ ∂ρ(Z ′) be such that ζ(ω) > 0 for a.e. ω ∈ Ω. Then

ρ(Z ′) =

∫
Ω

ζ(ω)Z ′(ω)dP <

∫
Ω

ζ(ω)Z(ω)dP ≤ ρ(Z).

This completes the proof.

As an example consider mean-upper-semideviation risk measures ρ(Z) = E[Z] +

c
(
E
[[
Z − E[Z]

]p
+

])1/p
. Formulas for subdifferentials ∂ρ(Z) of these risk measures were

derived in Example 6.23. By these formulas conditions of Proposition 6.38 hold, and hence
these risk measures satisfy the strict monotonicity condition (R?2) for p ∈ [1,∞) and
c ∈ [0, 1).

6.3.5 Kusuoka Representations
As it was discussed in the previous section, AV@R1−α is a spectral risk measure with
spectral function σ = (1− α)−11[α,1]. Consider now a convex combination

ρ(Z) := λ1AV@R1−α1(Z) + · · ·+ λmAV@R1−αm(Z), Z ∈ Z, (6.129)

of Average Value-at Risk measures, with 0 ≤ α1 < α2 < · · · < αm < 1 and λi > 0,
i = 1, . . . ,m,

∑m
i=1 λi = 1, and Z = L1(Ω,F , P ). This is also a spectral risk measure

with spectral function σ =
∑m
i=1 λiσi, where σi is the spectral function of AV@R1−αi .

That is,

σ =

m∑
i=1

λi(1− αi)−11[αi,1]. (6.130)
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We can view ρ(Z), defined in (6.129), as the integral

ρ(Z) =

∫ 1

0

AV@R1−α(Z)dµ(α), Z ∈ Z, (6.131)

with discrete probability measure17 µ :=
∑m
i=1 λiδ(αi). Such integral representation can

be extended to general spectral functions. The integral in the right hand side of (6.131) can
be viewed as the Lebesgue-Stieltjes integral with µ : R→ [0, 1] being right side continuous
monotonically nondecreasing function (distribution function) such that µ(α) = 0 for α < 0
and µ(α) = 1 for α ≥ 1. For the discrete measure µ =

∑m
i=1 λiδ(αi) the corresponding

distribution function is µ(·) =
∑m
i=1 λi1[αi,∞)(·).

Consider the following transformation (linear mapping) Tµ, from the set of proba-
bility measures (distribution functions) µ(·) on the interval18 [0, 1) to the set F of spectral
functions:

(Tµ)(t) :=

∫ t

0

(1− α)−1dµ(α), t ∈ [0, 1). (6.132)

It is not difficult to verify that indeed the function σ = Tµ is a spectral function. That is,
clearly σ(·) is nonnegative valued, monotonically nondecreasing, right side continuous and∫ 1

0

σ(t)dt =

∫ 1

0

∫ t

0

(1− α)−1dµ(α)dt =

∫ 1

0

∫ 1

α

(1− α)−1dtdµ(α) =

∫ 1

0

dµ(α) = 1.

Let us show that the inverse µ = T−1σ, of the transformation defined in (6.132) can
be written as

µ(α) = (1− α)σ(α) +

∫ α

0

σ(t)dt, α ∈ [0, 1). (6.133)

Indeed,19 µ′+(α) = (1 − α)σ′+(α) ≥ 0 at points where σ(·) is continuous. It follows that
µ(α) is monotonically nondecreasing. Also σ(·) is right side continuous, and hence µ(·)
is right side continuous. Clearly µ(α) ≥ 0. Since

∫ 1

0
σ(t)dt = 1 is finite, it follows that

limα↑1(1 − α)σ(α) = 0, and hence limα↑1 µ(α) =
∫ 1

0
σ(t)dt = 1. This shows that µ(·)

is a probability distribution function on the interval [0, 1). Note that µ(0) = σ(0), and thus
µ has positive mass at α = 0 if σ(0) > 0. If µ(0) = σ(0) is positive, we understand the
integrals in (6.132) and (6.133) as taken from 0−. Thus∫ α

0

dµ(τ) = µ(α), α ∈ [0, 1].

In order to show that transformation (6.133) is inverse of (6.132), let us substitute in
the right hand side of (6.133) the expression for σ(·) given in (6.132). That is

17Recall that δ(α) denotes measure of mass one at α.
18By saying that measure µ is on the interval [0, 1) we emphasize that µ has mass zero at α = 1.
19By µ′+(α) = lim infh↓0

µ(α+h)−µ(α)
h

we denote here the lower right side derivative.
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(1− α)

∫ α

0

(1− τ)−1dµ(τ) +

∫ α

0

∫ t

0

(1− τ)−1dµ(τ)dt =

(1− α)

∫ α

0

(1− τ)−1dµ(τ) +

∫ α

0

∫ α

τ

(1− τ)−1dtdµ(τ) =

(1− α)

∫ α

0

(1− τ)−1dµ(τ) +

∫ α

0

(1− τ)−1(α− τ)dµ(τ) =

∫ α

0

dµ(τ) = µ(α).

This shows that indeed transformations (6.133) and (6.132) are inverse to each other. It
follows that the mapping T is one-to-one and onto.

Now let us consider spectral risk measure ρ : Z → R with Z = Lp(Ω,F , P ),
p ∈ [1,∞), and the corresponding spectral function σ ∈ Fq . The mapping T suggests a
one-to-one correspondence between spectral risk measures and integral representations of
the form (6.131).

Theorem 6.39. Transformation (6.132) gives a one-to-one correspondence between spec-
tral risk measures and integral representations of the form (6.131).

Proof. Consider a spectral risk measure ρ(Z), of the form (6.123), with the corresponding
spectral function σ ∈ Fq . Let µ := T−1σ, and thus σ = Tµ. Then

ρ(Z) =

∫ 1

0

(Tµ)(t)H−1
Z (t)dt =

∫ 1

0

∫ t

0

(1− α)−1H−1
Z (t)dµ(α)dt

=

∫ 1

0

∫ 1

α

(1− α)−1H−1
Z (t)dtdµ(α) =

∫ 1

0

AV@R1−α(Z)dµ(α),

where the last equality follows by (6.122).

We have that any proper lower semicontinuous law invariant coherent risk measure
ρ : Z → R can be represented as maximum of spectral risk measures taken over spectral
functions in the corresponding generating set. Together with Theorem 6.39 this gives the
following result.

Theorem 6.40 (Kusuoka). Suppose that the probability space (Ω,F , P ) is nonatomic
and let ρ : Z → R be a proper lower semicontinuous law invariant coherent risk measure.
Then there exists a set M of probability measures on the interval [0, 1) such that

ρ(Z) = sup
µ∈M

∫ 1

0

AV@R1−α(Z)dµ(α), ∀Z ∈ Z. (6.134)

We refer to (6.134) as the Kusuoka representation of the law invariant coherent risk
measure ρ. Of course, by making change of variables α 7→ 1− α we can write representa-
tion (6.134) as

ρ(Z) = sup
µ∈M′

∫ 1

0

AV@Rα(Z)dµ(α), ∀Z ∈ Z, (6.135)
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with M′ being a set of probability measures on the interval (0, 1].

Remark 34. As it was mentioned before, the generating set is not defined uniquely. Nev-
ertheless, by Theorem 6.35 we have that for a real valued law invariant coherent risk mea-
sure ρ : Z → R, the set Ῡ := Exp(A) ∩ F is in a sense a minimal generating set of
ρ. By taking the set of probability measures M̄ := T−1(Ῡ) on [0, 1), we obtain, in a
sense, a minimal (Kusuoka) representation of the form (6.134). Recall that the transfor-
mation T and its inverse T−1 are defined in (6.132) and (6.133), respectively. In partic-
ular, if µ =

∑m
i=1 λiδ(αi), where λi are positive numbers such that

∑m
i=1 λi = 1, and

0 ≤ α1 < α2 < · · · < αm < 1, then σ = Tµ is given in (6.130).

Example 6.41 Consider the absolute semideviation risk measure

ρ(Z) := E[Z] + cE
{[
Z − E[Z]

]
+

}
, (6.136)

where c ∈ [0, 1] and Z = L1(Ω,F , P ). Recall that ζ̄ is an exposed point of A iff ∂ρ(Z) =
{ζ̄} is a singleton for some Z ∈ Z . The subdifferential of ρ(Z) was computed in Example
6.23. It follows from formula (6.106) that if Z 6= E[Z] w.p.1, then Z exposes A at the point

ζ̄(ω) =

{
1− cκ, if Z(ω) < E[Z],
1 + c(1− κ), if Z(ω) > E[Z],

(6.137)

where κ := Pr(Z > E[Z]). Consequently the set Exp(A) ∩ F, of exposed spectral points,
is given by {σκ : κ ∈ (0, 1)}, where

σκ(t) =

{
1− cκ, if 0 ≤ t < 1− κ,
1 + c(1− κ), if 1− κ ≤ t ≤ 1.

(6.138)

Each σκ is a step function, hence by (6.130) each µκ = T−1σκ can be written as

µκ = (1− cκ)δ(0) + cκδ(1− κ).

Consequently the set M in Kusuoka representation (6.134) is

M =
⋃

κ∈(0,1)

{
(1− cκ)δ(0) + cκδ(1− κ)

}
.

As it was pointed above, in a sense this set is minimal. The corresponding (minimal)
Kusuoka representation is given by

ρ(Z) = sup
κ∈(0,1)

{
(1− cκ)AV@R1(Z) + cκAV@Rκ(Z)

}
. (6.139)

Recalling that AV@R1(·) = E(·), and hence using definition (6.23) of AV@Rα we
can write (6.139) as

ρ(Z) = sup
κ∈[0,1]

inf
t∈R
E {Z + cκ(t− Z) + c[Z − t]+}

= inf
t∈R

sup
κ∈[0,1]

E {Z + cκ(t− Z) + c[Z − t]+} .
(6.140)

The above formula is equivalent to formula (6.29), derived in Corollary 6.3, for σ+
1 [Z].
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Remark 35. So far we dealt with spaces Lp(Ω,F , P ), p ∈ [1,∞). Consider now space
Z = L∞(Ω,F , P ) paired with space L1(Ω,F , P ) and a law invariant coherent risk mea-
sure ρ : Z → R. Suppose that ρ is lower semicontinuous with respect to the weak∗

topology, and hence has the dual representation

ρ(Z) = sup
ζ∈A

∫ 1

0

ζ(t)Z(t)dt, (6.141)

for some set A ⊂ L1(Ω,F , P ). We still can write such dual representation in the form
(6.118) for some generating set Υ ⊂ A ∩ F. Consequently by using the transformation
µ = T−1µ, given in (6.133), we obtain Kusuoka representation (6.134) with the set M
being a set of probability measures on the interval [0, 1).

For example, consider the essential supremum risk measure ρ(Z) := ess sup(Z). It
has Kusuoka representation (6.134) with the set M consisting, for example, from measures
δ(αn) such that αn ↑ 1. Of course if we define AV@R0 := ess sup (see Remark 24 on page
296), then we can use the singleton set M = {δ(1)}.

Comonotonicity

Let X and Y be two random variables with respective cdfs HX and HY , and H(x, y) :=

Pr(X ≤ x, Y ≤ y) be their joint cdf. It is said that X and Y are comonotonic if (X,Y )
D∼(

H−1
X (U), H−1

Y (U)
)
, where U is a random variable uniformly distributed on the interval

[0, 1].

Definition 6.42. It is said that a risk measure ρ : Z → R is comonotonic if for any two
comonotonic random variables X,Y ∈ Z it follows that ρ(X + Y ) = ρ(X) + ρ(Y ).

Let us observe that V@Rα, α ∈ (0, 1), risk measure is comonotonic. Indeed, let
X and Y be comonotonic random variables. We can assume that X = H−1

X (U) and
Y = H−1

Y (U), with U being a random variable uniformly distributed on the interval [0, 1].
Consider function g(·) := H−1

X (·) +H−1
Y (·). Note that g : (0, 1)→ R is a monotonically

nondecreasing left side continuous function. Then

V@Rα(X + Y ) = inf
{
t : Pr(g(U) ≤ t) ≥ 1− α

}
= inf

{
t : Pr(U ≤ g−1(t)) ≥ 1− α

}
= inf

{
t : g−1(t) ≥ 1− α

}
= g(1− α) = H−1

X (1− α) +H−1
Y (1− α)

= V@Rα(X) + V@Rα(Y ).

By (6.27) it follows that if X and Y are comonotonic, then

AV@Rα(X + Y ) = 1
α

∫ 1

1−α V@R1−τ (X + Y ) dτ

= 1
α

∫ 1

1−α [V@R1−τ (X) + V@R1−τ (Y )] dτ

= AV@Rα(X) + AV@Rα(Y ).

That is, AV@Rα is comonotonic for all α ∈ (0, 1]. Consequently if µ is a probability
measure on the interval [0, 1), then the risk measure

∫ 1

0
AV@R1−α(Z)dµ(α) is coherent
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law invariant and comonotonic. By Theorem 6.39 it follows that a spectral risk measure is
comonotonic. We show now that the converse is also true.

Theorem 6.43. Suppose that the probability space (Ω,F , P ) is nonatomic and let Z =
Lp(Ω,F , P ), p ∈ [1,∞), and ρ : Z → R be a law invariant, coherent risk measure. Then
the following properties are equivalent: (i) Risk measure ρ is spectral. (ii) Risk measure ρ
is comonotonic. (iii) There exists a (uniquely defined) probability measure µ on the interval
[0, 1) such that

ρ(Z) =

∫ 1

0

AV@R1−α(Z)dµ(α), Z ∈ Z. (6.142)

Proof. Let X,Y ∈ Z be comonotonic random variables. We can assume that (X,Y )
D∼

(H−1
X (U), H−1

Y (U)), where U is a random variable uniformly distributed on the interval

[0, 1]. It follows that X + Y
D∼ H−1

X (U) + H−1
Y (U)). Suppose that the risk measure ρ is

spectral with spectral function σ ∈ Fq . Then

ρ(X + Y ) =
∫ 1

0
σ(t)(H−1

X (t) +H−1
Y (t))dt

=
∫ 1

0
σ(t)H−1

X (t)dt+
∫ 1

0
σ(t)H−1

Y (t)dt
= ρ(X) + ρ(Y ).

This proves the implication (i)⇒ (ii).
Conversely, suppose that ρ is comonotonic. We can assume that the space (Ω,F , P )

is standard uniform. Consider the dual representation of ρ:

ρ(Z) = sup
ζ∈A

∫ 1

0

ζ(t)Z(t)dt, Z ∈ Z. (6.143)

Recall that by Corollary 6.30 the dual set A is invariant with respect to measure-preserving
transformations. Therefore ρ is spectral, with spectral function σ, iff for any Z ∈ Z the
maximum in the right hand side of (6.143) is attained at an element of A distributionally
equivalent to σ.

Now let us argue by a contradiction. Suppose that there exist X,Y ∈ Z such that
the maximum in the right hand side of (6.143) for Z = X and Z = Y is attained at
respective points of A which are not distributionally equivalent. Note that the set of left
side continuous monotonically nondecreasing random variables in Z can be represented
by random variables H−1

Z (U), Z ∈ Z , with U being a random variable uniformly dis-
tributed on the interval [0, 1]. By applying appropriate measure-preserving transformations
toX,Y : [0, 1]→ R, we can assume that these functions are left side continuous monoton-
ically nondecreasing, and hence are comonotonic. It follows that there exist two comono-
tonic random variables X,Y ∈ Z such that the maximum in the right hand side of (6.143)
for Z = X and Z = Y is not attained at the same ζ ∈ A. On the other hand for Z = X+Y
the maximum in the right hand side of (6.143) is attained at some ζ̄ ∈ A, and hence

ρ(X + Y ) =

∫ 1

0

ζ̄(t)(X(t) + Y (t))dt =

∫ 1

0

ζ̄(t)X(t)dt+

∫ 1

0

ζ̄(t)Y (t)dt.
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Since ζ̄ ∈ A we have that∫ 1

0

ζ̄(t)X(t)dt ≤ ρ(X) and

∫ 1

0

ζ̄(t)Y (t)dt ≤ ρ(Y ),

with at least one of these inequalities being strict (this is because the maximum in the right
hand side of (6.143) for Z = X and Z = Y is not attained at a same point of A). Thus
ρ(X + Y ) < ρ(X) + ρ(Y ), and hence ρ is not comonotonic. This proves the implication
(ii)⇒ (i).

The equivalence of (i) and (iii) was shown in Theorem 6.39.

Convex Law Invariant Risk Measures

Consider a proper lower semicontinuous law invariant convex risk measure ρ : Z → R. As
it was discussed in Remark 32, ρ(Z) has a dual representation of the form (6.126) with the
corresponding conjugate ρ∗(σ) of the form (6.127). By proceeding in the same way as in
the derivation of Theorem 6.40 we obtain the following result.

Theorem 6.44. Suppose that the probability space (Ω,F , P ) is nonatomic and let ρ : Z →
R be a proper lower semicontinuous law invariant convex risk measure. Then there exists
a set M of probability measures on the interval [0, 1) such that

ρ(Z) = sup
µ∈M

{∫ 1

0

AV@R1−α(Z)dµ(α)− β(µ)

}
, Z ∈ Z, (6.144)

where

β(µ) := sup
Y ∈Fp

{∫ 1

0

AV@R1−α(Y )dµ(α)− ρ(Y )

}
. (6.145)

Proof. It was shown in Remark 32, on page 326, that ρ(Z) has representation (6.126) with
ρ∗(σ) given in (6.127). Similar to the proof of Theorem 6.39, we can write for σ = Tµ,
where T is defined in (6.132),∫ 1

0
σ(t)H−1

Z (t)dt− ρ∗(σ) =
∫ 1

0
(Tµ)(t)H−1

Z (t)dt− ρ∗(Tµ)

=
∫ 1

0

∫ t
0
(1− α)−1H−1

Z (t)dµ(α)dt− ρ∗(Tµ)

=
∫ 1

0

∫ 1

α
(1− α)−1H−1

Z (t)dtdµ(α)− ρ∗(Tµ)

=
∫ 1

0
AV@R1−α(Z)dµ(α)− ρ∗(Tµ).

(6.146)

Together with (6.126) this implies that

ρ(Z) = sup
µ∈M

{∫ 1

0

AV@R1−α(Z)dµ(α)− ρ∗(Tµ)

}
, (6.147)

where M := T−1(Fq). Similar to (6.146) we have for Y ∈ Fq that∫ 1

0

Y (t)(Tµ)(t)dt− ρ(Y ) =

∫ 1

0

AV@R1−α(Y )dµ(α)− ρ(Y ),
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and hence by (6.127)

ρ∗(Tµ) = sup
Y ∈Fq

{∫ 1

0

AV@R1−α(Y )dµ(α)− ρ(Y )

}
. (6.148)

Combining (6.147) with (6.148) completes the proof.

6.3.6 Probability Spaces with Atoms

So far we considered cases when the reference probability space is nonatomic. Of course
this rules out, for example, discrete probability spaces. So what can be said about law
invariant risk measures defined on probability spaces with atoms? Let us consider the fol-
lowing construction. Suppose that the reference probability space can be embedded into
the standard uniform probability space. That is, let (Ω,F , P ) be the standard uniform
probability space and G be a sigma subalgebra of F such that the considered reference
probability space is equivalent (isomorphic) to (Ω,G, P ). So we can view (Ω,G, P ) as
the reference probability space. For example, let the reference probability space be dis-
crete with a countable (finite) number of elementary events and respective probabilities
p1, p2, . . . . Let us partition Ω = [0, 1] into intervals A1, A2, . . . , of respective lengths
p1, p2, . . . , and consider sigma algebra G ⊂ F generated by these intervals. This will
give the required embedding of the discrete probability space into the standard uniform
probability space.

Consider space Ẑ := Lp(Ω,G, P ), p ∈ [1,∞), and a proper lower semicontinuous
law invariant risk measure % : Ẑ → R. Note that % is supposed to be law invariant with
respect to the reference probability space. That is, if Z1, Z2 ∈ Ẑ are two G-measurable
distributionally equivalent random variables, then %(Z1) = %(Z2). Note also that the space
Ẑ is a subspace of the space Z := Lp(Ω,F , P ). Therefore a relevant question is whether
it is possible to extend % to a law invariant risk measure on the space Z . For a risk measure
ρ : Z → R we denote by ρ|Ẑ the restriction of ρ to the space Ẑ , i.e., ρ̂ = ρ|Ẑ is defined on
the space Ẑ and ρ̂(Z) = ρ(Z) for Z ∈ Ẑ .

Definition 6.45. We say that a proper lower semicontinuous law invariant coherent (con-
vex) risk measure % : Ẑ → R is regular if there exists a proper lower semicontinuous law
invariant coherent (convex) risk measure ρ : Z → R such that ρ|Ẑ = %.

For example, the Average Value-at-Risk and mean-semideviation measures are regu-
lar risk measures irrespective of the reference probability space. Recall that F denotes the
set of spectral functions σ : [0, 1) → R and Fq ⊂ F denotes the set of spectral functions
with finite q-th order moment. As before we denote by G the set of measure-preserving
transformations of the reference space (Ω,G, P ). Note that G is a subgroup of the group of
measure-preserving transformations of the standard uniform probability space (Ω,F , P ).

Remark 36. Let % : Ẑ → R be a proper lower semicontinuous law invariant coherent
risk measure. It follows from the above definition and derivations of section 6.3.4 that % is
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regular iff there exists a set Υ ⊂ Fq such that

%(Z) = sup
σ∈Υ

∫ 1

0

σ(t)H−1
Z (t)dt, Z ∈ Ẑ. (6.149)

It also follows by Theorem 6.40 that % is regular iff it has the Kusuoka representation
(6.134). Therefore existence of Kusuoka representation for the risk measure % can be re-
duced to verification of regularity of %. Note that G-measurability of Z ∈ Ẑ does not
necessarily imply G-measurability of H−1

Z .

Proposition 6.46. Suppose that the following condition holds:

(♣) For any G-measurable random variable Z : [0, 1] → R there exists measure pre-
serving transformation T ∈ G, of the reference space (Ω,G, P ), such that Z ◦ T is
monotonically nondecreasing.

Then every proper lower semicontinuous law invariant coherent risk measure % : Ẑ → R
is regular.

Proof. Let % : Ẑ → R be a proper lower semicontinuous law invariant coherent risk
measure. It has the dual representation

%(Z) = sup
ζ∈Â

∫ 1

0

ζ(t)Z(t)dt, Z ∈ Ẑ, (6.150)

where Â ⊂ Ẑ∗ is the corresponding dual set of density functions. Since % is law invari-
ant, the set Â is invariant with respect to measure-preserving transformations T ∈ G (see
Corollary 6.30).

Suppose that condition (♣) holds. Consider an element Y ∈ Ẑ . By condition (♣)
there exists T ∈ G such that Z = Y ◦T is monotonically nondecreasing, and we can take Z
to be left side continuous. It follows that Z ∈ Ẑ and Z D∼ Y , and hence %(Z) = %(Y ), and
that Z = H−1

Y . So let Z ∈ Ẑ be monotonically nondecreasing and consider an element
ζ ∈ Â. By condition (♣) there exists T ∈ G such that η = ζ ◦ T is a monotonically
nondecreasing function. Since Â is invariant with respect to transformations of the group
G, it follows that η ∈ Â. Also by monotonicity of Z we have that

∫ 1

0
ζ(t)Z(t)dt ≤∫ 1

0
η(t)Z(t)dt, and hence it suffices to take the maximum in (6.150) with respect to ζ ∈ Υ̂,

where Υ̂ is the subset of Â formed by monotonically nondecreasing η ∈ Â. Define now

ρ(Z) = sup
η∈Υ̂

∫ 1

0

η(t)H−1
Z (t)dt, Z ∈ Z. (6.151)

We have that ρ : Z → R is a proper lower semicontinuous law invariant coherent risk
measure and ρ|Ẑ = %. This shows that % is regular.

Suppose now that the reference probability space {ω1, . . . , ωn} is finite. As it was
discussed above it can be embedded into the standard uniform probability space. The
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corresponding space Ẑ consists of all functions Z : {ω1, . . . , ωn} → R. If all respective
probabilities p1, . . . , pn are equal to each other, then the associated group G of measure
preserving transformations is given by the set of permutations of {ω1, . . . , ωn}. It follows
that condition (♣) of Proposition 6.46 holds and hence we have the following result.

Corollary 6.47. Let the reference probability space {ω1, . . . , ωn} be finite, equipped with
equal probabilities pi = 1/n, i = 1, . . . , n. Then every law invariant coherent risk measure
% : Ẑ → R is regular, and hence has a Kusuoka representation.

We give now an example of law invariant coherent risk measures which are not reg-
ular.

Example 6.48 Consider the above framework where the reference probability space is em-
bedded into the standard uniform probability space, and Ẑ = Lp(Ω,G, P ). Suppose that
the reference probability space (Ω,G, P ) has atoms. Thus there exists r > 0 such that the
set Ar := {ω ∈ Ω : P ({ω}) = r}, of all atoms having probability r, is nonempty. Clearly
the set Ar is finite, let N := |Ar| be the cardinality of Ar (the set Ar could be a singleton,
i.e., it could be that N = 1). The set Ar = ∪Ni=1Ai, where Ai ⊂ Ω, i = 1, . . . , N , are
intervals of length r. Note that since Z ∈ Ẑ is G-measurable, Z(·) is constant on each Ai;
we denote by Z(ω) this constant when ω ∈ Ai.

Assume that the reference probability space is not a finite set equipped with equal
probabilities, so that P (Ω \Ar) > 0. Define

%(Z) :=
1

N

∑
ω∈Ar

Z(ω), Z ∈ Ẑ. (6.152)

Clearly % : Ẑ → R is a coherent risk measure. Suppose further that the following condition
holds.

(♠) If Z,Z ′ ∈ Ẑ are distributionally equivalent, then there exists a permutation π of the
set Ar such that Z ′(ω) = Z(π(ω)) for any ω ∈ Ar.

Under this condition, the risk measure % is law invariant as well. Let us show that it is not
regular.

Indeed, let us argue by a contradiction. Suppose that % = ρ̂ for some proper lower
semicontinuous law invariant coherent risk measure ρ : Z → R and ρ̂ := ρ|Ẑ . Note
that %(Z) depends only on values of Z(·) on the set Ar, i.e., for any Z,Z ′ ∈ Ẑ we have
that ρ(Z) = ρ(Z ′) if Z(ω) = Z ′(ω) for all ω ∈ Ar. In particular, if Z(ω) = 0 for all
ω ∈ Ar, then ρ(Z) = 0. It follows that ρ(1B) = 0 for any G-measurable set B ⊂ Ω \ Ar.
Note that the set Ω \ Ar has a nonempty interior since the set Ar is a union of a finite
number of intervals and P (Ω \ Ar) > 0, and hence we can take B ⊂ Ω \ Ar to be an
open interval. Since ρ is law invariant it follows that ρ(1T (B)) = 0 for any measure-
preserving transformation T : Ω → Ω of the standard uniform probability space. Hence
there is a family of sets Bi ∈ F , i = 1, . . . ,m, such that ρ(1Bi) = 0, i = 1, . . . ,m, and
[0, 1] = ∪mi=1Bi. It follows that for any bounded Z ∈ Z there are ci ∈ R, i = 1, . . . ,m,
such that Z ≤

∑m
i=1 ci1Bi . Consequently

ρ(Z) ≤ ρ (
∑m
i=1 ci1Bi) ≤

∑m
i=1 ciρ(1Bi) = 0,
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this clearly is a contradiction.
It follows that the risk measure %, defined in (6.152), does not have a Kusuoka rep-

resentation. Note that it was only essential in the above construction that the restriction of
the risk measure % : Ẑ → R to the set Ar is a law invariant coherent risk measure. So, for
example, under the above assumptions the risk measure %(Z) := max{Z(ω) : ω ∈ Ar} is
also not regular.

As far as condition (♠) is concerned, suppose for example that the reference space
is finite, equipped with respective probabilities p1, . . . , pn. For some r ∈ {p1, . . . , pn} let
Ir := {i : pi = r, i = 1, . . . , n}. Suppose that∑

i∈I
pi 6=

∑
j∈J

pj , ∀I ⊂ Ir, ∀J ⊂ {1, . . . , n} \ Ir. (6.153)

Then condition (♠) holds for the set Ar := {ωi : i ∈ Ir}. That is, condition (6.153)
ensures existence of a nonregular risk measure %.

6.3.7 Stochastic Orders
For law invariant risk measures it makes sense to discuss their monotonicity properties
with respect to various stochastic orders defined for (real valued) random variables. Many
stochastic orders can be characterized by a class U of functions u : R → R as follows.
For (real valued) random variables Z1 and Z2 it is said that Z2 dominates Z1, denoted
Z2 �U Z1, if E[u(Z2)] ≥ E[u(Z1)] for all u ∈ U for which the corresponding expectations
do exist. This stochastic order is called the integral stochastic order with generator U . In
particular, the usual stochastic order, written Z2 �(1) Z1, corresponds to the generator
U formed by all nondecreasing functions u : R → R. Equivalently, Z2 �(1) Z1 iff
HZ2

(t) ≤ HZ1
(t) for all t ∈ R. The relation �(1) is also frequently called the first

order stochastic dominance (see Definition 4.3). We say that the integral stochastic order
is increasing if all functions in the set U are nondecreasing. The usual stochastic order is
an example of increasing integral stochastic order.

Definition 6.49. A law invariant risk measure ρ : Z → R is consistent (monotone) with
the integral stochastic order �U if for all Z1, Z2 ∈ Z we have the implication{

Z2 �U Z1

}
⇒
{
ρ(Z2) ≥ ρ(Z1)

}
.

For an increasing integral stochastic order we have that if Z2(ω) ≥ Z1(ω) for a.e.
ω ∈ Ω, then u(Z2(ω)) ≥ u(Z1(ω)) for any u ∈ U and a.e. ω ∈ Ω, and hence E[u(Z2)] ≥
E[u(Z1)]. That is, if Z2 � Z1 in the almost sure sense, then Z2 �U Z1. It follows that if ρ
is law invariant and consistent with respect to an increasing integral stochastic order, then
it satisfies the monotonicity condition (R2). In other words if ρ does not satisfy condition
(R2), then it cannot be consistent with any increasing integral stochastic order. In particular,
for c > 1 the mean-semideviation risk measure, defined in Example 6.23, is not consistent
with any increasing integral stochastic order, provided that condition (6.98) holds.

A general way of proving consistency of law invariant risk measures with stochastic
orders can be obtained via the following construction. For a given pair of random variables
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Z1 and Z2 in Z , consider another pair of random variables, Ẑ1 and Ẑ2, which have distri-
butions identical to the original pair, i.e., Ẑ1

D∼ Z1 and Ẑ2
D∼ Z2. The construction is such

that the postulated consistency result becomes evident. For this method to be applicable, it
is convenient to assume that the probability space (Ω,F , P ) is nonatomic. Then there ex-
ists a measurable function U : Ω→ R (uniform random variable) such that P (U ≤ t) = t
for all t ∈ [0, 1].

Theorem 6.50. Suppose that the probability space (Ω,F , P ) is nonatomic. Then the fol-
lowing holds: if a risk measure ρ : Z → R is law invariant, then it is consistent with the
usual stochastic order iff it satisfies the monotonicity condition (R2).

Proof. By the discussion preceding the theorem, it is sufficient to prove that (R2) implies
consistency with the usual stochastic order.

For a uniform random variable U(ω) consider the random variables Ẑ1 := H−1
Z1

(U)

and Ẑ2 := H−1
Z2

(U). We obtain that if Z2 �(1) Z1, then Ẑ2(ω) ≥ Ẑ1(ω) for all ω ∈ Ω,

and hence by virtue of (R2), ρ(Ẑ2) ≥ ρ(Ẑ1). By construction, Ẑ1
D∼ Z1 and Ẑ2

D∼ Z2.
Since the risk measure is law invariant, we conclude that ρ(Z2) ≥ ρ(Z1). Consequently,
the risk measure ρ is consistent with the usual stochastic order.

It is said that Z1 is smaller than Z2 in the increasing convex order, written Z1 �icx

Z2, if E[u(Z1)] ≤ E[u(Z2)] for all increasing convex functions u : R → R such that
the expectations exist. Clearly this is an integral stochastic order with the corresponding
generator given by the set of increasing convex functions. It is equivalent to the second
order stochastic dominance relation for the negative variables: −Z1 �(2) −Z2 (recall
that we are dealing here with minimization rather than maximization problems). Indeed,
applying Definition 4.4 to −Z1 and −Z2 for k = 2 and using identity (4.7) we see that

E
{

[Z1 − η]+
}
≤ E

{
[Z2 − η]+

}
, ∀ η ∈ R. (6.154)

Since any convex nondecreasing function u(z) can be arbitrarily close approximated by a
positive combination of functions uk(z) = βk + [z − ηk]+, inequality (6.154) implies that
E[u(Z1)] ≤ E[u(Z2)], as claimed (compare with the statement (4.8)). Note also that for
standard uniform probability space (Ω,F , P ), condition (6.154) is equivalent to condition
(6.120).

Theorem 6.51. Suppose that the probability space (Ω,F , P ) is nonatomic. Then any
proper lower semicontinuous law invariant convex risk measure ρ : Z → R is consistent
with the increasing convex order.

Proof. By using definition (6.23) of AV@Rα and the property that Z1 �icx Z2 iff condition
(6.154) holds, it is straightforward to verify that AV@Rα is consistent with the increasing
convex order. Now by using the Kusuoka representation (6.144), for convex risk measures
(Theorem 6.44), and noting that the operations of taking convex combinations and max-
imum preserve consistency with the increasing convex order, we can complete the proof.
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Corollary 6.52. Suppose that the probability space (Ω,F , P ) is nonatomic. Let ρ : Z → R
be a proper lower semicontinuous law invariant convex risk measure and G be a sigma
subalgebra of the sigma algebra F . Then

ρ (E [Z|G]) ≤ ρ(Z), ∀Z ∈ Z, (6.155)

and
E [Z] ≤ ρ(Z), ∀Z ∈ Z. (6.156)

Proof. Consider Z ∈ Z and Z ′ := E[Z|G]. For every convex function u : R→ R we have

E[u(Z ′)] = E [u (E[Z|G])] ≤ E[E(u(Z)|G)] = E [u(Z)] ,

where the inequality is implied by Jensen’s inequality. This shows that Z ′ �icx Z, and
hence (6.155) follows by Theorem 6.51.

In particular, for G := {Ω, ∅}, it follows by (6.155) that ρ(Z) ≥ ρ (E [Z]), and since
ρ (E [Z]) = E[Z] this completes the proof.

An intuitive interpretation of property (6.155) is that if we reduce variability of a
random variableZ by employing conditional averagingZ ′ = E[Z|G], then the risk measure
ρ(Z ′) becomes smaller, while E[Z ′] = E[Z].

Remark 37. It was only essential in the proof of Theorem 6.51, that the risk measure ρ
has the Kusuoka representation. Therefore the assumption for the space (Ω,F , P ) to be
nonatomic in Theorem 6.51 can be replaced by the assumption that the risk measure ρ is
regular (see the discussion of section 6.3.6, and specifically Remark 36). The same remark
applies to Corollary 6.52. In particular, for the mean-semideviation measures, defined in
Example 6.23, and for the Average Value-at-Risk measures, consistency with the increas-
ing convex order follows and the inequality (6.155) holds irrespective of the associated
reference probability space.

In general, the inequalities of Corollary 6.52, and hence the implication of Theorem
6.51, do not hold for arbitrary reference probability spaces. For example, let Ω = {ω1, ω2}
with respective probabilities p1 = 1/3 and p2 = 2/3, and consider %(Z) := Z(ω1). As it
was discussed in Example 6.48, % is a law invariant coherent risk measure, although it is
not regular. For random variable Z : Ω → R defined as Z(ω1) = 0, Z(ω2) = 1, we have
that E[Z] = 2/3, while %(Z) = 0. That is, the inequality (6.156) does not hold.

6.4 Ambiguous Chance Constraints
Owing to the dual representation (6.38), measures of risk are related to robust and ambigu-
ous models. Consider a chance constraint of the form

P{C(x, ω) ≤ 0} ≥ 1− α. (6.157)

Here P is a probability measure on a measurable space (Ω,F) and C : Rn × Ω → R is a
random function. It is assumed in this formulation of chance constraint that the probability
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measure (distribution), with respect to which the corresponding probabilities are calculated,
is known.

Suppose now that the underlying probability distribution is not known exactly, but
rather is assumed to belong to a specified family of probability distributions. Problems
involving such constrains are called ambiguous chance constrained problems. For a spec-
ified uncertainty set M of probability measures on (Ω,F), the corresponding ambiguous
chance constraint defines a feasible set X ⊂ Rn which can be written as

X :=
{
x : Q{C(x, ω) ≤ 0} ≥ 1− α, ∀Q ∈M

}
. (6.158)

The set X can be written in the following equivalent form

X =

{
x ∈ Rn : sup

Q∈M
EQ [1Ax ] ≤ α

}
, (6.159)

where
Ax := {ω ∈ Ω : C(x, ω) > 0}. (6.160)

We consider the uncertainty sets M of the following form. Let (Ω,F , P ) be a
nonatomic probability space (reference space) and A be a nonempty set of probability den-
sity functions h : Ω→ R+. Assume that A is invariant with respect to measure-preserving
transformations (see Definition 6.27). That is, if h ∈ A and T : Ω → Ω is a measure-
preserving transformation, then h ◦ T ∈ A. Define M to be a set of probability measures,
absolutely continuous with respect to P , of the form

M := {Q : dQ/dP ∈ A}. (6.161)

That is, the set M is formed by probability measures absolutely continuous with respect to
P and M is invariant with respect to measure-preserving transformations. (Note that if Q
is an absolutely continuous with respect to P probability measure, with h := dQ/dP , and
Q′(A) := Q(T (A)), A ∈ F , for some measure-preserving transformation T : Ω → Ω,
thenQ′ is also absolutely continuous with respect to P probability measure and dQ′/dP =
h ◦ T .)

For an F-measurable set A ⊂ Ω consider

g(A) := sup
Q∈M

EQ [1A] = sup
h∈A

∫
A

h(ω)dP (ω). (6.162)

We can view g(·) as a function g : F → R. Because of the invariance of A with respect
to measure-preserving transformations, we have that g(A) = g(B) if P (A) = P (B).
(Recall that P (A) = P (B), for some A,B ∈ F , iff there exists a measure-preserving
transformation T such that B = T (A), see Remark 28 on page 320.) That is, g(A) is a
function of P (A) and can be written as g(A) = p(P (A)) for some function p : [0, 1]→ R.
Since the reference space is nonatomic, it follows that the set {P (A) : A ∈ F} coincides
with the interval [0, 1], and hence the function p is uniquely defined on [0,1].

Proposition 6.53. The function p : [0, 1] → R has the following properties: (i) p(0) = 0
and p(1) = 1, (ii) p(·) is monotonically nondecreasing on the interval [0, 1], (iii) p(·) is
monotonically increasing on the interval [0, τ̄ ], where

τ̄ := inf{t ∈ [0, 1] : p(t) = 1}, (6.163)
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(iv) if M = {P}, then p(t) = t for all t ∈ [0, 1]; and if M 6= {P}, then p(t) > t for all
t ∈ (0, 1), (v) p(·) is continuous on the interval (0, 1].

Proof. Clearly if A,B ∈ F and A ⊂ B and hence P (A) ≤ P (B), then g(A) ≤ g(B).
It follows that function p is monotonically nondecreasing. If P (A) = 0, then by the right
hand side of (6.162) we have that g(A) = 0. It follows that p(0) = 0. Similarly g(Ω) = 1
and hence p(1) = 1. This proves properties (i) and (ii).

We can assume without loss of generality that the reference probability space is stan-
dard uniform. We have that for any h ∈ A there exists a measure-preserving transformation
T such that h◦T is monotonically nondecreasing (see Remark 30 on page 321). Since A is
invariant with respect to measure-preserving transformations, h◦T ∈ A. Denote by A∗ the
subset of A formed by monotonically nondecreasing (density) functions h ∈ A. It follows
that

p(t) = sup
h∈A∗

ψh(t), t ∈ [0, 1], (6.164)

where ψh(t) :=
∫ 1

1−t h(ω)dω. It is straightforward to verify that for every h ∈ A∗ the
function ψh(·) is concave continuous monotonically increasing on [0, 1] with ψh(0) = 0
and ψh(1) = 1.

To prove (iii) we argue by a contradiction. Suppose that p(a) = p(b) for some
0 ≤ a < b ≤ τ̄ . For ε > 0 let h ∈ A∗ be such that p(a) ≤ ψh(a) + ε. By concavity of
ψh(·) we have that

ψh(1) ≤ ψh(a) +
ψh(b)− ψh(a)

b− a
(1− a).

We also have that p(a) − ε ≤ ψh(a) ≤ ψh(b) ≤ p(b) = p(a). It follows that 1 ≤
p(a) + ε(1 − a)/(b − a), and hence since ε > 0 is arbitrary that 1 ≤ p(a). On the other
hand p(a) < 1 since a < τ̄ . We obtain a contradiction. This proves (iii).

If M = {P}, then A = {1Ω} and hence p(t) = t for all t ∈ [0, 1]. If M 6= {P},
then the set A∗ contains a nonconstant function h∗, and hence

p(t) ≥
∫ 1

1−t
h∗(ω)dω > t, t ∈ (0, 1).

This proves (iv).
Since p(·) is a maximum of a family of continuous functions, it is lower semicontin-

uous (see Proposition 7.24). In the present case this means that limt↑t0 p(t) = p(t0) for
any t0 ∈ (0, 1], i.e., p(·) is continuous from the left. Let us show that it is also continuous
from the right on the interval (0, 1]. Consider a point t0 ∈ (0, 1) and t0 < t < 1. For
h ∈ A∗ we have

0 ≤ ψh(t)− ψh(t0) =

∫ 1−t0

1−t
h(ω)dω. (6.165)

We also have that

1 ≥
∫ 1

1−t h(ω)dω =
∫ 1−t0

1−t h(ω)dω +
∫ 1

1−t0 h(ω)dω

≥
∫ 1−t0

1−t h(ω)dω + t0
t−t0

∫ 1−t0
1−t h(ω)dω

= t
t−t0

∫ 1−t0
1−t h(ω)dω,
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where the last inequality follows because h(·) is monotonically nondecreasing. Hence the
right hand side of (6.165) can be bounded by (t − t0)/t uniformly in h ∈ A∗. It follows
that

0 ≤ p(t)− p(t0) ≤ (t− t0)/t. (6.166)

Since t0 > 0, we have that (t − t0)/t converges to 0 as t ↓ t0. Together with (6.166) this
implies that limt↓t0 p(t) = p(t0). This proves that p(t) is continuous on (0, 1). Continuity
at t = 1 follows from the inequalities t ≤ p(t) ≤ 1. This completes the proof of (v).

As we will see below function p(t) can be discontinuous at t = 0. That is,

α0 := lim
t↓0

p(t) (6.167)

can be strictly bigger than p(0) = 0. The set X of the form (6.159) can be written as

X = {x ∈ Rn : p(P (Ax)) ≤ α} , (6.168)

and hence as
X = {x ∈ Rn : P (Ax) ≤ α∗} , (6.169)

where α∗ := p−1(α). That is,

X =
{
x : P{C(x, ω) ≤ 0} ≥ 1− α∗

}
, (6.170)

i.e., the setX can be defined by a chance constraint with respect to the reference distribution
P and with the respective probability level 1− α∗.

By the above Proposition 6.53, forα ∈ (α0, 1) the corresponding valueα∗ = p−1(α)
is given as the unique solution of the equation p(α∗) = α; and p−1(α) = 0 for α ∈ [0, α0].
The function p−1(·) is continuous on [0, 1). Also unless M is the singleton {P}, it holds
that p−1(α) < α for α ∈ (0, 1).

Remark 38. Consider Value-at-Risk

V@RQα (Z) = inf
{
t : Q{Z > t} ≤ α

}
,

associated with probability measure Q ∈M. We have that for any c ∈ R, V@RQα (Z) ≤ c
is equivalent to Q{Z > c} ≤ α. It follows that

sup
Q∈M

V@RQα (Z) ≤ c ⇔ sup
Q∈M

Q{Z > c} ≤ α. (6.171)

By the above analysis we also have that the right hand side of (6.171) is equivalent to
P{Z > c} ≤ α∗, and hence to V@RPα∗(Z) ≤ c, where α∗ = p−1(α). It follows that

sup
Q∈M

V@RQα (Z) = V@RPα∗(Z). (6.172)

In particular, for α0 defined in (6.167) and α ∈ [0, α0] we have that

sup
Q∈M

V@RQα (Z) = ess sup(Z). (6.173)
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Consider now coherent risk measure

ρ(Z) := sup
dQ
dP ∈A

EQ[Z] (6.174)

defined on the space Z = L∞(Ω,F , P ). Since the set A is invariant with respect to
measure-preserving transformations, this risk measure is law invariant. Using this risk
measure we can write the set X in the form

X = {x ∈ Rn : ρ(1Ax) ≤ α} . (6.175)

In some cases the corresponding function p = pρ can be computed in a closed form.
Consider the Average Value-at-Risk measure ρ(·) := AV@Rγ(·), γ ∈ (0, 1]. By

direct calculations it is straightforward to verify that for any A ∈ F ,

AV@Rγ(1A) =

{
γ−1P (A), if P (A) ≤ γ,

1, if P (A) > γ.

Consequently the corresponding function pρ can be written as

pρ(t) =

{
γ−1t, if t ∈ [0, γ],
1, if t ∈ (γ, 1].

(6.176)

In particular, for ρ(·) := AV@R1(·), i.e., for ρ := E(·), we have that pρ(t) = t for t ∈ [0, 1].
For ρ(·) := AV@R0(·), i.e., for ρ := ess sup(·), we have that pρ(t) = 1 for t ∈ (0, 1], and
pρ(0) = 0. That is, in that case the function pρ(·) is discontinuous at 0.

Now let ρ :=
∑m
i=1 λiρi be a convex combination of law invariant coherent risk

measures ρi, i = 1, ...,m. For A ∈ F we have that ρ(1A) =
∑m
i=1 λiρi(1A) and hence

pρ =
∑m
i=1 λipρi . By taking ρi := AV@Rγi , with γi ∈ (0, 1], i = 1, ...,m, and using

(6.176), we obtain that pρ : [0, 1] → [0, 1] is a piecewise linear nondecreasing concave
function with pρ(0) = 0 and pρ(1) = 1. In particular, let

ρ := βAV@Rγ + (1− β)AV@R1, (6.177)

where β, γ ∈ (0, 1). Then

pρ(t) =

{
(1− β + γ−1β)t, if t ∈ [0, γ],

β + (1− β)t, if t ∈ (γ, 1].
(6.178)

That is, for an appropriate choice of β, γ ∈ (0, 1), the corresponding function pρ can be any
piecewise linear nondecreasing concave function consisting of two linear pieces and such
that pρ(0) = 0 and pρ(1) = 1. More generally, let µ be a probability measure on [0, 1] and

ρ :=
∫ 1

0
AV@Rγdµ(γ). In that case the corresponding function pρ : [0, 1] → R becomes

a nondecreasing concave function with pρ(0) = 0 and pρ(1) = 1 (it is discontinuous at
t = 0 iff µ has a positive mass at t = 0).



i
i

“SPbook” — 2013/12/24 — 8:37 — page 344 — #356 i
i

i
i

i
i

344 Chapter 6. Risk Averse Optimization

Let ρ(·) be the convex combination of AV@Rγ(·) and AV@R1(·) = E(·) defined in
(6.177). Then by (6.178) it follows that for this risk measure and for α < β + (1− β)γ,

α∗ =
α

1 + β(γ−1 − 1)
. (6.179)

In particular, for β = 1, i.e., for ρ = AV@Rγ , we have that α∗ = γα for α ∈ [0, 1).
As another example consider the mean-upper-semideviation risk measure of order

p ∈ [1,∞). That is

ρ(Z) := E[Z] + c
(
E
[[
Z − E[Z]

]p
+

])1/p

.

We have here that ρ(1A) = P (A) + c[P (A)(1− P (A))p]1/p, and hence

pρ(t) = t+ c t1/p(1− t), t ∈ [0, 1]. (6.180)

In particular, for p = 1 we have that pρ(t) = (1 + c)t− ct2, and hence

α∗ =
1 + c−

√
(1 + c)2 − 4αc

2c
. (6.181)

Note that for c > 1 the above function pρ(·) is not monotonically nondecreasing on the
interval [0, 1]. This should be not surprising since for c > 1 and nonatomic P , the corre-
sponding mean-upper-semideviation risk measure is not monotone.

Example 6.54 Let (Ω,F , P ) be a nonatomic probability space. For a probability measure
Q on (Ω,F), absolutely continuous with respect to P , the Kullback-Leibler divergence
from Q to P is defined as

DKL(Q‖P ) :=

∫
Ω

ln

(
dQ

dP

)
dQ =

∫
Ω

ln

(
dQ

dP

)
dQ

dP
dP. (6.182)

By Jensen inequality, using convexity of function − ln(·), we have∫
Ω

ln

(
dQ

dP

)
dQ = −

∫
Ω

ln

(
dP

dQ

)
dQ ≥ − ln

(∫
Ω

dP

dQ
dQ

)
= − ln 1 = 0.

That is, DKL(Q‖P ) ≥ 0. Since − ln(·) is strictly convex, it follows that DKL(Q‖P ) = 0
iff Q = P .

Consider the uncertainty set M of the form

M := {Q : DKL(Q‖P ) ≤ c} (6.183)

for some constant c > 0. This set can be written in the form (6.161) with the corresponding
set

A =

{
h ∈ P :

∫
Ω

h(ω) ln(h(ω))dP (ω) ≤ c
}
, (6.184)
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where P denotes the set of probability density functions on the space (Ω,F , P ). It is
convenient to write A in the following equivalent way

A =

{
h ∈ P :

∫
Ω

ψ(h(ω))dP (ω) ≤ c
}
, (6.185)

where ψ(x) := x lnx − x + 1, x ≥ 0. The function ψ : R+ → R has the following
properties: (i) ψ(x) ≥ 0 for all x ≥ 0, (ii) ψ(1) = 0 and ψ(x) > 0 for all x > 1, (iii) ψ(·)
is convex continuous. In the following derivations we consider sets A of the form (6.185)
with respective function ψ(·) satisfying the above conditions (i)-(iii).

For any measure-preserving transformation T : Ω→ Ω we have that∫
Ω

ψ(h(T (ω)))dP (ω) =

∫
Ω

ψ(h(ω))dP (ω),

and hence the set A is invariant with respect to measure-preserving transformations. The
corresponding function p(·) can be written as

p(t) = sup
h∈A

∫
A

h(ω)dP (ω), (6.186)

where P (A) = t and the set A consists of measurable functions h : Ω → R+ such that∫
Ω
h(ω)dP (ω) = 1 and

∫
Ω
ψ(h(ω))dP (ω) ≤ c.

Let us observe that if h ∈ A then for any B ∈ F , P (B) 6= 0, the function

ĥ(ω) :=

{
h(ω), if ω ∈ Ω \B,

1
P (B)

∫
B
hdP, if ω ∈ B,

also belongs to A. Indeed∫
Ω
ψ(ĥ)dP =

∫
Ω\B ψ(ĥ)dP +

∫
B
ψ(ĥ)dP

=
∫

Ω\B ψ(h)dP + P (B)ψ
(

1
P (B)

∫
B
hdP

)
≤

∫
Ω\B ψ(h)dP +

∫
B
ψ(h)dP =

∫
Ω
ψ(h)dP,

where the inequality holds by Jensen inequality since function ψ(·) is convex.
Also for B = A we have that

∫
A
hdP =

∫
A
ĥdP . It follows that it suffices to

perform optimization (maximization) in (6.186) over feasible functions of the form h =
x11Ω\A + x21A, x1 ≥ 0, x2 ≥ 0. Hence for t ∈ (0, 1] the function p(t) is equal to the
optimal value of the problem

Max
x1≥0, x2≥0

x2t

s.t. x1(1− t) + x2t = 1,
ψ(x1)(1− t) + ψ(x2)t ≤ c.

(6.187)

By making change of variables y = x2t we can write problem (6.187) in the following
equivalent form

Max
0≤y≤1

y s.t. θt(y) ≤ c, (6.188)
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where

θt(y) := (1− t)ψ
(

1− y
1− t

)
+ tψ

(y
t

)
. (6.189)

The following properties of function θt(·) follow from the properties (i)–(iii) of func-
tion ψ(·). For every t ∈ (0, 1) the function θt : [0, 1] → R+ is nonnegative valued convex
continuous, attains its minimal value of 0 at y = t, and is monotonically increasing on the
interval [t, 1]. By Proposition 6.53 we have that p(t) is continuous at every t ∈ (0, 1] (this
also can be proved here directly by using Theorem 7.23), and monotonically increasing on
the interval [0, τ̄ ]. Also p−1(α) < α for α ∈ (0, 1) and p−1(·) is continuous on [0, 1). As
we will see below p(t) can be discontinuous at t = 0.

For θt(1) > c the equation θt(y) = c has a solution ȳ(t) ∈ [t, 1]. Since θt(·)
is monotonically increasing on [t, 1] this solution is unique. Moreover, since θt(1) =
1− t+ tψ(1/t), we have for t ∈ (0, 1),

p(t) =

{
ȳ(t) if 1− t+ tψ(1/t) > c,

1 if 1− t+ tψ(1/t) ≤ c. (6.190)

That is, here τ̄ = inf{t ∈ [0, 1] : 1 − t + tψ(1/t) ≤ c}. It follows that for α ∈ (0, 1) the
corresponding value α∗ is the less than α root of the equation

(1− α∗)ψ
(

1− α
1− α∗

)
+ α∗ψ

( α
α∗

)
= c, (6.191)

if this root is nonnegative, and α∗ = 0 otherwise.
In case of ψ(x) = x lnx − x + 1, i.e., in case of the Kullback-Leibler divergence,

θt(y) = (1− y) ln
(

1−y
1−t

)
+ y ln

(
y
t

)
, and hence the corresponding value α∗ = p−1(α) is

the less than α root of the equation

(1− α) ln

(
1− α
1− α∗

)
+ α ln

( α
α∗

)
= c. (6.192)

We have here that θt(1) = ln(1/t). Thus the condition θt(1) ≤ c is equivalent to t ≥ e−c,
and hence p(t) = 1 for t ∈ [e−c, 1]. It follows that p−1(α) < e−c for any α ∈ (0, 1). Here
the function ψ(·) satisfies the property limx→+∞ ψ(x)/x = +∞. This property implies
that limt↓0 θt(y) = +∞ for y ∈ (0, 1). This in turn implies that p(t) tends to zero as
t ↓ 0. Thus p(t) is continuous at t = 0, and hence is continuous on [0,1]. Consequently
p−1(α) > 0 for any α ∈ (0, 1].

Consider now ψ(x) := |x − 1|. Then for t ∈ (0, 1) and y ∈ [0, 1] we have that
θt(y) = 2|y − t|. Consequently p(t) = min{t + c/2, 1} for t ∈ (0, 1] and p(0) = 0.
It follows that p−1(α) = [α − c/2]+. The function p(t) is discontinuous at t = 0. For
α ∈ [0, c/2] we have that p−1(α) = 0, and hence the corresponding set X is given by

X =
{
x ∈ Rn : P{C(x, ω) ≤ 0} = 1

}
. (6.193)

That is for α ∈ [0, c/2] the set X is defined by the constraints C(x, ω) ≤ 0 for P -a.e.
ω ∈ Ω.
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6.5 Optimization of Risk Measures
As before, we use the spaces Z = Lp(Ω,F , P ) and Z∗ = Lq(Ω,F , P ). Consider the
composite function φ(·) := ρ(F (·)), also denoted φ = ρ ◦ F , associated with a mapping
F : Rn → Z and a risk measure ρ : Z → R. We already studied properties of such
composite functions in section 6.3.1. Again we write f(x, ω) or fω(x) for [F (x)](ω), and
view f(x, ω) as a random function defined on the measurable space (Ω,F). Note that F (x)
is an element of space Lp(Ω,F , P ) and hence f(x, ·) is F-measurable and finite valued.
If, moreover, f(·, ω) is continuous for a.e. ω ∈ Ω, then f(x, ω) is a Carathéodory function,
and hence is random lower semicontinuous.

In this section we discuss optimization problems of the form

Min
x∈X

{
φ(x) := ρ(F (x))

}
. (6.194)

Unless stated otherwise, we assume that the feasible set X is a nonempty convex closed
subset of Rn. Of course, if we use ρ(·) := E[·], then problem (6.194) becomes a standard
stochastic problem of optimizing (minimizing) the expected value of the random function
f(x, ω). In that case we can view the corresponding optimization problem as risk neutral.
However, a particular realization of f(x, ω) could be quite different from its expectation
E[f(x, ω)]. This motivates an introduction, in the corresponding optimization procedure,
of some type of risk control. In the analysis of Portfolio Selection (see section 1.4) we
discussed an approach of using variance as a measure of risk. There is, however, a problem
with such approach since the corresponding mean-variance risk measure is not monotone
(see Example 6.21). We shall discuss this later.

Unless stated otherwise we assume that the risk measure ρ is proper, lower semi-
continuous and satisfies conditions (R1)–(R2). By Theorem 6.5 we can use representation
(6.38) to write problem (6.194) in the form

Min
x∈X

sup
ζ∈A

Φ(x, ζ), (6.195)

where A := dom(ρ∗) and the function Φ : Rn ×Z∗ → R is defined by

Φ(x, ζ) :=

∫
Ω

f(x, ω)ζ(ω)dP (ω)− ρ∗(ζ). (6.196)

If, moreover, ρ is positively homogeneous, then ρ∗ is the indicator function of the set A and
hence ρ∗(·) is identically zero on A. That is, if ρ is a proper lower semicontinuous coherent
risk measure, then problem (6.194) can be written as the minimax problem

Min
x∈X

sup
ζ∈A

Eζ [f(x, ω)], (6.197)

where
Eζ [f(x, ω)] :=

∫
Ω

f(x, ω)ζ(ω)dP (ω)

denotes the expectation with respect to ζdP . Note that, by the definition, F (x) ∈ Z and
ζ ∈ Z∗, and hence

Eζ [f(x, ω)] = 〈F (x), ζ〉
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is finite valued.
Suppose that the mapping F : Rn → Z is convex, i.e., for a.e. ω ∈ Ω the function

f(·, ω) is convex. This implies that for every ζ � 0 the function Φ(·, ζ) is convex and
if, moreover, ζ ∈ A, then Φ(·, ζ) is real valued and hence continuous. We also have that
〈F (x), ζ〉 is linear and ρ∗(ζ) is convex in ζ ∈ Z∗, and hence for every x ∈ X the function
Φ(x, ·) is concave. Therefore, under various regularity conditions, there is no duality gap
between problem (6.194) and its dual

Max
ζ∈A

inf
x∈X

{∫
Ω

f(x, ω)ζ(ω)dP (ω)− ρ∗(ζ)

}
, (6.198)

which is obtained by interchanging the “min” and “max” operators in (6.195) (recall that
the set X is assumed to be nonempty closed and convex). In particular, if there exists a
saddle point (x̄, ζ̄) ∈ X × A of the minimax problem (6.195), then there is no duality gap
between problems (6.195) and (6.198), and x̄ and ζ̄ are optimal solutions of (6.195) and
(6.198), respectively.

Proposition 6.55. Suppose that mapping F : Rn → Z is convex and risk measure ρ : Z →
R is proper, lower semicontinuous and satisfies conditions (R1)–(R2). Then (x̄, ζ̄) ∈ X×A
is a saddle point of Φ(x, ζ) if and only if ζ̄ ∈ ∂ρ(Z̄) and

0 ∈ NX (x̄) + Eζ̄ [∂fω(x̄)], (6.199)

where Z̄ := F (x̄).

Proof. By the definition, (x̄, ζ̄) is a saddle point of Φ(x, ζ) iff

x̄ ∈ arg min
x∈X

Φ(x, ζ̄) and ζ̄ ∈ arg max
ζ∈A

Φ(x̄, ζ). (6.200)

The first of the above conditions means that x̄ ∈ arg minx∈X ψ(x), where

ψ(x) :=

∫
Ω

f(x, ω)ζ̄(ω)dP (ω).

SinceX is convex and ψ(·) is convex real valued, by the standard optimality conditions this
holds iff 0 ∈ NX (x̄)+∂ψ(x̄). Moreover, by Theorem 7.52 we have ∂ψ(x̄) = Eζ̄ [∂fω(x̄)].
Therefore, condition (6.199) and the first condition in (6.200) are equivalent. The second
condition (6.200) and the condition ζ̄ ∈ ∂ρ(Z̄) are equivalent by equation (6.48).

Under the assumptions of Proposition 6.55, existence of ζ̄ ∈ ∂ρ(Z̄) in equation
(6.199) can be viewed as an optimality condition for problem (6.194). Sufficiency of that
condition follows directly from the fact that it implies that (x̄, ζ̄) is a saddle point of the
min-max problem (6.195). In order for that condition to be necessary we need to verify
existence of a saddle point for problem (6.195).

Proposition 6.56. Let x̄ be an optimal solution of the problem (6.194). Suppose that
the mapping F : Rn → Z is convex and risk measure ρ : Z → R is proper, lower
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semicontinuous and satisfies conditions (R1)–(R2), and is continuous at Z̄ := F (x̄). Then
there exists ζ̄ ∈ ∂ρ(Z̄) such that (x̄, ζ̄) is a saddle point of Φ(x, ζ).

Proof. By monotonicity of ρ (condition (R2)) it follows from the optimality of x̄ that (x̄, Z̄)
is an optimal solution of the problem

Min
(x,Z)∈S

ρ(Z), (6.201)

where S :=
{

(x, Z) ∈ X × Z : F (x) � Z
}
. Since F is convex, the set S is convex,

and since F is continuous (see Lemma 6.12) the set S is closed. Also because ρ is convex
and continuous at Z̄, the following (first order) optimality condition holds at (x̄, Z̄) (see
Remark 59, page 493):

0 ∈ ∂ρ(Z̄)× {0}+NS(x̄, Z̄). (6.202)

This means that there exists ζ̄ ∈ ∂ρ(Z̄) such that (−ζ̄, 0) ∈ NS(x̄, Z̄). This in turn implies
that

〈ζ̄, Z − Z̄〉 ≥ 0, ∀(x, Z) ∈ S. (6.203)

Setting Z := F (x) we obtain that

〈ζ̄, F (x)− F (x̄)〉 ≥ 0, ∀x ∈ X . (6.204)

It follows that x̄ is a minimizer of 〈ζ̄, F (x)〉 over x ∈ X , and hence x̄ is a minimizer of
Φ(x, ζ̄) over x ∈ X . That is, x̄ satisfies first of the two conditions in (6.200). Moreover,
as it was shown in the proof of Proposition 6.55, this implies condition (6.199), and hence
(x̄, ζ̄) is a saddle point by Proposition 6.55.

Corollary 6.57. Suppose that problem (6.194) has optimal solution x̄, the mapping F :
Rn → Z is convex and the risk measure ρ : Z → R is proper, lower semicontinuous and
satisfies conditions (R1)–(R2), and is continuous at Z̄ := F (x̄). Then there is no duality
gap between problems (6.195) and (6.198), and problem (6.198) has an optimal solution.

Propositions 6.55 and 6.56 imply the following optimality conditions.

Theorem 6.58. Suppose that mapping F : Rn → Z is convex and risk measure ρ : Z → R
is proper, lower semicontinuous and satisfies conditions (R1)–(R2). Consider a point x̄ ∈
X and let Z̄ := F (x̄). Then a sufficient condition for x̄ to be an optimal solution of the
problem (6.194) is existence of ζ̄ ∈ ∂ρ(Z̄) such that equation (6.199) holds. This condition
is also necessary if ρ is continuous at Z̄.

It could be noted that if ρ(·) := E[·], then its subdifferential consists of unique sub-
gradient ζ̄(·) ≡ 1. In that case condition (6.199) takes the form

0 ∈ NX (x̄) + E[∂fω(x̄)]. (6.205)

Note that since it is assumed that F (x) ∈ Lp(Ω,F , P ), the expectation E[fω(x)] is well
defined and finite valued for all x, and hence ∂E[fω(x)] = E[∂fω(x)] (see Theorem 7.52).
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6.5.1 Dualization of Nonanticipativity Constraints
We assume again that Z = Lp(Ω,F , P ) and Z∗ = Lq(Ω,F , P ), that F : Rn → Z is
convex and ρ : Z → R is proper lower semicontinuous and satisfies conditions (R1) and
(R2). A way of representing problem (6.194) is to consider the decision vector x as a func-
tion of the elementary event ω ∈ Ω and then to impose an appropriate nonaniticipativity
constraint. That is, let M be a linear space ofF-measurable mappings χ : Ω→ Rn. Define
Fχ(ω) := f(χ(ω), ω) and

MX := {χ ∈M : χ(ω) ∈ X , a.e. ω ∈ Ω}. (6.206)

We assume that the space M is chosen in such a way that Fχ ∈ Z for every χ ∈M and for
every x ∈ Rn the constant mapping χ(ω) ≡ x belongs to M. Then we can write problem
(6.194) in the following equivalent form

Min
(χ,x)∈MX×Rn

ρ(Fχ) subject to χ(ω) = x, a.e. ω ∈ Ω. (6.207)

Formulation (6.207) allows developing a duality framework associated with the nonan-
ticipativity constraint χ(·) = x. In order to formulate such duality we need to specify
the space M and its dual. It looks natural to use M := Lp′(Ω,F , P ;Rn), for some
p′ ∈ [1,+∞), and its dual M∗ := Lq′(Ω,F , P ;Rn), q′ ∈ (1,+∞]. It is also possi-
ble to employ M := L∞(Ω,F , P ;Rn). Unfortunately this Banach space is not reflexive.
Nevertheless, it can be paired with the space L1(Ω,F , P ;Rn) by defining the correspond-
ing scalar product in the usual way. As long as the risk measure is lower semicontinuous
and subdifferentiable in the corresponding weak topology, we can use this setting as well.

The (Lagrangian) dual of problem (6.207) can be written in the form

Max
λ∈M∗

{
inf

(χ,x)∈MX×Rn
L(χ, x, λ)

}
, (6.208)

where

L(χ, x, λ) := ρ(Fχ) + E
[
λT(χ− x)

]
, (χ, x, λ) ∈M× Rn ×M∗. (6.209)

Note that

inf
x∈Rn

L(χ, x, λ) =

{
L(χ, 0, λ), if E[λ] = 0,
−∞, if E[λ] 6= 0.

Therefore the dual problem (6.209) can be rewritten in the form

Max
λ∈M∗

{
inf

χ∈MX
L0(χ, λ)

}
subject to E[λ] = 0, (6.210)

where L0(χ, λ) := L(χ, 0, λ) = ρ(Fχ) + E[λTχ].
We have that the optimal value of problem (6.207) (which is the same as the optimal

value of problem (6.194)) is greater than or equal to the optimal value of its dual (6.210).
Moreover, under some regularity conditions, their optimal values are equal to each other.
In particular, if Lagrangian L(χ, x, λ) has a saddle point ((χ̄, x̄), λ̄), then there is no du-
ality gap between problems (6.207) and (6.210), and (χ̄, x̄) and λ̄ are optimal solutions of
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problems (6.207) and (6.210), respectively. Noting that L(χ, 0, λ) is linear in x and in λ,
we have that ((χ̄, x̄), λ̄) is a saddle point of L(χ, x, λ) iff the following conditions hold:

χ̄(ω) = x̄, a.e. ω ∈ Ω, and E[λ̄] = 0,
χ̄ ∈ arg min

χ∈MX
L0(χ, λ̄). (6.211)

Unfortunately, it may be not be easy to verify existence of such saddle point.
We can approach the duality analysis by conjugate duality techniques. For a pertur-

bation vector y ∈M consider the problem

Min
(χ,x)∈MX×Rn

ρ(Fχ) subject to χ(ω) = x+ y(ω), (6.212)

and let ϑ(y) be its optimal value. Note that a perturbation in the vector x, in the con-
straints of problem (6.207), can be absorbed into y(ω). Clearly for y = 0, problem (6.212)
coincides with the unperturbed problem (6.207), and ϑ(0) is the optimal value of the unper-
turbed problem (6.207). Assume that ϑ(0) is finite. Then there is no duality gap between
problem (6.207) and its dual (6.208) iff ϑ(y) is lower semicontinuous at y = 0. Again it
may be not easy to verify lower semicontinuity of the optimal value function ϑ : M→ R.
By the general theory of conjugate duality we have the following result.

Proposition 6.59. Suppose that F : Rn → Z is convex, ρ : Z → R satisfies conditions
(R1)–(R2) and the function ρ(Fχ), from M toR, is lower semicontinuous. Suppose, further,
that ϑ(0) is finite and ϑ(y) < +∞ for all y in a neighborhood (in the norm topology) of
0 ∈ M. Then there is no duality gap between problems (6.207) (6.208), and the dual
problem (6.208) has an optimal solution.

Proof. Since ρ satisfies conditions (R1) and (R2) and F is convex, we have that the function
ρ(Fχ) is convex, and by the assumption it is lower semicontinuous. The assertion then
follows by a general result of conjugate duality for Banach spaces (see Theorem 7.88).

In order to apply the above result we need to verify lower semicontinuity of the func-
tion ρ(Fχ). This function is lower semicontinuous if ρ(·) is lower semicontinuous and the
mapping χ 7→ Fχ, from M to Z , is continuous. If the set Ω is finite, and hence the spaces
Z and M are finite dimensional, then continuity of χ 7→ Fχ follows from the continuity of
F . In the infinite dimensional setting this should be verified by specialized methods. The
assumption that ϑ(0) is finite means that the optimal value of the problem (6.207) is finite,
and the assumption that ϑ(y) < +∞ means that the corresponding problem (6.212) has a
feasible solution.

6.5.2 Interchangeability Principle for Risk Measures

By removing the nonanticipativity constraint χ(·) = x we obtain the following relaxation
of the problem (6.207):

Min
χ∈MX

ρ(Fχ), (6.213)
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where MX is defined in (6.206). Similarly to the interchangeability principle for the expec-
tation operator (Theorem 7.92), we have the following result for monotone risk measures.
By infx∈X F (x) we denote the pointwise minimum, i.e.,[

inf
x∈X

F (x)

]
(ω) := inf

x∈X
f(x, ω), ω ∈ Ω. (6.214)

Proposition 6.60. Let Z := Lp(Ω,F , P ) and M := Lp′(Ω,F , P ;Rn), where p, p′ ∈
[1,∞], MX be defined in (6.206), ρ : Z → R be a proper risk measure satisfying mono-
tonicity condition (R2), and F : Rn → Z be such that infx∈X F (x) ∈ Z . Suppose that ρ
is continuous at Ψ := infx∈X F (x). Then

inf
χ∈MX

ρ(Fχ) = ρ

(
inf
x∈X

F (x)

)
. (6.215)

Proof. For any χ ∈MX we have that χ(·) ∈ X , and hence the following inequality holds[
inf
x∈X

F (x)

]
(ω) ≤ Fχ(ω), a.e. ω ∈ Ω.

By monotonicity of ρ this implies that ρ (Ψ) ≤ ρ(Fχ), and hence

ρ (Ψ) ≤ inf
χ∈MX

ρ(Fχ). (6.216)

Since ρ is proper we have that ρ (Ψ) > −∞. If ρ (Ψ) = +∞, then by (6.216) the left hand
side of (6.215) is also +∞ and hence (6.215) holds. Therefore we can assume that ρ (Ψ)
is finite.

Let us derive now the converse of (6.216) inequality. Since it is assumed that Ψ ∈
Z , we have that Ψ(ω) is finite valued for a.e. ω ∈ Ω and measurable. Therefore for a
sequence εk ↓ 0 and a.e. ω ∈ Ω and all k ∈ N, we can choose χ

k
(ω) ∈ X such that

|f(χ
k
(ω), ω) − Ψ(ω)| ≤ εk and χ

k
(·) are measurable. We also can truncate χ

k
(·), if

necessary, in such a way that each χ
k

belongs to MX , and f(χ
k
(ω), ω) monotonically

converges to Ψ(ω) for a.e. ω ∈ Ω. We have then that f(χ
k
(·), ·) − Ψ(·) is nonnegative

valued and is dominated by a function from the space Z . It follows by the Lebesgue
Dominated Convergence Theorem that Fχ

k
converges to Ψ in the norm topology of Z .

Since ρ is continuous at Ψ, it follows that ρ(Fχ
k
) tends to ρ(Ψ). Also infχ∈MX ρ(Fχ) ≤

ρ(Fχ
k
), and hence the required converse inequality

inf
χ∈MX

ρ(Fχ) ≤ ρ (Ψ) (6.217)

follows.

Remark 39. It follows from (6.215) that if

χ̄ ∈ arg min
χ∈MX

ρ(Fχ), (6.218)



i
i

“SPbook” — 2013/12/24 — 8:37 — page 353 — #365 i
i

i
i

i
i

6.5. Optimization of Risk Measures 353

then
χ̄(ω) ∈ arg min

x∈X
f(x, ω), a.e. ω ∈ Ω. (6.219)

Conversely, suppose that the function f(x, ω) is random lower semicontinuous. Then the
multifunction ω 7→ arg minx∈X f(x, ω) is measurable. Therefore χ̄(ω) in the left hand
side of (6.219) can be chosen to be measurable. If, moreover, χ̄ ∈ M (this holds, in
particular, if the set X is bounded and hence χ̄(·) is bounded), then the inclusion (6.218)
follows.

Consider now a setting of two stage programming. That is, suppose that the function
[F (x)](ω) = f(x, ω), of the first stage problem

Min
x∈X

ρ(F (x)), (6.220)

is given by the optimal value of the following second stage problem

Min
y∈G(x,ω)

g(x, y, ω), (6.221)

where g : Rn × Rm × Ω → R and G : Rn × Ω ⇒ Rm. Under appropriate regularity
conditions, from which the most important is the monotonicity condition (R2), we can
apply the interchangeability principle to the optimization problem (6.221) to obtain

ρ(F (x)) = inf
y(·)∈G(x,·)

ρ(g(x, y(ω), ω)), (6.222)

where now y(·) is an element of an appropriate functional space and the notation y(·) ∈
G(x, ·) means that y(ω) ∈ G(x, ω) w.p.1. If the interchangeability principle (6.222) holds,
then the two stage problem (6.220)–(6.221) can be written as one large optimization prob-
lem:

Min
x∈X , y(·)∈G(x,·)

ρ(g(x, y(ω), ω)). (6.223)

In particular, suppose that the set Ω is finite, say Ω = {ω1, . . . , ωK}, i.e., there is a fi-
nite number K of scenarios. In that case we can view function Z : Ω → R as vector
(Z(ω1), . . . , Z(ωK)) ∈ RK , and hence to identify the space Z with RK . Then problem
(6.223) takes the form

Min
x∈X , yk∈G(x,ωk), k=1,...,K

ρ [(g(x, y1, ω1), . . . , g(x, yK , ωK))] . (6.224)

Moreover, consider the linear case where X := {x : Ax = b, x ≥ 0}, g(x, y, ω) :=
cTx+ q(ω)Ty and

G(x, ω) := {y : T (ω)x+W (ω)y = h(ω), y ≥ 0}.

Assume that ρ satisfies conditions (R1)–(R3) and the set Ω = {ω1, . . . , ωK} is finite. Then
problem (6.224) takes the form:

Min
x,y1,...,yK

cTx+ ρ
[(
qT1 y1, . . . , q

T
KyK

)]
s.t. Ax = b, x ≥ 0, Tkx+Wkyk = hk, yk ≥ 0, k = 1, . . . ,K,

(6.225)

where (qk, Tk,Wk, hk) := (q(ωk), T (ωk),W (ωk), h(ωk)), k = 1, . . . ,K.
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6.5.3 Examples
Let Z := L1(Ω,F , P ) and consider

ρ(Z) := E[Z] + inf
t∈R
E
{
β1[t− Z]+ + β2[Z − t]+

}
, Z ∈ Z, (6.226)

where β1 ∈ [0, 1] and β2 ≥ 0 are some constants. Properties of this risk measure were
studied in Example 6.19 (see equations (6.73) and (6.74) in particular). We can write the
corresponding optimization problem (6.194) in the following equivalent form

Min
(x,t)∈X×R

E {fω(x) + β1[t− fω(x)]+ + β2[fω(x)− t]+} . (6.227)

That is, by adding one extra variable we can formulate the corresponding optimization
problem as an expectation minimization problem.

Risk Averse Optimization of an Inventory Model

Let us consider again the inventory model analyzed in section 1.2. Recall that the objective
of that model is to minimize the total cost

F (x, d) = cx+ b[d− x]+ + h[x− d]+,

where c, b and h are nonnegative constants representing costs of ordering, back ordering
and holding, respectively. Again we assume that b > c > 0, i.e., the back order cost
is bigger than the ordering cost. A risk averse extension of the corresponding (expected
value) problem (1.4) can be formulated in the form

Min
x≥0

{
f(x) := ρ[F (x,D)]

}
, (6.228)

where ρ is a specified risk measure.
Assume that the risk measure ρ is coherent, i.e., satisfies conditions (R1)–(R4), and

that demand D = D(ω) belongs to an appropriate space Z = Lp(Ω,F , P ). Assume,
further, that ρ : Z → R is real valued. It follows that there exists a convex set A ⊂ P,
where P ⊂ Z∗ is the set of probability density functions, such that

ρ(Z) = sup
ζ∈A

∫
Ω

Z(ω)ζ(ω)dP (ω), Z ∈ Z.

Consequently we have that

ρ[F (x,D)] = sup
ζ∈A

∫
Ω

F (x,D(ω))ζ(ω)dP (ω). (6.229)

To each ζ ∈ P corresponds the cumulative distribution function H of D with respect
to the measure Q := ζdP , that is,

H(z) = Q(D ≤ z) = Eζ [1D≤z] =

∫
{ω:D(ω)≤z}

ζ(ω)dP (ω). (6.230)
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We have then that ∫
Ω

F (x,D(ω))ζ(ω)dP (ω) =

∫
F (x, z)dH(z).

Denote by M the set of cumulative distribution functions H associated with densities ζ ∈
A. The correspondence between ζ ∈ A and H ∈ M is given by formula (6.230), and
depends on D(·) and the reference probability measure P . Then we can rewrite (6.229) in
the form

ρ[F (x,D)] = sup
H∈M

∫
F (x, z)dH(z) = sup

H∈M
EH [F (x,D)]. (6.231)

This leads to the following minimax formulation of the risk averse optimization problem
(6.228):

Min
x≥0

sup
H∈M

EH [F (x,D)]. (6.232)

Note that we also have that ρ(D) = supH∈M EH [D].
In the subsequent analysis we deal with the minimax formulation (6.232), rather than

the risk averse formulation (6.228), viewing M as a given set of cumulative distribution
functions. We show next that the minimax problem (6.232), and hence the risk averse prob-
lem (6.228), structurally is similar to the corresponding (expected value) problem (1.4). We
assume that every H ∈ M is such that H(z) = 0 for any z < 0 (recall that the demand
cannot be negative). We also assume that supH∈M EH [D] < +∞, which follows from the
assumption that ρ(·) is real valued.

Proposition 6.61. Let M be a set of cumulative distribution functions such that H(z) = 0
for any H ∈ M and z < 0, and supH∈M EH [D] < +∞. Consider function f(x) :=
supH∈M EH [F (x,D)]. Then there exists a cdf H̄ , depending on the set M and η :=
b/(b + h), such that H̄(z) = 0 for any z < 0, and the function f(x) can be written in the
form

f(x) = b sup
H∈M

EH [D] + (c− b)x+ (b+ h)

∫ x

−∞
H̄(z)dz. (6.233)

Proof. We have (see formula (1.5)) that for H ∈M,

EH [F (x,D)] = bEH [D] + (c− b)x+ (b+ h)

∫ x

0

H(z)dz.

Therefore we can write f(x) = (c− b)x+ (b+ h)g(x), where

g(x) := sup
H∈M

{
η EH [D] +

∫ x

−∞
H(z)dz

}
. (6.234)

Since every H ∈ M is a monotonically nondecreasing function, we have that x 7→∫ x
−∞H(z)dz is a convex function. It follows that the function g(x) is given by the maxi-

mum of convex functions and hence is convex. Moreover, g(x) ≥ 0 and

g(x) ≤ η sup
H∈M

EH [D] + [x]+. (6.235)
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and hence g(x) is finite valued for any x ∈ R. Also for any H ∈ M and z < 0 we have
that H(z) = 0, and hence g(x) = η supH∈M EH [D] for any x < 0.

Consider the right hand side derivative of g(x):

g+(x) := lim
t↓0

g(x+ t)− g(x)

t
,

and define H̄(·) := g+(·). Since g(x) is real valued convex, its right hand side derivative
g+(x) exists, is finite and for any x ≥ 0 and a < 0,

g(x) = g(a) +

∫ x

a

g+(z)dz = η sup
H∈M

EH [D] +

∫ x

−∞
H̄(z)dz. (6.236)

Note that definition of the function g(·), and hence H̄(·), involves the constant η and set M
only. Let us also observe that the right hand side derivative g+(x), of a real valued convex
function, is monotonically nondecreasing and right side continuous. Moreover, g+(x) = 0
for x < 0 since g(x) is constant for x < 0. We also have that g+(x) tends to one as
x→ +∞. Indeed, since g+(x) is monotonically nondecreasing it tends to a limit, denoted
r, as x → +∞. We have then that g(x)/x → r as x → +∞. It follows from (6.235) that
r ≤ 1, and by (6.234) that for any H ∈M,

lim inf
x→+∞

g(x)

x
≥ lim inf

x→+∞

1

x

∫ x

−∞
H(z)dz ≥ 1,

and hence r ≥ 1. It follows that r = 1.
We obtain that H̄(·) = g+(·) is a cumulative distribution function of some probability

distribution and the representation (6.233) holds.

It follows from the representation (6.233) that the set of optimal solutions of the risk
averse problem (6.228) is an interval given by the set of κ-quantiles of the cdf H̄(·), where
κ := b−c

b+h (compare with Remark 1, page 3).
In some specific cases it is possible to calculate the corresponding cdf H̄ in a closed

form. Consider the risk measure ρ defined in (6.226):

ρ(Z) := E[Z] + inf
t∈R
E
{
β1[t− Z]+ + β2[Z − t]+

}
,

where the expectations are taken with respect to some reference cdf H∗(·). The corre-
sponding set M is formed by cumulative distribution functions H(·) such that

(1− β1)

∫
S

dH∗ ≤
∫
S

dH ≤ (1 + β2)

∫
S

dH∗ (6.237)

for any Borel set S ⊂ R (compare with formula (6.75)). Recall that for β1 = 1 this
risk measure is ρ(Z) = AV@Rα(Z) with α = 1/(1 + β2). Suppose that the reference
distribution of the demand is uniform on the interval [0, 1], i.e., H∗(z) = z for z ∈ [0, 1].
It follows that any H ∈M is continuous, H(0) = 0 and H(1) = 1, and

EH [D] =

∫ 1

0

zdH(z) = zH(z)
∣∣1
0
−
∫ 1

0

H(z)dz = 1−
∫ 1

0

H(z)dz.
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Consequently we can write function g(x), defined in (6.234), for x ∈ [0, 1] in the form

g(x) = η + sup
H∈M

{
(1− η)

∫ x

0

H(z)dz − η
∫ 1

x

H(z)dz

}
. (6.238)

Suppose, further, that h = 0 (i.e., there are no holding costs) and hence η = 1. In that case

g(x) = 1− inf
H∈M

∫ 1

x

H(z)dz, for x ∈ [0, 1]. (6.239)

By using the first inequality of (6.237) with S := [0, z] we obtain that H(z) ≥
(1 − β1)z for any H ∈ M and z ∈ [0, 1]. Similarly, by the second inequality of (6.237)
with S := [z, 1] we have that H(z) ≥ 1 + (1 + β2)(z − 1) for any H ∈M and z ∈ [0, 1].
Consequently, the cdf

H̄(z) := max{(1− β1)z, (1 + β2)z − β2}, z ∈ [0, 1], (6.240)

is dominated by any other cdf H ∈ M, and it can be verified that H̄ ∈ M. Therefore the
minimum on the right hand side of (6.239) is attained at H̄ for any x ∈ [0, 1], and hence
this cdf H̄ fulfils equation (6.233).

Note that for any β1 ∈ (0, 1) and β2 > 0, the cdf H̄(·) defined in (6.240) is strictly
less than the reference cdfH∗(·) on the interval (0, 1). Consequently the corresponding risk
averse optimal solution H̄−1(κ) is bigger than the risk neutral optimal solution H∗−1(κ).
It should be not surprising that in the absence of holding costs it will be safer to order a
larger quantity of the product.

Risk Averse Portfolio Selection

Consider the portfolio selection problem introduced in section 1.4. A risk averse formula-
tion of the corresponding optimization problem can be written in the form

Min
x∈X

ρ
(
−
∑n
i=1 ξixi

)
, (6.241)

where ρ is a chosen risk measure and X := {x ∈ Rn :
∑n
i=1 xi = W0, x ≥ 0}. We

use the negative of the return as an argument of the risk measure, because we developed
our theory for the minimization, rather than maximization framework. An example be-
low shows what could be a problem of using risk measures with dispersions measured by
variance or standard deviation.

Example 6.62 Let n = 2, W0 = 1 and the risk measure ρ be of the form

ρ(Z) := E[Z] + cD[Z], (6.242)

where c > 0 andD[·] is a dispersion measure. Let the dispersion measure be eitherD[Z] :=√
Var[Z] or D[Z] := Var[Z]. Suppose, further, that the space Ω := {ω1, ω2} consists

of two points with associated probabilities p and 1 − p, for some p ∈ (0, 1). Define
(random) return rates ξ1, ξ2 : Ω → R as follows: ξ1(ω1) = a and ξ1(ω2) = 0, where
a is some positive number, and ξ2(ω1) = ξ2(ω2) = 0. Obviously, is better to invest



i
i

“SPbook” — 2013/12/24 — 8:37 — page 358 — #370 i
i

i
i

i
i

358 Chapter 6. Risk Averse Optimization

in asset 1 than asset 2. Now, for D[Z] :=
√
Var[Z], we have that ρ(−ξ2) = 0 and

ρ(−ξ1) = −pa + ca
√
p(1− p). It follows that ρ(−ξ1) > ρ(−ξ2) for any c > 0 and

p < (1+c−2)−1. Similarly, forD[Z] := Var[Z] we have that ρ(−ξ1) = −pa+ca2p(1−p),
ρ(−ξ2) = 0, and hence ρ(−ξ1) > ρ(−ξ2) again, provided p < 1 − (ca)−1. That is,
although ξ2 dominates ξ1 in the sense that ξ1(ω) ≥ ξ2(ω) for every possible realization of
(ξ1(ω), ξ2(ω)), we have that ρ(−ξ1) > ρ(−ξ2).

Here [F (x)](ω) := −ξ1(ω)x1−ξ2(ω)x2. Let x̄ := (1, 0) and x∗ := (0, 1). Note that
the feasible setX is formed by vectors tx̄+(1−t)x∗, t ∈ [0, 1]. We have that [F (x)](ω) =
−ξ1(ω)x1, and hence [F (x̄)](ω) is dominated by [F (x)](ω) for any x ∈ X and ω ∈
Ω. And yet, under the specified conditions, we have that ρ[F (x̄)] = ρ(−ξ1) is greater
than ρ[F (x∗)] = ρ(−ξ2), and hence x̄ is not an optimal solution of the corresponding
optimization (minimization) problem. This should be not surprising, because the chosen
risk measure is not monotone, i.e., it does not satisfy the condition (R2), for c > 0 (see
Examples 6.21 and 6.22).

Suppose now that ρ is a real valued coherent risk measure. We can write then problem
(6.241) in the corresponding min-max form (6.197), that is

Min
x∈X

sup
ζ∈A

n∑
i=1

(−Eζ [ξi])xi.

Equivalently,

Max
x∈X

inf
ζ∈A

n∑
i=1

(Eζ [ξi])xi. (6.243)

Since the feasible set X is compact, problem (6.241) always has an optimal solution x̄.
Also (see Proposition 6.56) the min-max problem (6.243) has a saddle point, and (x̄, ζ̄) is
a saddle point iff

ζ̄ ∈ ∂ρ(Z̄) and x̄ ∈ arg max
x∈X

n∑
i=1

µ̄ixi, (6.244)

where Z̄(ω) := −
∑n
i=1 ξi(ω)x̄i and µ̄i := Eζ̄ [ξi].

An interesting insight into the risk averse solution is provided by its game-theoretical
interpretation. ForW0 = 1 the portfolio allocations x can be interpreted as a mixed strategy
of the investor (for another W0 the fractions xi/W0 are the mixed strategy). The measure
ζ represents the mixed strategy of the opponent (the market). It is not chosen from the set
of all possible mixed strategies, but rather from the set A. The risk averse solution (6.244)
corresponds to the equilibrium of the game.

It is not difficult to see that the set arg maxx∈X
∑n
i=1 µ̄ixi is formed by all convex

combinations of vectors W0ei, i ∈ I, where ei ∈ Rn denotes i-th coordinate vector (with
zero entries except the i-th entry equal 1), and

I := {i′ : µ̄i′ = max1≤i≤n µ̄i, i
′ = 1, . . . , n} .

Also ∂ρ(Z) ⊂ A (see formula (6.49) for the subdifferential ∂ρ(Z)).
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6.6 Statistical Properties of Risk Measures
All examples of risk measures discussed in section 6.3.2 were constructed with respect to
a reference probability measure (distribution) P . Suppose now that the “true” probability
distribution P is estimated by an empirical measure (distribution) PN based on a sample
of size N . In this section we discuss statistical properties of the respective estimates of the
“true values” of the corresponding risk measures.

6.6.1 Average Value-at-Risk
Recall that the Average Value-at-Risk, AV@R1−α(Z) at level 1 − α ∈ (0, 1), of a random
variable Z, is given by the optimal value of the minimization problem

Min
t∈R

f(t), (6.245)

where

f(t) := E [Fα(t, Z)] with Fα(t, z) := t+ (1− α)−1[z − t]+, (6.246)

and the expectation is taken with respect to the probability distribution P of Z. We as-
sume that E|Z| < +∞, which implies that AV@R1−α(Z) is finite. Suppose now that
we have an iid random sample Z1, . . . , ZN of N realizations of Z. Then we can es-
timate θ∗ := AV@R1−α(Z) by replacing distribution P with its empirical estimate20

PN := N−1
∑N
j=1 δ(Z

j). Since EPN [Z − t]+ = N−1
∑N
j=1

[
Zj − t

]
+
, this leads to

the sample estimate θ̂N , of θ∗, given by the optimal value of the following problem

Min
t∈R

f̂N (t), (6.247)

where

f̂N (t) :=
1

N

N∑
j=1

Fα(t, Zj) = t+
1

(1− α)N

N∑
j=1

[
Zj − t

]
+
.

Let us observe that problem (6.245) can be viewed as a stochastic programming prob-
lem and problem (6.247) as its sample average approximation. That is,

θ∗ = inf
t∈R

f(t) and θ̂N = inf
t∈R

f̂N (t). (6.248)

Therefore, results of section 5.1 can be applied here in a straightforward way. Recall that
the set of optimal solutions of problem (6.245) is the interval [t∗, t∗∗], where

t∗ = inf{z : HZ(z) ≥ α} = V@R1−α(Z) and t∗∗ = sup{z : HZ(z) ≤ α} (6.249)

are the respective left and right side α-quantiles of the distribution of Z (see page 294).
Since for any α ∈ (0, 1) the interval [t∗, t∗∗] is finite and problem (6.245) is convex, we
have by Theorem 5.4 that

θ̂N → θ∗ w.p.1 as N →∞. (6.250)
20Recall that δ(z) denotes measure of mass one at point z.
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That is, θ̂N is a consistent estimator of θ∗ = AV@R1−α(Z). This also follows from a
general result of Theorem 7.58.

Assume now that E[Z2] < +∞. Then the assumptions (A1) and (A2) of Theorem
5.7 hold, and hence

θ̂N = inf
t∈[t∗,t∗∗]

f̂N (t) + op(N
−1/2). (6.251)

Moreover, if t∗ = t∗∗ = V@R1−α(Z), i.e., the left and right side α-quantiles of the
distribution of Z are the same, then

N1/2
(
θ̂N − θ∗

)
D→ N (0, σ2), (6.252)

where σ2 = (1− α)−2Var ([Z − t∗]+).
The estimator θ̂N has a negative bias, i.e., E[θ̂N ]− θ∗ ≤ 0, and (see Proposition 5.6)

E[θ̂N ] ≤ E[θ̂N+1], N = 1, . . . , (6.253)

i.e., the bias is monotonically decreasing with increase of the sample size N . If t∗ = t∗∗,
then this bias is of order O(N−1) and can be estimated using results of section 5.1.3. The
first and second order derivatives of the expectation function f(t) are

f ′(t) = 1 + (1− α)−1(HZ(t)− 1),

provided that the cumulative distribution function HZ(·) is continuous at t, and f ′′(t) =
(1 − α)−1hZ(t), provided that the density hZ(t) = ∂HZ(t)/∂t exists. We obtain (see
Theorem 5.8 and the discussion on page 188), under appropriate regularity conditions, in
particular if t∗ = t∗∗ = V@R1−α(Z) and the density hZ(t∗) = ∂HZ(t∗)/∂t exists and
hZ(t∗) 6= 0, that

θ̂N − f̂N (t∗) = N−1 inf
τ∈R

{
τV + 1

2
τ2f ′′(t∗)

}
+ op(N

−1)

= − (1− α)V 2

2NhZ(t∗)
+ op(N

−1), (6.254)

where V ∼ N (0, γ2) with

γ2 = Var

(
(1− α)−1 ∂[Z − t∗]+

∂t

)
=
HZ(t∗)(1−HZ(t∗))

(1− α)2
=

α

1− α
.

Consequently, under appropriate regularity conditions,

N
[
θ̂N − f̂N (t∗)

]
D→ −

[
α

2hZ(t∗)

]
χ2

1 (6.255)

and (see Remark 57 on page 470)

E[θ̂N ]− θ∗ = − α

2NhZ(t∗)
+ o(N−1). (6.256)

Remark 40. The set of optimal solutions of the sample optimization problem (6.247) is
given by the set of α-quantiles of the empirical cdf of the sample Z1, . . . , ZN . That is,
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such an optimal solution is the (left side) quantile Z(k), where Z(1) ≤ · · · ≤ Z(N) are
sample values arranged in the increasing order and21 k := dαNe. For small 1− α > 0 the
sample qauntileZ(k) can be very unstable especially ifZ has a distribution with unbounded
support. In particular if N < (1 − α)−1, then dαNe = N , i.e., the corresponding sample
estimator is given by the maximum max1≤j≤N Z

j . Therefore the asymptotics (6.251)–
(6.252) and (6.254)–(6.256) could give a reasonable approximation when the sample size
N is significantly bigger than (1− α)−1.

It is also possible to give large deviations type bounds for convergence of θ̂N to θ∗.
Let (`, u) be an interval containing the interval [t∗, t∗∗], i.e., ` < t∗ and u > t∗∗, where
t∗ and t∗∗ are defined in (6.249). Recall that [t∗, t∗∗] is the set of optimal solutions of the
problem (6.245). By convexity arguments we have that the set of optimal solutions of the
corresponding SAA problem (6.247) is contained in the interval (`, u) if |f̂N (`)− f(`)| <
κ, |f̂N (u)− f(u)| < κ and |f̂N (t∗)− f(t∗)| < κ, where

κ := 1
2

min {f(`)− f(t∗), f(u)− f(t∗)} . (6.257)

Indeed, κ is a positive number and the right side derivative of f̂N (t) at t = ` is

inf
δ>0

f̂N (`+ δ)− f̂N (`)

δ
≤ f(t∗) + κ− (f(`)− κ)

t∗ − κ
< 0.

And similarly the left side derivative at t = u is positive.
We can now proceed as in section 5.3.2. Consider random variable

Yt := [Z − t]+ − E[Z − t]+,

and its moment generating function Mt(τ) = E[exp(τYt)]. Let us make the following
assumption (compare with condition (M4) of section 5.3.2).

(E) There are constants σ > 0 and a > 0 such that for any t ∈ [`, u] the following
inequality holds

Mt(τ) ≤ exp(σ2τ2/2), τ ∈ [−a, a]. (6.258)

Note that Fα(t, Z) − f(t) = (1 − α)−1Yt, and the moment generating function of
this random variable is

M∗t (τ) = E
[
exp{τ(1− α)−1Yt}

]
= Mt

(
(1− α)−1τ

)
.

Hence condition (6.258) is the same as

M∗t (τ) ≤ exp{σ̄2τ2/2}, τ ∈ [−a, a], (6.259)

where σ̄2 := (1− α)−2σ2. Condition (6.259) implies the following estimate for the corre-
sponding LD rate function

I(z) := sup
τ∈R
{τz − logM∗t (τ)} ≥ sup

−a≤τ≤a
{τz − σ̄2τ2/2}

=

{
z2/(2σ̄2), if |z| ≤ aσ̄2,
a|z| − a2σ̄2/2, if |z| ≥ aσ̄2.

21Here dae denotes the smallest integer greater than or equal to a ∈ R.
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We also have that∣∣Fα(t′, Z)− Fα(t, Z)
∣∣ = (1− α)−1

∣∣[Z − t′]+ − [Z − t]+
∣∣ ≤ (1− α)−1|t′ − t|.

Consequently for 0 < ε ≤ aσ̄2 we have the following estimate (see Theorem 7.75 and
Remark 16 on page 208)

Pr

(
sup
`≤t≤u

∣∣∣f̂N (t)− f(t)
∣∣∣ ≥ ε) ≤ 8(u− `)

(1− α)ε
exp

[
−Nε

2(1− α)2

32σ2

]
. (6.260)

We obtain the following result.

Proposition 6.63. Suppose that condition (E) is satisfied, and let ` < t∗, u > t∗∗ and κ be
the constant defined in (6.257). Then for 0 < ε < min{κ, (1− α)−2aσ2} it follows that

Pr
(∣∣θ̂N − θ∗∣∣ ≥ ε) ≤ 8(u− `)

(1− α)ε
exp

[
−Nε

2(1− α)2

32σ2

]
. (6.261)

For confidence level γ ∈ (0, 1) and sample size

N ≥ ln

[
8(u− `)

(1− α)εγ

]
32σ2

(1− α)2ε2
, (6.262)

it follows from (6.261) that Pr
(∣∣θ̂N − θ∗∣∣ ≥ ε) ≤ γ. Of course, the above estimate

(6.262) of the sample size is very conservative. It also indicates that N should be sig-
nificantly bigger than (1 − α)−1 for the sample estimate θ̂N to give a reasonably accurate
estimate of θ∗.

Example 6.64 Suppose that α is close to one, and that 0 ≤ Z ≤ 1 w.p.1. Then for θ∗ =
AV@R1−α(Z) we have that 0 ≤ θ∗ ≤ 1. This follows immediately from the representation
(6.27). Suppose that N < (1 − α)−1, in which case θ̂N = max{Z1, . . . , ZN}. Suppose
further that ε ≥ 1− θ∗. Then

Pr
(∣∣θ̂N − θ∗∣∣ ≥ ε) = Pr

(
θ̂N ≤ θ∗ − ε

)
= Pr

(
Zi ≤ θ∗ − ε, i = 1, . . . , N

)
= [H(θ∗ − ε)]N ≤ [H(1− ε)]N ,

(6.263)
whereH(·) is the cdf of Z. That is, in this case in order for θ̂N to estimate θ∗ with accuracy
ε > 0 and confidence 1− γ it suffices to use sample of size

N ≥ ln(γ−1)

ln[(H(1− ε))−1]
, (6.264)

provided that H(1 − ε) < 1. That is, if for some c > 0 and small ε > 0 it holds that
H(1 − ε) ≤ 1 − cε, then for α sufficiently close to one and small ε > 0, the required
sample size is of order O(ε−1).
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Example 6.65 Consider the exponential distribution H(z) = 1 − e−z , z ≥ 0. For t = 0
the moment generating function of Y0 = Z − E[Z] is

M0(τ) =

{
(1− τ)−1 − τ, if τ < 1,
+∞, if τ ≥ 1.

We have here that H−1(α) = ln[(1− α)−1] and θ∗ = 1 + ln[(1− α)−1]. Therefore
for N < (1− α)−1 we have

Pr
(∣∣θ̂N − θ∗∣∣ ≥ ε) ≥ Pr

(
θ̂N ≥ 1 + ln[(1− α)−1] + ε

)
=

Pr
(
max{Z1, . . . , ZN} ≥ 1 + ln[(1− α)−1] + ε

)
=

1− Pr
(
Zi ≤ 1 + ln[(1− α)−1] + ε, i = 1, . . . , N

)
=

1− [1− exp{−1 + ln(1− α)− ε}]N = 1−
[
1− e−1−ε(1− α)

]N
.

(6.265)

Suppose now that N = b(1− α)−1c. Since

lim
α↑1

[
1− e−1−ε(1− α)

](1−α)−1

= e−e
−1−ε

,

we have then that
lim inf
α↑1

Pr
(
θ̂N ≥ θ∗ + ε

)
≥ 1− e−e

−1−ε
.

That is, as α tends to one, and hence N = b(1−α)−1c tends to∞, probability of the event
“
∣∣θ̂N − θ∗∣∣ ≥ ε′′ does not tend to zero.

Similar analysis can be performed for a convex combination of Average Value-at-
Risk measures. That is, let

θ∗ :=

m∑
i=1

λiAV@R1−αi(Z), (6.266)

where 0 ≤ α1 < · · · < αm < 1 and λi > 0 are positive weights summing up to one. Let
θ̂N be the sample estimate of θ∗ based on an iid sample of size N . Then the representation
of the form (6.248) holds with

f(t) :=
∑m
i=1

{
λiti + λi

1−αiE[Z − ti]+
}
,

f̂N (t) :=
∑m
i=1

{
λiti + λi

(1−αi)N
∑N
j=1[Zj − ti]+

}
,

and the corresponding minimization over t ∈ Rm. If E[Z2] < +∞ and the left and right
side αi-quantiles, i = 1, . . . ,m, of the distribution of Z are the same, then the asymptotic
convergence result (6.252) holds with

σ2 = Var
{∑m

i=1
λi

1−αi [Z − t∗i ]+
}
, (6.267)

where t∗i := V@R1−αi(Z) = H−1
Z (αi).
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We can view the right hand side of (6.266) as the Kusuoka representation (6.131) of
the corresponding spectral risk measure. That is, we can write equation (6.266) as

θ∗ =

∫ 1

0

AV@R1−α(Z)dµ(α), (6.268)

where µ :=
∑m
i=1 λiδ(αi). For a general probability measure µ, on the interval [0, 1), an

analogue of formula (6.267), for the corresponding asymptotic variance of N1/2
(
θ̂N − θ∗

)
will be

σ2 = Var
{∫ 1

0
1

1−α [Z − t∗(α)]+ dµ(α)
}
, (6.269)

where t∗(α) := V@R1−α(Z) = H−1
Z (α).

Of course, the above formula (6.269) should be rigorously justified. As it was pointed
in Remark 40, sample estimate of AV@R1−α(Z) could become very unstable for small val-
ues of 1−α. Similarly the right hand side of (6.269) could become large if the distribution
of Z has an unbounded support and the distribution µ(α) has a heavy tail as α → 1. We
will discuss this further at the end of section 6.6.3.

6.6.2 Absolute Semideviation Risk Measure
Consider the mean absolute semideviation risk measure

ρc(Z) := E {Z + c[Z − E(Z)]+} , (6.270)

where c ∈ [0, 1] and the expectation is taken with respect to the probability distribution
P of Z. We assume that E|Z| < +∞, and hence ρc(Z) is finite. For a random sample
Z1, . . . , ZN of Z, the corresponding estimator of θ∗ := ρc(Z) is

θ̂N = N−1
N∑
j=1

(
Zj + c[Zj − Z̄]+

)
, (6.271)

where Z̄ = N−1
∑N
j=1 Z

j .
We have that ρc(Z) is equal to the optimal value of the following convex-concave

minimax problem
Min
t∈R

max
γ∈[0,1]

E [F (t, γ, Z)] , (6.272)

where
F (t, γ, z) := z + cγ[z − t]+ + c(1− γ)[t− z]+

= z + c[z − t]+ + c(1− γ)(t− z). (6.273)

This follows by virtue of Corollary 6.3. More directly we can argue as follows. Denote
µ := E[Z]. We have that

sup
γ∈[0,1]

E
{
Z + cγ[Z − t]+ + c(1− γ)[t− Z]+

}
= E[Z] + cmax

{
E([Z − t]+),E([t− Z]+)

}
.

Moreover, E([Z − t]+) = E([t − Z]+) if t = µ, and either E([Z − t]+) or E([t − Z]+)
is bigger than E([Z − µ]+) if t 6= µ. This implies the assertion and also shows that the
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minimum in (6.272) is attained at unique point t∗ = µ. It also follows that the set of saddle
points of the minimax problem (6.272) is given by {µ} × [γ∗, γ∗∗], where

γ∗ = Pr(Z < µ) and γ∗∗ = Pr(Z ≤ µ) = HZ(µ). (6.274)

In particular, if the cdf HZ(·) is continuous at µ = E[Z], then there is unique saddle point
(µ,HZ(µ)).

Consequently, θ̂N is equal to the optimal value of the corresponding SAA problem

Min
t∈R

max
γ∈[0,1]

N−1
N∑
j=1

F (t, γ, Zj). (6.275)

Therefore we can apply results of section 5.1.4 in a straightforward way. We obtain that
θ̂N converges w.p.1 to θ∗ as N →∞. Moreover, assuming that E[Z2] < +∞ we have by
Theorem 5.10 that

θ̂N = max
γ∈[γ∗,γ∗∗]

N−1
∑N
j=1 F (µ, γ, Zj) + op(N

−1/2)

= Z̄ + cN−1
∑N
j=1[Zj − µ]+ + cΨ(Z̄ − µ) + op(N

−1/2),
(6.276)

where Z̄ = N−1
∑N
j=1 Z

j and function Ψ(·) is defined as

Ψ(z) :=

{
(1− γ∗)z, if z > 0,
(1− γ∗∗)z, if z ≤ 0.

If, moreover, the cdf HZ(·) is continuous at µ, and hence γ∗ = γ∗∗ = HZ(µ), then

N1/2(θ̂N − θ∗)
D→ N(0, σ2), (6.277)

where σ2 = Var[F (µ,HZ(µ), Z)].
This analysis can be extended to risk averse optimization problems of the form

(6.194). That is, consider problem

Min
x∈X

{
ρc[G(x, ξ)] = E

{
G(x, ξ) + c[G(x, ξ)− E(G(x, ξ))]+

}}
, (6.278)

where X ⊂ Rn and G : X ×Ξ→ R. Its sample average approximation (SAA) is obtained
by replacing the true distribution of the random vector ξ with the empirical distribution
associated with a random sample ξ1, . . . , ξN , that is

Min
x∈X

1
N

N∑
j=1

{
G(x, ξj) + c

[
G(x, ξj)− 1

N

∑N
j=1G(x, ξj)

]
+

}
. (6.279)

Assume that the setX is convex compact and functionG(·, ξ) is convex for a.e. ξ. Then, for
c ∈ [0, 1], problems (6.278) and (6.279) are convex. By using the min-max representation
(6.272), problem (6.278) can be written as the minimax problem

Min
(x,t)∈X×R

max
γ∈[0,1]

E [F (t, γ,G(x, ξ))] , (6.280)
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where functionF (t, γ, z) is defined in (6.273). The functionF (t, γ, z) is convex and mono-
tonically increasing in z. Therefore, by convexity of G(·, ξ), the function F (t, γ,G(x, ξ))
is convex in x ∈ X , and hence (6.280) is a convex-concave minimax problem. Conse-
quently results of section 5.1.4 can be applied.

Let ϑ∗ and ϑ̂N be the optimal values of the true problem (6.278) and the SAA prob-
lem (6.279), respectively, and S be the set of optimal solutions of the true problem (6.278).
By Theorem 5.10 and the above analysis we obtain, assuming that conditions specified in
Theorem 5.10 are satisfied, that

ϑ̂N = N−1 inf
x∈S

t=E[G(x,ξ)]

max
γ∈[γ∗,γ∗∗]


N∑
j=1

F
(
t, γ,G(x, ξj)

)+ op(N
−1/2), (6.281)

where

γ∗ := Pr
{
G(x, ξ) < E[G(x, ξ)]

}
and γ∗∗ := Pr

{
G(x, ξ) ≤ E[G(x, ξ)]

}
, x ∈ S.

Note that the points
(
(x,E[G(x, ξ)]), γ

)
, where x ∈ S and γ ∈ [γ∗, γ∗∗], form the set

of saddle points of the convex-concave minimax problem (6.280), and hence the interval
[γ∗, γ∗∗] is the same for any x ∈ S.

Moreover, assume that S = {x̄} is a singleton, i.e., problem (6.278) has unique
optimal solution x̄, and the cdf of the random variable Z = G(x̄, ξ) is continuous at
µ := E[G(x̄, ξ)], and hence γ∗ = γ∗∗. Then it follows that N1/2(ϑ̂N − ϑ∗) converges
in distribution to normal with zero mean and variance

Var
{
G(x̄, ξ) + c[G(x̄, ξ)− µ]+ + c(1− γ∗)(G(x̄, ξ)− µ)

}
.

6.6.3 Von Mises Statistical Functionals
In the two examples, of AV@Rα and absolute semideviation, of risk measures considered in
the above sections it was possible to use their variational representations in order to apply
results and methods developed in section 5.1. A possible approach to deriving large sample
asymptotics of law invariant coherent risk measures is to use the Kusuoka representation
described in Theorem 6.40 (such approach was developed in [180]). In this section we dis-
cuss an alternative approach of Von Mises statistical functionals borrowed from Statistics.
We view now a (law invariant) risk measure ρ(Z) as a function θ(P ) of the corresponding
probability measure P . For example, with the (upper) semideviation risk measure σ+

p [Z],
defined in (6.5), we associate the functional

θ(P ) :=
(
EP
[(
Z − EP [Z]

)p
+

])1/p

. (6.282)

The sample estimate of θ(P ) is obtained by replacing probability measure P with the
empirical measure PN . That is, we estimate θ∗ = θ(P ) by θ̂N = θ(PN ).

Let Q be an arbitrary probability measure, defined on the same probability space as
P , and consider the convex combination (1− τ)P + τQ = P + τ(Q−P ), with τ ∈ [0, 1],
of P and Q. Suppose that the following limit exists

θ′(P,Q− P ) := lim
τ↓0

θ(P + τ(Q− P ))− θ(P )

τ
. (6.283)
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The above limit is just the directional derivative of θ(·) at P in the direction Q − P . If,
moreover, the directional derivative θ′(P, ·) is linear, then θ(·) is Gâteaux differentiable at
P . Consider now the approximation

θ(PN )− θ(P ) ≈ θ′(P, PN − P ). (6.284)

By this approximation

N1/2(θ̂N − θ∗) ≈ θ′(P,N1/2(PN − P )), (6.285)

and we can use θ′(P,N1/2(PN − P )) to derive asymptotics of N1/2(θ̂N − θ∗).
Suppose, further, that θ′(P, ·) is linear, i.e., θ(·) is Gâteaux differentiable at P . Then,

since PN = N−1
∑N
j=1 δ(Z

j), we have that

θ′(P, PN − P ) =
1

N

N∑
j=1

IFθ(Z
j), (6.286)

where
IFθ(z) := θ′(P, δ(z)− P ) (6.287)

is the so-called influence function (also called influence curve) of θ(·).
It follows from the linearity of θ′(P, ·) that EP [IFθ(Z)] = 0. Indeed, linearity of

θ′(P, ·) means that it is a linear functional and hence can be represented as

θ′(P,Q− P ) =

∫
g d(Q− P ) =

∫
g dQ− EP [g(Z)]

for some function g in an appropriate functional space. Consequently IFθ(z) = g(z) −
EP [g(Z)], and hence

EP [IFθ(Z)] = EP {g(Z)− EP [g(Z)]} = 0.

Then by the Central Limit Theorem we have that N−1/2
∑N
j=1 IFθ(Z

j) converges in dis-
tribution to normal with zero mean and variance EP [IFθ(Z)2]. This suggests the following
asymptotics

N1/2(θ̂N − θ∗)
D→ N

(
0,EP [IFθ(Z)2]

)
. (6.288)

It should be mentioned at this point that the above derivations do not prove in a rig-
orous way validity of the asymptotics (6.288). The main technical difficulty is to give a
rigorous justification for the approximation (6.285) leading to the corresponding conver-
gence in distribution. This can be compared with the Delta method, discussed in section
7.2.8 and applied in section 5.1, where first (and second) order approximations were de-
rived in functional spaces rather than spaces of measures. Anyway, formula (6.288) usually
gives correct asymptotics and is routinely used in statistical applications.

Let us consider, for example, the statical functional

θ(P ) := EP
[
Z − EP [Z]

]
+
, (6.289)
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associated with σ+
1 [Z]. Denote µ := EP [Z]. Then

θ(P + τ(Q− P )) = τ
(
EQ
[
Z − µ

]
+
− EP

[
Z − µ

]
+

)
+EP

[
Z − µ− τ(EQ[Z]− µ)

]
+

+ o(τ).

Moreover, the right side derivative at τ = 0 of the second term in the right hand side of the
above equation is (1−HZ(µ))(EQ[Z]− µ), provided that the cdf HZ(z) is continuous at
z = µ. It follows that if the cdf HZ(z) is continuous at z = µ, then

θ′(P,Q− P ) = EQ
[
Z − µ

]
+
− EP

[
Z − µ

]
+

+ (1−HZ(µ))(EQ[Z]− µ),

and hence

IFθ(z) = [z − µ]+ − EP
[
Z − µ

]
+

+ (1−HZ(µ))(z − µ). (6.290)

It can be seen now that EP [IFθ(Z)] = 0 and

EP [IFθ(Z)2] = Var
{

[Z − µ]+ + (1−HZ(µ))(Z − µ)
}
.

That is, the asymptotics (6.288) here are exactly the same as the ones derived in the previous
section 6.6.2 (compare with (6.277)).

In a similar way it is possible to compute the influence function of the statistical
functional defined in (6.282), associated with σ+

p [Z], for p > 1. For example, for p = 2
the corresponding influence function can be computed, provided that the cdf HZ(z) is
continuous at z = µ, as

IFθ(z) =
1

2θ∗

(
[z − µ]2+ − θ∗2 + 2κ(1−HZ(µ))(z − µ)

)
, (6.291)

where θ∗ := θ(P ) = (EP [Z − µ]2+)1/2 and κ := EP [Z − µ]+ = 1
2
EP |Z − µ|.

Now let us compute the influence function of a spectral risk measure, given in the
form of Kusuoka representation,

θ(P ) :=

∫ 1

0

AV@R1−α(P )dµ(α), (6.292)

where µ is a probability measure on the interval [0,1) such that θ(P ) is finite valued. Given
a probability measure Q having finite first order moment, consider function

ψα(τ) := AV@R1−α(P + τ(Q− P )).

We have that

ψα(τ) = inf
t∈R

{
t+ 1−τ

1−αEP [Z − t]+ + τ
1−αEQ[Z − t]+

}
, (6.293)

and for τ = 0 the set of minimizers of the right hand side of (6.293) is given by the interval
[t∗(α), t∗∗(α)] with t∗(α) and t∗∗(α) being the respective left and right side α-quantiles
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of the probability distribution P . It follows by Danskin Theorem (Theorem 7.25) that for
α ∈ (0, 1), the right side derivative of ψα(τ) at τ = 0 is

G(α) := inf
t∈[t∗(α),t∗∗(α)]

(1− α)−1 (EQ[Z − t]+ − EP [Z − t]+) , (6.294)

Consequently, θ(·) is directionally differentiable at P in the direction Q− P and

θ′(P,Q− P ) = lim
τ↓0

∫ 1

0

ψα(τ)− ψα(0)

τ
dµ(α) =

∫ 1

0

G(α)dµ(α), (6.295)

provided the limit and integral operators can be interchanged. By the Lebesgue Dominated
Convergence Theorem this interchangeability holds if there exists an µ-integrable function
c(α) and η > 0 such that

|ψα(τ)− ψα(0)| ≤ c(α)τ, τ ∈ [0, η]. (6.296)

We obtain that

IFθ(z) =

∫ 1

0

(1−α)−1[z−t∗(α)]+dµ(α)−
∫ 1

0

(1−α)−1EP [Z−t∗(α)]+dµ(α), (6.297)

provided that the following conditions are satisfied.

(i) For µ-almost every α ∈ [0, 1) the distribution P has unique α-quantile t∗(α) =
V@R1−α(P ), i.e., t∗(α) = t∗∗(α).

(ii) The dominance condition (6.296) holds for Q := PN .

Then it follows that EP [IFθ(Z)] = 0, Var (IFθ(Z)) = EP [IFθ(Z)2] and

EP [IFθ(Z)2] = Var
{∫ 1

0
(1− α)−1 [Z − t∗(α)]+ dµ(α)

}
. (6.298)

Note that (6.298) gives the same expression as formula (6.269) for the asymptotic
variance of the corresponding sample estimate θ̂N . The above derivations indicate necessity
of the assumption (i) for asymptotic normality of the estimator θ̂N .

6.7 The Problem of Moments
Due to the duality representation (6.39) of a coherent risk measure, the corresponding risk
averse optimization problem (6.194) can be written as the minimax problem (6.197). So far,
risk measures were defined on an appropriate functional space which in turn was dependent
on a reference probability distribution. One can take an opposite point of view by defining
a min-max problem of the form

Min
x∈X

sup
P∈M

EP [f(x, ω)] (6.299)

in a direct way, for a specified set M of probability measures on a measurable space (Ω,F).
Note that we do not assume in this section existence of a reference measure P and do not
work in a functional space of corresponding density functions. In fact, it will be essential
here to consider discrete measures on the space (Ω,F). We denote by P̄ the set of probabil-
ity measures22 on (Ω,F). For a probability measure P ∈ P̄, the expectation EP [f(x, ω)]

22The set P̄ of probability measures should be distinguished from the set P of probability density functions
used before.
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is given by the integral

EP [f(x, ω)] =

∫
Ω

f(x, ω)dP (ω).

The set M can be viewed as an uncertainty set for the underlying probability dis-
tribution. Minimax problems of the form (6.299) are referred to as distributionally robust
stochastic programming problems. Of course, there are various ways to define the uncer-
tainty set M. In some situations, it is reasonable to assume that we have a knowledge about
certain moments of the corresponding probability distribution. That is, suppose that the set
M is defined by moment constraints as follows∫

Ω
Ψ(ω)dP (ω) �C b, (6.300)

where b ∈ Rq , C ⊂ Rq is a closed convex cone, Ψ : Ω→ Rq is a measurable mapping and
the integral (expectation) of Ψ(ω) =

(
ψ1(ω), ..., ψq(ω)

)
is taken componentwise. That is,

the set M consists of probability measures P on (Ω,F) such that the integrals
∫

Ω
ψidP ,

i = 1, ..., q, are well defined and the constraint (6.300) holds. Note that the condition that
P is a probability measure, can be formulated explicitly as the constraint23

∫
Ω
dP = 1 and

P � 0.
Recall that a �C b denotes partial order with respect to the cone C, i.e., a �C b

means that b− a ∈ C or equivalently a ∈ b− C. In particular if C = {0q} consists of the
null vector 0q ∈ Rq , then a �C b means that a = b. If C = {0p} × Rq−p+ , then a �C b
means that ai = bi, i = 1, ..., p, and ai ≤ bi, i = p+ 1, ..., q. Another interesting example
is when Ψ maps Ω into the space of m×m symmetric matrices and C is given by the cone
of m×m positive semidefinite matrices.

We assume that every finite subset of Ω is F-measurable. This is a mild assumption.
For example, if Ω is a metric space equipped with its Borel sigma algebra, then this is
certainly holds true. We denote by P̄∗m the set of probability measures on (Ω,F) having a
finite support of at mostm points. That is, every measure P ∈ P̄∗m can be represented in the
form P =

∑m
i=1 αiδ(ωi), where αi are nonnegative numbers summing up to one and δ(ω)

denotes measure of mass one at the point ω ∈ Ω. Similarly, we denote M∗m := M ∩ P̄∗m,
i.e., M∗m is the subset of M consisting of probability measures having finite support of at
most m points. Note that the set M is convex while, for a fixed m, the set M∗m is not
necessarily convex. By Theorem 7.37, to any P ∈ M corresponds a probability measure
Q ∈ P̄ with a finite support of at most q + 1 points such that EP [ψi(ω)] = EQ[ψi(ω)],
i = 1, . . . , q. That is, if the set M is nonempty, then its subset M∗q+1 is also nonempty.

For a given x ∈ X and ψ0(ω) := f(x, ω), consider the corresponding problem of
moments:

Max
P∈M

EP [ψ0(ω)]. (6.301)

Proposition 6.66. Problem (6.301) is equivalent to the problem

Max
P∈M∗q+1

EP [ψ0(ω)]. (6.302)

23Recall that the notation “P � 0” means that P is a nonnegative (not necessarily probability) measure on
(Ω,F).
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The equivalence is in the sense that both problems have the same optimal value, and if
problem (6.301) has an optimal solution, then it also has an optimal solution P ∗ ∈M∗q+1.
In particular if q = 0, i.e., the set M consists of all probability measures on (Ω,F), then
problem (6.301) is equivalent to the problem of maximization of ψ0(ω) over ω ∈ Ω.

Proof. If the set M is empty, then its subset M∗q+1 is also empty, and hence both problems
(6.301) and (6.302) have optimal value +∞. So suppose that M is nonempty. Let P ∈M,
by Theorem 7.37 there exists Q ∈ M∗q+2 such that EP [ψ0(ω)] = EQ[ψ0(ω)]. It follows
that problem (6.301) is equivalent to the problem of maximization of EP [ψ0(ω)] over P ∈
M∗q+2, and if problem (6.301) has an optimal solution, then it has an optimal solution in
the set M∗q+2. The problem of maximization of EP [ψ0(ω)] over P ∈M∗q+2 can be written
as

Max
ω1,...,ωm∈Ω

α∈Rm
+

m∑
j=1

αjψ0(ωj)

subject to
m∑
j=1

αjψi(ωj) = si, i = 1, . . . , q,

m∑
j=1

αj = 1,

s ∈ b− C,

(6.303)

wherem := q+2. For fixed ω1, . . . , ωm ∈ Ω and s ∈ b−C, the above problem (6.303) is a
linear programming problem in α. Its feasible set is bounded, and provided that its feasible
set is nonempty, its optimum is attained at an extreme point of its feasible set which has
at most q + 1 nonzero components of α. Therefore it suffices to take the maximum over
P ∈M∗q+1.

The Lagrangian of problem (6.301) is

L(P, λ0, λ) =
∫

Ω
ψ0(ω)dP (ω) + λ0

(
1−

∫
Ω
dP (ω)

)
+ λT

(∫
Ω

Ψ(ω)dP (ω)− b
)

=
∫

Ω

(
ψ0(ω)− λ0 + λTΨ(ω)

)
dP (ω) + λ0 − λTb.

We have that

inf
λ0∈R,λ∈C∗

L(P, λ0, λ) =

{ ∫
Ω
ψ0(ω)dP (ω), if

∫
Ω
dP = 1,

∫
Ω

Ψ(ω)dP (ω) ∈ b− C,
−∞, otherwise,

where C∗ is the polar of the cone C. Therefore problem (6.301) can be written in the
following minimax form

Max
P�0

inf
λ0∈R,λ∈C∗

L(P, λ0, λ). (6.304)

The (Lagrangian) dual of the problem (6.301) is obtained by interchanging the max and
min operators in (6.304). Now

Max
P�0

L(P, λ0, λ) =

{
λ0 − λTb if ψ0(ω)− λ0 + λTΨ(ω) ≤ 0, ω ∈ Ω,
+∞, otherwise.
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This can be verified by considering atomic measures P = αδ(ω), α > 0, ω ∈ Ω. Therefore
the Lagrangian dual of problem (6.301) can be written as (we change here λ to −λ)

Min
λ0∈R, λ∈−C∗

λ0 + λTb

s.t. ψ0(ω)− λTΨ(ω) ≤ λ0, ω ∈ Ω.
(6.305)

It is also possible to write the above problem (6.305) as the following min-max problem

Min
λ∈−C∗

sup
ω∈Ω

{
λTb+ ψ0(ω)− λTΨ(ω)

}
. (6.306)

In particular, if C = {0p} × Rq−p+ , then −C∗ = Rp × Rq−p+ , and hence the dual
problem takes the form

Min
λ0∈R, λ∈Rp×Rq−p+

λ0 +
∑q
i=1 biλi

s.t. ψ0(ω)−
∑q
i=1 λiψi(ω) ≤ λ0, ω ∈ Ω.

(6.307)

If moreover the set Ω is finite, then problem (6.301) and its dual (6.307) are linear program-
ming problems. In that case there is no duality gap between these problems unless both are
infeasible.

If the set Ω is infinite, then the dual problem (6.305) involves an infinite number of
constraints and becomes a semi-infinite programming problem. In that case one needs to
verify some regularity conditions in order to ensure the “no duality gap” property. Note that
optimal value of the dual problem (6.305) is always greater than or equal to the optimal
value of the corresponding problem of moments (6.301). Therefore if the dual problem
(6.305) is unbounded from below, i.e., its optimal value is −∞, then the optimal value of
the problem (6.301) is also −∞, i.e., the feasible set M of problem (6.301) is empty.

By the theory of conjugate duality (see Example 7.10 and Theorem 7.8 of section
7.1.3), we have the following result.

Proposition 6.67. Suppose that dual problem (6.305) has a nonempty and bounded set of
optimal solutions. Then there is no duality gap between problems (6.301) and (6.305).

Another regularity condition ensuring the “no duality gap” property is the following.

Proposition 6.68. Let Ω be a compact metric space equipped with its Borel sigma algebra.
Suppose that the set M is nonempty and functions ψi(·), i = 1, . . . , q, and ψ0(·) are
continuous on Ω. Then there is no duality gap between problems (6.301) and (6.305), and
problem (6.301) has an optimal solution.

Proof. We briefly outline the proof. By Proposition 6.66 it suffices to give a proof in the
framework of the problem (6.303), which can be written in the form

Max
(ω1,...,ωm,α)∈Υ

m∑
j=1

αjψ0(ωj)

s.t.
m∑
j=1

αjΨ(ωj) ∈ b− C,
(6.308)
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where Υ := Ω × · · · × Ω × ∆m with ∆m :=
{
α ∈ Rm+ :

∑m
j=1 αj = 1

}
. The set

Υ is compact and the feasible set of problem (6.308) is nonempty. It follows that the
feasible set of problem (6.308) is compact, and hence this problem has an optimal solution.
Moreover, the optimal value of problem (6.308), considered as a function of vector b, is
lower semicontinuous. This can be shown in the same way as in the proof of Theorem 7.23.
Then by Theorem 7.8 we obtain that there is no duality gap between problems (6.301) and
(6.305).

If for every x ∈ X and ψ0(·) = f(x, ·) there is no duality gap between problems
(6.301) and (6.305), then the corresponding min-max problem (6.299) is equivalent to the
following semi-infinite programming problem

Min
x∈X , λ0∈R, λ∈−C∗

λ0 + λTb

s.t. f(x, ω)− λTΨ(ω) ≤ λ0, ω ∈ Ω.
(6.309)

We also can write problem (6.309) as the following min-max problem

Min
x∈X , λ∈−C∗

sup
ω∈Ω

{
λTb+ f(x, ω)− λTΨ(ω)

}
. (6.310)

Remark 41. Let M be the set of all probability measures on (Ω,F). Then by the above
analysis we have that it suffices in problem (6.299) to take the maximum over measures of
mass one, and hence problem (6.299) is equivalent to the following (deterministic) minimax
problem

Min
x∈X

sup
ω∈Ω

f(x, ω). (6.311)

Suppose now that Ω is a (nonempty) convex compact subset of Rd equipped with its
Borel sigma algebra. Then by Minkowski Theorem, the set Ω is equal to the convex hull of
its extreme points. Recall that a point e ∈ Ω is said to be an extreme point of Ω if there do
not exist points e1, e2 ∈ Ω, different from e, such that e belongs to the interval [e1, e2]. In
other words, e is an extreme point of Ω if whenever e = te1 +(1−t)e2 for some e1, e2 ∈ Ω
and t ∈ (0, 1), then e1 = e2 = e. We denote by Ext(Ω) the set of extreme points of Ω. If
the functions ψi : Rd → R, i = 1, . . . , q, are affine and the function ψ0 : Ω→ R is convex,
then for any λ ∈ −C∗ the function ψ0(·)− λTΨ(·) is convex, and hence maximum in the
problem (6.306) is attained at extreme points of Ω. For the corresponding problem (6.301)
this suggests the following result, for which we give a direct proof.

Theorem 6.69. Suppose that the set Ω ⊂ Rd is nonempty convex compact, the set M is
nonempty, the functions ψi : Rd → R, i = 1, . . . , q, are affine, and the function ψ0 : Ω→
R is convex continuous. Then maximum in problem of moments (6.301) is attained at a
probability measure of the form P ∗ =

∑q+1
i=1 αiδ(ei), where ei ∈ Ext(Ω) and αi ∈ [0, 1],

i = 1, . . . , q + 1, with
∑q+1
i=1 αi = 1.

Proof. By adding a constant to function ψi(·), i = 1, . . . , q, we can make it linear, while
absorbing this constant in the right hand side of the corresponding constraint in (6.300).
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Therefore without loss of generality we can assume that all functions ψi(·), i = 1, . . . , q,
are linear.

By Proposition 6.66 it suffices to perform the maximization over P ∈ M∗k, where
k = q + 1. Since the set M is nonempty, the set M∗k is also nonempty. Moreover, since
the set Ω is compact, the functions ψi, i = 1, . . . , q, are linear and ψ0 is continuous, it
follows by compactness arguments that problem (6.301) has an optimal solution of the
form P ∗ =

∑k
i=1 αiδ(ωi) for some ωi ∈ Ω and αi ∈ [0, 1] such that

∑k
i=1 αi = 1. We

need to show that the points ωi can be chosen to be extreme points of the set Ω.
Suppose that one of the points ωi, say ω1, is not an extreme point of Ω. Since

(by Minkowski Theorem) Ω is equal to the convex hull of Ext(Ω), there exist points
e1, . . . , em ∈ Ext(Ω) and tj ∈ (0, 1), with

∑m
j=1 tj = 1, such that ω1 =

∑m
j=1 tjej .

Consider the probability measure

P ′ := α1

∑m
j=1 tjδ(ej) +

∑k
i=2 αiδ(ωi).

Then using linearity of ψ`, ` = 1, . . . , q, we have that

EP ′ [ψ`(ω)] = α1

∑m
j=1 tjψ`(ej) +

∑k
i=2 αiψ`(ωi)

= α1ψ`
(∑m

j=1 tjej
)

+
∑k
i=2 αiψ`(ωi)

= α1ψ`(ω1) +
∑k
i=2 αiψ`(ωi) = EP∗ [ψ`(ω)].

Therefore P ′ satisfies the feasibility constraints of problem (6.301) as well as P ∗. Now by
convexity of ψ0 we can write

EP ′ [ψ0(ω)] = α1

∑m
j=1 tjψ0(ej) +

∑k
i=2 αiψ0(ωi)

≥ α1ψ0

(∑m
j=1 tjej

)
+
∑k
i=2 αiψ0(ωi)

= α1ψ0(ω1) +
∑k
i=2 αiψ0(ωi) = EP∗ [ψ0(ω)].

Thus P ′ is also an optimal solution of problem (6.301). It follows that there exists an
optimal solution with a finite support of a set of extreme points. It remains to note that by
Theorem 7.37 this support can be chosen to have no more than q + 1 points.

6.8 Multistage Risk Averse Optimization
In this section we discuss an extension of risk averse optimization to a multistage setting. In
order to simplify the presentation, we start our analysis with a process on a finite probability
space, where evolution of the state of the system is represented by a scenario tree.

6.8.1 Scenario Tree Formulation
Consider a scenario tree representation of evolution of the corresponding data process (see
section 3.1.3). The basic idea of multistage stochastic programming is that if we are cur-
rently at a state of the system at stage t, represented by a node of the scenario tree, then our
decision at that node is based on our knowledge about the distribution of the next possible
realizations of the data process, which are represented by its children nodes at stage t+ 1.
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In the risk neutral approach, we optimize the corresponding conditional expectation of the
objective function. This allows to write the associated dynamic programming equations.
This idea can be extended to optimization of a risk measure, conditional on a current state
of the system. We are going to discuss now such construction in detail.

As in section 3.1.4, we denote by Ωt the set of all nodes at stage t = 1, . . . , T , by
Kt := |Ωt| the cardinality of Ωt and by Ca the set of children nodes of a node a of the tree.
Note that {Ca}a∈Ωt forms a partition of the set Ωt+1, i.e., Ca ∩ Ca′ = ∅ if a 6= a′ and
Ωt+1 = ∪a∈ΩtCa, t = 1, . . . , T − 1. With the set ΩT we associate the algebra FT of all
its subsets. Let FT−1 be the subalgebra of FT generated by sets Ca, a ∈ ΩT−1, i.e., these
sets form the set of elementary events ofFT−1 (recall that {Ca}a∈ΩT−1

forms a partition of
ΩT ). By this construction there is a one-to-one correspondence between elementary events
of FT−1 and the set ΩT−1 of nodes at stage T −1. By continuing this process we construct
a sequence of sigma algebras F1 ⊂ · · · ⊂ FT (called filtration). Note that F1 corresponds
to the unique root node and hence F1 = {∅,ΩT }. In this construction there is a one-to-one
correspondence between nodes of Ωt and elementary events of the sigma algebra Ft, and
hence we can identify every node a ∈ Ωt with an elementary event of Ft. By taking all
children of every node of Ca at later stages, we eventually can identify with Ca a subset of
ΩT .

Suppose, further, that there is a probability distribution defined on the scenario tree.
As it was discussed in section 3.1.3, such probability distribution can be defined by in-
troducing conditional probabilities of going from a node of the tree to its children nodes.
That is, with a node a ∈ Ωt is associated a probability vector24 pa ∈ R|Ca| of conditional
probabilities of moving from a to nodes in Ca. Equipped with probability vector pa, the
set Ca becomes a probability space, with the corresponding sigma algebra of all subsets of
Ca, and any function Z : Ca → R can be viewed as a random variable. Since the space
of functions Z : Ca → R can be identified with the space R|Ca|, we identify such random
variable Z with an element of the vector space R|Ca|. With every Z ∈ R|Ca| is associated
the expectation Epa [Z], which can be considered as a conditional expectation given that we
are currently at node a.

Now with every node a at stage t = 1, . . . , T − 1 we associate a risk measure ρa(Z)
defined on the space of functions Z : Ca → R, that is we choose a family of risk measures

ρa : R|Ca| → R, a ∈ Ωt, t = 1, . . . , T − 1. (6.312)

Of course, there are many ways how such risk measures can be defined. For instance, for a
given probability distribution on the scenario tree, we can use conditional expectations

ρa(Z) := Epa [Z], a ∈ Ωt, t = 1, . . . , T − 1. (6.313)

Such choice of risk measures ρa leads to the risk neutral formulation of a corresponding
multistage stochastic program. For a risk averse approach we can use any class of coherent
risk measures discussed in section 6.3.2, as, for example,

ρa[Z] := inf
t∈R

{
t+ λ−1

a Epa
[
Z − t

]
+

}
, λa ∈ (0, 1), (6.314)

24A vector p = (p1, . . . , pn) ∈ Rn is said to be a probability vector if all its components pi are nonnegative
and
∑n
i=1 pi = 1. If Z = (Z1, . . . , Zn) ∈ Rn is viewed as a random variable, then its expectation with respect

to p is Ep[Z] =
∑n
i=1 piZi.
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corresponding to AV@R risk measure, or

ρa[Z] := Epa [Z] + caEpa
[
Z − Epa [Z]

]
+
, ca ∈ [0, 1], (6.315)

corresponding to the absolute semideviation risk measure. Another interesting example is
the max-risk measure

ρa[Z] := max
ω∈Ca

Z(ω). (6.316)

This risk measure corresponds to AV@R0 (see Remark 24 on page 296).
Since Ωt+1 is the union of the disjoint sets Ca, a ∈ Ωt, we can write RKt+1 as the

Cartesian product of the spaces R|Ca|, a ∈ Ωt. That is, RKt+1 = R|Ca1 | × · · · × R|CaKt |,
where {a1, . . . , aKt} = Ωt. Define the mappings

ρt+1 := (ρa1 , . . . , ρaKt ) : RKt+1 → RKt , t = 1, . . . , T − 1, (6.317)

associated with risk measures ρa. Recall that the set Ωt+1 of nodes at stage t+1 is identified
with the set of elementary events of sigma algebra Ft+1, and its sigma subalgebra Ft is
generated by sets Ca, a ∈ Ωt.

We denote by ZT the space of all functions Z : ΩT → R. As it was mentioned
before we can identify every such function with a vector of the space RKT , i.e., the space
ZT can be identified with the space RKT . We have that a function Z : ΩT → R is
FT−1-measurable iff it is constant on every set Ca, a ∈ ΩT−1. We denote by ZT−1 the
subspace of ZT formed by FT−1-measurable functions. The space ZT−1 can be identified
with RKT−1 . And so on, we can construct a sequence Zt, t = 1, . . . , T , of spaces of Ft-
measurable functions Z : ΩT → R such that Z1 ⊂ · · · ⊂ ZT and each Zt can be identified
with the space RKt . Recall that K1 = 1, and hence Z1 can be identified with R. We view
the mapping ρt+1, defined in (6.317), as a mapping from the space Zt+1 into the space
Zt. Conversely, with any mapping ρt+1 : Zt+1 → Zt we can associate a family of risk
measures of the form (6.312).

For a mapping ρt+1 : Zt+1 → Zt consider the following conditions25:

(R′1) Convexity:

ρt+1(αZ + (1− α)Z ′) � αρt+1(Z) + (1− α)ρt+1(Z ′),

for any Z,Z ′ ∈ Zt+1 and α ∈ [0, 1].

(R′2) Monotonicity: If Z,Z ′ ∈ Zt+1 and Z � Z ′, then ρt+1(Z) � ρt+1(Z ′).

(R′3) Translation Equivariance: If Y ∈ Zt andZ ∈ Zt+1, then ρt+1(Z+Y ) = ρt+1(Z)+
Y.

(R′4) Positive homogeneity: If α ≥ 0 and Z ∈ Zt+1, then ρt+1(αZ) = αρt+1(Z).

We say that ρt+1 is a coherent (convex) conditional risk mapping if it satisfies conditions
(R′1)–(R′4) (conditions (R′1)–(R′3)). It is straightforward to see that conditions (R′1),
(R′2) and (R′4) hold iff the corresponding conditions (R1), (R2) and (R4), defined in sec-
tion 6.3, hold for every risk measure ρa associated with ρt+1. Also by construction of ρt+1,

25For Z1, Z2 ∈ Zt the inequality Z2 � Z1 is understood componentwise.
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we have that condition (R′3) holds iff condition (R3) holds for all ρa. That is, ρt+1 is a
coherent (convex) conditional risk mapping iff every corresponding risk measure ρa is a co-
herent (convex) risk measure. In the sequel we will deal mainly with coherent conditional
risk mappings. Therefore, unless stated otherwise, we simply say that ρt+1 is a conditional
risk mapping if it satisfies conditions (R′1)–(R′4).

By Theorem 6.5 with each coherent risk measure ρa, a ∈ Ωt, is associated a set A(a)
of probability measures (vectors) such that

ρa(Z) = max
p∈A(a)

Ep[Z]. (6.318)

Here Z ∈ RKt+1 is a vector corresponding to function Z : Ωt+1 → R, and A(a) =
At+1(a) is a closed convex set of probability vectors p ∈ RKt+1 such that pk = 0 if
k ∈ Ωt+1 \ Ca, i.e., all probability measures of At+1(a) are supported on the set Ca.
We can now represent the corresponding conditional risk mapping ρt+1 as a maximum of
conditional expectations as follows. Let ν = (νa)a∈Ωt be a probability distribution on Ωt,
assigning positive probability νa to every a ∈ Ωt, and define

Vt+1 :=

{
µ =

∑
a∈Ωt

νap
a : pa ∈ At+1(a)

}
. (6.319)

It is not difficult to see that Vt+1 ⊂ RKt+1 is a convex set of probability vectors. Moreover,
since each At+1(a) is compact, the set Vt+1 is also compact and hence is closed. Consider
a probability distribution (measure) µ =

∑
a∈Ωt

νap
a ∈ Vt+1. We have that, for a ∈ Ωt,

the corresponding conditional distribution given the event Ca is pa, and26

Eµ [Z|Ft] (a) = Epa [Z], Z ∈ Zt+1. (6.320)

It follows then by (6.318) that

ρt+1(Z) = max
µ∈Vt+1

Eµ [Z|Ft] , (6.321)

where the maximum on the right hand side of (6.321) is taken pointwise in a ∈ Ωt. That
is, formula (6.321) means that

[ρt+1(Z)](a) = max
p∈At+1(a)

Ep[Z], Z ∈ Zt+1, a ∈ Ωt. (6.322)

Note that, in this construction, choice of the distribution ν is arbitrary and any distribution
of Vt+1 agrees with the distribution ν on Ωt (see Proposition 6.74 of section 6.8.2 for a
further discussion of such max-representations of conditional risk mappings).

We are ready now to formulate a risk averse multistage programming problem. For a
sequence ρt+1 : Zt+1 → Zt, t = 1, . . . , T − 1, of conditional risk mappings consider the
following risk averse formulation analogous to the nested risk neutral formulation (3.1):

Min
x1∈X1

f1(x1) + ρ2

[
inf

x2∈X2(x1)
f2(x2) + · · ·

+ ρT−1

[
inf

xT−1∈XT (xT−2)
fT−1(xT−1) + ρT [ inf

xT∈XT (xT−1)
fT (xT )]

]]
.

(6.323)

26Recall that the conditional expectation Eµ[ · |Ft] is a mapping from Zt+1 into Zt.
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Here Ω := ΩT , the objective functions ft : Rnt−1 × Ω → R are real valued random
functions, and Xt : Rnt−1 ×Ω⇒ Rnt , t = 2, . . . , T , are multifunctions such that ft(xt, ·)
and Xt(xt−1, ·) are Ft-measurable for all xt and xt−1. We use here the notation

inf
xt∈Xt(xt−1)

ft(xt) := inf
xt(ω)∈Xt(xt−1(ω),ω)

ft(xt(ω), ω), ω ∈ Ω, (6.324)

to denote the corresponding random variables.
Note that if the corresponding risk measures ρa are defined as conditional expecta-

tions (6.313), then the above multistage problem (6.323) coincides with the risk neutral
multistage problem (3.1).

There are several ways how the above nested formulation (6.323) can be formalized.
Similarly to (3.4), we can write problem (6.323) in the form

Min
x1,x2,...,xT

f1(x1) + ρ2

[
f2(x2) + · · ·+ ρT−1

[
fT−1 (xT−1) + ρT [fT (xT )]

]]
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . . , T.

(6.325)

Optimization in (6.325) is performed over functions xt : Ω → R, t = 1, . . . , T , satisfy-
ing the corresponding constraints, which imply that each xt is Ft-measurable and hence
each ft(xt) is Ft-measurable. The requirement for xt to be Ft-measurable is another
way of formulating the nonanticipativity constraints. Therefore, it can be viewed that the
optimization in (6.325) is performed over feasible policies.

Consider the function % : Z1 × · · · × ZT → R defined as

%(Z1, . . . , ZT ) := Z1 + ρ2

[
Z2 + · · ·+ ρT−1

[
ZT−1 + ρT [ZT ]

]]
. (6.326)

By condition (R′3) we have that ZT−1 + ρT [ZT ] = ρT [ZT−1 + ZT ] and hence

ρT−1

[
ZT−1 + ρT [ZT ]

]
= ρT−1 ◦ ρT

[
ZT−1 + ZT

]
.

By continuing this process we obtain that

%(Z1, . . . , ZT ) = ρ̄(Z1 + · · ·+ ZT ), (6.327)

where ρ̄ := ρ2 ◦ · · · ◦ ρT . We refer to ρ̄ as the composite risk measure. That is,

ρ̄(Z1 + · · ·+ ZT ) = Z1 + ρ2

[
Z2 + · · ·+ ρT−1

[
ZT−1 + ρT [ZT ]

]]
, (6.328)

defined for Zt ∈ Zt, t = 1, . . . , T . Recall that Z1 is identified with R, and hence Z1 is a
real number and ρ̄ : ZT → R is a real valued function. Conditions (R′1)–(R′4) imply that
ρ̄ is a coherent risk measure.

As above we have that since fT−1 (xT−1(ω), ω) is FT−1-measurable, it follows by
condition (R′3) that

fT−1 (xT−1(ω), ω) + ρT [fT (xT )] (ω) = ρT [fT−1 (xT−1) + fT (xT )] (ω).

Continuing this process backwards we obtain that the objective function of (6.325) can be
formulated using the composite risk measure. That is, problem (6.325) can be written in
the form

Min
x1,x2,...,xT

ρ̄
[
f1(x1) + f2(x2) + · · ·+ fT (xT )

]
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . . , T.

(6.329)
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Remark 42. If the conditional risk mappings ρa are defined as the conditional expecta-
tions (6.313), then the composite risk measure ρ̄ becomes the corresponding expectation
operator, and (6.329) coincides with the risk neutral multistage program written in the form
(3.4). Unfortunately it is not easy to write the composite risk measure ρ̄ in a closed form
even for relatively simple conditional risk mappings. Apart from conditional expectations,
another example where the composite risk measure can be written explicitly is the max-risk
measure (6.316). In that case the composite risk measure ρ̄ also has the form of max-risk
measure:

ρ̄(Z) = max
ω∈ΩT

Z(ω), Z ∈ ZT . (6.330)

It turns out that the expectation and max-risk measures are the only examples, among co-
herent risk measures, for which the corresponding composite risk measure has a tractable
representation. We will discuss this later.

An alternative approach to formalize the nested formulation (6.323) is to write dy-
namic programming equations. That is, for the last period T we have

QT (xT−1, ω) := inf
xT∈XT (xT−1,ω)

fT (xT , ω), (6.331)

and we define
QT (xT−1) := ρT [QT (xT−1)]. (6.332)

Observe that QT (xT−1) is random; it depends on the node in ΩT1
. For t = T − 1, . . . , 2,

we recursively apply the conditional risk measures

Qt(xt−1) := ρt [Qt(xt−1)] , (6.333)

where
Qt(xt−1, ω) := inf

xt∈Xt(xt−1,ω)

{
ft(xt, ω) +Qt+1(xt, ω)

}
. (6.334)

Equations (6.333) and (6.334) can be combined into one equation:

Qt(xt−1, ω) = inf
xt∈Xt(xt−1,ω)

{
ft(xt, ω) + ρt+1 [Qt+1(xt)] (ω)

}
. (6.335)

Finally, at the first stage we solve the problem

Min
x1∈X1

f1(x1) + ρ2[Q2(x1)]. (6.336)

A policy x̄1, . . . , x̄T is optimal iff x̄1 is an optimal solution of the first stage problem
(6.336) and for t = 2, . . . , T, it satisfies the optimality conditions (compare with (3.10)):

x̄t(ω) ∈ argmin
xt∈Xt(x̄t−1(ω),ω)

{
ft(xt, ω) + ρt+1 [Qt+1(xt)] (ω)

}
, w.p.1. (6.337)

It is important to emphasize that conditional risk mappings ρt(Z) are defined on real
valued functions Z(ω). Therefore it is implicitly assumed in the above equations that the
cost-to-go (value) functions Qt(xt−1, ω) are real valued. In particular, this implies that the
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considered problem should have relatively complete recourse. Also, in the development of
the dynamic programming equations, the monotonicity condition (R′2) plays a crucial role,
because only then we can use the interchangeability property of risk measures (Proposition
6.60) to move the optimization under the risk operation.

Remark 43. By using representation (6.321), we can write the dynamic programming
equations (6.335) in the form

Qt(xt−1, ω) = inf
xt∈Xt(xt−1,ω)

{
ft(xt, ω) + sup

µ∈Vt+1

Eµ
[
Qt+1(xt)

∣∣Ft] (ω)
}
. (6.338)

Note that the left and right hand side functions in (6.338) areFt-measurable, and hence this
equation can be written in terms of a ∈ Ωt instead of ω ∈ Ω. Recall that every µ ∈ Vt+1

is representable in the form µ =
∑
a∈Ωt

νap
a (see (6.319)) and that

Eµ
[
Qt+1(xt)

∣∣Ft] (a) = Epa [Qt+1(xt)], a ∈ Ωt. (6.339)

We say that the problem is convex if the functions ft(·, ω), Qt(·, ω) and the sets
Xt(xt−1, ω) are convex for every ω ∈ Ω and t = 1, . . . , T . If the problem is convex,
then (since the set Vt+1 is convex compact) the ‘inf’ and ‘sup’ operators on the right hand
side of (6.338) can be interchanged to obtain a dual problem, and for a given xt−1 and
every a ∈ Ωt the dual problem has an optimal solution p̄a ∈ At+1(a). Consequently, for
µ̄t+1 :=

∑
a∈Ωt

νap̄
a an optimal solution of the original problem and the corresponding

cost-to-go functions satisfy the following dynamic programming equations:

Qt(xt−1, ω) = inf
xt∈Xt(xt−1,ω)

{
ft(xt, ω) + Eµ̄t+1

[
Qt+1(xt)|Ft

]
(ω)
}
. (6.340)

Moreover, it is possible to choose the “worst case” distributions µ̄t+1 in consistent way,
such that each µ̄t+1 coincides with µ̄t on Ft. Indeed, consider the first-stage problem
(6.336). We have that (recall that at the first stage there is only one node, F1 = {∅,Ω} and
V2 = A2)

ρ2[Q2(x1)] = sup
µ∈V2

Eµ[Q2(x1)|F1] = sup
µ∈V2

Eµ[Q2(x1)]. (6.341)

By convexity and compactness of V2 and convexity of Q2(·), a measure µ̄2 ∈ V2

exists (an optimal solution of the dual problem) such that the optimal value of the first stage
problem is equal to the optimal value of the problem

Min
x1∈X1

Eµ̄2
[Q2(x1)]. (6.342)

Moreover, the set of optimal solutions of the first stage problem is contained in the set of
optimal solutions of problem (6.342).

Let x̄1 be an optimal solution of the first stage problem. Then we can choose µ̄3 ∈
V3, of the form µ̄3 :=

∑
a∈Ω2

νap̄
a, such that equation (6.340) holds with t = 2 and x1 =

x̄1. Moreover, we can take the probability measure ν = (νa)a∈Ω2 to be the same as µ̄2,
and hence to ensure that µ̄3 coincides with µ̄2 on F2. Next, for every node a ∈ Ω2 choose
a corresponding (second-stage) optimal solution and repeat the construction to produce an
appropriate µ̄4 ∈ V4, and so on for later stages.
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Proceeding in this way and assuming existence of optimal solutions, we can construct
a probability distribution µ̄2, . . . , µ̄T on the scenario tree such that the obtained multistage
problem of the standard form (3.1), has the same cost-to-go (value) functions as the orig-
inal problem (6.323) and has an optimal solution which also is an optimal solution of the
problem (6.323). In this sense, the expected-value multistage problem, with dynamic pro-
gramming equations (6.340), is “almost equivalent” to the original problem.

Remark 44. Let us define, for every node a ∈ Ωt, t = 1, . . . , T − 1, the corresponding set
A(a) = At+1(a) to be the set of all probability measures (vectors) on the setCa (recall that
Ca ⊂ Ωt+1 is the set of children nodes of a, and that all probability measures of At+1(a)
are supported on Ca). Then the maximum on the right hand side of (6.318) is attained at a
measure of mass one at a point of the set Ca. Consequently, by (6.339) for such choice of
the sets At+1(a), the conditional risk measures ρa become the max-risk measures (6.316),
and the dynamic programming equations (6.338) can be written as

Qt(xt−1, a) = inf
xt∈Xt(xt−1,a)

{
ft(xt, a) + max

ω∈Ca
Qt+1(xt, ω)

}
, a ∈ Ωt. (6.343)

It is interesting to note (see the above Remark 43) that if the problem is convex,
then it is possible to construct a probability distribution (on the considered scenario tree),
defined by a sequence µ̄t, t = 2, . . . , T , of consistent probability distributions, such that
the obtained (risk neutral) multistage program is “almost equivalent” to the “min-max”
formulation (6.343).

6.8.2 Conditional Risk Mappings

In this section we discuss a general concept of conditional risk mappings which can be
applied to a risk averse formulation of multistage programs. The material of this section
can be considered as an extension to an infinite dimensional setting of the developments
presented in the previous section. Similarly to the presentation of coherent risk measures,
given in section 6.3, we use the framework of Lp spaces, p ∈ [1,∞). That is, let Ω be
a sample space equipped with sigma algebras F1 ⊂ F2 (i.e., F1 is subalgebra of F2)
and a probability measure P on (Ω,F2). Consider the spaces Z1 := Lp(Ω,F1, P ) and
Z2 := Lp(Ω,F2, P ). Since F1 is a subalgebra of F2, it follows that Z1 ⊂ Z2.

For a mapping ρ : Z2 → Z1 consider the following conditions (axioms):

(R′1) Convexity:
ρ(αZ + (1− α)Z ′) � αρ(Z) + (1− α)ρ(Z ′),

for any Z,Z ′ ∈ Z2 and α ∈ [0, 1].

(R′2) Monotonicity: If Z,Z ′ ∈ Z2 and Z � Z ′, then ρ(Z) � ρ(Z ′).

(R′3) Translation Equivariance: If Y ∈ Z1 and Z ∈ Z2, then
ρ(Z + Y ) = ρ(Z) + Y .

(R′4) Positive homogeneity: If α ≥ 0 and Z ∈ Z2, then ρ(αZ) = αρ(Z).
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The above conditions coincide with the respective conditions of the previous section which
were defined in a finite dimensional setting. If the sigma algebra F1 is trivial, i.e., F1 =
{∅,Ω}, then the space Z1 can be identified with R, and conditions (R′1)–(R′4) define a
coherent risk measure. As in the previous section we refer to mapping ρ : Z2 → Z1

satisfying conditions (R′1)–(R′3) as a convex conditional risk mapping, while we refer to
ρ as a coherent conditional risk mapping, or simply conditional risk mapping, if it satisfies
conditions (R′1)–(R′4).

We also will need stronger condition of strict monotonicity (compare with Remark
33 on page 326):

(R?′2) Strict Monotonicity: If Z,Z ′ ∈ Z2 and Z � Z ′, then ρ(Z) � ρ(Z ′).

Remark 45. Consider a convex conditional risk mapping ρ : Z2 → Z1. For a density
function η ∈ Z∗1 (i.e., η � 0 and

∫
η dP = 1), consider the corresponding functional

%η(Z) :=

∫
Ω

η ρ(Z) dP, Z ∈ Z2. (6.344)

Conditions (R′1)–(R′3) for ρ imply that the corresponding conditions (R1)–(R3) hold for
%η , and hence %η : Z2 → R is a convex risk measure. By Proposition 6.6, %η is continuous.
That is, if Zk ∈ Z2 in a sequence converging to Z ∈ Z2 and η ∈ Z∗1 , η � 0, then

lim
k→∞

∫
Ω

η ρ(Zk) dP =

∫
Ω

η ρ(Z) dP. (6.345)

For a general η ∈ Z∗1 we have the same conclusion (6.345) by applying the above argu-
ments to the positive and negative parts of η. We obtain that ρ is continuous with respect
to the strong (norm) topology of Z2 and weak topology of Z1.

Theorem 6.70. Let ρ : Z2 → Z1 be a conditional risk mapping, and Y ∈ Z1 and Z ∈ Z2

be such that Y � 0 and Y Z ∈ Z2. Then

ρ(Y Z) = Y ρ(Z). (6.346)

Proof. Recall that conditional risk mapping ρ : Z2 → Z1 satisfies conditions (R′1)–(R′4).
Let us show first that

ρ(1AZ) = 1Aρ(Z), for all A ∈ F1, Z ∈ Z2. (6.347)

Consider a density function η ∈ Z∗1 and the associated functional %η defined in (6.344).
Conditions (R′1)–(R′4) for ρ imply that the corresponding conditions (R1)–(R4) hold for
%η , and hence %η is a coherent risk measure defined on the space Z2 = Lp(Ω,F2, P ).
Moreover, for any B ∈ F1 we have by (R′3) that for any Z ∈ Z2 and α ∈ R,

%η(Z + α1B) =
∫

Ω
ηρ(Z + α1B)dP =

∫
Ω
η[ρ(Z) + α1B ] dP

= %η(Z) + α
∫
B
η dP.

(6.348)
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As %η is a coherent risk measure, by virtue of Theorem 6.5 it can be represented in the
following form:

%η(Z) = sup
ζ∈A(η)

∫
Ω

ζ(ω)Z(ω) dP (ω), (6.349)

for some set A(η) ⊂ Lq(Ω,F2, P ) of probability density functions. Let us denote by A
the support set of η. We can make the following observation.

• Each density ζ ∈ A(η) is supported on the set A.

Indeed, we argue by a contradiction. For any B ∈ F1, such that P (B ∩ A) = 0, and any
α ∈ R, we have by (6.348) that %η(Z + α1B) = %η(Z). On the other hand, if there exists
ζ̄ ∈ A(η) such that

∫
B
ζ̄ dP > 0, then it follows from (6.349) that

%η(Z + α1B) ≥
∫

Ω

ζ̄(ω)Z(ω) dP (ω) + α

∫
B

ζ̄(ω) dP (ω).

The right hand side of the above inequality tends to +∞ as α→ +∞. Therefore by taking
α large enough we obtain the required contradiction.

As all densities ζ ∈ A(η) are supported on A, we conclude from (6.349) that

%η(Z) = sup
ζ∈A(η)

∫
A

ζ(ω)Z(ω) dP (ω) = %η(1AZ).

Comparison with (6.344) leads to the conclusion that∫
A

η ρ(Z) dP =

∫
A

η ρ(1AZ) dP, (6.350)

for every Z ∈ Z2, every set A ∈ F1 of positive measure P , and for every density function
η ∈ Lq(Ω,F1, P ) supported on A. This means that we must have

1Aρ(Z) = 1Aρ(1AZ), a.s., (6.351)

for every Z ∈ Z2 and every set A ∈ F1. Replacing A with Ac = Ω \ A and Z with 1AZ
in (6.351) we also see that

1Acρ(1AZ) = 1Acρ(1Ac1AZ) = 0.

We can just add 1Acρ(1AZ) to the right hand side of (6.351) to conclude that

1Aρ(Z) = 1Aρ(1AZ) + 1Acρ(1AZ) = ρ(1AZ).

This proves (6.347).
It follows from (6.347) that for any A ∈ F1, Z ∈ Z2 and ω ∈ A we have

[ρ(1AZ)](ω) = [ρ(Z)1A](ω) = [ρ(Z)](ω). (6.352)

Consider now anF1-measurable step function Y � 0, i.e., Y =
∑m
i=1 αi1Bi where αi ≥ 0

and Bi are disjoint F1-measurable sets such that ∪mi=1Bi = Ω. For j ∈ {1, ...,m} and
ω ∈ Bj we can write

[ρ(Y Z)](ω) = [ρ(Y Z)1Bj ](ω) = [ρ(1BjY Z)](ω)
= [ρ(αj1BjZ)](ω) = αj [ρ(1BjZ)](ω)
= αj [ρ(Z)](ω) = [ρ(Z)Y ](ω),
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where for ω ∈ Bj we used properties: 1Bj (ω) = 1, property (6.347), 1BjY = αj1Bj ,
positive homogeneity of ρ, property (6.352) and Y (ω) = αj . This proves (6.346) for step
functions.

For a general F1-measurable Y � 0 we can complete the proof by taking a sequence
of F1-measurable step functions Yk converging to Y (in the norm topology of Z1) and
going to the limit (see Remark 45 on page 382).

Examples of coherent risk measures, discussed in section 6.3.2, have conditional risk
mapping analogues. Such conditional analogues can be constructed as follows. Consider
a regular law invariant risk measure ρ (recall that by “regular” we mean that it can be
defined on the standard uniform probability space, see section 6.3.6). Then ρ(H) can be
viewed as a function of cdf H . The conditional analogue of ρ is obtained by replacing cdf
(distribution) H with the corresponding conditional distribution H|F1. Often, this can be
done by replacing the expectation operator with the corresponding conditional expectation
E[ · |F1] operator. Let us look at some examples.

Example 6.71 (Conditional expectation) In itself, the conditional expectation mapping
E[ · |F1] : Z2 → Z1 is a conditional risk mapping. Indeed, for any p ≥ 1 and Z ∈
Lp(Ω,F2, P ) we have by Jensen inequality that E

[
|Z|p|F1

]
�
∣∣E[Z|F1]

∣∣p, and hence∫
Ω

∣∣E[Z|F1]
∣∣pdP ≤ ∫

Ω

E
[
|Z|p|F1

]
dP = E

[
|Z|p

]
< +∞. (6.353)

This shows that, indeed, E[ · |F1] maps Z2 into Z1. The conditional expectation is a linear
operator, and hence conditions (R′1) and (R′4) follow. The monotonicity condition (R′2)
also clearly holds. Condition (R′3) is a property of conditional expectation. The strict
monotonicity condition (R?′2) also holds.

Example 6.72 (Conditional AV@R) Using definition (6.23) of AV@R, its conditional ana-
logue can be defined as follows. Let Zi := L1(Ω,Fi, P ), i = 1, 2. For α ∈ (0, 1] define
mapping AV@Rα( · |F1) : Z2 → Z1 as

[AV@Rα(Z|F1)](ω) := inf
Y ∈Z1

{
Y (ω) + α−1E

[
[Z − Y ]+

∣∣F1

]
(ω)
}
, ω ∈ Ω. (6.354)

The minimum in the right hand side of (6.354) is attained at Ȳ = V@Rα(Z|F1) (see
(6.24)), where V@Rα(Z|F1) is the (left side) (1−α)-quantile of the conditional distribution
of Z. Therefore we can write

AV@Rα(Z|F1) = V@Rα(Z|F1) + α−1E
[
[Z − V@Rα(Z|F1)]+

∣∣F1

]
. (6.355)

It follows that AV@Rα(Z|F1) is F1-measurable. Furthermore, it is not difficult to verify
that this mapping satisfies conditions (R′1)–(R′4). Alternatively by using equation (6.27),
the conditional AV@R can be written as follows

AV@Rα(Z|F1) =
1

α

∫ 1

1−α
V@R1−τ (Z|F1) dτ. (6.356)

Similarly to (6.74), for β ∈ [0, 1] and α ∈ (0, 1), we can also consider the following
conditional risk mapping
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ρα,β|F1
(Z) := (1− β)E[Z|F1] + βAV@Rα(Z|F1). (6.357)

Of course, the conditional risk mapping ρα,β|F1
corresponds to the coherent risk measure

ρα,β(Z) = (1 − β)E[Z] + βAV@Rα(Z). For α ∈ [0, 1) and β ∈ [0, 1) the strict mono-
tonicity condition (R?′2) also holds (compare with Remark 33 on page 326).

Example 6.73 (Conditional mean-upper-semideviation) An analogue of the mean-upper-
semideviation risk measure (of order p) can be constructed as follows. LetZi := Lp(Ω,Fi, P ),
i = 1, 2. For c ∈ [0, 1] define

ρc|F1
(Z) := E[Z|F1] + c

(
E
[[
Z − E[Z|F1]

]p
+

∣∣F1

])1/p

. (6.358)

In particular, for p = 1 this gives an analogue of the absolute semideviation risk measure.
For p ∈ [1,∞) and c ∈ [0, 1) the strict monotonicity condition (R?′2) also holds (compare
with Remark 33 on page 326).

In the discrete case of scenario tree formulation (discussed in the previous section)
the above examples correspond to taking the same respective risk measure at every node of
the considered tree at stage t = 1, . . ., T .

Similarly to (6.321), we show now that a conditional risk mapping can be represented
as a maximum of a family of conditional expectations. To simplify the derivations, we
assume that the subalgebra F1 has a countable number of elementary events. That is,
there is a (countable) partition {Ai}i∈N, of the sample space Ω which generates F1, i.e.,
∪i∈NAi = Ω, the sets Ai, i ∈ N, are disjoint and form the family of elementary events of
sigma algebra F1. Since F1 is a subalgebra of F2, we have of course that Ai ∈ F2, i ∈ N.
We also have that a function Z : Ω→ R is F1-measurable iff it is constant on every set Ai,
i ∈ N.

Consider a conditional risk mapping ρ : Z2 → Z1. Let

N := {i ∈ N : P (Ai) 6= 0}.

For i ∈ N consider probability density function ηi := 1
P (Ai)

1Ai and risk measure

%i(Z) :=

∫
Ω

ηiρ(Z)dP =
1

P (Ai)

∫
Ai

ρ(Z)dP, Z ∈ Z2.

As in (6.349) with every %i, i ∈ N, is associated a set Ai ⊂ Z∗1 of probability density
functions, supported on the set Ai, such that

%i(Z) = sup
ζ∈Ai

∫
Ω

ζ(ω)Z(ω) dP (ω). (6.359)

Now let ν = (νi)i∈N be a probability distribution (measure) on (Ω,F1), assigning
probability νi to the event Ai, i ∈ N. Assume that ν is such that ν(Ai) = 0 iff P (Ai) = 0
(i.e., ν is absolutely continuous with respect to P and P is absolutely continuous with
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respect to ν on (Ω,F1)), otherwise the probability measure ν is arbitrary. Define the fol-
lowing family of probability measures on (Ω,F2):

V :=

{
µ =

∑
i∈N

νiµi : dµi = ζi dP, ζi ∈ Ai, i ∈ N

}
. (6.360)

Note that since νi ≥ 0, i ∈ N, and
∑
i∈N νi = 1, every µ ∈ V is a probability measure.

Since ζi is supported on Ai, we have µi(Ai) =
∫
Ai
ζi dP = 1, and

Eµi [Z|F1](ω) =

{ ∫
Ai
Zζi dP, if ω ∈ Ai,

0, otherwise.
(6.361)

It follows that for Z ∈ Z2, ω ∈ Ai and µ =
∑
i∈N νiµi ∈ V,

Eµ[Z|F1](ω) =
1

µ(Ai)

∫
Ai

Zdµ =
1

νi

∫
Ai

νiζiZdP =

∫
Ai

Zζi dP.

Consequently by the max-representations (6.359) it follows that for Z ∈ Z2 and ω ∈ Ai,

sup
µ∈V

Eµ[Z|F1](ω) = sup
ζi∈Ai

∫
Ai

Zζi dP = %i(Z). (6.362)

Also since [ρ(Z)](·) is F1-measurable, and hence is constant on every set Ai, we have that
for any i ∈ N, [ρ(Z)](ω) = %i(Z) for every ω ∈ Ai. We obtain the following result.

Proposition 6.74. Let Zi := Lp(Ω,Fi, P ), i = 1, 2, with F1 ⊂ F2, and let ρ : Z2 → Z1

be a conditional risk mapping. Suppose that F1 has a countable number of elementary
events. Then

ρ(Z) = sup
µ∈V

Eµ[Z|F1], ∀Z ∈ Z2, (6.363)

where V is a family of probability measures on (Ω,F2), specified in (6.360), corresponding
to a probability distribution ν on (Ω,F1).

6.8.3 Dynamic Risk Measures

In our introductory presentation in section 6.8.1, we constructed a risk-averse multistage
optimization problem (6.323), by postulating that the risk of the random cost sequence
Z1 = f1(x1), Z2 = f2(x2), . . . , ZT = fT (xT ) is evaluated as follows:

%1,T (Z1, Z2, . . . , ZT ) = Z1 + ρ2

(
Z2 + · · ·+ ρT−1

(
ZT−1 + ρT (ZT )

))
, (6.364)

where ρt+1 : Zt+1 → Zt, t = 1, . . . , T − 1, are conditional risk mappings. Our objective
in this section is to provide a justification for this nested structure.

Consider a probability space (Ω,F , P ), a filtration F1 ⊂ · · · ⊂ FT ⊂ F , and an
adapted sequence of random variables Zt, t = 1, . . . , T . We assume that F1 = {Ω, ∅}, and
thus Z1 is in fact deterministic. In all our considerations we interpret the variables Zt as
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stage-wise costs. Define the spaces Zt := Lp(Ω,Ft, P ), p ∈ [1,∞), t = 1, . . . , T , and let
Zt,T := Zt × · · · × ZT .

As we are planning to use our risk evaluation of the sequence Z1, Z2, . . . , ZT for
the purpose of making decisions at stages 1, 2, . . . , T , we need to evaluate the risk of the
tail subsequences Zt, . . . , ZT from the perspective of each stage t. This motivates the
following definition.

Definition 6.75. A dynamic risk measure is a sequence of mappings %t,T : Zt,T → Zt,
t = 1, . . . , T , satisfying for all t = 1, . . . , T and all (Zt, . . . , ZT ) and (Wt, . . . ,WT ) in
Zt,T the following monotonicity property:

if (Zt, . . . , ZT ) � (Wt, . . . ,WT ) then %t,T (Zt, . . . , ZT ) � %t,T (Wt, . . . ,WT ). (6.365)

The value of the “tail risk measure” %t,T (Zt, . . . , ZT ) can be interpreted as a fair one-
time Ft-measurable charge we would be willing to incur at time t, instead of the sequence
of random future costs Zt, . . . , ZT . The key issue associated with dynamic preferences is
the question of their consistency over time.

Definition 6.76. A dynamic risk measure
{
%t,T

}T
t=1

is called time consistent if for all
1 ≤ τ < θ ≤ T and all sequences Z,W ∈ Zτ,T the conditions

Zk = Wk, k = τ, . . . , θ − 1 and %θ,T (Zθ, . . . , ZT ) � %θ,T (Wθ, . . . ,WT ) (6.366)

imply that
%τ,T (Zτ , . . . , ZT ) � %τ,T (Wτ , . . . ,WT ). (6.367)

In words, if Z will be at least as good as W from the perspective of some future
time θ, and they are identical between now time τ and future time θ, then Z should not
be worse than W from today’s perspective. Note that time consistency implies that if
in (6.366) actually the equality %θ,T (Zθ, . . . , ZT ) = %θ,T (Wθ, . . . ,WT ) holds, then the
equality %τ,T (Zτ , . . . , ZT ) = %τ,T (Wτ , . . . ,WT ) follows.

For a dynamic risk measure
{
%t,T

}T
t=1

we can define a broader family of conditional
risk measures, by setting

%τ,θ(Zτ , . . . , Zθ) := %τ,T (Zτ , . . . , Zθ, 0, . . . , 0), 1 ≤ τ ≤ θ ≤ T. (6.368)

We can derive the following structure of a time consistent dynamic risk measure.

Theorem 6.77. Suppose a dynamic risk measure
{
%t,T

}T
t=1

satisfies for all t = 1, . . . , T
and all Zt ∈ Zt the condition:

%t,T (Zt, 0, . . . , 0) = Zt. (6.369)

Then it is time consistent if and only if for all 1 ≤ τ ≤ θ ≤ T and all Z ∈ Z1,T the
following identity holds:

%τ,T
(
Zτ , . . . , Zθ, . . . , ZT

)
= %τ,θ

(
Zτ , . . . , Zθ−1, %θ,T (Zθ, . . . , ZT )

)
. (6.370)
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Proof. Consider two sequences:

Z = (Zτ , . . . , Zθ−1, Zθ, Zθ+1, . . . , ZT ),

W =
(
Zτ , . . . , Zθ−1, ρθ,T (Zθ, . . . , ZT ), 0, . . . , 0

)
.

Suppose the measure
{
%t,T

}T
t=1

is time consistent. Then, by (6.369),

%θ,T (Wθ, . . . ,WT ) = %θ,T (%θ,T (Zθ, . . . , ZT ), 0, . . . , 0
)

= %θ,T (Zθ, . . . , ZT ).

Using Definition 6.76 we get %τ,T (Z) = %τ,T (W ). Equation (6.368) then yields (6.370).
Conversely, suppose the identity (6.370). Consider Z and W satisfying conditions

(6.366). Then, by Definition 6.75, we have

%τ,T
(
Zτ , . . . , Zθ−1, %θ,T (Zθ, . . . , ZT ), 0, . . . , 0

)
� %τ,T

(
Wτ , . . . ,Wθ−1, %θ,T (Wθ, . . . ,WT ), 0, . . . , 0

)
.

Using equation (6.370) we obtain (6.367).

In order to justify the nested structure (6.364), we employ a form of translation con-
dition for dynamic risk measures:

%t,T (Zt, Zt+1, . . . , ZT ) = Zt + %t,T (0, Zt+1, . . . , ZT ). (6.371)

Together with the normalization %t,T (0, . . . , 0) = 0, it implies (6.369). If the risk measure
is time consistent and satisfies (6.371), then we obtain the chain of equations:

%t,T
(
Zt, . . . , ZT−1, ZT

)
= %t,T

(
Zt, . . . , %T−1,T (ZT−1, ZT ), 0

)
= %t,T−1

(
Zt, . . . , %T−1,T (ZT−1, ZT )

)
= %t,T−1

(
Zt, . . . , ZT−1 + %T−1,T (0, ZT )

)
.

In the first equation we used the identity (6.370), in the second one – equation (6.368),
and in the third one – condition (6.371). Define one-step conditional risk measures ρt+1 :
Zt+1 → Zt, t = 1, . . . , T − 1 as follows:

ρt+1(Zt+1) = %t,t+1(0, Zt+1).

Proceeding in this way, we obtain for all t = 1, . . . , T the following recursive relation:

%t,T (Zt, . . . , ZT )

= Zt + ρt+1

(
Zt+1 + ρt+2

(
Zt+2 + · · ·+ ρT−1

(
ZT−1 + ρT (ZT )

)))
.

(6.372)

It follows that a time consistent dynamic risk measure is completely defined by one-step
conditional risk measures ρt+1, t = 1, . . . , T − 1. For t = 1 formula (6.372) becomes
formally identical with (6.364) and defines a risk measure of the entire sequence Z ∈ Z1,T

(with a deterministic Z1). In order to obtain complete equivalence, we need to restrict
the class of conditional risk measures ρt+1, t = 1, . . . , T − 1, to the mappings satisfying
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conditions (R′1)–(R′4). In this case, we can use condition (R′3) recursively, to obtain the
representation

%1,T (Z1, Z2, . . . , ZT ) = ρ2

(
ρ3

(
· · ·
(
ρT (Z1 + Z2 + · · ·+ ZT )

)))
. (6.373)

We conclude that under the specified conditions

%1,T (Z1, Z2, . . . , ZT ) = ρ̄(Z1 + Z2 + · · ·+ ZT ), (6.374)

with
ρ̄ = ρ2|F1

◦ · · · ρT |FT−1
(6.375)

for some sequence ρt+1|Ft : Zt+1 → Zt, t = 1, . . ., T − 1, of coherent conditional risk
mappings.

Let us focus on the structure (6.374). A question arises whether a coherent (convex)
risk measure ρ̄ : ZT → R is representable in the composite form (6.375). In this respect
we have the following observation.

Remark 46. Consider the following construction. Let the space Ω := Ω1 × Ω2, where
Ω1 = {ω1, . . . , ωn} and Ω2 = {ω′1, . . . , ω′n} are finite spaces with n elementary events
equipped with equal probabilities 1/n. That is, Ω is a finite space with n2 elementary events
each having probability 1/n2. Consider filtration F1 ⊂ F2 ⊂ F3, where F1 = {∅,Ω},
F2 is generated by the elementary events {ωi} × Ω2, i = 1, . . . , n, and F3 consists of all
subsets of Ω. This corresponds to a scenario tree with T = 3 stages, n children nodes of the
root node with probability 1/n of moving to each node of stage 2, and n children nodes of
each node of the second stage with the corresponding probability 1/n of moving to the last
stage 3. Let Zt be the spaces of Ft-measurable random variables, t = 1, 2, 3. Recall that
here two random variables Z,Z ′ : Ω → R are distributionally equivalent iff Z ′ = Z ◦ π
for some permutation π of the set Ω.

Consider a law invariant risk measure ρ̄ : Z3 → R. If ρ̄(·) = E[·], then it can be
represented as a composition of (conditional) expectation operators. Another example of
decomposable risk measure is the max-risk measure ρ̄(·) = maxω∈Ω Z(ω), which can be
represented as the composition of (conditional) max-risk mappings. It turns out that these
are only examples of law invariant risk measures representable as the composition of law
invariant coherent conditional risk mappings. Proof of the following result can be found in
[246].

Theorem 6.78. In the above construction let ρ̄ = ρ2|F1
◦ρ3|F2

be a composite risk measure,
where ρ2|F1

: Z2 → Z1 and ρ3|F2
: Z3 → Z2 are law invariant coherent conditional27

risk mappings. Then ρ̄ : Z3 → R is law invariant if and only if either both ρ2|F1
and ρ3|F2

are conditional expectations or both ρ2|F1
and ρ3|F2

are conditional max-mappings.

It should be stressed, however, that the concept of law invariance employed in this
setting requires that the risk evaluation of the sequence Z1, Z2, . . . , ZT depends only on
the marginal distribution of the sum Z1 + Z2 + · · ·+ ZT , but is not allowed to depend on

27Since Z1 = R, ρ2|F1
(·) actually is real valued.
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conditional distributions at intermediate times 1 < t < T . This is the source of the para-
dox discussed above. If we choose any law invariant coherent conditional risk mappings
ρt+1|Ft : Zt+1 → Zt, t = 1, . . ., T − 1, their composition (6.375) will not necessarily be
law invariant in the sense employed here.

Remark 47. Let ρ : ZT → R be a law invariant coherent risk measure and ρ|Ft : ZT →
Zt, t = 1, . . . , T , be its conditional analogues. Consider the corresponding sequence of
multiperiod mappings:

%t,T (Zt, . . . , ZT ) := ρ|Ft(Zt + · · ·+ ZT ), t = 1, . . . , T. (6.376)

This sequence satisfies condition (6.371). If it was time consistent, then by the above
derivation of (6.372) it would follow that

ρ|Ft(Zt + · · ·+ ZT ) = Zt + ρ|Ft+1

[
Zt+1 + · · ·+ ρ|FT [ZT ]

]
. (6.377)

However, in general the decomposition (6.377) holds only for the expectation and max risk
measures (see Theorem 6.78). Therefore multiperiod mappings (6.376) are time consistent
only for the expectation and max risk measures.

6.8.4 Risk Averse Multistage Stochastic Programming
There are several ways how risk averse stochastic programming can be formulated in a
multistage setting. We discuss now a nested formulation similar to the derivations of section
6.8.1 and 6.8.3. Let (Ω,F , P ) be a probability space and F1 ⊂ · · · ⊂ FT be a sequence
of nested sigma algebras with F1 = {∅,Ω} being trivial sigma algebra and FT = F (such
sequence of sigma algebras is called a filtration). For p ∈ [1,∞) let Zt := Lp(Ω,Ft, P ),
t = 1, . . . , T , be the corresponding sequence of spaces of Ft-measurable and p-integrable
functions, and ρt+1|Ft : Zt+1 → Zt, t = 1, . . . , T − 1, be a selected family of conditional
risk mappings. It is straightforward to verify that the composition

ρt|Ft−1
◦ · · · ◦ ρT |FT−1

: ZT
ρT |FT−1−→ ZT−1

ρT−1|FT−2−→ · · ·
ρt|Ft−1−→ Zt−1, (6.378)

t = 2, . . ., T , of such conditional risk mappings is also a conditional risk mapping. In
particular, the space Z1 can be identified with R and hence the composition ρ2|F1

◦ · · · ◦
ρT |FT−1

: ZT → R is a real valued coherent risk measure.
Similarly to (6.323), we consider the following nested risk averse formulation of

multistage programs:

Min
x1∈X1

f1(x1) + ρ2|F1

[
inf

x2∈X2(x1)
f2(x2) + . . .

· · ·+ ρT−1|FT−2

[
inf

xT−1∈XT (xT−2)
fT−1(xT−1)

+ ρT |FT−1

[
inf

xT∈XT (xT−1)
fT (xT )

]]]
. (6.379)

Here ft : Rnt−1 × Ω → R and Xt : Rnt−1 × Ω ⇒ Rnt , t = 2, . . . , T , are such that
ft(xt, ·) ∈ Zt and Xt(xt−1, ·) are Ft-measurable for all xt and xt−1.
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As it was discussed in section 6.8.1, the above nested formulation (6.379) has two
equivalent interpretations. Namely, it can be formulated as

Min
x1,x2,...,xT

f1(x1) + ρ2|F1

[
f2(x2) + . . .

+ ρT−1|FT−2

[
fT−1 (xT−1) + ρT |FT−1

[
fT (xT )

]]]
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . . , T,

(6.380)

where the optimization is performed over Ft-measurable xt : Ω → R, t = 1, . . . , T ,
satisfying the corresponding constraints, and such that ft(xt(·), ·) ∈ Zt. Recall that the
nonanticipativity is enforced here by theFt-measurability of xt(·). By using the composite
risk measure ρ̄ := ρ2|F1

◦ · · · ◦ ρT |FT−1
, we also can write (6.380) in the form

Min
x1,x2,...,xT

ρ̄
[
f1(x1) + f2(x2) + · · ·+ fT (xT )

]
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . . , T.

(6.381)

Recall that for Zt ∈ Zt, t = 1, . . ., T ,

ρ̄(Z1 + · · ·+ZT ) = Z1 +ρ2|F1

[
Z2 + · · ·+ρT−1|FT−2

[
ZT−1 +ρT |FT−1

[ZT ]
]]
, (6.382)

and that conditions (R′1)–(R′4) imply that ρ̄ : ZT → R is a coherent risk measure.
Alternatively we can write the corresponding dynamic programming equations (com-

pare with (6.331)–(6.336)):

QT (xT−1, ω) = inf
xT∈XT (xT−1,ω)

fT (xT , ω), (6.383)

Qt(xt−1, ω) = inf
xt∈Xt(xt−1,ω)

{
ft(xt, ω) +Qt+1(xt, ω)

}
, t = T − 1, . . . , 2, (6.384)

where
Qt(xt−1, ω) = ρt|Ft−1

[Qt(xt−1)] (ω), t = T, . . . , 2. (6.385)

Finally, at the first stage we solve the problem

Min
x1∈X1

f1(x1) + ρ2|F1
[Q2(x1)]. (6.386)

A policy x̄1, . . . , x̄T is optimal iff x̄1 is an optimal solution of the first stage problem
(6.386) and for t = 2, . . . , T, it satisfies the optimality conditions:

x̄t(ω) ∈ argmin
xt∈Xt(x̄t−1(ω),ω)

{
ft(xt, ω) + ρt+1 [Qt+1(xt)] (ω)

}
, w.p.1. (6.387)

It should be remarked that we need to ensure here that the cost-to-go functions are
p-integrable, i.e., Qt(xt−1, ·) ∈ Zt for t = 1, . . . , T − 1 and all feasible xt−1.
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Conditional Risk Mappings of a Data Process

In applications we are often deal with a data process represented by a sequence of random
vectors ξ1, . . . , ξT , say defined on a probability space (Ω,F , P ). We can associate with
this data process the filtration28 Ft := σ(ξ1, . . . , ξt), t = 1, . . . , T , and hence to proceed
with handling conditional risk mapping defined with respect to the obtained filtration F1 ⊂
· · · ⊂ FT .

However, often it is more convenient to deal with conditional risk mappings defined
directly in terms of the data process rather that the respective sequence of sigma algebras.
For example, consider

ρt|ξ[t−1]
(Z) := (1− βt)E

[
Z|ξ[t−1]

]
+ βtAV@Rαt(Z|ξ[t−1]), t = 2, . . . , T, (6.388)

where

AV@Rαt(Z|ξ[t−1]) := inf
Y ∈Zt−1

{
Y + α−1

t E
[
[Z − Y ]+

∣∣ξ[t−1]

]}
. (6.389)

Here βt ∈ [0, 1] and αt ∈ (0, 1) are chosen constants, Zt := L1(Ω,Ft, P ), where F1 ⊂
· · · ⊂ FT is the filtration associated with the process ξt, and the minimum on the right hand
side of (6.389) is taken pointwise in ω ∈ Ω. Compared with (6.354), the conditional AV@R
is defined in (6.389) in terms of the conditional expectation with respect to the history ξ[t−1]

of the data process rather than the corresponding sigma algebraFt−1. We can also consider
conditional mean-upper-semideviation risk mappings of the form:

ρt|ξ[t−1]
(Z) := E[Z|ξ[t−1]] + ct

(
E
[[
Z − E[Z|ξ[t−1]]

]p
+

∣∣ξ[t−1]

])1/p

, (6.390)

defined in terms of the data process.
Let us also assume that the objective functions ft(xt, ξt) and feasible setsXt(xt−1, ξt)

are given in terms of the data process. Then formulation (6.380) takes the form

Min
x1,x2,...,xT

f1(x1) + ρ2|ξ[1]

[
f2(x2(ξ[2]), ξ2) + . . .

+ ρT−1|ξ[T−2]

[
fT−1

(
xT−1(ξ[T−1]), ξT−1

)
+ ρT |ξ[T−1]

[
fT
(
xT (ξ[T ]), ξT

) ]]]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

(6.391)

where the optimization is performed over feasible policies. The corresponding dynamic
programming equations (6.384)–(6.385) take the form:

Qt(xt−1, ξ[t]) = inf
xt∈Xt(xt−1,ξt)

{
ft(xt, ξt) +Qt+1(xt, ξ[t])

}
, (6.392)

where
Qt+1(xt, ξ[t]) = ρt+1|ξ[t]

[
Qt+1(xt, ξ[t+1])

]
. (6.393)

28Recall that σ(ξ1, . . . , ξt) denotes the smallest sigma algebra with respect to which ξ[t] = (ξ1, . . . , ξt) is
measurable.
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Of course, if we set ρt|ξ[t−1]
(·) := E

[
· |ξ[t−1]

]
, then the above equations (6.392)–

(6.393) coincide with the corresponding risk neutral dynamic programming equations.
Also in that case the composite measure ρ̄ becomes the corresponding expectation oper-
ator and hence formulation (6.381) coincides with the respective risk neutral formulation
(3.4). Unfortunately, in the general case it is quite difficult to write the composite measure
ρ̄ in an explicit form (see Remark 42 on page 379).

Remark 48. Note that with ρt|ξ[t−1]
, defined in (6.388) or (6.390), is associated coherent

risk measure ρt which is obtained by replacing the conditional expectations with respective
(unconditional) expectations. Note also that if random variable Z ∈ Zt is independent of
ξ[t−1], then the conditional expectations on the right hand sides of (6.388)–(6.390) coincide
with the respective unconditional expectations, and hence ρt|ξ[t−1]

(Z) does not depend on
ξ[t−1] and coincides with ρt(Z).

If the process ξt is stagewise independent, then the dynamic programming equations
(6.392)–(6.393) take the form:

Qt(xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{
ft(xt, ξt) +Qt+1(xt)

}
, (6.394)

where
Qt+1(xt) = ρt+1

[
Qt+1(xt, ξt+1)

]
. (6.395)

Here the cost-to-go functions Qt+1(xt, ξ[t]) = Qt+1(xt) do not depend on ξ[t], and the
cost-to-go functions Qt(xt−1, ξt) depend only on ξt rather than ξ[t]. This can be shown by
induction, going backward in time, in the same way as in the risk neutral case (see Remark
4 on page 67).

6.8.5 Time Consistency of Multiperiod Problems

Consider the setting of section 6.8.4. For Z1,T = Z1 × · · · × ZT and a multiperiod risk
measure % : Z1,T → R consider the following risk averse optimization problem

Min
x1,x2,...,xT

%
(
f1(x1), f2(x2), . . ., fT (xT )

)
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . ., T,

(6.396)

where optimization is performed over policies x1,x2, . . . ,xT , i.e., over Ft-measurable
xt : Ω→ R, t = 1, . . ., T , such that ft(xt(·), ·) ∈ Zt. The feasibility constraints in (6.396)
should be satisfied w.p.1. The nonanticipativity is enforced here by the Ft-measurability
of xt(ω), t = 1, . . ., T .

For the multiperiod risk measure

%(Z) := E[Z1 + · · ·+ ZT ], Z ∈ Z, (6.397)

the optimization problem (6.396) becomes the risk neutral multistage problem, which can
be written in the form (3.4) or (3.33). In the risk neutral case, formulation (3.4) is equiv-
alent to the corresponding nested formulation (3.1), which in turn can be represented by
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the dynamic programming equations (3.8)–(3.9). This equivalence is based on the tower
property of the expectation operator:

E[Z1 + . . .+ ZT ] = Z1 + E|F1

[
Z2 + · · ·+ E|FT−2

[
ZT−1 + E|FT−1

[ZT ]
]]
, (6.398)

for Z = (Z1, . . ., ZT ) ∈ Z . As it was discussed in sections 6.8.3 and 6.8.4, in the risk
averse setting similar equivalence holds if % is given in the nested form

%(Z) := Z1 + ρ2|F1

[
Z2 + · · ·+ ρT−1|FT−2

[
ZT−1 + ρT |FT−1

[ZT ]
]]
, Z ∈ Z. (6.399)

Let us make the following observation. If we are currently at a certain stage of the
system, then we know the past and hence it is reasonable to require that our decisions
should be based on that information alone and should not involve unknown data. This is
the nonanticipativity constraint, which was discussed in the previous sections. However, if
we believe in the considered model, we also have an idea what can and what cannot happen
in the future. Think, for example, about a scenario tree representing evolution of the data
process. If we are currently at a certain node of that tree, representing current state of the
system, we already know that only scenarios passing through this node can happen in the
future. Consequently it is natural to require for an optimal policy to be optimal at every
stage of the process conditional on the current state of the system looking into the future.
Therefore, apart form the nonanticipativity constraint, it is also reasonable to think about
the following concept.

Principle of conditional optimality. At every state of the system, optimality of our deci-
sions should not depend on scenarios which we already know cannot happen in the
future.

As we will see this principle may not hold even for seemingly natural formulations of risk
averse multistage problems (see examples 6.84 and 6.86 below). However, if the nested
formulation (6.399) is employed and the conditional risk measures are convex, i.e., satisfy
the conditions (R′1)–(R′3), then this principle will be satisfied.

A well known quotation of Bellman [15], coming from his pioneering work on dy-
namic programming, asserts that: “An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.” In order to make this pre-
cise we have to define what do we mean by saying that an optimal policy remains optimal
at every stage of the process conditional on an observed realization of the data process.

As far as the multiperiod optimization problem (6.396) is concerned, a (feasible)
policy x̄1, x̄2, . . . , x̄T , is optimal if it minimizes the objective function of this problem;
there is no mentioning of what optimality means from a dynamical point of view. In the
risk neutral case, when %(Z) is given as the expectation (6.397), the decomposable property
(6.398) of the expectation operator gives a natural answer to this question - at stage t of the
process the optimality is understood in terms of the conditional expectation E|Ft . That is,
the corresponding policy x̄t, . . . , x̄T is optimal for the problem (compare with (3.33))

Min
xt,...,xT

E|Ft
[
ft(xt) + . . .+ fT (xT )

]
s.t. xτ (ω) ∈ Xτ (xτ−1(ω), ω), τ = t, . . ., T,

(6.400)



i
i

“SPbook” — 2013/12/24 — 8:37 — page 395 — #407 i
i

i
i

i
i

6.8. Multistage Risk Averse Optimization 395

A policy which is an optimal solution of the problem (3.33), remains optimal for the prob-
lem (6.400), t = 2, . . . , T , conditional on Ft and xt−1. In that sense we say that the risk
neutral formulation (3.33) is time consistent. For the risk averse formulations the situation
is more delicate. We will discuss this below.

Problem (6.400) can be also written in the nested form

Min
xt∈Xt(xt−1)

ft(xt)+ E|Ft
[

inf
xt+1∈Xt+1(xt)

ft+1(xt+1)+

· · ·+ E|F[T−1]

[
inf

xT∈XT (xT−1)
fT (xT )

]]
,

(6.401)

conditional on Ft and xt−1 (for meaning of the notation inf
xt+1∈Xt+1(xt)

ft+1(xt+1) see

(6.324)).

Remark 49. If we use the multistage formulation (3.4), in terms of the data process
ξ1, . . . , ξT , then the corresponding optimization problem at stage t can be written as

Min
xt,...,xT

E|ξ[t]
[
ft(xt(ξ[t]), ξt) + . . .+ fT

(
xT (ξ[T ]), ξT

) ]
s.t. xτ (ξ[τ ]) ∈ Xτ (xτ−1(ξ[τ−1]), ξτ ), τ = t, . . ., T,

(6.402)

conditional on ξ[t] = (ξ1, . . . , ξt) and xt−1, for t = 2, . . . , T . Similar to (3.11), problem
(6.402) can be written in the nested form

Min
xt∈Xt(xt−1,ξt)

ft(xt, ξt)+ E|ξ[t]
[

inf
xt+1∈Xt+1(xt,ξt+1)

ft+1(xt+1, ξt+1)+

· · ·+ E|ξ[T−1]

[
inf

xT∈XT (xT−1,ξT )
fT (xT , ξT )

]]
,

(6.403)

conditional on ξ1, . . . , ξt and xt−1. Again in that sense the risk neutral formulation (3.4) is
time consistent.

Similar arguments can be applied if the multiperiod risk measure % is given in the
nested form (6.364) for a chosen sequence ρt+1|Ft : Zt+1 → Zt, t = 1, . . ., T − 1, of
conditional risk mappings. In that case %(Z) = ρ̄(Z1 + · · ·+ZT ), where ρ̄ = ρ2|F1

◦ · · · ◦
ρT |FT−1

is the composite risk measure, and the corresponding optimization problem can
be written as in (6.381). Because of the decomposable form (6.382) of the composite risk
measure ρ̄, problem (6.381) can be also written in the nested form (6.380). Therefore an
optimal policy for problem (6.381) is also optimal, at stage t = 2, . . . , T , for the problem

Min
xt,...,xT

ρ̄t,T
[
ft(xt) + · · ·+ fT (xT )

]
s.t. xτ (ω) ∈ Xτ (xτ−1(ω), ω), τ = t, . . . , T,

(6.404)

conditional on Ft and xt−1. (This follows from the optimality conditions (6.387) associ-
ated with the corresponding dynamic programming equations.) Here ρ̄t,T := ρt+1|Ft ◦· · ·◦
ρT |FT−1

: ZT → Zt. In that sense the nested formulation of risk averse problems is time
consistent. Unfortunately, as it was discussed in section 6.8.3, the composite risk measure
ρ̄, and the composite mappings ρ̄t,T , are not given in a closed form.
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Similar to (6.379), problem (6.404) can be written in the following nested form

Min
xt∈Xt(xt−1)

ft(xt) + ρt+1|Ft

[
inf

xt+1∈Xt+1(xt)
ft+1(xt+1) + . . .

+ ρT |FT−1

[
inf

xT∈XT (xT−1)
fT (xT )

]]
.

(6.405)

Now let us give a formal definition of time consistency for the risk averse multiperiod
problem (6.396). We assume that with the multiperiod problem (6.396) is associated a
dynamic measure of risk (see Definition 6.75), that is, a sequence of mappings %t,T :
Zt × · · · × ZT → Zt, t = 1, . . . , T , satisfying (6.365).

In addition to the condition of time consistency of Definition 6.76, we also consider
the following condition of strict time consistency.

Definition 6.79. A time consistent dynamic risk measure
{
%t,T

}T
t=1

is called strictly time
consistent if for all 1 ≤ τ < θ ≤ T and all sequences Z,W ∈ Zτ,T the conditions

Zk = Wk, k = τ, . . . , θ − 1 and %θ,T (Zθ, . . . , ZT ) ≺ %θ,T (Wθ, . . . ,WT ) (6.406)

imply that
%τ,T (Zτ , . . . , ZT ) ≺ %τ,T (Wτ , . . . ,WT ). (6.407)

Remark 50. The condition of time consistency of Definition 6.76 holds for multiperiod
mappings of the nested form

%t,T (Zt, . . . , ZT ) := ρ̄t,T (Zt + · · ·+ ZT ), (6.408)

where

ρ̄t,T (Zt + · · ·+ ZT ) := ρt+1|Ft ◦ · · · ◦ ρT |FT−1
(Zt + · · ·+ ZT )

= Zt + ρt+1|Ft
[
Zt+1 + · · ·+ ρT |FT−1

[ZT ]
]
,

(6.409)

and ρt+1|Ft : Zt+1 → Zt, t = 1, . . ., T − 1, is a sequence of conditional risk mappings.
(Compare this with Remark 47 on page 390.)

Indeed, let Z,W ∈ Zτ × · · · × ZT satisfy condition (6.366). Then

%τ,T (Zτ , . . . , ZT ) = Zτ + ρτ+1|Ft
[
Zτ+1 + · · ·+ ρT |FT−1

[ZT ]
]

= ρ̄τ,T (Zτ + · · ·+ Zθ−1 + ρ̄θ,T (Zθ + · · ·+ ZT ))
� ρ̄τ,T (Zτ + · · ·+ Zθ−1 + ρ̄θ,T (Wθ + · · ·+WT ))
= ρ̄τ,T (Wτ + · · ·+Wθ−1 + ρ̄θ,T (Wθ + · · ·+WT ))
= %τ,T (Wτ , . . . ,WT ),

where the inequality is implied by the monotonicity condition (R′2).
In order to have the stronger conclusion (6.407) of Definition 6.79, we need the strict

monotonicity condition (R?′2): {Z � Z ′} ⇒ {ρ(Z) � ρ(Z ′)} (see Remark 33 on page
326 for a discussion of strict monotonicity). That is, strict time consistency holds under
time consistency with the strict monotonicity condition (R?′2).
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Consider the following optimization problem

Min
x1,x2,...,xT

%1,T

(
f1(x1), f2(x2), . . . , fT (xT )

)
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . . , T.

(6.410)

As before the optimization is performed over policies xt, t = 1, . . . , T , adapted to the
filtration F1 ⊂ · · · ⊂ FT .

Proposition 6.80. Let %t,T : Zt × · · · × ZT → Zt, t = 1, . . . , T , be a dynamic risk
measure, and x̄1, x̄2, . . . , x̄T , be an optimal policy of the problem (6.410). Assume that at
least one of the following conditions holds:
(i) the dynamic risk measure

{
%t,T

}
is strictly time consistent,

(ii) the dynamic risk measure
{
%t,T

}
is time consistent and the policy x̄1, x̄2, . . . , x̄T is

the unique optimal solution of the problem (6.410).
Then for t = 2, . . . , T , conditional on Ft and x̄t−1, the policy x̄t, . . . , x̄T , is optimal for
the problem

Min
xt,...,xT

%t,T
(
ft(xt), . . . , fT (xT )

)
s.t. xτ (ω) ∈ Xτ (xτ−1(ω), ω), τ = t, . . . , T.

(6.411)

Proof. Suppose condition (i) holds and problem (6.411) has a feasible policy x̃t, . . . , x̃T ,
such that

%t,T
(
ft(x̃t), . . . , fT (x̃T )

)
≺ %t,T

(
ft(x̄t), . . . , fT (x̄T )

)
. (6.412)

By strict time consistency, this implies that

%1,T

(
f1(x̄1), . . . , ft−1(x̄t−1), ft(x̃t), . . . , fT (x̃T )

)
< %1,T

(
f1(x̄1), . . . , ft−1(x̄t−1), ft(x̄t), . . . , fT (x̄T )

)
,

(6.413)

which contradicts optimality of the policy x̄1, x̄2, . . . , x̄T . This shows that x̄t, . . . , x̄T is
optimal for the problem (6.411).

Now suppose condition (ii). If we replace the strict inequality sign “ ≺ ” by “ � ” in
the inequality (6.412), then owing to time consistency we can conclude that (6.413) holds
with “ < ” replaced by “ ≤ ”. That is, we obtain that x̄1, . . . , x̄t−1, x̃t, . . . , x̃T is an
optimal solution of problem (6.410). By uniqueness of the optimal policy x̄1, x̄2, . . . , x̄T
we obtain the required conclusion.

Remark 51. It might be tempting to impose the following “forward” condition on the
dynamic risk measure {%t,T }:

(F) For all 1 ≤ τ < θ ≤ T and Z,Z ′ ∈ Zτ × · · · × ZT , the conditions

Zt = Z ′t, t = τ, . . . , θ − 1, and %τ,T (Zτ , . . . , ZT ) � %τ,T (Z ′τ , . . . , Z
′
T ) (6.414)

imply that
%θ,T (Zθ, . . . , ZT ) � %θ,T (Z ′θ, . . . , Z

′
T ). (6.415)
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Note that for an optimal solution x̄1, x̄2, . . . , x̄T , of the problem (6.410) and a feasi-
ble solution x̃t, . . . , x̃T , of the problem (6.411) we have that

%1,T

(
f1(x̄1), . . . , ft−1(x̄t−1), ft(x̃t), . . . , fT (x̃T )

)
≥ %1,T

(
f1(x̄1), . . . , ft−1(x̄t−1), ft(x̄t), . . . , fT (x̄T )

)
.

Under condition (F) this would imply that

%t,T
(
ft(x̃t), . . . , fT (x̃T )

)
≥ %t,T

(
ft(x̄t), . . . , fT (x̄T )

)
,

and hence that x̄t, . . . , x̄T , is an optimal solution of the problem (6.411). That is, condition
(F) implies the desired property of problem (6.411).

Unfortunately, condition (F) does not hold even for a sequence of conditional expec-
tation mappings

%t,T (Zt, . . . , ZT ) := E|Ft [Zt + · · ·+ ZT ]. (6.416)

Indeed, for τ = 1 condition (6.414) becomes

E[Z1 + · · ·+ Zθ−1 + Zθ + · · ·+ ZT ] ≤ E[Z1 + · · ·+ Zθ−1 + Z ′θ + · · ·+ Z ′T ],

or equivalently
E[Zθ + · · ·+ ZT ] ≤ E[Z ′θ + · · ·+ Z ′T ].

However, this inequality does not imply the required pointwise inequality

E|Fθ [Zθ + · · ·+ ZT ] � E|Fθ [Z
′
θ + · · ·+ Z ′T ]

of condition (6.415).

Definition 6.81. We say that an optimal policy x̄1, x̄2, . . . , x̄T , of the multiperiod problem
(6.396) is time consistent if for t = 1, . . . , T , the policy x̄t, . . . , x̄T is optimal for the
problem (6.411), conditional on Ft and x̄t−1 for t = 2, . . . , T .

That is, let x̄1, x̄2, . . . , x̄T , be an optimal policy of the multiperiod problem (6.396).
It is said that this policy is time consistent if it is also optimal for the problem (6.410) and
moreover for stages t = 2, . . . , T , the policy x̄t, . . . , x̄T , is optimal for the problem (6.411)
conditional on Ft and x̄t−1. In this formulation the principle of conditional optimality
holds automatically.

Definition 6.82. We say that the multiperiod problem (6.396) is time consistent if its every
optimal policy is time consistent. We say that the multiperiod problem (6.396) is weakly
time consistent if at least one of its optimal policies is time consistent.

Note that definition 6.82 implicitly assumes that the multiperiod problem (6.396)
possesses optimal solutions (possibly more than one), otherwise by the definition problem
(6.396) is time consistent with respect to any choice of the multiperiod mappings. If the
multiperiod problem (6.396) has only one optimal solution, then of course the concepts of
time consistency and weak time consistency do coincide. Note also that by Proposition
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6.80, the property of strict time consistency of the dynamic risk measure is sufficient for
time consistency of problem (6.410) (i.e., for % = %1,T ).

The property of time consistency of a dynamic risk measure is sufficient for weak
time consistency of problem (6.396).

Proposition 6.83. Let %t,T : Zt × · · · × ZT → Zt, t = 1, . . . , T , be a time consistent
dynamic risk measure. If for every optimal policy x̄1, x̄2, . . . , x̄T of problem (6.410) and
for every t = 2, . . . , T the problems (6.411) conditioned on xt−1 = x̄t−1, have an optimal
solution, then problem (6.396) is weakly time consistent.

Proof. Let x̄1
1, x̄

1
2, . . . , x̄

1
T be optimal policy of problem (6.410). Consider problem (6.411)

for t = 2, conditioned on x1 = x̄1
1. Let x̄2

2, . . . , x̄
2
T denote its optimal solution. By

optimality,
%2,T

(
f2(x̄2

2), . . . , fT (x̄2
T )
)
� %2,T

(
f2(x̄1

2), . . . , fT (x̄1
T )
)
.

Owing to time consistency of the dynamic risk measure,

%1,T

(
f1(x̄1

1), f2(x̄2
2), . . . , fT (x̄2

T )
)
� %1,T

(
f1(x̄1

1), f2(x̄1
2), . . . , fT (x̄1

T )
)
.

It follows that x̄1
1, x̄

2
2, . . . , x̄

2
T is also an optimal solution of problem (6.410). Consider now

problem (6.411) for t = 3, conditioned on x2 = x̄2
2. Let x̄3

3, . . . , x̄
3
T denote its optimal

solution. Using time consistency of the risk measure again, we observe that

%1,T

(
f1(x̄1

1), f2(x̄2
2), f3(x̄3

3), . . . , fT (x̄3
T )
)
� %1,T

(
f1(x̄1

1), f2(x̄2
2), f3(x̄2

3), . . . , fT (x̄2
T )
)
.

It follows that x̄1
1, x̄

2
2, x̄

3
3, . . . , x̄

3
T is also an optimal solution of problem (6.410). Continu-

ing in this way, we construct an optimal time-consistent policy x̄1
1, x̄

2
2, x̄

3
3, . . . , x̄

T
T .

Let us emphasize that the concept of time consistency of a problem depends on the
choice of the multiperiod mappings %t,T , t = 1, . . . , T . In the risk-neutral case, with %
of the form (6.397), time consistency follows with the natural choice of conditional multi-
period mappings:

%t,T (Zt, . . . , ZT ) := E|Ft(Zt + · · ·+ ZT ). (6.417)

In the case of the nested risk averse formulation (6.380), the corresponding multiperiod
problem (6.381) is time consistent with respect to the multiperiod mappings

%t,T (Zt, . . . , ZT ) := ρ̄t,T (Zt + · · ·+ ZT )
= Zt + ρt+1|Ft

[
Zt+1 + · · ·+ ρT |FT−1

[ZT ]
]
,

(6.418)

where ρ̄t,T := ρt+1|Ft ◦ · · · ◦ ρT |FT−1
. For a general multiperiod problem, the choice

of “natural” multiperiod mappings may not be obvious. We discuss this later (see section
6.8.6, in particular).

Example 6.84 Consider a multiperiod risk measure % of the form

%(Z1, . . ., ZT ) := Z1 +

T∑
t=2

ρt(Zt), (Z1, . . ., ZT ) ∈ Z, (6.419)
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with ρt := AV@Rα, α ∈ (0, 1), t = 2, . . . , T . That is,

%(Z1, . . . , ZT ) := Z1 +

T∑
t=2

AV@Rα(Zt).

By using definition (6.23) of AV@Rα we can write

%(Z1, . . . , ZT ) := inf
r2,...,rT

E
{
Z1 +

∑T
t=2

(
rt + α−1[Zt − rt]+

)}
. (6.420)

Thus the corresponding optimization problem (6.396) can be formulated as

Min
r,x1,x2,...,xT

f1(x1) +
∑T
t=2 rt + E

{∑T
t=2 α

−1[ft(xT (ω), ω)− rt]+
}

s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . ., T,
(6.421)

with additional variables r = (r2, . . . , rT ). Problem (6.421) can be viewed as a standard
multistage stochastic program with (r, x1) being first stage decision variables.

The corresponding dynamic programming equations can be written with the cost-to-
go function Qt(xt−1, rt, . . . , rT , ω), for t = 2, . . . , T , given by the optimal value of the
problem

Min
xt

α−1[ft(xt, ω)− rt]+ + E|Ft [Qt+1(xt, rt, . . . , rT , ω)]

s.t. xt ∈ Xt(xt−1, ω),
(6.422)

where QT+1(·, ·) ≡ 0. At the first stage the following problem should be solved

Min
x1∈X1,r∈RT−1

r2 + · · ·+ rT + f(x1) + E[Q2(x1, r, ω)]. (6.423)

Although it was possible to write dynamic programming equations for problem (6.421),
note that decision variables r2, . . . , rT are decided at the first stage and their optimal values
depend on all scenarios starting at the root node at stage t = 1. Consequently, the optimal
decisions at later stages depend on scenarios other than following a considered node. That
is, here the principle of conditional optimality does not hold.

6.8.6 Minimax Approach to Risk-Averse Multistage
Programming

Again, we use the framework of the previous sections 6.8.4–6.8.5. Consider a (nonempty)
set M of probability measures P , defined on the sample space (Ω,F), and the functional

ρ̂(ZT ) := sup
P∈M

EP [ZT ] (6.424)

defined on a linear space ZT of random variables ZT : Ω → R. If every P ∈ M is
absolutely continuous with respect to the reference probability measure P0, then ρ̂ : ZT →
R becomes a coherent risk measure.

With the functional ρ̂ is associated the following minimax (distributionally robust)
stochastic programming problem
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Min
x1,x2,...,xT

sup
P∈M

EP
[
f1(x1) + f2(x2) + . . .+ fT (xT )

]
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . ., T.

(6.425)

Of course, if the set M is a singleton, then (6.425) becomes the risk-neutral formulation
(3.33).

In order to construct a nested counterpart of the minimax problem (6.425) we proceed
as follows. We can write

EP [ZT ] = EP |F1

[
EP |F2

[
· · ·EP |FT−1

[ZT ]
]]
, (6.426)

and hence

ρ̂(ZT ) = sup
P∈M

EP |F1

[
EP |F2

[
· · ·EP |FT−1

[ZT ]
]]

≤ sup
P∈M

EP |F1

[
sup
P∈M

EP |F2

[
· · · sup

P∈M
EP |FT−1

[ZT ]
]]
.

(6.427)

That is,
ρ̂(ZT ) ≤ ρ2|F1

[
ρ3|F2

[
· · · ρT |FT−1

[ZT ]
]]
, (6.428)

where for t = 2, . . . , T ,

ρt|Ft−1
[ZT ] := sup

P∈M
EP |Ft−1

[Zt]. (6.429)

For (Z1, . . . , ZT ) ∈ Z1 × · · · × ZT , with Zt, t = 1, . . . , T , being appropriate linear
spaces of Ft-measurable random variables, we can write (6.428) as

ρ̂(Z1 + · · ·+ ZT ) ≤ Z1 + ρ2|F1

[
Z2 + ρ3|F2

[
Z3 + · · ·+ ρT |FT−1

[ZT ]
]]
. (6.430)

This suggests the corresponding nested counterpart of the minimax problem (6.425) of the
form (6.380), that is

Min
x1,...,xT

f1(x1) + sup
P∈M

EP |F1

[
f2(x2(ω), ω) + sup

P∈M
EP |F2

[
f3 (x3(ω), ω)

+ · · ·+ sup
P∈M

EP |FT−1

[
fT (xT (ω), ω)

]]]
s.t. x1 ∈ X1, xt(ω) ∈ Xt(xt−1(ω), ω), t = 2, . . . , T.

(6.431)

It follows from (6.430) that the optimal value of the nested problem (6.431) is grater than
or equal to the optimal value of the minimax problem (6.425).

In accordance with Definition 6.82 we say that the minimax problem (6.425) is
(weakly) time consistent if its every (at least one) optimal solution policy is also opti-
mal for the nested problem (6.431). The dynamic programming equations, of the form
(6.383)–(6.385), for the nested formulation (6.431) can be written as

Qt(xt−1, ω) = inf
xt∈Xt(xt−1,ω)

{
ft(xt, ω) + sup

P∈M
EP |Ft [Qt+1(xt)] (ω)

}
, (6.432)
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with QT+1(·, ·) ≡ 0. That is, problem (6.425) is time consistent if its every optimal policy
x̄1, . . . , x̄T satisfies the optimality conditions: x̄1 is an optimal solution of the correspond-
ing first stage problem and for t = 2, . . . , T ,

x̄t(ω) ∈ argmin
xt∈Xt(x̄t−1(ω),ω)

{
ft(xt, ω) + sup

P∈M
EP |Ft [Qt+1(xt)] (ω)

}
, w.p.1. (6.433)

The nested formulation and the corresponding dynamic programming equations are sim-
plified in the stagewise independent case. That is, let ξt = ξt(ω), t = 1, . . . , T, be a data
process and Ft := σ(ξ1, . . . , ξt), t = 1, . . . , T, be the corresponding filtration. Recall that
ξ1 is deterministic and F1 = {∅,Ω}. Suppose that

M := {P = P1 × · · · × PT : Pt ∈Mt, t = 1, . . . , T}, (6.434)

where Mt is a set of probability distributions (measures) of random vector ξt = ξt(ω),
t = 1, . . . , T . That is, the set M consists of probability distributions of (ξ1, . . . , ξT ) with
mutually independent components.

In that case the dynamic programming equations for the corresponding nested for-
mulation take the form (compare with (3.18)–(3.19) and (6.394)–(6.395))

Qt(xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{
ft(xt, ξt)+ sup

Pt+1∈Mt+1

EPt+1
[Qt+1(xt, ξt+1)]

}
, (6.435)

with the optimality conditions for an optimal policy x̄t = x̄t(ξ[t]), t = 1, . . . , T ,

x̄t ∈ argmin
xt∈Xt(x̄t−1,ξt)

{
ft(xt, ξt) + sup

Pt+1∈Mt+1

EPt+1
[Qt+1(xt, ξt+1)]

}
, w.p.1. (6.436)

Example 6.85 (Distributionally robust inventory model) Consider the inventory model
discussed in section 1.2.3. Suppose that the demand process D1, . . . , DT is stagewise
independent and letMt be a specified set of probability distributions of the demand Dt,
t = 1, . . . , T . The minimax (distributionally robust) counterpart of the inventory problem
(1.17) becomes

Min
xt≥yt

sup
P∈M

EP
{ T∑
t=1

ct(xt − yt) + ψt(xt, Dt)
}

s.t. yt+1 = xt −Dt, t = 1, . . . , T − 1,

(6.437)

where M := {P = P1 × · · · × PT : Pt ∈Mt} and

ψt(xt, dt) := bt[dt − xt]+ + ht[xt − dt]+.

For t = T, . . . , 2, the cost-to-go functionQt(yt), of the dynamic programming equa-
tions of the nested counterpart of the minimax problem (6.437), is given by the optimal
value of the problem (compare with (1.20))

Min
xt≥yt

{
ct(xt − yt) + sup

Pt∈Mt

EPt
[
ψt(xt, Dt) +Qt+1 (xt −Dt)

]}
, (6.438)
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where QT+1(·) ≡ 0. At the first stage we need to solve problem

Min
x1≥y1

c1(x1 − y1) + sup
P1∈M1

EP1

{
ψ1(x1, D1) +Q2 (x1 −D1)

}
. (6.439)

Suppose now that for the distribution of the demand Dt we only specify its range
(support) given by a (finite) interval [αt, βt] ⊂ R+ and its mean µt ∈ [αt, βt]. That is,

Mt := {Pt : supp(Pt) = [αt, βt], EPt [Dt] = µt} , t = 1, . . . , T. (6.440)

Since the functions ψt(·, dt) and Qt+1(·) are convex, the maximum over Pt ∈ Mt in
problem (6.438) is attained at the probability measure

P̄t = ptδ(αt) + (1− pt)δ(βt), where pt :=
βt − µt
βt − αt

,

supported on the end points of the interval [αt, βt] (see Theorem 6.69). This measure
P̄t does not depend on xt. Therefore the nested problem is equivalent to the risk neutral
inventory problem

Min
xt≥yt

EP̄
{ T∑
t=1

ct(xt − yt) + ψt(xt, Dt)
}

s.t. yt+1 = xt −Dt, t = 1, . . . , T − 1,
(6.441)

corresponding to the probability measure P̄ := P̄1×· · ·×P̄T of the demand (D1, . . . , DT ).
It could be noted that problem (6.441) can be represented by a scenario tree with each node
at every stage (except the last stage) having two children nodes.

Since P̄ ∈M it follows that the optimal value of the distributionally robust problem
(6.437) is greater than or equal to the optimal value the problem (6.441). On the other hand,
as it was pointed above, the optimal value of the nested problem is always greater than or
equal to the optimal value of the corresponding distributionally robust problem. It follows
that the distributionally robust problem (6.437), its nested counterpart problem and the risk
neutral problem (6.441) are equivalent in the sense that their optimal values are equal to
each other and they have the same optimal solutions. As a consequence we obtain that in
the present case the minimax (distributionally robust) problem (6.437) is time consistent.

The situation changes dramatically if in the definition of the setsMt we also specify
second order moments (variances) of the respective demands Dt. In that case it is possible
to construct examples where the corresponding minimax problem (6.437) is time consis-
tent, only weakly time consistent or not time consistent at all. We refer to [274] for a
discussion of this case.

6.8.7 Portfolio Selection and Inventory Model Examples
Example 6.86 (Risk Averse Multistage Portfolio Selection) Consider the multistage port-
folio selection problem discussed in section 1.4.2. A nested formulation of risk averse
multistage portfolio selection can be written as

Min
{
ρ̄(−WT ) := ρ1

[
· · · ρT−1|WT−2

[
ρT |WT−1

[−WT ]
]]}

s.t. Wt+1 =

n∑
i=1

ξi,t+1xit,

n∑
i=1

xit = Wt, xt ≥ 0, t = 0, . . . , T − 1.
(6.442)
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We use here conditional risk mappings formulated in terms of the respective conditional ex-
pectations, like the conditional AV@R (see (6.388)) and conditional mean semideviations
(see (6.390)), and the notation ρt|Wt−1

stands for a conditional risk mapping defined in
terms of the respective conditional expectations given Wt−1. By ρt(·) we denote the corre-
sponding (unconditional) risk measures. For example, to the conditional AV@Rα( · |ξ[t−1])
corresponds the respective (unconditional) AV@Rα( · ). If we set ρt|Wt−1

:= E|Wt−1
,

t = 1, . . . , T , then since

E
[
· · ·E

[
E [−WT |WT−1]

∣∣WT−2

]]
= E[−WT ],

we obtain the risk neutral formulation. Note also that in order to formulate this as a mini-
mization, rather than a maximization, problem we changed the sign of ξit.

Suppose that the random process ξt is stagewise independent. Let us write dynamic
programming equations. At the last stage we have to solve problem

Min
xT−1≥0,WT

ρT |WT−1
[−WT ]

s.t. WT =

n∑
i=1

ξiTxi,T−1,

n∑
i=1

xi,T−1 = WT−1.
(6.443)

Since WT−1 is a function of ξ[T−1], by the stagewise independence we have that ξT , and
hence WT , are independent of WT−1. It follows by positive homogeneity of ρT that the
optimal value of (6.443) is QT−1(WT−1) = WT−1νT−1, where νT−1 is the optimal value
of

Min
xT−1≥0,WT

ρT [−WT ]

s.t. WT =

n∑
i=1

ξiTxi,T−1,

n∑
i=1

xi,T−1 = 1,
(6.444)

and an optimal solution of (6.443) is x̄T−1(WT−1) = WT−1x
∗
T−1, where x∗T−1 is an

optimal solution of (6.444). And so on we obtain that the optimal policy x̄t(Wt) here is
myopic. That is, x̄t(Wt) = Wtx

∗
t , where x∗t is an optimal solution of

Min
xt≥0,Wt+1

ρt+1[−Wt+1]

s.t. Wt+1 =

n∑
i=1

ξi,t+1xit,

n∑
i=1

xit = 1
(6.445)

(compare with Remark 1.4.3 on page 21). Note that the composite risk measure ρ̄ can be
quite complicated here.

An alternative, multiperiod risk averse approach can be formulated as

Min ρ[−WT ]

s.t. Wt+1 =

n∑
i=1

ξi,t+1xit,

n∑
i=1

xit = Wt, xt ≥ 0, t = 0, . . . , T − 1,
(6.446)

for an explicitly defined risk measure ρ. Let, for example,

ρ(·) := (1− β)E[ · ] + βAV@Rα( · ), β ∈ [0, 1], α ∈ (0, 1). (6.447)
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Then problem (6.446) becomes

Min (1− β)E[−WT ] + β
(
− r + α−1E[r −WT ]+

)
s.t. Wt+1 =

n∑
i=1

ξi,t+1xit,

n∑
i=1

xit = Wt, xt ≥ 0, t = 0, . . . , T − 1,
(6.448)

where r ∈ R is the (additional) first stage decision variable. After r is decided, at the
first stage, the problem comes to minimizing E[U(WT )] at the last stage, where U(W ) :=
(1− β)W + βα−1[W − r]+ can be viewed as a disutility function.

The respective dynamic programming equations become as follows. The last stage
value function QT−1(WT−1, r) is given by the optimal value of the problem

Min
xT−1≥0,WT

E
[
− (1− β)WT + βα−1[r −WT ]+

]
s.t. WT =

n∑
i=1

ξiTxi,T−1,

n∑
i=1

xi,T−1 = WT−1.
(6.449)

Proceeding in this way, at stages t = T − 2, . . . , 1 we consider the problems

Min
xt≥0,Wt+1

E {Qt+1(Wt+1, r)}

s.t. Wt+1 =

n∑
i=1

ξi,t+1xit,

n∑
i=1

xit = Wt,
(6.450)

whose optimal value is denoted Qt(Wt, r). Finally, at stage t = 0 we solve the problem

Min
x0≥0,r,W1

− βr + E[Q1(W1, r)]

s.t. W1 =

n∑
i=1

ξi1xi0,

n∑
i=1

xi0 = W0.
(6.451)

In the above multiperiod risk averse approach the optimal policy is not myopic and the
principle of conditional optimality is not satisfied.

Example 6.87 (Risk Averse Multistage Inventory Model) Consider the multistage inven-
tory problem (1.17). The nested risk averse formulation of that problem can be written as

Min
xt≥yt

c1(x1 − y1) + ρ1

[
ψ1(x1, D1) + c2(x2 − y2) + ρ2|D[1]

[
ψ2(x2, D2) + · · ·

+ cT−1(xT−1 − yT−1) + ρT−1|D[T−2]

[
ψT−1(xT−1, DT−1)

+ cT (xT − yT ) + ρT |D[T−1]
[ψT (xT , DT )]

]]
s.t. yt+1 = xt −Dt, t = 1, . . . , T − 1,

(6.452)

where y1 is a given initial inventory level,

ψt(xt, dt) := bt[dt − xt]+ + ht[xt − dt]+
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and ρt|D[t−1]
(·), t = 2, . . . , T , are chosen conditional risk mappings. Recall that the no-

tation ρt|D[t−1]
(·) stands for a conditional risk mapping obtained by using conditional ex-

pectations, conditional on D[t−1], and note that ρ1(·) is real valued and is a coherent risk
measure.

As it was discussed before, there are two equivalent interpretations of problem (6.452).
We can write it as an optimization problem with respect to feasible policies xt(d[t−1])
(compare with (6.391)):

Min
x1,x2,...,xT

c1(x1 − y1) + ρ1

[
ψ1(x1, D1) + c2(x2(D1)− x1 +D1)

+ ρ2|D1

[
ψ2(x2(D1), D2) + · · ·

+ cT−1(xT−1(D[T−2])− xT−2(D[T−3]) +DT−2)

+ ρT−1|D[T−2]

[
ψT−1(xT−1(D[T−2]), DT−1)

+ cT (xT (D[T−1])− xT−1(D[T−2]) +DT−1)

+ ρT |D[T−1]
[ψT (xT (D[T−1]), DT )]

]]
s.t. x1 ≥ y1, x2(D1) ≥ x1 −D1,

xt(D[t−1]) ≥ xt−1(D[t−2])−Dt−1, t = 3, . . . , T.

(6.453)

Alternatively we can write dynamic programming equations. At the last stage t = T ,
for observed inventory level yT , we need to solve the problem:

Min
xT≥yT

cT (xT − yT ) + ρT |D[T−1]

[
ψT (xT , DT )

]
. (6.454)

The optimal value of problem (6.454) is denoted QT (yT , D[T−1]). Continuing in this way,
we write for t = T − 1, . . . , 2 the following dynamic programming equations

Qt(yt, D[t−1]) = min
xt≥yt

ct(xt − yt) + ρt|D[t−1]

[
ψ(xt, Dt) +Qt+1

(
xt −Dt, D[t]

) ]
.

(6.455)
Finally, at the first stage we need to solve problem

Min
x1≥y1

c1(x1 − y1) + ρ1

[
ψ(x1, D1) +Q2 (x1 −D1, D1)

]
. (6.456)

Suppose now that the process Dt is stagewise independent. Then, by exactly the
same argument as in section 1.2.3, the cost-to-go (value) function Qt(yt, d[t−1]) = Qt(yt),
t = 2, . . . , T , is independent of d[t−1], and by convexity arguments the optimal policy
x̄t = x̄t(d[t−1]) is a basestock policy. That is, x̄t = max{yt, x∗t }, where x∗t is an optimal
solution of

Min
xt

ctxt + ρt
[
ψ(xt, Dt) +Qt+1 (xt −Dt)

]
. (6.457)

Recall that ρt denotes the coherent risk measure corresponding to the conditional risk map-
ping ρt|D[t−1]

.
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Exercises
6.1. Let Z ∈ L1(Ω,F , P ) be a random variable with cdf H(z) := P{Z ≤ z}. Note

that limz↓tH(z) = H(t) and denote H−(t) := limz↑tH(z). Consider functions
φ1(t) := E[t − Z]+, φ2(t) := E[Z − t]+ and φ(t) := β1φ1(t) + β2φ2(t), where
β1, β2 are positive constants. Show that φ1, φ2 and φ are real valued convex func-
tions with subdifferentials

∂φ1(t) = [H−(t), H(t)] and ∂φ2(t) = [−1 +H−(t),−1 +H(t)],

∂φ(t) = [(β1 + β2)H−(t)− β2, (β1 + β2)H(t)− β2].

Conclude that the set of minimizers of φ(t) over t ∈ R is the (closed) interval of
[β2/(β1 + β2)]-quantiles of H(·).

6.2. Show that for any Z ∈ L1(Ω,F , P ),

lim
α↓0

αAV@Rα(Z) = 0.

6.3. For Z ∈ L1(Ω,F , P ) and α ∈ (0, 1) consider

AV@R∗α(Z) := sup
t∈R

{
t+ α−1E[Z − t]−

}
, (6.458)

where [a]− = min{a, 0} = a− [a]+. Show that maximum in the right hand side of
(6.458) is attained at any α-quantile of the distribution of Z, and

AV@R∗α(Z) =
1

α
E[Z]− 1− α

α
AV@R1−α(Z). (6.459)

Derive properties of AV@R∗α analogous to the respective properties of the Average
Value-at-Risk.

6.4. Show that ρ := V@Rα, α ∈ (0, 1), satisfies conditions (R2)–(R4), defined on page
298.

6.5. (i) Let Y ∼ N (µ, σ2). Show that

V@Rα(Y ) = µ+ zασ, (6.460)

where zα := Φ−1(1− α), and

AV@Rα(Y ) = µ+
σ

α
√

2π
e−z

2
α/2. (6.461)

(ii) Let Y 1, . . . , Y N be an iid sample of Y ∼ N (µ, σ2). Compute the asymptotic
variance and asymptotic bias of the sample estimator θ̂N , of θ∗ = AV@Rα(Y ),
discussed in section 6.6.1.

6.6. Consider the chance constraint

Pr

{
n∑
i=1

ξixi ≥ b

}
≥ 1− α, (6.462)
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where ξ ∼ N (µ,Σ) (see problem (1.43)). Note that this constraint can be written
as

V@Rα

(
b−

n∑
i=1

ξixi

)
≤ 0. (6.463)

Consider the following constraint

AV@Rγ

(
b−

n∑
i=1

ξixi

)
≤ 0. (6.464)

Show that constraints (6.462) and (6.464) are equivalent if zα = 1
γ
√

2π
e−z

2
γ/2.

6.7. Consider the inverse function α∗ = p−1(α), defined in section 6.4. Compute this
function for ψ(x) = (x− 1)2 in example 6.54.

6.8. Consider the function φ(x) := AV@Rα(Fx), where Fx = Fx(ω) = F (x, ω) is
a real valued random variable, on a probability space (Ω,F , P ), depending on
x ∈ Rn. Assume that: (i) for a.e. ω ∈ Ω the function F (·, ω) is continuously
differentiable on a neighborhood V of a point x0 ∈ Rn, (ii) the families |F (x, ω)|,
x ∈ V , and ‖∇xF (x, ω)‖, x ∈ V , are dominated by a P -integrable function, (iii)
the random variable Fx has continuous distribution for all x ∈ V . Show that, under
these conditions, φ(x) is directionally differentiable at x0 and

φ′(x0, d) = α−1 inf
t∈[a,b]

E
{
dT∇x([F (x0, ω)− t]+)

}
, (6.465)

where a and b are the respective left and right side (1 − α)-quantiles of the cdf of
the random variable Fx0

. Conclude that if, moreover, a = b = V@Rα(Fx0
), then

φ(·) is differentiable at x0 and

∇φ(x0) = α−1E
[
1{Fx0>a}(ω)∇xF (x0, ω)

]
. (6.466)

Hint: use Theorem 7.49 together with Danskin Theorem 7.25.
6.9. Show that the set of saddle points of the minimax problem (6.272) is given by {µ}×

[γ∗, γ∗∗], where γ∗ and γ∗∗ are defined in (6.274).
6.10. Consider the absolute semideviation risk measure

ρc(Z) := E {Z + c[Z − E(Z)]+} , Z ∈ L1(Ω,F , P ),

where c ∈ [0, 1], and the following risk averse optimization problem:

Min
x∈X

E
{
G(x, ξ) + c[G(x, ξ)− E(G(x, ξ))]+

}︸ ︷︷ ︸
ρc[G(x,ξ)]

. (6.467)

Viewing the optimal value of problem (6.467) as Von Mises statistical functional of
the probability measure P , compute its influence function.
Hint: use derivations of section 6.6.3 together with Danskin Theorem.
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6.11. Consider the risk averse optimization problem (6.228) related to the inventory model.
Let the corresponding risk measure be of the form ρλ(Z) = E[Z] + λD(Z), where
D(Z) is a measure of variability of Z = Z(ω) and λ is a nonnegative trade off
coefficient between expectation and variability. Higher values of λ reflects a higher
degree of risk aversion. Suppose that ρλ is a coherent risk measure for all λ ∈ [0, 1]
and let Sλ be the set of optimal solutions of the corresponding risk averse problem.
Suppose that the sets S0 and S1 are nonempty.
Show that if S0∩S1 = ∅, then Sλ is monotonically nonincreasing or monotonically
nondecreasing in λ ∈ [0, 1] depending upon whether S0 > S1 or S0 < S1. If
S0 ∩ S1 6= ∅, then Sλ = S0 ∩ S1 for any λ ∈ (0, 1).

6.12. Consider the newsvendor problem with cost function

F (x, d) = cx+ b[d− x]+ + h[x− d]+, where b > c ≥ 0, h > 0,

and the following minimax problem

Min
x≥0

sup
H∈M

EH [F (x,D)], (6.468)

where M is the set of cumulative distribution functions (probability measures) sup-
ported on (final) interval [l, u] ⊂ R+ and having a given mean d̄ ∈ [l, u]. Show
that for any x ∈ [l, u] the maximum of EH [F (x,D)] over H ∈M is attained at the
probability measure H̄ = pδ(l) + (1− p)δ(u), where p = (u− d̄)/(u− l), i.e., the
cdf H̄(·) is the step function

H̄(z) =

 0, if z < l,
p, if l ≤ z < u,
1, if u ≤ z.

Conclude that H̄ is the cdf specified in Proposition 6.61, and that x̄ = H̄−1(κ),
where κ = (b − c)/(b + h), is the optimal solution of problem (6.468). That is,
x̄ = l if κ < p, and x̄ = u if κ > p, where κ = b−c

b+h .
6.13. Consider the following version of the newsvendor problem. A newsvendor has to

decide about quantity x of a product to purchase at the cost of c per unit. He can
sell this product at the price s per unit and unsold products can be returned to the
vendor at the price of r per unit. It is assumed that 0 ≤ r < c < s. If the demand D
turns out to be greater than or equal to the order quantity x, then he makes the profit
sx − cx = (s − c)x, while if D is less than x, his profit is sD + r(x − D) − cx.
Thus the profit is a function of x and D and is given by

F (x,D) =

{
(s− c)x, if x ≤ D,
(r − c)x+ (s− r)D, if x > D.

(6.469)

(a) Assuming that demand D ≥ 0 is a random variable with cdf H(·), show that
the expectation function f(x) := EH [F (x,D)] can be represented in the form

f(x) = (s− c)x− (s− r)
∫ x

0

H(z)dz. (6.470)
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Conclude that the set of optimal solutions of the problem

Max
x≥0

{
f(x) := EH [F (x,D)]

}
(6.471)

is an interval given by the set of κ-quantiles of the cdf H(·) with κ := (s −
c)/(s− r).

(b) Consider the following risk averse version of the Newsvendor problem

Min
x≥0

{
φ(x) := ρ[−F (x,D)]

}
. (6.472)

Here ρ is a real valued coherent risk measure representable in the form (6.231)
and H∗ is the corresponding reference cdf.
Show that: (i) The function φ(x) = ρ[−F (x,D)] can be represented in the
form

φ(x) = (c− s)x+ (s− r)
∫ x

0

H̄(z)dz (6.473)

for some cdf H̄ .
(ii) If ρ(·) := AV@Rα(·), then H̄(z) = min

{
α−1H∗(z), 1

}
. Conclude that

in that case optimal solutions of the risk averse problem (6.472) are smaller
than the risk neutral problem (6.471).

6.14. Consider Theorem 6.69. Suppose that the cone C := {0p} × Rq−p+ . Show that
in that case the conclusion of Theorem 6.69 holds if instead of assuming that the
functions ψi, i = 1, ..., q, are affine, it is assumed that ψi, i = 1, ..., p, are affine and
ψi, i = p+ 1, ..., q, are concave and continuous on Ω.

6.15. Consider the following risk averse approach to multistage portfolio selection. Let
ξ1, . . ., ξT be the respective data process (of random returns) and consider the fol-
lowing chance constrained nested formulation

Max E[WT ]

s.t. Wt+1 =

n∑
i=1

ξi,t+1xit,

n∑
i=1

xit = Wt, xt ≥ 0,

Pr
{
Wt+1 ≥ κWt

∣∣ ξ[t]} ≥ 1− α, t = 0, . . . , T − 1,

(6.474)

where κ ∈ (0, 1) and α ∈ (0, 1) are given constants. Dynamic programming equa-
tions for this problem can be written as follows. At the last stage t = T − 1 the
cost-to-go function QT−1(WT−1, ξ[T−1]) is given by the optimal value of the prob-
lem

Max
xT−1≥0,WT

E
[
WT

∣∣ ξ[T−1]

]
s.t. WT =

n∑
i=1

ξiTxi,T−1,

n∑
i=1

xi,T−1 = WT−1,

Pr
{
WT ≥ κWT−1

∣∣ ξ[T−1]

}
,

(6.475)
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and at stage t = T − 2, . . ., 1, the cost-to-go function Qt(Wt, ξ[t]) is given by the
optimal value of the problem

Max
xt≥0,Wt+1

E
[
Qt+1(Wt+1, ξ[t+1])

∣∣ ξ[t]]
s.t. Wt+1 =

n∑
i=1

ξi,t+1xi,t,

n∑
i=1

xi,t = Wt,

Pr
{
Wt+1 ≥ κWt

∣∣ ξ[t]} .
(6.476)

Assuming that the process ξt is stagewise independent show that the optimal policy
is myopic and is given by x̄t(Wt) = Wtx

∗
t , where x∗t is an optimal solution of the

problem

Max
xt≥0

n∑
i=1

E [ξi,t+1]xi,t

s.t.
n∑
i=1

xi,t = 1, Pr

{
n∑
i=1

ξi,t+1xi,t ≥ κ

}
≥ 1− α.

(6.477)

6.16. In settings of section 6.8.1, with finite space Ω and Z = Z1 × · · · × ZT , consider
functional % : Z → R defined as

%(Z1, . . . , ZT ) := max {Z1,maxω∈Ω Z2(ω), . . . ,maxω∈Ω ZT (ω)} . (6.478)

Compared with the discussion of section 6.8.3, this functional % satisfies the re-
spective conditions (R1),(R2) and (R4), but not the condition (R∗3). For the corre-
sponding multiperiod optimization problem, of the form (6.396), derive the dynamic
programming equations29:

Qt(xt−1, ω) = inf
xt∈Xt(xt−1,ω)

ft(xt, ω) ∨ ρt+1 [Qt+1(xt, ω)] , (6.479)

where ρt+1 : Zt+1 → Zt is the conditional max-mapping, t = 1, . . . , T − 1, and
ρT+1 [QT+1(·, ·)] ≡ 0. Discuss time consistency of this optimization problem.

29Recall that a ∨ b = max{a, b} for a, b ∈ R.
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Chapter 7

Background Material

Alexander Shapiro

In this chapter we discuss some concepts and results from convex analysis, probabil-
ity theory, functional analysis and optimization theories, needed for a development of the
material in this book. We give or outline proofs of some results while others are referred to
the literature. Of course, a careful derivation of the required material goes far beyond the
scope of this book. So this chapter should be considered as a source of references rather
than a systematic presentation of the material.

We denote by Rn the standard n-dimensional vector space, of (column) vectors x =
(x1, ..., xn)T, equipped with the scalar product xTy =

∑n
i=1 xiyi. Unless stated otherwise

we denote by ‖ · ‖ the Euclidean norm ‖x‖ =
√
xTx. The notation AT stands for the

transpose of matrix (vector) A, and “ := ” stands for “equal by definition” to distinguish it
from the usual equality sign. By R := R ∪ {−∞} ∪ {+∞} we denote the set of extended
real numbers. The domain of an extended real valued function f : Rn → R is defined as

domf := {x ∈ Rn : f(x) < +∞}.

It is said that f is proper if f(x) > −∞ for all x ∈ Rn and its domain, domf , is nonempty.
The function f is said to be lower semicontinuous (lsc) at a point x0 ∈ Rn if f(x0) ≤
lim infx→x0

f(x). It is said that f is lower semicontinuous if it is lsc at every point of Rn.
The largest lower semicontinuous function which is less than or equal to f is denoted lsc f .
It is not difficult to show that f is lower semicontinuous if and only if (iff) its epigraph

epif :=
{

(x, α) ∈ Rn+1 : f(x) ≤ α
}
,

is a closed subset of Rn+1. We often have to deal with polyhedral functions.

Definition 7.1. An extended real valued function f : Rn → R is called polyhedral if it
is proper convex and lower semicontinuous, its domain is a convex closed polyhedron and
f(·) is piecewise linear on its domain.

413
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By 1A(·) we denote the characteristic1 function

1A(x) :=

{
1, if x ∈ A,
0, if x 6∈ A, (7.1)

and by IA(·) the indicator function

IA(x) :=

{
0, if x ∈ A,
+∞, if x 6∈ A, (7.2)

of set A.
By cl(A) we denote the topological closure of set A ⊂ Rn. For sets A,B ⊂ Rn we

denote by
dist(x,A) := infx′∈A ‖x− x′‖ (7.3)

the distance from x ∈ Rn to A, and by

D(A,B) := supx∈A dist(x,B) and H(A,B) := max
{
D(A,B),D(B,A)

}
(7.4)

the deviation of the setA from the setB and the Hausdorff distance between the setsA and
B, respectively. By the definition, dist(x,A) = +∞ if A is empty, and H(A,B) = +∞ if
A or B is empty.

7.1 Optimization and Convex Analysis
7.1.1 Directional Differentiability
Consider a mapping g : Rn → Rm. It is said that g is directionally differentiable at a point
x0 ∈ Rn in a direction h ∈ Rn if the limit

g′(x0, h) := lim
t↓0

g(x0 + th)− g(x0)

t
(7.5)

exists, in which case g′(x0, h) is called the directional derivative of g(x) at x0 in the
direction h. If g is directionally differentiable at x0 in every direction h ∈ Rn, then it
is said that g is directionally differentiable at x0. Note that whenever exists, g′(x0, h)
is positively homogeneous in h, i.e., g′(x0, th) = tg′(x0, h) for any t ≥ 0. If g(x) is
directionally differentiable at x0 and g′(x0, h) is linear in h, then it is said that g(x) is
Gâteaux differentiable at x0. Equation (7.5) can be also written in the form

g(x0 + h) = g(x0) + g′(x0, h) + r(h), (7.6)

where the remainder term r(h) is such that r(th)/t → 0, as t ↓ 0, for any fixed h ∈ Rn.
If, moreover, g′(x0, h) is linear in h and the remainder term r(h) is “uniformly small” in
the sense that r(h)/‖h‖ → 0 as h → 0, i.e., r(h) = o(h), then it is said that g(x) is
differentiable at x0 in the sense of Fréchet, or simply differentiable at x0.

1Function 1A(·) is often also called the indicator function of the set A. We call it here characteristic function
in order to distinguish it from the indicator function IA(·).
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Clearly Fréchet differentiability implies Gâteaux differentiability. The converse of
that is not necessarily true. However, the following theorem shows that for locally Lipschitz
continuous mappings both concepts do coincide. Recall that a mapping (function) g :
Rn → Rm is said to be Lipschitz continuous on a set X ⊂ Rn, if there is a constant c ≥ 0
such that

‖g(x1)− g(x2)‖ ≤ c‖x1 − x2‖, for all x1, x2 ∈ X.

If g is Lipschitz continuous on a neighborhood of every point ofX (probably with different
Lipschitz constants), then it is said that g is locally Lipschitz continuous on X .

Theorem 7.2. Suppose that mapping g : Rn → Rm is Lipschitz continuous in a neighbor-
hood of a point x0 ∈ Rn and directionally differentiable at x0. Then g′(x0, ·) is Lipschitz
continuous on Rn and

lim
h→0

g(x0 + h)− g(x0)− g′(x0, h)

‖h‖
= 0. (7.7)

Proof. For h1, h2 ∈ Rn we have

‖g′(x0, h1)− g′(x0, h2)‖ = lim
t↓0

‖g(x0 + th1)− g(x0 + th2)‖
t

.

Also, since g is Lipschitz continuous near x0 say with Lipschitz constant c, we have that
for t > 0 small enough

‖g(x0 + th1)− g(x0 + th2)‖ ≤ ct‖h1 − h1‖.

It follows that ‖g′(x0, h1)− g′(x0, h2)‖ ≤ c‖h1 − h1‖ for any h1, h2 ∈ Rn, i.e., g′(x0, ·)
is Lipschitz continuous on Rn.

Consider now a sequence tk ↓ 0 and a sequence {hk} converging to a point h ∈ Rn.
We have that

g(x0 + tkhk)− g(x0) =
(
g(x0 + tkh)− g(x0)

)
+
(
g(x0 + tkhk)− g(x0 + tkh)

)
and

‖g(x0 + tkhk)− g(x0 + tkh)‖ ≤ ctk‖hk − h‖

for all k large enough. It follows that

g′(x0, h) = lim
k→∞

g(x0 + tkhk)− g(x0)

tk
. (7.8)

The proof of (7.7) can be completed now by arguing by a contradiction and using the fact
that every bounded sequence in Rn has a convergent subsequence.

We have that g is differentiable at a point x ∈ Rn, iff

g(x+ h)− g(x) = [∇g(x)]h+ o(h), (7.9)
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where ∇g(x) is the so-called m × n Jacobian matrix of partial derivatives [∂gi(x)/∂xj ],
i = 1, ...,m, j = 1, ..., n. If m = 1, i.e., g(x) is real valued, we call∇g(x) the gradient of
g at x. In that case equation (7.9) takes the form

g(x+ h)− g(x) = hT∇g(x) + o(h). (7.10)

Note that when g(·) is real valued, we write its gradient ∇g(x) as a column vector. This is
why there is a slight discrepancy between the notation of (7.10) and notation of (7.9) where
the Jacobian matrix is of order m × n. If g(x, y) is a function (mapping) of two vector
variables x and y and we consider derivatives of g(·, y) while keeping y constant, we write
the corresponding gradient (Jacobian matrix) as∇xg(x, y).

Clarke Generalized Gradient

Consider now a locally Lipschitz continuous function f : U → R defined on an open
set U ⊂ Rn. By Rademacher’s theorem we have that f(x) is differentiable on U almost
everywhere. That is, the subset of U where f is not differentiable has Lebesgue measure
zero. At a point x̄ ∈ U consider the set of all limits of the form limk→∞∇f(xk) such
that xk → x̄ and f is differentiable at xk. This set is nonempty and compact, its convex
hull is called Clarke generalized gradient of f at x̄ and denoted ∂◦f(x̄). The generalized
directional derivative of f at x̄ is defined as

f◦(x̄, d) := lim sup
x→x̄
t↓0

f(x+ td)− f(x)

t
. (7.11)

It is possible to show that f◦(x̄, ·) is the support function of the set ∂◦f(x̄). That is

f◦(x̄, d) = sup
z∈∂◦f(x̄)

zTd, ∀d ∈ Rn. (7.12)

Function f is called regular in the sense of Clarke, or Clarke regular, at x̄ ∈ Rn
if f(·) is directionally differentiable at x̄ and f ′(x̄, ·) = f◦(x̄, ·). Any convex function f
is Clarke regular and its Clarke generalized gradient ∂◦f(x̄) coincides with the respective
subdifferential in the sense of convex analysis. For a concave function f , the function −f
is Clarke regular, and we shall call it Clarke regular with the understanding that we modify
the regularity requirement above to apply to −f . In this case we have also ∂◦(−f)(x̄) =
−∂◦f(x̄).

We say that f is continuously differentiable at a point x̄ ∈ U if ∂◦f(x̄) is a singleton.
In other words, f is continuously differentiable at x̄ if f is differentiable at x̄ and∇f(x) is
continuous at x̄ on the set where f is differentiable. Note that continuous differentiability
of f at a point x̄ does not imply differentiability of f at every point of any neighborhood of
the point x̄.

Consider a composite real valued function f(x) := g(h(x)) with h : Rm → Rn and
g : Rn → R, and assume that g and h are locally Lipschitz continuous. Then

∂◦f(x) ⊂ cl
{

conv
(∑n

i=1 αivi : α ∈ ∂◦g(y), vi ∈ ∂◦hi(x), i = 1, ..., n
)}
, (7.13)

where α = (α1, ..., αn), y = h(x) and h1, ..., hn are components of h. The equality in
(7.13) holds true, if any one of the following conditions is satisfied: (i) g and hi, i =
1, . . . n, are Clarke-regular and every element in ∂◦g(y) has non-negative components, (ii)
g is differentiable and n = 1, (iii) g is Clarke-regular and h is differentiable.
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7.1.2 Elements of Convex Analysis
Let C be a subset of Rn. It is said that x ∈ Rn is an interior point of C if there is a
neighborhood N of x such that N ⊂ C. The set of interior points of C is denoted int(C).
The convex hull of C, denoted conv(C), is the smallest convex set including C. It is said
that C is a cone if for any x ∈ C and t ≥ 0 it follows that tx ∈ C. The polar cone of a
cone C ⊂ Rn is defined as

C∗ :=
{
z ∈ Rn : zTx ≤ 0, ∀x ∈ C

}
. (7.14)

We have that the polar of the polar cone C∗∗ = (C∗)∗ is equal to the topological closure
of the convex hull of C, and that C∗∗ = C iff the cone C is convex and closed.

Let C be a nonempty convex subset of Rn. The affine space generated by C is the
space of points in Rn of the form tx+ (1− t)y, where x, y ∈ C and t ∈ R. It is said that
a point x ∈ Rn belongs to the relative interior of the set C if x is an interior point of C
relative to the affine space generated by C, i.e., there exists a neighborhood of x such that
its intersection with the affine space generated by C is included in C. The relative interior
set of C is denoted ri(C). Note that if the interior of C is nonempty, then the affine space
generated by C coincides with Rn, and hence in that case ri(C) = int(C). Note also that
the relative interior of any convex set C ⊂ Rn is nonempty. The recession cone of the set
C is formed by vectors h ∈ Rn such that for any x ∈ C and any t > 0 it follows that
x+ th ∈ C. The recession cone of the convex set C is convex and is closed if the set C is
closed. Also the convex set C is bounded iff its recession cone is {0}.

Theorem 7.3 (Helly). LetAi, i ∈ I, be a family of convex subsets of Rn. Suppose that the
intersection of any n + 1 sets of this family is nonempty and either the index set I is finite
or the sets Ai, i ∈ I, are closed and there exists no common nonzero recession direction to
the sets Ai, i ∈ I. Then the intersection of all sets Ai, i ∈ I, is nonempty.

The support function s(·) = sC(·) of a (nonempty) set C ⊂ Rn is defined as

s(h) := supz∈C z
Th. (7.15)

The support function s(·) is convex, positively homogeneous and lower semicontinuous.
The support function of a set C coincides with the support function of the set cl(convC).
If s1(·) and s2(·) are support functions of convex closed sets C1 and C2, respectively, then
s1(·) ≤ s2(·) iff C1 ⊂ C2, and s1(·) = s2(·) iff C1 = C2.

Let C ⊂ Rn be a convex closed set. The normal cone to C at a point x0 ∈ C is
defined as

NC(x0) :=
{
z : zT(x− x0) ≤ 0, ∀x ∈ C

}
. (7.16)

By definition NC(x0) := ∅ if x0 6∈ C. The topological closure of the radial cone
RC(x0) := ∪t>0 {t(C − x0)} is called the tangent cone to C at x0 ∈ C, and denoted
TC(x0). Both cones TC(x0) and NC(x0) are closed and convex, and each one is the polar
cone of the other.

Consider an extended real valued function f : Rn → R. It is not difficult to show
that f is convex iff its epigraph epif is a convex subset of Rn+1. Suppose that f is a
convex function and x0 ∈ Rn is a point such that f(x0) is finite. Then f(x) is directionally
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differentiable at x0, its directional derivative f ′(x0, ·) is an extended real valued convex
positively homogeneous function and can be written in the form

f ′(x0, h) = inf
t>0

f(x0 + th)− f(x0)

t
. (7.17)

Moreover, if x0 is in the interior of the domain of f(·), then f(x) is Lipschitz continuous in
a neighborhood of x0, the directional derivative f ′(x0, h) is finite valued for any h ∈ Rn,
and f(x) is differentiable at x0 iff f ′(x0, h) is linear in h.

It is said that a vector z ∈ Rn is a subgradient of f(x) at x0 if

f(x)− f(x0) ≥ zT(x− x0), ∀x ∈ Rn. (7.18)

The set of all subgradients of f(x), at x0, is called the subdifferential and denoted ∂f(x0).
The subdifferential ∂f(x0) is a closed convex subset of Rn. It is said that f is subdiffer-
entiable at x0 if ∂f(x0) is nonempty. If f is subdifferentiable at x0, then the normal cone
Ndom f (x0), to the domain of f at x0, forms the recession cone of the set ∂f(x0). It is also
clear that if f is subdifferentiable at x0, then f(x) > −∞ for any x and hence f is proper.

By duality theory of convex analysis we have that if the directional derivative f ′(x0, ·)
is lower semicontinuous, then

f ′(x0, h) = sup
z∈∂f(x0)

zTh, ∀h ∈ Rn, (7.19)

i.e., f ′(x0, ·) is the support function of the set ∂f(x0). In particular, if x0 is an interior point
of the domain of f(x), then f ′(x0, ·) is continuous, ∂f(x0) is nonempty and compact and
(7.19) holds. Conversely, if ∂f(x0) is nonempty and compact, then x0 is an interior point
of the domain of f(x). Also f(x) is differentiable at x0 iff ∂f(x0) is a singleton, i.e.,
contains only one element, which then coincides with the gradient∇f(x0).

Theorem 7.4 (Moreau–Rockafellar). Let fi : Rn → R, i = 1, ...,m, be proper convex
functions, f(·) := f1(·) + ... + fm(·) and x0 be a point such that fi(x0) are finite, i.e.,
x0 ∈ ∩mi=1dom fi. Then

∂f1(x0) + ...+ ∂fm(x0) ⊂ ∂f(x0). (7.20)

Moreover,
∂f1(x0) + ...+ ∂fm(x0) = ∂f(x0). (7.21)

if any one of the following conditions holds: (i) the set ∩mi=1ri(dom fi) is nonempty, (ii)
the functions f1, ..., fk, k ≤ m, are polyhedral and the intersection of the sets ∩ki=1dom fi
and ∩mi=k+1ri(dom fi) is nonempty, (iii) there exists a point x̄ ∈ dom fm such that x̄ ∈
int(dom fi), i = 1, ...,m− 1.

In particular, if all functions f1, ..., fm in the above theorem are polyhedral, then the
equation (7.21) holds without an additional regularity condition.

Let f : Rn → R be an extended real valued function. The conjugate function of f is

f∗(z) := sup
x∈Rn

{zTx− f(x)}. (7.22)



i
i

“SPbook” — 2013/12/24 — 8:37 — page 419 — #431 i
i

i
i

i
i

7.1. Optimization and Convex Analysis 419

The conjugate function f∗ : Rn → R is always convex and lower semicontinuous. The
conjugate of f∗ is denoted f∗∗. Note that if f(x) = −∞ at some x ∈ Rn, then f∗(·) ≡
+∞ and f∗∗(·) ≡ −∞.

Theorem 7.5 (Fenchel-Moreau). Let f : Rn → R be a proper extended real valued
convex function. Then

f∗∗ = lsc f. (7.23)

It follows from (7.23) that if f is proper and convex, then f∗∗ = f iff f is lower
semicontinuous. Also it immediately follows from the definitions that

z ∈ ∂f(x) iff f∗(z) + f(x) = zTx.

By applying that to the function f∗∗, instead of f , we obtain that z ∈ ∂f∗∗(x) iff f∗∗∗(z)+
f∗∗(x) = zTx. Now by the Fenchel–Moreau Theorem we have that f∗∗∗ = f∗, and hence
z ∈ ∂f∗∗(x) iff f∗(z) + f∗∗(x) = zTx. Consequently we obtain

∂f∗∗(x) = arg max
z∈Rn

{
zTx− f∗(z)

}
, (7.24)

and if f∗∗(x) = f(x) and is finite, then ∂f∗∗(x) = ∂f(x).

Strong convexity. Let X ⊂ Rn be a nonempty closed convex set. It is said that a
function f : X → R is strongly convex, with parameter c > 0, if2

tf(x′) + (1− t)f(x) ≥ f(tx′ + (1− t)x) + 1
2
ct(1− t)‖x′ − x‖2, (7.25)

for all x, x′ ∈ X and t ∈ [0, 1]. It is not difficult to verify that f is strongly convex iff the
function ψ(x) := f(x)− 1

2
c‖x‖2 is convex on X .

Indeed, convexity of ψ means that the inequality

tf(x′)− 1
2
ct‖x′‖2 + (1− t)f(x)− 1

2
c(1− t)‖x‖2

≥ f(tx′ + (1− t)x)− 1
2
c‖tx′ + (1− t)x‖2,

holds for all t ∈ [0, 1] and x, x′ ∈ X . By the identity

t‖x′‖2 + (1− t)‖x‖2 − ‖tx′ + (1− t)x‖2 = t(1− t)‖x′ − x‖2,

this is equivalent to (7.25).

If the set X has a nonempty interior and f : X → R is continuous and differentiable at
every point x ∈ int(X), then f is strongly convex iff

f(x′) ≥ f(x) + (x′ − x)T∇f(x) + 1
2
c‖x′ − x‖2, ∀x, x′ ∈ int(X), (7.26)

or equivalently iff

(x′ − x)T(∇f(x′)−∇f(x)) ≥ c‖x′ − x‖2, ∀x, x′ ∈ int(X). (7.27)
2Unless stated otherwise we denote by ‖ · ‖ the Euclidean norm on Rn.
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7.1.3 Optimization and Duality
Consider a real valued function L : X × Y → R, where X and Y are arbitrary sets. We
can associate with the function L(x, y) the following two optimization problems:

Minx∈X
{
f(x) := supy∈Y L(x, y)

}
, (7.28)

Maxy∈Y {g(y) := infx∈X L(x, y)} , (7.29)

viewed as dual to each other. We have that for any x ∈ X and y ∈ Y ,

g(y) = inf
x′∈X

L(x′, y) ≤ L(x, y) ≤ sup
y′∈Y

L(x, y′) = f(x),

and hence the optimal value of problem (7.28) is greater than or equal to the optimal value
of problem (7.29). It is said that a point (x̄, ȳ) ∈ X × Y is a saddle point of L(x, y) if

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ), ∀ (x, y) ∈ X × Y. (7.30)

Theorem 7.6. The following holds: (i) The optimal value of problem (7.28) is greater than
or equal to the optimal value of problem (7.29). (ii) Problems (7.28) and (7.29) have the
same optimal value and each has an optimal solution if and only if there exists a saddle
point (x̄, ȳ). In that case x̄ and ȳ are optimal solutions of problems (7.28) and (7.29),
respectively. (iii) If problems (7.28) and (7.29) have the same optimal value, then the set of
saddle points coincides with the Cartesian product of the sets of optimal solutions of (7.28)
and (7.29).

Suppose that there is no duality gap between problems (7.28) and (7.29), i.e., their
optimal values are equal to each other, and let ȳ be an optimal solution of problem (7.29).
By the above we have that the set of optimal solutions of problem (7.28) is contained in the
set of optimal solutions of the problem

Min
x∈X

L(x, ȳ), (7.31)

and the common optimal value of problems (7.28) and (7.29) is equal to the optimal value
of (7.31). In applications of the above results to optimization problems with constraints,
the function L(x, y) usually is the Lagrangian and y is a vector of Lagrange multipliers.
The inclusion of the set of optimal solutions of (7.28) into the set of optimal solutions of
(7.31) can be strict (see the following example).

Example 7.7 Consider the linear problem

Min
x∈R

x subject to x ≥ 0. (7.32)

This problem has unique optimal solution x̄ = 0 and can be written in the minimax form
(7.28) with L(x, y) := x − yx, Y := R+ and X := R. The objective function g(y) of
its dual (of the form (7.29)) is equal to −∞ for all y except y = 1 for which g(y) = 0.
There is no duality gap here between the primal and dual problems and the dual problem
has unique feasible point ȳ = 1, which is also its optimal solution. The corresponding
problem (7.31) takes here the form of minimizing L(x, 1) ≡ 0 over x ∈ R, with the set of
optimal solutions equal to R. That is, in this example the set of optimal solutions of (7.28)
is a strict subset of the set of optimal solutions of (7.31).
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Conjugate Duality

An alternative approach to duality, referred to as conjugate duality, is the following. Con-
sider an extended real valued function ψ : X × Y → R, where X is an abstract vector
(linear) space and Y is a finite dimensional vector space. We assume that with the space X
is associated a space X ∗ of linear functionals x∗ : X → R and the corresponding scalar
product 〈x∗, x〉 := x∗(x), x∗ ∈ X ∗, x ∈ X . We also assume that there is a scalar product
〈y∗, y〉, y∗, y ∈ Y , defined on the space Y . For example if Y := Rn, then we can use the
standard scalar product 〈y∗, y〉 := (y∗)Ty, and if Y is the linear space ofm×m symmetric
matrices, we can use3 〈Y ∗, Y 〉 := Tr(Y ∗Y ). In this section we assume that the space Y
is finite dimensional; it is also possible to deal with infinite dimensional spaces Y , we will
discuss this further in section 7.3.1.

Let ϑ(y) be the optimal value of the parameterized problem

Min
x∈X

ψ(x, y), (7.33)

i.e., ϑ(y) := infx∈X ψ(x, y). Note that implicitly the optimization in the above problem
is performed over the domain of the function ψ(·, y), i.e., domψ(·, y) can be viewed as
the feasible set of problem (7.33). If the set domψ(·, y) is empty, then by the definition
ϑ(y) = +∞.

The conjugate of the function ϑ(y) can be expressed in terms of the conjugate of
ψ(x, y). That is, the conjugate of ψ is

ψ∗(x∗, y∗) := sup
(x,y)∈X×Y

{〈x∗, x〉+ 〈y∗, y〉 − ψ(x, y)} ,

and hence the conjugate of ϑ can be written as

ϑ∗(y∗) := supy∈Y {〈y∗, y〉 − ϑ(y)} = supy∈Y {〈y∗, y〉 − infx∈X ψ(x, y)}
= sup(x,y)∈X×Y {〈y∗, y〉 − ψ(x, y)} = ψ∗(0, y∗).

Consequently, the conjugate of ϑ∗ is

ϑ∗∗(y) = sup
y∗∈Y

{〈y∗, y〉 − ψ∗(0, y∗)} . (7.34)

This leads to the following dual of (7.33):

Max
y∗∈Y

{〈y∗, y〉 − ψ∗(0, y∗)} . (7.35)

We assume further that the function ψ : X × Y → R is convex. Then it is straight-
forward to verify that the optimal value function ϑ : Y → R is also convex. In the above
formulation of problem (7.33) and its (conjugate) dual (7.35) we have that ϑ(y) and ϑ∗∗(y)
are optimal values of (7.33) and (7.35), respectively. By the Fenchel–Moreau Theorem we
have that either ϑ∗∗(·) is identically −∞, or

ϑ∗∗(y) = (lscϑ)(y), ∀ y ∈ Y. (7.36)

3By Tr(A) we denote trace of an m×m matrix.
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It follows that ϑ∗∗(y) ≤ ϑ(y) for any y ∈ Y . It is said that there is no duality gap between
(7.33) and its dual (7.35) if ϑ∗∗(y) = ϑ(y).

It is said that the problem (7.33) is subconsistent, for a given value of y, if lscϑ(y) <
+∞. If problem (7.33) is feasible, i.e., domψ(·, y) is nonempty, then ϑ(y) < +∞, and
hence (7.33) is subconsistent.

Theorem 7.8. Suppose that the function ψ(·, ·) is convex. Then the following holds: (i)
The optimal value function ϑ(·) is convex. (ii) If problem (7.33) is subconsistent, then
ϑ∗∗(y) = ϑ(y) if and only if the optimal value function ϑ(·) is lower semicontinuous at y.
(iii) If ϑ∗∗(y) is finite, then the set of optimal solutions of the dual problem (7.35) coincides
with ∂ϑ∗∗(y). (iv) The set of optimal solutions of the dual problem (7.35) is nonempty and
bounded if and only if ϑ(y) is finite and ϑ(·) is continuous at y.

Proof. It is straightforward to verify that convexity of ϑ(·) follows from convexity of
ψ(·, ·). Assertion (ii) follows by the Fenchel–Moreau Theorem. Assertion (iii) follows
from formula (7.24). If ϑ(·) is continuous at y, then it is lower semicontinuous at y, and
hence ϑ∗∗(y) = ϑ(y). Moreover, in that case ∂ϑ∗∗(y) = ∂ϑ(y) and is nonempty and
bounded provided that ϑ(y) is finite. It follows then that the set of optimal solutions of the
dual problem (7.35) is nonempty and bounded. Conversely, if the set of optimal solutions
of (7.35) is nonempty and bounded, then, by (iii), ∂ϑ∗∗(y) is nonempty and bounded, and
hence by convex analysis ϑ(·) is continuous at y. Note also that if ∂ϑ(y) is nonempty, then
ϑ∗∗(y) = ϑ(y) and ∂ϑ∗∗(y) = ∂ϑ(y).

The above analysis can be also used in order to describe differentiability properties
of the optimal value function ϑ(·) in terms of its subdifferentials.

Theorem 7.9. Suppose that the function ψ(·, ·) is convex and let y ∈ Y be a given point.
Then the following holds: (i) The optimal value function ϑ(·) is subdifferentiable at y if and
only if ϑ(·) is lower semicontinuous at y and the dual problem (7.35) possesses an optimal
solution. (ii) The subdifferential ∂ϑ(y) is nonempty and bounded if and only if ϑ(y) is finite
and the set of optimal solutions of the dual problem (7.35) is nonempty and bounded. (iii)
In both above cases ∂ϑ(y) coincides with the set of optimal solutions of the dual problem
(7.35).

Since ϑ(·) is convex, we also have that ∂ϑ(y) is nonempty and bounded iff ϑ(y) is
finite and y ∈ int(domϑ). The condition y ∈ int(domϑ) means the following: there
exists a neighborhood N of y such that for any y′ ∈ N the domain of ψ(·, y′) is nonempty.

Example 7.10 Consider the following problem

Min
x∈X

f(x)

s.t. G(x) �C y,
(7.37)

where X is a subset of X , f : X → R, G : X → Y , y ∈ Y , C ⊂ Y is a closed convex
cone and a �C b denotes the partial order with respect to the cone C, i.e., a �C b means
that b− a ∈ C. We can formulate this problem in the form (7.33) by defining

ψ(x, y) := f̄(x) + F (y −G(x)),



i
i

“SPbook” — 2013/12/24 — 8:37 — page 423 — #435 i
i

i
i

i
i

7.1. Optimization and Convex Analysis 423

where4 f̄(·) := f(·) + IX(·) and F (·) := IC(·).
Suppose that the problem (7.37) is convex, that is, the set X and the function f(x)

are convex and the mapping G is convex with respect to the cone C. (In particular, if
C := Rm+ , then convexity of G(·) = (g1(·), ..., gm(·)) with respect to C means that the
functions g1(·), ..., gm(·) are convex.) Then it is straightforward to verify that the function
ψ(x, y) is also convex. Let us calculate the conjugate of the function ψ(x, y),

ψ∗(x∗, y∗) = sup
(x,y)∈X×Y

{
〈x∗, x〉+ 〈y∗, y〉 − f̄(x)− F (y −G(x))

}
=

sup
x∈X

{
〈x∗, x〉 − f̄(x) + 〈y∗, G(x)〉+ sup

y∈Y

[
〈y∗, (y −G(x)〉 − F (y −G(x))

]}
.

By change of variables z = y −G(x) we obtain that

sup
y∈Y

[
〈y∗, (y −G(x)〉 − F (y −G(x))

]
= sup
z∈Y

[
〈y∗, z〉 − F (z)

]
= IC∗(y∗),

where C∗ is the polar of the cone C, and hence

ψ∗(x∗, y∗) = sup
x∈X
{〈x∗, x〉 − f(x) + 〈y∗, G(x)〉}+ IC∗(y∗),

Consequently the dual of the problem (7.37) can be written in the form

Max
λ∈C∗

{
〈λ, y〉+ inf

x∈X
L(x, λ)

}
, (7.38)

where L(x, λ) := f(x) − 〈λ,G(x)〉, is the corresponding Lagrangian. Note that we
changed the notation from y∗ to λ in order to emphasize that the above problem (7.38)
is the standard Lagrangian dual of (7.37) with λ being vector of Lagrange multipliers. The
results of Propositions 7.8 and 7.9 can be applied to problem (7.37) and its dual (7.38) in a
straightforward way. In particular, if C := Rm+ , then the dual problem (7.38) becomes

Max
λ≤0

{
λTy + inf

x∈X
L(x, λ)

}
, (7.39)

where L(x, λ) = f(x)−
∑m
i=1 λigi(x).

As another example consider a function L : Rn×Y → R, where Y is a vector space
(not necessarily finite dimensional), and the corresponding pair of dual problems (7.28)
and (7.29). Define

ϕ(y, z) := sup
x∈Rn

{
zTx− L(x, y)

}
, (y, z) ∈ Y × Rn. (7.40)

Note that the problem
Max
y∈Y
{−ϕ(y, 0)} (7.41)

4Recall that IX denotes the indicator function of the set X .
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coincides with the problem (7.29). Note also that for every y ∈ Y the function ϕ(y, ·) is
the conjugate of L(·, y). Suppose that for every y ∈ Y the function L(·, y) is convex and
lsc. Then by the Fenchel-Moreau Theorem we have that the conjugate of the conjugate
of L(·, y) coincides with L(·, y). Consequently the dual of (7.41), of the form (7.35),
coincides with the problem (7.28). This leads to the following result.

Theorem 7.11. Let Y be an abstract vector space and L : Rn× Y → R. Suppose that: (i)
for every x ∈ Rn the function L(x, ·) is concave, (ii) for every y ∈ Y the function L(·, y)
is convex and lower semicontinuous, (iii) problem (7.28) has a nonempty and bounded set
of optimal solutions. Then the optimal values of problems (7.28) and (7.29) are equal to
each other.

Proof. Consider function ϕ(y, z), defined in (7.40), and the corresponding optimal value
function

ϑ(z) := inf
y∈Y

ϕ(y, z). (7.42)

Since ϕ(y, z) is given by maximum of convex in (y, z) functions, it is convex, and hence
ϑ(z) is also convex. We have that−ϑ(0) is equal to the optimal value of the problem (7.29)
and −ϑ∗∗(0) is equal to the optimal value of (7.28). We also have that

ϑ∗(z∗) = sup
y∈Y

L(z∗, y),

and (see (7.24))

∂ϑ∗∗(0) = − arg minz∗∈Rn ϑ
∗(z∗) = − arg minz∗∈Rn

{
supy∈Y L(z∗, y)

}
.

That is, −∂ϑ∗∗(0) coincides with the set of optimal solutions of the problem (7.28). It
follows by assumption (iii) that ∂ϑ∗∗(0) is nonempty and bounded. Since ϑ∗∗ : Rn → R
is a convex function, this in turn implies that ϑ∗∗(·) is continuous in a neighborhood of
0 ∈ Rn. It follows that ϑ(·) is also continuous in a neighborhood of 0 ∈ Rn, and hence
ϑ∗∗(0) = ϑ(0). This completes the proof.

Remark 52. Note that it follows from the lower semicontinuity of L(·, y) that the max-
function f(x) = supy∈Y L(x, y) is also lsc. Indeed, the epigraph of f(·) is given by
the intersection of the epigraphs of L(·, y), y ∈ Y , and hence is closed. Therefore, if in
addition, the set X ⊂ Rn is compact and problem (7.28) has a finite optimal value, then
the set of optimal solutions of (7.28) is nonempty and compact, and hence bounded.

Hoffman’s Lemma

The following result about Lipschitz continuity of linear systems is known as Hoffman’s
lemma. For a vector a = (a1, ..., am)T ∈ Rm, we use notation (a)+ componentwise, i.e.,
(a)+ := ([a1]+, ..., [am]+)T, where [ai]+ := max{0, ai}.

Theorem 7.12 (Hoffman). Consider the multifunction M(b) := {x ∈ Rn : Ax ≤ b} ,
where A is a given m× n matrix. Then there exists a positive constant κ, depending on A,
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such that for any x ∈ Rn and any b ∈ domM,

dist(x,M(b)) ≤ κ‖(Ax− b)+‖. (7.43)

Proof. Suppose that b ∈ domM, i.e., the system Ax ≤ b has a feasible solution. Note that
for any a ∈ Rn we have that ‖a‖ = sup‖z‖∗≤1 z

Ta, where ‖ · ‖∗ is the dual of the norm
‖ · ‖. Then we have

dist(x,M(b)) = inf
x′∈M(b)

‖x− x′‖ = inf
Ax′≤b

sup
‖z‖∗≤1

zT(x− x′) = sup
‖z‖∗≤1

inf
Ax′≤b

zT(x− x′),

where the interchange of the ‘min’ and ‘max’ operators can be justified, for example, by
applying theorem 7.11 (see Remark 52 on page 424). By making change of variables
y = x− x′ and using linear programming duality we obtain

inf
Ax′≤b

zT(x− x′) = inf
Ay≥Ax−b

zTy = sup
λ≥0, ATλ=z

λT(Ax− b).

It follows that
dist(x,M(b)) = sup

λ≥0, ‖ATλ‖∗≤1

λT(Ax− b). (7.44)

Since any two norms on Rn are equivalent, we can assume without loss of generality that
‖ · ‖ is the `1 norm, and hence its dual is the `∞ norm. For such choice of a polyhedral
norm, we have that the set S := {λ : λ ≥ 0, ‖ATλ‖∗ ≤ 1} is polyhedral. We obtain
that the right hand side of (7.44) is given by a maximization of a linear function over the
polyhedral set S and has a finite optimal value (since the left hand side of (7.44) is finite),
and hence has an optimal solution λ̄. It follows that

dist(x,M(b)) = λ̄T(Ax− b) ≤ λ̄T(Ax− b)+ ≤ ‖λ̄‖∗‖(Ax− b)+‖.

It remains to note that the polyhedral set S depends only on A, and can be represented
as the direct sum S = S0 + C of a bounded polyhedral set S0 and a polyhedral cone C,
and that optimal solution λ̄ can be taken to be an extreme point of the polyhedral set S0.
Consequently, (7.43) follows with κ := maxλ∈S0

‖λ‖∗.

The term ‖(Ax− b)+‖, in the right hand side of (7.43), measures the infeasibility of
the point x.

Consider now the following linear programming problem

Min
x∈Rn

cTx subject to Ax ≤ b. (7.45)

A slight variation of the proof of Hoffman’s lemma leads to the following result.

Theorem 7.13. Let S(b) be the set of optimal solutions of problem (7.45). Then there
exists a positive constant γ, depending only on A, such that for any b, b′ ∈ domS and any
x ∈ S(b),

dist(x,S(b′)) ≤ γ‖b− b′‖. (7.46)
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Proof. Problem (7.45) can be written in the following equivalent form:

Min
t∈R

t subject to Ax ≤ b, cTx− t ≤ 0. (7.47)

Denote byM(b) the set of feasible points of problem (7.47), i.e.,

M(b) :=
{

(x, t) : Ax ≤ b, cTx− t ≤ 0
}
.

Let b, b′ ∈ domS and consider a point (x, t) ∈ M(b). Proceeding as in the proof of
Theorem 7.12 we can write

dist
(
(x, t),M(b′)

)
= sup
‖(z,a)‖∗≤1

inf
Ax′≤b′, cTx′≤t′

zT(x− x′) + a(t− t′).

By changing variables y = x−x′ and s = t− t′ and using linear programming duality, we
have

inf
Ax′≤b′, cTx′≤t′

zT(x− x′) + a(t− t′) = sup
λ≥0, ATλ+ac=z

λT(Ax− b′) + a(cTx− t)

for a ≥ 0, and for a < 0 the above minimum is −∞. By using `1 norm ‖ · ‖, and hence
`∞ norm ‖ · ‖∗, we obtain that

dist
(
(x, t),M(b′)

)
= λ̄T(Ax− b′) + ā(cTx− t),

where (λ̄, ā) is an optimal solution of the problem

Max
λ≥0,a≥0

λT(Ax− b′) + a(cTx− t) subject to ‖ATλ+ ac‖∗ ≤ 1, a ≤ 1. (7.48)

By normalizing c we can assume without loss of generality that ‖c‖∗ ≤ 1. Then by re-
placing the constraint ‖ATλ + ac‖∗ ≤ 1 with the constraint ‖ATλ‖∗ ≤ 2 we increase
the feasible set of problem (7.48), and hence increase its optimal value. Let (λ̂, â) be an
optimal solution of the obtained problem. Note that λ̂ can be taken to be an extreme point
of the polyhedral set S := {λ : ‖ATλ‖∗ ≤ 2}. The polyhedral set S depends only on A
and has a finite number of extreme points. Therefore ‖λ̂‖∗ can be bounded by a constant γ
which depends only on A. Since (x, t) ∈ M(b), and hence Ax− b ≤ 0 and cTx− t ≤ 0,
we have

λ̂T(Ax− b′) = λ̂T(Ax− b) + λ̂T(b− b′) ≤ λ̂T(b− b′) ≤ ‖λ̂‖∗‖b− b′‖

and â(cTx− t) ≤ 0, and hence

dist
(
(x, t),M(b′)

)
≤ ‖λ̂‖∗‖b− b′‖ ≤ γ‖b− b′‖. (7.49)

The above inequality implies (7.46).

7.1.4 Optimality Conditions
Consider optimization problem

Min
x∈X

f(x), (7.50)

where X ⊂ Rn and f : Rn → R is an extended real valued function.
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First Order Optimality Conditions

Convex case. Suppose that the function f : Rn → R is convex. It follows immediately
from the definition of the subdifferential that if f(x̄) is finite for some point x̄ ∈ Rn, then
f(x) ≥ f(x̄) for all x ∈ Rn iff

0 ∈ ∂f(x̄). (7.51)

That is, condition (7.51) is necessary and sufficient for the point x̄ to be a (global) mini-
mizer of f(x) over x ∈ Rn.

Suppose, further, that the set X ⊂ Rn is convex and closed and the function f :
Rn → R is proper and convex, and consider a point x̄ ∈ X ∩ domf . It follows that the
function f̄(x) := f(x) + IX(x) is convex, and of course the point x̄ is an optimal solution
of the problem (7.50) iff x̄ is a (global) minimizer of f̄(x). Suppose that

ri(X) ∩ ri(domf) 6= ∅. (7.52)

Then by the Moreau-Rockafellar Theorem we have that ∂f̄(x̄) = ∂f(x̄) + ∂IX(x̄). Re-
calling that ∂IX(x̄) = NX(x̄), we obtain that x̄ is an optimal solution of problem (7.50)
iff

0 ∈ ∂f(x̄) +NX(x̄), (7.53)

provided that the regularity condition (7.52) holds. Note that (7.52) holds, in particular, if
x̄ ∈ int(domf).

Nonconvex case. Assume that the function f : Rn → R is real valued continuously
differentiable and the set X is closed (not necessarily convex).

Definition 7.14. The contingent (Bouligand) cone to X at x ∈ X , denoted TX(x), is
formed by vectors h ∈ Rn such that there exist sequences hk → h and tk ↓ 0 such that
x+ tkhk ∈ X .

Note that TX(x) is nonempty only if x ∈ X . If the set X is convex, then the con-
tingent cone TX(x) coincides with the corresponding tangent cone. We have the following
simple necessary condition for a point x̄ ∈ X to be a locally optimal solution of problem
(7.50).

Proposition 7.15. Let x̄ ∈ X be a locally optimal solution of problem (7.50). Then

hT∇f(x̄) ≥ 0, ∀h ∈ TX(x̄). (7.54)

Proof. Consider h ∈ TX(x̄) and let hk → h and tk ↓ 0 be sequences such that xk :=
x̄ + tkhk ∈ X . Since x̄ ∈ X is a local minimizer of f(x) over x ∈ X , we have that
f(xk)− f(x̄) ≥ 0. We also have that

f(xk)− f(x̄) = tkh
T∇f(x̄) + o(tk),

and hence (7.54) follows.
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Condition (7.54) means that ∇f(x̄) ∈ −[TX(x̄)]∗. If the set X is convex, then
the polar [TX(x̄)]∗ of the tangent cone TX(x̄) coincides with the normal cone NX(x̄).
Therefore, if f(·) is convex and differentiable and X is convex, then optimality conditions
(7.53) and (7.54) are equivalent.

Suppose now that the set X is given in the following form

X := {x ∈ Rn : G(x) ∈ K}, (7.55)

where G(·) = (g1(·), ..., gm(·)) : Rn → Rm is a continuously differentiable mapping and
K ⊂ Rm is a closed convex cone. In particular, if K := {0q} × Rm−q− , where 0q ∈ Rq is
the null vector and Rm−q− = {y ∈ Rm−q : y ≤ 0}, then formulation (7.55) becomes

X = {x ∈ Rn : gi(x) = 0, i = 1, ..., q, gi(x) ≤ 0, i = q + 1, ...,m} . (7.56)

Under some regularity conditions (called constraint qualifications) we have the fol-
lowing formula for the contingent cone TX(x̄) at a feasible point x̄ ∈ X:

TX(x̄) = {h ∈ Rn : [∇G(x̄)]h ∈ TK(G(x̄))} , (7.57)

where∇G(x̄) = [∇g1(x̄), ...,∇gm(x̄)]T is the corresponding m×n Jacobian matrix. The
following condition is called Robinson constraint qualification

[∇G(x̄)]Rn + TK(G(x̄)) = Rm. (7.58)

If the cone K has a nonempty interior, Robinson constraint qualification is equivalent to
the following condition

∃h : G(x̄) + [∇G(x̄)]h ∈ int(K). (7.59)

In case X is given in the form (7.56), Robinson constraint qualification is equivalent to the
Mangasarian-Fromovitz constraint qualification:

∇gi(x̄), i = 1, ..., q, are linearly independent,
∃h : hT∇gi(x̄) = 0, i = 1, ..., q,

hT∇gi(x̄) < 0, i ∈ I(x̄),
(7.60)

where I(x̄) :=
{
i ∈ {q + 1, ...,m} : gi(x̄) = 0

}
denotes the set of active at x̄ inequality

constraints.
Consider the Lagrangian

L(x, λ) := f(x) +

m∑
i=1

λigi(x)

associated with problem (7.50) and the constraint mappingG(x). Under a constraint quali-
fication ensuring validity of formula (7.57), first order necessary optimality condition (7.54)
can be written in the following dual form: there exists a vector λ ∈ Rm of Lagrange mul-
tipliers such that

∇xL(x̄, λ) = 0, G(x̄) ∈ K, λ ∈ K∗, λTG(x̄) = 0. (7.61)
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Denote by Λ(x̄) the set of Lagrange multipliers vectors λ satisfying (7.61).

Theorem 7.16. Let x̄ be a locally optimal solution of problem (7.50). Then the set Λ(x̄)
Lagrange multipliers is nonempty and bounded iff Robinson constraint qualification holds.

In particular, if Λ(x̄) is a singleton (i.e., there exists unique Lagrange multiplier vec-
tor), then Robinson constraint qualification holds. If the setX is defined by a finite number
of constraints in the form (7.56), then optimality conditions (7.61) are often referred to as
the Karush-Kuhn-Tucker (KKT) necessary optimality conditions.

Second Order Optimality Conditions

We assume in this section that the function f(x) is real valued twice continuously differ-
entiable and denote by ∇2f(x) the Hessian matrix of second order partial derivatives of f
at x. Let x̄ be a locally optimal solution of problem (7.50). Consider the set (cone)

C(x̄) :=
{
h ∈ TX(x̄) : hT∇f(x̄) = 0

}
. (7.62)

The cone C(x̄) represents those feasible directions along which the first order approxima-
tion of f(x) at x̄ is zero, and is called the critical cone. The set

T 2
X(x, h) :=

{
z ∈ Rn : dist

(
x+ th+ 1

2
t2z,X

)
= o(t2), t ≥ 0

}
(7.63)

is called the (inner) second order tangent set to X at the point x ∈ X in the direction
h. That is, the set T 2

X(x, h) is formed by vectors z such that x + th + 1
2
t2z + r(t) ∈ X

for some r(t) = o(t2), t ≥ 0. Note that this implies that x + th + o(t) ∈ X , and hence
T 2
X(x, h) can be nonempty only if h ∈ TX(x).

Proposition 7.17. Let x̄ be a locally optimal solution of problem (7.50). Then5

hT∇2f(x̄)h− s
(
−∇f(x̄), T 2

X(x̄, h)
)
≥ 0, ∀h ∈ C(x̄). (7.64)

Proof. For some h ∈ C(x̄) and z ∈ T 2
X(x̄, h) consider the (parabolic) curve x(t) :=

x̄+ th+ 1
2
t2z. By the definition of the second order tangent set, we have that there exists

r(t) = o(t2) such that x(t) + r(t) ∈ X , t ≥ 0. It follows by local optimality of x̄ that
f (x(t) + r(t))− f(x̄) ≥ 0 for all t ≥ 0 small enough. Since r(t) = o(t2), by the second
order Taylor expansion we have

f (x(t) + r(t))− f(x̄) = thT∇f(x̄) + 1
2
t2
[
zT∇f(x̄) + hT∇2f(x̄)h

]
+ o(t2).

Since h ∈ C(x̄) the first term in the right hand side of the above equation vanishes. It
follows that

zT∇f(x̄) + hT∇2f(x̄)h ≥ 0, ∀h ∈ C(x̄), ∀z ∈ T 2
X(x̄, h). (7.65)

5Recall that s(v,A) = supz∈A z
Tv denotes the support function of set A.
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Condition (7.65) can be written in the form:

inf
z∈T 2

X(x̄,h)

{
zT∇f(x̄) + hT∇2f(x̄)h

}
≥ 0, ∀h ∈ C(x̄). (7.66)

Since

inf
z∈T 2

X(x̄,h)
zT∇f(x̄) = − sup

z∈T 2
X(x̄,h)

zT(−∇f(x̄)) = −s
(
−∇f(x̄), T 2

X(x̄, h)
)
,

the second order necessary conditions (7.65) can be written in the form (7.64).

If the setX is polyhedral, then for x̄ ∈ X and h ∈ TX(x̄) the second order tangent set
T 2
X(x̄, h) is equal to the sum of TX(x̄) and the linear space generated by vector h. Since for
h ∈ C(x̄) we have that hT∇f(x̄) = 0 and because of the first order optimality conditions
(7.54), it follows that if the set X is polyhedral, then the term s

(
−∇f(x̄), T 2

X(x̄, h)
)

in
(7.64) vanishes. In general, this term is nonpositive and corresponds to a curvature of the
set X at x̄.

If the set X is given in the form (7.55) with the mapping G(x) being twice contin-
uously differentiable, then the second order optimality conditions (7.64) can be written in
the following dual form.

Theorem 7.18. Let x̄ be a locally optimal solution of problem (7.50). Suppose that Robin-
son constraint qualification (7.58) is fulfilled. Then the following second order necessary
conditions hold

sup
λ∈Λ(x̄)

{
hT∇2

xxL(x̄, λ)h− s (λ,T(h))
}
≥ 0, ∀h ∈ C(x̄), (7.67)

where T(h) := T 2
K

(
G(x̄), [∇G(x̄)]h

)
.

Note that if the cone K is polyhedral, then the curvature term s (λ,T(h)) in (7.67)
vanishes. In general, s (λ,T(h)) ≤ 0 and the second order necessary conditions (7.67) are
stronger than the “standard” second order conditions:

sup
λ∈Λ(x̄)

hT∇2
xxL(x̄, λ)h ≥ 0, ∀h ∈ C(x̄). (7.68)

Second order sufficient conditions. Consider condition

hT∇2f(x̄)h− s
(
−∇f(x̄), T 2

X(x̄, h)
)
> 0, ∀h ∈ C(x̄), h 6= 0. (7.69)

This condition is obtained from the second order necessary condition (7.64) by replacing
“≥ 0” sign with the strict inequality sign “> 0”. Necessity of second order conditions
(7.64) was derived by verifying optimality of x̄ along parabolic curves. There is no reason
a priori that verification of (local) optimality along parabolic curves is sufficient to ensure
local optimality of x̄. Therefore in order to verify sufficiency of condition (7.69) we need
an additional condition.
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Definition 7.19. It is said that the set X is second order regular at x̄ ∈ X if for any
sequence xk ∈ X of the form xk = x̄+ tkh+ 1

2
t2krk, where tk ↓ 0 and tkrk → 0, it follows

that
lim
k→∞

dist
(
rk, T 2

X(x̄, h)
)

= 0. (7.70)

Note that in the above definition the term 1
2
t2krk = o(tk), and hence such a sequence

xk ∈ X can exist only if h ∈ TX(x̄). It turns out that second order regularity can be
verified in many interesting cases. In particular, any polyhedral set is second order regular,
the cone of positive semidefinite symmetric matrices is second order regular, etc. We refer
to [26, section 3.3] for a discussion of this concept.

Recall that it is said that the quadratic growth condition holds at x̄ ∈ X if there exist
constant c > 0 and a neighborhood N of x̄ such that

f(x) ≥ f(x̄) + c‖x− x̄‖2, ∀x ∈ X ∩N. (7.71)

Of course, the quadratic growth condition implies that x̄ is a locally optimal solution of
problem (7.50).

Proposition 7.20. Let x̄ ∈ X be a feasible point of problem (7.50) satisfying first order
necessary conditions (7.54). Suppose that X is second order regular at x̄. Then the second
order conditions (7.69) are necessary and sufficient for the quadratic growth at x̄ to hold.

Proof. Suppose that conditions (7.69) hold. In order to verify the quadratic growth con-
dition we argue by a contradiction, so suppose that it does not hold. Then there exists a
sequence xk ∈ X \ {x̄} converging to x̄ and a sequence ck ↓ 0 such that

f(xk)− f(x̄) ≤ ck‖xk − x̄‖2. (7.72)

Denote tk := ‖xk − x̄‖ and hk := t−1
k (xk − x̄). By passing to a subsequence if necessary

we can assume that hk converges to a vector h. Clearly h 6= 0 and by the definition of
TX(x̄) it follows that h ∈ TX(x̄). Moreover, by (7.72) we have

ckt
2
k ≥ f(xk)− f(x̄) = tkh

T∇f(x̄) + o(tk),

and hence hT∇f(x̄) ≤ 0. Because of the first order necessary conditions it follows that
hT∇f(x̄) = 0, and hence h ∈ C(x̄).

Denote rk := 2t−1
k (hk − h). We have that xk = x̄+ tkh+ 1

2
t2krk ∈ X and tkrk →

0. Consequently it follows by the second order regularity that there exists a sequence
zk ∈ T 2

X(x̄, h) such that rk − zk → 0. Since hT∇f(x̄) = 0, by the second order Taylor
expansion we have

f(xk) = f(x̄+ tkh+ 1
2
t2krk) = f(x̄) + 1

2
t2k
[
zTk∇f(x̄) + hT∇2f(x̄)h

]
+ o(t2k).

Moreover, since zk ∈ T 2
X(x̄, h) we have that

zTk∇f(x̄) + hT∇2f(x̄)h ≥ c,
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where c is equal to the left hand side of (7.69), which by the assumption is positive. It
follows that

f(xk) ≥ f(x̄) + 1
2
c‖xk − x̄‖2 + o(‖xk − x̄‖2),

a contradiction with (7.72).
Conversely, suppose that the quadratic growth condition holds at x̄. It follows that

the function φ(x) := f(x)− 1
2
c‖x− x̄‖2 also attains its local minimum over X at x̄. Note

that ∇φ(x̄) = ∇f(x̄) and hT∇2φ(x̄)h = hT∇2f(x̄)h− c‖h‖2. Therefore, by the second
order necessary conditions (7.64), applied to the function φ, it follows that the left hand
side of (7.69) is greater than or equal to c‖h‖2. This completes the proof.

If the set X is given in the form (7.55), then similar to Theorem 7.18 it is possible to
formulate second order sufficient conditions (7.69) in the following dual form.

Theorem 7.21. Let x̄ ∈ X be a feasible point of problem (7.50) satisfying first order nec-
essary conditions (7.61). Suppose that Robinson constraint qualification (7.58) is fulfilled
and the set (cone) K is second order regular at G(x̄). Then the following conditions are
necessary and sufficient for the quadratic growth at x̄ to hold:

sup
λ∈Λ(x̄)

{
hT∇2

xxL(x̄, λ)h− s (λ,T(h))
}
> 0, ∀h ∈ C(x̄), h 6= 0, (7.73)

where T(h) := T 2
K

(
G(x̄), [∇G(x̄)]h

)
.

Note again that if the cone K is polyhedral, then K is second order regular and the
curvature term s (λ,T(h)) in (7.73) vanishes.

7.1.5 Perturbation Analysis
Continuity Properties of Optimal Value Functions

Consider optimization problem
Min
x∈Θ(u)

g(x, u), (7.74)

depending on parameter u ∈ U . Here U is a finite dimensional vector space or even more
generally a metric space, g : Rn×U → R and Θ : U ⇒ Rn is a multifunction (point-to-set
mapping) assigning to u ∈ U a set Θ(u) ⊂ Rn. Typical example of the multifunction Θ is

Θ(u) := {x ∈ Rn : G(x, u) ∈ K}, (7.75)

where K ⊂ Rm is a closed convex cone and G : Rn × U → Rm.
With problem (7.74) we associate the optimal value function

v(u) := inf
x∈Θ(u)

g(x, u), (7.76)

and the set of optimal solutions

S(u) := argmin
x∈Θ(u)

g(x, u). (7.77)
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Definition 7.22. It is said that the inf-compactness condition holds if there exists a bounded
set C ⊂ Rn and α ∈ R such that for all u in a neighborhood of u0 the level set

levαg(·, u) := {x ∈ Θ(u) : g(x, u) ≤ α}

is nonempty and contained in C.

Recall that it is said that the multifunction Θ(·) is closed if uk → u, xk ∈ Θ(uk) and
xk → x, then x ∈ Θ(u). If the multifunction Θ(·) is closed, then it is closed valued, i.e.,
the set Θ(u) ⊂ Rn is closed for every u ∈ U . For example, if Θ(·) is given in the form
(7.75) and the mapping G(·, ·) is continuous, then Θ(·) is closed.

Theorem 7.23. Let u0 be a point in U . Suppose that: (i) the function g(x, u) is continuous
on Rn × U , (ii) the multifunction Θ(·) is closed, (iii) the inf-compactness condition holds,
(iv) for any neighborhood V of the set S(u0) there exists a neighborhood U of u0 such that
V ∩Θ(u) 6= ∅ for all u ∈ U . Then the optimal value function v(u) is continuous at u = u0

and for any uk → u0 and xk ∈ S(uk) it follows that dist(xk,S(u0)) tends to zero.

Proof. Consider a sequence {uk} converging to the point u0. By the inf-compactness
condition we have that there exists a bounded set C ⊂ Rn and α ∈ R such that the level
sets levαg(·, uk) are nonempty and contained in C for all k large enough. Since g(·, u)
is continuous and the sets Θ(uk) are closed, it follows that the sets S(u0) and S(uk) are
nonempty, compact and contained in the set C for all k large enough. We argue now by
a contradiction. Suppose that dist(xk,S(u0)) does not tend to zero for some sequence
xk ∈ S(uk). By passing to a subsequence if necessary we can assume that the sequence
xk converges to a point x̄ ∈ C. It follows that x̄ 6∈ S(u0). Since the multifunction
Θ(·) is closed, we have that x̄ ∈ Θ(u0). Also since v(uk) = g(xk, uk) tends to g(x̄, u0)
and g(x̄, u0) > v(u0), we obtain that lim infk→∞ v(uk) > v(u0). On the other hand
by assumption (iv) there is a sequence x′k ∈ Θ(uk) such that dist(x′k,S(u0)) tends to
zero. By passing to a subsequence if necessary we can assume that x′k converges to a point
x∗ ∈ S(u0). Since v(uk) ≤ g(x′k, uk) and g(x′k, uk) tends to g(x∗, u0) = v(u0), it follows
that lim supk→∞ v(uk) ≤ v(u0). This gives the required contradiction.

Some remarks about assumptions of the above theorem are now in order. Assumption
(iv) can be ensured by some type of constraint qualification. In particular, if Θ(·) is given
in the form (7.75) with the mapping G(x, u) being continuous on Rn × U and convex in
x with respect to −K, then the assumption (iv) holds provided that the Slater condition is
satisfied for u = u0, i.e., there is a point x̄ ∈ Rn such that G(x̄, u0) ∈ int(K). If G(x, u)
is differentiable in x and ∇xG(x, u) is continuous, then Robinson constraint qualification
can be applied to G(·, u0).

If Θ(u) ≡ Θ does not depend on u ∈ U , then assumption (ii) means that the set
Θ ⊂ Rn is closed. Also in that case assumption (iv) holds automatically provided the set
S(u0) is nonempty, which in turn is ensured by the assumptions (i)–(iii).
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Differentiability Properties of Optimal value Functions

We often have to deal with optimal value functions (max-functions) of the form

φ(x) := sup
θ∈Θ

g(x, θ), (7.78)

where g : Rn×Θ→ R. In applications the set Θ usually is a subset of a finite dimensional
vector space. At this point, however, this is not important and we can assume that Θ is an
abstract metric (or even topological) space. Denote

Θ̄(x) := arg max
θ∈Θ

g(x, θ).

Let us first mention the following simple result.

Proposition 7.24. Suppose that for every θ ∈ Θ the function g(·, θ) is lower semicontinu-
ous. Then the max-function φ(·) is lower semicontinuous.

Proof. Recall that a function f : Rn → R is lower semicontinuous iff its epigraph is a
closed subset of Rn+1. Note also that epigraph of the max-function φ(·) is equal to the
intersection of the epigraphs epi{g(·, θ)}, θ ∈ Θ. Since intersection of a family of closed
sets is a closed set, the result follows.

The following result about directional differentiability of the max-function is often
called Danskin Theorem.

Theorem 7.25 (Danskin). Let Θ be a nonempty, compact topological space and g : Rn ×
Θ → R be such that g(·, θ) is differentiable for every θ ∈ Θ and ∇xg(x, θ) is continuous
on Rn × Θ. Then the corresponding max-function φ(x) is locally Lipschitz continuous,
directionally differentiable and

φ′(x, h) = sup
θ∈Θ̄(x)

hT∇xg(x, θ). (7.79)

In particular, if for some x ∈ Rn the set Θ̄(x) = {θ̄} is a singleton, then the max-function
is differentiable at x and

∇φ(x) = ∇xg(x, θ̄). (7.80)

In the convex case we have the following result giving a description of subdifferen-
tials of max-functions.

Theorem 7.26 (Levin-Valadier). Let Θ be a nonempty compact topological space and
g : Rn × Θ → R be a real valued function. Suppose that: (i) for every θ ∈ Θ the
function gθ(·) = g(·, θ) is convex on Rn, (ii) for every x ∈ Rn the function g(x, ·) is upper
semicontinuous on Θ. Then the max-function φ(x) is convex real valued and

∂φ(x) = cl
{

conv
(
∪θ∈Θ̄(x)∂gθ(x)

)}
. (7.81)
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Let us make the following observations regarding the above theorem. Since Θ is
compact and by the assumption (ii), we have that the set Θ̄(x) is nonempty and compact.
Since the function φ(·) is convex real valued, it is subdifferentiable at every x ∈ Rn and
its subdifferential ∂φ(x) is a convex, closed bounded subset of Rn. It follows then from
(7.81) that the set A := ∪θ∈Θ̄(x)∂gθ(x) is bounded. Suppose further that:

(iii) For every x ∈ Rn the function g(x, ·) is continuous on Θ.

Then the setA is closed, and hence is compact. Indeed, consider a sequence zk ∈ A. Then,
by the definition of the set A, zk ∈ ∂gθk(x) for some sequence θk ∈ Θ̄(x). Since Θ̄(x) is
compact and A is bounded, by passing to a subsequence if necessary, we can assume that
θk converges to a point θ̄ ∈ Θ̄(x) and zk converges to a point z̄ ∈ Rn. By the definition of
subgradients zk we have that for any x′ ∈ Rn the following inequality holds

gθk(x′)− gθk(x) ≥ zTk (x′ − x).

By passing to the limit in the above inequality as k → ∞, we obtain that z̄ ∈ ∂gθ̄(x). It
follows that z̄ ∈ A, and hence A is closed. Now since convex hull of a compact subset of
Rn is also compact, and hence is closed, we obtain that if the assumption (ii) in the above
theorem is strengthen to the assumption (iii), then the set inside the parentheses in (7.81) is
closed, and hence formula (7.81) takes the form

∂φ(x) = conv
(
∪θ∈Θ̄(x)∂gθ(x)

)
. (7.82)

Second Order Perturbation Analysis

Consider the following parameterization of problem (7.50):

Min
x∈X

f(x) + tηt(x), (7.83)

depending on parameter t ∈ R+. We assume that the set X ⊂ Rn is nonempty and
compact and consider a convex compact set U ⊂ Rn such that X ⊂ int(U). It follows, of
course, that the set U has a nonempty interior. Consider the space W 1,∞(U) of Lipschitz
continuous functions ψ : U → R equipped with the norm

‖ψ‖1,U := sup
x∈U
|ψ(x)|+ sup

x∈U ′
‖∇ψ(x)‖, (7.84)

with U ′ ⊂ int(U) being the set of points where ψ(·) is differentiable. Recall that by
Rademacher Theorem, a function ψ(·) ∈ W 1,∞(U) is differentiable at almost every point
of U . We assume that the functions f(·) and ηt(·), t ∈ R+, are Lipschitz continuous on
U , i.e., f, ηt ∈ W 1,∞(U). We also assume that ηt converges (in the norm topology) to a
function δ ∈W 1,∞(U), that is, ‖ηt − δ‖1,U → 0 as t ↓ 0.

Denote by v(t) the optimal value and by x̃(t) an optimal solution of (7.83), i.e.,

v(t) := inf
x∈X

{
f(x) + tηt(x)

}
and x̃(t) ∈ arg min

x∈X

{
f(x) + tηt(x)

}
.

We will be interested in second order differentiability properties of v(t) and first order
differentiability properties of x̃(t) at t = 0. We assume that f(x) has unique minimizer
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x̄ over x ∈ X , i.e., the set of optimal solutions of the unperturbed problem (7.50) is the
singleton {x̄}. Moreover, we assume that δ(·) is differentiable at x̄ and f(x) is twice
continuously differentiable at x̄. Since X is compact and the objective function of problem
(7.83) is continuous, it has an optimal solution for any t.

The following result is taken from [26, section 4.10.3].

Theorem 7.27. Let x̄ be unique optimal solution of problem (7.50). Suppose that: (i) the
set X is compact and second order regular at x̄, (ii) ηt converges (in the norm topology)
to δ ∈ W 1,∞(U) as t ↓ 0, (iii) δ(x) is differentiable at x̄ and f(x) is twice continuously
differentiable at x̄, (iv) the quadratic growth condition (7.71) holds. Then

v(t) = v(0) + tηt(x̄) + 1
2
t2Vf (δ) + o(t2), t ≥ 0, (7.85)

where Vf (δ) is the optimal value of the auxiliary problem

Min
h∈C(x̄)

{
2hT∇δ(x̄) + hT∇2f(x̄)h− s

(
−∇f(x̄), T 2

X(x̄, h)
)}
. (7.86)

Moreover, if (7.86) has unique optimal solution h̄, then

x̃(t) = x̄+ th̄+ o(t), t ≥ 0. (7.87)

Proof. Since the minimizer x̄ is unique and the set X is compact, it is not difficult to show
that, under the specified assumptions, x̃(t) tends to x̄ as t ↓ 0. Moreover, we have that
‖x̃(t) − x̄‖ = O(t), t > 0. Indeed, by the quadratic growth condition, for t > 0 small
enough and some c > 0 it follows that

v(t) = f(x̃(t)) + tηt(x̃(t)) ≥ f(x̄) + c‖x̃(t)− x̄‖2 + tηt(x̃(t)).

Since x̄ ∈ X we also have that v(t) ≤ f(x̄) + tηt(x̄). Consequently,

t |ηt(x̃(t))− ηt(x̄)| ≥ c‖x̃(t)− x̄‖2.

Moreover, |ηt(x̃(t))− ηt(x̄)| = O(‖x̃(t)− x̄‖), and hence ‖x̃(t)− x̄‖ = O(t).
Let h ∈ C(x̄) and w ∈ T 2

X(x̄, h). By the definition of the second order tangent set
it follows that there is a path x(t) ∈ X of the form x(t) = x̄ + th + 1

2
t2w + o(t2). Since

x(t) ∈ X we have that v(t) ≤ f(x(t)) + tηt(x(t)). Moreover, by using the second order
Taylor expansion of f(x) at x = x̄ we have

f(x(t)) = f(x̄) + thT∇f(x̄) + 1
2
t2wT∇f(x̄) + 1

2
hT∇2f(x̄)h+ o(t2),

and since h ∈ C(x̄) we have that hT∇f(x̄) = 0. Also since ‖ηt − δ‖1,∞ → 0, we have by
the Mean Value Theorem that

ηt(x(t))− δ(x(t)) = ηt(x̄)− δ(x̄) + o(t),

and since δ(x) is differentiable at x̄ that

δ(x(t)) = δ(x̄) + thT∇δ(x̄) + o(t).
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Putting this all together and noting that f(x̄) = v(0) we obtain that

f(x(t))+tηt(x(t)) = v(0)+tηt(x̄)+t2hT∇δ(x̄)+ 1
2
t2hT∇2f(x̄)h+ 1

2
t2wT∇f(x̄)+o(t2).

Consequently

lim sup
t↓

v(t)− v(0)− tηt(x̄)
1
2
t2

≤ 2hT∇δ(x̄) + hT∇2f(x̄)h+ wT∇f(x̄). (7.88)

Since the above inequality (7.88) holds for any w ∈ T 2
X(x̄, h), by taking minimum (with

respect to w) in the right hand side of (7.88) we obtain for any h ∈ C(x̄):

lim sup
t↓0

v(t)− v(0)− tηt(x̄)
1
2
t2

≤ 2hT∇δ(x̄) + hT∇2f(x̄)h− s
(
−∇f(x̄), T 2

X(x̄, h)
)
.

In order to show the converse estimate we argue as follows. Consider a sequence
tk ↓ 0 and xk := x̃(tk). Since ‖x̃(t)−x̄‖ = O(t), we have that (xk−x̄)/tk is bounded, and
hence by passing to a subsequence if necessary we can assume that (xk − x̄)/tk converges
to a vector h. Since xk ∈ X , it follows that h ∈ TX(x̄). Moreover,

v(tk) = f(xk) + tkηtk(xk) = f(x̄) + tkh
T∇f(x̄) + tkδ(x̄) + o(tk),

and by Danskin Theorem v′(0) = δ(x̄). It follows that hT∇f(x̄) = 0, and hence h ∈ C(x̄).
Consider rk := 2(xk − x̄ − tkh)/t2k, i.e., rk are such that xk = x̄ + tkh + 1

2
t2krk. Note

that tkrk → 0 and xk ∈ X and hence, by the second order regularity of X , there exists
wk ∈ T 2

X(x̄, h) such that ‖rk − wk‖ → 0. Finally,

v(tk) = f(xk) + tkηtk(xk)
= f(x̄) + tkηtk(x̄) + t2kh

T∇δ(x̄) + 1
2
t2kh

T∇2f(x̄)h+ 1
2
t2kw

T
k∇f(x̄) + o(t2k)

≥ v(0) + tkηtk(x̄) + t2kh
T∇δ(x̄) + 1

2
t2kh

T∇2f(x̄)h
+ 1

2
t2k infw∈T 2

X(x̄,h) w
T∇f(x̄) + o(t2k).

It follows that

lim inf
t↓0

v(t)− v(0)− tηt(x̄)
1
2
t2

≥ 2hT∇δ(x̄) + hT∇2f(x̄)h− s
(
−∇f(x̄), T 2

X(x̄, h)
)
.

This completes the proof of (7.85).
Also by the above analysis we have that any accumulation point of (x̃(t) − x̄)/t, as

t ↓ 0, is an optimal solution of problem (7.86). Since (x̃(t)− x̄)/t is bounded, the assertion
(7.87) follows by compactness arguments.

As in the case of second order optimality conditions, we have here that if the set X
is polyhedral, then the curvature term s

(
−∇f(x̄), T 2

X(x̄, h)
)

in (7.86) vanishes.
Suppose now that the set X is given in the form (7.55) with the mapping G(x) being

twice continuously differentiable. Suppose further that Robinson constraint qualification
(7.58), for the unperturbed problem, holds. Then the optimal value of problem (7.86) can
be written in the following dual form

Vf (δ) = inf
h∈C(x̄)

sup
λ∈Λ(x̄)

{
2hT∇δ(x̄) + hT∇2

xxL(x̄, λ)h− s
(
λ,T(h)

)}
, (7.89)

where T(h) := T 2
K

(
G(x̄), [∇G(x̄)]h

)
. Note again that if the set K is polyhedral, then the

curvature term s
(
λ,T(h)

)
in (7.89) vanishes.
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Minimax Problems

In this section we consider the following minimax problem

Min
x∈X

{
φ(x) := sup

y∈Y
f(x, y)

}
, (7.90)

and its dual

Max
y∈Y

{
ι(y) := inf

x∈X
f(x, y)

}
. (7.91)

We assume that the sets X ⊂ Rn and Y ⊂ Rm are convex and compact, and the function
f : X × Y → R is continuous6, i.e., f ∈ C(X,Y ). Moreover, assume that f(x, y) is
convex in x ∈ X and concave in y ∈ Y . Under these conditions there is no duality gap
between problems (7.90) and (7.91), i.e., the optimal values of these problems are equal to
each other. Moreover, the max-function φ(x) is continuous on X and problem (7.90) has
a nonempty set of optimal solutions, denoted X∗, the min-function ι(y) is continuous on
Y and problem (7.91) has a nonempty set of optimal solutions, denoted Y ∗, and X∗ × Y ∗
forms the set of saddle points of the minimax problems (7.90) and (7.91).

Consider the following perturbation of the minimax problem (7.90):

Min
x∈X

sup
y∈Y

{
f(x, y) + tηt(x, y)

}
, (7.92)

where ηt ∈ C(X,Y ), t ≥ 0. Denote by v(t) the optimal value of the above parameterized
problem (7.92). Clearly v(0) is the optimal value of the unperturbed problem (7.90). We
assume that ηt converges uniformly (i.e., in the sup-norm) as t ↓ 0 to a function γ ∈
C(X,Y ), that is

lim
t↓0

sup
x∈X,y∈Y

∣∣ηt(x, y)− γ(x, y)
∣∣ = 0.

Theorem 7.28. Suppose that: (i) the sets X ⊂ Rn and Y ⊂ Rm are convex and compact,
(ii) for all t ≥ 0 the function ζt := f + tηt is continuous on X × Y , convex in x ∈ X and
concave in y ∈ Y , (iii) ηt converges uniformly as t ↓ 0 to a function γ ∈ C(X,Y ). Then

lim
t↓0

v(t)− v(0)

t
= inf
x∈X∗

sup
y∈Y ∗

γ(x, y). (7.93)

Proof. Consider a sequence tk ↓ 0. Denote ηk := ηtk and ζk := ζtk = f + tkηk. By
the assumption (ii) we have that functions ζk(x, y) are continuous and convex-concave on
X × Y . Also by the definition

v(tk) = inf
x∈X

sup
y∈Y

ζk(x, y).

For a point x∗ ∈ X∗ we can write

v(0) = sup
y∈Y

f(x∗, y) and v(tk) ≤ sup
y∈Y

ζk(x∗, y).

6Recall thatC(X,Y ) denotes the space of continuous functions ψ : X×Y → R equipped with the sup-norm
‖ψ‖ = sup(x,y)∈X×Y |ψ(x, y)|.
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Since the set Y is compact and function ζk(x∗, ·) is continuous, we have that the set
arg maxy∈Y ζk(x∗, y) is nonempty. Let yk ∈ arg maxy∈Y ζk(x∗, y). We have that

arg max
y∈Y

f(x∗, y) = Y ∗

and, since ζk tends (uniformly) to f , we have that yk tends in distance to Y ∗ (i.e., the
distance from yk to Y ∗ tends to zero as k →∞). By passing to a subsequence if necessary
we can assume that yk converges to a point y∗ ∈ Y as k → ∞. It follows that y∗ ∈ Y ∗,
and of course we have that

sup
y∈Y

f(x∗, y) ≥ f(x∗, yk).

Also since ηk tends uniformly to γ, it follows that ηk(x∗, yk)→ γ(x∗, y∗). Consequently

v(tk)− v(0) ≤ ζk(x∗, yk)− f(x∗, yk) = tkηk(x∗, yk) = tkγ(x∗, y∗) + o(tk).

We obtain that for any x∗ ∈ X∗ there exists y∗ ∈ Y ∗ such that

lim sup
k→∞

v(tk)− v(0)

tk
≤ γ(x∗, y∗).

It follows that

lim sup
k→∞

v(tk)− v(0)

tk
≤ inf
x∈X∗

sup
y∈Y ∗

γ(x, y). (7.94)

In order to prove the converse inequality we proceed as follows. Consider a sequence
xk ∈ arg minx∈X θk(x), where θk(x) := supy∈Y ζk(x, y). We have that θk : X → R
are continuous functions converging uniformly in x ∈ X to the max-function φ(x) =
supy∈Y f(x, y). Consequently xk converges in distance to the set arg minx∈X φ(x), which
is equal to X∗. By passing to a subsequence if necessary we can assume that xk converges
to a point x∗ ∈ X∗. For any y ∈ Y ∗ we have v(0) ≤ f(xk, y). Since ζk(x, y) is convex-
concave, it has a nonempty set of saddle points X∗k × Y ∗k . We have that xk ∈ X∗k , and
hence v(tk) ≥ ζk(xk, y) for any y ∈ Y . It follows that for any y ∈ Y ∗ the following holds

v(tk)− v(0) ≥ ζk(xk, y)− f(xk, y) = tkγk(x∗, y) + o(tk),

and hence

lim inf
k→∞

v(tk)− v(0)

tk
≥ γ(x∗, y).

Since y was an arbitrary element of Y ∗, we obtain that

lim inf
k→∞

v(tk)− v(0)

tk
≥ sup
y∈Y ∗

γ(x∗, y),

and hence

lim inf
k→∞

v(tk)− v(0)

tk
≥ inf
x∈X∗

sup
y∈Y ∗

γ(x, y). (7.95)

The assertion of the theorem follows from (7.94) and (7.95).
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7.1.6 Epiconvergence

Consider a sequence fk : Rn → R, k = 1, ..., of extended real valued functions. It is
said that the functions fk epiconverge to a function f : Rn → R, written fk

e→ f , if the
epigraphs of the functions fk converge, in a certain set-valued sense, to the epigraph of f .
It is also possible to define the epiconvergence in the following equivalent way.

Definition 7.29. It is said that fk epiconverge to f if for any point x ∈ Rn the following
two conditions hold: (i) for any sequence xk converging to x one has

lim inf
k→∞

fk(xk) ≥ f(x), (7.96)

(ii) there exists a sequence xk converging to x such that7

lim sup
k→∞

fk(xk) ≤ f(x). (7.97)

Epiconvergence fk
e→ f implies that the function f is lower semicontinuous.

For ε ≥ 0 we say that a point x̄ ∈ Rn is an ε-minimizer8 of f if f(x̄) ≤ inf f(x) + ε
(we write here ‘inf f(x)’ for ‘infx∈Rn f(x)’). Clearly, for ε = 0 the set of ε-minimizers of
f coincides with the set arg min f (of minimizers of f ).

Proposition 7.30. Suppose that fk
e→ f . Then

lim sup
k→∞

[inf fk(x)] ≤ inf f(x). (7.98)

Suppose, further, that: (i) for some εk ↓ 0 there exists an εk-minimizer xk of fk(·) such
that the sequence xk converges to a point x̄. Then x̄ ∈ arg min f and

lim
k→∞

[inf fk(x)] = inf f(x). (7.99)

Proof. Consider a point x̄ ∈ Rn and let xk be a sequence converging to x̄ such that the
inequality (7.97) holds. Clearly fk(xk) ≥ inf fk(x) for all k. Together with (7.97) this
implies that

f(x̄) ≥ lim sup
k→∞

fk(xk) ≥ lim sup
k→∞

[inf fk(x)] .

Since the above holds for any x̄, the inequality (7.98) follows.
Now let xk be a sequence of εk-minimizers of fk converging to a point x̄. We have

then that fk(xk) ≤ inf fk(x) + εk, and hence by (7.98) we obtain

lim inf
k→∞

[inf fk(x)] = lim inf
k→∞

[inf fk(x) + εk] ≥ lim inf
k→∞

fk(xk) ≥ f(x̄) ≥ inf f(x).

7Note that here some (all) points xk can be equal to x.
8For the sake of convenience we allow in this section for a minimizer, or ε-minimizer, x̄ to be such that f(x̄)

is not finite, i.e., can be equal to +∞ or −∞.
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Together with (7.98) this implies (7.99) and f(x̄) = inf f(x). This completes the proof.

Assumption (i) in the above proposition can be ensured by various boundedness con-
ditions. Proof of the following theorem can be found in [217, Theorem 7.17].

Theorem 7.31. Let fk : Rn → R be a sequence of convex functions and f : Rn → R
be a convex lower semicontinuous function such that domf has a nonempty interior. Then
the following are equivalent: (i) fk

e→ f , (ii) there exists a dense subset D of Rn such that
fk(x) → f(x) for all x ∈ D, (iii) fk(·) converges uniformly to f(·) on every compact set
C that does not contain a boundary point of domf .

7.2 Probability
7.2.1 Probability Spaces and Random Variables
Let Ω be an abstract set. It is said that a setF of subsets of Ω is a sigma algebra (also called
sigma field) if: (i) it is closed under standard set theoretic operations (i.e., ifA,B ∈ F , then
A ∩B ∈ F , A ∪B ∈ F and A \B ∈ F), (ii) the set Ω belongs to F , and (iii) if9 Ai ∈ F ,
i ∈ N, then ∪i∈NAi ∈ F . The set Ω equipped with a sigma algebra F is called a sample or
measurable space and denoted (Ω,F). A set A ⊂ Ω is said to be F-measurable if A ∈ F .
It is said that the sigma algebra F is generated by its subset G if any F-measurable set can
be obtained from sets belonging to G by set theoretic operations and by taking the union of
a countable family of sets from G. That is, F is generated by G if F is the smallest sigma
algebra containing G. If we have two sigma algebras F1 and F2 defined on the same set
Ω, then it is said that F1 is a subalgebra of F2 if F1 ⊂ F2. The smallest possible sigma
algebra on Ω consists of two elements Ω and the empty set ∅. Such sigma algebra is called
trivial. An F-measurable set A is said to be elementary if any F-measurable subset of A
is either the empty set or the set A. If the sigma algebra F is finite, then it is generated by
a family Ai ⊂ Ω, i = 1, ..., n, of disjoint elementary sets and has 2n elements. The sigma
algebra generated by the set of open (or closed) subsets of a finite dimensional space Rm is
called its Borel sigma algebra. An element of this sigma algebra is called a Borel set. For
a considered set Ξ ⊂ Rm we denote by B the sigma algebra of all Borel subsets of Ξ.

A function P : F → R+ is called a (sigma-additive) measure on (Ω,F) if for every
collection Ai ∈ F , i ∈ N, such that Ai ∩Aj = ∅ for all i 6= j, we have

P
(
∪i∈N Ai

)
=
∑
i∈N P (Ai). (7.100)

In this definition it is assumed that for every A ∈ F , and in particular for A = Ω, P (A)
is finite. Sometimes such measures are called finite. An important example of a measure
which is not finite is the Lebesgue measure on Rm. Unless stated otherwise we assume that
a considered measure is finite. A measure P is said to be a probability measure if P (Ω) =
1. A sample space (Ω,F) equipped with a probability measure P is called a probability
space and denoted (Ω,F , P ). Recall thatF is said to be P -complete ifA ⊂ B,B ∈ F and
P (B) = 0, implies thatA ∈ F , and hence P (A) = 0. Since it is always possible to enlarge

9By N we denote the set of positive integers.
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the sigma algebra and extend the measure in such a way as to get complete space, we can
assume without loss of generality that considered probability measures are complete. It is
said that an event A ∈ F happens P -almost surely (a.s.) or almost everywhere (a.e.) if
P (A) = 1, or equivalently P (Ω \ A) = 0. We also sometimes say that such an event
happens with probability one (w.p.1).

Let P an Q be two measures on a measurable space (Ω,F). It is said that Q is
absolutely continuous with respect to P if A ∈ F and P (A) = 0 implies that Q(A) = 0.
If the measure Q is finite, this is equivalent to condition: for every ε > 0 there exists δ > 0
such that if P (A) < δ, then Q(A) < ε.

Theorem 7.32 (Radon-Nikodym). If P and Q are measures on (Ω,F), then Q is ab-
solutely continuous with respect to P if and only if there exists a measurable function
f : Ω→ R+ such that Q(A) =

∫
A
fdP for every A ∈ F .

The function f in the representation Q(A) =
∫
A
fdP is called density of measure Q

with respect to measure P . If the measure Q is a probability measure, then f is called the
probability density function (pdf). The Radon-Nikodym Theorem says that measure Q has
a density with respect to P iff Q is absolutely continuous with respect to P . We write this
as f = dQ/dP or dQ = fdP .

A mapping V : Ω → Rm is said to be measurable if for any Borel set A ∈ B,
its inverse image V −1(A) := {ω ∈ Ω : V (ω) ∈ A} is F-measurable.10 A measurable
mapping11 V (ω) from probability space (Ω,F , P ) into Rm is called a random vector.
Note that the mapping V generates the probability measure12 (also called the probability
distribution) P (A) := P (V −1(A)) on (Rm,B). The smallest closed set Ξ ⊂ Rm such that
P (Ξ) = 1 is called the support of measure P . We can view the space (Ξ,B) equipped with
probability measure P as a probability space (Ξ,B, P ). This probability space provides
all relevant probabilistic information about the considered random vector. In that case we
write Pr(A) for the probability of the event A ∈ B. We often denote by ξ data vector of a
considered problem. Sometimes we view ξ as a random vector ξ : Ω → Rm supported on
a set Ξ ⊂ Rm, and sometimes as an element ξ ∈ Ξ, i.e., as a particular realization of the
random data vector. Usually, the meaning of such notation will be clear from the context
and will not cause any confusion. If in doubt, in order to emphasize that we view ξ as a
random vector, we sometimes write ξ = ξ(ω).

A measurable mapping (function) Z : Ω → R is called a random variable. Its
probability distribution is completely defined by the cumulative distribution function (cdf)
HZ(z) := Pr{Z ≤ z}. Note that since the Borel sigma algebra of R is generated by the
family of half line intervals (−∞, a], in order to verify measurability of Z(ω) it suffices
to verify measurability of sets {ω ∈ Ω : Z(ω) ≤ z} for all z ∈ R. We denote random
vectors (variables) by capital letters, like V,Z etc., or ξ(ω), and often suppress their explicit

10In fact it suffices to verify F -measurability of V −1(A) for any family of sets generating the Borel sigma
algebra of Rm.

11We can view the notation V (ω) to denote a (measurable) mapping V : Ω → Rm, i.e., to denote the
corresponding random vector; or as its particular value at ω ∈ Ω, i.e., its particular realization. Which one of
these two meanings is used usually is clear from the context.

12With some abuse of notation we also denote here by P the probability distribution induced by the probability
measure P on (Ω,F).



i
i

“SPbook” — 2013/12/24 — 8:37 — page 443 — #455 i
i

i
i

i
i

7.2. Probability 443

dependence on ω ∈ Ω. The coordinate functions V1(ω), ..., Vm(ω) of the m-dimensional
random vector V (ω) are called its components. While considering a random vector V
we often talk about its probability distribution as the joint distribution of its components
(random variables) V1, ..., Vm.

Since we often deal with random variables which are given as optimal values of
optimization problems we need to consider random variables Z(ω) which can also take
values +∞ or −∞, i.e., functions Z : Ω → R, where R denotes the set of extended real
numbers. Such functions Z : Ω → R are referred to as extended real valued functions.
Operations between real numbers and symbols ±∞ are clear except for such operations as
adding +∞ and −∞ which should be avoided. Measurability of an extended real valued
function Z(ω) is defined in the standard way, i.e., Z(ω) is measurable if the set {ω ∈ Ω :
Z(ω) ≤ z} is F-measurable for any z ∈ R. A measurable extended real valued function is
called an (extended) random variable. Note that here

lim
z→+∞

HZ(z) = lim
z→+∞

Pr{Z ≤ z}

is equal to the probability of the event {ω ∈ Ω : Z(ω) < +∞} and can be less than one if
the event {ω ∈ Ω : Z(ω) = +∞} has a positive probability.

The expected value or expectation of an (extended) random variable Z : Ω → R is
defined by the integral

EP [Z] :=

∫
Ω

Z(ω)dP (ω). (7.101)

When there is no ambiguity as to what probability measure is considered, we omit the sub-
script P and simply write E[Z]. For a nonnegative valued measurable function Z(ω) such
that the event Υ := {ω ∈ Ω : Z(ω) = +∞} has zero probability the above integral is
defined in the usual way and can take value +∞. If probability of the event Υ is positive,
then, by definition, E[Z] = +∞. For a general (not necessarily nonnegative valued) ran-
dom variable we would like to define13 E[Z] := E[Z+] − E[(−Z)+]. In order to do that
we have to ensure that we do not add +∞ and −∞. We say that the expected value E[Z]
of an (extended real valued) random variable Z(ω) is well defined if it does not happen
that both E[Z+] and E[(−Z)+] are +∞, in which case E[Z] = E[Z+]− E[(−Z)+]. That
is, in order to verify that the expected value of Z(ω) is well defined one has to check that
Z(ω) is measurable and either E[Z+] < +∞ or E[(−Z)+] < +∞. Note that if Z(ω) and
Z ′(ω) are two (extended) random variables such that their expectations are well defined and
Z(ω) = Z ′(ω) for all ω ∈ Ω except possibly on a set of measure zero, then E[Z] = E[Z ′].
It is said that Z(ω) is P -integrable if the expected value E[Z] is well defined and finite.
The expected value of a random vector is defined componentwise.

If the random variable Z(ω) can take only a countable (finite) number of different
values, say z1, z2, ..., then it is said that Z(ω) has a discrete distribution (discrete distribu-
tion with a finite support). In such cases all relevant probabilistic information is contained
in the probabilities pi := Pr{Z = zi}. In that case E[Z] =

∑
i pizi.

Let fn(ω) be a sequence of real valued measurable functions on a probability space
(Ω,F , P ). By fn ↑ f a.e. we mean that for almost every ω ∈ Ω the sequence fn(ω) is
monotonically nondecreasing and hence converges to a limit denoted f(ω), where f(ω) can
be equal to +∞. We have the following classical results about convergence of integrals.

13Recall that Z+ := max{0, Z}.
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Theorem 7.33 (Monotone Convergence Theorem). Suppose that fn ↑ f a.e. and there
exists a P -integrable function g(ω) such that fn(·) ≥ g(·). Then

∫
Ω
fdP is well defined

and
∫

Ω
fndP ↑

∫
Ω
fdP .

Theorem 7.34 (Fatou’s lemma). Suppose that there exists a P -integrable function g(ω)
such that fn(·) ≥ g(·). Then

lim inf
n→∞

∫
Ω

fn dP ≥
∫

Ω

lim inf
n→∞

fn dP. (7.102)

Theorem 7.35 (Lebesgue Dominated Convergence Theorem). Suppose that there exists
a P -integrable function g(ω) such that |fn| ≤ g a.e., and that fn(ω) converges to f(ω) for
almost every ω ∈ Ω. Then f is P -integrable and∫

Ω

fndP →
∫

Ω

fdP. (7.103)

It is said that the sequence fn is uniformly integrable if

lim
c→∞

sup
n∈N

∫
{|fn|≥c}

|fn|dP = 0. (7.104)

If |fn| are dominated by a P -integrable function g, i.e., |fn| ≤ g a.e., then fn are uniformly
integrable. Therefore the following theorem can be viewed as a slight generalization of the
Lebesgue Dominated Convergence Theorem.

Theorem 7.36. Suppose that fn(ω) converges to f(ω) for almost every ω ∈ Ω. Then
the following holds. (i) If fn are uniformly integrable, then f is P -integrable and (7.103)
follows. (ii) If f and fn are nonnegative valued and P -integrable, then (7.103) implies that
fn are uniformly integrable.

We also have the following useful result. Unless stated otherwise we always assume
that considered measures are finite and nonnegative, i.e., µ(A) is a finite nonnegative num-
ber for every A ∈ F .

Theorem 7.37 (Richter-Rogosinski). Let (Ω,F) be a measurable space, f1, ..., fm be
measurable on (Ω,F) real valued functions, and µ be a measure on (Ω,F) such that
f1, ..., fm are µ-integrable. Suppose that every finite subset of Ω is F-measurable. Then
there exists a measure η on (Ω,F) with a finite support of at most m points such that∫

Ω

fidµ =

∫
Ω

fidη, i = 1, ...,m. (7.105)

Proof. First we show that there exists a measure η with finite support such that (7.105)
holds. The proof proceeds by induction on m. It can be easily shown that the asser-
tion holds for m = 1. Consider the set S ⊂ Rm generated by vectors of the form
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(∫
f1dµ

′, ...,
∫
fmdµ

′) with µ′ being a measure on Ω with a finite support. We have to
show that vector a :=

(∫
f1dµ, ...,

∫
fmdµ

)
belongs to S. Note that the set S is a convex

cone. Suppose that a 6∈ S. Then, by the separation theorem, there exists c ∈ Rm \{0} such
that cTa ≤ cTx, for all x ∈ S. Since S is a cone, it follows that cTa ≤ 0. This implies that
for f :=

∑n
i=1 cifi we have that

∫
fdµ ≤ 0 and

∫
fdµ ≤

∫
fdµ′ for any measure µ′ with

a finite support. In particular, by taking measures of the form14 µ′ = γδ(ω), with γ > 0
and ω ∈ Ω, we obtain from the second inequality that

∫
fdµ ≤ γf(ω). This implies that

f(ω) ≥ 0 for all ω ∈ Ω. Indeed, if f(ω) < 0, then we can make γf(ω) arbitrary small
by taking γ large enough and hence eventually contradict the inequality

∫
fdµ ≤ γf(ω).

Together with the first inequality this implies that
∫
fdµ = 0.

Consider the set Ω′ := {ω ∈ Ω : f(ω) = 0}. Note that the function f is measurable
and hence Ω′ ∈ F . Since

∫
fdµ = 0 and f(·) is nonnegative valued, it follows that Ω′ is a

support of µ, i.e., µ(Ω′) = µ(Ω). If µ(Ω) = 0, then the assertion clearly holds. Therefore
suppose that µ(Ω) > 0. Then µ(Ω′) > 0, and hence Ω′ is nonempty. It also follows that∫

Ω
fidµ =

∫
Ω′
fidµ for all i = 1, ...,m.

We have that
∑n
i=1 cifi(ω) = 0 for all ω ∈ Ω′. Since c 6= 0, there is ` ∈ {1, ..., n}

such that c` 6= 0. By the induction assumption there exists a measure η with a finite
support such that

∫
Ω
fidµ =

∫
Ω
fidη for all i 6= `. Also f`(ω) =

∑
i 6=` αifi(ω), ω ∈ Ω′,

for αi := −ci/c`, and hence
∫

Ω
f`dµ =

∫
Ω
f`dη. This proves existence of a measure η

with finite support such that (7.105) holds.
So let η =

∑k
j=1 x̄jδ(ωj) be a measure with x̄j ≥ 0, j = 1, ..., k, having fi-

nite support {ω1, ..., ωk}, such that (7.105) holds. We can interpret (7.105) as that x̄ =
(x̄1, ..., x̄k)T is a solution of the linear system Ax = b, x ≥ 0, where b is m × 1 vector
with components bi =

∫
Ω
fidµ and A is m× k matrix with elements aij = fi(ωj). Since

x̄ is a solution of this system, this system is feasible. Hence this system has a solution with
only at most m nonzero components (this fact is well known in linear programming). This
completes the proof.

Let us remark that if the measure µ is a probability measure, i.e., µ(Ω) = 1, then
by adding the constraint

∫
Ω
dη = 1, we obtain in the above theorem that there exists a

probability measure η on (Ω,F) with a finite support of at most m + 1 points such that∫
Ω
fidµ =

∫
Ω
fidη for all i = 1, ...,m.

Also let us recall two famous inequalities. Chebyshev inequality15 says that if Z :
Ω→ R+ is a nonnegative valued random variable, then

Pr
(
Z ≥ α

)
≤ α−1E [Z] , ∀α > 0. (7.106)

Proof of (7.106) is rather simple, we have

Pr
(
Z ≥ α

)
= E

[
1[α,+∞)(Z)

]
≤ E

[
α−1Z

]
= α−1E [Z] .

Jensen inequality says that if V : Ω→ Rm is a random vector, ν := E [V ] and f : Rm → R
is a convex function, then

E [f(V )] ≥ f(ν), (7.107)
14We denote by δ(ω) measure of mass one at the point ω, and refer to such measures as Dirac measures.
15Sometimes (7.106) is called Markov inequality, while Chebyshev inequality is referred to the inequality

(7.106) applied to the function (Z − E[Z])2.
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provided the above expectations are finite. Indeed, for a subgradient g ∈ ∂f(ν) we have
that

f(V ) ≥ f(ν) + gT(V − ν). (7.108)

By taking expectation of the both sides of (7.108) we obtain (7.107).

Finally, let us mention the following simple inequality. Let Y1, Y2 : Ω → R be
random variables and a1, a2 be numbers. Then the intersection of the events {ω : Y1(ω) <
a1} and {ω : Y2(ω) < a2} is included in the event {ω : Y1(ω) + Y2(ω) < a1 + a2}, or
equivalently the event {ω : Y1(ω) + Y2(ω) ≥ a1 + a2} is included in the union of the
events {ω : Y1(ω) ≥ a1} and {ω : Y2(ω) ≥ a2}. It follows that

Pr{Y1 + Y2 ≥ a1 + a2} ≤ Pr{Y1 ≥ a1}+ Pr{Y2 ≥ a2}. (7.109)

7.2.2 Conditional Probability and Conditional Expectation

For two events A and B the conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
, (7.110)

provided that P (B) 6= 0. Now let X and Y be discrete random variables with joint mass
function p(x, y) := P (X = x, Y = y). Of course, since X and Y are discrete, p(x, y)
is nonzero only for a finite or countable number of values of x and y. The marginal mass
functions of X and Y are p

X
(x) := P (X = x) =

∑
y p(x, y) and p

Y
(y) := P (Y = y) =∑

x p(x, y), respectively. It is natural to define conditional mass function of X given that
Y = y as

p
X|Y (x|y) := P (X = x|Y = y) =

P (X = x, Y = y)

P (Y = y)
=
p(x, y)

p
Y

(y)
(7.111)

for all values of y such that p
Y

(y) > 0. We have that X is independent of Y iff p(x, y) =
p
X

(x)p
Y

(y) holds for all x and y, which is equivalent to that p
X|Y (x|y) = p

X
(x) for all y

such that p
Y

(y) > 0.
IfX and Y have continuous distribution with a joint pdf f(x, y), then the conditional

pdf of X , given that Y = y, is defined in a way similar to (7.111) for all values of y such
that f

Y
(y) > 0 as

f
X|Y (x|y) :=

f(x, y)

f
Y

(y)
. (7.112)

Here f
Y

(y) :=
∫ +∞
−∞ f(x, y)dx is the marginal pdf of Y . In the continuous case the condi-

tional expectation ofX , given that Y = y, is defined for all values of y such that f
Y

(y) > 0
as

E[X|Y = y] :=

∫ +∞

−∞
xf

X|Y (x|y)dx. (7.113)

In the discrete case it is defined in a similar way.
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Note that E[X|Y = y] is a function of y, say h(y) := E[X|Y = y]. Let us denote
by E[X|Y ] that function of random variable Y , i.e., E[X|Y ] := h(Y ). We have then the
following important formula

E[X] = E
[
E[X|Y ]

]
. (7.114)

In the continuous case, for example, we have

E[X] =

∫ +∞

−∞

∫ +∞

−∞
xf(x, y)dxdy =

∫ +∞

−∞

∫ +∞

−∞
xf

X|Y (x|y)dxf
Y

(y)dy,

and hence

E[X] =

∫ +∞

−∞
E[X|Y = y]f

Y
(y)dy. (7.115)

The above definitions can be extended to the case where X and Y are two random vectors
in a straightforward way.

It is also useful to define conditional expectation in the following abstract form. Let
X be a nonnegative valued integrable random variable on a probability space (Ω,F , P ),
and let G be a subalgebra ofF . Define a measure on G by ν(G) :=

∫
G
XdP for anyG ∈ G.

This measure is finite because X is integrable, and is absolutely continuous with respect
to P . Hence by the Radon-Nikodym Theorem there is a G-measurable function h(ω) such
that ν(G) =

∫
G
hdP . This function h(ω), viewed as a random variable has the following

properties: (i) h(ω) is G-measurable and integrable, (ii) it satisfies the equation
∫
G
hdP =∫

G
XdP for any G ∈ G. By definition we say that a random variable, denoted E[X|G],

is said to be the conditional expected value of X given G, if it satisfies the following two
properties:

(i) E[X|G] is G-measurable and integrable,

(ii) E[X|G] satisfies the functional equation∫
G

E[X|G]dP =

∫
G

XdP, ∀G ∈ G. (7.116)

The above construction showed existence of such random variable for nonnegative X . If
X is not necessarily nonnegative, apply the same construction to the positive and negative
part of X .

There will be many random variable satisfying the above properties (i) and (ii). Any
one of them is called a version of the conditional expected value. We sometimes write it
as E[X|G](ω) or E[X|G]ω to emphasize that this a random variable. Any two versions of
E[X|G] are equal to each other with probability one. Note that, in particular, for G = Ω it
follows from (ii) that

E[X] =

∫
Ω

E[X|G]dP = E
[
E[X|G]

]
. (7.117)

Note also that if the sigma algebra G is trivial, i.e., G = {∅,Ω}, then E[X|G] is constant
equal to E[X].

Conditional probability P (A|G) of event A ∈ F can be defined as P (A|G) =
E[1A|G]. In that case the corresponding properties (i) and (ii) take the form:
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(i′) P (A|G) is G-measurable and integrable,

(ii′) P (A|G) satisfies the functional equation∫
G

P (A|G)dP = P (A ∩G), ∀G ∈ G. (7.118)

7.2.3 Measurable Multifunctions and Random Functions

Let G be a mapping from Ω into the set of subsets of Rn, i.e., G assigns to each ω ∈ Ω a
subset (possibly empty) G(ω) of Rn. We refer to G as a multifunction and write G : Ω ⇒
Rn. It is said that G is closed valued if G(ω) is a closed subset of Rn for every ω ∈ Ω. A
closed valued multifunction G is said to be measurable, if for every closed set A ⊂ Rn one
has that the inverse image G−1(A) := {ω ∈ Ω : G(ω) ∩ A 6= ∅} is F-measurable. Note
that measurability of G implies that the domain

domG := {ω ∈ Ω : G(ω) 6= ∅} = G−1(Rn)

of G is an F-measurable subset of Ω.

Proposition 7.38. A closed valued multifunction G : Ω ⇒ Rn is measurable iff the (ex-
tended real valued) function d(ω) := dist(x,G(ω)) is measurable for any x ∈ Rn.

Proof. Recall that by the definition dist(x,G(ω)) = +∞ if G(ω) = ∅. Note also that
dist(x,G(ω)) = ‖x−y‖ for some y ∈ G(ω), because of closedness of set G(ω). Therefore,
for any t ≥ 0 and x ∈ Rn we have that

{ω ∈ Ω : dist(x,G(ω)) ≤ t} = G−1(x+ tB),

where B := {x ∈ Rn : ‖x‖ ≤ 1}. It remains to note that it suffices to verify the
measurability of G−1(A) for closed sets of the form A = x + tB, (t, x) ∈ R+ × Rn.

Remark 53. Suppose now that Ω is a Borel subset of Rm equipped with its Borel sigma
algebra. Suppose, further, that the multifunction G : Ω⇒ Rn is closed. That is, if ωk → ω,
xk ∈ G(ωk) and xk → x, then x ∈ G(ω). Of course, any closed multifunction is closed
valued. It follows that for any (t, x) ∈ R+ ×Rn the level set {ω ∈ Ω : dist(x,G(ω)) ≤ t}
is closed, and hence the function d(ω) := dist(x,G(ω)) is measurable. Consequently we
obtain that any closed multifunction G : Ω⇒ Rn is measurable.

It is said that a mapping G : domG → Rn is a selection of G if G(ω) ∈ G(ω) for all
ω ∈ domG. If, in addition, the mapping G is measurable, it is said that G is a measurable
selection of G.

Theorem 7.39 (Measurable selection theorem). A closed valued multifunction G :
Ω ⇒ Rn is measurable iff its domain is an F-measurable subset of Ω and there exists a
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countable family {Gi}i∈N, of measurable selections of G, such that for every ω ∈ Ω, the
set {Gi(ω) : i ∈ N} is dense in G(ω).

In particular, we have by the above theorem that if G : Ω ⇒ Rn is a closed valued
measurable multifunction, then there exists at least one measurable selection of G. In [217,
Theorem 14.5] the result of the above theorem is called Castaing representation.

Consider a function F : Rn × Ω → R. We say that F is a random function if for
every fixed x ∈ Rn, the function F (x, ·) is F-measurable. For a random function F (x, ω)
we can define the corresponding expected value function

f(x) := E[F (x, ω)] =

∫
Ω

F (x, ω)dP (ω).

We say that f(x) is well defined if the expectation E[F (x, ω)] is well defined for every
x ∈ Rn. Also for every ω ∈ Ω we can view F (·, ω) as an extended real valued function.

Definition 7.40. It is said that the function F (x, ω) is random lower semicontinuous if the
associated epigraphical multifunction ω 7→ epiF (·, ω) is closed valued and measurable.

In some publications random lower semicontinuous functions are called normal in-
tegrands. It follows from the above definitions that if F (x, ω) is random lsc, then the
multifunction ω 7→ domF (·, ω) is measurable, and F (x, ·) is measurable for every fixed
x ∈ Rn. Close valuedness of the epigraphical multifunction means that for every ω ∈ Ω,
the epigraph epiF (·, ω) is a closed subset of Rn+1, i.e., F (·, ω) is lower semicontinuous.
Note, however, that the lower semicontinuity in x and measurability in ω does not imply
measurability of the corresponding epigraphical multifunction, and hence random lower
semicontinuity of F (x, ω). A large class of random lower semicontinuous is given by the
so-called Carathéodory functions, i.e., real valued functions F : Rn × Ω → R such that
F (x, ·) is F-measurable for every x ∈ Rn and F (·, ω) continuous for a.e. ω ∈ Ω.

Theorem 7.41. Suppose that the sigma algebra F is P -complete. Then an extended real
valued function F : Rn×Ω→ R is random lsc iff the following two properties hold: (i) for
every ω ∈ Ω, the function F (·, ω) is lsc, (ii) the function F (·, ·) is measurable with respect
to the sigma algebra of Rn × Ω given by the product of the sigma algebras B and F .

With a random function F (x, ω) we associate its optimal value function ϑ(ω) :=
infx∈Rn F (x, ω) and the optimal solution multifunction X ∗(ω) := arg minx∈Rn F (x, ω).

Theorem 7.42. Let F : Rn × Ω → R be a random lsc function. Then the optimal value
function ϑ(ω) and the optimal solution multifunction X ∗(ω) are both measurable.

Note that it follows from lower semicontinuity of F (·, ω) that the optimal solution
multifunction X ∗(ω) is closed valued. Note also that if F (x, ω) is random lsc and G : Ω⇒
Rn is a closed valued measurable multifunction, then the function

F̄ (x, ω) :=

{
F (x, ω), if x ∈ G(ω),
+∞, if x 6∈ G(ω),
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is also random lsc. Consequently the corresponding optimal value ω 7→ infx∈G(ω) F (x, ω)
and the optimal solution multifunction ω 7→ arg minx∈G(ω) F (x, ω) are both measurable,
and hence by the measurable selection theorem, there exists a measurable selection x̄(ω) ∈
arg minx∈G(ω) F (x, ω).

Theorem 7.43. Let F : Rn+m × Ω→ R be a random lsc function and

ϑ(x, ω) := inf
y∈Rm

F (x, y, ω) (7.119)

be the associated optimal value function. Suppose that there exists a bounded set S ⊂ Rm
such that domF (x, ·, ω) ⊂ S for all (x, ω) ∈ Rn × Ω. Then the optimal value function
ϑ(x, ω) is random lsc.

Let us observe that the above framework of random lsc functions is aimed at mini-
mization problems. Of course, the problem of maximization of E[F (x, ω)] is equivalent to
minimization of E[−F (x, ω)]. Therefore, for maximization problems one would need the
comparable concept of random upper semicontinuous functions.

Consider a multifunction G : Ω⇒ Rn. Denote

‖G(ω)‖ := sup{‖G(ω)‖ : G(ω) ∈ G(ω)},

and by conv G(ω) the convex hull of set G(ω). If the set Ω = {ω1, ..., ωK} is finite and
equipped with respective probabilities pk, k = 1, ...,K, then it is natural to define the
integral ∫

Ω

G(ω)dP (ω) :=

K∑
k=1

pkG(ωk), (7.120)

where the sum of two sets A,B ⊂ Rn and multiplication by a scalar γ ∈ R are defined in
the natural way, A+B := {a+b : a ∈ A, b ∈ B} and γA := {γa : a ∈ A}. For a general
measure P on a sample space (Ω,F) the corresponding integral is defined as follows.

Definition 7.44. The integral
∫

Ω
G(ω)dP (ω) is defined as the set of all points of the form∫

Ω
G(ω)dP (ω), where G(ω) is a P -integrable selection of G(ω), i.e., G(ω) ∈ G(ω) for

a.e. ω ∈ Ω, G(ω) is measurable and
∫

Ω
‖G(ω)‖dP (ω) is finite.

If the multifunction G(ω) is convex valued, i.e., the set G(ω) is convex for a.e. ω ∈ Ω,
then

∫
Ω
GdP is a convex set. It turns out that

∫
Ω
GdP is always convex (even if G(ω) is not

convex valued) if the measure P does not have atoms, i.e., is nonatomic16. The following
theorem often is referred to Aumann (1965).

Theorem 7.45 (Aumann). Suppose that the measure P is nonatomic and let G : Ω⇒ Rn
be a multifunction. Then the set

∫
Ω
GdP is convex. Suppose, further, that G(ω) is closed

valued and measurable, and there exists a P -integrable function g(ω) such that ‖G(ω)‖ ≤

16It is said that measure P , and the space (Ω,F , P ), is nonatomic if any set A ∈ F , such that P (A) > 0,
contains a subset B ∈ F such that P (A) > P (B) > 0.
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g(ω) for a.e. ω ∈ Ω. Then∫
Ω

G(ω)dP (ω) =

∫
Ω

(
conv G(ω)

)
dP (ω). (7.121)

The above theorem is a consequence of a theorem due to A.A. Lyapunov (1940).

Theorem 7.46 (Lyapunov). Let µ1, ..., µn be a finite collection of nonatomic measures
on a measurable space (Ω,F). Then the set {(µ1(S), ..., µn(S)) : S ∈ F} is a closed and
convex subset of Rn.

7.2.4 Expectation Functions

Consider a random function F : Rn × Ω → R and the corresponding expected value (or
simply expectation) function f(x) = E[F (x, ω)]. Recall that by assuming that F (x, ω) is a
random function we assume that F (x, ·) is measurable for every x ∈ Rn. We have that the
function f(x) is well defined on a set X ⊂ Rn if for every x ∈ X either E[F (x, ω)+] <
+∞ orE[(−F (x, ω))+] < +∞. The expectation function inherits various properties of the
functions F (·, ω), ω ∈ Ω. As it is shown in the next proposition the lower semicontinuity
of the expected value function follows from the lower semicontinuity of F (·, ω).

Theorem 7.47. Suppose that for P -almost every ω ∈ Ω the function F (·, ω) is lsc at a
point x0 and there exists P -integrable function Z(ω) such that F (x, ω) ≥ Z(ω) for P -
almost all ω ∈ Ω and all x in a neighborhood of x0. Then for all x in a neighborhood of
x0 the expected value function f(x) := E[F (x, ω)] is well defined and lsc at x0.

Proof. It follows from the assumption that F (x, ω) is bounded from below by a P -
integrable function, that f(·) is well defined in a neighborhood of x0. Moreover, by Fatou’s
lemma we have

lim inf
x→x0

∫
Ω

F (x, ω) dP (ω) ≥
∫

Ω

lim inf
x→x0

F (x, ω) dP (ω). (7.122)

Together with lsc of F (·, ω) this implies lower semicontinuity of f at x0.

With a little stronger assumptions we can show that the expectation function is con-
tinuous.

Theorem 7.48. Suppose that for P -almost every ω ∈ Ω the function F (·, ω) is continuous
at x0 and there exists P -integrable functionZ(ω) such that |F (x, ω)| ≤ Z(ω) for P -almost
every ω ∈ Ω and all x in a neighborhood of x0. Then for all x in a neighborhood of x0 the
expected value function f(x) is well defined and continuous at x0.

Proof. It follows from the assumption that |F (x, ω)| is dominated by a P -integrable func-
tion, that f(x) is well defined and finite valued for all x in a neighborhood of x0. Moreover,
by the Lebesgue Dominated Convergence Theorem we can take the limit inside the integral,
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which together with the continuity assumption implies

lim
x→x0

∫
Ω

F (x, ω)dP (ω) =

∫
Ω

lim
x→x0

F (x, ω)dP (ω) =

∫
Ω

F (x0, ω)dP (ω). (7.123)

This shows the continuity of f(x) at x0.

Consider, for example, the characteristic function F (x, ω) := 1(−∞,x](ξ(ω)), with
x ∈ R and ξ = ξ(ω) being a real valued random variable. We have then that f(x) =
Pr(ξ ≤ x), i.e., that f(·) is the cumulative distribution function of ξ. It follows that in this
example the expected value function is continuous at a point x0 iff the probability of the
event {ξ = x0} is zero. Note that x = ξ(ω) is the only point at which the function F (·, ω)
is discontinuous.

We say that random function F (x, ω) is convex, if the function F (·, ω) is convex
for a.e. ω ∈ Ω. Convexity of F (·, ω) implies convexity of the expectation function f(x).
Indeed, if F (x, ω) is convex and the measure P is discrete, then f(x) is a weighted sum,
with positive coefficients, of convex functions and hence is convex. For general measures
convexity of the expectation function follows by passing to the limit. Recall that if f(x)
is convex, then it is continuous on the interior of its domain. In particular, if f(x) is real
valued for all x ∈ Rn, then it is continuous on Rn.

We discuss now differentiability properties of the expected value function f(x). We
sometimes write Fω(·) for the function F (·, ω) and denote by F ′ω(x0, h) the directional
derivative of Fω(·) at the point x0 in the direction h. Definitions and basic properties of
directional derivatives are given in section 7.1.1. Consider the following conditions:

(A1) The expectation f(x0) is well defined and finite valued at a given point x0 ∈ Rn.

(A2) There exists a positive valued random variable C(ω) such that E[C(ω)] < +∞,
and for all x1, x2 in a neighborhood of x0 and almost every ω ∈ Ω the following
inequality holds

|F (x1, ω)− F (x2, ω)| ≤ C(ω)‖x1 − x2‖. (7.124)

(A3) For almost every ω the function Fω(·) is directionally differentiable at x0.

(A4) For almost every ω the function Fω(·) is differentiable at x0.

Theorem 7.49. We have the following: (a) If conditions (A1) and (A2) hold, then the
expected value function f(x) is Lipschitz continuous in a neighborhood of x0. (b) If condi-
tions (A1)–(A3) hold, then the expected value function f(x) is directionally differentiable
at x0, and

f ′(x0, h) = E [F ′ω(x0, h)] for all h. (7.125)

(c) If conditions (A1), (A2) and (A4) hold, then f(x) is differentiable at x0 and

∇f(x0) = E [∇xF (x0, ω)] . (7.126)

Proof. It follows from (7.124) that for any x1, x2 in a neighborhood of x0,

|f(x1)− f(x2)| ≤
∫

Ω

|F (x1, ω)− F (x2, ω)| dP (ω) ≤ c‖x1 − x2‖,
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where c := E[C(ω)]. Together with assumption (A1) this implies that f(x) is well defined,
finite valued and Lipschitz continuous in a neighborhood of x0.

Suppose now that assumptions (A1)–(A3) hold. For t 6= 0 consider the ratio

Rt(ω) := t−1
[
F (x0 + th, ω)− F (x0, ω)

]
.

By assumption (A2) we have that |Rt(ω)| ≤ C(ω)‖h‖, and by assumption (A3) that

lim
t↓0

Rt(ω) = F ′ω(x0, h) w.p.1.

Therefore, it follows by the Lebesgue Dominated Convergence Theorem that

lim
t↓0

∫
Ω

Rt(ω) dP (ω) =

∫
Ω

lim
t↓0

Rt(ω) dP (ω).

Together with assumption (A3) this implies formula (7.125). This proves the assertion (b).
Finally, if F ′ω(x0, h) is linear in h for almost every ω, i.e., the function Fω(·) is

differentiable at x0 w.p.1, then (7.125) implies that f ′(x0, h) is linear in h, and hence
(7.126) follows. Note that since f(x) is locally Lipschitz continuous, we only need to
verify linearity of f ′(x0, ·) in order to establish (Fréchet) differentiability of f(x) at x0

(see theorem 7.2). This completes proof of (c).

The above analysis shows that two basic conditions for interchangeability of the ex-
pectation and differentiation operators, i.e., for the validity of formula (7.126), are the
above conditions (A2) and (A4). The following lemma shows that if, in addition to the as-
sumptions (A1)–(A3), the directional derivative F ′ω(x0, h) is convex in h w.p.1, then f(x)
is differentiable at x0 if and only if F (·, ω) is differentiable at x0 w.p.1.

Lemma 7.50. Let ψ : Rn×Ω→ R be a random function such that for almost every ω ∈ Ω
the function ψ(·, ω) is convex and positively homogeneous, and the expected value function
φ(h) := E[ψ(h, ω)] is well defined and finite valued. Then the expected value function φ(·)
is linear if and only if the function ψ(·, ω) is linear w.p.1.

Proof. We have here that the expected value function φ(·) is convex and positively homo-
geneous. Moreover, it immediately follows from the linearity properties of the expectation
operator that if the function ψ(·, ω) is linear w.p.1, then φ(·) is also linear.

Conversely, let e1, ..., en be a basis of the space Rn. Since φ(·) is convex and posi-
tively homogeneous, it follows that φ(ei)+φ(−ei) ≥ φ(0) = 0, i = 1, ..., n. Furthermore,
since φ(·) is finite valued, it is the support function of a convex compact set. This convex
set is a singleton iff

φ(ei) + φ(−ei) = 0, i = 1, ..., n. (7.127)

Therefore, φ(·) is linear iff condition (7.127) holds. Consider the sets

Ai :=
{
ω ∈ Ω : ψ(ei, ω) + ψ(−ei, ω) > 0

}
.

Thus the set of ω ∈ Ω such that ψ(·, ω) is not linear coincides with the set ∪ni=1Ai. If
P (∪ni=1Ai) > 0, then at least one of the sets Ai has a positive measure. Let, for example,
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P (A1) be positive. Then φ(e1)+φ(−e1) > 0, and hence φ(·) is not linear. This completes
the proof.

Regularity conditions which are required for formula (7.125) to hold are simplified
further if the random function F (x, ω) is convex. In that case, by using the Monotone
Convergence Theorem instead of the Lebesgue Dominated Convergence Theorem, it is
possible to prove the following result.

Theorem 7.51. Suppose that the random function F (x, ω) is convex and the expected value
function f(x) is well defined and finite valued in a neighborhood of a point x0. Then f(x)
is convex, directionally differentiable at x0 and formula (7.125) holds. Moreover, f(x) is
differentiable at x0 if and only if Fω(x) is differentiable at x0 w.p.1, in which case formula
(7.126) holds.

Proof. The convexity of f(x) follows from convexity of Fω(·). Since f(x) is convex and
finite valued near x0 it follows that f(x) is directionally differentiable at x0 with finite
directional derivative f ′(x0, h) for every h ∈ Rn. Consider a direction h ∈ Rn. Since
f(x) is finite valued near x0, we have that f(x0) and, for some t0 > 0, f(x0 + t0h) are
finite. It follows from the convexity of Fω(·) that the ratio

Rt(ω) := t−1
[
F (x0 + th, ω)− F (x0, ω)

]
is monotonically decreasing to F ′ω(x0, h) as t ↓ 0. Also we have that

E |Rt0(ω)| ≤ t−1
0

(
E |F (x0 + t0h, ω)|+ E |F (x0, ω)|

)
< +∞.

Then it follows by the Monotone Convergence Theorem that

lim
t↓0
E[Rt(ω)] = E

[
lim
t↓0

Rt(ω)

]
= E [F ′ω(x0, h)] . (7.128)

Since E[Rt(ω)] = t−1[f(x0 + th) − f(x0)], we have that the left hand side of (7.128) is
equal to f ′(x0, h), and hence formula (7.125) follows.

The last assertion follows then from Lemma 7.50.

Remark 54. It is possible to give a version of the above result for a particular direction
h ∈ Rn. That is, suppose that: (i) the expected value function f(x) is well defined in a
neighborhood of a point x0, (ii) f(x0) is finite, (iii) for almost every ω ∈ Ω the function
Fω(·) := F (·, ω) is convex, (iv) E[F (x0 + t0h, ω)] < +∞ for some t0 > 0. Then
f ′(x0, h) < +∞ and formula (7.125) holds. Note also that if the above assumptions (i)–
(iii) are satisfied and E[F (x0+th, ω)] = +∞ for any t > 0, then clearly f ′(x0, h) = +∞.

Often the expectation operator smoothes the integrand F (x, ω). Consider, for exam-
ple, F (x, ω) := |x − ξ(ω)| with x ∈ R and ξ(ω) being a real valued random variable.
Suppose that f(x) = E[F (x, ω)] is finite valued. We have here that F (·, ω) is convex
and F (·, ω) is differentiable everywhere except x = ξ(ω). The corresponding derivative is
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given by ∂F (x, ω)/∂x = 1 if x > ξ(ω) and ∂F (x, ω)/∂x = −1 if x < ξ(ω). Therefore,
f(x) is differentiable at x0 iff the event {ξ(ω) = x0} has zero probability, in which case

df(x0)/dx = E [∂F (x0, ω)/∂x] = Pr(ξ < x0)− Pr(ξ > x0). (7.129)

If the event {ξ(ω) = x0} has positive probability, then the directional derivatives f ′(x0, h)
exist but are not linear in h, that is,

f ′(x0,−1) + f ′(x0, 1) = 2Pr(ξ = x0) > 0. (7.130)

We can also investigate differentiability properties of the expectation function by
studying the subdifferentiability of the integrand. Suppose for the moment that the set Ω
is finite, say Ω := {ω1, ..., ωK} with P{ω = ωk} = pk > 0, and that the functions
F (·, ω), ω ∈ Ω, are proper. Then f(x) =

∑K
k=1 pkF (x, ωk) and dom f =

⋂K
k=1 domFk,

where Fk(·) := F (·, ωk). The Moreau–Rockafellar Theorem (Theorem 7.4) allows us to
express the subdifferenial of f(x) as the sum of subdifferentials of pkF (x, ωk). That is,
suppose that: (i) the set Ω = {ω1, ..., ωK} is finite, (ii) for every ωk ∈ Ω the function
Fk(·) := F (·, ωk) is proper and convex, (iii) the sets ri(domFk), k = 1, ...,K, have a
common point. Then for any x0 ∈ dom f ,

∂f(x0) =

K∑
k=1

pk∂F (x0, ωk). (7.131)

Note that the above regularity assumption (iii) holds, in particular, if the interior of dom f
is nonempty.

The subdifferentials at the right hand side of (7.131) are taken with respect to x. Note
that ∂F (x0, ωk), and hence ∂f(x0), in (7.131) can be unbounded or empty. Suppose that
all probabilities pk are positive. It follows then from (7.131) that ∂f(x0) is a singleton iff
all subdifferentials ∂F (x0, ωk), k = 1, ...,K, are singletons. That is, f(·) is differentiable
at a point x0 ∈ dom f iff all F (·, ωk) are differentiable at x0.

Remark 55. In the case of a finite set Ω we didn’t have to worry about the measurability
of the multifunction ω 7→ ∂F (x, ω). Consider now a general case where the measurable
space does not need to be finite. Suppose that the function F (x, ω) is random lower semi-
continuous and for a.e. ω ∈ Ω the function F (·, ω) is convex and proper. Then for any
x ∈ Rn, the multifunction ω 7→ ∂F (x, ω) is measurable. Indeed, consider the conjugate

F ∗(z, ω) := sup
x∈Rn

{
zTx− F (x, ω)

}
of the function F (·, ω). It is possible to show that the function F ∗(z, ω) is also random
lower semicontinuous. Moreover, by the Fenchel–Moreau Theorem, F ∗∗ = F and by
convex analysis (see (7.24))

∂F (x, ω) = arg max
z∈Rn

{
zTx− F ∗(z, ω)

}
.

Then it follows by Theorem 7.42 that the multifunction ω 7→ ∂F (x, ω) is measurable.
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In general we have the following extension of formula (7.131).

Theorem 7.52. Suppose that: (i) the function F (x, ω) is random lower semicontinuous,
(ii) for a.e. ω ∈ Ω the function F (·, ω) is convex, (iii) the expectation function f is proper,
(iv) the domain of f has a nonempty interior. Then for any x0 ∈ dom f ,

∂f(x0) =

∫
Ω

∂F (x0, ω) dP (ω) +Ndom f (x0). (7.132)

Proof. Consider a point z ∈
∫

Ω
∂F (x0, ω) dP (ω). By the definition of that integral we

have then that there exists a P -integrable selection G(ω) ∈ ∂F (x0, ω) such that z =∫
Ω
G(ω) dP (ω). Consequently, for a.e. ω ∈ Ω the following holds

F (x, ω)− F (x0, ω) ≥ G(ω)T(x− x0), ∀x ∈ Rn.

By taking the integral of the both sides of the above inequality we obtain that z is a subgra-
dient of f at x0. This shows that∫

Ω

∂F (x0, ω) dP (ω) ⊂ ∂f(x0). (7.133)

In particular, it follows from (7.133) that if ∂f(x0) is empty, then the set at the right hand
side of (7.132) is also empty. If ∂f(x0) is nonempty, i.e., f is subdifferentiable at x0, then
Ndom f (x0) forms the recession cone of ∂f(x0). In any case it follows from (7.133) that∫

Ω

∂F (x0, ω) dP (ω) +Ndom f (x0) ⊂ ∂f(x0). (7.134)

Note that inclusion (7.134) holds irrespective of assumption (iv).
Proving the converse of inclusion (7.134) is a more delicate problem. Let us out-

line main steps of such a proof based on the interchangeability property of the directional
derivative and integral operators. We can assume that both sets at the left and right hand
sides of (7.133) are nonempty. Since the subdifferentials ∂F (x0, ω) are convex, it is quite
easy to show that the set

∫
Ω
∂F (x0, ω) dP (ω) is convex. With some additional effort it

is possible to show that this set is closed. Let us denote by s1(·) and s2(·) the support
functions of the sets at the left and right hand sides of (7.134), respectively. By virtue of
inclusion (7.133), Ndom f (x0) forms the recession cone of the set at the left hand side of
(7.134) as well. Since the tangent cone Tdom f (x0) is the polar of Ndom f (x0), it follows
that s1(h) = s2(h) = +∞ for any h 6∈ Tdom f (x0). Suppose now that (7.132) does not
hold, i.e., inclusion (7.134) is strict. Then s1(h) < s2(h) for some h ∈ Tdom f (x0). More-
over, by assumption (iv), the tangent cone Tdom f (x0) has a nonempty interior and there
exists h̄ in the interior of Tdom f (x0) such that s1(h̄) < s2(h̄). For such h̄ the directional
derivative f ′(x0, h) is finite for all h in a neighborhood of h̄, f ′(x0, h̄) = s2(h̄) and (see
Remark 54 on page 454)

f ′(x0, h̄) =

∫
Ω

F ′ω(x0, h̄) dP (ω).
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Also, F ′ω(x0, h) is finite for a.e. ω and for all h in a neighborhood of h̄, and hence
F ′ω(x0, h̄) = h̄TG(ω) for some G(ω) ∈ ∂F (x0, ω). Moreover, since the multifunction
ω 7→ ∂F (x0, ω) is measurable, we can choose a measurable G(ω) here. Consequently,∫

Ω

F ′ω(x0, h̄) dP (ω) = h̄T
∫

Ω

G(ω) dP (ω).

Since
∫

Ω
G(ω) dP (ω) is a point of the set at the left hand side of (7.133), we obtain that

s1(h̄) ≥ f ′(x0, h̄) = s2(h̄), a contradiction.

In particular, if x0 is an interior point of the domain of f , then under the assumptions
of the above theorem we have that

∂f(x0) =

∫
Ω

∂F (x0, ω) dP (ω). (7.135)

Also it follows from formula (7.132) that f(·) is differentiable at x0 iff x0 is an interior
point of the domain of f and ∂F (x0, ω) is a singleton for a.e. ω ∈ Ω, i.e., F (·, ω) is
differentiable at x0 w.p.1.

7.2.5 Uniform Laws of Large Numbers

Consider a sequence ξi = ξi(ω), i ∈ N, of d-dimensional random vectors defined on
a probability space (Ω,F , P ). As it was discussed in section 7.2.1 we can view ξi as
random vectors supported on a (closed) set Ξ ⊂ Rd, equipped with its Borel sigma algebra
B. We say that ξi, i ∈ N, are identically distributed if each ξi has the same probability
distribution on (Ξ,B). If, moreover, ξi, i ∈ N, are independent, we say that they are
independent identically distributed (iid). Consider a measurable function F : Ξ → R and
the sequence F (ξi), i ∈ N, of random variables. If ξi are identically distributed, then
F (ξi), i ∈ N, are also identically distributed and hence their expectations E[F (ξi)] are
constant, i.e., E[F (ξi)] = E[F (ξ1)] for all i ∈ N. The Law of Large Numbers (LLN)
says that if ξi are identically distributed and the expectation E[F (ξ1)] is well defined, then,
under some regularity conditions17,

N−1
N∑
i=1

F (ξi)→ E
[
F (ξ1)

]
w.p.1 as N →∞. (7.136)

In particular, the classical LLN states that the convergence (7.136) holds if the sequence ξi

is iid.
Consider now a random function F : X ×Ξ→ R, where X is a nonempty subset of

Rn and ξ = ξ(ω) is a random vector supported on the set Ξ. Suppose that the corresponding
expected value function f(x) := E[F (x, ξ)] is well defined and finite valued for every
x ∈ X . Let ξi = ξi(ω), i ∈ N, be an iid sequence of random vectors having the same

17Sometimes (7.136) is referred to as the strong LLN to distinguish it from the weak LLN where the conver-
gence is ensured ‘in probability’ instead of ‘with probability one’. Unless stated otherwise we deal with the strong
LLN.
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distribution as the random vector ξ, and

f̂N (x) := N−1
N∑
i=1

F (x, ξi) (7.137)

be the so-called sample average functions. Note that the sample average function f̂N (x)
depends on the random sequence ξ1, ..., ξN , and hence is a random function. Since we
assumed that all ξi = ξi(ω) are defined on the same probability space, we can view
f̂N (x) = f̂N (x, ω) as a sequence of functions of x ∈ X and ω ∈ Ω.

We have that for every fixed x ∈ X the LLN holds, i.e.,

f̂N (x)→ f(x) w.p.1 as N →∞. (7.138)

This means that for a.e. ω ∈ Ω, the sequence f̂N (x, ω) converges to f(x). That is, for any
ε > 0 and a.e. ω ∈ Ω there exists N∗ = N∗(ε, ω, x) such that

∣∣f̂N (x) − f(x)
∣∣ < ε for

any N ≥ N∗. It should be emphasized that N∗ depends on ε and ω, and also on x ∈ X .
We may refer to (7.138) as a pointwise LLN. In some applications we will need a stronger
form of LLN where the number N∗ can be chosen independent of x ∈ X . That is, we say
that f̂N (x) converges to f(x) w.p.1 uniformly on X if

sup
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣→ 0 w.p.1 as N →∞, (7.139)

and refer to this as the uniform LLN.
We have the following basic result. It is said that F (x, ξ), x ∈ X , is dominated by

an integrable function if there exists a nonnegative valued measurable function g(ξ) such
that E[g(ξ)] < +∞ and for every x ∈ X the inequality |F (x, ξ)| ≤ g(ξ) holds w.p.1.

Theorem 7.53. Let X be a nonempty compact subset of Rn and suppose that: (i) for any
x ∈ X the function F (·, ξ) is continuous at x for almost every ξ ∈ Ξ, (ii) F (x, ξ), x ∈ X ,
is dominated by an integrable function, (iii) the sample is iid. Then the expected value
function f(x) is finite valued and continuous on X , and f̂N (x) converges to f(x) w.p.1
uniformly on X .

Proof. It follows from the assumption (ii) that |f(x)| ≤ E[g(ξ)], and consequently |f(x)| <
+∞ for all x ∈ X . Consider a point x ∈ X and let xk be a sequence of points in X con-
verging to x. By the Lebesgue Dominated Convergence Theorem, assumption (ii) implies
that

lim
k→∞

E [F (xk, ξ)] = E
[

lim
k→∞

F (xk, ξ)

]
.

Since, by (i), F (xk, ξ) → F (x, ξ) w.p.1, it follows that f(xk) → f(x), and hence f(x) is
continuous.

Choose now a point x̄ ∈ X , a sequence γk of positive numbers converging to zero,
and define Vk := {x ∈ X : ‖x− x̄‖ ≤ γk} and

∆k(ξ) := sup
x∈Vk

∣∣F (x, ξ)− F (x̄, ξ)
∣∣. (7.140)
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By the assumption (i) we have that for a.e. ξ ∈ Ξ, ∆k(ξ) tends to zero as k → ∞. More-
over, by the assumption (ii) we have that ∆k(ξ), k ∈ N, are dominated by an integrable
function, and hence by the Lebesgue Dominated Convergence Theorem we have that

lim
k→∞

E [∆k(ξ)] = E
[

lim
k→∞

∆k(ξ)

]
= 0. (7.141)

We also have that

∣∣f̂N (x)− f̂N (x̄)
∣∣ ≤ 1

N

N∑
i=1

∣∣F (x, ξi)− F (x̄, ξi)
∣∣,

and hence

sup
x∈Vk

∣∣f̂N (x)− f̂N (x̄)
∣∣ ≤ 1

N

N∑
i=1

∆k(ξi). (7.142)

Since the sequence ξi is iid, it follows by the LLN that the right hand side of (7.142)
converges w.p.1 to E[∆k(ξ)] as N → ∞. Together with (7.141) this implies that for any
given ε > 0 there exists a neighborhood W of x̄ and N̄ = N̄W (ω) such that w.p.1 for all
N ≥ N̄ it holds that

sup
x∈W∩X

∣∣f̂N (x)− f̂N (x̄)
∣∣ < ε.

Since X is compact, there exists a finite number of points x1, ..., xm ∈ X and cor-
responding neighborhoods W1, ...,Wm covering X such that w.p.1 for N ≥ N̄(ω) :=
max{N̄W1(ω), ..., N̄Wm(ω)} the following holds

sup
x∈Wj∩X

∣∣f̂N (x)− f̂N (xj)
∣∣ < ε, j = 1, ...,m. (7.143)

Furthermore, since f(x) is continuous on X , these neighborhoods can be chosen in such a
way that

sup
x∈Wj∩X

∣∣f(x)− f(xj)
∣∣ < ε, j = 1, ...,m. (7.144)

Again by the LLN we have that f̂N (x) converges pointwise to f(x) w.p.1. Therefore,∣∣f̂N (xj)− f(xj)
∣∣ < ε, j = 1, ...,m, (7.145)

w.p.1 for sufficiently large N ≥ N∗(ω). It follows from (7.143)–(7.145) that w.p.1 for N
larger than max{N̄(ω), N∗(ω)} it holds that

sup
x∈X

∣∣f̂N (x)− f(x)
∣∣ < 3ε. (7.146)

Since ε > 0 was arbitrary, we obtain that (7.139) follows and hence the proof is complete.

Remark 56. It could be noted that the assumption (i) in the above theorem means that
F (·, ξ) is continuous at any given point x ∈ X w.p.1. This does not mean, however, that
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F (·, ξ) is continuous on X w.p.1. Take, for example, F (x, ξ) := 1R+(x − ξ), x, ξ ∈ R,
i.e., F (x, ξ) = 1 if x ≥ ξ and F (x, ξ) = 0 otherwise. We have here that F (·, ξ) is always
discontinuous at x = ξ, and that the expectation E[F (x, ξ)] is equal to the probability
Pr(ξ ≤ x), i.e., f(x) = E[F (x, ξ)] is the cumulative distribution function (cdf) of ξ. The
assumption (i) means here that for any given x, probability of the event “x = ξ” is zero,
i.e., that the cdf of ξ is continuous at x. In this example, the sample average function f̂N (·)
is just the empirical cdf of the considered random sample. The fact that the empirical cdf
converges to its true counterpart uniformly on R w.p.1 is known as the Glivenko-Cantelli
Theorem. In fact the Glivenko-Cantelli Theorem states that the uniform convergence holds
even if the corresponding cdf is discontinuous.

The analysis simplifies further if for a.e. ξ ∈ Ξ the function F (·, ξ) is convex, i.e.,
the random function F (x, ξ) is convex. We can view f̂N (x) = f̂N (x, ω) as a sequence of
random functions defined on a common probability space (Ω,F , P ). Recall definition 7.29
of epiconvergence of extended real valued functions. We say that functions f̂N epiconverge
to f w.p.1, written f̂N

e→ f w.p.1, if for a.e. ω ∈ Ω the functions f̂N (·, ω) epiconverge
to f(·). In the following theorem we assume that function F (x, ξ) : Rn × Ξ → R is an
extended real valued function, i.e., can take values ±∞.

Theorem 7.54. Suppose that for almost every ξ ∈ Ξ the function F (·, ξ) is an extended
real valued convex function, the expected value function f(·) is lower semicontinuous and
its domain, domf , has a nonempty interior, and the pointwise LLN holds. Then f̂N

e→ f
w.p.1.

Proof. It follows from the assumed convexity of F (·, ξ) that the function f(·) is convex
and that w.p.1 the functions f̂N (·) are convex. Let us choose a countable and dense subset
D of Rn. By the pointwise LLN we have that for any x ∈ D, f̂N (x) converges to f(x)
w.p.1 as N →∞. This means that there exists a set Υx ⊂ Ω of P -measure zero such that
for any ω ∈ Ω \Υx, f̂N (x, ω) tends to f(x) as N →∞. Consider the set Υ := ∪x∈DΥx.
Since the set D is countable and P (Υx) = 0 for every x ∈ D, we have that P (Υ) = 0.
We also have that for any ω ∈ Ω \ Υ, f̂N (x, ω) converges to f(x), as N → ∞, pointwise
on D. It follows then by Theorem 7.31 that f̂N (·, ω)

e→ f(·) for any ω ∈ Ω \ Υ. That is,
f̂N (·) e→ f(·) w.p.1.

We also have the following result. It can be proved in a way similar to the proof of
the above theorem by using Theorem 7.31.

Theorem 7.55. Suppose that the random function F (x, ξ) is convex and letX be a compact
subset ofRn. Suppose that the expectation function f(x) is finite valued on a neighborhood
of X and that the pointwise LLN holds for every x in a neighborhood of X . Then f̂N (x)
converges to f(x) w.p.1 uniformly on X .

It is worthwhile to note that in some cases the pointwise LLN can be verified by ad
hoc methods, and hence the above epi-convergence and uniform LLN for convex random
functions can be applied, without the assumption of independence.
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For iid random samples we have the following version of epi-convergence LLN.

Theorem 7.56 (Artstein-Wets). Suppose that: (i) the function F (x, ξ) is random lower
semicontinuous, (ii) for every x̄ ∈ Rn there exists a neighborhood V of x̄ and P -integrable
function h : Ξ→ R such that F (x, ξ) ≥ h(ξ) for all x ∈ V and a.e. ξ ∈ Ξ, (iii) the sample
is iid. Then f̂N

e→ f w.p.1.

We will give a proof for a somewhat more general result in Theorem 7.60 below.

Uniform LLN for Derivatives

Let us discuss now uniform LLN for derivatives of the sample average function. By The-
orem 7.49 we have that, under the corresponding assumptions (A1),(A2) and (A4), the
expectation function is differentiable at the point x0 and the derivatives can be taken in-
side the expectation, i.e., formula (7.126) holds. Now if we assume that the expectation
function is well defined and finite valued, ∇xF (·, ξ) is continuous on X for a.e. ξ ∈ Ξ,
and ‖∇xF (x, ξ)‖, x ∈ X , is dominated by an integrable function, then the assumptions
(A1),(A2) and (A4) hold and by Theorem 7.53 we obtain that f(x) is continuously differ-
entiable on X and∇f̂N (x) converges to∇f(x) w.p.1 uniformly on X . However, in many
interesting applications the function F (·, ξ) is not everywhere differentiable for any ξ ∈ Ξ,
and yet the expectation function is smooth. Such simple example of F (x, ξ) := |x−ξ| was
discussed after Remark 54 on page 454.

Theorem 7.57. Let U ⊂ Rn be an open set, X be a nonempty compact subset of U and
F : U × Ξ → R be a random function. Suppose that: (i) {F (x, ξ)}x∈X is dominated by
an integrable function, (ii) there exists an integrable function C(ξ) such that∣∣F (x′, ξ)− F (x, ξ)

∣∣ ≤ C(ξ)‖x′ − x‖ a.e. ξ ∈ Ξ, ∀x, x′ ∈ U. (7.147)

(iii) for every x ∈ X the function F (·, ξ) is continuously differentiable at x w.p.1. Then
the following holds: (a) the expectation function f(x) is finite valued and continuously
differentiable on X , (b) for all x ∈ X the corresponding derivatives can be taken inside
the integral, i.e.,

∇f(x) = E [∇xF (x, ξ)] , (7.148)

(c) Clarke generalized gradient ∂◦f̂N (x) converges to ∇f(x) w.p.1 uniformly on X , i.e.,

lim
N→∞

sup
x∈X

D
(
∂◦f̂N (x), {∇f(x)}

)
= 0 w.p.1. (7.149)

Proof. Assumptions (i) and (ii) imply that the expectation function f(x) is finite valued
for all x ∈ U . Note that assumption (ii) is basically the same as assumption (A2) and, of
course, assumption (iii) implies assumption (A4) of Theorem 7.49. Consequently, it fol-
lows by Theorem 7.49 that f(·) is differentiable at every point x ∈ X and the interchange-
ability formula (7.148) holds. Moreover, it follows from (7.147) that ‖∇xF (x, ξ)‖ ≤ C(ξ)
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for a.e. ξ and all x ∈ U where ∇xF (x, ξ) is defined. Hence by assumption (iii) and
the Lebesgue Dominated Convergence Theorem, we have that for any sequence xk in U
converging to a point x ∈ X it follows that

lim
k→∞

∇f(xk) = E
[

lim
k→∞

∇xF (xk, ξ)

]
= E [∇xF (x, ξ)] = ∇f(x).

We obtain that f(·) is continuously differentiable on X .
The assertion (c) can be proved by following the same steps as in the proof of Theo-

rem 7.53. That is, consider a point x̄ ∈ X , a sequence Vk of shrinking neighborhoods of x̄
and

∆k(ξ) := sup
x∈V ∗k (ξ)

‖∇xF (x, ξ)−∇xF (x̄, ξ)‖.

Here V ∗k (ξ) denotes the set of points of Vk where F (·, ξ) is differentiable. By assumption
(iii) we have that ∆k(ξ)→ 0 for a.e. ξ. Also

∆k(ξ) ≤ ‖∇xF (x̄, ξ)‖+ sup
x∈V ∗k (ξ)

‖∇xF (x, ξ)‖ ≤ 2C(ξ),

and hence ∆k(ξ), k ∈ N, are dominated by the integrable function 2C(ξ). Consequently

lim
k→∞

E [∆k(ξ)] = E
[

lim
k→∞

δk(ξ)

]
= 0,

and the remainder of the proof can be completed in the same way as the proof of Theorem
7.53 using compactness arguments.

7.2.6 Law of Large Numbers for Risk Measures
Consider settings of section 6.3.3. That is, let (Ω,F , P ) be a nonatomic probability space,
Z = Lp(Ω,F , P ), with p ∈ [1,∞), and ρ : Z → R be a real valued law invariant risk
measure. As it was pointed in Remark 27 on page 319, ρ(HZ) can be considered as a
function of cdf HZ of Z ∈ Z . Let Z1, ..., ZN be a random sample of Z ∈ Z , and

ĤN (z) = N−1
N∑
i=1

1(−∞,z](Z
i)

be the corresponding empirical cdf. Then a sample (empirical) estimate of ρ(Z) is given
by ρ(ĤN ). We have the following LLN for the sample estimates ρ(ĤN ).

Theorem 7.58. Let ρ : Z → R be a real valued law invariant convex risk measure and
ĤN be the empirical cdf associated with an iid sample of Z ∈ Z . Then ρ(ĤN ) converges
to ρ(Z) w.p.1 as N →∞.

Proof. We can view H−1
Z as an element of of the space Ẑ := Lp(Ω̂, F̂ , P̂ ), where

(Ω̂, F̂ , P̂ ) is the standard uniform probability space, and by law invariance of ρ we have
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that ρ(Z) = ρ(H−1
Z ). The function Ĥ−1

N is piecewise constant and hence Ĥ−1
N ∈ Ẑ .

Consider the set C ⊂ [0, 1] of points where function H−1 = H−1
Z is discontinuous. Since

H−1 is monotonically nondecreasing, the set C is countable and hence has measure zero.
By Glivenko-Cantelli theorem we have that w.p.1 ĤN converges to H uniformly on R. It
follows that w.p.1 Ĥ−1

N converges pointwise to H−1 on the set [0, 1] \ C, and hence w.p.1

lim
N→∞

∫ 1

0

|H−1(t)− Ĥ−1
N (t)|pdt =

∫ 1

0

lim
N→∞

|H−1(t)− Ĥ−1
N (t)|pdt = 0, (7.150)

provided the limit and integral operators can be interchanged. This interchangeability is
justified if w.p.1 the sequence ψN (·) := |H−1(·) − Ĥ−1

N (·)|p is uniformly integrable (see
Theorem 7.36).

Let us show that the uniform integrability indeed holds. We have (triangle inequality)
that (∫ 1

0
ψN (·)dt

)1/p

≤
(∫ 1

0
|H−1(t)|pdt

)1/p

+
(∫ 1

0
|Ĥ−1

N (t)|pdt
)1/p

. (7.151)

The term (∫ 1

0

|H−1(t)|pdt
)1/p

=

(∫ ∞
0

|z|pdH(z)

)1/p

= ‖Z‖p, (7.152)

with the right hand side of (7.152) being a finite constant. Therefore it is sufficient to verify
uniform integrability of |Ĥ−1

N (·)|p. We have that

∫ 1

0

|Ĥ−1
N (t)|pdt =

∫ ∞
0

|z|pdĤN (z) =
1

N

N∑
i=1

|Zi|p, (7.153)

and by the Law of Large Numbers N−1
∑N
i=1 |Zi|p converges w.p.1 to E|Z|p. Since Z ∈

Lp(Ω,F , P ) we have that E|Z|p is finite. It follows that
∫ 1

0
|Ĥ−1

N (t)|pdt converges w.p.1
to a finite limit, which implies that w.p.1 |Ĥ−1

N (·)|p are uniformly integrable (see Theorem
7.36).

By (7.150) this shows that Ĥ−1
N converges to H−1 w.p.1 in the norm topology of the

space Lp(Ω̂, F̂ , P̂ ). Since the risk measure ρ is real valued, it is continuous in the norm
topology (Proposition 6.6). It follows that ρ(Ĥ−1

N ) converges to ρ(H−1
Z ) w.p.1.

For example, the LLN holds for the sample estimate of AV@Rα(Z), α ∈ (0, 1]. This
was shown in section 6.6.1 by different arguments. It is interesting to note that for the
Value-at-Risk measure V@Rα(Z) = H−1

Z (1 − α), the LLN does not hold if H−1
Z (·) is

discontinuous at 1− α.

Now consider a function F : Rn×Ξ→ R and random vector ξ = ξ(ω) supported on
the set Ξ ⊂ Rd. With some abuse of the notation we write F (x, ω) for the random function
F (x, ξ(ω)). We assume the following.

(R1) For every x ∈ Rn the random variable Fx(ω) = F (x, ω) belongs to the space Z .
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Then we can consider the composite function φ : Rn → R defined as φ(x) := ρ(Fx).
Let ξi = ξi(ω), i = 1, ..., N , be an iid sample of the random vector ξ, and ĤxN be

the corresponding empirical cdf associated with the sample F (x, ξ1), ..., F (x, ξN ). Then
φ̂N (x) := ρ(ĤxN ) gives the corresponding sample estimate of the composite function
φ(x). By Theorem 7.58 we have that if the risk measure ρ is law invariant and convex, then
for any given x ∈ Rn, φ̂N (x) converges to φ(x) w.p.1. Recall that if F (·, ω) is convex for
a.e. ω ∈ Ω and ρ : Z → R is a convex risk measure, then the composite function φ is
convex. Therefore the following result can be proved in the same way as Theorem 7.54.

Theorem 7.59. Suppose that: (i) condition (R1) holds, (ii) for a.e. ω ∈ Ω the function
F (·, ω) is convex, (iii) the risk measure ρ : Z → R is law invariant and convex. Then the
functions φ : Rn → R and φ̂N : Rn → R are convex and φ̂N

e→ φ w.p.1.

The question of epiconvergence of φ̂N to φ is considerably more delicate in the non-
convex case. Consider the following conditions.

(R2) The function F (x, ω) is random lower semicontinuous.

(R3) For every x̄ ∈ Rn there is a neighborhood Vx̄ of x̄ and a function h ∈ Z such that
F (x, ·) ≥ h(·) for all x ∈ Vx̄.

Theorem 7.60. Suppose that conditions (R1)–(R3) hold and the risk measure ρ : Z → R
is law invariant and convex. Then the functions φ is lower semicontinuous and φ̂N

e→ φ
w.p.1.

Proof. Since the risk measure ρ is convex, it has the dual representation (6.38). Consider
a point x̄ ∈ Rn. By condition (R3) we have for any ζ ∈ A and x ∈ Vx̄ that ζ(·)F (x, ·) ≥
ζ(·)h(·). Moreover, since h ∈ Z and ζ ∈ Z∗ we have that

∫
Ω
ζ(ω)h(ω)dP (ω) is finite.

Hence by Fatou’s lemma it follows that for a sequence xk → x̄,

lim inf
k→∞

∫
Ω
ζ(ω)F (xk, ω)dP (ω) ≥

∫
Ω

lim inf
k→∞

ζ(ω)F (xk, ω)dP (ω)

≥
∫

Ω
ζ(ω)F (x̄, ω)dP (ω),

where the last inequality follows by lower semicontinuity of F (·, ω) (condition (R2)).
That is, function x 7→

∫
Ω
ζ(ω)F (x, ω)dP (ω) − ρ∗(ζ) is lower semicontinuous. Since

φ(x) = ρ(Fx) is given by maximum of such functions, it follows that φ(x) is also lower
semicontinuous (see Proposition 7.24).

In order to show that φ̂N
e→ φ w.p.1 we need to verify the respective conditions

(7.96) and (7.97) of Definition 7.29. That is, to verify the condition (7.96) we have to show
that there exists a set ∆ ⊂ Ω of measure zero such that for any point x̄ ∈ Rn and any
sequence xN converging to x̄ it holds that

lim inf
N→∞

φ̂N (xN , ω) ≥ φ(x̄), ∀ω ∈ Ω \∆. (7.154)

Note that the set ∆ should not depend on x̄. Similarly for the condition (7.97).
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To verify condition (7.154) we proceed as follows. For some sequence γk ↓ 0 of
positive numbers consider Vk := {x ∈ Rn : ‖x− x̄‖ < γk}, and let

ϑk(ω) := inf
x∈Vk

F (x, ω), k ∈ N.

Since F (x, ω) is random lower semicontinuous (condition (R2)), we have that ϑk(ω) is
measurable (Theorem 7.42). By condition (R3) we have ϑk(·) ≥ h(·) for all k large
enough (such that Vk ⊂ Vx̄). Of course, we also have that F (x, ·) ≥ ϑk(·) for any x ∈ Vk.
It follows that ϑk ∈ Z . Consider the dual representation (6.38) of ρ and let

ζ̄ ∈ arg max
ζ∈A

{∫
Ω

ζ(ω)F (x̄, ω)dP (ω)− ρ∗(ζ)

}
(recall that such maximizer exists). That is, ζ̄ ∈ A and

φ(x̄) =

∫
Ω

ζ̄(ω)F (x̄, ω)dP (ω)− ρ∗(ζ̄).

Since ϑk ∈ Z we have by (6.38) that

ρ(ϑk) ≥
∫

Ω

ζ̄(ω)ϑk(ω)dP (ω)− ρ∗(ζ̄).

By condition (R3), ζ̄(·)ϑk(·) is bounded from below, on a neighborhood of x̄, by integrable
function ζ̄(·)h(·), and hence applying Fatou’s lemma we have

lim inf
k→∞

∫
Ω

ζ̄(ω)ϑk(ω)dP (ω) ≥
∫

Ω

lim inf
k→∞

ζ̄(ω)ϑk(ω)dP (ω), (7.155)

and by lower semicontinuity of F (·, ω)∫
Ω

lim inf
k→∞

ζ̄(ω)ϑk(ω)dP (ω)−ρ∗(ζ̄) ≥
∫

Ω

ζ̄(ω)F (x̄, ω)dP (ω)−ρ∗(ζ̄) = φ(x̄). (7.156)

We obtain that
lim inf
k→∞

ρ(ϑk) ≥ φ(x̄). (7.157)

Now let us choose ε > 0. By (7.157) there exists k̄ = k̄(ε) such that

ρ(ϑk̄) ≥ φ(x̄)− ε. (7.158)

Let ρ̂N (ϑk̄) be the empirical estimate of ρ(ϑk̄) based on the same sample as the sample used
for the estimate φ̂N (·), i.e., ρ̂N (ϑk̄) = ρ(H̃N ), where H̃N is the empirical cdf of the sample
Y i = infx∈Vk̄ F (x, ξi), i = 1, ..., N . By Theorem 7.58 we have that ρ̂N (ϑk̄) → ρ(ϑk̄)
w.p.1 as N → ∞. Hence for a.e. ω ∈ Ω there is N̄x̄(ω) such that ρ̂N (ϑk̄) ≥ ρ(ϑk̄) − ε,
for all N ≥ N̄x̄(ω). Together with (7.158) this implies that

ρ̂N (ϑk̄) ≥ φ(x̄)− 2ε (7.159)

for a.e. ω ∈ Ω and N ≥ N̄x̄(ω).
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For any x ∈ Vk̄ we have (for the same random sample) that the empirical cdf of
F (x, ·) dominates the empirical cdf of ϑk̄(·), and hence (see Theorem 6.50)

φ̂N (x) ≥ ρ̂N (ϑk̄). (7.160)

By (7.159) it follows that
inf
x∈Vk̄

φ̂N (x) ≥ φ(x̄)− 2ε (7.161)

for a.e. ω ∈ Ω and N ≥ N̄x̄(ω). That is, there exist N̄(ω), a set Υ ⊂ Ω of measure zero
and a neighborhood V (both depending on x̄ and ε) such that

φ̂N (x) ≥ φ(x̄)− 2ε, (7.162)

for all N ≥ N̄(ω), x ∈ V and ω ∈ Ω \ Υ. It follows that there exists a countable number
of points x1, ..., in Rn, with the corresponding neighborhoods V1, ..., covering Rn. Let
Υ1, ..., be the corresponding sets of measure zero and Ῡ := ∪∞i=1Υi. Note that the set Ῡ
has measure zero, and that Ῡ depends on ε, but not on a particular point of Rn. It follows
that for any x̄ ∈ Rn there is a neighborhood W and N∗(ω) such that (7.162) holds for all
x ∈W , N ≥ N∗(ω) and ω ∈ Ω \ Ῡ.

Consequently for any point x̄ and a sequence xN converging to x̄ we have that

lim inf
N→∞

φ̂N (xN , ω) ≥ φ(x̄)− 2ε (7.163)

for all ω ∈ Ω \ Ῡ. Choose now a sequence of positive numbers εi ↓ 0 and let Ῡi be the
corresponding sets of measure zero. Set ∆ := ∪∞i=1Ῡi. Then (7.163) implies that (7.154)
holds for any x̄ ∈ Rn and any sequence xN converging to x̄. This proves that condition
(7.154) holds for a.e. ω ∈ Ω.

In order to verify the respective condition (7.97) of Definition 7.29 we need the fol-
lowing result. There exists a countable set D ⊂ Rn such that for any point x̄ ∈ Rn there
exists a sequence xk ∈ D converging to x̄ and

lim sup
k→∞

φ(xk) ≤ φ(x̄). (7.164)

Such set D can be constructed as follows. Let A ⊂ R be a countable and dense subset of
R. Consider level sets La := {x ∈ Rn : φ(x) ≤ a}, and let Da, a ∈ A, be a countable
and dense subset of La. (Of course, some of the sets La and Da can be empty.) Define
D := ∪a∈ADa. Clearly the set D is countable. The condition (7.164) also holds. Indeed,
let ak ∈ A be a monotonically decreasing sequence converging to φ(x̄). Note that x̄ ∈ Lak
for all k. Therefore there exists a point xk ∈ Dak such that ‖xk− x̄‖ ≤ 1/k. We have then
that xk → x̄ and φ(xk) ≤ ak, and hence (7.164) follows.

LetD be such a set. Consider a point x̄ ∈ Rn and let xk ∈ D be a sequence of points
converging to x̄ such that (7.164) holds. For a given x ∈ Rn we have by Theorem 7.58 that
φ̂N (x) converges to φ(x) w.p.1. That is, there exists a set Υx of measure zero such that
φ̂N (x, ω) converges to φ(x) for every ω ∈ Ω \Υx. Consider the set Υ̃ := ∪x∈DΥx. Since
the set D is countable, the set Υ̃ has measure zero. We have that φ̂N (x, ω) converges to
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φ(x) for every x ∈ D and ω ∈ Ω \ Υ̃. Hence there is a sequence Nk = Nk(ω) of positive
integers such that for all k,

|φ̂Nk(xk, ω)− φ(xk)| < 1/k, ∀ω ∈ Ω \ Υ̃. (7.165)

Now let x′N be a sequence of points such that x′Nk = xk for all k. We have then that
x′Nk → x̄ and by (7.164) and (7.165) that

lim sup
k→∞

φ̂Nk(x′Nk , ω) ≤ φ(x̄), ∀ω ∈ Ω \ Υ̃. (7.166)

This shows that condition (7.97) holds w.p.1.

7.2.7 Law of Large Numbers for Random Sets and
Subdifferentials

Consider a measurable multifunction A : Ω ⇒ Rn. Assume that A is compact valued,
i.e., A(ω) is a nonempty compact subset of Rn for every ω ∈ Ω. Let us denote by Cn the
space of nonempty compact subsets of Rn. Equipped with the Hausdorff distance between
two sets A,B ∈ Cn, the space Cn becomes a metric space. We equip Cn with the sigma
algebra B of its Borel subsets (generated by the family of closed subsets of Cn). This
makes (Cn,B) a sample (measurable) space. Of course, we can view the multifunction A
as a mapping from Ω into Cn. We have that the multifunction A : Ω ⇒ Rn is measurable
iff the corresponding mapping A : Ω→ Cn is measurable.

We say Ai : Ω → Cn, i ∈ N, is an iid sequence of realizations of A if each
Ai = Ai(ω) has the same probability distribution on (Cn,B) as A(ω), and Ai, i ∈ N,
are independent. We have the following (strong) LLN for an iid sequence of random sets.

Theorem 7.61 (Artstein-Vitale). Let Ai, i ∈ N, be an iid sequence of realizations of a
measurable mapping A : Ω→ Cn such that E

[
‖A(ω)‖

]
<∞. Then

N−1(A1 + ...+AN )→ E [conv(A)] w.p.1 as N →∞, (7.167)

where the convergence is understood in the sense of the Hausdorff metric.

In order to understand the above result let us make the following observations. There
is a one-to-one correspondence between convex sets A ∈ Cn and finite valued convex pos-
itively homogeneous functions on Rn, defined by A 7→ s

A
, where s

A
(h) := supz∈A z

Th
is the support function of A. Note that for any two convex sets A,B ∈ Cn we have that
s
A+B

(·) = s
A

(·) + s
B

(·), and A ⊂ B iff s
A

(·) ≤ s
B

(·). Consequently, for convex sets
A1, A2 ∈ Cn and Br := {x : ‖x‖ ≤ r}, r ≥ 0, we have

D(A1, A2) = inf
{
r ≥ 0 : A1 ⊂ A2 +Br

}
(7.168)

and

inf
{
r ≥ 0 : A1 ⊂ A2 +Br

}
= inf

{
r ≥ 0 : s

A1
(·) ≤ s

A2
(·) + s

Br
(·)
}
. (7.169)
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Moreover, s
Br

(h) = sup‖z‖≤r z
Th = r‖h‖∗, where ‖ · ‖∗ is the dual of the norm ‖ · ‖. We

obtain that
H(A1, A2) = sup

‖h‖∗≤1

∣∣s
A1

(h)− s
A2

(h)
∣∣. (7.170)

It follows that if the multifunction A(ω) is compact and convex valued, then the conver-
gence assertion (7.167) is equivalent to:

sup
‖h‖∗≤1

∣∣∣∣∣N−1
N∑
i=1

s
Ai

(h)− E
[
sA(h)

]∣∣∣∣∣→ 0 w.p.1 as N →∞. (7.171)

Therefore, for compact and convex valued multifunction A(ω), Theorem 7.61 is a direct
consequence of Theorem 7.55. For general compact valued multifunctions, the averaging
operation (in the left hand side of (7.167)) makes a “convexifation” of the limiting set.

Consider now a random lsc convex function F : Rn×Ξ→ R and the corresponding
sample average function f̂N (x) based on an iid sequence ξi = ξi(ω), i ∈ N (see (7.137)).
Recall that for any x ∈ Rn, the multifunction ξ 7→ ∂F (x, ξ) is measurable (see Remark 55
on page 455). In a sense the following result can be viewed as a particular case of Theorem
7.61 for compact convex valued multifunctions.

Theorem 7.62. Let F : Rn × Ξ → R be a random lsc convex function and f̂N (x) be
the corresponding sample average functions based on an iid sequence ξi. Suppose that the
expectation function f(x) is well defined and finite valued in a neighborhood of a point
x̄ ∈ Rn. Then

H
(
∂f̂N (x̄), ∂f(x̄)

)
→ 0 w.p.1 as N →∞. (7.172)

Proof. By Theorem 7.51 we have that f(x) is directionally differentiable at x̄ and

f ′(x̄, h) = E
[
F ′ξ(x̄, h)

]
. (7.173)

Note that since f(·) is finite valued near x̄, the directional derivative f ′(x̄, ·) is finite valued
as well. We also have that

f̂ ′N (x̄, h) = N−1
N∑
i=1

F ′ξi(x̄, h). (7.174)

Therefore, by the LLN it follows that f̂ ′N (x̄, ·) converges to f ′(x̄, ·) pointwise w.p.1 as
N → ∞. Consequently, by Theorem 7.55 we obtain that f̂ ′N (x̄, ·) converges to f ′(x̄, ·)
w.p.1 uniformly on the set {h : ‖h‖∗ ≤ 1}. Since f̂ ′N (x̄, ·) is the support function of the
set ∂f̂N (x̄), it follows by (7.170) that ∂f̂N (x̄) converges (in the Hausdorff metric) w.p.1
to E

[
∂F (x̄, ξ)

]
. It remains to note that by Theorem 7.52 we have E

[
∂F (x̄, ξ)

]
= ∂f(x̄).

The problem in trying to extend the pointwise convergence (7.172) to a uniform type
of convergence is that the multifunction x 7→ ∂f(x) is not continuous even if f(x) is
convex real valued.18

18This multifunction is upper semicontinuous in the sense that if the function f(·) is convex and continuous at
x̄, then limx→x̄ D

(
∂f(x), ∂f(x̄)

)
= 0.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 469 — #481 i
i

i
i

i
i

7.2. Probability 469

Let us consider now the ε-subdifferential, ε ≥ 0, of a convex real valued function
f : Rn → R, defined as

∂εf(x̄) :=
{
z ∈ Rn : f(x)− f(x̄) ≥ zT(x− x̄)− ε, ∀x ∈ Rn

}
. (7.175)

Clearly for ε = 0, the ε-subdifferential coincides with the usual subdifferential (at the
respective point). It is possible to show that for ε > 0 the multifunction x 7→ ∂εf(x) is
continuous (in the Hausdorff metric) on Rn.

Theorem 7.63. Let gk : Rn → R, k ∈ N, be a sequence of convex real valued (determin-
istic) functions. Suppose that for every x ∈ Rn the sequence gk(x), k ∈ N, converges to a
finite limit g(x), i.e., functions gk(·) converge pointwise to the function g(·). Then the func-
tion g(x) is convex, and for any ε > 0 the ε-subdifferentials ∂εgk(·) converge uniformly to
∂εg(·) on any nonempty compact set X ⊂ Rn, i.e.,

lim
k→∞

sup
x∈X

H
(
∂εgk(x), ∂εg(x)

)
= 0. (7.176)

Proof. Convexity of g(·) means that

g(tx1 + (1− t)x2) ≤ tg(x1) + (1− t)g(x2), ∀x1, x2 ∈ Rn, ∀t ∈ [0, 1].

This follows from convexity of functions gk(·) by passing to the limit.
By continuity and compactness arguments we have that in order to prove (7.176) it

suffices to show that if xk is a sequence of points converging to a point x̄, then the Haus-
dorff distance H

(
∂εgk(xk), ∂εg(x̄)

)
tends to zero as k → ∞. Consider the ε-directional

derivative of g at x:

g′ε(x, h) := inf
t>0

g(x+ th)− g(x) + ε

t
. (7.177)

It is known that g′ε(x, ·) is the support function of the set ∂εg(x). Therefore, since conver-
gence of a sequence of nonempty convex compact sets in the Hausdorff metric is equivalent
to the pointwise convergence of the corresponding support functions, it suffices to show that
for any given h ∈ Rn:

lim
k→∞

g′kε(xk, h) = g′ε(x̄, h).

Let us fix t > 0. Then

lim sup
k→∞

g′kε(xk, h) ≤ lim sup
k→∞

gk(xk + th)− gk(xk) + ε

t
=
g(x̄+ th)− g(x̄) + ε

t
.

Since t > 0 was arbitrary this implies that

lim sup
k→∞

g′kε(xk, h) ≤ g′ε(x̄, h).

Now let us suppose for a moment that the minimum of t−1 [g(x̄+ th)− g(x̄) + ε],
over t > 0, is attained on a bounded set Tε ⊂ R+. It follows then by convexity that for
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k large enough, t−1 [gk(xk + th)− gk(xk) + ε] attains its minimum over t > 0, say at a
point tk, and dist(tk, Tε)→ 0. Note that inf Tε > 0. Consequently

lim inf
k→∞

g′kε(xk, h) = lim inf
k→∞

gk(xk + tkh)− gk(xk) + ε

tk
≥ g′ε(x̄, h).

In the general case the proof can be completed by adding the term α‖x − x̄‖2, α > 0, to
the functions gk(x) and g(x) and passing to the limit α ↓ 0.

The above result is deterministic. It can be easily translated into the stochastic frame-
work as follows.

Theorem 7.64. Suppose that the random function F (x, ξ) is convex, and for every x ∈ Rn
the expectation f(x) is well defined and finite and the sample average f̂N (x) converges
to f(x) w.p.1. Then for any ε > 0 the ε-subdifferentials ∂εf̂N (x) converge uniformly to
∂εf(x) w.p.1 on any nonempty compact set X ⊂ Rn, i.e.,

sup
x∈X

H
(
∂εf̂N (x), ∂εf(x)

)
→ 0 w.p.1 as N →∞. (7.178)

Proof. In a way similar to the proof of Theorem 7.55 it can be shown that for a.e. ω ∈
Ω, f̂N (x) converges pointwise to f(x) on a countable and dense subset of Rn. By the
convexity arguments it follows that w.p.1, f̂N (x) converges pointwise to f(x) on Rn (see
Theorem 7.31), and hence the proof can be completed by applying Theorem 7.63.

Note that the assumption that the expectation function f(·) is finite valued on Rn
implies that F (·, ξ) is finite valued for a.e. ξ, and since F (·, ξ) is convex it follows
that F (·, ξ) is continuous. Consequently, it follows that F (x, ξ) is a Carathéodory func-
tion, and hence is random lower semicontinuous. Note also that the equality ∂εf̂N (x) =

N−1
∑N
i=1 ∂εF (x, ξi) holds for ε = 0 (by the Moreau-Rockafellar Theorem), but does not

hold for ε > 0 and N > 1.

7.2.8 Delta Method
In this section we discuss the so-called Delta method approach to asymptotic analysis of
stochastic problems. Let Zk, k ∈ N, be a sequence of random variables converging in
distribution to a random variable Z, denoted Zk

D→ Z.

Remark 57. It can be noted that convergence in distribution does not imply convergence of
the expected values E[Zk] to E[Z], as k → ∞, even if all these expected values are finite.
This implication holds under the additional condition that Zk are uniformly integrable, that
is

lim
c→∞

sup
k∈N

E [Zk(c)] = 0, (7.179)

where Zk(c) := |Zk| if |Zk| ≥ c, and Zk(c) := 0 otherwise. A simple sufficient condition
ensuring uniform integrability, and hence the implication that Zk

D→ Z implies E[Zk] →
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E[Z], is the following: there exists ε > 0 such that supk∈N E
[
|Zk|1+ε

]
< ∞. Indeed, for

c > 0 we have
E [Zk(c)] ≤ c−εE

[
Zk(c)1+ε

]
≤ c−εE

[
|Zk|1+ε

]
,

from which the assertion follows.

Remark 58 (stochastic order notation). The notation Op(·) and op(·) stands for a proba-
bilistic analogue of the usual order notation O(·) and o(·), respectively. That is, let Xk and
Zk be sequences of random variables. It is written that Zk = Op(Xk) if for any ε > 0 there
exists c > 0 such that Pr (|Zk/Xk| > c) ≤ ε for all k ∈ N. It is written that Zk = op(Xk)
if for any ε > 0 it holds that limk→∞ Pr (|Zk/Xk| > ε) = 0. Usually this is used with
the sequence Xk being deterministic. In particular, the notation Zk = Op(1) asserts that
the sequence Zk is bounded in probability, and Zk = op(1) means that the sequence Zk
converges in probability to zero.

First Order Delta Method

In order to investigate asymptotic properties of sample estimators it will be convenient to
use the Delta method, which we are going to discuss now. Let YN ∈ Rd be a sequence of
random vectors, converging in probability to a vector µ ∈ Rd. Suppose that there exists a
sequence τN of positive numbers, tending to infinity, such that τN (YN − µ) converges in
distribution to a random vector Y , i.e., τN (YN − µ)

D→ Y . Let G : Rd → Rm be a vector
valued function, differentiable at µ. That is

G(y)−G(µ) = J(y − µ) + r(y), (7.180)

where J := ∇G(µ) is the m × d Jacobian matrix of G at µ, and the remainder r(y) is of
order o(‖y − µ‖), i.e., r(y)/‖y − µ‖ → 0 as y → µ. It follows from (7.180) that

τN [G(YN )−G(µ)] = J [τN (YN − µ)] + τNr(YN ). (7.181)

Since τN (YN −µ) converges in distribution, it is bounded in probability, and hence ‖YN −
µ‖ is of stochastic order Op(τ−1

N ). It follows that

r(YN ) = o(‖YN − µ‖) = op(τ
−1
N ),

and hence τNr(YN ) converges in probability to zero. Consequently we obtain by (7.181)
that

τN [G(YN )−G(µ)]
D→ JY. (7.182)

This formula is routinely employed in multivariate analysis and is known as the (finite di-
mensional) Delta Theorem. In particular, suppose that N1/2(YN − µ) converges in distri-
bution to a (multivariate) normal distribution with zero mean vector and covariance matrix
Σ, written N1/2(YN − µ)

D→ N (0, Σ). Often, this can be ensured by an application of the
Central Limit Theorem. Then it follows by (7.182) that

N1/2 [G(YN )−G(µ)]
D→ N (0, JΣJT). (7.183)
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We need to extend this method in several directions. The random functions f̂N (·)
can be viewed as random elements in an appropriate functional space. This motivates us to
extend formula (7.182) to a Banach space setting. Let B1 and B2 be two Banach spaces,
and G : B1 → B2 be a mapping. Suppose that G is directionally differentiable at a
considered point µ ∈ B1, i.e., the limit

G′µ(d) := lim
t↓0

G(µ+ td)−G(µ)

t
(7.184)

exists for all d ∈ B1. If, in addition, the directional derivative G′µ : B1 → B2 is linear and
continuous, then it is said that G is Gâteaux differentiable at µ. Note that, in any case, the
directional derivative G′µ(·) is positively homogeneous, that is G′µ(αd) = αG′µ(d) for any
α ≥ 0 and d ∈ B1.

It follows from (7.184) that

G(µ+ d)−G(µ) = G′µ(d) + r(d)

with the remainder r(d) being “small” along any fixed direction d, i.e., r(td)/t → 0 as
t ↓ 0. This property is not sufficient, however, to neglect the remainder term in the cor-
responding asymptotic expansion and we need a stronger notion of directional differentia-
bility. It is said that G is directionally differentiable at µ in the sense of Hadamard if the
directional derivative G′µ(d) exists for all d ∈ B1 and, moreover,

G′µ(d) = lim
t↓0
d′→d

G(µ+ td′)−G(µ)

t
. (7.185)

Proposition 7.65. Let B1 and B2 be Banach spaces, G : B1 → B2 and µ ∈ B1. Then
the following holds. (i) If G(·) is Hadamard directionally differentiable at µ, then the
directional derivative G′µ(·) is continuous. (ii) If G(·) is Lipschitz continuous in a neigh-
borhood of µ and directionally differentiable at µ, then G(·) is Hadamard directionally
differentiable at µ.

The above properties can a be proved in a way similar to the proof of Theorem 7.2.
We also have the following chain rule.

Proposition 7.66 (Chain Rule). Let B1, B2 and B3 be Banach spaces, and G : B1 → B2

and F : B2 → B3 be mappings. Suppose that G is directionally differentiable at a point
µ ∈ B1 and F is Hadamard directionally differentiable at η := G(µ). Then the composite
mapping F ◦G : B1 → B3 is directionally differentiable at µ and

(F ◦G)′(µ, d) = F ′(η,G′(µ, d)), ∀d ∈ B1. (7.186)

Proof. Since G is directionally differentiable at µ, we have for t ≥ 0 and d ∈ B1 that

G(µ+ td) = G(µ) + tG′(µ, d) + o(t).

Since F is Hadamard directionally differentiable at η := G(µ), it follows that

F (G(µ+ td)) = F (G(µ) + tG′(µ, d) + o(t)) = F (η) + tF ′(η,G′(µ, d)) + o(t).
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This implies that F ◦G is directionally differentiable at µ and formula (7.186) holds.

Now let B1 and B2 be equipped with their Borel σ-algebras B1 and B2, respectively.
An F-measurable mapping from a probability space (Ω,F , P ) into B1 is called a random
element of B1. Consider a sequence XN of random elements of B1. It is said that XN

converges in distribution (weakly) to a random element Y of B1, and denoted XN
D→ Y ,

if the expected values E [f(XN )] converge to E [f(Y )], as N → ∞, for any bounded and
continuous function f : B1 → R. Let us formulate now the first version of the Delta
Theorem. Recall that a Banach space is said to be separable if it has a countable dense
subset.

Theorem 7.67 (Delta Theorem). Let B1 and B2 be Banach spaces, equipped with their
Borel σ-algebras, YN be a sequence of random elements of B1, G : B1 → B2 be a map-
ping, and τN be a sequence of positive numbers tending to infinity as N → ∞. Suppose
that the space B1 is separable, the mapping G is Hadamard directionally differentiable
at a point µ ∈ B1, and the sequence XN := τN (YN − µ) converges in distribution to a
random element Y of B1. Then

τN [G(YN )−G(µ)]
D→ G′µ(Y ), (7.187)

and
τN [G(YN )−G(µ)] = G′µ(XN ) + op(1). (7.188)

Note that, because of the Hadamard directional differentiability of G, the mapping
G′µ : B1 → B2 is continuous, and hence is measurable with respect to the Borel σ-algebras
of B1 and B2. The above infinite dimensional version of the Delta Theorem can be proved
easily by using the following Skorohod-Dudley almost sure representation theorem.

Theorem 7.68 (Representation Theorem). Suppose that a sequence of random elements
XN , of a separable Banach space B, converges in distribution to a random element Y .
Then there exists a sequence X ′N , Y ′, defined on a single probability space, such that

X ′N
D∼ XN , for all N , Y ′ D∼ Y and X ′N → Y ′ with probability one.

Here Y ′ D∼ Y means that the probability measures induced by Y ′ and Y coincide.

Proof. [of Theorem 7.67] Consider the sequence XN := τN (YN − µ) of random elements
ofB1. By the Representation Theorem, there exists a sequenceX ′N , Y ′, defined on a single

probability space, such that X ′N
D∼ XN , Y ′ D∼ Y and X ′N → Y ′ w.p.1. Consequently for

Y ′N := µ + τ−1
N X ′N , we have Y ′N

D∼ YN . It follows then from Hadamard directional
differentiability of G that

τN [G(Y ′N )−G(µ)]→ G′µ(Y ′) w.p.1. (7.189)

Since convergence with probability one implies convergence in distribution and the terms
in (7.189) have the same distributions as the corresponding terms in (7.187), the asymptotic
result (7.187) follows.
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Now since G′µ(·) is continuous and X ′N → Y ′ w.p.1, we have that

G′µ(X ′N )→ G′µ(Y ′) w.p.1. (7.190)

Together with (7.189) this implies that the difference between G′µ(X ′N ) and the left hand
side of (7.189) tends w.p.1, and hence in probability, to zero. We obtain that

τN [G(Y ′N )−G(µ)] = G′µ [τN (Y ′N − µ)] + op(1),

which implies (7.188).

Let us now formulate the second version of the Delta Theorem where the mapping
G is restricted to a subset K of the space B1. We say that G is Hadamard directionally
differentiable at a point µ tangentially to the set K if for any sequence dN of the form
dN := (yN − µ)/tN , where yN ∈ K and tN ↓ 0, and such that dN → d, the following
limit exists

G′µ(d) = lim
N→∞

G(µ+ tNdN )−G(µ)

tN
. (7.191)

Equivalently the above condition (7.191) can be written in the form

G′µ(d) = lim
t↓0

d′→
K
d

G(µ+ td′)−G(µ)

t
, (7.192)

where the notation d′ →
K
d means that d′ → d and µ+ td′ ∈ K.

Since yN ∈ K, and hence µ+ tNdN ∈ K, the mapping G needs only to be defined
on the set K. Recall that the contingent (Bouligand) cone to K at µ, denoted TK(µ), is
formed by vectors d ∈ B such that there exist sequences dN → d and tN ↓ 0 such that
µ+ tNdN ∈ K. Note that TK(µ) is nonempty only if µ belongs to the topological closure
of the set K. If the set K is convex, then the contingent cone TK(µ) coincides with the
corresponding tangent cone. By the above definitions we have that G′µ(·) is defined on the
set TK(µ). The following “tangential” version of the Delta Theorem can be easily proved
in a way similar to the proof of Theorem 7.67.

Theorem 7.69 (Delta Theorem). Let B1 and B2 be Banach spaces, K be a subset of
B1, G : K → B2 be a mapping, and YN be a sequence of random elements of B1.
Suppose that: (i) the space B1 is separable, (ii) the mapping G is Hadamard directionally
differentiable at a point µ tangentially to the set K, (iii) for some sequence τN of positive
numbers tending to infinity, the sequence XN := τN (YN − µ) converges in distribution to
a random element Y , (iv) YN ∈ K, with probability one, for all N large enough. Then

τN [G(YN )−G(µ)]
D→ G′µ(Y ). (7.193)

Moreover, if the set K is convex, then equation (7.188) holds.

Note that it follows from the assumptions (iii) and (iv) that the distribution of Y is
concentrated on the contingent cone TK(µ), and hence the distribution of G′µ(Y ) is well
defined.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 475 — #487 i
i

i
i

i
i

7.2. Probability 475

Second Order Delta Theorem

Our third variant of the Delta Theorem deals with a second order expansion of the mapping
G. That is, suppose that G is directionally differentiable at µ and define

G′′µ(d) := lim
t↓0
d′→d

G(µ+ td′)−G(µ)− tG′µ(d′)
1
2 t

2
. (7.194)

If the mapping G is twice continuously differentiable, then this second order directional
derivative G′′µ(d) coincides with the second order term in the Taylor expansion of G(µ +
d). The above definition of G′′µ(d) makes sense for directionally differentiable mappings.
However, in interesting applications, where it is possible to calculateG′′µ(d), the mappingG
is actually (Gâteaux) differentiable. We say that G is second order Hadamard directionally
differentiable at µ if the second order directional derivativeG′′µ(d), defined in (7.194), exists
for all d ∈ B1. We say that G is second order Hadamard directionally differentiable at µ
tangentially to a set K ⊂ B1 if for all d ∈ TK(µ) the limit

G′′µ(d) = lim
t↓0

d′→
K
d

G(µ+ td′)−G(µ)− tG′µ(d′)
1
2 t

2
(7.195)

exists.
Note that if G is first and second order Hadamard directionally differentiable at µ

tangentially to K, then G′µ(·) and G′′µ(·) are continuous on TK(µ), and that G′′µ(αd) =
α2G′′µ(d) for any α ≥ 0 and d ∈ TK(µ).

Theorem 7.70 (second-order Delta Theorem). Let B1 and B2 be Banach spaces, K be a
convex subset of B1, YN be a sequence of random elements of B1, G : K → B2 be a map-
ping, and τN be a sequence of positive numbers tending to infinity as N → ∞. Suppose
that: (i) the space B1 is separable, (ii) G is first and second order Hadamard direction-
ally differentiable at µ tangentially to the set K, (iii) the sequence XN := τN (YN − µ)
converges in distribution to a random element Y of B1, (iv) YN ∈ K w.p.1 for N large
enough. Then

τ2
N

[
G(YN )−G(µ)−G′µ(YN − µ)

] D→ 1

2
G′′µ(Y ), (7.196)

and
G(YN ) = G(µ) +G′µ(YN − µ) +

1

2
G′′µ(YN − µ) + op(τ

−2
N ). (7.197)

Proof. Let X ′N , Y ′ and Y ′N be elements as in the proof of Theorem 7.67. Recall that their
existence is guaranteed by the Representation Theorem. Then by the definition of G′′µ we
have

τ2
N

[
G(Y ′N )−G(µ)− τ−1

N G′µ(X ′N )
]
→ 1

2
G′′µ(Y ′) w.p.1.

Note thatG′µ(·) is defined on TK(µ) and, sinceK is convex,X ′N = τN (Y ′N−µ) ∈ TK(µ).
Therefore the expression in the left hand side of the above limit is well defined. Since
convergence w.p.1 implies convergence in distribution, formula (7.196) follows. Since
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G′′µ(·) is continuous on TK(µ), and, by convexity of K, Y ′N − µ ∈ TK(µ) w.p.1, we have
that τ2

NG
′′
µ(Y ′N − µ) → G′′µ(Y ′) w.p.1. Since convergence w.p.1 implies convergence in

probability, formula (7.197) then follows.

7.2.9 Exponential Bounds of the Large Deviations Theory
Consider an iid sequence Y1, . . . , YN of replications of a real valued random variable Y ,
and let ZN := N−1

∑N
i=1 Yi be the corresponding sample average. Then for any real

numbers a and t > 0 we have that Pr(ZN ≥ a) = Pr(etZN ≥ eta), and hence, by
Chebyshev’s inequality

Pr(ZN ≥ a) ≤ e−taE
[
etZN

]
= e−ta[M(t/N)]N ,

where M(t) := E
[
etY
]

is the moment generating function of Y . Suppose that Y has
finite mean µ := E[Y ] and let a ≥ µ. By taking the logarithm of both sides of the above
inequality, changing variables t′ = t/N and minimizing over t′ > 0, we obtain

1

N
ln
[
Pr(ZN ≥ a)

]
≤ −I(a), (7.198)

where
I(z) := sup

t∈R
{tz − Λ(t)} (7.199)

is the conjugate of the logarithmic moment generating function Λ(t) := lnM(t). In the
LD theory, I(z) is called the (large deviations) rate function, and the inequality (7.198)
corresponds to the upper bound of Cramér’s LD Theorem.

Note that the moment generating functionM(·) is convex, positive valued,M(0) = 1
and its domain domM is a subinterval of R containing zero. It follows by Theorem 7.49
that M(·) is infinitely differentiable at every interior point of its domain. Moreover, if
a := inf(domM) is finite, then M(·) is right side continuous at a, and similarly for the
b := sup(domM). It follows that M(·), and hence Λ(·), are proper lower semicontinu-
ous functions. The logarithmic moment generating function Λ(·) is also convex. Indeed,
dom Λ = domM and at an interior point t of dom Λ,

Λ′′(t) =
E
[
Y 2etY

]
E
[
etY
]
− E

[
Y etY

]2
M(t)2

. (7.200)

Moreover, the matrix
[
Y 2etY Y etY

Y etY etY

]
is positive semidefinite, and hence its expecta-

tion is also a positive semidefinite matrix. Consequently the determinant of the later matrix
is nonnegative, i.e.,

E
[
Y 2etY

]
E
[
etY
]
− E

[
Y etY

]2 ≥ 0.

We obtain that Λ′′(·) is nonnegative at every point of the interior of dom Λ, and hence Λ(·)
is convex.

Note that the constraint t > 0 is removed in the above definition of the rate function
I(·). This is because of the following. Consider the function ψ(t) := ta − Λ(t). The
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function Λ(t) is convex, and hence ψ(t) is concave. Suppose that the moment generating
function M(·) is finite valued at some t̄ > 0. Then M(t) is finite for all t ∈ [0, t̄ ] and right
side differentiable at t = 0. Moreover, the right side derivative of M(t) at t = 0 is µ, and
hence the right side derivative of ψ(t) at t = 0 is positive if a > µ. Consequently in that
case ψ(t) > ψ(0) for all t > 0 small enough, and hence I(a) > 0 and the supremum in
(7.199) is not changed if the constraint t > 0 is removed. If a = µ, then the supremum in
(7.199) is attained at t = 0 and hence I(a) = 0. In that case the inequality (7.198) trivially
holds. Now if M(t) = +∞ for all t > 0, then I(a) = 0 for any a ≥ µ and the inequality
(7.198) trivially holds.

For a ≤ µ the upper bound (7.198) takes the form

1

N
ln
[
Pr(ZN ≤ a)

]
≤ −I(a), (7.201)

which of course can be written as

Pr(ZN ≤ a) ≤ e−I(a)N (7.202)

The rate function I(z) is convex and has the following properties. Suppose that the
random variable Y has finite mean µ := E[Y ]. Then Λ′(0) = µ and hence the maximum
in the right hand side of (7.199) is attained at t∗ = 0. It follows that I(µ) = 0 and

I ′(µ) = t∗µ− Λ′(t∗) = −Λ(0) = 0,

and hence I(z) attains its minimum at z = µ. Suppose, further, that the moment generating
function M(t) is finite valued for all t in a neighborhood of t = 0. Then Λ(t) is infinitely
differentiable at t = 0, and Λ′(0) = µ and Λ′′(0) = σ2, where σ2 := Var[Y ]. It follows
by the above discussion that in that case I(a) > 0 for any a 6= µ. We also have then that
I ′(µ) = 0 and I ′′(µ) = σ−2, and hence by Taylor’s expansion,

I(a) =
(a− µ)2

2σ2
+ o
(
|a− µ|2

)
. (7.203)

If Y has normal distribution N(µ, σ2), then its logarithmic moment generating function is
Λ(t) = µt+ σ2t2/2. In that case

I(a) =
(a− µ)2

2σ2
. (7.204)

The constant I(a) in (7.198) gives, in a sense, the best possible exponential rate at
which the probability Pr(ZN ≥ a) converges to zero. This follows from the lower bound

lim inf
N→∞

1

N
ln
[
Pr(ZN ≥ a)

]
≥ −I(a) (7.205)

of Cramér’s LD Theorem, which holds for a ≥ µ.
Another, closely related, exponential type inequalities can be derived for bounded

random variables.
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Proposition 7.71. Let Y be a random variable such that a ≤ Y ≤ b, for some a, b ∈ R,
and E[Y ] = 0. Then

E[etY ] ≤ et
2(b−a)2/8, ∀t ≥ 0. (7.206)

Proof. If Y is identically zero, then (7.206) obviously holds. Therefore we can assume that
Y is not identically zero. Since E[Y ] = 0, it follows that a < 0 and b > 0.

Any Y ∈ [a, b] can be represented as convex combination Y = τa+ (1− τ)b, where
τ = (b− Y )/(b− a). Since ey is a convex function, it follows that

eY ≤ b− Y
b− a

ea +
Y − a
b− a

eb. (7.207)

Taking expectation from both sides of (7.207) and using E[Y ] = 0, we obtain

E
[
eY
]
≤ b

b− a
ea − a

b− a
eb. (7.208)

The right hand side of (7.207) can be written as eg(u), where u := b− a, g(x) := −αx +
ln(1− α+ αex) and α := −a/(b− a). Note that α > 0 and 1− α > 0.

Let us observe that g(0) = g′(0) = 0 and

g′′(x) =
α(1− α)

(1− α)2e−x + α2ex + 2α(1− α)
. (7.209)

Moreover, (1−α)2e−x+α2ex ≥ 2α(1−α), and hence g′′(x) ≤ 1/4 for any x. By Taylor
expansion of g(·) at zero, we have g(u) = u2g′′(ũ)/2 for some ũ ∈ (0, u). It follows that
g(u) ≤ u2/8 = (b− a)2/8, and hence

E[eY ] ≤ e(b−a)2/8. (7.210)

Finally, (7.206) follows from (7.210) by rescaling Y to tY for t ≥ 0.

In particular, if |Y | ≤ b and E[Y ] = 0, then | − Y | ≤ b and E[−Y ] = 0 as well, and
hence by (7.206) we have

E[etY ] ≤ et
2b2/2, ∀t ∈ R. (7.211)

Let Y be a (real valued) random variable supported on a bounded interval [a, b] ⊂ R,
and µ := E [Y ]. Then it follows from (7.206) that the rate function of Y − µ satisfies

I(z) ≥ sup
t∈R

{
tz − t2(b− a)2/8

}
= 2z2/(b− a)2.

Together with (7.202) this implies the following. Let Y1, ..., YN be an iid sequence of
realizations of Y and ZN be the corresponding average. Then for τ > 0 it holds that

Pr (ZN ≥ µ+ τ) ≤ e−2τ2N/(b−a)2

. (7.212)

The bound (7.212) is often referred to as Hoeffding inequality.
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In particular, let W ∼ B(p, n) be a random variable having Binomial distribution,
i.e., Pr(W = k) =

(
n
k

)
pk(1 − p)n−k, k = 0, ..., n. Recall that W can be represented as

W = Y1 + ...+Yn, where Y1, ..., Yn is an iid sequence of Bernoulli random variables with
Pr(Yi = 1) = p and Pr(Yi = 0) = 1− p. It follows from Hoeffding’s inequality that for a
nonnegative integer k ≤ np,

Pr (W ≤ k) ≤ exp

{
−2(np− k)2

n

}
. (7.213)

For small p it is possible to improve the above estimate as follows. For Y ∼ Bernoulli(p)
we have

E[etY ] = pet + 1− p = 1− p(1− et).
By using the inequality e−x ≥ 1− x with x := p(1− et), we obtain

E[etY ] ≤ exp[p(et − 1)],

and hence for z > 0,

I(z) := sup
t∈R

{
tz − lnE[etY ]

}
≥ sup

t∈R

{
tz − p(et − 1)

}
= z ln

z

p
− z + p.

Moreover, since ln(1 + x) ≥ x− x2/2 for x ≥ 0, we obtain

I(z) ≥ (z − p)2

2p
for z ≥ p.

By (7.198) it follows that

Pr
(
n−1W ≥ z

)
≤ exp

{
−n(z − p)2/(2p)

}
, for z ≥ p. (7.214)

Alternatively, this can be written as

Pr (W ≤ k) ≤ exp

{
− (np− k)2

2pn

}
, (7.215)

for a nonnegative integer k ≤ np. The above inequality (7.215) is often called Chernoff
inequality. For small p it can be significantly better than Hoeffding inequality (7.213).

The above, one dimensional, LD results can be extended to multivariate and even
infinite dimensional settings, and also to non iid random sequences. In particular, suppose
that Y is a d-dimensional random vector and let µ := E[Y ] be its mean vector. We can
associate with Y its moment generating function M(t), of t ∈ Rd, and the rate function
I(z) defined in the same way as in (7.199) with the supremum taken over t ∈ Rd and tz
denoting the standard scalar product of vectors t, z ∈ Rd. Consider a (Borel) measurable
set A ⊂ Rd. Then, under certain regularity conditions, the following Large Deviations
Principle holds:

− infz∈int(A) I(z) ≤ lim infN→∞N−1 ln [Pr(ZN ∈ A)]
≤ lim supN→∞N−1 ln [Pr(ZN ∈ A)]
≤ − infz∈cl(A) I(z),

(7.216)
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where int(A) and cl(A) denote the interior and topological closure, respectively, of the
set A. In the above one dimensional setting, the LD principle (7.216) was derived for sets
A := [a,+∞).

We have that if µ ∈ int(A) and the moment generating functionM(t) is finite valued
for all t in a neighborhood of 0 ∈ Rd, then infz∈Rd\(intA) I(z) is positive. Moreover, if the
sequence is iid, then

lim sup
N→∞

N−1 ln [Pr(ZN 6∈ A)] < 0, (7.217)

i.e., the probability Pr(ZN ∈ A) = 1− Pr(ZN 6∈ A) approaches one exponentially fast as
N tends to infinity.

Finally, let us derive the following useful result.

Proposition 7.72. Let ξ1, ξ2, ... be a sequence of iid random variables (vectors), σt > 0,
t = 1, ..., be a sequence of deterministic numbers and φt = φt(ξ[t]) be (measurable)
functions of ξ[t] = (ξ1, ..., ξt) such that

E
[
φt|ξ[t−1]

]
= 0 and E

[
exp{φ2

t/σ
2
t }|ξ[t−1]

]
≤ exp{1} w.p.1. (7.218)

Then for any Θ ≥ 0 :

Pr

{∑N
t=1 φt ≥ Θ

√∑N
t=1 σ

2
t

}
≤ exp{−Θ2/3}. (7.219)

Proof. Let us set φ̃t := φt/σt. By condition (7.218) we have that E
[
φ̃t|ξ[t−1]

]
= 0 and

E
[

exp
{
φ̃2
t

}
|ξ[t−1]

]
≤ exp{1} w.p.1. By Jensen inequality it follows that for any a ≥ 1:

E
[
exp{aφ̃2

t}|ξ[t−1]

]
= E

[
(exp{φ̃2

t})a|ξ[t−1]

]
≤
(
E
[
exp{φ̃2

t}|ξ[t−1]

])a
≤ exp{a}.

We also have that exp{x} ≤ x+ exp{9x2/16} for all x (this inequality can be verified by
direct calculations), and hence for any λ ∈ [0, 4/3]:

E
[
exp{λφ̃t}|ξ[t−1]

]
≤ E

[
exp{(9λ2/16)φ̃2

t}|ξ[t−1]

]
≤ exp{9λ2/16}. (7.220)

Moreover, we have that λx ≤ 3
8λ

2 + 2
3x

2 for any λ and x, and hence

E
[
exp{λφ̃t}|ξ[t−1]

]
≤ exp{3λ2/8}E

[
exp{2φ̃2

t/3}|ξ[t−1]

]
≤ exp{2/3 + 3λ2/8}.

Combining the latter inequality with (7.220), we get

E
[
exp{λφ̃t}|ξ[t−1]

]
≤ exp{3λ2/4}, ∀λ ≥ 0.

Going back to φt, the above inequality reads

E
[
exp{γφt}|ξ[t−1]

]
≤ exp{3γ2σ2

t /4}, ∀γ ≥ 0. (7.221)
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Now, since φτ is a deterministic function of ξ[τ ] and using (7.221), we obtain for any γ ≥ 0:

E
[
exp

{
γ
∑t
τ=1 φτ

}]
= E

[
exp

{
γ
∑t−1
τ=1 φτ

}
E
(
exp{γφt}|ξ[t−1]

)]
≤ exp{3γ2σ2

t /4}E
[
exp{γ

∑t−1
τ=1 φτ}

]
,

and hence
E
[
exp

{
γ
∑N
t=1 φt

}]
≤ exp

{
3γ2

∑N
t=1 σ

2
t /4
}
. (7.222)

By Chebyshev’s inequality, we have for γ > 0 and Θ:

Pr

{∑N
t=1 φt ≥ Θ

√∑N
t=1σ

2
t

}
= Pr

{
exp

[
γ
∑N
t=1 φt

]
≥ exp

[
γΘ
√∑N

t=1σ
2
t

]}
≤ exp

[
−γΘ

√∑N
t=1σ

2
t

]
E
{

exp
[
γ
∑N
t=1 φt

]}
.

Together with (7.222) this implies for Θ ≥ 0:

Pr

{∑N
t=1φt ≥ Θ

√∑N
t=1σ

2
t

}
≤ inf

γ>0
exp

{
3
4γ

2
∑N
t=1σ

2
t − γΘ

√∑N
t=1σ

2
t

}
= exp

{
−Θ2/3

}
.

This completes the proof.

7.2.10 Uniform Exponential Bounds
Consider the setting of section 7.2.5 with a sequence ξi, i ∈ N, of random realizations of an
d-dimensional random vector ξ = ξ(ω), a function F : X ×Ξ→ R and the corresponding
sample average function f̂N (x). We assume here that the sequence ξi, i ∈ N, is iid, the
set X ⊂ Rn is nonempty and compact and the expectation function f(x) = E[F (x, ξ)] is
well defined and finite valued for all x ∈ X . We discuss now uniform exponential rates of
convergence of f̂N (x) to f(x). Denote by

Mx(t) := E
[
et(F (x,ξ)−f(x))

]
the moment generating function of the random variable F (x, ξ) − f(x). Let us make the
following assumptions.

(C1) For every x ∈ X the moment generating function Mx(t) is finite valued for all t in a
neighborhood of zero.

(C2) There exists a (measurable) function κ : Ξ→ R+ such that

|F (x′, ξ)− F (x, ξ)| ≤ κ(ξ)‖x′ − x‖ (7.223)

for all ξ ∈ Ξ and all x′, x ∈ X .

(C3) The moment generating function Mκ(t) := E
[
etκ(ξ)

]
of κ(ξ) is finite valued for all

t in a neighborhood of zero.
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Theorem 7.73. Suppose that conditions (C1)–(C3) hold and the set X is compact. Then
for any ε > 0 there exist positive constants C and β = β(ε), independent of N , such that

Pr
{

supx∈X
∣∣f̂N (x)− f(x)

∣∣ ≥ ε} ≤ Ce−Nβ . (7.224)

Proof. By the upper bound (7.198) of Cramér’s Large Deviation Theorem we have that for
any x ∈ X and ε > 0 it holds that

Pr
{
f̂N (x)− f(x) ≥ ε

}
≤ exp{−NIx(ε)}, (7.225)

where
Ix(z) := sup

t∈R

{
zt− lnMx(t)

}
(7.226)

is the LD rate function of random variable F (x, ξ)− f(x). Similarly

Pr
{
f̂N (x)− f(x) ≤ −ε

}
≤ exp{−NIx(−ε)},

and hence

Pr
{∣∣f̂N (x)− f(x)

∣∣ ≥ ε} ≤ exp {−NIx(ε)}+ exp {−NIx(−ε)} . (7.227)

By assumption (C1) we have that both Ix(ε) and Ix(−ε) are positive for every x ∈ X .
For a ν > 0, let x̄1, ..., x̄K ∈ X be such that for every x ∈ X there exists x̄i,

i ∈ {1, ...,K}, such that ‖x − x̄i‖ ≤ ν, i.e., {x̄1, ..., x̄K} is a ν-net in X . We can choose
this net in such a way that

K ≤ [%D/ν]
n
, (7.228)

where
D := supx′,x∈X ‖x′ − x‖

is the diameter of X and % is a constant depending on the chosen norm ‖ · ‖. By (7.223) we
have that

|f(x′)− f(x)| ≤ L‖x′ − x‖, (7.229)

where L := E[κ(ξ)] is finite by assumption (C3). Moreover,∣∣f̂N (x′)− f̂N (x)
∣∣ ≤ κ̂N‖x′ − x‖, (7.230)

where κ̂N := N−1
∑N
j=1 κ(ξj). Again, because of condition (C3), by Cramér’s LD Theo-

rem we have that for any L′ > L there is a constant ` > 0 such that

Pr {κ̂N ≥ L′} ≤ exp{−N`}. (7.231)

Consider
Zi := f̂N (x̄i)− f(x̄i), i = 1, ...,K.

We have that the event {max1≤i≤K |Zi| ≥ ε} is equal to the union of the events {|Zi| ≥ ε},
i = 1, ...,K, and hence

Pr {max1≤i≤K |Zi| ≥ ε} ≤
∑K
i=1 Pr

(∣∣Zi∣∣ ≥ ε) .
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Together with (7.227) this implies that

Pr

{
max

1≤i≤K

∣∣f̂N (x̄i)− f(x̄i)
∣∣ ≥ ε} ≤ 2

K∑
i=1

exp
{
−N [Ix̄i(ε) ∧ Ix̄i(−ε)]

}
. (7.232)

For an x ∈ X let i(x) ∈ arg min1≤i≤K ‖x − x̄i‖. By construction of the ν-net we have
that ‖x− x̄i(x)‖ ≤ ν for every x ∈ X . Then∣∣f̂N (x)− f(x)

∣∣ ≤ ∣∣f̂N (x)− f̂N (x̄i(x))
∣∣+
∣∣f̂N (x̄i(x))− f(x̄i(x))

∣∣+
∣∣f(x̄i(x))− f(x)

∣∣
≤ κ̂Nν +

∣∣f̂N (x̄i(x))− f(x̄i(x))
∣∣+ Lν.

Let us take now a ν-net with such ν that Lν = ε/4, i.e., ν := ε/(4L). Then

Pr

{
sup
x∈X

∣∣f̂N (x)− f(x)
∣∣ ≥ ε} ≤ Pr

{
κ̂Nν + max

1≤i≤K

∣∣f̂N (x̄i)− f(x̄i)
∣∣ ≥ 3ε/4

}
.

Moreover, we have that
Pr {κ̂Nν ≥ ε/2} ≤ exp{−N`},

where ` is a positive constant specified in (7.231) for L′ := 2L. Consequently

Pr
{

supx∈X
∣∣f̂N (x)− f(x)

∣∣ ≥ ε}
≤ exp{−N`}+ Pr

{
max1≤i≤K

∣∣f̂N (x̄i)− f(x̄i)
∣∣ ≥ ε/4}

≤ exp{−N`}+ 2
∑K
i=1 exp {−N [Ix̄i(ε/4) ∧ Ix̄i(−ε/4)]} .

(7.233)

Since the above choice of the ν-net does not depend on the sample (although it depends
on ε), and both Ix̄i(ε/4) and Ix̄i(−ε/4) are positive, i = 1, ...,K, we obtain that (7.233)
implies (7.224), and hence completes the proof.

In the convex case the (Lipschitz continuity) condition (C2) holds, in a sense, auto-
matically. That is, we have the following result.

Theorem 7.74. Let U ⊂ Rn be a convex open set. Suppose that: (i) for a.e. ξ ∈ Ξ the
function F (·, ξ) : U → R is convex, and (ii) for every x ∈ U the moment generating
function Mx(t) is finite valued for all t in a neighborhood of zero. Then for every compact
set X ⊂ U and ε > 0 there exist positive constants C and β = β(ε), independent of N ,
such that

Pr
{

supx∈X
∣∣f̂N (x)− f(x)

∣∣ ≥ ε} ≤ Ce−Nβ . (7.234)

Proof. We have here that the expectation function f(x) is convex and finite valued for all
x ∈ U . Let X be a (nonempty) compact subset of U . For γ ≥ 0 consider the set

Xγ := {x ∈ Rn : dist(x,X) ≤ γ}.

Since the set U is open, we can choose γ > 0 such that Xγ ⊂ U . The set Xγ is compact
and by convexity of f(·) we have that f(·) is continuous and hence is bounded onXγ . That
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is, there is constant c > 0 such that |f(x)| ≤ c for all x ∈ Xγ . Also by convexity of f(·)
we have for any τ ∈ [0, 1], x ∈ X and y ∈ Rn such that x+ y ∈ U and x− y/τ ∈ U :

f(x) = f
(

1
1+τ (x+ y) + τ

1+τ (x− y/τ)
)
≤ 1

1+τ f(x+ y) + τ
1+τ f(x− y/τ).

It follows that if ‖y‖ ≤ τγ, τ ∈ [0, 1], and hence x+ y ∈ Xγ and x− y/τ ∈ Xγ , then

f(x+ y) ≥ (1 + τ)f(x)− τf(x− y/τ) ≥ f(x)− 2τc. (7.235)

Now we proceed similar to the proof of Theorem 7.73. Let ε > 0 and ν > 0, and
x̄1, ..., x̄K ∈ U be a ν-net for Xγ . As in the proof of Theorem 7.73, this ν-net will be
dependent on ε, but not on the random sample ξ1, ..., ξN . Consider the event

AN :=

{
max

1≤i≤K

∣∣f̂N (x̄i)− f(x̄i)
∣∣ ≤ ε} .

By (7.225) and (7.227) we have similar to (7.232) that Pr(AN ) ≥ 1− αN , where

αN := 2

K∑
i=1

exp
{
−N [Ix̄i(ε) ∧ Ix̄i(−ε)]

}
.

Consider a point x ∈ X and let I ⊂ {1, ...,K} be such index set that x is a convex combi-
nation of points x̄i, i ∈ I, i.e., x =

∑
i∈I tix̄i, for some positive numbers ti summing up to

one. Moreover, let I be such that ‖x−x̄i‖ ≤ aν, for all i ∈ I, where a > 0 is a constant in-
dependent of x and the net. By convexity of f̂N (·) we have that f̂N (x) ≤

∑
i∈I tif̂N (x̄i).

It follows that the event AN is included in the event
{
f̂N (x) ≤

∑
i∈I tif(x̄i) + ε

}
. By

(7.235) we also have that

f(x) ≥ f(x̄i)− 2τc, ∀i ∈ I,

provided that aν ≤ τγ. Setting τ := ε/(2c), we obtain that the event AN is included in the
event Bx :=

{
f̂N (x) ≤ f(x) + 2ε

}
, provided that19 ν ≤ O(1)ε. It follows that the event

AN is included in the event ∩x∈XBx, and hence

Pr

{
sup
x∈X

(
f̂N (x)− f(x)

)
≤ 2ε

}
= Pr {∩x∈XBx} ≥ Pr {AN} ≥ 1− αN , (7.236)

provided that ν ≤ O(1)ε.
In order to derive the converse to (7.236) estimate let us observe that by convexity

of f̂N (·) we have with probability at least 1 − αN that supx∈Xγ f̂N (x) ≤ c + ε. Also by
using (7.235) we have with probability at least 1 − αN that infx∈Xγ f̂N (x) ≥ −(c + ε),
provided that ν ≤ O(1)ε. That is, with probability at least 1− 2αN we have that

sup
x∈Xγ

∣∣f̂N (x)
∣∣ ≤ c+ ε,

19Recall that O(1) denotes a generic constant, here O(1) = γ/(2ca).
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provided that ν ≤ O(1)ε. We can now proceed in the same way as above to show that

Pr

{
sup
x∈X

(
f(x)− f̂N (x)

)
≤ 2ε

}
≥ 1− 3αN . (7.237)

Since, by the condition (ii), Ix̄i(ε) and Ix̄i(−ε) are positive, this completes the proof.

Now let us strengthen condition (C1) to the following condition:

(C4) There exists constant σ > 0 such that for any x ∈ X , the following inequality holds:

Mx(t) ≤ exp
{
σ2t2/2

}
, ∀ t ∈ R. (7.238)

It follows from condition (7.238) that lnMx(t) ≤ σ2t2/2, and hence20

Ix(z) ≥ z2

2σ2
, ∀ z ∈ R. (7.239)

Consequently, inequality (7.233) implies

Pr
{

supx∈X
∣∣f̂N (x)− f(x)

∣∣ ≥ ε} ≤ exp{−N`}+ 2K exp
{
− Nε2

32σ2

}
, (7.240)

where ` is a constant specified in (7.231) with L′ := 2L, K = [%D/ν]n, ν = ε/(4L) and
hence

K = [4%DL/ε]
n
. (7.241)

If we assume further that the Lipschitz constant in (7.223) does not depend on ξ, i.e.,
κ(ξ) ≡ L, then the first term in the right hand side of (7.240) can be omitted. Therefore we
obtain the following result.

Theorem 7.75. Suppose that conditions (C2)– (C4) hold and that the set X has finite
diameter D. Then

Pr

{
sup
x∈X

∣∣f̂N (x)− f(x)
∣∣ ≥ ε} ≤ exp{−N`}+ 2

[
4%DL
ε

]n
exp

{
− Nε2

32σ2

}
. (7.242)

Moreover, if κ(ξ) ≡ L in condition (C2), then condition (C3) holds automatically and the
term exp{−N`} in the right hand side of (7.242) can be omitted.

As it was shown in the proof of Theorem 7.74, in the convex case estimates of the
form (7.242), with different constants, can be obtained without assuming the (Lipschitz
continuity) condition (C2).

20Recall that if random variable F (x, ξ) − f(x) has normal distribution with variance σ2, then its moment
generating function is equal to the right hand side of (7.238), and hence the inequalities (7.238) and (7.239) hold
as equalities.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 486 — #498 i
i

i
i

i
i

486 Chapter 7. Background Material

Exponential Convergence of Generalized Gradients

The above results can be also applied to establishing rates of convergence of directional
derivatives and generalized gradients (subdifferentials) of f̂N (x) at a given point x̄ ∈ X .
Consider the following condition.

(C5) For a.e. ξ ∈ Ξ, the function Fξ(·) = F (·, ξ) is directionally differentiable at a point
x̄ ∈ X .

Consider the expected value function f(x) = E[F (x, ξ)] =
∫

Ξ
F (x, ξ)dP (ξ). Sup-

pose that f(x̄) is finite and condition (C2) holds with the respective Lipschitz constant κ(ξ)
being P -integrable, i.e., E[κ(ξ)] < +∞. Then it follows that f(x) is finite valued and Lip-
schitz continuous onX with Lipschitz constant E[κ(ξ)]. Moreover, the following result for
Clarke generalized gradient of f(x) holds (cf., [45, Theorem 2.7.2]).

Theorem 7.76. Suppose that condition (C2) holds with E[κ(ξ)] < +∞, and let x̄ be an
interior point of the set X such that f(x̄) is finite. If, moreover, F (·, ξ) is Clarke-regular at
x̄ for a.e. ξ ∈ Ξ, then f is Clarke-regular at x̄ and

∂◦f(x̄) =

∫
Ξ

∂◦F (x̄, ξ)dP (ξ), (7.243)

where Clarke generalized gradient ∂◦F (x̄, ξ) is taken with respect to x.

The above result can be extended to an infinite dimensional setting with the set X
being a subset of a separable Banach space X . Formula (7.243) can be interpreted in
the following way. For every γ ∈ ∂◦f(x̄), there exists a measurable selection Γ(ξ) ∈
∂◦F (x̄, ξ) such that for every v ∈ X ∗, the function 〈v,Γ(·)〉 is integrable and

〈v, γ〉 =

∫
Ξ

〈v,Γ(ξ)〉dP (ξ).

In this way, γ can be considered as an integral of a measurable selection from ∂◦F (x̄, ·).

Theorem 7.77. Let x̄ be an interior point of the set X . Suppose that f(x̄) is finite and
conditions (C2)–(C3) and (C5) hold. Then for any ε > 0 there exist positive constants C
and β = β(ε), independent of N , such that21

Pr
{

supd∈Sn−1

∣∣f̂ ′N (x̄, d)− f ′(x̄, d)
∣∣ > ε

}
≤ Ce−Nβ . (7.244)

Moreover, suppose that for a.e. ξ ∈ Ξ the function F (·, ξ) is Clarke-regular at x̄. Then

Pr
{
H
(
∂◦f̂N (x̄), ∂◦f(x̄)

)
> ε
}
≤ Ce−Nβ . (7.245)

Furthermore, if in condition (C2) κ(ξ) ≡ L is constant, then

Pr
{
H
(
∂◦f̂N (x̄), ∂◦f(x̄)

)
> ε
}
≤ 2

[
4%L
ε

]n
exp

{
− Nε2

128L2

}
. (7.246)

21By Sn−1 := {d ∈ Rn : ‖d‖ = 1} we denote the unit sphere taken with respect to a norm ‖ · ‖ on Rn.
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Proof. Since f(x̄) is finite, conditions (C2)-(C3) and (C5) imply that f(·) is finite valued
and Lipschitz continuous in a neighborhood of x̄, f(·) is directionally differentiable at x̄,
its directional derivative f ′(x̄, ·) is Lipschitz continuous, and f ′(x̄, ·) = E [η(·, ξ)], where
η(·, ξ) := F ′ξ(x̄, ·) (see Theorem 7.49). We also have here that f̂ ′N (x̄, ·) = η̂N (·), where

η̂N (d) :=
1

N

N∑
i=1

η(d, ξi), d ∈ Rn, (7.247)

and E [η̂N (d)] = f ′(x̄, d), for all d ∈ Rn. Moreover, conditions (C2) and (C5) imply that
η(·, ξ) is Lipschitz continuous on Rn, with Lipschitz constant κ(ξ), and in particular that
|η(d, ξ)| ≤ κ(ξ)‖d‖ for any d ∈ Rn and ξ ∈ Ξ. Hence together with condition (C3) this
implies that, for every d ∈ Rn, the moment generating function of η(d, ξ) is finite valued
in a neighborhood of zero.

Consequently, the estimate (7.244) follows directly from Theorem 7.73. If Fξ(·) is
Clarke-regular for a.e. ξ ∈ Ξ, then f̂N (·) is also Clarke-regular and

∂◦f̂N (x̄) = N−1
N∑
i=1

∂◦Fξi(x̄).

By applying (7.244) together with equation (7.170) for sets A1 := ∂◦f̂N (x̄) and A2 :=
∂◦f(x̄), we obtain (7.245).

Now if κ(ξ) ≡ L is constant, then η(·, ξ) is Lipschitz continuous on Rn, with Lip-
schitz constant L, and |η(d, ξ)| ≤ L for every d ∈ Sn−1 and ξ ∈ Ξ. Consequently, for
any d ∈ Sn−1 and ξ ∈ Ξ we have that

∣∣η(d, ξ) − E[η(d, ξ)]
∣∣ ≤ 2L, and hence for ev-

ery d ∈ Sn−1 the moment generating function Md(t) of η(d, ξ) − E[η(d, ξ)] is bounded
Md(t) ≤ exp{2t2L2}, for all t ∈ R (see (7.211)). It follows by Theorem 7.75 that

Pr
{

supd∈Sn−1

∣∣f̂ ′N (x̄, d)− f ′(x̄, d)
∣∣ > ε

}
≤ 2

[
4%L
ε

]n
exp

{
− Nε2

128L2

}
, (7.248)

and hence (7.246) follows.

7.3 Elements of Functional Analysis
Recall that given a linear (vector) space V , a function φ : V → R is said to be sublinear
if φ(αx) = αφ(x) for all x ∈ V and α ≥ 0 (positive homogeneity), and φ(x + y) ≤
φ(x) + φ(y) for all x, y ∈ V (subadditivity).

Theorem 7.78 (Hahn-Banach). Let V be a linear space, φ : V → R be a sublinear
function and ` : U → R be a linear functional on a linear subspace U ⊂ V which is
dominated by φ on U , i.e., `(x) ≤ φ(x) for all x ∈ U . Then there exists a linear functional
ˆ̀ : V → R such that ˆ̀(x) = `(x) for all x ∈ U , and ˆ̀(x) ≤ φ(x) for all x ∈ V .

Note that since the function φ is sublinear, it follows that φ(0) = 0. Therefore by
taking the space U := {0} and defining `(0) = 0, Hahn-Banach Theorem implies existence
of a linear functional ˆ̀ : V → R dominated by φ on V .
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A linear space Z equipped with a norm ‖ · ‖ is said to be a Banach space if it
is complete, i.e., every Cauchy sequence in Z has a limit. Let Z be a Banach space.
Unless stated otherwise, all topological statements (like convergence, continuity, lower
semicontinuity, etc) will be made with respect to the norm topology of Z . It is said that
Banach space Z is separable if it has a dense countable subset.

The space of all linear continuous functionals ζ : Z → R forms the dual of space Z
and is denoted Z∗. For ζ ∈ Z∗ and z ∈ Z we denote 〈ζ, z〉 := ζ(z) and view it as a scalar
product on Z∗ ×Z . The space Z∗, equipped with the dual norm

‖ζ‖∗ := sup
‖z‖≤1

〈ζ, z〉, (7.249)

is also a Banach space. Consider the dual Z∗∗ of the space Z∗. There is a natural embed-
ding of Z into Z∗∗ given by identifying z ∈ Z with linear functional 〈·, z〉 on Z∗. In that
sense, Z can be considered as a subspace of Z∗∗. It is said that Banach space Z is reflexive
if Z coincides with Z∗∗. It follows from the definition of the dual norm that

|〈ζ, z〉| ≤ ‖ζ‖∗ ‖z‖, z ∈ Z, ζ ∈ Z∗. (7.250)

Together with the strong (norm) topology of Z we sometimes need to consider its
weak topology, which is the weakest topology in which all linear functionals 〈ζ, ·〉, ζ ∈ Z∗,
are continuous. The dual space Z∗ can be also equipped with its weak∗ topology, which
is the weakest topology in which all linear functionals 〈·, z〉, z ∈ Z , are continuous. If
the space Z is reflexive, then Z∗ is also reflexive and its weak∗ and weak topologies do
coincide. Note also that a convex subset of Z is closed in the strong topology iff it is closed
in the weak topology of Z .

Theorem 7.79 (Banach-Alaoglu). Let Z be Banach space. The closed unit ball BZ∗ :=
{ζ ∈ Z∗ : ‖ζ‖∗ ≤ 1} is compact in the weak∗ topology of Z∗.

It follows that any bounded (in the dual norm ‖ · ‖∗) and weakly∗ closed subset of
Z∗ is weakly∗ compact. Therefore if K is a nonempty bounded and weakly∗ closed subset
of Z∗, then for any z ∈ Z the set

SK(z) := arg max
{
〈ζ, z〉 : ζ ∈ K

}
(7.251)

is nonempty. For the unit ball BZ∗ we refer to the corresponding set S(z) = SBZ∗ (z) as
the set of contact points of z, i.e., ζ̄ is a contact point of z if

ζ̄ ∈ argmax
‖ζ‖∗≤1

〈ζ, z〉.

Definition 7.80. Let K ⊂ Z∗ be a nonempty weakly∗ compact set. It is said that ζ̄ ∈ K is
a weak∗ exposed point of K if there exists z ∈ Z such that 〈ζ, z〉 attains its maximum over
ζ ∈ K at the unique point ζ̄, i.e., the set SK(z) = {ζ̄} is a singleton. In that case it is said
that z exposes K at ζ̄. We denote by Exp(K) the set of exposed points of K.

The following result is going back to Mazur [154]. We give its proof for the sake of
completeness (this proof was suggested to us by A. Nemirovski).
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Theorem 7.81. If Z is a separable Banach space and K is a nonempty weakly∗ compact
subset of Z∗, then the set of points z ∈ Z which expose K at some point ζ̄ ∈ K is a dense
subset of Z

Proof. Let z1, z2, ... be a sequence, forming a dense subset of the unit sphere {z ∈ Z :
‖z‖ = 1}. Since the space Z is separable, such sequence exists. Let λ1, λ2, ... be a
sequence of positive numbers such that

∑∞
i=1 λi ≤ ε for some ε > 0. Given z ∈ Z

consider functional fε : Z∗ → R defined as

fε(ζ) := 〈ζ, z〉+ 1
2

∞∑
i=1

λi〈ζ, zi〉2.

Note that since ‖zi‖ = 1,

∞∑
i=1

λi〈ζ, zi〉2 ≤
∞∑
i=1

λi‖ζ‖2∗ ≤ ε‖ζ‖2∗,

and hence fε(ζ) is well defined. The functional fε(·) is weakly∗ continuous, and hence
attains its maximum over K at a point ζ̄ ∈ K. Moreover, fε(·) is (Gâteaux) differentiable,
with derivative∇fε(ζ) ∈ Z given by

∇fε(ζ) = z +

∞∑
i=1

λi〈ζ, zi〉zi. (7.252)

For ζ1 6= ζ2 we have that

fε(ζ1) + fε(ζ2)

2
− fε

(
ζ1 + ζ2

2

)
=

1

4

∞∑
i=1

λi〈ζ1 − ζ2, zi〉2 > 0,

where the inequality follows since the sequence zi is dense on the unit sphere. Hence fε(·)
is strictly convex, and thus

fε(ζ) > fε(ζ̄) + 〈ζ − ζ̄,∇fε(ζ̄)〉, ζ 6= ζ̄.

Since ζ̄ is a corresponding maximizer, i.e., fε(ζ̄) ≥ fε(ζ) for all ζ ∈ K, it follows that

fε(ζ̄) > fε(ζ̄) + 〈ζ − ζ̄,∇fε(ζ̄)〉, ζ ∈ K, ζ 6= ζ̄.

Thus
〈ζ − ζ̄,∇fε(ζ̄)〉 < 0, ζ ∈ K, ζ 6= ζ̄,

and hence ζ̄ is the unique maximizer of 〈ζ,∇fε(ζ̄)〉 over ζ ∈ K. That is, ∇fε(ζ̄) exposes
K at ζ̄.

Let D be the set of points of the form∇fε(ζ̄) for all z ∈ Z and ε > 0. By the above
we have that D is a set of points in Z which expose K. Also by (7.252) we have

‖z −∇fε(ζ̄)‖ ≤ ε‖ζ̄‖∗ ≤ εC,
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where C := supζ∈K ‖ζ‖∗ is a finite constant since the set K is bounded. Hence any z ∈ Z
can be approximated with an arbitrary precision by a point z′ ∈ D, i.e., D is a dense subset
of Z . This completes the proof.

An important class of Banach spaces are Lp(Ω,F , P ) spaces, where (Ω,F , P ) is a
probability space and p ∈ [1,∞). The space Lp(Ω,F , P ) consists of all F-measurable
functions φ : Ω → R such that

∫
Ω
|φ(ω)|p dP (ω) < +∞. More precisely, an element of

Lp(Ω,F , P ) is a class of such functions φ(ω) which may differ from each other on sets of
P -measure zero. Equipped with the norm

‖φ‖p :=
(∫

Ω
|φ(ω)|p dP (ω)

)1/p
, (7.253)

Lp(Ω,F , P ) becomes a Banach space.
We also use the spaceL∞(Ω,F , P ) of functions (or rather classes of functions which

may differ on sets of P -measure zero) φ : Ω→ R which are F-measurable and essentially
bounded. A function φ is said to be essentially bounded if its sup-norm

‖φ‖∞ := ess sup
ω∈Ω
|φ(ω)| (7.254)

is finite, where

ess sup
ω∈Ω
|φ(ω)| := inf

{
sup
ω∈Ω
|ψ(ω)| : φ(ω) = ψ(ω) a.e. ω ∈ Ω

}
. (7.255)

Note that in case of infinite probability space (Ω,F , P ), the space Z = L∞(Ω,F , P ) is
not separable. Indeed, we have that ‖1A − 1A′‖∞ = 1 for any sets A,A′ ∈ F such that
P (A 6= A′) > 0. Since the set of all F-measurable subsets of Ω uncountable, it is not
possible to construct a countable dense subset of Z .

In particular, suppose that the set Ω := {ω1, ..., ωn} is finite, and let F be the sigma
algebra of all subsets of Ω and p1, ..., pn be (positive) probabilities of the corresponding
elementary events. In that case every element z ∈ Lp(Ω,F , P ) can be viewed as a finite
dimensional vector (z(ω1), ..., z(ωn)), and Lp(Ω,F , P ) can be identified with the space
Rn equipped with the corresponding norm

‖z‖p := (
∑n
i=1 pi|z(ωi)|p)

1/p
. (7.256)

We also use spaces Lp(Ω,F , P ;Rm), with p ∈ [1,∞]. For p ∈ [1,∞) this space is
formed by allF-measurable functions (mappings)ψ : Ω→ Rm such that

∫
Ω
‖ψ(ω)‖pdP (ω) <

+∞, with the corresponding norm ‖·‖ onRm being, for example, the Euclidean norm. For
p =∞, the corresponding space consists of all essentially bounded functions ψ : Ω→ Rm.

For p ∈ (1,∞) the dual of Lp(Ω,F , P ) is the space Lq(Ω,F , P ), where q ∈ (1,∞)
is such that 1/p+1/q = 1, and these spaces are reflexive. This duality is derived by Hölder
inequality∫

Ω

|ζ(ω)z(ω)|dP (ω) ≤
(∫

Ω

|ζ(ω)|qdP (ω)

)1/q (∫
Ω

|z(ω)|pdP (ω)

)1/p

. (7.257)



i
i

“SPbook” — 2013/12/24 — 8:37 — page 491 — #503 i
i

i
i

i
i

7.3. Elements of Functional Analysis 491

For points z ∈ Lp(Ω,F , P ) and ζ ∈ Lq(Ω,F , P ), their scalar product is defined as

〈ζ, z〉 :=

∫
Ω

ζ(ω)z(ω)dP (ω). (7.258)

The dual of L1(Ω,F , P ) is the space L∞(Ω,F , P ), and these spaces are not reflexive.
If z(ω) is not zero for a.e. ω ∈ Ω, then the equality in (7.257) holds iff ζ(ω) is

proportional22 to sign(z(ω))|z(ω)|p/q . It follows that for p ∈ (1,∞), with every nonzero
z ∈ Lp(Ω,F , P ) is associated unique maximizer of 〈ζ, z〉 over the unit ball BZ∗ of the
dual space Lq(Ω,F , P ). That is, z 6= 0 exposes BZ∗ at the contact point, denoted ζ∗z ,
which can be written in the form

ζ∗z (ω) =
sign(z(ω))|z(ω)|p/q

‖z‖p/qp

. (7.259)

In particular, for p = 2 and q = 2, ζ∗z = ‖z‖−1
2 z.

For p = 1 and z ∈ L1(Ω,F , P ) the corresponding set of contact points can be
described as follows

S(z) =

ζ ∈ L∞(Ω,F , P ) :
ζ(ω) = 1, if z(ω) > 0,
ζ(ω) = −1, if z(ω) < 0,
ζ(ω) ∈ [−1, 1], if z(ω) = 0.

(7.260)

It follows that S(z) is a singleton iff z(ω) 6= 0 for a.e. ω ∈ Ω, in which case S(z) =
{sign(z)}.

7.3.1 Conjugate Duality and Differentiability

Let Z be a Banach space, Z∗ be its dual space and f : Z → R be an extended real valued
function. Similar to the final dimensional case we define the conjugate function of f as

f∗(ζ) := sup
z∈Z

{
〈ζ, z〉 − f(z)

}
. (7.261)

The conjugate function f∗ : Z∗ → R is always convex and lower semicontinuous. The
biconjugate function f∗∗ : Z → R, i.e., the conjugate of f∗, is

f∗∗(z) := sup
ζ∈Z∗

{
〈ζ, z〉 − f∗(ζ)

}
. (7.262)

The basic duality theorem still holds in the considered infinite dimensional framework.

Theorem 7.82 (Fenchel-Moreau). Let Z be a Banach space and f : Z → R be a proper
extended real valued convex function. Then

f∗∗ = lsc f. (7.263)

22For a ∈ R, sign(a) is equal to 1 if a > 0, to -1 if a < 0, and to 0 if a = 0.



i
i

“SPbook” — 2013/12/24 — 8:37 — page 492 — #504 i
i

i
i

i
i

492 Chapter 7. Background Material

It follows from (7.263) that if f is proper and convex, then f∗∗ = f iff f is lower
semicontinuous. A basic difference between finite and infinite dimensional frameworks is
that in the infinite dimensional case a proper convex function can be discontinuous at an
interior point of its domain. As the following result shows, for a convex proper function
continuity and lower semicontinuity properties on the interior of its domain are the same.

Proposition 7.83. Let Z be a Banach space and f : Z → R be a convex lower semicontin-
uous function having a finite value in at least one point. Then f is proper and is continuous
on int(domf).

In particular, it follows from the above proposition that if f : Z → R is real valued
convex and lower semicontinuous, then f is continuous on Z .

The subdifferential of a function f : Z → R, at a point z0 such that f(z0) is finite, is
defined in a way similar to the finite dimensional case. That is,

∂f(z0) := {ζ ∈ Z∗ : f(z)− f(z0) ≥ 〈ζ, z − z0〉, ∀z ∈ Z} . (7.264)

It is said that f is subdifferentiable at z0 if ∂f(z0) is nonempty. Clearly, if f is subdiffer-
entiable at some point z0 ∈ Z , then f is proper and lower semicontinuous at z0. Similar to
the finite dimensional case we have the following.

Proposition 7.84. Let Z be a Banach space and f : Z → R be a convex function and
z ∈ Z be such that f∗∗(z) is finite. Then

∂f∗∗(z) = arg max
ζ∈Z∗

{〈ζ, z〉 − f∗(ζ)} . (7.265)

Moreover, if f∗∗(z) = f(z), then ∂f∗∗(z) = ∂f(z).

Proposition 7.85. Let Z be a Banach space, f : Z → R be a convex function. Suppose
that f is finite valued and continuous at a point z0 ∈ Z . Then f is subdifferentiable at z0,
∂f(z0) is nonempty, convex, bounded and weakly∗ compact subset of Z∗, f is Hadamard
directionally differentiable at z0 and

f ′(z0, h) = sup
ζ∈∂f(z0)

〈ζ, h〉. (7.266)

Note that by the definition, every element of the subdifferential ∂f(z0) (called sub-
gradient) is a continuous linear functional on Z . A linear (not necessarily continuous)
functional ` : Z → R is called an algebraic subgradient of f at z0 if

f(z0 + h)− f(z0) ≥ `(h), ∀h ∈ Z. (7.267)

Of course, if the algebraic subgradient ` is also continuous, then ` ∈ ∂f(z0).

Proposition 7.86. Let Z be a Banach space and f : Z → R be a proper convex function.
Then the set of algebraic subgradients at any point z0 ∈ int(domf) is nonempty.
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Proof. Consider the directional derivative function δ(h) := f ′(z0, h). The directional
derivative is defined here in the same way as in section 7.1.1. Since f is convex we have
that

f ′(z0, h) = inf
t>0

f(z0 + th)− f(z0)

t
, (7.268)

and δ(·) is convex, positively homogeneous. Moreover, since z0 ∈ int(domf) and hence
f(z) is finite valued for all z in a neighborhood of z0, it follows by (7.268) that δ(h)
is finite valued for all h ∈ Z . That is, δ(·) is a real valued subadditive and positively
homogeneous function. Consequently, by Hahn-Banach Theorem we have that there exists
a linear functional ` : Z → R such that δ(h) ≥ `(h) for all h ∈ Z . Since f(z0 + h) ≥
f(z0) + δ(h) for any h ∈ Z , it follows that ` is an algebraic subgradient of f at z0.

There is also the following version of Moreau-Rockafellar Theorem in the infinite
dimensional setting.

Theorem 7.87 (Moreau-Rockafellar). Let f1, f2 : Z → R be convex proper lower
semicontinuous functions, f := f1 + f2 and z̄ ∈ dom(f1) ∩ dom(f2). Then

∂f(z̄) = ∂f1(z̄) + ∂f2(z̄), (7.269)

provided that the following regularity condition holds

0 ∈ int {dom(f1)− dom(f2)} . (7.270)

In particular, equation (7.269) holds if f1 is continuous at z̄.

Remark 59. It is possible to derive the following (first order) necessary optimality condi-
tion from the above theorem. Let S be a convex closed subset of Z and f : Z → R be a
convex proper lower semicontinuous function. We have that a point z0 ∈ S is a minimizer
of f(z) over z ∈ S iff z0 is a minimizer of ψ(z) := f(z) + IS(z) over z ∈ Z . The last
condition is equivalent to the condition that 0 ∈ ∂ψ(z0). Since S is convex and closed, the
indicator function IS(·) is convex lower semicontinuous, and ∂IS(z0) = NS(z0). There-
fore, we have the following.

If z0 ∈ S ∩ dom(f) is a minimizer of f(z) over z ∈ S, then

0 ∈ ∂f(z0) +NS(z0), (7.271)

provided that 0 ∈ int {dom(f)− S} . In particular, (7.271) holds, if f is continuous at z0.

It is also possible to apply the conjugate duality theory to dual problems of the form
(7.33) and (7.35) in an infinite dimensional setting. That is, let X and Y be Banach spaces,
ψ : X × Y → R and ϑ(y) := infx∈X ψ(x, y).

Theorem 7.88. LetX and Y be Banach spaces. Suppose that the function ψ(x, y) is proper
convex and lower semicontinuous, and that ϑ(ȳ) is finite. Then ϑ(y) is continuous at ȳ iff
for every y in a neighborhood of ȳ, ϑ(y) < +∞, i.e., ȳ ∈ int(domϑ).
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If ϑ(y) is continuous at ȳ, then there is no duality gap between the corresponding
primal and dual problems and the set of optimal solutions of the dual problem coincides
with ∂ϑ(ȳ) and is nonempty and weakly∗ compact.

7.3.2 Paired Locally Convex Topological Vector Spaces

When Banach space Z is not reflexive, the dual Z∗∗ of its dual Z∗ is larger than Z . This
leads to a certain asymmetry between duality frameworks for spaces Z and Z∗ discussed
in the previous sections. This can be remedied by endowing Z∗ with its weak∗, rather than
strong (norm), topology. In that respect let us consider the following concept of paired
spaces.

Definition 7.89. Let X and Y be locally convex topological vector spaces and let 〈·, ·〉 be
a bilinear form (scalar product) on X × Y , i.e., 〈·, y〉 is a linear functional on X for every
y ∈ Y and 〈x, ·〉 is a linear functional on Y for every x ∈ X . It is said that X and Y have
topologies compatible with the pairing 〈·, ·〉, or in short that X and Y are paired spaces,
if the set of linear continuous functionals on X coincides with the set {〈·, y〉 : y ∈ Y} and
the set of linear continuous functionals on Y coincides with the set {〈x, ·〉 : x ∈ X}.

Rather than giving a formal definition of locally convex topological vector spaces,
let us note that a Banach space Z endowed with its strong or weak topology is a locally
convex topological vector space. Also its dual space Z∗ endowed with its weak∗ topology
becomes a locally convex topological vector space. If the space Z is reflexive, then Z
and Z∗ endowed with their strong or weak topologies and scalar product 〈ζ, z〉 := ζ(z),
ζ ∈ Z∗, z ∈ Z , become paired spaces. On the other hand, if Z is not reflexive, then Z can
be paired withZ∗ by endowingZ with its strong topology andZ∗ with its weak∗ topology.

For example, consider the space Z = L1(Ω,F , P ). Recall that its dual is the
space Z∗ = L∞(Ω,F , P ), and these spaces are not reflexive unless they are finite di-
mensional. The dual Z∗∗ of L∞(Ω,F , P ) is rather complicated (it is formed from finitely
additive probability measures). Therefore a common practice is to pair L∞(Ω,F , P ) with
L1(Ω,F , P ), rather than with its dual Z∗∗, by using the scalar product

〈ζ, Z〉 :=

∫
ζ(ω)Z(ω)dP (ω), ζ ∈ L1(Ω,F , P ), Z ∈ L∞(Ω,F , P ).

Now let X and Y be paired spaces. For a function f : X → R we can define its
conjugate

f∗(y) := sup
x∈X

{
〈x, y〉 − f(x)

}
, (7.272)

and its biconjugate
f∗∗(x) := sup

y∈Y

{
〈x, y〉 − f∗(y)

}
. (7.273)

Then the Fenchel-Moreau Theorem still holds. That is, if f is convex, then f∗∗ = lsc f .
It should be remembered, of course, that lower semicontinuity here should be taken with
respect to the corresponding compatible topologies. It also could be noted that an analogue
of Proposition 7.84 holds.
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7.3.3 Lattice Structure
Let C ⊂ Z be a closed convex pointed23 cone. It defines an order relation on the space Z .
That is, z1 � z2 if z1 − z2 ∈ C. It is not difficult to verify that this order relation defines
a partial order on Z , i.e., the following conditions hold for any z, z′, z′′ ∈ Z: (i) z � z,
(ii) if z � z′ and z′ � z′′, then z � z′′ (transitivity), (iii) if z � z′ and z′ � z, then
z = z′. This partial order relation is also compatible with the algebraic operations, i.e.,
the following conditions hold: (iv) if z � z′ and t ≥ 0, then tz � tz′, (v) if z′ � z′′ and
z ∈ Z , then z′ + z � z′′ + z.

It is said that u ∈ Z is the least upper bound (or supremum) of z, z′ ∈ Z , written
u = z∨z′, if u � z and u � z′ and, moreover, if u′ � z and u′ � z′ for some u′ ∈ Z , then
u′ � u. By the above property (iii) we have that if the least upper bound z ∨ z′ exists, then
it is unique. It is said that the considered partial order induces a lattice structure on Z if
the least upper bound z ∨ z′ exists for any z, z′ ∈ Z . Denote z+ := z ∨ 0, z− := (−z)∨ 0,
and |z| := z+ ∨ z− = z ∨ (−z). It is said that Banach space Z with lattice structure is a
Banach lattice if z, z′ ∈ Z and |z| � |z′| implies ‖z‖ ≥ ‖z′‖.

For p ∈ [1,∞], consider Banach spaceZ := Lp(Ω,F , P ) and cone C := L+
p (Ω,F , P ),

where

L+
p (Ω,F , P ) := {z ∈ Lp(Ω,F , P ) : z(ω) ≥ 0 for a.e. ω ∈ Ω} . (7.274)

This cone C is closed, convex and pointed. The corresponding partial order means that
z � z′ iff z(ω) ≥ z′(ω) for a.e. ω ∈ Ω. It has a lattice structure with

(z ∨ z′)(ω) = max{z(ω), z′(ω)},

and |z|(ω) = |z(ω)|. Also the property: “if z � z′ � 0, then ‖z‖ ≥ ‖z′‖”, clearly holds.
It follows that space Lp(Ω,F , P ) with cone L+

p (Ω,F , P ) forms a Banach lattice.

Theorem 7.90 (Klee-Nachbin-Namioka). Let Z be a Banach lattice and ` : Z → R
be a linear functional. Suppose that ` is positive, i.e., `(z) ≥ 0 for any z � 0. Then ` is
continuous.

Proof. We have that linear functional ` is continuous iff it is bounded on the unit ball of
Z , i.e, iff there exists positive constant c such that |`(z)| ≤ c‖z‖ for all z ∈ Z . First,
let us show that there exists c > 0 such that `(z) ≤ c‖z‖ for all z � 0. Recall that
z � 0 iff z ∈ C. We argue by a contradiction. Suppose that this is incorrect. Then there
exists a sequence zk ∈ C such that ‖zk‖ = 1 and `(zk) ≥ 2k for all k ∈ N. Consider
z̄ :=

∑∞
k=1 2−kzk. Note that

∑n
k=1 2−kzk forms a Cauchy sequence in Z and hence is

convergent, i.e., the point z̄ is well defined. Note also that since C is closed, it follows that∑∞
k=m 2−kzk ∈ C, and hence it follows by positivity of ` that `

(∑∞
k=m 2−kzk

)
≥ 0 for

any m ∈ N. Therefore we have

`(z̄) = `
(∑n

k=1 2−kzk
)

+ `
(∑∞

k=n+1 2−kzk
)
≥ `

(∑n
k=1 2−kzk

)
=

∑n
k=1 2−k`(zk) ≥ n,

for any n ∈ N. This gives a contradiction.
23Recall that cone C is said to be pointed if z ∈ C and −z ∈ C implies that z = 0.
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Now for any z ∈ Z we have

|z| = z+ ∨ z− � z+ = |z+|.

It follows that for v = |z| we have that ‖v‖ ≥ ‖z+‖, and similarly ‖v‖ ≥ ‖z−‖. Since
z = z+ − z− and `(z−) ≥ 0 by positivity of `, it follows that

`(z) = `(z+)− `(z−) ≤ `(z+) ≤ c‖z+‖ ≤ c‖z‖,

and similarly
−`(z) = −`(z+) + `(z−) ≤ `(z−) ≤ c‖z−‖ ≤ c‖z‖.

It follows that |`(z)| ≤ c‖z‖, which completes the proof.

Suppose that Banach space Z has a lattice structure. It is said that a function f :
Z → R is monotone if z � z′ implies that f(z) ≥ f(z′).

Theorem 7.91. Let Z be a Banach lattice and f : Z → R be proper convex and monotone.
Then f(·) is continuous and subdifferentiable on the interior of its domain.

Proof. Let z0 ∈ int(domf). By Proposition 7.86, function f possesses an algebraic
subgradient ` at z0. It follows from monotonicity of f that ` is positive. Indeed, if `(h) < 0
for some h ∈ C, then it follows by (7.267) that

f(z0 − h) ≥ f(z0)− `(h) > f(z0),

which contradicts monotonicity of f . It follows by Theorem 7.90 that ` is continuous, and
hence ` ∈ ∂f(z0). This shows that f is subdifferentiable at every point of int(domf). This,
in turn, implies that f is lower semicontinuous on int(domf), and hence by Proposition
7.83 is continuous on int(domf).

The above result can be applied to any space Z := Lp(Ω,F , P ), p ∈ [1,∞],
equipped with the lattice structure induced by the cone C := L+

p (Ω,F , P ).

7.3.4 Interchangeability Principle

Let (Ω,F , P ) be a probability space and f : Rm × Ω → R be an extended real valued
function. Consider function ϑ(ω) := infx∈Rn f(x, ω). Suppose for the moment that for
a.e. ω ∈ Ω the minimum is attained at x̄ = x̄(ω), i.e., x̄(ω) ∈ arg minx∈Rn f(x, ω). Then
ϑ(ω) = f(x̄(ω), ω) and hence ϑ(ω) is finite valued. If we assume further that the function
f(x, ω) is random lower semicontinuous, then ϑ(ω) is measurable (see Theorem 7.42) and
hence ϑ can be viewed as a random variable. Also x̄(ω) can be selected to be measurable.
It follows that

E[ϑ(ω)] = E[f(x̄(ω), ω)] ≥ inf
x(·)
E[f(x(ω), ω)], (7.275)

where the minimization in the right hand side of (7.275) is performed over an appropriate
space of measurable mappings x(·) : Ω → Rn. Conversely, we have that f(x(ω), ω) ≥
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ϑ(ω), and hence E[ϑ(ω)] = infx(·) E[f(x(ω), ω)]. That is, in the above sense the ex-
pectation and minimization operators can be interchanged. More accurately we have the
following result (taken from [217, Theorem 14.60]).

It is said that a linear space M ofF-measurable functions (mappings) ψ : Ω→ Rm is
decomposable if for every ψ ∈M andA ∈ F , and every bounded and F-measurable func-
tion γ : Ω→ Rm, the space M also contains the function η(·) := 1Ω\A(·)ψ(·)+1A(·)γ(·).
For example, spaces M := Lp(Ω,F , P ;Rm), with p ∈ [1,∞], are decomposable.

Theorem 7.92. Let M be a decomposable space and f : Rm×Ω→ R be a random lower
semicontinuous function. Then

E
[

inf
x∈Rm

f(x, ω)

]
= inf
χ∈M

E
[
Fχ
]
, (7.276)

where Fχ(ω) := f(χ(ω), ω), provided that the right hand side of (7.276) is less than +∞.
Moreover, if the common value of both sides in (7.276) is not −∞, then

χ̄ ∈ argmin
χ∈M

E[Fχ] iff χ̄(ω) ∈ argmin
x∈Rm

f(x, ω) for a.e. ω ∈ Ω, and χ̄ ∈M. (7.277)

Clearly the above interchangeability principle can be applied to a maximization,
rather than minimization, procedure simply by replacing function f(x, ω) with −f(x, ω).
For an extension of this interchangeability principle to risk measures see Proposition 6.60.

Exercises
7.1. Show that function f : Rn → R is lsc iff its epigraph epif is a closed subset of

Rn+1.
7.2. Show that a function f : Rn → R is polyhedral iff its epigraph is a convex closed

polyhedron, and f(x) is finite for at least one x.
7.3. Give an example of a function f : R2 → R which is Gâteaux but not Fréchet

differentiable.
7.4. Show that if g : Rn → Rm is Hadamard directionally differentiable at x0 ∈ Rn,

then g′(x0, ·) is continuous and g is Fréchet directionally differentiable at x0. Con-
versely, if g is Fréchet directionally differentiable at x0 and g′(x0, ·) is continuous,
then g is Hadamard directionally differentiable at x0.

7.5. Show that if f : Rn → R is a convex function, finite valued at a point x0 ∈ Rn,
then formula (7.17) holds and f ′(x0, ·) is convex. If, moreover, f(·) is finite valued
in a neighborhood of x0, then f ′(x0, h) is finite valued for all h ∈ Rn.

7.6. Let s(·) be the support function of a nonempty set C ⊂ Rn. Show that the conjugate
of s(·) is the indicator function of the set cl(conv(C)).

7.7. Let C ⊂ Rn be a closed convex set and x ∈ C. Show that the normal cone NC(x)
is equal to the subdifferential of the indicator function IC(·) at x.
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7.8. Let X and Y be vector spaces and ψ : X ×Y → R be a convex function. Show that
the function ϑ(y) := infx∈X ψ(x, y) is convex.

7.9. Show that if multifunction G : Rm ⇒ Rn is closed valued and upper semicontinu-
ous, then it is closed. Conversely, if G is closed and the set domG is compact, then
G is upper semicontinuous.

7.10. Give an example of a sequence fk : [0, 1]→ R of continuous functions epiconverg-
ing to a continuous function f : [0, 1]→ R and such that supx∈[0,1] |fk(x)−f(x)| =
1, i.e., fk does not converge to f uniformly on the interval [0, 1].

7.11. Consider function F (x, ω) used in Theorem 7.49. Show that if F (·, ω) is differen-
tiable for a.e. ω, then condition (A2) of that theorem is equivalent to the condition:
there exists a neighborhood V of x0 such that

E
[

supx∈V ‖∇xF (x, ω)‖
]
<∞. (7.278)

7.12. Show that if f(x) := E|x − ξ|, then formula (7.129) holds. Conclude that f(·) is
differentiable at x0 ∈ R iff Pr(ξ = x0) = 0.

7.13. Verify equalities (7.168) and (7.169), and hence conclude (7.170).
7.14. Show that the estimate (7.224) of Theorem 7.73 still holds if the bound (7.223) in

condition (C2) is replaced by:

|F (x′, ξ)− F (x, ξ)| ≤ κ(ξ)‖x′ − x‖γ (7.279)

for some constant γ > 0. Show how the estimate (7.242) of Theorem 7.75 should
be corrected in that case.
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Bibliographical Remarks

Chapter 1

The Newsvendor (sometimes called Newsboy) problem, portfolio selection and supply
chain models are classical with numerous papers written on each subject. It will be far
beyond this monograph to give a complete review of all relevant literature. Our main pur-
pose in discussing these models is to introduce such basic concepts as a recourse action,
probabilistic (chance) constraints, here-and-now and wait-and-see solutions, the nonantic-
ipativity principle, dynamic programming equations etc. We give below just a few basic
references.

The Newsvendor Problem is a classical model used in Inventory Management. Its
origin is going back to the paper by Edgeworth [73]. In the stochastic setting studying of
the Newsvendor Problem started with the classical paper by Arrow, Harris and Marchak
[5]. The optimality of the basestock policy for the multi-stage inventory model was first
proved in Clark and Scarf [44]. The worst case distribution approach to the Newsvendor
Problem was initiated by Scarf [231], where the case when only the mean and variance
of the distribution of the demand are known was analyzed. For a thorough discussion
and relevant references for single and multi-stage inventory models we can refer to Zipkin
[276].

Modern portfolio theory was introduced by Markowitz [151, 152]. The concept of
utility function has a long history. Its origins are going back as far as to work of Daniel
Bernoulli (1738). Axiomatic approach to the expected utility theory was introduced by von
Neumann and Morgenstern [266].

For an introduction to Supply Chain Network Design see, e.g., Nagurney [160]. The
material of section 1.5 is based on Santoso et al [229].

For a thorough discussion of robust optimization we refer to the book by Ben-Tal, El
Ghaoui and Nemirovski [16].

Chapters 2 and 3

Stochastic programming with recourse originated in the works of Beale [14], Dantzig [48]
and Tintner [260].

499
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Properties of the optimal valueQ(x, ξ) of the second stage linear programming prob-
lem and of its expectation E[Q(x, ξ)] were first studied by Kall [120, 121], Walkup and
Wets [268, 269], and Wets [271, 272]. Example 2.5 is discussed in Birge and Louveaux
[22]. Polyhedral and convex two-stage problems, discussed in sections 2.2 and 2.3, are nat-
ural extensions of the linear two-stage problems. Many additional examples and analysis
of particular models can be found in Birge and Louveaux [22], Kall and Wallace [123],
Wallace and Ziemba [270]. For a thorough analysis of simple recourse models, see Kall
and Mayer [122].

Duality analysis of stochastic problems, and in particular dualization of the nonantic-
ipativity constraints, was developed by Eisner and Olsen [75], Wets [273] and Rockafellar
and Wets [215, 216] (see also Rockafellar [212] and the references therein).

Expected value of perfect information is a classical concept in decision theory (see,
Raiffa and Schlaifer [201], Raiffa [200]). In stochastic programming this and related con-
cepts were analyzed by Madansky [148], Spivey [255], Avriel and Williams [11], Dempster
[53], Huang, Vertinsky and Ziemba [113].

Numerical methods for solving two- and multi-stage stochastic programming prob-
lems are extensively discussed in Birge and Louveaux [22], Ruszczyński [222], Kall and
Mayer [122], where the Reader can also find detailed references to original contributions.

There is also an extensive literature on constructing scenario trees for multistage
models, encompassing various techniques using probability metrics, pseudo-random se-
quences, lower and upper bounding trees, and moment matching. The Reader is referred to
Kall and Mayer [122], Heitsch and Römisch [98], Hochreiter and Pflug [109], Casey and
Sen [35], Pennanen [176], Dupačova, Growe-Kuska and Römisch [71], and the references
therein.

Linear (affine) decision rules were already discussed quite sometime ago (see Garstka
and Wets [83] and references therein). For a more recent discussion, in the framework of
stochastic programming, we can refer to Shapiro and Nemirovski [249], and Georghiou,
Wiesemann and Kuhn [84].

An extensive stochastic programming bibliography can be found at the web site:
http://mally.eco.rug.nl/spbib.html, maintained by Maarten van der Vlerk.

Chapter 4

Models involving probabilistic (chance) constraints were introduced by Charnes, Cooper
and Symonds [36], Miller and Wagner [156], and Prékopa [190]. Problems with integrated
chance constraints are considered in [95]. Models with stochastic dominance constraints
are introduced and analyzed by Dentcheva and Ruszczyński in [62, 64, 65]. The notion of
stochastic ordering or stochastic dominance of first order has been introduced in statistics
in Mann and Whitney [150], and Lehmann [142], and further applied and developed in
economics (see Quirk and Saposnik [199], Fishburn [77] and Hadar and Russell [94].)

An essential contribution to the theory and solutions of problems with chance con-
straints was the theory of α-concave measures and functions. In Prékopa [191, 192] the
concept of logarithmic concave measures was introduced and studied. This notion was
generalized to α-concave measures and functions in Borell [27, 28], Brascamp and Lieb
[30], and Rinott [204], and further analyzed in Tamm [259], and Norkin [171]. Approx-
imations of the probability function by Steklov-Sobolev transformation was suggested
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by Norkin in [169]. Differentiability properties of probability functions are studied in
Uryasev [261, 262], Kibzun and Tretyakov [126], Kibzun and Uryasev [127], and Raik
[202]. The first definition of α-concave discrete multivariate distributions was introduced
in Barndorff–Nielsen [13]. The generalized definition of α-concave functions on a set,
which we have adopted here, was introduced in Dentcheva, Prekopa, and Ruszczyński
[58]. It facilitates the development of optimality and duality theory of probabilistic op-
timization. Its consequences for probabilistic optimization are explored in Dentcheva,
Prékopa, and Ruszczyński [60]. The notion of p-efficient points was first introduced in
Prékopa [193]. Similar concept is used in Sen [233]. The concept was studied and ap-
plied in the context of discrete distributions and linear problems in the papers Dentcheva,
Prékopa, and Ruszczyński [58, 60] and Prékopa and B. Vı́zvári and T. Badics [196]. Op-
timization problems with probabilistic set-covering constraint are investigated in Beraldi
and Ruszczyński [17, 18], where efficient enumeration procedures of p-efficient points of
0–1 variable are employed. Optimality conditions based on the concept of p-efficient points
for linear problems with discrete distributions are developed in are developed in Dentcheva,
Prékopa, and Ruszczyński [58]. Optimality conditions for non-linear convex problems with
chance constraints involving discrete distributions are developed in Dentcheva, Prékopa,
and Ruszczyński [59] and further generalized for arbitrary distributions in Dentcheva, Lai,
and Ruszczyński [55]. The duality result is presented first in Dentcheva and Martinez
[57], where numerical methods with regularization for solving problems of this type are
developed. The description of the tangent and the normal cone of the probabilistically
constrained sets given in section 4.3.4 is a slightly modified version of the ones given in
Dentcheva and Martinez [56], where also the example 4.65 is included. The optimality
conditions under differentiability assumptions presented in section 4.3.4 are based on the
conditions developed in Dentcheva and Martinez [56]. For further information related to
differentiability of probability functions in the context of chance constraints, we refer to
Henrion and Möller [102], where formulae for the gradient of the probability function of
the multivariate normal distribution for events described by linear constraints are devel-
oped. Additionally, lower estimates for the norm of gradients of Gaussian distribution
functions are given in Henrion [101]. It is shown how the precision of computing gradients
in probabilistically constrained optimization problems can be controlled by the precision
of function values for Gaussian distribution functions. There is a wealth of research on
estimating probabilities of events. We refer to Boros and Prékopa [29], Bukszár [31],
Bukszár and Prékopa [32], Dentcheva, Prékopa, Ruszczynski [60], Prékopa [194], and
Szántai [257], where probability bounds are used in the context of chance constraints.

Statistical approximations of probabilistically constrained problems were analyzed
in Salinetti [228], Kankova [124], Deák [50], and Gröwe [90]. Stability of models with
probabilistic constraints is addressed in Dentcheva [54], Henrion [100, 99], and Henrion
and Römisch [219, 103].

Many applied models in engineering, where reliability is frequently a central issue
(e.g., in telecommunication, transportation, hydrological network design and operation, en-
gineering structure design, electronic manufacturing problems, etc.) include optimization
under probabilistic constraints. We do not list these applied works here. In finance, the
concept of Value-at-Risk enjoys great popularity (see, e.g., Dowd [68], Pflug [181], Pflug
and Römisch [182]). The concept of stochastic dominance plays a fundamental role in
economics and statistics. We refer to Mosler and Scarsini [159], Shaked and Shanthikumar
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[234], and Szekli [258] for more information and a general overview on stochastic orders.

Chapter 5

The concept of SAA estimators is closely related to the Maximum Likelihood (ML) method
and M-estimators developed in Statistics literature. However, the motivation and scope of
applications are quite different. In Statistics the involved constraints typically are of a
simple nature and do not play such an essential role as in stochastic programming. Also in
applications of Monte Carlo sampling techniques to stochastic programming the respective
sample is generated in the computer and its size can be controlled, while in statistical
applications the data are typically given and cannot be easily changed.

Starting with a pioneering work of Wald [267], consistency properties of the Maxi-
mum Likelihood and M-estimators were studied in numerous publications. Epi-convergence
approach to studying consistency of statistical estimators was discussed in Dupačová and
Wets [70]. In the context of stochastic programming, consistency of SAA estimators was
also investigated by tools of epi-convergence analysis in King and Wets [130] and Robinson
[209].

Proposition 5.6 appeared in Norkin, Pflug and Ruszczyński [170] and Mak, Morton
and Wood [149]. Theorems 5.7, 5.11 and 5.10 are taken from Shapiro [236] and [242], re-
spectively. The approach to second order asymptotics, discussed in section 5.1.3, is based
on Dentcheva and Römisch [61] and Shapiro [237]. Starting with the classical asymp-
totic theory of the ML method, asymptotics of statistical estimators were investigated in
numerous publications. Asymptotic normality of M -estimators was proved, under quite
weak differentiability assumptions, in Huber [114]. An extension of the SAA method to
stochastic generalized equations is a natural one. Stochastic variational inequalities were
discussed by Gürkan, Özge and Robinson [93]. Proposition 5.14 and Theorem 5.15 are
similar to the results obtained in [93, Theorems 1 and 2]. Asymptotics of SAA estimators
of optimal solutions of stochastic programs are discussed in King and Rockafellar [129]
and Shapiro [235].

The idea of using Monte Carlo sampling for solving stochastic optimization problems
of the form (5.1) certainly is not new. There is a variety of sampling based optimization
techniques which were suggested in the literature. It will be beyond the scope of this chap-
ter to give a comprehensive survey of these methods, we mention a few approaches related
to the material of this chapter. One approach uses the Infinitesimal Perturbation Analysis
(IPA) techniques to estimate the gradients of f(·), which consequently are employed in
the Stochastic Approximation (SA) method. For a discussion of the IPA and SA methods
we refer to Ho and Cao [108], Glasserman [88], and Kushner and Clark [138], Nevelson
and Hasminskii [166], respectively. For an application of this approach to optimization of
queueing systems see Chong and Ramadge [43] and L’Ecuyer and Glynn [141], for exam-
ple. Closely related to this approach is the Stochastic Quasi-Gradient method (see Ermoliev
[76]).

Another class of methods uses sample average estimates of the values of the objective
function, and may be its gradients (subgradients), in an “interior” fashion. Such methods
are aimed at solving the true problem (5.1) by employing sampling estimates of f(·) and
∇f(·) blended into a particular optimization algorithm. Typically, the sample is updated
or a different sample is used each time function or gradient (subgradient) estimates are
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required at a current iteration point. In this respect we can mention, in particular, the
statistical L-shaped method of Infanger [115] and the stochastic decomposition method of
Higle and Sen [106].

In this chapter we mainly discussed an “exterior” approach, in which a sample is
generated outside of an optimization procedure and consequently the constructed sample
average approximation (SAA) problem is solved by an appropriate deterministic optimiza-
tion algorithm. There are several advantages in such approach. The method separates
sampling procedures and optimization techniques. This makes it easy to implement and, in
a sense, universal. From the optimization point of view, given a sample ξ1, ..., ξN , the ob-
tained optimization problem can be considered as a stochastic program with the associated
scenarios ξ1, ..., ξN , each taken with equal probability N−1. Therefore any optimization
algorithm which is developed for a considered class of stochastic programs can be applied
to the constructed SAA problem in a straightforward way. Also the method is ideally suited
for a parallel implementation. From the theoretical point of view there is available a quite
well developed statistical inference of the SAA method. This, in turn, gives a possibility
of error estimation, validation analysis and hence stopping rules. Finally, various variance
reduction techniques can be conveniently combined with the SAA method.

It is difficult to point out an exact origin of the SAA method. The idea is simple
indeed and it was used by various authors under different names. Variants of this approach
are known as the stochastic counterpart method (Rubinstein and Shapiro [220],[221]) and
sample-path optimization (Plambeck, Fu, Robinson and Suri [187] and Robinson [209]),
for example. Also similar ideas were used in statistics for computing maximum likeli-
hood estimators by Monte Carlo techniques based on Gibbs sampling (see, e.g., Geyer and
Thompson [85] and references therein). Numerical experiments with the SAA approach,
applied to linear and discrete (integer) stochastic programming problems, can be also found
in more recent publications [3],[146],[149],[265].

The complexity analysis of the SAA method, discussed in section 5.3, is motivated
by the following observations. Suppose for the moment that components ξi, i = 1, ..., d,
of the random data vector ξ ∈ Rd are independently distributed. Suppose, further, that
we use r points for discretization of the (marginal) probability distribution of each com-
ponent ξi. Then the resulting number of scenarios is K = rd, i.e., it grows exponentially
with increase of the number of random parameters. Already with, say, r = 4 and d = 20
we will have an astronomically large number of scenarios 420 ≈ 1012. In such situations
it seems hopeless just to calculate with a high accuracy the value f(x) = E[F (x, ξ)] of
the objective function at a given point x ∈ X , much less to solve the corresponding op-
timization problem24. And, indeed, it is shown in Dyer and Stougie [72] that, under the
assumption that the stochastic parameters are independently distributed, two-stage linear
stochastic programming problems are ]P-hard. This indicates that, in general, two-stage
stochastic programming problems cannot be solved with a high accuracy, as say with ac-
curacy of order 10−3 or 10−4, as it is common in deterministic optimization. On the other
hand, quite often in applications it does not make much sense to try to solve the correspond-
ing stochastic problem with a high accuracy since the involved inaccuracies resulting from

24Of course, in some very specific situations it is possible to calculate E[F (x, ξ)] in a closed form. Also if
F (x, ξ) is decomposable into the sum

∑d
i=1 Fi(x, ξi), then E[F (x, ξ)] =

∑d
i=1 E[Fi(x, ξi)] and hence the

problem is reduced to calculations of one dimensional integrals. This happens in the case of the so-called simple
recourse.
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inexact modeling, distribution approximations etc, could be far bigger. In some situations
the randomization approach based on Monte Carlo sampling techniques allows to solve
stochastic programs with a reasonable accuracy and a reasonable computational effort.

The material of section 5.3.1 is based on Kleywegt, Shapiro and Homem-De-Mello
[131]. The extension of that analysis to general feasible sets, given in section 5.3.2, is
discussed in Shapiro [238, 240, 243] and Shapiro and Nemirovski [249]. The material of
section 5.3.3 is based on Shapiro and Homem-de-Mello [251], where proof of Theorem
5.24 can be found.

In practical applications, in order to speed up the convergence, it is often advanta-
geous to use Quasi-Monte Carlo techniques. Theoretical bounds for the error of numerical
integration by Quasi-Monte Carlo methods are proportional to (logN)dN−1, i.e., are of
order O

(
(logN)dN−1

)
, with the respective proportionality constant Ad depending on d.

For small d it is “almost” the same as of order O(N−1), which of course is better than
Op(N

−1/2). However, the theoretical constant Ad grows superexponentially with increase
of d. Therefore, for larger values of d one often needs a very large sample sizeN for Quasi-
Monte Carlo methods to become advantageous. It is beyond the scope of this chapter to
give a thorough discussion of Quasi-Monte Carlo methods. A brief discussion of Quasi-
Monte Carlo techniques is given in section 5.4. For a further readings on that topic we may
refer to Niederreiter [167]. For applications of Quasi-Monte Carlo techniques to stochastic
programming see, e.g., Koivu [133], Homem-de-Mello [112], Pennanen and Koivu [177],
Heitsch, Leövey and Römisch [97].

For a discussion of variance reduction techniques in Monte Carlo sampling we refer
to Fishman [78] and a survey paper by Avramidis and Wilson [10], for example. In the
context of stochastic programming, variance reduction techniques were discussed in Ru-
binstein and Shapiro [221], Dantzig and Infanger [49], Higle [104] and Bailey, Jensen and
Morton [12], for example.

The statistical bounds of section 5.6.1 were suggested in Norkin, Pflug and Ruszczyń-
ski [170], and developed in Mak, Morton and Wood [149]. The “common random num-
bers” estimator ĝapN,M (x̄) of the optimality gap was introduced in [149]. The KKT sta-
tistical test, discussed in section 5.6.2, was developed in Shapiro and Homem-de-Mello
[250], so that the material of that section is based on [250]. See also Higle and Sen [105].

The estimate of the sample size derived in Theorem 5.32 is due to Campi and Garatti
[34]. This result builds on a previous work of Calafiore and Campi [33], and from the
considered point of view gives a tightest possible estimate of the required sample size.
Construction of upper and lower statistical bounds for chance constrained problems, dis-
cussed in section 5.7, is based on Nemirovski and Shapiro [162]. For some numerical
experiments with these bounds see Luedtke and Ahmed [147].

The extension of the SAA method to multistage stochastic programming, discussed
in section 5.8 and referred to as conditional sampling, is a natural one. A discussion of con-
sistency of conditional sampling estimators is given, e.g., in Shapiro [239]. Discussion of
the portfolio selection (Example 5.34) is based on Blomvall and Shapiro [24]. Complexity
of the SAA approach to multistage programming is discussed in Shapiro and Nemirovski
[249] and Shapiro [241].

Section 5.9 is based on Nemirovski et al [161]. The origins of the Stochastic Approx-
imation algorithms are going back to the pioneering paper by Robbins and Monro [205].
For a thorough discussion of the asymptotic theory of the SA method we can refer to Kush-
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ner and Clark [138] and Nevelson and Hasminskii [166]. The robust SA approach was de-
veloped in Polyak [188] and Polyak and Juditsky [189]. The main ingredients of Polyak’s
scheme (long steps and averaging) were, in a different form, proposed in Nemirovski and
Yudin [163].

The SDDP algorithm, discussed in section 5.10, was introduced by Pereira and Pinto
[178] and became a popular method for scheduling of hydro-thermal electricity systems.
Almost sure convergence of the SDDP algorithm is discussed in Philpott and Guan [185]
and Girardeau, Leclere and Philpott [87]. Statistical analysis of the SDDP method is pre-
sented in [245]. For risk measures given by convex combinations of the expectation and
Average Value-at-Risk, it was shown in Shapiro [245] how to incorporate this approach into
the SDDP algorithm with a little additional effort. This was implemented in an extensive
numerical study in Philpott and de Matos [184]. For additional developments and extensive
numerical studies we refer to [252], [253]. For a recent study of the SDDP method we can
also refer to Guigues [92] and references therein.

Chapter 6

Foundations of the expected utility theory were developed in von Neumann and Morgen-
stern [266]. The dual utility theory is developed in Quiggin [197, 198] and Yaari [275].

The mean–variance model was introduced and analyzed in Markowitz [151, 152,
153]. Deviations and semideviations in mean–risk analysis were analyzed in Kijima and
Ohnishi [128], Konno [134], Ogryczak and Ruszczyński [173, 174], Ruszczyński and Van-
derbei [227]. Weighted deviations from quantiles, relations to stochastic dominance and
Lorenz curves are discussed in Ogryczak and Ruszczyński [175]. For Conditional (Aver-
age) Value at Risk see Acerbi and Tasche [1], Rockafellar and Uryasev [213], Pflug [181].
A general class of convex approximations of chance constraints is developed in Nemirovski
and Shapiro [162].

The theory of coherent measures of risk was initiated in Artzner, Delbaen, Eber and
Heath [8] and further developed, inter alia, by Delbaen [51], Föllmer and Schied [80],
Leitner [143], Rockafellar, Uryasev and Zabarankin [214]. Our presentation is based on
Ruszczyński and Shapiro [224, 226]. Kusuoka representation of law invariant coherent risk
measures (Theorem 6.40) was derived in [139] for L∞(Ω,F , P ) spaces. For an extension
to Lp(Ω,F , P ) spaces see, e.g., Pflug and Römisch [182]. Our presentation is based on
Shapiro [248] and Pichler and Shapiro [186]. Theory of consistency with stochastic orders
was initiated in [173] and developed in [174, 175]. In section 6.3.6 we follow [186]. Similar
definition of regularity of risk measures was given in Noyan and Rudolf [172]. Example
6.54 of section 6.4 is motivated by Jiang and Guan [118].

An alternative approach to asymptotic analysis of law invariant coherent risk mea-
sures (see section 6.6.3), was developed in Pflug and Wozabal [180] based on Kusuoka rep-
resentation. Application to portfolio optimization is discussed in Miller and Ruszczyński
[157].

The theory of conditional risk mappings was initiated by Scandolo [230] and fur-
ther developed by Riedel [203], Detlefsen and Scandolo [67], Ruszczyński and Shapiro
[224, 225]. The theory of dynamic measures of risk in discrete time was developed in
Artzner, Delbaen, Eber, Heath and Ku [9], Cheridito, Delbaen and Kupper [37], Detlef-
sen and Scandolo [67], Eichhorn and Römisch [74], Pflug and Römisch [182], Pflug and
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Ruszczyński [179].
Much work on time-consistency of dynamic measures of risk focused on the case

when we have just one final cost and we are evaluating it from the perspective of earlier
stages. In the finance literature time consistency is usually defined via the composition
property of dynamic risk measures; see, Artzner, Delbaen, Eber, Heath and Ku [9], Bion-
Nadal [20, 21], Cheridito, Delbaen and Kupper [38], Cheridito and Kupper [39], Föllmer
and Penner [79], Frittelli and Scandolo [81], Frittelli and Rosazza Gianin [82], Klöppel and
Schweizer [132]. Our presentation in section 6.8.3 is based on Ruszczyński [223], where
the composition property is derived from simpler assumptions. It is worth noting that time
consistency of utility models was already discussed by Koopmans [135] and Kreps and
Porteus [136, 137].

The principle of conditional optimality in 6.8.5 is discussed in Shapiro [244], Exam-
ple 6.84 is taken from that paper. Two-stage risk-averse optimization is discussed in Miller
and Ruszczyński [158]. An approach is to define time-consistency of optimization models
directly through the dynamic programming principle was initiated by Boda and Filar [25]
for a portfolio problem. Most of the presentation in section 6.8.5 is original. The minimax
approach of section 6.8.6 is related to robust dynamic programming discussed in Iyengar
[117] and Nilim and El Ghaoui [168].

Our inventory example is based on Ahmed, Cakmak and Shapiro [2]. For related
risk-averse inventory models, see Choi and Ruszczyński [41] and Choi, Ruszczyński and
Zhao [42].

Chapter 7

There are many monographs where concepts of directional differentiability are discussed in
detail, see, e.g., [26]. A thorough discussion of Clarke generalized gradient and regularity
in the sense of Clarke can be found in Clarke [45]. Classical references on (finite dimen-
sional) convex analysis are books by Rockafellar [210] and Hiriart-Urruty and Lemaréchal
[107]. For a proof of Fenchel-Moreau Theorem (in an infinite dimensional setting) see,
e.g., [211]. For a development of conjugate duality (in an infinite dimensional setting) we
refer to Rockafellar [211]. Theorem 7.12 (Hoffman’s Lemma) appeared in [111].

Theorem 7.25 appeared in Danskin [47]. Theorem 7.26 is going back to Levin [144]
and Valadier [263] (see also Ioffe and Tihomirov [116, p. 213]). For a general discussion of
second order optimality conditions and perturbation analysis of optimization problems we
can refer to Bonnans and Shapiro [26] and references therein. Theorem 7.28 is an adapta-
tion of a result going back to Gol’shtein [89]. For a thorough discussion of epiconvergence
we refer to Rockafellar and Wets [217]. Theorem 7.31 is taken from [217, Theorem 7.17].

There are many books on probability theory. Of course, it will be beyond the scope of
this monograph to give a thorough development of that theory. In that respect we can men-
tion the excellent book by Billingsley [19]. Theorem 7.37 appeared in Rogosinski [218].
A thorough discussion of measurable multifunctions and random lower semicontinuous
functions can be found in Rockafellar and Wets [217, Chapter 14], to which the interested
reader is referred for a further reading. For a proof of Aumann and Lyapunov Theorems
(Theorems 7.45 and 7.46) see, e.g., [116, section 8.2].

Theorem 7.52 originated in Strassen [256], where the interchangeability of the sub-
differential and integral operators was shown in the case when the expectation function is
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continuous. The present formulation of Theorem 7.52 is taken from [116, Theorem 4, p.
351].

Uniform Laws of Large Numbers take their origin in the Glivenko-Cantelli Theorem.
For a further discussion of the uniform LLN we refer to van der Vaart and Welner [264].
Epi-convergence Law of Large Numbers (Theorem 7.56) is due to Artstein and Wets [7].
The uniform convergence w.p.1 of Clarke generalized gradients, specified in part (c) of
Theorem 7.57, was obtained in [235]. The material of section 7.2.6, and in particular The-
orem 7.60, is taken from Shapiro [247]. Law of Large Numbers for random sets (Theorem
7.61) appeared in Artstein and Vitale [6]. The uniform convergence of ε-subdifferentials
(Theorem 7.63) was derived in [254].

Finite dimensional Delta Method is well known and routinely used in theoretical
Statistics. The infinite dimensional version (Theorem 7.67) is going back to Grübel [91],
Gill [86] and King [129]. The tangential version (Theorem 7.69) appeared in [236].

There is a large literature on Large Deviations Theory (see, e.g., a book by Dembo
and Zeitouni [52]). Hoeffding inequality appeared in [110] and Chernoff inequality in
[40]. Theorem 7.76, about interchangeability of Clarke generalized gradient and integral
operators, can be derived by using the interchangeability formula (7.125) for directional
derivatives, Strassen’s Theorem 7.52 and the fact that in the Clarke regular case the direc-
tional derivative is the support function of the corresponding Clarke generalized gradient
(see [45] for details).

A classical reference for functional analysis is Dunford and Schwartz [69]. The con-
cept of algebraic subgradient and Theorem 7.90 are taken from Levin [145] (unfortunately
this excellent book was not translated from Russian). Theorem 7.91 is from Ruszczyński
and Shapiro [226]. The interchangeability principle (Theorem 7.92) is taken from [217,
Theorem 14.60]. Similar results can be found in [116, Proposition 2, p.340] and [145,
Theorem 0.9].



i
i

“SPbook” — 2013/12/24 — 8:37 — page 508 — #520 i
i

i
i

i
i

508 Chapter 8. Bibliographical Remarks



i
i

“SPbook” — 2013/12/24 — 8:37 — page 509 — #521 i
i

i
i

i
i

Bibliography

[1] C. Acerbi and D. Tasche. On the coherence of expected shortfall. Journal of Banking
and Finance, 26:14911507, 2002.

[2] S. Ahmed, U. Cakmak, and A. Shapiro. Coherent risk measures in inventory prob-
lems. European Journal of Operational Research, 182:226–238, 2007.

[3] S. Ahmed and A. Shapiro. The sample average approximation method
for stochastic programs with integer recourse. E-print available at
http://www.optimization-online.org, 2002.
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C∗ polar of cone C, 417
C1(V,Rn) space of continuously differ-

entiable mappings, 197
IFθ influence function, 367
L⊥ orthogonal of (linear) space L, 41
O(1) generic constant, 209
Op(·) term, 471
Vd(A) Lebesgue measure of setA ⊂ Rd,

215
W 1,∞(U) space of Lipschitz continuous

functions, 186, 435
[a]+ = max{a, 0}, 2
IA(·) indicator function of set A, 414
Lp(Ω,F , P ) space, 490
Λ(x̄) set of Lagrange multipliers vectors,

429
N (µ,Σ) normal distribution, 16
NC normal cone to set C, 417
Φ(z) cdf of standard normal distribution,

16
ΠX metric projection onto set X , 252
D→ convergence in distribution, 183
T 2
X(x, h) second order tangent set, 429

AV@R Average Value-at-Risk, 294
P̄ set of probability measures, 369
D(A,B) deviation of set A from set B,

414
D[Zx] dispersion measure of random vari-

able Zx, 290
E expectation, 443
H(A,B) Hausdorff distance between sets

A and B, 414
N set of positive integers, 441

Rn n-dimensional space, 413
A domain of the conjugate of risk mea-

sure ρ, 299
Cn space of nonempty compact subsets

of Rn, 467
G group of measure-preserving transfor-

mations, 319
P set of probability density functions, 300,

303
b(k;α,N) cdf of binomial distribution,

235
d distance generating function, 258
g+(x) right hand side derivative, 356
cl(A) topological closure of set A, 414
conv(C) convex hull of set C, 417
Corr(X,Y ) correlation of X and Y , 221
Cov(X,Y ) covariance of X and Y , 201
qα weighted mean deviation, 292
sC(·) support function of set C, 417
δ(ω) measure of mass one at the point ω,

445
dist(x,A) distance from point x to setA,

414
domf domain of function f , 413
domG domain of multifunction G, 448
R set of extended real numbers, 413
epif epigraph of function f , 413
e→ epiconvergence, 460
Exp(K) set of exposed point of the set

K, 488
Ext(Ω) set of extreme points of the set

Ω, 373
ŜN the set of optimal solutions of the

SAA problem, 176
ŜεN the set of ε-optimal solutions of the

SAA problem, 201
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528 Index

ϑ̂N optimal value of the SAA problem,
176

f̂N (x) sample average function, 175
1A(·) characteristic function of setA, 414
int(C) interior of set C, 417
bac integer part of a ∈ R, 241
lscf lower semicontinuous hull of func-

tion f , 413
RC radial cone to set C, 417
TC tangent cone to set C, 417
∇2f(x) Hessian matrix of second order

partial derivatives, 199
∂ subdifferential, 418
∂◦ Clarke generalized gradient, 416
∂ε epsilon subdifferential, 469
posW positive hull of matrix W , 29
�
C

partial order defined by cone C, 50
Pr(A) probability of event A, 442
ri relative interior, 417
Sε the set of ε-optimal solutions of the

true problem, 201
σ(ξ1, ..., ξt) subalgebra generated by (ξ1, ..., ξt),

78
σ+
p upper semideviation, 291
σ−p lower semideviation, 291
F set of spectral functions, 323
Tr(A) trace of a square matrix, 421
V@Rα Value-at-Risk, 292
Var[X] variance of X , 15
ϑ∗ optimal value of the true problem, 176
ξ[t] = (ξ1, . . ., ξt) history of the process,

63
a ∨ b = max{a, b}, 207
f∗ conjugate of function f , 418
f◦(x, d) generalized directional deriva-

tive, 416
g′(x, h) directional derivative, 414
op(·) term, 471
p-efficient point, 126
iid independently identically distributed,

176

approximation
conservative, 294

Average Value-at-Risk, 293, 294, 296, 311
dual representation, 311

Banach lattice, 495
Banach space, 488

reflexive, 488
separable, 488

Borel set, 441
bounded in probability, 471
Bregman divergence, 259

Capacity Expansion, 31, 42, 59
chain rule, 472
chance constrained problem

ambiguous, 340
disjunctive semi-infinite formulation,

127
chance constraints, 6, 11, 16, 231
Clarke generalized gradient, 416
CLT Central Limit Theorem, 163
common random number generation method,

201
comonotonic random variables, 331
complexity

of multistage programs, 248
of two-stage programs, 201, 208

conditional expectation, 65, 446
conditional probability, 446
conditional risk mapping, 377, 382
conditional sampling, 242

identical, 243
independent, 243

Conditional Value-at-Risk, 293, 294, 296
cone

contingent, 427, 474
critical, 198, 429
normal, 417
pointed, 495
polar, 29
recession, 29
tangent, 417

confidence interval, 183
conjugate duality, 421, 493
constraint

nonanticipativity, 54, 350
constraint qualification

linear independence, 189, 199
Mangasarian-Fromovitz, 428
Robinson, 428
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Slater, 182
contact point, 488, 491
contingent cone, 427, 474
convergence

in distribution, 183, 470
in probability, 471
weak, 473
with probability one, 457

convex hull, 417
cumulative distribution function, 2

of random vector, 11
cutting plane, 271

decision rule, 21, 64
Delta Theorem, 473, 474

finite dimensional, 471
second-order, 475

deviation of a set, 414
diameter

of a set, 207
differential uniform dominance condition,

166
directional derivative, 414

ε-directional derivative, 469
generalized, 416
Hadamard, 472
second order, 475
tangentially to a set, 475

distribution
asymptotically normal, 183
Binomial, 479
conditional, 446
Dirichlet, 107
discrete, 443
discrete with a finite support, 443
empirical, 176
Gamma, 111
log-concave, 105
log-normal, 116
multivariate normal, 16, 104
multivariate Student, 171
normal, 183
Pareto, 172
uniform, 104
Wishart, 111

domain

of multifunction, 448
of a function, 413

dual feasibility condition, 145
duality gap, 420, 422
dynamic programming equations, 7, 65,

379

empirical cdf, 3
empirical distribution, 176
entropy function, 258
epiconvergence, 440

with probability one, 460
epigraph of a function, 413
epsilon subdifferential, 469
estimator

common random number, 226
consistent, 177
linear control, 221
unbiased, 176

expected value, 443
well defined, 443

expected value of perfect information, 61

Fatou’s lemma, 444
filtration, 74, 78, 375, 390
floating body of a probability measure,

113
Fréchet differentiability, 414
function

α-concave, 102
α-concave on a set, 114
affine, 82
biconjugate, 299, 491
Carathéodory, 176, 190, 449
characteristic, 414
Clarke-regular, 112, 416
composite, 304
conjugate, 299, 418, 491
continuously differentiable, 416
cost-to-go, 65, 69, 379
cumulative distribution (cdf), 2, 442
distance generating, 258
disutility, 290, 310
essentially bounded, 490
extended real valued, 443
indicator, 29, 414
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influence, 367
integrable, 443
likelihood ratio, 221
log-concave, 103
logarithmically concave, 103
lower semicontinuous, 413
moment generating, 476
monotone, 496
optimal value, 449
polyhedral, 28, 42, 413, 497
proper, 413
quasi-concave, 104
radical-inverse, 218
random, 449
random lower semicontinuous, 449
random polyhedral, 43
sample average, 458
spectral, 323
strongly convex, 419
subdifferentiable, 418, 492
sublinear, 487
support, 417
utility, 290, 310
well defined, 451

Gâteaux differentiability, 414, 472
generalized equation

sample average approximation, 196
generic constant O(1), 209
gradient, 416

Hadamard differentiability, 472
Hausdorff distance, 414
here-and-now solution, 10
Hessian matrix, 429
higher order distribution functions, 99
Hoffman’s lemma, 424

identically distributed, 457
importance sampling, 222
independent identically distributed, 457
inequality

Chebyshev, 445
Chernoff, 479
Hölder, 490
Hoeffding, 478

Jensen, 445
Markov, 445
Minkowski for matrices, 109

inf-compactness condition, 178, 433
interchangeability principle, 496

for risk measures, 352
for two-stage programming, 49

interior of a set, 417
inventory model, 1, 354

Jacobian matrix, 416

Kelley’s cutting plane algorithm, 278
Kullback-Leibler divergence, 344
Kusuoka representation, 329

Lagrange multiplier, 429
large deviations rate function, 476
lattice, 495
Law of Large Numbers, 2, 457

for random sets, 467
pointwise, 458
strong, 457
uniform, 458
weak, 457

least upper bound, 495
Lebesgue-Stieltjes integral, 328
Lindeberg condition, 163
Lipschitz continuous, 415
lower bound

statistical, 224
Lyapunov condition, 163

mapping
convex, 50
measurable, 442

Markov chain, 73
Markovian process, 63
mean absolute deviation, 291
measurable multifunction, 448
measurable selection, 448
measurable transformation, 319
measure

α-concave, 105
absolutely continuous, 442
complete, 441
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Dirac, 445
finite, 441
Lebesgue, 441
nonatomic, 450
sigma-additive, 441

metric projection, 252
Mirror Descent SA, 262
model state equations, 71
model state variables, 71
moment generating function, 476
multifunction, 448

closed, 195, 433, 448
closed valued, 195, 448
convex, 50
convex valued, 50, 450
measurable, 448
optimal solution, 449
upper semicontinuous, 468

newsvendor problem, 1, 409
node

ancestor, 72
children, 72
root, 72

nonanticipativity, 7, 53, 63
nonanticipativity constraints, 76, 378
nonatomic probability space, 450
norm

dual, 258, 488
normal cone, 417
normal integrands, 449

optimality conditions
first order, 228, 427
Karush-Kuhn-Tucker (KKT), 195, 228,

429
second order, 199, 429

paired spaces, 494
partial order, 495
permutation, 319
point

contact, 488, 491
exposed, 488
extreme, 373
saddle, 420

polar cone, 417
policy

basestock, 8, 406
feasible, 8, 17, 64
fixed mix, 21
implementable, 8, 17, 64
myopic, 20, 404
optimal, 8, 65, 70
piecewise affine, 82
piecewise linear, 82
time consistent, 398

portfolio selection, 13, 357
positive hull, 29
positively homogeneous, 198
Preface, iii
principle of conditional optimality, 394
probabilistic constraints, 6, 11, 95, 182

individual, 98
joint, 98

probabilistic liquidity constraint, 102
probability density function, 442
probability distribution, 442
probability measure, 441
probability space, 441

nonatomic, 450
standard uniform, 303

probability vector, 375
problem

chance constrained, 95, 231
distributionally robust, 370, 400
first stage, 10
of moments, 369
piecewise linear, 213
risk averse, 279
risk neutral, 279
second stage, 10
semi-infinite programming, 372
subconsistent, 422
time consistent, 398
two stage, 10
weakly time consistent, 398

process
autoregressive, 67
stagewise independent, 63
stochastic, 63

prox-function, 259
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prox-mapping, 259

quadratic growth condition, 211, 431
quantile, 16

left-side, 3, 292
right-side, 3, 292

radial cone, 417
random function

convex, 452
random variable, 442
random vector, 442
recession cone, 417
recourse

complete, 33
fixed, 33, 45
relatively complete, 10, 33
simple, 33

recourse action, 2
relative interior, 417
risk mapping

coherent conditional, 376, 382
convex conditional, 376, 382

risk measure, 297
absolute semideviation, 364, 408
coherent, 298
comonotonic, 331
composite, 378, 391
consistent with stochastic orders, 337
convex, 298
distribution based, 319
dynamic, 387
entropic, 313
essential supremum, 296, 303, 331
law invariant, 319
mean-deviation, 315
mean-upper-semideviation, 316
mean-upper-semideviation from a tar-

get, 317
mean-variance, 314
proper, 298
regular, 334
spectral, 325
strictly time consistent, 396
time consistent, 387
version independent, 319

robust optimization, 12

saddle point, 420
sample

independently identically distributed
(iid), 176

random, 175
sample average approximation (SAA), 175

multistage, 243
sample covariance matrix, 229
sampling

Latin Hypercube, 219
Monte Carlo, 200

scenario tree, 72
scenarios, 3, 30
SDDP algorithm, 274
second order regularity, 431
second order tangent set, 429
semi-infinite probabilistic problem, 164
semideviation

lower, 291
upper, 291

separable space, 473
sequence

Halton, 218
log-concave, 115
low-discrepancy, 217
van der Corput, 218

set
dual, 301
elementary, 441
generating, 323

sigma algebra, 441
Borel, 441
trivial, 441

significance level, 5
simplex, 259
Slater condition, 182
solution

ε-optimal, 201
sharp, 211, 212

space
Banach, 488
decomposable, 497
dual, 488
Hilbert, 314
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measurable, 441
paired, 494
probability, 441
reflexive, 488
sample, 441

stagewise independence, 8, 63, 73
star discrepancy, 215
stationary point of α-concave function,

113
Stochastic Approximation, 252
stochastic dominance

kth order, 99
first order, 98, 337
higher order, 99
second order, 338

stochastic dominance constraint, 100
stochastic generalized equations, 194
stochastic order, 98, 337

increasing convex, 324, 338
usual, 337

stochastic programming
nested risk averse multistage, 377,

390
stochastic programming problem

minimax, 190
multiperiod, 68
multistage, 64
multistage linear, 70
two-stage convex, 50
two-stage linear, 27
two-stage polyhedral, 42

stochastic-order constraint, 99
strict complementarity condition, 200, 230
strongly regular solution of a generalized

equation, 196
subdifferential, 418, 492
subgradient, 418, 492

algebraic, 492
stochastic, 252

supply chain model, 22
support

of a measure, 36, 442
of a set, 417

support function, 28, 417, 418
supporting plane, 271

tangent cone, 417
theorem

Artstein-Vitale, 467
Artstein-Wets, 461
Aumann, 450
Banach-Alaoglu, 488
Birkhoff, 121
Central Limit, 163
Cramér’s Large Deviations, 476
Danskin, 434
Fenchel-Moreau, 299, 419, 491
functional CLT, 184
Glivenko-Cantelli, 460, 463
Hahn-Banach, 487
Helly, 417
Hlawka, 217
Klee-Nachbin-Namioka, 495
Koksma, 216
Kusuoka, 329
Lebesgue dominated convergence, 444
Levin-Valadier, 434
Lyapunov, 451
Mazur, 488
measurable selection, 448
Minkowski, 373
monotone convergence, 444
Moreau–Rockafellar, 418, 493
Rademacher, 416, 435
Radon-Nikodym, 442
Richter-Rogosinski, 444
Skorohod-Dudley almost sure rep-

resentation, 473
time consistency, 401

of problem formulation, 395
policy, 398
risk measure, 387
strict, 396

topology
strong (norm), 488
weak, 488
weak∗, 488

transformation
measurable, 319
measure-preserving, 319

uncertainty set, 12, 370
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uniformly integrable, 444, 470
upper bound

consevative, 225
statistical, 225

utility model, 309

value function, 7
Value-at-Risk, 16, 292, 312

constraint, 16
variation

of a function, 216
variational inequality, 194

stochastic, 194
Von Mises statistical functional, 366

wait-and-see solution, 10, 60
weighted mean deviation, 292


