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Preface

To be uncertain is to be uncomfortable,

but to be certain is to be ridiculous.

Chinese proverb

This book is devoted to Robust Optimization — a specific and relatively novel
methodology for handling optimization problems with uncertain data. The primary
goal of this Preface is to provide the reader with a first impression of what the story
is about:
• what is the phenomenon of data uncertainty and why it deserves a dedicated
treatment,
• how this phenomenon is treated in Robust Optimization, and how this treatment
compares to those offered by more traditional methodologies for handling data
uncertainty.

The secondary, quite standard, goal is to outline the main topics of the book and
describe its contents.

A. Data Uncertainty in Optimization

The very first question we intend to address here is whether the underlying phe-
nomenon — data uncertainty — is worthy of special treatment. To answer this
question, consider a simple example — problem PILOT4 from the well-known NETLIB
library. This is a Linear Programming problem with 1,000 variables and 410 con-
straints; one of the constraints (# 372) is:

aT x ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830

−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853

−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858

−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871

+x880 − 0.946049x898 − 0.946049x916 ≥ b ≡ 23.387405.

(C)

The related nonzero coordinates of the optimal solution x∗ of the problem, as
reported by CPLEX, are as follows:

x∗
826 = 255.6112787181108 x∗

827 = 6240.488912232100 x∗
828 = 3624.613324098961

x∗
829 = 18.20205065283259 x∗

849 = 174397.0389573037 x∗
870 = 14250.00176680900

x∗
871 = 25910.00731692178 x∗

880 = 104958.3199274139.

Note that within machine precision x∗ makes (C) an equality.
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Observe that most of the coefficients in (C) are “ugly reals” like -15.79081
or -84.644257. Coefficients of this type usually (and PILOT4 is not an exception)
characterize certain technological devices/processes, forecasts for future demands,
etc., and as such they could hardly be known to high accuracy. It is quite natural to
assume that the “ugly coefficients” are in fact uncertain — they coincide with the
“true” values of the corresponding data within accuracy of 3 to 4 digits, not more.
The only exception is the coefficient 1 of x880; it perhaps reflects the structure of
the problem and is therefore exact, that is certain.

Assuming that the uncertain entries of a are, say, 0.1%-accurate approxima-
tions of unknown entries of the “true” vector of coefficients ã, let us look what would
be the effect of this uncertainty on the validity of the “true” constraint ãT x ≥ b at
x∗. What happens is as follows:

• Over all vectors of coefficients ã compatible with our 0.1%-uncertainty hy-
pothesis, the minimum value of ãT x∗− b, is < −104.9; in other words, the violation
of the constraint can be as large as 450% of the right hand side!

• Treating the above worst-case violation as “too pessimistic” (why should the
true values of all uncertain coefficients differ from the values indicated in (C) in the
“most dangerous” way?), consider a less extreme measure of violation. Specifically,
assume that the true values of the uncertain coefficients in (C) are obtained from
the “nominal values” (those shown in (C)) by random perturbations aj �→ ãj = (1+
ξj)aj with independent and, say, uniformly distributed on [−0.001, 0.001] “relative
perturbations” ξj . What will be a “typical” relative violation,

V = max
[
b− ãT x∗

b
, 0
]
× 100%,

of the “true” (now random) constraint ãT x ≥ b at x∗? The answer is nearly as bad
as for the worst scenario:

Prob{V > 0} Prob{V > 150%} Mean(V )
0.50 0.18 125%

Table 1. Relative violation of constraint 372 in PILOT4

(1,000-element sample of 0.1% perturbations of the uncertain data)

We see that quite small (just 0.1%) perturbations of “obviously uncertain” data

coefficients can make the “nominal” optimal solution x∗ heavily infeasible and thus

practically meaningless.

A “case study” reported in [7] shows that the phenomenon we have just
described is not an exception – in 13 of 90 NETLIB Linear Programming problems
considered in this study, already 0.01%-perturbations of “ugly” coefficients result
in violations of some constraints, as evaluated at the nominal optimal solutions by
more than 50%. In 6 of these 13 problems the magnitude of constraint violations
was over 100%, and in PILOT4 — “the champion” — it was as large as 210,000%,
that is, 7 orders of magnitude larger than the relative perturbations in the data.
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The techniques presented in this book as applied to the NETLIB problems

allow one to eliminate the outlined phenomenon by passing out of the nominal

optimal to robust optimal solutions. At the 0.1%-uncertainty level, the price

of this “immunization against uncertainty” (the increase in the value of the

objective when passing from the nominal to the robust solution), for every

one of the NETLIB problems, is less than 1% (see [7] for details).

The outlined case study and many other examples lead to several observations:

A. The data of real-world optimization problems more often than not are

uncertain — not known exactly at the time the problem is being solved. The
reasons for data uncertainty include, among others:

measurement/estimation errors coming from the impossibility to measure/es-
timate exactly the data entries representing characteristics of physical sys-
tems/technological processes/environmental conditions, etc.

implementation errors coming from the impossibility to implement a solution
exactly as it is computed. For example, whatever the entries “in reality” in the
above nominal solution x∗ to PILOT4 — control inputs to physical systems, re-
sources allocated for various purposes, etc. — they clearly cannot be implemented
with the same high precision to which they are computed. The effect of the
implementation errors, like x∗

j �→ (1 + εj)x∗
j , is as if there were no implementation

errors, but the coefficients aij in the constraints of PILOT4 were subject to
perturbations aij �→ (1 + εj)aij .

B. In real-world applications of Optimization one cannot ignore the possibility

that even a small uncertainty in the data can make the nominal optimal solution

to the problem completely meaningless from a practical viewpoint.

C. Consequently, in Optimization, there exists a real need of a methodology

capable of detecting cases when data uncertainty can heavily affect the quality of

the nominal solution, and in these cases to generate a robust solution, one that is

immunized against the effect of data uncertainty.

A methodology addressing the latter need is offered by Robust Optimization,
which is the subject of this book.

B. Robust Optimization — The Paradigm

To explain the paradigm of Robust Optimization, we start by addressing the par-
ticular case of Linear Programming — the generic optimization problem that is
perhaps the best known and the most frequently used in applications. Aside
from its importance, this generic problem is especially well-suited for our cur-
rent purposes, since the structure and the data of a Linear Programming program
min

x
{cT x : Ax ≤ b} are clear. Given the form in which we wrote the program down,

the structure is the sizes of the constraint matrix A, while the data is comprised
of the numerical values of the entries in (c, A, b). In Robust Optimization, an un-

certain LP problem is defined as a collection
{
minx{cT x : Ax ≤ b} : (c, A, B) ∈ U

}
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of LP programs of a common structure with the data (c, A, b) varying in a given
uncertainty set U . The latter summarizes all information on the “true” data that
is available to us when solving the problem. Conceptually, the most important
question is what does it mean to solve an uncertain LP problem. The answer to
this question, as offered by Robust Optimization in its most basic form, rests on
three implicit assumptions on the underlying “decision-making environment”:

A.1. All entries in the decision vector x represent “here and now” decisions:
they should get specific numerical values as a result of solving the problem before

the actual data “reveals itself.”

A.2. The decision maker is fully responsible for consequences of the deci-
sions to be made when, and only when, the actual data is within the prespecified
uncertainty set U .

A.3. The constraints of the uncertain LP in question are “hard” — the
decision maker cannot tolerate violations of constraints when the data is in U .

These assumptions straightforwardly lead to the definition of an “immunized
against uncertainty” solution to an uncertain problem. Indeed, by A.1, such a
solution should be a fixed vector that, by A.2 – A.3, should remain feasible for the
constraints, whatever the realization of the data within U ; let us call such a solution
robust feasible. Thus, in our decision-making environment, meaningful solutions to
an uncertain problem are exactly its robust feasible solutions. It remains to decide
how to interpret the value of the objective, (which can also be uncertain), at such a
solution. As applied to the objective, our “worst-case-oriented” philosophy makes
it natural to quantify the quality of a robust feasible solution x by the guaranteed

value of the original objective, that is, by its largest value sup
{
cT x : (c, A, b) ∈ U

}
.

Thus, the best possible robust feasible solution is the one that solves the optimiza-
tion problem

min
x

{
sup

(c,A,b)∈U
cT x : Ax ≤ b ∀(c, A, b) ∈ U

}
,

or, which is the same, the optimization problem

min
x,t

{
t : cT x ≤ t, Ax ≤ b ∀(c, A, b) ∈ U

}
. (RC)

The latter problem is called the Robust Counterpart (RC) of the original uncertain
problem. The feasible/optimal solutions to the RC are called robust feasible/robust

optimal solutions to the uncertain problem. The Robust Optimization methodol-
ogy, in its simplest version, proposes to associate with an uncertain problem its
Robust Counterpart and to use, as our “real life” decisions, the associated robust
optimal solutions.

At this point, it is instructive to compare the RO paradigm with more tra-
ditional approaches to treating data uncertainty in Optimization, specifically, with
Stochastic Optimization and Sensitivity Analysis.
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Robust vs. Stochastic Optimization. In Stochastic Optimization (SO), the
uncertain numerical data are assumed to be random. In the simplest case, these
random data obey a known in advance probability distribution, while in more ad-
vanced settings, this distribution is only partially known. Here again an uncertain
LP problem is associated with a deterministic counterpart, most notably with the
chance constrained problem1

min
x,t

{
t : Prob(c,A,b)∼P

{
cT x ≤ t & Ax ≤ b

}
≥ 1− ε

}
, (ChC)

where ε � 1 is a given tolerance and P is the distribution of the data (c, A, b).
When this distribution is only partially known — all we know is that P belongs to
a given family P of probability distributions on the space of the data — the above
setting is replaced with the ambiguous chance constrained setting,

min
x,t

{
t : Prob(c,A,b)∼P

{
cT x ≤ t & Ax ≤ b

}
≥ 1− ε∀P ∈ P

}
. (Amb)

The SO approach seems to be less conservative than the worst-case-oriented RO
approach. However, this is so if indeed the uncertain data are of a stochastic na-
ture, if we are smart enough to point out the associated probability distribution
(or at least a “narrow” family of distributions to which the true one belongs), and
if indeed we are ready to accept probabilistic guarantees as given by chance con-
straints. The three if’s above are indeed satisfied in some applications, such as
Signal Processing, or analysis and synthesis of service systems2. At the same time,
in numerous applications the three aforementioned if’s are too restrictive. Think,
e.g., of measurement/estimation errors for individual problems, like PILOT4. Even
assuming that preparation of data entries for PILOT4 indeed involved something
random, we perhaps could think about the distribution of the nominal data given
the true ones, but not about what we actually need — the distribution of the true
data given the nominal ones. The latter most probably just does not make sense —
PILOT4 represents a particular decision-making problem with particular determin-
istic (albeit not known to us exactly) data, and all we can say about this true data
given the nominal ones, is that the former data lies in given confidence intervals
around the nominal data (and even this can be said under the assumption that when

1The concept of chance constraints goes back to A. Charnes, W.W. Copper, and G.H. Symonds
[40], 1958. An alternative to chance constrained setting is where we want to optimize the ex-
pected value of the objective (the latter can incorporate penalty terms for violation of uncertain
constraints) under the certain part of the original constraints. This approach, however, is aimed
at “soft” constraints, while we are primarily interested in the case there the constraints are hard.

2Indeed, in these subject areas the random factors (like observation noises in Signal Processing,
or interarrival/service times in service systems) are of random nature with more or less easy-
to-identify distributions, especially when we have reasons to believe that different components
of random data (like different entries in the observation noises, or individual inter-arrival and
service times) are independent of each other. In such situations identifying the distribution of
the data reduces to identifying a bunch of low-dimensional distributions, which is relatively easy.
Furthermore, the systems in question are aimed at servicing many customers over long periods
of time, so that here the probabilistic guarantees do make sense. For example, day by day many
hundreds/thousands of users are sending/receiving e-mails or contacting a calling center, and a
probabilistic description of the service level (the probability for an e-mail to be lost, or for the
time to get an operator response to become unacceptably long) makes good sense — it merely
says that in the long run, a certain fraction of users/custmers will be dissatisfied.
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measuring the true data to get the nominal, no “rare event” took place). Further,
even when the true data indeed are of a stochastic nature, it is usually difficult to
properly identify the underlying distributions. Unless there are good reasons to a
priori specify these distributions up to a small number of parameters that further
can be estimated sufficiently well from observations3, accurate identification of a
“general type” multi-dimensional probability distribution usually requires an as-
tronomical, completely unrealistic number of observations. As a result, Stochastic
Optimization more often than not is forced to operate with oversimplified guesses

for the actual distributions (like the log-normal factor model for stock returns), and
usually it is very difficult to evaluate the influence of this new uncertainty — in the
probability distribution — on the quality of the SO-based decisions.

The third of the above if’s, our willingness to accept probabilistic guarantees,
also can be controversial. Imagine, for the sake of argument, that we have at our
disposal a perfect stochastic model of the stock market — as solid as the transparent
model of a lottery played every week in many countries. Does the relevance of the
stochastic model of the stock market make the associated probabilistic guarantees
of the performance of a pension fund really meaningful for an individual customer,
as meaningful as a similar guarantee in the lottery case? We believe that many
customers will answer this question negatively, and rightfully so. People playing a
lottery on a regular basis during their life span, participate in several hundreds of
lotteries, and thus can refer to the Law of Large Numbers as a kind of indication
that probabilistic guarantees indeed are meaningful for them. In contrast to this,
every individual plays the “pension fund lottery” just once, which makes the inter-
pretation of probabilistic guarantees much more problematic. Of course, the three
if’s above become less restrictive when passing from the chance constrained prob-
lem (ChC), where the distribution of the uncertain data is known exactly, to the
ambiguously chance constrained problem (Amb), and become the less restrictive
the wider families of distributions P we are ready to consider. Note, however, that
passing from (ChC) to (Amb) is, conceptually, a step towards the Robust Coun-
terpart — the latter is nothing but the ambiguously chance constrained problem
associated with the family P of all distributions supported on a given set U .

In fact the above three if’s should be augmented by a fourth, even more re-
strictive ”if” — chance constrained settings (ChC) and (Amb) can be treated as
actual sources of “immunized against uncertainty” decisions only if these problems
are computationally tractable; when that is not the case, these settings become
more wishful thinking than actual decision-making tools. As a matter of fact, the
computational tractability of chance constrained problems is a pretty rare commod-
ity — aside of a number of very particular cases, it is difficult to verify (especially
when ε is really small) whether a given candidate solution is feasible for a chance
constrained problem. In addition, chance constraints more often than not result in
nonconvex feasible sets, which make the optimization required in (ChC) and (Amb)

3For example, one can refer to the Central Limit Theorem in order to justify the standard —
the Gaussian — model of noise in communications.
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highly problematic. In sharp contrast to this, the Robust Counterparts of uncertain
Linear Programming problems are computationally tractable, provided the under-
lying uncertainty sets U satisfy mild convexity and computability assumptions (e.g.,
are given by explicit systems of efficiently computable convex inequalities).

It should be added that the “conservatism” of RO as compared to SO is
in certain respects an advantage rather than a disadvantage. When designing a
construction, like a railroad bridge, by applying quantitative techniques, engineers
usually increase the safety-related design parameters, like thicknesses of bars, by
a reasonable margin, such as 30 to 50%, in order to account for modeling inac-
curacies, rare but consequential environmental conditions, etc. With the Robust
Optimization approach, this desire “to stay on the safe side” can be easily achieved
by enlarging the uncertainty set. This is not the case in a chance constrained prob-
lem (ChC), where the total “budget of uncertainty” is fixed — the total probability
mass of all realizations of the uncertain data must be one, so that when increasing
the probabilities of some “scenarios” to make them more “visible,” one is forced
to reduce probabilities of other scenarios, and there are situations where this phe-
nomenon is difficult to handle. Here again, in order to stay “on the safe side”
one needs to pass from chance constrained problems to their ambiguously chance
constrained modifications, that is, to move towards Robust Counterparts.

In our opinion, Stochastic and Robust Optimization are complementary ap-
proaches for handling data uncertainty in Optimization, each having its own ad-
vantages and drawbacks. For example, information on the stochastic nature of data
uncertainty, if any, can be utilized in the RO framework, as a kind of a guideline for
building uncertainty sets U . It turns out that the latter can be built in such a way
that by immunizing a candidate solution against all realizations of the data from
U , we automatically immunize it against nearly all (namely, up to realizations of
total probability mass ≤ ε) random perturbations, thus making the solution feasi-
ble for the chance constrained problem. A naive way to achieve this goal would be
to choose U as a computationally tractable convex set that “(1 − ε)-supports” all
distributions from P (that is, P (U) ≥ 1− ε for all P ∈ P). In this book, however,
we show that under mild assumptions there exist less evident and incomparably

less conservative ways to come up with uncertainty sets achieving the above goal.

Robust Optimization and Sensitivity Analysis. Along with Stochastic Op-
timization, another traditional body of knowledge dealing, in a sense, with data
uncertainty in optimization is Sensitivity Analysis. Here the issues of primary im-
portance are the continuity properties of the usual (the nominal) optimal solution
as a function of the underlying nominal data. It is immediately seen that both Ro-
bust and Stochastic Optimization are aimed at answering the same question (albeit
in different settings), the question of building an uncertainty-immunized solution
to an optimization problem with uncertain data; Sensitivity Analysis is aimed at a
completely different question.
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Robust Optimization History. Robust optimization has many roots and pre-
cursors in the applied sciences. Some of these connections are explicit, while others
are a way, looking backwards in time, to interpret an approach that was developed
under different ideas. We mention three areas where robustness has played, and
continues to play, an important role.

Robust Control. The field of Robust Control has evolved, mainly during
the 90s, in the interest of control systems designers for some level of guarantee
in terms of stability of the controlled system. The quest for robustness can be
historically traced back to the concept of a stability margin developed in the early
30s by Bode and others, in the context of feedback amplifiers. Questions such as the
“stability margin,” which is the amount of feedback gain required to de-stabilize
a controlled system, led naturally to a “worst-case” point of view, in which “bad”
parameter values are too dangerous to be allowed, even with low probability. In
the late 80s, the then-classical approach to control of large-scale feedback systems,
which was based on stochastic optimization ideas, came under criticism as it could
not be guaranteed to offer any kind of stability margin. The approach of H∞
control was then developed as a multivariate generalization of the stability margin
in the early 90s. Later, the approach was extended under the name µ-control, to
handle more general, parametric perturbations (the H∞ norm measures robustness
with respect to a very special kind of perturbation). The corresponding robust
control design problem turns out to be difficult, but relaxations based on conic
(precisely, semidefinite) optimization were introduced under the name of Linear
Matrix Inequalities.

Robust Statistics. In Statistics, robustness usually refers to insensitivity
to outliers. Huber (see, e.g., [65]) has proposed a way to handle outliers by a
modification of loss functions. The precise connection with Robust Optimization is
yet to be made.

Machine Learning. More recently, the field of Machine Learning has
witnessed great interest in Support Vector Machines, which are classification al-
gorithms that can be interpreted as maximizing robustness to a special kind of
uncertainty. We return to this topic in chapter 12.

Robust Linear and Convex Optimization. Aside of the outlined precur-
sors, the paradigm of Robust Optimization per se, in the form considered here, goes
back to A.L. Soyster [109], who was the first to consider, as early as in 1973, what
now is called Robust Linear Programming. To the best of our knowledge, in two
subsequent decades there were only two publications on the subject [52, 106]. The
activity in the area was revived circa 1997, independently and essentially simultane-
ously, in the frameworks of both Integer Programming (Kouvelis and Yu [70]) and
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Convex Programming (Ben-Tal and Nemirovski [3, 4], El Ghaoui et al. [49, 50]).
Since 2000, the RO area is witnessing a burst of research activity in both theory
and applications, with numerous researchers involved worldwide. The magnitude
and diversity of the related contributions make it beyond our abilities to discuss
them here. The reader can get some impression of this activity from [9, 16, 110, 89]
and references therein.

C. The Scope of Robust Optimization and Our Focus in this Book

By itself, the RO methodology can be applied to every generic optimization problem
where one can separate numerical data (that can be partly uncertain and are only
known to belong to a given uncertainty set) from problem’s structure (that is known
in advance and is common for all instances of the uncertain problem). In particular,
the methodology is fully applicable to

• conic problems — convex problems of the form

min
x

{
cT x : b−Ax ∈ K

}
, (C)

where K is a given “well-structured” convex cone, representing, along with
the sizes of A, a problem’s structure, while the numerical entries (c, A, b) form
problems’s data. Conic problems look very similar to LP programs that are
recovered when K is specified as the nonnegative orthant R

m
+ . Two other

common choices of the cone K are:

— a direct product of Lorentz cones of different dimensions. The k-
dimensional Lorentz cone (also called the Second Order, or the Ice-Cream
cone) is defined as

Lk = {x ∈ R
k : xk ≥

√
x2

1 + ... + x2
k−1.

Problems (C) with direct products of Lorentz cones in the role of K are
called Conic Quadratic, or Second Order Conic Programming problems;

— a direct product of semidefinite cones of different sizes. The semidefi-
nite cone of size k, denoted by Sk

+, is the set of all symmetric positive
semidefinite k × k matrices; it “lives” in the linear space Sk of all sym-
metric k×k matrices. Problems (C) with direct products of semidefinite
cones in the role of K are called Semidefinite programs.

Conic Quadratic and especially Semidefinite Programming problems possess
extremely rich “expressive abilities”; in fact, Semidefinite Programming “cap-
tures” nearly all convex problems arising in applications, see, e.g., [8, 32, 33].

— Integer and Mixed Integer Linear Programming – Linear Programming prob-
lems where all or part of the variables are further restricted to be integers.

The broad spectrum of research questions related to Robust Optimization can be
split into three main categories.
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i) Extensions of the RO paradigm. It turns out that the implicit assumptions
A.1, A.2, A.3 that led us to the central notion of Robust Counterpart of an
uncertain optimization problem, while meaningful in numerous applications,
in some other applications do not fully reflect the possibilities to handle the
uncertain data. At present, two extensions addressing this added flexibility
exist:

• Globalized Robust Counterpart. This extension of the notion of RC cor-
responds to the case when we revise Assumption A.2. Specifically, now we
require a candidate solution x to satisfy the constraints for all instances of the
uncertain data in U and, in addition, seek for controlled deterioration of the
constraints evaluated at x when the uncertain data runs out of U . The corre-
sponding analogy to the Robust Counterpart of an uncertain (conic) problem,
called Globalized Robust Counterpart (GRC), is the optimization program

min
x,t

{
t :

cT x− t ≤ αobjdist((c, A, b),U)
dist(b−Ax,K) ≤ αconsdist((c, A, b),U)

}
∀(c, A, b)

}
, (GRC)

where the distances come from given norms on the corresponding spaces and
αobj, αcons are given nonnegative global sensitivities.

• Adjustable Robust Counterpart. This extension of the notion of RC corre-
sponds to the case when some of the decision variables xj represent “wait and
see” decisions to be made when the true data partly reveals itself, or are anal-

ysis variables that do not represent decisions (e.g., slack variables introduced
to convert the original problem into a prescribed form, say, an LP one). It
is natural to allow these adjustable variables to adjust themselves to the true
data. Specifically, we can assume that every decision variable xj is allowed to
depend on a given “portion” Pj(c, A, b) of the true data (c, A, B) of a (conic)
problem:

xj = Xj(Pj(c, A, b)),

where Xj(·) can be arbitrary functions. We then require from the resulting
decision rules to satisfy the constraints of the uncertain conic problem for all
realizations of the data from U . The corresponding Adjustable Robust Coun-

terpart (ARC) of an uncertain conic problem is the optimization program

min
X1(·),...,Xn(·),t

⎧⎪⎨⎪⎩t : b−A

⎡⎢⎣ X1(P1(c, A, b))
...

Xn(Pn(c, A, b))

⎤⎥⎦ ∈ K ∀(c, A, b) ∈ U

⎫⎪⎬⎪⎭ . (ARC)

It should be stressed that the optimization in (ARC) is carried out not over
finite-dimensional vectors, as is the case in RC and GRC, but over infinite-
dimensional decision rules — arbitrary functions Xj(·) on the corresponding
finite-dimensional vector spaces. In order to cope, to some extent, with a
severe computational intractability of ARCs, one can restrict the structure of
decision rules, most notably, to make them affine in their arguments:

Xj(pj) = qj + rT
j pj .
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When restricted to affine decision rules, the ARC becomes an optimization
problem in finitely many real variables qj , rj , 1 ≤ j ≤ n. This problem
is called the Affinely Adjustable Robust Counterpart (AARC) of the original
uncertain conic problem corresponding to the information base P1(·), ..., Pn(·).

ii) Investigating tractability issues of Robust Counterparts. Already the plain
Robust Counterpart,

min
x,t

{
t : cT x ≤ t, b−Ax ∈ K ∀(c, A, b) ∈ U

}
, (RC)

of an uncertain conic problem,{
min

x

{
cT x : b−Ax ∈ K

}
: (c, A, b) ∈ U

}
,

has a more complicated structure than an instance of the uncertain problem
itself: (RC) is what is called a semi-infinite conic problem, one with infinitely

many conic constraints
[

t− cT x

b−Ax

]
∈ K+ = R+ ×K parameterized by the

uncertain data (c, A, b) running through the uncertainty set. While (RC) is
still convex, the semi-infinite nature makes it more difficult computationally
than the instances of the associated uncertain problem. It may well happen
that (RC) is computationally intractable, even when the uncertainty set U
is a nice convex set (say, a ball, or a polytope) and the cone K is as simple
as in the case of Conic Quadratic and Semidefinite programs. At the same
time, in order for RO to be a working tool rather than wishful thinking, we
need the RC to be computationally tractable; after all, what is the point in
reducing something to an optimization problem that we do not know how to
process computationally? This motivates what is in our opinion the the main
theoretical challenge in Robust Optimization: identifying the cases where the

RC (GRC, AARC, ARC) of an uncertain conic problem admits a compu-

tationally tractable equivalent reformulation, or at least a computationally

tractable safe approximation. Here safety means that every feasible solution
to the approximation is feasible for the “true” Robust Counterpart.

At the present level of our knowledge, the “big picture” here is as follows.
• When the cone K is “as simple as possible,” i.e., is a nonnegative orthant
(the case of uncertain Linear Programming), the Robust Counterpart (and
under mild additional structural conditions, the GRC and the AARC as well)
is computationally tractable, provided that the underlying (convex) uncer-
tainty set U is so. The latter means that U is a convex set given by an
explicit system of efficiently computable convex constraints (say, a polytope
given by an explicit list of linear inequalities).
• When the (convex) uncertainty set U is “as simple as possible,” i.e., a poly-
tope given as a convex hull of a finite set of reasonable cardinality (scenario
uncertainty), the RC is computationally tractable whenever K is a computa-
tionally tractable convex cone, as is the case in Linear, Conic Quadratic, and
Semidefinite Programming.
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• In between the above two extremes, for example, in the case of uncertain
Conic Quadratic and Semidefinite problems with polytopes in the role of un-
certainty sets, the RCs are, in general, computationally intractable. There
are however particular cases, important for applications, where the RC is
tractable, and even more cases where it admits safe tractable approximations
that are tight, in a certain precise sense.

iii) Applications. This avenue of RO research is aimed at building and process-
ing Robust Counterparts of specific optimization problems arising in various
applications.

The position of our book with respect to these three major research areas in Robust
Optimization is as follows:

Our primary emphasis is on presenting in full detail the Robust Opti-

mization paradigm (including its recent extensions mentioned in item
1, as well as links with Chance Constrained Stochastic Optimization)
and tractability issues, primarily for Uncertain Linear, Conic Quadratic,

and Semidefinite Programming.

D. Prerequisites and Contents

Prerequisites for reading this book are quite modest — essentially, all that is
expected of a reader is knowledge of basic Analysis, Linear Algebra, and Probabil-
ity, plus general mathematical culture. Preliminary “subject-specific” knowledge,
(which in our case means knowledge of the Convex Optimization basics, primarily
of Conic Programming and Conic Duality, on one hand, and of tractability issues
in Convex Programming, on the other), while being highly welcomed, is not abso-
lutely necessary. All required basics can be found in the Appendix augmenting the
main body of the book.

The contents. The main body of the book is split into four parts:

• Part I is the basic theory of the “here and now” (i.e., the non-adjustable)
Robust Linear Programming, which starts with detailed discussion of the concepts
of an uncertain Linear Programming problem and its Robust/Generalized Robust
Counterparts. Along with other results, we demonstrate that the RC/GRC of an
uncertain LP problem is computationally tractable, provided that the uncertainty
set is so. As it was already mentioned, such a general tractability result is a specific
feature of uncertain LP. Another major theme of Part I is that of computationally
tractable safe approximations of chance constrained uncertain LP problems with
randomly perturbed data.

Part I, perhaps with chapter 4 skipped, can be used as a stand-alone graduate-
level textbook on Robust Linear Programming, or as a base of a semester-long
graduate course on Robust Optimization.
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• Part II can be treated as a “conic version” of Part I, where the main concepts
of non-adjustable Robust Optimization are extended to uncertain Convex Program-
ming problems in the conic form, with emphasis on uncertain Conic Quadratic and
Semidefinite Programming problems. As it was already mentioned, aside of the (in
fact, trivial) case of scenario uncertainty, Robust/Generalized Robust Counterparts
of uncertain CQP/SDP problems are, in general, computationally intractable. This
is why the emphasis is on identifying, and illustrating the importance of generic
situations where the RCs/GRCs of uncertain Conic Quadratic/Semidefinite prob-
lems admit tractable reformulation, or a tight safe tractable approximation. An-
other theme considered in Part II is that of safe tractable approximation of chance
constrained uncertain Conic Quadratic and Semidefinite problems with randomly
perturbed data. As compared to its “LP predecessor” from Part I, this theme now
has an unexpected twist: it turns out that safe tractable approximations of the
chance constrained Conic Quadratic/Semidefinite inequalities are easier to build
and to process than the tight safe tractable approximations to the RCs of these
conic inequalities. This is completely opposite of what happens in the case of un-
certain LP problems, where it is easy to process exactly the RCs, but not the chance
constrained versions of uncertain linear inequality constraints.

We conclude Part II investigating Robust Counterparts of specific “well struc-
tured” uncertain convex constraints arising in Machine Learning and Linear Regres-
sion models. Since the most interesting uncertain constraints arising in this context
are neither Conic Quadratic nor Semidefinite, the tractability-related questions as-
sociated with the RCs of these constraints need a dedicated treatment, and this is
our major goal in the corresponding chapter.

• Part III is devoted to Robust Multi-Stage Decision Making, specifically,
to Robust Dynamic Programming, and to Adjustable (with emphasis on Affinely

Adjustable) Robust Counterparts of uncertain conic problems, primarily uncertain
multi-stage LPs. As always, our emphasis is on the tractability issues. We demon-
strate, in particular, that the AARC methodology allows for efficient handling
of the finite-horizon synthesis of linear controllers for uncertainty-affected Linear
Dynamical systems with certain (and known in advance) dynamics. The design
specifications in this synthesis can be given by general-type systems of linear con-
straints on states and controls, to be satisfied in a robust with respect to the initial
state and the external inputs fashion.

• A short, single-chapter Part IV presents three realistic examples, worked
out in full detail, of application of the RO methodology. While not pretending to
give an impression of a wide and diverse range of existing applications of RO, these
examples, we believe, add a “bit of reality” to our primarily theoretical treatment
of the subject.

Reading modes. We believe that acquaintance with Part I is a natural pre-
requisite for reading Parts II and III; however, the latter two parts can be read
independently of each other. In addition, those not interested in the theme of
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chance constraints, may skip the related chapters 2, 4 and 10; those interested in
this theme may in the first reading skip chapter 4.
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Chapter One
Uncertain Linear Optimization Problems and their

Robust Counterparts

In this chapter, we introduce the concept of the uncertain Linear Optimization
problem and its Robust Counterpart, and study the computational issues associated
with the emerging optimization problems.

1.1 DATA UNCERTAINTY IN LINEAR OPTIMIZATION

Recall that the Linear Optimization (LO) problem is of the form

min
x

{
cT x + d : Ax ≤ b

}
, (1.1.1)

where x ∈ R
n is the vector of decision variables, c ∈ R

n and d ∈ R form the
objective, A is an m × n constraint matrix, and b ∈ R

m is the right hand side

vector.

Clearly, the constant term d in the objective, while affecting the optimal value,

does not affect the optimal solution, this is why it is traditionally skipped.

As we shall see, when treating the LO problems with uncertain data there

are good reasons not to neglect this constant term.

The structure of problem (1.1.1) is given by the number m of constraints and the
number n of variables, while the data of the problem are the collection (c, d,A, b),
which we will arrange into an (m + 1)× (n + 1) data matrix

D =
[

cT d

A b

]
.

Usually not all constraints of an LO program, as it arises in applications,

are of the form aT x ≤ const; there can be linear “≥” inequalities and linear

equalities as well. Clearly, the constraints of the latter two types can be repre-

sented equivalently by linear “≤” inequalities, and we will assume henceforth

that these are the only constraints in the problem.

Typically, the data of real world LOs (Linear Optimization problems) is not known
exactly. The most common reasons for data uncertainty are as follows:

• Some of data entries (future demands, returns, etc.) do not exist when the
problem is solved and hence are replaced with their forecasts. These data
entries are thus subject to prediction errors;
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• Some of the data (parameters of technological devices/processes, contents
associated with raw materials, etc.) cannot be measured exactly – in real-
ity their values drift around the measured “nominal” values; these data are
subject to measurement errors;

• Some of the decision variables (intensities with which we intend to use various
technological processes, parameters of physical devices we are designing, etc.)
cannot be implemented exactly as computed. The resulting implementation

errors are equivalent to appropriate artificial data uncertainties.

Indeed, the contribution of a particular decision variable xj to the left hand side

of constraint i is the product aijxj . Hence the consequences of an additive imple-

mentation error xj �→ xj + ε are as if there were no implementation error at all,

but the left hand side of the constraint got an extra additive term aijε, which, in

turn, is equivalent to the perturbation bi �→ bj − aijε in the right hand side of the

constraint. The consequences of a more typical multiplicative implementation error

xj �→ (1 + ε)xj are as if there were no implementation error, but each of the data

coefficients aij was subject to perturbation aij �→ (1 + ε)aij . Similarly, the influ-

ence of additive and multiplicative implementation error in xj on the value of the

objective can be mimicked by appropriate perturbations in d or cj .

In the traditional LO methodology, a small data uncertainty (say, 1% or less) is just
ignored; the problem is solved as if the given (“nominal”) data were exact, and the
resulting nominal optimal solution is what is recommended for use, in hope that
small data uncertainties will not affect significantly the feasibility and optimality
properties of this solution, or that small adjustments of the nominal solution will
be sufficient to make it feasible. We are about to demonstrate that these hopes
are not necessarily justified, and sometimes even small data uncertainty deserves
significant attention.

1.1.1 Introductory Example

Consider the following very simple linear optimization problem:

Example 1.1.1. A company produces two kinds of drugs, DrugI and DrugII, con-

taining a specific active agent A, which is extracted from raw materials purchased on the

market. There are two kinds of raw materials, RawI and RawII, which can be used as

sources of the active agent. The related production, cost, and resource data are given

in table 1.1. The goal is to find the production plan that maximizes the profit of the

company.



UNCERTAIN LINEAR OPTIMIZATION PROBLEMS AND THEIR ROBUST COUNTERPARTS 5

Parameter DrugI DrugII

Selling price,
$ per 1000 packs

6,200 6,900

Content of agent A,
g per 1000 packs

0.500 0.600

Manpower required,
hours per 1000 packs

90.0 100.0

Equipment required,
hours per 1000 packs

40.0 50.0

Operational costs,
$ per 1000 packs

700 800

(a) Drug production data

Raw material Purchasing price, Content of agent A,
$ per kg g per kg

RawI 100.00 0.01
RawII 199.90 0.02

(b) Contents of raw materials

Budget,
$

Manpower,
hours

Equipment,
hours

Capacity of raw materials
storage, kg

100,000 2,000 800 1,000

(c) Resources

Table 1.1 Data for Example 1.1.1.

The problem can be immediately posed as the following linear programming
program:

(Drug):

Opt = min
{ purchasing and operational costs︷ ︸︸ ︷

[100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII]
− [6200 · DrugI + 6900 · DrugII]︸ ︷︷ ︸

income from selling the drugs

}
[minus total profit]

subject to
0.01 · RawI + 0.02 · RawII − 0.500 · DrugI − 0.600 · DrugII ≥ 0 [balance of active agent]

RawI + RawII ≤ 1000 [storage constraint]

90.0 · DrugI + 100.0 · DrugII ≤ 2000 [manpower constraint]

40.0 · DrugI + 50.0 · DrugII ≤ 800 [equipment constraint]

100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000 [budget constraint]

RawI, RawII, DrugI, DrugII ≥ 0

The problem has four variables — the amounts RawI, RawII (in kg) of raw mate-
rials to be purchased and the amounts DrugI, DrugII (in 1000 of packs) of drugs
to be produced.

The optimal solution of our LO problem is

Opt = −8819.658; RawI = 0, RawII = 438.789, DrugI = 17.552, DrugII = 0.

Note that both the budget and the balance constraints are active (that is, the
production process utilizes the entire 100,000 budget and the full amount of ac-
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tive agent contained in the raw materials). The solution promises the company a
modest, but quite respectable profit of 8.8%.

1.1.2 Data Uncertainty and its Consequences

Clearly, even in our simple problem some of the data cannot be “absolutely re-
liable”; e.g., one can hardly believe that the contents of the active agent in the
raw materials are exactly 0.01 g/kg for RawI and 0.02 g/kg for RawII. In reality,
these contents vary around the indicated values. A natural assumption here is that
the actual contents of active agent aI in RawI and aII in RawII are realizations of
random variables somehow distributed around the “nominal contents” anI = 0.01
and anII = 0.02. To be more specific, assume that aI drifts in a 0.5% margin of
anI, thus taking values in the segment [0.00995, 0.01005]. Similarly, assume that
aII drifts in a 2% margin of anII, thus taking values in the segment [0.0196, 0.0204].
Moreover, assume that aI, aII take the two extreme values in the respective seg-
ments with probabilities 0.5 each. How do these perturbations of the contents of
the active agent affect the production process? The optimal solution prescribes
to purchase 438.8 kg of RawII and to produce 17.552K packs of DrugI (K stands
for ”thousand”). With the above random fluctuations in the content of the active
agent in RawII, this production plan will be infeasible with probability 0.5, i.e.,
the actual content of the active agent in raw materials will be less than the one
required to produce the planned amount of DrugI. This difficulty can be resolved
in the simplest way: when the actual content of the active agent in raw materials
is insufficient, the output of the drug is reduced accordingly. With this policy, the
actual production of DrugI becomes a random variable that takes with equal prob-
abilities the nominal value of 17.552K packs and the (2% less) value of 17.201K
packs. These 2% fluctuations in the production affect the profit as well; it becomes
a random variable taking, with probabilities 0.5, the nominal value 8,820 and the
21% (!) less value 6,929. The expected profit is 7,843, which is 11% less than the
nominal profit 8,820 promised by the optimal solution of the nominal problem.

We see that in our simple example a pretty small (and unavoidable in reality)
perturbation of the data may make the nominal optimal solution infeasible. More-
over, a straightforward adjustment of the nominally optimal solution to the actual
data may heavily affect the quality of the solution.

Similar phenomenon can be met in many practical linear programs where at
least part of the data are not known exactly and can vary around their nominal
values. The consequences of data uncertainty can be much more severe than in
our toy example. The analysis of linear optimization problems from the NETLIB
collection1 reported in [7] reveals that for 13 of 94 NETLIB problems, random 0.01%
perturbations of the uncertain data can make the nominal optimal solution severely
infeasible: with a non-negligible probability, it violates some of the constraints by

1A collection of LP programs, including those of real world origin, used as a standard benchmark
for testing LP solvers.
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50% and more. It should be added that in the general case (in contrast to our toy
example) there is no evident way to adjust the optimal solution to the actual values
of the data by a small modification, and there are cases when such an adjustment is
in fact impossible; in order to become feasible for the perturbed data, the nominal
optimal solution should be “completely reshaped.”

The conclusion is as follows:

In applications of LO, there exists a real need of a technique capable of

detecting cases when data uncertainty can heavily affect the quality of

the nominal solution, and in these cases to generate a “reliable” solution,

one that is immunized against uncertainty.

We are about to introduce the Robust Counterpart approach to uncertain LO
problems aimed at coping with data uncertainty.

1.2 UNCERTAIN LINEAR PROBLEMS AND THEIR ROBUST

COUNTERPARTS

Definition 1.2.1. An uncertain Linear Optimization problem is a collection{
min

x

{
cT x + d : Ax ≤ b

}}
(c,d,A,b)∈U

(LOU )

of LO problems (instances) min
x

{
cT x + d : Ax ≤ b

}
of common structure (i.e., with

common numbers m of constraints and n of variables) with the data varying in a
given uncertainty set U ⊂ R

(m+1)×(n+1).

We always assume that the uncertainty set is parameterized, in an affine
fashion, by perturbation vector ζ varying in a given perturbation set Z:

U =

{ [
cT d

A b

]
=

[
cT
0 d0

A0 b0

]
︸ ︷︷ ︸

nominal
data D0

+
L∑

�=1

ζ�

[
cT

� d�

A� b�

]
︸ ︷︷ ︸

basic
shifts D�

: ζ ∈ Z ⊂ R
L

}
. (1.2.1)

For example, the story told in section 1.1.2 makes (Drug) an uncertain LO
problem as follows:

• Decision vector: x = [RawI; RawII; DrugI; DrugII];

• Nominal data: D0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 199.9 −5500 −6100 0

−0.01 −0.02 0.500 0.600 0
1 1 0 0 1000
0 0 90.0 100.0 2000
0 0 40.0 50.0 800

100.0 199.9 700 800 100000
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• Two basic shifts:

D1 = 5.0e-5 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D2 = 4.0e-4 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Perturbation set:

Z =
{
ζ ∈ R

2 : −1 ≤ ζ1, ζ2 ≤ 1
}

.

This description says, in particular, that the only uncertain data in (Drug)

are the coefficients anI, anII of the variables RawI, RawII in the balance

inequality, (which is the first constraint in (Drug)), and that these coefficients

vary in the respective segments [0.01 · (1−0.005), 0.01 · (1+0.005)], [0.02 · (1−
0.02), 0.02 · (1+0.02)] around the nominal values 0.01, 0.02 of the coefficients,

which is exactly what was stated in section 1.1.2.

Remark 1.2.2. If the perturbation set Z in (1.2.1) itself is represented as the
image of another set Ẑ under affine mapping ξ �→ ζ = p + Pξ, then we can pass
from perturbations ζ to perturbations ξ:

U =
{[

cT d

A b

]
= D0 +

L∑
�=1

ζ�D� : ζ ∈ Z
}

=
{[

cT d

A b

]
= D0 +

L∑
�=1

[p� +
K∑

k=1

P�kξk]D� : ξ ∈ Ẑ
}

=
{[

cT d

A b

]
=

[
D0 +

L∑
�=1

p�D�

]
︸ ︷︷ ︸

D̂0

+
K∑

k=1

ξk

[
L∑

�=1

P�kD�

]
︸ ︷︷ ︸

D̂k

: ξ ∈ Ẑ
}

.

It follows that when speaking about perturbation sets with simple geometry (par-
allelotopes, ellipsoids, etc.), we can normalize these sets to be “standard.” For
example, a parallelotope is by definition an affine image of a unit box {ξ ∈ R

k :
−1 ≤ ξj ≤ 1, j = 1, ..., k}, which gives us the possibility to work with the unit box
instead of a general parallelotope. Similarly, an ellipsoid is by definition the image
of a unit Euclidean ball {ξ ∈ R

k : ‖x‖22 ≡ xT x ≤ 1} under affine mapping, so that
we can work with the standard ball instead of the ellipsoid, etc. We will use this
normalization whenever possible.

Note that a family of optimization problems like (LOU ), in contrast to a single op-
timization problem, is not associated by itself with the concepts of feasible/optimal
solution and optimal value. How to define these concepts depends of course on
the underlying “decision environment.” Here we focus on an environment with the
following characteristics:
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A.1. All decision variables in (LOU ) represent “here and now” decisions;
they should be assigned specific numerical values as a result of
solving the problem before the actual data “reveals itself.”

A.2. The decision maker is fully responsible for consequences of the
decisions to be made when, and only when, the actual data is
within the prespecified uncertainty set U given by (1.2.1).

A.3. The constraints in (LOU ) are “hard” — we cannot tolerate viola-
tions of constraints, even small ones, when the data is in U .

The above assumptions determine, in a more or less unique fashion, what are the
meaningful feasible solutions to the uncertain problem (LOU ). By A.1, these should
be fixed vectors; by A.2 and A.3, they should be robust feasible, that is, they should
satisfy all the constraints, whatever the realization of the data from the uncertainty
set. We have arrived at the following definition.

Definition 1.2.3. A vector x ∈ R
n is a robust feasible solution to (LOU ), if

it satisfies all realizations of the constraints from the uncertainty set, that is,

Ax ≤ b ∀(c, d, A, b) ∈ U . (1.2.2)

As for the objective value to be associated with a meaningful (i.e., robust
feasible) solution, assumptions A.1 — A.3 do not prescribe it in a unique fashion.
However, “the spirit” of these worst-case-oriented assumptions leads naturally to
the following definition:

Definition 1.2.4. Given a candidate solution x, the robust value ĉ(x) of the
objective in (LOU ) at x is the largest value of the “true” objective cT x + d over all
realizations of the data from the uncertainty set:

ĉ(x) = sup
(c,d,A,b)∈U

[cT x + d]. (1.2.3)

After we agree what are meaningful candidate solutions to the uncertain prob-
lem (LOU ) and how to quantify their quality, we can seek the best robust value of
the objective among all robust feasible solutions to the problem. This brings us to
the central concept of this book, Robust Counterpart of an uncertain optimization
problem, which is defined as follows:

Definition 1.2.5. The Robust Counterpart of the uncertain LO problem
(LOU ) is the optimization problem

min
x

{
ĉ(x) = sup

(c,d,A,b)∈U
[cT x + d] : Ax ≤ b ∀(c, d, A, b) ∈ U

}
(1.2.4)

of minimizing the robust value of the objective over all robust feasible solutions to
the uncertain problem.

An optimal solution to the Robust Counterpart is called a robust optimal
solution to (LOU ), and the optimal value of the Robust Counterpart is called the
robust optimal value of (LOU ).
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In a nutshell, the robust optimal solution is simply “the best uncertainty-im-
munized” solution we can associate with our uncertain problem.

Example 1.1.1 continued. Let us find the robust optimal solution to the
uncertain problem (Drug). There is exactly one uncertainty-affected “block” in
the data, namely, the coefficients of RawI, RawII in the balance constraint. A
candidate solution is thus robust feasible if and only if it satisfies all constraints of
(Drug), except for the balance constraint, and it satisfies the “worst” realization of
the balance constraint. Since RawI, RawII are nonnegative, the worst realization
of the balance constraint is the one where the uncertain coefficients anI, anII are
set to their minimal values in the uncertainty set (these values are 0.00995 and
0.0196, respectively). Since the objective is not affected by the uncertainty, the
robust objective values are the same as the original ones. Thus, the RC (Robust
Counterpart) of our uncertain problem is the LO problem

RC(Drug):

RobOpt = min {−100 · RawI − 199.9 · RawII + 5500 · DrugI + 6100 · DrugII}
subject to

0.00995 · RawI + 0.0196 · RawII − 0.500 · DrugI − 0.600 · DrugII ≥ 0
RawI + RawII ≤ 1000

90.0 · DrugI + 100.0 · DrugII ≤ 2000
40.0 · DrugI + 50.0 · DrugII ≤ 800

100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000
RawI, RawII, DrugI, DrugII ≥ 0

Solving this problem, we get

RobOpt = −8294.567; RawI = 877.732, RawII = 0, DrugI = 17.467, DrugII = 0.

The “price” of robustness is the reduction in the promised profit from its nominal
optimal value 8819.658 to its robust optimal value 8294.567, that is, by 5.954%.
This is much less than the 21% reduction of the actual profit to 6,929 which we
may suffer when sticking to the nominal optimal solution when the “true” data are
“against” it. Note also that the structure of the robust optimal solution is quite
different from the one of the nominal optimal solution: with the robust solution, we
shall buy only raw materials RawI, while with the nominal one, only raw materials
RawII. The explanation is clear: with the nominal data, RawII as compared to
RawI results in a bit smaller per unit price of the active agent (9,995 $/g vs. 10,000
$/g). This is why it does not make sense to use RawI with the nominal data. The
robust optimal solution takes into account that the uncertainty in anI (i.e., the
variability of contents of active agent in RawI) is 4 times smaller than that of anII

(0.5% vs. 2%), which ultimately makes it better to use RawI.

1.2.1 More on Robust Counterparts

We start with several useful observations.

A. The Robust Counterpart (1.2.4) of LOU can be rewritten equivalently as the
problem

min
x,t

{
t :

cT x− t ≤ −d

Ax ≤ b

}
∀(c, d, A, b) ∈ U

}
. (1.2.5)
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Note that we can arrive at this problem in another fashion: we first introduce the
extra variable t and rewrite instances of our uncertain problem (LOU ) equivalently
as

min
x,t

{
t :

cT x− t ≤ −d

Ax ≤ b

}
,

thus arriving at an equivalent to (LOU ) uncertain problem in variables x, t with the
objective t that is not affected by uncertainty at all. The RC of the reformulated
problem is exactly (1.2.5). We see that

An uncertain LO problem can always be reformulated as an uncertain

LO problem with certain objective. The Robust Counterpart of the

reformulated problem has the same objective as this problem and is

equivalent to the RC of the original uncertain problem.

As a consequence, we lose nothing when restricting ourselves with uncertain LO

programs with certain objectives and we shall frequently use this option in the
future.

We see now why the constant term d in the objective of (1.1.1) should not be

neglected, or, more exactly, should not be neglected if it is uncertain. When

d is certain, we can account for it by the shift t �→ t− d in the slack variable t

which affects only the optimal value, but not the optimal solution to the Ro-

bust Counterpart (1.2.5). When d is uncertain, there is no “universal” way

to eliminate d without affecting the optimal solution to the Robust Coun-

terpart (where d plays the same role as the right hand sides of the original

constraints).

B. Assuming that (LOU ) is with certain objective, the Robust Counterpart of the
problem is

min
x

{
cT x + d : Ax ≤ b, ∀(A, b) ∈ U

}
(1.2.6)

(note that the uncertainty set is now a set in the space of the constraint data [A, b]).
We see that

The Robust Counterpart of an uncertain LO problem with a certain

objective is a purely “constraint-wise” construction: to get RC, we act

as follows:

• preserve the original certain objective as it is, and

• replace every one of the original constraints

(Ax)i ≤ bi ⇔ aT
i x ≤ bi (Ci)

(aT
i is i-th row in A) with its Robust Counterpart

aT
i x ≤ bi ∀[ai; bi] ∈ Ui, RC(Ci)

where Ui is the projection of U on the space of data of i-th con-

straint:
Ui = {[ai; bi] : [A, b] ∈ U}.
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In particular,

The RC of an uncertain LO problem with a certain objective remains
intact when the original uncertainty set U is extended to the direct
product

Û = U1 × ...× Um

of its projections onto the spaces of data of respective constraints.

Example 1.2.6. The RC of the system of uncertain constraints

{x1 ≥ ζ1, x2 ≥ ζ2} (1.2.7)

with ζ ∈ U := {ζ1 + ζ2 ≤ 1, ζ1, ζ2 ≥ 0} is the infinite system of constraints

x1 ≥ ζ1, x1 ≥ ζ2 ∀ζ ∈ U ;

on variables x1, x2. The latter system is clearly equivalent to the pair of constraints

x1 ≥ max
ζ∈U

ζ1 = 1, x2 ≥ max
ζ∈U

ζ2 = 1. (1.2.8)

The projections of U to the spaces of data of the two uncertain constraints (1.2.7) are the

segments U1 = {ζ1 : 0 ≤ ζ1 ≤ 1}, U2 = {ζ2 : 0 ≤ ζ2 ≤ 1}, and the RC of (1.2.7) w.r.t.2

the uncertainty set Û = U1 × U2 = {ζ ∈ R
2 : 0 ≤ ζ1, ζ2 ≤ 1} clearly is (1.2.8).

The conclusion we have arrived at seems to be counter-intuitive: it says that

it is immaterial whether the perturbations of data in different constraints are

or are not linked to each other, while intuition says that such a link should be

important. We shall see later (chapter 14) that this intuition is valid when a

more advanced concept of Adjustable Robust Counterpart is considered.

C. If x is a robust feasible solution of (Ci), then x remains robust feasible when
we extend the uncertainty set Ui to its convex hull Conv(Ui). Indeed, if [āi; b̄i] ∈
Conv(Ui), then

[āi; b̄i] =
J∑

j=1

λj [a
j
i ; b

j
i ],

with appropriately chosen [aj
i ; b

j
i ] ∈ Ui, λj ≥ 0 such that

∑
j

λj = 1. We now have

āT
i x =

J∑
j=1

λj [a
j
i ]

T x ≤
∑

j

λjb
j
i = b̄i,

where the inequality is given by the fact that x is feasible for RC(Ci) and [aj
i ; b

j
i ] ∈

Ui. We see that āT
i x ≤ b̄i for all [āi; b̄i] ∈ Conv(Ui), QED.

By similar reasons, the set of robust feasible solutions to (Ci) remains intact
when we extend Ui to the closure of this set. Combining these observations with
B., we arrive at the following conclusion:

2abbr. for “with respect to”
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The Robust Counterpart of an uncertain LO problem with a certain

objective remains intact when we extend the sets Ui of uncertain data

of respective constraints to their closed convex hulls, and extend U to

the direct product of the resulting sets.

In other words, we lose nothing when assuming from the very beginning

that the sets Ui of uncertain data of the constraints are closed and

convex, and U is the direct product of these sets.

In terms of the parameterization (1.2.1) of the uncertainty sets, the latter conclusion
means that

When speaking about the Robust Counterpart of an uncertain LO prob-

lem with a certain objective, we lose nothing when assuming that the

set Ui of uncertain data of i-th constraint is given as

Ui =

{
[ai; bi] = [a0

i ; b
0
i ] +

Li∑
�=1

ζ�[a�
i ; b

�
i ] : ζ ∈ Zi

}
, (1.2.9)

with a closed and convex perturbation set Zi.

D. An important modeling issue. In the usual — with certain data — Linear
Optimization, constraints can be modeled in various equivalent forms. For example,
we can write:

(a) a1x1 + a2x2 ≤ a3

(b) a4x1 + a5x2 = a6

(c) x1 ≥ 0, x2 ≥ 0
(1.2.10)

or, equivalently,
(a) a1x1 + a2x2 ≤ a3

(b.1) a4x1 + a5x2 ≤ a6

(b.2) −a5x1 − a5x2 ≤ −a6

(c) x1 ≥ 0, x2 ≥ 0.

(1.2.11)

Or, equivalently, by adding a slack variable s,

(a) a1x1 + a2x2 + s = a3

(b) a4x1 + a5x2 = a6

(c) x1 ≥ 0, x2 ≥ 0, s ≥ 0.

(1.2.12)

However, when (part of) the data a1, ..., a6 become uncertain, not all of these
equivalences remain valid: the RCs of our now uncertainty-affected systems of
constraints are not equivalent to each other. Indeed, denoting the uncertainty set
by U , the RCs read, respectively,

(a) a1x1 + a2x2 ≤ a3

(b) a4x1 + a5x2 = a6

(c) x1 ≥ 0, x2 ≥ 0

⎫⎬⎭ ∀a = [a1; ...; a6] ∈ U . (1.2.13)



14 CHAPTER 1

(a) a1x1 + a2x2 ≤ a3

(b.1) a4x1 + a5x2 ≤ a6

(b.2) −a5x1 − a5x2 ≤ −a6

(c) x1 ≥ 0, x2 ≥ 0

⎫⎪⎪⎬⎪⎪⎭ ∀a = [a1; ...; a6] ∈ U . (1.2.14)

(a) a1x1 + a2x2 + s = a3

(b) a4x1 + a5x2 = a6

(c) x1 ≥ 0, x2 ≥ 0, s ≥ 0

⎫⎬⎭ ∀a = [a1; ...; a6] ∈ U . (1.2.15)

It is immediately seen that while the first and the second RCs are equivalent to each
other,3 they are not equivalent to the third RC. The latter RC is more conservative
than the first two, meaning that whenever (x1, x2) can be extended, by a properly
chosen s, to a feasible solution of (1.2.15), (x1, x2) is feasible for (1.2.13)≡(1.2.14)
(this is evident), but not necessarily vice versa. In fact, the gap between (1.2.15)
and (1.2.13)≡(1.2.14) can be quite large. To illustrate the latter claim, consider
the case where the uncertainty set is

U = {a = aζ := [1 + ζ; 2 + ζ; 4− ζ; 4 + ζ; 5− ζ; 9] : −ρ ≤ ζ ≤ ρ},
where ζ is the data perturbation. In this situation, x1 = 1, x2 = 1 is a feasible
solution to (1.2.13)≡(1.2.14), provided that the uncertainty level ρ is ≤ 1/3:

(1 + ζ) · 1 + (2 + ζ) · 1 ≤ 4− ζ ∀(ζ : |ζ| ≤ ρ ≤ 1/3) &(4 + ζ) · 1 + (5− ζ) · 1 = 9 ∀ζ.

At the same time, when ρ > 0, our solution (x1 = 1, x2 = 1) cannot be extended
to a feasible solution of (1.2.15), since the latter system of constraints is infeasible
and remains so even after eliminating the equality (1.2.15.b).

Indeed, in order for x1, x2, s to satisfy (1.2.15.a) for all a ∈ U , we should have

x1 + 2x2 + s + ζ[x1 + x2] = 4 − ζ ∀(ζ : |ζ| ≤ ρ);

when ρ > 0, we therefore should have x1 + x2 = −1, which contradicts

(1.2.15.c)

The origin of the outlined phenomenon is clear. Evidently the inequality a1x1 +
a2x2 ≤ a3, where all ai and xi are fixed reals, holds true if and only if we can
“certify” the inequality by pointing out a real s ≥ 0 such that a1x1 +a2x2 +s = a3.
When the data a1, a2, a3 become uncertain, the restriction on (x1, x2) to be robust
feasible for the uncertain inequality a1x1 +a2x2 ≤ a3 for all a ∈ U reads, “in terms
of certificate,” as

∀a ∈ U ∃s ≥ 0 : a1x1 + a2x2 + s = a3,

that is, the certificate s should be allowed to depend on the true data. In contrast
to this, in (1.2.15) we require from both the decision variables x and the slack

variable (“the certificate”) s to be independent of the true data, which is by far too
conservative.

What can be learned from the above examples is that when modeling an
uncertain LO problem one should avoid whenever possible converting inequality

3Clearly, this always is the case when an equality constraint, certain or uncertain alike, is
replaced with a pair of opposite inequalities.
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constraints into equality ones, unless all the data in the constraints in question
are certain. Aside from avoiding slack variables,4 this means that restrictions like
“total expenditure cannot exceed the budget,” or “supply should be at least the
demand,” which in LO problems with certain data can harmlessly be modeled by
equalities, in the case of uncertain data should be modeled by inequalities. This
is in full accordance with common sense saying, e.g., that when the demand is
uncertain and its satisfaction is a must, it would be unwise to forbid surplus in
supply. Sometimes a good for the RO methodology modeling requires eliminating
“state variables” — those which are readily given by variables representing actual
decisions — via the corresponding “state equations.” For example, time dynamics
of an inventory is given in the simplest case by the state equations

x0 = c

xt+1 = xt + qt − dt, t = 0, 1, ..., T,

where xt is the inventory level at time t, dt is the (uncertain) demand in period [t, t+
1), and variables qt represent actual decisions – replenishment orders at instants
t = 0, 1, ..., T . A wise approach to the RO processing of such an inventory problem
would be to eliminate the state variables xt by setting

xt = c +
t−1∑
τ=1

qτ , t = 0, 1, 2, ..., T + 1,

and to get rid of the state equations. As a result, typical restrictions on state
variables (like “xt should stay within given bounds” or “total holding cost should
not exceed a given bound”) will become uncertainty-affected inequality constraints
on the actual decisions qt, and we can process the resulting inequality-constrained
uncertain LO problem via its RC.5

1.2.2 What is Ahead

After introducing the concept of the Robust Counterpart of an uncertain LO prob-
lem, we confront two major questions:

i) What is the “computational status” of the RC? When is it possible to process
the RC efficiently?

ii) How to come-up with meaningful uncertainty sets?

The first of these questions, to be addressed in depth in section 1.3, is a “structural”
one: what should be the structure of the uncertainty set in order to make the RC
computationally tractable? Note that the RC as given by (1.2.5) or (1.2.6) is
a semi-infinite LO program, that is, an optimization program with simple linear

4Note that slack variables do not represent actual decisions; thus, their presence in an LO
model contradicts assumption A.1, and thus can lead to too conservative, or even infeasible, RCs.

5For more advanced robust modeling of uncertainty-affected multi-stage inventory, see chapter
14.
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objective and infinitely many linear constraints. In principle, such a problem can
be “computationally intractable” — NP-hard.

Example 1.2.7. Consider an uncertain “essentially linear” constraint

{‖Px − p‖1 ≤ 1}[P ;p]∈U , (1.2.16)

where ‖z‖1 =
∑
j

|zj |, and assume that the matrix P is certain, while the vector p is

uncertain and is parameterized by perturbations from the unit box:

p ∈ {p = Bζ : ‖ζ‖∞ ≤ 1} ,

where ‖ζ‖∞ = max
�

|ζ�| and B is a given positive semidefinite matrix. To check whether

x = 0 is robust feasible is exactly the same as to verify whether ‖Bζ‖1 ≤ 1 whenever

‖ζ‖∞ ≤ 1; or, due to the evident relation ‖u‖1 = max
‖η‖∞≤1

ηT u, the same as to check

whether max
η,ζ

{
ηT Bζ : ‖η‖∞ ≤ 1, ‖ζ‖∞ ≤ 1

}
≤ 1. The maximum of the bilinear form

ηT Bζ with positive semidefinite B over η, ζ varying in a convex symmetric neighborhood

of the origin is always achieved when η = ζ (you may check this by using the polarization

identity ηT Bζ = 1
4
(η + ζ)T B(η + ζ)− 1

4
(η − ζ)T B(η − ζ)). Thus, to check whether x = 0

is robust feasible for (1.2.16) is the same as to check whether the maximum of a given

nonnegative quadratic form ζT Bζ over the unit box is ≤ 1. The latter problem is known

to be NP-hard,6 and therefore so is the problem of checking robust feasibility for (1.2.16).

The second of the above is a modeling question, and as such, goes beyond
the scope of purely theoretical considerations. However, theory, as we shall see in
section 2.1, contributes significantly to this modeling issue.

1.3 TRACTABILITY OF ROBUST COUNTERPARTS

In this section, we investigate the “computational status” of the RC of uncertain
LO problem. The situation here turns out to be as good as it could be: we shall
see, essentially, that the RC of the uncertain LO problem with uncertainty set U
is computationally tractable whenever the convex uncertainty set U itself is com-

putationally tractable. The latter means that we know in advance the affine hull
of U , a point from the relative interior of U , and we have access to an efficient
membership oracle that, given on input a point u, reports whether u ∈ U . This
can be reformulated as a precise mathematical statement; however, we will prove
a slightly restricted version of this statement that does not require long excursions
into complexity theory.

1.3.1 The Strategy

Our strategy will be as follows. First, we restrict ourselves to uncertain LO problems
with a certain objective — we remember from item A in Section 1.2.1 that we lose

6In fact, it is NP-hard to compute the maximum of a nonnegative quadratic form over the unit
box with inaccuracy less than 4% [61].
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nothing by this restriction. Second, all we need is a “computationally tractable”
representation of the RC of a single uncertain linear constraint, that is, an equivalent
representation of the RC by an explicit (and “short”) system of efficiently verifiable
convex inequalities. Given such representations for the RCs of every one of the
constraints of our uncertain problem and putting them together (cf. item B in
Section 1.2.1), we reformulate the RC of the problem as the problem of minimizing
the original linear objective under a finite (and short) system of explicit convex
constraints, and thus — as a computationally tractable problem.

To proceed, we should explain first what does it mean to represent a constraint
by a system of convex inequalities. Everyone understands that the system of 4
constraints on 2 variables,

x1 + x2 ≤ 1, x1 − x2 ≤ 1,−x1 + x2 ≤ 1,−x1 − x2 ≤ 1, (1.3.1)

represents the nonlinear inequality

|x1|+ |x2| ≤ 1 (1.3.2)

in the sense that both (1.3.2) and (1.3.1) define the same feasible set. Well, what
about the claim that the system of 5 linear inequalities

−u1 ≤ x1 ≤ u1,−u2 ≤ x2 ≤ u2, u1 + u2 ≤ 1 (1.3.3)

represents the same set as (1.3.2)? Here again everyone will agree with the claim,
although we cannot justify the claim in the former fashion, since the feasible sets
of (1.3.2) and (1.3.3) live in different spaces and therefore cannot be equal to each
other!

What actually is meant when speaking about “equivalent representations of
problems/constraints” in Optimization can be formalized as follows:

Definition 1.3.1. A set X+ ⊂ R
n
x × R

k
u is said to represent a set X ⊂ R

n
x , if

the projection of X+ onto the space of x-variables is exactly X, i.e., x ∈ X if and
only if there exists u ∈ R

k
u such that (x, u) ∈ X+:

X =
{
x : ∃u : (x, u) ∈ X+

}
.

A system of constraints S+ in variables x ∈ R
n
x , u ∈ R

k
u is said to represent a

system of constraints S in variables x ∈ R
n
x , if the feasible set of the former system

represents the feasible set of the latter one.

With this definition, it is clear that the system (1.3.3) indeed represents the
constraint (1.3.2), and, more generally, that the system of 2n+1 linear inequalities

−uj ≤ xj ≤ uj , j = 1, ..., n,
∑

j

uj ≤ 1

in variables x, u represents the constraint∑
j

|xj | ≤ 1.
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To understand how powerful this representation is, note that to represent the same
constraint in the style of (1.3.1), that is, without extra variables, it would take as
much as 2n linear inequalities.

Coming back to the general case, assume that we are given an optimization
problem

min
x
{f(x) s.t. x satisfies Si, i = 1, ..., m} , (P)

where Si are systems of constraints in variables x, and that we have in our disposal
systems S+

i of constraints in variables x, vi which represent the systems Si. Clearly,
the problem

min
x,v1,...,vm

{
f(x) s.t. (x, vi) satisfies S+

i , i = 1, ...,m
}

(P+)

is equivalent to (P): the x component of every feasible solution to (P+) is feasible
for (P) with the same value of the objective, and the optimal values in the problems
are equal to each other, so that the x component of an ε-optimal (in terms of the
objective) feasible solution to (P+) is an ε-optimal feasible solution to (P). We shall
say that (P+) represents equivalently the original problem (P). What is important
here, is that a representation can possess desired properties that are absent in
the original problem. For example, an appropriate representation can convert the
problem of the form min

x
{‖Px−p‖1 : Ax ≤ b} with n variables, m linear constraints,

and k-dimensional vector p, into an LO problem with n+k variables and m+2k+1
linear inequality constraints, etc. Our goal now is to build a representation capable
of expressing equivalently a semi-infinite linear constraint (specifically, the robust
counterpart of an uncertain linear inequality) as a finite system of explicit convex
constraints, with the ultimate goal to use these representations in order to convert
the RC of an uncertain LO problem into an explicit (and as such, computationally
tractable) convex program.

The outlined strategy allows us to focus on a single uncertainty-affected linear
inequality — a family {

aT x ≤ b
}

[a;b]∈U , (1.3.4)

of linear inequalities with the data varying in the uncertainty set

U =

{
[a; b] = [a0; b0] +

L∑
�=1

ζ�[a�; b�] : ζ ∈ Z
}

(1.3.5)

— and on “tractable representation” of the RC

aT x ≤ b ∀
(

[a; b] = [a0; b0] +
L∑

�=1

ζ�[a�; b�] : ζ ∈ Z
)

(1.3.6)

of this uncertain inequality.

By reasons indicated in item C of Section 1.2.1, we assume from now on that
the associated perturbation set Z is convex.
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1.3.2 Tractable Representation of (1.3.6): Simple Cases

We start with the cases where the desired representation can be found by “bare
hands,” specifically, the cases of interval and simple ellipsoidal uncertainty.

Example 1.3.2. Consider the case of interval uncertainty, where Z in (1.3.6) is a
box. W.l.o.g.7 we can normalize the situation by assuming that

Z = Box1 ≡ {ζ ∈ R
L : ‖ζ‖∞ ≤ 1}.

In this case, (1.3.6) reads

[a0]T x +
L∑

�=1

ζ�[a
�]T x ≤ b0 +

L∑
�=1

ζ�b
� ∀(ζ : ‖ζ‖∞ ≤ 1)

⇔
L∑

�=1

ζ�[[a
�]T x − b�] ≤ b0 − [a0]T x ∀(ζ : |ζ�| ≤ 1, � = 1, ..., L)

⇔ max
−1≤ζ�≤1

[
L∑

�=1

ζ�[[a
�]T x − b�]

]
≤ b0 − [a0]T x

The concluding maximum in the chain is clearly
L∑

�=1

|[a�]T x − b�|, and we arrive at the

representation of (1.3.6) by the explicit convex constraint

[a0]T x +

L∑
�=1

|[a�]T x − b�| ≤ b0, (1.3.7)

which in turn admits a representation by a system of linear inequalities:⎧⎨⎩
−u� ≤ [a�]T x − b� ≤ u�, � = 1, ..., L,

[a0]
T
x +

L∑
�=1

u� ≤ b0.
(1.3.8)

Example 1.3.3. Consider the case of ellipsoidal uncertainty where Z in (1.3.6) is
an ellipsoid. W.l.o.g. we can normalize the situation by assuming that Z is merely the
ball of radius Ω centered at the origin:

Z = BallΩ = {ζ ∈ R
L : ‖ζ‖2 ≤ Ω}.

In this case, (1.3.6) reads

[a0]T x +
L∑

�=1

ζ�[a
�]T x ≤ b0 +

L∑
�=1

ζ�b
� ∀(ζ : ‖ζ‖2 ≤ Ω)

⇔ max
‖ζ‖2≤Ω

[
L∑

�=1

ζ�[[a
�]T x − b�]

]
≤ b0 − [a0]T x

⇔ Ω

√
L∑

�=1

([a�]T x − b�)2 ≤ b0 − [a0]T x,

and we arrive at the representation of (1.3.6) by the explicit convex constraint (“conic
quadratic inequality”)

[a0]T x + Ω

√√√√ L∑
�=1

([a�]T x − b�)2 ≤ b0. (1.3.9)

7abbr. for “without loss of generality.”

Hamid
Sticky Note
این صفحه پرینت شود.
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1.3.3 Tractable Representation of (1.3.6): General Case

Now consider a rather general case when the perturbation set Z in (1.3.6) is given
by a conic representation (cf. section A.2.4 in Appendix):

Z =
{
ζ ∈ R

L : ∃u ∈ R
K : Pζ + Qu + p ∈ K

}
, (1.3.10)

where K is a closed convex pointed cone in R
N with a nonempty interior, P, Q are

given matrices and p is a given vector. In the case when K is not a polyhedral cone,
assume that this representation is strictly feasible:

∃(ζ̄, ū) : P ζ̄ + Qū + p ∈ intK. (1.3.11)

Theorem 1.3.4. Let the perturbation set Z be given by (1.3.10), and in
the case of non-polyhedral K, let also (1.3.11) take place. Then the semi-infinite
constraint (1.3.6) can be represented by the following system of conic inequalities
in variables x ∈ R

n, y ∈ R
N :

pT y + [a0]T x ≤ b0,

QT y = 0,

(PT y)� + [a�]T x = b�, � = 1, ..., L,

y ∈ K∗,

(1.3.12)

where K∗ = {y : yT z ≥ 0 ∀z ∈ K} is the cone dual to K.

Proof. We have
x is feasible for (1.3.6)

⇔ sup
ζ∈Z

{
[a0]T x− b0︸ ︷︷ ︸

d[x]

+
L∑

�=1

ζ�

[
[a�]T x− b�

]︸ ︷︷ ︸
c�[x]

}
≤ 0

⇔ sup
ζ∈Z

{
cT [x]ζ + d[x]

}
≤ 0

⇔ sup
ζ∈Z

cT [x]ζ ≤ −d[x]

⇔ max
ζ,v

{
cT [x]ζ : Pζ + Qv + p ∈ K

}
≤ −d[x].

The concluding relation says that x is feasible for (1.3.6) if and only if the optimal
value in the conic program

max
ζ,v

{
cT [x]ζ : Pζ + Qv + p ∈ K

}
(CP)

is ≤ −d[x]. Assume, first, that (1.3.11) takes place. Then (CP) is strictly feasible,
and therefore, applying the Conic Duality Theorem (Theorem A.2.1), the optimal
value in (CP) is ≤ −d[x] if and only if the optimal value in the conic dual to the
(CP) problem

min
y

{
pT y : QT y = 0, PT y = −c[x], y ∈ K∗

}
, (CD)

is attained and is ≤ −d[x]. Now assume that K is a polyhedral cone. In this case
the usual LO Duality Theorem, (which does not require the validity of (1.3.11)),
yields exactly the same conclusion: the optimal value in (CP) is ≤ −d[x] if and only
if the optimal value in (CD) is achieved and is ≤ −d[x]. In other words, under the
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premise of the Theorem, x is feasible for (1.3.6) if and only if (CD) has a feasible
solution y with pT y ≤ −d[x]. �

Observing that nonnegative orthants, Lorentz and Semidefinite cones are self-
dual, we derive from Theorem 1.3.4 the following corollary:

Corollary 1.3.5. Let the nonempty perturbation set in (1.3.6) be:

(i) polyhedral, i.e., given by (1.3.10) with a nonnegative orthant RN
+ in the

role of K, or

(ii) conic quadratic representable, i.e., given by (1.3.10) with a direct product
Lk1 × ... × Lkm of Lorentz cones Lk = {x ∈ R

k : xk ≥
√

x2
1 + ... + xk−1

2} in the
role of K, or

(iii) semidefinite representable, i.e., given by (1.3.10) with the positive
semidefinite cone Sk

+ in the role of K.

In the cases of (ii), (iii) assume in addition that (1.3.11) holds true. Then the Ro-
bust Counterpart (1.3.6) of the uncertain linear inequality (1.3.4) — (1.3.5) with
the perturbation set Z admits equivalent reformulation as an explicit system of

— linear inequalities, in the case of (i),

— conic quadratic inequalities, in the case of (ii),

— linear matrix inequalities, in the case of (iii).

In all cases, the size of the reformulation is polynomial in the number of variables in
(1.3.6) and the size of the conic description of Z, while the data of the reformulation
is readily given by the data describing, via (1.3.10), the perturbation set Z.

Remark 1.3.6. A. Usually, the cone K participating in (1.3.10) is the direct
product of simpler cones K1, ...,KS , so that representation (1.3.10) takes the form

Z = {ζ : ∃u1, ..., uS : Psζ + Qsu
s + ps ∈ Ks, s = 1, ..., S}. (1.3.13)

In this case, (1.3.12) becomes the system of conic constraints in variables x, y1, ..., yS

as follows:
S∑

s=1
pT

s ys + [a0]T x ≤ b0,

QT
s ys = 0, s = 1, ..., S,

S∑
s=1

(PT
s ys)� + [a�]T x = b�, � = 1, ..., L,

ys ∈ Ks
∗, s = 1, ..., S,

(1.3.14)

where Ks
∗ is the cone dual to Ks.

B. Uncertainty sets given by LMIs seem “exotic”; however, they can arise under
quite realistic circumstances, see section 1.4.
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1.3.3.1 Examples

We are about to apply Theorem 1.3.4 to build tractable reformulations of the semi-
infinite inequality (1.3.6) in two particular cases. While at a first glance no natural
“uncertainty models” lead to the “strange” perturbation sets we are about to con-
sider, it will become clear later that these sets are of significant importance — they
allow one to model random uncertainty.

Example 1.3.7. Z is the intersection of concentric co-axial box and ellipsoid,
specifically,

Z = {ζ ∈ R
L : −1 ≤ ζ� ≤ 1, � ≤ L,

√√√√ L∑
�=1

ζ2
� /σ2

� ≤ Ω}, (1.3.15)

where σ� > 0 and Ω > 0 are given parameters.

Here representation (1.3.13) becomes

Z = {ζ ∈ R
L : P1ζ + p1 ∈ K1, P2ζ + p2 ∈ K2},

where

• P1ζ ≡ [ζ; 0], p1 = [0L×1; 1] and K1 = {(z, t) ∈ R
L × R : t ≥ ‖z‖∞}, whence

K1
∗ = {(z, t) ∈ R

L × R : t ≥ ‖z‖1};
• P2ζ = [Σ−1ζ; 0] with Σ = Diag{σ1, ..., σL}, p2 = [0L×1; Ω] and K2 is the Lorentz

cone of the dimension L + 1 (whence K2
∗ = K2)

Setting y1 = [η1; τ1], y2 = [η2; τ2] with one-dimensional τ1, τ2 and L-dimensional η1, η2,
(1.3.14) becomes the following system of constraints in variables τ , η, x:

(a) τ1 + Ωτ2 + [a0]T x ≤ b0,

(b) (η1 + Σ−1η2)� = b� − [a�]T x, � = 1, ..., L,
(c) ‖η1‖1 ≤ τ1 [⇔ [η1; τ1] ∈ K1

∗],
(d) ‖η2‖2 ≤ τ2 [⇔ [η2; τ2] ∈ K2

∗].

We can eliminate from this system the variables τ1, τ2 — for every feasible solution to
the system, we have τ1 ≥ τ̄1 ≡ ‖η1‖1, τ2 ≥ τ̄2 ≡ ‖η2‖2, and the solution obtained when
replacing τ1, τ2 with τ̄1, τ̄2 still is feasible. The reduced system in variables x, z = η1,
w = Σ−1η2 reads

L∑
�=1

|z�| + Ω
√∑

�

σ2
� w2

� + [a0]T x ≤ b0,

z� + w� = b� − [a�]T x, � = 1, ..., L,

(1.3.16)

which is also a representation of (1.3.6), (1.3.15).

Example 1.3.8. [“budgeted uncertainty”] Consider the case where Z is the inter-
section of ‖ · ‖∞- and ‖ · ‖1-balls, specifically,

Z = {ζ ∈ R
L : ‖ζ‖∞ ≤ 1, ‖ζ‖1 ≤ γ}, (1.3.17)

where γ, 1 ≤ γ ≤ L, is a given “uncertainty budget.”

Here representation (1.3.13) becomes

Z = {ζ ∈ R
L : P1ζ + p1 ∈ K1, P2ζ + p2 ∈ K2},
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where

• P1ζ ≡ [ζ; 0], p1 = [0L×1; 1] and K1 = {[z; t] ∈ R
L × R : t ≥ ‖z‖∞}, whence

K1
∗ = {[z; t] ∈ R

L × R : t ≥ ‖z‖1};
• P2ζ = [ζ; 0], p2 = [0L×1; γ] and K2 = K1

∗ = {[z; t] ∈ R
L × R : t ≥ ‖z‖1}, whence

K2
∗ = K1.

Setting y1 = [z; τ1], y2 = [w; τ2] with one-dimensional τ and L-dimensional z, w, system
(1.3.14) becomes the following system of constraints in variables τ1, τ2, z, w, x:

(a) τ1 + γτ2 + [a0]T x ≤ b0,

(b) (z + w)� = b� − [a�]T x, � = 1, ..., L,
(c) ‖z‖1 ≤ τ1 [⇔ [η1; τ1] ∈ K1

∗],
(d) ‖w‖∞ ≤ τ2 [⇔ [η2; τ2] ∈ K2

∗].

Same as in Example 1.3.7, we can eliminate the τ -variables, arriving at a representation
of (1.3.6), (1.3.17) by the following system of constraints in variables x, z, w:

L∑
�=1

|z�| + γ max
�

|w�| + [a0]T x ≤ b0,

z� + w� = b� − [a�]T x, � = 1, ..., L,

(1.3.18)

which can be further converted into the system of linear inequalities in z, w and additional

variables.

1.4 NON-AFFINE PERTURBATIONS

In the first reading this section can be skipped.

So far we have assumed that the uncertain data of an uncertain LO problem
are affinely parameterized by a perturbation vector ζ varying in a closed convex
set Z. We have seen that this assumption, combined with the assumption that Z
is computationally tractable, implies tractability of the RC. What happens when
the perturbations enter the uncertain data in a nonlinear fashion? Assume w.l.o.g.
that every entry a in the uncertain data is of the form

a =
K∑

k=1

ca
kfk(ζ),

where ca
k are given coefficients (depending on the data entry in question) and

f1(ζ), ..., fK(ζ) are certain basic functions, perhaps non-affine, defined on the per-
turbation set Z. Assuming w.l.o.g. that the objective is certain, we still can define
the RC of our uncertain problem as the problem of minimizing the original ob-
jective over the set of robust feasible solutions, those which remain feasible for all
values of the data coming from ζ ∈ Z, but what about the tractability of this RC?
An immediate observation is that the case of nonlinearly perturbed data can be
immediately reduced to the one where the data are affinely perturbed. To this end,
it suffices to pass from the original perturbation vector ζ to the new vector

ζ̂[ζ] = [ζ1; ...; ζL; f1(ζ); ...; fK(ζ)].
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As a result, the uncertain data become affine functions of the new perturbation
vector ζ̂ which now runs through the image Z̃ = ζ̂[Z] of the original uncertainty set
Z under the mapping ζ �→ ζ̂[ζ]. As we know, in the case of affine data perturbations
the RC remains intact when replacing a given perturbation set with its closed
convex hull. Thus, we can think about our uncertain LO problem as an affinely
perturbed problem where the perturbation vector is ζ̂, and this vector runs through
the closed convex set Ẑ = cl Conv(ζ̂[Z]). We see that formally speaking, the case of
general-type perturbations can be reduced to the one of affine perturbations. This,
unfortunately, does not mean that non-affine perturbations do not cause difficulties.
Indeed, in order to end up with a computationally tractable RC, we need more than
affinity of perturbations and convexity of the perturbation set — we need this set
to be computationally tractable. And the set Ẑ = cl Conv(ζ̂[Z]) may fail to satisfy
this requirement even when both Z and the nonlinear mapping ζ �→ ζ̂[ζ] are simple,
e.g., when Z is a box and ζ̂ = [ζ; {ζ�ζr}L

�,r=1], (i.e., when the uncertain data are
quadratically perturbed by the original perturbations ζ).

We are about to present two generic cases where the difficulty just outlined
does not occur (for justification and more examples, see section 14.3.2).

Ellipsoidal perturbation set Z, quadratic perturbations. Here Z is an
ellipsoid, and the basic functions fk are the constant, the coordinates of ζ and the
pairwise products of these coordinates. This means that the uncertain data entries
are quadratic functions of the perturbations. W.l.o.g. we can assume that the
ellipsoid Z is centered at the origin: Z = {ζ : ‖Qζ‖2 ≤ 1}, where KerQ = {0}.

In this case, representing ζ̂[ζ] as the matrix
[

ζT

ζ ζζT

]
, we have the following

semidefinite representation of Ẑ = cl Conv(ζ̂[Z]):

Ẑ =
{[

wT

w W

]
:
[

1 wT

w W

]
� 0, Tr(QWQT ) ≤ 1

}
(for proof, see Lemma 14.3.7).

Separable polynomial perturbations. Here the structure of perturbations is
as follows: ζ runs through the box Z = {ζ ∈ RL : ‖ζ‖∞ ≤ 1}, and the uncertain
data entries are of the form

a = pa
1(ζ1) + ... + pa

L(ζL),

where pa
� (s) are given algebraic polynomials of degrees not exceeding d; in other

words, the basic functions can be split into L groups, the functions of �-th group
being 1 = ζ0

� , ζ�, ζ
2
� , ..., ζd

� . Consequently, the function ζ̂[ζ] is given by

ζ̂[ζ] = [[1; ζ1; ζ2
1 ; ...; ζd

1 ]; ...; [1; ζL; ζ2
L; ...; ζd

L]].

Setting P = {ŝ = [1; s; s2; ...; sd] : −1 ≤ s ≤ 1}, we conclude that Z̃ = ζ̂[Z]
can be identified with the set PL = P × ...× P︸ ︷︷ ︸

L

, so that Ẑ is nothing but the set
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P × ...× P︸ ︷︷ ︸
L

, where P = Conv(P ). It remains to note that the set P admits an

explicit semidefinite representation, see Lemma 14.3.4.

1.5 EXERCISES

Exercise 1.1. Consider an uncertain LO problem with instances

min
x

{
cT x : Ax ≤ b

}
[A : m× n]

and with simple interval uncertainty:

U = {(c, A, b) : |cj − cn
j | ≤ σj , |Aij −An

ij | ≤ αij , |bi − bn
i | ≤ βi∀i, j}

(n marks the nominal data). Reduce the RC of the problem to an LO problem
with m constraints (not counting the sign constraints on the variables) and 2n
nonnegative variables.

Exercise 1.2. Represent the RCs of every one of the uncertain linear con-
straints given below:

aT x ≤ b, [a; b] ∈ U = {[a; b] = [an; bn] + Pζ : ‖ζ‖p ≤ ρ}
[p ∈ [1,∞]] (a)

aT x ≤ b, [a; b] ∈ U = {[a; b] = [an; bn] + Pζ : ‖ζ‖p ≤ ρ, ζ ≥ 0}
[p ∈ [1,∞]] (b)

aT x ≤ b, [a; b] ∈ U = {[a; b] = [an; bn] + Pζ : ‖ζ‖p ≤ ρ}
[p ∈ (0, 1)] (c)

as explicit convex constraints.

Exercise 1.3. Represent in tractable form the RC of uncertain linear con-
straint

aT x ≤ b

with ∩-ellipsoidal uncertainty set

U = {[a, b] = [an; bn] + Pζ : ζT Qjζ ≤ ρ2, 1 ≤ j ≤ J},
where Qj � 0 and

∑
j Qj � 0.

1.6 NOTES AND REMARKS

NR 1.1. The paradigm of Robust Linear Optimization in the form considered
here goes back to A.L. Soyster [109], 1973. To the best of our knowledge, in two
subsequent decades there were only two publications on the subject [52, 106]. The
activity in the area was revived circa 1997, independently and essentially simultane-
ously, in the frameworks of both Integer Programming (Kouvelis and Yu [70]) and
Convex Programming (Ben-Tal and Nemirovski [3, 4], El Ghaoui et al. [49, 50]).
Since 2000, the RO area is witnessing a burst of research activity in both theory
and applications, with numerous researchers involved worldwide. The magnitude
and diversity of the related contributions make it beyond our abilities to discuss



26 CHAPTER 1

them here. The reader can get some impression of this activity from [9, 16, 110, 89]
and references therein.

NR 1.2. By itself, the RO methodology can be applied to every optimization
problem where one can separate numerical data (that can be partly uncertain) from
a problem’s structure (that is known in advance and common for all instances of the
uncertain problem). In particular, the methodology is fully applicable to uncertain
mixed integer LO problems, where part of the decision variables are restricted to be
integer. Note, however, that tractability issues, (which are our main focus in this
book), in Uncertain LO with real variables and Uncertain Mixed-Integer LO need
quite different treatment. While Theorem 1.3.4 is fully applicable to the mixed
integer case and implies, in particular, that the RC of an uncertain mixed-integer
LO problem P with a polyhedral uncertainty set is an explicit mixed-integer LO
program with exactly the same integer variables as those of the instances of P,
the “tractability consequences” of this fact are completely different from those we
made in the main body of this chapter. With no integer variables, the fact that
the RC is an LO program straightforwardly implies tractability of the RC, while
in the presence of integer variables no such conclusion can be made. Indeed, in
the mixed integer case already the instances of the uncertain problem P typically
are intractable, which, of course, implies intractability of the RC. In the case when
the instances of P are tractable, the “fine structure” of the instances responsible
for this rare phenomenon usually is destroyed when passing to the mixed-integer
reformulation of the RC. There are some remarkable exceptions to this rule (see,
e.g., [25]); however, in general the Uncertain Mixed-Integer LO is incomparably
more complex computationally than the Uncertain LO with real variables. As it
was already stated, our book is primarily focused on tractability issues of RO, and
in order to get positive results in this direction, we restrict ourselves to uncertain
problems with well-structured convex (and thus tractable) instances.

NR 1.3. Tractability of the RC of an uncertain LO problem with a tractable
uncertainty set was established in the very first papers on convex RO. Theorem
1.3.4 and Corollary 1.3.5 are taken from [5].



Chapter Two
Robust Counterpart Approximations of Scalar Chance

Constraints

2.1 HOW TO SPECIFY AN UNCERTAINTY SET

The question posed in the title of this section goes beyond general-type theoretical
considerations — this is mainly a modeling issue that should be resolved on the
basis of application-driven considerations. There is however a special case where
this question makes sense and can, to some extent, be answered — this is the case
where our goal is not to build an uncertainty model “from scratch,” but rather to
translate an already existing uncertainty model, namely, a stochastic one, to the
language of “uncertain-but-bounded” perturbation sets and the associated robust
counterparts. By exactly the same reasons as in the previous section, we can re-
strict our considerations to the case of a single uncertainty-affected linear inequality
(1.3.4), (1.3.5).

Probabilistic vs. “uncertain-but-bounded” perturbations. When building
the RC (1.3.6) of uncertain linear inequality (1.3.4), we worked with the so called
“uncertain-but-bounded” data model (1.3.5) — one where all we know about the
possible values of the data [a; b] is their domain U defined in terms of a given affine
parameterization of the data by perturbation vector ζ varying in a given perturba-
tion set Z. It should be stressed that we did not assume that the perturbations are
of a stochastic nature and therefore used the only approach meaningful under the
circumstances, namely, we looked for solutions that remain feasible whatever the
data perturbation from Z. This approach has its advantages:

i) More often than not there are no reasons to assign the perturbations a stochas-
tic nature.

Indeed, stochasticity makes sense only when one repeats a certain action many
times, or executes many similar actions in parallel; here it might be reasonable
to think of frequencies of successes, etc. Probabilistic considerations become,
methodologically, much more problematic when applied to a unique action,
with no second attempt possible.

ii) Even when the unknown data can be thought of as stochastic, it might be
difficult, especially in the large-scale case, to specify reliably data distribution.
Indeed, the mere fact that the data are stochastic does not help unless we
possess at least a partial knowledge of the underlying distribution.
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Of course, the uncertain-but-bounded models of uncertainty also require a pri-
ori knowledge, namely, to know what is the uncertainty set (a probabilistically
oriented person could think about this set as the support of data distribution,
that is, the smallest closed set in the space of the data such that the proba-
bility for the data to take a value outside of this set is zero). Note, however,
that it is much easier to point out the support of the relevant distribution
than the distribution itself.

With the uncertain-but-bounded model of uncertainty, we can make clear predic-
tions like “with such and such behavior, we definitely will survive, provided that
the unknown parameters will differ from their nominal values by no more than
15%, although we may die when the variation will be as large as 15.1%.” In case
we do believe that 15.1% variations are also worthy to worry about, we have an
option to increase the perturbation set to take care of 30% perturbations in the
data. With luck, we will be able to find a robust feasible solution for the increased
perturbation set. This is a typical engineering approach — after the required thick-
ness of a bar supporting certain load is found, a civil engineer will increase it by
factor like 1.2 or 1.5 “to be on the safe side” — to account for model inaccura-
cies, material imperfections, etc. With a stochastic uncertainty model, this “being
on the safe side” is impossible — increasing the probability of certain events, one
must decrease simultaneously the probability of certain other events, since the
“total probability budget” is once and for ever fixed. While all these arguments
demonstrate that there are situations in reality when the uncertain-but-bounded
model of data perturbations possesses significant methodological advantages over
the stochastic models of uncertainty, there are, of course, applications (like commu-
nications, weather forecasts, mass production, and, to some extent, finance) where
one can rely on probabilistic models of uncertainty. Whenever this is the case,
the much less informative uncertain-but-bounded model and associated worst-case-
oriented decisions can be too conservative and thus impractical. The bottom line is
that while the stochastic models of data uncertainty are by far not the only mean-

ingful ones, they definitely deserve attention. Our goal in this chapter is to develop

techniques that are capable to utilize, to some extent, knowledge of the stochastic

nature of data perturbations when building uncertainty-immunized solutions. This
goal will be achieved via a specific “translation” of stochastic models of uncertain
data to the language of uncertain-but-bounded perturbations and the associated
robust counterparts. Before developing the approach in full detail, we will explain
why we choose such an implicit way to treat stochastic uncertainty models instead
of treating them directly.

2.2 CHANCE CONSTRAINTS AND THEIR SAFE TRACTABLE

APPROXIMATIONS

The most direct way to treat stochastic data uncertainty in the context of uncertain
Linear Optimization is offered by an old concept (going back to 50s [40]) of chance
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constraints. Consider an uncertain linear inequality

aT x ≤ b, [a; b] = [a0; b0] +
L∑

�=1

ζ�[a�; b�] (2.2.1)

(cf. (1.3.4), (1.3.5)) and assume that the perturbation vector ζ is random with,
say, completely known probability distribution P . Ideally, we would like to work
with candidate solutions x that make the constraint valid with probability 1. This
“ideal goal,” however, means coming back to the uncertain-but-bounded model of
perturbations; indeed, it is easily seen that a given x satisfies (2.2.1) for almost all
realizations of ζ if and only if x is robust feasible w.r.t. the perturbation set that
is the closed convex hull of the support of P . The only meaningful way to utilize
the stochasticity of perturbations is to require a candidate solution x to satisfy the
constraint for “nearly all” realizations of ζ, specifically, to satisfy the constraint
with probability at least 1 − ε, where ε ∈ (0, 1) is a prespecified small tolerance.
This approach associates with the randomly perturbed constraint (2.2.1) the chance

constraint

p(x) ≡ Probζ∼P

{
ζ : [a0]T x +

L∑
�=1

ζ�[a�]T x > b0 +
L∑

�=1

ζ�b
�

}
≤ ε, (2.2.2)

where Probζ∼P is the probability associated with the distribution P . Note that
(2.2.2) is a usual certain constraint. Replacing all uncertainty-affected constraints
in an uncertain LO problem with their chance constrained versions and minimizing
the objective function, (which we, w.l.o.g., may assume to be certain) under these
constraints, we end up with the chance constrained version of (LOU ), which is a
deterministic optimization problem.

While the outlined approach seems to be quite natural, it suffers from a severe
drawback — typically, it results in a severely computationally intractable problem.

The reason is twofold:

i) Usually, it is difficult to evaluate with high accuracy the probability in the
left hand side of (2.2.2), even in the case when P is simple.

For example, it is known [68] that computing the left hand side in (2.2.2) is NP-

hard already when ζ� are independent and uniformly distributed in [−1, 1]. This

means that unless P=NP, there is no algorithm that, given on input a rational x,

rational data {[a�; b�]}L
�=0 and rational δ ∈ (0, 1), allows to evaluate p(x) within

accuracy δ in time polynomial in the bit size of the input. Unless ζ takes values

in a finite set of moderate cardinality, the only known general method to evaluate

p(x) is based on Monte-Carlo simulations; this method, however, requires samples

with cardinality of order of 1/δ, where δ is the required accuracy of evaluation.

Since the meaningful values of this accuracy are ≤ ε, we conclude that in reality the

Monte-Carlo approach can hardly be used when ε is like 0.0001 or less.

ii) More often than not the feasible set of (2.2.2) is non-convex, which makes
optimization under chance constraints a highly problematic task.
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Note that while the first difficulty becomes an actual obstacle only when ε is small

enough, the second difficulty makes chance constrained optimization highly prob-

lematic for “large” ε as well.

Essentially, the only known case when none of the outlined difficulties occur is the
case where ζ is a Gaussian random vector and ε < 1/2.

Due to the severe computational difficulties associated with chance con-
straints, a natural course of action is to replace a chance constraint with its com-

putationally tractable safe approximation. The latter notion is defined as follows:

Definition 2.2.1. Let {[a�; b�]}L
�=0, P , ε be the data of chance constraint

(2.2.2), and let S be a system of convex constraints on x and additional vari-
ables v. We say that S is a safe convex approximation of chance constraint (2.2.2),
if the x component of every feasible solution (x, v) of S is feasible for the chance
constraint.

A safe convex approximation S of (2.2.2) is called computationally tractable,
if the convex constraints forming S are efficiently computable.

It is clear that by replacing the chance constraints in a given chance con-
strained optimization problem with their safe convex approximations, we end up
with a convex optimization problem in x and additional variables that is a “safe ap-
proximation” of the chance constrained problem: the x component of every feasible
solution to the approximation is feasible for the chance constrained problem. If the
safe convex approximation in question is tractable, then the above approximating
program is a convex program with efficiently computable constraints and as such
it can be processed efficiently.

In the sequel, when speaking about safe convex approximations, we omit
for the sake of brevity the adjective “convex,” which should always be added “by
default.”

2.2.1 Ambiguous Chance Constraints

Chance constraint (2.2.2) is associated with randomly perturbed constraint (2.2.1)
and a given distribution P of random perturbations, and it is reasonable to use
this constraint when we do know this distribution. In reality we usually have only
partial information on P , that is, we know only that P belongs to a given family P
of distributions. When this is the case, it makes sense to pass from (2.2.2) to the
ambiguous chance constraint

∀(P ∈ P) : Probζ∼P

{
ζ : [a0]T x +

L∑
�=1

ζ�[a�]T x > b0 +
L∑

�=1

ζ�b
�

}
≤ ε. (2.2.3)

Of course, the definition of a safe tractable approximation of chance constraint
extends straightforwardly to the case of ambiguous chance constraint. In the se-
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quel, we usually skip the adjective “ambiguous”; what exactly is meant depends on
whether we are speaking about a partially or a fully known distribution P .

Next we present a simple scheme for the safe approximation of chance con-
straints.

2.3 SAFE TRACTABLE APPROXIMATIONS OF SCALAR CHANCE

CONSTRAINTS: BASIC EXAMPLES

Consider the case of chance constraint (2.2.3) where all we know about the random
variables ζ� is that

E{ζ�} = 0 & |ζ�| ≤ 1, � = 1, ..., L & {ζ�}L
�=1 are independent (2.3.1)

(that is, P is comprised of all distributions satisfying (2.3.1)). Note that a more
general case of independent random variables ζ� taking values in given finite seg-
ments centered at the expectations of ζ� by “scalings” ζ� �→ ξ� = α�ζ� + β� with
deterministic α�, β� can be reduced to (2.3.1) (cf. Remark 1.2.2).

Observe that the body of chance constraint (2.2.2) can be rewritten as

η ≡
L∑

�=1

[[a�]T x− b�]ζ� ≤ b0 − [a0]T x. (2.3.2)

In the case of (2.3.1), for x fixed, η is a random variable with zero mean and
standard deviation

StD[η] =

√√√√ L∑
�=1

([a�]T x− b�)2E{ζ2
� } ≤

√√√√ L∑
�=1

([a�]T x− b�)2.

The chance constraint requires for (2.3.2) to be satisfied with probability ≥ 1 − ε.
An engineer would respond to this requirement arguing that a random variable
is “never” greater than its mean plus 3 times the standard deviation, so that η

is “never” greater than the quantity 3

√
L∑

�=1

([a�]T x− b�)2. We need not be as spe-

cific as an engineer and say that η is “nearly never” greater than the quantity

Ω

√
L∑

�=1

([a�]T x− b�)2, where Ω is a “safety parameter” of order of 1; the larger Ω,

the less the chances for η to be larger than the outlined quantity. We thus arrive
at a parametric “safe” version

Ω

√√√√ L∑
�=1

([a�]T x− b�)2 ≤ b0 − [a0]T x (2.3.3)

of the randomly perturbed constraint (2.3.2). It seems that with properly defined
Ω, every feasible solution to this constraint satisfies, with probability at least 1− ε,
the inequality in (2.3.2). This indeed is the case; a simple analysis, which we
will carry later on, demonstrates that our “engineering reasoning” can be justified.



32 CHAPTER 2

Specifically, the following is true (for proof see Remark 2.4.10 and Proposition
2.4.2):

Proposition 2.3.1. Let z�, � = 1, ..., L, be deterministic coefficients and ζ�,
� = 1, ..., L, be independent random variables with zero mean taking values in
[−1, 1]. Then for every Ω ≥ 0 it holds that

Prob

⎧⎨⎩ζ :
L∑

�=1

z�ζ� > Ω

√√√√ L∑
�=1

z2
�

⎫⎬⎭ ≤ exp{−Ω2/2}. (2.3.4)

As an immediate conclusion, we get

(2.3.1) ⇒ Prob

⎧⎨⎩η > Ω

√√√√ L∑
�=1

([a�]T x− b�)2

⎫⎬⎭ ≤ exp{−Ω2/2} ∀Ω ≥ 0, (2.3.5)

and we have arrived at the result as follows.

Corollary 2.3.2. In the case of (2.3.1), the conic quadratic constraint (2.3.3)
is a computationally tractable safe approximation of the chance constraint

Prob

{
[a0]T x +

L∑
�=1

ζ�[a�]T x > b0 +
L∑

�=1

ζ�b
�

}
≤ exp{−Ω2/2}. (2.3.6)

In particular, with Ω ≥
√

2 ln(1/ε), the constraint (2.3.3) is a tractable safe ap-
proximation of the chance constraint (2.2.2).

Now let us make the following important observation:

In view of Example 1.3.3, inequality (2.3.3) is nothing but the RC of the

uncertain linear inequality (2.2.1), (1.3.5), with the perturbation set Z
in (1.3.5) specified as the ball

BallΩ = {ζ : ‖ζ‖2 ≤ Ω}. (2.3.7)

This observation is worthy of in-depth discussion.

A. By itself, the assumption that ζ� vary in [−1, 1], (which is a part of the as-
sumptions in (2.3.1)), suggests to consider, as the perturbation set Z in (1.3.5), the
box

Box1 = {ζ : −1 ≤ ζ� ≤ 1, � = 1, ..., L}.
For this Z, the associated RC of the uncertain linear inequality (2.2.1), (1.3.5) is

L∑
�=1

|[a�]T x− b�]| ≤ b0 − [a0]T x (2.3.8)

(see Example 1.3.2). In the case of (2.3.1), this “box RC” guarantees “100% im-
munization against perturbations,” meaning that every feasible solution to the box
RC is feasible for the randomly perturbed inequality in question with probability
1. With the same stochastic model of uncertainty (2.3.1), the “ball RC,” that
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is, the conic constraint (2.3.3), guarantees less, namely, “(1− exp{−Ω2/2}) · 100%-
immunization.” Note that with quite a moderate Ω, the “unreliability” exp{−Ω2/2}
is negligible: it is less than 10−6 for Ω = 5.26 and less than 10−12 for Ω = 7.44.
For all practical purposes, probability like 10−12 is the same as zero probability, so
that there are all reasons to claim that the ball RC with Ω = 7.44 is as “practically
reliable” as the box RC.1 Given that the “immunization power” of both RCs is
essentially the same, it is very instructive to compare the “sizes” of the underlying
perturbation sets Box1 and BallΩ. This comparison leads to a great surprise: when

the dimension L of the perturbation set is not too small, the ball BallΩ with Ω “of

order of one,” say, Ω = 7.44, is incomparably smaller that the unit box Box1 with

respect to all natural size measures such as diameter, volume, etc. For example,

• the Euclidean diameters of BallΩ and Box1 are respectively, 2Ω and 2
√

L;
with Ω = 7.44, the second diameter is larger than the first starting with L = 56,
and the ratio of the second diameter to the first one blows up to ∞ as L grows;

• the ratio of volumes of the ball and the box is

Vol(BallΩ)
Vol(Box1)

=
(Ω
√

π)L

2LΓ(L/2 + 1)
≤
(

Ω
√

eπ/2√
L

)L

,

Γ being the Euler Gamma function. For Ω = 7.44, this ratio is < 1 starting with
L = 237 and goes to 0 super-exponentially fast at L →∞.

B. As a counter-argument to what was said in A, one can argue that for small
L the uncertainty set Ball7.44 is essentially larger than the uncertainty set Box1.
Well, here is a “rectification,” interesting by its own right, of the ball RC which
nullifies this counter-argument. Consider the case when the perturbation set Z is
the intersection of the unit box and the ball of radius Ω centered at the origin:

Z = {ζ ∈ R
L : ‖ζ‖∞ ≤ 1, ‖ζ‖2 ≤ Ω} = Box1 ∩ BallΩ. (2.3.9)

Proposition 2.3.3. The RC of the uncertain linear constraint (2.2.1) with the
uncertainty set (2.3.9) is equivalent to the system of conic quadratic constraints

(a) z� + w� = b� − [a�]T x, � = 1, ..., L;

(b)
∑
�

|z�|+ Ω
√∑

�

w2
� ≤ b0 − [a0]T x. (2.3.10)

In the case of (2.3.1), the x component of every feasible solution to this system
satisfies the randomly perturbed inequality (2.2.1) with probability at least 1 −
exp{−Ω2/2}.

Proof. The fact that (2.3.10) represents the RC of (2.2.1), the perturbation
set being (2.3.9), is readily given by Example 1.3.7 where one should set σ� ≡ 1.
Now let us prove that if (2.3.1) takes place and x, z, w is feasible for (2.3.10), then
x is feasible for (2.2.1) with probability at least 1 − exp{−Ω2/2}. Indeed, when

1This conclusion tacitly assumes that the underlying stochastic uncertainty model is accurate
enough to be trusted even when speaking about probabilities as small as 1.e-12; concerns of this
type seem to be the inevitable price for using stochastic models of uncertainty.
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‖ζ‖∞ ≤ 1, we have
L∑

�=1

[[a�]T x− b�]ζ� > b0 − [a0]T x

⇒ −
L∑

�=1

z�ζ� −
L∑

�=1

w�ζ� > b0 − [a0]T x [by (2.3.10.a)]

⇒
L∑

�=1

|z�| −
L∑

�=1

w�ζ� > b0 − [a0]T x [since ‖ζ‖∞ ≤ 1]

⇒ −
L∑

�=1

w�ζ� > Ω

√
L∑

�=1

w2
� [by (2.3.10.b)]

Therefore for every distribution P compatible with (2.3.1) we have

Probζ∼P {x is ineasible for (2.2.1)} ≤ Probζ∼P

{
−

L∑
�=1

w�ζ� > Ω

√
L∑

�=1

w2
�

}
≤ exp{−Ω2/2},

where the last inequality is due to Proposition 2.3.1. �

Note that perturbation set (2.3.9) is never greater than the perturbation
set Box1 and, as was explained in A, for every fixed Ω is incomparably smaller
than the latter set when the dimension L of the perturbation vector ζ is large.
Nevertheless, Proposition 2.3.3 says that when the perturbation vector is random
and obeys (2.3.1), the “immunization power” of the RC associated with the small
perturbation set (2.3.9), where Ω = 7.44, is essentially as strong as that of the 100%
reliable box RC (2.3.8). This phenomenon becomes even more striking when we
consider the following special case of (2.2.1): ζ� are independent and each of them
takes values ±1 with probabilities 1/2. In this case, when L > Ω2, the perturbation
set (2.3.9) does not contain even a single realization of the random perturbation
vector! Thus, the “immunization power” of the RC (2.3.10) cannot be explained
by the fact that the underlying perturbation set contains “nearly all” realizations
of the random perturbation vector.

C. Our considerations justify the use of “strange” perturbation sets like ellipsoids
and intersections of ellipsoids and parallelotopes: while it may seem difficult to
imagine a natural perturbation mechanism that produces perturbations from such
sets, our analysis demonstrates that these sets do emerge naturally when “immu-
nizing” solutions against random perturbations of the type described in (2.3.1).
The same is true for the “budgeted” perturbation set considered in Example 1.3.8:

Proposition 2.3.4. Consider the RC of uncertain linear constraint (2.2.1) in
the case of budgeted uncertainty:

Z = {ζ ∈ R
L : −1 ≤ ζ� ≤ 1, � = 1, ..., L,

L∑
�=1

|ζ�| ≤ γ}. (2.3.11)
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This RC, according to Example 1.3.8, can be represented by the system of con-
straints

(a)
L∑

�=1

|z�|+ γ max
�
|w�|+ [a0]T x ≤ b0,

(b) z� + w� = b� − [a�]T x, � = 1, ..., L

(2.3.12)

in variables x, z, w. In the case of (2.3.1), the x component of every feasible solution
to this system satisfies the randomly perturbed inequality (2.2.1) with probability
at least 1− exp{− γ2

2L}.
Thus, the quantity γ√

L
in our present situation plays the same role as the

quantity Ω plays in the situation of Proposition 2.3.3.

Proof. Let (x, z, w) be feasible for (2.3.12). We have

‖w‖22 =
L∑

�=1

w2
� ≤

L∑
�=1

|w�|‖w‖∞ ≤ ‖w‖∞
L∑

�=1

|w�| ≤ ‖w‖∞
√

L‖w‖2,

where the last ≤ is by the Cauchy inequality. Thus, ‖w‖2 ≤
√

L‖w‖∞; since

x, z, w satisfy (2.3.12), we have
L∑

�=1

|z�| + γ√
L
‖w‖2 ≤ b0 − [a0]T x, which combines

with (2.3.12) to imply that x, z, w satisfy (2.3.10) with Ω = γ√
L

. Now we can apply
Proposition 2.3.3 to conclude that in the case of (2.3.1) x satisfies (2.2.1) with
probability ≥ 1− exp{− γ2

2L}. �

Remark 2.3.5. The proof of Proposition 2.3.4 shows that the “budgeted” RC
(2.3.11) is more conservative (that is, associated with a larger perturbation set)
than the ball RC (2.3.3), provided that the uncertainty budget γ in the budgeted
RC is linked to the safety parameter Ω in the ball RC according to Ω = γ√

L
. The

question arises: Why should we be interested in the budgeted RC at all, given
that the only “good news” about this RC, expressed in Proposition 2.3.4, holds
true for the less conservative ball RC? The answer is, that the budgeted RC can
be represented by a system of linear constraints, that is, it is of the same “level
of complexity” as the instances of the underlying uncertain constraint (2.2.1). As
a result, when using budgeted uncertainty models for every one of the uncertain
constraints in an uncertain LO problem, the RC of the problem is itself an LO
problem and as such can be processed by well-developed commercial LO solvers.
In contrast to this, the ball RC (2.3.3) leads to a conic quadratic problem, which
is more computationally demanding (although still efficiently tractable).

2.3.1 Illustration: A Single-Period Portfolio Selection

Example 2.3.6. Let us apply the outlined techniques to the following single-period
portfolio selection problem:

There are 200 assets. Asset # 200 (”money in the bank”) has yearly return
r200 = 1.05 and zero variability. The yearly returns r�, � = 1, ..., 199 of
the remaining assets are independent random variables taking values in the
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segments [µ� − σ�, µ� + σ�] with expected values µ�; here

µ� = 1.05 + 0.3
(200 − �)

199
, σ� = 0.05 + 0.6

(200 − �)

199
, � = 1, ..., 199.

The goal is to distribute $1 between the assets in order to maximize the
value-at-risk of the resulting portfolio, the required risk level being ε = 0.5%.

We want to solve the uncertain LO problem

max
y,t

{
t :

199∑
�=1

r�y� + r200y200 − t ≥ 0,

200∑
�=0

y� = 1, y� ≥ 0 ∀�
}

,

where y� is the capital to be invested in asset # �. The uncertain data are the
returns r�, � = 1, ..., 199; their natural parameterization is

r� = µ� + σ�ζ�,

where ζ�, � = 1, ..., 199, are independent random perturbations with zero mean
varying in the segments [−1, 1]. Setting x = [y;−t] ∈ R

201, the problem becomes

minimize x201

subject to

(a) [a0 +
199∑
�=1

ζ�a
�]T x− [b0 +

199∑
�=1

ζ�b
�] ≤ 0

(b)
200∑
j=1

x� = 1

(c) x� ≥ 0, � = 1, ..., 200

(2.3.13)

where
a0 = [−µ1;−µ2; ...;−µ199;−r200;−1];
a� = σ� · [0�−1,1; 1; 0201−�,1], 1 ≤ � ≤ 199;
b� = 0, 0 ≤ � ≤ 199.

(2.3.14)

The only uncertain constraint in the problem is the inequality (2.3.13.a). We con-
sider 3 perturbation sets along with the associated robust counterparts of (2.3.13):

i) Box RC that ignores the information on the stochastic nature of the pertur-
bations affecting the uncertain inequality and uses the only fact that these
perturbations vary in [−1, 1]. The underlying perturbation set Z for (2.3.13.a)
is

{ζ : ‖ζ‖∞ ≤ 1};

ii) Ball-box RC given by Proposition 2.3.3, with the safety parameter

Ω =
√

2 ln(1/ε) = 3.255,

which ensures that the robust optimal solution satisfies the uncertainty-
affected constraint with probability at least 1 − ε = 0.995. The underlying
perturbation set Z for (2.3.13.a) is

{ζ : ‖ζ‖∞ ≤ 1, ‖ζ‖2 ≤ 3.255};
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iii) Budgeted RC given by Proposition 2.3.4, with the uncertainty budget

γ =
√

2 ln(1/ε)
√

199 = 45.921,

which results in the same probabilistic guarantees as for the ball-box RC. The
underlying perturbation set Z for (2.3.13.a) is

{ζ : ‖ζ‖∞ ≤ 1, ‖ζ‖1 ≤ 45.921}.

Box RC. The associated RC for the uncertain inequality is given by (2.3.8); after
straightforward computations, the resulting RC of (2.3.13) becomes the LO problem

max
y,t

⎧⎪⎪⎨⎪⎪⎩t :

199∑
�=1

(µ� − σ�)y� + 1.05y200 ≥ t

200∑
�=1

y� = 1, y ≥ 0

⎫⎪⎪⎬⎪⎪⎭ ; (2.3.15)

as it should be expected, this is nothing but the instance of our uncertain problem
corresponding to the worst possible values r� = µ� − σ�, � = 1, ..., 199, of the
uncertain returns. Since these values are less than the guaranteed return for money,
the robust optimal solution prescribes to keep our initial capital in the bank, with
a guaranteed yearly return of 1.05, that is, a guaranteed profit of 5%.

Ball-box RC. The associated RC for the uncertain inequality is given by Propo-
sition 2.3.3. The resulting RC of (2.3.13) is the conic quadratic problem

max
y,z,w,t

⎧⎪⎪⎪⎨⎪⎪⎪⎩t :

199∑
�=1

µ�y� + 1.05y200 −
199∑
�=1

|z�| − 3.255

√
199∑
�=1

w2
� ≥ t

z� + w� = σ�y�, � = 1, ..., 199,
200∑
�=1

y� = 1, y ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (2.3.16)

The robust optimal value is 1.1200, meaning 12.0% profit with risk as low as ε =
0.5%. The distribution of capital between assets is depicted in figure 2.1.

Budgeted RC. The associated RC for the uncertain inequality is given by Propo-
sition 2.3.4. The resulting RC of (2.3.13) is the LO problem

max
y,z,w,t

⎧⎪⎪⎨⎪⎪⎩t :

199∑
�=1

µ�y� + 1.05y200 −
199∑
�=1

|z�| − 45.921 max
1≤�≤199

|w�| ≥ t

z� + w� = σ�y�, � = 1, ..., 199,
200∑
�=1

y� = 1, y ≥ 0

⎫⎪⎪⎬⎪⎪⎭ . (2.3.17)

The robust optimal value is 1.1014, meaning 10.1% profit with risk as low as ε =
0.5%. The distribution of capital between assets is depicted in figure 2.1.

Discussion. First, we see how useful stochastic information might be — with risk
as low as 0.5%, the value-at-risk of the portfolio profits yielded by the ball-box RC
(12%) and the Budgeted RC (10%) are twice as large as the profit guaranteed by
the box RC (5%). Note also that both the ball-box and the Budgeted RCs suggest
“active” investment decisions, while the box RC suggests keeping the initial capital
in bank. Second, the Budgeted RC, as it should be, is more conservative than the
ball-box one. Finally, we should remember that the actual risk associated with
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Figure 2.1 Robust solutions to portfolio selection problem from Example 2.3.6. Along
the x-axis: indices 1,2,...,200 of the assets. a: expected returns, b: upper and
lower endpoints of the return ranges, c: invested capital for ball-box RC, %,
d: invested capital for Budgeted RC, %.

the portfolio designs offered by the ball-box and the Budgeted RCs (that is, the
probability for the actual total yearly return to be less than the corresponding
robust optimal value) is at most the required 0.5%, and is likely to be less than
this amount; indeed, both RCs in question utilize conservative approximations of
the chance constraint

Prob{
199∑
�=1

r�y� + r200y200 < t} ≤ ε.

It is interesting to find out how small the actual risk is. The answer, of course,
depends on the actual probability distributions of uncertain returns (recall that in
our model, we postulated only partial knowledge of these distributions, specifically,
knowledge of their supports and expectations). Assuming that “in reality” ζ�,
� = 1, ..., 199, take only their extreme values ±1, with probability 1/2 each, and
carrying out a Monte-Carlo simulation with a sample of 1,000,000 realizations, we
found that the actual risk for the “ball-box” portfolio is less than the required risk
0.5% by factor 10, and for the “Budgeted” portfolio, by factor 50. Based on this
observation, it seems plausible that we can reduce our conservatism by “tuning,”
that is, by replacing the required risk in the RCs with a larger quantity, in hope
that the resulting actual risk, (which can be evaluated via simulation), will still be
below the required level. With this tuning, reducing the safety parameter Ω = 3.255
in (2.3.16) to Ω = 2.589, one ends up with the robust optimal value 1.1470 (that
is, with a profit of 14.7% instead of the initial 12.0%), while keeping the empirical
risk (as evaluated over 500,000 realization sample) still as low as 0.47%. Similarly,
reducing the uncertainty budget γ = 45.921 in (2.3.17) to γ = 30.349, we increase
the robust optimal value from 1.1012 to 1.1395 (i.e., increase profit from 10.12% to
13.95%), with the empirical risk as low as 0.42%.
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2.3.2 Illustration: Cellular Communication

Example 2.3.7. Consider the following problem:

Signal Recovery: Given indirect observations

u = As + ρξ (2.3.18)

of a signal s ∈ S = {s ∈ R
n : si = ±1, i = 1, ...n} (A is a given m×n matrix,

ξ ∼ N (0, Im) is observation noise, ρ ≥ 0 is a deterministic noise level), find
an estimate ŝ of the signal of the form

ŝ = sign[Gu] (2.3.19)

such that the requirement

∀(s ∈ S, i ≤ n) : Prob{ŝi �= si} ≡ Prob{(sign[GAs + ρGξ])i �= si} ≤ ε
(2.3.20)

is satisfied. Here ε  1 is a given tolerance, and sign[v] acts in the coordinate-
wise fashion: sign[[v1; ...; vn]] = [sign(v1); ...; sign(vn)].

The situation when a signal s ∈ S is observed according to (2.3.18) can be
regarded as a meaningful (although somehow simplified) model of cellular commu-
nication. Note also that estimates of the form (2.3.19) are practical — while not
the best from the viewpoint of their sensitivity to noise, they are frequently used
in reality due to their computational simplicity. Finally, let us explain what is the
rationale behind (2.3.19). Assuming s to be random and Gaussian with zero mean
(and independent of ξ), the best recovery, in the sense of the mean square error, is
indeed a linear one: ŝ = Gu with a properly defined matrix G (the so called Wiener

filter). Engineers often use optimal solutions to simple problems as “practical so-
lutions” to more complicated problems, the Wiener filter not being an exception.
A linear estimator Gu of a signal observed according to (2.3.18) is frequently used
in situations when s is not necessarily Gaussian with zero mean. Now, when we
know in advance that s is a ±1 vector, we can try to improve the purely linear es-
timator Gu as follows: assuming that Gu is not too far from s (namely, the typical
Euclidean distance from Gu to s is < 1), the vector sign[Gu] “equally typically”
will be exactly s. All this being said, let us focus on the Signal Recovery problem
as a mathematical beast. Our first observation is immediate:

A necessary and sufficient condition for (2.3.20) is

∀i ≤ n :
∑
j �=i

|(GA)ij |− (GA)ii +ρ‖gi‖2ErfInv(ε) ≤ 0 & gi �= 0, (2.3.21)

where gT
i is i-th row of G and ErfInv is the inverse error function defined

by the relation

0 < δ < 1 ⇒ Erf(ErfInv(δ)) = δ,[
Erf(s) =

∞∫
s

1√
2π

exp{−r2/2}dr is the error function.

]
(2.3.22)
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Indeed, assume that G satisfies (2.3.20). Then for every i ≤ n we have

∀(s ∈ S, si = −1) : Prob{
∑
j �=i

(GA)ijsj − (GA)ii + ρ(gT
i ξ) ≥ 0} ≤ ε.

The latter is possible only when gi �= 0 (since otherwise the probability in the left
hand side is 1) and is equivalent to

∀(s ∈ S, si = −1) : Prob{−ρ(gT
i ξ) ≤

∑
j �=i

(GA)ijsj − (GA)ii} ≤ ε,

which, due to ρ(gT
i ξ) ∼ N (0, ρ2‖gi‖22), is equivalent to

∀(s ∈ S, si = −1) :
∑

j �=i(GA)ijsj − (GA)ii + ρErfInv(ε)‖gi‖2 ≤ 0
�∑

j �=i |(GA)ij | − (GA)ii + ρ‖gi‖2ErfInv(ε)

≡ maxs∈S,si=−1

[∑
j �=i(GA)ijsj − (GA)ii

]
+ ρErfInv(ε)‖gi‖2 ≤ 0,

and we see that (2.3.21) takes place. Vice versa, if the latter relation takes place,
then, inverting the above reasoning, we see that

∀(i ≤ n, s ∈ S : si = −1) : Prob {(sign[GAs + ρGξ])i �= si} ≤ ε.

Since ξ is symmetrically distributed, the latter relation is equivalent to (2.3.20).
Observe that when ρ > 0, (2.3.21) clearly implies (GA)ii > 0. Multiplying the rows
in G by appropriate positive constants, we can normalize G to have (GA)ii = 1
for all i, and this normalization clearly does not affect the validity of (2.3.21). It
follows that the problem of interest is equivalent to the optimization problem

max
ρ,G

{
ρ :

∑
j |(GA− I)ij |+ ρ

√∑
j G2

ijErfInv(ε) ≤ 1 = (GA)ii,

1 ≤ i ≤ n

}
. (2.3.23)

Note that this problem, while not being exactly convex, is nevertheless computa-
tionally tractable: for every positive ρ, the system of constraints in the right hand
side is a system of efficiently computable convex constraints in G, and we can check
efficiently whether it is feasible. If it is feasible for a given ρ, it is feasible for all
smaller ρ as well, so that the largest ρ for which the system is feasible (and that
is exactly the ρ we want to find) can be easily approximated to a high accuracy
by bisection. We are about to show that in fact no bisection is necessary — our
problem admits a closed form solution. Specifically, the following is true:

Proposition 2.3.8. Problem (2.3.23) has a feasible solution with ρ > 0 if and
only if the rank of the matrix A is equal to n (the dimension of the signal s), and
in this case an optimal solution to (2.3.23) is as follows:
• G is the pseudo-inverse of A, that is, the n×m matrix with the transposed rows
belonging to the image space of A and such that GA = I (these conditions uniquely
define G);
• ρ = (ErfInv(ε)max

i

√∑
j G2

ij)
−1.

Proof. Observe, first, that if Rank(A) < n, the problem (2.3.23) has no feasible
solutions with ρ > 0. Indeed, assume that Rank(A) < n and that (ρ > 0, G) is a feasible
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solution to the problem. Then the image L ⊂ R
n of the matrix GA is a proper linear

subspace of R
n and as such it does not intersect the interior of at least one of the 2n

orthants Rκ = {s : κisi ≥ 0, 1 ≤ i ≤ n}, κi = ±1. Indeed, there exists a nonzero vector e
which is orthogonal to L; setting κi = sign(ei) when ei �= 0 and choosing, say, κi = 1 when
ei = 0, we ensure that eT f > 0 for all f ∈ intRκ, so that L cannot intersect intRκ. Thus,
there exists κ ∈ S such that L does not intersect intRκ, meaning that (κ−GAκ)i ≥ 1 for at
least one i. On the other hand, (G, ρ) is feasible for (2.3.23), meaning that (GA)i = 1 and∑

j �=i |GAij | < 1; these relations clearly imply that (κ − GAκ)i = −∑
j �=i(GA)ijκj < 1,

the desired contradiction.

Now assume that Rank(A) = n, so that there exists the pseudo-inverse of A, let it be

denoted G†. Setting ρ∗ = (ErfInv(ε)max
i

√∑
j

(G†
ij)

2)−1, we get a feasible solution (ρ∗, G†)

to (2.3.23). Let us prove that this solution is optimal. To this end, assume that there

exists a feasible solution (ρ, Ĝ) to (2.3.23) with ρ > ρ∗, and let us lead this assumption to
a contradiction. Let ai, i = 1, ..., n, be the columns of A, and gT

i , i = 1, ..., n, be the rows
of G†, so that

gT
i aj = δij ≡

{
1, i = j
0, i �= j

due to G†A = I. Let, further, ĝT
i be the rows of Ĝ. Observe that we can, w.l.o.g., assume

that ĝi belong to the image space of A. Indeed, replacing the (transposed of the) rows

in Ĝ by their orthogonal projections on the image space of A, we do not change ĜA and
do not increase the Euclidean norms of the rows in Ĝ and thus preserve the feasibility of
(ρ, Ĝ) for (2.3.23). Further, from (ĜA)ii = 1, i = 1, ..., n, it follows that ĝT

i ai = 1, so that
ĝi �= 0 for all i. Now comes the final step: we have ρ∗ErfInv(ε)︸ ︷︷ ︸

ν∗

‖gi‖2 ≤ 1 for every i, with

the inequality being equality for some i; w.l.o.g. we may assume that

ν∗‖gi‖2 ≤ ν∗‖g1‖2 = 1, i = 1, ..., n.

Now let
f(g) =

∑
j �=1

|gT aj | + ν∗‖g‖2.

Then f(g1) = 1. We claim that f(ĝ1) < 1. Indeed, setting ν = ρErfInv(ε), we have

f(ĝ1) =
∑
j �=1

|(ĜA)1j | + ν∗‖ĝ1‖2 <
∑
j �=1

|(ĜA)1j | + ν‖ĝ1‖2 ≤ 1,

where the strict inequality is due to the fact that ĝ1 �= 0 and ν > ν∗, and the concluding
inequality follows from the fact that (ν, Ĝ) is feasible for (2.3.23). Now, the vector ĝ1

belongs to the image space of A, and this image is spanned by the vectors g1, ..., gn.
Indeed, by the definition of pseudo-inverse the vectors gi belong to this space; if their
linear span were less than the image of A, there would exist vector As, s �= 0, orthogonal
to g1, ..., gn, whence G†As = 0 instead of G†As = s �= 0. It follows that

ĝ1 = g1 +
∑

k

rkgk
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cond(A) ρ(10−3) ρ(10−6)

3.7e2 0.0122 0.009219
1.46e4 5.5e-4 4.16e-4

Table 2.1 Critical noise levels for two instances of the Signal Recovery problem.

for some rk. Since (ĜA)11 = ĝT
1 a1 = 1 and gT

k a1 = δk1, we have r1 = 0, that is,
ĝ1 = g1 +

∑
k �=1 rkgk. We now have

1 > f(ĝ1) = f(g1 +
∑
k �=1

rkgk) =
∑
j �=1

|(g1 +
∑
k �=1

rkgk)T aj |

+ν∗‖g1 +
∑
k �=1

rkgk‖2 =
∑
j �=1

| ∑
k �=1

rk gT
k aj︸ ︷︷ ︸
δkj

| + ν∗‖g1 +
∑
k �=1

rkgk‖2

=
∑
k �=1

|rk| + ν∗‖g1 +
∑
k �=1

rkgk‖2 ≥ ∑
k �=1

|rk| + ν∗‖g1‖2︸ ︷︷ ︸
1

− ∑
k �=1

ν∗‖gk‖2︸ ︷︷ ︸
≤1

|rk| ≥ 1,

which gives the desired contradiction. �

Proposition 2.3.8 brings us good and bad news. The good news is that the
solution to our problem is simple and natural; the bad news is that when A is ill-
conditioned, the optimal recovery suggested by the proposition will be optimal, but
nevertheless of a very poor performance, since the “straightforward recovery” u �→
G†u will amplify the noise. In table 2.1, we present numerical results for two 32×32
randomly generated matrices A: in the first, the entries are sampled from N (0, 1)
distribution, in the second we generate the matrix in the same fashion, but then
multiply one of its columns by a small number to make the matrix ill-conditioned.
This experiment demonstrates, as a byproduct, how tight our approximation is:
for the first matrix and ρ = 0.0122, (which provably guarantees precise recovery
with probability at least 0.999), in a sample of 100,000 experiments there were 3
recovery errors, meaning that the true error probability at this level of noise is
hardly much less than 10−5; at the same time, at a level of noise 0.75ρ(10−3), the
error probability is provably less than 10−6.

Can we “beat” the straightforward recovery given by the pseudo-inverse of
A? The answer is yes, provided that we slightly restrict the set of tentative signals
S. Assume, e.g., that our signals s are vectors with coordinates ±1 and such that

among the entries of s there are at least k ones and k minus ones; here k ≤ n/2
is a given integer. Let Sk be the set of all signals of this type (in this notation,
what used to be S is nothing but S0). The derivation that led us to (2.3.23) can
be carried out with Sk in the role of S, and the resulting equivalent reformulation
of the problem is

max
ρ,G

⎧⎨⎩max
s∈Sk:
si=−1

∑
j �=i

(GA)ijsj + ρErfInv(ε)
√∑

j

G2
ij ≤ 1 = (GA)ii, 1 ≤ i ≤ n

⎫⎬⎭ .

(2.3.24)
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The only difference with the case of k = 0 is in computing

Φi(G) = max
s∈Sk:si=−1

∑
j �=i

(GA)ijsj ,

the quantity that in the case of k = 0 was
∑

j �=i |(GA)ij |. Now this quantity is of
the form

F (z1, ..., zn−1) = max
s∈S∗

k

n−1∑
j=1

zjsj ,

where S∗
k is the set of all vectors in R

n−1 with coordinates ±1 that have at least
k−1 coordinates equal to −1 and at least k coordinates equal to 1; indeed, we have

Φi(G) = F ((GA)i1, ..., (GA)i,i−1, (GA)i,i+1, ..., (GA)in).

In order to compute F , note that S∗
k is exactly the set of extreme points of the

polytope {s ∈ R
n−1 : −1 ≤ sj ≤ 1 ∀j,∑j sj ≤ n + 1 − 2k,

∑
j sj ≥ −n + 1 + 2k},

so that

F (z) = max
s∈Rn−1

{∑n−1
j=1 zjsj :

−1 ≤ sj ≤ 1,
∑

j sj ≤ n + 1− 2k,∑
j sj ≥ −n + 1 + 2k

}
= min

{µj≥0,νj≥0}n−1
j=0

{∑k
j=1[µj + νj ] + (n + 1− 2k)µ0 + (n− 1− 2k)ν0 :

µj − νj + µ0 − ν0 = zj , 1 ≤ j ≤ n− 1
}
,

where the concluding equality is given by the Linear Programming Duality Theo-
rem. It follows that (2.3.24) is equivalent to the explicit computationally tractable
optimization program

max
ρ,G

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ρ :

∑
1≤j≤n

j �=i
[µij + νij ] + (n + 1− 2k)µi0 + (n− 1− 2k)νi0

+ρErfInv(ε)
√∑

j G2
ij ≤ 1 = (GA)ii, i = 1, ..., n

µij − νij + µi0 − νi0 = (GA)ij , 1 ≤ i ≤ n, 1 ≤ j ≤ n, j �= i

µij , νij ≥ 0, 1 ≤ i ≤ n, 0 ≤ j ≤ n, i �= j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (2.3.25)

For this problem, a closed form solution is seemingly out of the question; the prob-
lem, however, can be solved efficiently by the bisection-based strategy presented
before Proposition 2.3.8. Whether the recovering routine yielded by the optimal
solution to this problem “beats” the straightforward recovery based on the pseudo-
inverse of A depends on the “geometry” of A. Experiments demonstrate that for
randomly generated matrices A, both procedures are essentially of the same power.
At the same time, for special matrices A the recovering routine based upon the
optimal solution to (2.3.25) can beat significantly the “straightforward” one. As
an example, consider the case when A is close to the orthonormal projector P onto
the hyperplane

∑
i

si = 0, specifically,

A = Aγ = P + γ
1 · 1T

n
,

where 1 is the vector of ones. The closeness of this matrix to P is controlled by γ

— the closer this parameter is to 0, the closer A is to P . In table 2.2, we present
results of numerical experiments with n = 32, k = 1, and A = Aγ for γ = 0.005
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γ
ρ(10−4), G

is given by (2.3.25)
ρ(10−4),
G = G†

0.005 0.0146 0.00606
0.001 0.0135 0.00121

Table 2.2 Experiments with A being near-projector onto the hyperplane {s ∈ R
32 :

∑
i

si =

0} and k = 1.

and γ = 0.001. We see that in order to ensure 0.9999-reliable recovery, the routine
based on G† = A−1 requires an essentially smaller level of noise than the one based
on the optimal solution to (2.3.25). For example, with γ = 0.001 and the noise level
0.0135, the probability of wrong recovery by the procedure based on G†, evaluated
on a 10,000-element sample is as large as 0.68 (and remains 0.42 even when the
level of noise is reduced by a factor of 2). In contrast to this, the procedure based
on (2.3.25) at the noise level 0.0135 provably guarantees 0.9999-reliable recovery.
Note that this significant advantage in performance “is bought” by forbidding just
two of the 232 = 429, 4967, 296 signals with coordinates ±1, namely, the signal with
all coordinates 1 and the one with all coordinates −1.

It should be added that by itself, the problem of highly reliable recovery of
a signal s ∈ S0 from “deficient” observations (2.3.18), (e.g., those with Rank(A) <

n) is not necessarily ill-posed. Consider, e.g., the case when m = Rank(A) =
n − 1. Then the observations are obtained from s by the following sequence of
transformations: (a) projecting on a hyperplane (the orthogonal complement to the
null space of A), (b) applying an invertible linear transformation to the projection,
and (c) adding noise to the result. The possibility to recover s ∈ S0 from the
resulting observation depends on whether the projection in (a) when restricted

onto the set of vertices of the unit cube is a one to one mapping. Whenever this
is the case (as it indeed happens when A is “in general position”), we can recover
the signal from the observations exactly, provided that there is no noise, and,
consequently, can recover it with arbitrarily high reliability, provided that the noise
level is small enough. What does become impossible — independently of the level
of noise! — is an errorless recovery of the form (2.3.19).

2.4 EXTENSIONS

In the preceding section, we were focusing on building a safe approximation of the
chance version (2.2.3) of a randomly perturbed linear constraint (2.2.1). Under
specific assumptions, expressed by (2.3.1), we have built such an approximation in
the form of the RC of (2.2.1) with the properly chosen perturbation set Z. We are
about to extend this construction to wider families of random perturbations than
those captured by (2.3.1). Specifically, let us assume that the random perturbation
ζ affecting (2.2.1) possesses the following properties:
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P.1. ζ�, � = 1, ..., L, are independent random variables;

P.2. The distributions P� of the components ζ� are such that∫
exp{ts}dP�(s) ≤ exp{max[µ+

� t, µ−
� t] +

1
2
σ2

� t2} ∀t ∈ R (2.4.1)

with known constants µ−
� ≤ µ+

� and σ� ≥ 0.

Property P.2 can be validated in several interesting cases to be considered later.
Right now, let us derive some consequences of P.1–P.2.

Given P.1–2, consider the problem of bounding from above the probability

p(z) of the event z0 +
L∑

�=1

z�ζ� > 0, where z = [z0; z1; ...; zL] is a given deterministic

vector. Let us set

Φ(w1, ..., wL) =
L∑

�=1

[
max[µ+

� w�, µ
−
� w�] +

1
2
σ2

� w2
�

]
, (2.4.2)

so that by P.1–2 for all deterministic reals w1, ..., wL one has

E

{
exp{

L∑
�=1

ζ�w�}
}
≤ exp{Φ(w1, ..., wL)}. (2.4.3)

We have
z0 +

L∑
�=1

z�ζ� > 0

⇔ exp{α[z0 +
L∑

�=1

z�ζ�]} > 1 ∀α > 0

⇒ ∀α > 0 : E
{

exp{α[z0 +
L∑

�=1

z�ζ�]}
}
≥ p(z)

⇒ ∀α > 0 : exp{αz0 + Φ(αz1, αz2, ..., αzL)} ≥ p(z)
⇔ ∀α > 0 : αz0 + Φ(α[z1; ...; zL]) ≥ ln p(z).

We have arrived at the inequality

∀α > 0 : ln p(z) ≤ αz0 + Φ(α[z1; ...; zL]).

If, for certain α > 0, the right hand side of this inequality is ≤ ln ε, then the
inequality implies that p(z) ≤ ε. We have arrived at the following conclusion:

(∗) Whenever, for a given ε ∈ (0, 1) and given z, there exists α > 0 such

that
αz0 + Φ(α[z1; ...; zL]) ≤ ln(ε), (2.4.4)

one has

Prob

{
ζ : z0 +

L∑
�=1

z�ζ� > 0

}
≤ ε. (2.4.5)

In other words, the set

Zo
ε = {z = [z0; ...; zL] : ∃α > 0 : αz0 + Φ(α[z1; ...; zL]) ≤ ln(ε)}

is contained in the feasible set of the chance constraint (2.4.5).
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Now, the feasible set of (2.4.5) is clearly closed; since it contains the set Zo
ε , it

contains the set
Zε = cl Zo

ε . (2.4.6)

Let us find an explicit description of the set Zε. We should understand first when
a given point z belongs to Zo

ε . By definition of the latter set, this is the case if and
only if

∃α > 0 : ln(ε) ≥ fz(α) ≡ αz0 + Φ(α[z1; ...; zL])

= α (z0 +
L∑

�=1

max[µ−
� z�, µ

+
� z�])︸ ︷︷ ︸

a(z)

+α2

2

L∑
�=1

σ2
� z2

� . (2.4.7)

Assuming b(z) ≡ ∑
�

σ2
� z2

� > 0, the function fz(α) attains its minimum on [0,∞),

and this minimum is either fz(0) = 0 (this is the case when a(z) ≥ 0), or − 1
2

a2(z)
b(z)

(this is the case when a(z) < 0). Since ln(ε) < 0, we conclude that in the case
b(z) > 0, relation (2.4.7) holds if and only if a(z) +

√
2 ln(1/ε)b(z) ≤ 0, i.e., if and

only if

z0 +
L∑

�=1

max[µ+
� z�, µ

−
� z�] +

√
2 ln(1/ε)

√√√√ L∑
�=1

σ2
� z2

� ≤ 0. (2.4.8)

In the case b(z) = 0, relation (2.4.7) takes place if and only if a(z) < 0. To
summarize: z ∈ Zo

ε if and only if z satisfies (2.4.8) and a(z) < 0. The closure Zε of
this set is exactly the set of solutions to (2.4.8). We have proved the following:

Proposition 2.4.1. Under assumptions P.1–2, relation (2.4.8) is a sufficient
condition for the validity of (2.4.5). In other words, the explicit convex constraint
(2.4.8) in variables z is a safe approximation of the chance constraint (2.4.5).

As an immediate corollary, we get the following useful statement:

Proposition 2.4.2. Let ζ�, � = 1, ..., L, be independent random variables with
distributions satisfying P.2. Then, for every deterministic vector [z1; ...; zL] and
constant Ω ≥ 0 one has

Prob

⎧⎨⎩
L∑

�=1

z�ζ� >

L∑
�=1

max[µ−
� z�, µ

+
� z�] + Ω

√√√√ L∑
�=1

σ2
� z2

�

⎫⎬⎭ ≤ exp{−Ω2/2}. (2.4.9)

Proof. Setting

z0 = −max[µ−
� z�, µ

+
� z�]− Ω

√√√√ L∑
�=1

σ2
� z2

� , ε = exp{−Ω2/2},

we ensure the validity of (2.4.8); by Proposition 2.4.1, we have therefore

Prob{z0 +
L∑

�=1

z�ζ� > 0} ≤ ε = exp{−Ω2/2},

which, in view of the origin of z0, is nothing but (2.4.9). �
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Now let us make the following observation:

(∗∗) Consider a perturbation set Z given by the following conic

quadratic representation:

Z =

⎧⎪⎨⎪⎩η ∈ R
L : ∃u ∈ R

L :
µ−

� ≤ η� − u� ≤ µ+
� , � = 1, ..., L√

L∑
�=1

u2
�/σ2

� ≤
√

2 ln(1/ε)

⎫⎪⎬⎪⎭ ,

(2.4.10)
where, by definition, a2/02 is 0 or +∞ depending on whether a = 0 or

a �= 0. Then for every vector y ∈ R
L one has

L∑
�=1

max[µ+
� y�, µ

−
� y�] +

√
2 ln(1/ε)

√√√√ L∑
�=1

σ2
� y2

� = max
η∈Z

ηT y.

Indeed, we have Z = {η = u + v : µ−
� ≤ v� ≤ µ+

� ,

√
L∑

�=1

u2
�/σ2

� ≤
√

2 ln(1/ε)},

whence
max
η∈Z

ηT y

= max
u,v

{
(u + v)T y : µ−

� ≤ v� ≤ µ+
� ∀�,

√
L∑

�=1

u2
�/σ2

� ≤
√

2 ln(1/ε)

}
= max

v

{
vT y : µ−

� ≤ v� ≤ µ+
� ∀�

}
+max

u

{
uT y :

√
L∑

�=1

u2
�/σ2

� ≤
√

2 ln(1/ε)

}

=
L∑

�=1

max[µ−
� y�, µ

+
� y�] +

√
2 ln(1/ε)

√
L∑

�=1

σ2
� y2

� ,

�

We can summarize our findings in the following

Theorem 2.4.3. Let the random perturbations affecting (2.2.1) obey P.1–2,
and consider the RC of (2.2.1) corresponding to the perturbation set (2.4.10). This
RC can be equivalently represented by the explicit convex inequality

[[a0]T x− b0] +
L∑

�=1

max[µ−
� ([a�]T x− b�), µ+

� ([a�]T x− b�)]

+
√

2 ln(1/ε)

√
L∑

�=1

σ2
� ([a�]T x− b�)2 ≤ 0,

(2.4.11)

and every feasible solution to this inequality is feasible for the chance constraint
(2.2.3).

Proof. By definition, x is feasible for the RC in question if and only if

[a0]T x− b0︸ ︷︷ ︸
z0

+
L∑

�=1

η� ([a�]T x− b�)︸ ︷︷ ︸
z�

≤ 0 ∀η ∈ Z,
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or, which is the same,
z0 + sup

η∈Z
ηT [z1; ...; zL] ≤ 0.

By (∗∗), the latter inequality is nothing but (2.4.11), and by Proposition 2.4.1, for
every solution to this inequality we have

Prob{z0 +
L∑

�=1

ζ�z� > 0} ≤ ε,

when the random vector ζ obeys P.1–2. �

2.4.1 Refinements in the Case of Bounded Perturbations

In addition to assumptions P.1–2, assume that ζ� have bounded ranges:

Prob{a−
� ≤ ζ� ≤ a+

� } = 1, � = 1, ..., L, (2.4.12)

where −∞ < a−
� ≤ a+

� < ∞ are deterministic. In this case, Theorem 2.4.3 admits
the following refinement (cf. Proposition 2.3.3):

Theorem 2.4.4. Assume that random perturbations affecting (2.2.1) obey
P.1–2 and (2.4.12) with a−

� ≤ µ−
� ≤ µ+

� ≤ a+
� for all �, and consider the RC of

(2.2.1) corresponding to the perturbation set (cf. (2.4.10))

Z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩η ∈ R
L : ∃u ∈ R

L :

µ−
� ≤ η� − u� ≤ µ+

� , 1 ≤ � ≤ L√
L∑

�=1

u2
�/σ2

� ≤
√

2 ln(1/ε)

a−
� ≤ η� ≤ a+

� , 1 ≤ � ≤ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (2.4.13)

where, by definition, a2/02 is 0 or +∞ depending on whether a = 0 or a �= 0. This
RC can be equivalently represented by the explicit system of convex inequalities

(a) [a�]T x− b� = u� + v�, � = 0, 1, ..., L

(b) u0 +
L∑

�=1

max[a−
� u�, a

+
� u�] ≤ 0

(c) v0 +
L∑

�=1

max[µ−
� v�, µ

+
� v�] +

√
2 ln(1/ε)

√
L∑

�=1

σ2
� v2

� ≤ 0,

(2.4.14)

in variables x, u, v. Moreover, every x that can be extended to a feasible solution
(x, u, v) to the latter system is feasible for the chance constraint (2.2.2).

Proof. 10. Let us prove that with Ω = 2
√

ln(1/ε), for every vector z =
[z0; z1; ...; zL] the equivalence

(a) maxη∈Z [z0 +
∑L

�=1 η�z� ≤ 0]
�

(b) ∃u, v :

⎧⎪⎨⎪⎩
u + v = z (b.1)
u0 +

∑L
�=1 max[a−

� u�, a
+
� u�] ≤ 0 (b.2)

v0 +
∑L

�=1 max[µ−
� v�, µ

+
� v�] + Ω

√∑L
�=1 σ2

� v2
� ≤ 0 (b.3)

(2.4.15)
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holds true. It is immediately seen that the validity of this equivalence remains
intact under “shifts” (a±

� , µ±
� ) �→ (a±

� + c�, µ
±
� + c�) of the coefficients, so that we

can assume, w.l.o.g., that

∀� : a−
� ≤ µ−

� ≤ 0 ≤ µ+
� ≤ a+

� . (2.4.16)

We first prove that (2.4.15.b) implies (2.4.15.a); so, let u, v satisfy the relations
in (2.4.15.b), and let η ∈ Z. Then η� ∈ [a−

� , a+
� ] for every �, which combines with

(2.4.15.b.2) to imply that

u0 +
L∑

�=1

η�u� ≤ 0. (2.4.17)

Besides this, due to the constraints in the definition of Z, we have η = η0 +η1 with
η0

� ∈ [µ−
� , µ+

� ] and
∑L

�=1(η
1
� )2/σ2

� ≤ Ω2. It follows that

v0 +
∑L

�=1 η�v� = v0 +
∑L

�=1 η0
� v� +

∑L
�=1 η1

� v�

≤ v0 +
∑L

�=1 max[µ−
� v�, µ

+
� v�] +

∑L
�=1[σ�v�][η1

� /σ�]

≤ v0 +
∑L

�=1 max[µ−
� v�, µ

+
� v�] + Ω

√∑L
�=1 σ2

� v2
� ≤ 0

(2.4.18)

where the concluding inequality is given by (2.4.15.b.3). Combining (2.4.17),
(2.4.18), and (2.4.15.b.1), we arrive at (2.4.15.a).

Next we prove that (2.4.15.a) implies (2.4.15.b). Let

P = {η : a−
� ≤ η� ≤ a+

� , 1 ≤ � ≤ L},
Q = {η : ∃v : µ−

� ≤ η� − v� ≤ µ+
� , 1 ≤ � ≤ L,

√∑L
�=1 v2

� /σ2
� ≤ Ω},

so that P, Q are convex compact sets and Z = P ∩Q; besides this, we clearly have
Z ⊃ {η : µ−

� ≤ η� ≤ µ+
� , 1 ≤ � ≤ L}. Assume, first, µ−

� < µ+
� for all �, so that

intP ∩ intQ �= ∅. In this case, by well-known results of Convex Analysis, a vector
z = [z0; ...; zL] satisfies the relation

z0 + max
η∈P∩Q

ηT [z1; ...; zL] ≤ 0

if and only if there exists a decomposition z = u + v with

u0 + max
η∈P

ηT [u1; ...; uL] ≤ 0, v0 + max
η∈Q

ηT [v1; ...; vL] ≤ 0.

The first inequality clearly says that u satisfies (2.4.15.b.2), while the second in-
equality, by (∗∗), says that v satisfies (2.4.15.b.3). Thus, z satisfies (2.4.15.b), as
claimed.

We have proved that if z satisfies (2.4.15.a) and all the inequalities µ−
� ≤ µ+

�

are strict, then z satisfies (2.4.15.b); all we need to complete the proof of (2.4.15)
is to show that the latter conclusion remains valid when some of the inequalities
µ−

� ≤ µ+
� are equalities. To this end, assume that z satisfies (2.4.15.a), let t be a
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positive integer, and let µ−
t,� = µ−

� − 1/t, µ+
t,� = µ+

� +1/t, and similarly for a±
t,�. Let

Zt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩η ∈ R
L : ∃u ∈ R

L :

µ−
t,� ≤ η� − u� ≤ µ+

t,�, 1 ≤ � ≤ L√
L∑

�=1

u2
�/σ2

� ≤
√

2 ln(1/ε)

a−
t,� ≤ η� ≤ a+

t,�, 1 ≤ � ≤ L

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

From the fact that z satisfies (2.4.15.a), by standard compactness arguments, it
follows that

δt := max
η∈Zt

[z0 + ηT [z1; ...; zL]] → 0, t →∞.

Let zt
0 = z0 − δt, zt

� = z�, 1 ≤ � ≤ L, so that

max
η∈Zt

[zt
0 + ηT [zt

1; ...; z
t
L]] ≤ 0, t = 1, 2, ...

According to the proved version of the implication (2.4.15.a)⇒(2.4.15.b), the system
St of constraints on variables u, v obtained from inequalities in (2.4.15.b) when
replacing the data µ±

� , a±
� with µ±

t,�, a±
t,� and z with zt, admits a solution ut, vt.

From (2.4.16) it follows that if u, v solve St and u′, v′ are such that u′
0 = u0, v′0 = v0,

u′ +v′ = u+v and the entries u′
�, v′

�, 1 ≤ � ≤ L are of the same signs and of smaller
magnitudes then the corresponding entries in u, v, then u′, v′ solve St as well. It
follows that the above ut, vt can be chosen uniformly bounded.

Indeed, if for certain � ≥ 1 we have ut
� > |zt

�|, then, replacing �-th coordinates in

ut, vt with |zt
�| and zt

� −|zt
�|, respectively, and keeping the remaining entries in ut, vt

intact, we get a new feasible solution of St with �-th entries in u, v bounded in

magnitude by 2|zt
�|. Similar correction is possible when ut

� ≤ −|zt
�|; applying these

corrections, we can ensure that |ut
�|, |vt

�| do not exceed 2|zt
�| for every � ≥ 1. And of

course under this normalization, a solution to St does not need entries ut
0, vt

0 with

too large magnitudes.

With ut, vt uniformly bounded, passing to a subsequence, we can assume that
ut → u and vt → v as t → ∞; since zt = ut + vt → z as t → ∞ due to dt → 0,
t → ∞, and the “perturbed” data a±

t,�, µ±
t,� converge to the “true” data a±

� , µ±
� ,

u, v certify that z satisfies (2.4.15.b).

20. By (2.4.15), the system of constraints in (2.4.14) equivalently represents
the fact that x is robust feasible for the uncertain inequality (2.2.1), the perturba-
tion set being (2.4.13). All we need to complete the proof is to demonstrate that
whenever x can be extended to a feasible solution (x, u, v) of (2.4.14), x is feasi-
ble for the chance constraint (2.2.2). This is immediate: setting z� = [a�]T x − b�,
� = 0, 1, ..., L, and invoking (2.4.14.a), we get

z0 +
L∑

�=1

ζ�z� = u0 +
L∑

�=1

ζ�u�︸ ︷︷ ︸
A

+ v0 +
L∑

�=1

ζ�v�︸ ︷︷ ︸
B

.

Since ζ takes values from the box {a−
� ≤ ζ� ≤ a+

� , 1 ≤ � ≤ L} with probability 1,
we have A ≤ 0 with probability 1 by (2.4.14.b). Applying Proposition 2.4.1 to v
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in the role of z and invoking (2.4.14.c), we conclude that Prob{B > 0} ≤ ε. Thus,
the quantity Prob{A+B > 0}, which is exactly the probability for x to violate the
chance constraint (2.2.2), is ≤ ε. �

2.4.2 Examples

In order to make the constructions presented in Theorems 2.4.3, 2.4.4 useful, we
should understand how to “translate” a priori partial knowledge on the distributions
of ζ�’s in the perturbation vector ζ into concrete values of the parameters µ±

� , σ�

in P.2. We are about to present several instructive examples of such a translation
(most of them originating from [83]).

2.4.2.1 Note on normalization

To avoid messy formulas, we subject the components of ζ� to suitable normalization.
Observe that what we are interested in, is a randomly perturbed inequality

z0 +
∑
�=1

z�ζ� ≤ 0 (2.4.19)

with random ζ = [ζ1; ..., ; ζL] satisfying P.1–2, along with specific bounds, given by
Proposition 2.4.1, for this inequality to be violated. Now assume that we subject
every component ζ� to a deterministic affine transformation, setting

ζ� = α� + β�ζ̂� (2.4.20)

with deterministic β� > 0, α�. With this substitution, the left hand side in (2.4.19)
becomes

ẑ0 +
L∑

�=1

ẑ�ζ̂�, ẑ0 = z0 +
L∑

�=1

α�z�, ẑ� = β�z�, 1 ≤ � ≤ L, (2.4.21)

and, of course,

Prob

{
ζ : z0 +

L∑
�=1

z�ζ� > 0

}
= Prob

{
ζ̂ : ẑ0 +

L∑
�=1

ẑ�ζ̂� > 0

}
. (2.4.22)

Now, if ζ satisfies P.1–2 with certain parameters {µ±
� , σ�}, then ζ̂ satisfies the same

assumptions with the parameters {µ̂±
� , σ̂�} given by

µ±
� = α� + β�µ̂

±
� , σ� = β�σ̂�. (2.4.23)

It follows that the machinery referred to by Propositions 2.4.1, 2.4.2 and Theo-

rems 2.4.3, 2.4.4 “respects” substitution (2.4.20): the conclusions about probability

(2.4.22) that we can make with this machinery when working with ̂ quantities are

identical to those we can make when working with the original quantities. For ex-
ample, the key condition (2.4.8) in the original quantities remains exactly the same
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condition in ̂ quantities, since with the correspondences (2.4.21), (2.4.23) we have

z0 +
L∑

�=1

max[µ+
� z�, µ

−
� z�] ≡ ẑ0 +

L∑
�=1

max[µ̂+
� ẑ�, µ̂

−
� ẑ�],

L∑
�=1

σ2
� z2

� ≡
L∑

�=1

σ̂2
� ẑ2

� .

The bottom line is as follows: we lose nothing when passing from the original ran-

dom variables ζ� to their scaled versions ζ̂�. Below, we mainly work with variables
ζ� varying in given finite ranges [a�, b�], a� < b�. It is convenient to scale ζ� in
such a way that the induced ranges for ζ̂� variables are [−1, 1]. We always assume
that this scaling is carried out in advance, so that the ranges of the variables ζ�

themselves, when finite, are the segment [−1, 1].

2.4.2.2 Gaussian perturbations

Example 2.4.5. Assume that ζ1, ..., ζL are independent Gaussian random variables
with partially known expectations µ� and variances s2

� ; specifically, all we know is that
µ� ∈ [µ−

� , µ+
� ] and s2

� ≤ σ2
� , with known µ±

� and σ�, 1 ≤ � ≤ L. For µ− ≤ µ ≤ µ+ and
ξ ∼ N (µ, σ2) we have

E{exp{tξ}} = 1√
2πσ

∫
exp{ts} exp{−(s − µ)2/(2σ2)}ds

= exp{µt} 1√
2πσ

∫
exp{tr} exp{−r2/(2σ2)}dr [r = s − µ]

= exp{µt} 1√
2πσ

∫
exp{t2σ2/2} exp{−(r − tσ2)2/(2σ2)}dr

= exp{tµ + t2σ2/2} ≤ exp{max[µ−t, µ+t] + t2σ2/2}.

We see that ζ satisfies P.1–2 with the parameters µ±
� , σ�, � = 1, ..., L. The safe tractable

approximation of (2.2.3) as given by Theorem 2.4.3 is

[[a0]T x − b0] +
L∑

�=1

max[µ−
� ([a�]T x − b�), µ+

� ([a�]T x − b�)]

+
√

2 ln(1/ε)

√
L∑

�=1

σ2
� ([a�]T x − b�)2 ≤ 0.

(2.4.24)

When µ±
� = 0, σ� = 1, � = 1, ..., L, this is nothing but the ball RC (2.3.3) of (2.2.1) with

Ω =
√

2 ln(1/ε).

Note that in the simple case in question the ambiguous chance constraint (2.2.3)
needs no approximation: when ε ≤ 1/2, it is exactly equivalent to the convex constraint

[[a0]T x − b0] +
L∑

�=1

max[µ−
� ([a�]T x − b�), µ+

� ([a�]T x − b�)]

+ErfInv(ε)

√
L∑

�=1

σ2
� ([a�]T x − b�)2 ≤ 0,

(2.4.25)

where ErfInv is the inverse error function (2.3.22). The same remains true when we assume
that ζ is Gaussian, and all we know about the expectation µ and the covariance matrix
Σ of ζ is that µ− ≤ µ ≤ µ+ and Σ � Diag{σ2

1 , ..., σ2
L}. Note that (2.4.25) is of exactly

the same structure as (2.4.24), with the only difference in the factor at the
√·. In (2.4.24)

this factor is Ω(ε) =
√

2 ln(1/ε), while in (2.4.25) this factor is ErfInv(ε) < Ω(ε). The
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difference, however, is not that huge, as can be seen from the following comparison:

ε 10−1 10−2 10−3 10−4 10−5 10−6 → +0
ErfInv(ε)

Ω(ε)
0.597 0.767 0.831 0.867 0.889 0.904 → 1

2.4.2.3 Bounded perturbations

Example 2.4.6. Assume that all we know about probability distribution P is that
it is supported on [−1, 1]. Then∫

exp{st}dP (s) ≤
∫

exp{|t|}dP (s) = exp{|t|},

so that P satisfies P.2 with µ− = −1, µ+ = 1, σ = 0.

In particular, if all we know about random perturbation ζ affecting (2.2.1) is that
ζ� are independent and vary in [−1, 1], that is, we take µ−

� = −1, µ+
� = 1, σ� = 0 for all

�, then the RC (2.4.11) becomes

[a0]T x − b0 +

L∑
�=1

|[a�]T x − b�| ≤ 0;

this is nothing but the box RC (2.3.15) which gives 100% immunization against uncer-

tainty. Note that since with our a priori information, ζ can be an arbitrary deterministic

perturbation from the unit box, this RC is the best we can build under the circumstances.

2.4.2.4 Bounded unimodal perturbations

Example 2.4.7. Assume that all we know about probability distribution P is that
it is supported on [−1, 1] and is unimodal w.r.t. 0, that is, possesses a density p(s) that
is unimodal w.r.t. 0 (i.e., is nondecreasing when s < 0 and is nonincreasing when s > 0).
In this case, assuming t ≥ 0, we have

∫
exp{ts}dP (s) =

1∫
−1

exp{ts}p(s)ds.

It is easily seen that the latter functional of p(·), restricted to unimodal w.r.t. 0 densities,
attains its maximum when p(s) vanishes on [−1, 0] and is ≡ 1 on [0, 1], so that

t ≥ 0 ⇒
∫

exp{ts}dP (s) ≤ f(t) =

1∫
0

exp{ts}ds =
exp{t} − 1

t
. (2.4.26)

Indeed, assume first that P has a smooth density p(s) that vanishes outside of
[−1, 1], is nondecreasing when s < 0 and is nonincreasing when s > 0, and let

F (s) =
s∫
0

exp{tr}dr. We have

∫
exp{ts}dP (s) =

∫
exp{ts}p(s)ds =

∫
F ′(s)p(s)ds =

∫
F (s)(−p′(s))ds

=
∫

(F (s)/s)(−sp′(s))ds,
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where F (0)/0 := lim
s→+0

F (s)/s = 1. Since p is unimodal w.r.t. 0 and vanishes outside

[−1, 1], the function q(s) = −sp′(s) is nonnegative and also vanishes outside of
[−1, 1]; besides this,

∫
q(s)ds =

∫
(−sp′(s))ds =

∫
p(s)ds = 1, that is, q(·) is the

density of a probability distribution supported on [−1, 1]. In addition, the function
F (s)/s is clearly nondecreasing in s (recall that t ≥ 0). Therefore∫

(F (s)/s)(−sp′(s))ds =

1∫
−1

(F (s)/s)q(s)ds ≤ F (1) =

1∫
0

exp{tr}dr =
exp{t} − 1

t
,

as required in (2.4.26).

We have proved that (2.4.26) holds true when the density of P is a smooth uni-

modal w.r.t. 0 function vanishing outside of [−1, 1]. Now, every probability density

p(s) that is unimodal w.r.t. 0 and supported on [−1, 1] can be approximated by

a sequence of smooth unimodal w.r.t. 0 and vanishing outside of [−1, 1] densities

pi(·) in the sense that
∫

φ(s)pi(s)ds → ∫
φ(s)p(s)ds, i → ∞, for every continu-

ous function φ(·). Specifying φ(s) = exp{ts}) and noting that, as we have already

seen,
∫

exp{ts}pi(s) ≤ t−1(exp{t} − 1), we conclude that (2.4.26) is valid for every

unimodal w.r.t. 0 distribution P supported on [−1, 1].

By symmetry, we derive from (2.4.26) that∫
exp{ts}dP (s) ≤ f(t) ≡ exp{|t|} − 1

|t| ∀t.

It follows that

ln

(∫
exp{ts}dP (s)

)
≤ h(|t|), h(t) = ln f(t).

Now, direct computation shows that h(0) = 0, h′(0) = 1
2

and h′′(0) = 1
12

. A natural guess
is that

h(t) ≤ h(0) + h′(0)t +
1

2
h′′(0)t2 ≡ 1

2
t +

1

24
t2

for all t ≥ 0. The guess is indeed true:

h(t) ? ≤? 1
2
t + 1

24
t2 ∀t ≥ 0

⇔
1∫
0

exp{ts}ds ? ≤? exp{ 1
2
t + 1

24
t2} ∀t > 0

⇔
1/2∫

−1/2

exp{tr}dr ? ≤? exp{ 1
24

t2}

⇔
∞∑

k=0

t2k

(2k+1)!22k ? ≤?
∞∑

k=0

t2k

24kk!
(∗)

where the concluding reformulation is given by expanding exp{ts} and exp{ 1
24

t2} into
a Taylor series. It is immediately seen that the right hand side series in (*) dominates
term-wise the left hand side series, so that the last “ ? ≤? ” in the chain is indeed “≤.”

We conclude that P satisfies P.2 with µ− = − 1
2
, µ+ = 1

2
and σ2 = 1

12
.

2.4.2.5 Bounded symmetric unimodal perturbations

Example 2.4.8. Assume that all we know about a probability distribution P is
that it is supported on [−1, 1], symmetric w.r.t. 0 and unimodal w.r.t. 0. In this case, we
have ∫

exp{ts}dP (s) =

1∫
0

2 cosh(ts)p(s)ds;
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here again it is easy to see that the latter functional attains its maximum on the set of
unimodal symmetric probability densities on [−1, 1] when p(s) ≡ 1

2
, −1 ≤ s ≤ 1, so that

∫
exp{ts}dP (s) ≤

1∫
0

cosh(ts)ds = f(t) :=
sinh(t)

t
. (2.4.27)

Indeed, as in the proof of (2.4.26), it suffices to prove (2.4.27) for the case
when p(s) is a smooth even density, nonincreasing when s > 0 and vanishing

when s ≥ 1. Setting F (s) =
s∫
0

cosh(ts)ds and q(s) = −2sp′(s), we have, as in

the proof of (2.4.26), that
1∫
0

2 cosh(ts)p(s)ds =
1∫
0

(F (s)/s)q(s)ds, the function

F (s)/s is nondecreasing and q(s) is a probability density on [0, 1], whence
1∫
0

(F (s)/s)q(s)ds ≤ F (1) = f(t).

Direct computation shows that the function h(t) = ln f(t) satisfies h(0) = 0, h′(0) = 0,
h′′(t) = 1

3
, and a natural guess again is that

h(t) ≤ h(0) + h′(0)t +
1

2
h′′(0)t2 ≡ 1

6
t2

for all t, which again is true:

h(t) ? ≤? 1
6
t2 ∀t

⇔ 1
2

1∫
−1

exp{ts}ds ? ≤? exp{ 1
6
t2} ∀t

⇔
∞∑

k=0

t2k

(2k+1)!
? ≤?

∞∑
k=0

t2k

6kk!
(∗)

and (∗) is indeed true by the same argument as in Example 2.4.7. We conclude that P

satisfies P.2 with µ− = µ+ = 0, σ2 = 1
3
.

2.4.2.6 Range and expectation information

Example 2.4.9. Assume that all we know about a probability distribution P is
that it is supported on [−1, 1] and that the expectation of the associated random variable
belongs to a given segment [µ−, µ+]; we may of course assume that −1 ≤ µ− ≤ µ+ ≤ 1.
Let µ be the true mean of P . Given t, consider the function

φ(s) = exp{ts} − sinh(t)s, −1 ≤ s ≤ 1.

This function is convex on [−1, 1] and therefore attains it maximum over this segment at
an endpoint of it. Since φ(1) = φ(−1) = cosh(t), we have∫

exp{ts}dP (s) =
∫

φ(s)dP (s) + µ sinh(t) ≤ max
−1≤s≤1

φ(s) + µ sinh(t)

= cosh(t) + µ sinh(t).

Thus, ∫
exp{ts}dP (s) ≤ fµ(t) := cosh(t) + µ sinh(t). (2.4.28)

Note that the bound (2.4.28) is the best possible under the circumstances — the inequality
(2.4.28) becomes an equality when P is a 2-point distribution assigning mass (1 + µ)/2
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to the point s = 1 and mass (1 − µ)/2 to the point s = −1; this distribution indeed is
supported on [−1, 1] and has expectation µ.

Setting hµ(t) = ln fµ(t), we have hµ(0) = 0, h′
µ(t) = sinh(t)+µ cosh(t)

cosh(t)+µ sinh(t)
, whence h′

µ(0) =

µ, and h′′
µ(t) = 1 −

(
sinh(t)+µ cosh(t)
cosh(t)+µ sinh(t)

)2

, whence h′′
µ(t) ≤ 1 for all t. We conclude that

(!) When µ− ≤ µ ≤ µ+, we have hµ(t) ≤ max[µ−t, µ+t] + 1
2
t2 ∀t.

Now let us set

Σ(1)(µ
−, µ+) = min

{
c ≥ 0 : hµ(t) ≤ max[µ−t, µ+t] +

c2

2
t2 ∀(µ ∈ [µ−, µ+], t)

}
. (2.4.29)

The graph of Σ(1)(µ
−, µ+), −1 ≤ µ− ≤ µ+ ≤ 1, is plotted on figure 2.2.(a). By (!),

Σ(1)(µ−, µ+) is well defined and ≤ 1, and recalling (2.4.28),

ln

(∫
exp{ts}dP (s)

)
≤ max[µ−t, µ+t] +

Σ2
(1)(µ

−, µ+)

2
t2 ∀t,

so that P satisfies P.2 with the parameters µ±, σ = Σ(1)(µ
−, µ+) ≤ 1.

Remark 2.4.10. We have proved Proposition 2.3.1. Indeed, under the premise
of this Proposition, Example 2.4.9 (where we should set µ± = 0) says that the
random variables ζ� satisfy P.1–2 with µ±

� = 0, σ� = 1, � = 1, ..., L, which makes
Proposition 2.3.1 a particular case of Proposition 2.4.2.

2.4.3 More Examples

Example 2.4.9 is highly instructive, and we can proceed in the direction outlined
in this example, utilizing more and more specific information on the distributions
of ζ�.

Before passing to further examples of this type, let us clarify the main in-
gredient of the reasoning used in Example 2.4.9, that is, the fashion in which we
have established the key inequality (2.4.28). Similar reasoning can be used in all
examples to follow. The essence of the matter is: given a function wt(s) on the axis
(which in Example 2.4.9 is exp{ts}) and “moment-type” information∫

gj(s)dP (s)
{

= µj , j ∈ J=

≤ µj , j ∈ J≤
,

on a probability distribution P supported on a segment ∆ of the axis (in Example
2.4.9, J= = {1}, J≤ = ∅, µ1 = µ, g1(s) ≡ s and ∆ = [−1, 1]), we want to bound
from above the quantity

∫
wt(s)dP (s). The scheme we have used is a kind of

Lagrange relaxation: we observe that the information on P implies that whenever
λj , j ∈ J= ∪ J≤ are such that λj ≥ 0 for j ∈ J≤, we have∫

wt(s)dP (s) =
∫

[wt(s)−
∑
j

λjgj(s)]dP (s) +
∑
j

λj

∫
gj(s)dP (s)

≤ max
s∈∆

[wt(s)−
∑
j

λjgj(s)] +
∑
j

λjµj ,
(2.4.30)



ROBUST COUNTERPART APPROXIMATIONS OF SCALAR CHANCE CONSTRAINTS 57

where the concluding inequality is given by the fact that P is a probability distri-
bution supported on ∆ and consistent with our a priori moment information.

When proving inequalities like (2.4.28) in the examples to follow, we use
the outlined bounding scheme with properly chosen λj (in the case of (2.4.28),
λ1 = sinh(t)). In fact, the λ’s to be used are given by minimization of the resulting
bound in λ, but we do not bother to justify this fact directly; we simply show
that the resulting bound is unimprovable, since it becomes equality on certain
distribution P consistent with our a priori information.

2.4.3.1 Information on range, mean, and variance

Example 2.4.11. Assume that all we know about a probability distribution P is
that it is supported on [−1, 1] with Mean[P ] ∈ [µ−, µ+] and Var[P ] ≤ ν2, where ν and µ±

are known in advance. W.l.o.g., we may focus on the case |µ±| ≤ ν ≤ 1. We claim that

(i) With µ = Mean[P ] one has

∫
exp{ts}dP (s) ≤ fµ,ν(t) ≡

⎧⎪⎨⎪⎩
(1−µ)2 exp{t µ−ν2

1−µ
}+(ν2−µ2) exp{t}

1−2µ+ν2 , t ≥ 0

(1+µ)2 exp{t µ+ν2
1+µ

}+(ν2−µ2) exp{−t}
1+2µ+ν2 , t ≤ 0

(2.4.31)

and the bound (2.4.31) is the best possible under the circumstances: when t > 0, it is

achieved at the 2-point distribution assigning to the points s̄ = µ−ν2

1−µ
and 1 the masses

(1 − µ)2/(1 − 2µ + ν2), (ν2 − µ2)/(1 − 2µ + ν2), respectively. This distribution P µ
+ is

compatible with our a priori information: Mean[P µ
+] = µ, Var[P µ

+] = ν2. When t < 0, the

bound (2.4.31) is achieved when P is the “reflection” P µ
− of P

(−µ)
+ w.r.t. 0.

(ii) The function hµ,ν(t) = ln fµ,ν(t) satisfies hµ,ν(t) ≤ µt+ 1
2
t2 for all t. As a result,

The function

Σ(2)(µ
−, µ+, ν) = min

{
c ≥ 0 :

hµ,ν(t) ≤ max[µ−t, µ+t] + c2

2
t2

∀(µ ∈ [µ−, µ+], t)

}
(2.4.32)

is well defined and is ≤ 1, and P satisfies P.2 with the parameters µ±, σ =
Σ(2)(µ

−, µ+, ν).

Note that the function Σ(1)(µ
−, µ+) is nothing but Σ(2)(µ

−, µ+, 1). The graph of

Σ(2)(µ, µ, ν) is plotted on figure 2.2.(b).

Indeed, to prove (i), it suffices, by continuity, to prove (2.4.31) in the case
when |µ| < ν ≤ 1; by symmetry, we may assume that t > 0. Let us set

s̄ = µ−ν2

1−µ
, so that −1 < s̄ < 1 due to |µ| < ν < 1. Consider the function

φ(s) = exp{ts} − λ1s − λ2s
2

where λ1 and λ2 are chosen in such a way that

φ(s̄) = φ(1), φ′(s̄) = 0,

that is,

λ1 = t exp{ts̄} − 2λ2s̄, λ2 = exp{ts̄}[exp{t(1−s̄)}−1−t(1−s̄)]

(1−s̄)2
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Observe that by construction λ2 ≥ 0. We claim that φ(s) ≤ φ(1) for −1 ≤
s ≤ 1, so that∫

exp{ts}dP (s) =

∫
φ(s)dP (s) +

∫
[λ1s + λ2s

2]dP (s) ≤ φ(1) + λ1µ + λ2ν
2

(cf. (2.4.30)), and the resulting bound, after substituting values of s̄, λ1, λ2,
becomes (2.4.31).

It remains to justify the claim that φ(s) ≤ φ(1) on [−1, 1]. It is immediately
seen that φ′′(s̄) < 0. Thus, when s increases from s̄ to 1, the function φ(s)
first decreases, starting with the value φ(s̄) = φ(1); what happens next, we
do not know exactly, except for the fact that when s reaches the value 1, φ
recovers its initial value φ(s̄) = φ(1). It follows that φ′(s) has a zero in the
open interval (s̄, 1). Further, assuming maxs̄≤s≤1 φ(s) > φ(s̄), the function
φ′(s) possesses at least 2 distinct zeros on (s̄, 1); besides this, φ′(s̄) = 0 by
construction, which gives us at least 3 distinct zeros for φ′(s). But φ′(s) is a
convex function of s; possessing at least 3 distinct zeros, it must be identically
equal to 0 on a nontrivial segment, which definitely is not the case. Thus,
φ(s) ≤ φ(s̄) = φ(1) when s̄ ≤ s ≤ 1. To prove that the same inequality
holds true when −1 ≤ s ≤ s̄, observe that as s decreases from s̄ to −1, φ(s)
first decreases (due to φ′(s̄) = 0, φ′′(s̄) < 0). What happens next, we do not
know exactly, but from what we have just said it follows that if φ(s) > φ(s̄)
somewhere on [−1, s̄], then φ′(s) has a zero on (−1, s̄); with zeros at s̄ (by
construction) and somewhere in (s̄, 1) (we have seen that this is the case),
this gives at least 3 distinct zeros of φ′, which, as we just have explained,
is impossible. Thus, φ(s) ≤ φ(s̄) = φ(1) on the entire segment [−1, 1], as
claimed.

To verify (ii), note that, as we have already seen, fµ,ν(t) is the maximum
of the quantities

∫
exp{ts}dP (s) taken over all probability distributions P

supported on [−1, 1] and such that Mean[P ] = µ, Var[P ] ≤ ν2; but the latter
maximum clearly is nondecreasing in ν. As about fµ,1(t), this, of course,
is nothing but the function fµ(t) from Example 2.4.9; as we have seen in
this Example, ln fµ(t) ≤ µt + 1

2
t2, so that the same upper bound is valid for

hµ,ν(t). �

2.4.3.2 Range, symmetry, and variance

Example 2.4.12. Assume that all we know about a probability distribution P
is that it is supported on [−1, 1], is symmetric w.r.t. 0 and is such that Var[P ] ≤ ν2,
0 ≤ ν ≤ 1, with known ν. We claim that

(i) One has ∫
exp{ts}dP (s) ≤ f(t) ≡ ν2 cosh(t) + 1 − ν2, (2.4.33)

and the bound is the best possible under the circumstances: it becomes precise when P
is the 3-point distribution assigning masses ν2/2 to the points ±1 and the mass 1− ν2 to
the point 0.

(ii) The function h(t) = ln f(t) is convex, even and twice continuously differentiable,
with the second derivative bounded by 1 on the entire real axis, and h(0) = 0, h′(0) = 0.
As a result,
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The function

Σ(3)(ν) ≡ min
c

{
c ≥ 0 :

c2

2
t2 ≥ h(t) := ln

(
ν2 cosh(t) + 1 − ν2) ∀t

}
≤ 1

(2.4.34)
is well defined on 0 ≤ ν ≤ 1 and P satisfies P.2 with µ± = 0, σ = Σ(3)(ν).

The graph of Σ(3)(·) is plotted on figure 2.2.(c). The proof of our claim is left
as Exercise 2.1.

2.4.3.3 Range, symmetry, unimodality, and variance

Example 2.4.13. Assume that all we know about a probability distribution P is
that P is supported on [−1, 1], is symmetric and unimodal w.r.t. 0, and, in addition,
Var[P ] ≤ ν2 ≤ 1/3. (The upper bound on ν is natural — it can be seen that is implied
by the other assumptions on P .) We claim that

(i) One has ∫
exp{ts}dP (s) ≤ 1 − 3ν2 + 3ν2 sinh(t)

t
, (2.4.35)

and this bound is the best possible under the circumstances. (To see that the bound cannot
be improved, look what happens when the density of P is equal to 3ν2/2 everywhere on
[−1, 1] except for the small neighborhood [−ε, ε] of the origin, where the density is equal
to 3ν2/2 + (1 − 3ν2)/(2ε).)

(ii) The function h(t) = ln
(
1 − 3ν2 + 3ν2 sinh(t)

t

)
is even and smooth with the

second derivative bounded on the entire real axis by 1, so that the function

Σ(4)(ν) = min

{
c ≥ 0 : ln

(
1 − 3ν2 + 3ν2 sinh(t)

t

)
≤ c2

2
t2 ∀t

}
, 0 ≤ ν ≤

√
1/3, (2.4.36)

is well defined and is ≤ 1. As a result, P satisfies P.2 with the parameters µ± = 0, σ =

Σ(4)(ν).

To prove (i), it suffices to verify (2.4.35) in the case when the density p(s) of P
is smooth, even, unimodal w.r.t. 0 and vanishes outside [−1, 1] (cf. the proof of
(2.4.26)). Besides this, by continuity we may assume that t �= 0. We have

∫
exp{ts}dP (s) =

1∫
−1

exp{ts}p(s)ds =

1∫
0

cosh(ts)(2p(s))ds. (2.4.37)

Now let λ be such that the function

φ(s) =
sinh(ts)

ts
− λs2

satisfies φ(0) = φ(1), that is,

λ =
sinh(t) − t

t
.

Setting F (s) =
s∫
0

cosh(tr)dr = sinh(ts)/t and q(s) = −2sp′(s), and following Exam-

ple 2.4.8, we observe that q(s), 0 ≤ s ≤ 1, is a probability density and

1∫
0

cosh(ts)(2p(s))ds =

1∫
0

(F (s)/s)(−2sp′(s))ds =

1∫
0

(F (s)/s)q(s)ds.
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Besides this, we have

1∫
0

s2q(s)ds =

1∫
0

(−2s3)p′(s)ds =

1∫
0

(6s2)p(s)ds = 3

1∫
−1

s2p(s)ds ≤ 3ν2.

Observe that since q is a probability density on [0, 1], the equalities in the latter

chain imply that 3
1∫

−1

s2p(s)ds =
1∫
0

s2q(s) ≤ 1, which justifies the upper bound 1/3

on Var[P ] and thus, the bound ν2 ≤ 1/3.

We now can proceed as follows: as we have seen,

∫
exp{ts}dP (s) =

1∫
0

(sinh(ts)/(ts))q(s)ds,

whence ∫
exp{ts}dP (s) =

1∫
0

[
sinh ts

ts
− λs2

]
q(s)ds +

1∫
0

λs2q(s)ds

≤ max0≤s≤1 φ(s) + 3λν2

(2.4.38)

(take into account that λ > 0). We now claim that max0≤s≤1 φ(s) = φ(0) ≡ φ(1),
which would combine with (2.4.38) to imply that∫

exp{ts}dP (s) ≤ φ(0) + 3λν2 = 1 + 3λν2;

the latter bound, in view of the expression for λ, is exactly (2.4.35).

It remains to justify our claim that φ(s) ≤ φ(0) = φ(1) = 1 when 0 ≤ s ≤ 1. It is

immediately seen that φ′(0) = 0, φ′′(0) = 1
3
t2 − 2

sinh(t)−t
t

= −2
sinh(t)−t−t3/6

t
< 0.

It follows that when s grows from 0 to 1, the function φ(s) first decreases, starting
with the value φ(0) = 1.What happens next, we do not know exactly, except for the
fact that when s reaches the value 1, φ(s) recovers its initial value φ(1) = φ(0) = 1.
It follows that if max0≤s≤1 φ(s) > 1, then φ′(s) has at least 2 distinct zeros on (0,1),
which along with φ′(0) = 0, gives us at least 3 distinct zeros of φ′. But φ′(s) is
a convex function, and in order to possess 3 distinct zeros, it should vanish on a
nontrivial segment, which definitely is not the case. �

2.4.4 Summary

A summary of the examples we have considered is presented in table 2.3 and in
figure 2.2.

2.5 EXERCISES

Exercise 2.1. Prove the claim in Example 2.4.12.

Exercise 2.2. Consider a toy chance constrained LO problem:

min
x,t

{
t : Prob{

n∑
j=1

ζjxj︸ ︷︷ ︸
ξn[x]

≤ t} ≥ 1− ε, 0 ≤ xi ≤ 1,
∑

j

xj = n
}

(2.5.1)

where ζ1, ..., ζn are independent random variables uniformly distributed in [−1, 1].
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Figure 2.2 Graphs of Σ(κ), κ = 1, 2, 3, 4.
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A priori information P satisfies P.2 with parameters
on P µ− µ+ σ Remark

supp(P ) ⊂ [−1, 1] −1 1 0
supp(P ) ⊂ [−1, 1]

P is unimodal w.r.t. 0
− 1

2
1
2

√
1
12

supp(P ) ⊂ [−1, 1]
P is unimodal w.r.t. 0
P is symmetric w.r.t. 0

0 0
√

1
3

supp(P ) ⊂ [−1, 1]
[−1 <] µ− ≤ Mean[P ] ≤ µ+ [< 1]

µ− µ+ Σ(1)(µ
−, µ+) (2.4.29)

supp(P ) ⊂ [−1, 1]
[−ν ≤] µ− ≤ Mean[P ] ≤ µ+ [≤ ν]

Var[P ] ≤ ν2 ≤ 1
µ− µ+ Σ(2)(µ

−, µ+, ν) (2.4.32)

supp(P ) ⊂ [−1, 1]
P is symmetric w.r.t. 0

Var[P ] ≤ ν2 ≤ 1
0 0 Σ(3)(ν) (2.4.34)

supp(P ) ⊂ [−1, 1]
P is symmetric w.r.t. 0
P is unimodal w.r.t. 0

Var[P ] ≤ ν2 ≤ 1/3

0 0 Σ(4)(ν) (2.4.36)

Table 2.3 Summary of Examples 2.4.6 – 2.4.9 and 2.4.11 – 2.4.13. In the table for a
probability distribution P on the axis, we denote by Mean[P ] =

∫
sdP (s) and

Var[P ] =
∫

s2dP (s) the mean and the variance of the distribution.

i) Find a way to solve the problem exactly, and find the true optimal value ttru
of the problem for n = 16, 256 and ε = 0.05, 0.0005, 0.000005.
Hint: The deterministic constraints say that x1 = ... = xn = 1. All we need is an

efficient way to compute the probability distribution Prob{ξn < t} of the sum ξn of

n independent random variables uniformly distributed on [−1, 1]. The density of ξn

clearly is supported on [−n, n] and is a polynomial of degree n − 1 in every one of

the segments [−n+2i,−n+2i+2], 0 ≤ i < n. The coefficients of these polynomials

can be computed via a simple recursion in n.

ii) For the same pairs (n, ε) as in i), compute the optimal values of the tractable
approximations of the problem as follows:

(a) tNrm — the optimal value of the problem obtained from (2.5.1) when
replacing the “true” random variable ξn[x] with its “normal approxima-
tion” — a Gaussian random variable with the same mean and standard
deviation as those of ξn[x];

(b) tBll — the optimal value of the safe tractable approximation of (2.5.1)
given by Proposition 2.3.1;

(c) tBllBx — the optimal value of the safe tractable approximation of (2.5.1)
given by Proposition 2.3.3;

(d) tBdg — the optimal value of the safe tractable approximation of (2.5.1)
given by Proposition 2.3.4;
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(e) tE.2.4.11 — the optimal value of the safe tractable approximation of
(2.5.1) suggested by Example 2.4.11, where you set µ± = 0 and
ν = 1/

√
3;

(f) tE.2.4.12 — the optimal value of the safe tractable approximation of
(2.5.1) suggested by Example 2.4.12, where you set ν = 1/

√
3;

(g) tE.2.4.13 — the optimal value of the safe tractable approximation of
(2.5.1) suggested by Example 2.4.13, where you set ν = 1/

√
3;

(h) tUnim — the optimal value of the safe tractable approximation of (2.5.1)
suggested by Example 2.4.7.

Think of the results as compared to each other and to those of i).

Exercise 2.3. Consider the chance constrained LO problem (2.5.1) with in-
dependent ζ1, ..., ζn taking values ±1 with probability 0.5.

i) Find a way to solve the problem exactly, and find the true optimal value ttru
of the problem for n = 16, 256 and ε = 0.05, 0.0005, 0.000005.

ii) For the same pairs (n, ε) as in i), compute the optimal values of the tractable
approximations of the problem as follows:

(a) tNrm — the optimal value of the problem obtained from (2.5.1) when
replacing the “true” random variable ξn with its “normal approxima-
tion” — a Gaussian random variable with the same mean and standard
deviation as those of ξn;

(b) tBll — the optimal value of the safe tractable approximation of (2.5.1)
given by Proposition 2.3.1;

(c) tBllBx — the optimal value of the safe tractable approximation of (2.5.1)
given by Proposition 2.3.3;

(d) tBdg — the optimal value of the safe tractable approximation of (2.5.1)
given by Proposition 2.3.4;

(e) tE.2.4.11 — the optimal value of the safe tractable approximation of
(2.5.1) suggested by Example 2.4.11, where you set µ± = 0 and ν = 1;

(f) tE.2.4.12 — the optimal value of the safe tractable approximation of
(2.5.1) suggested by Example 2.4.12, where you set ν = 1.

Think of the results as compared to each other and to those of i).

Exercise 2.4. A) Verify that whenever n = 2k is an integral power of 2, one
can build an n × n matrix Bn with all entries ±1, all entries in the first column
equal to 1, and with rows that are orthogonal to each other.

Hint: Use recursion B20 = [1]; B2k+1 =

[
B2k B2k

B2k −B2k

]
.

B) Let n = 2k and ζ̂ ∈ R
n be the random vector as follows. We fix a matrix

Bn from A). To get a realization of ζ, we generate random variable η ∼ N (0, 1)
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and pick at random (according to uniform distribution on {1, ..., n}) a column in
the matrix ηBn; the resulting vector is a realization of ζ̂ that we are generating.

B.1) Prove that the marginal distributions of ζj and the covariance matrix of
ζ̂ are exactly the same as for the random vector ζ̃ ∼ N (0, In). It follows that most
primitive statistical tests cannot distinguish between the distributions of ζ̂ and ζ̃.

B.2) Consider problem (2.5.1) with ε < 1/(2n) and compute the optimal
values in the cases when (a) ζ is ζ̃, and (b) ζ is ζ̂. Compare the results for n =
10, ε = 0.01; n = 100, ε = 0.001; n = 1000, ε = 0.0001.

2.6 NOTES AND REMARKS

NR 2.1. The concept of chance constraints goes back to Charnes, Cooper, and
Symonds [40], Miller and Wagner[79], and Prékopa [96]. For important convexity-
related results on these constraints, see [97, 71]. For special cases where a scalar
chance constraint can be processed efficiently, see [98, 45]. To the best of our
knowledge, aside of these special cases, there exist only two computationally efficient
techniques for handling chance constraints: the scenario approximation and the safe

tractable approximations as defined in the main body of this chapter.

The scenario approximation of a chance constrained problem

min
x
{f0(x) : Probζ∼P {fi(x, ζ) ≤ 0, i = 1, ...,m} ≥ 1− ε} (∗)

is, conceptually, very simple: one generates a sample ζ1, ..., ζN of N independent
realizations of ζ and uses, as an approximation, the problem

min
x

{
f0(x) : fi(x, ζt) ≤ 0, i = 1, ...,m, t = 1, ..., N

}
(!)

When fi, i = 0, 1, ..., m, are efficiently computable convex functions of x and N is
moderate, the approximation is computationally tractable; however, it is not nec-
essarily safe — the feasible set of (!), (which by itself is random), is not necessarily
contained in the feasible set of (∗). Even a weaker property (in fact, sufficient
for all our purposes) that the optimal solution to (!), (which again is random), is
feasible for (∗) cannot be guaranteed. However, when N is large enough, one can
hope that this solution is feasible for (∗) with probability close to 1. Deep results
of Calafiore and Campi [37, 38] demonstrate that this indeed is true in the convex
case; specifically, if f0, f1, ..., fm are convex in x, then for every ε, δ ∈ (0, 1), the
sample size

N ≥ N∗ := Ceil
(
2nε−1 log (12/ε) + 2ε−1 log (2/δ) + 2n

)
, n = dim x

guarantees that the optimal solution x̃ to (!) is feasible for (∗) with probability
≥ 1 − δ. Other interesting and important results on scenario approximations of
chance constrained problems can be found in [44, 66] (the latter paper addresses
the case of an ambiguous chance constraint). The most attractive feature of the
scenario approximation is its generality. It requires no structural assumptions on
fi(x, ζ) aside of convexity in x, and no assumptions on P (the latter by itself is not
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even necessary — all we need is the possibility to sample from P ). On the negative
side, in order for the scenario approximation to be safe (i.e., with x̃ feasible for (∗))
with probability close to 1, the sample size N should be large enough, specifically,
of order of 1

ε .2 In reality, this means that the scenario approximation becomes
impractical when ε is small, something like 1.e-4 or less3.

In this book, we take another approach: simulation-free analytical safe
tractable approximations of chance constraints. While these approximations re-
quire severe assumptions on the structure of the chance constraints in question (we
hardly ever go beyond the case of bi-affine fi(x, ζ) with independent “light tail”
components of ζ), their advantage is that the complexity of the approximation is
independent of the value of ε, (which thus can be arbitrary small).

NR 2.2. The theoretical results in section 2.3 originate from [5, 7] (Proposi-
tions 2.3.1, 2.3.3) and from [24] (Proposition 2.3.4). Nearly all results presented in
section 2.4 are based on the Bernstein approximation scheme as presented in [83];
this scheme is investigated in more detail in chapter 4.

2It is easily seen that this requirement reflects the essence of the matter rather than being a
result of “bad bounding.”

3This shortcoming can be overcome when fi are bi-affine in x and in ζ and the entries in ζ are
“light tail” independent random variables, see [84].
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Chapter Three
Globalized Robust Counterparts of Uncertain LO Problems

In this chapter we extend the concept of Robust Counterpart in order to gain
certain control on what happens when the actual data perturbations run out of the
postulated perturbation set.

3.1 GLOBALIZED ROBUST COUNTERPART — MOTIVATION AND

DEFINITION

Let us come back to Assumptions A.1 – A.3 underlying the concept of Robust
Counterpart and concentrate on A.3. This assumption is not a “universal truth”
— in reality, there are indeed constraints that cannot be violated (e.g., you cannot
order a negative supply), but also constraints whose violations, while undesirable,
can be tolerated to some degree, (e.g., sometimes you can tolerate a shortage of
a certain resource by implementing an “emergency measure” like purchasing it
on the market, employing sub-contractors, taking out loans, etc.). Immunizing
such “soft” constraints against data uncertainty should perhaps be done in a more
flexible fashion than in the usual Robust Counterpart. In the latter, we ensure
a constraint’s validity for all realizations of the data from a given uncertainty set
and do not care what happens when the data are outside of this set. For a soft
constraint, we can take care of what happens in this latter case as well, namely,
by ensuring controlled deterioration of the constraint when the data runs away
from the uncertainty set. A mathematically convenient model capturing the above
requirements is as follows.

Consider an uncertain linear constraint in variable x[
a0 +

L∑
�=1

ζ�a
�

]T

x ≤
[
b0 +

L∑
�=1

ζ�b
�

]
(3.1.1)

where ζ is the perturbation vector (cf. (1.3.4), (1.3.5)). Let Z+ be the set of
all “physically possible” perturbations, and Z ⊂ Z+ be the “normal range” of
the perturbations — the one for which we insist on the constraint to be satisfied.
With the usual RC approach, we treat Z as the only set of perturbations and
require a candidate solution x to satisfy the constraint for all ζ ∈ Z. With our
new approach, we add the requirement that the violation of constraint in the case

when ζ ∈ Z+\Z (that is a “physically possible” perturbation that is outside of the
normal range) should be bounded by a constant times the distance from ζ to Z.

Both requirements — the validity of the constraint for ζ ∈ Z and the bound on the
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constraint’s violation when ζ ∈ Z+\Z can be expressed by a single requirement[
a0 +

L∑
�=1

ζ�a
�

]T

x−
[
b0 +

L∑
�=1

ζ�b
�

]
≤ αdist(ζ,Z) ∀ζ ∈ Z+,

where α ≥ 0 is a given “global sensitivity.”

In order to make the latter requirement tractable, we add some structure to
our setup. Specifically, let us assume that:

(G.a) The normal range Z of the perturbation vector ζ is a nonempty
closed convex set;
(G.b) The set Z+ of all “physically possible” perturbations is the sum
of Z and a closed convex cone L:

Z+ = Z + L = {ζ = ζ ′ + ζ ′′ : ζ ′ ∈ Z, ζ ′′ ∈ L}; (3.1.2)

(G.c) We measure the distance from a point ζ ∈ Z+ to the normal range
Z of the perturbations in a way that is consistent with the structure
(3.1.2) of Z+, specifically, by

dist(ζ,Z | L) = inf
ζ′
{‖ζ − ζ ′‖ : ζ ′ ∈ Z, ζ − ζ ′ ∈ L} , (3.1.3)

where ‖ · ‖ is a fixed norm on R
L.

In what follows, we refer to a triple (Z,L, ‖ · ‖) arising in (G.a–c) as a perturbation

structure for the uncertain constraint (3.1.1).

Definition 3.1.1. Given α ≥ 0 and a perturbation structure (Z,L,‖·‖), we say
that a vector x is a globally robust feasible solution to uncertain linear constraint
(3.1.1) with global sensitivity α, if x satisfies the semi-infinite constraint[

a0 +
L∑

�=1

ζ�a
�

]T

x ≤
[
b0 +

L∑
�=1

ζ�b
�

]
+ α dist(ζ,Z|L) ∀ζ ∈ Z+ = Z + L. (3.1.4)

We refer to the semi-infinite constraint (3.1.4) as the Globalized Robust Counter-
part (GRC) of the uncertain constraint (3.1.1).

Note that global sensitivity α = 0 corresponds to the most conservative atti-
tude where the constraint must be satisfied for all physically possible perturbations;
with α = 0, the GRC becomes the usual RC of the uncertain constraint with Z+

in the role of the perturbation set. The larger α, the less conservative the GRC.

Now, given an uncertain Linear Optimization program with affinely perturbed
data {

min
x

{
cT x : Ax ≤ b

}
: [A, b] = [A0, b0] +

L∑
�=1

ζ�[A�, b�]

}
(3.1.5)

(w.l.o.g., we assume that the objective is certain) and a perturbation structure
(Z,L, ‖ · ‖), we can replace every one of the constraints with its Globalized Robust
Counterpart, thus ending up with the GRC of (3.1.5). In this construction, we can
associate different sensitivity parameters α to different constraints. Moreover, we
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can treat these sensitivities as design variables rather than fixed parameters, add
linear constraints on these variables, and optimize both in x and α an objective
function that is a mixture of the original objective and a weighted sum of the
sensitivities.

3.2 COMPUTATIONAL TRACTABILITY OF GRC

As in the case of the usual Robust Counterpart, the central question of computa-
tional tractability of the Globalized RC of an uncertain LO reduces to a similar
question for the GRC (3.1.4) of a single uncertain linear constraint (3.1.1). The
latter question is resolved to a large extent by the following observation:

Proposition 3.2.1. A vector x satisfies the semi-infinite constraint (3.1.4) if
and only if x satisfies the following pair of semi-infinite constraints:

(a)
[
a0 +

L∑
�=1

ζ�a
�

]T

x ≤
[
b0 +

L∑
�=1

ζ�b
�

]
∀ζ ∈ Z

(b)
[

L∑
�=1

∆�a
�

]T

x ≤
[

L∑
�=1

∆�b
�

]
+ α ∀∆ ∈ Z̃ ≡ {∆ ∈ L : ‖∆‖ ≤ 1}.

(3.2.1)

Remark 3.2.2. Proposition 3.2.1 implies that the GRC of an uncertain linear
inequality is equivalent to a pair of semi-infinite linear inequalities of the type
arising in the usual RC. Consequently, we can invoke the representation results of
section 1.3 to show that under mild assumptions on the perturbation structure, the

GRC (3.1.4) can be represented by a “short” system of explicit convex constraints.

Proof of Proposition 3.2.1. Let x satisfy (3.1.4). Then x satisfies (3.2.1.a)
due to dist(ζ,Z|L) = 0 for ζ ∈ Z. In order to demonstrate that x satisfies (3.2.1.b)
as well, let ζ̄ ∈ Z and ∆ ∈ L with ‖∆‖ ≤ 1. By (3.1.4) and since L is a cone, for
every t > 0 we have ζt := ζ̄ + t∆ ∈ Z + L and dist(ζt,Z|L) ≤ ‖t∆‖ ≤ t; applying
(3.1.4) to ζ = ζt, we therefore get[

a0 +
L∑

�=1

ζ̄�a
�

]T

x + t

[
L∑

�=1

∆�a
�

]T

x ≤
[
b0 +

L∑
�=1

ζ̄�b
�

]
+ t

[
L∑

�=1

∆�b
�

]
+ αt.

Dividing both sides in this inequality by t and passing to limit as t → ∞, we see
that the inequality in (3.2.1.b) is valid at our ∆. Since ∆ ∈ Z̃ is arbitrary, x satisfies
(3.2.1.b), as claimed.

It remains to prove that if x satisfies (3.2.1), then x satisfies (3.1.4). Indeed, let
x satisfy (3.2.1). Given ζ ∈ Z+L and taking into account that Z and L are closed,
we can find ζ̄ ∈ Z and ∆ ∈ L such that ζ̄ + ∆ = ζ and t := dist(ζ,Z|L) = ‖∆‖.
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Representing ∆ = te with e ∈ L, ‖e‖ ≤ 1, we have[
a0 +

L∑
�=1

ζ�a
�

]T

x−
[
b0 +

L∑
�=1

ζ�b
�

]
=

[
a0 +

L∑
�=1

ζ̄�a
�

]T

x−
[
b0 +

L∑
�=1

ζ̄�b
�

]
︸ ︷︷ ︸

≤0 by (3.2.1.a)

+

[
L∑

�=1

∆�a
�

]T

x−
[

L∑
�=1

∆�b
�

]
︸ ︷︷ ︸
= t

[[
L∑

�=1
e�a�

]T

x −
[

L∑
�=1

e�b�

]]
≤ tα by (3.2.1.b)

≤ tα = αdist(ζ,Z|L).

Since ζ ∈ Z + L is arbitrary, x satisfies (3.1.4). �

Example 3.2.3. Consider the following 3 perturbation structures (Z,L, ‖ · ‖):
(a) Z is a box {ζ : |ζ�| ≤ σ�, 1 ≤ � ≤ L}, L = R

L and ‖ · ‖ = ‖ · ‖1;

(b) Z is an ellipsoid {ζ :
L∑

�=1

ζ2
� /σ2

� ≤ Ω2}, L = R
L
+ and ‖ · ‖ = ‖ · ‖2;

(c) Z is the intersection of a box and an ellipsoid: Z = {ζ : |ζ�| ≤ σ�, 1 ≤ � ≤

L,
L∑

�=1

ζ2
� /σ2

� ≤ Ω2}, L = R
L, ‖ · ‖ = ‖ · ‖∞.

In these cases the GRC of (3.1.1) is equivalent to the finite systems of explicit convex
inequalities as follows:
Case (a):

(a) [a0]T x +
L∑

�=1

σ�|[a�]T x − b�| ≤ b0

(b) |[a�]T x − b�| ≤ α, � = 1, ..., L

Here (a) represents the constraint (3.2.1.a) (cf. Example 1.3.2), and (b) represents the
constraint (3.2.1.b) (why?)
Case (b):

(a) [a0]T x + Ω

(
L∑

�=1

σ2
� ([a�]T x − b�)2

)1/2

≤ b0

(b)

(
L∑

�=1

max2[[a�]T x − b�, 0]

)1/2

≤ α.

Here (a) represents the constraint (3.2.1.a) (cf. Example 1.3.3), and (b) represents the
constraint (3.2.1.b).
Case (c):

(a.1) [a0]T x +
L∑

�=1

σ�|z�| + Ω

(
L∑

�=1

σ2
� w2

�

)1/2

≤ b0

(a.2) z� + w� = [a�]T x − b�, � = 1, ..., L

(b)
L∑

�=1

|[a�]T x − b�| ≤ α.

Here (a.1–2) represent the constraint (3.2.1.a) (cf. Example 1.3.7), and (b) represents the

constraint (3.2.1.b).

3.3 EXAMPLE: SYNTHESIS OF ANTENNA ARRAYS

To illustrate the notion of Globalized Robust Counterpart, consider an example
related to the problem of the synthesis of antenna arrays.
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3.3.1 Building the Model

Antenna arrays. The most basic element of a transmitting antenna is an isotropic
harmonic oscillator emitting spherical monochromatic electromagnetic waves of a
certain wavelength λ and frequency ω. When invoked, the oscillator generates an
electromagnetic field whose electric component at a point P is given by

d−1�{z exp{ı(ωt− 2πd/λ)}},
where the weight z is a complex number responsible for how the oscillator is invoked,
t is time, d is the distance between P and the point where the oscillator is placed
and ı is the imaginary unit. The electrical component of the electromagnetic field
created at P by an array of n coherent (that is, with the same frequency) isotropic
oscillators placed at points P1, ..., Pn is

E =
n∑

k=1

�{‖P − Pk‖−1zk exp{ı(ωt− 2π‖P − Pk‖/λ)}}

= �{exp{ıωt}
n∑

k=1

‖P − Pk‖−1zk exp{−2πı‖P − Pk‖/λ)},
(3.3.1)

where zk ∈ C is the weight of k-th oscillator. When P is at a large distance r from
the origin:

P = re, ‖e‖2 = 1,

the expression for E, neglecting terms of order of r−2, becomes

�{r−1 exp{ı(ωt− 2πr/λ)}
n∑

k=1

zk exp{2πıdk cos(φk(e))/λ}︸ ︷︷ ︸
D(e)

},

where dk = ‖Pk‖2 and φk(e) is the angle between the directions ek from the ori-
gin to Pk and e from the origin to P . The complex-valued function D(e) of a
unit 3-D direction e is called the diagram of the antenna array. It turns out that
squared modulus |D(e)|2 of the diagram is proportional to the directional density
of electromagnetic energy sent by the antenna.1

In a typical antenna design problem, one is given the number and the locations
of isotropic monochromatic oscillators and is interested to assign them with complex
weights zk in such a way that the resulting diagram (or its modulus) is as close as
possible to a desired “target.” In simple cases, such a problem can be modeled as
a linear optimization program.

Example 3.3.1. Consider a n-element equidistant grid of oscillators placed along
the x-axis: Pk = ki, where i is the basic orth of the x-axis. The diagram of such an
antenna depends solely on the angle φ, 0 ≤ φ ≤ π, between a 3-D direction e and the

1For a receiving antenna, the squared modulus |D(e)|2 of its diagram (mathematically, com-
pletely similar to the diagram of a transmitting antenna) is proportional to the sensitivity of the
antenna to a flat wave of frequency ω incoming along a direction e.
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direction i of the x-axis and is given by

D(φ) =

n∑
k=1

zk exp{2πıdk cos(φ)/λ}, dk = k, (3.3.2)

(from now on, we write D(φ) instead of D(e)). Now consider the design problem where,
given an “angle of interest” ∆ ∈ (0, π), one should choose the weights zk so that most of
the energy emanating from the antenna is sent along the cone K∆ comprised of all 3-D
directions with 0 ≤ φ ≤ ∆, (i.e., along the usual 3-D round cone with the nonnegative ray
of the x-axis in the role of the central ray and the “angular width” 2∆). There are many
ways to model our design specification; we choose a simple way as follows. First note that
when multiplying all weights by a common nonzero complex number, we do not vary the
directional distribution of energy; therefore we lose nothing by normalizing the weights
by the requirement that the real part of D(0) is ≥ 1. We now can quantify the amount of
energy sent in the sidelobe angle (the complement of K∆) by the quantity

max
∆<φ≤π

|D(φ)|

(“sidelobe level”), and pose our problem as the semi-infinite optimization program

min
z1,...,zn∈C,τ∈R

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩τ :

τ ≥ |D(φ)| ≡ |
n∑

k=1

zk exp{2πıdk cos(φ)/λ}|
∀φ ∈ [∆, π]

�D(0) ≡ �
{

n∑
k=1

zk exp{2πıdk/λ}
}

≥ 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , dk = k.

This (admittedly simplified) model of the Antenna Design problem has an important
advantage: it is a convex problem, although a semi-infinite one. We can get rid of semi-
infiniteness by replacing the segment [∆, π] with a fine finite grid Φ of points in this
segment, thus arriving at the convex program

min
z1,...,zn∈C,τ∈R

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩τ :

τ ≥ |D(φ)| ≡ |
n∑

k=1

zk exp{2πıdk cos(φ)/λ}|
∀φ ∈ Φ

�D(0) ≡ �
{

n∑
k=1

zk exp{2πıdk/λ}
}

≥ 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , dk = k.

This is not exactly a LO program, since the absolute values in question are moduli of
complex numbers (that is, Euclidean norms of 2-D vectors). In order to overcome this
difficulty, let us approximate the modulus |z| =

√
�2(z) + �2(z) of a complex number z

by a “polyhedral norm,” specifically, by the norm

pd(z) = max
1≤�≤L

�{zµ�}, µ� = exp{ı�/L}.

Geometrically, we approximate the unit 2-D disc by a circumscribed L-side perfect poly-
gon. We clearly have

pL(z) ≤ |z| ≤ pL(z)/ cos(π/L).

For example, p12(z) approximates |z| within relative accuracy 3.5%, which is sufficiently
accurate in our context. Replacing | · | with p12(·), we arrive at the following LO program:

Antenna Design problem: Given the number of oscillators n, wavelength
λ, angle of interest ∆ and a finite grid Φ on the segment [∆, π], solve the LO
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program

min
z1,...,zn∈C,τ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩τ :

�
{

n∑
k=1

µ� exp{2πıdk cos(φ)/λ}zk

}
≤ τ

∀(φ ∈ Φ, � ≤ 12)

�
{
−

n∑
k=1

exp{2πıdk/λ}zk

}
≤ −1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (3.3.3)

Sources of uncertainty. In the Antenna Design problem, there are at least two
sources of data uncertainty to be accounted for.

i) Positioning errors. When manufacturing the antenna, the oscillators cannot
be placed along an ideal equidistant grid. Moreover, their positioning varies
slightly over time as a result of deformations of the antenna due to changes
in temperature, wind, etc. To simplify matters, assume that the positioning
errors affect only the distances from the origin to the oscillators, but not the
directions from the origin to oscillators, so that the latter belong to the x-axis.
We can model the positioning perturbations by collections {δdk ∈ R}n

k=1,
where δdk is the deviation of the actual distance dk of k-th oscillator to the
origin from the nominal value dn

k = k of this distance, and we assume that
the positioning perturbations run through the box ∆p = {{δdk}n

k=1 : |δdk| ≤
ε, 1 ≤ k ≤ n}.

ii) Actuation errors. The weights zk are in reality characteristics of certain phys-
ical devices and as such cannot be implemented exactly as they are computed.
It is natural to model these unavoidable actuation errors as multiplicative per-
turbations zk �→ (1+ξk)zk, where ξk ∈ C; we refer to the quantity ρ = max

k
|ξk|

as to the level of actuation errors.

Clearly, both sources of uncertainty can be thought of as those of the data. Indeed,
all constraints in (3.3.3) are of the form

�{
n∑

k=1

ζkzk} ≤ pτ + q (3.3.4)

with certain p, q. The consequences of a perturbation dk �→ dk+δdk. zk �→ (1+ξk)zk

are exactly the same as if there were no positioning perturbations and actuation
errors, but the coefficients ζk = ζk(dk) were subject to perturbations

ζk(dn
k ) �→ ζk(dn

k + δdk)(1 + ξk). (3.3.5)

3.3.2 Nominal Solution: Dream and Reality

Before thinking of how to immunize solutions against data uncertainty, it makes
sense to check whether we should bother about this uncertainty in the first place.
After all, both the positioning perturbations and the actuation errors are expected
to be rather small (say, something like 1% of the corresponding nominal values).
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Furthermore, the constraints of the problem are clearly soft — whatever the per-
turbations of the data, the nominal solution still makes physical sense (the designed
antenna will not explode, so to speak). The only bad thing that may happen is
that the actual value of the sidelobe level will be worse than the nominal one. If
deterioration of this level were “of the same order of magnitude” as the data per-
turbations (say, a 3–5% increase in the sidelobe level caused by a 1% perturbation
in the positioning of oscillators and in the weights), we could still be content with
the nominal solution as it is. Unfortunately, this is not the case — in the Antenna

Design problem, even small (0.01%) data perturbations can result in huge (hun-

dreds of a percent) variations of the design criteria. Whether this is indeed the
case, depends on the nominal data. Here is an example of a setup that is really
bad:

n = 16, λ = 8, ∆ = π/6. (3.3.6)

With this setup, the distances between consecutive oscillators equal to 1/8 of the
wavelength, and the spatial angle of interest — the one where we would like to send
as much energy as possible — is comprised of directions whose angular distances
from the axial direction i are at most 30o. Note that the relative spherical measure
of the set of these directions2 is (1−cos(π/6)/2 ≈ 0.067. When solving (3.3.3) with
nominal data and an equidistant 90-point grid Φ on [0, π], we end up with a nice
nominal solution depicted on figure 3.1. For this solution and no data perturbations,
the sidelobe level is as low as 0.0025, and the energy concentration (the fraction of
total transmitted energy that goes along the desired angle) is as high as 99.99%.
Unfortunately, these nice results are nothing but a dream — with very small (ε =
0.0001) random perturbations in the positioning, or with random actuation errors of
level as low as ρ = 0.0001, our design becomes a complete disaster. Let us look, e.g.,
at the sidelobe levels and energy concentrations produced by the nominal design
with randomly perturbed positions of oscillators and weights. First note that with
random perturbations of the data, the antenna diagram becomes random, and
therefore does not necessarily satisfy the normalization requirement �{D(0)} ≥ 1.
To account for this phenomenon, we scale the sample diagrams to make |D(0)|
equal to 1, and look at the sidelobe levels and energy concentrations of the resulting
diagrams. Data in table 3.1 demonstrate that with ε = 0, ρ = 0.0001, the sidelobe
level for the nominal design jumps, on the average, from its nominal value 0.0025
to 2.08, while the energy concentration drops from its nominal value of 99.99% to
just 8% — almost as if the energy were sent uniformly in all directions! Additional
evidence of how bad the nominal design is in the presence of our — unrealistically
low! — data uncertainty is given by sample diagrams depicted in figure 3.1 and
especially by “energy density” plots in the same figure.

For a given diagram, its energy density is defined as follows. We compute the

energy transmitted along all directions from a spatial angle Ks of directions

forming angle at most s with i, and treat this energy as a function of the

2Recall that directions are unit 3-D vectors, that is, points on the unit sphere in R3. The
relative spherical measure of a set A of directions (that is, of a subset of the unit sphere) is, by
definition, the area of the set divided by the area 4π of the entire unit sphere.
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Design
ρ ε

Sidelobe
level

Energy
concentration

0 0 0.0025(0.00) 0.9999(0.00)
Nominal 0 1.e-4 1.38(0.77) 0.18(0.10)

Opt = 0.0025 1.e-4 0 2.08(1.54) 0.08(0.07)
α = 3.0e6 1.e-4 1.e-4 2.18(2.02) 0.09(0.07)

0 0 0.095(0.00) 0.844(0.00)
RC 0 1.e-2 0.099(0.004) 0.837(0.01)

Opt = 0.106 1.e-2 0 0.108(0.02) 0.75(0.04)
α = 9.4 1.e-2 1.e-2 0.150(0.02) 0.75(0.04)

3.e-2 1.e-2 0.280(0.07) 0.46(0.14)
0 0 0.148(0.00) 0.70(0.00)

GRC 0 1.e-2 0.149(0.00) 0.70(0.00)
Opt = 0.147 1.e-2 0 0.159(0.00) 0.70(0.01)

α = 3.00 1.e-2 1.e-2 0.159(0.00) 0.70(0.01)
3.e-2 1.e-2 0.195(0.02) 0.66(0.04)

Table 3.1 Performance of various designs. In the table: Opt is the optimal value in
the nominal problem and its RC/GRC respectively, α is the global sensitivity∑
k

|zk| of the resulting solution w.r.t. actuation errors. The underlined numbers

in the columns “Sidelobe level” and “Energy concentration” are averages over
100 random realizations of positioning and/or actuation errors, the numbers in
parentheses are the associated standard deviations.

spherical measure of Ks, thus getting a function on the segment [0, 4π]. The

energy density p(s) is nothing but the derivative of the resulting function.

The plots in the second row on figure 3.1 are built as follows: we generate a sample
of 100 data perturbations of the magnitude indicated under the plot and draw on
a single figure the 100 resulting energy densities. The density pictures in figure 3.1
show that on the average (over 0.01% data perturbations), the energy density is
nearly symmetric, meaning that under data perturbations, the nominal design does
not distinguish between directions of interest and opposite directions. The bottom
line is that in the presence of even a small data uncertainty the nominal design

becomes completely senseless.

3.3.3 Immunizing Against Uncertainty

The strategy. For illustrative purposes, we intend to treat the two sources of un-
certainty differently. Specifically, the perturbations in the data coefficients coming
from positioning errors will be treated as the normal range of uncertainty, while
the influence of the actuation errors will be controlled via the corresponding global
sensitivity.
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Nominal design
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GRC design
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Figure 3.1 Nominal, RC and GRC antenna designs. First rows: sample plots of |D(φ)|
in polar coordinates; the diagrams are normalized to have D(0) = 1. Second
rows: bunches of 100 simulated energy densities.
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Specifying perturbation structure. To implement our strategy, consider a
single constraint (3.3.4) coming from (3.3.3). The actual values of the coefficients
ζk are

ζk = µ exp{2πı cos(φ)(k + δdk)/λ)}(1 + ξk),

where µ, |µ| = 1, and φ ∈ [0, π] are fixed, δdk are the positioning errors, and ξk are
the actuation errors. We would like to ensure that

�
{

n∑
k=1

ζkzk

}
≤ pτ + q + αρ ∀(ρ ≥ 0, δd : |δdk| ≤ ε∀k, ξ : |ξk| ≤ ρ ∀k),

where p, q are given reals and α ≥ 0 is a given global sensitivity w.r.t. actuation
errors. This is the same as to ensure that

�
{ n∑

k=1

ζk(δdk)︷ ︸︸ ︷
µ exp{2πı cos(φ)(k + δdk)/λ)} zk

}
+ �

{ n∑
k=1

δζk︷ ︸︸ ︷
ζk(δdk)ξk zk

}
≤ pτ + q + αρ ∀(ρ ≥ 0, δd : |δdk| ≤ ε ∀k, ξ : |ξk| ≤ ρ ∀k).

Taking into account that |ζk(δdk)| = 1, the latter relation clearly reads

�
{ n∑

k=1

ζk(δdk)zk

}
+ max

δζ:|δζk|≤ρ ∀k
�
{ n∑

k=1

δζkzk

}
≤ pτ + q + αρ ∀(ρ ≥ 0, δd : |δdk| ≤ ε∀k),

which is the same as the pair of requirements

(a) �
{ n∑

k=1

ζk(δdk)zk

}
≤ pτ + q ∀(δd : |δdk| ≤ ε ∀k)

(b)
n∑

k=1

|zk| ≤ α
(3.3.7)

on variables zk, τ .

Note that (3.3.7.a) says that

�
{ n∑

k=1

ζkzk

}
≤ pτ + q ∀(ζ : ζk ∈ Γk ∀k),

where Γk is the convex hull of the arc γk = {µ exp{2πı cos(φ)(k + s)/λ) : |s| ≤ ε}
of the unit circle in C = R

2. This convex hull Γk is a conic quadratic representable
set, so that (3.3.7.a) is equivalent to an explicit finite system of conic quadratic
inequalities (Theorem 1.3.4). We prefer to simplify the structure of the GRC by
replacing Γk with the triangle ∆k circumscribed around the arc γk (see figure 3.2).
While increasing the conservatism slightly, this approximation allows one to rewrite
(3.3.7.a) as the explicit convex constraint

n∑
k=1

max
�=1,2,3

�{vk�zk} ≤ pτ + q,
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A

B

DC

Figure 3.2 “Circle hat” Γk (ABC) and triangle ∆k (ABD).

where vk1, vk2, vk3 are the vertices of the triangle ∆k. With this approach, the
GRC of (3.3.4) is given by the pair of convex constraints

(a)
n∑

k=1

max
�=1,2,3

�{vk�zk} ≤ pτ + q,

(b)
n∑

k=1

|zk| ≤ α;
(3.3.8)

this is nothing but the GRC of (3.3.4) corresponding to the perturbation structure
where Z = ∆1 × ...×∆n, L = C

n = R
2n and ‖δζ‖ = max

1≤k≤n
|δζk|.

The GRC of (3.3.3) is obtained by replacing every one of the constraints in
(3.3.3) with the corresponding constraint (3.3.8.a), (which in fact gives a system
of linear constraints on the design variables), and adding the constraint (3.3.7.b)
“responsible” for the global sensitivity w.r.t. the actuation errors (this constraint
is common for all pairs (3.3.8) coming from different constraints of (3.3.3)). The
resulting GRC of (3.3.3) has a linear objective, a bunch of linear constraints and a
single conic quadratic constraint (3.3.7.b).3

Robust design. For illustrative purposes, we built two robust designs: the first
(referred to as “RC design”) is obtained when immunizing against 1% positioning
errors while taking no care of actuation errors, (which is equivalent to setting ε =
0.01 and α = ∞ in the GRC); the actual global sensitivity of the resulting design
to the actuation errors is α = 9.404. The second (“GRC”) design is obtained
when keeping ε = 0.01 and setting the global sensitivity α to the value 3. The
performance of all three designs (the nominal, the RC and the GRC) is presented in
table 3.1, and illustrated in figure 3.1. We see that “immunizing” the design against
positioning errors of magnitude 0.01 is rather costly in terms of the objective: the
RC sidelobe level is 0.106 vs. the nominal sidelobe level 0.0025, and the energy
concentration for the RC design, evaluated at the nominal data, is 84%, which is
by 16% worse than the 99.99% concentration for the nominal design. Good news,
however, is that while the nice performance of the nominal design is a matter of pure

3We could further approximate |zk| in (3.3.7.b) by p12(zk), thus ending up with a GRC that is
equivalent to an LO program.
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imagination — it is completely destroyed by positioning/actuation errors as low as
0.01%, the performance of the RC design is fully immunized against positioning
errors with ε = 0.01 and is incomparably less sensitive to the actuation errors than
the performance of the nominal design (the corresponding global sensitivities are
9.4 and 3.0e6, respectively). However, the performance of the RC design is still
too sensitive to actuation errors: when the level ρ of these errors grows from 0 to
0.03, the sidelobe level jumps, on the average, from 0.11 to 0.28, and the energy
concentration drops from 0.84 to 0.46. The GRC design is aimed to moderate this
phenomenon; here we require the sensitivity to actuation errors to be at most 3
(vs. 9.4 yielded by the RC design). As a result, we again lose in optimality: for the
GRC design, without data perturbations the sidelobe level is 0.15, and the energy
concentration is 70% (vs. 0.11 and 84% for the RC design). As a compensation,
the GRC design, in contrast to the RC one, is well immunized against the actuation
errors: with a level of these errors 3%, (i.e., ρ = 0.03), the performance of the GRC
design is essentially the same as when there are no actuation errors at all, (i.e.,
ρ = 0).

3.4 EXERCISES

Exercise 3.1. Consider a situation as follows. A factory consumes n types of
raw materials, coming from n different suppliers, to be decomposed into m pure
components. The per unit content of component i in raw material j is pij ≥ 0,
and the necessary per month amount of component i is a given quantity bi ≥ 0.
You need to make a long-term arrangement on the amounts of raw materials xj

coming every month from each of the suppliers, and these amounts should satisfy
the system of linear constraints

Px ≥ b, P = [pij ].

The current per unit price of product j is cj ; this price, however, can vary in time,
and from the history you know the volatilities vj ≥ 0 of the prices. How to choose
xj ’s in order to minimize the total cost of supply at the current prices, given an
upper bound α on the sensitivity of the cost to possible future drifts in prices?

Test your model on the following data:

n = 32,m = 8, pij ≡ 1/m, bi ≡ 1.e3,

cj = 0.8 + 0.2
√

((j − 1)/(n− 1)), vj = 0.1(1.2− cj),

and build the tradeoff curve “supply cost with current prices vs. sensitivity.”

3.5 NOTES AND REMARKS

NR 3.1. The theoretical results of this chapter originate from [15, 16]. The
nominal Antenna Design model goes back to [72].
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Chapter Four
More on Safe Tractable Approximations of Scalar Chance

Constraints

This chapter can be treated as an “advanced extension” of chapter 2. The entity
of our major interest is the chance constrained version

p(z) ≡ Prob

{
z0 +

L∑
�=1

z�ζ� > 0

}
≤ ε (4.0.1)

of a randomly perturbed linear inequality

z0 +
L∑

�=1

z�ζ� ≤ 0, (4.0.2)

where ζ� are random perturbations and z� are deterministic parameters (in applica-
tions in Uncertain Linear Optimization, these parameters will be specified as affine
functions of the decision variables).

4.1 ROBUST COUNTERPART REPRESENTATION OF A SAFE CONVEX

APPROXIMATION TO A SCALAR CHANCE CONSTRAINT

Recall that a safe approximation of the chance constraint (4.0.1) is a system S
of convex constraints in variables z and perhaps additional variables u such that
the projection Z[S] of the feasible set of the system onto the space of z variables
is contained in the feasible set of the chance constraint (cf. Definition 2.2.1). In
chapter 2, we dealt with a particular approximation scheme (to be revisited in
section 4.2 below) that resulted in a Robust Counterpart type approximation:

Z[S] = {z = [z0; ...; zL] : z0 +
L∑

�=1

ζ�z� ≤ 0 ∀(ζ ∈ Zε)},

where Zε is an explicitly given convex compact set. In other words, the approxi-

mating constraint requires from z to be robust feasible for the uncertain constraint

(4.0.2) equipped with a properly defined “artificial” uncertainty set Zε.

We are about to demonstrate that the “Robust Counterpart representability”
of a safe convex approximation to (4.0.1) is a common property of a wide spectrum
of approximations of the chance constraint, rather than being a specific property
of the approximations considered in chapter 2.
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We start with observing that the true feasible set Z∗ of the chance constraint
(4.0.1) possesses the following properties:

i) Z∗ is a conic set, meaning that 0 ∈ Z∗ and λz ∈ Z∗ whenever z ∈ Z∗ and
λ ≥ 0;

ii) Z∗ is closed;

iii) the set Z[z0] = {z = [z0; z1; ...; zL] : ‖[z1; ...; zL]‖2 ≤ 1} with z0 < 0 and large
enough |z0| is contained in Z∗;

iv) the set Z[z0] with large enough z0 > 0 does not intersect Z∗.

For a safe convex approximation S of (4.0.1), the set Z[S] always inherits property
iv of Z∗. We introduce the following

Definition 4.1.1. A safe convex approximation S of (4.0.1) is called normal,
if Z[S] inherits properties i-iii (and thus all four properties) of Z∗.

Remark 4.1.2. For a safe convex approximation S of (4.0.1), the set Z = Z[S]
is convex. From this observation it immediately follows that the normality of a safe
approximation S is equivalent to the fact that Z = Z[S] ⊂ Z∗ is a closed convex
cone with e ≡ [−1; 0; ...; 0] ∈ intZ and −e �∈ Z.

Our interest in normal safe approximations of chance constraints stems from
the following simple observation:

Proposition 4.1.3. Let S be a normal safe convex approximation of the
chance constraint (4.0.1). Then the approximation is Robust Counterpart rep-
resentable: there exists a convex compact uncertainty set Z such that

Z[S] = {z : z0 +
L∑

�=1

ζ�z� ≤ 0 ∀ζ ∈ Z}. (4.1.1)

Proof. Let S be normal. As we have seen, the set Z = Z[S] is a closed convex
cone with e ∈ intZ and −e �∈ Z. As every closed convex cone, Z is the anti-dual of
its anti-dual cone Z−:

Z = {z ∈ R
L+1 : zT ζ ≤ 0 ∀ζ ∈ Z−}, Z− = {ζ ∈ R

L+1 : ζT z ≤ 0 ∀z ∈ Z}.
Since Z has a nonempty interior, Z− is a closed pointed convex cone, and since
e ∈ intZ, the set Ẑ = {[y0; ...; yL] ∈ Z− : eT y = −1} = {y = [1; y1; ...; yL] ∈ Z−} is
a convex compact set that intersects every nontrivial ray from Z−. It follows that
the set Z = {ζ ∈ R

L : [1; ζ] ∈ Z−} is a convex compact set and that

Z = {z : zT y ≤ 0 ∀y ∈ Z−} = {z : zT [1; ζ] ≤ 0 ∀ζ ∈ Ẑ}
= {z = [z0; z1; ...; zL] : z0 +

∑L
�=1 ζ�z� ≤ 0 ∀ζ ∈ Z}.

�

Proposition 4.1.3 shows that a natural safe approximation of a chance con-
strained uncertain linear inequality is nothing but the RC of this uncertain in-
equality associated with the appropriate convex compact uncertainty set. When
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the approximation in question is tractable, so is this uncertainty set (modulo mild
regularity assumptions). What is on our agenda now, is to introduce a number of
specific safe approximation schemes.

4.2 BERNSTEIN APPROXIMATION OF A CHANCE CONSTRAINT

This approximation scheme is closely related to the one we used in section 2.4,
and it is instructive to start our acquaintance with the Bernstein approximation by
reviewing this scheme.

Our goal is to build a safe approximation of the chance constraint (4.0.1). To
achieve this goal:

1) We assume that ζ�, � = 1, ..., L, are independent with distributions P� such
that ∫

exp{ts}dP�(s) ≤ exp{max[µ+
� t, µ−

� t] +
1
2
σ2

� t2} ∀t ∈ R,

whence

ln
(
E
{
exp{wT ζ}

})
≤ Φ(w) =

L∑
�=1

[
max[µ−

� w�, µ
+
� w�] +

1
2

∑
�

σ2
� w2

�

]
;

(4.2.1)

2) We have inferred from (4.2.1) that the validity of the relation

z ∈ Zε = cl {z : ∃α > 0 : αz0 + Φ(α[z1; ...; zL]) ≤ ln(ε)} (4.2.2)

is a sufficient condition for the validity of (4.0.1) (statement (∗) in section
2.4);

3) Finally, we derived from 2) that the sufficient condition in question is equiv-
alent to the robust feasibility of [z0; ...; zL] for the uncertain linear inequality

z0 +
L∑

�=1

ζ�z� ≤ 0

with an appropriately chosen perturbation set Z (statement (∗∗) in section
2.4).

We are about to demonstrate that the outlined approximation scheme is a particular
case of a more general one, a Bernstein approximation.

4.2.1 Bernstein Approximation: Basic Observation

Assume that

Q.1. The distribution P of the random perturbation ζ = [ζ1;...;ζL] in
(4.0.1) is such that

ln
(
E
{
exp{wT ζ}

})
≤ Φ(w) (4.2.3)
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for some known convex function Φ that is finite everywhere on R
L and

satisfies Φ(0) = 0.

Example 4.2.1. It is immediately seen that under assumptions P.1–2 from section
2.4 (or, which is the same, under the assumptions from item 1 above), relation (4.2.3) is
satisfied with

Φ(w) =

L∑
�=1

[
max[µ+

� w�, µ
−
� w�] +

1

2
σ2

� w2
�

]
. (4.2.4)

Given ε ∈ (0, 1), let us set

Zo
ε = {z = [z0;w] ∈ R

L+1 : ∃α > 0 : αz0 + Φ(αw) ≤ ln(ε)},
Zε = cl Zo

ε .
(4.2.5)

The Bernstein approximation scheme is given by the following statement:

Proposition 4.2.2. Under assumption (4.2.3), Zε is exactly the solution set
of the convex inequality

inf
β>0

[
z0 + βΦ(β−1w) + β ln(1/ε)

]
≤ 0, (4.2.6)

and this convex inequality is a normal safe approximation of the chance constraint
(4.0.1).

For the proof, see section B.1.1.

Our current goal is to develop a scheme that, under favorable circumstances,
allows us to describe efficiently the set Zε.

4.2.2 Bernstein Approximation: Dualization

In addition to Q.1, let us assume that,

Q.2. We can represent the convex function Φ participating in (4.2.3)
in the following form:

Φ(w) = sup
u

{
wT (Au + a)− φ(u)

}
, (4.2.7)

where

• φ(u) is a convex and lower semicontinuous function on R
M taking

real values and the value +∞,

• u �→ Au + a is an affine mapping from R
M into R

L,

• every level set Uc = {u : φ(u) ≤ c}, c ∈ R, of φ is bounded.

Note that every convex and finite everywhere on R
L function Φ(·) admits a required

representation, e.g., the representation with

Au + a ≡ u,

φ(u) = sup
w

{
uT w − Φ(w)

}
. (4.2.8)
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Indeed, it is known that the function φ given by the latter relation — the Legendre

transformation (or the Fenchel dual, or the conjugate) of Φ — is a convex and lower
semicontinuous function such that

Φ(w) = sup
u

{
wT u− φ(u)

}
. (4.2.9)

As for the requirement on φ to have bounded level sets, this requirement, in the case
of (4.2.8) is readily given by the fact that Φ is everywhere finite. This is implied
by the following well-known fact:

Proposition 4.2.3. Let Φ(·), φ(·) be linked by (4.2.7), Φ be everywhere de-
fined, and φ be lower semicontinuous. Assume also that A has trivial kernel. Then
the level sets of φ are bounded.

For the proof, see section B.1.2.

Example 4.2.4. [Example 4.2.1 continued] The function (4.2.4) admits an explicit
representation of the form (4.2.7), specifically, as follows:

Φ(w) ≡
L∑

�=1

[
max[µ−

� w�, µ
+
� w�] +

1
2
σ2

� w2
�

]
= sup

u={u�,u�}L
�=1

{∑
�

[
w�(u

� + u�) − u2
�

2σ2
�

]
:

µ−
� ≤ u� ≤ µ+

� ,
1 ≤ � ≤ L

}
,

that is,
(Au + a)� = u� + u�,

φ(u) =
L∑

�=1

φ�(u
�, u�),

φ�(u
�, u�) =

{
1

2σ2
�
u2

� , µ−
� ≤ u� ≤ µ+

�

+∞, otherwise.

(4.2.10)

4.2.3 Bernstein Approximation: Main Result

The outlined assumptions give rise to the following result:

Theorem 4.2.5. Consider the chance constrained inequality (4.0.1) and as-
sume that the distribution P of the random vector ζ satisfies Assumptions Q.1–2.
Then the set

Uε = {u : φ(u) ≤ ln(1/ε)}
is a nonempty convex compact set, and for the set Zε given by (4.2.5) one has

z ≡ [z0; w] ∈ Zε ⇔ z0 + ζT w ≤ 0 ∀ζ ∈ Zε ≡ AUε + a. (4.2.11)

In particular, the condition

z ≡ [z0; w] ∈ Zε ⇔ inf
β>0

[
z0 + βΦ(β−1w) + β ln(1/ε)

]
≤ 0

which, by Proposition 4.2.2, is a sufficient condition for z to satisfy the chance
constraint (4.0.1), is nothing but the condition that z is a robust feasible solution
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to the uncertain linear constraint

z0 +
L∑

�=1

ζ�w� ≤ 0,

in variables z0, w, the perturbation set being the set Zε given by (4.2.11).

For the proof, see section B.1.3.

The uncertainty set Zε in (4.2.11) is defined in terms of two entities: the
function Φ(·) and its representation (4.2.7), and the data of this representation
is not uniquely defined by Φ. Nevertheless, the set Zε depends solely on Φ(·).
Indeed, the set Zε is defined solely in terms of Φ, and therefore the support
function Θ(w) = maxζ∈Zε ζT w of the compact convex set Zε can be expressed
solely in terms of Φ, since

Θ(w) = − sup {z0 : [z0; w] ∈ Zε}

by (4.2.11). It remains to recall that the support function of a closed

nonempty convex set completely determines this set [100, Section 13].

The bottom line is as follows:

Every convex upper bound Φ(w) : R
L → R, Φ(0) = 0, on the logarith-

mic moment-generating function

ln
(
E
{
exp{wT ζ}

})
of the distribution of random perturbation vector ζ implies a safe nor-

mal approximation of the chance constrained inequality (4.0.1). Under

Assumption Q.2, this approximation has the form z0 +max
ζ∈Zε

L∑
�=1

ζ�z� ≤ 0

where Zε is a properly defined nonempty convex compact set. This ap-

proximation is the RC of the uncertain inequality z0 +
L∑

�=1

ζ�z� ≤ 0 with

Zε in the role of the perturbation set.

The latter result extends those in section 2.4, where we restricted Φ to be of the
specific form (4.2.1).

Example 4.2.6. [Example 4.2.4 continued] Observe that under assumptions P.1–2

Theorem 4.2.5 recovers Theorem 2.4.3.

4.2.4 Bernstein Approximation: Examples

Example 4.2.7. [Gaussian case] Assume that all we know about the random vector
ζ is that its entries ζ� are independent Gaussian random variables with means µ� belonging
to given segments [µ−

� , µ+
� ] and variances belonging to given segments [(σ−

� )2, (σ+
� )2], � =

1, ..., L. In this case it is immediately seen that:
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(i) The best (that is, the smallest) function Ψ(w) satisfying Q.1 w.r.t. all distribu-
tions of ζ compatible with the above information is

Φ(w) =
L∑

�=1

[
max[µ−

� w�, µ
+
� w�] +

(σ+
� )2

2
w2

�

]
;

(ii) Setting

φ(u) =
L∑

�=1

φ�(u
�, u�),

φ�(u
�, u�) =

{
1

2(σ+
�

)2
u2

� , µ−
� ≤ u� ≤ µ+

�

+∞, otherwise
,

(Au + a)� = u� + u�

we ensure the validity of Q.2 for the function Φ given in (i);

(iii) The Bernstein approximation of the chance constraint (4.0.1) associated with

the outlined data is exactly the approximation given by Theorem 2.4.3, cf. Example 2.4.5.

Example 4.2.8. Assume that all we know about random perturbations ζ� is that
they are independent, take values in [−1, 1] and their means belong to given sub-segments
[µ−

� , µ+
� ] of [−1, 1] (cf. Example 2.4.9). As stated in Example 2.4.9, the best (the small-

est) function Φ(·) satisfying Q.1 w.r.t. all distributions of ζ compatible with the above
information is

Φ(w) =

L∑
�=1

ln

(
max

µ∈[µ−
�

,µ+
�

]

[cosh(w�) + µ sinh(w�)]

)
︸ ︷︷ ︸

Φ�(w�)

. (4.2.12)

It is easily seen that

Φ�(w�) = max
µ−

�
≤µ≤µ+

�

ln

(
exp

{
w� + ln

(
1 + µ

2

)}
+ exp

{
−w� + ln

(
1 − µ

2

)})
.

This relation, due to an immediate equality

ln (exp{x1} + ... + exp{xn}) = max
y

{
xT y −

n∑
i=1

yi ln yi : y ≥ 0,
∑

i

yi = 1

}
, (4.2.13)

implies that

Φ�(w�) = max
−1≤u�≤1

{
w�u� − φ�(u�)

}
with

φ�(u�) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

[
(1 + u�) ln

(
1+u�

1+µ−
�

)
+ (1 − u�) ln

(
1−u�

1−µ−
�

) ]
,−1 ≤ u� ≤ µ−

�

0 , µ−
� ≤ u� ≤ µ+

�

1
2

[
(1 + u�) ln

(
1+u�

1+µ+
�

)
+ (1 − u�) ln

(
1−u�

1−µ+
�

) ]
, µ+

� ≤ u� ≤ 1

.

(4.2.14)
It follows that setting

φ(u) =
∑

�

φ�(u�), Au + a ≡ u,
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with φ�(·) given by (4.2.14), we arrive at a representation, required in Q.2, of the function
Φ(w) given by (4.2.12). The perturbation set Zε given by the Bernstein approximation
associated with the outlined data is

Zε =

{
ζ :

L∑
�=1

φ�(ζ�) ≤ ln(1/ε)

}
.

Example 4.2.9. Consider the situation described in Example 4.2.8 and assume
that µ±

� = 0 for all �, (i.e., ζ� are independent random variables with zero means taking
values in [−1, 1]). Let us compare the safe approximation of the chance constraint (4.0.1)
given in Example 2.4.9 and the Bernstein approximation of this constraint by the following
experiment:

i) We set z1 = ... = zL = 1, assume that the “true” (unknown when the approximation
is built) distribution of ζ is the uniform distribution on the vertices of the unit box,
and consider the chance constrained optimization problem

Opt+(ε) = max
z0

{
z0 : Prob{z0 +

L∑
�=1

ζ�z� > 0} ≤ ε

}
; (P )

ii) Replacing the chance constraint in (P ) with its safe approximation, we replace
(P ) with a tractable approximating problem with easily computable optimal value,
that is a lower bound on Opt(ε). Let us plot and compare to each other and to
the true optimal value of (P ), (which is easily computable when z1 = ... = zL),
the dependencies of the resulting lower bounds on Opt(ε) as functions of ε for the
following approximations:

• the one given by Example 2.4.9 and Theorem 2.4.3 (Approximation I);

• the refinement of the latter approximation given by Theorem 2.4.4 instead of
Theorem 2.4.3 (Approximation II);

• the Bernstein approximation as given by Example 4.2.8 (Approximation III).

Note that Approximation I is nothing but the Ball RC approximation of our chance
constraint, while Approximation II is simultaneously its Ball-Box and its Budgeted
RC approximation, the budget, as defined in section 2.3, being

√
2L ln(1/ε).

In the experiments, we use L = 16 and L = 64 and scan the range 10−12 ≤ ε ≤ 10−1.
The results of the experiments are as follows:

A. The optimal values of the approximations are given by

OptI(ε) = −
√

2L ln(1/ε);

OptII(ε) = −minw

{
L∑

�=1

|1 − w�| +
√

2 ln(1/ε)‖w‖2

}
= − min

0≤s≤1

{
L(1 − s) +

√
2L ln(1/ε)s

}
= max

[
−L,−

√
2L ln(1/ε)

]
;

OptIII(ε) = − max
u:‖u‖∞≤1

{
L∑

�=1

u� :

L∑
�=1

[(1 + u�) ln(1 + u�) + (1 − u�) ln(1 − u�)] ≤ 2 ln(1/ε)

}
= − max

0≤s≤1

{
Ls : L [(1 + s) ln(1 + s) + (1 − s) ln(1 − s)]

≤ 2 ln(1/ε)
}
.
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Figure 4.1 Plots of OptI(ε) — OptIII(ε) and Opt+(ε). Top to bottom: Opt+(ε),
OptIII(ε), OptII(ε), OptI(ε) (the latter two curves are undistinguishable when
L = 64).

B. The plots of OptI(·) — OptIII(·) and Opt+(·) are presented in figure 4.1. It is
seen that in this example Approximation III is the best.

Example 4.2.10. Consider the case where all we know about ζ� is that these
random variables are independent with zero mean, take values in [−1, 1] and the variance
of ζ� does not exceed ν2

� , 0 < ν� ≤ 1. Invoking Example 2.4.11 (where one should set
µ = 0), the best (the smallest) function Φ satisfying Q.1 is

Φ(w) =

L∑
�=1

Φ�(w�),

where

exp{Φ�(w�)} =

⎧⎨⎩
exp{−w�ν2

� }+ν2
� exp{w�}

1+ν2
�

, w� ≥ 0

exp{w�ν2
� }+ν2

� exp{−w�}
1+ν2

�
, w� ≤ 0

= max
[

exp{−w�ν2
� }+ν2

� exp{w�}
1+ν2

�
,

exp{w�ν2
� }+ν2

� exp{−w�}
1+ν2

�

]
= max

0≤λ≤1

λ exp{−w�ν2
� }+(1−λ) exp{w�ν2

� }+ν2
� λ exp{w�}+ν2

� (1−λ) exp{−w�}
1+ν2

�

Let us show that
Φ�(w�) = sup

u�

{
w�α

T
� u� − φ�(u

�)
}

,

where

u� = [u�
1; ...; u

�
4] ∈ R

4,

αT
� u� = ν2

� (u�
3 − u�

1) + (u�
2 − u�

4)

φ�(u
�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u�

1 ln u�
1 + u�

2 ln u�
2 + u�

3 ln u�
3 + u�

4 ln u�
4

−(u�
1 + u�

2) ln(u�
1 + u�

2) − (u�
3 + u�

4) ln(u�
3 + u�

4)

− ln(ν2
� )(u�

2 + u�
4) + ln(1 + ν2

� ) , u� ∈ ∆,

+∞ , otherwise
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with ∆ = {u ∈ R
4 : u ≥ 0,

4∑
i=1

ui = 1}.

Indeed, w.l.o.g. we may assume that L = 1, which allows to skip index �. We
have

exp{Φ(w)} = max
0≤λ≤1

λ exp{−wν2}+(1−λ) exp{wν2}+ν2λ exp{w}+ν2(1−λ) exp{−w}
1+ν2 .

Invoking (4.2.13), we proceed as follows:

⇒ Φ(w) = ln max
0≤λ≤1

{
exp{−wν2 + ln(λ) − ln(1 + ν2)}
+ exp{w + ln(λ) + ln(ν2) − ln(1 + ν2)}
+exp{wν2 + ln(1 − λ) − ln(1 + ν2)}
+ exp{−w + ln(1 − λ) + ln(ν2) − ln(1 + ν2)}

}
⇒ Φ(w) = sup

0≤λ≤1
sup
u∈∆

{
[−wν2 + ln(λ) − ln(1 + ν2)]u1

+[w + ln(λ) + ln(ν2) − ln(1 + ν2)]u2

+[wν2 + ln(1 − λ) − ln(1 + ν2)]u3

+[−w + ln(1 − λ) + ln(ν2) − ln(1 + ν2)]u4

−
4∑

i=1

ui ln ui

}
= sup

u∈∆
sup

0≤λ≤1

{
w[−ν2u1 + ν2u3 + u2 − u4]

+[u1 + u2] ln(λ) + [u3 + u4] ln(1 − λ)

+ ln(ν2)(u2 + u4) −
4∑

i=1

ui ln ui − ln(1 + ν2)
}

= sup
u∈∆

{
w[−ν2u1 + ν2u3 + u2 − u4]

+(u1 + u2) ln(u1 + u2) + (u3 + u4) ln(u3 + u4)

+ ln(ν2)(u2 + u4) −
4∑

i=1

ui ln ui − ln(1 + ν2)
}

[the optimal λ is u1 + u2 = 1 − (u3 + u4)]

QED.

Thus, in Example 4.2.10 the uncertainty set Zε associated with the Bernstein approxima-
tion is

Zε =

{
[ν2

1 (u1
3 − u1

1) + (u1
2 − u1

4); ...; ν
2
L(uL

3 − uL
1 ) + (uL

2 − uL
4 )] :∑L

�=1 φ�(u
�) ≤ ln(1/ε)

}
.

4.3 FROM BERNSTEIN APPROXIMATION TO CONDITIONAL VALUE AT

RISK AND BACK

The Bernstein approximation is a particular case of a conceptually simple approach
to bounding the probability of a random variable to be positive. The approach is
as follows.
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4.3.1 Generating Function Based Approximation Scheme

Consider the random variable

ξz = z0 +
L∑

�=1

ζ�z�

(z is a deterministic vector of parameters, ζ� are random perturbations with well-
defined expectations). To bound from above the quantity

p(z) = Prob{ξz > 0},
we fix a generating function γ(s) on the axis such that

γ(·) is convex and nondecreasing, γ(·) ≥ 0, γ(0) ≥ 1, γ(s) → 0, s → −∞. (4.3.1)

Since γ is non-decreasing and is ≥ 1 at the origin, we have γ(s) ≥ 1 for all s ≥ 0;
since, in addition, γ is nonnegative, the quantity Ψ∗(z) ≡ E{γ(ξz)} is an upper
bound on p(z):

p(z) ≤ Ψ∗(z).

Note that Ψ∗(z) is a convex function of z; from now on we assume that it is finite
everywhere. Under this assumption, we have

Ψ∗(z + t [−1; 0; ...; 0︸ ︷︷ ︸
e

]) → 0, t →∞.

Suppose we can find a convex function Ψ(z) taking values in R such that

∀z : Ψ∗(z) ≡ E{γ(z0 +
L∑

�=1

ζ�z�)} ≤ Ψ(z) & Ψ(z + te) → 0, t →∞, (4.3.2)

so that p(z) ≤ Ψ(z) for all z. Since p(z) = p(αz) for all α > 0, we have

∀z : p(z) ≤ inf
α>0

Ψ(αz). (4.3.3)

We have, essentially, established the following simple statement:

Proposition 4.3.1. Given ε ∈ (0, 1) and a generating function γ(·) satisfying
(4.3.1), let Ψ(z) be a finite convex function satisfying (4.3.2). Let us set

Γo
ε = {z : ∃α > 0 : Ψ(αz) ≤ ε}, Γε = cl Γo

ε .

Then Γε is the solution set of the convex inequality (cf. (4.2.6))

inf
β>0

[
βΨ(β−1z)− βε

]
≤ 0, (4.3.4)

and this inequality is a safe normal approximation of the chance constraint (4.0.1).

For the proof, see section B.1.4.

Note that the Bernstein approximation is, essentially, a particular case of
the approximation scheme associated with Proposition 4.3.1 corresponding to the
choice γ(s) = exp{s}. With this choice of the generating function, ln(Ψ∗(z)) is a
convex function, which allowed us to operate “in the logarithmic scale,” that is,
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to start with a convex majorant Φ(z) on ln Ψ∗(z) and to work with the equivalent
version

∀(α > 0, z) : ln p(z) ≤ Φ(αz)

of the bound (4.3.3).

4.3.2 Robust Counterpart Representation of Γε

In addition to the premise of Proposition 4.3.1, assume that

Ψ(z) = sup
u

{
zT (Bu + b)− ψ(u)

}
with an appropriately chosen lower semicontinuous convex function ψ(·) possessing
bounded level sets. Applying Theorem B.1.2, we conclude that for every ε ∈ (0, 1),
the set

Uε = {u : ψ(u) ≤ −ε}
is a nonempty convex compact set, and

z ∈ Γε ⇔ zT (Bu + b) ≤ 0 ∀u ∈ Uε.

In other words, Γε is nothing but the robust feasible set of the uncertain linear
inequality

L∑
�=0

ζ�z� ≤ 0 (4.3.5)

associated with the convex compact uncertainty set Ẑε = {ζ = Bu + b : u ∈ Uε}.
From an aesthetical viewpoint, a disadvantage of the Robust Counterpart represen-

tation of Γε is that in (4.3.5) the coefficient of z0 becomes uncertain rather than being
equal to 1, as in all our previous results. This can be easily cured. Indeed, let

Z̃ε = cl {ζ = [1; z1; ...; zL] ∈ R
L+1 : ζ = αζ′ with α > 0, ζ′ ∈ Ẑε}.

We claim that Z̃ε = {ζ = [1; w] : w ∈ Zε} with a compact convex set Zε and that

Γε = {z : z0 +

L∑
�=1

ζ�z� ≤ 0 ∀ζ ∈ Zε}, (4.3.6)

that is, Γε is the robust feasible set of the uncertain linear inequality

z0 +

L∑
�=1

ζ�z� ≤ 0,

the uncertainty set being Zε. To justify our claim, observe, first, that the second relation
in (4.3.2) combines with convexity of Ψ to imply that for every bounded set U ⊂ R

L, all
vectors [−t; z] ∈ R

L+1 with z ∈ U are contained in Γε, provided that t is large enough.
Since Γε is a cone, it follows that e = [−1; 0; ...; 0] ∈ intΓε. It follows that the only vector

ζ ∈ Ẑε with ζ0 ≤ 0, if such a vector exists, is the vector ζ = 0. Indeed, we know that

Γε = {z : zT ζ ≤ 0 ∀ζ ∈ Ẑε}. (4.3.7)

Assuming that ζ0 ≤ 0 for certain 0 �= ζ ∈ Ẑε, we would conclude from (4.3.7) that

e = [−1; 0; ...; 0] �∈ intΓε, which is not the case. Observe also that Ẑε �= {0}; indeed,
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otherwise (4.3.7) would say that Γε = R
L+1, which is not the case as we know that

−e �∈ Γε. The bottom line is that Ẑε is a closed convex set contained in the half-space
ζ0 ≥ 0, intersecting with the boundary hyperplane ζ0 = 0 of this half-space, if at all, at
the only point ζ = 0 and not reducible to this point; as a result, the vectors ζ ∈ Ẑε with
ζ0 > 0 are dense in Ẑε, which combines with (4.3.7) and the definition of Z̃ε to imply that

Γε = {z : zT ζ ≥ 0 ∀ζ ∈ Z̃ε}. (4.3.8)

Further, the set Z̃ε, by its construction, is convex (since Ẑε is so), nonempty and closed.

The only part of the claim that still is not justified is that Z̃ε is bounded; but this is an
immediate consequence of (4.3.8) and the fact that e ∈ intΓε. �

4.3.3 Optimal Choice of the Generating Function and Conditional Value at Risk

A natural question is, how to choose the function γ(·). If the only criterion was the
quality of the bound (4.3.3), the answer would be

γ(s) = γ�(s) ≡ max[1 + s, 0] (4.3.9)

or, which in our context is the same, γ(s) = max[1 + αs, 0] with α > 0 (note
that the generating functions γ(s) and γα(s) = γ(αs), α > 0, produce the same
approximation Γε). Indeed, let γ(·) be a generating function (that is, a function
satisfying (4.3.1)), Ψ(z) be a convex function such that

∀z : E{γ(z0 +
L∑

�=1

ζ�z�)} ≤ Ψ(z),

and let

Ψ�(z) = E{γ�(z0 +
L∑

�=1

ζ�z�)}.

We claim that Ψ�(z) is a finite convex function on R
L and that

(a) inf
α>0

Ψ�(αz) ≤ inf
α>0

Ψ(αz), (b) Γε ⊂ Γ�
ε,[

Γo
ε = {z : ∃α > 0 : Ψ(αz) ≤ ε}, Γε = cl Γo

ε ,

Γo,�
ε = {z : ∃α > 0 : Ψ�(αz) ≤ ε}, Γ�

ε = cl Γo,�
ε ,

] (4.3.10)

so that the bound (4.3.3) associated with Ψ� is at least as good as the bound
associated with Ψ, and consequently the safe approximation Γ�

ε of the feasible set
of (4.0.1) is no more conservative as the approximation Γε.

Indeed, ζ� have well defined expectations, so that Ψ is well defined. Since γ

satisfies (4.3.1), we clearly have γ′(+0) > 0. Replacing γ(s) with γ(βs), β > 0

(and thus replacing Ψ(z) with Ψ(βz)), we do not vary the right-hand side in

(4.3.3); “scaling” γ in this fashion, we can enforce γ′(+0) = 1. In the latter

case, we have γ(s) ≥ γ(0) + γ′(+0)s ≥ 1 + s for all s (recall that γ is convex

and γ(0) ≥ 1). Since, in addition, γ(·) ≥ 0, we conclude that γ(s) ≥ γ(s) for

all s, whence also Ψ(z) ≤ Ψ(z) for all z, which implies all the facts stated in

(4.3.10).
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For a given distribution P of the perturbation vector ζ, the “optimal” choice

Ψ�(z) = Eζ∼P {γ�(z0 +
L∑

�=1

ζ�z�)} (4.3.11)

of Ψ is closely related to the Conditional Value at Risk CVaRε(ξz) of the associated

parametric random variable ξz = z0 +
L∑

�=1

ζ�z�. For a random variable ξ with well

defined expectation and ε ∈ (0, 1), the associated Conditional Value at Risk is
defined as

CVaRε(ξ) = inf
a∈R

[
a +

1
ε
E{max[ξ − a, 0]}

]
; (4.3.12)

it is well-known that the inf in the right hand side of this relation is attained,
and that Prob{ξ > CVaRε(ξ)} ≤ ε. Besides this, if ξ is of the parametric form

ξ = ξz ≡ z0 +
L∑

�=1

ζ�z� and all ζ� have well defined expectations, then CVaRε(ξz) is

convex in z, so that the relation

CVaRε(ξz) ≤ 0 (4.3.13)

is a convex inequality in z, and its validity is a sufficient condition for Prob{ξz >

0} ≤ ε. The link between this condition and our constructions is explained in the
following observation:

Proposition 4.3.2. Let ζ be a random perturbation with distribution P pos-
sessing expectation, let ε ∈ (0, 1), and let Γ�

ε be the associated set (4.3.10). Then

Γ�
ε = {z : CVaRε(ξz) ≤ 0}.

Proof. We have
Γo,�

ε = {z : ∃α > 0 : E{max[1 + ξαz, 0]} ≤ ε}
= {z : ∃α > 0 : E{max[1 + αξz, 0]} ≤ ε}
= {z : ∃α > 0 : E{max[1 + α−1ξz, 0]} ≤ ε}
= {z : ∃α > 0 : 1

εE{max[α + ξz, 0]} ≤ α}
= {z : ∃a = −α < 0 : a + 1

εE{max[ξz − a, 0]} ≤ 0}.

(4.3.14)

From the latter relation it immediately follows that Γo,�
ε ⊂ C = {z : CVaRε(ξz) ≤

0}. As we have already mentioned, CVaRε(ξz) is a finite convex function of z, so
that this function is continuous, and therefore C is a closed set. Thus, the above
inclusion implies that Γ�

ε ⊂ C. To prove the inverse inclusion, let us fix z ∈ C and
prove that z ∈ Γ�

ε. To this end, observe that the function

f(a) = a +
1
ε
E{max[ξz − a, 0]}

clearly is a convex finite function that tends to +∞ as |a| → ∞, so that this function
attains its minimum at certain a = a∗. We have

a∗ +
1
ε
E{max[ξz − a∗, 0]} ≤ 0 (4.3.15)

due to z ∈ C. From the latter inequality, a∗ ≤ 0. In the case of a∗ < 0, relations
(4.3.14) say that z ∈ Γo,�

ε . If a∗ = 0, then (4.3.15) implies that ξz ≤ 0 with
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probability 1, whence, setting z′ = [z0 − δ; z1; ...; zL], δ > 0, we get ξz′
< −δ with

probability 1. In the latter case we clearly have 1
εE{max[α+ξz′

, 0]} = 0 ≤ α for all
small positive α, which, in view of relations (4.3.14), implies that z′ ∈ Γo,�

ε . Since
z′ → z as δ → +0, we conclude that z ∈ Γ�

ε. �

4.3.4 Tractability Issues

We have seen that the “CVaR approximation”

CVaRε(ξz) ≤ 0,

of chance constraint (4.0.1) is the best — the least conservative — among the
approximations yielded by our generating-function-based approximation scheme.
Given this fact, why could we be interested in other, more conservative, approxi-
mations, e.g., the Bernstein approximation?

The answer is, that the level of conservatism is not the only consideration:
we are interested in computationally tractable approximations, and to this end
the underlying function Ψ should be efficiently computable. For the Bernstein ap-
proximation, this indeed is the case, provided that the random perturbations ζ�

are independent with distributions belonging to not too complicated families (see
examples in section 4.2). In contrast, the function Ψ� underlying the CVaR approx-
imation is not efficiently computable even in the case when ζ� are independent and
possess simple distributions, (e.g., are uniformly distributed in [−1, 1]). Seemingly
the only generic case where we have no difficulty in computing Ψ� is when ζ is sup-
ported on a finite set of moderate cardinality, in that case the CVaR approximation
is given by the following.

Proposition 4.3.3. Let ζ ∈ R
L be a discrete random vector taking values

ζ1, ..., ζN with probabilities π1, ..., πN . Then

Ψ�(z) = sup
u

{
zT (Bu + b)− ψ(u)

}
,

Bu + b =
[∑

i ui;
∑

i uiζ
i
]
, ψ(u) =

{
−
∑
i

ui,
0≤ui≤πi,
1≤i≤N

+∞, otherwise

and the Robust Counterpart representation of the CVaR approximation is⎧⎪⎨⎪⎩
Γ�

ε = {z : zT [1; ε−1
∑
i

uiζ
i] ≤ 0 ∀u ∈ Uε},

Uε ≡
{

u : 0 ≤ ui ≤ πi ∀i,
∑
i

ui = ε

}
�⎧⎪⎨⎪⎩

Γ�
ε = {z : z0 +

∑
�

ζ�z� ≤ 0, ∀ζ ∈ Zε},

Zε =
{

ζ =
∑
i

uiζ
i : 0 ≤ ui ≤ πi/ε,

∑
i

ui = 1
}

.
.
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Proof. We have
Ψ�(z)

= E{max[1 + z0 +
L∑

�=1

ζ�z�, 0]} =
N∑

i=1

πi max[1 + z0 + [z1; ...; zL]T ζi, 0]

=
N∑

i=1

max
0≤ui≤πi

ui[1 + z0 + [z1; ...; zL]T ζi]

= max
u:0≤ui≤πi

{
[z0; ...; zL]T [

∑
i

ui;
∑

i

uiζ
i]︸ ︷︷ ︸

Bu+b

−(−
∑
i

ui)
}
.

Consequently, by the results from section 4.3.2,

Γ�
ε = {z : zT [

∑
i

ui;
∑

i

uiζ
i] ≤ 0 ∀u ∈ Uε ≡

{
u :

0 ≤ ui ≤ πi ∀i;∑
i

ui ≥ ε

}
,

which is equivalent to what is stated in Proposition. �

4.3.5 Extensions to Vector Inequalities

The outlined approach can be applied to the chance constrained version

Prob{z0 +
L∑

�=1

ζ�z
� �∈ −K} ≤ ε (4.3.16)

of randomly perturbed vector inequality

ξz ≡ z0 +
L∑

�=1

ζ�z
� ∈ −K, (4.3.17)

where z0, z1, ..., zL ∈ R
d are deterministic parameters, ζ� are random perturbations,

and K is a given closed convex cone with a nonempty interior in R
d. To this end,

it suffices to choose a convex function γ : R
d → R that is K-monotone,

γ(y + h) ≥ γ(y) ∀(h ∈ K, y ∈ R
d)

and satisfies the relations

γ(y) ≥ 0 ∀y, γ(y) ≥ 1 ∀(y �∈ −K)

and
∃e : ∀y : γ(y + te) → 0, t →∞.

For example, we can choose a norm ‖ · ‖ on R
d, set

γ(y) = 1 + dist(y,−K), dist(y,−K) = min
v∈−K

‖y − v‖

and use in the role of e a direction from −intK.

Given a γ(·) as above, assume that we have at our disposal an everywhere
finite function Ψ(z) that is convex in z = [z0; z1; ...; zL] and is an upper bound
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on E {γ(ξz)}, along with a convex and lower semicontinuous function ψ(u) with
bounded level sets such that

Ψ(z) = sup
u

{
zT (Bu + b)− ψ(u)

}
.

It can be easily proved that in the outlined situation:

(i) One has
∀z : Prob{ξz �∈ −K} ≤ inf

α>0
Ψ(αz)

(ii) The set Zε = cl {z : ∃α > 0 : Ψ(αz) ≤ ε} is such that

z ∈ Zε ⇒ Prob{ξz �∈ −K} ≤ ε;

(iii) The set Zε is nothing but the robust feasible set of the uncertain linear con-
straint

zT (Bu + b) ≤ 0 ∀u ∈ Uε = {u : ψ(u) ≤ −ε}
associated with the nonempty convex compact perturbation set Uε.

4.3.6 Bridging the Gap between the Bernstein and the CVaR Approximations

We have seen that the Bernstein approximation of a chance constraint (4.0.1) is
a particular case of the general generating-function-based scheme for building a
safe convex approximation of the constraint, and that this particular approxima-
tion is not the best in terms of conservatism. What makes it attractive, is that
under certain structural assumptions (namely, those of independence of ζ1, ..., ζL

plus availability of efficiently computable convex upper bounds on the functions
ln(E{exp{sζ�}})) this approximation is computationally tractable. The question
we now address is how to reduce, to some extent, the conservatism of the Bern-
stein approximation without sacrificing computational tractability. The idea is as
follows. Assume that

A. The random perturbations ζ1, ..., ζL are independent, and we can

compute efficiently the associated moment-generating functions

Ψ�(s) = E {exp{sζ�}} : C → C.

Under this assumption, whenever γ(s) =
d∑

ν=0
cν exp{ωνs} is an exponential polyno-

mial, we can efficiently compute the function

Ψ(z) = E

{
γ(z0 +

L∑
�=1

ζ�z�)

}
=

d∑
ν=0

cν exp{ωνz0}
L∏

�=1

Ψ�(ωνz�).

In other words,
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(!) Whenever a generating function γ(·) : R → R satisfying (4.3.1) is an

exponential polynomial, the associated upper bound

inf
α>0

Ψ(αz), Ψ(z) = E

{
γ(z0 +

L∑
�=1

ζ�z�)

}
on the quantity p(z) = Prob{z0 +

∑L
�=1 ζ�z� > 0} is efficiently com-

putable.

We now can utilize (!) in the following construction:

Given design parameters T > 0 (“window width”) and d (“degree of

approximation”), we build the trigonometric polynomial

χc∗(s) ≡
d∑

ν=0

[c∗ν exp{ıπνs/T}+ c∗ν exp{−ıπνs/T}]

by solving the following problem of the best uniform approximation:

c∗ ∈ Argmin
c∈Cd+1

{
max−T≤s≤T | exp{s}χc(s)−max[1 + s, 0]| :

0 ≤ χc(s) ≤ χc(0) = 1 ∀s ∈ R, exp{s}χc(s) is convex

and nondecreasing on [−T, T ]
}

and use in (!) the exponential polynomial

γd,T (s) = exp{s}χc∗(s). (4.3.18)

It can be immediately verified that

(i) The outlined construction is well defined and results in generating function
γd,T (s) that is an exponential polynomial satisfying the requirements (4.3.1)
and thus inducing an efficiently computable convex upper bound on p(z).

(ii) The resulting upper bound on p(z) is ≤ the Bernstein upper bound associated,
according to (!), with γ(s) = exp{s}.

The generating function γ11,8(·) is depicted in figure 4.2.

The case of ambiguous chance constraint. A disadvantage of the im-
proved Bernstein approximation as compared to the plain one is that the im-
proved approximation requires precise knowledge of the moment-generating func-
tions E{exp{sζ�}}, s ∈ C, of the independent random variables ζ�, while the original
approximation requires knowledge of upper bounds on these functions and thus is
applicable in the case of ambiguous chance constraints, those with only partially
known distributions of ζ�. Such partial information is equivalent to the fact that
the distribution P of ζ belongs to a given family P in the space of product proba-
bility distributions on R

L. All we need in this situation is a possibility to compute
efficiently the convex function

ΨP(z) = sup
P∈P

Eζ∼P {γ(z0 +
L∑

�=1

ζ�z�)}
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Figure 4.2 Generating function γ11,8(s) (middle curve) vs. exp{s} (top curve) and max[1+
s, 0] (bottom curve). (a): −24 ≤ s ≤ 24, logarithmic scale along the y-axis;
(b): −8 ≤ s ≤ 8, natural scale along the y-axis.

associated with P and with a given generating function γ(·) satisfying (4.3.1). When
ΨP(·) is available, a computationally tractable safe approximation of the ambiguous
chance constraint

∀(P ∈ P) : Probζ∼P {z0 +
L∑

�=1

ζ�z� > 0} ≤ ε (4.3.19)

is
cl {z : ∃α > 0 : ΨP(αz) ≤ ε}.

Now, in all applications of the “plain” Bernstein approximation we have considered
so far the family P was comprised of all product distributions P = P1 × ... × PL

with P� running through given families P� of probability distributions on the axis,
and these families P� were “simple,” specifically, allowing us to compute explicitly
the functions

Ψ�(s) = sup
P�∈P�

∫
exp{sζ�}dP�(ζ�).

With these functions at our disposal and with γ(s) = exp{s}, the function

ΨP(z) = sup
P∈P

E

{
exp{z0 +

L∑
�=1

ζ�z�}
}

is readily available — it is merely exp{z0}
∏L

�=1 Ψ�(z�). Note, however, that when
γ(·) is an exponential polynomial rather than the exponent, the associated function
ΨP(z) does not admit a simple representation via the functions Ψ�(·). Thus, it
is indeed unclear how to implement the improved Bernstein approximation in the
case of an ambiguous chance constraint.

Our current goal is to implement the improved Bernstein approximation in
the case of a particular ambiguous chance constraint (4.3.19), namely, in the case
when P is comprised of all product distributions P = P1×...×PL with the marginal
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distributions P� satisfying the restrictions

suppP� ⊂ [−1, 1] & µ−
� ≤ Eζ�∼P�

{ζ�} ≤ µ+
� (4.3.20)

with known µ±
� ∈ [−1, 1] (cf. Example 4.2.8).

The result is as follows:

Proposition 4.3.4. For the just defined family P and with every γ(·) satisfying
(4.3.1), one has

ΨP(z) = Eζ∼P z

{
γ(z0 +

L∑
�=1

ζ�z�)

}
,

where P z = P z1
1 × ...× P zL

L and P s
� is the distribution supported at the endpoints

of [−1, 1] given by

P s
� {1} = 1− P s

� {−1} =

{
1+µ+

�

2 , s ≥ 0
1+µ−

�

2 , s < 0
;

In particular, when γ(·) ≡ γd,T (·), the function ΨP(z) is efficiently computable.

Proof. It suffices to prove the following

Claim: If P = P1×...×PL with P� satisfying (4.3.20) and �∗ ∈ {1, ..., L},
then, passing from the distribution P to the distribution P ′ = P1× ...×
P�∗−1×P

z�∗
�∗ ×P�∗+1× ...×PL (which clearly belongs to P as well), we

do not decrease the associated quantity E
{

γ(z0 +
∑L

�=1 ζ�z�)
}

.

When proving the claim, we can assume w.l.o.g. that �∗ = 1.

Let us set

γ̂(t) = E[ζ2;...;ζL]∼P2×...×PL
{γ (z0 + z1t + ζ2z2 + ... + ζLzL)} .

Since γ(·) satisfies (4.3.1), the function γ̂(·) is a finite convex function that is non-
decreasing when z1 ≥ 0 and is nonincreasing when z1 < 0. In terms of γ̂(·), our
claim reads:∫ 1

−1

γ̂(ζ1)dP1(ζ1) ≤
∫ 1

−1

γ̂(ζ1)dP z1
1 (ζ1) = P z1

1 {1}γ̂(1)+(1−P z1
1 {1})γ̂(−1). (4.3.21)

The proof of the latter relation is immediate. Let µ1 =
∫

ζ1dP1(ζ1). Since γ̂ is
convex, we have∫ 1

−1
γ̂(ζ1)dP1(ζ1) ≤

∫ 1

−1

[
1+ζ1

2 γ̂(1) + 1−ζ1
2 γ̂(−1)

]
dP1(ζ1)

= φ(µ1) ≡ 1+µ1
2 γ̂(1) + 1−µ1

2 γ̂(−1).
(4.3.22)

Since γ̂(·) is nondecreasing when z1 ≥ 0 and is nonincreasing when z1 < 0, the
function φ(r) is nondecreasing on the segment [µ−

1 , µ+
1 ] ⊂ [−1, 1] when z1 ≥ 0

and is nonincreasing on the same segment when z1 < 0. Since µ1 belongs to this
segment by (4.3.20), we have φ(µ1) ≤ φ(µ+

1 ) when z1 ≥ 0 and φ(µ1) ≤ φ(µ−
1 ) when

z1 < 0, meaning that in both cases φ(µ1) ≤
∫ 1

−1
γ̂(ζ1)dP z1

1 (ζ1) (see the concluding
equality in (4.3.21)), so that (4.3.22) implies the inequality in (4.3.21). �
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4.3.6.1 Illustration I

To illustrate our findings, assume that all our a priori information on the random
perturbations ζ� in (4.0.1) is that they are independent, supported on [−1, 1] and
with zero means. Let us overview the safe approximations to the corresponding
ambiguous chance constraint

∀((P1, ..., PL) ∈ P) : Probζ∼P1×...×PL

{
z0 +

L∑
�=1

ζ�z� > 0

}
≤ ε, (4.3.23)

where P is the family of all collections of L probability distributions with zero
mean supported on [−1, 1]. Note that on a closest inspection, the results yielded
by all approximation schemes to be listed below remain intact when instead of
the ambiguous chance constraint we were speaking about the usual one, with ζ

distributed uniformly on the vertices of the unit box {ζ : ‖ζ‖∞ ≤ 1}.
We are about to outline the approximations, ascending in their conservatism

and descending in their complexity. When possible, we present approximations in
both the “inequality form” (via an explicit system of convex constraints) and in
the “Robust Counterpart form”

{z : z0 + ζT [z1; ...; zL] ≤ 0 ∀ζ ∈ Z}.

• CVaR approximation [Proposition 4.3.2]

inf
β>0

[
z0 + max

(P1,...,PL)∈P

∫
max[β + z0 +

L∑
�=1

ζ�z�, 0]dP1(ζ1)...dPL(ζL)− βε

]
≤ 0

(4.3.24)
While being the least conservative among all generation-function-based approxi-
mations, the CVaR approximation is in general intractable. It remains intractable
already when passing from the ambiguous chance constraint case to the case
where ζ� are, say, uniformly distributed on [−1, 1] (which corresponds to replac-

ing max
(P1,...,PN )∈P

∫
. . . dP1(ζ1)...dPL(ζ�) in (4.3.24) with

∫
‖ζ‖∞≤1

. . . dζ).

We have “presented” the inequality form of the CVaR approximation. By
Propositions 4.1.3 and 4.3.1, this approximation admits a Robust Counterpart form;
the latter “exists in the nature,” but is computationally intractable, and thus of
not much use.

• Bridged Bernstein-CVaR approximation [p. 98 and Proposition 4.3.4]

inf
β>0

[
βΨd,T (β−1z)− βε

]
≤ 0,

Ψd,T (ζ) =
∑

ε�=±1,1≤�≤L

2−Lγd,T

(
z0 +

∑L
�=1 ε�z�

)
,

(4.3.25)
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where d, T are parameters of the construction and γd,T is the exponential polyno-
mial (4.3.18). Note that we used Proposition 4.3.4 to cope with the ambiguity of
the chance constraint of interest.

In spite of the disastrous complexity of the representation (4.3.25), the func-
tion Ψd,T is efficiently computable (via the recipe from Proposition 4.3.4, and not

via the formula in (4.3.25)). Thus, our approximation is computationally tractable.
Recall that this tractable safe approximation is less conservative than the plain
Bernstein one.

Due to Propositions 4.1.3 and 4.3.1, approximation (4.3.24) admits a Robust
Counterpart representation that now involves a computationally tractable uncer-
tainty set ZBCV; this set, however, seems to have no explicit representation.

• Bernstein approximation [Example 4.2.8]

inf
β>0

[
z0 +

∑L
�=1 β ln

(
cosh(β−1z�)

)
+ β ln(1/ε)

]
≤ 0

⇔ z0 +
∑L

�=1 ζ�z� ≤ 0 ∀ζ ∈ ZBrn
ε = {ζ :

∑L
�=1 φ(ζ�) ≤ ln(1/ε)}[

φ(u) = 1
2 [(1 + u) ln(1 + u) + (1− u) ln(1− u)] , Dom φ = [−1, 1]

]
.

(4.3.26)

• Robust Counterpart approximation with Ball-Box uncertainty [Proposition
2.3.3, or, equivalently, Example 2.4.9 and Theorem 2.4.4]

∃u, v : z = u + v, v0 +
∑L

�=1 |v�| ≤ 0, u0 +
√

2 ln(1/ε)
√∑L

�=1 u2
� ≤ 0

⇔ z0 +
∑L

�=1 ζ�z� ≤ 0 ∀ζ ∈ ZBlBx :=

⎧⎪⎨⎪⎩ζ ∈ R
L :

|ζ�| ≤ 1, � = 1, ..., L,√
L∑

�=1

ζ2
� ≤

√
2 ln(1/ε)

⎫⎪⎬⎪⎭
.

(4.3.27)
It is immediately seen that (4.3.27) is a simplified conservative version of (4.3.26)
that, in hindsight, can be obtained from the quadratic lower bound on the entropy
φ(u):

φ(u) ≥ 1
2
u2;

(to get this bound, note that φ(0) = φ′(0) = 0 and φ′′(u) = 1
1−u2 ≥ 1 when |u| < 1),

whence

ZBrn = {ζ :
L∑

�=1

φ(ζ�) ≤ ln(1/ε)} ⊂ {ζ : ‖ζ‖∞ ≤ 1,

L∑
�=1

ζ2
�

2
≤ ln(1/ε)} = ZBlBx.

• Robust Counterpart approximation with Budgeted uncertainty [Proposition
2.3.4]

∃u, v : z = u + v, v0 +
∑L

�=1 |v�| ≤ 0, u0 +
√

2L ln(1/ε)max
�
|u�| ≤ 0

⇔ z0 +
∑L

�=1 ζ�z� ≤ 0 ∀ζ ∈ ZBdg :=

{
ζ ∈ R

L :
|ζ�| ≤ 1, � = 1, ..., L,∑L

�=1 |ζ�| ≤
√

2L ln(1/ε)

}
.

(4.3.28)
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Figure 4.3 Intersection of uncertainty sets, underlying various approximation schemes in
Illustration I, with a random 2-D plane. From inside to outside:
– Bridged Bernstein-CVaR approximation, d = 11, T = 8;
– Bernstein approximation;
– Ball-Box approximation;
– Budgeted approximation;
– “worst-case” approximation with the support {‖ζ‖∞ ≤ 1} of ζ in the role of
the uncertainty set.

Note that (4.3.28) is a simplified conservative version of (4.3.27) given by the evident
inequality

L∑
�=1

|u�| ≤
√

L

√√√√ L∑
�=1

u2
� ,

which implies that ZBlBx ⊂ ZBdg.

The computationally tractable uncertainty sets we have listed form a chain:

ZBCV ⊂ ZBrn ⊂ ZBlBx ⊂ ZBdg.

Figure 4.3, where we plot a random 2-D cross-section of our nested uncertainty
sets, gives an impression of the “gaps” in this chain.

4.3.6.2 Illustration II

In this illustration, which is a continuation of Example 4.2.9, we use the above
approximation schemes to build safe approximations of the ambiguously chance
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Figure 4.4 Optimal values of various approximations of (4.3.29) with L = 128 vs. ε.
From bottom to top:
– Budgeted and Ball-Box approximations
– Bernstein approximation
– Bridged Bernstein-CVaR approximation, d = 11, T = 8
– CVaR-approximation
– Opt+(ε)

constrained problem

Opt(ε) = max

{
z0 : max

(P1,...,PL)∈P
Prob{z0 +

L∑
�=1

ζ�z� > 0} ≤ ε, z1 = ... = zL = 1

}
(4.3.29)

where, as before, P is the set of L-element tuples of probability distributions sup-
ported on [−1, 1] and possessing zero means. Due to the simplicity of our chance
constraint, here we can build efficiently the CVaR-approximation of the problem.
Moreover, we can solve exactly the chance constrained problem

Opt+(ε) = max

{
z0 : max

ζ∼U
Prob{z0 +

L∑
�=1

ζ�z� > 0} ≤ ε, z1 = ... = zL = 1

}
where U is the uniform distribution on the vertices of the unit box {ζ : ‖ζ‖∞ ≤ 1};
this is in fact problem (P ) from Example 4.2.9. Clearly, Opt+(ε) is an upper bound
on the true optimal value Opt(ε) of the ambiguously chance constrained problem
(4.3.29), while the optimal values of our approximations are lower bounds on Opt(ε).
In our experiment, we used L = 128. The results are depicted in figure 4.4 and are
displayed in table 4.1.
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ε Opt+(ε) OptV (ε) OptIV (ε) OptIII(ε) OptII(ε) OptI(ε)

10−12 −76.00 −78.52 (−3.3%) −78.88 (−0.5%) −80.92 (−3.1%) −84.10 (−7.1%) −84.10 (−7.1%)
10−11 −74.00 −75.03 (−1.4%) −75.60 (−0.8%) −77.74 (−3.6%) −80.52 (−7.3%) −80.52 (−7.3%)
10−10 −70.00 −71.50 (−2.1%) −72.13 (−0.9%) −74.37 (−4.0%) −76.78 (−7.4%) −76.78 (−7.4%)
10−9 −66.00 −67.82 (−2.8%) −68.45 (−0.9%) −70.80 (−4.4%) −72.84 (−7.4%) −72.84 (−7.4%)
10−8 −62.00 −63.88 (−3.0%) −64.49 (−1.0%) −66.97 (−4.8%) −68.67 (−7.5%) −68.67 (−7.5%)
10−7 −58.00 −59.66 (−2.9%) −60.23 (−1.0%) −62.85 (−5.4%) −64.24 (−7.7%) −64.24 (−7.7%)
10−6 −54.00 −55.25 (−2.3%) −55.60 (−0.6%) −58.37 (−5.7%) −59.47 (−7.6%) −59.47 (−7.6%)
10−5 −48.00 −49.98 (−4.1%) −50.52 (−1.1%) −53.46 (−7.0%) −54.29 (−8.6%) −54.29 (−8.6%)
10−4 −42.00 −44.31 (−5.5%) −44.85 (−1.2%) −47.97 (−8.3%) −48.56 (−9.6%) −48.56 (−9.6%)
10−3 −34.00 −37.86(−11.4%) −38.34 (−1.2%) −41.67(−10.1%) −42.05(−11.1%) −42.05(−11.1%)
10−2 −26.00 −29.99(−15.4%) −30.55 (−1.9%) −34.13(−13.8%) −34.34(−14.5%) −34.34(−14.5%)
10−1 −14.00 −19.81(−41.5%) −20.43 (−3.1%) −24.21(−22.2%) −24.28(−22.5%) −24.28(−22.5%)

Table 4.1 Comparing various safe approximations of the ambiguously chance constrained
problem (4.3.29). OptI(ε) through OptV (ε) are optimal values of the Ball, Ball-
Box (or, which in the case of (4.3.29) is the same, the Budgeted), Bernstein,
Bridged Bernstein-CVaR and the CVaR approximations, respectively. Num-
bers in parentheses in column “OptV (ε)” refer to the conservativeness of the
CVaR-approximation as compared to Opt+(·), and in remaining columns to the
conservativeness of the corresponding approximation as compared to the CVaR
approximation.

4.4 MAJORIZATION

One way to bound from above the probability

Prob

{
z0 +

L∑
�=1

z�ζ� > 0

}
for independent random variables ζ� is to replace ζ� with “more diffused” random
variables ξ� (meaning that the probability in question increases when we replace ζ�

with ξ�) such that the quantity Prob
{

z0 +
L∑

�=1

z�ξ� > 0
}

, (which now is an upper

bound on probability in question), is easy to handle. Our goal here is to investigate
the outlined approach in the case of random variables with symmetric and unimodal
w.r.t. 0 probability distributions.

In contrast to chapter 2, where an unimodal w.r.t. 0 random variable was
defined as a variable with probability density that is nondecreasing on R− and
nonincreasing on R+, now it is convenient to allow the variable to take the value
0 with a positive probability. Thus, in what follows a symmetric and unimodal
w.r.t. 0 probability distribution P on the axis is a distribution given by P (A) =∫

A
p(s)ds + δ(A), where A is a measurable subset of R, p(·) ≥ 0 is an even and

nonincreasing on R+ function such that
∫

p(s)ds ≤ 1, and δ(A) is either 1−
∫

p(s)ds

or 0 depending on whether or not 0 ∈ A. We call p(·) the density of P , and say
that P is regular if p(·) is a usual probability density, that is,

∫
p(s)ds = 1 (or,

equivalently, there is no nontrivial probability mass at 0).
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In what follows, we denote the family of densities of all symmetric and uni-
modal w.r.t. 0 random variables by P, and the family of these random variables
themselves by Π.

If we want the outlined scheme to work, the notion of a “more diffused”
random variable should imply the following: If p, q ∈ P and q is “more diffused”

than p, then, for every a ≥ 0, we should have
∞∫
a

p(s)ds ≤
∞∫
a

q(s)ds. We make this

requirement the definition of “more diffused”:

Definition 4.4.1. Let p, q ∈ P. We say that q is more diffused than p (nota-
tion: q �m p, or p �m q) if

∀a ≥ 0 : P (a) :=

∞∫
a

p(s)ds ≤ Q(a) :=

∞∫
a

q(s)ds.

When ξ, η ∈ Π, we say that η is more diffuse than ξ (notation: η �m ξ), if the
corresponding densities are in the same relation.

It is immediately seen that the relation �m is a partial order on P; this order
is called “monotone dominance.” It is well known that an equivalent description of
this order is given by the following

Proposition 4.4.2. Let π, θ ∈ Π, let ν, q be the probability distribution of θ

and the density of θ, and let µ, p be the probability distribution and the density of
π. Finally, let Mb be the family of all continuously differentiable even and bounded
functions on the axis that are nondecreasing on R+. Then θ �m π if and only if∫

f(s)dν(s) ≥
∫

f(s)dµ(s)ds ∀f ∈Mb, (4.4.1)

same as if and only if∫
f(s)q(s)ds ≥

∫
f(s)p(s)ds ∀f ∈Mb. (4.4.2)

Moreover, when (4.4.1) takes place, the inequalities in (4.4.1), (4.4.2) hold true for
every even function on the axis that is nondecreasing on R+.

For the proof, see section B.1.5.

Example 4.4.3. Let ξ ∈ Π be a random variable that is supported on [−1, 1], ζ be
uniformly distributed on [−1, 1] and η ∼ N (0, 2/π). We claim that ξ �m ζ �m η.

Indeed, let p(·), q(·) be the densities of random variables π, θ ∈ Π. Then the

functions P (t) =
∞∫
t

p(s)ds, Q(t) =
∞∫
t

q(s)ds of t ≥ 0 are convex, and π �m θ iff P (t) ≤ Q(t)

for all t ≥ 0. Now let π ∈ Π be supported on [−1, 1] and θ be uniform on [−1, 1].

Then P (t) is convex on [0,∞) with P (0) ≤ 1/2 and P (t) ≡ P (1) = 0 for t ≥ 1, while

Q(t) = 1
2

max[1 − t, 0] when t ≥ 0. Since Q(0) ≥ P (0), Q(1) = P (1), P is convex, and Q

is linear on [0, 1], we have P (t) ≤ Q(t) for all t ∈ [0, 1], whence P (t) ≤ Q(t) for all t ≥ 0,

and thus π �m θ. Now let π be uniform on [−1, 1], so that P (t) = 1
2

max[1− t, 0], and θ be

N (0, 2/π), so that Q(t) is a convex function and therefore Q(t) ≥ Q(0)+Q′(0)t = (1−t)/2
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for all t ≥ 0. This combines with Q(t) ≥ 0, t ≥ 0, to imply that P (t) ≤ Q(t) for all t ≥ 0

and thus π �m θ.

We start with the following observation:

Proposition 4.4.4. One has

(i) If ξ, η ∈ Π, λ is a deterministic real and η �m ξ, then λη �m λξ.

(ii) If ξ, ξ̄, η, η̄ ∈ Π are independent random variables such that η �m ξ,
η̄ �m ξ̄, then ξ + ξ̄ ∈ Π, η + η̄ ∈ Π and η + η̄ �m ξ + ξ̄.

For the proof, see section B.1.5.
As a corollary of Proposition 4.4.4, we get our first majorization result:

Proposition 4.4.5. Let z0 ≤ 0, z1, ..., zL be deterministic reals, {ζ�}L
�=1 be

independent random variables with unimodal and symmetric w.r.t. 0 distributions,
and {η�}L

�=1 be a similar collection of independent random variables such that
η� �m ζ� for every �. Then

Prob{z0 +
L∑

�=1

z�ζ� > 0} ≤ Prob{z0 +
L∑

�=1

z�η� > 0}. (4.4.3)

If, in addition, η� ∼ N (0, σ2
� ), � = 1, ..., L, then, for every ε ∈ (0, 1/2], one has

z0 + ErfInv(ε)

√√√√ L∑
�=1

σ2
� z2

� ≤ 0 ⇒ Prob{z0 +
L∑

�=1

ζ�z� > 0} ≤ ε, (4.4.4)

where ErfInv(·) is the inverse error function (2.3.22).

Proof. By Proposition 4.4.4.(i) the random variables ζ̂� = z�ζ� and η̂� = z�η�

are linked by η̂� �m ζ̂�. This, by Proposition 4.4.4.(ii), implies that

η̂ :=
L∑

�=1

η̂� �m ζ̂ :=
L∑

�=1

ζ̂�.

The latter, by definition of �m, implies that

Prob{z0 +
L∑

�=1

z�ζ� > 0} = Prob{ζ̂ > |z0|} ≤ Prob{η̂ > |z0|}

= Prob{z0 +
L∑

�=1

z�η� > 0}.

The concluding claim in Proposition 4.4.5 is readily given by the fact that under

the premise of the claim we have η̂ ∼ N (0,
L∑

�=1

σ2
� z2

� ). �

Relation (4.4.4) seems to be the major “yield” we can extract from Proposition
4.4.4, since the case of independent N (0, σ2

� ) random variables η� is, essentially, the

only interesting case for which we can easily compute Prob{z0 +
L∑

�=1

z�η� > 0} and

the chance constraint Prob{z0 +
L∑

�=1

z�η� > 0} ≤ ε for ε ≤ 1/2 is equivalent to an
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explicit convex constraint, specifically,

z0 + ErfInv(ε)

√√√√ L∑
�=1

σ2
� z2

� ≤ 0. (4.4.5)

Comparison with Proposition 2.4.1. Assume that independent random vari-
ables ζ� ∈ Π, � = 1, ..., L, admit “Gaussian upper bounds” η� �m ζ� with
η� ∼ N (0, σ2

� ). Then ζ satisfies assumptions P.1–2 from section 2.4 with the pa-
rameters µ±

� = 0, σ�.

Indeed, all we should prove is that if η �m ζ and η ∼ N (0, σ2), then∫
exp{ts}dµ(s) ≤ exp{σ2t2/2} ∀t,

where µ is the distribution of ζ. Using the symmetry of µ w.r.t. 0, we have∫
exp{ts}dµ(s) =

∫
cosh(ts)dµ(s) ≤

∫
cosh(ts) 1√

2πσ
exp{−s2/(2σ2)}ds

= exp{σ2t2/2},

where “≤” is given by Proposition 4.4.2 due to the fact that ζ �m η ∼
N (0, σ2).

Since ζ satisfies P.1–2 with the parameters µ±
� = 0, σ�, our previous results, (i.e.,

Proposition 2.4.1) state that⎛⎝z0 +
√

2 log(1/ε)

√√√√ L∑
�=1

σ2
� z2

� ≤ 0

⎞⎠⇒
(

Prob

{
z0 +

L∑
�=1

z�ζ� > 0

}
≤ ε

)
. (4.4.6)

The only disadvantage of this result as compared to (4.4.4) is in the fact that
ErfInv(ε) <

√
2 ln(1/ε).

4.4.1 Majorization Theorem

Proposition 4.4.5 can be rephrased as follows:

Let {ζ�}L
�=1 be independent random variables with unimodal and sym-

metric w.r.t. 0 distributions, and {η�}L
�=1 be a similar collection of

independent random variables such that η� �m ζ� for every �. Given a

deterministic vector z ∈ R
L and z0 ≤ 0, consider the “strip”

S = {x ∈ R
L : |zT x| ≤ −z0}.

Then
Prob{[ζ1; ...; ζL] ∈ S} ≥ Prob{[η1; ...; ηL] ∈ S}.

It turns out that the resulting inequality holds true for every closed convex set S

that is symmetric w.r.t. the origin.

Theorem 4.4.6. [Majorization Theorem] Let {ζ�}L
�=1 be independent random

variables with unimodal and symmetric w.r.t. 0 distributions, and {η�}L
�=1 be a
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similar collection of independent random variables such that η� �m ζ� for every �.
Then for every closed convex set S ⊂ R

L that is symmetric w.r.t. the origin one
has

Prob{[ζ1; ...; ζL] ∈ S} ≥ Prob{[η1; ...; ηL] ∈ S}. (4.4.7)

For the proof, see section B.1.6.

Example 4.4.7. Let ξ ∼ N (0, Σ) and η ∼ N (0, Θ) be two Gaussian random vectors
taking values in R

n and let Σ � Θ. We claim that for every closed convex set S ⊂ R
n

symmetric w.r.t. 0 one has

Prob{ξ ∈ S} ≥ Prob{η ∈ S}.

Indeed, by continuity reasons, it suffices to consider the case when Θ is nondegenerate.
Passing from random vectors ξ, η to random vectors Aξ, Aη with properly defined nonsin-
gular A, we can reduce the situation to the one where Θ = I and Σ is diagonal, meaning
that the densities p(·) of ξ and q of η are of the forms

p(x) = p1(x1)...pn(xn), q(x) = q1(x1)...qn(xn),

with pi(s) being the N (0, Σii) densities, and qi(s) being the N (0, 1) densities. Since

Σ � Θ = I, we have Σii ≤ 1, meaning that pi �m qi for all i. It remains to apply the

Majorization Theorem.

4.5 BEYOND THE CASE OF INDEPENDENT LINEAR PERTURBATIONS

So far, we dealt with a linearly perturbed chance constraint

p(z) ≡ Prob

{
z0 +

L∑
�=1

z�ζ� > 0

}
≤ ε (4.0.1)

in the case when the random perturbations ζ1, ..., ζL are independent. In this
section, we consider the case when the perturbations are dependent and/or enter
nonlinearly the body of the chance constraint.

4.5.1 Dependent Linear Perturbations

Here we remove the assumption that the perturbations in (4.0.1) are independent.
Instead, we make the following

Assumption S: All our a priori information on the distribution of ζ

reduces to knowledge of some sets P�, � = 1, ..., L, in the space of prob-

ability distributions with well defined first moment on the axis such

that the distributions P� of ζ� belong to the respective sets. In partic-
ular, we know nothing about the structure of dependence between the
perturbations ζ1, ..., ζL.
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We want to build a safe convex approximation of the ambiguous version of (4.0.1)
associated with Assumption S, which is the constraint

Whenever the marginal distributions P� of ζ = [ζ1; ...; ζL] belong to

P�, � = 1, ..., L, one has

Prob
{

z0 +
∑L

�=1 z�ζ� > 0
}
≤ ε.

(4.5.1)

To this end, we can use an approach similar to the one in section 4.2, specifically,
as follows. Assume that we can point out functions γ�(·) on the axis such that

(a) γ(u) ≡
∑L

�=1 γ�(u�) ≥ 0 ∀u ∈ R
L

(b) z0 +
∑L

�=1 u�z� > 0 ⇒ γ(u) ≥ 1.
(4.5.2)

Then clearly p(z) ≤ E{γ(ζ)}, so that the condition

E{γ(ζ)} ≤ ε

is a sufficient condition for the validity of (4.0.1). Now, an evident necessary and

sufficient condition for the validity of (4.5.2.a) is
L∑

�=1

inf
u�∈R

γ�(u�) ≥ 0, (4.5.3)

while an evident sufficient condition for the validity of (4.5.2.b) is

∃λ > 0 : inf
u∈RL

{
λ(γ(u)− 1)− z0 −

L∑
�=1

z�u�

}
≥ 0. (4.5.4)

These observations pave the road to the following.

Theorem 4.5.1. If z can be extended to a feasible solution of the system[
λ 1
1 τ

]
� 0,

∑L
�=1 β� ≥ λ + z0,∑L

�=1 sup
P�∈P�

∫
max[0, z�s + β�]dP�(s) ≤ λε

(4.5.5)

of convex constraints in variables z, λ, β�, τ , then z is feasible for the ambiguous
chance constraint (4.5.1) associated with Assumption S. Thus, (4.5.5) is a safe
convex approximation of (4.5.1); this approximation is tractable, provided that
given z�, β�, the quantities

sup
P�∈P�

∫
max[0, z�s + β�]dP�(s), � = 1, ..., L,

are efficiently computable.
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Proof. 10. Observe, first, that the condition

∃
(

α ∈ R
L, β ∈ R

L, λ

{γ�(·)}L
�=1

)
:

λ > 0 (a)∑
� α� ≥ 0 (b.1)

γ�(s) ≥ α� ∀s ∈ R (b.2)∑
� β� ≥ λ + z0 (c.1)

λγ�(s) ≥ z�s + β� ∀s ∈ R (c.2)∑L
�=1 E{γ�(ζ�)} ≤ ε (d)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.5.6)

is a sufficient condition for the validity of (4.0.1).

Indeed, let ({α�, β�}L
�=1, λ, {γ�(·)}L

�=1) satisfy (4.5.6.a-d), and let

γ(u) =
L∑

�=1

γ�(u�).

By (4.5.6.b) we have γ(·) ≥ 0, and by (4.5.6.a,c), we have

λ [γ(u)− 1]− z0 −
L∑

�=1

z�u� ≥
L∑

�=1

β� − λ− z0 ≥ 0

for all u, whence z0 +
∑L

�=1 u�z� > 0 ⇒ γ(u) ≥ 1. According to the reasoning
preceding Theorem 4.5.1, the latter relation along with γ(·) ≥ 0 implies that p(z) ≤
E{γ(ζ)}, which combines with (4.5.6.d) to imply that p(z) ≤ ε, as claimed.

20. Now let us prove that the condition (4.5.6) is equivalent to the condition

∃
(

θ ∈ R
L, β ∈ R

L, λ,

{δ�(·)}L
�=1

)
:

λ > 0 (a)∑
� θ� ≥ 0 (b.1)

δ�(s) ≥ θ� ∀s ∈ R (b.2)∑
� β� ≥ λ + z0 (c.1)

δ�(s) ≥ z�s + β� ∀s ∈ R (c.2)∑
� E{δ�(ζ�)} ≤ λε (d)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (4.5.7)

which in turn is equivalent to the condition

∃
(
θ ∈ R

L, β ∈ R
L, λ

)
:

λ > 0 (a)∑
� θ� ≥ 0 (b)∑
� β� ≥ λ + z0 (c)∑
� E{max[θ�, z�ζ� + β�]} ≤ λε (d)

⎫⎪⎪⎬⎪⎪⎭ . (4.5.8)

Indeed, passing in the condition (4.5.6) from the variables α�, β�, λ, γ�(·) to the
variables θ� = α�λ, β�, λ, δ�(·) = λγ�(·), the condition becomes exactly (4.5.7), so
that (4.5.6) and (4.5.7) are equivalent. Now, the conditions (4.5.7.a-d) hold true for
certain θ�, β�, λ, δ�(·) if and only if these conditions remain true when θ�, β�, λ are
kept intact and δ�(·) are replaced with the functions max[θ�, ζ�s+β�] ≤ δ�(s); since
this transformation can only decrease the left hand side in (4.5.7.d), the condition
(4.5.7) is equivalent to (4.5.8).
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30. Now note that the condition (4.5.8) is equivalent to the condition

∃
(
β ∈ R

L, λ
)

:
λ > 0 (a)∑

� β� ≥ λ + z0 (c)∑
� E{max[0, z�ζ� + β�]} ≤ λε (d)

⎫⎬⎭ . (4.5.9)

Indeed, (4.5.9) clearly implies the condition (4.5.8) (set θ� = 0 for all �). Conversely,
assume that (4.5.8) takes place, and let us prove (4.5.9). Observe, first, that we
lose nothing by assuming that θ� in (4.5.8) satisfy

∑
� θ� = 0 rather than

∑
� θ� ≥ 0;

indeed, reducing, say, θ1 to make the inequality
∑

� θ� ≥ 0 an equality, we clearly do
not violate the validity of (4.5.8.d). Now, assuming that θ�, β� satisfy all relations
in (4.5.8) and

∑
� θ� = 0 and setting β′

� = β� − θ�, we get
∑

� β′
� =

∑
� β� ≥ λ + z0

and
λε ≥∑

� E{max[θ�, z�ζ� + β�]} =
∑

� E{θ� + max[0, z�ζ� + β′
�]}

=
∑

� θ� +
∑

� E{max[0, z�ζ� + β′
�]} =

∑
� E{max[0, z�ζ� + β′

�]},
so that β′

�, � = 1, ..., d, satisfy (4.5.9).

40. As a consequence of 10 through 30, the condition (4.5.9) is sufficient for
the validity of (4.0.1) for any distribution of ζ compatible with Assumption S. �

4.5.2 A Modification

The simple idea we have used (its scientific name is “Lagrange relaxation”) can be
utilized in a closely related situation, specifically, as follows. Assume that we are
given a piecewise linear convex function on the axis:

f(s) = max
1≤j≤J

[aj + bjs] (4.5.10)

and we wish to bound from above the expectation

F (z) = E

{
f

(
z0 +

L∑
�=1

z�ζ�

)}
, (4.5.11)

where z is a deterministic parameter vector, ζ is a vector of random perturbations,
and all our a priori information on the distribution of ζ is as stated in Assumption
S.

Our starting point is the following observation: if a separable Borel function
γ(u) =

∑L
�=1 γ�(u�) : R

L → R is everywhere ≥ than the function g(u) = f(z0 +∑L
�=1 z�u�), then the quantity

∑L
�=1 E{γ�(ζ�)} is an upper bound on F (z):

F (z) ≤ Φ[f, z] ≡ inf
γ(·)∈Γz

{∑L
�=1 sup

P�∈P�

∫
γ�(u�)dP�(u�)

}
Γz = {γ(u) =

∑L
�=1 γ�(u�) : γ(u) ≥ f(z0 +

∑L
�=1 z�u�)∀u}

(4.5.12)

This leads to the following result:
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Theorem 4.5.2. Relation (4.5.12) can be rewritten equivalently as

F (z) ≤ Φ[f(·), z]

= inf
{α�j}

⎧⎨⎩ L∑
�=1

sup
P�∈P�

∫
max

1≤j≤J
[α�j + bjz�u�] dP�(u�) :

L∑
�=1

α�j = aj + bjz0,

1 ≤ j ≤ J

⎫⎬⎭ .
(4.5.13)

The right hand side of the latter relation is a convex function of z, and this function
is efficiently computable provided that we can compute efficiently the quantities of
the form

sup
P�∈P�

∫
g�(u�)dP�(u�)

associated with piecewise linear convex functions g�(·) with at most J explicitly
given linear pieces.

Proof. 10. Observe, first, that

Γz =

⎧⎪⎪⎨⎪⎪⎩
∑

�

γ�(u�) : ∃{α�j} 1≤j≤J
1≤�≤L

:

⎧⎪⎪⎨⎪⎪⎩
∑L

�=1 α�j ≥ aj + bjz0,

1 ≤ j ≤ J

γ�(u�) ≥ α�j + bjz�u� ∀u�,

1 ≤ � ≤ L, 1 ≤ j ≤ J

⎫⎪⎪⎬⎪⎪⎭ . (4.5.14)

Indeed, we have
L∑

�=1

γ�(u�) ∈ Γz

⇔ ∀j ≤ J :
L∑

�=1

γ�(u�) ≥ aj + bj

[
z0 +

L∑
�=1

z�u�

]
∀u

⇔ ∀j ≤ J :
L∑

�=1

[γ�(u�)− bjz�u�] ≥ aj + bjz0 ∀u

⇔ ∀j ≤ J ∃{α�j}L
�=1 :

⎧⎨⎩
L∑

�=1

α�j ≥ aj + bjz0

γ�(u�) ≥ α�j + bjz�u� ∀u�, 1 ≤ � ≤ L

as required in (4.5.14).

20. We claim that

Φ[f(·), z]

= inf
{α�j}

{∑L
�=1 sup

P�∈P�

∫
max

1≤j≤J
[α�j + bjz�u�] dP�(u�) :

∑L
�=1 α�j ≥ aj + bjz0,

1 ≤ j ≤ J

}
(4.5.15)

Indeed, by 10 the inf in the right hand side of (4.5.12) remains intact when we
restrict the domain of minimization to functions γ(u) of the form

L∑
�=1

max
1≤j≤J

[α�j + bjz�u�]

with α�j satisfying the constraints in (4.5.15).

30. Finally, we claim that the inequality constraints in (4.5.15) can be replaced
with equalities without affecting the inf in the right hand side of (4.5.15), so that
(4.5.15) is equivalent to (4.5.13), which would complete the proof.
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The claim is evident: given a feasible solution to the optimization problem
in the right hand side of (4.5.15), we can decrease appropriately the variables
α11,...,α1J in order to make all the constraints equalities; clearly this transfor-
mation can only decrease the value of the objective of the problem in question.
�

To proceed, we need the following simple observation:

Proposition 4.5.3. The functional Φ[f(·), z], where f(·) belongs to the family
CL of piecewise linear convex functions on the axis, possesses the following proper-
ties:

(i) Φ is well-defined: Φ[f, z] depends on f and z, but is independent of a
particular representation (4.5.10) of f as the maximum of a collection of affine
functions;

(ii) [homogeneity] Φ[λf, z] = λΦ[f, z] whenever λ ≥ 0;

(iii) [monotonicity] Φ[f, z] ≤ Φ[g, z], provided that f ≤ g and f, g ∈ CL;

(iv) [sub-additivity] Φ[f + g, z] ≤ Φ[f, z] + Φ[g, z], provided that f, g ∈ CL.

All these facts follow immediately from the fact that Φ[f, z] is the optimal
value of the optimization problem in the right hand side of (4.5.12).

The case of P� = {P�}. In the case when all P� are singletons, i.e., the distri-
butions of ζ� are known exactly, we have the following nice result inspired by a
remarkable paper [46] (in fact we are offering here an alternative proof to the main
result of this paper):

Proposition 4.5.4. The bound Φ[f, z] is unimprovable: for z, P1, ..., PL fixed,
one can point out a collection of random variables ζ1,...,ζL with distributions
P1, ..., PL such that

E{f(z0 +
L∑

�=1

ζ�z�)} = Φ[f, z] (4.5.16)

for all convex piecewise linear (and therefore for all convex) functions f(·).
This statement deals with fixed z and P1, ..., PL; passing from the distributions P�

to distributions P ′
� of random variables z�ζ� with ζ� ∼ P� and adding distribution

PL+1 that sits at the point z0, the situation can be reduced to the one where
z1 = z2 = ... = zL = 1 and z0 = 0. In this “normalized” situation, the collection
of random variables ζ� that makes (4.5.16) valid can be defined by the following
construction from [46]:

As it is well-known, for every Borel probability distribution P (t) =
Prob{ξ ≤ t} of a scalar random variable ξ, there exists a nonde-
creasing continuous from the left function φP (s) on (0, 1) (namely,
φP (s) = inf{t : P (t) ≥ s}) such that the distribution of the random
variable φP (ν) with ν uniformly distributed on (0, 1) is exactly P . Let
φ�(·), � = 1, ..., L, be nondecreasing continuous from the left functions
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on (0, 1) that “produce” in this fashion the distributions P1, ..., PL. The
desired collection of random variables ζ1, ..., ζL is nothing but

ζ1 = φ1(ν), ..., ζL = φL(ν) (4.5.17)

with ν uniformly distributed on (0, 1).

Note that our ζ� are deterministic (and monotone) transformations of a common

random variable ν — in a sense, a situation that is completely opposite to inde-
pendence.

For the proof of Proposition 4.5.4 see section B.1.7.

4.5.3 Utilizing Covariance Matrix

Now let us add to (just partial) knowledge of marginal distributions of ζ� some
knowledge of the covariance matrix of ζ. Specifically, let us “upgrade” Assumption
S to

Assumption T: All our a priori information on the distribution of ζ

reduces to knowledge of some sets P�, � = 1, ..., L, in the space of prob-

ability distributions on the axis with finite second moment such that

the distributions P� of ζ� belong to the respective sets, plus knowledge

of certain set V ⊂ SL
+ such that Vζ := E{ζζT } ∈ V.

We want to build a safe convex approximation of the ambiguous version of (4.0.1)
associated with Assumption T, that is, of the constraint

Whenever the marginal distributions P� of ζ = [ζ1; ...; ζL] belong to

P�, � = 1, ..., L, and Vζ ∈ V, one has

p(z) := Prob
{

z0 +
∑L

�=1 z�ζ� > 0
}
≤ ε.

(4.5.18)

Now we know, to some extent, expectations of functions of ζ that are more general
than in the previous case, specifically, of functions of the form

ζT Γζ + 2
L∑

�=1

γ�(ζ�), Γ ∈ SL.

We can therefore modify the previous approach as follows: whenever the condition

(a) γ(u) ≡ uT Γu + 2
∑L

�=1 γ�(u�) ≥ 0 ∀u ∈ R
L

(b) z0 +
∑L

�=1 u�z� > 0 ⇒ γ(u) ≥ 1,
(4.5.19)

holds, we clearly have p(z) ≤ E{γ(ζ)}, so that the condition

E{γ(ζ)} ≤ ε

is a sufficient condition for the validity of (4.0.1). What remains is to extract from
this condition a safe convex approximation of (4.0.1). We are about to derive such
an approximation under additional restriction that we work only with Γ � 0 and
convex γ�(·), � = 1, ..., L.
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Theorem 4.5.5. If z can be extended to a solution of the system

(a)
[

λ 1
1 τ

]
� 0 (b)

[
∆ θ

θT 2
∑

� β�

]
� 0

(c)

[
∆ θ̂ − 1

2 [z1; ...; zL]
(θ̂ − 1

2 [z1; ...; zL])T 2
∑

� β̂� − λ− z0

]
� 0

(d) sup
V ∈V

Tr(V ∆) + 2
∑

� sup
P�∈P�

∫
max[β� + θ�s, β̂� + θ̂�s]dP�(s) ≤ λε

(4.5.20)

of convex constraints in variables z, ∆ ∈ SL, θ ∈ R
L, β ∈ R

L, θ̂ ∈ R
L, β̂ ∈ R

L,
λ, τ , then z is feasible for the ambiguous chance constraint (4.5.18) associated
with Assumption T. Thus, (4.5.20) is a safe convex approximation of (4.5.18);
this approximation is tractable provided that given ∆, β�, θ�, β̂�, θ̂�, the quantities
supV ∈V Tr(V ∆) and

sup
P�∈P�

∫
max[β� + θ�s, β̂� + θ̂�s]dP�(s), � = 1, ..., L,

are efficiently computable.

Proof. 10. Observe, first, that the condition

∃(λ, {δ�(·)}L
�=1, ∆) :

λ > 0 (a)
uT ∆u + 2

∑
� δ�(u�) ≥ 0 ∀u ∈ R

L (b)
uT ∆u + 2

∑
� δ�(u�)−

∑
� u�z� ≥ λ + z0 ∀u ∈ R

L (c)
E{ζT ∆ζ + 2

∑
� δ�(ζ�)} ≤ λε (d)

⎫⎪⎪⎬⎪⎪⎭
(4.5.21)

is a sufficient condition for the validity of the relation p(z) ≤ ε.

Indeed, let (λ, {δ�(·)}L
�=1,∆) satisfy (4.5.21.a–d). Setting Γ = λ−1∆, γ�(·) =

λ−1δ�(·), γ(u) = uT Γu + 2
∑

� γ�(u�), we get that γ(·) satisfies (4.5.19.a) (by
(4.5.21.b)) and (4.5.19.b) (by (4.5.21.c)), while E{γ(ζ)} ≤ ε (by (4.5.21.d)).

20. Now let ∆ � 0, let φ�(·), � = 1, ..., L, be convex real-valued functions on
the axis, and let G(u) = uT ∆u + 2

∑
� φ�(u�). We claim that

1) If G(u) ≥ 0 for all u, then

∃
(
θ ∈ R

L, β ∈ R
L
)

:
φ�(s) ≥ β� + θ�s∀(s ∈ R, � ≤ L) (a)[

∆ θ

θT 2
∑

� β�

]
� 0 (b)

⎫⎬⎭ . (4.5.22)

2) If condition (4.5.22) takes place then G(u) ≥ 0 for all u, and this conclusion
is valid independently of the convexity of φ�(·) and the assumption ∆ � 0.

To prove 1), let G(·) ≥ 0. By evident reasons, the convex problem min
u

G(u)

has a solution u∗, and from optimality conditions there exist θ� ∈ ∂φ�(u∗
� ) such

that ∆u∗ + θ = 0. Setting β� = φ�(u∗
� )− θ�u

∗
� , consider the quadratic form

Ĝ(u) = uT ∆u + 2
∑

�

[β� + θ�u�].
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By construction, Ĝ is convex, has zero gradient at u∗ and Ĝ(u∗) = G(u∗) ≥ 0, so
that Ĝ(·) ≥ 0, and therefore (4.5.22.b) takes place. Due to the convexity of φ�(·)
and the origin of θ�, β�, (4.5.22.a) holds true as well. 1) is proved.

To prove 2), let Ĝ(u) = uT ∆u+2
∑
�

[β�+θ�u�]. We have Ĝ(·) ≥ 0 by (4.5.22.b)

and Ĝ(·) ≤ G(·) by (4.5.22.a), whence G(·) ≥ 0.

30. We are ready to complete the proof. Assuming that (4.5.20) takes place,
let us set G(u) = uT ∆u+2

∑
� max[β�+θ�u�, β̂�+θ̂�u�]. Invoking 20.2), this function

is ≥ 0 everywhere (by (4.5.20.b)) and satisfies the relation G(u)−
∑

� u�z� ≥ λ+ z0

for all u (by (4.5.20.c)). By (4.5.20.d) we have E{G(ζ)} ≤ λε. Finally, (4.5.20.a)
implies that λ > 0. These relations combine with 10 to imply that p(z) ≤ ε. �

4.5.4 Illustration

Let us compare the performance of the various approximations suggested by our
developments using the following simple chance constrained problem

Opt(ε) = max

{
t : Prob

{
ζ10 ≡

10∑
�=1

ζ� > t

}
≥ 1− ε

}
. (4.5.23)

The “cover story” might be as follows:

You have a portfolio with unit investments in every one of 10 assets.
The yearly return for asset #� is ζ�. You should find the Value-at-Risk ε

of the portfolio, that is, the largest t such that the value of the portfolio
in a year from now is < t with probability at most ε.

Our setups are as follows:

• the returns ζ� are log-normal random variables of the form

ζ� = exp{µ� + σ�e
T
� η},

where µ� is the deterministic trend (expected log of the return ζ�), σ� > 0
is the deterministic variability of the log of the return, η ∼ N (0, Im) is the
vector of random factors, common for all returns, underlying the actual values
of the returns and e� are m-dimensional deterministic unit vectors indicating
how the factors η affect individual returns.

• we consider two sets of the data:

DataI : µ� = σ� = ln(1.25), � = 1, ..., 10, m = 1, e� = 1, � = 1, ..., 10 (that is,
the returns are equal to each other).
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DataII : σ�, µ� are as in DataI, and the eT
� are the rows of the following matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7559 −0.1997 0.6235
0.2861 −0.8873 0.3616

−0.9516 0.2221 −0.2124
−0.5155 −0.8472 −0.1286

0.9354 0.2621 −0.2374
−0.7447 −0.3724 0.5538
−0.9315 −0.2806 0.2316

0.0721 0.3435 0.9364
0.2890 −0.8465 0.4472

−0.9159 0.4003 −0.0292

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The numerical results are shown in tables 4.2, 4.3. The notation in the tables is as
follows:

• Bound A is the one given by Theorem 4.5.1;

• Bound B is the one given by Theorem 4.5.5;

• Bound C is the “engineering bound”

Opt = E{ζ10} − ErfInv(ε)StD{ζ10}
built as if the random variable ζ10 were Gaussian, (note that in contrast to
Bounds A, B that provably underestimate Opt(ε), Bound C can overestimate
this quantity);

• Bound D is the empirical lower ε quantile of the distribution of
∑

� ζ� com-
puted over 1,000,000 realizations of ζ10.

Probabilities in the tables are empirical probabilities computed over 106 realizations
of ζ10. For the case of DataI, it is easy to compute the true value of Opt(ε), and
we provide it in table 4.2. As it could be guessed in advance, utilizing covariances
does not help in the case of “degenerate” data DataI (rows “Bound A” and “Bound
B” in table 4.2); good news is that it helps significantly in the case of DataII. We
see also that the “engineering” bound C on our data is safe and most of the time
outperforms the bounds A, B; it is, however, worse than these bounds on DataI
with “small” ε.

4.5.5 Extensions to Quadratically Perturbed Chance Constraints

Consider next a chance constrained version of the randomly perturbed quadratic
inequality

p(W,w) ≡ Prob

{
ζT Wζ + 2

L∑
�=1

ζ�w� + w0 > 0

}
≤ ε (4.5.24)

in variables z = (W,w) ∈ SL × R
L+1, ζ ∈ R

L being random perturbations.

We start with the case when all we know about ζ is that the distributions of
ζ� belong to given families P�, � = 1, ..., L. Exactly the same reasoning as in the
proof of Theorem 4.5.5 yields the following results.
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ε

0.100 0.050 0.010 0.005

Bound A 8.484 7.915 6.912 6.570

Prob{ζ10 < Bound A} 0.0413 0.0190 0.0040 0.0020

Bound B 8.484 7.915 6.912 6.570
Prob{ζ10 < Bound B} 0.0413 0.0190 0.0040 0.0020

Bound C 9.104 8.052 6.079 5.357
Prob{ζ10 < Bound C} 0.0777 0.0230 0.0006 0.0001

Bound D 9.389 8.656 7.445 7.040

Opt(ε) 9.394 8.669 7.449 7.044

Table 4.2 Results for DataI.

ε

0.100 0.050 0.010 0.005

Bound A 8.484 7.915 6.912 6.570
Prob{ζ10 < Bound A} 0.0000 0.0000 0.0000 0.0000

Bound B 10.371 9.823 8.289 7.471
Prob{ζ10 < Bound B} 0.0020 0.0000 0.0000 0.0000

Bound C 11.382 10.976 10.213 9.934
Prob{ζ10 < Bound C} 0.0810 0.0267 0.0008 0.0001

Bound D 11.478 11.185 10.702 10.545

Table 4.3 Results for DataII.

Theorem 4.5.6. Let ζ satisfy Assumption S and let all distributions form the
sets P�, � = 1, ..., L, possess finite second moments. Then the condition

∃
(

θ ∈ R
L, β ∈ R

L, λ,

θ̂ ∈ R
L, β̂ ∈ R

L, µ ∈ R
L

)
:[

λ 1
1 τ

]
� 0,

[
Diag{µ} θ

θT 2
∑

� β�

]
� 0[

Diag{µ} −W θ̂ − [w1; ...;wL]
[θ̂ − [w1; ...; wL]]T 2

∑
� β̂� − λ− w0

]
� 0∑L

�=1 sup
P�∈P�

∫ [
µ�s

2 + 2 max[β� + θ�s, β̂� + θ̂�s]
]
dP�(s) ≤ λε

(4.5.25)

is sufficient for the validity of the ambiguous chance constraint

“Whenever the distributions P� of ζ� belong to P�, 1 ≤ � ≤ L, one has

Prob
{

ζT Wζ + 2
∑L

�=1w�ζ� + w0 > 0
}
≤ ε.”
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Theorem 4.5.7. Let ζ satisfy Assumption T. Then the condition

∃
(

θ ∈ R
L, β ∈ R

L, λ, τ,

θ̂ ∈ R
L, β̂ ∈ R

L,∆ ∈ SL

)
:[

λ 1
1 τ

]
� 0,

[
∆ θ

θT 2
∑

� β�

]
� 0[

∆−W θ̂ − [w1; ...; wL]
[θ̂ − [w1; ...;wL]]T 2

∑
� β̂� − λ− w0

]
� 0

sup
V ∈V

Tr(V ∆) + 2
∑L

�=1 sup
P�∈P�

∫
max[β� + θ�s, β̂� + θ̂�s]dP�(s) ≤ λε

(4.5.26)

is sufficient for the validity of the ambiguous chance constraint

“Whenever the distributions P� of ζ� belong to P�, 1 ≤ � ≤ L, and Vζ :=

E{ζζT } ∈ V, one has Prob
{

ζT Wζ + 2
∑L

�=1w�ζ� + w0 > 0
}
≤ ε.”

4.5.5.1 Refinements in the case of Gaussian perturbations.

Now assume that ζ ∼ N (0, I). Let

F (W,w) = w0 − 1
2 ln Det(I − 2W ) + 2bT (I − 2W )−1[w1; ...;wL]

Dom F = {(W,w) ∈ SL × R
L+1 : 2W ≺ I}

(4.5.27)

Our interest in this function stems from the following immediate observation:

Lemma 4.5.8. Let ζ ∼ N (0, I), and let

ξ = ξW,w = ζT Wζ + 2[w1; ...; wL]T ζ + w0.

Then ln
(
E
{
exp{ξW,w}

})
= F (W,w).

Applying the Bernstein approximation scheme (section 4.2), we arrive at the fol-
lowing result:

Theorem 4.5.9. Let
Φ(β,W,w) = βF (β−1(W,w))

= β

[
− 1

2 lnDet(I − 2β−1W )

+2β−2[w1; ...; wL]T (I − 2β−1W )−1[w1; ...; wL]
]

+ w0,

Dom Φ = {(β, W,w) : β > 0, 2W ≺ βI},
Zo

ε = {(W,w) : ∃β > 0 : Φ(β,W,w) + β ln(1/ε) ≤ 0} ,

Zε = cl Zo
ε .

(4.5.28)
Then Zε is the solution set of the convex inequality

H(W,w) ≡ inf
β>0

[Φ(β, W,w) + β ln(1/ε)] ≤ 0. (4.5.29)

If ζ ∼ N (0, I), then this inequality is a safe tractable approximation of the chance
constraint (4.5.24).
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For the proof, see section B.1.8.

Application: A useful inequality. Let W be a symmetric L× L matrix and w

be an L-dimensional vector. Consider the quadratic form

f(s) = sT Ws + 2wT s,

and let ζ ∼ N (0, I). We clearly have E{f(ζ)} = Tr(W ). Our goal is to establish a
simple bound on Prob{f(ζ)− Tr(W ) > t}, and here is this bound:

Proposition 4.5.10. Let λ be the vector of eigenvalues of W . Then

∀Ω > 0 : Probζ∼N (0,I)

{
[ζT Wζ + 2wT ζ]− Tr(W ) > Ω

√
λT λ + wT w

}
≤ exp

{
− Ω2

√
λT λ+wT w

4
(
2
√

λT λ+wT w+‖λ‖∞Ω
) } (4.5.30)

(by definition, the right hand side is 0 when W = 0, w = 0).

Proof. The claim is clearly true in the trivial case of W = 0, w = 0, thus
assume that f is not identically zero. Passing to the orthonormal eigenbasis of W ,
we can w.l.o.g. assume that W is diagonal with diagonal entries λ1, ..., λL. Given
Ω > 0, let us set s = Ω

√
λT λ + wT w and let

γ =
s

2 (2(λT λ + wT w) + ‖λ‖∞s)
,

so that
0 < γ & 2γW ≺ I &

4γ(λT λ + wT w)
1− 2γ‖λ‖∞

= s. (4.5.31)

Applying Theorem 4.5.9 with w0 = −[Tr(W ) + s] and specifying β as 1/γ, we get

Prob{f(ζ) > Tr(W ) + s}
≤ exp

{
−γs +

∑L
�=1

(
− 1

2 ln(1− 2γλ�) + 2γ2 w2
�

1−2γλ�
− γλ�

)}
≤ exp

{
−γs +

∑L
�=1

(
γλ�

1−2γλ�
+ 2γ2 w2

�

1−2γλ�
− γλ�

)}
[since ln(1− δ) + δ

1−δ ≥ ln(1) = 0 by the concavity of ln(·)]
= exp

{
−γs +

∑L
�=1

(
2γ2(λ2

�+w2
� )

1−2γλ�

)}
≤ exp

{
−γs + 2γ2(λT λ+wT w)

1−2γ‖λ‖∞

}
≤ exp{−γs

2 }
[by (4.5.31)] .

Substituting the values of γ and s, we arrive at (4.5.30). �

Application: Linearly perturbed Least Squares inequality. Consider a
chance constrained linearly perturbed Least Squares inequality

Prob {‖A[x]ζ + b[x]‖2 ≤ c[x]} ≥ 1− ε, (4.5.32)
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where A[x], b[x], c[x] are affine in the variables x and ζ ∼ N (0, I). Taking squares
of both sides in the body of the constraint, this inequality is equivalent to

∃U, u, u0 :[
U uT

u u0

]
�
[

AT [x]A[x] AT [x]b[x]
bT [x]A[x] bT [x]b[x]− c2[x]

]
,

Prob
{

ζT Uζ + 2
∑L

�=1 u�ζ� + u0 > 0
}
≤ ε.

Assuming c[x] > 0, passing from U, u variables to W = c−1[x]U, w = c−1[x]u, and
dividing both sides of the LMI by c[x], this can be rewritten equivalently as

∃(W,w, w0) :[
W wT

w w0 + c[x]

]
� c−1[x][A[x], b[x]]T [A[x], b[x]],

Prob
{

ζT Wζ + 2
∑L

�=1 w�ζ� + w0 > 0
}
≤ ε.

The constraint linking W,w and x is, by the Schur Complement Lemma, nothing
but the Linear Matrix Inequality⎡⎣ W [w1; ...; wL] AT [x]

[w1, ..., wL] w0 + c[x] bT [x]
A[x] b[x] c[x]I

⎤⎦ � 0. (4.5.33)

Invoking Theorem 4.5.9, we arrive at the following

Corollary 4.5.11. The system of convex constraints (4.5.33) and (4.5.29) in
variables W,w, x is a safe tractable approximation of the chance constrained Least
Squares Inequality (4.5.32).

Note that while we have derived this Corollary under the assumption that
c[x] > 0, the result is trivially true when c[x] = 0, since in this case (4.5.33) already
implies that A[x] = 0, b[x] = 0 and thus (4.5.32) holds true.

4.5.6 Utilizing Domain and Moment Information

We proceed with considering the chance constraint (4.5.24), which we now rewrite
equivalently as

Prob{A(W,w; ζ) > 0} ≤ ε,

where
A(W,w; u) := [u; 1]T Z[W,w][u; 1],

Z[W,w] =
[

W [w1; ...; wL]
[w1; ...; wL]T w0

] . (4.5.34)

In contrast to what was assumed in the previous subsection, now we make the
following assumptions:

R.1) We have partial information on the expectation and the covariance

matrix of ζ, specifically, we are given convex compact set V ⊂ SL+1
+ that
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contains the matrix

Vζ = E
{[

ζζT ζ

ζT 1

]}
.

Note that the matrix in question is E{[ζ; 1][ζ; 1]T } and is therefore � 0;
besides this, (Vζ)L+1,L+1 = 1. This is why we lose nothing by assuming
that V ⊂ SL+1

+ and that VL+1,L+1 = 1 for all V ∈ V.

R.2) ζ is supported in a known set U given by a finite system of

quadratic (not necessarily convex) constraints:

U = {u ∈ R
L : fj(u) = [u; 1]T Aj [u; 1] ≤ 0, j = 1, ...,m},

where Aj ∈ SL+1.

We are about to build a safe tractable approximation of the chance constraint
(4.5.34), and our strategy will combine the approach we have used when building
Bernstein and CVaR approximations with Lagrange relaxation (see p. 112) and is
very close to the strategy developed in [18]. Specifically, given a quadratic form

h(u) = uT Pu + 2pT u + r = [u; 1]T
[

P p

pT r

]
︸ ︷︷ ︸

H

[u; 1]

on R
L+1, assumption R.1 allows us to bound from above the expectation of h(ζ):

E{h(ζ)} = Tr(HVζ) ≤ max
V ∈V

Tr(HV ).

Now assume that h(·) is nonnegative everywhere on U and is > 1 at every u ∈
U\Q[W,w], where

Q[W,w] = {u ∈ R
L : A(W,w;u) ≤ 0}.

Then h(u) everywhere in U is an upper bound on the characteristic function of the
set U\Q[W,w]; since ζ is supported in U , we have essentially proved the following

Lemma 4.5.12. Let H[W,w] be the set of all symmetric matrices H ∈ SL+1

such that
(a) [u; 1]T H[u; 1] ≥ 0 ∀u ∈ U

(b) inf
u∈U

{
−A(W,w; u) : [u; 1]T [H − E][u; 1] ≤ 0

}
≥ 0,

(4.5.35)

where
E =

[
1

]
∈ SL+1.

Then
p(W,w) ≡ Prob{A(W,w; ζ) > 0} ≤ inf

H∈H[W,w]
ψ(H),

ψ(H) = max
V ∈V

Tr(HV ).
(4.5.36)

Proof. Let H ∈ H[W,w] and h(u) = [u; 1]T H[u; 1]. By (4.5.35.a) we have
h(u) ≥ 0 for all u ∈ U . Besides this, by (4.5.35.b), if u ∈ U\Q[W,w], that is, if
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−A(W,w;u) < 0, we have h(u) − 1 = [u; 1]T [H − E][u; 1] > 0; thus, h(u) > 1
everywhere on U\Q[W,w]. It follows that

p(W,w) ≤ E{h(ζ)} = Tr(HVζ) ≤ max
V ∈V

Tr(HV ).

Thus,
∀H ∈ H[W,w] : p(W,w) ≤ ψ(H),

and (4.5.36) follows. �

Our local goal is to extract from Lemma 4.5.12 a safe tractable approximation
of (4.5.34).

Observe, first, that by evident reasons one has⎛⎝∃λ ∈ R
m
+ : H +

m∑
j=1

λjAj � 0

⎞⎠⇒ H satisfies (4.5.35.a) (4.5.37)

and (
∃(µ ∈ R

m
+ , γ > 0) : γ(H − E)− Z[W,w] +

m∑
j=1

µjAj � 0

)
⇒ H satisfies (4.5.35.b).

(4.5.38)

Essentially, we have established the following:

Proposition 4.5.13. The condition

∃P, ν, µ, γ, τ :

(a.1) P +
∑

j νjAj � 0 (a.2) ν ≥ 0

(b.1) P − γE − Z[W,w] +
∑

j µjAj � 0 (b.2) µ ≥ 0

(c) ψ(P ) := max
V ∈V

Tr(PV ) ≤ γε (d)
[

γ 1
1 τ

]
� 0

(4.5.39)

is sufficient for (W,w) to satisfy the chance constraint (4.5.34) and thus defines a
safe convex approximation of the constraint. This approximation is computationally
tractable, provided that ψ(·) is efficiently computable.

Proof. Consider the condition
∃(H ∈ SL+1, λ ∈ R

m
+ , µ ∈ R

m
+ , γ > 0) :

H +
∑

j λjAj � 0 (a)

γ(H − E)− Z[W,w] +
∑

j µjAj � 0 (b)

γ max
V ∈V

Tr(V H)− γε ≤ 0 (c)

. (4.5.40)

We claim that this condition is sufficient for the validity of the chance constraint
(4.5.34).

Indeed, let (H,λ ≥ 0, µ ≥ 0, γ > 0) satisfy the relations in (4.5.40). By
(4.5.40.a) and due to (4.5.37), H satisfies (4.5.35.a). By (4.5.40.b) and due to
(4.5.38), H satisfies (4.5.35.b). Combining Lemma 4.5.12 and (4.5.40.c), we derive
from these observations that p(W,w) ≤ ε, as claimed.
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To complete the proof, it remains to show that (4.5.40) is equivalent to
(4.5.39). Indeed, let (H,λ ≥ 0, µ ≥ 0, γ > 0) be such that the conditions (4.5.40.a-
c) take place. Let us set P = γH, ν = γλ, τ = 1/γ. Then (P, ν, µ, τ, γ) clearly
satisfies (4.5.39.a, b, d). Since ψ clearly is homogeneous of degree 1, (4.5.39.c) is
satisfied as well. Vice versa, if (P, ν, µ, τ, γ) satisfies (4.5.39.a-c), then γ > 0 by
(4.5.39.d); setting H = γ−1P , λ = γ−1ν and taking into account that ψ is homo-
geneous of degree 1, we have λ ≥ 0, ν ≥ 0, γ > 0 and (H,λ, µ, γ) satisfies (4.5.40).
Thus, conditions (4.5.40) and (4.5.39) are equivalent. �

Approximation in Proposition 4.5.13 admits a useful modification as follows:

Proposition 4.5.14. Given ε > 0, consider the chance constraint (4.5.34) and
assume that

Prob
{
ζ : [ζ; 1]T Aj [ζ; 1] ≤ 0, j = 1, ..., m

}
≥ 1− δ

for some known δ ∈ [0, ε]. Then the condition

∃P, µ, γ, τ :

(a) P � 0

(b.1) P − γE − Z[W,w] +
∑

j µjAj � 0 (b.2) µ ≥ 0

(c) ψ(P ) := max
V ∈V

Tr(PV ) ≤ γ[ε− δ] (d)
[

γ 1
1 τ

]
� 0

(4.5.41)

is sufficient for (W,w) to satisfy the chance constraint (4.5.34).

Proof. Let (P, µ, γ, τ, W,w) be a feasible solution to (4.5.41.a–d); note that
γ > 0 by (4.5.41.d). Setting H = γ−1P and taking into account that ψ is homoge-
neous of degree 1, we have

h(u) ≡ [u; 1]T H[u, 1] ≥ 0 ∀u [by (4.5.41.a)]

u ∈ G ≡ {u : [u; 1]T Aj [u; 1] ≤ 0, 1 ≤ j ≤ m}
⇒ [u; 1]T Z[W,w][u; 1] ≤ γ[h(u)− 1] [by (4.5.41.b)]

max
V ∈V

Tr(HV ) ≤ ε− δ [by (4.5.41.c)]

The first and the second of these relations say that the function h(u) is everywhere
nonnegative and is ≥ 1 whenever u ∈ G is such that [u; 1]T Z[W,w][u; 1] > 0.
Denoting by χ(·) the characteristic function of the set G\{u : [u; 1]T Z[W,w][u; 1] ≤
0}, we therefore have χ(u) ≤ h(u) for all u. It follows that

Prob{ζ ∈ G & [ζ; 1]T Z[W,w][ζ; 1] > 0} = E{χ(ζ)} ≤ E{h(ζ)} = Tr(HVζ)

≤ max
V ∈V

Tr(HV ) ≤ ε− δ,

whence
Prob{[ζ; 1]T Z[W,w][ζ; 1] > 0} ≤ Prob{ζ ∈ G & [ζ; 1]T Z[W,w][ζ; 1] > 0}
+Prob{ζ �∈ G} ≤ (ε− δ) + δ = ε.

�

Basic properties of the approximation (4.5.39). These properties are as
follows.
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1. The approximation “respects invertible affine transformations.” Specifically, let
the random perturbations ζ and η be linked by ζ = Rη + r with deterministic R, r

and nonsingular R. Then the chance constraints

(a) p(W,w) ≡ Prob{[ζ; 1]T Z[W,w][ζ; 1] > 0} ≤ ε

(b) p̂(Ŵ , ŵ) ≡ Prob{[η; 1]T Z[Ŵ , ŵ][η; 1] > 0} ≤ ε,

Z[Ŵ , ŵ] =
[

R r

1

]T

Z[W,w]
[

R r

1

]
︸ ︷︷ ︸

R

(4.5.42)

are equivalent to each other, and information on ζ given in assumptions R.1–2
induces similar information on η, namely,

(a) Vη ≡ E
{
[η; 1][η; 1]T

}
∈ V̂ = {R−1VR−T : V ∈ V},

(b) Prob{[η; 1]T Âj [η; 1] > 0} = 0, j = 1, ..., m,

where Âj = RT AjR.

(4.5.43)

It is easily seen that the approximations, given by Proposition 4.5.13, of the chance
constraints (4.5.42.a,b) are also equivalent to each other: whenever the approx-
imation of the first chance constraint says that a pair (W,w) is feasible for it,
the approximation of the second chance constraint says that the pair (Ŵ , ŵ) corre-
sponding to (W,w) according to (4.5.42) is feasible for the second chance constraint,
and vice versa.

2. Observe that given a system of quadratic inequalities defining U , we can al-
ways add to it linear combinations, with nonnegative coefficients, of the original
quadratic inequalities and identically true ones. Such a “linear extension” of the
original description of U results in a new approximation (4.5.39) of (4.5.34). It
turns out that our approximation scheme is intelligent enough to recognize that
such linear extension in fact adds no new information: it is easily seen that when-
ever (W,w) can be extended to a feasible solution of the system of constraints in
(4.5.39) corresponding to the original description of U , (W,w) can be extended to
a feasible solution to the similar system associated with a linear extension of this
description, and vice versa.

3. The approximation is intelligent enough to recognize that probability is always
≤ 1: the condition (4.5.39) with ε > 1 is always satisfied.

4. Consider the case when the body of (4.5.34) is linearly perturbed: W = 0, and,

in addition, V = {Vζ} is a singleton, and ζ is centered: Vζ =
[

V

1

]
. In this

case, assuming that w0 < 0, we can bound the probability

p(0, w) = Prob
{
[ζ; 1]T Z[0, w][ζ; 1] > 0

}
≡ Prob

{
2

L∑
p=1

ζiwi + w0 > 0

}
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by Tschebyshev inequality. Specifically, setting w̄ = [w1; ...; wL], we have 2w̄T ζ +
w0 > 0 ⇒ 2w̄T ζ > |w0| ⇒ 4(w̄T ζ)2 ≥ w2

0, whence

p(0, w) ≤ min[1, 4E{(w̄T ζ)2}/w2
0] =: ε̄.

It is easily seen that in this special case the approximation (4.5.39) is intelligent
enough to be at least as good as the outlined Tschebyshev bound, that is, if ε∗ is
the infimum of those ε for which the system of LMIs

(a.1) P +
∑

j νjAj � 0 (a.2) ν ≥ 0

(b.1) P − γE − Z[0, w] +
∑
j

µjAj � 0 (b.2) µ ≥ 0

(c) Tr(PDiag{V, 1})− γε ≤ 0 (d)
[

γ 1
1 τ

]
� 0

(4.5.44)

in variables P, ν, µ, τ, γ is feasible, then ε∗ ≤ ε̄.
Indeed, assume first that ε̄ < 1, and set

ν = 0, µ = 0, γ = −w0/2, τ = 1/γ, P =

[ 1
γ
w̄w̄T

0

]
.

For these values of the variables, relations (4.5.44.a, b.2, d) clearly are valid. Further, since
−γ − w0 = γ > 0, we have

P − γE − Z[0, w] +
∑

j

µjAj =

[ 1
γ
w̄w̄T −w̄

−w̄T γ

]
� 0,

so that (4.5.44.b.1) takes place as well. Let us verify that (4.5.44.c) is valid with ε = ε̄
(this would imply that ε∗ ≤ ε̄). Indeed,

Tr(PDiag{V, 1}) = Tr(γ−1w̄w̄T V ) =
w̄T V w̄

γ
= γ

4w̄T V w̄

w2
0

= γε̄,

as claimed. The case of ε̄ = 1 is resolved by item 3.

5. Assume that V = {Diag{V, 1} : 0 � V � V̂ } (that is, we know that ζ has zero
mean and the covariance matrix of ζ is � V̂ ). Given an n × n matrix Q � 0 and
a positive α, we can bound the quantity p ≡ Prob{ζT Qζ > α} from above via the
Tschebyshev bound:

p ≤ E{ζT Qζ}/α ≤ ε̄ = min[1, Tr(V̂ Q)/α].

It turns out that the condition (4.5.39) is intelligent enough to recover this bound.
Indeed, let W,w be given by Z[W,w] = Diag{Q,−α}, and let ε∗ be the infimum of
those ε for which the system of LMIs

(a.1) P +
∑

j νjAj � 0 (a.2) ν ≥ 0

(b.1) P − γE − Z[W,w] +
∑
j

µjAj � 0 (b.2) µ ≥ 0

(c) max
0V V̂

Tr(PDiag{V, 1})− γε ≤ 0 (d)
[

τ 1
1 γ

]
� 0

(4.5.45)
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in variables P, ν, µ, τ, γ has a solution; then ε∗ ≤ ε̄.
Indeed, assume first that ε̄ < 1, and let us set

P = Diag{Q, 0}, ν = 0, µ = 0, γ = α, τ = 1/γ.

This choice clearly ensures (4.5.45.a, b, d), and makes the left hand side in (4.5.45.c) equal

to Tr(QV̂ ) − αε; thus, (4.5.45) is satisfied when ε = ε̄ ≡ Tr(QV̂ )/α, and therefore ε∗ ≤ ε̄.

The case of ε̄ = 1 is resolved by item 3.

6. Assume that A′
j � θjAj , θj > 0, j = 1, ...,m, and (W,w), (W ′, w′) are such that

θZ[W,w] � Z[W ′, w′] with θ > 0, so that

{u : [u; 1]T Aj [u; 1] ≤ 0, 1 ≤ j ≤ m} ⊂ {u : [u; 1]T A′
j [u; 1] ≤ 0, 1 ≤ j ≤ m},

[u; 1]T Z[W,w][u; 1] > 0 ⇒ [u; 1]T Z[W ′, w′][u; 1] > 0.

In view of these relations, the validity of assumptions R.1–2 associated with some
V and the data {Aj} implies the validity of assumptions R.1–2 associated with the
same V and the data {A′

j}, and for every random vector ζ one has

Prob{[ζ; 1]T Z[W ′, w′][ζ; 1] > 0} ≥ Prob{[ζ; 1]T Z[W,w][ζ; 1] > 0}.
Thus, if for all distributions of ζ compatible with assumptions R.1–2, the data
being {A′

j}, one has Prob{[ζ; 1]T Z[W ′, w′][ζ; 1] > 0} ≤ ε, then for all distri-
butions of ζ compatible with assumptions R.1–2, the data being {Aj}, one has
Prob{[ζ; 1]T Z[W,w][ζ; 1] > 0} ≤ ε.

It is easily seen that the approximation of (4.5.34) given by (4.5.39) is intel-
ligent enough “to understand” the above conclusion. Specifically, if ε is such that
the system of constraints

(a.1) P ′ +
∑

j ν′
jA

′
j � 0 (a.2) ν′ ≥ 0

(b.1) P ′ − γ′E − Z[W ′, w′] +
∑

j µ′
jA

′
j � 0 (b.2) µ′ ≥ 0

(c) ψ(P ′)− γ′ε ≤ 0 (d)
[

τ ′ 1
1 γ′

]
� 0

(4.5.46)
in variables P ′, ν′, µ′, τ ′, γ′ is feasible, then the system of constraints

(a.1) P +
∑

j νjAj � 0 (a.2) ν ≥ 0

(b.1) P − γE − Z[W,w] +
∑

j µjAj � 0 (b.2) µ ≥ 0

(c) ψ(P )− γε ≤ 0 (d)
[

τ 1
1 γ

]
� 0

(4.5.47)

in variables P, ν, µ, τ, γ is feasible as well.
Indeed, let (P ′, ν′, µ′, τ ′, γ′) be a feasible solution to (4.5.46). Setting

νj = θ−1θjν
′
j , µj = θ−1θjµ

′
j , P = θ−1P ′, γ = θ−1γ′, τ = θτ ′,
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and taking into account that ψ(·) is homogeneous of degree 1, it is immediately seen that
(P, ν, µ, τ, γ) is a feasible solution to (4.5.47). For example, we have

P − γE − Z[W, w] +
∑

j µjAj = θ−1
[
P ′ − γ′E − θZ[W, w] +

∑
j µ′

jθjAj

]
�︸︷︷︸
(∗)

θ−1
[
P ′ − γ′E − Z[W ′, w′] +

∑
j µ′

jA
′
j

]
� 0,

where (∗) is given by θZ[W, w] � Z[W ′, w′] and θjAj � A′
j .

7. Assume that the body of the chance constraint (4.5.34) is linearly perturbed:

Z = Z[0, w] =
[

p

pT q

]
and that q < 0. Then we can write

[ζ; 1]T Z[0, w][ζ; 1] > 0 ⇔ 2pT ζ > −q

⇒ 4ζT ppT ζ > q2 ⇔ [ζ; 1]T Z[W ′, w′][ζ; 1] > 0,

Z[W ′, w′] =
[

4ppT

−q2

]
whence also

[ζ; 1]T Z[0, w][ζ; 1] > 0 ⇒ [ζ; 1]T Z[βW ′, αw + βw′][ζ; 1] > 0, 0 �= [α; β] ≥ 0,

so that
∀([α;β] ≥ 0, [α; β] �= 0) : Prob{[ζ; 1]T Z[0, w][ζ; 1] > 0}

≤ Prob{[ζ; 1]T Z[βW ′, αw + βw′][ζ; 1] > 0}.
It follows that for every 0 �= [α; β] ≥ 0, the safe convex approximation, given by
(4.5.39), of the chance constraint

Prob{[ζ; 1]T Z[βW ′, αw + βw′][ζ; 1] > 0} ≤ ε

is a safe convex approximation of the chance constraint of interest (4.5.34). Thus,
we end up with seemingly a two-parametric family of safe tractable approximations
of (4.5.34). Is there the best — the least conservative — member in this family?
The answer is positive, and one of the best members is the original pair (0, w)
(corresponding to the choice α = 1, β = 0).

Indeed, invoking item 6, in order to prove that the validity of (4.5.39) with (W̃ , w̃) =
α(0, w) + β(W ′, w′) (where 0 �= [α; β] ≥ 0) in the role of (0, w) implies the validity of

(4.5.39) as it is, it suffices to prove that there exists θ > 0 such that Z[W̃ , w̃] � θZ[0, w].
To this end note that Z[W ′, w′] � 2|q|Z[0, w]:

Z[W ′, w′] − 2|q|Z[0, w] =

[
4ppT −2|q|p

−2|q|pT q2

]
� 0.

Thus, Z[βW ′, αw +βw′] � (α+2|q|β)Z[0, w]. Since 0 �= [α; β] ≥ 0, the quantity α+2|q|β
is positive.

Strengthening approximation (4.5.39). Assume that the system of quadratic
inequalities in R.2 contains a linear inequality, say,

f1(u) = 2aT u + α ⇔ A1 =
[

a

aT α

]
.
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Assume, further, that we know a constant β > α such that

fj(u) ≤ 0, i = 1, ..., m ⇒ 2aT u + β ≥ 0.

Then we can add to the original constraints fj(u) ≤ 0, j = 1, ..., m, specifying U

the redundant constraint fm+1(u) ≡ −2aT u− β ≤ 0. Another option is to replace
the linear constraint f1(u) ≤ 0 with the quadratic one

f̂1(u) ≡ 1
4
f1(u)(−fm+1(u)) ≡ uT aaT u +

α + β

2
aT u +

αβ

4
≤ 0 (∗)

and keep remaining constraints fj(u) ≤ 0, j = 1, ...,m, intact. Note that since (∗)
clearly is valid on U , this transformation can only increase U (in fact, it keeps U

intact) and therefore it preserves the validity of R.2. A natural question is, what is
wiser (that is, what results in the less conservative safe approximation (4.5.39) of
the chance constraint (4.5.34)):

A. To use the original description fj(u) ≤ 0, j = 1, ..., m of U ,

B. To describe U by the constraints fj(u) ≤ 0, j = 1, ..., m + 1,

C. To describe U by the constraints f̂1(u) ≤ 0, fj(u) ≤ 0, j = 2, ..., m,

D. To describe U by the constraints fj(u) ≤ 0, j = 1, ..., m + 1, f̂1(u) ≤ 0.

If we were adding to the system of constraints defining U its “linear consequences,”
see item 2 above, the options A through C would be the same. However, the con-
straint fm+1(u) ≤ 0, while being a consequence of the original constraints defining
U , is not necessarily their linear consequence, so that item 2 does not apply now.

The correct answer is that in terms of conservatism, option B clearly is not
worse than option A. A less trivial observation is that option C is at least as good
as option B (and in fact can be much better than B), and is exactly as good as
option D (that is, option C is the best — it is not more conservative than options
A, B and is simpler than the equally conservative option D).

Indeed, option B means that we extend the collection of matrices Aj , 1 ≤ j ≤ m, by

adding the matrix Am+1 =

[
−a

−aT −β

]
, option C means that we update the original

collection by replacing A1 with the matrix

Â1 =

[
aaT pa

paT q

]
, p =

α + β

4
, q =

αβ

4
,

and option D means that we add to the original collection both the matrices Am+1 and
Â1. Let us verify that Â1 � θ1A1 and Â1 � θm+1Am+1 with properly chosen θ1, θm+1 > 0;
in view of the result of item 6 above, this would imply that option C is not worse than
options B and D. Verification is immediate: we have β − α > 0,

Â1 −
β − α

4
A1 =

[
aaT α

2
a

α
2
aT α2

4

]
� 0

and

Â1 −
β − α

4
Am+1 =

[
aaT β

2
a

β
2
aT β2

4

]
� 0.
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Discussion. The innocently looking question of what is the best among the alter-
natives A through D leads to serious and challenging research questions related to
the quality of Lagrange Relaxation. Indeed, the considerations that led us to the
safe approximation (4.5.39) were based on the following evident observation:

A sufficient condition for a function f(u) to be nonnegative on the do-
main U = {u : fj(u) ≤ 0, j = 1, ...,m} is

∃λ ≥ 0 : ∀u : f(u) +
∑

i

λifi(u) ≥ 0. (∗)

When f and all fj are quadratic functions, (which is the case we are concerned
with), this condition is tractable — it is equivalent to the existence of a feasible
solution to an explicit system of LMIs. Now, aside from the cases when (a) all f, fj

are affine, and (b) all f, fj are convex and the system of constraints fj(u) ≤ 0,
j = 1, ..., m, is strictly feasible, condition (∗) is only sufficient, but not necessary,
for the relation min

U
f(u) ≥ 0. Clearly, the “gap” between the validity of the latter

fact and the validity of the condition (∗) can only shrink when we add to the list of
constraints specifying U their consequences — (quadratic) inequalities of the form
g(u) ≤ 0 that are valid on U . The question (its importance goes far beyond the
topic of chance constraints) is, how to generate these consequences in such a way
that the gap indeed shrinks, that is, (∗) is invalid before we add the consequence
and becomes valid after we add it.

There are many ways to generate consequences of a system of quadratic con-
straints, the simplest ones being as follows:

i) “Linear aggregation” mentioned in item 2 above: we add to the list of the
original constraints weighted sums, with nonnegative weights, of the original
constraints and, perhaps, identically true quadratic inequalities (say, −x2 −
y2 +2xy−1 ≤ 0). This way “to add consequences” is of no interest; it cannot
convert an invalid predicate (∗) into a valid one (cf. item 2 above).

ii) Passing from linear constraints to quadratic ones. Specifically, assume that
f1(u) is linear and that we can bound from below this linear function on U ,
that is, we can find c such that f1(u) + c ≥ 0 for u ∈ U . Then the quadratic
inequality g(u) ≡ f1(x)(f1(x) + c) ≤ 0 is valid everywhere on U and thus it
can be added to the list of constraints defining U . This modification indeed
can convert invalid predicate (∗) into a valid one1. In fact there is no need to
keep both the original linear constraint and the new quadratic in the list of
constraints; we lose nothing by just replacing the linear inequality f1(u) ≤ 0
with the quadratic inequality g(u) ≤ 0.

1Meaning, by the way, that Lagrange Relaxation “does not understand” the rule known to
every kid: the product of two nonnegative reals is nonnegative.
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iii) When among the original constraints fj(u) ≤ 0 there is a pair of linear ones,
say, f1 and f2, we can add to the original constraints their quadratic conse-
quence g(u) ≡ −f1(u)f2(u) ≤ 0. This again can convert an invalid predicate
(∗) into a valid one.

iv) When all the functions fj are convex, we can build a consequence g as follows:
take a linear form eT u and find its maximum β and its minimum α on U by
solving the corresponding convex problems, so that the quadratic inequality
g(u) := (eT x−α)(eT x−β) ≤ 0 is valid on U , and we can add it to the list of
inequalities defining U . This again can convert an invalid predicate (∗) into
a valid one.

The bottom line contains both good and bad news. The good news is that there
are simple ways to shrink the gap between the target relation min

U
f(u) ≥ 0 and the

sufficient condition (∗) for this relation. The bad news is that we do not know how
to use these ways in the best possible fashion. Take, e.g., the last (iv) “extension
procedure”: we can use it several times with different linear forms. How many
times should we use the procedure and which linear forms to use? Note that the
trivial answer “the more, the better” is of no interest, since the computational
effort required to check (∗) grows with m as m3. As for more intelligent “universal
guidelines,” we are not aware of their existence...

We conclude this short visit to the topic of Lagrange Relaxation by presenting
three numerical illustrations. In all of them, we want to bound from above the
probability of violating the constraint

[ζ; 1]T Z[W,w][ζ; 1] ≤ 0

given the following data:

i) We know that ζ is with zero mean and with a given covariance matrix V ;

ii) The domain of ζ is known to belong to a given polytope U .

Illustration A. In this illustration, ζ is 3-dimensional and the constraint in ques-
tion is linear:

a + bT ζ ≤ 0
[
Z[W,w] =

[
b

bT 2a

]]
.

The covariance matrix of ζ is

V =

⎡⎣ 1 1/3 −1/3
1/3 1 1/3
−1/3 1/3 1

⎤⎦ ,

and U is the box Uρ = {u ∈ R
3 : ‖u‖∞ ≤ ρ}. Note that when ρ ≥ 1, the hypothesis

supp ζ ⊂ Uρ does not contradict the assumption that ζ is with zero mean and
possesses the outlined covariance matrix; this hypothesis, e.g., is valid when the
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Figure 4.5 The geometry of Illustration A. Inner box: U1; outer box: U1.1.

distribution of ζ is the uniform distribution on the 6 vertices of U1 marked on
figure 4.5.

In our experiment, we chose a and b in such a way that the half-space Π =
{u : a+ bT u > 0} (that is, the half-space where the constraint is not satisfied) does
not intersect U1 and intersects U1.1, cutting the small tetrahedron off the latter box
as shown in figure 4.5 .

We built the following bounds on the probability for the constraint to be
violated:

• The Tschebyshev bound pT (see item 4).

• The bound pN given by safe tractable approximation, as presented in (4.5.39),
of our chance constraint, when the domain information is ignored.

• The bounds pL(ρ) and pQ(ρ) given by the safe approximation (4.5.39) when
we do use the domain information supp ζ ⊂ Uρ, specifically, represent Uρ by

— the system of linear inequalities −ρ ≤ ui ≤ ρ, i = 1, 2, 3, in the case of
the bound pL(ρ);
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ρ = 1.000 ρ = 1.509 ρ ≥ 2.018
pT 0.2771
pN 0.2170

pL(ρ) < 1.e-10 0.1876 0.2170
pQ(ρ) 0 0.1876 0.2170

Table 4.4 Numerical results for Illustration A.

— the system of quadratic inequalities u2
i ≤ ρ2, i = 1, 2, 3, in the case of

the bound pQ(ρ).

The results are presented in table 4.4. What can be concluded from this experiment
is as follows:

• Even when no information on the domain is used, approximation scheme
(4.5.39) produces a significantly better bound than the Tschebyshev inequal-
ity.

• Both pL(·) and pQ(·) are intelligent enough to understand that when Π does
not intersect Uρ, then the probability of the chance constraint to be violated
is 0 (see what happens when ρ = 1).

• As ρ grows, the bounds pL(·) and pQ(·) also grow, eventually stabilizing at
the level of the “no domain information” bound pN.

Note that while we have reasons to expect the bound pQ(·) to be better than pL(·),
we did not observe this phenomenon in our experiment.

Illustration B. Here ζ is 2-dimensional and the constraint in question is linear:
a + bT u ≤ 0. The covariance matrix of ζ is

V =
[

0.5 0
0 0.5

]
and U = Uρ is the equilateral triangle with the barycenter at the origin and one of
the vertices at [ρ; 0]. Here again in the case of ρ ≥ 1 the assumption supp ζ ⊂ Uρ is
compatible with the assumption that the mean of ζ is 0 and the covariance matrix
of ζ is V ; indeed, V is exactly the covariance matrix of the uniform distribution on
the vertices of U1.

We chose a and b in such a way that the half-plane Π = {u : a + bT u > 0}
does not intersect U1 and intersects U1.1, cutting off U1.1 the small triangle shown
on figure 4.6.a.

We built the same 4 bounds on the probability for our linear constraint
to be violated as in Illustration A. When building pL(ρ), we used the natural
description of the triangle Uρ by 3 linear inequalities fρ

j (u) ≤ 0, j = 1, 2, 3.
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a b

Figure 4.6 Geometries of Illustrations B (a) and C (b). Inner triangle: U1; outer triangle:
U1.1.

ρ = 1.000 ρ ≥ 1.1
pT 0.4535
pN 0.3120

pL(ρ) < 1.e-10 0.3120
pQ(ρ) 0 0.3120

Table 4.5 Numerical results for Illustration B.

When building pQ(ρ), we used the representation of Uρ by 3 quadratic inequal-
ities gρ

j (u) ≡ fρ
j (u)(fρ

j (u) + δρ
j ) ≤ 0, where δρ

j is given by the requirement
minu∈Uρ

(fρ
j (u) + δρ

j ) = 0.

The results of our experiment are presented in table 4.5. The conclusions are
exactly the same as in Illustration A, with one more observation: it is easily seen
that when ρ > 1, then our a priori information is compatible with the assumption
that ζ takes just 4 values: 3 values corresponding to the vertices of Uρ, with prob-
ability of every one of these 3 values equal to 1/(3ρ2), and the value 0 taken with
probability 1− ρ−2. It follows that when ρ ≥ 1.1, the true probability for our ran-
domly perturbed constraint to be violated can be as large as 1/(3 · 1.12) = 0.2755,
so that our bounds are not that bad.

Illustration C. The purpose of this experiment was to demonstrate that passing
from representation of U by linear constraints to a representation of the same set
by quadratic constraints can indeed be profitable — the phenomenon that we did
not observe in two previous experiments. As far as the information on the mean,
the covariance and the domain of ζ are concerned, our current setup is exactly the
same as in Illustration B. What is different is the chance constraint; now it is the
quadratically perturbed constraint

Prob{[ζ; 1]T Z[W,w][ζ; 1] ≡ ζ2
1−ζ2

2−1.05 > 0} ≤ ε [Z[W,w] = Diag{1,−1,−1.05}]



136 CHAPTER 4

ρ = 1.0 ρ = 1.1 ρ = 1.2 ρ = 1.4 ρ ≥ 1.8
pN 0.4762

pL(ρ) 0.4762 0.4762 0.4762 0.4762 0.4762
pQ(ρ) 0 0.3547 0.3996 0.4722 0.4762

Table 4.6 Numerical results for Illustration C.

The domain Π on the plane of ζ where the constraint is violated is the union of two
domains bounded by a hyperbola (dashed areas on figure 4.6.b). As we see, this
domain does not intersect the triangle U1 and does intersect the triangle U1.1. We
built the same bounds as in Illustrations A, B, except for the Tschebyshev bound
that now does not make sense. The results are presented in table 4.6. We see that
the bound pQ(·) is indeed less conservative than the bound pL(·); in particular, this
bound still understands that when Π does not intersect Uρ, then the probability
for our randomly perturbed constraint to be violated is 0.

4.6 EXERCISES

Exercise 4.1. Let ζ�, 1 ≤ � ≤ L, be independent Poisson random variables
with parameters λ�, (i.e., ζ� takes nonnegative integer value k with probability
λk

�

k! e
−λ�). Build Bernstein approximation of the chance constraint

Prob{z0 +
L∑

�=1

w�ζ� ≤ 0} ≥ 1− ε.

What is the associated uncertainty set Zε as given by Theorem 4.2.5?

Exercise 4.2. The stream of customers of an ATM can be split into L groups,
according to the amounts of cash c� they are withdrawing. The per-day number of
customers of type � is a realization of Poisson random variable ζ� with parameter
λ�, and these variables are independent of each other. What is the minimal amount
of cash w(ε) to be loaded in the ATM in the morning in order to ensure service
level 1− ε, (i.e., the probability of the event that not all customers arriving during
the day are served should be ≤ ε)?

Consider the case when

L = 7, c = [20; 40; 60; 100; 300; 500; 1000], λ� = 1000/c�

and compute and compare the following quantities:

i) The expected value of the per-day customer demand for cash.

ii) The true value of w(ε) and its CVaR-upper bound (utilize the integrality of
c� to compute these quantities efficiently).

iii) The bridged Bernstein - CVaR, and the pure Bernstein upper bounds on w(ε).
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iv) The (1 − ε)-reliable empirical upper bound on w(ε) built upon a 100,000-
element simulation sample of the per day customer demands for cash.

The latter quantity is defined as follows. Assume that given an N -element sample

{ηi}N
i=1 of independent realizations of a random variable η, and a tolerance

δ ∈ (0, 1), we want to infer from the sample a “(1 − δ)-reliable” upper bound on

the upper ε quantile qε = min {q : Prob{η > q} ≤ ε} of η. It is natural to take, as

this bound, the M -th order statistics SM of the sample, (i.e., M -th element in the

non-descending rearrangement of the sample), and the question is, how to choose M

in order for SM to be ≥ qε with probability at least 1 − δ. Since Prob{η ≥ qε} ≥ ε,

the relation SM < qε for a given M implies that in our sample of N independent

realizations ηi of η the relation {ηi ≥ qε} took place at most N −M times, and the

probability of this event is at most pM =
∑N−M

k=0

(
N
k

)
εk(1 − ε)N−k. It follows that

if M is such that pM ≤ δ, then the event in question takes place with probability

at most δ, i.e., SM is an upper bound on qε with probability at least 1 − δ. Thus,

it is natural to choose M as the smallest integer ≤ N such that pM ≤ δ. Note that

such an integer not necessarily exists — it may happen that already pN > δ, mean-

ing that the sample size N is insufficient to build a (1−δ)-reliable upper bound on qε.

Carry out the computation for ε = 10−k, 1 ≤ k ≤ 6. 2

Exercise 4.3. Consider the same situation as in Exercise 4.2, with the only
difference that now we do not assume the Poisson random variables ζ� to be inde-
pendent, and make no assumptions whatsoever on how they relate to each other.
Now the minimal amount of “cash input” to the ATM that guarantees service level
1− ε is the optimal value ŵ(ε) of the “ambiguously chance constrained” problem

min

{
w0 : Probζ∼P {

∑
�

c�ζ� ≤ w0} ≥ 1− ε∀P ∈ P
}

,

where P is the set of all distributions P on R
L with Poisson distributions with

parameters λ1, ..., λL as their marginals.

By which margin can ŵ(ε) be larger than w(ε)? To check your intuition, use
the same data as in Exercise 4.2 to compute
– the upper bound on ŵ(ε) given by Theorem 4.5.1;
– the lower bound on ŵ(ε) corresponding to the case where ζ1, ..., ζL are comono-
tone, (i.e., are deterministic nondecreasing functions of the same random variable
η uniformly distributed on [0, 1], cf. p. 114).
Carry out computations for ε = 10−k, 1 ≤ k ≤ 6.

Exercise 4.4. 1) Consider the same situation as in Exercise 4.2, but assume
that the nonnegative vector λ = [λ1; ...; λL] is known to belong to a given convex

2Of course, in our ATM story the values of ε like 0.001 and less make no sense. Well, you
can think about an emergency center and requests for blood transfusions instead of an ATM and
dollars.



138 CHAPTER 4

compact set Λ ⊂ {λ ≥ 0}. Prove that with

BΛ(ε) = max
λ∈Λ

inf

{
w0 : inf

β>0

[
−w0 + β

∑
�

λ�(exp{c�/β} − 1) − β ln(1/ε)

]
≤ 0

}

one has

∀λ ∈ Λ : Probζ∼Pλ1×...×PλL

{∑
�

c�ζ� > BΛ(ε)

}
≤ ε,

where Pµ stands for the Poisson distribution with parameter µ. In other words,
initial charge of BΛ(ε) dollars is enough to ensure service level 1 − ε, whatever be
the vector λ ∈ Λ of parameters of the (independent of each other) Poisson streams
of customers of different types.

2) In 1), we have considered the case when λ runs through a given “uncertainty
set” Λ, and we want the service level to be at least 1 − ε, whatever be λ ∈ Λ.
Now consider the case when we impose a chance constraint on the service level,
specifically, assume that λ is picked at random every morning, according to a certain
distribution P on the nonnegative orthant, and we want to find a once and forever
fixed morning cash charge w0 of the ATM such that the probability for a day to be
“bad” (such that the service level in this day drops below the desired level 1− ε) is
at most a given δ ∈ (0, 1). Now consider the chance constraint

Probλ∼P {z0 +
∑

�

λ�z� > 0} ≤ δ

in variables z0, ..., zL, and assume that we have in our disposal a Robust Counterpart
type safe convex approximation of this constraint, i.e., we know a convex compact
set Λ ⊂ {λ ≥ 0} such that

∀(z0, ..., zL) : z0 + max
λ∈Λ

∑
�

λ�z� ≤ 0 ⇒ Probλ∼P {z0 +
∑

�

λ�z� > 0} ≤ δ.

Prove that by loading the ATM with BΛ(ε) dollars in the morning, we ensure that
the probability of a day to be bad is ≤ δ.

4.6.1 Mixed Uncertainty Model

To motivate what follows, let us revisit the Portfolio Selection problem (Example 2.3.6).
According to our analysis, the yearly return R of the portfolio given by the optimal
solution to (2.3.16) is less than 1.12 with probability ≤ 0.005. Replacing the constant
3.255 =

√
2 ln(1/0.005) with 4.799 =

√
2 ln(1/1.e-5), a similar conclusion is that the

return of the optimized portfolio is < 1.0711 with probability < 1.e-5. Now ask yourself
whether in real life you would indeed bet 100,000:1 that the return of the latter portfolio
will be at least 1.0711. We believe that on a close inspection, such a bet would be somehow
risky, in spite of the theoretical solidity of the conclusion in question. The reason is, that
in order for our conclusion to be applicable to a real life portfolio, the stochastic model
of uncertainty underlying the conclusion should describe the “real life” returns of assets
fairly well – so well that we could trust it even when it predicts the “event of interest”
to happen with probability as small as 1.e-5.” And common sense says that as far as
a real market is concerned, such a precise model definitely is out of question. Assume,
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e.g., that the “true” model of returns is as follows: in the beginning of a year, “nature”
flips a coin and, depending on the result, decides whether in the year the returns of our
199 market assets will be µ� + σ�ζ� with independent ζ1, ..., ζ199 taking values ±1 (such
a decision is made by nature with probability 0.99), or all ζ1, ..., ζ199 will be equal to
each other and take values ±1 with equal probabilities (such a decision is made by nature
with probability 0.01). Experiment shows that with this new distribution of returns, the
probability for the portfolio associated with the old (“the nominal”) uncertainty model to
have a return < 1.05, (i.e., less than the return guaranteed by the bank) is about 5.e-3, 500
times larger than the probability 1.e-5 promised by the nominal uncertainty model! And
of course the existing market data do not allow one to distinguish reliably between the two
models in question. As a matter of fact, the only seemingly solid conclusion from market
data is that there hardly exists a “tractable” probabilistic model of the real life market
capable of reliably predicting probabilities like 0.001 and less. A similar conclusion holds
true for basically all probabilistic uncertainty models in optimization under uncertainty,
although in some cases, (e.g., in Signal Processing), “the scope of predictability” can
include probabilities like 1.e-5 to 1.e-6. Thus, in real-life applications of optimization
under uncertainty one typically arrives at the dilemma as follows: on one hand, the
uncertain-but-bounded model of data perturbations allows to reliably immunize solutions
against data perturbations of a desired magnitude, but seems to be too conservative when
the uncertainty is of a stochastic nature. On the other hand, stochastic uncertainty models
available in real life usually are not accurate enough to ensure reliably that “bad things”
happen with probabilities as low as 1.e-5 and less.3 A possible resolution of the outlined
dilemma could be in synthesis of the two uncertainty models in question, specifically, in
utilizing the combined uncertainty model as follows: the actual perturbation ζ is of the
form

ζ = ξ + η,

where ξ is a “deterministic” perturbation known to belong to a given perturbation set
Zξ, and η is random perturbation with distribution known to belong to a given family
P. For example, we can assume the vector r of returns r� of market assets to be the
sum of a random vector η with independent coordinates distributed in given segments
[µ� − σ�, µ� + σ�], µ� = E{η�}, and a deterministic vector ξ with |ξ�| ≤ ασ�, where α  1
(say, α = 0.1). The first of these components represents the “internal noises” in asset
returns, while the second accounts for unavoidable inaccuracies in the estimated mean
returns, small inter-asset dependencies between the returns, etc. Since in our example the
magnitude of entries in ξ is significantly less than those in η, this uncertainty model is
essentially less conservative than the one where the only information on r is the range of
returns (in our case, the induced range of r� is [µ� − (1 + α)σ�, µ� + (1 + α)σ�]); at the
same time, it, as we have mentioned, allows to account to some extent for inaccuracies of
the “purely stochastic” uncertainty model.

In order to utilize the combined model of uncertainty in LO, we should define the
notion of a “safe” version of a linear constraint affected by this uncertainty, that is, the
constraint

[a0 +
∑L

�=1[ξ� + η�]a
�]T x ≤ b0 +

∑L
�=1[ξ� + η�]b

�

[ξ ∈ Zξ, η ∼ P ∈ P]
. (4.6.1)

3Note that while really low probabilities are of no actual interest in finance, they are a must
in many other applications — think of the reliability you expect from the steering mechanism of
your car or from the airplane you are boarding.
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The most natural answer is to associate with the uncertain constraint (4.6.1) its “chance
constrained version”

(∀ξ ∈ Zξ, P ∈ P) :

Probη∼P

{
[a0 +

∑L
�=1[ξ� + η�]a

�]T x ≤ b0 +
∑L

�=1[ξ� + η�]b
�
}
≥ 1 − ε,

(4.6.2)

where ε < 1 is a given tolerance. Note that when Zξ = {0}, this definition recovers the
chance constrained version of (4.6.1). The opposite extreme — P contains a single trivial
distribution (mass 1 at the origin) and Zξ is nontrivial — recovers the RC of (4.6.1) with
Zξ in the role of the perturbation set.

After the notion of a “safe version” of an uncertain constraint with combined uncer-
tainty is defined, the question of primary importance is how to process this safe version.
The next exercise demonstrates that this can be done by combining the techniques for
tractable processing RCs and for building safe tractable approximations of the “plain”
chance constraints.

Exercise 4.5. Prove the following fact:

Theorem 4.6.1. Consider the uncertain constraint (4.6.1) and assume that the set
Zξ admits a strictly feasible conic representation (cf. Theorem 1.3.4):

Zξ = {ξ : ∃u : Pζ + Qu + p ∈ K}

(when K is a polyhedral cone, strict feasibility can be reduced to feasibility). Let, further,
the ambiguous chance constraint

∀(P ∈ P) : Probη∼P

{
[a0 +

L∑
�=1

η�a
�]T x ≤ b0 +

L∑
�=1

η�b
�

}
≥ 1 − ε,

associated with P and (4.6.1) admit a safe tractable Robust Counterpart type approxi-
mation, i.e., we can point out a computationally tractable convex compact set Zε

η such
that with

f(z) = max
η∈Zε

η

L∑
�=1

η�z�

the implication

∀(z0, z) : z0 + f(z) ≤ 0 ⇒ ∀(P ∈ P) : Probη∼P

{
z0 +

L∑
�=1

ζ�z� ≤ 0

}
≥ 1 − ε (4.6.3)

holds true (cf. Proposition 4.1.3). Then the system of explicit convex constraints

(a) pT y + [a0]T x − b0 ≤ t,
(b) QT y = 0,

(c) (P T y)� + [a�]T x = b�, � = 1, ..., L,
(d) y ∈ K∗ ≡ {y : yT z ≥ 0∀z ∈ K},
(e) t + f([a1]T x − b1, ..., [aL]T x − bl) ≤ 0

(4.6.4)

in variables x, y, t is a safe tractable approximation of (4.6.2): whenever x can be extended
to a solution to this system, x is feasible for (4.6.2).

Thus, all techniques for building safe tractable approximations of chance constraints
developed in this chapter and in chapter 2 can be used to process efficiently the safe
versions of linear constraints with combined uncertainty.
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Mixed uncertainty model: illustration. The next exercise is aimed at exper-
imentation with the Mixed uncertainty model in the following (admittedly oversimplified,
but still instructive) situation (cf. Example 2.3.6):

Portfolio selection revisited:
There are n assets; asset # 1 (“money in safe”) has a deterministic yearly
return ζ1 ≡ 1, and the remaining assets have independent Gaussian yearly
returns ζ� ∼ N (µ�, σ

2
� ), 2 ≤ � ≤ n. Setting µ1 = 1, σ1 = 0, we can say that

the returns of all n assets are independent Gaussian random variables. We
assume further that the variances σ2

� are known for all � and are positive when
� ≥ 2; w.l.o.g. we can assume that 0 = σ1 < σ2 ≤ ... ≤ σn. The expected
returns µ�, � ≥ 2, are not known in advance; the only related information
is the “historical data” — a sample ζ1, ..., ζN of N independent realizations
of the vectors of yearly returns. Given a risk level ε ∈ (0, 1), our goal is to
distribute $1 among the assets in order to maximize the value at risk of the
resulting portfolio a year from now.

The precise formulation of our goal is as follows. A portfolio can be identified with vector
x = [x1; ...; xn] from the standard simplex ∆n = {x ∈ R

n : x ≥ 0,
∑

� x� = 1}; x� is the
capital invested in i-th asset. The value of our portfolio a year from now is the random
variable

V x =

n∑
�=1

ζ�x� =

n∑
�=1

µ�x�︸ ︷︷ ︸
µ(x)

+

√√√√ n∑
�=1

σ2
� x2

�︸ ︷︷ ︸
σ(x)

ξ. [ξ ∼ N (0, 1)]

The value at risk ε VaRε[η] of a random variable η is the (lower) ε quantile of this variable
— the largest real a such that Prob{η < a} ≤ ε; for the Gaussian random variable V x, we
have VaR[V x] = µ(x) − ErfInv(ε)σ(x), so that our ideal goal is to solve the optimization
problem

Opt = max
x

{ n∑
�=1

µ�x� − ErfInv(ε)σ(x) : x ∈ ∆n

}
. (4.6.5)

This goal is indeed an ideal one, since we do not know what exactly is the objective we

should maximize, since the coefficients µ� are not exactly known. Moreover, aside for the

trivial case where σ� = 0 for all �, we cannot localize µ = [µ1; ...; µn] with 100% reliability

in a whatever large, but bounded set. As a result, the only portfolio x for which we can

guarantee a finite lower bound on VaR[V x] is the trivial portfolio x1 = 1, x2 = ... = xn = 0.

To allow for selecting nontrivial portfolios, we should replace “100%-reliable” guarantees

with “(1 − δ)-reliable” ones. Thus, assume that we are given a tolerance δ, 0 < δ  1,

and want to find a procedure that, given on input random historical data ζ̃ = [ζ1; ...; ζN ],

converts this data into a portfolio x = X(ζ̃) and a guessed lower bound VaR = VaR(ζ̃)

on VaRε[V x], which should indeed be a lower bound on VaRε[V x] with probability
≥ 1− δ:

Prob
{

VaR(ζ̃) ≤ µT X(ζ̃)− ErfInv(ε)σ(X(ζ̃))
}
≥ 1− ε, (4.6.6)

whatever be the true vector µ of expected returns with µ1 = 1. Under this re-
striction, we want the “typical” values of VaR(ζ̃) to be as large as possible. The
latter informal goal can be formalized as maximization of the expected value of
VaR(ζ̃), by imposing a chance constrained lower bound on VaR(ζ̃) and maximizing
this bound, etc. Whatever the formalization, the resulting problem seems to be
severely computationally intractable; indeed, already the constraint (4.6.6) seems
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to be a disaster — this is a semi-infinite chance constraint in decision rules. How-
ever, there are ways to get efficiently if not optimal in terms of a given criterion, but
at least feasible solutions, and we are about to consider several of these ways. The
goal of the exercises to follow is to investigate the proposed approaches numerically,
and here are the three recommended data sets:

Type n δ ε µ�, � ≥ 2 (µ1 = 1) σ�, � ≥ 2 (σ1 = 0) N

(a) 500 0.01 0.01 1 + 0.1 �−1
n−1 0.21 �−1

n−1 40

(b) 500 0.01 0.01
{

1, � < n

1.1, � = n
0.02, 2 ≤ � ≤ n 40

(c) 200 0.01 0.01 1 + 0.1 �−1
n−1 0.3

√
�−1
n−1 100

(4.6.7)

These data sets include the true values of µ�; these values are not used by the
portfolio selection routines we are about to consider, but can be used when eval-
uating these routines by simulation. Note that with our data, the expectations of
all market assets are ≥ than the guaranteed return µ = 1 of the “money in safe”
policy, and that our data possess the natural property that the more promising an
asset (the larger is µ�), the more risky it is (the larger is σ�).

Exercise 4.6. Find the true optimal solutions to (4.6.5) corresponding to
every one of the data sets (4.6.7.a–c).

RC approximation: the strategy. With the RC approximation,

• We use the historical data ζ̃ to build a set M = M(ζ̃) in the µ space in
such a way that whatever the true vector µ of expected returns with µ1 = 1, the
probability for M to contain a lower bound for µ is at least 1− δ:

∀(µ : µ1 = 1) : Probµ

{
∃µ̄ ∈M(ζ̃) : µ̄ ≤ µ

}
≥ 1− δ, (4.6.8)

where Probµ is the probability w.r.t. the distribution of the historical data associ-
ated with µ, (i.e., the distribution where ζi ∼ N (µ,Diag{σ2

1 , ..., σ2
n}) and ζ1, .., ζN

are independent).

• After M is built, we treat (4.6.5) as an uncertain optimization problem,
where the only uncertain data is µ, and the uncertainty set is M. We solve the RC
of this uncertain problem and take the robust optimal solution as the recommended
portfolio x = X(ζ̃), and the robust optimal value — as the guess VaR(ζ̃).

Exercise 4.7. Prove that the RC approximation is safe — it indeed ensures
(4.6.6).

RC approximation: implementations. An implementation of the just outlined
strategy depends on how we choose the set M. For the sake of simplicity, assume
that we choose the this set as

M(ζ̃) = µ̂ +O, (4.6.9)
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where O is a deterministic convex body and µ̂ is the empirical expected return
given by the historical data:

µ̂ =
1
N

N∑
t=1

ζt = µ + [Diag{σ}N−1/2]︸ ︷︷ ︸
Σ

η, η ∼ N (0, In).

Exercise 4.8. Prove that in order for the random set (4.6.9) to satisfy the
requirement (4.6.8), it suffices to have

Probη∼N (0,In)

{
−Ση ∈ O + R

n
+

}
≥ 1− δ. (4.6.10)

Let us stick to the sets (4.6.9) with O satisfying (4.6.10). This still leaves
us with “uncountably many” choices. We start by exploring the simplest of them,
specifically,

Ball: O = ΣBρ2
2 , where Bρ2

2 = {u ∈ R
n : u ≤ 0, ‖u‖2 ≤ ρ2} and ρ2 is such

that
Probη∼N (0,In){−η ∈ Bρ2

2 + R
n
+} ≥ 1− δ. (4.6.11)

Note that we are interested in as small ρ2 as possible, since the less is O, the less
conservative is the RC associated with the uncertainty set (4.6.9).

Box: O = ΣBρ∞∞ , where Bρ∞∞ = {u ∈ R
n : u ≤ 0, ‖u‖∞ ≤ ρ∞} and ρ∞ is

such that
Probη∼N (0,In){−η ∈ Bρ∞

∞ + R
n
+} ≥ 1− δ. (4.6.12)

Exercise 4.9. 1) Prove that the RCs associated with the Ball and the Box
choices of O are, respectively, the optimization problems

max
x

{
n∑

�=1

µ̂�x� − [ρ2N
−1/2 + ErfInv(ε)]σ(x) : x ∈ ∆n

}
(Bl)

and

max
x

{
n∑

�=1

[µ̂� − ρ∞N−1/2σ�]x� − ErfInv(ε)σ(x) : x ∈ ∆n

}
. (Bx)

2) Find a way to bound from above ρ2 and ρ∞.
Hint: To bound ρ2, you can use the Bernstein approximation scheme.

3) Use the bounds from 2) to implement the RC approach and test it on the
data sets (4.6.7.a–c). Compare the results with each other and with the “ideal
results” yielded by Exercise 4.6. Is it possible to say in advance what is better —
the Ball or the Box choice of O? Where the difficulty comes from?
Hint: Verify that the minimal ρ2 = ρ2(n, δ) satisfying (4.6.11) as a function of n

grows with n as O(
√

n), while the minimal ρ∞ = ρ∞(n, δ) satisfying (4.6.12) is
O(

√
ln(n/δ)).

4) Combine the Ball and the Box RC approximations into a single RC ap-
proximation that is provably nearly as good as the best of the Ball and the Box
approximations. Implement this approximation for the data sets (4.6.7.a–c) and
compare the results with the those of the pure Ball and Box RC approximations.
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Hint: Take O = Σ(Bρ2
2 ∩ Bρ∞∞ ), where ρ2 and ρ∞ satisfy the respective relations

(4.6.11), (4.6.12) with δ replaced with δ/2.

Exercise 4.10. Consider the following “soft” RC approximation. For a
given portfolio x ∈ ∆n, the difference between its “true” expected return µT x

and the estimate µ̂T x of this expected return is a Gaussian random variable
with zero mean and the variance N−1σ2(x). Consequently, the random quantity
µ̂T x− ErfInv(δ)N−1/2σ(x) is, with probability ≥ 1− δ, a lower bound on the true
expected return µT x. Given this observation, let us approximate the problem of
interest (4.6.5) with the random problem

VaR = max
x

{
n∑

�=1

µ̂�x� − ErfInv(δ)N−1/2σ(x)− ErfInv(ε)σ(x) : x ∈ ∆n

}
(4.6.13)

with the objective that underestimates, with probability 1− δ, the objective of the
‘true” problem.

1) Is the just outlined “soft” RC approximation safe, i.e., is it true that taking
the optimal value of the problem as VaR = VaR(ζ̃), and the optimal solution as
X(ζ̃), we ensure the validity of (4.6.6)?

2) Implement the soft RC approximation and, using the data sets (4.6.7),
empirically find the probability for VaR, X to violate the relation VaR ≤ µT X −
ErfInv(ε)σ(X).

Correcting a soft RC approximation. Now consider a conceptual approxima-
tion as follows.

• We fix in advance a finite number M of “basic portfolios” x1, ..., xM ∈ ∆n.

• Given the empirical average return µ̂, we build lower bounds Li on the
expected returns of the basic portfolios xi, i = 1, ...,M , such that whatever the
true vector µ of expected returns with µ1 = 1, we have

Prob
{
Li ≤ µT xi, 1 ≤ i ≤ M

}
≥ 1− δ. (4.6.14)

The simplest way to ensure this relation is to set

Li = µ̂T xi − ErfInv(δ/M)N−1/2σ(xi). (4.6.15)

• We now restrict ourselves to the portfolios that are convex combinations of
the basic ones:

x = x(λ) =
M∑
i=1

λix
i, [λ ≥ 0,

∑
i λi = 1]

estimate the expected return of such a portfolio as

L(λ) =
M∑
i=1

λiL
i,
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and then look for the portfolio with the largest possible estimated VaRε. That is,
we solve the optimization problem

λ∗ ∈ Argmin
λ

{
f(λ) = L(λ)− ErfInv(ε)σ(x(λ)) : λ ≥ 0,

∑
i

λi = 1

}
, (4.6.16)

and take x(λ∗) as the resulting portfolio, and f(λ∗) as the guessed lower bound
VaR on VaRε[x(λ∗)].

Exercise 4.11. 1) Prove that the outlined approximation is safe, so that the
resulting portfolio and the guessed lower bound on its value at risk do satisfy (4.6.6).

2) Verify that when M = n and x1, ..., xn are the standard basic orths in R
n,

the outlined approximation is nothing but the Box RC approximation. Would it
make sense to use richer sets of basic portfolios? Does it make sense to use “very
large” sets of this type?

3) Look what happens when we use M = 2n basic portfolios, namely, n

standard basic orths and n portfolios

x(k) : x
(k)
� =

{
0, � < k

1
n−k+1 , k ≤ � ≤ n

,

k = 1, ..., n. Use the data sets (4.6.7) and compare the results with those yielded
by other approximations we have considered.

4.7 NOTES AND REMARKS

NR 4.1. The Bernstein approximation scheme (section 4.2) goes back to J.
Pinter [92], where, however, the “scale” parameter (parameter β in Proposition
4.2.2) was considered as a chosen a priori constant rather than an adjustable param-
eter of the bounding routine. The advanced form of the Bernstein approximation
scheme as presented in section 4.2 was proposed in [83]. The latter paper underlies
the results of section 4.3 (except for those related to the bridged Bernstein-CVaR
approximation; these results are new).

NR 4.2. The monotone dominance considered in section 4.4 is the sym-
metrized version of the first order stochastic dominance well studied in econometrics
[47, 60, 101, 102]. The main result of the section, Theorem 4.4.6, while being close
to the Uniformity Principle of Barmish and Lagoa [1], seems to be new; note that
the Uniformity Principle is an immediate consequence of this Theorem and the
result of Example 4.4.3.

NR 4.3. The idea of Lagrange relaxation implicitly underlying the develop-
ments of section 4.5 is now quite standard and is one of the most powerful sources
(if not the most powerful source) of efficiently computable bounds on “difficult to
compute” optimization-related quantities, (e.g., optimal values of NP-hard combi-
natorial problems). The developments in section 4.5.5 can be traced to [26, 27]
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and are based upon specific implementation of Lagrange relaxation, the so called
semidefinite relaxation scheme that goes back to Naum Shor and Laslo Lovacz.4

4A more detailed presentation of the semidefinite relaxation scheme can be found, among many
other sources, in [8, Chapter 4] and [33].
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Chapter Five
Uncertain Conic Optimization: The Concepts

In this chapter, we extend the RO methodology onto non-linear convex optimization
problems, specifically, conic ones.

5.1 UNCERTAIN CONIC OPTIMIZATION: PRELIMINARIES

5.1.1 Conic Programs

A conic optimization (CO) problem (also called conic program) is of the form

min
x

{
cT x + d : Ax− b ∈ K

}
, (5.1.1)

where x ∈ R
n is the decision vector, K ⊂ R

m is a closed pointed convex cone with a
nonempty interior, and x �→ Ax−b is a given affine mapping from R

n to R
m. Conic

formulation is one of the universal forms of a Convex Programming problem; among
the many advantages of this specific form is its “unifying power.” An extremely
wide variety of convex programs is covered by just three types of cones:

i) Direct products of nonnegative rays, i.e., K is a non-negative orthant R
m
+ .

These cones give rise to Linear Optimization problems

min
x

{
cT x : aT

i x− bi ≥ 0, 1 ≤ i ≤ m
}

.

ii) Direct products of Lorentz (or Second-order, or Ice-cream) cones Lk = {x ∈
R

k : xk ≥
√∑k−1

j=1 x2
j}. These cones give rise to Conic Quadratic Opti-

mization (called also Second Order Conic Optimization). The Mathematical
Programming form of a CO problem is

min
x

{
cT x : ‖Aix− bi‖2 ≤ cT

i x− di, 1 ≤ i ≤ m
}

;

here i-th scalar constraint (called Conic Quadratic Inequality) (CQI) ex-
presses the fact that the vector [Aix; cT

i x]− [bi; di] that depends affinely on x

belongs to the Lorentz cone Li of appropriate dimension, and the system of
all constraints says that the affine mapping

x �→
[
[A1x; cT

1 x]; ...; [Amx; cT
mx]

]
− [[b1; d1]; ..., ; [bm; dm]]

maps x into the direct product of the Lorentz cones L1 × ...× Lm.

iii) Direct products of semidefinite cones Sk
+.
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Sk
+ is the cone of positive semidefinite k × k matrices; it “lives”

in the space Sk of symmetric k × k matrices. We treat Sk as Eu-
clidean space equipped with the Frobenius inner product 〈A, B〉 =

Tr(AB) =
k∑

i,j=1

AijBij .

The family of semidefinite cones gives rise to Semidefinite Optimization (SDO)
— optimization programs of the form

min
x

{
cT x + d : Aix−Bi � 0, 1 ≤ i ≤ m

}
,

where

x �→ Aix−Bi ≡
n∑

j=1

xjA
ij −Bi

is an affine mapping from R
n to Ski (so that Aij and Bi are symmetric ki×ki

matrices), and A � 0 means that A is a symmetric positive semidefinite
matrix. The constraint of the form “a symmetric matrix affinely depending
on the decision vector should be positive semidefinite” is called an LMI —
Linear Matrix Inequality. Thus, a Semidefinite Optimization problem (called
also semidefinite program) is the problem of minimizing a linear objective
under finitely many LMI constraints. One can rewrite an SDO program in
the Mathematical Programming form, e.g., as

min
x

{
cT x + d : λmin(Aix−Bi) ≥ 0, 1 ≤ i ≤ m

}
,

where λmin(A) stands for the minimal eigenvalue of a symmetric matrix A,
but this reformulation usually is of no use.

Keeping in mind our future needs related to Globalized Robust Counterparts, it
makes sense to modify slightly the format of a conic program, specifically, to pass
to programs of the form

min
x

{
cT x + d : Aix− bi ∈ Qi, 1 ≤ i ≤ m

}
, (5.1.2)

where Qi ⊂ R
ki are nonempty closed convex sets given by finite lists of conic

inclusions:
Qi = {u ∈ R

ki : Qi�u− qi� ∈ Ki�, � = 1, ..., Li}, (5.1.3)

with closed convex pointed cones Ki�. We will restrict ourselves to the cases where
Ki� are nonnegative orthants, or Lorentz, or Semidefinite cones. Clearly, a problem
in the form (5.1.2) is equivalent to the conic problem

min
x

{
cT x + d : Qi�Aix− [Qi�bi + qi�] ∈ Ki� ∀(i, � ≤ Li)

}
We treat the collection (c, d, {Ai, bi}m

i=1) as natural data of problem (5.1.2). The
collection of sets Qi, i = 1, ...,m, is interpreted as the structure of problem (5.1.2),
and thus the quantities Qi�, qi� specifying these sets are considered as certain data.
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5.1.2 Uncertain Conic Problems and their Robust Counterparts

Uncertain conic problem (5.1.2) is a problem with fixed structure and uncertain
natural data affinely parameterized by a perturbation vector ζ ∈ R

L

(c, d, {Ai, bi}m
i=1) = (c0, d0, {A0

i , b
0
i }m

i=1) +
L∑

�=1

ζ�(c�, d�, {A�
i , b

�
i}m

i=1). (5.1.4)

running through a given perturbation set Z ⊂ R
L.

5.1.2.1 Robust Counterpart of an uncertain conic problem

The notions of a robust feasible solution and the Robust Counterpart (RC) of
uncertain problem (5.1.2) are defined exactly as in the case of an uncertain LO
problem (see Definition 1.2.5):

Definition 5.1.1. Let an uncertain problem (5.1.2), (5.1.4) be given and let
Z ⊂ R

L be a given perturbation set.

(i) A candidate solution x ∈ R
n is robust feasible, if it remains feasible for all

realizations of the perturbation vector from the perturbation set:

x is robust feasible
�

[A0
i +

L∑
�=1

ζ�A
�
i ]x− [b0

i +
L∑

�=1

ζ�b
�
i ] ∈ Qi ∀ (i, 1 ≤ i ≤ m, ζ ∈ Z) .

(ii) The Robust Counterpart of (5.1.2), (5.1.4) is the problem

min
x,t

⎧⎪⎪⎨⎪⎪⎩t :
[c0 +

L∑
�=1

ζ�c
�]T x + [d0 +

L∑
�=1

ζ�d
�]− t ∈ Q0 ≡ R−,

[A0
i +

L∑
�=1

ζ�A
�
i ]x− [b0

i +
L∑

�=1

ζ�b
�
i ] ∈ Qi, 1 ≤ i ≤ m

⎫⎪⎪⎬⎪⎪⎭ ∀ζ ∈ Z

⎫⎪⎪⎬⎪⎪⎭ (5.1.5)

of minimizing the guaranteed value of the objective over the robust feasible solu-
tions.

As in the LO case, it is immediately seen that the RC remains intact when
the perturbation set Z is replaced with its closed convex hull; so, from now on we
assume the perturbation set to be closed and convex. Note also that the case when
the entries of the uncertain data [A; b] are affected by perturbations in a non-affine

fashion in principle could be reduced to the case of affine perturbations (see section
1.4); however, we do not know meaningful cases beyond uncertain LO where such
a reduction leads to a tractable RC.

5.2 ROBUST COUNTERPART OF UNCERTAIN CONIC PROBLEM:

TRACTABILITY

In contrast to uncertain LO, where the RC/GRC turn out to be computationally
tractable whenever the perturbation set is so, uncertain conic problems with com-
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putationally tractable RCs are a “rare commodity.” The ultimate reason for this
phenomenon is rather simple: the RC (5.1.5) of an uncertain conic problem (5.1.2),
(5.1.4) is a convex problem with linear objective and constraints of the generic form

P (y, ζ) = π(y) + Φ(y)ζ = φ(ζ) + Φ(ζ)y ∈ Q, (5.2.1)

where π(y),Φ(y) are affine in the vector y of the decision variables, φ(ζ),Φ(ζ) are
affine in the perturbation vector ζ, and Q is a “simple” closed convex set. For such
a problem, its computational tractability is, essentially, equivalent to the possibility
to check efficiently whether a given candidate solution y is or is not feasible. The
latter question, in turn, is whether the image of the perturbation set Z under an
affine mapping ζ �→ π(y) + Φ(y)ζ is or is not contained in a given convex set Q.
This question is easy when Q is a polyhedral set given by an explicit list of scalar
linear inequalities aT

i u ≤ bi, i = 1, ..., I (in particular, when Q is a nonpositive ray,
that is what we deal with in LO), in which case the required verification consists in
checking whether the maxima of I affine functions aT

i (π(y) + Φ(y)ζ)− bi of ζ over
ζ ∈ Z are or are not nonnegative. Since the maximization of an affine (and thus
concave!) function over a computationally tractable convex set Z is easy, so is the
required verification. When Q is given by nonlinear convex inequalities ai(u) ≤ 0,
i = 1, ..., I, the verification in question requires checking whether the maxima of
convex functions ai(π(y)+Φ(y)ζ) over ζ ∈ Z are or are not nonpositive. A problem
of maximizing a convex function f(ζ) over a convex set Z can be computationally
intractable already in the case of Z as simple as the unit box and f as simple as a
convex quadratic form ζT Qζ. Indeed, it is known that the problem

max
ζ

{
ζT Bζ : ‖ζ‖∞ ≤ 1

}
with positive semidefinite matrix B is NP-hard; in fact, it is already NP-hard to ap-
proximate the optimal value in this problem within a relative accuracy of 4%, even
when probabilistic algorithms are allowed [61]. This example immediately implies
that the RC of a generic uncertain conic quadratic problem with a perturbation set
as simple as a box is computationally intractable.

Indeed, consider a simple-looking uncertain conic quadratic inequality

‖0 · y + Qζ‖2 ≤ 1

(Q is a given square matrix) along with its RC, the perturbation set being
the unit box:

‖0 · y + Qζ‖2 ≤ 1 ∀(ζ : ‖ζ‖∞ ≤ 1). (RC)

The feasible set of the RC is either the entire space of y-variables, or is empty,
which depends on whether or not one has

max
‖ζ‖∞≤1

ζT Bζ ≤ 1. [B = QT Q]

Varying Q, we can get, as B, an arbitrary positive semidefinite matrix of a

given size. Now, assuming that we can process (RC) efficiently, we can check

efficiently whether the feasible set of (RC) is or is not empty, that is, we can

compare efficiently the maximum of a positive semidefinite quadratic form
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over the unit box with the value 1. If we can do it, we can compute the

maximum of a general-type positive semidefinite quadratic form ζT Bζ over

the unit box within relative accuracy ε in time polynomial in the dimension of

ζ and ln(1/ε) (by comparing max‖ζ‖∞≤1 λζT Bζ with 1 and applying bisection

in λ > 0). Thus, the NP-hard problem of computing max‖ζ‖∞≤1 ζT Bζ, B �
0, within relative accuracy ε = 0.04 reduces to checking feasibility of the RC

of a CQI with a box perturbation set, meaning that it is NP-hard to process

the RC in question.

s This unpleasant phenomenon we have just outlined leaves us with only two op-
tions:

A. To identify meaningful particular cases where the RC of an uncertain conic
problem is computationally tractable; and

B. To develop tractable approximations of the RC in the remaining cases.

Note that the RC, same as in the LO case, is a “constraint-wise” construction,
so that investigating tractability of the RC of an uncertain conic problem reduces
to the same question for the RCs of the conic constraints constituting the problem.
Due to this observation, from now on we focus on tractability of the RC

∀(ζ ∈ Z) : A(ζ)x + b(ζ) ∈ Q

of a single uncertain conic inequality.

5.3 SAFE TRACTABLE APPROXIMATIONS OF RCS OF UNCERTAIN

CONIC INEQUALITIES

In chapters 6, 8 we will present a number of special cases where the RC of an un-
certain CQI/LMI is computationally tractable; these cases have to do with rather
specific perturbation sets. The question is, what to do when the RC is not com-
putationally tractable. A natural course of action in this case is to look for a safe

tractable approximation of the RC, defined as follows:

Definition 5.3.1. Consider the RC

A(ζ)x + b(ζ)︸ ︷︷ ︸
≡α(x)ζ+β(x)

∈ Q ∀ζ ∈ Z (5.3.1)

of an uncertain constraint
A(ζ)x + b(ζ) ∈ Q. (5.3.2)

(A(ζ) ∈ R
k×n, b(ζ) ∈ R

k are affine in ζ, so that α(x), β(x) are affine in the decision
vector x). We say that a system S of convex constraints in variables x and, perhaps,
additional variables u is a safe approximation of the RC (5.3.1), if the projection
of the feasible set of S on the space of x variables is contained in the feasible set of
the RC:

∀x : (∃u : (x, u) satisfies S) ⇒ x satisfies (5.3.1).
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This approximation is called tractable, provided that S is so, (e.g., S is an ex-
plicit system of CQIs/LMIs or, more generally, the constraints in S are efficiently
computable).

The rationale behind the definition is as follows: assume we are given an
uncertain conic problem (5.1.2) with vector of design variables x and a certain
objective cT x (as we remember, the latter assumption is w.l.o.g.) and we have at
our disposal a safe tractable approximation Si of i-th constraint of the problem,
i = 1, ..., m. Then the problem

min
x,u1,...,um

{
cT x : (x, ui) satisfies Si, 1 ≤ i ≤ m

}
is a computationally tractable safe approximation of the RC, meaning that the x-
component of every feasible solution to the approximation is feasible for the RC,
and thus an optimal solution to the approximation is a feasible suboptimal solution
to the RC.

In principle, there are many ways to build a safe tractable approximation
of an uncertain conic problem. For example, assuming Z bounded, which usually
is the case, we could find a simplex ∆ = Conv{ζ1, ..., ζL+1} in the space R

L of
perturbation vectors that is large enough to contain the actual perturbation set Z.
The RC of our uncertain problem, the perturbation set being ∆, is computationally
tractable (see section 6.1) and is a safe approximation of the RC associated with
the actual perturbation set Z due to ∆ ⊃ Z. The essence of the matter is, of
course, how conservative an approximation is: how much it “adds” to the built-in
conservatism of the worst-case-oriented RC. In order to answer the latter question,
we should quantify the “conservatism” of an approximation. There is no evident
way to do it. One possible way could be to look by how much the optimal value of
the approximation is larger than the optimal value of the true RC, but here we run
into a severe difficulty. It may well happen that the feasible set of an approximation
is empty, while the true feasible set of the RC is not so. Whenever this is the case,
the optimal value of the approximation is “infinitely worse” than the true optimal
value. It follows that comparison of optimal values makes sense only when the
approximation scheme in question guarantees that the approximation inherits the
feasibility properties of the true problem. On a closer inspection, such a requirement
is, in general, not less restrictive than the requirement for the approximation to be
precise.

The way to quantify the conservatism of an approximation to be used in this
book is as follows. Assume that 0 ∈ Z (this assumption is in full accordance with
the interpretation of vectors ζ ∈ Z as data perturbations, in which case ζ = 0
corresponds to the nominal data). With this assumption, we can embed our closed
convex perturbation set Z into a single-parametric family of perturbation sets

Zρ = ρZ, 0 < ρ ≤ ∞, (5.3.3)
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thus giving rise to a single-parametric family

A(ζ)x + b(ζ)︸ ︷︷ ︸
≡α(x)ζ+β(x)

∈ Q ∀ζ ∈ Zρ (RCρ)

of RCs of the uncertain conic constraint (5.3.2). One can think about ρ as perturba-

tion level; the original perturbation set Z and the associated RC (5.3.1) correspond
to the perturbation level 1. Observe that the feasible set Xρ of (RCρ) shrinks as ρ

grows. This allows us to quantify the conservatism of a safe approximation to (RC)
by “positioning” the feasible set of S with respect to the scale of “true” feasible
sets Xρ, specifically, as follows:

Definition 5.3.2. Assume that we are given an approximation scheme that
puts into correspondence to (5.3.3), (RCρ) a finite system Sρ of efficiently com-
putable convex constraints on variables x and, perhaps, additional variables u,
depending on ρ > 0 as on a parameter, in such a way that for every ρ the system
Sρ is a safe tractable approximation of (RCρ), and let X̂ρ be the projection of the
feasible set of Sρ onto the space of x variables.

We say that the conservatism (or “tightness factor”) of the approximation
scheme in question does not exceed ϑ ≥ 1 if, for every ρ > 0, we have

Xϑρ ⊂ X̂ρ ⊂ Xρ.

Note that the fact that Sρ is a safe approximation of (RCρ) tight within factor
ϑ is equivalent to the following pair of statements:

i) [safety] Whenever a vector x and ρ > 0 are such that x can be extended to a

feasible solution of Sρ, x is feasible for (RCρ);

ii) [tightness] Whenever a vector x and ρ > 0 are such that x cannot be extended

to a feasible solution of Sρ, x is not feasible for (RCϑρ).

Clearly, a tightness factor equal to 1 means that the approximation is precise:
X̂ρ = Xρ for all ρ. In many applications, especially in those where the level of
perturbations is known only “up to an order of magnitude,” a safe approximation
of the RC with a moderate tightness factor is almost as useful, from a practical
viewpoint, as the RC itself.

An important observation is that with a bounded perturbation set Z = Z1 ⊂
R

L that is symmetric w.r.t. the origin, we can always point out a safe compu-

tationally tractable approximation scheme for (5.3.3), (RCρ) with tightness factor

≤ L.

Indeed, w.l.o.g. we may assume that intZ �= ∅, so that Z is a closed and bounded
convex set symmetric w.r.t. the origin. It is known that for such a set, there always
exist two similar ellipsoids, centered at the origin, with the similarity ratio at most

√
L,

such that the smaller ellipsoid is contained in Z, and the larger one contains Z. In
particular, one can choose, as the smaller ellipsoid, the largest volume ellipsoid contained
in Z; alternatively, one can choose, as the larger ellipsoid, the smallest volume ellipsoid
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containing Z. Choosing coordinates in which the smaller ellipsoid is the unit Euclidean
ball B, we conclude that B ⊂ Z ⊂

√
LB. Now observe that B, and therefore Z, contains

the convex hull Z = {ζ ∈ R
L : ‖ζ‖1 ≤ 1} of the 2L vectors ±e�, � = 1, ..., L, where e�

are the basic orths of the axes in question. Since Z clearly contains L−1/2B, the convex
hull Ẑ of the vectors ±Le�, � = 1, ..., L, contains Z and is contained in LZ. Taking, as
Sρ, the RC of our uncertain constraint, the perturbation set being ρẐ, we clearly get an
L-tight safe approximation of (5.3.3), (RCρ), and this approximation is merely the system
of constraints

A(ρLe�)x + b(ρLe�) ∈ Q, A(−ρLe�)x + b(−ρLe�) ∈ Q, � = 1, ..., L,

that is, our approximation scheme is computationally tractable.

5.4 EXERCISES

Exercise 5.1. Find and try to close a logical gap in the proof of the statement

With a bounded perturbation set Z = Z1 ⊂ R
L symmetric w.r.t. the

origin, we always can point out a safe computationally tractable ap-

proximation scheme for (5.3.3), (RCρ) with tightness factor ≤ L.

concluding the previous section.

Exercise 5.2. Consider a semi-infinite conic constraint

∀(ζ ∈ ρZ) : a0[x] +
L∑

�=1

ζia�[x] ∈ Q (CZ [ρ])

Assume that for certain ϑ and some closed convex set Z∗, 0 ∈ Z∗, the constraint
(CZ∗ [·]) admits a safe tractable approximation tight within the factor ϑ. Now let Z
be a closed convex set that can be approximated, up to a factor λ, by Z∗, meaning
that for certain γ > 0 we have

γZ∗ ⊂ Z ⊂ (λγ)Z∗.

Prove that (CZ [·]) admits a safe tractable approximation, tight within the factor
λϑ.

Exercise 5.3. Let ϑ ≥ 1 be given, and consider the semi-infinite conic con-
straint (CZ [·]) “as a function of Z,” meaning that a�[·], 0 ≤ � ≤ L, and Q are once
and forever fixed. In what follows, Z always is a solid (convex compact set with a
nonempty interior) symmetric w.r.t. 0.

Assume that whenever Z is an ellipsoid centered at the origin, (CZ [·]) admits
a safe tractable approximation tight within factor ϑ (as it is the case for ϑ = 1
when Q is the Lorentz cone, see section 6.5).

i) Prove that when Z is the intersection of M centered at the origin ellipsoids:

Z = {ζ : ζT Qiζ ≤ 1, i = 1, ..., M} [Qi � 0,
∑

i Qi � 0]

(CZ [·]) admits a safe tractable approximation tight within the factor
√

Mϑ.
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ii) Prove that if Z = {ζ : ‖ζ‖∞ ≤ 1}, then (CZ [·]) admits a safe tractable
approximation tight within the factor ϑ

√
dim ζ.

iii) Assume that Z is the intersection of M ellipsoids not necessarily centered
at the origin. Prove that then (CZ [·]) admits a safe tractable approximation
tight within a factor

√
2Mϑ.

5.5 NOTES AND REMARKS

NR 5.1. The central role played by Uncertain CO in Robust Optimization
stems from the following reasons:

• The conic form minx

{
cT x : Ax− b ∈ K

}
of a convex problem allows one to

naturally separate the problem’s structure (represented by the cone K) from
the problem’s data (represented by (c, A, b)), which is vitally important for
investigating issues related to data uncertainty. Technically speaking, the
main advantage of this format is that the left hand side of conic inequality
Ax − b ∈ K is bi-affine in the data and the decision variables; this fact,
essentially, is the starting point of all our tractability-related results on the
RC. This is in sharp contrast to the usual “Mathematical Programming”
format of an optimization problem minx {f0(x, ζ) : fi(x, ζ) ≤ 0, i = 1, ..., m} ,

where ζ stands for the data; without additional structural assumptions on
how the data enters the objective, this format, while allowing to define the
notion of RC, is poorly suited for investigating the related tractability issues.

• The conic form of a convex program is not only “structure and data revealing”;
it allows also for unified treatment of a wide variety of convex programs, since
just 3 “generic” cones with well understood geometry — (direct products of)
rays, Lorentz and Semidefinite cones — are responsible for “nearly all” convex
problems arising in applications.

The outlined “exceptional” role of the conic format in Robust Optimization was
understood already in the very first papers on Convex RO [3, 4, 49, 50, 18].

NR 5.2. The concept of safe tractable approximation (as opposed to “more
aggressive” approximations, where a solution to the approximating problem not
necessarily is feasible for the problem of interest) in the RO context is very nat-
ural — finally, the entire RO methodology is about safety. A general scheme for
building safe tractable approximations of uncertain conic problems is proposed in
[22]; this scheme, however, does not admit good bounds on its conservatism. The
quantification of conservatism of a safe tractable approximation used in this book
was introduced in [4]. Its “flavor” resembles that of approximation algorithms

aimed at finding suboptimal feasible solutions to difficult optimization problems.
An efficient, (i.e., polynomial time) algorithm for a generic optimization problem
P is called α-approximating, if, as applied to every instance p of the problem, it
produces a feasible solution with the value of the objective by a factor at most
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α greater than the optimal value of the instance, where α is independent of the
instance’s data. (In order for this definition to make sense, the optimal values of
all instances should be positive.) The concept of an approximating algorithm is
“tailored” to the situations where a feasible solution to an instance can be found
efficiently; what is difficult, is to find a feasible solution that is near-optimal. The
concept of a tight tractable approximation is of the same spirit, but it is adjusted
to the case where the difficulties primarily come from the necessity to satisfy the
constraints.



Chapter Six
Uncertain Conic Quadratic Problems with Tractable RCs

In this chapter we focus on uncertain conic quadratic problems (that is, the sets Qi

in (5.1.2) are given by explicit lists of conic quadratic inequalities) for which the
RCs are computationally tractable.

6.1 A GENERIC SOLVABLE CASE: SCENARIO UNCERTAINTY

We start with a simple case where the RC of an uncertain conic problem (not nec-
essarily a conic quadratic one) is computationally tractable — the case of scenario

uncertainty.

Definition 6.1.1. We say that a perturbation set Z is scenario generated, if
Z is given as the convex hull of a given finite set of scenarios ζ(ν):

Z = Conv{ζ(1), ..., ζ(N)}. (6.1.1)

Theorem 6.1.2. The RC (5.1.5) of uncertain problem (5.1.2), (5.1.4) with
scenario perturbation set (6.1.1) is equivalent to the explicit conic problem

min
x,t

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩t :

[c0 +
L∑

�=1

ζ
(ν)
� c�]T x + [d0 +

L∑
�=1

ζ
(ν)
� d�]− t ≤ 0

[A0
i +

L∑
�=1

ζ
(ν)
� A�

i ]
T x− [b0 +

L∑
�=1

ζ
(ν)
� b�] ∈ Qi,

1 ≤ i ≤ m

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , 1 ≤ ν ≤ N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (6.1.2)

with a structure similar to the one of the instances of the original uncertain problem.

Proof. This is evident due to the convexity of Qi and the affinity of the left
hand sides of the constraints in (5.1.5) in ζ. �

The situation considered in Theorem 6.1.2 is “symmetric” to the one con-
sidered in chapter 1, where we spoke about problems (5.1.2) with the simplest
possible sets Qi — just nonnegative rays, and the RC turns out to be computa-
tionally tractable whenever the perturbation set is so. Theorem 6.1.2 deals with
another extreme case of the tradeoff between the geometry of the right hand side
sets Qi and that of the perturbation set. Here the latter is as simple as it could be
— just the convex hull of an explicitly listed finite set, which makes the RC com-
putationally tractable for rather general (just computationally tractable) sets Qi.
Unfortunately, the second extreme is not too interesting: in the large scale case, a
“scenario approximation” of a reasonable quality for typical perturbation sets, like
boxes, requires an astronomically large number of scenarios, thus preventing listing
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them explicitly and making problem (6.1.2) computationally intractable. This is
in sharp contrast with the first extreme, where the simple sets were Qi — Linear
Optimization is definitely interesting and has a lot of applications.

In what follows, we consider a number of less trivial cases where the RC
of an uncertain conic quadratic problem is computationally tractable. As always
with RC, which is a constraint-wise construction, we may focus on computational
tractability of the RC of a single uncertain CQI

‖A(ζ)y + b(ζ)︸ ︷︷ ︸
≡α(y)ζ+β(y)

‖2 ≤ cT (ζ)y + d(ζ)︸ ︷︷ ︸
≡σT (y)ζ+δ(y)

, (6.1.3)

where A(ζ) ∈ R
k×n, b(ζ) ∈ R

k, c(ζ) ∈ R
n, d(ζ) ∈ R are affine in ζ, so that α(y),

β(y), σ(y), δ(y) are affine in the decision vector y.

6.2 SOLVABLE CASE I: SIMPLE INTERVAL UNCERTAINTY

Consider uncertain conic quadratic constraint (6.1.3) and assume that:

i) The uncertainty is side-wise: the perturbation set Z = Z left × Zright is the
direct product of two sets (so that the perturbation vector ζ ∈ Z is split
into blocks η ∈ Z left and χ ∈ Zright), with the left hand side data A(ζ), b(ζ)
depending solely on η and the right hand side data c(ζ), d(ζ) depending solely
on χ, so that (6.1.3) reads

‖A(η)y + b(η)︸ ︷︷ ︸
≡α(y)η+β(y)

‖2 ≤ cT (χ)y + d(χ)︸ ︷︷ ︸
≡σT (y)χ+δ(y)

, (6.2.1)

and the RC of this uncertain constraint reads

‖A(η)y + b(η)‖2 ≤ cT (χ)y + d(χ) ∀(η ∈ Z left, χ ∈ Zright); (6.2.2)

ii) The right hand side perturbation set is as described in Theorem 1.3.4, that
is,

Zright = {χ : ∃u : Pχ + Qu + p ∈ K} ,

where either K is a closed convex pointed cone, and the representation is
strictly feasible, or K is a polyhedral cone given by an explicit finite list of
linear inequalities;

iii) The left hand side uncertainty is a simple interval one:

Z left =
{
η = [δA, δb] : |(δA)ij | ≤ δij , 1 ≤ i ≤ k, 1 ≤ j ≤ n,

|(δb)i| ≤ δi, 1 ≤ i ≤ k
}
,

[A(ζ), b(ζ)] = [An, bn] + [δA, δb].

In other words, every entry in the left hand side data [A, b] of (6.1.3), inde-
pendently of all other entries, runs through a given segment centered at the
nominal value of the entry.
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Proposition 6.2.1. Under assumptions 1 – 3 on the perturbation set Z, the
RC of the uncertain CQI (6.1.3) is equivalent to the following explicit system of
conic quadratic and linear constraints in variables y, z, τ, v:

(a)
τ + pT v ≤ δ(y), PT v = σ(y),
QT v = 0, v ∈ K∗

(b)
zi ≥ |(Any + bn)i|+ δi +

n∑
j=1

|δijyj |, i = 1, ..., k

‖z‖2 ≤ τ

(6.2.3)

where K∗ is the cone dual to K.

Proof. Due to the side-wise structure of the uncertainty, a given y is robust
feasible if and only if there exists τ such that

(a) τ ≤ min
χ∈Zright

{
σT (y)χ + δ(y)

}
= min

χ,u

{
σT (y)χ : Pχ + Qu + p ∈ K

}
+ δ(y),

(b) τ ≥ max
η∈Zleft

‖A(η)y + b(η)‖2
= max

δA,δb
{‖[Any + bn] + [δAy + δb]‖2 : |δA|ij ≤ δij , |δbi| ≤ δi} .

By Conic Duality, a given τ satisfies (a) if and only if τ can be extended, by properly
chosen v, to a solution of (6.2.3.a); by evident reasons, τ satisfies (b) if and only if
there exists z satisfying (6.2.3.b). �

6.3 SOLVABLE CASE II: UNSTRUCTURED NORM-BOUNDED

UNCERTAINTY

Consider the case where the uncertainty in (6.1.3) is still side-wise (Z = Z left ×
Zright) with the right hand side uncertainty set Zright as in section 6.2, while the
left hand side uncertainty is unstructured norm-bounded, meaning that

Z left =
{
η ∈ R

p×q : ‖η‖2,2 ≤ 1
}

(6.3.1)

and either
A(η)y + b(η) = Any + bn + LT (y)ηR (6.3.2)

with L(y) affine in y and R �= 0, or

A(η)y + b(η) = Any + bn + LT ηR(y) (6.3.3)

with R(y) affine in y and L �= 0. Here

‖η‖2,2 = max
u
{‖ηu‖2 : u ∈ R

q, ‖u‖2 ≤ 1}

is the usual matrix norm of a p× q matrix η (the maximal singular value),

Example 6.3.1.

(i) Imagine that some p×q submatrix P of the left hand side data [A, b] of (6.2.1) is
uncertain and differs from its nominal value Pn by an additive perturbation ∆P = MT ∆N
with ∆ having matrix norm at most 1, and all entries in [A, b] outside of P are certain.
Denoting by I the set of indices of the rows in P and by J the set of indices of the columns
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in P , let U be the natural projector of R
n+1 on the coordinate subspace in R

n+1 given
by J , and V be the natural projector of R

k on the subspace of R
k given by I (e.g., with

I = {1, 2} and J = {1, 5}, Uu = [u1; u5] ∈ R
2 and V u = [u1; u2] ∈ R

2). Then the outlined
perturbations of [A, b] can be represented as

[A(η), b(η)] = [An, bn] + V T MT︸ ︷︷ ︸
LT

η (NU)︸ ︷︷ ︸
R

, ‖η‖2,2 ≤ 1,

whence, setting Y (y) = [y; 1],

A(η)y + b(η) = [Any + bn] + LT η [RY (y)]︸ ︷︷ ︸
R(y)

,

and we are in the situation (6.3.1), (6.3.3).

(ii) [Simple ellipsoidal uncertainty] Assume that the left hand side perturbation set
Z left is a p-dimensional ellipsoid; w.l.o.g. we may assume that this ellipsoid is just the
unit Euclidean ball B = {η ∈ R

p : ‖η‖2 ≤ 1}. Note that for vectors η ∈ R
p = R

p×1 their
usual Euclidean norm ‖η‖2 and their matrix norm ‖η‖2,2 are the same. We now have

A(η)y + b(η) = [A0y + b0] +

p∑
�=1

η�[A
�y + b�] = [Any + bn] + LT (y)ηR,

where An = A0, bn = b0, R = 1 and L(y) is the matrix with the rows [A�y + b�]T ,

� = 1, ..., p. Thus, we are in the situation (6.3.1), (6.3.2).

Theorem 6.3.2. The RC of the uncertain CQI (6.2.1) with unstructured
norm-bounded uncertainty is equivalent to the following explicit system of LMIs in
variables y, τ, u, λ:

(i) In the case of left hand side perturbations (6.3.1), (6.3.2):

(a) τ + pT v ≤ δ(y), PT v = σ(y), QT v = 0, v ∈ K∗

(b)

⎡⎣ τIk LT (y) Any + bn

L(y) λIp

[Any + bn]T τ − λRT R

⎤⎦ � 0.

(6.3.4)

(ii) In the case of left hand side perturbations (6.3.1), (6.3.3):

(a) τ + pT v ≤ δ(y), PT v = σ(y), QT v = 0, v ∈ K∗

(b)

⎡⎣ τIk − λLT L Any + bn

λIq R(y)
[Any + bn]T RT (y) τ

⎤⎦ � 0.

(6.3.5)

Here K∗ is the cone dual to K.
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Proof. Same as in the proof of Proposition 6.2.1, y is robust feasible for
(6.2.1) if and only if there exists τ such that

(a) τ ≤ min
χ∈Zright

{
σT (y)χ + δ(y)

}
= min

χ,u

{
σT (y)χ : Pχ + Qu + p ∈ K

}
,

(b) τ ≥ max
η∈Zleft

‖A(η)y + b(η)‖2,

(6.3.6)

and a given τ satisfies (a) if and only if it can be extended, by a properly chosen v,
to a solution of (6.3.4.a)⇔(6.3.5.a). It remains to understand when τ satisfies (b).
This requires two basic facts.

Lemma 6.3.3. [Semidefinite representation of the Lorentz cone] A vector
[y; t] ∈ R

k × R belongs to the Lorentz cone Lk+1 = {[y; t] ∈ R
k+1 : t ≥ ‖y‖2}

if and only if the “arrow matrix”

Arrow(y, t) =
[

t yT

y tIk

]
is positive semidefinite.

Proof of Lemma 6.3.3: We use the following fundamental fact:

Lemma 6.3.4. [Schur Complement Lemma] A symmetric block matrix

A =
[

P QT

Q R

]
with R � 0 is positive (semi)definite if and only if the matrix

P −QT R−1Q

is positive (semi)definite.

Schur Complement Lemma ⇒ Lemma 6.3.3: When t = 0, we have [y; t] ∈ Lk+1

iff y = 0, and Arrow(y, t) � 0 iff y = 0, as claimed in Lemma 6.3.3. Now let
t > 0. Then the matrix tIk is positive definite, so that by the Schur Complement
Lemma we have Arrow(y, t) � 0 if and only if t ≥ t−1yT y, or, which is the same,
iff [y; t] ∈ Lk+1. When t < 0, we have [y; t] �∈ Lk+1 and Arrow(y, t) �� 0. �

Proof of the Schur Complement Lemma: Matrix A = AT is � 0 iff uT Pu +
2uT QT v + vT Rv ≥ 0 for all u, v, or, which is the same, iff

∀u : 0 ≤ min
v

{
uT Pu + 2uT QT v + vT Rv

}
= uT Pu− uT QT R−1Qu

(indeed, since R � 0, the minimum in v in the last expression is achieved when
v = R−1Qu). The concluding relation ∀u : uT [P − QT R−1Q]u ≥ 0 is valid iff
P −QT R−1Q � 0. Thus, A � 0 iff P −QT R−1Q � 0. The same reasoning implies
that A � 0 iff P −QT R−1Q � 0. �

We further need the following fundamental result:
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Lemma 6.3.5. [S-Lemma]

(i) [homogeneous version] Let A, B be symmetric matrices of the same size
such that x̄T Ax̄ > 0 for some x̄. Then the implication

xT Ax ≥ 0 ⇒ xT Bx ≥ 0

holds true if and only if
∃λ ≥ 0 : B � λA.

(ii) [inhomogeneous version] Let A,B be symmetric matrices of the same size,
and let the quadratic form xT Ax + 2aT x + α be strictly positive at some point.
Then the implication

xT Ax + 2aT x + α ≥ 0 ⇒ xT Bx + 2bT x + β ≥ 0

holds true if and only if

∃λ ≥ 0 :
[

B − λA bT − λaT

b− λa β − λα

]
� 0.

For proof of this fundamental Lemma, see Appendix B.2.

Coming back to the proof of Theorem 6.3.2, we can now understand when a
given pair τ, y satisfies (6.3.6.b). Let us start with the case (6.3.2). We have

(y, τ) satisfies (6.3.6.b)

⇔ [

ŷ︷ ︸︸ ︷
[Any + bn]+LT (y)ηR; τ ] ∈ Lk+1 ∀(η : ‖η‖2,2 ≤ 1)

[by (6.3.2)]

⇔
[

τ ŷT + RT ηT L(y)
ŷ + LT (y)ηR τIk

]
� 0 ∀(η : ‖η‖2,2 ≤ 1)

[by Lemma 6.3.3]

⇔ τs2 + 2srT [ŷ + LT (y)ηR] + τrT r ≥ 0 ∀[s; r] ∀(η : ‖η‖2,2 ≤ 1)

⇔ τs2 + 2sŷT r + 2 min
η:‖η‖2,2≤1

[
s(ηT L(y)r)T R

]
+ τrT r ≥ 0 ∀[s; r]

⇔ τs2 + 2sŷT r − 2‖L(y)r‖2‖sR‖2 + τrT r ≥ 0 ∀[s; r]

⇔ τrT r + 2(L(y)r)T ξ + 2srT ŷ + τs2 ≥ 0 ∀(s, r, ξ : ξT ξ ≤ s2RT R)

⇔ ∃λ ≥ 0 :

⎡⎣ τIk LT (y) ŷ

L(y) λIp

ŷT τ − λRT R

⎤⎦ � 0

[by the homogeneous S-Lemma; note that R �= 0].

The requirement λ ≥ 0 in the latter relation is implied by the LMI in the rela-
tion and is therefore redundant. Thus, in the case of (6.3.2) relation (6.3.6.b) is
equivalent to the possibility to extend (y, τ) to a solution of (6.3.4.b).
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Now let (6.3.3) be the case. We have

(y, τ) satisfies (6.3.6.b)

⇔ [

ŷ︷ ︸︸ ︷
[Any + bn]+LT ηR(y); τ ] ∈ Lk+1 ∀(η : ‖η‖2,2 ≤ 1) [by (6.3.3)]

⇔
[

τ ŷT + RT (y)ηT L

ŷ + LT ηR(y) τIk

]
� 0 ∀(η : ‖η‖2,2 ≤ 1)

[by Lemma 6.3.3]

⇔ τs2 + 2srT [ŷ + LT ηR(y)] + τrT r ≥ 0 ∀[s; r] ∀(η : ‖η‖2,2 ≤ 1)

⇔ τs2 + 2sŷT r + 2 min
η:‖η‖2,2≤1

[
s(ηT Lr)T R(y)

]
+ τrT r ≥ 0 ∀[s; r]

⇔ τs2 + 2sŷT r − 2‖Lr‖2‖sR(y)‖2 + τrT r ≥ 0 ∀[s; r]

⇔ τrT r + 2sRT (y)ξ + 2srT ŷ + τs2 ≥ 0 ∀(s, r, ξ : ξT ξ ≤ rT LT Lr)

⇔ ∃λ ≥ 0 :

⎡⎣ τIk − λLT L ŷ

λIq R(y)
ŷT RT (y) τ

⎤⎦ � 0

[by the homogeneous S-Lemma; note that L �= 0].

As above, the restriction λ ≥ 0 is redundant. We see that in the case of (6.3.3)
relation (6.3.6.b) is equivalent to the possibility to extend (y, τ) to a solution of
(6.3.5.b). �

6.4 SOLVABLE CASE III: CONVEX QUADRATIC INEQUALITY WITH

UNSTRUCTURED NORM-BOUNDED UNCERTAINTY

A special case of an uncertain conic quadratic constraint (6.1.3) is a convex
quadratic constraint

(a) yT AT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ)
�

(b) ‖[2A(ζ)y; 1− 2yT b(ζ)− c(ζ)]‖2 ≤ 1 + 2yT b(ζ) + c(ζ).
(6.4.1)

Here A(ζ) is k × n.

Assume that the uncertainty affecting this constraint is an unstructured norm-
bounded one, meaning that

(a) Z = {ζ ∈ R
p×q : ‖ζ‖2,2 ≤ 1},

(b)

⎡⎣ A(ζ)y
yT b(ζ)
c(ζ)

⎤⎦ =

⎡⎣ Any

yT bn

cn

⎤⎦+ LT (y)ζR(y),
(6.4.2)

where L(y), R(y) are matrices of appropriate sizes affinely depending on y and such
that at least one of the matrices is constant. We are about to prove that the RC of
(6.4.1), (6.4.2) is computationally tractable. Note that the just defined unstructured
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norm-bounded uncertainty in the data of convex quadratic constraint (6.4.1.a) im-
plies similar uncertainty in the left hand side data of the equivalent uncertain CQI
(6.4.1.a). Recall that Theorem 6.3.2 ensures that the RC of a general-type uncer-
tain CQI with side-wise uncertainty and unstructured norm-bounded perturbations
in the left hand side data is tractable. The result to follow removes the require-
ment of “side-wiseness” of the uncertainty at the cost of restricting the structure
of the CQI in question — now it should come from an uncertain convex quadratic
constraint. Note also that the case we are about to consider covers in particular
the one when the data (A(ζ), b(ζ), c(ζ)) of (6.4.1.a) are affinely parameterized by ζ

varying in an ellipsoid (cf. Example 6.3.1.(ii)).

Proposition 6.4.1. Let us set L(y) = [LA(y), Lb(y), Lc(y)], where Lb(y),
Lc(y) are the last two columns in L(y), and let

L̂T (y) =
[
LT

b (y) + 1
2LT

c (y);LT
A(y)

]
, R̂(y) = [R(y), 0q×k],

A(y) =
[

2yT bn + cn [Any]T

Any Ik

]
,

(6.4.3)

so that A(y), L̂(y) and R̂(y) are affine in y and at least one of the latter two matrices
is constant.

The RC of (6.4.1), (6.4.2) is equivalent to the explicit LMI S in variables y,
λ as follows:

(i) In the case when L̂(y) is independent of y and is nonzero, S is[
A(y)− λL̂T L̂ R̂T (y)

R̂(y) λIq

]
� 0; (6.4.4)

(ii) In the case when R̂(Y ) is independent of y and is nonzero, S is[
A(y)− λR̂T R̂ L̂T (y)

L̂(y) λIp

]
� 0; (6.4.5)

(iii) In all remaining cases (that is, when either L̂(y) ≡ 0, or R̂(y) ≡ 0, or
both), S is

A(y) � 0. (6.4.6)
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Proof. We have
yT AT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ) ∀ζ ∈ Z

⇔
[

2yT b(ζ) + c(ζ) [A(ζ)y]T

A[ζ]y Ik

]
� 0 ∀ζ ∈ Z

[Schur Complement Lemma]

⇔

A(y)︷ ︸︸ ︷[
2yT bn + cn [Any]T

Any I

]

+

B(y,ζ)︷ ︸︸ ︷[
2LT

b (y)ζR(y) + LT
c (y)ζR(y) RT (y)ζT LA(y)

LT
A(y)ζR(y)

]
� 0 ∀(ζ : ‖ζ‖2,2 ≤ 1)

[by (6.4.2)]

⇔ A(y) + L̂T (y)ζR̂(y) + R̂T (y)ζT L̂(y) � 0 ∀(ζ : ‖ζ‖2,2 ≤ 1) [by (6.4.3)].

Now the reasoning can be completed exactly as in the proof of Theorem 6.3.2.
Consider, e.g., the case of (i). We have

yT AT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ) ∀ζ ∈ Z

⇔ A(y) + L̂T ζR̂(y) + R̂T (y)ζT L̂ � 0 ∀(ζ : ‖ζ‖2,2 ≤ 1) [already proved]

⇔ ξTA(y)ξ + 2(L̂ξ)T ζR̂(y)ξ ≥ 0 ∀ξ ∀(ζ : ‖ζ‖2,2 ≤ 1)

⇔ ξTA(y)ξ − 2‖L̂ξ‖2‖R̂(y)ξ‖2 ≥ 0 ∀ξ

⇔ ξTA(y)ξ + 2ηT R̂(y)ξ ≥ 0 ∀(ξ, η : ηT η ≤ ξT L̂T L̂ξ)

⇔ ∃λ ≥ 0 :

[
A(y)− λL̂T L̂ R̂T (y)

R̂(y) λIq

]
� 0 [S-Lemma]

⇔ ∃λ :

[
A(y)− λL̂T L̂ R̂T (y)

R̂(y) λIq

]
� 0,

and we arrive at (6.4.4). �

6.5 SOLVABLE CASE IV: CQI WITH SIMPLE ELLIPSOIDAL

UNCERTAINTY

The last solvable case we intend to present is of uncertain CQI (6.1.3) with an
ellipsoid as the perturbation set. Now, unlike the results of Theorem 6.3.2 and
Proposition 6.4.1, we neither assume the uncertainty side-wise, nor impose specific
structural restrictions on the CQI in question. However, whereas in all tractability
results stated so far we ended up with a “well-structured” tractable reformulation of
the RC (mainly in the form of an explicit system of LMIs), now the reformulation
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will be less elegant: we shall prove that the feasible set of the RC admits an
efficiently computable separation oracle — an efficient computational routine that,
given on input a candidate decision vector y, reports whether this vector is robust
feasible, and if it is not the case, returns a separator — a linear form eT z on the
space of decision vectors such that

eT y > sup
z∈Y

eT z,

where Y is the set of all robust feasible solutions. Good news is that equipped with
such a routine, one can optimize efficiently a linear form over the intersection of
Y with any convex compact set Z that is itself given by an efficiently computable
separation oracle. On the negative side, the family of “theoretically efficient” op-
timization algorithms available in this situation is much more restricted than the
family of algorithms available in the situations we encountered so far. Specifically,
in these past situations, we could process the RC by high-performance Interior
Point polynomial time methods, while in our present case we are forced to use
slower black-box-oriented methods, like the Ellipsoid algorithm. As a result, the
design dimensions that can be handled in a realistic time can drop considerably.

We are about to describe an efficient separation oracle for the feasible set

Y = {y : ‖α(y)ζ + β(y)‖2 ≤ σT (y)ζ + δ(y) ∀(ζ : ζT ζ ≤ 1)} (6.5.1)

of the uncertain CQI (6.1.3) with the unit ball in the role of the perturbation set;
recall that α(y), β(y), σ(y), δ(y) are affine in y.

Observe that y ∈ Y if and only if the following two conditions hold true:

0 ≤ σT (y)ζ + δ(y) ∀(ζ : ‖ζ‖2 ≤ 1)
⇔ ‖σ(y)‖2 ≤ δ(y) (a)

(σT (y)ζ + δ(y))2 − [α(y)ζ + β(y)]T [α(y)ζ + β(y)] ≥ 0
∀(ζ : ζT ζ ≤ 1)

⇔ ∃λ ≥ 0 :

Ay(λ) ≡

⎡⎢⎢⎣
λIL + σ(y)σT (y)
−αT (y)α(y)

δ(y)σT (y)
−βT (y)α(y)

δ(y)σ(y)
−αT (y)β(y)

δ2(y)− βT (y)β(y)
−λ

⎤⎥⎥⎦ � 0 (b)

(6.5.2)

where the second ⇔ is due to the inhomogeneous S-Lemma. Observe that given y,

it is easy to verify the validity of (6.5.2). Indeed,

i) Verification of (6.5.2.a) is trivial.

ii) To verify (6.5.2.b), we can use bisection in λ as follows.
First note that any λ ≥ 0 satisfying the matrix inequality (MI) in (6.5.2.b)
clearly should be ≤ λ+ ≡ δ2(y) − βT (y)β(y). If λ+ < 0, then (6.5.2.b)
definitely does not take place, and we can terminate our verification. When
λ+ ≥ 0, we can build a shrinking sequence of localizers ∆t = [λt, λt] for the
set Λ∗ of solutions to our MI, namely, as follows:
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• We set λ0 = 0, λ0 = λ+, thus ensuring that Λ∗ ⊂ ∆0.

• Assume that after t − 1 steps we have in our disposal a segment ∆t−1,
∆t−1 ⊂ ∆t−2 ⊂ ... ⊂ ∆0, such that Λ∗ ⊂ ∆t−1. Let λt be the midpoint
of ∆t−1. At step t, we check whether the matrix Ay(λt) is � 0; to this end
we can use any one from the well-known Linear Algebra routines capable to
check in O(k3) operations positive semidefiniteness of a k × k matrix A, and
if it is not the case, to produce a “certificate” for the fact that A �� 0 — a
vector z such that zT Az < 0. If Ay(λt) � 0, we are done, otherwise we get
a vector zt such that the affine function ft(λ) ≡ zT

t Ay(λ)zt is negative when
λ = λt. Setting ∆t = {λ ∈ ∆t−1 : ft(λ) ≥ 0}, we clearly get a new localizer
for Λ∗ that is at least twice shorter than ∆t−1; if this localizer is nonempty,
we pass to step t + 1, otherwise we terminate with the claim that (6.5.2.b) is
not valid.

Since the sizes of subsequent localizers shrink at each step by a factor of at
least 2, the outlined procedure rapidly converges: for all practical purposes1

we may assume that the procedure terminates after a small number of steps
with either a λ that makes the MI in (6.5.2) valid, or with an empty localizer,
meaning that (6.5.2.b) is invalid.

So far we built an efficient procedure that checks whether or not y is robust feasible
(i.e., whether or not y ∈ Y ). To complete the construction of a separation oracle
for Y , it remains to build a separator of y and Y when y �∈ Y . Our “separation
strategy” is as follows. Recall that y ∈ Y if and only if all vectors vy(ζ) = [α(y)ζ +
β(y);σT (y)ζ + δ(y)] with ‖ζ‖2 ≤ 1 belong to the Lorentz cone Lk+1, where k =
dimβ(y). Thus, y �∈ Y if there exists ζ̄ such that ‖ζ̄‖2 ≤ 1 and vy(ζ̄) �∈ Lk+1.
Given such a ζ̄, we can immediately build a separator of y and Y as follows:

i) Since vy(ζ̄) �∈ Lk+1, we can easily separate vy(ζ̄) and Lk+1. Specifically,
setting vy(ζ̄) = [a; b], we have b < ‖a‖2, so that setting e = [a/‖a‖2;−1], we
have eT vy(ζ̄) = ‖a‖2 − b > 0, while eT u ≤ 0 for all u ∈ Lk+1.

ii) After a separator e of vy(ζ̄) and Lk+1 is built, we look at the function φ(z) =
eT vz(ζ̄). This is an affine function of z such that

sup
z∈Y

φ(z) ≤ sup
u∈Lk+1

eT u < eT vy(ζ̄) = φ(y)

where the first ≤ is given by the fact that vz(ζ̄) ∈ Lk+1 when z ∈ Y . Thus,
the homogeneous part of φ(·), (which is a linear form readily given by e),
separates y and Y .

In summary, all we need is an efficient routine that, in the case when y �∈ Y , i.e.,

Ẑy ≡ {ζ̄ : ‖ζ̄‖2 ≤ 1, vy(ζ̄) �∈ Lk+1} �= ∅,

1We could make our reasoning precise, but it would require going into tedious technical details
that we prefer to skip.
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finds a point ζ̄ ∈ Ẑy (“an infeasibility certificate”). Here is such a routine. First,
recall that our algorithm for verifying robust feasibility of y reports that y �∈ Y in
two situations:

• ‖σ(y)‖2 > δ(y). In this case we can without any difficulty find a ζ̄, ‖ζ̄‖2 ≤ 1,
such that σT (y)ζ̄ + δ(y) < 0. In other words, the vector vy(ζ̄) has a negative last
coordinate and therefore it definitely does not belong to Lk+1. Such a ζ̄ is an
infeasibility certificate.

• We have discovered that (a) λ+ < 0, or (b) got ∆t = ∅ at a certain step
t of our bisection process. In this case building an infeasibility certificate is more
tricky.

Step 1: Separating the positive semidefinite cone and the “matrix ray”
{Ay(λ) : λ ≥ 0}. Observe that with z0 defined as the last basic orth in R

L+1, we
have f0(λ) ≡ zT

0 Ay(λ)z0 < 0 when λ > λ+. Recalling what our bisection process is,
we conclude that in both cases (a), (b) we have at our disposal a collection z0, ..., zt

of (L + 1)-dimensional vectors such that with fs(λ) = zT
s Ay(λ)zs we have f(λ) ≡

min [f0(λ), f1(λ), ..., ft(λ)] < 0 for all λ ≥ 0. By construction, f(λ) is a piecewise
linear concave function on the nonnegative ray; looking at what happens at the
maximizer of f over λ ≥ 0, we conclude that an appropriate convex combination
of just two of the “linear pieces” f0(λ), ..., ft(λ) of f is negative everywhere on
the nonnegative ray. That is, with properly chosen and easy-to-find α ∈ [0, 1] and
τ1, τ2 ≤ t we have

φ(λ) ≡ αfτ1(λ) + (1− α)fτ2(λ) < 0 ∀λ ≥ 0.

Recalling the origin of fτ (λ) and setting z1 =
√

αzτ1 , z2 =
√

1− αzτ2 , Z = z1[z1]T +
z2[z2]T , we have

0 > φ(λ) = [z1]T Ay(λ)z1 + [z2]T Ay(λ)z2 = Tr(Ay(λ)Z) ∀λ ≥ 0. (6.5.3)

This inequality has a simple interpretation: the function Φ(X) = Tr(XZ) is a linear
form on SL+1 that is nonnegative on the positive semidefinite cone (since Z � 0
by construction) and is negative everywhere on the “matrix ray” {Ay(λ) : λ ≥ 0},
thus certifying that this ray does not intersect the positive semidefinite cone (the
latter is exactly the same as the fact that (6.5.2.b) is false).

Step 2: from Z to ζ̄. Relation (6.5.3) says that an affine function φ(λ) is nega-
tive everywhere on the nonnegative ray, meaning that the slope of the function is
nonpositive, and the value at the origin is negative. Taking into account (6.5.2),
we get

ZL+1,L+1 ≥
L∑

i=1

Zii, Tr(Z

⎡⎢⎢⎣
σ(y)σT (y)
−αT (y)α(y)

δ(y)σT (y)
−βT (y)α(y)

δ(y)σ(y)
−αT (y)β(y)

δ2(y)− βT (y)β(y)

⎤⎥⎥⎦
︸ ︷︷ ︸

Ay(0)

) < 0.

(6.5.4)
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Besides this, we remember that Z is given as z1[z1]T + z2[z2]T . We claim that

(!) We can efficiently find a representation Z = eeT + ffT such that

e, f ∈ LL+1.

Taking for the time being (!) for granted, let us build an infeasibility certificate.
Indeed, from the second relation in (6.5.4) it follows that either Tr(Ay(0)eeT ) < 0,
or Tr(Ay(0)ffT ) < 0, or both. Let us check which one of these inequalities indeed
holds true; w.l.o.g., let it be the first one. From this inequality, in particular, e �= 0,
and since e ∈ LL+1, we have eL+1 > 0. Setting ē = e/eL+1 = [ζ̄; 1], we have
Tr(Ay(0)ēēT ) = ēT Ay(0)ē < 0, that is,

δ2(y)− βT (y)β(y) + 2δ(y)σT (y)ζ̄ − 2βT (y)α(y)ζ̄ + ζ̄T σ(y)σT (y)ζ̄

−ζ̄T αT (y)α(y)ζ̄ < 0,

or, which is the same,

(δ(y) + σT (y)ζ̄)2 < (α(y)ζ̄ + β(y))T (α(y)ζ̄ + β(y)).

We see that the vector vy(ζ̄) = [α(y)ζ̄+β(y);σT (y)ζ̄+δ(y)] does not belong to LL+1,
while ē = [ζ̄; 1] ∈ LL+1, that is, ‖ζ̄‖2 ≤ 1. We have built a required infeasibility
certificate.

It remains to justify (!). Replacing, if necessary, z1 with −z1 and z2 with −z2, we
can assume that Z = z1[z1]T + z2[z2]T with z1 = [p; s], z2 = [q; r], where s, r ≥ 0. It may
happen that z1, z2 ∈ LL+1 — then we are done. Assume now that not both z1, z2 belong
to LL+1, say, z1 �∈ LL+1, that is, 0 ≤ s < ‖p‖2. Observe that ZL+1,L+1 = s2 + r2 and
L∑

i=1

Zii = pT p+qT q; therefore the first relation in (6.5.4) implies that s2 +r2 ≥ pT p+qT q.

Since 0 ≤ s < ‖p‖2 and r ≥ 0, we conclude that r > ‖q‖2. Thus, s < ‖p‖2, r > ‖q‖2,
whence there exists (and can be easily found) α ∈ (0, 1) such that for the vector e =√

αz1+
√

1 − αz2 = [u; t] we have eL+1 =
√

e2
1 + ... + e2

L. Setting f = −
√

1 − αz1+
√

αz2,
we have eeT + ffT = z1[z1]T + z2[z2]T = Z. We now have

0 ≤ ZL+1,L+1 −
L∑

i=1

Zii = e2
L+1 + f2

L+1 −
L∑

i=1

[e2
i + f2

i ] = f2
L+1 −

L∑
i=1

f2
i ;

thus, replacing, if necessary, f with −f , we see that e, f ∈ LL+1 and Z = eeT + ffT , as

required in (!).

6.5.1 Semidefinite Representation of the RC of an Uncertain CQI with Simple

Ellipsoidal Uncertainty

This book was nearly finished when the topic considered in this section was signif-
icantly advanced by R. Hildebrand [62, 63] who discovered an explicit SDP repre-
sentation of the cone of “Lorentz-positive” n × m matrices (real m × n matrices
that map the Lorentz cone Lm into the Lorentz cone Ln). Existence of such a
representation was a long-standing open question. As a byproduct of answering
this question, the construction of Hildebrand offers an explicit SDP reformulation
of the RC of an uncertain conic quadratic inequality with ellipsoidal uncertainty.
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The RC of an uncertain conic quadratic inequality with ellipsoidal un-
certainty and Lorentz-positive matrices. Consider the RC of an uncertain
conic quadratic inequality with simple ellipsoidal uncertainty; w.l.o.g., we assume
that the uncertainty set Z is the unit Euclidean ball in some R

m−1, so that the RC
is the semi-infinite constraint of the form

B[x]ζ + b[x] ∈ Ln ∀(ζ ∈ R
m−1 : ζT ζ ≤ 1), (6.5.5)

with B[x], b[x] affinely depending on x. This constraint is clearly exactly the same
as the constraint

B[x]ξ + τb[x] ∈ Ln ∀([ξ; τ ] ∈ Lm).

We see that x is feasible for the RC in question if and only if the n×m matrix M [x] =
[B[x], b[x]] affinely depending on x is Lorentz-positive, that is, maps the cone Lm

into the cone Ln. It follows that in order to get an explicit SDP representation of

the RC, is suffices to know an explicit SDP representation of the set Pn,m of n×m

matrices mapping Lm into Ln.

SDP representation of Pn,m as discovered by R. Hildebrand (who used tools
going far beyond those used in this book) is as follows.

A. Given m, n, we define a linear mapping A �→ W(A) from the space R
n×m

of real n × m matrices into the space SN of symmetric N × N matrices with
N = (n− 1)(m− 1), namely, as follows.

Let Wn[u] =

⎡⎢⎢⎢⎣
un + u1 u2 · · · un−1

u2 un − u1

...
. . .

un−1 un − u1

⎤⎥⎥⎥⎦, so that Wn is a sym-

metric (n − 1) × (n − 1) matrix depending on a vector u of n real variables.

Now consider the Kronecker product W [u, v] = Wn[u]
⊗

Wm[v]. 2 W is a

symmetric N × N matrix with entries that are bilinear functions of u and v

variables, so that an entry is of the form “weighted sum of pair products of

the u and the v-variables.” Now, given an n×m matrix A, let us replace pair

products uivk in the representation of the entries in W [u, v] with the entries

Aik of A. As a result of this formal substitution, W will become a symmetric

(n − 1) × (m − 1) matrix W(A) that depends linearly on A.

B. We define a linear subspace Lm,n in the space SN as the linear span
of the Kronecker products S

⊗
T of all skew-symmetric real (n − 1) × (n − 1)

matrices S and skew-symmetric real (m− 1)× (m− 1) matrices T . Note that the
Kronecker product of two skew-symmetric matrices is a symmetric matrix, so that
the definition makes sense. Of course, we can easily build a basis in Lm,n — it
is comprised of pairwise Kronecker products of the basic (n − 1)-dimensional and
(m− 1)-dimensional skew-symmetric matrices.

2Recall that the Kronecker product A
⊗

B of a p × q matrix A and an r × s matrix B is the
pr × qs matrix with rows indexed by pairs (i, k), 1 ≤ i ≤ p, 1 ≤ k ≤ r, and columns indexed
by pairs (j, �), 1 ≤ j ≤ q, 1 ≤ � ≤ s, and the ((i, k), (j, �))-entry equal to AijBk�. Equivalently,
A
⊗

B is a p × q block matrix with r × s blocks, the (i, j)-th block being AijB.
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The Hildebrand SDP representation of Pn,m is given by the following:

Theorem 6.5.1. [Hildebrand [63, Theorem 5.6]] Let min[m, n] ≥ 3. Then an
n ×m matrix A maps Lm into Ln if and only if A can be extended to a feasible
solution to the explicit system of LMIs

W(A) + X � 0, X ∈ Lm,n

in variables A, X.

As a corollary,

When m− 1 := dim ζ ≥ 2 and n := dim b[x] ≥ 3, the explicit (n− 1)(m− 1)× (n−
1)(m− 1) LMI

W([B[x], b[x]]) + X � 0 (6.5.6)

in variables x and X ∈ Lm,n is an equivalent SDP representation of the semi-infinite

conic quadratic inequality (6.5.5) with ellipsoidal uncertainty set.

The lower bounds on the dimensions of ζ and b[x] in the corollary do not restrict
generality — we can always ensure their validity by adding zero columns to B[x]
and/or adding zero rows to [B[x], b[x]].

6.6 ILLUSTRATION: ROBUST LINEAR ESTIMATION

Consider the situation as follows: we are given noisy observations

w = (Ip + ∆)z + ξ (6.6.1)

of a signal z that, in turn, is the result of passing an unknown input signal v through
a given linear filter: z = Av with known p×q matrix A. The measurements contain
errors of two kinds:

• bias ∆z linearly depending on z, where the only information on the bias
matrix ∆ is given by a bound ‖∆‖2,2 ≤ ρ on its norm;

• random noise ξ with zero mean and known covariance matrix Σ = E{ξξT }.
The goal is to estimate a given linear functional fT v of the input signal. We restrict
ourselves with estimators that are linear in w:

f̂ = xT w,

where x is a fixed weight vector. For a linear estimator, the mean squares error is

EstErr =
√

E{(xT [(I + ∆)Av + ξ]− fT v)2}

=
√

([AT (I + ∆T )x− f ]T v)2 + xT Σx.

Now assume that our a priori knowledge of the true signal is that vT Qv ≤ R2,
where Q � 0 and R > 0. In this situation it makes sense to look for the minimax

optimal weight vector x that minimizes the worst, over v and ∆ compatible with
our a priori information, mean squares estimation error. In other words, we choose
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x as the optimal solution to the following optimization problem

min
x

max
v:vT Qv≤R2
∆:‖∆‖2,2≤ρ

((
[AT (I + ∆T )︸ ︷︷ ︸

S

x− f ]T v
)2 + xT Σx

)1/2
. (P )

Now,
max

v:vT Qv≤R2
[Sx− f ]T v = max

u:uT u≤1
[Sx− f ]T (RQ−1/2u)

= R‖Q−1/2Sx−Q−1/2f︸ ︷︷ ︸
f̂

‖2,

so that (P ) reduces to the problem

min
x

√
xT Σx + R2 max

‖∆‖2,2≤ρ
‖Q−1/2AT (I + ∆T )︸ ︷︷ ︸

B

x− f̂‖22,

which is exactly the RC of the uncertain conic quadratic program

min
x,t,r,s

{
t :

√
r2 + s2 ≤ t, ‖Σ1/2x‖2 ≤ r,

‖Bx− f̂‖2 ≤ R−1s

}
, (6.6.2)

where the only uncertain element of the data is the matrix B = Q−1/2AT (I + ∆T )
running through the uncertainty set

U = {B = Q−1/2AT︸ ︷︷ ︸
Bn

+ρQ−1/2AT ζ, ζ ∈ Z = {ζ ∈ R
p×p : ‖ζ‖2,2 ≤ 1}}. (6.6.3)

The uncertainty here is the unstructured norm-bounded one; the RC of (6.6.2),
(6.6.3) is readily given by Theorem 6.3.2 and Example 6.3.1.(i). Specifically, the
RC is the optimization program

min
x,t,r,s,λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩t :

√
r2 + s2 ≤ t, ‖Σ1/2x‖2 ≤ r,⎡⎢⎣ R−1sIq − λρ2BnBTn Bnx− f̂

λIp x

[Bnx− f̂ ]T xT R−1s

⎤⎥⎦ � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (6.6.4)

which can further be recast as an SDP.
Next we present a numerical illustration.

Example 6.6.1. Consider the problem as follows:

A thin homogeneous iron plate occupies the 2-D square D = {(x, y) : 0 ≤
x, y ≤ 1}. At time t = 0 it was heated to temperature T (0, x, y) such that∫

D
T 2(0, x, y)dxdy ≤ T 2

0 with a given T0, and then was left to cool; the
temperature along the perimeter of the plate is kept at the level 0o all the
time. At a given time 2τ we measure the temperature T (2τ, x, y) along the
2-D grid

Γ = {(uµ, uν) : 1 ≤ µ, ν ≤ N}, uk =
k − 1/2

N

The vector w of measurements is obtained from the vector

z = {T (2τ, uµ, uν) : 1 ≤ µ, ν ≤ N}

according to (6.6.1), where ‖∆‖2,2 ≤ ρ and ξµν are independent Gaussian
random variables with zero mean and standard deviation σ. Given the mea-
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surements, we need to estimate the temperature T (τ, 1/2, 1/2) at the center
of the plate at time τ .

It is known from physics that the evolution in time of the temperature
T (t, x, y) of a homogeneous plate occupying a 2-D domain Ω, with no sources of
heat in the domain and heat exchange solely via the boundary, is governed by the
heat equation

∂

∂t
T =

(
∂2

∂x2
+

∂2

∂y2

)
.T

(In fact, in the right hand side there should be a factor γ representing material’s
properties, but by an appropriate choice of the time unit, this factor can be made
equal to 1.) For the case of Ω = D and zero boundary conditions, the solution to
this equation is as follows:

T (t, x, y) =
∞∑

k,�=1

ak� exp{−(k2 + �2)π2t} sin(πkx) sin(π�y), (6.6.5)

where the coefficients ak� can be obtained by expanding the initial temperature
into a series in the orthogonal basis φk�(x, y) = sin(πkx) sin(π�y) in L2(D):

ak� = 4
∫
D

T (0, x, y)φk�(x, y)dxdy.

In other words, the Fourier coefficients of T (t, ·, ·) in an appropriate orthogonal
spatial basis decrease exponentially as t grows, with the “decay time” (the smallest
time in which every one of the coefficients is multiplied by factor ≤ 0.1) equal to

∆ =
ln(10)
2π2

.

Setting vk� = ak� exp{−(k2 +�2)π2τ}, the problem in question becomes to estimate

T (τ, 1/2, 1/2) =
∑
k,�

vk�φk�(1/2, 1/2)

given observations

w = (I + ∆)z + ξ, z = {T (2τ, uµ, uν) : 1 ≤ µ, ν ≤ N},
ξ = {ξµν ∼ N (0, σ2) : 1 ≤ µ, ν ≤ N}

(ξµν are independent).

Finite-dimensional approximation. Observe that

ak� = exp{π2(k2 + �2)τ}vk�

and that∑
k,�

v2
k� exp{2π2(k2 + �2)τ} =

∑
k,�

a2
k� = 4

∫
D

T 2(0, x, y)dxdy ≤ 4T 2
0 . (6.6.6)

It follows that
|vk�| ≤ 2T0 exp{−π2(k2 + �2)τ}.
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Now, given a tolerance ε > 0, we can easily find L such that∑
k,�:k2+�2>L2

exp{−π2(k2 + �2)τ} ≤ ε

2T0
,

meaning that when replacing by zeros the actual (unknown!) vk� with k2 +�2 > L2,
we change temperature at time τ (and at time 2τ as well) at every point by at most
ε. Choosing ε really small (say, ε = 1.e-16), we may assume for all practical purposes
that vk� = 0 when k2 + �2 > L2, which makes our problem a finite-dimensional one,
specifically, as follows:

Given the parameters L, N , ρ, σ, T0 and observations

w = (I + ∆)z + ξ, (6.6.7)

where ‖∆‖2,2 ≤ ρ, ξµν ∼ N (0, σ2) are independent, z = Av is defined
by the relations

zµν =
∑

k2+�2≤L2

exp{−π2(k2 + �2)τ}vk�φk�(uµ, uν), 1 ≤ µ, ν ≤ N,

and v = {vk�}k2+�2≤L2 is known to satisfy the inequality

vT Qv ≡
∑

k2+�2≤L2

v2
k� exp{2π2(k2 + �2)τ} ≤ 4T 2

0 ,

estimate the quantity ∑
k2+�2≤L2

vk�φk�(1/2, 1/2),

where φk�(x, y) = sin(πkx) sin(π�y) and uµ = µ−1/2
N .

The latter problem fits the framework of robust estimation we have built, and we
can recover T = T (τ, 1/2, 1/2) by a linear estimator

T̂ =
∑
µ,ν

xµνwµν

with weights xµν given by an optimal solution to the associated problem (6.6.4).

Assume, for example, that τ is half of the decay time of our system:

τ =
1
2

ln(10)
2π2

≈ 0.0583,

and let
T0 = 1000, N = 4.

With ε = 1.e-15, we get L = 8 (this corresponds to just 41-dimensional space for
v’s). Now consider four options for ρ and σ:

(a) ρ = 1.e-9, σ = 1.e-9
(b) ρ = 0, σ = 1.e-3
(c) ρ = 1.e-3, σ = 1.e-3
(d) ρ = 1.e-1, σ = 1.e-1
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In the case of (a), the optimal value in (6.6.4) is 0.0064, meaning that the expected
squared error of the minimax optimal estimator never exceeds (0.0064)2. The min-
imax optimal weights are⎡⎢⎢⎣

6625.3 −2823.0 −2.8230 6625.3
−2823.0 1202.9 1202.9 −2823.0
−2823.0 1202.9 1202.9 −2823.0

6625.3 −2823.0 −2823.0 6625.3

⎤⎥⎥⎦ (A)

(we represent the weights as a 2-D array, according to the natural structure of the
observations).

In the case of (b), the optimal value in (6.6.4) is 0.232, and the minimax optimal
weights are ⎡⎢⎢⎣

−55.6430 −55.6320 −55.6320 −55.6430
−55.6320 56.5601 56.5601 −55.6320
−55.6320 56.5601 56.5601 −55.6320
−55.6430 −55.6320 −55.6320 −55.6430

⎤⎥⎥⎦ . (B)

In the case of (c), the optimal value in (6.6.4) is 8.92, and the minimax optimal
weights are ⎡⎢⎢⎣

−0.4377 −0.2740 −0.2740 −0.4377
−0.2740 1.2283 1.2283 −0.2740
−0.2740 1.2283 1.2283 −0.2740
−0.4377 −0.2740 −0.2740 −0.4377

⎤⎥⎥⎦ . (C)

In the case of (d), the optimal value in (6.6.4) is 63.9, and the minimax optimal
weights are ⎡⎢⎢⎣

0.1157 0.2795 0.2795 0.1157
0.2795 0.6748 0.6748 0.2795
0.2795 0.6748 0.6748 0.2795
0.1157 0.2795 0.2795 0.1157

⎤⎥⎥⎦ . (D)

Now, in reality we can hardly know exactly the bounds ρ, σ on the measure-
ment errors. What happens when we under- or over-estimate these quantities? To
get an orientation, let us use every one of the weights given by (A), (B), (C), (D) in
every one of the situations (a), (b), (c), (d). This is what happens with the errors
(obtained as the average of observed errors over 100 random simulations using the
“nearly worst-case” signal v and “nearly worst-case” perturbation matrix ∆):

(a) (b) (c) (d)
(A) 0.001 18.0 6262.9 6.26e5
(B) 0.063 0.232 89.3 8942.7
(C) 8.85 8.85 8.85 108.8
(D) 8.94 8.94 8.94 63.3

We clearly see that, first, in our situation taking into account measurement errors,
even pretty small ones, is a must (this is so in all ill-posed estimation problems —
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those where the condition number of Bn is large). Second, we see that underes-
timating the magnitude of measurement errors seems to be much more dangerous
than overestimating them.

6.7 EXERCISES

Exercise 6.1. Consider the situation as follows (cf. section 6.6). We are given
an observation

y = Ax + b ∈ R
m

of unknown signal x ∈ R
n. The matrix B ≡ [A; b] is not known exactly; all we know

is that B ∈ B = {B = Bn + LT ∆R : ∆ ∈ R
p×q, ‖∆‖2,2 ≤ ρ}. Build an estimate v

of the vector Qx, where Q is a given k × n matrix, that minimizes the worst-case,
over all possible true values of x, ‖ · ‖2 estimation error.

6.8 NOTES AND REMARKS

NR 6.1. Tractable reformulation of an uncertain LMI with unstructured
norm-bounded perturbation underlying Theorem 6.3.2 and Proposition 6.4.1 was
discovered in [32]. S-Lemma, along with the (much simpler) Schur Complement
Lemma, form the two most powerful tools in Semidefinite Optimization and in Con-
trol Theory. The S-Lemma was discovered by V.A. Yakubovich in 1971; for a com-
prehensive “optimization-oriented” survey of the related issues, see [94]. Tractabil-
ity of the RC of uncertain CQI with simple ellipsoidal uncertainty (section 6.5) was
established independently in [3] and [49].



Chapter Seven
Approximating RCs of Uncertain Conic Quadratic Problems

In this chapter we focus on tight tractable approximations of uncertain CQIs —
those with tightness factor independent (or nearly so) of the “size” of the description
of the perturbation set. Known approximations of this type deal with side-wise
uncertainty and two types of the left hand side perturbations: the first is the case
of structured norm-bounded perturbations to be considered in section 7.1, while the
second is the case of ∩-ellipsoidal left hand side perturbation sets to be considered
in section 7.2.

7.1 STRUCTURED NORM-BOUNDED UNCERTAINTY

Consider the case where the uncertainty in CQI (6.1.3) is side-wise with the right
hand side uncertainty as in section 6.2, and with structured norm-bounded left
hand side uncertainty, meaning that

i) The left hand side perturbation set is

Z left
ρ = ρZ left

1 =

⎧⎪⎨⎪⎩η = (η1, ..., ηN ) :

ην ∈ R
pν×qν ∀ν ≤ N

‖ην‖2,2 ≤ ρ ∀ν ≤ N

ην = θνIpν , θν ∈ R, ν ∈ Is

⎫⎪⎬⎪⎭ (7.1.1)

Here Is is a given subset of the index set {1, ..., N} such that pν = qν for
ν ∈ Is.
Thus, the left hand side perturbations η ∈ Z left

1 are block-diagonal matrices
with pν × qν diagonal blocks ην , ν = 1, ..., N . All of these blocks are of
matrix norm not exceeding 1, and, in addition, prescribed blocks should be
proportional to the unit matrices of appropriate sizes. The latter blocks are
called scalar, and the remaining — full perturbation blocks.

ii) We have

A(η)y + b(η) = Any + bn +
N∑

ν=1

LT
ν (y)ηνRν(y), (7.1.2)

where all matrices Lν(y) �≡ 0, Rν(y) �≡ 0 are affine in y and for every ν, either
Lν(y), or Rν(y), or both are independent of y.

Remark 7.1.1. W.l.o.g., we assume from now on that all scalar perturbation
blocks are of the size 1× 1: pν = qν = 1 for all ν ∈ Is.



180 CHAPTER 7

To see that this assumption indeed does not restrict generality, note that if ν ∈ Is,
then in order for (7.1.2) to make sense, Rν(y) should be a pν × 1 vector, and Lν(y)
should be a pν × k matrix, where k is the dimension of b(η). Setting R̄ν(y) ≡
1, L̄ν(y) = RT

ν (y)Lν(y), observe that L̄ν(y) is affine in y, and the contribution
θνLT

ν (y)Rν(y) of the ν-th scalar perturbation block to A(η)y + b(η) is exactly the
same as if this block were of size 1×1, and the matrices Lν(y), Rν(y) were replaced
with L̄ν(y), R̄ν(y), respectively.

Note that Remark 7.1.1 is equivalent to the assumption that there are no

scalar perturbation blocks at all — indeed, 1× 1 scalar perturbation blocks can be
thought of as full ones as well. 1.

Recall that we have already considered the particular case N = 1 of the
uncertainty structure. Indeed, with a single perturbation block, that, as we just
have seen, we can treat as a full one, we find ourselves in the situation of side-wise
uncertainty with unstructured norm-bounded left hand side perturbation (section
6.3). In this situation the RC of the uncertain CQI in question is computationally
tractable. The latter is not necessarily the case for general (N > 1) structured
norm-bounded left hand side perturbations. To see that the general structured
norm-bounded perturbations are difficult to handle, note that they cover, in partic-
ular, the case of interval uncertainty, where Z left

1 is the box {η ∈ R
L : ‖η‖∞ ≤ 1}

and A(η), b(η) are arbitrary affine functions of η.

Indeed, the interval uncertainty

A(η)y + b(η) = [Any + bn] +
N∑

ν=1
ην [Aνy + bν ]

= [Any + bn] +
N∑

ν=1
[Aνy + bν ]︸ ︷︷ ︸

LT
ν (y)

·ην · 1︸︷︷︸
Rν(y)

,

is nothing but the structured norm-bounded perturbation with 1 × 1
perturbation blocks.

From the beginning of section 5.2 we know that the RC of uncertain CQI with
side-wise uncertainty and interval uncertainty in the left hand side in general is
computationally intractable, meaning that structural norm-bounded uncertainty
can be indeed difficult.

7.1.1 Approximating the RC of Uncertain Least Squares Inequality

We start with deriving a safe tractable approximation of the RC of an uncertain

Least Squares constraint
‖A(η)y + b(η)‖2 ≤ τ, (7.1.3)

1A reader could ask, why do we need the scalar perturbation blocks, given that finally we can
get rid of them without loosing generality. The answer is, that we intend to use the same notion
of structured norm-bounded uncertainty in the case of uncertain LMIs, where Remark 7.1.1 does
not work.
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with structured norm-bounded perturbation (7.1.1), (7.1.2).

Step 1: reformulating the RC of (7.1.3), (7.1.1), (7.1.2) as a semi-infinite
LMI. Given a k-dimensional vector u (k is the dimension of b(η)) and a real τ , let
us set

Arrow(u, t) =
[

τ uT

u τIk

]
.

Recall that by Lemma 6.3.3 ‖u‖2 ≤ τ if and only if Arrow(u, τ) � 0. It follows that
the RC of (7.1.3), (7.1.1), (7.1.2), which is the semi-infinite Least Squares inequality

‖A(η)y + b(η)‖2 ≤ τ ∀η ∈ Z left
ρ ,

can be rewritten as

Arrow(A(η)y + b(η), τ) � 0 ∀η ∈ Z left
ρ . (7.1.4)

Introducing k× (k+1) matrix L = [0k×1, Ik] and 1× (k+1) matrix R = [1, 0, ..., 0],
we clearly have

Arrow(A(η)y + b(η), τ) = Arrow(Any + bn, τ)

+
N∑

ν=1

[
LT LT

ν (y)ηνRν(y)R+RT RT
ν (y)[ην ]T Lν(y)L

]
.

(7.1.5)

Now, since for every ν, either Lν(y), or Rν(y), or both, are independent of y,
renaming, if necessary [ην ]T as ην , and swapping Lν(y)L and Rν(y)R, we may
assume w.l.o.g. that in the relation (7.1.5) all factors Lν(y) are independent of y,
so that the relation reads

Arrow(A(η)y + b(η), τ) = Arrow(Any + bn, τ)

+
N∑

ν=1

[
LT LT

ν︸ ︷︷ ︸
L̂T

ν

ην Rν(y)R︸ ︷︷ ︸
R̂ν(y)

+R̂T
ν (y)[ην ]T L̂ν

]
where R̂ν(y) are affine in y and L̂ν �= 0. Observe also that all the symmetric
matrices

Bν(y, ην) = L̂T
ν ηνR̂ν(y) + R̂T

ν (y)[ην ]T L̂ν

are differences of two matrices of the form Arrow(u, τ) and Arrow(u′, τ), so that
these are matrices of rank at most 2. The intermediate summary of our observations
is as follows:

(#): The RC of (7.1.3), (7.1.1), (7.1.2) is equivalent to the semi-infinite LMI

Arrow(Any + bn, τ)︸ ︷︷ ︸
B0(y,τ)

+
N∑

ν=1
Bν(y, ην) � 0 ∀

(
η :

ην ∈ R
pν×qν ,

‖ην‖2,2 ≤ ρ ∀ν ≤ N

)

[
Bν(y, ην) = L̂T

ν ηνR̂ν(y) + R̂T
ν (y)[ην ]T L̂ν , ν = 1, ..., N

pν = qν = 1 ∀ν ∈ Is

] (7.1.6)

Here R̂(y) are affine in y, and for all y, all ν ≥ 1 and all ην the ranks of the matrices

Bν(y, ην) do not exceed 2.
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Step 2. Approximating (7.1.6). Observe that an evident sufficient condition
for the validity of (7.1.6) for a given y is the existence of symmetric matrices Yν ,
ν = 1, ..., N , such that

Yν � Bν(y, ην) ∀ (ην ∈ Zν = {ην : ‖ην‖2,2 ≤ 1; ν ∈ Is ⇒ ην ∈ RIpν}) (7.1.7)

and

B0(y, τ)− ρ

N∑
ν=1

Yν � 0. (7.1.8)

We are about to demonstrate that the semi-infinite LMIs (7.1.7) in variables Yν , y, τ

can be represented by explicit finite systems of LMIs, so that the system S0 of semi-
infinite constraints (7.1.7), (7.1.8) on variables Y1, ..., YN , y, τ is equivalent to an
explicit finite system S of LMIs. Since S0, due to its origin, is a safe approximation
of (7.1.6), so will be S, (which, in addition, is tractable). Now let us implement
our strategy.

10. Let us start with ν ∈ Is. Here (7.1.7) clearly is equivalent to just two
LMIs

Yν � Bν(y) ≡ L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν & Yν � −Bν(y). (7.1.9)

20. Now consider relation (7.1.7) for the case ν �∈ Is. Here we have

(Yν , y) satisfies (7.1.7)

⇔ uT Yνu ≥ uT Bν(y, ην)u ∀u∀(ην : ‖ην‖2,2 ≤ 1)

⇔ uT Yνu ≥ uT L̂T
ν ηνR̂ν(y)u + uT R̂T

ν (y)[ην ]T L̂νu ∀u∀(ην : ‖ην‖2,2 ≤ 1)

⇔ uT Yνu ≥ 2uT L̂T
ν ηνR̂ν(y)u ∀u∀(ην : ‖ην‖2,2 ≤ 1)

⇔ uT Yνu ≥ 2‖L̂νu‖2‖R̂(y)u‖2 ∀u
⇔ uT Yνu− 2ξT R̂ν(y)u ∀(u, ξ : ξT ξ ≤ uT L̂T

ν L̂νu)

Invoking the S-Lemma, the concluding condition in the latter chain is equivalent
to

∃λν ≥ 0 :

[
Yν − λνL̂T

ν L̂ν −R̂T
ν (y)

−R̂ν(y) λνIkν

]
� 0, (7.1.10)

where kν is the number of rows in R̂ν(y).

We have proved the first part of the following statement:

Theorem 7.1.2. The explicit system of LMIs

Yν � ±(L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν), ν ∈ Is[
Yν − λνL̂T

ν L̂ν R̂T
ν (y)

R̂ν(y) λνIkν

]
� 0, ν �∈ Is

Arrow(Any + bn, τ)− ρ
N∑

ν=1
Yν � 0

(7.1.11)

(for notation, see (7.1.6)) in variables Y1, ..., YN , λν , y, τ is a safe tractable approxi-
mation of the RC of the uncertain Least Squares inequality (7.1.3), (7.1.1), (7.1.2).
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The tightness factor of this approximation never exceeds π/2, and equals to 1 when
N = 1.

Proof. By construction, (7.1.11) indeed is a safe tractable approximation of

the RC of (7.1.3), (7.1.1), (7.1.2) (note that a matrix of the form
[

A B

BT A

]
is

� 0 if and only if the matrix
[

A −B

−BT A

]
is so). By Remark and Theorem 6.3.2,

our approximation is exact when N = 1. The fact that the tightness factor never
exceeds π/2 is an immediate corollary of the following Theorem (to be proved in
Appendix B.4)

Theorem 7.1.3. [Matrix Cube Theorem, real case.] Let B0, B1, ..., Bp be
symmetric m×m matrices, and let Lj ∈ R

pj×m, Rj ∈ R
qj×m, j = 1, ..., q. Consider

the predicates

B0 +
p∑

i=1

θiBi +
q∑

j=1

[LT
j ΘjRj + RT

j [Θj ]T Lj ] � 0 ∀
(

θi : |θi| ≤ ρ

Θj : ‖Θj‖2,2 ≤ ρ

)
A(ρ)

and
∃U1, ..., Up, V1, ..., Vq : Ui � ±Bi, 1 ≤ i ≤ p,

Vj � [LT
j ΘjRj + RT

j [Θj ]T Lj ] ∀(Θj : ‖Θj‖2,2 ≤ 1), 1 ≤ j ≤ q,

B0 − ρ
p∑

i=1

Ui − ρ
q∑

j=1

Vj � 0.

B(ρ)

Then

(i) B(ρ) is a sufficient condition for A(ρ): whenever B(ρ) is valid, so is A(ρ).
When p + q = 1, B(ρ) is a necessary and sufficient condition for A(ρ);

(ii) If the ranks of the matrices B1, ..., Bp do not exceed an integer µ ≥ 2,
then the “tightness factor” of the sufficient condition in question does not exceed
ϑ(µ), meaning that whenever B(ρ) is not valid, neither is (A(ϑ(µ)ρ)). Here ϑ(µ) is
an universal nondecreasing function of µ such that

ϑ(2) =
π

2
; ϑ(4) = 2; ϑ(µ) ≤ π

√
µ/2.

To complete the proof of Theorem 7.1.2, observe that a given pair (y, τ) is
robust feasible for (7.1.3), (7.1.1), (7.1.2) if and only if the matrices B0 = B0(y, τ),
Bi = Bνi(y, 1), i = 1, ..., p, Lj = L̂µj , Rj = R̂µj (y), j = 1, ..., q, satisfy A(ρ); here
Is = {ν1 < ... < νp} and {1, ..., L}\Is = {µ1 < ... < µq}. At the same time,
the validity of the corresponding predicate B(ρ) is equivalent to the possibility to
extend y to a solution of (7.1.11) due to the origin of the latter system. Since all
matrices Bi, i = 1, ..., p, are of rank at most 2 by (#), the Matrix Cube Theorem
implies that if (y, τ) cannot be extended to a feasible solution to (7.1.11), then
(y, τ) is not robust feasible for (7.1.3), (7.1.1), (7.1.2) when the uncertainty level is
increased by the factor ϑ(2) = π

2 . �
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7.1.2 Least Squares Inequality with Structured Norm-Bounded Uncertainty,

Complex Case

The uncertain Least Squares inequality (7.1.3) with structured norm-bounded per-
turbations makes sense in the case of complex left hand side data as well as in
the case of real data. Surprisingly, in the complex case the RC admits a better
in tightness factor safe tractable approximation than in the real case (specifically,
the tightness factor π

2 = 1.57... stated in Theorem 7.1.2 in the complex case im-
proves to 4

π = 1.27...). Consider an uncertain Least Squares inequality (7.1.3) where
A(η) ∈ C

m×n, b(η) ∈ C
m and the perturbations are structured norm-bounded and

complex, meaning that (cf. (7.1.1), (7.1.2))

(a) Z left
ρ = ρZ left

1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩η = (η1, ..., ηN ) :

ην ∈ C
pν×qν , ν = 1, ..., N

‖ην‖2,2 ≤ ρ, ν = 1, ..., N

ην = θνIpν
, θν ∈ C, ν ∈ Is

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(b) A(ζ)y + b(ζ) = [Any + bn] +
N∑

ν=1
LH

ν (y)ηνRν(y),

(7.1.12)
where Lν(y), Rν(y) are affine in [�(y); (y)] matrices with complex entries such that
for every ν at least one of these matrices is independent on y and is nonzero, and
BH denotes the Hermitian conjugate of a complex-valued matrix B: (BH)ij = Bji,
where z is the complex conjugate of a complex number z.

Observe that by exactly the same reasons as in the real case, we can assume
w.l.o.g. that all scalar perturbation blocks are 1×1, or, equivalently, that there are
no scalar perturbation blocks at all, so that from now on we assume that Is = ∅.

The derivation of the approximation is similar to the one in the real case.
Specifically, we start with the evident observation that for a complex k-dimensional
vector u and a real t the relation

‖u‖2 ≤ t

is equivalent to the fact that the Hermitian matrix

Arrow(u, t) =
[

t uH

u tIk

]
is � 0; this fact is readily given by the complex version of the Schur Complement

Lemma: a Hermitian block matrix

[
P QH

Q R

]
with R � 0 is positive semidefinite

if and only if the Hermitian matrix P −QHR−1Q is positive semidefinite (cf. the
proof of Lemma 6.3.3). It follows that (y, τ) is robust feasible for the uncertain
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Least Squares inequality in question if and only if

Arrow(Any + bn, τ)︸ ︷︷ ︸
B0(y,τ)

+
N∑

ν=1
Bν(y, ην) � 0∀ (η : ‖ην‖2,2 ≤ ρ∀ν ≤ N)

[
Bν(y, ην) = L̂H

ν ηνR̂ν(y) + R̂H
ν (y)[ην ]H L̂ν , ν = 1, ..., N

] (7.1.13)

where L̂ν are constant matrices, and R̂(y) are affine in [�(y); (y)] matrices readily
given by Lν(y), Rν(y) (cf. (7.1.6) and take into account that we are in the situation
Is = ∅). It follows that whenever, for a given (y, τ), one can find Hermitian matrices
Yν such that

Yν � Bν(y, ην) ∀(ην ∈ C
pν×qν : ‖ην‖2,2 ≤ 1), ν = 1, ..., N, (7.1.14)

and B0(y, τ) � ρ
N∑

ν=1
Yν , the pair (y, τ) is robust feasible.

Same as in the real case, applying the S-Lemma, (which works in the complex case
as well as in the real one), a matrix Yν satisfies (7.1.14) if and only if

∃λν ≥ 0 :

[
Yν − λνL̂H

ν L̂ν −R̂H
ν (y)

−R̂ν(y) λνIkν

]
,

where kν is the number of rows in R̂ν(y). We have arrived at the first part of the
following statement:

Theorem 7.1.4. The explicit system of LMIs[
Yν − λνL̂H

ν L̂ν R̂H
ν (y)

R̂ν(y) λνIkν

]
� 0, ν = 1, ..., N,

Arrow(Any + bn, τ)− ρ
N∑

ν=1
Yν � 0

(7.1.15)

(for notation, see (7.1.13)) in the variables {Yi = Y H
i }, λν , y, τ is a safe tractable

approximation of the RC of the uncertain Least Squares inequality (7.1.3), (7.1.12).
The tightness factor of this approximation never exceeds 4/π, and is equal to 1 when
N = 1.

Proof is completely similar to the one of Theorem 7.1.2, modulo the following
statement (to be proved in Appendix B.4) replacing the Real case Matrix Cube
Theorem:

Theorem 7.1.5. [Matrix Cube Theorem, complex case with no scalar pertur-
bations] Let B0 be a Hermitian m ×m matrix, and let Lj ∈ C

pj×m, Rj ∈ C
qj×m,

j = 1, ..., q. Consider the predicates

B0 +
q∑

j=1

[LH
j ΘjRj + RH

j [Θj ]HLj ] � 0 ∀
(
Θj ∈ C

pj×qj : ‖Θj‖2,2 ≤ ρ
)

A(ρ)
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and
∃V1, ..., Vq : Vj �

(
LH

j ΘjRj + RH
j [Θj ]HLj

)
∀(Θj ∈ C

pj×qj : ‖Θj‖2,2 ≤ 1),

1 ≤ j ≤ q, and B0 − ρ
q∑

j=1

Vj � 0.
B(ρ)

Then

(i) B(ρ) is a sufficient condition for A(ρ): whenever B(ρ) is valid, so is A(ρ).
When q = 1, B(ρ) is a necessary and sufficient condition for A(ρ);

(ii) The “tightness factor” of the sufficient condition in question does not
exceed 4

π , meaning that when B(ρ) is not valid, neither is A( 4
π ρ).

Illustration: Antenna Design revisited. Consider the “Least Squares” version
of the Antenna Design problem from section 3.3. As in the original problem, we
consider an array of n harmonic oscillators placed at the points ki, k = 1, ..., n,
i being the orth of the X-axis in R

3, and normalize the weights zk ∈ C of the
oscillators by the requirement

�
{ n∑

k=1

zkDk(φ)︸ ︷︷ ︸
D(φ)

∣∣∣∣
φ=0

}
≥ 1,

where Dk(φ) = exp{2πı cos(φ)k/λ} is the diagram of the k-th oscillator. In sec-
tion 3.3, our goal was to minimize, under this normalization, the uniform norm
max

∆≤φ≤π
|D(φ)| of the diagram D(·) in the sidelobe angle. Here we want to minimize,

under the same normalization restriction, the weighted L2 norm of the diagram
D(·) in the sidelobe angle, specifically, the quantity

‖D(·)‖SA =

( ∫
z∈SA

|D(φ(z))|2dS(z)

)1/2

=
(

1
1+cos(∆)

π∫
∆

|D(φ)|2 sin(φ)dφ

)1/2

,

where SA is the sidelobe angle treated as the part of the unit sphere S2 ⊂ R
3

comprised of all directions forming angle ≥ ∆ with the direction i of the antenna
array, and dS(z) is the element of area of S2 normalized by the area of the entire
SA (so that

∫
SA dS(z) = 1). The associated optimization problem is

min
z1,...,zn∈C,τ∈R

⎧⎪⎪⎨⎪⎪⎩τ :

(
1

1+cos(∆)

π∫
∆

|
n∑

k=1

zkDk(φ)|2 sin(φ)dφ

)1/2

≤ τ

�{
n∑

k=1

zkDk(0)} ≥ 1

⎫⎪⎪⎬⎪⎪⎭ . (7.1.16)

In section 3.3 we allowed for perturbations in the positions of the oscillators and for
actuation errors affecting the weights. Here, for the sake of simplicity, we assume
that the positioning of oscillators is precise, and the only source of uncertainty is
given by actuation errors

zk �→ (1 + ζk)zk,
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with perturbations ζk ∈ C subject to the bounds |ζk| ≤ εkρ. As always, we lose
nothing when assuming that there are no actuation errors, but the diagrams Dk(·)
are subject to perturbations Dk(·) �→ (1 + ζk)Dk(·). Now, we can easily find an
n× n complex-valued matrix An such that

‖Anz‖2 =

⎛⎝ 1
1 + cos(∆)

π∫
∆

|
n∑

k=1

zkDk(φ)|2 sin(φ)dφ

⎞⎠1/2

∀z;

to this end, it suffices to compute the positive semidefinite Hermitian matrix with

the entries Hpq = 1
1+cos(∆)

π∫
∆

Dp(φ)Dq(φ) sin(φ)dφ and to set A = H1/2. Doing so,

we can reformulate the uncertain problem (7.1.16) equivalently as

min
z,τ

⎧⎨⎩τ :
‖A(η)z‖2 ≤ τ (a)

�{
n∑

k=1

(1 + εkηk)zkDk(0)} ≥ 1 (b)

⎫⎬⎭ ,

η ∈ Z left
ρ = {η ∈ C

n : |ηk| ≤ ρ, k = 1, ..., n}⎡⎣ A(η)z = Anz +
n∑

k=1

LH
k ηkRk(z)

LH
k is k-th column of An, Rk(z) = εkzk ∈ C

1×1

⎤⎦
(7.1.17)

Taking into account that |Dk(·)| ≡ 1, the RC of the uncertain constraint (7.1.17.b)
is equivalent to the explicit convex constraint

�{
n∑

k=1

zkDk(0)} − ρ

n∑
k=1

εk|zk| ≥ 1. (7.1.18)

Constraint (7.1.17.a) is an uncertain Least Squares inequality with complex data
and structured norm-bounded perturbations (n full 1 × 1 complex perturbation
blocks). Theorem 7.1.4 provides us with 4

π -tight safe tractable approximation of
this constraint, which is the system[

Yk − λkL̂H
k L̂k R̂H

k (z)
R̂k(z) λk

]
� 0, k = 1, ..., n

Arrow(Anz, τ) � ρ
n∑

k=1

Yk

(7.1.19)

of LMIs in variables Yk = Y H
k , λk ∈ R, τ ∈ R, z ∈ C

n; here

L̂k = [0, (An
1k), (An

2k), ..., (An
nk)] ∈ C

1×(n+1),

R̂k(z) = [εkzk, 0, ..., 0] ∈ C
1×(n+1).

The explicit convex problem

min
z,τ,{Yk,λk}

{τ : (z, τ, {Yk, λk}) satisfies (7.1.19), (7.1.18)} (7.1.20)

is a safe tractable approximation, tight within the factor 4
π , of the RC of (7.1.17).
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Design
ρ

Sidelobe
level

‖D(·)‖SA
Energy

concentration

0 0.01(0.00) 1.5e-5(0.00) 0.9998(0.00)
Nominal (Opt = 1.5e-5) 1.e-4 1.16(0.79) 0.728(0.48) 0.114(0.09)

1.e-3 1.83(1.02) 1.193(0.68) 0.083(0.07)

0 0.24(0.00) 0.040(0.00) 0.955(0.00)
RC (Opt = 0.053) 1.e-2 0.24(0.01) 0.043(0.00) 0.954(0.00)

3.e-2 0.25(0.03) 0.063(0.01) 0.882(0.03)
5.e-2 0.26(0.04) 0.091(0.01) 0.780(0.03)
1.e-1 0.33(0.05) 0.170(0.04) 0.517(0.13)

Table 7.1 Performance of nominal and robust designs.
In the table: Opt is the optimal value in the nominal problem and its RC,
respectively. The underlined numbers are averages over 100 random realizations
of actuation errors, the numbers in parentheses are the associated standard
deviations.

Example 7.1.6. Consider the same design data as in section 3.3, that is,

n = 16; λ = 8; ∆ = π/6; ε1 = ... = εn = 1

(thus, the magnitude of the actuation errors is ρ). Solving the nominal problem and the

(approximate) RC of the uncertain problem at the uncertainty level ρ = 1.e-2, we get,

respectively, the nominal and the robust designs. The characteristics of these designs are

presented in table 7.1 and are depicted in figure 7.1. The conclusions are, essentially,

the same as those in section 3.3 — the nominal design is completely senseless already

for 0.01% actuation errors, while the robust design seems completely meaningful even

with 5% (and perhaps even with 10%) actuation errors. It is instructive to compare the

GRC design obtained in section 3.3 (the one that is immunized against actuation errors)

and the RC design we have built now. Under the same circumstances, namely, for 3%

actuation errors, the former design exhibits sidelobe level about 0.19, which is essentially

better than the sidelobe level 0.23 we now have; however, the performance characteristic

of primary importance, that is, the energy concentration (fraction of total energy sent in

the spatial angle of interest) for the new design is much better than for the old one (0.88

vs. 0.66). The conclusion is that at least in our example the Least Squares setting of the

Antenna Design problem is much better suited for robust concentration of energy in the

angle of interest than the sidelobe level setting considered in section 3.3. An immediate

question is: if all we are interested in is the energy concentration, (which essentially, is

the case in actual Antenna Design), why not optimize this quantity directly? Why control

this concentration implicitly, by normalizing the diagram in the direction of interest and

minimizing its norm in the sidelobe angle? The answer is, that direct minimization of

energy concentration, even in the nominal setting, is a nonconvex problem, so that it is

unclear how to solve it efficiently — a difficulty that does not arise in the models we have

considered.
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Nominal design
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RC design
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Figure 7.1 Nominal and RC antenna designs. First rows: sample plots of |D(φ)| in polar
coordinates; the diagrams are normalized to have D(0) = 1. Second rows:
bunches of 100 simulated energy densities, cf. section 3.3.
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7.1.3 From Uncertain Least Squares to Uncertain CQI

Let us come back to the real case. We have already built a tight approximation for
the RC of a Least Squares inequality with structured norm-bounded uncertainty in
the left hand side data. Our next goal is to extend this approximation to the case
of uncertain CQI with side-wise uncertainty.

Theorem 7.1.7. Consider the uncertain CQI (6.1.3) with side-wise uncer-
tainty, where the left hand side uncertainty is the structured norm-bounded one
given by (7.1.1), (7.1.2), and the right hand side perturbation set is given by a
conic representation (cf. Theorem 1.3.4)

Zright
ρ = ρZright

1 , Zright
1 = {χ : ∃u : Pχ + Qu + p ∈ K} , (7.1.21)

where 0 ∈ Zright
1 , K is a closed convex pointed cone and the representation is

strictly feasible unless K is a polyhedral cone given by an explicit finite list of
linear inequalities, and 0 ∈ Zright

1 .

For ρ > 0, the explicit system of LMIs

(a) τ + ρpT v ≤ δ(y), PT v = σ(y), QT v = 0, v ∈ K∗

(b.1) Yν � ±(L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν), ν ∈ Is

(b.2)

[
Yν − λνL̂T

ν L̂ν R̂T
ν (y)

R̂ν(y) λνIkν

]
� 0, ν �∈ Is

(b.3) Arrow(Any + bn, τ)− ρ
N∑

ν=1
Yν � 0

(7.1.22)

(for notation, see (7.1.6)) in variables Y1, ..., YN , λν , y, τ, v is a safe tractable ap-
proximation of the RC of (6.2.1). This approximation is exact when N = 1, and is
tight within the factor π

2 otherwise.

Proof. Since the uncertainty is side-wise, y is robust feasible for (6.2.1),
(7.1.1), (7.1.2), (7.1.21), the uncertainty level being ρ > 0, if and only if there
exists τ such that

(c) σT (χ)y + δ(χ) ≥ τ ∀χ ∈ ρZright
1 ,

(d) ‖A(η)y + b(η)‖2 ≤ τ ∀η ∈ ρZ left
1 .

When ρ > 0, we have

ρZright
1 = {χ : ∃u : P (χ/ρ) + Qu + p ∈ K} = {χ : ∃u′ : Pχ + Qu′ + ρp ∈ K};

from the resulting conic representation of ρZright
1 , same as in the proof of Theorem

1.3.4, we conclude that the relations (7.1.22.a) represent equivalently the require-
ment (c), that is, (y, τ) satisfies (c) if and only if (y, τ) can be extended, by properly
chosen v, to a solution of (7.1.22.a). By Theorem 7.1.2, the possibility to extend
(y, τ) to a feasible solution of (7.1.22.b) is a sufficient condition for the validity of
(d). Thus, the (y, τ) component of a feasible solution to (7.1.22) satisfies (c), (d),



APPROXIMATING RCS OF UNCERTAIN CONIC QUADRATIC PROBLEMS 191

meaning that y is robust feasible at the level of uncertainty ρ. Thus, (7.1.22) is a
safe approximation of the RC in question.

The fact that the approximation is precise when there is only one left hand
side perturbation block is readily given by Theorem 6.3.2 and Remark 7.1.1 allowing
us to treat this block as full. It remains to verify that the tightness factor of the
approximation is at most π

2 , that is, to check that if a given y cannot be extended
to a feasible solution of the approximation for the uncertainty level ρ, then y is not
robust feasible for the uncertainty level π

2 ρ (see comments after Definition 5.3.2).
To this end, let us set

τy(r) = inf
χ

{
σT (χ)y + δ(χ) : χ ∈ rZright

1

}
.

Since 0 ∈ Zright
1 by assumption, τy(r) is nonincreasing in r. Clearly, y is robust

feasible at the uncertainty level r if and only if

‖A(η)y + b(η)‖2 ≤ τy(r) ∀η ∈ rZ left
1 . (7.1.23)

Now assume that a given y cannot be extended to a feasible solution of (7.1.22)
for the uncertainty level ρ. Let us set τ = τy(ρ); then (y, τ) can be extended, by
a properly chosen v, to a feasible solution of (7.1.22.a). Indeed, the latter system
expresses equivalently the fact that (y, τ) satisfies (c), which indeed is the case for
our (y, τ). Now, since y cannot be extended to a feasible solution to (7.1.22) at
the uncertainty level ρ, and the pair (y, τ) can be extended to a feasible solution
of (7.1.22.a), we conclude that (y, τ) cannot be extended to a feasible solution of
(7.1.22.b). By Theorem 7.1.2, the latter implies that y is not robust feasible for the
semi-infinite Least Squares constraint

‖A(η)y + b(η)‖2 ≤ τ = τy(ρ) ∀η ∈ π

2
ρZ left

1 .

Since τy(r) is nonincreasing in r, we conclude that y does not satisfy (7.1.23) when
r = π

2 ρ, meaning that y is not robust feasible at the level of uncertainty π
2 ρ. �

7.1.4 Convex Quadratic Constraint with Structured Norm-Bounded Uncertainty

Consider an uncertain convex quadratic constraint

(a) yT AT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ)
�

(b) ‖[2A(ζ)y; 1− 2yT b(ζ)− c(ζ)]‖2 ≤ 1 + 2yT b(ζ) + c(ζ),
(6.4.1)
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where A(ζ) is k × n and the uncertainty is structured norm-bounded (cf. (6.4.2)),
meaning that

(a) Zρ = ρZ1 =

⎧⎨⎩ζ = (ζ1, ..., ζN ) :
ζν ∈ R

pν×qν

‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N

ζν = θνIpν
, θν ∈ R, ν ∈ Is

⎫⎬⎭ ,

(b)

⎡⎣ A(ζ)y
yT b(ζ)
c(ζ)

⎤⎦ =

⎡⎣ Any

yT bn

cn

⎤⎦+
N∑

ν=1
LT

ν (y)ζνRν(y)

(7.1.24)

where, for every ν, Lν(y), Rν(y) are matrices of appropriate sizes depending affinely
on y and such that at least one of the matrices is constant. Same as above, we can
assume w.l.o.g. that all scalar perturbation blocks are 1 × 1: pν = kν = 1 for all
ν ∈ Is.
Note that the equivalence in (6.4.1) means that we still are interested in an uncertain CQI

with structured norm-bounded left hand side uncertainty. The uncertainty, however, is

not side-wise, that is, we are in the situation we could not handle before. We can handle

it now due to the fact that the uncertain CQI possesses a favorable structure inherited

from the original convex quadratic form of the constraint.

We are about to derive a tight tractable approximation of the RC of (6.4.1),
(7.1.24). The construction is similar to the one we used in the unstructured case
N = 1, see section 6.4. Specifically, let us set Lν(y) = [Lν,A(y), Lν,b(y), Lν,c(y)],
where Lν,b(y), Lν,c(y) are the last two columns in Lν(y), and let

L̃T
ν (y) =

[
LT

ν,b(y) + 1
2LT

ν,c(y);LT
ν,A(y)

]
, R̃ν(y) = [Rν(y), 0qν×k],

A(y) =
[

2yT bn + cn [Any]T

Any I

]
,

(7.1.25)

so that A(y), L̃ν(y) and R̃ν(y) are affine in y and at least one of the latter two
matrices is constant.

We have

yT AT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ) ∀ζ ∈ Zρ

⇔
[

2yT b(ζ) + c(ζ) [A(ζ)y]T

A(ζ)y I

]
� 0 ∀ζ ∈ Zρ [Schur Complement Lemma]

⇔

A(y)︷ ︸︸ ︷[
2yT bn + cn [Any]T

Any I

]
+

N∑
ν=1

[
[2Lν,b(y) + Lν,c(y)]T ζνRν(y) [LT

ν,A(y)ζνRν(y)]T

LT
ν,A(y)ζνRν(y)

]
︸ ︷︷ ︸

=L̃T
ν (y)ζν R̃ν(y)+R̃T

ν (y)[ζν ]T L̃ν(y)

� 0 ∀ζ ∈ Zρ

[by (7.1.24)]

⇔ A(y) +
N∑

ν=1

[
L̃T

ν (y)ζνR̃ν(y) + R̃T
ν (y)[ζν ]T L̃ν(y)

]
� 0 ∀ζ ∈ Zρ.
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Taking into account that for every ν at least one of the matrices L̃ν(y), R̃ν(y) is
independent of y and swapping, if necessary, ζν and [ζν ]T , we can rewrite the last
condition in the chain as

A(y) +
N∑

ν=1

[
L̂T

ν ζνR̂ν(y) + R̂T
ν (y)[ζν ]T L̂ν

]
� 0 ∀(ζ : ‖ζν‖2,2 ≤ ρ) (7.1.26)

where L̂ν , R̂ν(y) are readily given matrices and R̂ν(y) is affine in y. (Recall that
we are in the situation where all scalar perturbation blocks are 1 × 1 ones, and
we can therefore skip the explicit indication that ζν = θνIpν for ν ∈ Is). Ob-
serve also that similarly to the case of a Least Squares inequality, all matrices[
L̂T

ν ζνR̂ν(y) + R̂T
ν (y)[ζν ]T L̂ν

]
are of rank at most 2. Finally, we lose nothing by

assuming that L̂ν are nonzero for all ν.

Proceeding exactly in the same fashion as in the case of the uncertain Least
Squares inequality with structured norm-bounded perturbations, we arrive at the
following result (cf. Theorem 7.1.2):

Theorem 7.1.8. The explicit system of LMIs

Yν � ±(L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν), ν ∈ Is[
Yν − λνL̂T

ν L̂ν R̂T
ν (y)

R̂ν(y) λνIkν

]
� 0, ν �∈ Is

A(y)− ρ
L∑

ν=1
Yν � 0

(7.1.27)

(kν is the number of rows in R̂ν) in variables Y1, ..., YN , λν , y is a safe tractable ap-
proximation of the RC of the uncertain convex quadratic constraint (6.4.1), (7.1.24).
The tightness factor of this approximation never exceeds π/2, and equals 1 when
N = 1.

7.1.4.1 Complex case

The situation considered in section 7.1.4 admits a complex data version as well.
Consider a convex quadratic constraint with complex-valued variables and a
complex-valued structured norm-bounded uncertainty:

yHAH(ζ)A(ζ)y ≤ �{2yHb(ζ) + c(ζ)}

ζ ∈ Zρ = ρZ1 =

⎧⎨⎩ζ = (ζ1, ..., ζN ) :
ζν ∈ C

pν×qν , 1 ≤ ν ≤ N

‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N

ν ∈ Is ⇒ ζν = θνIpν
, θν ∈ C

⎫⎬⎭⎡⎣ A(ζ)y
yHb(ζ)
c(ζ)

⎤⎦ =

⎡⎣ Any

yHbn

cn

⎤⎦+
N∑

ν=1
LH

ν (y)ζνRν(y),

(7.1.28)

where An ∈ C
k×m and the matrices Lν(y), Rν(y) are affine in [�(y); (y)] and

such that for every ν, either Lν(y), or Rν(y) are independent of y. Same as in the
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real case we have just considered, we lose nothing when assuming that all scalar
perturbation blocks are 1 × 1, which allows us to treat these blocks as full. Thus,
the general case can be reduced to the case where Is = ∅, which we assume from
now on (cf. section 7.1.2).

In order to derive a safe approximation of the RC of (7.1.28), we can act
exactly in the same fashion as in the real case to arrive at the equivalence

yHAH(ζ)A(ζ)y ≤ �{2yHb(ζ) + c(ζ)} ∀ζ ∈ Zρ

⇔

A(y)︷ ︸︸ ︷[ �{2yHbn + cn} [Any]H

Any I

]
+

N∑
ν=1

[ �{2yHLν,b(y)ζνRν(y) + Lν,c(y)ζνRν(y)} RH
ν [ζν ]HLν,A(y)

LH
ν,A(y)ζνRν(y)

]
� 0

∀(ζ : ‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N)

where Lν(y) = [Lν,A(y), Lν,b(y), Lν,c(y)] and Lν,b(y), Lν,c(y) are the last two
columns in Lν(y).

Setting

L̃H
ν (y) =

[
LH

ν,b(y) +
1
2
LH

ν,c(y);LH
ν,A(y)

]
, R̃ν(y) = [Rν(y), 0qν×k]

(cf. (7.1.25)), we conclude that the RC of (7.1.28) is equivalent to the semi-infinite
LMI

A(y) +
N∑

ν=1

[
L̃H

ν (y)ζνR̃ν(y) + R̃H
ν (y)[ζν ]H L̃ν(y)

]
� 0

∀(ζ : ‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N).
(7.1.29)

As always, swapping, if necessary, ζν and [ζν ]H we may rewrite the latter semi-
infinite LMI equivalently as

A(y) +
N∑

ν=1

[
L̂H

ν ζνR̂ν(y) + R̂H
ν (y)[ζν ]H L̂ν

]
� 0

∀(ζ : ‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N),

where R̂ν(y) are affine in [�(y); (y)] and L̂ν are nonzero. Applying the Complex
case Matrix Cube Theorem (see the proof of Theorem 7.1.4), we finally arrive at
the following result:

Theorem 7.1.9. The explicit system of LMIs[
Yν − λνL̂H

ν L̂ν R̂H
ν (y)

R̂ν(y) λνIkν

]
� 0, ν = 1, ..., N,

[ �{2yHbn + cn} [Any]H

Any I

]
− ρ

N∑
ν=1

Yν � 0

(7.1.30)

(kν is the number of rows in R̂ν(y)) in variables Y1 = Y H
1 , ..., YN = Y H

N , λν ∈ R, y ∈
C

m is a safe tractable approximation of the RC of the uncertain convex quadratic
inequality (7.1.28). The tightness of this approximation is ≤ 4

π , and is equal to 1
when N = 1.
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7.2 THE CASE OF ∩-ELLIPSOIDAL UNCERTAINTY

Consider the case where the uncertainty in CQI (6.1.3) is side-wise with the right
hand side uncertainty exactly as in section 6.2, and with ∩-ellipsoidal left hand side

perturbation set, that is,

Z left
ρ =

{
η : ηT Qjη ≤ ρ2, j = 1, ..., J

}
, (7.2.1)

where Qj � 0 and
J∑

j=1

Qj � 0. When Qj � 0 for all j, Z left
ρ is the intersection of

J ellipsoids centered at the origin. When Qj = aja
T
j are rank 1 matrices, Z left is

a polyhedral set symmetric w.r.t. origin and given by J inequalities of the form

|aT
j η| ≤ ρ, j = 1, ..., J . The requirement

J∑
j=1

Qj � 0 implies that Z left
ρ is bounded

(indeed, every η ∈ Z left
ρ belongs to the ellipsoid ηT (

∑
j Qj)η ≤ Jρ2).

We have seen in section 6.3 that the case J = 1, (i.e., of an ellipsoid Z left
ρ

centered at the origin), is a particular case of unstructured norm-bounded per-
turbation, so that in this case the RC is computationally tractable. The case of
general ∩-ellipsoidal uncertainty includes the situation when Z left

ρ is a box, where
the RC is computationally intractable. However, we intend to demonstrate that
with ∩-ellipsoidal left hand side perturbation set, the RC of (6.2.1) admits a safe
tractable approximation tight within the “nearly constant” factor

√
(O(ln J)).

7.2.1 Approximating the RC of Uncertain Least Squares Inequality

Same as in section 7.1, the side-wise nature of uncertainty reduces the task of
approximating the RC of uncertain CQI (6.2.1) to a similar task for the RC of the
uncertain Least Squares inequality (7.1.3). Representing

A(ζ)y + b(ζ) = [Any + bn]︸ ︷︷ ︸
β(y)

+
L∑

�=1

η�[A�y + b�]︸ ︷︷ ︸
α(y)η

(7.2.2)

where L = dim η, observe that the RC of (7.1.3), (7.2.1) is equivalent to the system
of constraints

τ ≥ 0 & ‖β(y) + α(y)η‖22 ≤ τ2 ∀(η : ηT Qjη ≤ ρ2, j = 1, ..., J)

or, which is clearly the same, to the system

(a) Aρ ≡ max
η,t

{
ηT αT (y)α(y)η + 2tβT (y)α(y)η : ηT Qjη ≤ ρ2 ∀j, t2 ≤ 1

}
≤ τ2 − βT (y)β(y)

(b) τ ≥ 0.
(7.2.3)

Next we use Lagrangian relaxation to derive the following result:
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(!) Assume that for certain nonnegative reals γ, γj , j = 1, ..., J , the homogeneous
quadratic form in variables η, t

γt2 +
J∑

j=1

γjη
T Qjη −

[
ηT αT (y)α(y)η + 2tβT (y)α(y)η

]
(7.2.4)

is nonnegative everywhere. Then

Aρ ≡ max
η,t

{
ηT αT (y)α(y)η + 2tβT (y)α(y)η : ηT Qjη ≤ ρ2, t2 ≤ 1

}
≤ γ + ρ2

J∑
j=1

γj .
(7.2.5)

Indeed, let F = {(η, t) : ηT Qjη ≤ ρ2, j = 1, ..., J, t2 ≤ 1}. We have

Aρ = max
(η,t)∈F

{
ηT αT (y)α(y)η + 2tβT (y)α(y)η

}
≤ max

(η,t)∈F

{
γt2 +

J∑
j=1

γjη
T Qjη

}
[since the quadratic form (7.2.4) is nonnegative everywhere]

≤ γ + ρ2
J∑

j=1

γj

[due to the origin of F and to γ ≥ 0, γj ≥ 0].

From (!) it follows that if γ ≥ 0, γj ≥ 0, j = 1, ..., J are such that the quadratic
form (7.2.4) is nonnegative everywhere, or, which is the same, such that⎡⎣ γ −βT (y)α(y)

−αT (y)β(y)
J∑

j=1

γjQj − αT (y)α(y)

⎤⎦ � 0

and

γ + ρ2
J∑

j=1

γj ≤ τ2 − βT (y)β(y),

then (y, τ) satisfies (7.2.3.a). Setting ν = γ + βT (y)β(y), we can rewrite this
conclusion as follows: if there exist ν and γj ≥ 0 such that⎡⎣ ν − βT (y)β(y) −βT (y)α(y)

−αT (y)β(y)
J∑

j=1

γjQj − αT (y)α(y)

⎤⎦ � 0

and

ν + ρ2
J∑

j=1

γj ≤ τ2,

then (y, τ) satisfies (7.2.3.a).
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Assume for a moment that τ > 0. Setting λj = γj/τ , µ = ν/τ , the above
conclusion can be rewritten as follows: if there exist µ and λj ≥ 0 such that⎡⎣ µ− τ−1βT (y)β(y) −τ−1βT (y)α(y)

−τ−1αT (y)β(y)
J∑

j=1

λjQj − τ−1αT (y)α(y)

⎤⎦ � 0

and

µ + ρ2
J∑

j=1

λj ≤ τ,

then (y, τ) satisfies (7.2.3.a).

By the Schur Complement Lemma, the latter conclusion can further be re-
formulated as follows: if τ > 0 and there exist µ, λj satisfying the relations

(a)

⎡⎢⎢⎢⎣
µ βT (y)

J∑
j=1

λjQj αT (y)

β(y) α(y) τI

⎤⎥⎥⎥⎦ � 0

(b) µ + ρ2
J∑

j=1

λj ≤ τ (c) λj ≥ 0, j = 1, ..., J

(7.2.6)

then (y, τ) satisfies (7.2.3.a). Note that in fact our conclusion is valid for τ ≤ 0 as
well. Indeed, assume that τ ≤ 0 and µ, λj solve (7.2.6). Then clearly τ = 0 and
therefore α(y) = 0, β(y) = 0, and thus (7.2.3.a) is valid. We have proved the first
part of the following statement:

Theorem 7.2.1. The explicit system of constraints (7.2.6) in variables y, τ , µ,
λ1, ..., λJ is a safe tractable approximation of the RC of the uncertain Least Squares
constraint (7.1.3) with ∩-ellipsoidal perturbation set (7.2.1). The approximation is
exact when J = 1, and in the case of J > 1 the tightness factor of this approximation
does not exceed

Ω(J) ≤ 9.19
√

ln(J). (7.2.7)

Proof. The fact that (7.2.6) is a safe approximation of the RC of (7.1.3),
(7.2.1) is readily given by the reasoning preceding Theorem 7.2.1. To prove that the
approximation is tight within the announced factor, observe that the Approximate
S-Lemma (see Appendix B.3) as applied to the quadratic forms in variables x =
[η; t]

xT Ax ≡
{
ηT αT (y)α(y)η + 2tβT (y)α(y)η

}
, xT Bx ≡ t2,

xT Bjx ≡ ηT Qjη, 1 ≤ j ≤ J,

states that if J = 1, then (y, τ) can be extended to a solution of (7.2.6) if and only
if (y, τ) satisfies (7.2.3), that is, if and only if (y, τ) is robust feasible; thus, our
approximation of the RC of (7.1.3), (7.2.1) is exact when J = 1. Now let J > 1,
and suppose that (y, τ) cannot be extended to a feasible solution of (7.2.6). Due to
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the origin of this system, it follows that

SDP(ρ) ≡ min
λ,{λj}

{
λ + ρ2

J∑
j=1

λj : λB +
∑
j

λjBj � A, λ ≥ 0, λj ≥ 0

}
> τ2 − βT (y)β(y).

(7.2.8)

By the Approximate S-Lemma (Appendix B.3), with appropriately chosen Ω(J) ≤
9.19

√
ln(J) we have AΩ(J)ρ ≥ SDP(ρ), which combines with (7.2.8) to imply that

AΩ(J)ρ > τ2 − βT (y)β(y), meaning that (y, τ) is not robust feasible at the uncer-
tainty level Ω(J)ρ (cf. (7.2.3)). Thus, the tightness factor of our approximation
does not exceed Ω(J). �

7.2.2 From Uncertain Least Squares to Uncertain CQI

The next statement can obtained from Theorem 7.2.1 in the same fashion as The-
orem 7.1.7 has been derived from Theorem 7.1.2.

Theorem 7.2.2. Consider uncertain CQI (6.1.3) with side-wise uncertainty,
where the left hand side perturbation set is the ∩-ellipsoidal set (7.2.1), and the
right hand side perturbation set is as in Theorem 7.1.7. For ρ > 0, the explicit
system of LMIs

(a) τ + ρpT v ≤ δ(y), PT v = σ(y), QT v = 0, v ∈ K∗

(b.1)

⎡⎢⎢⎢⎣
µ βT (y)

J∑
j=1

λjQj αT (y)

β(y) α(y) I

⎤⎥⎥⎥⎦ � 0

(b.2) µ + ρ2
J∑

j=1

λj ≤ τ, λj � 0 ∀j

(7.2.9)

in variables y, v, µ, λj , τ is a safe tractable approximation of the RC of the uncertain
CQI. This approximation is exact when J = 1 and is tight within the factor Ω(J) ≤
9.19

√
ln(J) when J > 1.

7.2.3 Convex Quadratic Constraint with ∩-Ellipsoidal Uncertainty

Now consider approximating the RC of an uncertain convex quadratic inequality

yT AT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ)[
(A(ζ), b(ζ), c(ζ)) = (An, bn, cn) +

L∑
�=1

ζ�(A�, b�, c�)
]

(7.2.10)

with ∩-ellipsoidal uncertainty:

Zρ = ρZ1 = {ζ ∈ R
L : ζT Qjζ ≤ ρ2} [Qj � 0,

∑
j

Qj � 0] (7.2.11)
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Observe that
A(ζ)y = α(y)ζ + β(y),

α(y)ζ = [A1y, ..., ALy], β(y) = Any

2yT b(ζ) + c(ζ) = 2σT (y)ζ + δ(y),
σ(y) = [yT b1 + c1; ...; yT bL + cL], δ(y) = yT bn + cn

(7.2.12)
so that the RC of (7.2.10), (7.2.11) is the semi-infinite inequality

ζT αT (y)α(y)ζ + 2ζT
[
αT (y)β(y)− σ(y)

]
≤ δ(y)− βT (y)β(y) ∀ζ ∈ Zρ,

or, which is the same, the semi-infinite inequality

Aρ(y) ≡ max
ζ∈Zρ,t2≤1

ζT αT (y)α(y)ζ + 2tζT
[
αT (y)β(y)− σ(y)

]
≤ δ(y)− βT (y)β(y).

(7.2.13)

Same as in section 7.2.1, we have

Aρ(y) ≤ inf
λ,{λj}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ + ρ2

J∑
j=1

λj :

λ ≥ 0, λj ≥ 0, j = 1, ..., J

∀(t, ζ) :

λt2 + ζT (
J∑

j=1

λjQj)ζ ≥ ζT αT (y)α(y)ζ

+2tζT
[
αT (y)β(y)− σ(y)

]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= inf

λ,{λj}

{
λ + ρ2

J∑
j=1

λj : λ ≥ 0, λj ≥ 0, j = 1, ..., J,⎡⎣ λ −[βT (y)α(y)− σT (y)]
−[αT (y)β(y)− σ(y)]

∑
j

λjQj − αT (y)α(y)

⎤⎦ � 0
}

.

(7.2.14)
We conclude that the condition

∃(λ ≥ 0, {λj ≥ 0}) :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ + ρ2

J∑
j=1

λj ≤ δ(y)− βT (y)β(y)⎡⎣ λ −[βT (y)α(y)− σT (y)]
−[αT (y)β(y)− σ(y)]

∑
j

λjQj − αT (y)α(y)

⎤⎦ � 0

is sufficient for y to be robust feasible. Setting µ = λ + βT (y)β(y), this sufficient
condition can be rewritten equivalently as

∃({λj ≥ 0}, µ) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µ + ρ2

J∑
j=1

λj ≤ δ(y)⎡⎣ µ− βT (y)β(y) −[βT (y)α(y)− σT (y)]
−[αT (y)β(y)− σ(y)]

∑
j

λjQj − αT (y)α(y)

⎤⎦ � 0

(7.2.15)
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We have ⎡⎣ µ− βT (y)β(y) −[βT (y)α(y)− σT (y)]
−[αT (y)β(y)− σ(y)]

∑
j

λjQj − αT (y)α(y)

⎤⎦
=

⎡⎣ µ σT (y)

σ(y)
J∑

j=1

λjQj

⎤⎦− [
βT (y)
αT (y)

] [
βT (y)
αT (y)

]T

,

so that the Schur Complement Lemma says that⎡⎣ µ− βT (y)β(y) −[βT (y)α(y)− σT (y)]
−[αT (y)β(y)− σ(y)]

∑
j

λjQj − αT (y)α(y)

⎤⎦ � 0

⇔

⎡⎢⎢⎣
µ σT (y)] βT (y)

σ(y)
∑
j

λjQj αT (y)

β(y) α(y) I

⎤⎥⎥⎦ � 0.

The latter observation combines with the fact that (7.2.15) is a sufficient condition
for the robust feasibility of y to yield the first part of the following statement:

Theorem 7.2.3. The explicit system of LMIs in variables y, µ, λj :

(a)

⎡⎢⎢⎣
µ σT (y)] βT (y)

σ(y)
∑
j

λjQj αT (y)

β(y) α(y) I

⎤⎥⎥⎦ � 0

(b) µ + ρ2
J∑

j=1

λj ≤ δ(y) (c) λj ≥ 0, j = 1, ..., J

(7.2.16)

(for notation, see (7.2.12)) is a safe tractable approximation of the RC of (7.2.10),
(7.2.11). The tightness factor of this approximation equals 1 when J = 1 and does
not exceed Ω(J) ≤ 9.19

√
ln(J) when J > 1.

The proof of this theorem is completely similar to the proof of Theorem 7.2.1.

Remark 7.2.4. The tightness factor Ω(J) = O(
√

ln(J)) of the approximate
RCs we have built in the case of ∩-ellipsoidal uncertainty (Theorems 7.2.1, 7.2.2,
7.2.3)) is not an absolute constant, as it was in the case of structured norm-bounded
uncertainty, but grows, although very slowly, with the number J of ellipsoids par-
ticipating in the description of the perturbation set. Of course, for all practical
purposes,

√
lnJ is a moderate constant, and what should be of primary impor-

tance, is the absolute constant factor hidden in the above O(·). As stated in the
Theorems, this factor (≈ 9.2) is rather big. In fact the precise values of Ω(J) as
given by the proof of Approximate S-Lemma (Appendix B.3) are not that disas-
trous:

J 2 8 32 128 512 2048 8192 32678 131072
Ω(J) 7.65 9.26 10.58 11.72 12.75 13.69 14.56 15.37 16.14
Ω(J)√
ln(J)

9.19 6.42 5.68 5.32 5.10 4.96 4.85 4.77 4.70
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It should be added that there exists a slightly different proof of the Approximate
S-Lemma [11] that guarantees that the tightness factor does not exceed

Ω =
√

2 ln(6
∑

j

Rank(Qj)).

Academically speaking, this bound is worse than Ω ≤ O(
√

ln(J)) we have used —
the total rank of the matrices Qj can be much larger than the number J of these
matrices. However, the better absolute constants in the “bad” bound imply, e.g.,
that the tightness of the approximation in question is at most 6, provided that the
total rank of all matrices Qj is ≤ 65, 000, 000, which, for all practical purposes, is
the same as to say that the tightness factor of our approximation “never” exceeds
6.

7.3 EXERCISES

Exercise 7.1. Consider an uncertain Least Squares inequality

‖A(η)x + b(η)‖2 ≤ τ, η ∈ ρZ
where Z, 0 ∈ intZ, is a symmetric w.r.t. the origin convex compact set that is the
intersection of J > 1 ellipsoids not necessarily centered at the origin:

Z = {η : (η − aj)T Qj(η − aj) ≤ 1, 1 ≤ j ≤ J} [Qj � 0,
∑

j Qj � 0]

Prove that the RC of the uncertain inequality in question admits a safe tractable
approximation tight within the factor O(1)

√
lnJ (cf. Theorem 7.2.1).

7.4 NOTES AND REMARKS

NR 7.1. The Matrix Cube Theorem underlying Theorems 7.1.2, 7.1.4, 7.1.8
originates from [10], where only scalar perturbation blocks were considered; the
more advanced version of this theorem used in the main body of the chapter is
due to [12]. The Approximate S-Lemma (Lemma B.3) underlying Theorems 7.2.1,
7.2.2, 7.2.3, in a slightly weaker form (with the total rank of the matrices Qj instead
of the number of these matrices in the bound for the tightness factor), was proved
in [11]; the main ingredients of the proof go back to [81].
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Chapter Eight
Uncertain Semidefinite Problems with Tractable RCs

In this chapter, we focus on uncertain Semidefinite Optimization (SDO) problems
for which tractable Robust Counterparts can be derived.

8.1 UNCERTAIN SEMIDEFINITE PROBLEMS

Recall that a semidefinite program (SDP) is a conic optimization program

min
x

{
cT x + d : Ai(x) ≡

n∑
j=1

xjA
ij −Bi ∈ Ski

+ , i = 1, ..., m

}
�

min
x

{
cT x + d : Ai(x) ≡

n∑
j=1

xjA
ij −Bi � 0, i = 1, ..., m

} (8.1.1)

where Aij , Bi are symmetric matrices of sizes ki×ki, Sk
+ is the cone of real symmet-

ric positive semidefinite k×k matrices, and A � B means that A,B are symmetric
matrices of the same sizes such that the matrix A − B is positive semidefinite. A
constraint of the form Ax− B ≡∑

j

xjA
j − B � 0 with symmetric Aj , B is called

a Linear Matrix Inequality (LMI); thus, an SDP is the problem of minimizing a
linear objective under finitely many LMI constraints. Another, sometimes more
convenient, setting of a semidefinite program is in the form of (5.1.2), that is,

min
x

{
cT x + d : Aix− bi ∈ Qi, i = 1, ..., m

}
, (8.1.2)

where nonempty sets Qi are given by explicit finite lists of LMIs:

Qi = {u ∈ R
pi : Qi�(u) ≡

pi∑
s=1

usQ
si� −Qi� � 0, � = 1, ..., Li}.

Note that (8.1.1) is a particular case of (8.1.2) where Qi = Ski
+ , i = 1, ..., m.

The notions of the data of a semidefinite program, of an uncertain semidefinite
problem and of its (exact or approximate) Robust Counterparts are readily given
by specializing the general descriptions from sections 5.1, 5.3, to the case when the
underlying cones are the cones of positive semidefinite matrices. In particular,

• The natural data of a semidefinite program (8.1.2) is the collection

(c, d, {Ai, bi}m
i=1),

while the right hand side sets Qi are treated as the problem’s structure;
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• An uncertain semidefinite problem is a collection of problems (8.1.2) with
common structure and natural data running through an uncertainty set; we always
assume that the data are affinely parameterized by perturbation vector ζ ∈ R

L

running through a given closed and convex perturbation set Z such that 0 ∈ Z:

[c; d] = [cn; dn] +
L∑

�=1

ζ�[c�; d�];

[Ai, bi] = [An
i , bni ] +

L∑
�=1

ζ�[A�
i , b

�
i ], i = 1, ..., m

(8.1.3)

• The Robust Counterpart of uncertain SDP (8.1.2), (8.1.3) at a perturbation
level ρ > 0 is the semi-infinite optimization program

min
y=(x,t)

⎧⎪⎪⎨⎪⎪⎩t :
[[cn]T x + dn] +

L∑
�=1

ζ�[[c�]T x + d�] ≤ t

[An
i x + bni ] +

L∑
�=1

ζ�[A�
ix + b�

i ] ∈ Qi, i = 1, ..., m

⎫⎪⎪⎬⎪⎪⎭∀ζ ∈ ρZ

⎫⎪⎪⎬⎪⎪⎭ (8.1.4)

• A safe tractable approximation of the RC of uncertain SDP (8.1.2), (8.1.3) is
a finite system Sρ of explicitly computable convex constraints in variables y = (x, t)
(and possibly additional variables u) depending on ρ > 0 as a parameter, such that
the projection Ŷρ of the solution set of the system onto the space of y variables is
contained in the feasible set Yρ of (8.1.4). Such an approximation is called tight

within factor ϑ ≥ 1, if Yρ ⊃ Ŷρ ⊃ Yϑρ. In other words, Sρ is a ϑ-tight safe
approximation of (8.1.4), if:

i) Whenever ρ > 0 and y are such that y can be extended, by a properly chosen
u, to a solution of Sρ, y is robust feasible at the uncertainty level ρ, (i.e., y is
feasible for (8.1.4)).

ii) Whenever ρ > 0 and y are such that y cannot be extended to a feasible
solution to Sρ, y is not robust feasible at the uncertainty level ϑρ, (i.e., y

violates some of the constraints in (8.1.4) when ρ is replaced with ϑρ).

8.2 TRACTABILITY OF RCS OF UNCERTAIN SEMIDEFINITE PROBLEMS

Building the RC of an uncertain semidefinite problem reduces to building the RCs
of the uncertain constraints constituting the problem, so that the tractability issues
in Robust Semidefinite Optimization reduce to those for the Robust Counterpart

Aζ(y) ≡ An(y) +
L∑

�=1

ζ�A�(y) � 0 ∀ζ ∈ ρZ (8.2.1)

of a single uncertain LMI

Aζ(y) ≡ An(y) +
L∑

�=1

ζ�A�(y) � 0; (8.2.2)
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here An(x), A�(x) are symmetric matrices affinely depending on the design vector
y.

More often than not the RC of an uncertain LMI is computationally in-
tractable. Indeed, we saw in chapter 5 that intractability is typical already for the
RCs of uncertain conic quadratic inequalities, and the latter are very special cases
of uncertain LMIs (due to the fact that Lorentz cones are cross-sections of semidef-
inite cones, see Lemma 6.3.3). In the relatively simple case of uncertain CQIs, we
met just 3 generic cases where the RCs were computationally tractable, specifically,
the cases of

i) Scenario perturbation set (section 6.1);

ii) Unstructured norm-bounded uncertainty (section 6.3);

iii) Simple ellipsoidal uncertainty (section 6.5).

The RC associated with a scenario perturbation set is tractable for an arbitrary
uncertain conic problem on a tractable cone; in particular, the RC of an uncertain
LMI with scenario perturbation set is computationally tractable. Specifically, if
Z in (8.2.1) is given as Conv{ζ1, ..., ζN}, then the RC (8.2.1) is nothing but the
explicit system of LMIs

An(y) +
L∑

�=1

ζi
�A�(y) � 0, i = 1, ..., N. (8.2.3)

The fact that the simple ellipsoidal uncertainty (Z is an ellipsoid) results in a
tractable RC is specific for Conic Quadratic Optimization. In the LMI case, (8.2.1)
can be NP-hard even with an ellipsoid in the role of Z. In contrast to this, the
case of unstructured norm-bounded perturbations remains tractable in the LMI
situation. This is the only nontrivial tractable case we know. We are about to
consider this case in full details.

8.2.1 Unstructured Norm-Bounded Perturbations

Definition 8.2.1. We say that uncertain LMI (8.2.2) is with unstructured
norm-bounded perturbations, if

i) The perturbation set Z (see (8.1.3)) is the set of all p× q matrices ζ with the
usual matrix norm ‖ · ‖2,2 not exceeding 1;

ii) “The body” Aζ(y) of (8.2.2) can be represented as

Aζ(y) ≡ An(y) +
[
LT (y)ζR(y) + RT (y)ζT L(y)

]
, (8.2.4)

where both L(·), R(·) are affine and at least one of these matrix-valued func-
tions is in fact independent of y.
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Example 8.2.2. Consider the situation where Z is the unit Euclidean ball in R
L

(or, which is the same, the set of L × 1 matrices of ‖ · ‖2,2-norm not exceeding 1), and

Aζ(y) =

[
a(y) ζT BT (y) + bT (y)

B(y)ζ + b(y) A(y)

]
, (8.2.5)

where a(·) is an affine scalar function, and b(·), B(·), A(·) are affine vector- and matrix-
valued functions with A(·) ∈ SM . Setting R(y) ≡ R = [1, 01×M ], L(y) = [0L×1, B

T (y)],
we have

Aζ(y) =

[
a(y) bT (y)

b(y) A(y)

]
︸ ︷︷ ︸

An(y)

+LT (y)ζR(y) + RT (y)ζT L(y),

thus, we are in the case of an unstructured norm-bounded uncertainty.

A closely related example is given by the LMI reformulation of an uncertain
Least Squares inequality with unstructured norm-bounded uncertainty, see section
6.3.

Let us derive a tractable reformulation of an uncertain LMI with unstructured
norm-bounded uncertainty. W.l.o.g. we may assume that R(y) ≡ R is independent
of y (otherwise we can swap ζ and ζT , swapping simultaneously L and R) and that
R �= 0. We have

y is robust feasible for (8.2.2), (8.2.4) at uncertainty level ρ

⇔ ξT [An(y) + LT (y)ζR + RT ζT L(y)]ξ ≥ 0 ∀ξ ∀(ζ : ‖ζ‖2,2 ≤ ρ)

⇔ ξTAn(y)ξ + 2ξT LT (y)ζRξ ≥ 0 ∀ξ ∀(ζ : ‖ζ‖2,2 ≤ ρ)

⇔ ξTAn(y)ξ + 2 min‖ζ‖2,2≤ρξ
T LT (y)ζRξ︸ ︷︷ ︸

=−ρ‖L(y)ξ‖2‖Rξ‖2

≥ 0 ∀ξ

⇔ ξTAn(y)ξ − 2ρ‖L(y)ξ‖2‖Rξ‖2 ≥ 0 ∀ξ

⇔ ξTAn(y)ξ + 2ρηT L(y)ξ ≥ 0 ∀(ξ, η : ηT η ≤ ξT RT Rξ)

⇔ ∃λ ≥ 0 :
[

ρL(y)
ρLT (y) An(y)

]
� λ

[ −Ip

RT R

]
[S-Lemma]

⇔ ∃λ :
[

λIp ρL(y)
ρLT (y) An(y)− λRT R

]
� 0.

We have proved the following statement:

Theorem 8.2.3. The RC

An(y) + LT (y)ζR + RT ζT L(y) � 0 ∀(ζ ∈ R
p×q : ‖ζ‖2,2 ≤ ρ) (8.2.6)

of uncertain LMI (8.2.2) with unstructured norm-bounded uncertainty (8.2.4)
(where, w.l.o.g., we assume that R �= 0) can be represented equivalently by the
LMI [

λIp ρL(y)
ρLT (y) An(y)− λRT R

]
� 0 (8.2.7)
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in variables y, λ.

8.2.2 Application: Robust Structural Design

8.2.2.1 Structural Design problem

Consider a “linearly elastic” mechanical system S that, mathematically, can be
characterized by:

i) A linear space R
M of virtual displacements of the system.

ii) A symmetric positive semidefinite M×M matrix A, called the stiffness matrix

of the system.

The potential energy capacitated by the system when its displacement from
the equilibrium is v is

E =
1
2
vT Av.

An external load applied to the system is given by a vector f ∈ R
M . The

associated equilibrium displacement v of the system solves the linear equation

Av = f.

If this equation has no solutions, the load destroys the system — no equilibrium
exists; if the solution is not unique, so is the equilibrium displacement. Both these
“bad phenomena” can occur only when A is not positive definite.

The compliance of the system under a load f is the potential energy capac-
itated by the system in the equilibrium displacement v associated with f , that
is,

Complf (A) =
1
2
vT Av =

1
2
vT f.

An equivalent way to define compliance is as follows. Given external load f , consider
the concave quadratic form

fT v − 1
2
vT Av

on the space R
M of virtual displacements. It is easily seen that this form either is

unbounded above, (which is the case when no equilibrium displacements exist), or
attains its maximum. In the latter case, the compliance is nothing but the maximal
value of the form:

Complf (A) = sup
v∈RM

[
fT v − 1

2
vT Av

]
,

and the equilibrium displacements are exactly the maximizers of the form.

There are good reasons to treat the compliance as the measure of rigidity of
the construction with respect to the corresponding load — the less the compliance,
the higher the rigidity. A typical Structural Design problem is as follows:
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Structural Design: Given

• the space R
M of virtual displacements of the construction,

• the stiffness matrix A = A(t) affinely depending on a vector t of

design parameters restricted to reside in a given convex compact

set T ⊂ R
N ,

• a set F ⊂ R
M of external loads,

find a construction t∗ that is as rigid as possible w.r.t. the “most dan-

gerous” load from F , that is,

t∗ ∈ Argmin
T∈T

{
ComplF (t) ≡ sup

f∈F
Complf (A(t))

}
.

Next we present three examples of Structural Design.

Example 8.2.4. Truss Topology Design. A truss is a mechanical construction,

like railroad bridge, electric mast, or the Eiffel Tower, comprised of thin elastic bars linked

to each other at nodes. Some of the nodes are partially or completely fixed, so that their

virtual displacements form proper subspaces in R
2 (for planar constructions) or R

3 (for

spatial ones). An external load is a collection of external forces acting at the nodes. Under

such a load, the nodes move slightly, thus causing elongations and compressions in the

bars, until the construction achieves an equilibrium, where the tensions caused in the bars

as a result of their deformations compensate the external forces. The compliance is the

potential energy capacitated in the truss at the equilibrium as a result of deformations of

the bars.

A mathematical model of the outlined situation is as follows.

• Nodes and the space of virtual displacements. Let M be the nodal set, that is, a
finite set in R

d (d = 2 for planar and d = 3 for spatial trusses), and let Vi ⊂ R
d

be the linear space of virtual displacements of node i. (This set is the entire R
d for

non-supported nodes, is {0} for fixed nodes and is something in-between these two
extremes for partially fixed nodes.) The space V = R

M of virtual displacements of
the truss is the direct product V = V1×...×Vm of the spaces of virtual displacements
of the nodes, so that a virtual displacement of the truss is a collection of “physical”
virtual displacements of the nodes.

Now, an external load applied to the truss can be thought of as a collection
of external physical forces fi ∈ R

d acting at nodes i from the nodal set. We lose
nothing when assuming that fi ∈ Vi for all i, since the component of fi orthogonal
to Vi is fully compensated by the supports that make the directions from Vi the
only possible displacements of node i. Thus, we can always assume that fi ∈ Vi for
all i, which makes it possible to identify a load with a vector f ∈ V . Similarly, the
collection of nodal reaction forces caused by elongations and compressions of the
bars can be thought of as a vector from V .

• Bars and the stiffness matrix. Every bar j, j = 1, ..., N , in the truss links two
nodes from the nodal set M. Denoting by tj the volume of the j-th bar, a simple
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analysis, (where one assumes that the nodal displacements are small and neglects all
terms of order of squares of these displacements), demonstrates that the collection
of the reaction forces caused by a nodal displacement v ∈ V can be represented as
A(t)v, where

A(t) =
N∑

j=1

tjbjb
T
j (8.2.8)

is the stiffness matrix of the truss. Here bj ∈ V is readily given by the characteristics
of the material of the j-th bar and the “nominal,” (i.e., in the unloaded truss),
positions of the nodes linked by this bar.

In a typical Truss Topology Design (TTD) problem, one is given a ground

structure — a set M of tentative nodes along with the corresponding spaces Vi

of virtual displacements and the list J of N tentative bars, (i.e., a list of pairs of
nodes that could be linked by bars), and the characteristics of the bar’s material;
these data determine, in particular, the vectors bj . The design variables are the
volumes tj of the tentative bars. The design specifications always include the nat-
ural restrictions tj ≥ 0 and an upper bound w on

∑
j

tj , (which, essentially, is an

upper bound on the total weight of the truss). Thus, T is always a subset of the
standard simplex {t ∈ R

N : t ≥ 0,
∑
j

tj ≤ w}. There could be other design specifi-

cations, like upper and lower bounds on the volumes of some bars. The scenario set
F usually is either a singleton (single-load TTD) or a small collection of external
loads (multi-load TTD). With this setup, one seeks for a design t ∈ T , that results
in the smallest possible worst case, i.e., maximal over the loads from F compliance.

When formulating a TTD problem, one usually starts with a dense nodal set
and allows for all pair connections of the tentative nodes by bars. At an optimal
solution to the associated TTD problem, usually a pretty small number of bars get
positive volumes, so that the solution recovers not only the optimal bar sizing, but
also the optimal topology of the construction.

Example 8.2.5. Free Material Optimization. In Free Material Optimization

(FMO) one seeks to design a mechanical construction comprised of material continuously

distributed over a given 2-D or 3-D domain Ω, and the mechanical properties of the

material are allowed to vary from point to point. The ultimate goal of the design is to

build a construction satisfying a number of constraints (most notably, an upper bound on

the total weight) and most rigid w.r.t. loading scenarios from a given sample.

After finite element discretization, this (originally infinite-dimensional) optimiza-
tion problem becomes a particular case of the aforementioned Structural Design
problem where:

• the space V = R
M of virtual displacements is the space of “physical displace-

ments” of the vertices of the finite element cells, so that a displacement v ∈ V

is a collection of displacements vi ∈ R
d of the vertices (d = 2 for planar and

d = 3 for spatial constructions). Same as in the TTD problem, displacements
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of some of the vertices can be restricted to reside in proper linear subspaces
of R

d;

• external loads are collections of physical forces applied at the vertices of the
finite element cells; same as in the TTD case, these collections can be identified
with vectors f ∈ V ;

• the stiffness matrix is of the form

A(t) =
N∑

j=1

S∑
s=1

bjstjb
T
js, (8.2.9)

where N is the number of finite element cells and tj is the stiffness tensor

of the material in the j-th cell. This tensor can be identified with a p × p

symmetric positive semidefinite matrix, where p = 3 for planar constructions
and p = 6 for spatial ones. The number S and the M × p matrices bis are
readily given by the geometry of the finite element cells and the type of finite
element discretization.

In a typical FMO problem, one is given the number of the finite element cells along
with the matrices bij in (8.2.9), and a collection F of external loads of interest. The
design vectors are collections t = (t1, ..., tN ) of positive semidefinite p× p matrices,
and the design specifications always include the natural restrictions tj � 0 and an
upper bound

∑
j

cjTr(tj) ≤ w, cj > 0, on the total weighted trace of tj ; this bound

reflects, essentially, an upper bound on the total weight of the construction. Along
with these restrictions, the description of the feasible design set T can include other
constraints, such as bounds on the spectra of tj , (i.e., lower bounds on the minimal
and upper bounds on the maximal eigenvalues of tj). With this setup, one seeks
for a design t ∈ T that results in the smallest worst case, (i.e., the maximal over
the loads from F) compliance.

The design yielded by FMO usually cannot be implemented “as it is” — in
most cases, it would be either impossible, or too expensive to use a material with
mechanical properties varying from point to point. The role of FMO is in provid-
ing an engineer with an “educated guess” of what the optimal construction could
possibly be; given this guess, engineers produce something similar from composite
materials, applying existing design tools that take into account finer design specifi-
cations, (which may include nonconvex ones), than those taken into consideration
by the FMO design model.

Our third example, due to C. Roos, has nothing in common with mechanics
— it is about design of electrical circuits. Mathematically, however, it is modeled
as a Structural Design problem.

Example 8.2.6. Consider an electrical circuit comprised of resistances and sources
of current. Mathematically, such a circuit can be thought of as a graph with nodes 1, ..., n
and a set E of oriented arcs. Every arc γ is assigned with its conductance σγ ≥ 0 (so
that 1/σγ is the resistance of the arc). The nodes are equipped with external sources



UNCERTAIN SEMIDEFINITE PROBLEMS WITH TRACTABLE RCS 211

of current, so every node i is assigned with a real number fi — the current supplied by
the source. The steady state functioning of the circuit is characterized by currents jγ in
the arcs and potentials vi at the nodes, (these potentials are defined up to a common
additive constant). The potentials and the currents can be found from the Kirchhoff laws,
specifically, as follows. Let G be the node-arc incidence matrix, so that the columns in
G are indexed by the nodes, the rows are indexed by the arcs, and Gγi is 1, −1 or 0,
depending on whether the arc γ starts at node i, ends at this node, or is not incident to
the node, respectively. The first Kirchhoff law states that sum of all currents in the arcs
leaving a given node minus the sum of all currents in the arcs entering the node is equal
to the external current at the node. Mathematically, this law reads

GT j = f,

where f = (f1, ..., fn) and j = {jγ}γ∈E are the vector of external currents and the vector
of currents in the arcs, respectively. The second law states that the current in an arc γ
is σγ times the arc voltage — the difference of potentials at the nodes linked by the arc.
Mathematically, this law reads

j = ΣGv, Σ = Diag{σγ , γ ∈ E}.

Thus, the potentials are given by the relation

GT ΣGv = f.

Now, the heat H dissipated in the circuit is the sum, over the arcs, of the products of arc
currents and arc voltages, that is,

H =
∑

γ

σγ((Gv)γ)2 = vT GT ΣGv.

In other words, the heat dissipated in the circuit, the external currents forming a vector
f , is the maximum of the convex quadratic form

2vT f − vT GT ΣGv

over all v ∈ R
n, and the steady state potentials are exactly the maximizers of this quadratic

form. In other words, the situation is as if we were speaking about a mechanical system
with stiffness matrix A(σ) = GT ΣG affinely depending on the vector σ ≥ 0 of arc conduc-
tances subject to external load f , with the steady-state potentials in the role of equilibrium
displacements, and the dissipated heat in this state in the role of (twice) the compliance.

It should be noted that the “stiffness matrix” in our present situation is
degenerate — indeed, we clearly have G1 = 0, where 1 is the vector of ones,
(“when the potentials of all nodes are equal, the currents in the arcs should be
zero”), whence A(σ)1 = 0 as well. As a result, the necessary condition for the
steady state to exist is fT 1 = 0, that is, the total sum of all external currents
should be zero — a fact we could easily foresee. Whether this necessary
condition is also sufficient depends on the topology of the circuit.

A straightforward “electrical” analogy of the Structural Design problem would be to

build a circuit of a given topology, (i.e., to equip the arcs of a given graph with nonnegative

conductances forming a design vector σ), satisfying specifications σ ∈ S in a way that

minimizes the maximal steady-state dissipated heat, the maximum being taken over a

given family F of vectors of external currents.
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8.2.2.2 Structural Design as an uncertain Semidefinite problem

The aforementioned Structural Design problem can be easily posed as an SDP.
The key element in the transformation of the problem is the following semidefinite
representation of the compliance:

Complf (A) ≤ τ ⇔
[

2τ fT

f A

]
� 0. (8.2.10)

Indeed,
Complf (A) ≤ τ

⇔ fT v − 1
2vT Av ≥ τ ∀v ∈ R

M

⇔ 2τs2 − 2sfT v + vT Av ≥ 0 ∀([v, s] ∈ R
M+1)

⇔
[

2τ −fT

−f A

]
� 0

⇔
[

2τ fT

f A

]
� 0

where the last ⇔ follows from the fact that[
2τ −fT

−f A

]
=
[

1
−I

] [
2τ fT

f A

] [
1

−I

]T

.

Thus, the Structural Design problem can be posed as

min
τ,t

{
τ :

[
2τ fT

f A

]
� 0 ∀f ∈ F , t ∈ T

}
. (8.2.11)

Assuming that the set T of feasible designs is LMI representable, problem (8.2.11)
is nothing but the RC of the uncertain semidefinite problem

min
τ,t

{
τ :

[
2τ fT

f A(t)

]
� 0, t ∈ T

}
, (8.2.12)

where the only uncertain data is the load f , and this data varies in a given set F
(or, which is the same, in its closed convex hull cl Conv(F)). Thus, in fact we are
speaking about the RC of a single-load Structural Design problem, with the load
in the role of uncertain data varying in the uncertainty set U = clConv(F).

In actual design the set F of loads of interest is finite and usually quite
small. For example, when designing a bridge for cars, an engineer is interested in
a quite restricted family of scenarios, primarily in the load coming from many cars
uniformly distributed along the bridge (this is, essentially, what happens in rush
hours), and, perhaps, in a few other scenarios (like loads coming from a single heavy
car in various positions). With finite F = {f1, ..., fk}, we are in the situation of a
scenario uncertainty, and the RC of (8.2.12) is the explicit semidefinite program

min
τ,t

{
τ :

[
2τ [f i]T

f i A(t)

]
� 0, i = 1, ..., k, t ∈ T

}
.
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Note, however, that in reality the would-be construction will be affected by small
“occasional” loads (like side wind in the case of a bridge), and the construction
should be stable with respect to these loads. It turns out, however, that the latter
requirement is not necessarily satisfied by the “nominal” construction that takes
into consideration only the loads of primary interest. As an instructive example,
consider the design of a console.

Example 8.2.7. Figure 8.1.(c) represents optimal single-load design of a console
with a 9 × 9 nodal grid on 2-D plane; nodes from the very left column are fixed, the
remaining nodes are free, and the single scenario load is the unit force f acting down and
applied at the mid-node of the very right column (see figure 8.1.(a)). We allow nearly all
tentative bars (numbering 2,039), except for (clearly redundant) bars linking fixed nodes
or long bars that pass through more than two nodes and thus can be split into shorter ones
(figure 8.1.(b)). The set T of admissible designs is given solely by the weight restriction:

T = {t ∈ R
2039 : t ≥ 0,

2039∑
i=1

ti ≤ 1}

(compliance is homogeneous of order 1 w.r.t. t: Complf (λt) = λComplf (t), λ > 0, so we
can normalize the weight bound to be 1).

The compliance, in an appropriate scale, of the resulting nominally optimal truss

(12 nodes, 24 bars) w.r.t. the scenario load f is 1.00. At the same time, the construction

turns out to be highly unstable w.r.t. small “occasional” loads distributed along the 10

free nodes used by the nominal design. For example, the mean compliance of the nominal

design w.r.t. a random load h ∼ N (0, 10−9I20) is 5.406 (5.4 times larger than the nominal

compliance), while the “typical” norm ‖h‖2 of this random load is 10−4.5
√

20 — more

than three orders of magnitude less than the norm ‖f‖2 = 1 of the scenario load. The

compliance of the nominally optimal truss w.r.t. a “bad” load g that is 104 times smaller

than f (‖g‖2 = 10−4‖f‖2) is 27.6 — by factor 27 larger than the compliance w.r.t. f !

Figure 8.1.(e) shows the deformation of the nominal design under the load 10−4g (that

is, the load that is 108 (!) times smaller than the scenario load). One can compare this

deformation with the one under the load f (figure 8.1.(d)). Figure 8.1.(f) depicts shifts of

the nodes under a sample of 100 random loads h ∼ N (0, 10−16I20) — loads of norm by 7

plus orders of magnitude less than ‖f‖2 = 1.

To prevent the optimal design from being crushed by a small load that is
outside of the set F of loading scenarios, it makes sense to extend F to a more
“massive” set, primarily by adding to F all loads of magnitude not exceeding a
given “small” uncertainty level ρ. A challenge here is to decide where the small
loads can be applied. In problems like TTD, it does not make sense to require the
would-be construction to be capable of carrying small loads distributed along all

nodes of the ground structure; indeed, not all of these nodes should be present in
the final design, and of course there is no reason to bother about forces acting at
non-existing nodes. The difficulty is that we do not know in advance which nodes
will be present in the final design. One possibility to resolve this difficulty to some
extent is to use a two-stage procedure as follows:
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f f

(a): 9×9 nodal grid with
most left nodes fixed and
the load of interest. M =
144 degrees of freedom.

(b): 2,039 tentative bars

(c): Single-load optimal design,
12 nodes, 24 bars. Compliance
w.r.t. load of interest 1.00.

(d): Deformation of nominal design
under the load of interest.

(e): Deformation of nominal design
under “occasional” load 108 times
less than the load of interest.

(f): “Dotted lines”: positions of nodes in
deformed nominal design, sample
of 100 loads ∼ N (0, 10−16I20)

Figure 8.1 Nominal design.
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• at the first stage, we seek for the “nominal” design — the one that is optimal
w.r.t. the “small” set F comprised of the scenario loads and, perhaps, all loads of
magnitude ≤ ρ acting along the same nodes as the scenario loads — these nodes
definitely will be present in the resulting design;

• at the second stage, we solve the problem again, with the nodes actually
used by the nominal design in the role of our new nodal set M+, and extend F
to the set F+ by taking the union of F and the Euclidean ball Bρ of all loads g,
‖g‖2 ≤ ρ, acting along M+.

We have arrived at the necessity to solve (8.2.11) in the situation where F is the
union of a finite set {f1, ..., fk} and a Euclidean ball. This is a particular case of
the situation when F is the union of S < ∞ ellipsoids

Es = {f = fs + Bsζ
s : ζs ∈ R

ks , ‖ζs‖2 ≤ 1}
or, which is the same, Z is the convex hull of the union of S ellipsoids E1, ..., ES .
The associated “uncertainty-immunized” Structural Design problem (8.2.11) — the
RC of (8.2.12) with Z in the role of F — is clearly equivalent to the problem

min
t,τ

{
τ :

[
2τ fT

f A(t)

]
� 0 ∀f ∈ Es, s = 1, ..., S; t ∈ T

}
. (8.2.13)

In order to build a tractable equivalent of this semi-infinite semidefinite problem,
we need to build a tractable equivalent to a semi-infinite LMI of the form[

2τ ζT BT + fT

Bζ + f A(t)

]
� 0 ∀(ζ ∈ R

k : ‖ζ‖2 ≤ ρ). (8.2.14)

But such an equivalent is readily given by Theorem 8.2.3 (cf. Example 8.2.2).
Applying the recipe described in this Theorem, we end up with a representation of
(8.2.14) as the following LMI in variables τ , t, λ:⎡⎣ λIk ρBT

2τ − λ fT

ρB f A(t)

⎤⎦ � 0. (8.2.15)

Observe that when f = 0, (8.2.15) simplifies to[
2τIk ρBT

ρB A(t)

]
� 0. (8.2.16)

Example 8.2.7 continued. Let us apply the outlined methodology to the
Console example (Example 8.2.7). In order to immunize the design depicted on
figure 8.1.(c) against small occasional loads, we start with reducing the initial 9×9
nodal set to the set of 12 nodesM+ (figure 8.2.(a)) used by the nominal design, and
allow for N = 54 tentative bars on this reduced nodal set (figure 5.1.(b)) (we again
allow for all pair connections of nodes, except for connections of two fixed nodes
and for long bars passing through more than two nodes). According to the outlined
methodology, we should then extend the original singleton F = {f} of scenario
loads to the larger set F+ = {f} ∪Bρ, where Bρ is the Euclidean ball of radius ρ,
centered at the origin in the (M = 20)-dimensional space of virtual displacements
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of the reduced planar nodal set. With this approach, an immediate question would
be how to specify ρ. In order to avoid an ad hoc choice of ρ, we modify our
approach as follows. Recalling that the compliance of the nominally optimal design
w.r.t. the scenario load is 1.00, let us impose on our would-be “immunized” design
the restriction that its worst case compliance w.r.t. the extended scenario set
Fρ = {f} ∪ Bρ should be at most τ∗ = 1.025, (i.e., 2.5% more than the optimal
nominal compliance), and maximize under this restriction the radius ρ. In other
words, we seek for a truss of the same unit weight as the nominally optimal one
with “nearly optimal” rigidity w.r.t. the scenario load f and as large as possible
worst-case rigidity w.r.t. occasional loads of a given magnitude. The resulting
problem is the semi-infinite semidefinite program

max
t,ρ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ :

[
2τ∗ fT

f A(t)

]
� 0[

2τ∗ ρhT

ρh A(t)

]
� 0 ∀(h : ‖h‖2 ≤ 1)

t � 0,
∑N

i=1 ti ≤ 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

This semi-infinite program is equivalent to the usual semidefinite program

max
t,ρ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ :

[
2τ∗ fT

f A(t)

]
� 0[

2τ∗IM ρIM

ρIM A(t)

]
� 0

t � 0,
∑N

i=1 ti ≤ 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(8.2.17)

(cf. (8.2.16)).

Computation shows that for Example 8.2.7, the optimal value in (8.2.17)
is ρ∗ = 0.362; the robust design yielded by the optimal solution to the problem
is depicted in figure 8.2.(c). Along with the differences in sizing of bars, note
the difference in the structures of the robust and the nominal design (figure 8.3).
Observe that passing from the nominal to the robust design, we lose just 2.5%
in the rigidity w.r.t. the scenario load and gain a dramatic improvement in the
capability to carry occasional loads. Indeed, the compliance of the robust truss
w.r.t. every load g of the magnitude ‖g‖2 = 0.36 (36% of the magnitude of the
load of interest) is at most 1.025; the similar quantity for the nominal design is
as large as 1.65×109 ! An additional evidence of the dramatic advantages of the
robust design as compared to the nominal one can be obtained by comparing the
pictures (d) through (f) in figure 8.1 with their counterparts in figure 8.2.

8.2.3 Applications in Robust Control

A major source of uncertain Semidefinite problems is Robust Control. An instruc-
tive example is given by Lyapunov Stability Analysis/Synthesis.
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f f

(a): reduced 12-node set with
most left nodes fixed and the
load of interest. M = 20
degrees of freedom.

(b): 54 tentative bars

(c): Robust optimal design, 12
nodes, 24 bars. Compliance
w.r.t. load of interest 1.025.

(d): Deformation of robust design
under the load of interest.

(e): Deformation of robust design
under “occasional” load 10 times
less than the load of interest.

(f): “Bold dots”: positions of nodes
in deformated robust design over
100 loads ∼ N (0, 10−2I20)

Figure 8.2 Robust design.
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Figure 8.3 Nominal (left) and robust (right) designs.

8.2.3.1 Lyapunov Stability Analysis

Consider a time-varying linear dynamical system “closed” by a linear output-based
feedback:

(a) ẋ(t) = Atx(t) + Btu(t) + Rtdt [open loop system, or plant]
(b) y(t) = Ctx(t) + Dtdt [output]
(c) u(t) = Kty(t) [output-based feedback]

⇓
(d) ẋ(t) = [At + BtKtCt]x(t) + [Rt + BtKtDt]dt [closed loop system]

(8.2.18)

where x(t) ∈ R
n, u(t) ∈ R

m, dt ∈ R
p, y(t) ∈ R

q are respectively, the state, the
control, the external disturbance, and the output at time t, At, Bt, Rt, Ct, Dt are
matrices of appropriate sizes specifying the dynamics of the system; and Kt is the
feedback matrix. We assume that the dynamical system in question is uncertain,
meaning that we do not know the dependencies of the matrices At,...,Kt on t; all we
know is that the collection Mt = (At, Bt, Ct, Dt, Rt,Kt) of all these matrices stays
all the time within a given compact uncertainty set M. For our further purposes,
it makes sense to think that there exists an underlying time-invariant “nominal”
system corresponding to known nominal values An,...,Kn of the matrices At, ..., Kt,
while the actual dynamics corresponds to the case when the matrices drift (perhaps,
in a time-dependent fashion) around their nominal values.

An important desired property of a linear dynamical system is its stability

— the fact that every state trajectory x(t) of (every realization of) the closed loop
system converges to 0 as t → ∞, provided that the external disturbances dt are
identically zero. For a time-invariant linear system

ẋ = Qnx,

the necessary and sufficient stability condition is that all eigenvalues of A have neg-
ative real parts or, equivalently, that there exists a Lyapunov Stability Certificate
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(LSC) — a positive definite symmetric matrix X such that

[Qn]T X + XQn ≺ 0.

For uncertain system (8.2.18), a sufficient stability condition is that all matrices

Q ∈ Q = {Q = AM + BMKMCM : M ∈M}
have a common LSC X, that is, there exists X � 0 such that

(a) QT X + XQT ≺ 0 ∀Q ∈ Q
�

(b) [AM + BMKMCM ]T X + X[AM + BMKMCM ] ≺ 0 ∀M ∈M;
(8.2.19)

here AM ,...,KM are the components of a collection M ∈M.

The fact that the existence of a common LSC for all matrices Q ∈ Q is
sufficient for the stability of the closed loop system is nearly evident. Indeed,
since M is compact, for every feasible solution X � 0 of the semi-infinite LMI
(8.2.19) one has

∀M ∈ M : [AM + BMKMCM ]T X + X[AM + BMKMCM ] ≺ −αX (∗)

with appropriate α > 0. Now let us look what happens with the quadratic
form xT Xx along a state trajectory x(t) of (8.2.18). Setting f(t) =
xT (t)Xx(t) and invoking (8.2.18.d), we have

f ′(t) = ẋT (t)Xx(t) + x(t)Xẋ(t)
= xT (t)

[
[At + BtKtCt]

T X + X[At + BtKtCt]
]
x(t)

≤ −αf(t),

where the concluding inequality is due to (∗). From the resulting differential
inequality

f ′(t) ≤ −αf(t)

it follows that
f(t) ≤ exp{−αt}f(0) → 0, t → ∞.

Recalling that f(t) = xT (t)Xx(t) and X is positive definite, we conclude that

x(t) → 0 as t → ∞.

Observe that the set Q is compact along with M. It follows that X is an LSC if
and only if X � 0 and

∃β > 0 : QT X + XQ � −βI ∀Q ∈ Q

⇔ ∃β > 0 : QT X + XQ � −βI ∀Q ∈ Conv(Q).

Multiplying such an X by an appropriate positive real, we can ensure that

X � I & QT X + XQ � −I ∀Q ∈ Conv(Q). (8.2.20)

Thus, we lose nothing when requiring from an LSC to satisfy the latter system of
(semi-infinite) LMIs, and from now on LSCs in question will be exactly the solutions
of this system.

Observe that (8.2.20) is nothing but the RC of the uncertain system of LMIs

X � I & QT X + XQ � −I, (8.2.21)
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the uncertain data being Q and the uncertainty set being Conv(Q). Thus, RCs
arise naturally in the context of Robust Control.

Now let us apply the results on tractability of the RCs of uncertain LMI in
order to understand when the question of existence of an LSC for a given uncertain
system (8.2.18) can be posed in a computationally tractable form. There are, es-
sentially, two such cases — polytopic and unstructured norm-bounded uncertainty.

Polytopic uncertainty. By definition, polytopic uncertainty means that the set
Conv(Q) is given as a convex hull of an explicit list of “scenarios” Qi, i = 1, ..., N :

Conv(Q) = Conv{Q1, ..., QN}.
In our context this situation occurs when the components AM , BM , CM ,KM of
M ∈ M run, independently of each other, through convex hulls of respective sce-
narios

SA = Conv{A1, ..., ANA}, SB = Conv{B1, ..., BNB},
SC = Conv{C1, ..., CNC}, SK = Conv{K1, ...,KNK};

in this case, the set Conv(Q) is nothing but the convex hull of N = NANBNCNK

“scenarios” Qijk� = Ai + BjK�Ck, 1 ≤ i ≤ NA,...,1 ≤ � ≤ NK .

Indeed, Q clearly contains all matrices Qijk� and therefore Conv(Q) ⊃
Conv({Qijk�}). On the other hand, the mapping (A, B, C, K) �→ A + BKC

is polylinear, so that the image Q of the set SA × SB × SC × SK un-

der this mapping is contained in the convex set Conv({Qijk�}), whence

Conv({Qijk�}) ⊃ Conv(Q).

In the case in question we are in the situation of scenario perturbations, so
that (8.2.21) is equivalent to the explicit system of LMIs

X � I, [Qi]T X + XQi � −I, i = 1, ..., N.

Unstructured norm-bounded uncertainty. Here

Conv(Q) = {Q = Qn + UζV : ζ ∈ R
p×q, ‖ζ‖2,2 ≤ ρ}.

In our context this situation occurs, e.g., when 3 of the 4 matrices AM , BM , CM ,
KM , M ∈M, are in fact certain, and the remaining matrix, say, AM , runs through
a set of the form {An + GζH : ζ ∈ R

p×q, ‖ζ‖2,2 ≤ ρ}.
In the case of unstructured norm-bounded uncertainty, the semi-infinite LMI

in (8.2.21) is of the form

QT X + XQ � −I ∀Q ∈ Conv(Q)
�

−I − [Qn]T X −XQn︸ ︷︷ ︸
An(X)

+[−XU︸ ︷︷ ︸
LT (X)

ζ V︸︷︷︸
R

+RT ζT L(X)] � 0

∀(ζ ∈ R
p×q, ‖ζ‖2,2 ≤ ρ).
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Invoking Theorem 8.2.3, (8.2.21) is equivalent to the explicit system of LMIs

X � I,

[
λIp ρUT X

ρXU −I − [Qn]T X −XQn − λV T V

]
� 0. (8.2.22)

in variables X, λ.

8.2.3.2 Lyapunov Stability Synthesis

We have considered the Stability Analysis problem, where one, given an uncertain
closed-loop dynamical system along with the associated uncertainty set M, seeks
to verify a sufficient stability condition. A more challenging problem is Stability

Synthesis: given an uncertain open loop system (8.2.18.a–b) along with the associ-
ated compact uncertainty set M̂ in the space of collections M̂ = (A, B,C, D, R),
find a linear output-based feedback

u(t) = Ky(t)

and an LSC for the resulting closed loop system.

The Synthesis problem has a nice solution, due to [21], in the case of state-

based feedback (that is, Ct ≡ I) and under the assumption that the feedback is
implemented exactly, so that the state dynamics of the closed loop system is given
by

ẋ(t) = [At + BtK]x(t) + [Rt + BtKDt]dt. (8.2.23)

The pairs (K, X) of “feedback – LSC” that we are looking for are exactly the feasible
solutions to the system of semi-infinite matrix inequalities in variables X, K:

X � 0 & [A + BK]T X + X[A + BK] ≺ 0 ∀[A,B] ∈ AB; (8.2.24)

here AB is the projection of M̂ on the space of [A,B] data. The difficulty is that
the system is nonlinear in the variables. As a remedy, let us carry out the nonlinear
substitution of variables X = Y −1, K = ZY −1. With this substitution, (8.2.24)
becomes a system in the new variables Y, Z:

Y � 0 & [A + BZY −1]T Y −1 + Y −1[A + BZY −1] ≺ 0 ∀[A, B] ∈ AB;

multiplying both sides of the second matrix inequality from the left and from the
right by Y , we convert the system to the equivalent form

Y � 0, & AY + Y AT + BZ + ZT BT ≺ 0 ∀[A,B] ∈ AB.

Since AB is compact along with M̂, the solutions to the latter system are exactly
the pairs (Y, Z) that can be obtained by scaling (Y, Z) �→ (λY, λZ), λ > 0, from
the solutions to the system of semi-infinite LMIs

Y � I & AY + Y AT + BZ + ZT BT � −I ∀[A,B] ∈ AB (8.2.25)

in variables Y,Z. When the uncertainty AB can be represented either as a poly-
topic, or as unstructured norm-bounded, the system (8.2.25) of semi-infinite LMIs
admits an equivalent tractable reformulation.
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8.3 EXERCISES

Exercise 8.1. [Robust Linear Estimation, see [48]] Let a signal v ∈ R
n be

observed according to
y = Av + ξ,

where A is an m× n matrix, known up to “unstructured norm-bounded perturba-
tion”:

A ∈ A = {A = An + LT ∆R : ∆ ∈ R
p×q, ‖∆‖2,2 ≤ ρ},

and ξ is a zero mean random noise with a known covariance matrix Σ. Our a priori
information on v is that

v ∈ V = {v : vT Qv ≤ 1},
where Q � 0. We are looking for a linear estimate

v̂ = Gy

with the smallest possible worst-case mean squared error

EstErr = sup
v∈V,A∈A

(
E
{
‖G[Av + ξ]− v‖22

})1/2

(cf. section 6.6).

1) Reformulate the problem of building the optimal estimate equivalently as
the RC of uncertain semidefinite program with unstructured norm-bounded uncer-
tainty and reduce this RC to an explicit semidefinite program.

2) Assume that m = n, Σ = σ2In, and the matrices AT
n An and Q commute,

so that An = V Diag{a}UT and Q = UDiag{q}UT for certain orthogonal matrices
U, V and certain vectors a ≥ 0, q > 0. Let, further, A = {An + ∆ : ‖∆‖2,2 ≤ ρ}.
Prove that in the situation in question we lose nothing when looking for G in the
form of

G = UDiag{g}V T ,

and build an explicit convex optimization program with just two variables specifying
the optimal choice of G.

8.4 NOTES AND REMARKS

NR 8.1. Theorem 8.2.3 was discovered in [32]. The uncertain Truss Topology
Design problem (Example 8.2.4) was considered in [3]; this problem partly inspired
our initial activity on Convex RO. The Free Material Optimization methodology
in Structural Design was proposed by M. Bendsøe [2] and Ringertz [99]; for more
detailed derivation and analysis of SDO models in Structural Design, see [6] and
[8, section 4.8].

NR 8.2. The material of Section 8.2.3 is now a standard component of the
LMI-based Robust Control Theory; our presentation of this material follows [32].
Along with stability analysis/synthesis for uncertain linear dynamical systems, un-
certain LMIs have many other applications in Robust Control. Indeed, not only
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the stability, but many other “desirable properties” of certain time-invariant linear
systems are “LMI-representable” — they can be certified by a solution to an appro-
priate system S of LMIs with the data readily given by the data of the dynamical
system. When allowing the latter data to vary in time, staying within a given un-
certainty set, that is, when passing from a certain time-invariant linear system to
its uncertain time-varying counterpart, the data in S also become uncertain. Typ-
ically, the existence of a robust feasible solution to the resulting uncertain system
of LMIs is a sufficient condition for the dynamical system to enjoy the desirable
property in question in a robust fashion, which makes uncertain LMIs an important
integral part of Robust Control. For more details on this subject, see [32].
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Chapter Nine
Approximating RCs of Uncertain Semidefinite

Problems

9.1 TIGHT TRACTABLE APPROXIMATIONS OF RCS OF UNCERTAIN

SDPS WITH STRUCTURED NORM-BOUNDED UNCERTAINTY

We have seen that the possibility to reformulate the RC of an uncertain semidefinite
program in a computationally tractable form is a “rare commodity,” so that there
are all reasons to be interested in the second best thing — in situations where the
RC admits a tight tractable approximation. To the best of our knowledge, just
one such case is known — the case of structured norm-bounded uncertainty we are
about to consider in this chapter.

9.1.1 Uncertain LMI with Structured Norm-Bounded Perturbations

Consider an uncertain LMI
Aζ(y) � 0 (8.2.2)

where the “body” Aζ(y) is bi-linear in the design vector y and the perturbation
vector ζ. The definition of a structured norm-bounded perturbation follows the
path we got acquainted with in chapter 5:

Definition 9.1.1. We say that the uncertain constraint (8.2.2) is affected by
structured norm-bounded uncertainty with uncertainty level ρ, if

1. The perturbation set Zρ is of the form

Zρ =
{

ζ = (ζ1, ..., ζL) :
ζ� ∈ R, |ζ�| ≤ ρ, � ∈ Is

ζ� ∈ R
p�×q� : ‖ζ�‖2,2 ≤ ρ, � �∈ Is

}
(9.1.1)

2. The body Aζ(y) of the constraint can be represented as

Aζ(y) = An(y) +
∑

�∈IS

ζ�A�(y)

+
∑

��∈Is

[
LT

� (y)ζ�R� + RT
� [ζ�]T L�(y)

]
,

(9.1.2)

where A�(y), � ∈ Is, and L�(y), � �∈ Is, are affine in y, and R�, � �∈ Is, are nonzero.

Theorem 9.1.2. Given uncertain LMI (8.2.2) with structured norm-bounded
uncertainty (9.1.1), (9.1.2), let us associate with it the following system of LMIs in
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variables Y�, � = 1, ..., L, λ�, � �∈ Is, y:

(a) Y� � ±A�(y), � ∈ Is

(b)
[

λ�Ip�
L�(y)

LT
� (y) Y� − λ�R

T
� R�

]
� 0, � �∈ Is

(c) An(y)− ρ
L∑

�=1

Y� � 0

(9.1.3)

Then system (9.1.3) is a safe tractable approximation of the RC

Aζ(y) � 0 ∀ζ ∈ Zρ (9.1.4)

of (8.2.2), (9.1.1), (9.1.2), and the tightness factor of this approximation does not
exceed ϑ(µ), where µ is the smallest integer ≥ 2 such that µ ≥ max

y
Rank(A�(y))

for all � ∈ Is, and ϑ(·) is a universal function of µ such that

ϑ(2) =
π

2
, ϑ(4) = 2, ϑ(µ) ≤ π

√
µ/2, µ > 2.

The approximation is exact, if either L = 1, or all perturbations are scalar, (i.e.,
Is = {1, ..., L}) and all A�(y) are of ranks not exceeding 1.

Proof. Let us fix y and observe that a collection y, Y1, ..., YL can be extended
to a feasible solution of (9.1.3) if and only if

∀ζ ∈ Zρ :

⎧⎨⎩ −ρY� � ζ�A�(y), � ∈ Is,

−ρY� � LT
� (y)ζ�R� + RT

� [ζ�]T L�(y), � �∈ Is

(see Theorem 8.2.3). It follows that if, in addition, Y� satisfy (9.1.3.c), then y

is feasible for (9.1.4), so that (9.1.3) is a safe tractable approximation of (9.1.4).
The fact that this approximation is tight within the factor ϑ(µ) is readily given
by the Real Case Matrix Cube Theorem, see Appendix B.4.6. The fact that the
approximation is exact when L = 1 is evident when Is = {1} and is readily given
by Theorem 8.2.3 when Is = ∅. The fact that the approximation is exact when
all perturbations are scalar and all matrices A�(y) are of ranks not exceeding 1 is
evident. �

9.1.2 Application: Lyapunov Stability Analysis/Synthesis Revisited

We start with the Analysis problem. Consider the uncertain time-varying dynami-
cal system (8.2.18) and assume that the uncertainty set Conv(Q) = Conv({AM +
BMKMCM} : M ∈M}) in (8.2.20) is an interval uncertainty, meaning that

Conv(Q) = Qn + ρZ, Z = {
L∑

�=1

ζ�U� : ‖ζ‖∞ ≤ 1},

Rank(U�) ≤ µ, 1 ≤ � ≤ L.

(9.1.5)

Such a situation (with µ = 1) arises, e.g., when two of the 3 matrices Bt, Ct, Kt

are certain, and the remaining one of these 3 matrices, say, Kt, and the matrix
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At are affected by entry-wise uncertainty:

{(AM , KM ) : M ∈ M} =

{
(A, K) :

|Aij − An
ij | ≤ ραij∀(i, j)

|Kpq − Kn
pq| ≤ ρκpq ∀(p, q)

}
,

In this case, denoting by Bn, Cn the (certain!) matrices Bt, Ct, we clearly
have

Conv(Q) = An + BnKnCn︸ ︷︷ ︸
Qn

+ρ

{[∑
i,j

ξij [αijeie
T
j ]

+
∑
p,q

ηpq[κpqB
nfpgT

q Cn]
]

: |ξij | ≤ 1, |ηpq| ≤ 1

}
,

where ei, fp, gq are the standard basic orths in the spaces R
dim x, R

dim u

and R
dim y, respectively. Note that the matrix coefficients at the “elementary

perturbations” ξij , ηpq are of rank 1, and these perturbations, independently

of each other, run through [−1, 1] — exactly as required in (9.1.5) for µ = 1.

In the situation of (9.1.5), the semi-infinite Lyapunov LMI

QT X + XQ � −I ∀Q ∈ Conv(Q)

in (8.2.20) reads

−I − [Qn]T X −XQn︸ ︷︷ ︸
An(X)

+ρ
L∑

�=1

ζ� [−UT
� X −XU�]︸ ︷︷ ︸
A�(X)

� 0 ∀(ζ : |ζ�| ≤ 1, � = 1, ..., L).

(9.1.6)

We are in the case of structured norm-bounded perturbations with Is = {1, ..., L}.
Noting that the ranks of all matrices A�(X) never exceed 2µ (since all U� are of
ranks ≤ µ), the safe tractable approximation of (9.1.6) given by Theorem 9.1.2 is
tight within the factor ϑ(2µ). It follows, in particular, that in the case of (9.1.5)
with µ = 1, we can find efficiently a lower bound, tight within the factor π/2, on

the Lyapunov Stability Radius of the uncertain system (8.2.18) (that is, on the
supremum of those ρ for which the stability of our uncertain dynamical system can
be certified by an LSC). The lower bound in question is the supremum of those ρ for
which the approximation is feasible, and this supremum can be easily approximated
to whatever accuracy by bisection.

We can process in the same fashion the Lyapunov Stability Synthesis problem
in the presence of interval uncertainty. Specifically, assume that Ct ≡ I and the
uncertainty set AB = {[AM , BM ] : M ∈ M} underlying the Synthesis problem is
an interval uncertainty:

AB = [An, Bn] + ρ{
L∑

�=1

ζ�U� : ‖ζ‖∞ ≤ 1}, Rank(U�) ≤ µ∀�. (9.1.7)

We arrive at the situation of (9.1.7) with µ = 1, e.g., when AB corresponds
to entry-wise uncertainty:

AB = [An, Bn] + ρ{H ≡ [δA, δB] : |Hij | ≤ hij ∀i, j}.
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In the case of (9.1.7) the semi-infinite LMI in (8.2.25) reads

−I − [An, Bn][Y ; Z]− [Y ; Z]T [An, Bn]T︸ ︷︷ ︸
An(Y,Z)

+ρ
L∑

�=1

ζ� [−U�[Y ;Z]− [Y ;Z]T UT
� ]︸ ︷︷ ︸

A�(Y,Z)

� 0 ∀(ζ : |ζ�| ≤ 1, � = 1, ..., L).
(9.1.8)

We again reach a situation of structured norm-bounded uncertainty with Is =
{1, ..., L} and all matrices A�(·), � = 1, ..., L, being of ranks at most 2µ. Thus,
Theorem 9.1.2 provides us with a tight, within factor ϑ(2µ), safe tractable approx-
imation of the Lyapunov Stability Synthesis problem.

Illustration: Controlling a multiple pendulum. Consider a multiple pendu-
lum (“a train”) depicted in figure 9.1. Denoting by mi, i = 1, ..., 4, the masses
of the “engine” (i = 1) and the “cars” (i = 2, 3, 4, counting from right to left),
Newton’s laws for the dynamical system in question read

m1
d2

dt2 x1(t) = −κ1x1(t) +κ1x2(t) +u(t)
m2

d2

dt2 x2(t) = κ1x1(t) −(κ1 + κ2)x2(t) +κ2x3(t)
m3

d2

dt2 x3(t) = κ2x2(t) −(κ2 + κ3)x3(t) +κ3x4(t)
m4

d2

dt2 x4(t) = κ3x3(t) −κ3x4(t),
(9.1.9)

where xi(t) are shifts of the engine and the cars from their respective positions
in the state of rest (where nothing moves and the springs are neither shrunk nor
expanded), and κi are the elasticity constants of the springs (counted from right
to left). Passing from masses mi to their reciprocals µi = 1/mi and adding to the
coordinates of the cars their velocities vi(t) = ẋi(t), we can rewrite (9.1.9) as the
system of 8 linear differential equations:

ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

−κ1µ1 κ1µ1

κ1µ2 −[κ1 + κ2]µ2 κ2µ2

κ2µ3 −[κ2 + κ3]µ3 κ3µ3

κ3µ4 −κ3µ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Aµ

x(t)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
µ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Bµ

u(t)

(9.1.10)

where x(t) = [x1(t);x2(t);x3(t);x4(t); v1(t); v2(t); v3(t); v4(t)]. System (9.1.10) “as
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u
A A

Figure 9.1 “Train”: 4 masses (3 “cars” and “engine”) linked by elastic springs and sliding
without friction (aside of controlled force u) along “rail” AA.

it is” (i.e., with trivial control u(·) ≡ 0) is unstable; not only it has a solution that
does not converge to 0 as t → ∞, it has even an unbounded solution (specifically,
one where xi(t) = vt, vi(t) ≡ v, which corresponds to uniform motion of the cars
and the engine with no tensions in the springs). Let us look for a stabilizing state-
based linear feedback controller

u(t) = Kx(t), (9.1.11)

that is robust w.r.t. the masses of the cars and the engine when they vary in
given segments ∆i, i = 1, ..., 4. To this end we can apply the Lyapunov Stability
Synthesis machinery. Observe that to say that the masses mi run, independently
of each other, through given segments is exactly the same as to say that their
reciprocals µi run, independently of each other, through other given segments ∆′

i;
thus, our goal is as follows:

Stabilization: Given elasticity constants κi and segments ∆′
i ⊂ {µ >

0}, i = 1, ..., 4, find a linear feedback (9.1.11) and a Lyapunov Stability

Certificate X for the corresponding closed loop system (9.1.10), (9.1.11),
with the uncertainty set for the system being

AB = {[Aµ, Bµ] : µi ∈ ∆′
i, i = 1, ..., 4}.

Note that in our context the Lyapunov Stability Synthesis approach is, so to
speak, “doubly conservative.” First, the existence of a common LSC for all
matrices Q from a given compact set Q is only a sufficient condition for the
stability of the uncertain dynamical system

ẋ(t) = Qtx(t), Qt ∈ Q∀t,

and as such this condition is conservative. Second, in our train example

there are reasons to think of mi as of uncertain data (in reality the loads

of the cars and the mass of the engine could vary from trip to trip, and we

would not like to re-adjust the controller as long as these changes are within a

reasonable range), but there is absolutely no reason to think of these masses

as varying in time. Indeed, we could perhaps imagine a mechanism that

makes the masses mi time-dependent, but with this mechanism our original

model (9.1.9) becomes invalid — Newton’s laws in the form of (9.1.9) are not

applicable to systems with varying masses and at the very best they offer

a reasonable approximation of the true model, provided that the changes in
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masses are slow. Thus, in our train example a common LSC for all matrices

Q = A + BK, [A, B] ∈ AB, would guarantee much more than required,

namely, that all trajectories of the closed loop system “train plus feedback

controller” converge to 0 as t → ∞ even in the case when the parameters

µi ∈ ∆′
i vary in time at a high speed. This is much more than what we

actually need — convergence to 0 of all trajectories in the case when µi ∈ ∆′
i

do not vary in time.

The system of semi-infinite LMIs we are about to process in the connection of the
Lyapunov Stability Synthesis is

(a) [A,B][Y ;Z] + [Y ;Z]T [A,B]T � −αY, ∀[A,B] ∈ AB
(b) Y � I

(c) Y ≤ χI,

(9.1.12)

where α > 0 and χ > 1 are given. This system differs slightly from the “canonical”
system (8.2.25), and the difference is twofold:

• [major] in (8.2.25), the semi-infinite Lyapunov LMI is written as

[A,B][Y ;Z] + [Y ;Z]T [A,B]T � −I,

which is just a convenient way to express the relation

[A,B][Y ; Z] + [Y ; Z]T [A,B]T ≺ 0, ∀[A,B] ∈ AB.

Every feasible solution [Y ; Z] to this LMI with Y � 0 produces a stabilizing
feedback K = ZY −1 and the common LSC X = Y −1 for all instances of the
matrix Q = A + BK, [A, B] ∈ AB, of the closed loop system, i.e.,

[A + BK]T X + X[A + BK] ≺ 0 ∀[A,B] ∈ AB.

The latter condition, however, says nothing about the corresponding decay
rate. In contrast, when [Y ; Z] is feasible for (9.1.12.a, b), the associated sta-
bilizing feedback K = ZY −1 and LSC X = Y −1 satisfy the relation

[A + BK]T X + X[A + BK] ≺ −αX ∀[A, B] ∈ AB,

and this relation, as we have seen when introducing the Lyapunov Stability
Certificate, implies that

xT (t)Xx(t) ≤ exp{−αt}xT (0)Xx(0), t ≥ 0,

which guarantees that the decay rate in the closed loop system is at least α.
In our illustration (same as in real life), we prefer to deal with this “stronger”
form of the Lyapunov Stability Synthesis requirement, in order to have a
control over the decay rate associated with the would-be controller.

• [minor] In (9.1.12) we impose an upper bound on the condition number (ratio
of the maximal and minimal eigenvalues) of the would-be LSC; with normal-
ization of Y given by (9.1.12.b), this bound is ensured by (9.1.12.c) and is
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precisely χ. The only purpose of this bound is to avoid working with ex-
tremely ill-conditioned positive definite matrices, which can cause numerical
problems.

Now let us use Theorem 9.1.2 to get a tight safe tractable approximation of the semi-
infinite system of LMIs (9.1.12). Denoting by µn

i the midpoints of the segments ∆′
i

and by δi the half-width of these segments, we have

AB ≡ {[Aµ, Bµ] : µi ∈ ∆′
i, i = 1, ..., 4}

= {[Aµn , Bµn] +
4∑

�=1

ζ�U� : |ζ�| ≤ 1, � = 1, ..., 4},

U� = δ�p�q
T
� ,

where p� ∈ R
8 has the only nonzero entry, equal to 1, in the position 4 + �, and⎡⎢⎢⎣

qT
1

qT
2

qT
3

qT
4

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
−κ1 κ1 1
κ1 −[κ1 + κ2] κ2

κ2 −[κ2 + κ3] κ3

κ3 −κ3

⎤⎥⎥⎥⎦
Consequently, the analogy of (9.1.12) with uncertainty level ρ ((9.1.12) itself corre-
sponds to ρ = 1) is the semi-infinite system of LMIs

−αY − [Aµn , Bµn][Y ; Z]− [Y ; Z]T [Aµn , Bµn]T︸ ︷︷ ︸
An(Y,Z)

+ρ
4∑

�=1

ζ�(−δ�[p�q
T
� [Y ; Z] + [Y ; Z]T q�p

T
� ]︸ ︷︷ ︸

A�(Y,Z)

) � 0 ∀(ζ : |ζ�| ≤ 1, � = 1, ..., 4)

Y � I8, Y � χI8

(9.1.13)

in variables Y , Z (cf. (9.1.8)). The safe tractable approximation of this semi-infinite
system of LMIs as given by Theorem 9.1.2 is the system of LMIs

Y� � ±A�(Y, Z), � = 1, ..., 4

An(Y,Z)− ρ
4∑

�=1

Y� � 0

Y � I8, Y � χI8

(9.1.14)

in variables Y, Z, Y1, ..., Y4. Since all U� are of rank 1 and therefore all A�(Y, Z) are
of rank ≤ 2, Theorem 9.1.2 states that this safe approximation is tight within the
factor π/2.

Of course, in our toy example no approximation is needed — the set AB is a
polytopic uncertainty with just 24 = 16 vertices, and we can straightforwardly
convert (9.1.13) into an exactly equivalent system of 18 LMIs

An(Y, Z) � ρ
4∑

�=1

ε�A�(Y, Z), ε� = ±1, � = 1, ..., 4

Y � I8, Y � χI8

in variables Y, Z. The situation would change dramatically if there were,

say, 30 cars in our train rather than just 3. Indeed, in the latter case the
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precise “polytopic” approach would require solving a system of 231 + 2 =

2, 147, 483, 650 LMIs of the size 62 × 62 in variables Y ∈ S62, Z ∈ R
1×63,

which is a bit too much... In contrast, the approximation (9.1.14) is a system

of just 31 + 2 = 33 LMIs of the size 62 × 62 in variables {Y� ∈ S62}31
�=1,

Y ∈ S62, Z ∈ R
1×63 (totally (31 + 1) 62·63

2
+ 63 = 60606 scalar decision

variables). One can argue that the latter problem still is too large from a

practical perspective. But in fact it can be shown (see Exercise 9.1) that in

this problem, one can easily eliminate the matrices Y� (every one of them can

be replaced with a single scalar decision variable), which reduces the design

dimension of the approximation to 31+ 62·63
2

+63 = 2047. A convex problem

of this size can be solved pretty routinely.

We are about to present numerical results related to stabilization of our toy 3-car
train. The setup in our computations is as follows:

κ1 = κ2 = κ3 = 100.0; α = 0.01;χ = 108;
∆′

1 = [0.5, 1.5], ∆′
2 = ∆′

3 = ∆′
4 = [1.5, 4.5],

which corresponds to the mass of the engine varying in [2/3, 2] and the masses of
the cars varying in [2/9, 2/3].

We computed, by a kind of bisection, the largest ρ for which the approxima-
tion (9.1.14) is feasible; the optimal feedback we have found is

u = 107
[
− 0.2892x1 − 2.5115x2 + 6.3622x3 − 3.5621x4

−0.0019v1 − 0.0912v2 − 0.0428v3 + 0.1305v4

]
,

and the (lower bound on the) Lyapunov Stability radius of the closed loop system
as yielded by our approximation is ρ̂ = 1.05473. This bound is > 1, meaning
that our feedback stabilizes the train in the above ranges of the masses of the
engine and the cars (and in fact, even in slightly larger ranges 0.65 ≤ m1 ≤ 2.11,
0.22 ≤ m2,m3,m4 ≤ 0.71). An interesting question is by how much the lower bound

ρ̂ is less than the Lyapunov Stability radius ρ∗ of the closed loop system. Theory
guarantees that the ratio ρ∗/ρ̂ should be ≤ π/2 = 1.570.... In our small problem
we can compute ρ∗ by applying the polytopic uncertainty approach, that results
in ρ∗ = 1.05624. Thus, in reality ρ∗/ρ̂ ≈ 1.0014, much better than the theoretical
bound 1.570.... In figure 9.2, we present sample trajectories of the closed loop
system yielded by our design, the level of perturbations being 1.054 — pretty close
to ρ̂ = 1.05473.

9.2 EXERCISES

Exercise 9.1.

1) Let p, q ∈ R
n and λ > 0. Prove that λppT + 1

λqqT � ±[pqT + qpT ].

2) Let p, q be as in 1) with p, q �= 0, and let Y ∈ Sn be such that Y �
±[pqT + qpT ]. Prove that there exists λ > 0 such that Y � λppT + 1

λqqT .
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Figure 9.2 Sample trajectories of the 3-car train.

3) Consider the semi-infinite LMI of the following specific form:

∀(ζ ∈ R
L : ‖ζ‖∞ ≤ 1) : An(x) + ρ

L∑
�=1

ζ�

[
LT

� (x)R� + RT
� L�(x)

]
� 0, (9.2.1)

where LT
� (x), RT

� ∈ R
n, R� �= 0 and L�(x) are affine in x, as is the case in Lyapunov

Stability Analysis/Synthesis under interval uncertainty (9.1.7) with µ = 1.

Prove that the safe tractable approximation, tight within the factor π/2, of
(9.2.1), that is, the system of LMIs

Y� � ±
[
LT

� (x)R� + RT
� L�(x)

]
, 1 ≤ � ≤ L

An(x)− ρ
∑L

�=1 Y� � 0
(9.2.2)
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in x and in matrix variables Y1, ..., YL is equivalent to the LMI⎡⎢⎢⎢⎢⎢⎢⎣
An(x)− ρ

∑L
�=1 λ�R

T
� R� LT

1 (x) LT
2 (x) · · · LT

L(x)
L1(x) λ1/ρ

L2(x) λ2/ρ
...

. . .
LL(x) λL/ρ

⎤⎥⎥⎥⎥⎥⎥⎦ � 0 (9.2.3)

in x and real variables λ1..., λL. Here the equivalence means that x can be extended
to a feasible solution of (9.2.2) if and only if it can be extended to a feasible solution
of (9.2.3).

Exercise 9.2. Consider the Signal Processing problem as follows. We are
given uncertainty-affected observations

y = Av + ξ

of a signal v known to belong to a set V . Uncertainty “sits” in the “measurement
error” ξ, known to belong to a given set Ξ, and in A — all we know is that A ∈ A.
We assume that V and Ξ are intersections of ellipsoids centered at the origin:

V = {v ∈ R
n : vT Piv ≤ 1, 1 ≤ i ≤ I}, [Pi � 0,

∑
i Pi � 0]

Ξ = {ξ ∈ R
m : ξT Qjξ ≤ ρ2

ξ , 1 ≤ j ≤ J}, [Qj � 0,
∑

j Qj � 0]

and A is given by structured norm-bounded perturbations:

A = {A = An +
L∑

�=1

LT
� ∆�R�,∆� ∈ R

p�×q� , ‖∆�‖2,2 ≤ ρA}.

We are interested to build a linear estimate v̂ = Gy of v via y. The ‖ · ‖2 error of
such an estimate at a particular v is

‖Gy − v‖2 = ‖G[Av + ξ]− v‖2 = ‖(GA− I)v + Gξ‖2,
and we want to build G that minimizes the worst, over all v, A, ξ compatible with
our a priori information, estimation error

max
ξ∈Ξ,v∈V,A∈A

‖(GA− I)v + Gξ‖2.

Build a safe tractable approximation of this problem that seems reasonably tight
when ρξ and ρA are small.

9.3 NOTES AND REMARKS

NR 9.1. The model of structured norm-bounded perturbations is taken from
the famous µ-theory in Robust Control [91]. On the origin of the results underlying
Theorem 9.1.2, see section 7.4.



Chapter Ten
Approximating Chance Constrained CQIs and LMIs

In this chapter, we develop safe tractable approximations of chance constrained

randomly perturbed Conic Quadratic and Linear Matrix Inequalities.

10.1 CHANCE CONSTRAINED LMIS

In previous chapters we have considered the Robust/Approximate Robust Coun-
terparts of uncertain conic quadratic and semidefinite programs. Now we intend to
consider randomly perturbed CQPs and SDPs and to derive safe approximations
of their chance constrained versions (cf. section 2.1). From this perspective, it
is convenient to treat chance constrained CQPs as particular cases of chance con-
strained SDPs (such an option is given by Lemma 6.3.3), so that in the sequel we
focus on chance constrained SDPs. Thus, we are interested in a randomly perturbed
semidefinite program

min
y

{
cT y : An(y) + ρ

L∑
�=1

ζ�A�(y) � 0, y ∈ Y
}

, (10.1.1)

where An(y) and all A�(y) are affine in y, ρ ≥ 0 is the “perturbation level,”
ζ = [ζ1; ...; ζL] is a random perturbation, and Y is a semidefinite representable
set. We associate with this problem its chance constrained version

min
y

{
cT y : Prob

{
An(y) + ρ

L∑
�=1

ζ�A�(y) � 0

}
≥ 1− ε, y ∈ Y

}
(10.1.2)

where ε � 1 is a given positive tolerance. Our goal is to build a computationally
tractable safe approximation of (10.1.2). We start with assumptions on the random
variables ζ�, which will be in force everywhere in the following:

Random variables ζ�, � = 1, ..., L, are independent with zero mean sat-

isfying either

A.I [“bounded case”] |ζ�| ≤ 1, � = 1, ..., L,

or

A.II [“Gaussian case”] ζ� ∼ N (0, 1), � = 1, ..., L.

Note that most of the results to follow can be extended to the case when ζ� are
independent with zero means and “light tail” distributions. We prefer to require
more in order to avoid too many technicalities.
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10.1.1 Approximating Chance Constrained LMIs: Preliminaries

The problem we are facing is basically as follows:

(?) Given symmetric matrices A,A1,...,AL, find a verifiable sufficient

condition for the relation

Prob{
L∑

�=1

ζ�A� � A} ≥ 1− ε. (10.1.3)

Since ζ is with zero mean, it is natural to require A � 0 (this condition clearly is
necessary when ζ is symmetrically distributed w.r.t. 0 and ε < 0.5). Requiring a
bit more, namely, A � 0, we can reduce the situation to the case when A = I, due
to

Prob{
L∑

�=1

ζ�A� � A} = Prob{
L∑

�=1

ζ� A−1/2A�A
−1/2︸ ︷︷ ︸

B�

� I}. (10.1.4)

Now let us try to guess a verifiable sufficient condition for the relation

Prob{
L∑

�=1

ζ�B� � I} ≥ 1− ε. (10.1.5)

First of all, we do not lose much when strengthening the latter relation to

Prob{‖
L∑

�=1

ζ�B�‖ ≤ 1} ≥ 1− ε (10.1.6)

(here and in what follows, ‖·‖ stands for the standard matrix norm ‖·‖2,2). Indeed,
the latter condition is nothing but

Prob{−I �
L∑

�=1

ζ�B� � I} ≥ 1− ε,

so that it implies (10.1.5). In the case of ζ symmetrically distributed w.r.t. the
origin, we have a “nearly inverse” statement: the validity of (10.1.5) implies the
validity of (10.1.6) with ε increased to 2ε.

The central observation is that whenever (10.1.6) holds true and the distri-
bution of the random matrix

S =
L∑

�=1

ζ�B�

is not pathological, we should have

E{‖S2‖} ≤ O(1),

whence, by Jensen’s Inequality,

‖E{S2}‖ ≤ O(1)

as well. Taking into account that E{S2} =
L∑

�=1

E{ζ2
� }B2

� , we conclude that when all

quantities E{ζ2
� } are of order of 1, we should have ‖∑L

�=1 B2
� ‖ ≤ O(1), or, which
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is the same,
L∑

�=1

B2
� � O(1)I. (10.1.7)

By the above reasoning, (10.1.7) is a kind of a necessary condition for the validity
of the chance constraint (10.1.6), at least for random variables ζ� that are sym-
metrically distributed w.r.t. the origin and are “of order of 1.” To some extent,
this condition can be treated as nearly sufficient, as is shown by the following two
theorems.

Theorem 10.1.1. Let B1, ..., BL ∈ Sm be deterministic matrices such that
L∑

�=1

B2
� � I (10.1.8)

and Υ > 0 be a deterministic real. Let, further, ζ�, � = 1, ..., L, be independent
random variables taking values in [−1, 1] such that

χ ≡ Prob

{
‖

L∑
�=1

ζ�B�‖ ≤ Υ

}
> 0. (10.1.9)

Then

∀Ω > Υ : Prob

{
‖

L∑
�=1

ζ�B�‖ > Ω

}
≤ 1

χ
exp{−(Ω−Υ)2/16}. (10.1.10)

Proof. Let Q = {z ∈ R
L : ‖∑

�

z�B�‖ ≤ 1}. Observe that

‖[
∑

�

z�B�]u‖2 ≤
∑

�

|z�|‖B�u‖2 ≤
(∑

�

z2
�

)1/2 (∑
�

uT B2
� u

)1/2

≤ ‖z‖2‖u‖2,

where the concluding relation is given by (10.1.8). It follows that ‖∑� z�B�‖ ≤
‖z‖2, whence Q contains the unit ‖ · ‖2-ball B centered at the origin in R

L. Besides
this, Q is clearly closed, convex and symmetric w.r.t. the origin. Invoking the
Talagrand Inequality (see the proof of Lemma B.3.3 in section B.3), we have

E
{

exp{dist2‖·‖2
(ζ,ΥQ)/16}

}
≤ (Prob{ζ ∈ ΥQ})−1 =

1
χ

. (10.1.11)

Now, when ζ is such that ‖
L∑

�=1

ζ�B�‖ > Ω, we have ζ �∈ ΩQ, whence, due to

symmetry and convexity of Q, the set (Ω − Υ)Q + ζ does not intersect the set
ΥQ. Since Q contains B, the set (Ω − Υ)Q + ζ contains ‖ · ‖2-ball, centered at ζ,
of the radius Ω − Υ, and therefore this ball does not intersect ΥQ either, whence
dist‖·‖2(ζ, ΥQ) > Ω−Υ. The resulting relation

‖
L∑

�=1

ζ�B�‖ > Ω ⇔ ζ �∈ ΩQ ⇒ dist‖·‖2(ζ,ΥQ) > Ω−Υ
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combines with (10.1.11) and the Tschebyshev Inequality to imply that

Prob{‖
L∑

�=1

ζ�B�‖ > Ω} ≤ 1
χ

exp{−(Ω−Υ)2/16}. �

Theorem 10.1.2. Let B1, ..., BL ∈ Sm be deterministic matrices satisfying
(10.1.8) and Υ > 0 be a deterministic real. Let, further, ζ�, � = 1, ..., L, be inde-
pendent N (0, 1) random variables such that (10.1.9) holds true with χ > 1/2.

Then

∀Ω ≥ Υ : Prob{‖
L∑

�=1

ζ�B�‖ > Ω}

≤ Erf
(
ErfInv(1− χ) + (Ω−Υ)max[1, Υ−1ErfInv(1− χ)]

)
≤ exp{−Ω2Υ−2ErfInv2(1 − χ)

2 },

(10.1.12)

where Erf(·) and ErfInv(·) are the error and the inverse error functions, see (2.3.22).

Proof. Let Q = {z ∈ R
L : ‖∑� z�B�‖ ≤ Υ}. By the same argument as in

the beginning of the proof of Theorem 10.1.1, Q contains the centered at the origin
‖·‖2-ball of the radius Υ. Besides this, by definition of Q we have Prob{ζ ∈ Q} ≥ χ.
Invoking item (i) of Theorem B.5.1, Q contains the centered at the origin ‖ · ‖2-ball
of the radius r = max[ErfInv(1 − χ),Υ], whence, by item (ii) of this Theorem,
(10.1.12) holds true. �

The last two results are stated next in a form that is better suited for our
purposes.

Corollary 10.1.3. Let A,A1, ..., AL be deterministic matrices from Sm such
that

∃{Y�}L
�=1 :

⎧⎪⎪⎨⎪⎪⎩
[

Y� A�

A� A

]
� 0, 1 ≤ � ≤ L

L∑
�=1

Y� � A

, (10.1.13)

let Υ > 0, χ > 0 be deterministic reals and ζ1, ..., ζL be independent random
variables satisfying either A.I, or A.II, and such that

Prob{−ΥA �
L∑

�=1

ζ�A� � ΥA} ≥ χ. (10.1.14)

Then

(i) When ζ� satisfy A.I, we have

∀Ω > Υ : Prob{−ΩA �
L∑

�=1

ζ�A� � ΩA} ≥ 1− 1
χ

exp{−(Ω−Υ)2/16}; (10.1.15)
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(ii) When ζ� satisfy A.II, and, in addition, χ > 0.5, we have

∀Ω > Υ : Prob{−ΩA �
L∑

�=1

ζ�A� � ΩA}

≥ 1− Erf
(
ErfInv(1− χ) + (Ω−Υ) max

[
1, ErfInv(1 − χ)

Υ

])
,

(10.1.16)

with Erf(·), ErfInv(·) given by (2.3.22).

Proof. Let us prove (i). Given positive δ, let us set Aδ = A + δI. Observe
that the premise in (10.1.14) clearly implies that A � 0, whence Aδ � 0. Now

let Y� be such that the conclusion in (10.1.13) holds true. Then
[

Y� A�

A� Aδ

]
� 0,

whence, by the Schur Complement Lemma, Y� � A�[Aδ]−1A�, so that∑
�

A�[Aδ]−1A� �
∑

�

Y� � A � Aδ.

We see that ∑
�

[
[Aδ]−1/2A�[Aδ]−1/2︸ ︷︷ ︸

Bδ
�

]2 � I.

Further, relation (10.1.14) clearly implies that

Prob{−ΥAδ �
∑

�

ζ�A� � ΥAδ} ≥ χ,

or, which is the same,

Prob{−ΥI �
∑

�

ζ�B
δ
� � ΥI} ≥ χ.

Applying Theorem 10.1.1, we conclude that

Ω > Υ ⇒ Prob{−ΩI �
∑

�

ζ�B
δ
� � ΩI} ≥ 1− 1

χ
exp{−(Ω−Υ)2/16},

which in view of the structure of Bδ
� is the same as

Ω > Υ ⇒ Prob{−ΩAδ �
∑

�

ζ�A� � ΩAδ} ≥ 1− 1
χ

exp{−(Ω−Υ)2/16}. (10.1.17)

For every Ω > Υ, the sets {ζ : −ΩA1/t �
∑
�

ζ�A� � ΩA1/t}, t = 1, 2, ..., shrink as t

grows, and their intersection over t = 1, 2, ... is the set {ζ : −ΩA �
∑
�

ζ�A� � ΩA},
so that (10.1.17) implies (10.1.15), and (i) is proved. The proof of (ii) is completely
similar, with Theorem 10.1.2 in the role of Theorem 10.1.1. �

Comments. When A � 0, invoking the Schur Complement Lemma, the condition
(10.1.13) is satisfied iff it is satisfied with Y� = A�A

−1A�, which in turn is the case iff∑
�

A�A
−1A� � A, or which is the same, iff

∑
�

[A−1/2A�A
−1/2]2 � I. Thus, condition

(10.1.4), (10.1.7) introduced in connection with Problem (?), treated as a condition

on the variable symmetric matrices A,A1, ..., AL, is LMI-representable, (10.1.13)
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being the representation. Further, (10.1.13) can be written as the following explicit
LMI on the matrices A,A1, ..., AL:

Arrow(A,A1, ..., AL) ≡

⎡⎢⎢⎢⎣
A A1 ... AL

A1 A
...

. . .
AL A

⎤⎥⎥⎥⎦ � 0. (10.1.18)

Indeed, when A � 0, the Schur Complement Lemma says that the “block-arrow”
matrix Arrow(A,A1, ..., AL) is � 0 if and only if∑

�

A�A
−1A� � A,

and this is the case if and only if (10.1.13) holds. Thus, (10.1.13) and (10.1.18) are
equivalent to each other when A � 0, which, by standard approximation argument,
implies the equivalence of these two properties in the general case (that is, when
A � 0). It is worthy of noting that the set of matrices (A,A1, ..., AL) satisfying
(10.1.18) form a cone that can be considered as the matrix analogy of the Lorentz
cone (look what happens when all the matrices are 1× 1 ones).

10.2 THE APPROXIMATION SCHEME

To utilize the outlined observations and results in order to build a safe/“almost
safe” tractable approximation of a chance constrained LMI in (10.1.2), we proceed
as follows.

1) We introduce the following:

Conjecture 10.1. Under assumptions A.I or A.II, condition (10.1.13) implies
the validity of (10.1.14) with known in advance χ > 1/2 and “a moderate” (also
known in advance) Υ > 0.

With properly chosen χ and Υ, this Conjecture indeed is true, see below. We,

however, prefer not to stick to the corresponding worst-case-oriented values of χ and Υ

and consider χ > 1/2, Υ > 0 as somehow chosen parameters of the construction to follow,

and we proceed as if we know in advance that our conjecture, with the chosen Υ, χ, is

true. Eventually we shall explain how to justify this tactics.

2) Trusting in Conjecture 10.1, we have at our disposal constants Υ > 0,
χ ∈ (0.5, 1] such that (10.1.13) implies (10.1.14). We claim that modulo Conjec-

ture 10.1, the following systems of LMIs in variables y, U1, ..., UL are safe tractable

approximations of the chance constrained LMI in (10.1.2):
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In the case of A.I:

(a)
[

U� A�(y)
A�(y) An(y)

]
� 0, 1 ≤ � ≤ L

(b) ρ2
L∑

�=1

U� � Ω−2An(y), Ω = Υ + 4
√

ln(χ−1ε−1);
(10.2.1)

In the case of A.II:

(a)
[

U� A�(y)
A�(y) An(y)

]
� 0, 1 ≤ � ≤ L

(b) ρ2
L∑

�=1

U� � Ω−2An(y), Ω = Υ +
max[ErfInv(ε) − ErfInv(1 − χ),0]

max[1,Υ−1ErfInv(1 − χ)]
≤ Υ + max [ErfInv(ε)− ErfInv(1− χ), 0] .

(10.2.2)

Indeed, assume that y can be extended to a feasible solution (y, U1, ..., UL) of (10.2.1). Let

us set A = Ω−1An(y), A� = ρA�(y), Y� = Ωρ2U�. Then

[
Y� A�

A� A

]
� 0 and

∑
�

Y� � A

by (10.2.1). Applying Conjecture 10.1 to the matrices A, A1, ..., AL, we conclude that
(10.1.14) holds true as well. Applying Corollary 10.1.3.(i), we get

Prob

{
ρ
∑
�

ζ�A�(y) �� An(y)

}
= Prob

{∑
�

ζ�A� �� ΩA

}
≤ χ−1 exp{−(Ω − Υ)2/16} = ε,

as claimed.

Relation (10.2.2) can be justified, modulo the validity of Conjecture 10.1, in the

same fashion, with item (ii) of Corollary 10.1.3 in the role of item (i).

3) We replace the chance constrained LMI problem (10.1.2) with the
outlined safe (modulo the validity of Conjecture 10.1) approximation, thus arriving
at the approximating problem

min
y,{U�}

⎧⎪⎪⎪⎨⎪⎪⎪⎩cT y :

[
U� A�(y)
A�(y) An(y)

]
� 0, 1 ≤ � ≤ L

ρ2
∑
�

U� � Ω−2An(y), y ∈ Y

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (10.2.3)

where Ω is given by the required tolerance and our guesses for Υ and χ according to
(10.2.1) or (10.2.2), depending on whether we are in the case of a bounded random
perturbation model (Assumption A.I) or a Gaussian one (Assumption A.II).

We solve the approximating SDO problem and obtain its optimal solution
y∗. If (10.2.3) were indeed a safe approximation of (10.1.2), we would be done:
y∗ would be a feasible suboptimal solution to the chance constrained problem of
interest. However, since we are not sure of the validity of Conjecture 10.1, we need
an additional phase — post-optimality analysis — aimed at justifying the feasibility
of y∗ for the chance constrained problem. Note that at this phase, we should not

bother about the validity of Conjecture 10.1 in full generality — all we need is to



242 CHAPTER 10

justify the validity of the relation

Prob{−ΥA �
∑

�

ζ�A� � ΥA} ≥ χ (10.2.4)

for specific matrices

A = Ω−1An(y∗), A� = ρA�(y∗), � = 1, ..., L, (10.2.5)

which we have in our disposal after y∗ is found, and which indeed satisfy (10.1.13)
(cf. “justification” of approximations (10.2.1), (10.2.2) in item 2)).

In principle, there are several ways to justify (10.2.4):

i) Under certain structural assumptions on the matrices A, A� and with properly
chosen χ,Υ, our Conjecture 10.1 is provably true. Specifically, we shall see in
section 10.4 that:

(a) when A, A� are diagonal, (which corresponds to the semidefinite refor-
mulation of a Linear Optimization problem), Conjecture 10.1 holds true
with χ = 0.75 and Υ =

√
3 ln(8m) (recall that m is the size of the

matrices A,A1, ..., AL);
(b) when A, A� are arrow matrices, (which corresponds to the semidefinite

reformulation of a conic quadratic problem), Conjecture 10.1 holds true
with χ = 0.75 and Υ = 4

√
2.

ii) Utilizing deep results from Functional Analysis, it can be proved (see Propo-
sition B.5.2) that Conjecture 10.1 is true for all matrices A,A1, ..., AL when
χ = 0.75 and Υ = 4

√
lnmax[m, 3]. It should be added that in order for our

Conjecture 10.1 to be true for all L and all m×m matrices A, A1, ..., AL with
χ not too small, Υ should be at least O(1)

√
lnm with appropriate positive

absolute constant O(1).

In view of the above facts, we could in principle avoid the necessity to rely on
any conjecture. However, the “theoretically valid” values of Υ, χ are by definition

worst-case oriented and can be too conservative for the particular matrices we are
interested in. The situation is even worse: these theoretically valid values reflect
not the worst case “as it is,” but rather our abilities to analyze this worst case
and therefore are conservative estimates of the “true” (and already conservative)
Υ, χ. This is why we prefer to use a technique that is based on guessing Υ, χ and a
subsequent “verification of the guess” by a simulation-based justification of (10.2.4).

Comments. Note that our proposed course of action is completely similar to
what we did in section 2.2. The essence of the matter there was as follows: we were
interested in building a safe approximation of the chance constraint

L∑
�=1

ζ�a� ≤ a (10.2.6)

with deterministic a, a1, ..., aL ∈ R and random ζ� satisfying Assumption A.I. To
this end, we used the provable fact expressed by Proposition 2.3.1:
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Whenever random variables ζ1, ..., ζL satisfy A.I and deterministic reals

b, a1, ..., aL are such that √√√√ L∑
�=1

a2
� ≤ b,

or, which is the same,

Arrow(b, a1, ..., aL) ≡

⎡⎢⎢⎢⎣
b a1 ... aL

a1 b
...

. . .

aL b

⎤⎥⎥⎥⎦ � 0,

one has

∀Ω > 0 : Prob
{

L∑
�=1

ζ�a� ≤ Ωb

}
≥ 1− ψ(Ω),

ψ(Ω) = exp{−Ω2/2}.

As a result, the condition

Arrow(Ω−1a, a1, ..., aL) ≡

⎡⎢⎢⎢⎣
Ω−1a a1 ... aL

a1 Ω−1a
...

. . .
aL Ω−1a

⎤⎥⎥⎥⎦ � 0

is sufficient for the validity of the chance constraint

Prob

{∑
�

ζ�a� ≤ a

}
≥ 1− ψ(Ω).

What we are doing under Assumption A.I now can be sketched as follows: we are
interested in building a safe approximation of the chance constraint

L∑
�=1

ζ�A� � A (10.2.7)

with deterministic A, A1, ..., AL ∈ Sm and random ζ� satisfying Assumption A.I.
To this end, we use the following provable fact expressed by Theorem 10.1.1:

Whenever random variables ζ1, ..., ζL satisfy A.I and deterministic sym-

metric matrices B, A1, ..., AL are such that

Arrow(B, A1, ..., AL) ≡

⎡⎢⎢⎢⎣
B A1 ... AL

A1 B
...

. . .

AL B

⎤⎥⎥⎥⎦ � 0, (!)

and
Prob{−ΥB �

∑
�

ζ�A� � ΥB} ≥ χ (∗)
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with certain χ,Υ > 0, one has

∀Ω > Υ : Prob
{

L∑
�=1

ζ�A� � ΩB

}
≥ 1− ψΥ,χ(Ω),

ψΥ,χ(Ω) = χ−1 exp{−(Ω−Υ)2/16}.

As a result, the condition

Arrow(Ω−1A,A1, ..., AL) ≡

⎡⎢⎢⎢⎣
Ω−1A A1 ... AL

A1 Ω−1A
...

. . .
AL Ω−1A

⎤⎥⎥⎥⎦ � 0

is a sufficient condition for the validity of the chance constraint

Prob

{∑
�

ζ�A� � A

}
≥ 1− ψΥ,χ(Ω),

provided that Ω > Υ and χ > 0, Υ > 0 are such that the matrices B, A1, ..., AL

satisfy (∗).
The constructions are pretty similar; the only difference is that in the matrix

case we need an additional “provided that,” which is absent in the scalar case. In
fact, it is automatically present in the scalar case: from the Tschebyshev Inequality
it follows that when B,A1, ..., AL are scalars, condition (!) implies the validity of
(∗) with, say, χ = 0.75 and Υ = 2. We now could apply the matrix-case result to
recover the scalar-case, at the cost of replacing ψ(Ω) with ψ2,0.75(Ω), which is not
that big a loss.

Conjecture 10.1 suggests that in the matrix case we also should not bother
much about “provided that” — it is automatically implied by (!), perhaps with a
somehow worse value of Υ, but still not too large. As it was already mentioned, we
can prove certain versions of the Conjecture, and we can also verify its validity, for
guessed χ, Υ and matrices B, A1, ..., AL that we are interested in, by simulation.
The latter is the issue we consider next.

10.2.1 Simulation-Based Justification of (10.2.4)

Let us start with the following simple situation: there exists a random variable
ξ taking value 1 with probability p and value 0 with probability 1 − p; we can
simulate ξ, that is, for every sample size N , observe realizations ξN = (ξ1, ..., ξN )
of N independent copies of ξ. We do not know p, and our goal is to infer a reliable
lower bound on this quantity from simulations. The simplest way to do this is as
follows: given “reliability tolerance” δ ∈ (0, 1), a sample size N and an integer L,
0 ≤ L ≤ N , let

p̂N,δ(L) = min

{
q ∈ [0, 1] :

N∑
k=L

(
N

k

)
qk(1− q)N−k ≥ δ

}
.
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The interpretation of p̂N,δ(L) is as follows: imagine we are flipping a coin, and let q

be the probability to get heads. We restrict q to induce chances at least δ to get L

or more heads when flipping the coin N times, and p̂N,δ(L) is exactly the smallest
of these probabilities q. Observe that

(L > 0, p̂ = p̂N,δ(L)) ⇒
N∑

k=L

(
N

k

)
p̂k(1− p̂)N−k = δ (10.2.8)

and that p̂N,δ(0) = 0.

An immediate observation is as follows:

Lemma 10.2.1. For a fixed N , let L(ξN ) be the number of ones in a sample
ξN , and let

p̂(ξN ) = p̂N,δ(L(ξN )).

Then
Prob{p̂(ξN ) > p} ≤ δ. (10.2.9)

Proof. Let

M(p) = min

⎧⎨⎩µ ∈ {0, 1, ..., N} :
N∑

k=µ+1

(
N

k

)
pk(1− p)N−k ≤ δ

⎫⎬⎭
(as always, a sum over empty set of indices is 0) and let Θ be the event {ξN :
L(ξN ) > M(p)}, so that by construction

Prob{Θ} ≤ δ.

Now, the function

f(q) =
N∑

k=M(p)

(
N

k

)
qk(1− q)N−k

is a nondecreasing function of q ∈ [0, 1], and by construction f(p) > δ; it follows
that if ξN is such that p̂ ≡ p̂(ξN ) > p, then f(p̂) > δ as well:

N∑
k=M(p)

(
N

k

)
p̂k(1− p̂)N−k > δ (10.2.10)

and, besides this, L(ξN ) > 0 (since otherwise p̂ = p̂N,δ(0) = 0 ≤ p). Since L(ξN ) >

0, we conclude from (10.2.8) that
N∑

k=L(ξN )

(
N

k

)
p̂k(1− p̂)N−k = δ,

which combines with (10.2.10) to imply that L(ξN ) > M(p), that is, ξN in question
is such that the event Θ takes place. The bottom line is: the probability of the
event p̂(ξN ) > p is at most the probability of Θ, and the latter, as we remember, is
≤ δ. �

Lemma 10.2.1 says that the simulation-based (and thus random) quantity
p̂(ξN ) is, with probability at least 1 − δ, a lower bound for unknown probability
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p ≡ Prob{ξ = 1}. When p is not small, this bound is reasonably good already for
moderate N , even when δ is extremely small, say, δ = 10−10. For example, here
are simulation results for p = 0.8 and δ = 10−10:

N 10 100 1, 000 10, 000 100, 000
p̂ 0.06032 0.5211 0.6992 0.7814 0.7908

.

Coming back to our chance constrained problem (10.1.2), we can now use the
outlined bounding scheme in order to carry out post-optimality analysis, namely,
as follows:

Acceptance Test: Given a reliability tolerance δ ∈ (0, 1), guessed Υ, χ

and a solution y∗ to the associated problem (10.2.3), build the matrices

(10.2.5). Choose an integer N , generate a sample of N independent

realizations ζ1, ..., ζN of the random vector ζ, compute the quantity

L = Card{i : −ΥA �
L∑

�=1

ζi
�A� � ΥA}

and set
χ̂ = p̂N,δ(L).

If χ̂ ≥ χ, accept y∗, that is, claim that y∗ is a feasible solution to the

chance constrained problem of interest (10.1.2).

By the above analysis, the random quantity χ̂ is, with probability ≥ 1− δ, a lower
bound on p ≡ Prob{−ΥA � ∑

�

ζ�A� � ΥA}, so that the probability to accept

y∗ in the case when p < χ is at most δ. When this “rare event” does not occur,
the relation (10.2.4) is satisfied, and therefore y∗ is indeed feasible for the chance
constrained problem. In other words, the probability to accept y∗ when it is not a
feasible solution to the problem of interest is at most δ.

The outlined scheme does not say what to do if y∗ does not pass the Accep-
tance Test. A naive approach would be to check whether y∗ satisfies the chance
constraint by direct simulation. This approach indeed is workable when ε is not too
small (say, ε ≥ 0.001); for small ε, however, it would require an unrealistically large
simulation sample. A practical alternative is to resolve the approximating problem
with Υ increased by a reasonable factor (say, 1.1 or 2), and to repeat this “trial
and error” process until the Acceptance Test is passed.

10.2.2 A Modification

The outlined approach can be somehow streamlined when applied to a slightly
modified problem (10.1.2), specifically, to the problem

max
ρ,y

{
ρ : Prob

{
An(y) + ρ

L∑
�=1

ζ�A�(y) � 0

}
≥ 1− ε, cT y ≤ τ∗, y ∈ Y

}
(10.2.11)
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where τ∗ is a given upper bound on the original objective. Thus, now we want
to maximize the level of random perturbations under the restrictions that y ∈ Y
satisfies the chance constraint and is not too bad in terms of the original objective.

Approximating this problem by the method we have developed in the previous
section, we end up with the problem

min
β,y,{U�}

⎧⎪⎪⎪⎨⎪⎪⎪⎩β :

[
U� A�(y)
A�(y) An(y)

]
� 0, 1 ≤ � ≤ L

∑
�

U� � βAn(y), cT y ≤ τ∗, y ∈ Y

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10.2.12)

(cf. (10.2.3); in terms of the latter problem, β = (Ωρ)−2, so that maximizing ρ is
equivalent to minimizing β). Note that this problem remains the same whatever our
guesses for Υ, χ. Further, (10.2.12) is a so called GEVP — Generalized Eigenvalue
problem; while not being exactly a semidefinite program, it can be reduced to a
“short sequence” of semidefinite programs via bisection in β and thus is efficiently
solvable. Solving this problem, we arrive at a solution β∗, y∗, {U∗

� }; all we need
is to understand what is the “feasibility radius” ρ∗(y∗) of y∗ — the largest ρ for
which (y∗, ρ) satisfies the chance constraint in (10.2.11). As a matter of fact, we
cannot compute this radius efficiently; what we will actually build is a reliable lower

bound on the feasibility radius. This can be done by a suitable modification of the
Acceptance Test. Let us set

A = An(y∗), A� = β
−1/2
∗ A�(y∗), � = 1, ..., L; (10.2.13)

note that these matrices satisfy (10.1.13). We apply to the matrices A,A1, ..., AL

the following procedure:

Randomized r-procedure:

Input: A collection of symmetric matrices A,A1, ..., AL satisfying
(10.1.13) and ε, δ ∈ (0, 1).

Output: A random r ≥ 0 such that with probability at least 1 − δ one
has

Prob{ζ : −A � r
L∑

�=1

ζ�A� � A} ≥ 1− ε. (10.2.14)

Description:

i) We choose a K-point grid Γ = {ω1 < ω2 < ... < ωK} with ω1 ≥ 1
and a reasonably large ωK , e.g., the grid

ωk = 1.1k

and choose K large enough to ensure that Conjecture 10.1 holds
true with Υ = ωK and χ = 0.75; note that K = O(1) ln(lnm) will
do;
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ii) We simulate N independent realizations ζ1, ..., ζN of ζ and com-
pute the integers

Lk = Card{i : −ωkA �
L∑

�=1

ζi
�A� � ωkA}.

We then compute the quantities

χ̂k = p̂N,δ/K(Lk), k = 1, ...,K,

where δ ∈ (0, 1) is the chosen in advance “reliability tolerance.”
Setting

χk = Prob{−ωkA �
L∑

�=1

ζ�A� � ωkA},

we infer from Lemma 10.2.1 that

χ̂k ≤ χk, k = 1, ..., K (10.2.15)

with probability at least 1 − δ.

iii) We define a function ψ(s), s ≥ 0, as follows.
In the bounded case (Assumption A.I), we set

ψk(s) =
{

1, s ≤ ωk

min
[
1, χ̂−1

k exp{−(s− ωk)2/16}
]
, s > ωk;

In the Gaussian case (Assumption A.II), we set

ψk(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if χ̂k ≤ 1/2 or s ≤ ωk,

Erf
(
ErfInv(1− χ̂k)

+(s− ωk)max[1, ω−1
k ErfInv(1− χ̂k)]

)
,

otherwise.

In both cases, we set

ψ(s) = min
1≤k≤K

ψk(s).

We claim that
(!) When (10.2.15) takes place (recall that this happens with prob-
ability at least 1 − δ), ψ(s) is, for all s ≥ 0, an upper bound on

1− Prob{−sA �
L∑

�=1

ζ�A� � sA}.

Indeed, in the case of (10.2.15), the matrices A, A1, ..., AL (they from

the very beginning are assumed to satisfy (10.1.13)) satisfy (10.1.14)

with Υ = ωk and χ = χ̂k; it remains to apply Corollary 10.1.3.

iv) We set
s∗ = inf{s ≥ 0 : ψ(s) ≤ ε}, r =

1
s∗

and claim that with this r, (10.2.14) holds true.



APPROXIMATING CHANCE CONSTRAINED CQIS AND LMIS 249

Let us justify the outlined construction. Assume that (10.2.15) takes place. Then, by (!),
we have

Prob{−sA �
∑

�

ζ� � sA} ≥ 1 − ψ(s).

Now, the function ψ(s) is clearly continuous; it follows that when s∗ is finite, we have

ψ(s∗) ≤ ε, and therefore (10.2.14) holds true with r = 1/s∗. If s∗ = +∞, then r = 0, and

the validity of (10.2.14) follows from A � 0 (the latter is due to the fact that A, A1, ..., AL

satisfy (10.1.13)).

When applying the Randomized r-procedure to matrices (10.2.13), we end up
with r = r∗ satisfying, with probability at least 1 − δ, the relation (10.2.14), and
with our matrices A,A1, ..., AL this relation reads

Prob{−An(y∗) � r∗β
−1/2
∗

L∑
�=1

ζ�A�(y∗) � An(y∗)} ≥ 1− ε.

Thus, setting
ρ̂ =

r∗√
β∗

,

we get, with probability at least 1− δ, a valid lower bound on the feasibility radius
ρ∗(y∗) of y∗.

10.2.3 Illustration: Example 8.2.7 Revisited

Let us come back to the robust version of the Console Design problem (section
8.2.2, Example 8.2.7), where we were looking for a console capable (i) to withstand
in a nearly optimal fashion a given load of interest, and (ii) to withstand equally
well (that is, with the same or smaller compliance) every “occasional load” g from
the Euclidean ball Bρ = {g : ‖g‖2 ≤ ρ} of loads distributed along the 10 free nodes
of the construction. Formally, our problem was

max
t,r

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
r :

[
2τ∗ fT

f A(t)

]
� 0[

2τ∗ rhT

rh A(t)

]
� 0 ∀(h : ‖h‖2 ≤ 1)

t ≥ 0,
∑N

i=1 ti ≤ 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (10.2.16)

where τ∗ > 0 and the load of interest f are given and A(t) =
N∑

i=1

tibib
T
i with N = 54

and known (µ = 20)-dimensional vectors bi. Note that what is now called r was
called ρ in section 8.2.2.

Speaking about a console, it is reasonable to assume that in reality the “oc-
casional load” vector is random ∼ N (0, ρ2Iµ) and to require that the construction
should be capable of carrying such a load with the compliance ≤ τ∗ with probability
at least 1 − ε, with a very small value of ε, say, ε = 10−10. Let us now look for a
console that satisfies these requirements with the largest possible value of ρ. The
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corresponding chance constrained problem is

max
t,ρ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ :

[
2τ∗ fT

f A(t)

]
� 0

Probh∼N (0,I20)

{[
2τ∗ ρhT

ρh A(t)

]
� 0

}
≥ 1− ε

t ≥ 0,
∑N

i=1 ti ≤ 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (10.2.17)

and its approximation (10.2.12) is

min
t,β,{U�}20

�=1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
β :

[
2τ∗ fT

f A(t)

]
� 0[

U� E�

E� Q(t)

]
� 0, 1 ≤ � ≤ µ = 20

µ∑
�=1

U� � βQ(t), t ≥ 0,
∑N

i=1 ti ≤ 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (10.2.18)

where E� = e0e
T
� + e�e

T
0 , e0, ..., eµ are the standard basic orths in R

µ+1 = R
21, and

Q(t) is the matrix Diag{2τ∗, A(t)} ∈ Sµ+1 = S21.

Note that the matrices participating in this problem are simple enough to al-
low us to get without much difficulty a “nearly optimal” description of theoretically
valid values of Υ, χ (see section 10.4). Indeed, here Conjecture 10.1 is valid with
every χ ∈ (1/2, 1) provided that Υ ≥ O(1)(1 − χ)−1/2. Thus, after the optimal
solution tch to the approximating problem is found, we can avoid the simulation-
based identification of a lower bound ρ̂ on ρ∗(tch) (that is, on the largest ρ such
that (tch, ρ) satisfies the chance constraint in (10.2.17)) and can get a 100%-reliable
lower bound on this quantity, while the simulation-based technique is capable of
providing no more than a (1 − δ)-reliable lower bound on ρ∗(tch) with perhaps
small, but positive δ. It turns out, however, that in our particular problem this
100%-reliable lower bound on ρ∗(y∗) is significantly (by factor about 2) smaller
than the (1− δ)-reliable bound given by the outlined approach, even when δ is as
small as 10−10. This is why in the experiment we are about to discuss, we used the
simulation-based lower bound on ρ∗(tch).

The results of our experiment are as follows. The console given by the op-
timal solution to (10.2.18), let it be called the chance constrained design, is pre-
sented in figure 10.1 (cf. figures 8.1, 8.2 representing the nominal and the robust
designs, respectively). The lower bounds on the feasibility radius for the chance
constrained design associated with ε = δ = 10−10 are presented in table 10.1; the
plural (“bounds”) comes from the fact that we worked with three different sample
sizes N shown in table 10.1. Note that we can apply the outlined techniques to
bound from below the feasibility radius of the robust design trb — the one given by
the optimal solution to (10.2.16), see figure 8.2; the resulting bounds are presented
in table 10.1.

Finally, we note that we can exploit the specific structure of the particular
problem in question to get alternative lower bounds on the feasibility radii of the
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f f

(a): reduced 12-node set with
most left nodes fixed and the
load of interest. µ = 20
degrees of freedom.

(b): 54 tentative bars

(c): Chance constrained design,
12 nodes, 33 bars. Compliance
w.r.t. load of interest 1.025.

(d): Deformation of the design
under the load of interest.

(e): Deformation of the design
under “occasional” load 10
times less than the load of
interest.

(f): “Bold dots”: positions of nodes
in deformed design, sample of
100 loads ∼ N (0, 10−2I20)

Figure 10.1 Chance constrained design.
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Lower bound on feasibility radius

Design N = 10, 000 N = 100, 000 N = 1, 000, 000

chance constrained tch 0.0354 0.0414 0.0431
robust trb 0.0343 0.0380 0.0419

Table 10.1 (1 − 10−10)-confident lower bounds on feasibility radii for the chance con-
strained and the robust designs.

chance constrained and the robust designs. Recall that the robust design ensures
that the compliance of the corresponding console w.r.t. any load g of Euclidean
norm ≤ r∗ is at most τ∗; here r∗ ≈ 0.362 is the optimal value in (10.2.16). Now, if
ρ is such that Probh∼N (0,I20){ρ‖h‖2 > r∗} ≤ ε = 10−10, then clearly ρ is a 100%-
reliable lower bound on the feasibility radius of the robust design. We can easily
compute the largest ρ satisfying the latter condition; it turns out to be 0.0381, 9%
less than the best simulation-based lower bound. Similar reasoning can be applied
to the chance constrained design tch: we first find the largest r = r+ for which
(tch, r) is feasible for (10.2.16) (it turns out that r+ = 0.321), and then find the
largest ρ such that Probh∼N (0,I20){ρ‖h‖2 > r+} ≤ ε = 10−10, ending up with the
lower bound 0.0337 on the feasibility radius of the chance constrained design (25.5%
worse than the best related bound in table 10.1).

10.3 GAUSSIAN MAJORIZATION

Under favorable circumstances, we can apply the outlined approximation scheme
to random perturbations that do not fit exactly neither Assumption A.I, nor As-
sumption A.II. As an instructive example, consider the case where the random
perturbations ζ�, � = 1, ..., L, in (10.1.1) are independent and symmetrically and
unimodally distributed w.r.t. 0. Assume also that we can point out scaling fac-
tors σ� > 0 such that the distribution of each ζ� is less diffuse than the Gaussian
N (0, σ2

� ) distribution (see Definition 4.4.1). Note that in order to build a safe
tractable approximation of the chance constrained LMI

Prob

{
An(y) +

L∑
�=1

ζ�A�(y) � 0

}
≥ 1− ε, (10.1.2)

or, which is the same, the constraint

Prob

{
An(y) +

L∑
�=1

ζ̃�Ã�(y) � 0

}
≥ 1− ε

[
ζ̃� = σ−1

� ζ�

Ã�(y) = σ�A�(y)

]
it suffices to build such an approximation for the symmetrized version

Prob{−An(y) �
L∑

�=1

ζ̃�Ã�(y) � An(y)} ≥ 1− ε (10.3.1)
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of the constraint. Observe that the random variables ζ̃� are independent and possess
symmetric and unimodal w.r.t. 0 distributions that are less diffuse than the N (0, 1)
distribution. Denoting by η�, � = 1, ..., L, independent N (0, 1) random variables
and invoking the Majorization Theorem (Theorem 4.4.6), we see that the validity
of the chance constraint

Prob{−An(y) �
L∑

�=1

η�Ã�(y) � An(y)} ≥ 1− ε

— and this is the constraint we do know how to handle — is a sufficient condition
for the validity of (10.3.1). Thus, in the case of unimodally and symmetrically
distributed ζ� admitting “Gaussian majorants,” we can act, essentially, as if we
were in the Gaussian case A.II.

It is worth noticing that we can apply the outlined “Gaussian majorization”
scheme even in the case when ζ� are symmetrically and unimodally distributed in
[−1, 1] (a case that we know how to handle even without the unimodality assump-
tion), and this could be profitable. Indeed, by Example 4.4.3 (section 4.4), in the
case in question ζ� are less diffuse than the random variables η� ∼ N (0, 2/π), and
we can again reduce the situation to Gaussian. The advantage of this approach is
that the absolute constant factor 1

16 in the exponent in (10.1.15) is rather small.
Therefore replacing (10.1.15) with (10.1.16), even after replacing our original vari-
ables ζ� with their less concentrated “Gaussian majorants” η�, can lead to better
results. To illustrate this point, here is a report on a numerical experiment:

1) We generated L = 100 matrices A� ∈ S40, � = 1, ..., L, such that
∑

� A2
� � I,

(which clearly implies that A = I, A1, ..., AL satisfy (10.1.13));

2) We applied the bounded case version of the Randomized r procedure to the
matrices A,A1, ..., AL and the independent random variables ζ� uniformly
distributed on [−1, 1], setting δ and ε to 10−10;

3) We applied the Gaussian version of the same procedure, with the same ε, δ,
to the matrices A,A1, ..., AL and independent N (0, 2/π) random variables η�

in the role of ζ�.

In both 2) and 3), we used the same grid ωk = 0.01 · 100.1k, 0 ≤ k ≤ 40.

By the above arguments, both in 2) and in 3) we get, with probability at least
1− 10−10, lower bounds on the largest ρ such that

Prob{−I � ρ
∑L

�=1
ζ�A� � I} ≥ 1− 10−10.

Here are the bounds obtained:

Bounding Lower Bound
scheme N = 1000 N = 10000

2) 0.0489 0.0489
3) 0.185 0.232
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We see that while we can process the case of uniformly distributed ζ� “as it is,” it
is better to process it via Gaussian majorization.

To conclude this section, we present another “Gaussian Majorization” result.
Its advantage is that it does not require the random variables ζ� to be symmetrically
or unimodally distributed; what we need, essentially, is just independence plus zero
means. We start with some definitions. Let Rn be the space of Borel probability
distributions on R

n with zero mean. For a random variable η taking values in R
n,

we denote by Pη the corresponding distribution, and we write η ∈ Rn to express
that Pη ∈ Rn. Let also CFn be the set of all convex functions f on R

n with linear
growth, meaning that there exists cf < ∞ such that |f(u)| ≤ cf (1+‖u‖2) for all u.

Definition 10.3.1. Let ξ, η ∈ Rn. We say that η dominates ξ (notation:
ξ �c η, or Pξ �c Pη, or η �c ξ, or Pη �c Pξ) if∫

f(u)dPξ(u) ≤
∫

f(u)dPη(u)

for every f ∈ CFn.

Note that in the literature the relation �c is called “convex dominance.” The
properties of the relation �c we need are summarized as follows:

Proposition 10.3.2.

i) �c is a partial order on Rn.

ii) If P1, ..., Pk, Q1, ..., Qk ∈ Rn, and Pi �c Qi for every i, then
∑

i λiPi �c∑
i λiQi for all nonnegative λi with unit sum.

iii) If ξ ∈ Rn and t ≥ 1 is deterministic, then tξ �c ξ.

iv) Let P1, Q1 ∈ Rr, P2, Q2 ∈ Rs be such that Pi �c Qi, i = 1, 2. Then
P1×P2 �c Q1×Q2. In particular, if ξ1, ..., ξn, η1, ..., ηn ∈ R1 are independent
and ξi �c ηi for every i, then [ξ1; ...; ξn] �c [η1; ...; ηn].

v) If ξ1, ..., ξk, η1, ..., ηk ∈ Rn are independent random variables, ξi �c ηi for
every i, and Si ∈ R

m×n are deterministic matrices, then
∑

i Siξi �c

∑
i Siηi.

vi) Let ξ ∈ R1 be supported on [−1, 1] and η ∼ N (0, π/2). Then η �c ξ.

vii) If ξ, η are symmetrically and unimodally distributed w.r.t. the origin scalar
random variables with finite expectations and η �m ξ (see section 4.4), then
η �c ξ as well. In particular, if ξ has unimodal w.r.t. 0 distribution and is
supported on [−1, 1] and η ∼ N (0, 2/π), then η �c ξ (cf. Example 4.4.3).

viii) Assume that ξ ∈ Rn is supported in the unit cube {u : ‖u‖∞ ≤ 1} and is
“absolutely symmetrically distributed,” meaning that if J is a diagonal matrix
with diagonal entries ±1, then Jξ has the same distribution as ξ. Let also
η ∼ N (0, (π/2)In). Then ξ �c η.

ix) Let ξ, η ∈ Rr, ξ ∼ N (0,Σ), η ∼ N (0,Θ) with Σ � Θ. Then ξ �c η.
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Our main result here is as follows.

Theorem 10.3.3. Let η ∼ N (0, IL), and let ζ ∈ RL be such that ζ �c η. Let,
further, Q ⊂ R

L be a closed convex set such that

χ ≡ Prob{η ∈ Q} > 1/2.

Then for every γ > 1, one has

Prob{ζ �∈ γQ} ≤ inf
1≤β<γ

1
γ−β

∞∫
β

Erf(rErfInv(1− χ))dr

≤ inf
1≤β<γ

1
2(γ−β)

∞∫
β

exp{−r2ErfInv2(1− χ)/2}dr,
(10.3.2)

where Erf(·), ErfInv(·) are given by (2.3.22).

The assumption ζ �c η is valid, in particular, if ζ = [ζ1; ...; ζL] with indepen-
dent ζ� such that Pζ�

∈ R1 and Pζ�
�c N (0, 1).

The proofs are presented in section B.5.3 in the Appendix.

10.4 CHANCE CONSTRAINED LMIS: SPECIAL CASES

We intend to consider two cases where it is easy to justify Conjecture 10.1. While
the structural assumptions on the matrices A,A1, ..., AL in these two cases seem
to be highly restrictive, the results are nevertheless important: they cover the
situations arising in randomly perturbed Linear and Conic Quadratic Optimization.
We begin with a slight relaxation of Assumptions A.I–II:

Assumption A.III: The random perturbations ζ1, ..., ζL are indepen-
dent, zero mean and “of order of 1,” meaning that

E{exp{ζ2
� }} ≤ exp{1}, � = 1, ..., L.

Note that Assumption A.III is implied by A.I and is “almost implied” by A.II;
indeed, ζ� ∼ N (0, 1) implies that the random variable ζ̃� =

√
(1− e−2)/2ζ� satisfies

E{exp{ζ̃2
� }} ≤ exp{1}.

10.4.1 The Diagonal Case: Chance Constrained Linear Optimization

Theorem 10.4.1. Let A,A1, ..., AL ∈ Sm be diagonal matrices satisfying
(10.1.13) and let the random variables ζ� satisfy Assumption A.III. Then, for

every χ ∈ (0, 1), with Υ = Υ(χ) ≡
√

3 ln
(

2m
1−χ

)
one has

Prob{−ΥA �
L∑

�=1

ζ�A� � ΥA} ≥ χ (10.4.1)

(cf. (10.1.14)). In the case of ζ� ∼ N (0, 1), relation (10.4.1) holds true with

Υ = Υ(χ) ≡
√

2 ln
(

m
1−χ

)
.
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Proof. It is immediately seen that we lose nothing when assuming that A � 0
(cf. the proof of Corollary 10.1.3). With this assumption, passing from diagonal
matrices A, A� to the diagonal matrices B� = A−1/2A�A

−1/2, the statement to be
proved reads as follows:

If B� ∈ Sm are deterministic diagonal matrices such that
∑
�

B2
� � I and

ζ� satisfy A.III, then, for every χ ∈ (0, 1), one has

Prob{‖
L∑

�=1

ζ�B�‖ ≤
√

3 ln
(

2m

1− χ

)
︸ ︷︷ ︸

Υ(χ)

} ≥ χ. (10.4.2)

When ζ� ∼ N (0, 1), � = 1, ..., L, the relation remains true with Υ(χ)
reduced to

√
2 ln(m/(1− χ)).

The proof of the latter statement is based on the standard argument used in deriving
results on large deviations of sums of “light-tail” independent random variables.
First we need the following result.

Lemma 10.4.2. Let β�, � = 1, ..., L, γ > 0 be deterministic reals such that∑
�

β2
� ≤ 1. Then

∀Υ > 0 : Prob

{
|

L∑
�=1

β�ζ�| > Υ

}
≤ 2 exp{−Υ2/3}. (10.4.3)

Proof of Lemma 10.4.2. Observe, first, that whenever ξ is a random variable
with zero mean such that E{exp{ξ2}} ≤ exp{1}, one has

E{exp{γξ}} ≤ exp{3γ2/4}. (10.4.4)

Indeed, observe that by Holder Inequality the relation E
{
exp{ξ2}

}
≤ exp{1}

implies that E
{
exp{sξ2}

}
≤ exp{s} for all s ∈ [0, 1]. It is immediately seen

that exp{x} − x ≤ exp{9x2/16} for all x. Assuming that 9γ2/16 ≤ 1, we
therefore have

E {exp{γξ}} = E {exp{γξ} − γξ} [ξ is with zero mean]

≤ E
{
exp{9γ2ξ2/16}

}
≤ exp{9γ2/16} [since 9γ2/16 ≤ 1]

≤ exp{3γ2/4},

as required in (10.4.4). Now let 9γ2/16 ≥ 1. For all γ we have γξ ≤ 3γ2/8 +
2ξ2/3, whence

E {exp{γξ}} ≤ exp{3γ2/8} exp{2ξ2/3} ≤ exp{3γ2/8 + 2/3}

≤ exp{3γ2/4} [since γ2 ≥ 16/9]

We see that (10.4.4) is valid for all γ.
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We now have

E
{

exp{γ
∑L

�=1 β�ζ�}
}

=
L∏

�=1

E {exp{γβ�ζ�}} [ζ1, ..., ζL are independent]

≤
L∏

�=1

exp{3γ2β2
� /4} [by Lemma]

≤ exp{3γ2/4} [since
∑

� β2
� ≤ 1].

We now have

Prob
{∑L

�=1 β�ζ� > Υ
}

≤ minγ≥0 exp{−Υγ}E {exp{γ
∑

� β�ζ�}} [Tschebyshev Inequality]
≤ minγ≥0 exp{−Υγ + 3γ2/4} [by (10.4.4)]
= exp{−Υ2/3}.

Replacing ζ� with −ζ�, we get that Prob {∑� β�ζ� < −Υ} ≤ exp{−Υ2/3} as well,
and (10.4.3) follows. �

Proof of (10.4.1). Let si be the i-th diagonal entry in the random diagonal matrix

S =
L∑

�=1

ζ�B�. Taking into account that B� are diagonal with
∑
�

B2
� � I, we can

apply Lemma 10.4.2 to get the bound

Prob{|si| > Υ} ≤ 2 exp{−Υ2/3};
since ‖S‖ = max

1≤i≤m
|si|, (10.4.2) follows.

Refinements in the case of ζ� ∼ N (0, 1) are evident: here the i-th diagonal en-
try si in the random diagonal matrix S =

∑
�

ζ�B� is ∼ N (0, σ2
i ) with σi ≤ 1, whence

Prob{|si| > Υ} ≤ exp{−Υ2/2} and therefore Prob{‖S‖ > Υ} ≤ m exp{−Υ2/2},
so that Υ(χ) in (10.4.2) can indeed be reduced to

√
2 ln(m/(1− χ)). �

The case of chance constrained LMI with diagonal matrices An(y), A�(y)
has an important application — Chance Constrained Linear Optimization. Indeed,
consider a randomly perturbed Linear Optimization problem

min
y

{
cT y : Aζy ≥ bζ

}
(10.4.5)

where Aζ , bζ are affine in random perturbations ζ:

[Aζ , bζ ] = [An, bn] +
L∑

�=1

ζ�[A�, b�];

as usual, we have assumed w.l.o.g. that the objective is certain. The chance
constrained version of this problem is

min
y

{
cT y : Prob{Aζy ≥ bζ} ≥ 1− ε

}
. (10.4.6)
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Setting An(y) = Diag{Any − bn}, A�(y) = Diag{A�y − b�}, � = 1, ..., L, we can
rewrite (10.4.6) equivalently as the chance constrained semidefinite problem

min
y

{
cT y : Prob{Aζ(y) � 0} ≥ 1− ε

}
, Aζ(y) = An(y) +

∑
�

ζ�A�(y), (10.4.7)

and process this problem via the outlined approximation scheme. Note the essential
difference between what we are doing now and what was done in chapter 2. There
we focused on safe approximation of chance constrained scalar linear inequality, here
we are speaking about approximating a chance constrained coordinate-wise vector

inequality. Besides this, our approximation scheme is, in general, “semi-analytic”
— it involves simulation and as a result produces a solution that is feasible for the
chance constrained problem with probability close to 1, but not with probability 1.

Of course, the safe approximations of chance constraints developed in chapter
2 can be used to process coordinate-wise vector inequalities as well. The natural
way to do it is to replace the chance constrained vector inequality in (10.4.6) with
a bunch of chance constrained scalar inequalities

Prob {(Aζy − bζ)i ≥ 0} ≥ 1− εi, i = 1, ..., m ≡ dim bζ , (10.4.8)

where the tolerances εi ≥ 0 satisfy the relation
∑
i

εi = ε. The validity of (10.4.8)

clearly is a sufficient condition for the validity of the chance constraint in (10.4.6),
so that replacing these constraints with their safe tractable approximations from
chapter 2, we end up with a safe tractable approximation of the chance constrained
LO problem (10.4.6). A drawback of this approach is in the necessity to “guess”
the quantities εi. The ideal solution would be to treat them as additional decision
variables and to optimize the safe approximation in both y and εi. Unfortunately, all
approximation schemes for scalar chance constraints presented in chapter 2 result in
approximations that are not jointly convex in y, {εi}. As a result, joint optimization
in y, εi is more wishful thinking than a computationally solid strategy. Seemingly
the only simple way to resolve this difficulty is to set all εi equal to ε/m.

It is instructive to compare the “constraint-by-constraint” safe approximation
of a chance constrained LO (10.4.6) given by the results of chapter 2 with our
present approximation scheme. To this end, let us focus on the following version of
the chance constrained problem:

max
ρ,y

{
ρ : cT y ≤ τ∗, Prob {Aρζy ≥ bρζ} ≥ 1− ε

}
(10.4.9)

(cf. (10.2.11)). To make things as simple as possible, we assume also that ζ� ∼
N (0, 1), � = 1, ..., L.

The “constraint-by-constraint” safe approximation of (10.4.9) is the chance
constrained problem

max
ρ,y

{
ρ : cT y ≤ τ∗, Prob {(Aρζy − bρζ)i ≥ 0} ≥ 1− ε/m

}
,

where m is the number of rows in Aζ . A chance constraint

Prob {(Aρζy − bρζ)i ≥ 0} ≥ 1− ε/m
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can be rewritten equivalently as

Prob{[bn −Any]i + ρ

L∑
�=1

[b� −A�y]iζ� > 0} ≤ ε/m.

Since ζ� ∼ N (0, 1) are independent, this scalar chance constraint is exactly equiv-
alent to

[bn −Any]i + ρErfInv(ε/m)
√∑

�

[b� −A�y]2i ≤ 0.

The associated safe tractable approximation of the problem of interest (10.4.9) is
the conic quadratic program

max
ρ,y

⎧⎨⎩ρ : cT y ≤ τ∗, ErfInv(ε/m)

√∑
�

[b� − A�y]2i ≤ [Any − bn]i
ρ

, 1 ≤ i ≤ m

⎫⎬⎭ . (10.4.10)

Now let us apply our new approximation scheme, which treats the chance con-
strained vector inequality in (10.4.6) “as a whole.” To this end, we should solve
the problem

min
ν,y,{U�}

⎧⎪⎪⎪⎨⎪⎪⎪⎩ν :

cT y ≤ τ∗,

[
U� Diag{A�y − b�}

Diag{A�y − b�} Diag{Any − bn}

]
� 0,

1 ≤ � ≤ L∑
�

U� � νDiag{Any − bn}, cT y ≤ τ∗

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (10.4.11)

treat its optimal solution y∗ as the y component of the optimal solution to the
approximation and then bound from below the feasibility radius ρ∗(y∗) of this
solution, (e.g., by applying to y∗ the Randomized r procedure). Observe that
problem (10.4.11) is nothing but the problem

min
ν,y

⎧⎨⎩ν :

L∑
�=1

[A�y − b]2i /[Any − bn]i ≤ ν[Any − bn]i, 1 ≤ i ≤ m,

Any − bn ≥ 0, cT y ≤ τ∗

⎫⎬⎭ ,

where a2/0 is 0 for a = 0 and is +∞ otherwise. Comparing the latter problem with
(10.4.10), we see that

Problems (10.4.11) and (10.4.10) are equivalent to each other, the opti-

mal values being related as

Opt(10.4.10) =
1

ErfInv(ε/m)
√

Opt(10.4.11)
.

Thus, the approaches we are comparing result in the same vector of

decision variables y∗, the only difference being the resulting value of

a lower bound on the feasibility radius of y∗. With the “constraint-

by-constraint” approach originating from chapter 2, this value is the

optimal value in (10.4.10), while with our new approach, which treats

the vector inequality Ax ≥ b “as a whole,” the feasibility radius is

bounded from below via the provable version of Conjecture 10.1 given

by Theorem 10.4.1, or by the Randomized r procedure.
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A natural question is, which one of these approaches results in a less conservative
lower bound on the feasibility radius of y∗. On the theoretical side of this question,
it is easily seen that when the second approach utilizes Theorem 10.4.1, it results in
the same (within an absolute constant factor) value of ρ as the first approach. From
the practical perspective, however, it is much more interesting to consider the case
where the second approach exploits the Randomized r procedure, since experiments
demonstrate that this version is less conservative than the “100%-reliable” one
based on Theorem 10.4.1. Thus, let us focus on comparing the “constraint-by-
constraint” safe approximation of (10.4.6), let it be called Approximation I, with
Approximation II based on the Randomized r procedure. Numerical experiments
show that no one of these two approximations “generically dominates” the other
one, so that the best thing is to choose the best — the largest — of the two
respective lower bounds.

10.4.1.1 Illustration: Antenna Design revisited

Consider the Antenna Design problem (Example 3.3.1, section 3.3) in the case when
there are no positioning errors, the actuation errors are Gaussian and we formulate
the problem in the form of (10.4.9). Specifically, setting

Rk
sφ = exp{2πı[s/12 + k cos(φ)/8]},

the chance constrained problem of interest is

max
ρ,z

⎧⎪⎪⎨⎪⎪⎩ρ : Prob

⎧⎪⎪⎨⎪⎪⎩
�
{

16∑
k=1

Rk
sφzk(1 + ρηk)

}
≤ τ∗, φ ∈ Π, s = 1, ..., 12

�
{

16∑
k=1

Rk
00zk(1 + ρηk)

}
≥ 1

⎫⎪⎪⎬⎪⎪⎭ ≥ 1− ε

⎫⎪⎪⎬⎪⎪⎭ ,

(10.4.12)
where Π is the equidistant grid on [π/6, π] with resolution π/90. The decision
variables zk are complex numbers (so that the vector of real decision variables is
y = [�z; z]) and ηk are independent standard complex-valued Gaussian random
variables (or, equivalently, independent N (0, I2) random 2-D vectors).

Here problems (10.4.10), (10.4.11) are equivalent to

min
µ∈R,z∈C16

⎧⎪⎪⎨⎪⎪⎩µ :
‖z‖2 ≤ µ

[
τ∗ −�

{
16∑

k=1

Rk
sφzk

}]
, 1 ≤ s ≤ 12, φ ∈ Π

‖z‖2 ≤ µ

[
�
{

16∑
k=1

Rk
00zk

}
− 1

]
⎫⎪⎪⎬⎪⎪⎭ . (10.4.13)

The only data element in this problem we did not specify yet is the quantity τ∗
representing the desired upper bound on the sidelobe attenuation level. In our
experiment, we set this bound to 0.15 (cf. the numbers in table 3.1). After the
optimal solution (z∗, µ∗) of (10.4.12) was found, we used 3 strategies to bound from
below the feasibility radius ρ∗(z∗) of z∗ (that is, the largest ρ for which (z∗, ρ) is
feasible for the chance constrained problem of interest (10.4.12)):
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i) Approximation I, which in our situation results in the lower bound

ρI =
1

ErfInv(ε/m)µ∗
.

ii) Approximation II, which results in the lower bound

ρII =
r

µ∗
,

where r is given by the Randomized r procedure as applied to the matrices

A = Diag

{
{τ∗ −�{

16∑
k=1

Rk
sφ(z∗)k}} φ∈Π

1≤s≤12
,�{

16∑
k=1

Rk
00(z∗)k} − 1

}
,

A� = µ−1
∗ ·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Diag

{
{�{R�

sφ(z∗)�}} φ∈Π
1≤s≤12

,−�{R�
00(z∗)�}

}
,

1 ≤ � ≤ 16

Diag

{
{�{R�−16

sφ (z∗)�−16}} φ∈Π
1≤s≤12

,−�{R�−16
00 (z∗)�−16}

}
,

17 ≤ � ≤ 32

iii) A version of Approximation II based on Theorem 10.4.1 rather than on sim-
ulation.

Note that Theorem 10.4.1 combines with Theorem 10.1.2 to imply the follow-
ing result:

Theorem 10.4.3. Let A,A1, ..., AL be diagonal deterministic matrices satis-
fying (10.1.13), and let ζ1, ..., ζL be ∼ N (0, 1) and independent. Then

∀s > 0 : Prob{−sA �
L∑

�=1

ζ�A� � sA} ≥ 1− γ,

γ = γ(s) ≡ inf
θ

{
Erf (Γ(s, θ)) : 0 < θ < 1/2,

√
2 ln(mθ−1) < s

}
,

Γ(s, θ) = ErfInv(θ) + (s−
√

2 ln(mθ−1))max[1, ErfInv(θ)/
√

2 ln(mθ−1)]

As an immediate corollary, we get that

ρ∗(z∗) ≥ ρIII =
1

s(ε)µ∗
,

where s(ε) is the root of the equation γ(s) = ε.

The results of our experiment are presented in table 10.2. We see that Approxima-
tion II is less conservative than Approximation I.

10.4.2 The Arrow Case: Chance Constrained Conic Quadratic Optimization

We are about to justify Conjecture 10.1 in the arrow-type case, that is, when the
matrices A� ∈ Sm, � = 1, ..., L, are of the form

A� = [efT
� + f�e

T ] + λ�G, (10.4.14)
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Lower bound ε = 10−2 ε = 10−4 ε = 10−6

ρI 0.00396 0.00325 0.00282
ρII 0.00504 0.00360 0.00294
ρIII 0.00322 0.00288 0.00245

Table 10.2 Lower bounds on ρ∗(z∗) yielded by various approximation schemes. When
computing ρII , the confidence parameter δ was set to 10−2ε, and the sample
size N in the Randomized r-procedure was set to 100,000.

where e, f� ∈ R
m, λ� ∈ R and G ∈ Sm. We encounter this case in the Chance

Constrained Conic Quadratic Optimization. Indeed, a Chance Constrained CQI

Prob{‖A(y)ζ + b(y)‖2 ≤ cT (y)ζ + d(y)} ≥ 1− ε, [A(·) : p× q]

can be reformulated equivalently as the chance constrained LMI

Prob{
[

cT (y)ζ + d(y) ζT AT (y) + bT (y)
A(y)ζ + b(y) (cT (y)ζ + d(y))I

]
� 0} ≥ 1− ε (10.4.15)

(see Lemma 6.3.3). In the notation of (10.1.1), for this LMI we have

An(y) =
[

d(y) bT (y)
b(y) d(y)I

]
, A�(y) =

[
c�(y) aT

� (y)
a�(y) c�(y)I

]
,

where a�(y) in (10.4.14) is �-th column of A(y). We see that the matrices A�(y) are
arrow-type (p + 1)× (p + 1) matrices where e in (10.4.14) is the first basic orth in
R

p+1, f� = [0; a�(y)] and G = Ip+1.

Another example is the one arising in the chance constrained Truss Topology
Design problem, see section 10.2.2.

The justification of Conjecture 10.1 in the arrow-type case is given by the
following

Theorem 10.4.4. Let m×m matrices A1, ..., AL of the form (10.4.14) along
with a matrix A ∈ Sm satisfy the relation (10.1.13), and ζ� be independent with
zero means and such that E{ζ2

� } ≤ σ2, � = 1, ..., L (under Assumption A.III, one
can take σ =

√
exp{1} − 1). Then, for every χ ∈ (0, 1), with Υ = Υ(χ) ≡ 2

√
2σ√

1−χ

one has

Prob{−ΥA �
L∑

�=1

ζ�A� � ΥA} ≥ χ (10.4.16)

(cf. (10.1.14)). When ζ satisfies Assumption A.I, or ζ satisfies Assumption A.II

and χ ≥ 6
7 , relation (10.4.16) is satisfied with Υ = ΥI(χ) ≡ 2 + 4

√
3 ln 4

1−χ and

with Υ = ΥII(χ) ≡
√

3
(
1 + 3 ln 1

1−χ

)
, respectively.

Proof. First of all, when ζ�, � = 1, ..., L, satisfy Assumption A.III, we indeed
have E{ζ2

� } ≤ exp{1} − 1 due to t2 ≤ exp{t2} − 1 for all t. Further, same as in the
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proof of Theorem 10.4.1, it suffices to consider the case when A � 0 and to prove
the following statement:

Let A� be of the form of (10.4.14) and such that the matrices B� =
A−1/2A�A

−1/2 satisfy
∑
�

B2
� � I. Let, further, ζ� satisfy the premise in

Theorem 10.4.4. Then, for every χ ∈ (0, 1), one has

Prob{‖
L∑

�=1

ζ�B�‖ ≤
2
√

2σ√
1− χ

} ≥ χ. (10.4.17)

Observe that B� are also of the arrow-type form (10.4.14):

B� = [ghT
� + h�g

T ] + λ�H [g = A−1/2e, h� = A−1/2f�, H = A−1/2GA−1/2]

Note that w.l.o.g. we can assume that ‖g‖2 = 1 and then rotate the coordinates to
make g the first basic orth. In this situation, the matrices B� become

B� =
[

q� rT
�

r� λ�Q

]
; (10.4.18)

by appropriate scaling of λ�, we can ensure that ‖Q‖ = 1. We have

B2
� =

[
q2
� + rT

� r� q�r
T
� + λ�r

T
� Q

q�r� + λ�Qr� r�r
T
� + λ2

�Q
2

]
.

We conclude that
L∑

�=1

B2
� � Im implies that

∑
�

(q2
� +rT

� r�) ≤ 1 and [
∑
�

λ2
� ]Q

2 � Im−1;

since ‖Q2‖ = 1, we arrive at the relations

(a)
∑

� λ2
� ≤ 1,

(b)
∑

�(q
2
� + rT

� r�) ≤ 1.
(10.4.19)

Now let p� = [0; r�] ∈ R
m. We have

S[ζ] ≡∑
� ζ�B� = [gT (

∑
�
ζ�p�︸ ︷︷ ︸

ξ

) + ξT g] + Diag{
∑

�
ζ�q�︸ ︷︷ ︸

θ

, (
∑

�
ζ�λ�︸ ︷︷ ︸

η

)Q}

⇒ ‖S[ζ]‖ ≤ ‖gξT + ξgT ‖+ max[|θ|, |η|‖Q‖] = ‖ξ‖2 + max[|θ|, |η|].
Setting

α =
∑

�

rT
� r�, β =

∑
�

q2
� ,
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we have α + β ≤ 1 by (10.4.19.b). Besides this,

E{ξT ξ} =
∑

�,�′ E{ζ�ζ�′}pT
� p�′ =

∑
� E{ζ2

� }rT
� r� [ζ� are independent zero mean]

≤ σ2 ∑
� rT

� r� = σ2α

⇒ Prob{‖ξ‖2 > t} ≤ σ2α
t2

∀t > 0 [Tschebyshev Inequality]

E{η2} =
∑

� E{ζ2
� }λ2

� ≤ σ2 ∑
� λ2

� ≤ σ2 [ (10.4.19.a)]

⇒ Prob{|η| > t} ≤ σ2

t2
∀t > 0 [Tschebyshev Inequality]

E{θ2} =
∑

� E{ζ2
� }q2

� ≤ σ2β

⇒ Prob{|θ| > t} ≤ σ2β
t2

∀t > 0 [Tschebyshev Inequality].

Thus, for every Υ > 0 and all λ ∈ (0, 1) we have

Prob{‖S[ζ]‖ > Υ} ≤ Prob{‖ξ‖2 + max[|θ|, |η|] > Υ} ≤ Prob{‖ξ‖2 > λΥ}

+Prob{|θ| > (1− λ)Υ}+ Prob{|η| > (1− λ)Υ}

≤ σ2

Υ2

[
α
λ2 + β+1

(1−λ)2

]
,

whence, due to α + β ≤ 1,

Prob{‖S[ζ]‖ > Υ} ≤ σ2

Υ2
max

α∈[0,1]
min

λ∈(0,1)

[
α

λ2
+

2− α

(1− λ)2

]
=

8σ2

Υ2
;

with Υ = Υ(χ), this relation implies (10.4.16).

Assume now that ζ� satisfy Assumption A.I. We should prove that here the
relation (10.4.16) holds true with Υ = ΥI(χ), or, which is the same,

Prob {‖S[ζ]‖ > Υ} ≤ 1− χ, S[ζ] =
∑

�

ζ�B� =
[ ∑

� ζ�q�

∑
� ζ�r

T
�∑

� ζ�r� (
∑

� ζ�λ�)Q

]
.

(10.4.20)

Observe that for a symmetric block-matrix P =
[

A BT

B C

]
we have ‖P‖ ≤

‖
[ ‖A‖ ‖B‖
‖B‖ ‖C‖

]
‖, and that the norm of a symmetric matrix does not exceed its

Frobenius norm, whence

‖S[ζ]‖2 ≤ |
∑

�

ζ�q�|2 + 2‖
∑

�

ζ�r�‖22 + |
∑

�

ζ�λ�|2 ≡ α[ζ] (10.4.21)

(recall that ‖Q‖ = 1). Let Eρ be the ellipsoid Eρ = {z : α[z] ≤ ρ2}. Observe
that Eρ contains the centered at the origin Euclidean ball of radius ρ/

√
3. Indeed,

applying the Cauchy Inequality, we have

α[z] ≤
(∑

�

z2
�

)[∑
�

q2
� + 2

∑
�

‖r�‖22 +
∑

�

λ2
�

]
≤ 3

∑
�

z2
�



APPROXIMATING CHANCE CONSTRAINED CQIS AND LMIS 265

(we have used (10.4.19)). Further, ζ� are independent with zero mean and E{ζ2
� } ≤

1 for every �; applying the same (10.4.19), we therefore get E{α[ζ]} ≤ 3. By the
Tschebyshev Inequality, we have

Prob{ζ ∈ Eρ} ≡ Prob{α[ζ] ≤ ρ2} ≥ 1− 3
ρ2

.

Invoking the Talagrand Inequality (see the proof of Lemma B.3.3 in section B.3),
we have

ρ2 > 3 ⇒ E

{
exp{

dist2‖·‖2
(ζ, Eρ)

16
}
}
≤ 1

Prob{ζ ∈ Eρ}
≤ ρ2

ρ2 − 3
.

On the other hand, if r > ρ and α[ζ] > r2, then ζ �∈ (r/ρ)Eρ and therefore
dist‖·‖2(ζ, Eρ) ≥ (r/ρ− 1)ρ/

√
3 = (r− ρ)/

√
3 (recall that Eρ contains the centered

at the origin ‖ · ‖2-ball of radius ρ/
√

3). Applying the Tschebyshev Inequality, we
get

r2 > ρ2 > 3 ⇒ Prob{α[ζ] > r2} ≤ E
{

exp{dist2
‖·‖2

(ζ,Eρ)

16 }
}

exp{− (r−ρ)2

48 }

≤ ρ2 exp{− (r−ρ)2

48 }
ρ2−3 .

With ρ = 2, r = ΥI(χ) = 2 + 4
√

3 ln 4
1−χ this bound implies Prob{α[ζ] > r2} ≤

1 − χ; recalling that
√

α[ζ] is an upper bound on ‖S[ζ]‖, we see that (10.4.16)
indeed holds true with Υ = ΥI(χ).

Now consider the case when ζ ∼ N (0, IL). Observe that α[ζ] is a homogeneous
quadratic form of ζ: α[ζ] = ζT Aζ, Aij = qiqj +2rT

i rj +λiλj . We see that the matrix
A is positive semidefinite, and Tr(A) =

∑
i(q

2
i + λ2

i + 2‖ri‖22) ≤ 3. Denoting by
µ� the eigenvalues of A, we have ζT Aζ =

∑L
�=1 µ�ξ

2
� , where ξ ∼ N (0, IL) is an

appropriate rotation of ζ. Now we can use the Bernstein scheme to bound from
above Prob{α[ζ] > ρ2}:

∀(γ ≥ 0, max
�

γµ� < 1/2) :

ln
(
Prob{α[ζ] > ρ2}

)
≤ ln

(
E
{
exp{γζT Aζ}

}
exp{−γρ2}

)
= ln

(
E
{
exp{γ∑� µ�ξ

2
� }
})
− γρ2 =

∑
� ln

(
E
{
exp{γµ�ξ

2
� }
})
− γρ2

= − 1
2

∑
� ln(1− 2µ�γ)− γρ2.

The concluding expression is a convex and monotone function of µ’s running
through the box {0 ≤ µ� < 1

2γ }. It follows that when γ < 1/6, the maximum
of the expression over the set {µ1, ..., µL ≥ 0,

∑
� µ� ≤ 3} is − 1

2 ln(1 − 6γ) − γρ2.
We get

0 ≤ γ <
1
6
⇒ ln

(
Prob{α[ζ] > ρ2}

)
≤ −1

2
ln(1− 6γ)− γρ2.

Optimizing this bound in γ and setting ρ2 = 3(1 + ∆), ∆ ≥ 0, we get Prob{α[ζ] >

3(1+∆)} ≤ exp{− 1
2 [∆− ln(1+∆)]}. It follows that if χ ∈ (0, 1) and ∆ = ∆(χ) ≥ 0
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is such that ∆− ln(1 + ∆) = 2 ln 1
1−χ , then

Prob{‖S[ζ]‖ >
√

3(1 + ∆)} ≤ Prob{α[ζ] > 3(1 + ∆)} ≤ 1− χ.

It is easily seen that when 1 − χ ≤ 1
7 , one has ∆(χ) ≤ 3 ln 1

1−χ , that is,

Prob{‖S[ζ]‖ >

√
3
(
1 + 3 ln 1

1−χ

)
} ≤ 1 − χ, which is exactly what was claimed

in the case of Gaussian ζ. �

10.4.3 Application: Recovering Signal from Indirect Noisy Observations

Consider the situation as follows (cf. section 6.6): we observe in noise a linear
transformation

u = As + ρξ (10.4.22)

of a random signal s ∈ R
n; here A is a given m × n matrix, ξ ∼ N (0, Im) is the

noise, (which is independent of s), and ρ ≥ 0 is a (deterministic) noise level. Our
goal is to find a linear estimator

ŝ(u) = Gu ≡ GAs + ρGξ (10.4.23)

such that
Prob{‖ŝ(u)− s‖2 ≤ τ∗} ≥ 1− ε, (10.4.24)

where τ∗ > 0 and ε � 1 are given. Note that the probability in (10.4.24) is taken
w.r.t. the joint distribution of s and ξ. We assume below that s ∼ N (0, C) with
known covariance matrix C � 0. Besides this, we assume that m ≥ n and A is of
rank n. When there is no observation noise, we can recover s from u in a linear
fashion without any error; it follows that when ρ > 0 is small enough, there exists
G that makes (10.4.24) valid. Let us find the largest such ρ, that is, let us solve
the optimization problem

max
G,ρ

{ρ : Prob{‖(GA− In)s + ρGξ‖2 ≤ τ∗} ≥ 1− ε} . (10.4.25)

Setting S = C1/2 and introducing a random vector θ ∼ N (0, In) independent of ξ

(so that the random vector [S−1s; ξ] has exactly the same N (0, In+m) distribution
as the vector ζ = [θ; ξ]), we can rewrite our problem equivalently as

max
G,ρ

{ρ : Prob{‖Hρ(G)ζ‖2 ≤ τ∗} ≥ 1− ε} , Hρ(G) = [(GA− In)S, ρG]. (10.4.26)

Let h�
ρ(G) be the �-th column in the matrix Hρ(G), � = 1, ..., L = m + n. Invoking

Lemma 6.3.3, our problem is nothing but the chance constrained program

max
G,ρ

{
ρ : Prob

{
L∑

�=1

ζ�A�
ρ(G) � τ∗An ≡ τ∗In+1

}
≥ 1− ε

}
A�

ρ(G) =
[

[h�
ρ(G)]T

h�
ρ(G)

]
.

(10.4.27)

We intend to process the latter problem as follows:
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A) We use our “Conjecture-related” approximation scheme to build a nonde-
creasing continuous function Γ(ρ) → 0, ρ → +0, and matrix-valued function
Gρ (both functions are efficiently computable) such that

Prob{‖(GA− In)s + ρGξ‖2 > τ∗} = Prob{
L∑

�=1

ζ�A�
ρ(Gρ) �� τ∗In+1} ≤ Γ(ρ).

(10.4.28)

B) We then solve the approximating problem

max
ρ
{ρ : Γ(ρ) ≤ ε} . (10.4.29)

Clearly, a feasible solution ρ to the latter problem, along with the associated
matrix Gρ, form a feasible solution to the problem of interest (10.4.27). On
the other hand, the approximating problem is efficiently solvable: Γ(ρ) is
nondecreasing, efficiently computable and Γ(ρ) → 0 as ρ → +0, so that
the approximating problem can be solved efficiently by bisection. We find
a feasible nearly optimal solution ρ̂ to the approximating problem and treat
(ρ̂, Gρ̂) as a suboptimal solution to the problem of interest. By our analysis,
this solution is feasible for the latter problem.

Remark 10.4.5. In fact, the constraint in (10.4.26) is simpler than a general-
type chance constrained conic quadratic inequality — it is a chance constrained
Least Squares inequality (the right hand side is affected neither by the decision
variables, nor by the noise), and as such it admits a Bernstein-type approximation
described in section 4.5.5, see Corollary 4.5.11. Of course, in the outlined scheme
one can use the Bernstein approximation as an alternative to the Conjecture-related
approximation.

Now let us look at steps A, B in more details.

Step A). We solve the semidefinite program

ν∗(ρ) = min
ν,G

{
ν :

L∑
�=1

(A�
ρ(G))2 � νIn+1

}
; (10.4.30)

whenever ρ > 0, this problem clearly is solvable. Due to the fact that part of the
matrices A�

ρ(G) are independent of ρ, and the remaining ones are proportional to
ρ, the optimal value is a positive continuous and nondecreasing function of ρ > 0.
Finally, ν∗(ρ) → +0 as ρ → +0 (look what happens at the point G satisfying the
relation GA = In).

Let Gρ be an optimal solution to (10.4.30). Setting A� = A�
ρ(Gρ)ν

− 1
2∗ (ρ), A = In+1,

the arrow-type matrices A,A1, ..., AL satisfy (10.1.13); invoking Theorem 10.4.4, we
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conclude that

χ ∈ [67 , 1) ⇒ Prob{−Υ(χ)ν
1
2∗ (ρ)In+1 �

L∑
�=1

ζ�A�
ρ(Gρ) � Υ(χ)ν

1
2∗ (ρ)In+1}

≥ χ, Υ(χ) =
√

3
(
1 + 3 ln 1

1−χ

)
.

Now let χ and ρ be such that χ ∈ [6/7, 1) and Υ(χ)
√

ν∗(ρ) ≤ τ∗. Setting

Q = {z : ‖
L∑

�=1

z�A�
ρ(Gρ)‖ ≤ Υ(χ)

√
ν∗(ρ)},

we get a closed convex set such that the random vector ζ ∼ N (0, In+m) takes its
values in Q with probability ≥ χ > 1/2. Invoking Theorem B.5.1 (where we set
α = τ∗/(Υ(χ)

√
ν∗(ρ))), we get

Prob
{

L∑
�=1

ζ�A�
ρ(Gρ) �� τ∗In+1

}
≤ Erf

(
τ∗ErfInv(1−χ)√

ν∗(ρ)Υ(χ)

)
= Erf

(
τ∗ErfInv(1−χ)√
3ν∗(ρ)[1+3 ln 1

1−χ ]

)
.

Setting

Γ(ρ) = inf
χ

⎧⎪⎪⎨⎪⎪⎩Erf

⎛⎜⎜⎝ τ∗ErfInv(1− χ)√
3ν∗(ρ)

[
1 + 3 ln 1

1−χ

]
⎞⎟⎟⎠ :

χ ∈ [6/7, 1),

3ν∗(ρ)
[
1 + 3 ln 1

1−χ

]
≤ τ2

∗

⎫⎪⎪⎬⎪⎪⎭
(10.4.31)

(if the feasible set of the right hand side optimization problem is empty, then,
by definition, Γ(ρ) = 1), we ensure (10.4.28). Taking into account that ν∗(ρ) is
a nondecreasing continuous function of ρ > 0 that tends to 0 as ρ → +0, it is
immediately seen that Γ(ρ) possesses these properties as well.

Solving (10.4.30). Good news is that problem (10.4.30) has a closed form so-
lution. To see this, note that the matrices A�

ρ(G) are pretty special arrow type
matrices: their diagonal entries are zero, so that these (n + 1) × (n + 1) matrices

are of the form
[

[h�
ρ(G)]T

h�
ρ(G)

]
with n-dimensional vectors h�

ρ(G) affinely

depending on G. Now let us make the following observation:

Lemma 10.4.6. Let f� ∈ R
n, � = 1, ..., L, and ν ≥ 0. Then

L∑
�=1

[
fT

�

f�

]2

� νIn+1 (∗)

if and only if
∑
�

fT
� f� ≤ ν.

Proof. Relation (∗) is nothing but∑
�

[
fT

� f�

f�f
T
�

]
� νIn+1,
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so it definitely implies that
∑
�

fT
� f� ≤ ν. To prove the inverse implication, it

suffices to verify that the relation
∑
�

fT
� f� ≤ ν implies that

∑
�

f�f
T
� � νIn. This

is immediate due to Tr(
∑
�

f�f
T
� ) =

∑
�

fT
� f� ≤ ν, (note that the matrix

∑
�

f�f
T
�

is positive semidefinite, and therefore its maximal eigenvalue does not exceed its
trace). �

In view of Lemma 10.4.6, the optimal solution and the optimal value in
(10.4.30) are exactly the same as their counterparts in the minimization problem

ν = min
G

∑
�

[h�
ρ(G)]T h�

ρ(G).

Thus, (10.4.30) is nothing but the problem

ν∗(ρ) = min
G

{
Tr((GA− In)C(GA− I)T ) + ρ2Tr(GGT )

}
. (10.4.32)

The objective in this unconstrained problem has a very transparent interpretation:
it is the mean squared error of the linear estimator ŝ = Gu, the noise intensity
being ρ. The matrix G minimizing this objective is called the Wiener filter; a
straightforward computation yields

Gρ = CAT (ACAT + ρ2Im)−1,

ν∗(ρ) = Tr
(
(GρA− In)C(GρA− In)T + ρ2GρG

T
ρ

)
.

(10.4.33)

Remark 10.4.7. The Wiener filter is one of the oldest and the most basic tools
in Signal Processing; it is good news that our approximation scheme recovers this
tool, albeit from a different perspective: we were seeking a linear filter that ensures
that with probability 1 − ε the recovering error does not exceed a given threshold
(a problem that seemingly does not admit a closed form solution); it turned out
that the suboptimal solution yielded by our approximation scheme is the precise
solution to a simple classical problem.

Refinements. The pair (ρ̂, GW = Gρ̂) (“W” stands for “Wiener”) obtained via
the outlined approximation scheme is feasible for the problem of interest (10.4.27).
However, we have all reason to expect that our provably 100%-reliable approach is
conservative — exactly because of its 100% reliability. In particular, it is very likely
that ρ̂ is a too conservative lower bound on the actual feasibility radius ρ∗(GW) —
the largest ρ such that (ρ,GW) is feasible for the chance constrained problem of
interest. We can try to improve this lower bound by the Randomized r procedure,
e.g., as follows:

Given a confidence parameter δ ∈ (0, 1), we run ν = 10 steps of bisection on
the segment ∆ = [ρ̂, 100ρ̂]. At a step t of this process, given the previous localizer
∆t−1 (a segment contained in ∆, with ∆0 = ∆), we take as the current trial value
ρt of ρ the midpoint of ∆t−1 and apply the Randomized r procedure in order to
check whether (ρt, GW) is feasible for (10.4.27). Specifically, we
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• compute the L = m + n vectors h�
ρt

(GW) and the quantity

µt =

√
m+n∑
�=1

‖h�
ρt

(GW)‖22. By Lemma 10.4.6, we have

L∑
�=1

[
A�

ρt
(GW)

]2 � µ2
t In+1,

so that the matrices A = In+1, A� = µ−1
t A�

ρt
(GW) satisfy (10.1.13);

• apply to the matrices A,A1, ..., AL the Randomized r procedure with pa-
rameters ε, δ/ν, thus ending up with a random quantity rt such that “up to
probability of bad sampling ≤ δ/ν,” one has

Prob{ζ : −In+1 � rt

L∑
�=1

ζ�A� � In+1} ≥ 1− ε,

or, which is the same,

Prob{ζ : −µt

rt
In+1 �

L∑
�=1

ζ�A�
ρ(GW ) � µt

rt
In+1} ≥ 1− ε. (10.4.34)

Note that when the latter relation is satisfied and µt

rt
≤ τ∗, the pair (ρt, GW)

is feasible for (10.4.27);

• finally, complete the bisection step, namely, check whether µt/rt ≤ τ∗. If it is
the case, we take as our new localizer ∆t the part of ∆t−1 to the right of ρt,
otherwise ∆t is the part of ∆t−1 to the left of ρt.

After ν bisection steps are completed, we claim that the left endpoint ρ̃ of the last
localizer ∆ν is a lower bound on ρ∗(GW). Observe that this claim is valid, provided
that all ν inequalities (10.4.34) take place, which happens with probability at least
1− δ.

Illustration: Deconvolution. A rotating scanning head reads random signal s as
shown in figure 10.2. The signal registered when the head observes bin i, 0 ≤ i < n,
is

ui = (As)i + ρξi ≡
d∑

j=−d

Kjs(i−j)mod n + ρξi, 0 ≤ i < n,

where r = p modn, 0 ≤ r < n, is the remainder when dividing p by n. The signal
s is assumed to be Gaussian with zero mean and known covariance Cij = E{sisj}
depending on (i− j)mod n only (“stationary periodic discrete-time Gaussian pro-
cess”). The goal is to find a linear recovery ŝ = Gu and the largest ρ such that

Prob[s;ξ] {‖G(As + ρξ)− s‖2 ≤ τ∗} ≥ 1− ε.

We intend to process this problem via the outlined approach using two safe ap-
proximations of the chance constraint of interest — the Conjecture-related and the
Bernstein (see Remark 10.4.5). The recovery matrices and critical levels of noise
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(K ∗ s)i = 0.2494si−1 + 0.5012si + 0.2494si+1

Figure 10.2 A scanner.

as given by these two approximations will be denoted GW , ρW (”W” for ”Wiener”)
and GB , ρB (”B” for ”Bernstein”), respectively.

Note that in the case in question one can immediately verify that the matrices
AT A and C commute. Whenever this is the case, the computational burden to
compute GW and GB reduces dramatically. Indeed, after appropriate rotations of
x and y we arrive at the situation where both A and C are diagonal, in which
case in both our approximation schemes one loses nothing by restricting G to be
diagonal. This significantly reduces the dimensions of the convex problems we need
to solve.

In the experiment we use

n = 64, d = 1, τ∗ = 0.1
√

n = 0.8, ε = 1.e-4;

C was set to the unit matrix, (meaning that s ∼ N (0, I64)), and the convolution
kernel K is the one shown in figure 10.2. After (GW , ρw) and (GB , ρB) were com-
puted, we used the Randomized r procedure with δ = 1.e-6 to refine the critical
values of noise for GW and GB ; the refined values of ρ are denoted ρ̂W and ρ̂B ,
respectively.

The results of the experiments are presented in table 10.3. While GB and GW

turned out to be close, although not identical, the critical noise levels as yielded
by the Conjecture-related and the Bernstein approximations differ by ≈ 30%. The
refinement increases these critical levels by a factor ≈ 2 and makes them nearly
equal. The resulting critical noise level 3.6e-4 is not too conservative: the simulation
results shown in table 10.4 demonstrate that at a twice larger noise level, the
probability for the chance constraint to be violated is by far larger than the required
1.e-4.
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Admissible noise
level

Bernstein
approximation

Conjecture-related
approximation

Before refinement 1.92e-4 1.50e-4
After refinement (δ = 1.e-6) 3.56e-4 3.62e-4

Table 10.3 Results of deconvolution experiment.

Noise Prob{‖ŝ− s‖2 > τ∗}
level G = GB G = GW

3.6e-4 0 0
7.2e-4 6.7e-3 6.7e-3
1.0e-3 7.4e-2 7.5e-2

Table 10.4 Empirical value of Prob{‖ŝ − s‖2 > 0.8} based on 10,000 simulations.

10.4.3.1 Modifications

We have addressed the Signal Recovery problem (10.4.22), (10.4.23), (10.4.24) in the
case when s ∼ N (0, C) is random, the noise is independent of s and the probability
in (10.4.24) is taken w.r.t. the joint distribution of ξ and s. Next we want to
investigate two other versions of the problem.

Recovering a uniformly distributed signal. Assume that the signal s is

(a) uniformly distributed in the unit box {s ∈ R
n : ‖s‖∞ ≤ 1},

or

(b) uniformly distributed on the vertices of the unit box
and is independent of ξ. Same as above, our goal is to ensure the validity of
(10.4.24) with as large ρ as possible. To this end, let us use Gaussian Majorization.
Specifically, in the case of (a), let s̃ ∼ N (0, (2/π)I). As it was explained in section
10.3, the condition

Prob{‖(GA− I)s̃ + ρGξ‖2 ≤ τ∗} ≥ 1− ε

is sufficient for the validity of (10.4.24). Thus, we can use the Gaussian case proce-
dure presented in section 10.4 with the matrix (2/π)I in the role of C; an estimator
that is good in this case will be at least as good in the case of the signal s.

In case of (b), we can act similarly, utilizing Theorem 10.3.3. Specifically, let
s̃ ∼ N (0, (π/2)I) be independent of ξ. Consider the parametric problem

ν(ρ) ≡ min
G

{π

2
Tr

(
(GA− I)(GA− I)T

)
+ ρ2Tr(GGT )

}
, (10.4.35)

ρ ≥ 0 being the parameter (cf. (10.4.32) and take into account that the latter prob-
lem is equivalent to (10.4.30)), and let Gρ be an optimal solution to this problem.
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The same reasoning as on p. 267 shows that

6/7 ≤ χ < 1 ⇒ Prob{(s̃, ξ) : ‖(GρA− I)s̃ + ρGρξ‖2 ≤ Υ(χ)ν1/2
∗ (ρ)} ≥ χ,

Υ(χ) =
√

3
(
1 + 3 ln 1

1−χ

)
.

Applying Theorem 10.3.3 to the convex set Q = {(z, x) : ‖(GρA− I)z + ρGρx‖2 ≤
Υ(χ)ν1/2

∗ (ρ) and the random vectors [s; ξ], [s̃; ξ], we conclude that

∀
(

χ∈[6/7,1)
γ>1

)
: Prob{(s, ξ) : ‖(GρA− I)s + ρGρξ‖2 > γΥ(χ)ν1/2

∗ (ρ)}

≤ min
β∈[1,γ)

1
γ−β

∞∫
β

Erf(rErfInv(1− χ))dr.

We conclude that setting

Γ̃(ρ) = inf
χ,γ,β

⎧⎪⎪⎨⎪⎪⎩ 1
γ−β

∞∫
β

Erf(rErfInv(1− χ))dr :

6/7 ≤ χ < 1, γ > 1

1 ≤ β < γ

γΥ(χ)ν1/2
∗ (ρ) ≤ τ∗

⎫⎪⎪⎬⎪⎪⎭[
Υ(χ) =

√
3
(
1 + 3 ln 1

1−χ

)]
(Γ̃(ρ) = 1 when the right hand side problem is infeasible), one has

Prob{(s, ξ) : ‖(GρA− I)s + ρGρξ‖2 > τ∗} ≤ Γ̃(ρ)

(cf. p. 267). It is easily seen that Γ̃(·) is a continuous nondecreasing function
of ρ > 0 such that Γ̃(ρ) → 0 as ρ → +0, and we end up with the following safe
approximation of the Signal Recovery problem:

max
ρ

{
ρ : Γ̃(ρ) ≤ ε

}
(cf. (10.4.29)).

Note that in the above “Gaussian majorization” scheme we could use the
Bernstein approximation, based on Corollary 4.5.11, of the chance constraint
Prob{‖(GA − I)s̃ + ρGξ‖2 ≤ τ∗} ≥ 1 − ε instead of the Conjecture-related ap-
proximation.

The case of deterministic uncertain signal. Up to now, signal s was considered
as random and independent of ξ, and the probability in (10.4.24) was taken w.r.t.
the joint distribution of s and ξ; as a result, certain “rare” realizations of the signal
can be recovered very poorly. Our current goal is to understand what happens
when we replace the specification (10.4.24) with

∀(s ∈ S) :
Prob{ξ : ‖Gu− s‖2 ≤ τ∗} ≡ Prob{ξ : ‖(GA− I)s + ρGξ‖2 ≤ τ∗} ≥ 1− ε,

(10.4.36)
where S ⊂ R

n is a given compact set.

Our starting point is the following observation:
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Lemma 10.4.8. Let G, ρ ≥ 0 be such that

Θ ≡ τ2
∗

max
s∈S

sT (GA− I)T (GA− I)s + ρ2Tr(GT G)
≥ 1. (10.4.37)

Then for every s ∈ S one has

Probζ∼N (0,I) {‖(GA− I)s + ρGζ‖2 > τ∗} ≤ exp
{
− (Θ−1)2

4(Θ+1)

}
. (10.4.38)

Proof. There is nothing to prove when Θ = 1, so that let Θ > 1. Let us fix
s ∈ S and let g = (GA− I)s, W = ρ2GT G, w = ρGT g. We have

Prob{‖(GA− I)s + ρGζ‖2 > τ∗} = Prob
{
‖g + ρGζ‖22 > τ2

∗
}

= Prob
{
ζT [ρ2GT G]ζ + 2ζT ρGT g > τ2

∗ − gT g
}

= Prob
{
ζT Wζ + 2ζT w > τ2

∗ − gT g
}

.

(10.4.39)

Denoting by λ the vector of eigenvalues of W , we can assume w.l.o.g. that λ �= 0,
since otherwise W = 0, w = 0 and thus the left hand side in (10.4.39) is 0 (note
that τ2

∗ − gT g > 0 due to (10.4.37) and since s ∈ S), and thus (10.4.38) is trivially
true. Setting

Ω =
τ2
∗ − gT g√

λT λ + wT w

and invoking Proposition 4.5.10, we arrive at

Prob{‖(GA− I)s + ρGζ‖2 > τ∗} ≤ exp
{
− Ω2

√
λT λ+wT w

4
[
2
√

λT λ+wT w+‖λ‖∞Ω
] }

= exp
{
− [τ2

∗−gT g]2

4[2[λT λ+wT w]+‖λ‖∞[τ2∗−gT g]]

}
= exp

{
− [τ2

∗−gT g]2

4[2[λT λ+gT [ρ2GGT ]g]+‖λ‖∞[τ2∗−gT g]]

}
≤ exp

{
− [τ2

∗−gT g]2

4‖λ‖∞[2[‖λ‖1+gT g]+[τ2∗−gT g]]

}
,

(10.4.40)

where the concluding inequality is due to ρ2GGT � ‖λ‖∞I and λT λ ≤ ‖λ‖∞‖λ‖1.
Further, setting α = gT g, β = Tr(ρ2GT G) and γ = α+β, observe that β = ‖λ‖1 ≥
‖λ‖∞ and τ2

∗ ≥ Θγ ≥ γ by (10.4.37). It follows that

[τ2
∗ − gT g]2

4‖λ‖∞ [2[‖λ‖1 + gT g] + [τ2
∗ − gT g]]

≥ (τ2
∗ − γ + β)2

4β(τ2
∗ + γ + β)

≥ (τ2
∗ − γ)2

4γ(τ2
∗ + γ)

,

where the concluding inequality is readily given by the relations τ2
∗ ≥ γ ≥ β > 0.

Thus, (10.4.40) implies that

Prob{‖(GA−I)s+ρGζ‖2 > τ∗} ≤ exp
{
− (τ2

∗ − γ)2

4γ(τ2
∗ + γ)

}
≤ exp

{
− (Θ− 1)2

4(Θ + 1)

}
. �

Lemma 10.4.8 suggests a safe approximation of the problem of interest as
follows. Let Θ(ε) > 1 be given by

exp{− (Θ− 1)2

4(Θ + 1)
} = ε [⇒ Θ(ε) = (4 + o(1)) ln(1/ε) as ε → +0]
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and let
φ(G) = max

s∈S
sT (GA− I)T (GA− I)s, (10.4.41)

(this function clearly is convex). By Lemma 10.4.8, the optimization problem

max
ρ,G

{
ρ : φ(G) + ρ2Tr(GT G) ≤ γ∗ ≡ Θ−1(ε)τ2

∗
}

(10.4.42)

is a safe approximation of the problem of interest. Applying bisection in ρ, we can
reduce this problem to a “short series” of convex feasibility problems of the form

find G: φ(G) + ρ2Tr(GT G) ≤ γ∗. (10.4.43)

Whether the latter problems are or are not computationally tractable depends on
whether the function φ(G) is so, which happens if and only if we can efficiently
optimize positive semidefinite quadratic forms sT Qs over S.

Example 10.4.9. Let S be an ellipsoid centered at the origin:

S = {s = Hv : vT v ≤ 1}

In this case, it is easy to compute φ(G) — this function is semidefinite representable:

φ(G) ≤ t ⇔ max
s∈S

sT (GA − I)T (GA − I)s ≤ t

⇔ max
v:‖v‖2≤1

vT (HT (GA − I)T (GA − I)Hv ≤ t

⇔ λmax(H
T (GA − I)T (GA − I)H) ≤ t

⇔ tI − HT (GA − I)T (GA − I)H � 0 ⇔
[

tI HT (GA − I)T

(GA − I)H I

]
� 0,

where the concluding ⇔ is given by the Schur Complement Lemma. Consequently,
(10.4.43) is the efficiently solvable convex feasibility problem

Find G, t: t + ρ2Tr(GT G) ≤ γ∗,
[

tI HT (GA − I)T

(GA − I)H I

]
� 0.

Example 10.4.9 allows us to see the dramatic difference between the case
where we are interested in “highly reliable with high probability” recovery of a
random signal and “highly reliable” recovery of every realization of uncertain signal.
Specifically, assume that G, ρ are such that (10.4.24) is satisfied with s ∼ N (0, In).
Note that when n is large, s is nearly uniformly distributed over the sphere S of
radius

√
n (indeed, sT s =

∑
i

s2
i , and by the Law of Large Numbers, for δ > 0 the

probability of the event {‖s‖2 �∈ [(1 − δ)
√

n, (1 + δ)
√

n]} goes to 0 as n → ∞, in
fact exponentially fast. Also, the direction s/‖s‖2 of s is uniformly distributed on
the unit sphere). Thus, the recovery in question is, essentially, a highly reliable
recovery of random signal uniformly distributed over the above sphere S. Could
we expect the recovery to “nearly satisfy” (10.4.36), that is, to be reasonably good
in the worst case over the signals from S? The answer is negative when n is large.
Indeed, a sufficient condition for (10.4.24) to be satisfied is

Tr((GA− I)T (GA− I)) + ρ2Tr(GT G) ≤ τ2
∗

O(1) ln(1/ε)
(∗)
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with appropriately chosen absolute constant O(1). A necessary condition for
(10.4.36) to be satisfied is

nλmax((GA− I)T (GA− I)) + ρ2Tr(GT G) ≤ O(1)τ2
∗ . (∗∗)

Since the trace of the n× n matrix Q = (GA− I)T (GA− I) can be nearly n times
less than nλmax(Q), the validity of (∗) by far does not imply the validity of (∗∗).
To be more rigorous, consider the case when ρ = 0 and GA− I = Diag{1, 0, ..., 0}.
In this case, the ‖ · ‖2-norm of the recovering error, in the case of s ∼ N (0, In),
is just |s1|, and Prob{|s1| > τ∗} ≤ ε provided that τ∗ ≥

√
2 ln(2/ε), in particular,

when τ∗ =
√

2 ln(2/ε). At the same time, when s =
√

n[1; 0; ...; 0] ∈ S, the norm
of the recovering error is

√
n, which, for large n, is incomparably larger than the

above τ∗.

Example 10.4.10. Here we consider the case where φ(G) cannot be computed
efficiently, specifically, the case where S is the unit box Bn = {s ∈ R

n : ‖s‖∞ ≤ 1} (or the
set Vn of vertices of this box). Indeed, it is known that for a general-type positive definite
quadratic form sT Qs, computing its maximum over the unit box is NP-hard, even when
instead of the precise value of the maximum its 4%-accurate approximation is sought. In
situations like this we could replace φ(G) in the above scheme by its efficiently computable

upper bound φ̂(G). To get such a bound in the case when S is the unit box, we can use
the following wonderful result:

Nesterov’s π
2

Theorem [88] Let A ∈ Sn
+. Then the efficiently computable

quantity

SDP(A) = min
λ∈Rn

{∑
i

λi : Diag{λ} � A

}
is an upper bound, tight within the factor π

2
, on the quantity

Opt(A) = max
s∈Bn

sT As.

Assuming that S is Bn (or Vn), Nesterov’s π
2

Theorem provides us with an efficiently
computable and tight, within the factor π

2
, upper bound

φ̂(G) = min
λ

{∑
i

λi :

[
Diag(λ) (GA − I)T

GA − I I

]
� 0

}

on φ(G). Replacing φ(·) by its upper bound, we pass from the intractable problems
(10.4.43) to their tractable approximations

find G, λ:
∑

i

λi + ρ2Tr(GT G) ≤ γ∗,
[

Diag(λ) (GA − I)T

GA − I I

]
� 0; (10.4.44)

we then apply bisection in ρ to rapidly approximate the largest ρ = ρ∗, along with the

associated G = G∗, for which problems (10.4.44) are solvable, thus getting a feasible

solution to the problem of interest.

10.5 NOTES AND REMARKS

NR 10.1. The celebrated Talagrand Inequality in the form we use to prove
Theorem 10.1.1 can be found in [67]. Theorem B.5.1 underlying Theorem 10.1.2
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was announced, in a slightly weaker form, in [82]; the proof, heavily exploiting the
result of Borell [31], was published in [84].

We are grateful to A. Man-Cho So who brought to our attention the results
of [78, 93, 35], which allow to justify easily the validity of Conjecture 10.1 with
Υ = O(1)

√
lnm in the general case.

The concept of convex majorization used in section 10.3 is, essentially, a
symmetrized version of the well-studied notion of second order stochastic dominance
[47, 60, 101, 102]. Proposition 10.3.2 and Theorem 10.3.3 originate from [84].

NR 10.2. For the basic results on Wiener filtering theory mentioned in section
10.4.3 see, e.g., [34].

NR 10.3. A surprising fact is that at the present level of our knowledge
the chance constrained versions of “complicated” uncertain conic inequalities, like
conic quadratic and especially semidefinite ones, seem to be better suited for tight
tractable approximation than the RCs of these inequalities associated with deter-
ministic uncertainty sets, even simple ones. Indeed, the RCs here typically are
computationally intractable, and even building their tight tractable approxima-
tions requires severe restrictions on the structure of perturbations and/or on the
geometry of uncertainty set. This is in sharp contrast with uncertain LO, where
processing chance versions of uncertain constraints requires approximations, while
processing the RCs of the constraints is easy.
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Chapter Eleven
Globalized Robust Counterparts of Uncertain Conic Problems

In this chapter we study the Globalized Robust Counterparts of general-type un-
certain conic problems and derive results on tractability of GRCs.

11.1 GLOBALIZED ROBUST COUNTERPARTS OF UNCERTAIN CONIC

PROBLEMS: DEFINITION

Consider an uncertain conic problem (5.1.2), (5.1.3):

min
x

{
cT x + d : Aix− bi ∈ Qi, 1 ≤ i ≤ m

}
, (11.1.1)

where Qi ⊂ R
ki are nonempty closed convex sets given by finite lists of conic

inclusions:
Qi = {u ∈ R

ki : Qi�u− qi� ∈ Ki�, � = 1, ..., Li}, (11.1.2)

with closed convex pointed cones Ki�, and let the data be affinely parameterized
by the perturbation vector ζ:

(c, d, {Ai, bi}m
i=1) = (c0, d0, {A0

i , b
0
i }m

i=1) +
L∑

�=1

ζ�(c�, d�, {A�
i , b

�
i}m

i=1). (11.1.3)

When extending the notion of Globalized Robust Counterparts (chapter 3) to this
case, we need a small modification; when introducing the notion of GRCs in the
LO case, we assumed that the set Z+ of all “physically possible” realizations of the
perturbation vector ζ is of the form Z+ = Z + L, where Z is the closed convex
normal range of ζ and L is a closed convex cone. We further said that a candidate
solution ȳ to uncertain scalar linear inequality

[a0 +
L∑

�=1

ζ�a
�]T y − [b0 +

L∑
�=1

ζ�b
�] ≤ 0 (∗)

is robust feasible with global sensitivity α, if

[a0 +
L∑

�=1

ζ�a
�]T y − [b0 +

L∑
�=1

ζ�b
�] ≤ αdist(ζ,Z|L)∀ζ ∈ Z + L. (∗∗ )

Now we are in the situation when the left hand side of our uncertain constraints
(11.1.1) are vectors rather than scalars, so that a straightforward analogy of (∗∗ ) does
not make sense. Note, however, that when rewriting (∗) in our present “inclusion
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form”

[a0 +
L∑

�=1

ζ�a
�]T y − [b0 +

L∑
�=1

ζ�b
�] ∈ Q ≡ R−,

relation (∗∗ ) says exactly that the distance from the left hand side of (∗) to Q does
not exceed αdist(ζ,Z|L) for all ζ ∈ Z + L. In this form, the notion of global
sensitivity admits the following multi-dimensional extension:

Definition 11.1.1. Consider an uncertain convex constraint

[P0 +
L∑

�=1

ζ�P�]y − [p0 +
L∑

�=1

ζ�p
�] ∈ Q, (11.1.4)

where Q is a nonempty closed convex subset in R
k. Let ‖·‖Q be a norm on R

k, ‖·‖Z

be a norm on R
L, Z ⊂ R

L be a nonempty closed convex normal range of pertur-
bation ζ, and L ⊂∈ R

L be a closed convex cone. We say that a candidate solution
y is robust feasible, with global sensitivity α, for (11.1.4), under the perturbation
structure (‖ · ‖Q, ‖ · ‖Z ,Z,L), if

dist([P0 +
L∑

�=1

ζ�P�]y − [p0 +
L∑

�=1

ζ�p
�],Q) ≤ αdist(ζ,Z|L)

∀ζ ∈ Z+ = Z + L[
dist(u,Q) = min

v
{‖u− v‖Q : v ∈ Q}

dist(ζ,Z|L) = min
v
{‖ζ − v‖Z : v ∈ Z, ζ − v ∈ L}

]
.

(11.1.5)

Sometimes it is necessary to add some structure to the latter definition.
Specifically, assume that the space R

L where ζ lives is given as a direct product:

R
L = R

L1 × ...× R
LS

and let Zs ⊂ R
Ls , Ls ⊂ R

Ls , ‖ · ‖s be, respectively, closed nonempty convex set,
closed convex cone and a norm on R

Ls , s = 1, ..., S. For ζ ∈ R
L, let ζs, s = 1, ..., S,

be the projections of ζ onto the direct factors R
Ls of R

L. The “structured version”
of Definition 11.1.1 is as follows:

Definition 11.1.2. A candidate solution y to the uncertain constraint (11.1.4)
is said to be robust feasible with global sensitivities αs, s = 1, ..., S, under the
perturbation structure (‖ · ‖Q, {Zs,Ls, ‖ · ‖s}S

s=1), if

dist([P0 +
L∑

�=1

ζ�P�]y − [p0 +
L∑

�=1

ζ�p
�],Q) ≤

S∑
s=1

αsdist(ζs,Zs|Ls)

∀ζ ∈ Z+ = (Z1 × ...×ZS)︸ ︷︷ ︸
Z

+L1 × ...× LS︸ ︷︷ ︸
L⎡⎣ dist(u,Q) = min

v
{‖u− v‖Q : v ∈ Q}

dist(ζs,Zs|Ls) = min
vs
{‖ζs − vs‖s : vs ∈ Zs, ζs − vs ∈ Ls} .

⎤⎦
(11.1.6)

Note that Definition 11.1.1 can be obtained from Definition 11.1.2 by setting
S = 1. We refer to the semi-infinite constraints (11.1.5), (11.1.6) as to Global-
ized Robust Counterparts of the uncertain constraint (11.1.4) w.r.t. the perturba-
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tions structure in question. When building the GRC of uncertain problem (11.1.1),
(11.1.3), we first rewrite it as an uncertain problem

min
y=(x,t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t :

cT x + d − t ≡

[P00+
L∑

�=1
ζ�P0�]y−[p0

0+
L∑

�=1
ζ�p�

0]︷ ︸︸ ︷
[c0 +

L∑
�=1

ζ�c
�]T x + [d0 +

L∑
�=1

ζ�d
�] − t ∈ Q0 ≡ R−

Aix − bi ≡ [A0
i +

L∑
�=1

ζ�A
�
i ]x − [b0

i +

L∑
�=1

ζ�b
�
i ]︸ ︷︷ ︸

[Pi0+
L∑

�=1
ζ�Pi�]y−[p0

i +
L∑

�=1
ζ�p�

i ]

∈ Qi, 1 ≤ i ≤ m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
with certain objective, and then replace the constraints with their Globalized RCs.
The underlying perturbation structures and global sensitivities may vary from con-
straint to constraint.

11.2 SAFE TRACTABLE APPROXIMATIONS OF GRCS

A Globalized RC, the same as the plain one, can be computationally intractable, in
which case we can look for the second best thing — a safe tractable approximation
of the GRC. This notion is defined as follows (cf. Definition 5.3.1):

Definition 11.2.1. Consider the uncertain convex constraint (11.1.4) along
with its GRC (11.1.6). We say that a system S of convex constraints in variables y,
α = (α1, ..., αS) ≥ 0, and, perhaps, additional variables u, is a safe approximation
of the GRC, if the projection of the feasible set of S on the space of (y, α) variables
is contained in the feasible set of the GRC:

∀(α = (α1, ..., αS) ≥ 0, y) :
(∃u : (y, α, u) satisfies S) ⇒ (y, α) satisfies (11.1.6).

This approximation is called tractable, provided that S is so, (e.g., S is an ex-
plicit system of CQIs/LMIs of, more general, the constraints in S are efficiently
computable).

When quantifying the tightness of an approximation, we, as in the case of
RC, assume that the normal range Z = Z1× ...×ZS of the perturbations contains
the origin and is included in the single-parametric family of normal ranges:

Zρ = ρZ, ρ > 0.

As a result, the GRC (11.1.6) of (11.1.4) becomes a member, corresponding to
ρ = 1, of the single-parametric family of constraints

dist([P0 +
L∑

�=1

ζ�P�]y − [p0 +
L∑

�=1

ζ�p
�],Q) ≤

S∑
s=1

αsdist(ζs,Zs|Ls)

∀ζ ∈ Zρ
+ = ρ(Z1 × ...×ZS)︸ ︷︷ ︸

Zρ

+L1 × ...× LS︸ ︷︷ ︸
L

(GRCρ)

in variables y, α. We define the tightness factor of a safe tractable approximation
of the GRC as follows (cf. Definition 5.3.2):
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Definition 11.2.2. Assume that we are given an approximation scheme that
associates with (GRCρ) a finite system Sρ of efficiently computable convex con-
straints on variables y, α and, perhaps, additional variables u, depending on ρ > 0
as a parameter. We say that this approximation scheme is a safe tractable approx-
imation of the GRC tight, within tightness factor ϑ ≥ 1, if

(i) For every ρ > 0, Sρ is a safe tractable approximation of (GRCρ): whenever
(y, α ≥ 0) can be extended to a feasible solution of Sρ, (y, α) satisfies (GRCρ);

(ii) Whenever ρ > 0 and (y, α ≥ 0) are such that (y, α) cannot be extended
to a feasible solution of Sρ, the pair (y, ϑ−1α) is not feasible for (GRCϑρ).

11.3 GRC OF UNCERTAIN CONSTRAINT: DECOMPOSITION

11.3.1 Preliminaries

Recall the notion of the recessive cone of a closed and nonempty convex set Q:

Definition 11.3.1. Let Q ⊂ R
k be a nonempty closed convex set and x̄ ∈ Q.

The recessive cone Rec(Q) of Q is comprised of all rays emanating from x̄ and
contained in Q:

Rec(Q) = {h ∈ R
k : x̄ + th ∈ Q∀t ≥ 0}.

(Due to closedness and convexity of Q, the right hand side set in this formula is
independent of the choice of x̄ ∈ Q and is a nonempty closed convex cone in R

k.)

Example 11.3.2.
(i) The recessive cone of a nonempty bounded and closed convex set Q is trivial:

Rec(Q) = {0};
(ii) The recessive cone of a closed convex cone Q is Q itself;
(iii) The recessive cone of the set Q = {x : Ax− b ∈ K}, where K is a closed convex

cone, is the set {h : Ah ∈ K};
(iv.a) Let Q be a closed convex set and ei → e, i → ∞, ti ≥ 0, ti → ∞, i → ∞, be

sequences of vectors and reals such that tiei ∈ Q for all i. Then e ∈ Rec(Q).
(iv.b) Vice versa: every e ∈ Rec(Q) can be represented in the form of e = limi→∞ ei

with vectors ei such that iei ∈ Q.

Proof. (iv.a): Let x̄ ∈ Q. With our ei and ti, for every t > 0 we have x̄+tei−t/tix̄ =
(t/ti)(tiei) + (1 − t/ti)x̄. For all but finitely many values of i, the right hand side in this
equality is a convex combination of two vectors from Q and therefore belongs to Q; for
i → ∞, the left hand side converges to x̄ + te. Since Q is closed, we conclude that
x̄ + te ∈ Q; since t > 0 is arbitrary, we get e ∈ Rec(Q).
(iv.b): Let e ∈ Rec(Q) and x̄ ∈ Q. Setting ei = i−1(x̄ + ie), we have iei ∈ Q and ei → e
as i → ∞. �

11.3.2 The Main Result

The following statement is the “multi-dimensional” extension of Proposition 3.2.1:

Proposition 11.3.3. A candidate solution y is feasible for the GRC (11.1.6)
of the uncertain constraint (11.1.4) if and only if x satisfies the following system of



GLOBALIZED ROBUST COUNTERPARTS OF UNCERTAIN CONIC PROBLEMS 283

semi-infinite constraints:

(a)

P (y,ζ)︷ ︸︸ ︷
[P0 +

∑L

�=1
ζ�P�]T y − [p0 +

∑L

�=1
ζ�p

�] ∈ Q

∀ζ ∈ Z ≡ Z1 × ...×ZS

(bs) dist(

Φ(y)Esζs︷ ︸︸ ︷∑L

�=1
[P�y − p�](Esζ

s)�, Rec(Q)) ≤ αs

∀ζs ∈ Ls
‖·‖s

≡ {ζs ∈ Ls : ‖ζs‖s ≤ 1}, s = 1, ..., S,

(11.3.1)

where Es is the natural embedding of R
Ls into R

L = R
L1 × ... × R

LS and
dist(u, Rec(Q)) = min

v∈Rec(Q)
‖u− v‖Q.

Proof. Assume that y satisfies (11.1.6), and let us verify that y satisfies
(11.3.1). Relation (11.3.1.a) is evident. Let us fix s ≤ S and verify that y sat-
isfies (11.3.1.bs). Indeed, let ζ̄ ∈ Z and ζs ∈ Ls

‖·‖s
. For i = 1, 2, ..., let ζi be given

by ζr
i = ζ̄r, r �= s, and ζs

i = ζ̄s + iζs, so that dist(ζr
i ,Zr|Lr) is 0 for r �= s and is

≤ i for r = s. Since y is feasible for (11.1.6), we have

dist([P0 +
L∑

�=1

(ζi)�P�]y − [p0 +
L∑

�=1

(ζi)�p
�]︸ ︷︷ ︸

P (y,ζi)=P (y,ζ̄)+iΦ(y)Esζs

,Q) ≤ αsi,

that is, there exists qi ∈ Q such that

‖P (y, ζ̄) + iΦ(y)Esζ
s − qi‖Q ≤ αsi.

From this inequality it follows that ‖qi‖Q/i remains bounded when i →∞; setting
qi = iei and passing to a subsequence {iν} of indices i, we may assume that eiν

→ e

as ν →∞; by item (iv.a) of Example 11.3.2, we have e ∈ Rec(Q). We further have

‖Φ(y)Esζ
s − eiν

‖Q = i−1
ν ‖iνΦ(y)Esζ − qiν

‖Q

≤ i−1
ν

[
‖P (y, ζ̄) + iνΦ(y)Esζ

s − qiν
‖Q + i−1

ν ‖P (y, ζ̄)‖Q

]
≤ αs + i−1

ν ‖P (y, ζ̄)‖Q,

whence, passing to limit as ν → ∞, ‖Φ(y)Esζ
s − e‖Q ≤ αs, whence, due to e ∈

Rec(Q), we have dist(Φ(y)Esζ
s,Rec(Q)) ≤ αs. Since ζs ∈ Ls

‖·‖s
is arbitrary,

(11.3.1.bs) holds true.

Now assume that y satisfies (11.3.1), and let us prove that y satisfies (11.1.6).
Indeed, given ζ ∈ Z +L, we can find ζ̄s ∈ Zs and δs ∈ Ls in such a way that ζs =
ζ̄s+δs and ‖δs‖s = dist(ζs,Zs|Ls). Setting ζ̄ = (ζ̄1, ..., ζ̄S) and invoking (11.3.1.a),
the vector ū = P (y, ζ̄) belongs to Q. Further, for every s, by (11.3.1.bs), there exists
δus ∈ Rec(Q) such that ‖Φ(y)Esδ

s − δus‖Q ≤ αs‖δs‖s = αsdist(ζs,Zs|Ls). Since
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P (y, ζ) = P (y, ζ̄) +
∑
s

Φ(y)Esδ
s, we have

‖P (y, ζ)− [ū +
∑

s

δus]︸ ︷︷ ︸
v

‖Q ≤ ‖P (y, ζ̄)− ū︸ ︷︷ ︸
=0

‖Q +
∑

s

‖Φ(y)Esδ
s − δus‖Q︸ ︷︷ ︸

≤αsdist(ζs,Zs|Ls)

;

since ū ∈ Q and δus ∈ Rec(Q) for all s, we have v ∈ Q, so that the inequality
implies that

dist(P (y, ζ),Q) ≤
∑

s

αsdist(ζs,Zs|Ls).

Since ζ ∈ Z + L is arbitrary, y satisfies (11.1.6). �

11.4 TRACTABILITY OF GRCS

11.4.1 Preliminaries

Proposition 11.3.3 demonstrates that the GRC of an uncertain constraint (11.1.4)
is equivalent to the explicit system of semi-infinite constraints (11.3.1). We are
well acquainted with the constraint (11.3.1.a) — it is nothing but the RC of the
uncertain constraint (11.1.4) with the normal range Z of the perturbations in the
role of the uncertainty set. As a result, we have certain knowledge of how to convert
this semi-infinite constraint into a tractable form or how to build its tractable safe
approximation. What is new is the constraint (11.3.1.b), which is of the following
generic form:

We are given
• an Euclidean space E with inner product 〈·, ·〉E , a norm (not necessarily

the Euclidean one) ‖ · ‖E , and a closed convex cone KE in E;
• an Euclidean space F with inner product 〈·, ·〉F , norm ‖ · ‖F and a closed

convex cone KF in F .
These data define a function on the space L(E, F ) of linear mappings M from E

to F , specifically, the function

Ψ(M) = max
e

{
dist‖·‖F

(Me,KF ) : e ∈ KE , ‖e‖E ≤ 1
}

,

dist‖·‖F
(f, KF ) = min

g∈KF
‖f − g‖F .

(11.4.1)

Note that Ψ(M) is a kind of a norm: it is nonnegative, satisfies the re-
quirement Ψ(λM) = λΨ(M) when λ ≥ 0, and satisfies the triangle inequality
Ψ(M+N ) ≤ Ψ(M) + Ψ(N ). The properties of a norm that are missing are sym-
metry (in general, Ψ(−M) �= Ψ(M)) and strict positivity (it may happen that
Ψ(M) = 0 for M �= 0). Note also that in the case when KF = {0}, KE = E,
Ψ(M) = max

e:‖e‖E≤1
‖Me‖F becomes the usual norm of a linear mapping induced by

given norms in the origin and the destination spaces.

The above setting gives rise to a convex inequality

Ψ(M) ≤ α (11.4.2)
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in variablesM, α. Note that every one of the constraints (11.3.1.b) is obtained from
a convex inequality of the form (11.4.2) by affine substitution

M← Hs(y), α ← αs

where Hs(y) ∈ L(Es, Fs) is affine in y. Indeed, (11.3.1.bs) is obtained in this fashion
when specifying

• (E, 〈·, ·〉E) as the Euclidean space where Zs,Ls live, and ‖·‖E as ‖·‖s;
• (F, 〈·, ·〉F ) as the Euclidean space where Q lives, and ‖ · ‖F as ‖ · ‖Q;
• KE as the cone Ls, and KF as the cone Rec(Q);
• H(y) as the linear map ζs �→ Φ(y)Esζ

s.

It follows that efficient processing of constraints (11.3.1.b) reduces to a similar
task for the associated constraints

Ψs(Ms) ≤ αs (Cs)

of the form (11.4.2). Assume, e.g., that we are smart enough to build, for certain
ϑ ≥ 1,

(i) a ϑ-tight safe tractable approximation of the semi-infinite constraint (11.3.1.a)
with Zρ = ρZ1 in the role of the perturbation set. Let this approximation
be a system Sa

ρ of explicit convex constraints in variables y and additional
variables u;

(ii) for every s = 1, ..., S a ϑ-tight efficiently computable upper bound on the func-
tion Ψs(Ms), that is, a system Ss of efficiently computable convex constraints
on matrix variable Ms, real variable τs and, perhaps, additional variables us

such that

(a) whenever (Ms, τs) can be extended to a feasible solution of Ss, we have
Ψs(Ms) ≤ τs,

(b) whenever (Ms, τs) cannot be extended to a feasible solution of Ss, we
have ϑΨs(Ms) > τs.

In this situation, we can point out a safe tractable approximation, tight within the
factor ϑ (see Definition 11.2.2), of the GRC in question. To this end, consider the
system of constraints in variables y, α1, ..., αS , u, u1, ..., uS as follows:

(y, u) satisfies Sa
ρ and {(Hs(y), αs, u

s) satisfies Ss, s = 1, ..., S} , (Sρ)

and let us verify that this is a ϑ-tight safe computationally tractable approxima-
tion of the GRC. Indeed, Sρ is an explicit system of efficiently computable convex
constraints and as such is computationally tractable. Further, Sρ is a safe approx-
imation of the (GRCρ). Indeed, if (y, α) can be extended to a feasible solution of
Sρ, then y satisfies (11.3.1.a) with Zρ in the role of Z (since (y, u) satisfies Sa

ρ )
and (y, αs) satisfies (11.3.1.bs) due to (ii.a) (recall that (11.3.1.bs) is equivalent to
Ψs(Hs(y)) ≤ αs). Finally, assume that (y, α) cannot be extended to a feasible
solution of (Sρ), and let us prove that then (y, ϑ−1α) is not feasible for (GRCϑρ).
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Indeed, if (y, α) cannot be extended to a feasible solution to Sρ, then either y cannot
be extended to a feasible solution of Sa

ρ , or for certain s (y, αs) cannot be extended
to a feasible solution of Ss. In the first case, y does not satisfy (11.3.1.a) with Zϑρ

in the role of Z by (i); in the second case, ϑ−1αs < Ψs(Hs(y)) by (ii.b), so that in
both cases the pair (y, ϑ−1α) is not feasible for (GRCϑρ).

We have reduced the tractability issues related to Globalized RCs to similar
issues for RCs (which we have already investigated in the CO case) and to the issue
of efficient bounding of Ψ(·). The rest of this section is devoted to investigating
this latter issue.

11.4.2 Efficient Bounding of Ψ(·)

11.4.2.1 Symmetry

We start with observing that the problem of efficient computation of (a tight upper
bound on) Ψ(·) possesses a kind of symmetry. Indeed, consider a setup

Ξ = (E, 〈·, ·〉E , ‖ · ‖E ,KE ; F, 〈·, ·〉F , ‖ · ‖F ,KF )

specifying Ψ, and let us associate with Ξ its dual setup

Ξ∗ = (F, 〈·, ·〉F , ‖ · ‖∗F ,KF
∗ ; E, 〈·, ·〉E , ‖ · ‖∗E ,KE

∗ ),

where

• for a norm ‖ · ‖ on a Euclidean space (G, 〈·, ·〉G), its conjugate norm ‖ · ‖∗ is
defined as

‖u‖∗ = max
v
{〈u, v〉G : ‖v‖ ≤ 1} ;

• For a closed convex cone K in a Euclidean space (G, 〈·, ·〉G), its dual cone is
defined as

K∗ = {y : 〈y, h〉G ≥ 0 ∀h ∈ K}.
.

Recall that the conjugate to a linear map M∈ L(E,F ) from Euclidean space E to
Euclidean space F is the linear map M∗ ∈ L(F,E) uniquely defined by the identity

〈Me, f〉F = 〈e,M∗f〉E ∀(e ∈ E, f ∈ F );

representing linear maps by their matrices in a fixed pair of orthonormal bases
in E, F , the matrix representing M∗ is the transpose of the matrix representing
M. Note that twice taken dual/conjugate of an entity recovers the original entity:
(K∗)∗ = K, (‖ · ‖∗)∗ = ‖ · ‖, (M∗)∗ = M, (Ξ∗)∗ = Ξ.

Recall that the functions Ψ(·) are given by setups Ξ of the outlined type
according to

Ψ(M) ≡ ΨΞ(M) = max
e∈E

{
dist‖·‖F

(Me,KF ) : e ∈ KE , ‖e‖E ≤ 1
}

.

The aforementioned symmetry is nothing but the following simple statement:
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Proposition 11.4.1. For every setup Ξ = (E, ...,KF ) and everyM∈ L(E, F )
one has

ΨΞ(M) = ΨΞ∗(M∗).

Proof. Let H, 〈·, ·〉H be a Euclidean space. Recall that the polar of a closed
convex set X ⊂ H, 0 ∈ X, is the set Xo = {y ∈ H : 〈y, x〉H ≤ 1 ∀x ∈ X}. We
need the following facts:

(a) If X ⊂ H is closed, convex and 0 ∈ X, then so is Xo, and (Xo)0 = X

[100];
(b) If X ⊂ H is convex compact, 0 ∈ X, and KH ⊂ H is closed convex cone,

then X + KH is closed and

(X + KH)o = Xo ∩ (−KH
∗ ).

Indeed, the arithmetic sum of a compact and a closed set is closed, so that X +KH

is closed, convex, and contains 0. We have

f ∈ (X + KH)o ⇔ 1 ≥ sup
x∈X,h∈KH

〈f, x + h〉H = sup
x∈X

〈f, x〉H + sup
h∈KH

〈f, h〉H ;

since KH is a cone, the concluding inequality is possible iff f ∈ Xo and f ∈ −KH
∗ .

(c) Let ‖·‖ be a norm in H. Then for every α > 0 one has ({x : ‖x‖ ≤ α})o =
{x : ‖x‖∗ ≤ 1/α} (evident).
When α > 0, we have

ΨΞ(M) ≤ α

⇔
{
∀e ∈ KE ∩ {e : ‖e‖E ≤ 1} :
Me ∈ {f : ‖f‖F ≤ α}+ KF [by definition]

⇔
{
∀e ∈ KE ∩ {e : ‖e‖E ≤ 1} :
Me ∈

[
[{f : ‖f‖F ≤ α}+ KF ]o

]o [by (a)]

⇔

⎧⎪⎨⎪⎩
∀e ∈ KE ∩ {e : ‖e‖E ≤ 1} :
〈Me, f〉F ≤ 1 ∀f ∈ [{f : ‖f‖F ≤ α}+ KF ]o︸ ︷︷ ︸

={f :‖f‖∗
F ≤α−1}∩(−KF∗ )

[by (b), (c)]

⇔
{
∀e ∈ KE ∩ {e : ‖e‖E ≤ 1} :
〈e,M∗f〉E ≤ 1 ∀f ∈ {f : ‖f‖∗F ≤ α−1} ∩ (−KF

∗ )

⇔
{
∀e ∈ KE ∩ {e : ‖e‖E ≤ α−1} :
〈e,M∗f〉E ≤ 1 ∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ )
[evident]

⇔
{
∀e ∈ [−(−KE

∗ )∗] ∩ [{e : ‖e‖∗E ≤ α}o] :
〈e,M∗f〉E ≤ 1 ∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ )
[by (c)]

⇔
{
∀e ∈

[
(−KE

∗ ) + {e : ‖e‖∗E ≤ α}
]o :

〈M∗f, e〉E ≤ 1 ∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF
∗ )

[by (b)]

⇔
{
∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ ) :
〈M∗f, e〉E ≤ 1 ∀e ∈ [(−KE

∗ ) + {e : ‖e‖∗E ≤ α}]o

⇔
{
∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ ) :
M∗f ∈ (−KE

∗ ) + {e : ‖e‖∗E ≤ α} [by (a)]

⇔
{
∀f ∈ K∗

F ∩ {f : ‖f‖∗F ≤ 1} :
M∗f ∈ KE

∗ + {e : ‖e‖∗E ≤ α}
⇔ ΨΞ∗(M∗) ≤ α. �
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11.4.2.2 Good GRC setups

Proposition 11.4.1 says that “good” setups Ξ — those for which ΨΞ(·) is efficiently
computable or admits a tight, within certain factor ϑ, efficiently computable upper
bound — always come in symmetric pairs: if Ξ is good, so is Ξ∗, and vice versa.
In what follows, we refer to members of such a symmetric pair as to counterparts

of each other. We are about to list a number of good pairs. From now on, we
assume that all components of a setup in question are “computationally tractable,”
specifically, that the cones KE , KF and the epigraphs of the norms ‖ ·‖E , ‖ ·‖F are
given by LMI representations (or, more general, by systems of efficiently computable
convex constraints). Below, we denote by BE and BF the unit balls of the norms
‖ · ‖E , ‖ · ‖F , respectively.

Here are several good GRC setups:

A: KE = {0}. The counterpart is
A∗: KF = F .

These cases are trivial: ΨΞ(M) ≡ 0.

B: KE = E, BE = Conv{e1, ..., eN}, the list {ei}N
i=1 is available. The coun-

terpart is the case
B∗: KF = {0}, BF = {f : 〈f i, f〉F ≤ 1, i = 1, ..., N}, the list {f i}N

i=1 is

available.

Standard example for B is E = R
n with the standard inner product, KE = E,

‖e‖ = ‖e‖1 ≡
∑
j

|ej |. Standard example for B∗ is F = R
m with the standard inner

product, ‖f‖F = ‖f‖∞ = max
j
|fj |.

The cases in question are easy. Indeed, in the case of B we clearly have

Ψ(M) = max
1≤j≤N

dist‖·‖F
(Mei,K

F ),

and thus Ψ(M) is efficiently computable (as the maximum of a finite family of
efficiently computable quantities dist‖·‖F

(Mei,K
F )). Assuming, e.g., that E, F

are, respectively, R
m and R

n with the standard inner products, and that KF , ‖ ·‖F

are given by strictly feasible conic representations:

KF = {f : ∃u : Pf + Qu ∈ K1},
{t ≥ ‖f‖F } ⇔

{
∃v : Rf + tr + Sv ∈ K2

}
the relation

Ψ(M) ≤ α

can be represented equivalently by the following explicit system of conic constraints

(a) Pf i + Qui ∈ K1, i = 1, ..., N

(b) R(Mei − f i) + αr + Svi ∈ K2, i = 1, ..., N

in variables M, α, ui, f i, vi. Indeed, relations (a) equivalently express the require-
ment f i ∈ KF , while relations (b) say that ‖Mei − f i‖F ≤ α.



GLOBALIZED ROBUST COUNTERPARTS OF UNCERTAIN CONIC PROBLEMS 289

C: KE = E, KF = {0}. The counterpart case is exactly the same.

In the case of C, Ψ(·) is the norm of a linear map from E to F induced by given
norms on the origin and the destination spaces:

Ψ(M) = max
e
{‖Me‖F : ‖e‖E ≤ 1} .

Aside of situations covered by B, B∗, there is only one generic situation where
computing the norm of a linear map is easy — this is the situation where both
‖ · ‖E and ‖ · ‖F are Euclidean norms. In this case, we lose nothing by assuming
that E = �n

2 (that is, E is R
n with the standard inner product and the standard

norm ‖e‖2 =
√∑

i

e2
i ), F = �m

2 , and let M be the m × n matrix representing the

map M in the standard bases of E and F . In this case, Ψ(M) = ‖M‖2,2 is the
maximal singular value of M and as such is efficiently computable. A semidefinite
representation of the constraint ‖M‖2,2 ≤ α is[

αIn MT

M αIm

]
� 0.

Now consider the case when E = �n
p (that is, E is R

n with the standard inner
product and the norm

‖e‖p =

⎧⎪⎪⎨⎪⎪⎩
(∑

j

|ej |p
)1/p

, 1 ≤ p < ∞

max
j
|ej | , p = ∞

,

and F = �m
r , 1 ≤ r, p ≤ ∞. Here again we can naturally identify L(E, F ) with the

space R
m×n of real m× n matrices, and the problem of interest is to compute

‖M‖p,r = max
e
{‖Me‖r : ‖e‖p ≤ 1} .

The case of p = r = 2 is the just considered “purely Euclidean” situation; the
cases of p = 1 and of r = ∞ are covered by B, B∗. These are the only 3 cases
when computing ‖ · ‖p,r is known to be easy. It is also known that it is NP-hard to
compute the matrix norm in question when p > r. However, in the case of p ≥ 2 ≥ r

there exists a tight efficiently computable upper bound on ‖M‖p,r due to Nesterov
[115, Theorem 13.2.4]. Specifically, Nesterov shows that when ∞ ≥ p ≥ 2 ≥ r ≥ 1,
the explicitly computable quantity

Ψp,r(M) =
1
2

min
µ∈Rn

ν∈Rm

{
‖µ‖ p

p−2
+ ‖ν‖ r

2−r
:
[

Diag{µ} MT

M Diag{ν}

]
� 0

}
is an upper bound on ‖M‖p,r, and this bound is tight within the factor ϑ =[

2
√

3
π − 2

3

]−1

≈ 2.2936:

‖M‖p,r ≤ Ψp,r(M) ≤
[

2
√

3
π

− 2
3

]−1

‖M‖p,r.
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It follows that the explicit system of efficiently computable convex constraints[
Diag{µ} MT

M Diag{ν}

]
� 0,

1
2

[
‖µ‖ p

p−2
+ ‖ν‖ r

2−r

]
≤ α (11.4.3)

in variables M , α, µ, ν is a safe tractable approximation of the constraint

‖M‖p,r ≤ α,

which is tight within the factor ϑ. In some cases the value of the tightness factor
can be improved; e.g., when p = ∞, r = 2 and when p = 2, r = 1, the tightness
factor does not exceed

√
π/2.

Most of the tractable (or nearly so) cases considered so far deal with the
case when KF = {0} (the only exception is the case B∗ that, however, imposes
severe restrictions on ‖ · ‖E). In the GRC context, that means that we know nearly
nothing about what to do when the recessive cone of the right hand side set Q
in (11.1.1) is nontrivial, or, which is the same, Q is unbounded. This is not that
disastrous — in many cases, boundedness of the right hand side set is not a severe
restriction. However, it is highly desirable, at least from the academic viewpoint,
to know something about the case when KF is nontrivial, in particular, when KF

is a nonnegative orthant, or a Lorentz, or a Semidefinite cone (the two latter cases
mean that (11.1.1) is an uncertain CQI, respectively, uncertain LMI). We are about
to consider several such cases.

D: F = �m
∞, KF is a “sign” cone, meaning that KF = {u ∈ �m

∞ : ui ≥ 0, i ∈
I+, ui ≤ 0, i ∈ I−, ui = 0, i ∈ I0}, where I+, I−, I0 are given non-intersecting

subsets of the index set i = {1, ...,m}.
The counterpart is

D∗: E = �m
1 , KE = {v ∈ �m

1 : vj ≥ 0, j ∈ J+, vj ≤ 0, j ∈ J−, vj = 0, j ∈ J0},
where J+, J−, J0 are given non-overlapping subsets of the index set {1, ...,m}.

In the case of D∗, assuming, for the sake of notational convenience, that J+ =
{1, ..., p}, J− = {p + 1, ..., q}, J0 = {r + 1, ..., m} and denoting by ej the standard
basic orths in �1, we have

B ≡ {v ∈ KE : ‖v‖E ≤ 1} = Conv{e1, ..., ep,−ep+1, ...,−eq,±eq+1, ...,±er}
≡ Conv{g1, ..., gs}, s = 2r − q.

Consequently,
Ψ(M) = max

1≤j≤s
dist‖·‖F

(Mgj ,KF )

is efficiently computable (cf. case B).

E: F = �m
2 , KF = Lm ≡ {f ∈ �m

2 : fm ≥
√

m−1∑
i=1

f2
i }, E = �n

2 , KE = E.

The counterpart is

E∗: F = �n
2 , KF = {0}, E = �m

2 , KE = Lm.
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Figure 11.1 2-D cross-sections of the solids B,
√

3/2B (ellipses) and Ds by a 2-D plane
passing through the common symmetry axis e1 = ... = em−1 = 0 of the solids.

In the case of E∗, let D = {e ∈ KE : ‖e‖2 ≤ 1}, and let

B = {e ∈ E : e2
1 + ... + e2

m−1 + 2e2
m ≤ 1}.

Let us represent a linear map M : �m
2 → �n

2 by its matrix M in the standard bases
of the origin and the destination spaces. Observe that

B ⊂ Ds ≡ Conv{D ∪ (−D)} ⊂
√

3/2B (11.4.4)

(see figure 11.1). Now, let BF be the unit Euclidean ball, centered at the origin, in
F = �m

2 . By definition of Ψ(·) and due to KF = {0}, we have

Ψ(M) ≤ α ⇔MD ⊂ αBF ⇔ (MD ∪ (−MD)) ⊂ αBF ⇔MDs ⊂ αBF .

Since Ds ⊂
√

3/2B, the inclusion M(
√

3/2B) ⊂ αBF is a sufficient condition for
the validity of the inequality Ψ(M) ≤ α, and since B ⊂ Ds, this condition is tight
within the factor

√
3/2. (Indeed, if M(

√
3/2B) �⊂ αBF , then MB �⊂

√
2/3αBF ,

meaning that Ψ(M) >
√

2/3α.) Noting that M(
√

3/2B) ≤ α if and only if
‖M∆‖2,2 ≤ α, where ∆ = Diag{

√
3/2, ...,

√
3/2,

√
3/4}, we conclude that the

efficiently verifiable convex inequality

‖M∆‖2,2 ≤ α

is a safe tractable approximation, tight within the factor
√

3/2, of the constraint
Ψ(M) ≤ α.

F: F = Sm, ‖ · ‖F = ‖ · ‖2,2, KF = Sm
+ , E = �n

∞, KE = E.

The counterpart is

F∗: F = �n
1 , KF = {0}, E = Sm, ‖e‖E =

m∑
i=1

|λi(e)|, where λ1(e) ≥ λ2(e) ≥

... ≥ λm(e) are the eigenvalues of e, KE = Sm
+ .

In the case of F, given M∈ L(�n
∞,Sm), let e1, ..., en be the standard basic orths of

�n
∞, and let BE = {v ∈ �n

∞ : ‖u‖∞ ≤ 1}. We have

{Ψ(M) ≤ α} ⇔
{
∀v ∈ BE ∃V � 0 : max

i
|λi(Mv − V )| ≤ α

}
⇔ {∀v ∈ BE : Mv + αIm � 0} .
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Thus, the constraint
Ψ(M) ≤ α (∗)

is equivalent to

αI +
n∑

i=1

vi(Mei) � 0 ∀(v : ‖v‖∞ ≤ 1).

It follows that the explicit system of LMIs

Yi � ±Mei, i = 1, ..., n

αIm �
n∑

i=1

Yi
(11.4.5)

in variables M, α, Y1, ..., Yn is a safe tractable approximation of the constraint (∗).
Now let

Θ(M) = ϑ(µ(M)), µ(M) = max
1≤i≤n

Rank(Mei),

where ϑ(µ) is the function defined in the Real Case Matrix Cube Theorem, so that
ϑ(1) = 1, ϑ(2) = π/2, ϑ(4) = 2, and ϑ(µ) ≤ π

√
µ/2 for µ ≥ 1. Invoking this

Theorem (see the proof of Theorem 7.1.2), we conclude that the local tightness
factor of our approximation does not exceed Θ(M), meaning that if (M, α) cannot
be extended to a feasible solution of (11.4.5), then

Θ(M)Ψ(M) > α.

11.5 ILLUSTRATION: ROBUST ANALYSIS OF NONEXPANSIVE

DYNAMICAL SYSTEMS

We are about to illustrate the techniques we have developed by applying them
to the problem of robust nonexpansiveness analysis coming from Robust Control;
in many aspects, this problem resembles the Robust Lyapunov Stability Analysis
problem we have considered in sections 8.2.3 and 9.1.2.

11.5.1 Preliminaries: Nonexpansive Linear Dynamical Systems

Consider an uncertain time-varying linear dynamical system (cf. (8.2.18)):

ẋ(t) = Atx(t) + Btu(t)
y(t) = Ctx(t) + Dtu(t)

(11.5.1)

where x ∈ R
n is the state, y ∈ R

p is the output and u ∈ R
q is the control. The

system is assumed to be uncertain, meaning that all we know about the matrix

Σt =
[

At Bt

Ct Dt

]
is that at every time instant t it belongs to a given uncertainty

set U .
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System (11.5.1) is called nonexpansive (more precisely, robustly nonexpansive

w.r.t. uncertainty set U), if
t∫

0

yT (s)y(s)ds ≤
t∫

0

uT (s)u(s)ds

for all t ≥ 0 and for all trajectories of (all realizations of) the system such that
z(0) = 0. In what follows, we focus on the simplest case of a system with y(t) ≡ x(t),
that is, on the case of Ct ≡ I, Dt ≡ 0. Thus, from now on the system of interest is

ẋ(t) = Atx(t) + Btu(t)
[At, Bt] ∈ AB ⊂ R

n×m ∀t,
m = n + q = dim x + dim u.

(11.5.2)

Robust nonexpansiveness now reads
t∫

0

xT (s)x(s)ds ≤
t∫

0

uT (s)u(s)ds (11.5.3)

for all t ≥ 0 and all trajectories x(·), x(0) = 0, of all realizations of (11.5.2).

Similarly to robust stability, robust nonexpansiveness admits a certificate that
is a matrix X ∈ Sn

+. Specifically, such a certificate is a solution of the following
system of LMIs in matrix variable X ∈ Sm:

(a) X � 0
(b) ∀[A, B] ∈ AB :

A(A,B; X) ≡
[ −In −AT X −XA −XB

−BT X Iq

]
� 0.

(11.5.4)

The fact that solvability of (11.5.4) is a sufficient condition for robust
nonexpansiveness of (11.5.2) is immediate: if X solves (11.5.4), x(·),
u(·) satisfy (11.5.2) and x(0) = 0, then

uT (s)u(s)− xT (s)x(s)− d
ds

[
xT (s)Xx(s)

]
= uT (s)u(s)− xT (s)x(s)

−[ẋT (s)Xx(s) + xT (s)Xẋ(s)] = uT (s)u(s)− xT (s)x(s)

−[Asx(s) + Bsu(s)]T Xx(s)− xT (s)X[Asx(s) + Bsu(s)]

=
[
xT (s), uT (s)

]
A(As, Bs; X)

[
x(s)
u(s)

]
≥ 0,

whence

t > 0 ⇒
t∫
0

[uT (s)u(s)− xT (s)x(s)]ds ≥ xT (t)Xx(t)− xT (0)Xx(0)

= xT (t)Xx(t) ≥ 0.

It should be added that when (11.5.2) is time-invariant, (i.e., AB is a
singleton) and satisfies mild regularity conditions, the existence of the
outlined certificate, (i.e., the solvability of (11.5.4)), is sufficient and

necessary for nonexpansiveness.
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Now, (11.5.4) is nothing but the RC of the system of LMIs in matrix variable
X ∈ Sn:

(a) X � 0
(b) A(A,B; X) ∈ Sm

+ ,
(11.5.5)

the uncertain data being [A,B] and the uncertainty set being AB. From now on
we focus on the interval uncertainty, where the uncertain data [A, B] in (11.5.5) is
parameterized by perturbation ζ ∈ R

L according to

[A,B] = [Aζ , Bζ ] ≡ [An, Bn] +
L∑

�=1

ζ�e�f
T
� ; (11.5.6)

here [An, Bn] is the nominal data and e� ∈ R
n, f� ∈ R

m are given vectors.

Imagine, e.g., that the entries in the uncertain matrix [A, B] drift, independently

of each other, around their nominal values. This is a particular case of (11.5.6) where

L = nm, � = (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m, and the vectors e� and f� associated

with � = (i, j) are, respectively, the i-th standard basic orth in R
n multiplied by a given

deterministic real δ� (“typical variability” of the data entry in question) and the j-th

standard basic orth in R
m.

11.5.2 Robust Nonexpansiveness: Analysis via GRC

11.5.2.1 The GRC setup and its interpretation

We are about to consider the GRC of the uncertain system of LMIs (11.5.5) affected
by interval uncertainty (11.5.6). Our “GRC setup” will be as follows:

i) We equip the space R
L where the perturbation ζ lives with the uniform norm

‖ζ‖∞ = max� |ζ�|, and specify the normal range of ζ as the box

Z = {ζ ∈ R
L : ‖ζ‖∞ ≤ r} (11.5.7)

with a given r > 0.

ii) We specify the cone L as the entire E = R
L, so that all perturbations are

“physically possible.”

iii) The only uncertainty-affected LMI in our situation is (11.5.5.b); the right
hand side in this LMI is the positive semidefinite cone Sn+m

+ that lives in
the space Sm of symmetric m × m matrices equipped with the Frobenius
Euclidean structure. We equip this space with the standard spectral norm
‖ · ‖ = ‖ · ‖2,2.

Note that our setup belongs to what was called “case F” on p. 291.

Before processing the GRC of (11.5.5), it makes sense to understand what does
it actually mean that X is a feasible solution to the GRC with global sensitivity α.
By definition, this means three things:
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A. X � 0;

B. X is a robust feasible solution to (11.5.5.b), the uncertainty set being

ABr ≡ {[Aζ , bζ ] : ‖ζ‖∞ ≤ r} ,

see (11.5.6); this combines with A to imply that if the perturbation ζ = ζt under-
lying [At, Bt] all the time remains in its normal range Z = {ζ : ‖ζ‖∞ ≤ r}, the
uncertain dynamical system (11.5.2) is robustly nonexpansive.

C. When ρ > r, we have

∀(ζ, ‖ζ‖∞ ≤ ρ) : dist(A(Aζ , Bζ ;X),Sm
+ ) ≤ αdist(ζ,Z|L) = α(ρ− r),

or, recalling what is the norm on Sm,

∀(ζ, ‖ζ‖∞ ≤ ρ) : A(Aζ , Bζ ; X) � −α(ρ− r)Im. (11.5.8)

Now, repeating word for word the reasoning we used to demonstrate that (11.5.4)
is sufficient for robust nonexpansiveness of (11.5.2), one can extract from (11.5.8)
the following conclusion:

(!) Whenever in uncertain dynamical system (11.5.2) one has [At, Bt] =
[Aζt , Bζt ] and the perturbation ζt remains all the time in the range

‖ζt‖∞ ≤ ρ, one has

(1− α(ρ− r))

t∫
0

xT (s)x(s)ds ≤ (1 + α(ρ− r))

t∫
0

uT (s)u(s)ds (11.5.9)

for all t ≥ 0 and all trajectories of the dynamical system such that

x(0) = 0.

We see that global sensitivity α indeed controls “deterioration of nonexpansiveness”
as the perturbations run out of their normal range Z: when the ‖ · ‖∞ distance
from ζt to Z all the time remains bounded by ρ − r ∈ [0, 1

α ), relation (11.5.9)
guarantees that the L2 norm of the state trajectory on every time horizon can be
bounded by constant times the L2 norm of the control on the this time horizon.

The corresponding constant
(

1+α(ρ−r)
1−α(ρ−r)

)1/2

is equal to 1 when ρ = r and grows with

ρ, blowing up to +∞ as ρ− r approaches the critical value α−1, and the larger α,
the smaller is this critical value.

11.5.2.2 Processing the GRC

Observe that (11.5.4) and (11.5.6) imply that

A(Aζ , Bζ ;X) = A(An, Bn; X)−∑L
�=1 ζ�

[
LT

� (X)R� + RT
� L�(X)

]
,

LT
� (X) = [Xe�; 0m−n,1] , RT

� = f�.
(11.5.10)
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Invoking Proposition 11.3.3, the GRC in question is equivalent to the following
system of LMIs in variables X and α:

(a) X � 0

(b) ∀(ζ, ‖ζ‖∞ ≤ r) :

A(An, Bn;X) +
∑L

�=1 ζ�

[
LT

� (X)R� + RT
� L�(X)

]
� 0

(c) ∀(ζ, ‖ζ‖∞ ≤ 1) :
∑L

�=1 ζ�

[
LT

� (X)R� + RT
� L�(X)

]
� −αIm.

(11.5.11)

Note that the semi-infinite LMIs (11.5.11.b, c) are affected by structured norm-
bounded uncertainty with 1× 1 scalar perturbation blocks (see section 9.1.1). In-
voking Theorem 9.1.2, the system of LMIs

(a) X � 0

(b.1) Y� � ±
[
LT

� (X)R� + RT
� L�(X)

]
, 1 ≤ � ≤ L

(b.2) A(An, Bn; X)− r
∑L

�=1 Y� � 0

(c.1) Z� � ±
[
LT

� (X)R� + RT
� L�(X)

]
, 1 ≤ � ≤ L

(c.2) αIm −∑L
�=1 Z� � 0

in matrix variables X, {Y�, Z�}L
�=1 and in scalar variable α is a safe tractable ap-

proximation of the GRC, tight within the factor π
2 . Invoking the result of Exercise

9.1, we can reduce the design dimension of this approximation; the equivalent re-
formulation of the approximation is the SDO program

minα

s.t.
X � 0⎡⎢⎢⎢⎢⎣
A(An, Bn; X)− r

∑L
�=1 λ�R

T
� R� LT

1 (X) · · · LT
L(X)

L1(X) λ1/r
...

. . .
LL(X) λL/r

⎤⎥⎥⎥⎥⎦ � 0

⎡⎢⎢⎢⎢⎣
αIm −∑L

�=1 µ�R
T
� R� LT

1 (X) · · · LT
L(X)

L1(X) µ1

...
. . .

LL(X) µL

⎤⎥⎥⎥⎥⎦ � 0

(11.5.12)
in variable X ∈ Sm and scalar variables α, {λ�, µ�}L

�=1. Note that we have equipped
our (approximate) GRC with the objective to minimize the global sensitivity of X;
of course, other choices of the objective are possible as well.
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11.5.2.3 Numerical illustration

The data. In the illustration we are about to present, the state dimension is n = 5,
and the control dimension is q = 2, so that m = dimx + dimu = 7. The nominal
data (chosen at random) are as follows:

[An, Bn]

= M :=

⎡⎢⎢⎢⎢⎣
−1.089 −0.079 −0.031 −0.575 −0.387 0.145 0.241
−0.124 −2.362 −2.637 0.428 1.454 −0.311 0.150
−0.627 1.157 −1.910 −0.425 −0.967 0.022 0.183
−0.325 0.206 0.500 −1.475 0.192 0.209 −0.282

0.238 −0.680 −0.955 −0.558 −1.809 0.079 0.132

⎤⎥⎥⎥⎥⎦.

The interval uncertainty (11.5.6) is specified as

[Aζ , bζ ] = M +
5∑

i=1

7∑
j=1

ζij |Mij |gi︸ ︷︷ ︸
ei

fT
j ,

where gi, fj are the standard basic orths in R
5 and R

7, respectively; in other words,
every entry in [A,B] is affected by its own perturbation, and the variability of an
entry is the magnitude of its nominal value.

Normal range of perturbations. Next we should decide how to specify the
normal range Z of the perturbations, i.e., the quantity r in (11.5.7). “In reality”
this choice could come from the nature of the dynamical system in question and the
nature of its environment. In our illustration there is no “nature and environment,”
and we specify r as follows. Let r∗ be the largest r for which the robust nonexpan-
siveness of the system at the perturbation level r, (i.e., the perturbation set being
the box Br = {ζ : ‖ζ‖∞ ≤ r}) admits a certificate. It would be quite reasonable to
choose, as the normal range of perturbations Z, the box Br∗ , so that the normal
range of perturbations is the largest one where the robust nonexpansiveness still
can be certified. Unfortunately, precise checking the existence of a certificate for a
given box in the role of the perturbation set means to check the feasibility status
of the system of LMIs

(a) X � 0
(b) ∀(ζ, ‖ζ‖∞ ≤ r) : A(Aζ , Bζ ; X) � 0

in matrix variable X, with A(·, ·; ·) given in (11.5.4). This task seems to be in-
tractable, so that we are forced to replace this system with its safe tractable ap-
proximation, tight within the factor π/2, specifically, with the system

X � 0⎡⎢⎢⎢⎢⎣
A(An, Bn; X)− r

∑L
�=1 λ�R

T
� R� LT

1 (X) · · · LT
L(X)

L1(X) λ1/r
...

. . .
LL(X) λL/r

⎤⎥⎥⎥⎥⎦ � 0
(11.5.13)
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in matrix variable X and scalar variables λ� (cf. (11.5.12)), with R�(X) and L�

given by (11.5.10). The largest value r1 of r for which the latter system is solvable
(this quantity can be easily found by bisection) is a lower bound, tight within the
factor pi/2, on r∗, and this is the quantity we use in the role of r when specifying
the normal range of perturbations according to (11.5.7).

Applying this approach to the outlined data, we end up with

r = r1 = 0.0346.

The results. With the outlined nominal and perturbation data and r, the optimal
value in (11.5.12) turns out to be

αGRC = 27.231.

It is instructive to compare this quantity with the global sensitivity of the RC-
certificate XRC of robust nonexpansiveness; by definition, XRC is the X component
of a feasible solution to (11.5.13) where r is set to r1. This X clearly can be extended
to a feasible solution to our safe tractable approximation (11.5.12) of the GRC; the
smallest, over all these extensions, value of the global sensitivity α is

αRC = 49.636,

which is by a factor 1.82 larger than αGRC. It follows that the GRC-based analysis
of the robust nonexpansiveness properties of the uncertain dynamical system in
question provides us with essentially more optimistic results than the RC-based
analysis. Indeed, a feasible solution (α, ...) to (11.5.12) provides us with the upper

bound

C∗(ρ) ≤ Cα(ρ) ≡
{

1, 0 ≤ ρ ≤ r
1+α(ρ−r)
1−α(ρ−r) , r ≤ ρ < r + α−1 (11.5.14)

(cf. (11.5.9)) on the “existing in the nature, but difficult to compute” quantity

C∗(ρ) = inf
{

C :
∫ t

0
xT (s)x(s)ds ≤ C

∫ t

0
uT (s)u(s)ds∀(t ≥ 0, x(·), u(·)) :

x(0) = 0, ẋ(s) = Aζsx(s) + Bζsu(s), ‖ζs‖∞ ≤ ρ∀s
}

responsible for the robust nonexpansiveness properties of the dynamical system.
The upper bounds (11.5.14) corresponding to αRC and αGRC are depicted on the
left plot in figure 11.2 where we see that the GRC-based bound is much better than
the RC-based bound.

Of course, both the bounds in question are conservative, and their “level of conser-
vatism” is difficult to access theoretically: while we do understand how conservative our
tractable approximations to intractable RC/GRC are, we have no idea how conservative
the sufficient condition (11.5.4) for robust nonexpansiveness is (in this respect, the situ-
ation is completely similar to the one in Lyapunov Stability Analysis, see section 9.1.2).
We can, however, run a brute force simulation to bound C∗(ρ) from below. Specifically,
generating a sample of perturbations of a given magnitude and checking the associated
matrices [Aζ , Bζ ] for nonexpansiveness, we can build an upper bound ρ1 on the largest ρ
for which every matrix [Aζ , Bζ ] with ‖ζ‖∞ ≤ ρ generates a nonexpansive time-invariant
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Figure 11.2 RC/GRC-based analysis: bounds (11.5.14) vs. ρ for α = αGRC (solid) and
α = αRC (dashed).

dynamical system; ρ1 is, of course, greater than or equal to the largest ρ = ρ1 for which
C∗(ρ) ≤ 1. Similarly, testing matrices Aζ for stability, we can build an upper bound ρ∞
on the largest ρ = ρ∞ for which all matrices Aζ , ‖ζ‖∞ ≤ ρ, have all their eigenvalues in
the closed left hand side plane; it is immediately seen that C∗(ρ) = ∞ when ρ > ρ∞. For
our nominal and perturbation data, simulation yields

ρ1 = 0.310, ρ∞ = 0.7854.

These quantities should be compared, respectively, to r1 = 0.0346, (which clearly is a lower

bound on the range ρ1 of ρ’s where C∗(ρ) ≤ 1) and r∞ = r1 + α−1
GRC (this is the range of

values of ρ where the GRC-originating upper bound (11.5.14) on C∗(ρ) is finite; as such,

r∞ is a lower bound on ρ∞). We see that in our numerical example the conservatism of

our approach is “within one order of magnitude”: ρ1/r1 ≈ 8.95 and ρ∞/r∞ ≈ 11.01.
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Chapter Twelve
Robust Classification and Estimation

In this chapter, we present some applications of Robust Optimization in the context
of Machine Learning and Linear Regression.

12.1 ROBUST SUPPORT VECTOR MACHINES

We begin our development with an overview, the focus of which is the specific
example of Support Vector Machines for binary classification.

12.1.1 Support Vector Machines

Binary Linear Classification.

Let X denote the n×m matrix of data points (they are columns in X), each one
belonging to one of two classes. Let y ∈ {−1, 1}m be the corresponding label vector,
so that yi = 1 when i-th data point is in the first class, and yi = −1 when i-th data
point is in the second class. We refer to the pair (X, y) as the training data.

In linear classification, we seek to separate, if possible, the two classes by
a hyperplane H(w, b) = {x : wT x + b = 0}, where w ∈ R

n and b ∈ R are
the hyperplane’s parameters. To any candidate hyperplane H(w, b) corresponds a
decision rule of the form z = sign(wT x + b), which can be used to predict the label
z of a new point x.

Maximally robust separation for separable data.

Perfect linear separation occurs when the decision rule makes no errors on the data
set. This translates as a set of linear inequalities in (w, b):

yi(wT xi + b) > 0, i = 1, . . . , m. (12.1.1)

Let us assume that the data is separable, in the sense that the above conditions
are feasible. Assume now that the data is uncertain, specifically, for every i, i-th
“true” data point is only known to belong to the interior of an Euclidian ball
of radius ρ centered at the “nominal” data point xn

i . In the following, we refer
to this as to spherical uncertainty. Insisting that the above inequalities be valid
for all choices of the data points within their respective balls leads to the Robust
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Figure 12.1 Maximally robust classifier for separable data, with spherical uncertainties
around each data point.

Counterpart to the above inequalities:

yi(wT xn
i + b) ≥ ρ‖w‖2, i = 1, . . . , m. (12.1.2)

The maximally robust classifier is the one that maximizes ρ subject to the con-
ditions (12.1.2). By homogeneity of the above in (w, b), we can always enforce
ρ‖w‖2 = 1, so that maximizing ρ leads to minimizing ‖w‖2, via the quadratic
optimization problem:

min
w,b

{
‖w‖2 : yi(wT xn

i + b) ≥ 1, 1 ≤ i ≤ m
}

. (12.1.3)

The above problem and its optimal solution are illustrated in figure 12.1.
The maximally robust classifier corresponds to the largest radius such that the
corresponding balls around each data point are still perfectly separated. In Machine
Learning literature, the optimal quantity ρ is referred to as the margin of the
classifier, and the corresponding classifier as the maximum margin classifier.

Non-separable case: the hinge loss function.

In general, perfect separation may not be possible. To cope with this, we modify
the “separation constraints” yi(wT xi + b) ≥ 1 as

yi(wT xi + b) ≥ 1− vi, vi ≥ 0, i = 1, . . . , m,

where the number of nonzero entries in the slack vector v is the number of errors the
classifier makes on the training data. We could look for a classifier that minimizes
this number, but this would be a computationally intractable problem. Instead, we
can seek to minimize the more tractable sum of the elements of v. This leads to
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Figure 12.2 The classical SVM separator for non-separable data, as defined in (12.1.6),
with regularization parameter λ = 0.1.

the linear optimization problem

min
w,b

{
m∑

i=1

vi : yi(wT xi + b) ≥ 1− vi, vi ≥ 0, 1 ≤ i ≤ m

}
. (12.1.4)

This can be written in the equivalent form of minimizing the so-called realized
hinge loss function

Rsvm(w, b) :=
m∑

i=1

[1− yi(wT xi + b)]+, (12.1.5)

where we used the term “realized” to emphasize that the function above depends
on a particular realization of the data.

The above function is based on replacing the indicator function, which would
arise if we were to minimize the actual number of errors, with a convex upper
bound.

The classical SVM formulation.

In practice, we need to trade-off the number of training set errors (or its proxy,
which is the loss function above), and the amount of robustness with respect to
spherical perturbations of the data points. One way to formulate this trade-off is
via the classical Support Vector Machine (SVM) formulation:

minw,b,v

{
λ‖w‖22 +

∑m
i=1 vi : yi(wT xi + b) ≥ 1− vi, 1 ≤ i ≤ m, v ≥ 0

}
�

minw,b

{
Rsvm(w, b) + λ‖w‖22

}
,

(12.1.6)
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where λ > 0 is a regularization parameter. An example is shown in figure 12.2. A
less classical approach to accomplish the above trade-off is

min
w,b

{Rsvm(w, b) + λ‖w‖2} . (12.1.7)

The above, which we call the norm-penalized SVM, is equivalent to the classical
formulation (12.1.6), in the sense that the set of solutions obtained when λ spans
the positive real line is the same for both problems.

12.1.2 Minimizing Worst-Case Realized Loss

An alternate (and perhaps more versatile) approach to the classical SVM is to
consider the minimization of the realized loss function Rsvm, and then apply a
robust optimization procedure, in order to minimize its worst-case value under
perturbations of the data points. The corresponding problem has the form of
minimizing (over (w, b)) the worst-case realized loss function

max
X∈X

Rsvm(w, b), (12.1.8)

where the set X describes our uncertainty model about the data matrix X. (Our
notation here is somewhat loose, as the dependence of the realized loss function on
the data X is implicit.)

12.1.3 Measurement-Wise Uncertainty Models

We examine the worst-case hinge loss minimization problem in the case when per-
turbations affect each measurement independently.

Spherical uncertainty.

Return to our spherical uncertainty model, for which the set X is Xsph, where

Xsph := {Xn + ∆ : ∆ = [δ1, . . . , δm], ‖δi‖2 ≤ ρ, i = 1, . . . , m} .

Here, the matrix Xn contains the nominal data, and its columns xn
i are the nominal

data points (nominal feature vectors, in the SVM terminology). We obtain an
explicit expression for the worst-case realized loss:

max
X∈Xbll

Rsvm(w, b) =
m∑

i=1

[1− yi(wT xn
i + b) + ρ‖w‖2]+.

The worst-case realized loss function above can be minimized via second-order cone
optimization:

min
w,b

{
m∑

i=1

[1− yi(wT xn
i + b) + ρ‖w‖2]+

}
. (12.1.9)

Note that the robust version of worst-case loss minimization is not the same
as the classical Support Vector Machine (12.1.6): in the former case, the penalty
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Figure 12.3 Maximally robust classifier for separable data, with box-type uncertainties.

term is “inside” the loss function, while it is outside in the latter. In the worst-case
loss minimization, we are trying to separate balls drawn around data points, as
we did in the separable case. If the interior of one of these balls intersects the
separating hyperplane, then the procedure counts this as an error. In contrast, the
classical SVM procedure only considers errors corresponding to the centers of the
balls. It turns out that we can bound one approach relative to the other. An upper
bound on the worst-case loss is readily given by

m∑
i=1

[1− yi(wT xn
i + b) + ρ‖w‖2]+ ≤

m∑
i=1

[1− yi(wT xn
i + b)]+ + mρ‖w‖2.

Minimizing the upper bound above is of the same form as the norm-penalized
SVM (12.1.7), itself closely linked to the classical Vector Machine solution, as noted
before.

Interval uncertainty models

We can modify our assumptions about the uncertainty affecting the data, which
leads to different classification algorithms. Of particular interest is the case
when the uncertainty affects each element of the data matrix independently, in
a component-wise fashion.

For example, consider the box uncertainty model, where each data point i is
only known to belong to the ‖ · ‖∞-ball of radius ρ centered at the nominal data.
The associated version of (12.1.2) is

yi(wT xn
i + b) ≥ ρ‖w‖1, i = 1, . . . ,m.

The corresponding maximally robust classifier is obtained via the Linear Optimiza-
tion problem

min
w,b

{
‖w‖1 : yi(wT xn

i + b) ≥ 1, 1 ≤ i ≤ m
}

. (12.1.10)
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An example is illustrated in figure 12.3. Observe the contrast with the case when
uncertainties are spherical (figure(12.1)): with box uncertainties, the classifier’s
coefficient vector tends to be sparser. (This effect becomes more pronounced as
n/m becomes larger.)

Likewise, minimizing the worst-case realized loss function (12.1.8) where the
set X is described as a box:

Xbox = {Xn + ∆ : ∆ = [δ1, . . . , δm], ‖δi‖∞ ≤ ρ, i = 1, . . . , m} , (12.1.11)

is solved via the Linear Optimization problem

min
w,b

{
m∑

i=1

[1− yi(wT xn
i + b) + ρ‖w‖1]+

}
.

We can extend some of the above results to more general interval uncertainty
models, of the form

Xint = {Xn + ∆ : |∆pq| ≤ ρRpq, 1 ≤ p ≤ n, 1 ≤ q ≤ m} , (12.1.12)

where R ∈ R
n×m
+ is a matrix with nonnegative entries that specifies the relative

ranges of the uncertainties around each component of Xn. The corresponding
worst-case realized loss takes the form

max
X∈Xint

Rsvm(w, b) =
m∑

i=1

[1− yi(wT xn
i + b) + ρσT

i |w|]+,

where σi is the i-th column of R, 1 ≤ i ≤ m, and |w| = [|w1|; . . . ; |wn|].
Note that, for general uncertainty models, the approach we followed to de-

vise maximally robust classifiers becomes a little more complicated. Indeed, the
condition for robust separability writes now

yi(wT xn
i + b) ≥ ρσT

i |w|, i = 1, . . . , m.

Unless the vectors σi, i = 1, . . . , m, are all equal, there is no way to formulate the
problem of maximizing ρ subject to the above conditions, as a convex optimization
problem, as we did before. Of course, the problem is quasi-convex, and can be
solved as a sequence of convex ones via Bisection in ρ.

12.1.4 Coupled Uncertainty Models

In the previous models, uncertainty independently affects each measurement (each
column of X). In some cases, it makes sense to assume instead a global bound on the
perturbation matrix, which couples uncertainties affecting different measurements.
These models are part of a family referred to as coupled uncertainty models.
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A norm-bound uncertainty model

Perhaps the simplest of coupled uncertainty models corresponds to the uncertainty
set

XLSV =
{
Xn + ∆ : ∆ ∈ R

n×m, ‖∆‖ ≤ ρ
}

, (12.1.13)

where Xn is the nominal data and ‖ · ‖ denotes the largest singular value (LSV)
norm.

For separable data, the maximally separable classifier is based on the robust
separability condition

∀ i = 1, . . . , m, ∀∆ = [δ1, . . . , δm], ‖∆‖ ≤ ρ : yi(wT (xn
i + δi) + b) ≥ 1.

It turns out that the above condition is exactly the same as the robust separability
condition encountered for spherical uncertainties, (12.1.2). This comes from the
fact that the conditions above only involve the projection of the unit ball (for the
matrix norm ‖·‖) on the subspaces generated by the columns of ∆. The maximally
robust separating classifier is the same in the present norm-bound model, as it was
in the case of spherical uncertainties.

In contrast, when we look at minimizing the worst-case realized loss function
(12.1.8), the situation is different, since the norm induces a coupling between terms
corresponding to different measurements. The robust problem of interest now is

min
w,b

{
max
X∈X

m∑
i=1

[1− yi(wT xi + b)]+

}
. (12.1.14)

In the case of X = XLSV , as it will be seen later, the worst-case realized cost
function, which is the objective in (12.1.14), can be expressed as

max
k∈{0,...,m}

{
min

µ

{
ρ
√

k‖w‖2 + kµ +
m∑

i=1

[1− yi(wT xn
i + b)− µ]+

}}
.

The problem of minimizing this function writes as a second-order cone optimization
problem:

min
w,b,t,{µk}

{
t :

t ≥ ρ
√

k‖w‖2 + kµk +
∑m

i=1[1− yi(wT xn
i + b)− µk]+,

0 ≤ k ≤ m

}
.

(12.1.15)

Setting µk = 0 for every k in (12.1.15), we obtain an upper bound of the form

min
w,b

{
m∑

i=1

[1− yi(wT xn
i + b)]+ + ρ

√
m‖w‖2

}
,

which is similar (up to a scaling of the penalty term) to the norm-penalized SVM,
(12.1.7). Also, setting µk = −k−1/2ρ‖w‖2 for every k in (12.1.15), we obtain the
problem (12.1.9) (with ρ

√
m in the role of ρ) which we encountered with spherical

uncertainties.
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12.1.5 Worst-Case Loss and Adjustable Variables

As noted before, the norm-bound uncertainty model couples the uncertainties af-
fecting different measurements. Our previous development shows that the problem
of minimizing the worst-case loss function under norm-bounded uncertainties is not
equivalent to the same problem under spherical (measurement-wise) uncertainties.

This discrepancy might be understood geometrically. In the worst-case loss
problem (12.1.8) with the LSV model, we can replace the set X by a bigger set of
the form X1×. . .×Xm, where Xi’s are the projections of X on the δi variables, where
δi’s are the columns of ∆. Exploiting the fact that the loss function decomposes as a
sum of terms that depend on δi only, we obtain the spherical model’s SVM (12.1.9).

Another interpretation calls into play Robust Optimization with adjustable

variables. Start from the Linear Optimization representation of the problem of min-
imizing the realized loss function, (12.1.4), and then apply a Robust Optimization
procedure, requiring that the constraints be satisfied irrespective of the choice of
the data matrix in the set X . This “naive” approach would lead us to replace the
constraints by their robust counterpart:

∀∆ = [δ1, . . . , δm], ‖∆‖ ≤ ρ : yi(wT (xi + δi) + b) ≥ 1− vi,

vi ≥ 0,

i = 1, . . . , m,

which is the same as

yi(wT xi + b) ≥ 1− vi + ρ‖w‖2, vi ≥ 0, i = 1, . . . , m,

Minimizing
∑m

i=1 vi subject to the above constraints is precisely the same as the
problem corresponding to spherical (measurement-wise) uncertainties, (12.1.9).

Contrarily to what happens with maximally robust classifiers for separable
data, a naive approach to robustifying the problem fails to produce an accurate
answer. Indeed, in the naive approach above, the slack variable v is assumed to
be independent of the perturbation. In reality, this variable should be considered
a function of the perturbation, as an adjustable variable, in order to accurately
model our problem of minimizing the worst-case realized loss function.1 The naive
approach does work when imposing v = 0, as we do with maximally robust classifiers
for separable data.

Our discussion motivates us to study the problem of computing, and opti-
mizing, the worst-case loss function in more detail. The next section is devoted to
building a framework of specific models for which exact answers are possible.

1For in-depth study of adjustability and adjustable Robust Counterparts, see chapter 14.
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12.2 ROBUST CLASSIFICATION AND REGRESSION

12.2.1 Nominal Problem and Robust Counterpart

Loss function minimization

We start from the following “nominal” problem, which is

min
θ∈Θ

L(ZT θ), (12.2.1)

where the function L : R
m → R is convex; the variable θ contains the regressor or

classifier coefficients, and is constrained to a given convex set Θ ⊆ R
n; the matrix

Z := [z1, . . . , zm] ∈ R
n×m contains the data of the problem. We assume that the

set Θ is computationally tractable, and that the nominal problem is so as well.

In the following, we refer to the columns zi’s of the data matrix Z as measure-
ments, and to its rows as features. We call the vector θ the parameter vector. For a
given parameter vector θ ∈ Θ, we define r = ZT θ to be the corresponding residual
vector. In our setup, we refer to r → L(r) as the loss function (a function of the
residual vector), and to θ → L(ZT θ) as the realized loss function (a function of
the parameter vector). With this definition, the loss function is data-independent,
whereas the realized loss is not.

Robust Counterpart

We address the Robust Counterpart to the nominal problem (12.2.1), which is to
minimize the worst-case realized loss function:

min
θ∈Θ

max
Z∈Z

L(ZT θ), (12.2.2)

where Z ⊆ R
m×n is a given subset of matrices that describes the uncertainty on

the data matrix Z. We assume that

Z = Zn + ρUD, (12.2.3)

where the matrix Zn ∈ R
n×m contains the nominal data, the uncertainty level

ρ ≥ 0 allows one to control the size of the perturbation, and the given matrix
U ∈ R

n×l allows for modeling some structural information about the perturbation,
as when some rows of the matrix Z are not affected by uncertainty. Here, the triple
(Zn, ρ, U) encodes the robust problem’s data. The set D ⊆ R

l×m (convex, compact,
and containing the origin) is reserved for describing structural information about
the perturbation, such as norm bounds. For now, the only assumption we make
about the set D is that it is computationally tractable, meaning that its support
function

φD(Y ) := max
∆∈D

〈Y,∆〉

is so; from now on, for n ×m matrices Y,∆, 〈Y, ∆〉 = Tr(Y T ∆) is the Frobenius
inner product of the matrices.
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Our goal is to obtain further conditions that ensure that a tractable repre-
sentation of the semi-infinite inequality

∀ Z ∈ Z : L(ZT θ) ≤ τ, (12.2.4)

where τ ∈ R is given, exists. The Robust Counterpart (12.2.2) of (12.2.1) then also
writes in tractable form, as

min
θ∈Θ,τ

{τ : (θ, τ) satisfies (12.2.4) } .

We are about to present two motivating examples.

Example 12.2.1. Robust Linear Regression. Assume that we have observed
m inputs (“regressors”) xi ∈ R

n−2, i = 1, . . . , m, to certain system along with the cor-
responding outputs yi ∈ R, 1 ≤ i ≤ m, of the system, and seek for a linear regression
model

yi ≈ xT
i w + b

that best fits the data, in the sense that a given norm ‖ · ‖ of the residual vector [y1 −
xT

1 w − b; . . . ; ym − xT
mw − b] is as small as possible (perhaps, under certain additional

restrictions on the coefficients w, b of the regressions model). Setting

Z =

⎡⎣ x1 . . . xm

y1 . . . ym

1 . . . 1

⎤⎦ ∈ R
n×m, θ = [−w; 1;−b] ∈ R

n, L(r) = ‖r‖ : R
m → R, (12.2.5)

we can write down the problem of finding the best linear regression model for our data

in the form of (12.2.1), where Θ ⊂ R
n is contained in the plane θn−1 = 1 (and can be a

proper subset of this plane, provided we intend to impose some restrictions on w and b).

If we assume now that the regressors xi and the outputs yi are not measured exactly, so

that all we know about the “true” data matrix Z is that it belongs to a given uncertainty

set Z, a natural course of action is to seek the linear regression model that guarantees the

best possible worst-case, over the data matrices Z ∈ Z, fit, thus arriving at the Robust

Counterpart of (12.2.1).

Example 12.2.2. Robust SVM. Consider the situation that in the previous sec-
tion was called “worst-case realized loss function minimization”, specifically, the situation
where we are given m data points, assembled into the data matrix X = [x1, . . . , xm], along
with labels y1, . . . , ym ∈ {−1, 1} of these points, and seek a linear classifier sign(wT x + b)
capable of minimizing the classification error. As was explained in section 12.1, in the case
of an uncertain data matrix X known to belong to a given uncertainty set X , minimization
of the worst-case realized loss in this case reduces to the semi-infinite problem (12.1.14).
Setting

Z =

⎡⎣ y1x1 . . . ymxm

y1 . . . ym

1 . . . 1

⎤⎦ , θ = [−ω;−b; 1], L(r) =
m∑

i=1

max[ri, 0], (12.2.6)

and straightforwardly converting the uncertainty set X for X into an uncertainty set Z
for Z, we represent the Robust Counterpart (12.1.14) in the form of (12.2.2).
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12.2.2 Some Simple Cases

Scenario uncertainty

Perhaps the simplest case involves an uncertainty set given as a (convex hull) of a
finite number of given matrices. Namely:

Z = Conv
{

Z(1), . . . , Z(K)
}

,

where Z(k) ∈ R
m×n, k = 1, . . . ,K, are given. Then the semi-infinite inequality

(12.2.4) writes in the convex, tractable form

max
1≤k≤K

L((Z(k))T θ) ≤ τ

(cf. section 6.1).

Assumption about the loss function

Another set of results obtains when making specific assumptions about the loss
function.

Assumption L: The loss function L : R
m → R is of the form

L(r) = π(abs(P (r))),

where abs(·) acts componentwise, π : R
m
+ → R is a computationally

tractable convex, monotone function on the non-negative orthant, and

P : R
m → R

m is the vector-valued function

P (r) =
{

r (“symmetric case”)

r+ (“asymmetric case”)

where r+ is the vector with components max[ri, 0], i = 1, . . . ,m.

In the following, Assumption L is always in force, unless the opposite is stated
explicitly.

Examples

The following specific loss functions satisfy assumption L.

• The case of the hinge loss function, (12.1.5), which arises in Support Vector
Machines, is recovered upon choosing P (r) = r+, and π(r) =

∑m
i=1 ri, see

Example 12.2.2.

• Least-squares regression. This is the problem from Example 12.2.1 with ‖·‖ =
‖ · ‖2; here the loss function satisfies L with P (r) = r, π(r) = ‖r‖2.

• �p-norm regression. This is the problem from Example 12.2.1 with ‖ · ‖ =
‖ · ‖p, with a p ∈ [1,∞]. Here the loss function satisfies L with P (r) = r,
π(r) = ‖r‖p.
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• Huber penalty regression, which is useful for outlier rejection. This is the
problem from Example 12.2.1 with

L(r) =
m∑

i=1

H(ri, 1)),

where H : R+ × R++ → R is the (generalized) Huber function

H(t, µ) = max
|ξ|≤1

{
tξ − µξ2

2

}
=

{
t2

2µ , |t| ≤ µ,

|t| − µ
2 , |t| ≥ µ.

(12.2.7)

Here assumption L is satisfied with P (r) = r and π(r) =
∑m

i=1 H(ri, 1).

Without more assumptions on the problem, we can find a tractable represen-
tation of the semi-infinite inequality (12.2.4) in some “simple” cases. We examine
two of these simple cases now.

Weighted �∞-norm loss

Assume that the loss function is such that π(u) = maxi αiui, where the weighting
vector α ∈ R

m
+ is given. Thus, the loss assumes the form

L(r) =

⎧⎨⎩ max
1≤i≤m

αi|ri|, (symmetric case),

max
1≤i≤m

αi[ri]+, (asymmetric case).
(12.2.8)

We can represent the constraint π(u) ≤ τ as a system of at most 2m inequal-
ities of the form u ∈ P, where

P := {u ∈ R
m : − γτ ≤ αiui ≤ τ, i = 1, . . . , m} ,

with γ = 1 in the symmetric case, and γ = 0 in the asymmetric case. The condition
(12.2.4) thus writes

∀∆ ∈ D : − γτ ≤ αi

[
zn
i ]T θ + ρeT

i ∆T UT θ
]
≤ τ, i = 1, . . . , m,

where ei are the standard basic orths in R
m. This translates as the set of tractable

constraints:

−γτ + ραiφD(−UT θeT
i ) ≤ αi[zn

i ]T θ ≤ τ − ραiφD(UT θeT
i ), i = 1, . . . , m. (12.2.9)

Theorem 12.2.3. [Weighted �∞-norm loss] If L is given by (12.2.8) for some
weighting vector α ∈ R

m
+ , then the semi-infinite inequality (12.2.4) can be rep-

resented as the system of explicit convex constraints (12.2.9), with γ = 1 in the
symmetric case, and γ = 0 in the asymmetric case.

Measurement-wise uncertainty

Here, we assume that the columns of Z (each one of which, as the reader recalls,
corresponds to a specific measurement) are independently perturbed. Specifically,
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we assume that
D = D1 × . . .×Dm,

where each Di describes the uncertainty about a specific column i. Let us denote
by φi the support function of Di.

We observe that when ∆ runs through D, the vector u = P ((Zn + ρU∆)T θ)
covers the box {u : 0 ≤ u ≤ uup(θ)}, where

uup(θ) =

⎧⎨⎩
max

[
−[zn

i ]T θ + ρφi(−UT θ), [zn
i ]T θ + ρφi(UT θ)

]
,

(symmetric case),
max

[
0, [zn

i ]T θ + ρφi(UT θ)
]
, (asymmetric case).

(12.2.10)

Exploiting the monotonicity of π(·), we obtain that the bound (12.2.4) on the
worst-case loss holds if and only if

π(uup(θ)) ≤ τ.

We have obtained the following result.

Theorem 12.2.4. [Measurement-wise uncertainty] If L satisfies assumption
L, and the uncertainty set D is measurement-wise, that is, it is given as a product
D1 × . . .×Dm, where each subset Di describes the uncertainty on the i-th column
(measurement) of the matrix Z, then the semi-infinite constraint (12.2.4) can be
represented as the tractable convex constraint

π(uup(θ)) ≤ τ,

where uup is given by (12.2.10).

12.2.3 Generalized Bounded Additive Uncertainty

A second set of results derives from making further assumptions, this time mostly
on the uncertainty model (the set D, see (12.2.3)) considered in the Robust Coun-
terpart (12.2.2).

Assumption on the uncertainty model

As a convenient starting point, observe that since the function L is convex and
finite-valued on R

m (by assumption L), it is the bi-conjugate of itself:

L(r) = sup
v

[
vT r − L∗(v)

]
(12.2.11)

where L∗ is a convex lower semicontinuous function on R
m taking values in R ∪

{+∞}.

This is how (12.2.11) looks for loss functions we are especially interested
in:
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• [p-norm] L(r) = ‖r‖p:

L(r) = max
v:‖v‖p∗≤1

vT r,
1
p

+
1
p∗

= 1

that is, L ∗ (v) = 0 when ‖v‖p∗ ≤ 1 and L∗(v) = +∞ otherwise;

• [hinge loss function] L(r) =
∑m

i=1 max[ri, 0]:

L(r) = max
0≤u≤1

vT r,

where 1 is the all-ones vector. In other words, L∗(v) = 0 when
0 ≤ v ≤ 1 and L∗(v) = +∞ otherwise;

• [Huber loss] L(r) =
∑m

i=1 H(ri, 1), see (12.2.7):

L(r) = max
−1≤v≤1

[
vT r − 1

2
‖v‖22

]
,

i.e., L∗(v) = 1
2‖v‖22 when −1 ≤ v ≤ 1 and L∗(v) = +∞ otherwise.

We continue to focus on the additive uncertainty model (12.2.3), and make a
further assumption about the set D. To motivate our assumption, we observe that
in view of (12.2.11), the objective of the robust problem (12.2.2) reads

maxZ∈Z L(ZT θ) = max∆∈D, v

{
vT (Zn + ρU∆)T θ − L∗(v)

}
= maxv

{
vT [Zn]T θ − L∗(v) + ρ max∆∈D

[
θT U∆v

]}
.

(12.2.12)
Hence, the function from R

l × R
m to R defined as

(u, v) → max
∆∈D

uT ∆v (12.2.13)

plays a crucial role, as it fully encapsulates the way in which the perturbation
structure, that is, the set D, enters the robust problem. Note that, as is common
in Robust Optimization, the convexity of the set D plays no role in the robust
counterpart: D can be safely replaced by its convex hull there.

We now make a fundamental assumption about the set D in regards of the
function defined in (12.2.13). Recall that a Minkowski function φ(·) is a (finite
everywhere) nonnegative convex function φ that is positively homogeneous of degree
1: φ(tv) = tφ(v) whenever t ≥ 0.

Our assumption on the set D is as follows:

Assumption A: The set D is such that there exists a Minkowski func-

tion φ on Rl and a norm ψ on R
m such that

∀ u ∈ R
l, ∀ v ∈ R

m : max
∆∈D

uT ∆v = φ(u)ψ(v).

A way to interpret assumption A is that it provides an expression for the sup-
port function of the matrix set D, but only for rank-one matrices. As such, the
assumption does not fully characterize D.
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Examples

Here are a few examples of sets D that satisfy assumption A. We identify each case
on our list with an acronym that will allow us to easily refer to a specific uncertainty
model. For example, model LSV refers to the first model detailed below.

[LSV] Largest singular value model: With D = {∆ ∈ R
l×m : ‖∆‖ ≤ 1}, where ‖ ·‖ is

the largest singular value of ∆, one can capture possible dependencies between
uncertainties affecting different data points. This set satisfies assumption A,
with φ, ψ being the Euclidean norms in R

l and R
m, respectively.

[FRO] The Frobenius norm model is the same as above, with the Frobenius norm
instead of the largest singular value norm. This set satisfies assumption A,
with the same φ, ψ.

[IND] Induced norm model: Consider, as an extension of the LSV model, the set
D = {∆ ∈ R

l×m : ‖∆v‖p∗ ≤ ‖v‖q ∀v ∈ R
m}, where p, q ∈ [1,∞] and 1

p∗
+ 1

p =
1. This set satisfies assumption A with φ(·) = ‖ · ‖p, ψ(·) = ‖ · ‖q.

[MWU] Measurement-wise uncertainty models, already seen in section 12.1.3, corre-
spond to the following choice of the set D:

D =
{
∆ = [δ1, . . . , δm] ∈ R

l×m : ‖δi‖ ≤ 1, i = 1, . . . , m
}

,

where ‖ · ‖ is a norm on R
l (the case of box uncertainty (12.1.11) corresponds

to U = I, ‖ · ‖ ≡ ‖ · ‖∞). Such sets satisfy assumption A with ψ(·) = ‖ · ‖1
and φ(·) = ‖ · ‖∗, where ‖ · ‖∗ is the norm conjugate to a norm ‖ · ‖:

‖η‖∗ = max
h
{hT η : ‖h‖ ≤ 1} [⇔ ‖h‖ = max

η
{ηT h : ‖η‖∗ ≤ 1}].

[COM] Composite norm models: This is a variation of the previous case as follows

D =
{
∆ = [δ1, . . . , δm] ∈ R

l×m : ‖[‖δ1‖p; . . . ; ‖δm‖p]‖q ≤ 1
}

,

with p, q ∈ [1,∞]. Here assumption A is satisfied with φ(·) = ‖·‖p∗ and ψ(·) =
‖ · ‖q∗ , where for an s ∈ [1,∞] s∗ is given by 1

s∗
+ 1

s = 1 (see Exercise 12.2).
The MWU models are obtained with q = ∞. When q < ∞, the above
allows one to capture dependencies across perturbations affecting different
measurements.

[KER] K-error models: For p ∈ [1,∞] and K ∈ {1, . . . , m}, the set

D = Conv
{
[λ1δ1, . . . , λmδm] ∈ R

l×m : ‖δi‖p ≤ 1, 1 ≤ i ≤ m,∑m
i=1 λi ≤ K, λ ∈ {0, 1}m} ,

allows to model the fact that there are at most K (norm-bounded) errors
affecting the measurements, which again couples them. Here, assumption A
is satisfied with φ(·) = ‖ · ‖p∗ and with the norm ψ defined as

ψ(v) =
K∑

i=1

|v|[i], (12.2.14)
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where |v|[i] is the i-th largest component of the vector [|v1|; . . . ; |vm|]. Note
that this norm has both the �1 and �∞ norms as special cases, obtained with
K = m and K = 1, respectively.

The worst-case loss function

Under assumption A, invoking (12.2.12), we obtain the worst-case realized loss
function

max
Z∈Z

L(ZT θ) = max
v

{
vT [Zn]T θ − L∗(v) + ρφ(UT θ)ψ(v)

}
. (12.2.15)

Introducing convex function Lwc(r, κ) : R
m × R+ → R given by

Lwc(r, κ) :=max
v

[
vT r − L∗(v) + κψ(v)

]
, (12.2.16)

the semi-infinite inequality (12.2.4) becomes the convex inequality

Lwc([Zn]T θ, ρφ(UT θ)) ≡ min
κ

{
Lwc([Zn]T θ, κ) : κ ≥ ρφ(UT θ)

}
≤ τ. (12.2.17)

Note that ≡ in the latter relation is due to the evident fact that Lwc is nondecreasing
with respect to its second argument.

We will refer to the function (12.2.16) as the worst-case loss function associ-
ated with our robust problem. The worst-case loss function is indeed a loss function
in the classical sense, since it is convex and independent of the problem’s data, and
depends only on problem structure. Note that Lwc(·, 0) = L(·), so the worst-case
loss function is really an extension of the original loss function.

We can alternatively express the worst-case loss function as

Lwc(r, κ) = max
ξ
{L(r + κξ) : ψ∗(ξ) ≤ 1} , (12.2.18)

where ψ∗(·) stands for the norm conjugate to ψ(·). In the above, ψ∗(·) defines
the shape of allowable additive perturbations to the residual vector r, while κ

defines the size of this set. The worst-case function fully describes the effect of such
allowable perturbations on the original loss function, for arbitrary residual vectors
r and perturbation sizes κ.

When ψ(·) = ‖ · ‖2, the function Lwc(·, 1) as given by (12.2.18) is the robust
regularization of the original loss function L, in the sense of Lewis [76].

With our perturbation model, the robust problem (12.2.17) becomes

max
ξ : ψ∗(ξ)≤1

L([Zn]T θ + [ρφ(UT θ)]ξ) ≤ τ,

exactly as if the realized loss function were subject to additive perturbations on
the residual r = ZT θ, with the amplitude of the perturbation depending on the
parameter vector θ.

Our abilities to process efficiently the semi-infinite inequality (12.2.4), or,
which is the same under our structural assumptions on the perturbation model,
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the inequality (12.2.17), hinges on our ability to efficiently compute, and find sub-
gradients of, the worst-case loss function (12.2.16). We now examine the situation
for specific choices of the norm ψ.

The case of ψ(·) = ‖ · ‖∞

This case includes for example a composite norm model (labelled as COM in our
list). Denoting by ei the standard basic orths in R

m, we have

Lwc(r, κ) = max
v

{
vT r − L∗(v) + κ max

1≤i≤m
|vi|

}
= max

1≤i≤m

{
max

v

[
vT r − L∗(v) + κ|vi|

]}
= max

1≤i≤m

{
max

v
max

[
vT r − L∗(v)− κvi, v

T r − L∗(v) + κvi

]}
= max

1≤i≤m
max

[
max

v

[
vT [r − κei]− L∗(v)

]
, max

v

[
vT [r + κei]− L∗(v)

]]
= max

1≤i≤m
max (L(r + κei),L(r − κei)) .

We have arrived at the following result:

Theorem 12.2.5. If the loss function satisfies assumption L, and the uncer-
tainty set satisfies assumption A, with ψ(·) = ‖·‖∞, then the semi-infinite inequality
(12.2.4) can be represented by the explicit system of efficiently computable convex
constraints

ρφ(UT θ) ≤ κ, L([Zn]T θ ± κei) ≤ τ, 1 ≤ i ≤ m

in variables θ, κ.

The case of ψ(·) = ‖ · ‖1

This case includes as a special case the MWU models. In particular, this recovers
the situation we have encountered in Support Vector Machines with box uncertainty
(section 12.1.3).

This time, we start with the expression (12.2.18). Invoking assumption L, we
obtain

Lwc(r, κ)= max
ξ,‖ξ‖∞≤1

L(r + κξ) = π(u(r, κ)),

where
(u(r, κ))i :=

{
|ri|+ κ, (symmetric case),
(ri + κ)+, (asymmetric case).

(12.2.19)

Theorem 12.2.6. If the loss function satisfies assumption L and the uncer-
tainty set satisfies assumption A with ψ(·) = ‖·‖1, then the semi-infinite inequality
(12.2.4) can be represented by the explicit efficiently computable convex constraint

π(u([Zn]T θ, ρφ(UT θ))) ≤ τ,

with u(·, ·) given by (12.2.19).
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The case of ψ = ‖ · ‖2

This case includes in particular the LSV and FRO models. The worst-case loss
function now expresses as (12.2.18), with the constraint involving the Euclidean
norm:

Lwc(r, κ) =max
v

{
vT r − L∗(v) + κ‖v‖2

}
(12.2.20)

=max
ξ
{L(r + κξ) : ‖ξ‖2 ≤ 1} .

We can process the problem above in a computationally tractable fashion when
L is separable. Indeed, as the parameter κ spans the positive real line, the set
of solutions to problem (12.2.20) is the same as that obtained upon replacing the
Euclidean norm by its square. The problem is then separable and a (unique) optimal
solution

vopt(κ) := argmax v

[
vT r − L∗(v) + κ‖v‖22

]
can be efficiently computed. The solution to the original problem (12.2.20) corre-
sponds to the value of κ for which κ = ‖vopt(κ)‖2. It is easily shown that this fixed
point equation has a unique solution.

For general loss functions, the problem of computing the worst-case loss func-
tion, is apparently intractable. For some specific ones, such as the least-squares loss
function L(r) = ‖r‖2, in the case of ψ(·) = ‖ · ‖2 the problem has a trivial solution.
In addition, the problem is tractable for Support Vector Machine classification or
Huber regression. We consider these cases next.

12.2.4 Examples

Support Vector Machines

Consider the Robust SVM problem described in Example 12.2.2. Recall that the
data matrix Z in this case is built upon the matrix X = [x1, . . . , xm] ∈ R

n×m

of measured “feature vectors” (this matrix can be uncertain) and a sequence
y1, . . . , ym ∈ {−1, 1} of labels assumed to be certain. We assume that X is subject
to an additive bounded uncertainty, the corresponding uncertainty set being

X := {X + ∆ : ∆ ∈ ρD0} ,

with D0 ⊂ R
n×m satisfying assumption A, the corresponding norm and Minkowski

function being, respectively, ψ and φ. We further assume that ψ is a symmetric
gauge (a norm that is invariant under permutation and sign changes in the argu-
ment).

The corresponding set Z then is

Z = {Zn + U∆Diag{y} : ∆ ∈ ρD0} , (12.2.21)

where U = [In; 02×n] ∈ R
(n+2)×n. Exploiting the fact that the norm ψ is sign-

invariant, the set D = {∆Diag{y} : ∆ ∈ D0} also satisfies assumption A, with the
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same functions φ, ψ. Thus, the corresponding set Z is as (12.2.3) with D satisfying
assumption A.

Since the norm ψ is permutation-invariant, we have, for every k ∈ {0, . . . , m},
and every v ∈ {0, 1}m such that vT 1 = k:

ψ(v) = ψ(
k∑

i=1

ei) := ck,

where ei is the i-th basis vector in R
m. For example, if ψ(·) = ‖ · ‖p, then ck = k1/p

for every k.

The worst-case loss function reads

Lwc(r, κ) = max
0≤v≤1

[
vT r + κψ(v)

]
= max

v∈{0,1}m

[
vT r + κψ(v)

]
,

where we have exploited the convexity of the objective in the most left maximization
problem.

Now observe that, for every scalar κ ≥ 0, and vector r ∈ R
m, denoting by r[i]

the i-th largest component of r, we have

Lwc(r, κ) = max
v∈{0,1}m

[
κψ(v) + vT r

]
= max

k∈{0,...,m}
max

v∈{0,1}m,vT 1=k

[
κψ(v) + vT r

]
= max

k∈{0,...,m}
max

v∈{0,1}m,vT 1=k

[
κck + vT r

]
= max

k∈{0,...,m}

[
κck +

k∑
i=1

r[i]

]

= max
k∈{0,...,m}

min
µ

[
κck + kµ +

m∑
i=1

[1− ri − µ]+

]
.

The resulting equality shows that the worst-case loss function can be computed via
Linear Optimization.

The semi-infinite inequality (12.2.4) therefore can be represented as

∃{µk}m
k=0 : ρckφ(UT θ) + kµk +

m∑
i=1

[
1− [zn

i ]T θ − µk

]
+
≤ τ, 0 ≤ k ≤ n, (12.2.22)

where zn
i are the columns of the matrix Zn, see (12.2.6). With θ = [−w;−b; 1],

and using the original problem’s notation (see Example 12.2.2), we represent the
semi-infinite inequality (12.2.4) by the system of explicit convex constraints

ρckφ(w) + kµk +
m∑

i=1

[
1− yi(wT xn

i + b)− µk

]
+
≤ τ, 0 ≤ k ≤ n

in variables τ, w, b, {µk}; here xn
i are the measured feature vectors.

Let us consider the following more specific examples. The case referred to as
LSV or FRO in our list of models, where the set D is the set of matrices ∆ with
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‖∆‖ ≤ ρ, where ‖ · ‖ either the largest singular value or the Frobenius norm, has
ck =

√
k. Setting φ(·) = ‖ · ‖2, this proves the claims made in the earlier discussion

of SVMs with norm-bounded uncertainty (section 12.1.4).

As another specific example, consider the model referred to as KER, which
allows one to control the number of perturbations affecting the data. In this case,
we have φ(·) = ‖ · ‖p∗ , while ψ(·) is defined by (12.2.14). Hence, ck = min(k, K) for
every k ∈ {0, . . . , m}.

In the case of measurement-wise uncertainty (MWU models) we have ψ(·) =
‖ · ‖1, which yields ck = k. Here (12.2.4) can be represented by the system of
explicit convex constraints

k(ρφ(w) + µk) +
m∑

i=1

[
1− yi(wT xn

i + b)− µk

]
+
≤ τ, 0 ≤ k ≤ n

in variables τ, w, b, {µk}.
We easily recover the problems encountered in section 12.1.3 upon introducing

new variables µ̃k = µk + ρφ(w).

The notion of maximally robust separation can be extended to a general
bounded additive perturbation structure. Assume that the data is separable, that
is, inequalities (12.1.1) are feasible. Also, assume that φ is a norm. The problem
is to maximize ρ such that the inequalities

∀∆ ∈ ρD : θT (Zn + U∆)ei ≥ 0, i = 1, . . . ,m

hold, where ei is the i-th basis orth. The above can be written as

∀ i = 1, . . . ,m : [zn
i ]T θ ≥ ρ max

∆∈D
θT UT ∆(−ei).

Exploiting assumption A and still assuming that ψ is a symmetric gauge, the latter
condition can be rewritten as

∀ i = 1, . . . ,m : [zn
i ]T θ ≥ ρφ(UT θ) · ψ(e1).

Using homogeneity together with the fact that φ is a norm, and the original prob-
lem’s notation, we obtain that maximizing ρ subject to the above conditions can
be written as

min
w,b

{
φ(w) : yi([xn

i ]T w + b) ≥ 1, 1 ≤ i ≤ m
}

.

The actual maximally robust classifier does not depend on the norm ψ, only on
the Minkowski function φ. However, the optimal margin ρopt = 1/(φ(wopt)ψ(e1))
depends on both norms.

This generalizes the results we have obtained for the spherical and box un-
certainty models, in (12.1.3) and (12.1.10) respectively. It also confirms our prior
observation that the maximally robust separating classifier is the same, wether we
choose an LSV or spherical uncertainty model.
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Maximum hinge loss, interval data

As an example illustrating Theorem 12.2.3, consider a Support Vector Machine
problem with the “maximum hinge” loss

max
1≤i≤m

[
1− yi(wT xi + b)

]
+

.

Assume that the data matrix X = [x1, . . . , xm] is only known to belong to the
interval matrix set Xint, as given in (12.1.12). Defining Z, θ as in (12.2.6) and ap-
plying Theorem 12.2.3, after straightforward computations, we arrive the following
tractable representation of the semi-infinite inequality (12.2.4):

max
1≤i≤m

[
1− yi(wT xi + b) + ρσT

i |w|
]
+
≤ τ,

where σT
i is i-th row of the matrix R participating in the description (12.1.12) of

the interval matrix set Xint.

Least-squares regression

We now turn to the robust least-squares regression problem, that is, the problem
of Example 12.2.1 with ‖ ·‖ = ‖ ·‖2. Here the semi-infinite constraint (12.2.4) reads

max
Z∈{Zn+ρU∆:∆∈D}

‖ZT θ‖2 ≤ τ,

Z =

⎡⎣ x1 . . . xm

y1 . . . ym

1 . . . 1

⎤⎦ , θ = [−w; 1;−b], U =
[
In+1; 01×(n+1)

]
.

(12.2.23)

where dim xi = n, yi ∈ R and D is an uncertainty set in the space R
(n+1)×m. We

assume that this set satisfies assumption A with certain φ and ψ.

A. Assume first that ψ(·) = ‖ · ‖2. We are in the situation where the
function L∗ in (12.2.11) is the indicator of the unit Euclidean ball in R

m:

L(r) ≡ ‖r‖2 = max
v:‖v‖2≤1

rT v,

so that the worst-case loss (12.2.16) is

max
‖v‖2≤1

{
vT r + κ‖v‖2

}
= ‖r‖2 + κ.

Consequently, (12.2.23) is equivalent to the explicit convex inequality

‖yn − [Xn]T w − b1‖2 + ρφ([w; b]) ≤ τ,

where
[

Xn

[yn]T

]
=
[

xn
1 . . . xn

m

yn
1 . . . yn

m

]
is the nominal data.

We can specialize the result to obtain some well-known penalties for least-
squares regression. For example, assume that the uncertainty model is based on
the largest singular value norm (LSV model). Then φ is the Euclidean norm, and
we recover the result derived in [50]. Alternatively, assume that the uncertainty
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model is in the class IND with p = 2 and q = ∞, which corresponds to D = {∆ :
‖∆‖2,∞ ≤ 1}, where ‖ · ‖2,∞ is the induced norm defined as

‖∆‖2,∞ = max
v
{‖∆v‖∞ : ‖v‖2 ≤ 1}

= max
u,v

{
uT ∆v : ‖u‖1 ≤ 1, ‖v‖2 ≤ 1

}
= max

1≤i≤n

√∑m
j=1 ∆2

ij .

In this case (12.2.23) bears the form

‖yn − [Xn]T w − b1‖2 + ρ[‖w‖1 + |b|] ≤ τ.

The problem of minimizing τ under this constraint, with b set to 0, reads

min
w

{
‖yn − [Xn]T w‖2 + ρ‖w‖1

}
,

which is essentially the same (up to a squared first term) as LASSO regression
[113]. Note that the induced norm above couples the uncertainties across different
measurements, but allows the features (rows of data matrix Z) to be independently
perturbed.

B. We can extend the results to other symmetric gauges ψ in lieu of the
Euclidean norm. For example, consider the case of KER models, where the norm
ψ is defined in (12.2.14). The worst-case loss function is

Lwc(r, κ) = max
v : ‖v‖2≤1

{
vT r + κ

K∑
i=1

|v|[i]

}
=

√√√√ K∑
i=1

(|r|[i] + κ)2 +
m∑

i=K+1

|r|2[i],

so that (12.2.23) is equivalent to√√√√ K∑
i=1

(|[Zn[−w; 1;−b]|[i] + ρφ([w; b]))2 +
m∑

i=K+1

|[Zn]T ][−w; 1;−b]|2[i] ≤ τ.

�1 regression

Now consider the semi-infinite inequality (12.2.4) in the case of �1-regression, where
the inequality reads

max
Z∈{Zn+ρU∆:∆∈D}

‖ZT θ‖1 ≤ τ,

Z =

⎡⎣ x1 . . . xm

y1 . . . ym

1 . . . 1

⎤⎦ , θ = [−w; 1;−b], U =
[
In+1; 01×(n+1)

]
.

(12.2.24)

We assume that the set D satisfies assumption A, with arbitrary norm φ and
symmetric gauge function ψ. Here, the loss function is

L(r) = ‖r‖1 = max
v,‖v‖∞≤1

vT r,
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and the worst-case loss function now reads

Lwc(r, κ)= max
v,‖v‖∞≤1

[
vT r + κψ(v)

]
= max

v:vi=±1,1≤i≤m

[
vT r + κψ(v)

]
= ‖r‖1 + κψ(1),

where we used the property of sign invariance of ψ in the last line. Thus, (12.2.24)
is equivalent to the explicit convex constraint

‖yn − [Xn]T w − b1‖1 + ρφ([w; b])ψ(1) ≤ τ.

In the special cases of the LSV and FRO models, this constraint reads

‖yn − [Xn]T w − b1‖1 + ρ
√

m‖[w; b]‖2 ≤ τ.

�∞ regression

Consider now the same problem as above, with the same assumption about the
set D (in the latter assumption, ψ can be an arbitrary norm), but with the loss
function

L(r) = ‖r‖∞ = max
v:‖v‖1≤1

vT r.

Denoting by ei the i-th unit vector in R
m, the worst-case loss function reads

Lwc(r, κ)= max
v:‖v‖1≤1

{
vT r + κψ(v)

}
= max

v∈{e1,−e1}m
i=1

vT r + κψ(v)

= max
v∈{e1,−e1,e1,−e2,...,em,−em}

{
vT r + κψ(v)

}
= max

1≤i≤m
[|ri|+ κψ(ei)] .

Consequently, the semi-infinite inequality (12.2.4) can be represented by the system
of explicit convex inequalities

|yn
i − [xn

i ]T w − b|+ ρφ([w; b])ψ(ei) ≤ τ, 1 ≤ i ≤ m.

Huber penalty regression

Consider the variant of the regression problem from Example 12.2.1 with a sep-
arable loss function with Huber-type components (12.2.7). Here the semi-infinite
inequality (12.2.4) reads

max
Z∈{Zn+ρU∆:∆∈D}

L(ZT θ) ≤ τ,

Z =

⎡⎣ x1 . . . xm

y1 . . . ym

1 . . . 1

⎤⎦ , θ = [−w; 1;−b], U =
[
In+1; 01×(n+1)

]
,

L(r) =
∑m

i=1 H(ri), H(t) = maxs[ts− h(s)], h(s) =
{

s2/2, |s| ≤ 1,

+∞, |s| ≥ 1.
(12.2.25)
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Assume that the perturbation set D ∈ R
(n+1)×m satisfies assumption A with ψ(·) =

‖ · ‖2 (this corresponds, for example, to the LSV or FRO models.) Here the worst-
case loss function reads

Lwc(r, κ)= max
v,‖v‖∞≤1

[
vT r − vT v/2 + κ‖v‖2

]
= max

v,0≤v≤1

[
vT |r| − vT v/2 + κ‖v‖2

]
.

We proceed with a change of variables νi =
√

vi, 1 ≤ i ≤ m, which yields a
concave maximization problem:

Lwc(r, κ) = max
ν:0≤ν≤1

⎡⎣ m∑
i=1

[|ri|
√

νi − νi/2] + κ

√√√√ m∑
i=1

νi

⎤⎦ .

Expressing the second term as

κ

√√√√ m∑
i=1

νi = min
λ≥0

{
κ2

2λ
+

λ

2

m∑
i=1

νi

}
,

and applying duality, we obtain:

Lwc(r, κ)= max
0≤ν≤1

min
λ≥0

[
κ2

2λ
+

m∑
i=1

[
|ri|
√

νi +
νi(λ− 1)

2

]}

=min
λ≥0

max
0≤ν≤1

{
κ2

2λ
+

m∑
i=1

[
|ri|
√

νi +
νi(λ− 1)

2

]}

=min
λ≥0

{
κ2

2λ
+

m∑
i=1

max
0≤τ≤1

[
|ri|
√

t− t(1− λ)
2

]}

= min
λ≥0

{
κ2

2λ
+

m∑
i=1

H̃(ri, 1− λ)

}
,

where

H̃(t, µ) = max
0≤ξ≤1

[
|t|ξ − µ

ξ2

2

]
=

{
t2

2µ |t| ≤ µ,

|t| − µ
2 |t| ≥ µ.

Note that H̃(t, µ) is a convex in t, µ extension of the Huber function H(t, µ) (orig-
inally defined only for µ > 0) to the entire space of variables t, µ.

We conclude that in the case in question (12.2.25) can be represented by the
system

m∑
i=1

H̃(|yn
i − [xn

i ]T w − b|, 1− λ) +
ρ2φ2([w; b])

2λ
≤ τ, λ ≥ 0

of explicit convex constraints in variables τ, w, b, λ.

It is interesting to compare the above formulation of the semi-infinite inequal-
ity (12.2.25) with that of the nominal inequality (that is, the one with ρ = 0); in
the latter, the second (the penalty) term is dropped, and then λ is set to zero. Also,
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in practical applications, the nominal inequality is often modified as follows:
m∑

i=1

H(yn
i − [xn

i ]T w − b,M) + α‖w‖22/2 ≤ τ,

where parameters M > 0 and α ≥ 0 are chosen by the user, or via cross-validation.
The robust formulation perhaps provides guidance about the choice of these pa-
rameters, as well as for the norm used in the penalty.

12.3 AFFINE UNCERTAINTY MODELS

Up to now, we have considered robust counterparts to classification and regression
problems, using a certain class of models of perturbations. Our specific modeling
assumptions allowed us to end up with tractable robust counterparts.

For more general perturbations models, such exact answers are difficult to
obtain, and we must settle for upper bounds. In this section, we consider a class of
models where the uncertainty enters affinely in the problem’s data.

12.3.1 Norm-Bounded Affine Uncertainty Models

We assume that the set Z appearing in the Robust Counterpart (12.2.2) is of the
form

Z =

{
Z(ζ) := Zn +

L∑
�=1

ζ�Z� : ‖ζ‖p ≤ ρ

}
, (12.3.1)

where Z� are given n×m matrices, and p ∈ {1, 2,∞}. For simplicity, we assume that
the matrices Z� are all rank-one, and let Z� = u�v

T
� , with given vectors u� ∈ R

n,
v� ∈ R

m. We define the matrices U := [u1, . . . , uL] ∈ R
n×L, V := [v1, . . . , vL] ∈

R
m×L.

Note that when V is the identity, the set Z has exactly the form we assumed
in (12.2.3), with D = {Diag{ζ} : ‖ζ‖p ≤ 1}. However, this set does not satisfy
assumption A. Hence, the previous theory cannot be directly applied, even in the
case when V is the identity matrix.

Note that there are two cases of loss functions L(·) where we already know
how to handle the semi-infinite inequality (12.2.4), that is, the RC of the uncertain
constraint L(ZT θ) ≤ τ , the uncertainty set being (12.3.1). These cases are as
follows:

Polyhedral loss function L(r) = max
1≤µ≤M

[aT
µ r + bµ]

This case (in particular, the one with L(r) = ‖r‖∞) is nothing but the case of
uncertain system of affinely perturbed scalar linear inequalities, and here all results
of Part I are applicable. In particular, here (12.2.4) is computationally tractable
(since the uncertainty set (12.3.1) is so).
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The case of L(r) = ‖r‖2

In this case, the uncertain constraint {L(ZT θ) ≤ τ}Z∈Z is nothing but an uncer-
tain affinely perturbed conic quadratic inequality with a certain right hand side,
so that the results of chapters 6, 7 are readily applicable. In particular, with the
specific perturbation model (12.3.1), the RC (12.2.4) of our uncertain inequality
admits tractable reformulation when p = 1 (scenario uncertainty, section 6.1) and
p = 2 (simple ellipsoidal uncertainty, section 6.3) and admits a safe tractable ap-
proximation, tight within the factor O(ln(L)), when p = ∞ (section 7.2).

In the following, we intend to consider several other cases when the semi-
infinite inequality (12.2.4), the uncertainty set being (12.3.1), is tractable or admits
safe tractable approximations.

12.3.2 Pseudo Worst-Case Loss Function

With perturbation model (12.3.1), the worst-case realized loss function now reads

max
Z∈Z

L(ZT θ)= max
v

{
vT ZT θ − L∗(v) + ρ max

ζ:‖ζ‖p≤1

[
L∑

�=1

ζ�(uT
� θ)(vT

� v)

]}

=max
v

⎧⎨⎩vT ZT θ − L∗(v) + ρ

(
L∑

�=1

|uT
� θ|q · |vT

� v|q
)1/q

⎫⎬⎭ .

where 1/q + 1/p = 1.

The semi-infinite constraint (12.2.4) now reads

max
Z∈Z

L(ZT θ) ≤ τ

�
min

{
Lpwc([Zn]T θ, κ) : κ� ≥ ρ|uT

� θ|, 1 ≤ � ≤ L
}
≤ τ,

(12.3.2)

where Lpwc(r, κ) : R
m × R

L
+ → R is the convex function

Lpwc(r, κ) =max
v

⎧⎨⎩vT r − L∗(v) +

[
L∑

�=1

κq
� |vT

� v|q
]1/q

⎫⎬⎭
=max

v

{
vT r − L∗(v) + ‖V T (κ)v‖q

}
=max

ξ
{L(r + V (κ)ξ) : ‖ξ‖p ≤ 1} ,

where
V (κ) := [κ1v1, . . . , κLvL] ∈ R

m×L.

We refer to Lpwc as the pseudo worst-case loss function, as it depends on prob-
lem data through vectors v�, � = 1, . . . , l. Observe how the above expression is
an extension extends that one found for norm-bound additive models (12.2.18).
Note that same as in the previous section, all we need in order to robustify an
uncertain classification/regression problem is a tractable representation (or at least
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a safe tractable approximation) of the associated semi-infinite inequality (12.3.2)
(or, which is the same, efficient computability of Lpwc, or at least an efficiently
computable convex upper bound on this function).

12.3.3 Main Results

The case of p = 1

In this case (12.3.2) admits a tractable reformulation, cf. section 6.1. Indeed, when
p = 1, we have q = ∞, and we can further express function Lpwc as

Lpwc(r, κ)= max
v

{
vT r − L∗(v) + max

1≤�≤L
κ�|vT

� v|
}

= max
1≤�≤L

max
v

{
vT r − L∗(v) + κ�|vT

� v|
}

= max
1≤�≤L

max
|t|≤1

max
v

{
vT r − L∗(v) + tκ�v

T
� v

}
= max

1≤�≤L
max
|t|≤1

L(r + tκ�v�)

= max
1≤�≤L

max [L(r − κ�v�),L(r + κ�v�)] .

The semi-infinite inequality (12.3.2) now becomes an explicit convex inequal-
ity

max
1≤�≤L

max
[
L([Zn]T θ + ρ|uT

� θ|v�),L([Zn]T θ − ρ|uT
� θ|v�)

]
≤ τ.

The case of p = 2, hinge loss

In contrast with the case of p = 1, the case p = 2 is computationally hard in general.
Instead of proceeding in full generality, let us now specialize our problem to have
the SVM (hinge) loss.

For the hinge loss, the function Lpwc defined above reads

Lpwc(r, κ)= max
0≤v≤1

{vT r + ‖V (κ)T v‖2}.

Computing the above quantity is NP-hard. Writing

Lpwc(r, κ) ≤ inf
λ>0

max
0≤v≤1

[
vT r +

λ

2
+

1
2λ
‖V T (κ)v‖22

]
, (12.3.3)

we can now produce a safe tractable approximation, based on semidefinite relax-
ation, of (12.3.2), specifically, as follows. In (12.3.3), the domain of maximization
in v can be represented by a system of quadratic inequalities f�(v) := v2

� − v� ≤ 0,

� = 1, . . . , m. With λ > 0 in (12.3.3) fixed, let nonnegative µ1, . . . , µm be such that

∀v ∈ R
m : vT r +

λ

2
+

1
2λ
‖V (κ)T v‖22 ≤

m∑
�=1

µ�f�(v) + τ ; (12.3.4)
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since the right hand side in this inequality on the box 0 ≤ v ≤ 1 is ≤ τ , (12.3.4)
implies that Lpwc(r, κ) ≤ τ . On the other hand, the condition (12.3.4) says merely
that a certain quadratic form vT Av + 2bT v + c is everywhere nonnegative, which

is the case if and only if
[

A b

bT c

]
� 0. The latter condition, with A, b, c coming

from (12.3.4), reads[
Diag{µ} − 1

2λV (κ)V T (κ) − 1
2 [r + 1]

− 1
2 [r + 1]T τ − λ

2

]
� 0,

which, by the Schur Complement Lemma, is equivalent to⎡⎣ Diag{µ} − 1
2 [r + 1] V (κ)

− 1
2 [r + 1]T τ − λ

2

V T (κ) 2λIL

⎤⎦ ≥ 0.

Invoking (12.3.2), we arrive at the following result:

Proposition 12.3.1. The system of explicit convex constraints⎡⎢⎣ Diag{µ1, . . . , µm} − 1
2

[
[Zn]T θ + 1

]
V (κ)

− 1
2

[
[Zn]T θ + 1

]T
τ − λ

2

V T (κ) 2λIL

⎤⎥⎦ � 0

ρ|uT
� θ| ≤ κ�, 1 ≤ � ≤ L

(12.3.5)

in variables θ, κ, µ, λ is a safe tractable approximation of the semi-infinite constraint
(12.3.2) in the case of affine uncertainty (12.3.1) with p = 2.

The case of p = ∞, hinge loss

For the hinge loss, the function Lpwc defined above reads

Lpwc(r, κ) = max
0≤v≤1

{
vT r + ‖V T (κ)v‖1

}
.

Again, computing this quantity is NP-hard, but we can bound it via the same
scheme as in the case of p = 2. Specifically, given a positive vector λ ∈ R

L, we have

Lpwc(r, κ) ≤ max
0≤v≤1

{
vT r +

L∑
�=1

[
λ�

2
+

κ2
�(v

T
� v)2

2λ�

]}
.

Applying semidefinite relaxation in exactly the same fashion as when deriving
Proposition 12.3.1, we arrive at the following result:

Proposition 12.3.2. The system of explicit convex constraints⎡⎢⎣ Diag{µ1, . . . , µm} − 1
2

[
[Zn]T θ + 1

]
V (κ)

− 1
2

[
[Zn]T θ + 1

]T
τ − 1

2

∑L
�=1 λ�

V T (κ) 2Diag{λ}

⎤⎥⎦ � 0

ρ|uT
� θ| ≤ κ�, 1 ≤ � ≤ L

(12.3.6)

in variables θ, κ, µ, λ is a safe tractable approximation of the semi-infinite constraint
(12.3.2) in the case of affine uncertainty (12.3.1) with p = ∞.
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12.3.4 Globalized Robust Counterparts

Problem definition

In this section, we consider a variation on the approach taken up to now, based on
the notion of Globalized Robust Counterparts developed in chapters 3, 11. Instead
of the semi-infinite inequality (12.2.4), which is the Robust Counterpart of the
uncertain constraint {L(ZT θ) ≤ τ}Z∈Z , we address the GRC of this uncertain
constraint, that is, the semi-infinite constraint

∀Z : L(ZT θ) ≤ τ + αdist(Z,Z), (12.3.7)

where α > 0 is given. The interpretation of the constraint in the above is as
follows. Our model now allows for perturbed matrices Z to take values outside
their normal range Z. However, we seek to control the resulting degradation in
the loss function: the further away Z is from the set Z, the more degradation we
tolerate. The parameter α controls the “rate” of the degradation in the value of
the loss function.

To illustrate this approach, we consider two examples of loss functions; in
both these examples, Z is just the singleton of the nominal data.

Example: L(r) = ‖r‖s

Let the loss function be L(r) = ‖r‖s. We assume also that Z = {Zn}, and that the
norm in the space R

n×m # Z that underlies the distance in the right hand side of
(12.3.7) is the largest singular value norm ‖ · ‖. With these assumptions, (12.3.7)
becomes the semi-infinite inequality

∀∆ : ‖(Zn + ∆)T θ‖s ≤ τ + α‖∆‖.
Setting Q = {r : ‖r‖s ≤ τ}, the latter relation is nothing but the semi-infinite
constraint

∀∆ : dist‖·‖s
((Zn + ∆)T θ,Q) ≤ α‖∆‖, (12.3.8)

which, according to Definition 11.1.5, is indeed the GRC of the uncertain constraint

(Zn + ∆)T θ ∈ Q,

the data perturbation being ∆, in the case when the normal range of the perturba-
tion is the origin in R

n×m, the cone participating in the perturbation structure is
the entire R

n×m, and the norms in the spaces where Q and ∆ live are specified as
‖ · ‖s and the LSV norm ‖ · ‖, respectively. Invoking Proposition 11.3.3, the GRC
(12.3.8) can be represented by the constraints

(a) ‖[Zn]T θ‖s ≤ τ

(b) ‖∆T θ‖s ≤ α ∀(∆ : ‖∆‖ ≤ 1).
(12.3.9)

The semi-infinite constraint (b) is easy to process. Indeed, the image of the LSV
ball {‖∆‖ ≤ 1} under the mapping ∆ �→ ∆T θ is exactly the Euclidean ball {w ∈



330 CHAPTER 12

R
m : ‖w‖2 ≤ ‖θ‖2}, and the maximum of the ‖ ·‖s-norm on the latter ball is χ‖θ‖2,

where

χ = χ(m, s) =

{
m

2−s
2s 1 ≤ s ≤ 2,

1 s ≥ 2.
(12.3.10)

We have arrived at the following

Proposition 12.3.3. When L(·) = ‖ · ‖s, the GRC (12.3.7) of the uncertain
inequality L(ZT θ) ≤ τ can be represented by the system of explicit convex con-
straints

(a) ‖[Zn]T θ‖s ≤ τ

(b) χ(m, s)‖θ‖2 ≤ α
(12.3.11)

in variables θ, with χ(m, s) given by (12.3.10).

Example: the hinge loss function

Now let L(r) =
∑m

i=1[ri]+. As above, we assume that Z = {Zn} and that the norm
underlying the distance in the right hand side of (12.3.7) is the LSV norm ‖ · ‖.
Here (12.3.7) reads

∀∆ ∈ R
n×m :

m∑
i=1

[(
[Zn]T θ + ∆T θ

)
i

]
+
≤ τ + α‖∆‖,

or, which is the same

∀∆ ∈ R
n×m : max

[
m∑

i=1

[(
[Zn]T θ + ∆T θ

)
i

]
+
− τ, 0

]
≤ α‖∆‖. (12.3.12)

Observing that max[
∑

i[ri]+ − τ, 0] is nothing but the distance, induced by the
‖ · ‖1-norm, from r to the closed convex set Q = {r ∈ R

m :
∑

i[ri]+ ≤ τ}, (12.3.12)
is nothing but the semi-infinite constraint

∀∆ ∈ R
n×m : dist‖·‖1([Z

n + ∆]T θ,Q) ≤ α‖∆‖;
same as in the previous example, this is nothing but the GRC, as defined in section
11.1, of the uncertain inclusion [Zn + ∆]T θ ∈ Q, the normal range of the pertur-
bation ∆ being the origin in the space R

n×m, the cone in the perturbation space
being the entire R

n×m, and the norms in the space where Q and ∆ live being ‖ · ‖1
and the LSV norm ‖ · ‖, respectively. Invoking Proposition 11.3.3, the GRC can be
represented by the constraints

(a)
∑

i

[
([Zn]T θ)i

]
+
≤ τ

(b) dist‖·‖1(∆
T θ, Rm

− ) ≤ α ∀(∆ : ‖∆‖ ≤ 1)
(12.3.13)

(we have taken into account that the recessive cone of Q is the nonpositive orthant
R

m
− ). Applying exactly the same argument as in the previous Example, we can

rewrite (b) equivalently as √
m‖θ‖2 ≤ α.

We have arrived at the following result:
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Proposition 12.3.4. When L(r) =
∑

i[ri]+, the GRC (12.3.7) of the uncer-
tain inequality L(ZT θ) ≤ τ can be represented by the system of explicit convex
constraints

(a)
∑m

i=1

[
([Zn]T θ)i

]
+
≤ τ

(b)
√

m‖θ‖2 ≤ α
(12.3.14)

in variables θ.

We observe that the GRC approach leads directly to a loss function mini-
mization problem with constraint on the size of the variable θ.

12.4 RANDOM AFFINE UNCERTAINTY MODELS

We now examine a variation on robust classification and regression problems, where
the perturbation affecting the data is random.

12.4.1 Problem Formulations

Random affine uncertainty

As in the previous section, we assume that the perturbation enters affinely in the
data. Precisely, the data matrix Z is assumed to be an affine function of a random
vector ζ ∈ R

l:

Zζ = Zn +
L∑

�=1

ζ�u�v
T
� , (12.4.1)

where u� ∈ R
n, v� ∈ R

m are given vectors. Here, we assume that its distribution
of the random vector ζ is only known to belong to a given class Π of distributions
on R

L. (We will be more specific about our modeling assumptions shortly.)

Robust counterparts

There are two kinds of robust counterparts that naturally arise in the context of loss
function minimization with random perturbations. One processes the worst-case
(over the class Π) expected loss, and the other handles the (worst-case) probability
of the loss being larger than a target.

A first formulation, which we call worst-case expected loss minimization, fo-
cuses on robust, w.r.t. Π, upper bounding of the expected loss function, i.e., on the
constraint

max
π∈Π

Eπ{L(ZT
ζ θ)} ≤ τ, (12.4.2)

where Eπ denotes the expected value with respect to distribution π ∈ Π of the
random variable ζ.

The above approach has no concern on the “spread” of the values of the
realized loss around its mean. This motivates us to study robust bounding, called
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guaranteed loss-at-risk bounding, of the loss function posed as the constraint

max
π∈Π

Probπ

{
L(ZT

ζ θ) ≥ τ
}
≤ ε, (12.4.3)

where the “risk level” ε ∈ (0, 1) is given, and Probπ is the probability taken with
respect to π. If ε is set to be very small in the above for a given value of τ , then
with high probability the loss is smaller than τ , irrespective of which distribution
π ∈ Π the random perturbation obeys. Of course, there is a trade-off between how
small we can guarantee the loss to be (measured via τ), and the level of certainty
as set by ε. Note that (12.4.3) is what was called an ambiguous chance constraint
in chapters 2, 4, 10. The new, as compared with what we did in these chapters, as-
pect of the situation is that we are not speaking directly about linear/conic chance
constraints: the randomly perturbed data are now inside a nonlinear loss function.
However, we can still use the techniques from chapters 2, 4, 10 for straightforward
processing of (12.4.3) in at least the following two cases (where the rank 1 matrices
u�v

T
� can be replaced with arbitrary given matrices Z�):

• L(r) = max
1≤i≤I

[aT
i r + bi] is a piecewise linear convex function given by the list of

its linear pieces; what is applicable in this case, are the results of chapters 2, 4 on
chance constrained scalar linear inequalities, and the results of section 10.4.1 on
chance constrained systems of linear inequalities;
• L(r) = ‖r‖2. This case is covered by the results of chapters 10 on chance con-
strained conic quadratic inequalities.

In contrast to guaranteed loss-at-risk bounding, the problem of worst-case
expected loss minimization is completely new for us, and this is the problem we
intend to focus on in the rest of this section.

12.4.2 Moment Constraints

Three classes of distributions

We consider three specific sets of allowable distributions Π.

The first class, denoted by Π2, is the set of distributions with given first- and
second-order moments. Without loss of generality, we may assume that the mean
is zero, and the covariance matrix is the identity.

The second class, denoted by Π∞, is the set of distributions with given first
moment, and given variances. Again, without loss of generality we assume that the
mean is zero, and the variances are all equal to one. A norm-bound counterpart to
this model is given by (12.3.1), with p = ∞.

The last class is defined as the set of distributions with zero mean and total
variance equal to one. This class, denoted by Πtot in the following, can be described
as the stochastic counterpart to the norm-bound model (12.3.1), with p = 2.
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To the class Π, we associate a subspace Q of matrices Q ∈ SL such that for
every π ∈ Π, and every Q ∈ Q, we have

Eπ{ζT Qζ} = Tr(Q).

When Π = Π2, the corresponding set Q is simply the entire space of L× L sym-
metric matrices; when Π = Π∞, it is the set of L× L diagonal matrices; and when
Π = Πtot, it reduces to the set of scaled versions of the L× L identity matrix.

Worst-case expected loss minimization

From the definition of the set Q, for every Q ∈ Q, q ∈ R
L and t ∈ R, the condition

∀ ζ ∈ R
L :

[
ζ

1

]T [
Q q

qT t

] [
ζ

1

]
≥ L(ZT

ζ θ) (12.4.4)

implies that Tr(Q) + t is an upper bound on the worst-case expected loss. (This
is readily seen by taking expectations on both sides of the above.) Thus, we may
compute an upper bound on the worst-case expected loss by minimizing Tr(Q) + t

subject to the condition above, with Q ∈ Q, q, t the variables.

Standard results from duality theory for moment problems imply that the
bound we compute this way is actually tight. Thus:

max
π∈Π

Eπ

{
L(ZT

ζ θ)
}

= min
Q∈Q,q,t

{Tr(Q) + t : t, q,Q satisfy (12.4.4)}
= min

Q∈Q,q,t

{
Tr(Q) + t : ∀(ζ ∈ R

L, v ∈ R
m) :[

ζ
1

]T [
Q q
qT t

]T [
ζ
1

]
≥ vT [Zn]T θ − L∗(v) +

L∑
�=1

ζ�(uT
� θ)(vT

� v)
}
.

Eliminating the variable ζ from the quadratic constraint above leads to

max
π∈Π

Eπ{L(ZT
ζ θ)} = Lpwc([Zn]T θ, UT θ),

where U = [u1, . . . , uL] and Lpwc : R
m × R

L → R is the pseudo worst-case loss
function associated with our problem:

Lpwc(r, κ)

= min
Q∈Q,q,t

{
Tr(Q) + t :

[
Q q − 1

2
V T (κ)v

qT − 1
2
vT V (κ) t − vT r + L∗(v)

]
� 0 ∀v

}
= min

Q∈Q,q

{
Tr(Q)

+ max
v

[
vT r − L∗(v) + (q − 1

2V T (κ)v)T Q−1(q − 1
2V T (κ)v)

]
: Q � 0

}
,

with V (κ) := [κ1v1, . . . , κLvL], as before. Consequently, the constraint of interest
(12.4.2) writes

Lpwc([Zn]T θ, UT θ) ≤ τ, (12.4.5)

and all we need in order to handle it (or its safe approximation) efficiently is the
ability to compute efficiently the convex function Lpwc(·, ·) (or a convex upper bound
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on this function). While computing Lpwc can be NP-hard in general, this task is
tractable in a variety of cases, ranging from Huber regression to �1-regression [39].

Example: hinge loss

To illustrate the point, we focus on the case of SVMs (hinge loss). The pseudo
worst-case loss function here reads

Lpwc(r, κ) = inf
Q,q

{
Tr(Q)

+ max
v:0≤v≤1

{
vT r + (q − 1

2V T (κ)v)T Q−1(q − 1
2V T (κ)v)

}
: Q ∈ Q, Q � 0

}
.

The inner maximum is NP-hard to compute in general. However, we can build its
efficiently computable upper bound via semidefinite relaxation, completely similar
to what we did in section 12.3.3 when deriving (12.3.5) and (12.3.6). The result
now is as follows:

Proposition 12.4.1. The system of explicit convex constraints⎡⎣ Diag{µ1, . . . , µm} − 1
2 [Zn]T θ 1

2V (κ)
− 1

2θT Zn τ −qT

1
2V T (κ) −q Q

⎤⎦ � 0

κ� = uT
� θ, � = 1, . . . , L, Q ∈ Q

(12.4.6)

in variables τ, θ, Q, q, κ, µ is a safe tractable approximation of the constraint of
interest (12.4.2).

12.4.3 Bernstein Approximation for Independent Perturbations

We now illustrate how the Bernstein bound from chapter 4 can be used in the case
when the random perturbations ζ1, . . . , ζL in (12.4.1) are independent. In fact, we
use below a slightly more general perturbation model

Zζ = Zn +
L∑

�=1

ζ�Z�; (12.4.7)

the difference with (12.4.1) is that now we do not require Z� to be of rank 1.
We assume that the loss function satisfies assumption L, see p. 311. Moreover,
we assume that the class of allowable distributions Π of the perturbation vector
ζ ∈ R

L is of the form Π = P1 × . . . × PL, where P� is a given set of distributions
on the real axis, 1 ≤ � ≤ L.

12.4.3.1 Worst-case expected hinge loss

Consider the case when L(r) =
∑m

i=1[ri]+ and we want to bound the corresponding
expected loss from above, in a fashion that is robust with respect to the distribution
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π ∈ Π. Thus, we are interested in a safe tractable approximation of the inequality

sup
π∈P

E

⎧⎨⎩
m∑

i=1

[
eT

i [Zn]T θ +
L∑

�=1

ζ�e
T
i ZT

� θ

]
+

⎫⎬⎭ ≤ τ, (12.4.8)

Let ai0(θ) := eT
i [Zn]T θ, ai�(θ) := eT

i ZT
� θ, i = 1, . . . , m, � = 1, . . . , L, and let

ξi,θ := eT
i [Zn +

L∑
�=1

ζ�Z
�]T θ = ai0(θ) +

L∑
�=1

ζ�ai�(θ), i = 1, . . . , m.

so that (12.4.8) reads

sup
π∈P

E

{
m∑

i=1

[ξi,θ]+

}
≤ τ.

We now apply a sort of Bernstein approximation. Specifically, we have exp{s} ≥
emax[s, 0] for all s. Thus, whenever β > 0, we have β exp{s/β} ≥ emax[s, 0] for all
s. Thus, whenever α = (α1, . . . , αm) > 0, we have max[ξi,θ, 0] ≤ e−1αi exp{ξi,θ/αi}.
Exploiting the fact that a distribution π ∈ Π is a product π = π1 × . . . × πL, we
obtain that for every i = 1, . . . , m:

Eζ∼π{max[ξi,θ, 0]} ≤ Gi
π(αi, θ) := e−1αiEζ∼π {exp{ξi,θ/αi}}

= e−1αi exp{ai0(θ)/αi}
L∏

�=1

Gi�
π (αi, θ),

where
Gi�

π (αi, θ) := Eζ�∼P�
{exp{ai�(θ)ζ�/αi}} .

The function Fπ(w) = Eζ∼π{exp{w0 +
∑L

�=1 w�ζ�}} is convex in w, whence the
function Hπ(α, w) = αFπ(w/α) is convex in (α > 0, w). It follows that Gi

π(αi, θ) is
convex in (αi > 0, θ), since this function is obtained from Hπ by affine substitution
of argument (look what ξi,θ is and note that αi�(θ), 0 ≤ � ≤ L, are linear in θ). It
follows that the function

Gi(αi, θ) = sup
π∈Π

Gi
π(αi, θ) = e−1αi exp{ai0(θ)/αi}

L∏
�=1

Gi�(αi, θ),

Gi�(αi, θ) := supπ�∈P�
Eζ�∼P�

{exp{ai�(θ)ζ�/αi}}
is convex in (αi, θ) when αi > 0 as well.

The approach leads to a tractable approximation in the case when we can
compute the functions Gi�(αi, θ) (as is the case in examples presented in section
2.4.2), since then Gi(αi, θ) is efficiently computable. Whenever this is the case, the
tractable convex constraint

inf
α>0

m∑
i=1

Gi(αi, θ) ≤ τ (12.4.9)

is a safe tractable approximation of (12.4.8). Note that this is a “double con-
servative” bounding, one source of conservatism is the Bernstein approximation
per se, and another source of conservatism is that this approximation is ap-
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plied termwise, we just sum up the optimal Bernstein bounds for the quantities
supπ∈Π Eζ∼π {[ξi,θ]+}, 1 ≤ i ≤ m.

12.5 EXERCISES

Exercise 12.1. [Implementation errors] Consider the separability condi-
tion (12.1.1). Now assume that the classifier vector w is not implemented exactly,
but with some relative error δw, which we assume to be such that ‖δw‖∞ ≤ ρ‖w‖2,
where ρ ≥ 0. Formulate the corresponding robust separability condition. How
would you find the classifier that is maximally robust with respect to such imple-
mentation errors?

Exercise 12.2. Show that the sets defined as COM satisfy condition A, for
appropriate choice of the functions φ and ψ.

Exercise 12.3. [Label uncertainty] We start with the minimization problem
involving the hinge loss function (see (12.1.4), (12.1.5)):

min
w,b

m∑
i=1

[1− yi(wT xi + b)]+,

where the notation is the same as in Section 12.1.1. We consider the case when the
data points xi, i = 1, . . . , m, are exactly known, but the label vector y ∈ {−1, 1}m

is only partially known.

i) First we consider the case when a subset of the labels is completely unknown.
(This situation is sometimes referred to as semi-supervised learning.) To
model this situation, we assume that there is a partition of {1, . . . , m} into
two disjoint subsets I,J , with I (resp. J ) the set of indices correspond-
ing to known (resp. unknown) labels. Formulate the corresponding robust
counterpart as a linear optimization problem.

ii) In some situations, it is possible that some labels are given the wrong sign.
We assume that a subset J ⊆ {1, . . . ,m} of cardinality k has the corre-
sponding labels switched in sign. Again, formulate the corresponding robust
counterpart as a linear optimization problem.

Exercise 12.4. [Robust SVM with boolean data] Many classification prob-
lems, such as those involving co-occurrence data in text documents, involve boolean
data. The classical SVM implicitly assumes (say) spherical uncertainty, which may
not be consistent with the fact that the process generating the data is such that it
is boolean. In this exercise, we explore the idea of robust SVM with uncertainty
models that preserve the boolean nature of the perturbed data. We thus consider
the problem described in Section 12.1, where the data matrix X = [x1, . . . , xm] is
boolean. Throughout, we assume that the perturbation affecting the data points is
measurement-wise.

i) In a first approach, we assume that each measurement is subject to an additive
perturbation: xi → xi + δi, where δi ∈ {−1, 0, 1}n, and ‖δi‖1 ≤ k, where k is
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given. Hence the number of changes in the data is constrained by k. Note that
our model allows for changes from 0 to −1, or 1 to 2, which is not consistent
with our boolean assumption, and might lead to conservative results. Form
the robust counterpart for this uncertainty model.

ii) A more realistic model, which does preserve the boolean nature of the per-
turbed data, involves allowing for “flips” in the data, but constraining the
total number of flips per measurement. Thus, we impose δi ∈ {−xi,−xi + 1}
for each i. Indeed, this means that if xi(j) = 0, then δi(j) can only take the
value 0 or 1; if xi(j) = 1, then δi(j) can only take the value 0 or −1. We
still constrain the total number of flips per measurement, with the constraint
‖δi‖1 ≤ k, where k is given. Again, form the robust counterpart for this
uncertainty model.

Exercise 12.5. [Uncertainty in a future data point] In this problem, we con-
sider a classification problem with a hinge loss function, involving m data points
x1, . . . , xm and their associated label y1, . . . , ym. We now add a new data point
xm+1 and label ym+1 to the training set, which are not completely known. Pre-
cisely, all we know about the new data pair (xm+1, ym+1) is that xm+1 will be close
to one of the previous points xi, i = 1, . . . , m, and will have the same label. We
assume further that ‖x − xi‖2 ≤ ρ for some i = 1, . . . ,m. Our goal is to design a
classifier that is robust with respect to uncertainty in the new data point. Express
the corresponding robust counterpart as a second-order cone optimization problem.

12.6 NOTES AND REMARKS

NR 12.1. A number of authors have studied machine learning problems from
the point of view of robust optimization, mostly with a focus on supervised learning.
Early work focused on least-squares regression [49].

On the topic of robust classification, prior work has focused mostly on
measurement-wise uncertainty models. An approach to binary classification based
on modeling each class as partially known distributions was introduced in [54].
Support vector machines with interval uncertainty (and their connections to sparse
classification) are studied in [51], while the case with ellipsoidal uncertainty on the
data points has been introduced and applied in a biology context in [29]. The
approach has been further developed in [105]. Related work includes [114].

To our knowledge, the results in this chapter pertaining to uncertainties that
couple measurements are new. Caramanis and co-authors [116] and Bertsimas
and Fertis [28] both independently developed a theory that recovers some of these
results.

NR 12.2. The term “robust statistics” is generally used to refer to methods
that nicely handle (reject) outliers in data. A standard reference on the topic is
Huber’s book [65]. As said in the Preface, a precise and rigorous connection with
robust optimization remains to be made. It is our belief that the two approaches
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are radically different, even contradictory, in nature: rejecting outliers is akin to
discarding data points that yield large values of the loss function, while robust
optimization takes into account all the data points and focuses on those that do
result in large losses.

To make this discussion a little more precise, consider the case of a classifi-
cation problem with hinge loss, with data points xi ∈ R

n, and label yi ∈ {−1, 1},
i = 1, . . . , m. In a robust statistics approach, we would look for a classifier that
only takes into account the “best” k (k ≤ m) points, from the standpoint of the
considered hinge loss. The problem can be formulated as

min
w,b

min
δ∈D

m∑
i=1

δi[1− yi(wT xi + b)]+,

where D = {δ ∈ {0, 1}m :
∑m

i=1 δi = k}. The above amounts to find a classifier
that is optimal for the best k points. This is a non-convex problem.

In contrast, a robust optimization approach would seek a classifier that is
optimal for the worst k points:

min
w,b

max
δ∈D

m∑
i=1

δi[1− yi(wT xi + b)]+,

which is a convex problem.
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Chapter Thirteen
Robust Markov Decision Processes

This chapter is devoted to a robust dynamical decision making problem involving
a finite-state, finite-action stochastic system. The system’s dynamics is described
by state transition probability distributions, which we assume to be uncertain and
varying in a given uncertainty set. At each time period, nature is playing against
the decision-maker, by picking at will transition distributions within their ranges.
The goal of the robust decision making is to minimize the worst-case expected value
of a given cost function, where “worst-case” is with respect to the considered class
of policies of nature. We show that when the cardinalities of the (finite!) state
and action spaces are moderate, the problem can be solved in a computationally
tractable fashion using an extension to Bellman’s famous Dynamic Programming
algorithm, which requires the solution of a convex optimization problem at each
step. We illustrate the approach on a path planning problem arising in aircraft
routing through random weather conditions.

13.1 MARKOV DECISION PROCESSES

13.1.1 The Nominal Control Problems

Markov decision processes (MDPs) are used to model the random behavior of a
dynamical system, based on the assumption that the state of the system, as well as
the possible control actions, belong to given finite collections. Due to the great ver-
satility of these models, MDPs are increasingly ubiquitous in applications, including
finance, system biology, communications engineering, and so on.

MDP models are described in terms of state transition probabilities, which
inform us on the probabilities of transition from a given state to another, conditional
on a particular control action. The goal of the corresponding decision making
problem, which will be our nominal problem in this chapter, is to minimize the
expected value of a given cost function, which is itself described by a finite set
of values assigned to each state-control pair. The nominal problem comes in two
flavors, depending on whether the horizon (decision span) of the problem is finite
or infinite.

Let us define the finite-horizon nominal problem more precisely. We consider
a Markov decision process with finite state and finite action sets, and finite decision
horizon T = {0, 1, 2, . . . , N − 1}. At each time period, the system occupies a state
i ∈ X , where n = |X | is finite, and a decision maker is allowed to choose an
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action a deterministically from a finite set of allowable actions A = {a1, . . . , am}
(for notational simplicity we assume that A is not state-dependent). The states
make random, Markovian transitions according to a collection of (possibly time-
dependent) transition probability distributions τ := {pa

ti : a ∈ A, t ∈ T , i ∈ X},
where for every a ∈ A, t ∈ T , i ∈ X the vector pa

ti = [pa
ti(1); . . . ; pa

ti(n)] ∈ R
n

contains the probabilities pa
ti(j) of transition under control action a at stage t from

state i ∈ X to state j ∈ X . We refer to a collection τ of the outlined structure as
to nature’s policy. In addition, we assume that the probability distribution q0 of
the states at time t = 0 is given. We denote by u = (u0(·), . . . , uN−1(·)) a generic
control policy, where ut(·) : X → A is the decision rule at time t ∈ T , so that the
control action at this time, the state of the system being i ∈ X , is ut(i). We denote
by Π = AnN the corresponding strategy space.

We denote by ct(i, a) the cost corresponding to state i ∈ X and action a ∈ A
at time t ∈ T , and by cN (i) the cost function at the terminal stage. We assume
that ct(i, a) is finite for every t ∈ T , i ∈ X and a ∈ A.

We are ready to define CN (u, τ), the expected total cost under control policy
u and nature’s policy τ = {pa

ti : a ∈ A, t ∈ T , i ∈ X}:

CN (u, τ) := E

(
N−1∑
t=0

ct(it, ut(it)) + cN (iN )

)
, (13.1.1)

with it the (random) state at time t corresponding to u, τ .

For a given collection τ , and a given initial state distribution vector, q0, we
define the finite-horizon nominal problem by

φN (Π, τ) := min
u∈Π

CN (u, τ). (13.1.2)

A special case of interest is when the expected total cost function bears the
form (13.1.1), where the terminal cost is zero, and ct(i, a) = νtc(i, a), with c(i, a)
now a time-invariant cost function, which we assume finite everywhere, and ν ∈
(0, 1) is a discount factor. We refer to this function as the discounted cost function.
With such a function, one can pose the corresponding infinite-horizon nominal

problem, where N →∞ in (13.1.1).

Example 13.1.1. (Aircraft path planning problem) We consider the problem

of routing an aircraft whose path is obstructed by stochastic obstacles, representing storms

or other severe weather disturbances. The goal of the stochastic decision-making problem

is to route (say, one) aircraft from a given originating city, in order to minimize the

expected value of the fuel consumption required to reach a given destination. To model this

problem as an MDP, we first discretize the entire airspace, using a simple two-dimensional

grid (ignoring the third dimension to simplify). Some nodes in the grid correspond to

positions of likely storms or obstacles. The state vector comprises the current position

of the aircraft on the grid, as well as the current states (from severe, mild, to absent) of

each storm. The action in the MDP corresponds to the choice of nodes to fly towards,

from any given node. There are k obstacles, associated to a Markov chain with a 3k × 3k
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transition matrix, according to the number of possible states of an obstacle. The size of

the transition matrix data for the routing problem is thus of the order 3kN , where N is

the number of nodes in the grid.

13.1.2 Solving the Nominal Problems

According to the above setup, for a given control policy encoded in u =
(u0(·), . . . , uN−1(·)) ∈ Π and a given nature policy τ = {pa

ti : a ∈ A, t ∈ T , i ∈ X},
the system’s random behavior is described by the deterministic system

qt+1(j) =
∑
i∈X

p
ut(i)
ti (j)qt(i), j ∈ X , t ∈ T, (13.1.3)

where qt = [qt(1); . . . ; qt(n)] ∈ R
n is the distribution, associated with u, τ , of the

states at time t ∈ T , and q0 is the initial distribution of states. The total expected
cost then is

CN (u, τ) =
∑
t∈T

∑
i∈X

qt(i)ct(i, ut(i)) + qT
NcN . (13.1.4)

The following theorem shows how to compute the expected cost (13.1.1), for
a given control policy u = (u0(·), . . . , uN−1(·)).

Theorem 13.1.2. [LO representation of finite-horizon expected cost] The ex-
pected cost (13.1.1), the control policy being u = {ut(·)}t∈T and the nature policy
being τ = {pa

ti : a ∈ A, t ∈ T , i ∈ X}, is the optimal value in the Linear Optimiza-
tion problem

φN (u, τ) = max
v0,...,vN−1

{
qT
0 v0 : vt(i) ≤ ct(i, ut(i)) +

∑
j

p
ut(i)
ti (j)vt+1(j),

i ∈ X , t ∈ T
}
,

(13.1.5)

where vN = cN .

In the above, the vectors v∗
t optimal for the LO problem (13.1.5) represent

the expected costs-to-go from a particular state and time.

The result can be leveraged to a LO solution to the finite-horizon nominal
problem.

Theorem 13.1.3. [LO representation of finite-horizon nominal problem] For
a fixed nature policy τ = {pa

ti : a ∈ A, t ∈ T , i ∈ X}, the finite-horizon nominal
problem (13.1.2) can be solved as the linear optimization problem

φN (Π, τ) = max
v0,...,vN−1

{
qT
0 v0 : vt(i) ≤ min

a∈A

[
ct(i, a) +

∑
j

p
ut(i)
ti (j)vt+1(j)

]
∀i ∈ X , t ∈ T

}
,

(13.1.6)
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where vt(i) is i-th coordinate of vt. A corresponding optimal control policy u∗ =
(u∗

0(·), . . . , u∗
N−1(·)) is obtained by setting

u∗
t (i) ∈ argmin

a∈A

⎧⎨⎩ct(i, a) +
∑

j

pa
ti(j)vt+1(j)

⎫⎬⎭ , i ∈ X , t ∈ T , (13.1.7)

where the vectors v0, . . . , vN−1 are optimal for the LO (13.1.6).

Here, the entries in the vectors v∗
t optimal for the LO (13.1.6) can be inter-

preted as optimal expected costs-to-go from a particular state and time, and are
also referred to collectively as the value function. The celebrated Dynamic Pro-
gramming algorithm, due to Bellman (1953), is based on a recursion providing a
solution to the LO (13.1.6) .

Theorem 13.1.4. [Dynamic Programming algorithm] The nominal problem
can be solved via the backward recursion

vt(i) = min
a∈A

⎧⎨⎩ct(i, a) +
∑

j

pa
ti(j)vt+1(j)

⎫⎬⎭ , i ∈ X , t = N−1, N−2, . . . , 0, (13.1.8)

initiated with vN = cN . Here vt(i) is the optimal value function in state i at stage
t. The corresponding optimal control policy is obtained via (13.1.7).

Bellman’s Dynamic Programming algorithm complexity is O(nmN) arith-
metic operations in the finite-horizon case.

13.1.3 The Curse of Uncertainty

For systems with moderate number of state and controls, the Bellman recursion pro-
vides an attractive and elegant solution, which has earned the algorithm a place in
the pantheon of the top algorithms of the twentieth century. The application of the
Dynamic Programming algorithm remains challenging for larger-scale systems, due
to the famous “curse of dimensionality”: in many applications, such as illustrated
by Example 13.1.1, the states correspond to a discretization of several real-valued
variables, representing position for example, and their number grows exponentially
with the number of such real-valued variables. This curse is well-studied and makes
the MDP field a very active area of research.

In this chapter, we explore a different “curse” associated with MDP mod-
els: the curse of uncertainty. As we will see, this curse may be present, but, in
contrast with its earlier cousin the curse of dimensionality, it can be cured in a
computationally tractable fashion.

The curse of uncertainty refers to the fact that optimal solutions to Markov
decision problems may be very sensitive with respect to the state transition prob-
abilities. In many practical problems, the estimation of these probabilities is far
from being accurate, and represents a tremendous challenge, often complicated by
the time-varying (non-stationary) nature of the system. Hence, estimation errors
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are limiting factors in applying Markov decision processes to real-world problems.
This motivates us to examine Robust Counterparts to problem (13.1.2), and gives
us an example of a problem originally formulated as a stochastic control problem,
with an added layer of uncertainty, in the state distributions.

13.2 THE ROBUST MDP PROBLEMS

In this section, we address the curse of uncertainty by assuming that the second
player, which we refer to as nature, is allowed to change the transition probability
distributions within prescribed bounds, and seek a control policy that is robust
against the action of nature.

13.2.1 Uncertainty Models

We assume that for each action a, time t, and state i the corresponding transition
probability distribution pa

ti chosen by nature is only known to lie in some given
subset Pa

ti of the set of probability distributions on X ; the latter is nothing but the
standard simplex ∆n = {p = [p(1); . . . ; p(n)] ∈ R

n
+ :

∑
j p(j) = 1}. Loosely speak-

ing, we can think of the sets Pa
ti as sets of confidence for the transition probability

distributions. Let us provide some specific examples of uncertainty sets Pa
ti; when

presenting these examples, we skip the indices a, t, i.

(a) The scenario model involves a finite collection of distributions:

P = Conv{p1, . . . , pk},
where ps ∈ ∆n, s = 1, . . . , k, are given. This is the case when P ⊂ ∆n is a polytope
given by its vertices.

(b) The interval model assumes

P =

⎧⎨⎩p : p ≤ p ≤ p,
∑

j

p(j) = 1

⎫⎬⎭ ,

where p, p are given non-negative vectors in R
n (whose elements do not necessarily

sum to one), with p ≥ p.

(c) The likelihood model has the form

P = P(ρ) :=

{
p ∈ ∆n : L(p) :=

n∑
i=1

q(i) ln(q(i)/p(i)) ≤ ρ

}
, (13.2.1)

where q ∈ ∆n is a fixed reference distribution (for instance, the maximum likelihood
estimate of the “true” transition distribution, the current time, state, and control
action being given) and ρ ≥ 0 is the “uncertainty level.” Note that when ρ = 0, the
set P(ρ) becomes the singleton {q}. A slightly more general model in this category is
the Maximum A Posteriori (MAP) model, with L(p) replaced by L(p)−ln(gprior(p)),
where gprior refers to an a priori density function of the parameter vector p. It is
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customary to choose the prior to be a Dirichlet distribution, the density of which
is of the form

gprior(p) = K ·
∏
j

[p(j)]αj−1,

where αj ≥ 1 are given, and K is a normalizing constant. Choosing αj = 1, for all
j, we recover the “non-informative prior,” which is the uniform distribution on the
n-dimensional simplex, in which case the MAP model, up to a shift in ρ, reduces
to the likelihood model.

(d) The entropy model is

P(ρ) :=

⎧⎨⎩p ∈ ∆n : D(p‖q) :=
n∑

j=1

p(j) ln(p(j)/q(j)) ≤ ρ

⎫⎬⎭ ,

so that D(p‖q) is the Kullback-Leibler divergence between distribution p and a
reference distribution q ∈ ∆n. Here again ρ ≥ 0 is the uncertainty level. This model
mirrors the likelihood model; the latter is obtained from the former by exchanging
the roles of p and q in the expression for the divergence.

(e) The ellipsoidal model has the form

P(ρ) =
{
p ∈ ∆n : (p− q)T H(p− q) ≤ ρ2

}
,

where q ∈ ∆n and H � 0 are given.

Example 13.2.1. [Building uncertainty models] Uncertainty models can be

derived from a controlled experiment starting from a state i ∈ X , in which we record

the number of transitions between state pairs. This way, we obtain vectors of empirical

transition frequencies qa
ti for each a ∈ A. It turns out that these vectors are the maximum-

likelihood estimates of the true transition probability distributions. The corresponding

likelihood model is (13.2.1), with ρ being the parameter controlling the uncertainty set’s

size. Ellipsoidal models can then be derived by a second-order approximation to the log-

likelihood function, while interval models can be obtained by projections of the likelihood

uncertainty set on the coordinate axes.

The above models describe the bounds that are imposed on the transition
probability distributions. To fully describe the uncertainty model, we need to fur-
ther specify the ways the second player, nature, can change these distributions,
dynamically over time, or otherwise. In this regard, two uncertainty models are
possible, leading to two possible forms of finite-horizon robust control problems.

In a first model, referred to as the stationary uncertainty model, the transition
distributions pa

ti chosen by nature are independent of t, and thus are represented
by a two-index collection {pa

i : a ∈ A, i ∈ X} chosen by the nature from a given
uncertainty set. In the second model, which we refer to as the time-varying uncer-

tainty model, we are given a collection {Pa
ti : a ∈ A, t ∈ T , i ∈ X} of subsets in

∆n, and nature can “at will” choose, for every time instant t, current state i and
current action a, the transition probability distribution pa

ti from the set Pa
ti. For

technical reasons, we assume the sets Pa
ti nonempty and closed. Each problem leads
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to a game between the decision maker and nature, where the decision maker seeks
to minimize the maximum expected cost, and with nature being the maximizing
player.

13.2.2 Robust Counterparts

Equipped with uncertainty models, we are ready to define our robust control prob-
lems more formally.

As above, a policy of nature is a specific collection τ = {pa
ti : a ∈ A, t ∈ T , i ∈

X} of time-dependent transition probability distributions chosen by nature. In the
non-stationary model, the set of admissible policies of nature is the entire direct
product

∏
a∈A,t∈T ,i∈X

Pa
ti of given sets Pa

ti ⊂ ∆n. In the case of the stationary model,

these policies are further restricted to have pa
ti independent of t (in which case it

makes sense to assume that the sets Pa
ti also are independent of t). The stationary

uncertainty model leads to the Robust Counterpart

φN (Π) := min
u∈Π

max
{pa

i ∈Pa
i :a∈A,i∈X}

CN (p, {pa
i }). (13.2.2)

In contrast, the time-varying uncertainty model leads to a relaxed version of the
above:

φN (Π) ≤ ψN (Π) := min
u∈Π

max
{pa

ti∈Pa
ti:a∈A,t∈T ,i∈X}

CN (u, {pa
ti}). (13.2.3)

The first model is attractive for statistical reasons, as it is much easier to
develop statistically accurate sets of confidence when the underlying process is
time-invariant. Unfortunately, the resulting game (13.2.2) seems to be hard to
solve. The second model is attractive as one can solve the corresponding game
(13.2.3) using a variant of the Dynamic Programming algorithm seen later, but we
are left with a difficult task, that of estimating a meaningful set of confidence for
the time-varying distributions pa

ti.

In the finite-horizon case, we would like to use the first model of uncertainty,
where the transition probability distributions are time-invariant. This would allow
us to describe uncertainty in a statistically accurate way using likelihood or entropy
bounds. However, the associated Robust Counterpart problem “as it is” seems to be
too difficult computationally, and we pass to its safe approximation that is common
in Control, specifically, extend the time-invariant uncertainty to a time-varying one.
This means that we solve the second problem (13.2.3) as a safe approximation of
the problem of actual interest (13.2.2), using uncertainty sets Pa

ti ≡ Pa
i derived

from the time-invariance assumption on the transition probabilities.

13.3 THE ROBUST BELLMAN RECURSION ON FINITE HORIZON

We consider the finite-horizon robust control problem defined in (13.2.3).
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The following theorem extends Bellman’s Dynamic Programming to the Ro-
bust Counterpart (13.2.3).

Theorem 13.3.1. [Robust Dynamic Programming] The Robust Counterpart
problem (13.2.3) can be solved via the backward recursion

vt(i) = min
a∈A

⎧⎨⎩ct(i, a) + max
p∈Pa

ti

∑
j

p(j)vt+1(j)

⎫⎬⎭ , i ∈ X , t = N−1, N−2, . . . (13.3.1)

initialized by setting vN = cN . Here vt(i) is the minimum, w.r.t. control policies
over the horizon t, t+1, . . . , N−1, of the maximal, over the nature policies over the
same horizon, expected control cost, provided that at time t the controlled system
is at state i.

A corresponding optimal control policy u∗ = (u∗
0(·), . . . , u∗

N−1(·)) is obtained
by setting

u∗
t (i) ∈ argmin

a∈A

⎧⎨⎩ct(i, a) + max
p∈Pa

ti

∑
j

p(j)vt+1(j)

⎫⎬⎭ , i ∈ X , t ∈ T , (13.3.2)

and the corresponding worst-case nature policy is obtained by setting

pa
ti ∈ argmax

p∈Pa
ti

{
pT vt+1 : p ∈ Pa

ti

}
, i ∈ X , a ∈ A, t ∈ T . (13.3.3)

The optimal value in (13.2.3) is

ψN (Π) = qT
0 v0,

q0 being the initial distribution of states. Finally, the effect of uncertainty on a
given strategy u = (u0(·), . . . , uN−1(·)) can be evaluated by the following backward
recursion

vu
t (i) = ct(i, ut(i)) + max

p∈Put(i)
ti

pT vu
t+1, i ∈ X , t = N − 1, N − 2, . . . , 0,

(13.3.4)
initialized with vN = cN ; this recursion provides the worst-case value function vu

for the strategy u.

Proof. The proof of (13.3.1) is given by the standard Dynamic Programming
reasoning. Let us define vt(i) as cN (i) for t = N and as the minimum, over control
policies on the time horizon t, t + 1, . . . , N − 1, of the worst-case expected control
cost over this time horizon, where the worst case is taken w.r.t. the policies of
nature over this horizon. Recalling the definition of q0, all we need to prove is
that the quantities vt(i) obey the recurrence in (13.3.1). The latter is readily given
by “backward induction” in t. Indeed, the base t = N is evident. To carry out
the induction step, assume that our recurrence holds true for t ≥ τ + 1 and all
states, and let us verify that it holds true for every state i at time τ as well.
Indeed, denoting by a a candidate control action at this time and state, note that
nature can choose as the transition probability distribution from this state at this
time an arbitrary vector p ∈ Pa

τi. With this choice of nature, taking into account



ROBUST MARKOV DECISION PROCESSES 349

the Markovian property of the system, our expected losses over the time horizon
τ, τ + 1, . . . , N − 1, according to the inductive hypothesis, will be

cτ (i, a) +
∑

j

p(j)vτ+1(j).

The worst value of this quantity, over nature’s choice at time t in the state i, is

max
p∈Pa

τi

⎧⎨⎩cτ (i, a) +
∑

j

p(j)vτ+1(j)

⎫⎬⎭ = cτ (i, a) + max
p∈Pa

τi

∑
j

p(j)vτ+1(j).

Consequently, our minimal worst-case expected loss vτ (i) over the time horizon
τ, τ + 1, . . . , N − 1, the state at time τ being i, is nothing but

min
a∈A

⎧⎨⎩cτ (i, a) + max
p∈Pa

τi

∑
j

p(j)vτ+1(j)

⎫⎬⎭ ,

as claimed in (13.3.1). Induction is completed.

The remaining statements of Theorem 13.3.1 are evident.

13.3.1 Tractability Issues

Assume that Pa
ti are computationally tractable convex sets, e.g., they are given by

explicit semidefinite representations. Then every time step of the backward recur-
sion in (13.3.1) requires solving Card(A)Card(X ) = mn problems of maximizing
a given linear function over a set of the form Pa

ti. It follows that the overall com-
plexity of solving the Robust Counterpart is bounded by mnNC, where C is the
(maximal over a, t, i) complexity of maximizing a linear form over the computa-
tionally tractable convex set Pa

ti. We conclude that the robust Bellman recursion
is computationally tractable, provided m, n,N are moderate.

Note also that in the proof of Theorem 13.3.1 we never used the convexity
of the sets Pa

ti ⊂ ∆n, only the fact that they are nonempty and closed (the latter
makes all the required maxima attainable). Besides this, from the structure of
(13.3.1) we see that this recursion remains intact when the sets Pa

ti are extended
to their convex hulls. As a result, the robust Bellman recursion is tractable when
the sets Pa

ti are not necessary convex, but we are smart enough to represent their
convex hulls in a computationally tractable fashion (and, in addition, m,n,N are
moderate).

We are about to illustrate the above constructions and results numerically.

Example 13.1.1 continued

Figure 13.1 represents a hexagonal grid with 127 vertices; a plane should fly from
the origin O to the destination D, moving along the edges of the grid; flying along
an edge takes a unit of time. The hexagonal region W in the middle of the grid (the
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corresponding nodes are marked by asterisks, and the edges are solid) represents an
area that can be affected by bad weather; at every time period [t, t+1), t ∈ Z, this
weather can be either in state ”g” (good), or ”b” (bad). When the plane is flying
along an edge in W , the fuel consumption depends on the state of the weather,
specifically, it is equal to � > 0 when the weather is good, and to u > � when the
weather is bad. Fuel consumption when flying along an edge outside of W is always
equal to �.

O

D

Figure 13.1 “Flying grid” with origin O and destination D. Asterisks and solid lines
represent the area of potentially bad weather.

Now, the weather “lives its own life” and is described by a Markov chain,
with the transition probabilities[

pg2g pg2b := 1− pg2g

pb2g := 1− pb2b pb2b

]
,

where pg2g is the probability to remain good, (i.e., to pass from the state ”g” to
itself during a single time period), and pb2b is the probability to stay bad. We
assume that these probabilities are not known exactly and can, independently of
each other, run through the “uncertainty box”

U = {[pg2g; pb2b] : |pg2g − pn
g2g| ≤ δg, |pb2b − pn

b2b| ≤ δb},
where pn

· are the corresponding nominal probabilities, and

δg ≤ min[pn
g2g, 1− pn

g2g], δb ≤ min[pn
b2b, 1− pn

b2b]

specify the maximal magnitudes of the uncertainties. We assume that the weather
transition probabilities are time varying, meaning that the probability pt

st−12st
of

the weather to be at a state st ∈ {”g”, ”b”} in the period [t, t + 1), conditioned on
being in the state st−1 in the period [t− 1, t), is chosen at time t by “nature” and
can be an arbitrary point of the corresponding uncertainty interval.

Our goal is to find a strategy for the plane that minimizes the worst, over the
actions of nature, expected cost of the total fuel consumption when flying from the
origin to the destination.
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Modeling the situation as an uncertain Dynamic Programming problem

In order to apply the outlined machinery, we proceed as follows.

• We model the state of the system at a time t ∈ Z+ as the pair (pt, st), where
pt is the grid point where the plane is at time t, and st is the state of the weather
in the period [t, t + 1). Thus, there is a total of 127× 2 = 254 states.

• A control action at at time t is just the decision of the plane to move along
which one of the 6 edges emanating from the current position pt in the period
[t, t + 1). Thus, at, in general, takes values 1, 2, 3, 4, 5, 6, where, say, 1 means the
bearing 0o, 2 means the bearing 60o, and so on. At a boundary point of the grid,
some of these actions (those which would lead the plane outside of the grid) are
forbidden. In addition, we allow for the control action at = 0 (“not to move at
all”), but only in the state where the position of the plane is the destination D; this
action is interpreted as staying at the destination after arriving there. Thus, there
is a total of 7 control actions.

• The “on-line” costs ct(”state”,”action”) represent the fuel consumption in
the period [t, t + 1): when the plane at time t is at a point grid p = pt, the weather
at this time, i.e., in the period [t, t + 1), is at a state s = st, and the control action
at time t is a = at �= 0, the costct((p, s), a) is, in general, the fuel consumption when
flying along the edge emanating from p in the direction a, the state of the weather
being s. To account for the fact that some control actions a �= 0 are forbidden
when p is a boundary point of the grid distinct from the destination D, we set the
corresponding costs to a large value M . Similarly, the only grid point where the
action a = 0 is allowed, is the destination D, and we set ct((p, s), 0) = M when
p �= D. In contrast to this, the only control action allowed at the destination is
a = 0, and we set ct((D, s), a) to be equal to M when a �= 0 and to be equal to 0
when a = 0.

As for the terminal costs, we set them to M for all states (p, s) where P �= D,
and to 0 otherwise.

With the outlined modeling, the situation falls in the realm of Robust Markov
Decision processes and can be processed accordingly.

Numerical results We have specified the nominal weather transition
probabilities by setting pn

g2g = pn
b2b = 0.9 and δb = δg = δ := 0.075, meaning

that there is a strong tendency for the weather to stay as it is, with relatively low
probabilities to change from bad to good and vice versa. To make the phenomenon
of data uncertainty more “pronounced,” we used � = 1 and u = 5, meaning that
bad weather significantly increases the fuel consumption; since our example is used
for illustration purposes only, we do not care how realistic this assumption is. We
further have computed two routing policies: the nominal one, where the transition
probabilities are at their nominal values all the time, and the robust policy, where
nature indeed can choose these probabilities, in a time-dependent fashion, within
our uncertainty set. We then simulated every one of these two policies in the situa-
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Optimal value

Policy
Good weather
at departure

Bad weather
at departure

nominal 14.595 15.342
robust 15.705 15.916

Table 13.1 Optimal values in the nominal and in the robust routing problems

tions where (a) the weather transition probabilities stay at their nominal values, and
(b) nature “does it best” to reduce the probability of the weather to be good, that
is, the actual weather transition probabilities are given by pg2g = pn

g2g− δ = 0.825,
pb2b = pn

b2b+δ = 0.975. We ran simulations separately, 100 at a time, for the cases
of good and bad weather at the departure. The results are displayed in tables 13.1,
13.2 and in figure 13.2. From table 13.2 we conclude that with an “aggressive” be-
havior of nature, the robust routing policy has non-negligible advantages, in terms
of our objective the (worst-case) expected total fuel consumption, as compared to
the nominal one. It is even more instructive to pay attention to the “structural dif-
ferences” in routing for the two policies in question. As is seen from figure 13.2.(a,c),
with the nominal routing policy, the plane can go “deep inside” the region that can
be affected by bad weather, while with the robust policy, it never happens: the
routes can only go along the boundary edges of this region. The explanation is
as follows: since with our model, when choosing action at at instant t, we already
know the weather on the time period [t, t + 1), it is not costly to move along a
“potentially dangerous” edge when the weather in the period [t, t + 1) is good; all
we need in order to avoid high fuel consumption, is the possibility to escape from
the dangerous region as soon as the weather in this region changes from good to
bad. This possibility does exist when the route does not go inside the dangerous
region, as in figure 13.2.(b,d), where we also clearly see the “escapes” caused by
changing the weather from good to bad. As a result, with the robust policy, the fuel
consumption in fact remains low all the time, the price being a potential increase
in travelling time because of longer routes. With the nominal routing policy (which
relies on more “optimistic,” as compared to the robust policy, assumptions about
the probabilities for the weather to stay good or to change from bad to good), the
tradeoff between the lengths of the routes and the fuel consumption along the edges
is resolved differently; we see in figure 13.2.(a,c) that the corresponding routes can
go deep inside the potentially dangerous region, meaning that with this policy, high
fuel consumption is indeed possible. Note that this structural difference is caused
by a rather subtle uncertainty in the weather transition probabilities.

13.4 NOTES AND REMARKS

NR 13.1. The results in this Chapter originate from [90].



ROBUST MARKOV DECISION PROCESSES 353

Policy
Weather

at departure

Nominal weather
transition

probabilities

Worst case weather
transition

probabilities

nominal good 14.594 15.808
nominal bad 15.342 16.000

robust good 15.425 15.705
robust bad 15.638 15.916

Table 13.2 Worst-case, over nature’s strategies, expected fuel consumption for the nom-
inal and the robust routing policies.

O

D

O

D

(a) Nominal routing, (b) Robust routing,
good weather at the departure good weather at the departure

O

D

O

D

(c) Nominal routing, (d) Robust routing,
bad weather at the departure bad weather at the departure

Figure 13.2 Samples of 100 simulated trajectories for the nominal and the robust routing.
When simulating the routing policies, the weather transition probabilities at
every step were chosen as pg2g = pn

g2g−ξδ, pb2b = pn
b2b+ξδ with ξ uniformly

distributed on [0, 1] (“nature is aggressive, but not overly so”).
The actual number of routes we see in every picture is much less than the
number (100) of routes sampled, since many such routes are identical to each
other.
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Chapter Fourteen
Robust Adjustable Multistage Optimization

In this chapter we continue investigating robust multi-stage decision making pro-
cesses started in chapter 13. Note that in the context of chapter 13, computational
tractability of the robust counterparts stems primarily from the fact that both the
state and the action spaces associated with the decision making process under con-
sideration are finite with moderate cardinalities. These assumptions combine with
the Markovian nature of the process to allow for solving the robust counterpart in
a computationally efficient way by properly adapted Dynamic Programming tech-
niques. In what follows we intend to consider multi-stage decision making in the
situations where Dynamic Programming hardly is applicable, primarily because of
the “curse of dimensionality” discussed in chapter 13.

14.1 ADJUSTABLE ROBUST OPTIMIZATION: MOTIVATION

Consider a general-type uncertain optimization problem — a collection

P =
{

min
x
{f(x, ζ) : F (x, ζ) ∈ K} : ζ ∈ Z

}
(14.1.1)

of instances — optimization problems of the form

min
x
{f(x, ζ) : F (x, ζ) ∈ K} ,

where x ∈ R
n is the decision vector, ζ ∈ R

L represents the uncertain data or
data perturbation, the real-valued function f(x, ζ) is the objective, and the vector-
valued function F (x, ζ) taking values in R

m along with a set K ⊂ R
m specify the

constraints; finally, Z ⊂ R
L is the uncertainty set where the uncertain data is

restricted to reside.

Format (14.1.1) covers all uncertain optimization problems considered
in Parts I and II; moreover, in these latter problems the objective f

and the right hand side F of the constraints always were bi-affine in x,
ζ, (that is, affine in x when ζ is fixed, and affine in ζ, x being fixed),
and K was a “simple” convex cone (a direct product of nonnegative
rays/Lorentz cones/Semidefinite cones, depending on whether we were
speaking about uncertain Linear, Conic Quadratic or Semidefinite Op-
timization). We shall come back to this “well-structured” case later; for
our immediate purposes the specific conic structure of instances plays
no role, and we can focus on “general” uncertain problems in the form
of (14.1.1).
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The Robust Counterpart of uncertain problem (14.1.1) is defined as the semi-infinite
optimization problem

min
x,t

{t : ∀ζ ∈ Z : f(x, ζ) ≤ t, F (x, ζ) ∈ K} ; (14.1.2)

this is exactly what was called the RC of an uncertain problem in the situations
considered in Parts I and II.

Recall that our interpretation of the RC (14.1.2) as the natural source of ro-
bust/robust optimal solutions to the uncertain problem (14.1.1) is not self-evident,
and its “informal justification” relies upon the specific assumptions A.1–3 on our
“decision environment,” see page 9. We have already relaxed somehow the last of
these assumptions, thus arriving at the notion of Globalized Robust Counterpart.
What is on our agenda now is to revise the first assumption, which reads

A.1. All decision variables in (14.1.1) represent “here and now” deci-
sions; they should get specific numerical values as a result of solving the
problem before the actual data “reveals itself” and as such should be
independent of the actual values of the data.

In Parts I, II we have considered numerous examples of situations where this as-
sumption is valid. At the same time, there are situations when it is too restrictive,
since “in reality” some of the decision variables can adjust themselves, to some
extent, to the actual values of the data. One can point out at least two sources of
such adjustability: presence of analysis variables and wait-and-see decisions.

Analysis variables. Not always all decision variables xj in (14.1.1) represent ac-
tual decisions; in many cases, some of xj are slack, or analysis, variables introduced
in order to convert the instances into a desired form, e.g., the one of Linear Opti-
mization programs. It is very natural to allow for the analysis variables to depend
on the true values of the data — why not?

Example 14.1.1. [cf. Example 1.2.7] Consider an “�1 constraint”

K∑
k=1

|aT
k x − bk| ≤ τ ; (14.1.3)

you may think, e.g., about the Antenna Design problem (section 3.3) where the “fit”
between the actual diagram of the would-be antenna array and the target diagram is
quantified by the ‖ · ‖1 distance. Assuming that the data and x are real, (14.1.3) can be
represented equivalently by the system of linear inequalities

−yk ≤ aT
k x − bk ≤ yk,

∑
k

yk ≤ τ

in variables x, y, τ . Now, when the data ak, bk are uncertain and the components of x

do represent “here and now” decisions and should be independent of the actual values

of the data, there is absolutely no reason to impose the latter requirement on the slack

variables yk as well: they do not represent decisions at all and just certify the fact that the

actual decisions x, τ meet the requirement (14.1.3). While we can, of course, impose this

requirement “by force,” this perhaps will lead to a too conservative model. It seems to be



ROBUST ADJUSTABLE MULTISTAGE OPTIMIZATION 357

completely natural to allow for the certificates yk to depend on actual values of the data

— it may well happen that then we shall be able to certify robust feasibility for (14.1.3)

for a larger set of pairs (x, τ).

Wait-and-see decisions. This source of adjustability comes from the fact that
some of the variables xj represent decisions that are not “here and now” decisions,
i.e., those that should be made before the true data “reveals itself.” In multi-
stage decision making processes, like those considered in chapter 13, some xj can
represent “wait and see” decisions, which could be made after the controlled system
“starts to live,” at time instants when part (or all) of the true data is revealed. It is
fully legitimate to allow for these decisions to depend on the part of the data that
indeed “reveals itself” before the decision should be made.

Example 14.1.2. Consider a multi-stage inventory system affected by uncertain

demand. The most interesting of the associated decisions — the replenishment orders —

are made one at a time, and the replenishment order of “day” t is made when we already

know the actual demands in the preceding days. It is completely natural to allow for the

orders of day t to depend on the preceding demands.

14.2 ADJUSTABLE ROBUST COUNTERPART

A natural way to model adjustability of variables is as follows: for every j ≤ n, we
allow for xj to depend on a prescribed “portion” Pjζ of the true data ζ:

xj = Xj(Pjζ), (14.2.1)

where P1, ..., Pn are given in advance matrices specifying the “information base”
of the decisions xj , and Xj(·) are decision rules to be chosen; these rules can in
principle be arbitrary functions on the corresponding vector spaces. For a given j,
specifying Pj as the zero matrix, we force xj to be completely independent of ζ, that
is, to be a “here and now” decision; specifying Pj as the unit matrix, we allow for
xj to depend on the entire data (this is how we would like to describe the analysis
variables). And the “in-between” situations, choosing Pj with 1 ≤ Rank(Pj) < L

enables one to model the situation where xj is allowed to depend on a “proper
portion” of the true data.

We can now replace in the usual RC (14.1.2) of the uncertain problem (14.1.1)
the independent of ζ decision variables xj with functions Xj(Pjζ), thus arriving at
the problem

min
t,{Xj(·)}n

j=1

{t : ∀ζ ∈ Z : f(X(ζ), ζ) ≤ t, F (X(ζ), ζ) ∈ K} ,

X(ζ) = [X1(P1ζ); ...;Xn(Pnζ)].
(14.2.2)

The resulting optimization problem is called the Adjustable Robust Counterpart

(ARC) of the uncertain problem (14.1.1), and the (collections of) decision rules
X(ζ), which along with certain t are feasible for the ARC, are called robust fea-

sible decision rules. The ARC is then the problem of specifying a collection of
decision rules with prescribed information base that is feasible for as small t as pos-
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sible. The robust optimal decision rules now replace the constant (non-adjustable,
data-independent) robust optimal decisions that are yielded by the usual Robust
Counterpart (14.1.2) of our uncertain problem. Note that the ARC is an extension
of the RC; the latter is a “trivial” particular case of the former corresponding to
the case of trivial information base in which all matrices Pj are zero.

14.2.1 Examples

We are about to present two instructive examples of uncertain optimization pro-
grams with adjustable variables.

Information base induced by time precedences. In many cases, decisions
are made subsequently in time; whenever this is the case, a natural information
base of the decision to be made at instant t (t = 1, ..., N) is the part of the true
data that becomes known at time t. As an instructive example, consider a simple
Multi-Period Inventory model mentioned in Example 14.1.2:

Example 14.1.2 continued. Consider an inventory system where d products
share common warehouse capacity, the time horizon is comprised of N periods, and the
goal is to minimize the total inventory management cost. Allowing for backlogged demand,
the simplest model of such an inventory looks as follows:

minimize C [inventory management cost]
s.t.

(a) C ≥ ∑N
t=1

[
cT
h,tyt + cT

b,tzt + cT
o,twt

]
[cost description]

(b) xt = xt−1 + wt − ζt, 1 ≤ t ≤ N [state equations]
(c) yt ≥ 0, yt ≥ xt, 1 ≤ t ≤ N
(d) zt ≥ 0, zt ≥ −xt, 1 ≤ t ≤ N
(e) wt ≤ wt ≤ wt, 1 ≤ t ≤ N
(f) qT yt ≤ r

(14.2.3)
The variables in this problem are:

• C ∈ R — (upper bound on the total inventory management cost;

• xt ∈ R
d, t = 1, ..., N — states. i-th coordinate xi

t of vector xt is the amount of
product of type i that is present in the inventory at the time instant t (end of time
interval # t). This amount can be nonnegative, meaning that the inventory at this
time has xi

t units of free product # i; it may be also negative, meaning that the
inventory at the moment in question owes the customers |xi

t| units of the product
i (“backlogged demand”). The initial state x0 of the inventory is part of the data,
and not part of the decision vector;

• yt ∈ R
d are upper bounds on the positive parts of the states xt, that is, (upper

bounds on) the “physical” amounts of products stored in the inventory at time t,
and the quantity cT

h,tyt is the (upper bound on the) holding cost in the period t; here

ch,t ∈ R
d
+ is a given vector of the holding costs per unit of the product. Similarly, the

quantity qT yt is (an upper bound on) the warehouse capacity used by the products
that are “physically present” in the inventory at time t, q ∈ R

d
+ being a given vector

of the warehouse capacities per units of the products;
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• zt ∈ R
d are (upper bounds on) the backlogged demands at time t, and the quantities

cT
b,tzt are (upper bounds on) the penalties for these backlogged demands. Here

cb,t ∈ R
d
+ are given vectors of the penalties per units of the backlogged demands;

• wt ∈ R
d is the vector of replenishment orders executed in period t, and the quantities

cT
o,twt are the costs of executing these orders. Here co,t ∈ R

d
+ are given vectors of

per unit ordering costs.

With these explanations, the constraints become self-evident:

• (a) is the “cost description”: it says that the total inventory management cost
is comprised of total holding and ordering costs and of the total penalty for the
backlogged demand;

• (b) are state equations: “what will be in the inventory at the end of period t (xt) is
what was there at the end of preceding period (xt−1) plus the replenishment orders
of the period (wt) minus the demand of the period (ζt);

• (c), (d) are self-evident;

• (e) represents the upper and lower bounds on replenishment orders, and (f) ex-
presses the requirement that (an upper bound on) the total warehouse capacity
qT yt utilized by products that are “physically present” in the inventory at time t
should not be greater than the warehouse capacity r.

In our simple example, we assume that out of model’s parameters

x0, {ch,t, cb,t, co,t, wt, wt}N
t=1, q, r, {ζt}N

t=1

the only uncertain element is the demand trajectory ζ = [ζ1; ...; ζN ] ∈ R
dN , and that this

trajectory is known to belong to a given uncertainty set Z. The resulting uncertain Linear

Optimization problem is comprised of instances (14.2.3) parameterized by the uncertain

data — demand trajectory ζ — running through a given set Z.

As far as the adjustability is concerned, all variables in our problem, except for
the replenishment orders wt, are analysis variables. As for the orders, the simplest
assumption is that wt should get numerical value at time t, and that at this time
we already know the past demands ζt−1 = [ζ1; ...; ζt−1]. Thus, the information
base for wt is ζt−1 = Ptζ (with the convention that ζs = 0 when s < 0). For the
remaining analysis variables the information base is the entire demand trajectory
ζ. Note that we can easily adjust this model to the case when there are lags
in demand acquisition, so that wt should depend on a prescribed initial segment
ζτ(t)−1, τ(t) ≤ t, of ζt−1 rather than on the entire ζt−1. We can equally easily
account for the possibility, if any, to observe the demand “on line,” by allowing wt

to depend on ζt rather than on ζt−1. Note that in all these cases the information
base of the decisions is readily given by the natural time precedences between the
“actual decisions” augmented by a specific demand acquisition protocol.

Example 14.2.1. Project management. Figure 14.1 is a simple PERT diagram
— a graph representing a Project Management problem. This is an acyclic directed graph
with nodes corresponding to events, and arcs corresponding to activities. Among the
nodes there is a start node S with no incoming arcs and an end node F with no outgoing
arcs, interpreted as “start of the project” and “completion of the project,” respectively.
The remaining nodes correspond to the events “a specific stage of the project is completed,
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and one can pass to another stage”. For example, the diagram could represent creating a
factory, with A, B, C being, respectively, the events “equipment to be installed is acquired
and delivered,” “facility #1 is built and equipped,” “facility # 2 is built and equipped.”
The activities are jobs comprising the project. In our example, these jobs could be as
follows:

a: acquiring and delivering the equipment for facilities ## 1,2
b: building facility # 1
c: building facility # 2
d: installing equipment in facility # 1
e: installing equipment in facility # 2
f: training personnel and preparing production at facility # 1
g: training personnel and preparing production at facility # 2

The topology of a PERT diagram represents logical precedences between the activ-

ities and events: a particular activity, say g, can start only after the event C occurs, and

the latter event happens when both activities c and e are completed.

S

B

A

C

F

b

a e

d f

c
g

Figure 14.1 A PERT diagram.

In PERT models it is assumed that activities γ have nonnegative durations τγ

(perhaps depending on control parameters), and are executed without interruptions,
with possible idle periods between the moment when the start of an activity is
allowed by the logical precedences and the moment when it is actually started.
With these assumptions, one can write down a system of constraints on the time
instants tν when events ν can take place. Denoting by Γ = {γ = (µγ , νγ)} the set
of arcs in a PERT diagram (µγ is the start- and νγ is the end-node of an arc γ),
this system reads

tµγ
− tνγ

≥ τγ ∀γ ∈ Γ. (14.2.4)

“Normalizing” this system by the requirement

tS = 0,

the values of tF , which can be obtained from feasible solutions to the system,
are achievable durations of the entire project. In a typical Project Management
problem, one imposes an upper bound on tF and minimizes, under this restriction,
coupled with the system of constraints (14.2.4), some objective function.

As an example, consider the situation where the “normal” durations τγ of
activities can be reduced at certain price (“in reality” this can correspond to in-
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vesting into an activity extra manpower, machines, etc.). The corresponding model
becomes

τγ = ζγ − xγ , cγ = fγ(xγ),

where ζγ is the “normal duration” of the activity, xγ (“crush”) is a nonnegative
decision variable, and cγ = fγ(xγ) is the cost of the crush; here fγ(·) is a given func-
tion. The associated optimization model might be, e.g., the problem of minimizing
the total cost of the crushes under a given upper bound T on project’s duration:

min
x={xγ :γ∈Γ}

{tν}

{∑
γ

fγ(xγ) :
tµγ

− tνγ
≥ ζγ − xγ

0 ≤ xγ ≤ xγ

}
∀γ ∈ Γ, tS = 0, tF ≤ T

}
,

(14.2.5)
where xγ are given upper bounds on crushes. Note that when fγ(·) are convex
functions, (14.2.5) is an explicit convex problem, and when, in addition to convexity,
fγ(·) are piecewise linear, (which is usually the case in reality and which we assume
from now on), (14.2.5) can be straightforwardly converted to a Linear Optimization
program.

Usually part of the data of a PERT problem are uncertain. Consider the
simplest case when the only uncertain elements of the data in (14.2.5) are the
normal durations ζγ of the activities (their uncertainty may come from varying
weather conditions, inaccuracies in estimating the forthcoming effort, etc.). Let
us assume that these durations are random variables, say, independent of each
other, distributed in given segments ∆γ = [ζ

γ
, ζγ ]. To avoid pathologies, assume

also that ζ
γ
≥ xγ for every γ (“you cannot make the duration negative”). Now

(14.2.5) becomes an uncertain LO program with uncertainties affecting only the
right hand sides of the constraints. A natural way to “immunize” the solutions to
the problem against data uncertainty is to pass to the usual RC of the problem —
to think of both tγ and xγ as of variables with values to be chosen in advance in
such a way that the constraints in (14.2.4) are satisfied for all values of the data
ζγ from the uncertainty set. With our model of the latter set the RC is nothing
but the “worst instance” of our uncertain problem, the one where ζγ are set to
their maximum possible values ζγ . For large PERT graphs, such an approach is
very conservative: why should we care about the highly improbable case where
all the normal durations — independent random variables! — are simultaneously
at their worst-case values? Note that even taking into account that the normal
durations are random and replacing the uncertain constraints in (14.2.5) by their
chance constrained versions, we essentially do not reduce the conservatism. Indeed,
every one of randomly perturbed constraints in (14.2.5) contains a single random
perturbation, so that we cannot hope that random perturbations of a constraint
will to some extent cancel each other. As a result, to require the validity of every
uncertain constraint with probability 0.9 or 0.99 is the same as to require its validity
“in the worst case” with just slightly reduced maximal normal durations of the
activities.
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A much more promising approach is to try to adjust our decisions “on line.”
Indeed, we are speaking about a process that evolves in time, with “actual decisions”
represented by variables xγ and tν ’s being the analysis variables. Assuming that
the decision on xγ can be postponed till the event µγ (the earliest time when the
activity γ can be started) takes place, at that time we already know the actual
durations of the activities terminated before the event µγ , we could then adjust
our decision on xγ in accordance with this information. The difficulty is that we

do not know in advance what will be the actual time precedences between the

events — these precedences depend on our decisions and on the actual values of

the uncertain data. For example, in the situation described by figure 14.1, we, in
general, cannot know in advance which one of the events B, C will precede the other
one in time. As a result, in our present situation, in sharp contrast to the situation
of Example 14.1.2, an attempt to fully utilize the possibilities to adjust the decisions
to the actual values of the data results in an extremely complicated problem, where
not only the decisions themselves, but the very information base of the decisions
become dependent on the uncertain data and our policy. However, we could stick
to something in-between “no adjustability at all” and “as much adjustability as
possible.” Specifically, we definitely know that if a pair of activities γ′, γ are linked
by a logical precedence, so that there exists an oriented route in the graph that
starts with γ′ and ends with γ, then the actual duration of γ′ will be known before
γ can start. Consequently, we can take, as the information base of an activity γ,
the collection ζγ = {ζγ′ : γ′ ∈ Γ−(γ)}, where Γ−(γ) is the set of all activities that
logically precede the activity γ. In favorable circumstances, such an approach could
reduce significantly the price of robustness as compared to the non-adjustable RC.
Indeed, when plugging into the randomly perturbed constraints of (14.2.5) instead
of constants xγ functions Xγ(ζγ), and requiring from the resulting inequalities to
be valid with probability 1− ε, we end up with a system of chance constraints such
that some of them (in good cases, even most of them) involve many independent
random perturbations each. When the functions Xγ(ζγ) are regular enough, (e.g.,
are affine), we can hope that the numerous independent perturbations affecting
a chance constraint will to some extent cancel each other, and consequently, the
resulting system of chance constraints will be significantly less conservative than
the one corresponding to non-adjustable decisions.

14.2.2 Good News on the ARC

Passing from a trivial information base to a nontrivial one — passing from robust
optimal data-independent decisions to robust optimal data-based decision rules can
indeed dramatically reduce the associated robust optimal value.

Example 14.2.2. Consider the toy uncertain LO problem⎧⎨⎩min
x

⎧⎨⎩x1 :
x2 ≥ 1

2
ζx1 + 1 (aζ)

x1 ≥ (2 − ζ)x2 (bζ)
x1, x2 ≥ 0 (cζ)

⎫⎬⎭ : 0 ≤ ζ ≤ ρ

⎫⎬⎭ ,
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where ρ ∈ (0, 1) is a parameter (uncertainty level). Let us compare the optimal value of

its non-adjustable RC (where both x1 and x2 must be independent of ζ) with the optimal

value of the ARC where x1 still is assumed to be independent of ζ (P1ζ ≡ 0) but x2 is

allowed to depend on ζ (P2ζ ≡ ζ).

A feasible solution (x1, x2) of the RC should remain feasible for the constraint
(aζ) when ζ = ρ, meaning that x2 ≥ ρ

2x1 + 1, and should remain feasible for the
constraint (bζ) when ζ = 0, meaning that x1 ≥ 2x2. The two resulting inequali-
ties imply that x1 ≥ ρx1 + 2, whence x1 ≥ 2

1−ρ . Thus, Opt(RC)≥ 2
1−ρ , whence

Opt(RC)→∞ as ρ → 1− 0.

Now let us solve the ARC. Given x1 ≥ 0 and ζ ∈ [0, ρ], it is immediately
seen that x1 can be extended, by properly chosen x2, to a feasible solution of (aζ)
through (cζ) if and only if the pair (x1, x2 = 1

2ζx1 + 1) is feasible for (aζ) through
(cζ), that is, if and only if x1 ≥ (2− ζ)

[
1
2ζx1 + 1

]
whenever 1 ≤ ζ ≤ ρ. The latter

relation holds true when x1 = 4 and ρ ≤ 1 (since (2−ζ)ζ ≤ 1 for 0 ≤ ζ ≤ 2). Thus,
Opt(ARC)≤ 4, and the difference between Opt(RC) and Opt(ARC) and the ratio
Opt(RC)/Opt(ARC) go to ∞ as ρ → 1− 0.

14.2.3 Bad News on the ARC

Unfortunately, from the computational viewpoint the ARC of an uncertain prob-
lem more often than not is wishful thinking rather than an actual tool. The reason
comes from the fact that the ARC is typically severely computationally intractable.

Indeed, (14.2.2) is an infinite-dimensional problem, where one wants to optimize
over functions — decision rules — rather than vectors, and these functions, in
general, depend on many real variables. It is unclear even how to represent a
general-type candidate decision rule — a general-type multivariate function — in a
computer. Seemingly the only option here is sticking to a chosen in advance para-

metric family of decision rules, like piece-wise constant/linear/quadratic functions
of Pjζ with simple domains of the pieces (say, boxes). With this approach, a candi-
date decision rule is identified by the vector of values of the associated parameters,
and the ARC becomes a finite-dimensional problem, the parameters being our new
decision variables. This approach is indeed possible and in fact will be the focus
of what follows. However, it should be clear from the very beginning that if the
parametric family in question is “rich enough” to allow for good approximation of
“truly optimal” decision rules (think of polynomial splines of high degree as ap-
proximations to “not too rapidly varying” general-type multivariate functions), the
number of parameters involved should be astronomically large, unless the dimen-
sion of ζ is really small, like 1 — 3 (think of how many coefficients there are in
a single algebraic polynomial of degree 10 with 20 variables). Thus, aside of “re-
ally low dimensional” cases, “rich” general-purpose parametric families of decision
rules are for all practical purposes as intractable as non-parametric families. In
other words, when the dimension L of ζ is not too small, tractability of parametric
families of decision rules is something opposite to their “approximation abilities,”
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and sticking to tractable parametric families, we lose control of how far the opti-
mal value of the “parametric” ARC is away from the optimal value of the “true”
infinite-dimensional ARC. The only exception here seems to be the case when we
are smart enough to utilize our knowledge of the structure of instances of the un-
certain problem in question in order to identify the optimal decision rules up to a
moderate number of parameters. If we indeed are that smart and if the parame-
ters in question can be further identified numerically in a computationally efficient
fashion, we indeed can end up with an optimal solution to the “true” ARC. Unfor-
tunately, the two “if’s” in the previous sentence are big if’s indeed — to the best of
our knowledge, the only generic situation when these conditions are satisfied is the
“environment” of Markov Decision Processes considered in chapter 13 and the Dy-
namic Programming techniques that can be used in this environment. It seems that
these techniques form the only component in the existing “optimization toolbox”
that could be used to process the ARC numerically, at least when approximations
of a provably high quality are sought. Unfortunately, the Dynamic Programming
techniques are very “fragile” — they require instances of a very specific structure,
suffer from “curse of dimensionality,” etc., cf. chapter 13. The bottom line, in
our opinion, is that aside of situations, like those considered in chapter 13, where

Dynamic Programming is computationally efficient, (which is an exception rather
than a rule), the only hopefully computationally tractable approach to optimizing

over decision rules is to stick to their simple parametric families, even at the price
of giving up full control over the losses in optimality that can be incurred by such
a simplification.

Before moving to an in-depth investigation of (a version of) the just outlined
“simple approximation” approach to adjustable robust decision-making, it is worth
pointing out two situations when no simple approximations are necessary, since the
situations in question are very simple from the very beginning.

14.2.3.1 Simple case I: fixed recourse and scenario-generated uncertainty set

Consider an uncertain conic problem

P =
{

min
x

{
cT
ζ x + dζ : Aζx + bζ ∈ K

}
: ζ ∈ Z

}
(14.2.6)

(Aζ , bζ , cζ , dζ are affine in ζ, K is a computationally tractable convex cone) and
assume that

i) Z is a scenario-generated uncertainty set, that is, a set given as a convex hull
of finitely many “scenarios” ζs, 1 ≤ s ≤ S;

ii) The information base ensures that every variable xj either is non-adjustable
(Pj = 0), or is fully adjustable (Pj = I);

iii) We are in the situation of fixed recourse, that is, for every adjustable variable
xj (one with Pj �= 0), all its coefficients in the objective and the left hand
side of the constraint are certain, (i.e., are independent of ζ).



ROBUST ADJUSTABLE MULTISTAGE OPTIMIZATION 365

W.l.o.g. we can assume that x = [u; v], where the u variables are non-adjustable,
and the v variables are fully adjustable; under fixed recourse, our uncertain problem
can be written down as

P =
{

min
u,v

{
pT

ζ u + qT v + dζ : Pζu + Qv + rζ ∈ K
}

: ζ ∈ Conv{ζ1, ..., ζS}
}

(pζ , dζ , Pζ , rζ are affine in ζ). An immediate observation is that:

Theorem 14.2.3. Under assumptions 1 – 3, the ARC of the uncertain problem
P is equivalent to the computationally tractable conic problem

Opt = min
t,u,{vs}S

s=1

{
t : pζsu + qT vs + dζs ≤ t, Pζsu + Qvs + rζs ∈ K

}
. (14.2.7)

Specifically, the optimal values in the latter problem and in the ARC of P are
equal. Moreover, if t̄, ū, {v̄s}S

s=1 is a feasible solution to (14.2.7), then the pair t̄, ū

augmented by the decision rule for the adjustable variables:

v = V̄ (ζ) =
S∑

s=1

λs(ζ)v̄s

form a feasible solution to the ARC. Here λ(ζ) is an arbitrary nonnegative vector
with the unit sum of entries such that

ζ =
S∑

s=1

λs(ζ)ζS . (14.2.8)

Proof. Observe first that λ(ζ) is well-defined for every ζ ∈ Z due to Z =
Conv{ζ1, ..., ζS}. Further, if t̄, ū, {v̄s} is a feasible solution of (14.2.7) and V̄ (ζ) is
as defined above, then for every ζ ∈ Z the following implications hold true:

t̄ ≥ pζs ū + qT v̄s + dζs ∀s ⇒ t̄ ≥∑
s λs(ζ)

[
pT

ζs ū + qT v̄s + dζs

]
= pT

ζ ū + qT V̄ (ζ) + dζ ,

K # Pζs ū + Qv̄s + rζs ∀s ⇒ K #∑
s λs(ζ) [Pζs ū + Qv̄s + rζs ]

= Pζ ū + QV̄ (ζ) + rζ

(recall that pζ , ..., rζ are affine in ζ). We see that (t̄, ū, V̄ (·)) is indeed a feasible
solution to the ARC

min
t,u,V (·)

{
t : pT

ζ u + qT V (ζ) + dζ ≤ t, Pζu + QV (ζ) + rζ ∈ K∀ζ ∈ Z
}

of P. As a result, the optimal value of the latter problem is ≤ Opt. It remains to
verify that the optimal value of the ARC and Opt are equal. We already know that
the first quantity is ≤ the second one. To prove the opposite inequality, note that
if (t, u, V (·)) is feasible for the ARC, then clearly (t, u, {vs = V (ζs)}) is feasible for
(14.2.7). �

The outlined result shares the same shortcoming as Theorem 6.1.2 from sec-
tion 6.1: scenario-generated uncertainty sets are usually too “small” to be of much
interest, unless the number L of scenarios is impractically large. It is also worth
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noticing that the assumption of fixed recourse is essential: it is easy to show (see
[13]) that without it, the ARC may become intractable.

14.2.3.2 Simple case II: uncertain LO with constraint-wise uncertainty

Consider an uncertain LO problem

P =
{

min
x

{
cT
ζ x + dζ : aT

iζx ≤ biζ , i = 1, ...,m
}

: ζ ∈ Z
}

, (14.2.9)

where, as always, cζ , dζ , aiζ , biζ are affine in ζ. Assume that

i) The uncertainty is constraint-wise: ζ can be split into blocks ζ = [ζ0; ...; ζm]
in such a way that the data of the objective depend solely on ζ0, the data of
the i-th constraint depend solely on ζi, and the uncertainty set Z is the direct
product of convex compact sets Z0,Z1, ...,Zm in the spaces of ζ0, ..., ζm;

ii) One can point out a convex compact set X in the space of x variables such
that whenever ζ ∈ Z and x is feasible for the instance of P with the data ζ,
one has x ∈ X .
The validity of the latter, purely technical, assumption can be guaranteed, e.g.,

when the constraints of the uncertain problem contain (certain) finite upper and

lower bounds on every one of the decision variables. The latter assumption, for all

practical purposes, is non-restrictive.

Our goal is to prove the following

Theorem 14.2.4. Under the just outlined assumptions i) and ii), the ARC
of (14.2.9) is equivalent to its usual RC (no adjustable variables): both ARC and
RC have equal optimal values.

Proof. All we need is to prove that the optimal value in the ARC is ≥ the
one of the RC. When achieving this goal, we can assume w.l.o.g. that all decision
variables are fully adjustable — are allowed to depend on the entire vector ζ. The
“fully adjustable” ARC of (14.2.9) reads

Opt(ARC) = min
X(·),t

{
t :

cT
ζ0X(ζ) + dζ0 − t ≤ 0

aT
iζiX(ζ)− biζi ≤ 0, 1 ≤ i ≤ m

∀(ζ ∈ Z0 × ...×Zm)
}

= inf
{

t : ∀(ζ ∈ Z0 × ...×Zm)∃x ∈ X :

αT
i,ζix− βit + γi,ζi ≤ 0, 0 ≤ i ≤ m

}
,

(14.2.10)

(the restriction x ∈ X can be added due to assumption i)), while the RC is the
problem

Opt(RC) = inf
{

t : ∃x ∈ X : αT
iζix− βit + γiζi ≤ 0∀(ζ ∈ Z0 × ...×Zm)

}
;

(14.2.11)
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here αiζi , γiζi are affine in ζi and βi ≥ 0.

In order to prove that Opt(ARC) ≥ Opt(RC), it suffices to consider the case
when Opt(ARC) < ∞ and to show that whenever a real t̄ is > Opt(ARC), we have
t̄ ≥ Opt(RC). Looking at (14.2.11), we see that to this end it suffices to lead to a
contradiction the statement that for some t̄ > Opt(ARC) one has

∀x ∈ X∃(i = ix ∈ {0, 1, ..., m}, ζi = ζix
x ∈ Zix

) : αT
ixζix

x
x− βix t̄ + γixζix

x
> 0.

(14.2.12)
Assume that t̄ > Opt(ARC) and that (14.2.12) holds. For every x ∈ X , the
inequality

αT
ixζix

x
y − βix t̄ + γixζix

x
> 0

is valid when y = x; therefore, for every x ∈ X there exist εx > 0 and a neighbor-
hood Ux of x such that

∀y ∈ Ux : αT
ixζix

x
y − βix t̄ + γixζix

x
≥ εx.

Since X is a compact set, we can find finitely many points x1, ..., xN such that

X ⊂
N⋃

j=1

Uxj . Setting ε = minj εxj , i[j] = ixj , ζ[j] = ζ
ixj

xj ∈ Zi[j], and

fj(y) = αT
i[j],ζ[j]y − βi[j]t̄ + γi[j],ζ[j],

we end up with N affine functions of y such that

max
1≤j≤N

fj(y) ≥ ε > 0 ∀y ∈ X .

Since X is a convex compact set and fj(·) are affine (and thus convex and con-
tinuous) functions, the latter relation, by well-known facts from Convex Analysis
(namely, the von Neumann Lemma), implies that there exists a collection of non-
negative weights λj with

∑
j λj = 1 such that

f(y) ≡
N∑

j=1

λjfj(y) ≥ ε∀y ∈ X . (14.2.13)

Now let
ωi =

∑
j:i[j]=i λj , i = 0, 1, ...,m;

ζ̄i =

{ ∑
j:i[j]=i

λj

ωi
ζ[j], ωi > 0

a point from Zi, ωi = 0
,

ζ̄ = [ζ̄0; ...; ζ̄m].

Due to its origin, every one of the vectors ζ̄i is a convex combination of points from
Zi and as such belongs to Zi, since the latter set is convex. Since the uncertainty
is constraint-wise, we conclude that ζ̄ ∈ Z. Since t̄ > Opt(ARC), we conclude from
(14.2.10) that there exists x̄ ∈ X such that the inequalities

αT
iζ̄i x̄− βit̄ + γiζ̄i ≤ 0
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hold true for every i, 0 ≤ i ≤ m. Taking a weighted sum of these inequalities, the
weights being ωi, we get ∑

i:ωi>0

ωi[αT
iζ̄i x̄− βit̄ + γiζ̄i ] ≤ 0. (14.2.14)

At the same time, by construction of ζ̄i and due to the fact that αiζi , γiζi are affine
in ζi, for every i with ωi > 0 we have

[αT
iζ̄i x̄− βit̄ + γiζ̄i ] =

∑
j:i[j]=i

λj

ωi
fj(x̄),

so that (14.2.14) reads
N∑

j=1

λjfj(x̄) ≤ 0,

which is impossible due to (14.2.13) and to x̄ ∈ X . We have arrived at the desired
contradiction. �

14.3 AFFINELY ADJUSTABLE ROBUST COUNTERPARTS

We are about to investigate in-depth a specific version of the “parametric decision
rules” approach we have outlined previously. At this point, we prefer to come back
from general-type uncertain problem (14.1.1) to affinely perturbed uncertain conic
problem

C =
{

min
x∈Rn

{
cT
ζ x + dζ : Aζx + bζ ∈ K

}
: ζ ∈ Z

}
, (14.3.1)

where cζ , dζ , Aζ , bζ are affine in ζ, K is a “nice” cone (direct product of nonnegative
rays/Lorentz cones/semidefinite cones, corresponding to uncertain LP/CQP/SDP,
respectively), and Z is a convex compact uncertainty set given by a strictly feasible
SDP representation

Z =
{
ζ ∈ R

L : ∃u : P(ζ, u) � 0
}

,

where P is affine in [ζ; u]. Assume that along with the problem, we are given
an information base {Pj}n

j=1 for it; here Pj are mj × n matrices. To save words
(and without risk of ambiguity), we shall call such a pair “uncertain problem C,
information base” merely an uncertain conic problem. Our course of action is to
restrict the ARC of the problem to a specific parametric family of decision rules,
namely, the affine ones:

xj = Xj(Pjζ) = pj + qT
j Pjζ, j = 1, ..., n. (14.3.2)

The resulting restricted version of the ARC of (14.3.1), which we call the Affinely

Adjustable Robust Counterpart (AARC), is the semi-infinite optimization program

min
t,{pj ,qj}n

j=1

{
t :

∑n
j=1 cj

ζ [pj + qT
j Pjζ] + dζ − t ≤ 0∑n

j=1 Aj
ζ [pj + qT

j Pjζ] + bζ ∈ K

}
∀ζ ∈ Z

}
, (14.3.3)

where cj
ζ is j-th entry in cζ , and Aj

ζ is j-th column of Aζ . Note that the variables in
this problem are t and the coefficients pj , qj of the affine decision rules (14.3.2). As
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such, these variables do not specify uniquely the actual decisions xj ; these decisions
are uniquely defined by these coefficients and the corresponding portions Pjζ of the
true data once the latter become known.

14.3.1 Tractability of the AARC

The rationale for focusing on affine decision rules rather than on other parametric
families is that there exists at least one important case when the AARC of an

uncertain conic problem is, essentially, as tractable as the RC of the problem. The
“important case” in question is the one of fixed recourse and is defined as follows:

Definition 14.3.1. Consider an uncertain conic problem (14.3.1) augmented
by an information base {Pj}n

j=1. We say that this pair is with fixed recourse, if the
coefficients of every adjustable, (i.e., with Pj �= 0), variable xj are certain:

∀(j : Pj �= 0) : both cj
ζ and Aj

ζ are independent of ζ.

For example, both Examples 14.1.1 (Inventory) and 14.1.2 (Project Manage-
ment) are uncertain problems with fixed recourse.

An immediate observation is as follows:

(!) In the case of fixed recourse, the AARC, similarly to the RC, is a

semi-infinite conic problem — it is the problem

min
t,y={pj ,qj}

{
t :

ĉT
ζ y + dζ ≤ t

Âζy + bζ ∈ K

}
∀ζ ∈ Z

}
, (14.3.4)

with ĉζ , dζ , Âζ , bζ affine in ζ:

ĉT
ζ y =

∑
j cj

ζ [pj + qT
j Pjζ]

Âζy =
∑

j Aj
ζ [pj + qT

j Pjζ].
[y = {[pj , qj ]}n

j=1]

Note that it is exactly fixed recourse that makes ĉζ , Âζ affine in ζ; without this
assumption, these entities are quadratic in ζ.

As far as the tractability issues are concerned, observation (!) is the main
argument in favor of affine decision rules, provided we are in the situation of fixed

recourse. Indeed, in the latter situation the AARC is a semi-infinite conic problem,
and we can apply to it all the results of Parts I and II related to tractable reformu-
lations/tight safe tractable approximations of semi-infinite conic problems. Note
that many of these results, while imposing certain restrictions on the geometries of
the uncertainty set and the cone K, require from the objective (if it is uncertain)
and the left hand sides of the uncertain constraints nothing more than bi-affinity
in the decision variables and in the uncertain data. Whenever this is the case, the

“tractability status” of the AARC is not worse than the one of the usual RC. In
particular, in the case of fixed recourse we can:
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i) Convert the AARC of an uncertain LO problem into an explicit efficiently
solvable “well-structured” convex program (see Theorem 1.3.4).

ii) Process efficiently the AARC of an uncertain conic quadratic problem with
(common to all uncertain constraints) simple ellipsoidal uncertainty (see sec-
tion 6.5).

iii) Use a tight safe tractable approximation of an uncertain problem with linear
objective and convex quadratic constraints with (common for all uncertain
constraints) ∩-ellipsoidal uncertainty (see section 7.2.3): whenever Z is the
intersection of M ellipsoids centered at the origin, the problem admits a safe
tractable approximation tight within the factor O(1)

√
ln(M) (see Theorem

7.2.3).

The reader should be aware, however, that the AARC, in contrast to the usual
RC, is not a constraint-wise construction, since when passing to the coefficients
of affine decision rules as our new decision variables, the portion of the uncertain
data affecting a particular constraint can change when allowing the original decision
variables entering the constraint to depend on the uncertain data not affecting the
constraint directly. This is where the words “common” in the second and the third
of the above statements comes from. For example, the RC of an uncertain conic
quadratic problem with the constraints of the form

‖Ai
ζx + bi

ζ‖2 ≤ xT ci
ζ + di

ζ , i = 1, ..., m,

is computationally tractable, provided that the projection Zi of the overall uncer-
tainty set Z onto the subspace of data perturbations of i-th constraint is an ellipsoid
(section 6.5). To get a similar result for the AARC, we need the overall uncertainty

set Z itself to be an ellipsoid, since otherwise the projection of Z on the data of
the “AARC counterparts” of original uncertain constraints can be different from
ellipsoids. The bottom line is that the claim that with fixed recourse, the AARC of
an uncertain problem is “as tractable” as its RC should be understood with some
caution. This, however, is not a big deal, since the “recipe” is already here: Under

the assumption of fixed recourse, the AARC is a semi-infinite conic problem, and in

order to process it computationally, we can use all the machinery developed in Parts

I and II. If this machinery allows for tractable reformulation/tight safe tractable

approximation of the problem, fine, otherwise too bad for us.” Recall that there
exists at least one really important case when everything is fine — this is the case
of uncertain LO problem with fixed recourse.

It should be added that when processing the AARC in the case of fixed
recourse, we can enjoy all the results on safe tractable approximations of chance
constrained affinely perturbed scalar, conic quadratic and linear matrix inequalities
developed in Parts I and II. Recall that these results imposed certain restrictions
on the distribution of ζ (like independence of ζ1, ..., ζL), but never required more
than affinity of the bodies of the constraints w.r.t. ζ, so that these results work
equally well in the cases of RC and AARC.
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Last, but not least, the concept of an Affinely Adjustable Robust Counterpart
can be straightforwardly “upgraded” to the one of Affinely Adjustable Globalized

Robust Counterpart. We have no doubts that a reader can carry out such an
“upgrade” on his/her own and understands that in the case of fixed recourse, the
above “recipe” is equally applicable to the AARC and the AAGRC.

14.3.2 Is Affinity an Actual Restriction?

Passing from arbitrary decision rules to affine ones seems to be a dramatic simpli-
fication. On a closer inspection, the simplification is not as severe as it looks, or,
better said, the “dramatics” is not exactly where it is seen at first glance. Indeed,
assume that we would like to use decision rules that are quadratic in Pjζ rather
than linear. Are we supposed to introduce a special notion of a “Quadratically Ad-
justable Robust Counterpart“? The answer is negative. All we need is to augment
the data vector ζ = [ζ1; ...; ζL] by extra entries — the pairwise products ζiζj of
the original entries — and to treat the resulting “extended” vector ζ̂ = ζ̂[ζ] as our
new uncertain data. With this, the decision rules that are quadratic in Pjζ become
affine in P̂j ζ̂[ζ], where P̂j is a matrix readily given by Pj . More generally, assume
that we want to use decision rules of the form

Xj(ζ) = pj + qT
j P̂j ζ̂[ζ], (14.3.5)

where pj ∈ R, qj ∈ R
mj are “free parameters,” (which can be restricted to reside in

a given convex set), P̂j are given mj ×D matrices and

ζ �→ ζ̂[ζ] : R
L → R

D

is a given, possibly nonlinear, mapping. Here again we can pass from the original
data vector ζ to the data vector ζ̂[ζ], thus making the desired decision rules (14.3.5)
merely affine in the “portions” P̂j ζ̂ of the new data vector. We see that when
allowing for a seemingly harmless redefinition of the data vector, affine decision
rules become as powerful as arbitrary affinely parameterized parametric families
of decision rules. This latter class is really huge and, for all practical purposes, is
as rich as the class of all decision rules. Does it mean that the concept of AARC
is basically as flexible as the one of ARC? Unfortunately, the answer is negative,
and the reason for the negative answer comes not from potential difficulties with
extremely complicated nonlinear transformations ζ �→ ζ̂[ζ] and/or “astronomically
large” dimension D of the transformed data vector. The difficulty arises already
when the transformation is pretty simple, as is the case, e.g., when the coordinates
in ζ̂[ζ] are just the entries of ζ and the pairwise products of these entries. Here is
where the difficulty arises. Assume that we are speaking about a single uncertain
affinely perturbed scalar linear constraint, allow for quadratic dependence of the
original decision variables on the data and pass to the associated adjustable robust
counterpart of the constraint. As it was just explained, this counterpart is nothing
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but a semi-infinite scalar inequality

∀(ζ̂ ∈ U) : a0,ζ̂ +
J∑

j=1

aj,ζ̂yj ≤ 0

where aj,ζ̂ are affine in ζ̂, the entries in ζ̂ = ζ̂[ζ] are the entries in ζ and their
pairwise products, U is the image of the “true” uncertainty set Z under the non-

linear mapping ζ → ζ̂[ζ], and yj are our new decision variables (the coefficients
of the quadratic decision rules). While the body of the constraint in question is
bi-affine in y and in ζ̂, this semi-infinite constraint can well be intractable, since the
uncertainty set U may happen to be intractable, even when Z is tractable. Indeed,
the tractability of a semi-infinite bi-affine scalar constraint

∀(u ∈ U) : f(y, u) ≤ 0

heavily depends on whether the underlying uncertainty set U is convex and compu-
tationally tractable. When it is the case, we can, modulo minor technical assump-
tions, solve efficiently the Analysis problem of checking whether a given candidate
solution y is feasible for the constraint — to this end, it suffices to maximize the
affine function f(y, ·) over the computationally tractable convex set U . This, under
minor technical assumptions, can be done efficiently. The latter fact, in turn, im-
plies (again modulo minor technical assumptions) that we can optimize efficiently
linear/convex objectives under the constraints with the above features, and this is
basically all we need. The situation changes dramatically when the uncertainty set
U is not a convex computationally tractable set. By itself, the convexity of U costs
nothing: since f is bi-affine, the feasible set of the semi-infinite constraint in ques-
tion remains intact when we replace U with its convex hull Ẑ. The actual difficulty
is that the convex hull Ẑ of the set U can be computationally intractable. In the
situation we are interested in — the one where Ẑ = ConvU and U is the image of a
computationally tractable convex set Z under a nonlinear transformation ζ �→ ζ̂[ζ],
Ẑ can be computationally intractable already for pretty simple Z and nonlinear
mappings ζ �→ ζ̂[ζ]. It happens, e.g., when Z is the unit box ‖ζ‖∞ ≤ 1 and ζ̂[ζ]
is comprised of the entries in ζ and their pairwise products. In other words, the
“Quadratically Adjustable Robust Counterpart” of an uncertain linear inequality
with interval uncertainty is, in general, computationally intractable.

In spite of the just explained fact that “global linearization” of nonlinear
decision rules via nonlinear transformation of the data vector not necessarily leads to
tractable adjustable RCs, one should keep in mind this option, since it is important
methodologically. Indeed, “global linearization” allows one to “split” the problem
of processing the ARC, restricted to decision rules (14.3.5), into two subproblems:

(a) Building a tractable representation (or a tight tractable approximation)
of the convex hull Ẑ of the image U of the original uncertainty set Z under the
nonlinear mapping ζ �→ ζ̂[ζ] associated with (14.3.5). Note that this problem by
itself has nothing to do with adjustable robust counterparts and the like;
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(b) Developing a tractable reformulation (or a tight safe tractable approxi-
mation) of the Affinely Adjustable Robust Counterpart of the uncertain problem
in question, with ζ̂ in the role of the data vector, the tractable convex set, yielded
by (a), in the role of the uncertainty set, and the information base given by the
matrices P̂j .

Of course, the resulting two problems are not completely independent: the tractable
convex set Ẑ with which we, upon success, end up when solving (a) should be
simple enough to allow for successful processing of (b). Note, however, that this
“coupling of problems (a) and (b)” is of no importance when the uncertain problem
in question is an LO problem with fixed recourse. Indeed, in this case the AARC
of the problem is computationally tractable whatever the uncertainty set as long
as it is tractable, therefore every tractable set Ẑ yielded by processing of problem
(a) will do.

Example 14.3.2. Assume that we want to process an uncertain LO problem

C =
{
minx

{
cT

ζ x + dζ : Aζx ≥ bζ

}
: ζ ∈ Z

}
[cζ , dζ , Aζ , bζ : affine in ζ]

(14.3.6)

with fixed recourse and a tractable convex compact uncertainty set Z, and consider a

number of affinely parameterized families of decision rules.

A. “Genuine” affine decision rules: xj is affine in Pjζ. As we have already seen, the
associated ARC — the usual AARC of C — is computationally tractable.

B. Piece-wise linear decision rules with fixed breakpoints. Assume that the map-
ping ζ �→ ζ̂[ζ] augments the entries of ζ with finitely many entries of the form
φi(ζ) = max

[
ri, s

T
i ζ
]
, and the decision rules we intend to use should be affine in

P̂j ζ̂, where P̂j are given matrices. In order to process the associated ARC in a
computationally efficient fashion, all we need is to build a tractable representation
of the set Ẑ = Conv{ζ̂[ζ] : ζ ∈ Z}. While this could be difficult in general, there
are useful cases when the problem is easy, e.g., the case where

Z = {ζ ∈ R
L : fk(ζ) ≤ 1, 1 ≤ k ≤ K},

ζ̂[ζ] = [ζ; (ζ)+; (ζ)−], with (ζ)− = max[ζ, 0L×1], (ζ)+ = max[−ζ, 0L×1].

Here, for vectors u, v, max[u, v] is taken coordinate-wise, and fk(·) are lower semi-
continuous and absolutely symmetric convex functions on R

L, absolute symmetry
meaning that fk(ζ) ≡ fk(abs(ζ)) (abs acts coordinate-wise). (Think about the case
when fk(ζ) = ‖[αk1ζ1; ...;αkLζL]‖pk

with pk ∈ [1,∞].) It is easily seen that if Z is
bounded, then

Ẑ =

⎧⎨⎩ζ̂ = [ζ; ζ+; ζ−] :
(a) fk(ζ+ + ζ−) ≤ 1, 1 ≤ k ≤ K

(b) ζ = ζ+ − ζ−

(c) ζ± ≥ 0

⎫⎬⎭ .

Indeed, (a) through (c) is a system of convex constraints on vector ζ̂ = [ζ; ζ+; ζ−], and
since fk are lower semicontinuous, the feasible set C of this system is convex and closed;
besides, for [ζ; ζ+; ζ−] ∈ C we have ζ+ + ζ− ∈ Z; since the latter set is bounded by

assumption, the sum ζ+ + ζ− is bounded uniformly in ζ̂ ∈ C, whence, by (a) through (c),
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C is bounded. Thus, C is a closed and bounded convex set. The image U of the set Z
under the mapping ζ �→ [ζ; (ζ)+; (ζ)−] clearly is contained in C, so that the convex hull

Ẑ of U is contained in C as well. To prove the inverse inclusion, note that since C is
a (nonempty) convex compact set, it is the convex hull of the set of its extreme points,

and therefore in order to prove that Ẑ ⊃ C it suffices to verify that every extreme point
[ζ; ζ+, ζ−] of C belongs to U . But this is immediate: in an extreme point of C we should
have min[ζ+

� , ζ−
� ] = 0 for every �, since if the opposite were true for some � = �̄, then C

would contain a nontrivial segment centered at the point, namely, points obtained from
the given one by the “3-entry perturbation” ζ+

�̄
�→ ζ+

�̄
+ δ, ζ−

�̄
�→ ζ+

�̄
− δ, ζ�̄ �→ ζ�̄ +2δ with

small enough |δ|. Thus, every extreme point of C has min[ζ+, ζ−] = 0, ζ = ζ+ − ζ−, and
a point of this type satisfying (a) clearly belongs to U . �

C. Separable decision rules. Assume that Z is a box: Z = {ζ : a ≤ ζ ≤ a}, and we
are seeking for separable decision rules with a prescribed “information base,” that
is, for the decision rules of the form

xj = ξj +
∑
�∈Ij

f j
� (ζ�), j = 1, ..., n, (14.3.7)

where the only restriction on functions f j
� is to belong to given finite-dimensional

linear spaces F� of univariate functions. The sets Ij specify the information base
of our decision rules. Some of these sets may be empty, meaning that the associ-
ated xj are non-adjustable decision variables, in full accordance with the standard
convention that a sum over an empty set of indices is 0. We consider two specific
choices of the spaces F�:

C.1: F� is comprised of all piecewise linear functions on the real axis with
fixed breakpoints a�1 < ... < a�m (w.l.o.g., assume that a� < a�1, a�m < a�);

C.2: F� is comprised of all algebraic polynomials on the axis of degree ≤ κ.

Note that what follows works when m in C.1 and κ in C.2 depend on �; in
order to simplify notation, we do not consider this case explicitly.

C.1: Let us augment every entry ζ� of ζ with the reals ζ�i[ζ�] = max[ζ�, a�i],
i = 1, ...,m, and let us set ζ�0[ζ�] = ζ�. In the case of C.1, decision rules (14.3.7)
are exactly the rules where xj is affine in {ζ�i[ζ] : � ∈ Ij}; thus, all we need in
order to process efficiently the ARC of (14.3.6) restricted to the decision rules in
question is a tractable representation of the convex hull of the image U of Z under
the mapping ζ �→ {ζ�i[ζ]}�,i. Due to the direct product structure of Z, the set U is
the direct product, over � = 1, ..., d, of the sets

U� = {[ζ�0[ζ�]; ζ�1[ζ�]; ...; ζ�m[ζ�]] : a� ≤ ζ� ≤ a�},
so that all we need are tractable representations of the convex hulls of the sets U�.
The bottom line is, that all we need is a tractable description of a set C of the form

Cm = ConvSm, Sm = {[s0;max[s0, a1]; ...;max[s0, am]] : a0 ≤ s0 ≤ am+1},
where a0 < a1 < a2 < ... < am < am+1 are given.
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Figure 14.2 S1 (union of segments AB and BC) and C1 = ConvS1 (triangle ABC)

Let us first consider the case of m = 1. Here

S1 = {[s0; s1] = [s0;max[s0, a1]] : a0 ≤ s0 ≤ a2}.
This set and its convex hull C1 = ConvS1 are shown in figure 14.2. The set C1 is
given by the following inequalities:

a0 ≤ s0 ≤ a2, s1 ≥ max[s0, a1], s1 ≤
a2 − a1

a2 − a0
(s0 − a0) + a1.

After rearranging these three inequalities, a representation of C1 is given equiva-
lently as

C1 = ConvS1 =
{

[s0; s1] :
0 ≤ s1−s0

a1−a0
≤ a2−s1

a2−a1
≤ 1

a0 ≤ s0 ≤ a2

}
.

The result can be generalized for m > 1 as follows:

Lemma 14.3.3. The convex hull Cm of the set Sm is

Cm =

{
[s0; s1; ...; sm] :

{
a0 ≤ s0 ≤ am+1

0 ≤ s1−s0
a1−a0

≤ s2−s1
a2−a1

≤ ... ≤ sm+1−sm

am+1−am
≤ 1

}
, (14.3.8)

where sm+1 = am+1.

Proof. It is convenient to make affine substitution of variables as follows:

P : [s0; s1; ...; sm] �→ [δ0 = s0 − a0; δ1 = s1 − s0; δ2 = s2 − s1;
...; δm = sm − sm−1; δm+1 = am+1 − sm].

P is an affine embedding that maps, in a one-to-one fashion, the (m + 1)-dimensional
space of s variables onto the hyperplane δ0 + δ1 + ... + δm+1 = am+1 − a0 in the (m + 2)-
dimensional space of δ variables. The image of the right hand side of (14.3.8) under this
mapping is the set

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩δ = [δ0; ...; δm+1] :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ δ0 ≤ d ≡ am+1 − a0 (a)

0 ≤ δ1
d1

≤ δ2
d2

≤ ...

≤ δm+1
dm+1

≤ 1, di = ai − ai−1 (b)

δ0 + δ1 + ... + δm+1 = d (c)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ; (14.3.9)

the image of Sm under the same mapping we denote by S+. Since P is an affine embedding,
to prove (14.3.8) is exactly the same as to prove that P = ConvS+, and this is what we
intend to do.
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Let us first prove that P ⊃ ConvS+. Since P clearly is convex, it suffices to verify
that if

δ = P([s0; s1 = max[s0, a1]; ...; sm+1 = max[s0, am+1]])
≡ [s0 − a0; s1 − s0; s2 − s1; s3 − s2; ...; sm+1 − sm]

with a0 ≤ s0 ≤ am+1 ≡ sm+1, then δ ∈ P . The fact that δ satisfies (a) and (c) (from
now on, (a) through (c) refer to the respective relations in (14.3.9)) is evident. To verify
(b), observe, first, that a0 ≤ s0 ≤ s1 ≤ ... ≤ sm ≤ am+1, whence all δi are ≥ 0. Let j be
such that s0 ∈ [aj−1, aj ]. Then si = s0 for i < j and si = ai for i ≥ j, whence δi/di = 0

for 1 ≤ i ≤ j − 1, δj/dj =
aj−s0

dj
and δi/di = 1 for i > j. Since 0 ≤ aj − s0 ≤ dj , (b)

follows. Thus, P ⊃ ConvS+. It remains to prove the opposite inclusion. Since P clearly
is a nonempty convex compact set, in order to prove that P ⊂ ConvS+ it suffices to verify
that if δ = [δ0; ...; δm+1] is an extreme point of P , then δ = P(s) for certain s ∈ Sm,
and this is what we are about to do. By (a), we have 0 ≤ δ0 ≤ d, and by (b) we have
0 ≤ δi ≤ di, 1 ≤ i ≤ m+1. Since d = d1 + ...+dm+1, in the case of δ0 = 0 (c) implies that
δi = di for i = 1, ..., m + 1, so that δ is the point [0; d1; ...; dm+1], and this point indeed is
P(s) with s = [a0; a1; ...; am] ∈ Sm. When δ0 = d, (c) implies that δ1 = ... = δm+1 = 0
(note that by (a), (b) δ ≥ 0 for all δ ∈ P ). Thus, here δ = [am+1; 0; ...; 0], and this point is
P(s) with s = [am+1; am+1; ...; am+1] ∈ Sm. It remains to consider the case when δ is an
extreme point of P and 0 < δ0 < d. We claim that the fractions in (b) take at most two
values, namely, 0 and 1. We shall justify this claim later, and meanwhile let us derive from
it that δ indeed is P(s) with s ∈ Sm. Given the claim, just three options are possible:

— all fractions in (b) are equal to 0. In this case δ1 = ... = δm+1 = 0, and thus
δ0 = d by (c), which is not the case;

— all fractions in (b) are equal to 1. In this case δi = di, i = 1, ..., m+1, and δ0 = 0
by (c), which again is not the case;

— for certain j, 1 ≤ j ≤ m, the fractions δi
di

are equal to 0 when i ≤ j and are
equal to 1 when i > j, or, which is the same, δi = 0 for 1 ≤ i ≤ j and δi = di for i > j.
Invoking (c), we see that δ0 = d − dj+1 − dj+2 − ... − dm+1 = d1 + ... + dj = aj − a0, so
that δ = [aj − a0; 0, ..., 0; aj+1 − aj ; aj+2 − aj+1; ...; am+1 − am]. But this point indeed is
P(s) for s = [aj ; aj ; ...; aj ; aj+1; aj+2; aj+3; ...; am] ∈ Sm.

It remains to justify our claim. Assume, on the contrary to what should be proved,
that among the fractions δi

di
, i = 1, ..., m + 1, there is a fraction taking a value θ ∈ (0, 1),

and let I be the set of indices of all fractions that are equal to θ; note that by (b) I is
a segment of consecutive indices from the sequence 1, 2, ..., m + 1. Setting q =

∑
i∈I di,

consider the following perturbation of vector δ:

δ �→ δ[t] = [δ0[t]; ...; δm+1[t]], δi[t] =

⎧⎨⎩
δ0 + t, i = 0
δi, i ≥ 1, i �∈ I

δi − di
q

t, i ∈ I
.

We claim that when |t| is small enough, we have δ[t] ∈ P . Indeed, for small |t| the vector
δ[t]

— satisfies (a) due to 0 < δ0 < d;

— satisfies (b), since the fractions δi[t]
di

for i ∈ I are equal to each other and close
to θ, and the remaining fractions stay intact;

— satisfies (c), since
∑m+1

i=0 δi[t] is independent of t due to the origin of q.
We see that δ is the midpoint of a nontrivial segment {δ[t] : −ε ≤ t ≤ ε} which for small
enough ε > 0 is contained in P ; but this is impossible, since δ is an extreme point of P .
�

C.2: Similar to the case of C.1, in the case of C.2 all we need in order to
process efficiently the ARC of (14.3.6), restricted to decision rules (14.3.7), is a
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tractable representation of the set

C = ConvS, S = {ŝ = [s; s2; ...; sκ] : |s| ≤ 1}.
(We have assumed w.l.o.g. that a� = −1, a� = 1.) Here is the description (origi-
nating from [87]):

Lemma 14.3.4. The set C = ConvS admits the explicit semidefinite repre-
sentation

C =
{
ŝ ∈ R

κ : ∃λ = [λ0; ...; λ2κ] ∈ R
2κ+1 : [1; ŝ] = QT λ, [λi+j ]κi,j=0 � 0

}
,

(14.3.10)
where the (2κ+1)×(κ+1) matrix Q is defined as follows: take a polynomial p(t) =
p0 +p1t+ ...+pκtκ and convert it into the polynomial p̂(t) = (1+ t2)κp(2t/(1+ t2)).
The vector of coefficients of p̂ clearly depends linearly on the vector of coefficients
of p, and Q is exactly the matrix of this linear transformation.

Proof. 10. Let P ⊂ R
κ+1 be the cone of vectors p of coefficients of polynomials

p(t) = p0 + p1t+ p2t
2 + ...+ pκtκ that are nonnegative on [−1, 1], and P∗ be the cone dual

to P . We claim that
C = {ŝ ∈ R

κ : [1; ŝ] ∈ P∗}. (14.3.11)

Indeed, let C′ be the right hand side set in (14.3.11). If ŝ = [s; s2; ...; sκ] ∈ S, then |s| ≤ 1,
so that for every p ∈ P we have pT [1; ŝ] = p(s) ≥ 0. Thus, [1; ŝ] ∈ P∗ and therefore
ŝ ∈ C′. Since C′ is convex, we arrive at C ≡ ConvS ⊂ C′. To prove the inverse inclusion,
assume that there exists ŝ �∈ C such that z = [1; ŝ] ∈ P∗, and let us lead this assumption
to a contradiction. Since ŝ is not in C and C is a closed convex set and clearly contains
the origin, we can find a vector q ∈ R

κ such that qT ŝ = 1 and maxr∈C qT r ≡ α < 1,
or, which is the same due to C = ConvS, qT [s; s2; ...; sκ] ≤ α < 1 whenever |s| ≤ 1.
Setting p = [α;−q], we see that p(s) ≥ 0 whenever |s| ≤ 1, so that p ∈ P and therefore
α − qT ŝ = pT [1; ŝ] ≥ 0, whence 1 = qT ŝ ≤ α < 1, which is a desired contradiction.

20. It remains to verify that the right hand side in (14.3.11) indeed admits rep-
resentation (14.3.10). We start by deriving a semidefinite representation of the cone P+

of (vectors of coefficients of) all polynomials p(s) of degree not exceeding 2κ that are
nonnegative on the entire axis. The representation is as follows. A (κ + 1) × (κ + 1)
symmetric matrix W can be associated with the polynomial of degree ≤ 2κ given by
pW (t) = [1; t; t2; ...; tκ]T W [1; t; t2; ...; tκ], and the mapping A : W �→ pW clearly is linear:(
A[wij ]

κ
i,j=0

)
ν

=
∑

0≤i≤ν wi,ν−i, 0 ≤ ν ≤ 2κ. A dyadic matrix W = eeT “produces” in

this way a polynomial that is the square of another polynomial: AeeT = e2(t) and as
such is ≥ 0 on the entire axis. Since every matrix W � 0 is a sum of dyadic matrices,
we conclude that AW ∈ P+ whenever W � 0. Vice versa, it is well known that every
polynomial p ∈ P+ is the sum of squares of polynomials of degrees ≤ κ, meaning that
every p ∈ P+ is AW for certain W that is the sum of dyadic matrices and as such is � 0.
Thus,

P+ = {p = AW : W ∈ Sκ+1
+ }.

Now, the mapping t �→ 2t/(1 + t2) : R → R maps R onto the segment [−1, 1]. It follows
that a polynomial p of degree ≤ κ is ≥ 0 on [−1, 1] if and only if the polynomial p̂(t) =
(1 + t2)κp(2t/(1 + t2)) of degree ≤ 2κ is ≥ 0 on the entire axis, or, which is the same,
p ∈ P if and only if Qp ∈ P+. Thus,

P = {p ∈ R
κ+1 : ∃W ∈ Sκ+1 : W � 0,AW = Qp}.
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Given this semidefinite representation of P , we can immediately obtain a semidefinite
representation of P∗. Indeed,

q ∈ P∗ ⇔ 0 ≤ minp∈P {qT p} ⇔ 0 ≤ minp∈Rκ{qT p : ∃W � 0 : Qp = AW}
⇔ 0 ≤ minp,W {qT p : Qp −AW = 0, W � 0}
⇔ {q = QT λ : λ ∈ R

2κ+1,A∗λ � 0},

where the concluding ⇔ is due to semidefinite duality. Computing A∗λ, we arrive at
(14.3.10). �

Remark 14.3.5. Note that C.2 admits a straightforward modification where

the spaces F� are comprised of trigonometric polynomials
κ∑

i=0

[pi cos(iω�s) +

qi sin(iω�s)] rather than of algebraic polynomials
∑κ

i=0 pis
i. Here all we need is

a tractable description of the convex hull of the curve

{[s; cos(ω�s); sin(ω�s); ...; cos(κω�s); sin(κω�s)] : −1 ≤ s ≤ 1}
which can be easily extracted from the semidefinite representation of the cone P+.

Discussion. There are items to note on the results stated in C. The bad news is
that understood literally, these results have no direct consequences in our context —

when Z is a box, decision rules (14.3.7) never outperform “genuine” affine decision

rules with the same information base (that is, the decision rules (14.3.7) with the
spaces of affine functions on the axis in the role of F�).

The explanation is as follows. Consider, instead of (14.3.6), a more general
problem, specifically, the uncertain problem

C =
{
minx

{
cT

ζ x + dζ : Aζx − bζ ∈ K
}

: ζ ∈ Z
}

[cζ , dζ , Aζ , bζ : affine in ζ]
(14.3.12)

where K is a convex set. Assume that Z is a direct product of simplexes:
Z = ∆1 × ... × ∆L, where ∆� is a k�-dimensional simplex (the convex hull of
k� + 1 affinely independent points in R

k�). Assume we want to process the
ARC of this problem restricted to the decision rules of the form

xj = ξj +
∑
�∈Ij

f j
� (ζ�), (14.3.13)

where ζ� is the projection of ζ ∈ Z on ∆�, and the only restriction on the
functions f j

� is that they belong to given families F� of functions on R
k� . We

still assume fixed recourse: the columns of Aζ and the entries in cζ associated
with adjustable, (i.e., with Ij �= ∅) decision variables xj are independent of ζ.

The above claim that “genuinely affine” decision rules are not inferior as
compared to the rules (14.3.7) is nothing but the following simple observation:

Lemma 14.3.6. Whenever certain t ∈ R is an achievable value of the objective
in the ARC of (14.3.12) restricted to the decision rules (14.3.13), that is, there
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exist decision rules of the latter form such that

n∑
j=1

[
ξj +

∑
�∈Ij

f j
� (ζ�)

]
(cζ)j + dζ ≤ t

n∑
j=1

[
ξj +

∑
�∈Ij

f j
� (ζ�)

]
Aj

ζ − bζ ∈ K

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∀ζ ∈ [ζ1; ...; ζL] ∈ Z

= ∆1 × ... × ∆L,

(14.3.14)
t is also an achievable value of the objective in the ARC of the uncertain
problem restricted to affine decision rules with the same information base:
there exist affine in ζ� functions φj

�(ζ�) such that (14.3.14) remains valid with
φj

� in the role of f j
� .

Proof is immediate: since every collection of k� + 1 reals can be obtained as
the collection of values of an affine function at the vertices of k�-dimensional
simplex, we can find affine functions φj

�(ζ�) such that φj
�(ζ�) = f j

� (ζ�) whenever
ζ� is a vertex of the simplex ∆�. When plugging into the left hand sides of
the constraints in (14.3.14) the functions φj

�(ζ�) instead of f j
� (ζ�), these left

hand sides become affine functions of ζ (recall that we are in the case of fixed
recourse). Due to this affinity and to the fact that Z is a convex compact set,
in order for the resulting constraints to be valid for all ζ ∈ Z, it suffices for
them to be valid at every one of the extreme points of Z. The components
ζ1, ..., ζL of such an extreme point ζ are vertices of ∆1, ..., ∆L, and therefore
the validity of “φ constraints” at ζ is readily given by the validity of the “f
constraints” at this point — by construction, at such a point the left hand
sides of the “φ”band the “f” constraints coincide with each other. �

Does the bad news mean that our effort in C.1–2 was just wasted? The good news
is that this effort still can be utilized. Consider again the case where ζ� are scalars,
assume that Z is not a box, in which case Lemma 14.3.6 is not applicable. Thus,
we have hope that the ARC of (14.3.6) restricted to the decision rules (14.3.7) is
indeed less conservative (has a strictly less optimal value) than the ARC restricted
to the affine decision rules. What we need in order to process the former, “more
promising,” ARC, is a tractable description of the convex hull Ẑ of the image U of
Z under the mapping

ζ �→ ζ̂[ζ] = {ζ�i[ζ�]} 0≤i≤m,
1≤�≤L

where ζ�0 = ζ�, ζ�i[ζ�] = fi�(ζ�), 1 ≤ i ≤ m, and the functions fi� ∈ F�, i = 1, ..., m,
span F�. The difficulty is that with F� as those considered in C.1–2 (these families
are “rich enough” for most of applications), we, as a matter of fact, do not know how

to get a tractable representation of Ẑ, unless Z is a box. Thus, Z more complicated
than a box seems to be too complex, and when Z is a box, we gain nothing from
allowing for “complex” F�. Nevertheless, we can proceed as follows. Let us include
Z, (which is not a box), into a box Z+, and let us apply the outlined approach to
Z+ in the role of Z, that is, let us try to build a tractable description of the convex
hull Ẑ+ of the image U+ of Z+ under the mapping ζ �→ ζ̂[ζ]. With luck, (e.g., in
situations C.1–2), we will succeed, thus getting a tractable representation of Ẑ+;
the latter set is, of course, larger than the “true” set Ẑ we want to describe. There
is another “easy to describe” set that contains Ẑ, namely, the inverse image Ẑ0 of
Z under the natural projection Π : {ζ�i} 0≤i≤m,

1≤�≤L
�→ {ζ�0}1≤�≤L that recovers ζ from



380 CHAPTER 14

ζ̂[ζ]. And perhaps we are smart enough to find other easy to describe convex sets
Ẑ1,...,Ẑk that contain Ẑ.

Assume, e.g., that Z is the Euclidean ball {‖ζ‖2 ≤ r}, and let us take as Z+

the embedding box {‖ζ‖∞ ≤ r}.
In the case of C.1 we have for i ≥ 1: ζ�i[ζ�] = max[ζ�, a�i], whence

|ζ�i[ζ�]| ≤ max[|ζ�|, |a�i|]. It follows that when ζ ∈ Z, we have
∑

� ζ2
�i[ζ�] ≤∑

� max[ζ2
� , a2

�i] ≤ ∑
�[ζ

2
� + a2

�i] ≤ r2 +
∑

� a2
�i, and we can take as Ẑp,

p = 1, ..., m, the elliptic cylinders {{ζ�i}�,i :
∑

� ζ2
�p ≤ r2 +

∑
� a2

�p}.
In the case of C.2, we have ζ�i[ζ�] = ζi+1

� , 1 ≤ i ≤ κ − 1, so that∑
� |ζ�i[ζ�]| ≤ maxz∈RL{

∑
� |z�|i+1 : ‖z‖2 ≤ r} = ri+1. Thus, we can take

Ẑp = {{ζ�i}�,i :
∑

� |ζ�p| ≤ rp+1}, 1 ≤ p ≤ κ − 1.

Since all the easy to describe convex sets Ẑ+, Ẑ0,...,Ẑk contain Ẑ, the same is true
for the easy to describe convex set

Z̃ = Ẑ+ ∩ Ẑ0 ∩ Ẑ1 ∩ ... ∩ Ẑk,

so that the (tractable along with Z̃) semi-infinite LO problem

min
t,

{Xj(·)∈Xj}n
j=1

⎧⎪⎪⎨⎪⎪⎩t :
dΠ(ζ̂) +

n∑
j=1

Xj(ζ̂)(cΠ(ζ̂))j ≤ t

n∑
j=1

Xj(ζ̂)Aj

Π(ζ̂)
− bΠ(ζ̂) ≥ 0

⎫⎪⎪⎬⎪⎪⎭ ∀ζ̂ = {ζ�i} ∈ Z̃

⎫⎪⎪⎬⎪⎪⎭[
Π
(
{ζ�i} 0≤i≤m,

1≤�≤L

)
= {ζ�0}1≤�≤L, Xj = {Xj(ζ̂) = ξj +

∑
�∈Ij,

0≤i≤m

η�iζ�i}
] (S)

is a safe tractable approximation of the ARC of (14.3.6) restricted to decision rules
(14.3.7). Note that this approximation is at least as flexible as the ARC of (14.3.6)
restricted to genuine affine decision rules. Indeed, a rule X(·) = {Xj(·)}n

j=1 of
the latter type is “cut off” the family of all decision rules participating in (S) by
the requirement “Xj depend solely on ζ�0, � ∈ Ij ,” or, which is the same, by the
requirement η�i = 0 whenever i > 0. Since by construction the projection of Z̃ on
the space of variables ζ�0, 1 ≤ � ≤ L, is exactly Z, a pair (t,X(·)) is feasible for
(S) if and only if it is feasible for the AARC of (14.3.6), the information base being
given by I1, ..., In. The bottom line is, that when Z is not a box, the tractable
problem (S), while still producing robust feasible decisions, is at least as flexible as
the AARC. Whether this “at least as flexible” is or is not “more flexible,” depends
on the application in question, and since both (S) and AARC are tractable, it is
easy to figure out what the true answer is.

Here is a toy example. Let L = 2, n = 2, and let (14.3.6) be the uncertain
problem ⎧⎪⎪⎨⎪⎪⎩min

x

⎧⎪⎪⎨⎪⎪⎩x2 :

x1 ≥ ζ1

x1 ≥ −ζ1

x2 ≥ x1 + 3ζ1/5 + 4ζ2/5
x2 ≥ x1 − 3ζ1/5 − 4ζ2/5

⎫⎪⎪⎬⎪⎪⎭ , ‖ζ‖2 ≤ 1

⎫⎪⎪⎬⎪⎪⎭ ,

with fully adjustable variable x1 and non-adjustable variable x2. Due to the
extreme simplicity of our problem, we can immediately point out an optimal
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solution to the unrestricted ARC, namely,

X1(ζ) = |ζ1|, x2 ≡ Opt(ARC) = max
‖ζ‖2≤1

[|ζ1|+ |3ζ1 + 4ζ2|/5] =
4
√

5

5
≈ 1.7889.

Now let us compare Opt(ARC) with the optimal value Opt(AARC) of the
AARC and with the optimal value Opt(RARC) of the restricted ARC where
the decision rules are allowed to be affine in [ζ�]±, � = 1, 2 (as always, [a]+ =
max[a, 0] and [a]− = max[−a, 0]). The situation fits B, so that we can process
the RARC as it is. Noting that a = [a]+ − [a]−, the decision rules that are
affine in [ζ�]±, � = 1, 2, are exactly the same as the decision rules (14.3.7),
where F�, � = 1, 2, are the spaces of piecewise linear functions on the axis
with the only breakpoint 0. We see that up to the fact that Z is a circle rather
than a square, the situation fits C.1 as well, and we can process RARC via
its safe tractable approximation (S). Let us look what are the optimal values
yielded by these 3 schemes.

• The AARC of our toy problem is

Opt(AARC) = min
x2,ξ,η

{
x2 :

X1(ζ)︷ ︸︸ ︷
ξ + ηT ζ ≥ |ζ1| (a)
x2 ≥ X1(ζ) + |3ζ1 + 4ζ2|/5 (b)

∀(ζ : ‖ζ‖2 ≤ 1)

}
This problem can be immediately solved. Indeed, (a) should be valid for
ζ = ζ1 ≡ [1; 0] and for ζ = ζ2 ≡ −ζ1, meaning that X1(±ζ1) ≥ 1, whence
ξ ≥ 1. Further, (b) should be valid for ζ = ζ3 ≡ [3; 4]/5 and for ζ = ζ4 ≡ −ζ3,
meaning that x2 ≥ X1(±ζ3) + 1, whence x2 ≥ ξ + 1 ≥ 2. We see that the
optimal value is ≥ 2, and this bound is achievable (we can take X1(·) ≡ 1 and
x2 = 2). As a byproduct, in our toy problem the AARC is as conservative as
the RC.

• The RARC of our problem as given by B is

Opt(RARC) = min
x2,ξ,η,η±

{
x2 :

X1(ζ̂)︷ ︸︸ ︷
ξ + ηT ζ + ηT

+ζ+ + ηT
−ζ− ≥ |ζ1|

x2 ≥ X1(ζ̂) + |3ζ1 + 4ζ2|/5

∀(ζ̂ = [ζ1; ζ2︸ ︷︷ ︸
ζ

; ζ+
1 ; ζ+

2︸ ︷︷ ︸
ζ+

; ζ−
1 ; ζ−

2︸ ︷︷ ︸
ζ−

] ∈ Ẑ)

}
,

Ẑ =
{

ζ̂ : ζ = ζ+ − ζ−, ζ± ≥ 0, ‖ζ+ + ζ−‖2 ≤ 1
}

.

We can say in advance what are the optimal value and the optimal solution to
the RARC — they should be the same as those of the ARC, since the latter,
as a matter of fact, admits optimal decision rules that are affine in |ζ1|, and
thus in [ζ�]±. Nevertheless, we have carried out numerical optimization which
yielded another optimal solution to the RARC (and thus - to ARC):

Opt(RARC) = x2 = 1.7889,
ξ = 1.0625, η = [0; 0], η+ = η− = [0.0498;−0.4754],

which corresponds to X1(ζ) = 1.0625 + 0.0498|ζ1| − 0.4754|ζ2|.
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• The safe tractable approximation of the RARC looks as follows. The map-
ping ζ �→ ζ̂[ζ] in our case is

[ζ1; ζ2] �→ [ζ1,0 = ζ1; ζ1,1 = max[ζ1, 0]; ζ2,0 = ζ2; ζ2,1 = max[ζ2, 0]],

the tractable description of Ẑ+ as given by C.1 is

Ẑ+ =

{
{ζ�i} i=0,1

�=1,2
:

−1 ≤ ζ�0 ≤ 1

0 ≤ ζ�1−ζ�0
1

≤ 1−ζ�1
1

≤ 1

}
, � = 1, 2

}
and the sets Ẑ0, Ẑ1 are given by

Ẑi =
{
{ζ�i} i=0,1

�=1,2
: ζ2

1i + ζ2
2i ≤ 1

}
, i = 0, 1.

Consequently, (S) becomes the semi-infinite LO problem

Opt(S) = min
x2,ξ,{η�i}

{
x2 :

X1(ζ̂) ≡ ξ +
∑

�=1,2
i=0,1

η�iζ�i ≥ ζ1,0

X1(ζ̂) ≡ ξ +
∑

�=1,2
i=0,1

η�iζ�i ≥ −ζ1,0

x2 ≥ ξ +
∑

�=1,2
i=0,1

η�iζ�i + [3ζ1,0 + 4ζ2,0]/5

x2 ≥ ξ +
∑

�=1,2
i=0,1

η�iζ�i − [3ζ1,0 + 4ζ2,0]/5

∀ζ̂ = {ζ�i} :
−1 ≤ ζ�0 ≤ 1, � = 1, 2
0 ≤ ζ�1 − ζ�0 ≤ 1 − ζ�1 ≤ 1, � = 1, 2
ζ2
1i + ζ2

2i ≤ 1, i = 0, 1

}
.

Computation results in

Opt(S) = x2 = 25+
√

8209
60

≈ 1.9267,
X1(ζ) = 5

12
− 3

5
ζ1.0[ζ1] + 6

5
ζ1,1[ζ1]+

7
60

ζ2,0[ζ2] = 5
12

+ 3
5
|ζ1| + 7

60
ζ2.

As it could be expected, we get 2 = Opt(AARC) > 1.9267 = Opt(S) >
1.7889 = Opt(RARC) = Opt(ARC). Note that in order to get Opt(S) <

Opt(AARC), taking into account Ẑ1 is a must: in the case of C.1, whatever

be Z and a box Z+ ⊃ Z, with Z̃ = Ẑ+ ∩ Ẑ0 we gain nothing as compared to
the genuine affine decision rules.

D. Quadratic decision rules, ellipsoidal uncertainty set. In this case,

ζ̂[ζ] =
[

ζT

ζ ζζT

]
is comprised of the entries of ζ and their pairwise products (so that the associated
decision rules (14.3.5) are quadratic in ζ), and Z is the ellipsoid {ζ ∈ R

L : ‖Qζ‖2 ≤
1}, where Q has a trivial kernel. The convex hull of the image of Z under the
quadratic mapping ζ → ζ̂[ζ] is easy to describe:

Lemma 14.3.7. In the above notation, the set Ẑ = Conv{ζ̂[ζ] : ‖Qζ‖2 ≤ 1}
is a convex compact set given by the semidefinite representation as follows:

Ẑ =
{

ζ̂ =
[

vT

v W

]
∈ SL+1 : ζ̂ +

[
1

]
� 0, Tr(QWQT ) ≤ 1

}
.

Proof. It is immediately seen that it suffices to prove the statement when Q = I,
which we assume from now on. Besides this, when we add to the mapping ζ̂[ζ] the constant

matrix

[
1

]
, the convex hull of the image of Z is translated by the same matrix. It
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follows that all we need is to prove that the convex hull Q of the image of the unit

Euclidean ball under the mapping ζ �→ ζ̃[ζ] =

[
1 ζT

ζ ζζT

]
can be represented as

Q =

{
ζ̂ =

[
1 vT

v W

]
∈ SL+1 : ζ̂ � 0, Tr(QWQT ) ≤ 1

}
. (14.3.15)

Denoting the right hand side in (14.3.15) by Q̂, both Q and Q̂ are nonempty convex
compact sets. Therefore they coincide if and only if their support functions are identical.1

We are in the situation where Q is the convex hull of the set

{[
1 ζT

ζ ζζT

]
: ζT ζ ≤ 1

}
,

so that the support function of Q is

φ(P ) = max
Z

{
Tr(PZ) : Z =

[
1 ζT

ζ ζζT

]
: ζT ζ ≤ 1

} [
P =

[
p qT

q R

]
∈ SL+1

]
.

We have

φ(P ) = max
Z

{
Tr(PZ) : Z =

[
1 ζT

ζ ζζT

]
with ζT ζ ≤ 1

}
= max

ζ

{
ζT Rζ + 2qT ζ + p : ζT ζ ≤ 1

}
= min

τ

{
τ : τ ≥ ζT Rζ + 2qT ζ + p∀(ζ : ζT ζ ≤ 1)

}
= min

τ

{
τ : (τ − p)t2 − ζT Rζ − 2tqT ζ ≥ 0∀((ζ, t) : ζT ζ ≤ t2)

}
= min

τ

{
τ : ∃λ ≥ 0 : (τ − p)t2 − ζT Rζ − 2tqT ζ − λ(t2 − ζT ζ) ≥ 0 ∀(ζ, t)

}
[S-Lemma]

= min
τ,λ

{
τ :

[
τ − p − λ −qT

−q λI − R

]
� 0, λ ≥ 0

}
= max

u,v,W,r

{
up + 2vT q + Tr(RW ) : Tr

([
τ − λ

λI

] [
u vT

v W

])
+ rλ

≡ τ∀(τ, λ),

[
u vT

v W

]
� 0, r ≥ 0

}
[semidefinite duality]

= max
v,W

{
p + 2vT q + Tr(RW ) :

[
1 vT

v W

]
� 0, Tr(W ) ≤ 1

}
= max

v,W

{
Tr

(
P

[
1 vT

v W

])
:

[
1 vT

v W

]
∈ Q̂

}
.

Thus, the support function of Q indeed is identical to the one of Q̂. �

Corollary 14.3.8. Consider a fixed recourse uncertain LO problem (14.3.6)
with an ellipsoid as an uncertainty set, where the adjustable decision variables are
allowed to be quadratic functions of prescribed portions Pjζ of the data. The
associated ARC of the problem is computationally tractable and is given by an
explicit semidefinite program of the sizes polynomial in those of instances and in
the dimension L of the data vector.

1The support function of a nonempty convex set X ⊂ Rn is the function f(ξ) = supx∈X ξT x :
Rn → R ∪ {+∞}. The fact that two closed nonempty convex sets in Rn are identical, if and only
if their support functions are so, is readily given by the Separation Theorem.
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E. Quadratic decision rules and an uncertainty set that is an intersection of con-

centric ellipsoids. Here the uncertainty set Z is ∩-ellipsoidal:

Z = Zρ ≡ {ζ ∈ R
L : ζT Qjζ ≤ ρ2, 1 ≤ j ≤ J}[

Qj � 0,
∑

j Qj � 0
] (14.3.16)

(cf. section 7.2), where ρ > 0 is an uncertainty level, and, as above, ζ̂[ζ] =[
ζT

ζ ζζT

]
, so that our intention is to process the ARC of an uncertain prob-

lem corresponding to quadratic decision rules. As above, all we need is to get a
tractable representation of the convex hull of the image of Zρ under the nonlinear
mapping ζ �→ ζ̂[ζ]. This is essentially the same as to find a similar representation
of the convex hull Ẑρ of the image of Zρ under the nonlinear mapping

ζ �→ ζ̂ρ[ζ] =

[
ζT

ζ 1
ρζζT

]
;

indeed, both convex hulls in question can be obtained from each other by simple
linear transformations. The advantage of our normalization is that now Zρ = ρZ1

and Ẑρ = ρẐ1, as it should be for respectable perturbation sets.

While the set Ẑρ is, in general, computationally intractable, we are about
to demonstrate that this set admits a tight tractable approximation, and that the
latter induces a tight tractable approximation of the “quadratically adjustable” RC
of the Linear Optimization problem in question. The main ingredient we need is
as follows:

Lemma 14.3.9. Consider the semidefinite representable set

Wρ = ρW1, W1 =
{

ζ̂ =
[

vT

v W

]
:
[

1 vT

v W

]
� 0, Tr(WQj) ≤ 1, 1 ≤ j ≤ J

}
.

(14.3.17)
Then

∀ρ > 0 : Ẑρ ⊂ Wρ ⊂ Ẑϑρ, (14.3.18)

where ϑ = O(1) ln(J +1) and J is the number of ellipsoids in the description of Zρ.

Proof. Since both Ẑρ and Ŵρ are nonempty convex compact sets containing the
origin and belonging to the subspace SL+1

0 of SL+1 comprised of matrices with the first
diagonal entry being zero, to prove (14.3.18) is the same as to verify that the corresponding
support functions

φWρ(P ) = max
ζ̂∈Wρ

Tr(P ζ̂), φẐρ
(P ) = max

ζ̂∈Ẑρ

Tr(P ζ̂),

considered as functions of P ∈ SL+1
0 , satisfy the relation

φẐρ
(·) ≤ φWρ(·) ≤ φẐθρ

(·).

Taking into account that Ẑs = sẐ1, s > 0, this task reduces to verifying that

φẐρ
(·) ≤ φWρ(·) ≤ ϑφẐρ

(·).
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Thus, all we should prove is that whenever P =

[
pT

p R

]
∈ SL+1

0 , one has

max
ζ̂∈Ẑρ

Tr(P ζ̂) ≤ max
ζ̂∈Wρ

Tr(P ζ̂) ≤ ϑ max
ζ̂∈Ẑρ

Tr(P ζ̂).

Recalling the origin of Ẑρ, the latter relation reads

∀P =

[
pT

p R

]
: OptP (ρ) ≡ max

ζ

{
2pT ζ + 1

ρ
ζT Rζ : ζT Qjζ ≤ ρ2, 1 ≤ j ≤ J

}
≤ SDPP (ρ) ≡ max

ζ̂∈Wρ

Tr(P ζ̂) ≤ ϑOptP (ρ) ≡ OptP (ϑρ).

(14.3.19)
Observe that the three quantities in the latter relation are of the same homogeneity degree
w.r.t. ρ > 0, so that it suffices to verify this relation when ρ = 1, which we assume from
now on.

We are about to derive (14.3.19) from the Approximate S-Lemma (Theorem B.3.1 in
the Appendix). To this end, let us specify the entities participating in the latter statement
as follows:

• x = [t; ζ] ∈ R
1
t × R

L
ζ ;

• A = P , that is, xT Ax = 2tpT ζ + ζT Rζ;

• B =

[
1

]
, that is, xT Bx = t2;

• Bj =

[
Qj

]
, 1 ≤ j ≤ J , that is, xT Bjx = ζT Qjζ;

• ρ = 1.

With this setup, the quantity Opt(ρ) from (B.3.1) becomes nothing but OptP (1), while
the quantity SDP(ρ) from (B.3.2) is

SDP(1) = max
X

{Tr(AX) : Tr(BX) ≤ 1, Tr(BjX) ≤ 1, 1 ≤ j ≤ J, X � 0}

= max
X

⎧⎪⎪⎨⎪⎪⎩2pT v + Tr(RW ) :

u ≤ 1
Tr(WQj) ≤ 1, 1 ≤ j ≤ J

X =

[
u vT

v W

]
� 0

⎫⎪⎪⎬⎪⎪⎭
= max

v,W

⎧⎨⎩2pT v + Tr(RW ) :

Tr(WQj) ≤ 1, 1 ≤ j ≤ J[
1 vT

v W

]
� 0

⎫⎬⎭
= max

ζ̂

⎧⎨⎩Tr(P ζ̂) : ζ̂ =

[
vT

v W

]
:

[
1 vT

v W

]
� 0

Tr(WQj) ≤ 1, 1 ≤ j ≤ J

⎫⎬⎭
= SDPP (1).

With these observations, the conclusion (B.3.4) of the Approximate S-Lemma reads

OptP (1) ≤ SDPP (1) ≤ Opt(Ω(J)), Ω(J) = 9.19
√

ln(J + 1) (14.3.20)
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where for Ω ≥ 1

Opt(Ω) = max
x

{
xT Ax : xT Bx ≤ 1, xT Bjx ≤ Ω2

}
= max

t,ζ

{
2tpT ζ + ζT Rζ : t2 ≤ 1, ζT Qjζ ≤ Ω2, 1 ≤ j ≤ J

}
= max

ζ

{
2pT ζ + ζT Rζ : ζT Qjζ ≤ Ω2, 1 ≤ j ≤ J

}
= max

η=Ω−1ζ

{
Ω(2pT η) + Ω2ηT Rη : ηT Qjη ≤ 1, 1 ≤ j ≤ J

}
≤ Ω2 max

η

{
2pT η + ηT Rη : ηT Qjη ≤ 1, 1 ≤ j ≤ J

}
= Ω2Opt(1).

Setting ϑ = Ω2(J), we see that (14.3.20) implies (14.3.19). �

Corollary 14.3.10. Consider a fixed recourse uncertain LO problem (14.3.6)
with ∩-ellipsoidal uncertainty set Zρ (see (14.3.16)) where one seeks robust optimal
quadratic decision rules:

xj = pj + qT
j P̂j

(
ζ̂ρ[ζ]

)
⎡⎢⎢⎢⎣
• ζ̂ρ[ζ] =

[
ζT

ζ 1
ρζζT

]
• P̂j : linear mappings from SL+1 to R

mj

• pj ∈ R, qj ∈ R
mj : parameters to be specified

⎤⎥⎥⎥⎦ .
(14.3.21)

The associated Adjustable Robust Counterpart of the problem admits a safe
tractable approximation that is tight within the factor ϑ given by Lemma 14.3.9.

Here is how the safe approximation of the Robust Counterpart mentioned in
Corollary 14.3.10 can be built:

i) We write down the optimization problem

min
t,x

{
t :

aT
0ζ [t; x] + b0ζ ≡ t− cT

ζ x− dζ ≥ 0
aT

iζ [t;x] + bi,ζ ≡ AT
iζx− biζ ≥ 0, i = 1, ..., m

}
(P )

where AT
iζ is i-th row in Aζ and biζ is i-th entry in bζ ;

ii) We plug into the m+1 constraints of (P ), instead of the original decision vari-
ables xj , the expressions pj + qT

j P̂j

(
ζ̂ρ[ζ]

)
, thus arriving at the optimization

problem of the form

min
[t;y]

{
t : αT

iζ̂
[t; y] + βiζ̂ ≥ 0, 0 ≤ i ≤ m

}
, (P ′)

where y is the collection of coefficients pj , qj of the quadratic decision rules,
ζ̂ is our new uncertain data — a matrix from SL+1

0 (see p. 384), and αiζ̂ , βiζ̂

are affine in ζ̂, the affinity being ensured by the assumption of fixed recourse.
The “true” quadratically adjustable RC of the problem of interest is the semi-
infinite problem

min
[t;y]

{
t : ∀ζ̂ ∈ Ẑρ : αT

iζ̂
[t; y] + βiζ̂ ≥ 0, 0 ≤ i ≤ m

}
(R)
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obtained from (P ′) by requiring the constraints to remain valid for all ζ̂ ∈ Ẑρ,
the latter set being the convex hull of the image of Zρ under the mapping
ζ �→ ζ̂ρ[ζ]. The semi-infinite problem (R) in general is intractable, and we
replace it with its safe tractable approximation

min
[t;y]

{
t : ∀ζ̂ ∈ Wρ : αT

iζ̂
[t; y] + βiζ̂ ≥ 0, 0 ≤ i ≤ m

}
, (R′)

where Wρ is the semidefinite representable convex compact set defined in
Lemma 14.3.9. By Theorem 1.3.4, (R′) is tractable and can be straightfor-
wardly converted into a semidefinite program of sizes polynomial in n = dim x,
m and L = dim ζ. Here is the conversion: recalling the structure of ζ̂ and
setting z = [t; x], we can rewrite the body of i-th constraint in (R′) as

αT
iζ̂

z + βiζ̂ ≡ ai[z] + Tr
( [ vT

v W

]
︸ ︷︷ ︸

ζ̂

[
pT

i [z]
pi[z] Pi[z]

] )
,

where ai[z], pi[z] and Pi[z] = PT
i [z] are affine in z. Therefore, invoking the

definition of Wρ = ρW1 (see Lemma 14.3.9), the RC of the i-th semi-infinite
constraint in (R′) is the first predicate in the following chain of equivalences:

min
v,W

{
ai[z] + 2ρvT pi[z] + ρTr(WPi[z]) :[

1 vT

v W

]
� 0, Tr(WQj) ≤ 1, 1 ≤ j ≤ J

}
≥ 0 (ai)

�

∃λi = [λi
1; ...; λ

i
J ] :

⎧⎪⎨⎪⎩
λi ≥ 0[

ai[z]−∑
j λi

j ρpT
i [z]

ρpi[z] ρPi[z] +
∑

j λi
jQj

]
� 0

(bi)

where � is given by Semidefinite Duality. Consequently, we can reformulate
(R′) equivalently as the semidefinite program

min
z=[t;y]
{λi

j
}

⎧⎪⎨⎪⎩t :

[
ai[z]−∑

j λi
j ρpT

i [z]
ρpi[z] ρPi[z] +

∑
j λi

jQj

]
� 0

λi
j ≥ 0, 0 ≤ i ≤ m, 1 ≤ j ≤ J

⎫⎪⎬⎪⎭ .

The latter SDP is a ϑ-tight safe tractable approximation of the quadratically
adjustable RC with ϑ given by Lemma 14.3.9.

14.3.3 The AARC of Uncertain Linear Optimization Problem Without Fixed

Recourse

We have seen that the AARC of an uncertain LO problem

C =
{

minx

{
cT
ζ x + dζ : Aζx ≥ bζ

}
: ζ ∈ Z

}
[cζ , dζ , Aζ , bζ : affine in ζ]

(14.3.22)
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with computationally tractable convex compact uncertainty set Z and with fixed

recourse is computationally tractable. What happens when the assumption of
fixed recourse is removed? The answer is that in general the AARC can become
intractable (see [13]). However, we are about to demonstrate that for an ellipsoidal
uncertainty set Z = Zρ = {ζ : ‖Qζ‖2 ≤ ρ}, KerQ = {0}, the AARC is com-
putationally tractable, and for the ∩-ellipsoidal uncertainty set Z = Zρ given by
(14.3.16), the AARC admits a tight safe tractable approximation. Indeed, for affine
decision rules

xj = Xj(Pjζ) ≡ pj + qT
j Pjζ

the AARC of (14.3.22) is the semi-infinite problem of the form

min
z=[t;y]

{t : ∀ζ ∈ Zρ : aiζ [z] + biζ ≥ 0, 0 ≤ i ≤ m} , (14.3.23)

where y = {pj , qj}n
j=1, aiζ [z] is affine in z and quadratic in ζ, and biζ is quadratic

in ζ (in fact just affine). Introducing, as we already have on several occasions, the
nonlinear mapping

ζ �→ ζ̂ρ[ζ] =

[
ζT

ζ 1
ρζζT

]
and denoting by Ẑρ the convex hull of the image of Zρ under this mapping (so that
Ẑρ = ρẐ1), we can rewrite the AARC equivalently as the semi-infinite problem

min
z=[t;y]

{
t : ∀ζ̂ ∈ Ẑρ : αT

iζ̂
z + βiζ̂ ≥ 0, 0 ≤ i ≤ m

}
(14.3.24)

with αiζ̂ , βiζ̂ affine in ζ̂ =
[

vT

v W

]
. In view of Theorem 1.3.4, all we need in

order to process (14.3.24) efficiently is a computationally tractable representation
of convex compact set Ẑρ = ρẐ1, which we do have when Zρ is an ellipsoid (see
Lemma 14.3.7). When Zρ is the ∩-ellipsoidal uncertainty (14.3.16), Lemma 14.3.9
provides us with a computationally tractable outer approximation Wρ of the set
Ẑρ tight within factor ϑ = O(1) ln(J + 1). Replacing in (14.3.24) the “difficult”
set Ẑρ with the “easy one” Wρ, we end up with an efficiently solvable problem
(completely similar to the one in Corollary 14.3.10), and this problem is a ϑ-tight
safe approximation of (14.3.24).

In fact the above approach can be extended even slightly beyond just affine
decision rules. Specifically, in the case of an uncertain LO we could allow for the
adjustable “fixed recourse” variables xj — those for which all the coefficients in
the objective and the constraints of instances are certain — to be quadratic in
Pjζ, and for the remaining “non-fixed recourse” adjustable variables to be affine in
Pjζ. This modification does not alter the structure of (14.3.23) (that is, quadratic
dependence of αiζ , βiζ on ζ), and we could process (14.3.24) in exactly the same
manner as before.
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14.3.4 Illustration: the AARC of Multi-Period Inventory Affected by Uncertain

Demand

We are about to illustrate the AARC methodology by its application to the simple
multi-product multi-period inventory model presented in Example 14.1.1 (see also
p. 358).

Building the AARC of (14.2.3). We first decide on the information base of the
“actual decisions” — vectors wt of replenishment orders of instants t = 1, ..., N .
Assuming that the part of the uncertain data, (i.e., of the demand trajectory ζ =
ζN = [ζ1; ...; ζN ]) that becomes known when the decision on wt should be made
is the vector ζt−1 = [ζ1; ...; ζt−1] of the demands in periods preceding time t, we
introduce affine decision rules

wt = ωt + Ωtζ
t−1 (14.3.25)

for the orders; here ωt, Ωt form the coefficients of the decision rules we are seeking.

The remaining variables in (14.2.3), with a single exception, are analysis vari-
ables, and we allow them to be arbitrary affine functions of the entire demand
trajectory ζN :

xt = ξt + Ξtζ
N , t = 2, ..., N + 1 [states]

yt = ηt + Htζ
N , t = 1, ..., N [upper bounds on [xt]+]

zt = πt + Πtζ
N , t = 1, ..., N [upper bounds on [xt]−].

(14.3.26)

The only remaining variable C — the upper bound on the inventory management
cost we intend to minimize — is considered as non-adjustable.

We now plug the affine decision rules in the objective and the constraints of
(14.2.3), and require the resulting relations to be satisfied for all realizations of the
uncertain data ζN from a given uncertainty set Z, thus arriving at the AARC of
our inventory model:

minimize C

s.t. ∀ζN ∈ Z :

C ≥∑N
t=1

[
cT
h,t[ηt + Htζ

N ] + cT
b,t[πt + Πtζ

N ] + cT
o,t[ωt + Ωtζ

t−1
]

ξt + Ξtζ
N =

{
ξt−1 + Ξt−1ζ

N + [ωt + Ωtζ
t−1]− ζt, 2 ≤ t ≤ N

x0 + ω1 − ζ1, t = 1
ηt + Htζ

N ≥ 0, ηt + Htζ
N ≥ ξt + Ξtζ

N , 1 ≤ t ≤ N

πt + Πtζ
N ≥ 0, πt + Πtζ

N ≥ −ξt − Ξtζ
N , 1 ≤ t ≤ N

wt ≤ ωt + Ωtζ
t−1 ≤ wt, 1 ≤ t ≤ N

qT
[
ηt + Htζ

N
]
≤ r

(14.3.27)

the variables being C and the coefficients ωt,Ωt, ..., πt, Πt of the affine decision rules.

We see that the problem in question has fixed recourse (it always is so when
the uncertainty affects just the constant terms in conic constraints) and is noth-
ing but an explicit semi-infinite LO program. Assuming the uncertainty set Z to
be computationally tractable, we can invoke Theorem 1.3.4 and reformulate this
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semi-infinite problem as a computationally tractable one. For example, with box

uncertainty:
Z = {ζN ∈ R

N×d
+ : ζ

t
≤ ζt ≤ ζt, 1 ≤ t ≤ N},

the semi-infinite LO program (14.3.27) can be immediately rewritten as an ex-
plicit “certain” LO program. Indeed, after replacing the semi-infinite coordinate-
wise vector inequalities/equations appearing in (14.3.27) by equivalent systems of
scalar semi-infinite inequalities/equations and representing the semi-infinite linear
equations by pairs of opposite semi-infinite linear inequalities, we end up with a
semi-infinite optimization program with a certain linear objective and finitely many
constraints of the form

∀
(
ζi
t ∈ [ζi

t
, ζ

i

t], t ≤ N, i ≤ d
)

: p�[y] +
∑
i,t

ζi
tp

�
ti[y] ≤ 0

(� is the serial number of the constraint, y is the vector comprised of the decision
variables in (14.3.27), and p�[y], p�

ti[y] are given affine functions of y). The above
semi-infinite constraint can be represented by a system of linear inequalities

ζi

t
p�

ti[y] ≤ u�
ti

ζ
i

tp
�
ti[y] ≤ u�

ti

p�[y] +
∑

t,i u�
ti ≤ 0,

in variables y and additional variables u�
ti. Putting all these systems of inequalities

together and augmenting the resulting system of linear constraints with our original
objective to be minimized, we end up with an explicit LO program that is equivalent
to (14.3.27).

Some remarks are in order:

i) We could act similarly when building the AARC of any uncertain LO prob-
lem with fixed recourse and “well-structured” uncertainty set, e.g., one given
by an explicit polyhedral/conic quadratic/semidefinite representation. In the
latter case, the resulting tractable reformulation of the AARC would be an
explicit linear/conic quadratic/semidefinite program of sizes that are polyno-
mial in the sizes of the instances and in the size of conic description of the
uncertainty set. Moreover, the “tractable reformulation” of the AARC can
be built automatically, by a kind of compilation.

ii) Note how flexible the AARC approach is: we could easily incorporate addi-
tional constraints, (e.g., those forbidding backlogged demand, expressing lags
in acquiring information on past demands and/or lags in executing the replen-
ishment orders, etc.). Essentially, the only thing that matters is that we are
dealing with an uncertain LO problem with fixed recourse. This is in sharp
contrast with the ARC. As we have already mentioned, there is, essentially,
only one optimization technique — Dynamic Programming — that with luck
can be used to process the (general-type) ARC numerically. To do so, one
needs indeed a lot of luck — to be “computationally tractable,” Dynamic
Programming imposes many highly “fragile” limitations on the structure and
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the sizes of instances. For example, the effort to solve the “true” ARC of
our toy Inventory problem by Dynamic Programming blows up exponentially
with the number of products d (we can say that d = 4 is already “too big”);
in contrast to this, the AARC does not suffer of “curse of dimensionality”
and scales reasonably well with problem’s sizes.

iii) Note that we have no difficulties processing uncertainty-affected equality con-

straints (such as state equations above) — this is something that we cannot
afford with the usual — non-adjustable — RC (how could an equation re-
main valid when the variables are kept constant, and the coefficients are
perturbed?).

iv) Above, we “immunized” affine decision rules against uncertainty in the worst-
case-oriented fashion — by requiring the constraints to be satisfied for all real-
izations of uncertain data from Z. Assuming ζ to be random, we could replace
the worst-case interpretation of the uncertain constraints with their chance
constrained interpretation. To process the “chance constrained” AARC, we
could use all the “chance constraint machinery” we have developed so far
for the RC, exploiting the fact that for fixed recourse there is no essential
difference between the structure of the RC and that of the AARC.

Of course, all the nice properties of the AARC we have just mentioned have their
price — in general, as in our toy inventory example, we have no idea of how much we
lose in terms of optimality when passing from general decision rules to affine rules.
At present, we are not aware of any theoretical tools for evaluating such a loss.
Moreover, it is easy to build examples showing that sticking to affine decision rules
can indeed be costly; it even may happen that the AARC is infeasible, while the
ARC is not. Much more surprising is the fact that there are meaningful situations
where the AARC is unexpectedly good. Here we present a single simple example
(a much more advanced one is presented in section 15.2).

Consider our inventory problem in the single-product case with added con-
straints that no backlogged demand is allowed and that the amount of product in
the inventory should remain between two given positive bounds. Assuming box
uncertainty in the demand, the “true” ARC of the uncertain problem is well within
the grasp of Dynamic Programming, and thus we can measure the “non-optimality”
of affine decision rules experimentally — by comparing the optimal values of the
true ARC with those of the AARC as well as of the non-adjustable RC. To this end,
we generated at random several hundreds of data sets for the problem with time
horizon N = 10 and filtered out all data sets that led to infeasible ARC (it indeed
can be infeasible due to the presence of upper and lower bounds on the inventory
level and the fact that we forbid backlogged demand). We did our best to get
as rich a family of examples as possible — those with time-independent and with
time-dependent costs, various levels of demand uncertainty (from 10% to 50%), etc.
We then solved ARCs, AARCs and RCs of the remaining “well-posed” problems
— the ARCs by Dynamic Programming, the AARCs and RCs — by reduction to
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Range of Opt(RC)
Opt(AARC) 1 (1, 2] (2, 10] (10, 1000] ∞

Frequency in the sample 38% 23% 14% 11% 15%

Table 14.1 Experiments with ARCs, AARCs and RCs of randomly generated single-
product inventory problems affected by uncertain demand.

explicit LO programs. The number of “well-posed” problems we processed was 768,
and the results were as follows:

i) To our great surprise, in every one of the 768 cases we have analyzed, the

computed optimal values of the “true” ARC and the AARC were identical.

Thus, there is an “experimental evidence” that in the case of our single-
product inventory problem, the affine decision rules allow one to reach “true
optimality.” It should be added that the phenomenon in question seems
to be closely related to our intention to optimize the guaranteed, (i.e., the
worst-case, w.r.t. demand trajectories from the uncertainty set), inventory
management cost. When optimizing the “average” cost, the ARC frequently
becomes significantly less expensive than the AARC.2

ii) The (equal to each other) optimal values of the ARC and the AARC in many
cases were much better than the optimal value of the RC, as it is seen from
table 14.1. In particular, in 40% of the cases the RC was at least twice as bad
in terms of the (worst-case) inventory management cost as the ARC/AARC,
and in 15% of the cases the RC was in fact infeasible.

The bottom line is twofold. First, we see that in multi-stage decision making
there exist meaningful situations where the AARC, while “not less computationally
tractable” than the RC, is much more flexible and much less conservative. Second,
the AARC is not necessarily “significantly inferior” as compared to the ARC.

14.4 ADJUSTABLE ROBUST OPTIMIZATION AND SYNTHESIS OF

LINEAR CONTROLLERS

While the usefulness of affine decision rules seems to be heavily underestimated
in the “OR-style multi-stage decision making,” they play one of the central roles
in Control. Our next goal is to demonstrate that the use of AARC can render
important Control implications.

2On this occasion, it is worthy of mention that affine decision rules were proposed many years
ago, in the context of Multi-Stage Stochastic Programming, by A. Charnes. In Stochastic Pro-
gramming, people are indeed interested in optimizing the expected value of the objective, and
soon it became clear that in this respect, the affine decision rules can be pretty far from being
optimal. As a result, the simple — and extremely useful from the computational perspective —
concept of affine decision rules remained completely forgotten for many years.
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14.4.1 Robust Affine Control over Finite Time Horizon

Consider a discrete time linear dynamical system

x0 = z

xt+1 = Atxt + Btut + Rtdt

yt = Ctxt + Dtdt

, t = 0, 1, ... (14.4.1)

where xt ∈ R
nx , ut ∈ R

nu , yt ∈ R
ny and dt ∈ R

nd are the state, the control, the
output and the exogenous input (disturbance) at time t, and At, Bt, Ct, Dt, Rt are
known matrices of appropriate dimension.

Notational convention. Below, given a sequence of vectors e0, e1, ... and an
integer t ≥ 0, we denote by et the initial fragment of the sequence: et = [e0; ...; et].
When t is negative, et, by definition, is the zero vector.

Affine control laws. A typical problem of (finite-horizon) Linear Control asso-
ciated with the “open loop” system (14.4.1) is to “close” the system by a non-
anticipative affine output-based control law

ut = gt +
∑t

τ=0
Gtτyτ (14.4.2)

(here the vectors gt and matrices Gtτ are the parameters of the control law). The
closed loop system (14.4.1), (14.4.2) is required to meet prescribed design specifi-
cations. We assume that these specifications are represented by a system of linear
inequalities

AwN ≤ b (14.4.3)

on the state-control trajectory wN = [x0; ...; xN+1;u0; ...; uN ] over a given finite
time horizon t = 0, 1, ..., N .

An immediate observation is that for a given control law (14.4.2) the dynamics
(14.4.1) specifies the trajectory as an affine function of the initial state z and the
sequence of disturbances dN = (d0, ..., dN ):

wN = wN
0 [γ] + WN [γ]ζ, ζ = (z, dN ),

where γ = {gt, Gtτ , 0 ≤ τ ≤ t ≤ N}, is the “parameter” of the underlying control
law (14.4.2). Substituting this expression for wN into (14.4.3), we get the following
system of constraints on the decision vector γ:

A
[
wN

0 [γ] + WN [γ]ζ
]
≤ b. (14.4.4)

If the disturbances dN and the initial state z are certain, (14.4.4) is “easy” — it is a
system of constraints on γ with certain data. Moreover, in the case in question we
lose nothing by restricting ourselves with “off-line” control laws (14.4.2) — those
with Gtτ ≡ 0; when restricted onto this subspace, let it be called Γ, in the γ

space, the function wN
0 [γ] + WN [γ]ζ turns out to be bi-affine in γ and in ζ, so that

(14.4.4) reduces to a system of explicit linear inequalities on γ ∈ Γ. Now, when
the disturbances and/or the initial state are not known in advance, (which is the
only case of interest in Robust Control), (14.4.4) becomes an uncertainty-affected
system of constraints, and we could try to solve the system in a robust fashion,
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e.g., to seek a solution γ that makes the constraints feasible for all realizations
of ζ = (z, dN ) from a given uncertainty set ZDN , thus arriving at the system of
semi-infinite scalar constraints

A
[
wN

0 [γ] + WN [γ]ζ
]
≤ b ∀ζ ∈ ZDN . (14.4.5)

Unfortunately, the semi-infinite constraints in this system are not bi-affine, since
the dependence of wN

0 , WN on γ is highly nonlinear, unless γ is restricted to vary
in Γ. Thus, when seeking “on-line” control laws (those where Gtτ can be nonzero),
(14.4.5) becomes a system of highly nonlinear semi-infinite constraints and as such
seems to be severely computationally intractable (the feasible set corresponding
to (14.4.4) can be in fact nonconvex). One possibility to circumvent this difficulty
would be to switch from control laws that are affine in the outputs yt to those affine
in disturbances and the initial state (cf. approach of [55]). This, however, could
be problematic in the situations when we do not observe z and dt directly. The
good news is that we can overcome this difficulty without requiring dt and z to be
observable, the remedy being a suitable re-parameterization of affine control laws.

14.4.2 Purified-Output-Based Representation of Affine Control Laws and Effi-

cient Design of Finite-Horizon Linear Controllers

Imagine that in parallel with controlling (14.4.1) with the aid of a non-anticipating
output-based control law ut = Ut(y0, ..., yt), we run the model of (14.4.1) as follows:

x̂0 = 0
x̂t+1 = Atx̂t + Btut

ŷt = Ctx̂t

vt = yt − ŷt.

(14.4.6)

Since we know past controls, we can run this system in an “on-line” fashion, so that
the purified output vt becomes known when the decision on ut should be made. An
immediate observation is that the purified outputs are completely independent of

the control law in question — they are affine functions of the initial state and the

disturbances d0, ..., dt, and these functions are readily given by the dynamics of

(14.4.1).

Indeed, from the descriptions of the open-loop system and the model,
it follows that the differences δt = xt − x̂t evolve with time according
to the equations

δ0 = z

δt+1 = At + Rtdt, t = 0, 1, ...

while
vt = Ctδt + Dtdt.

From these relations it follows that

vt = Vd
t dt + Vz

t z (14.4.7)
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with matrices Vd
t , Vz

t depending solely on the matrices Aτ , Bτ , ..., 0 ≤
τ ≤ t, and readily given by these matrices.

Now, it was mentioned that v0, ..., vt are known when the decision on ut should be
made, so that we can consider purified-output-based (POB) affine control laws

ut = ht +
∑t

τ=0
Htτvτ .

The complete description of the dynamical system “closed” by this control is

plant:

(a) :

⎧⎨⎩
x0 = z

xt+1 = Atxt + Btut + Rtdt

yt = Ctxt + Dtdt

model:

(b) :

⎧⎨⎩
x̂0 = 0

x̂t+1 = Atx̂t + Btut

ŷt = Ctx̂t

purified outputs:
(c) : vt = yt − ŷt

control law:

(d) : ut = ht +
t∑

τ=0
Htτvτ

(14.4.8)

The main result. We are about to prove the following simple and fundamental
fact:

Theorem 14.4.1.

(i) For every affine control law in the form of (14.4.2), there exists a control
law in the form of (14.4.8.d) that, whatever be the initial state and a sequence
of inputs, results in exactly the same state-control trajectories of the closed loop
system;

(ii) Vice versa, for every affine control law in the form of (14.4.8.d), there
exists a control law in the form of (14.4.2) that, whatever be the initial state and
a sequence of inputs, results in exactly the same state-control trajectories of the
closed loop system;

(iii) [bi-affinity] The state-control trajectory wN of closed loop system (14.4.8)
is affine in z, dN when the parameters η = {ht,Htτ}0≤τ≤t≤N of the underlying
control law are fixed, and is affine in η when z, dN are fixed:

wN = ω[η] + Ωz[η]z + Ωd[η]dN (14.4.9)

for some vectors ω[η] and matrices Ωz[η], Ωd[η] depending affinely on η.

Proof. (i): Let us fix an affine control law in the form of (14.4.2), and let
xt = Xt(z, dt−1), ut = Ut(z, dt), yt = Yt(z, dt), vt = Vt(z, dt) be the corresponding
states, controls, outputs, and purified outputs. To prove (i) it suffices to show that
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for every t ≥ 0 with properly chosen vectors qt and matrices Qtτ one has

∀(z, dt) : Yt(z, dt) = qt +
t∑

τ=0

QtτVτ (z, dτ ). (It)

Indeed, given the validity of these relations and taking into account (14.4.2), we
would have

Ut(z, dt) ≡ gt +
t∑

τ=0

GtτYτ (z, dτ ) ≡ ht +
t∑

τ=0

HtτV (z, dτ ) (IIt)

with properly chosen ht, Htτ , so that the control law in question can indeed be
represented as a linear control law via purified outputs.

We shall prove (It) by induction in t. The base t = 0 is evident, since by
(14.4.8.a–c) we merely have Y0(z, d0) ≡ V0(z, d0). Now let s ≥ 1 and assume that
relations (It) are valid for 0 ≤ t < s. Let us prove the validity of (Is). From the
validity of (It), t < s, it follows that the relations (IIt), t < s, take place, whence,
by the description of the model system, x̂s = X̂s(z, ds−1) is affine in the purified
outputs, and consequently the same is true for the model outputs ŷs = Ŷs(z, ds−1):

Ŷs(z, ds−1) = ps +
s−1∑
τ=0

PsτVτ (z, dτ ).

We conclude that with properly chosen ps, Psτ we have

Ys(z, ds) ≡ Ŷs(z, ds−1) + Vs(z, ds) = ps +
s−1∑
τ=0

PsτVτ (z, dτ ) + Vs(z, ds),

as required in (Is). Induction is completed, and (i) is proved.

(ii): Let us fix a linear control law in the form of (14.4.8.d), and let xt =
Xt(z, dt−1), x̂t = X̂t(z, dt−1), ut = Ut(z, dt), yt = Yt(z, dt), vt = Vt(z, dt) be the
corresponding actual and model states, controls, and actual and purified outputs.
We should verify that the state-control dynamics in question can be obtained from
an appropriate control law in the form of (14.4.2). To this end, similarly to the
proof of (i), it suffices to show that for every t ≥ 0 one has

Vt(z, dt) ≡ qt +
t∑

τ=0

QtτYτ (z, dτ ) (IIIt)

with properly chosen qt, Qtτ . We again apply induction in t. The base t = 0 is
again trivially true due to V0(z, d0) ≡ Y0(z, d0). Now let s ≥ 1, and assume that
relations (IIIt) are valid for 0 ≤ t < s, and let us prove that (IIIs) is valid as well.
From the validity of (IIIt), t < s, and from (14.4.8.d) it follows that

t < s ⇒ Ut(z, dt) = ct +
t∑

τ=0

CtτYτ (z, dτ )

with properly chosen ct and Ctτ . From these relations and the description of the
model system it follows that its state X̂s(z, ds−1) at time s, and therefore the model
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output Ŷs(z, ds−1), are affine functions of Y0(z, d0),..., Ys−1(z, ds−1):

Ŷs(z, ds−1) = ps +
s−1∑
τ=0

PsτYτ (z, dτ )

with properly chosen ps, Psτ . It follows that

Vs(z, ds) ≡ Ys(z, ds)− Ŷs(z, ds−1) = Ys(z, ds)− ps −
s−1∑
τ=0

PsτYτ (z, dτ ),

as required in (IIIs). Induction is completed, and (ii) is proved.

(iii): For 0 ≤ s ≤ t let

At
s =

⎧⎨⎩
t−1∏
r=s

Ar, s < t

I, s = t

Setting δt = xt − x̂t, we have by (14.4.8.a–b)

δt+1 = Atδt + Rtdt, δ0 = z ⇒ δt = At
0z +

t−1∑
s=0

At
s+1Rsds

(from now on, sums over empty index sets are zero), whence

vτ = Cτδτ + Dτdτ = CτAτ
0z +

τ−1∑
s=0

CτAτ
s+1Rsds + Dτdτ . (14.4.10)

Therefore control law (14.4.8.d) implies that

ut = ht +
t∑

τ=0
Htτvτ = ht︸︷︷︸

νt[η]

+

[
t∑

τ=0

HtτCτAτ
0

]
︸ ︷︷ ︸

Nt[η]

z

+
t−1∑
s=0

[
HtsDs +

t∑
τ=s+1

HtτCτAτ
s+1Rs

]
︸ ︷︷ ︸

Nts[η]

ds + HttDt︸ ︷︷ ︸
Ntt[η]

dt

= νt[η] + Nt[η]z +
t∑

s=0
Nts[η]ds,

(14.4.11)
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whence, invoking (14.4.8.a),

xt = At
0z +

t−1∑
τ=0

At
τ+1[Bτuτ + Rτdτ ] =

[
t−1∑
τ=0

At
τ+1Bτht

]
︸ ︷︷ ︸

µt[η]

+

[
At

0 +
t−1∑
τ=0

At
τ+1BτNτ [η]

]
︸ ︷︷ ︸

Mt[η]

z

+
t−1∑
s=0

[
t−1∑
τ=s

At
τ+1BτNτs[η] + At

s+1BsRs

]
︸ ︷︷ ︸

Mts[η]

ds

= µt[η] + Mt[η]z +
t−1∑
s=0

Mts[η]ds.

(14.4.12)

We see that the states xt, 0 ≤ t ≤ N + 1, and the controls ut, 0 ≤ t ≤ N , of
the closed loop system (14.4.8) are affine functions of z, dN , and the corresponding
“coefficients” µt[η],...,Nts[η] are affine vector- and matrix-valued functions of the
parameters η = {ht,Htτ}0≤τ≤t≤N of the underlying control law (14.4.8.d). �

The consequences. The representation (14.4.8.d) of affine control laws is in-
comparably better suited for design purposes than the representation (14.4.2),
since, as we know from Theorem 14.4.1.(iii), with controller (14.4.8.d), the state-

control trajectory wN becomes bi-affine in ζ = (z, dN ) and in the parameters

η = {ht,Htτ , 0 ≤ τ ≤ t ≤ N} of the controller:

wN = ωN [η] + ΩN [η]ζ (14.4.13)

with vector- and matrix-valued functions ωN [η], ΩN [η] affinely depending on η and

readily given by the dynamics (14.4.1). Substituting (14.4.13) into (14.4.3), we
arrive at the system of semi-infinite bi-affine scalar inequalities

A
[
ωN [η] + ΩN [η]ζ

]
≤ b (14.4.14)

in variables η, and can use the tractability results from chapters 1, 3, 11 in order to
solve efficiently the RC/GRC of this uncertain system of scalar linear constraints.
For example, we can process efficiently the GRC setting of the semi-infinite con-
straints (14.4.13)

aT
i

[
ωN [η] + ΩN [η][z; dN ]

]
− bi ≤ αz

i dist(z,Z) + αi
ddist(dN ,DN )

∀[z; dN ] ∀i = 1, ..., I
(14.4.15)

where Z, DN are “good,” (e.g., given by strictly feasible semidefinite representa-
tions), closed convex normal ranges of z, dN , respectively, and the distances are
defined via the ‖ ·‖∞ norms (this setting corresponds to the “structured” GRC, see
Definition 11.1.2). By the results of section 11.3, system (14.4.15) is equivalent to
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the system of constraints

∀(i, 1 ≤ i ≤ I) :

(a) aT
i

[
ωN [η] + ΩN [η][z; dN ]

]
− bi ≤ 0 ∀[z; dN ] ∈ Z ×DN

(b) ‖aT
i ΩN

z [η]‖1 ≤ αi
z (c) ‖aT

i ΩN
d [η]‖1 ≤ αi

d,

(14.4.16)

where ΩN [η] =
[
ΩN

z [η], ΩN
d [η]

]
is the partition of the matrix ΩN [η] corresponding

to the partition ζ = [z; dN ]. Note that in (14.4.16), the semi-infinite constraints (a)
admit explicit semidefinite representations (Theorem 1.3.4), while constraints (b−c)
are, essentially, just linear constraints on η and on αi

z, α
i
d. As a result, (14.4.16)

can be thought of as a computationally tractable system of convex constraints on
η and on the sensitivities αi

z, αi
d, and we can minimize under these constraints a

“nice,” (e.g., convex), function of η and the sensitivities. Thus, after passing to the
POB representation of affine control laws, we can process efficiently specifications
expressed by systems of linear inequalities, to be satisfied in a robust fashion, on
the (finite-horizon) state-control trajectory.

The just summarized nice consequences of passing to the POB control
laws are closely related to the tractability of AARCs of uncertain LO
problems with fixed recourse, specifically, as follows. Let us treat the
state equations (14.4.1) coupled with the design specifications (14.4.3) as
a system of uncertainty-affected linear constraints on the state-control
trajectory w, the uncertain data being ζ = [z; dN ]. Relations (14.4.10)
say that the purified outputs vt are known in advance, completely in-
dependent of what the control law in use is, linear functions of ζ. With
this interpretation, a POB control law becomes a collection of affine
decision rules that specify the decision variables ut as affine functions of
Ptζ ≡ [v0; v1; ...; vt] and simultaneously, via the state equations, specify
the states xt as affine functions of Pt−1ζ. Thus, when looking for a POB
control law that meets our design specifications in a robust fashion, we
are doing nothing but solving the RC (or the GRC) of an uncertain
LO problem in affine decision rules possessing a prescribed “informa-
tion base.” On closest inspection, this uncertain LO problem is with
fixed recourse, and therefore its robust counterparts are computation-
ally tractable.

Remark 14.4.2. It should be stressed that the re-parameterization of affine
control laws underlying Theorem 14.4.1 (and via this Theorem — the nice tractabil-
ity results we have just mentioned) is nonlinear. As a result, it can be of not much
use when we are optimizing over affine control laws satisfying additional restrictions
rather than over all affine control laws.

Assume, e.g., that we are seeking control in the form of a simple output-based
linear feedback:

ut = Gtyt.

This requirement is just a system of simple linear constraints on the parame-

ters of the control law in the form of (14.4.2), which, however, does not help
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much, since, as we have already explained, optimization over control laws in

this form is by itself difficult. And when passing to affine control laws in the

form of (14.4.8.d), the requirement that our would-be control should be a lin-

ear output-based feedback becomes a system of highly nonlinear constraints

on our new design parameters η, and the synthesis again turns out to be

difficult.

Example: Controlling finite-horizon gains. Natural design specification
pertaining to finite-horizon Robust Linear Control are in the form of bounds on
finite-horizon gains z2xN , z2uN , d2xN , d2uN defined as follows: with a linear, (i.e.,
with ht ≡ 0) control law (14.4.8.d), the states xt and the controls ut are linear
functions of z and dN :

xt = Xz
t [η]z + Xd

t [η]dN , ut = Uz
t [η]z + Ud

t [η]dN

with matrices Xz
t [η],...,Ud

t [η] affinely depending on the parameters η of the con-
trol law. Given t, we can define the z to xt gains and the finite-horizon z to x

gain as z2xt(η) = max
z
{‖Xz

t [η]z‖∞ : ‖z‖∞ ≤ 1} and z2xN (η) = max
0≤t≤N

z2xt(η).

The definitions of the z to u gains z2ut(η), z2uN (η) and the “disturbance to x/u”
gains d2xt(η), d2xN (η), d2ut(η), d2uN (η) are completely similar, e.g., d2ut(η) =
max
dN

{‖Ud
t [η]dN‖∞ : ‖dN‖∞ ≤ 1} and d2uN (η) = max

0≤t≤N
d2ut(η). The finite-horizon

gains clearly are nonincreasing functions of the time horizon N and have a transpar-
ent Control interpretation; e.g., d2xN (η) (“peak to peak d to x gain”) is the largest
possible perturbation in the states xt, t = 0, 1, ..., N caused by a unit perturbation
of the sequence of disturbances dN , both perturbations being measured in the ‖·‖∞
norms on the respective spaces. Upper bounds on N -gains (and on global gains like
d2x∞(η) = supN≥0 d2xN (η)) are natural Control specifications. With our purified-
output-based representation of linear control laws, the finite-horizon specifications
of this type result in explicit systems of linear constraints on η and thus can be
processed routinely via LO. For example, an upper bound d2xN (η) ≤ λ on d2xN

gain is equivalent to the requirement
∑

j |(Xd
t [η])ij | ≤ λ for all i and all t ≤ N ;

since Xd
t is affine in η, this is just a system of linear constraints on η and on appro-

priate slack variables. Note that imposing bounds on the gains can be interpreted
as passing to the GRC (14.4.15) in the case where the “desired behavior” merely
requires wN = 0, and the normal ranges of the initial state and the disturbances
are the origins in the corresponding spaces: Z = {0}, DN = {0}.

14.4.2.1 Non-affine control laws

So far, we focused on synthesis of finite-horizon affine POB controllers. Acting in
the spirit of section 14.3.2, we can handle also synthesis of quadratic POB control
laws — those where every entry of ut, instead of being affine in the purified outputs
vt = [v0; ...; vt], is allowed to be a quadratic function of vt. Specifically, assume that
we want to “close” the open loop system (14.4.1) by a non-anticipating control law
in order to ensure that the state-control trajectory wN of the closed loop system
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satisfies a given system S of linear constraints in a robust fashion, that is, for
all realizations of the “uncertain data” ζ = [z; dN ] from a given uncertainty set
ZN

ρ = ρZN (ρ > 0 is, as always, the uncertainty level, and Z # 0 is a closed convex
set of “uncertain data of magnitude ≤ 1”). Let us use a quadratic POB control law
in the form of

ui
t = h0

it + hT
i,tv

t +
1
ρ
[vt]T Hi,tv

t, (14.4.17)

where ui
t is i-th coordinate of the vector of controls at instant t, and h0

it, hit and
Hit are, respectively, real, vector, and matrix parameters of the control law.3 On
a finite time horizon 0 ≤ t ≤ N , such a quadratic control law is specified by
ρ and the finite-dimensional vector η = {h0

it, hit,Hit} 1≤i≤dim u
0≤t≤N

. Now note that the
purified outputs are well defined for any non-anticipating control law, not necessary
affine, and they are independent of the control law linear functions of ζt ≡ [z; dt].
The coefficients of these linear functions are readily given by the data Aτ , ..., Dτ ,

0 ≤ τ ≤ t (see (14.4.7)). With this in mind, we see that the controls, as given

by (14.4.17), are quadratic functions of the initial state and the disturbances, the

coefficients of these quadratic functions being affine in the vector η of parameters

of our quadratic control law:

ui
t = U (0)

it [η] + [z; dt]TU (1)
it [η] +

1
ρ
[z; dt]TU (2)

it [η][z; dt] (14.4.18)

with affine in η reals/vectors/matrices U (κ)
it [η], κ = 0, 1, 2. Plugging these represen-

tations of the controls into the state equations of the open loop system (14.4.1), we
conclude that the states xj

t of the closed loop system obtained by “closing” (14.4.1)
by the quadratic control law (14.4.17), have the same “affine in η, quadratic in
[z; dt]” structure as the controls:

xi
t = X (0)

jt [η] + [z; dt−1]TX (1)
jt [η] +

1
ρ
[z; dt−1]TX (2)

jt [η][z; dt−1] (14.4.19)

with affine in η reals/vectors/matrices X (κ)
jt , κ = 0, 1, 2.

Plugging representations (14.4.18), (14.4.19) into the system S of our target
constraints, we end up with a system of semi-infinite constraints on the parameters
η of the control law, specifically, the system

ak[η] + 2ζT pk[η] +
1
ρ
ζT Rk[η]ζ ≤ 0 ∀ζ = [z; dN ] ∈ ZN

ρ = ρZN , k = 1, ..., K,

(14.4.20)

where ak[η], pk[η] and Rk[ζ] are affine in η. Setting Pk[η] =
[

pT
k [η]

pk[η] Rk[η]

]
,

ζ̂ρ[ζ] =
[

ζT

ζ ζζT

]
and denoting by ẐN

ρ the convex hull of the image of the set

ZN
ρ under the mapping ζ �→ ζ̂ρ[ζ], system (14.4.20) can be rewritten equivalently

3The specific way in which the uncertainty level ρ affects the controls is convenient technically
and is of no practical importance, since “in reality” the uncertainty level is a known constant.
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as
ak[η] + Tr(Pk[η]ζ̂) ≤ 0 ∀(ζ̂ ∈ ẐN

ρ ≡ ρẐN
1 , k = 1, ..., K) (14.4.21)

and we end up with a system of semi-infinite bi-affine scalar inequalities. From the
results of section 14.3.2 it follows that this semi-infinite system:

• is computationally tractable, provided that ZN is an ellipsoid {ζ : ζT Qζ ≤ 1},
Q � 0. Indeed, here ẐN

1 is the semidefinite representable set

{
[

ωT

ω Ω

]
:
[

1 ωT

ω Ω

]
� 0, Tr(ΩQ) ≤ 1};

• admits a safe tractable approximation tight within the factor ϑ = O(1) ln(J +
1), provided that ZN is the ∩-ellipsoidal uncertainty set {ζ : ζT Qjζ ≤ 1, 1 ≤
j ≤ J}, where Qj � 0 and

∑
j Qj � 0. This approximation is obtained when

replacing the “true” uncertainty set ẐN
ρ with the semidefinite representable

set

Wρ = ρ{
[

ωT

ω Ω

]
:
[

1 ωT

ω Ω

]
� 0, Tr(ΩQj) ≤ 1, 1 ≤ j ≤ J}

(recall that ẐN
ρ ⊂ Wρ ⊂ ẐN

ϑρ).

14.4.3 Handling Infinite-Horizon Design Specifications

One might think that the outlined reduction of (discrete time) Robust Linear Con-
trol problems to Convex Programming, based on passing to the POB representa-
tion of affine control laws and deriving tractable reformulations of the resulting
semi-infinite bi-affine scalar inequalities is intrinsically restricted to the case of
finite-horizon control specifications. In fact our approach is well suited for handling
infinite-horizon specifications — those imposing restrictions on the asymptotic be-
havior of the closed loop system. Specifications of the latter type usually have to
do with the time-invariant open loop system (14.4.1):

x0 = z

xt+1 = Axt + But + Rdt

yt = Cxt + Ddt

, t = 0, 1, ... (14.4.22)

From now on we assume that the open loop system (14.4.22) is stable, that is, the
spectral radius of A is < 1 (in fact this restriction can be somehow circumvented, see
below). Imagine that we “close” (14.4.22) by a nearly time-invariant POB control
law of order k, that is, a law of the form

ut = ht +
∑k−1

s=0
Ht

svt−s, (14.4.23)

where ht = 0 for t ≥ N∗ and Ht
τ = Hτ for t ≥ N∗ for a certain stabilization time

N∗. From now on, all entities with negative indices are set to 0. While the “time-
varying” part {ht,H

t
τ , 0 ≤ t < N∗} of the control law can be used to adjust the

finite-horizon behavior of the closed loop system, its asymptotic behavior is as if
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the law were time-invariant: ht ≡ 0 and Ht
τ ≡ Hτ for all t ≥ 0. Setting δt = xt− x̂t,

Ht = [Ht
0, ..., H

t
k−1], H = [H0, ..., Hk−1], the dynamics (14.4.22), (14.4.6), (14.4.23)

is given by

ωt+1︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎣
xt+1

δt+1

δt

..

.
δt−k+2

⎤⎥⎥⎥⎥⎥⎦ =

A+[Ht]︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎣
A BHt

0C BHt
1C . . . BHt

k−1C

A
A

. . .

A

⎤⎥⎥⎥⎥⎥⎦ ωt

+

R+[Ht]︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎣
R BHt

0D BHt
1D . . . BHt

k−1D

R
R

. . .

R

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
dt

dt

dt−1

.

..
dt−k+1

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
Bht

0
...
0

⎤⎥⎥⎥⎦ , t = 0, 1, 2, ...,

ut = ht +
∑k−1

ν=0Ht
ν [Cδt−ν + Ddt−ν ].

(14.4.24)

We see that starting with time N∗, dynamics (14.4.24) is exactly as if the underlying
control law were the time invariant POB law with the parameters ht ≡ 0, Ht ≡ H.
Moreover, since A is stable, we see that system (14.4.24) is stable independently of
the parameter H of the control law, and the resolvent RH(s) := (sI −A+[H])−1 of
A+[H] is the affine in H matrix⎡⎢⎢⎢⎢⎢⎣

RA(s) RA(s)BH0CRA(s) RA(s)BH1CRA(s) ... RA(s)BHk−1CRA(s)
RA(s)

RA(s)

. . .

RA(s)

⎤⎥⎥⎥⎥⎥⎦ ,

(14.4.25)

where RA(s) = (sI −A)−1 is the resolvent of A.

Now imagine that the sequence of disturbances dt is of the form dt = std,
where s ∈ C differs from 0 and from the eigenvalues of A. From the stability of
(14.4.24) it follows that as t →∞, the solution ωt of the system, independently of
the initial state, approaches the “steady-state” solution ω̂t = stH(s)d, where H(s)
is certain matrix. In particular, the state-control vector wt =

[
xt

ut

]
approaches, as

t →∞, the trajectory ŵt = stHxu(s)d. The associated disturbance-to-state/control

transfer matrix Hxu(s) is easily computable:

Hxu(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hx(s)︷ ︸︸ ︷
RA(s)

[
R +

∑k−1

ν=0
s−νBHν [D + CRA(s)R]

]
[∑k−1

ν=0
s−νHν

]
[D + CRA(s)R]︸ ︷︷ ︸

Hu(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (14.4.26)
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The crucial fact is that the transfer matrix Hxu(s) is affine in the parameters

H = [H0, ..., Hk−1] of the nearly time invariant control law (14.4.23). As a result,
design specifications representable as explicit convex constraints on the transfer

matrix Hxu(s) (these are typical specifications in infinite-horizon design of linear
controllers) are equivalent to explicit convex constraints on the parameters H of the

underlying POB control law and therefore can be processed efficiently via Convex

Optimization.

Example: Discrete time H∞ control. Discrete time H∞ design specifi-
cations impose constraints on the behavior of the transfer matrix along the unit
circumference s = exp{ıω}, 0 ≤ ω ≤ 2π, that is, on the steady state response of
the closed loop system to a disturbance in the form of a harmonic oscillation.4. A
rather general form of these specifications is a system of constraints

‖Qi(s)−Mi(s)Hxu(s)Ni(s)‖ ≤ τi ∀(s = exp{ıω} : ω ∈ ∆i), (14.4.27)

where Qi(s), Mi(s), Ni(s) are given rational matrix-valued functions with no sin-
gularities on the unit circumference {s : |s| = 1}, ∆i ⊂ [0, 2π] are given segments,
and ‖ · ‖ is the standard matrix norm (the largest singular value).

We are about to demonstrate that constraints (14.4.27) can be represented
by an explicit finite system of LMIs; as a result, specifications (14.4.27) can be
efficiently processed numerically. Here is the derivation. Both “transfer functions”
Hx(s), Hu(s) are of the form q−1(s)Q(s,H), where q(s) is a scalar polynomial
independent of H, and Q(s,H) is a matrix-valued polynomial of s with coefficients
affinely depending on H. With this in mind, we see that the constraints are of the
generic form

‖p−1(s)P (s,H)‖ ≤ τ ∀(s = exp{ıω} : ω ∈ ∆), (14.4.28)

where p(·) is a scalar polynomial independent of H and P (s,H) is a polynomial in
s with m×n matrix coefficients affinely depending on H. Constraint (14.4.28) can
be expressed equivalently by the semi-infinite matrix inequality[

τIm P (z,H)/p(z)
(P (z, H))∗/(p(z))∗ τIn

]
� 0 ∀(z = exp{ıω} : ω ∈ ∆)

(∗ stands for the Hermitian conjugate, ∆ ⊂ [0, 2π] is a segment) or, which is the
same,

SH,τ (ω) ≡
[

τp(exp{ıω})(p(exp{ıω}))∗Im (p(exp{ıω}))∗P (exp{ıω},H)
p(exp{ıω})(P (exp{ıω},H))∗ τp(exp{ıω})(p(exp{ıω}))∗In

]
� 0 ∀ω ∈ ∆.

4The entries of Hx(s) and Hu(s), restricted onto the unit circumference s = exp{ıω}, have very
transparent interpretation. Assume that the only nonzero entry in the disturbances is the j-th
one, and it varies in time as a harmonic oscillation of unit amplitude and frequency ω. The steady-
state behavior of i-th state then will be a harmonic oscillation of the same frequency, but with
another amplitude, namely, |(Hx(exp{ıω))ij | and phase shifted by arg((Hx(exp{ıω})ij). Thus,
the state-to-input frequency responses (Hx(exp{ıω}))ij explain the steady-state behavior of states
when the input is comprised of harmonic oscillations. The interpretation of the control-to-input
frequency responses (Hu(exp{ıω}))ij is completely similar.
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u d

X ,X
1  2

Figure 14.3 Double pendulum: two masses linked by a spring sliding without friction
along a rod. Position and velocity of the first mass are observed.

Observe that SH,τ (ω) is a trigonometric polynomial taking values in the space of
Hermitian matrices of appropriate size, the coefficients of the polynomial being
affine in H, τ . It is known [53] that the cone Pm of (coefficients of) all Hermitian
matrix-valued trigonometric polynomials S(ω) of degree ≤ m, which are � 0 for all
ω ∈ ∆, is semidefinite representable, i.e., there exists an explicit LMI

A(S, u) � 0

in variables S (the coefficients of a polynomial S(·)) and additional variables u such
that S(·) ∈ Pm if and only if S can be extended by appropriate u to a solution of
the LMI. Consequently, the relation

A(SH,τ , u) � 0, (∗)
which is an LMI in H, τ, u, is a semidefinite representation of (14.4.28): H, τ solve
(14.4.28) if and only if there exists u such that H, τ, u solve (∗).

14.4.4 Putting Things Together: Infinite- and Finite-Horizon Design Specifica-

tions

For the time being, we have considered optimization over purified-output-based
affine control laws in two different settings, finite- and infinite-horizon design spec-
ifications. In fact we can to some extent combine both settings, thus seeking affine
purified-output-based controls ensuring both a good steady-state behavior of the
closed loop system and a “good transition” to this steady-state behavior. The
proposed methodology will become clear from the example that follows.

Consider the open-loop time-invariant system representing the discretized
double-pendulum depicted on figure 14.3. The dynamics of the continuous time
prototype plant is given by

ẋ = Acx + Bcu + Rcd

y = Cx,

where

Ac =

⎡⎢⎢⎣
0 1 0 0
−1 0 1 0
0 0 0 1
1 0 −1 0

⎤⎥⎥⎦ , Bc =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ , Rc =

⎡⎢⎢⎣
0
0
0
−1

⎤⎥⎥⎦ , C =

[
1 0 0 0
0 1 0 0

]
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(x1, x2 are the position and the velocity of the first mass, and x3, x4 those of the
second mass). The discrete time plant we will actually work with is

xt+1 = A0xt + But + Rdt

yt = Cxt
(14.4.29)

where A0 = exp{∆ · Ac}, B =
∆∫
0

exp{sAc}Bcds, R =
∆∫
0

exp{sAc}Rcds. System

(14.4.29) is not stable (absolute values of all eigenvalues of A0 are equal to 1),
which seemingly prevents us from addressing infinite-horizon design specifications
via the techniques developed in section 14.4.3. The simplest way to circumvent
the difficulty is to augment the original plant by a stabilizing time-invariant linear
feedback; upon success, we then apply the purified-output-based synthesis to the
augmented, already stable, plant. Specifically, let us look for a controller of the
form

ut = Kyt + wt. (14.4.30)

With such a controller, (14.4.29) becomes

xt+1 = Axt + Bwt + Rdt, A = A0 + BKC

yt = Cxt.
(14.4.31)

If K is chosen in such a way that the matrix A = A0 +BKC is stable, we can apply
all our purified-output-based machinery to the plant (14.4.31), with wt in the role
of ut, however keeping in mind that the “true” controls ut will be Kyt + wt.

For our toy plant, a stabilizing feedback K can be found by “brute force”
— by generating a random sample of matrices of the required size and selecting
from this sample a matrix, if any, which indeed makes (14.4.31) stable. Our search
yielded feedback matrix K = [−0.6950,−1.7831], with the spectral radius of the
matrix A = A0 +BKC equal to 0.87. From now on, we focus on the resulting plant
(14.4.31), which we intend to “close” by a control law from C8,0, where Ck,0 is the
family of all time invariant control laws of the form

wt =
t∑

τ=0

Ht−τvτ

[
vt = yt − Cx̂t,

x̂t+1 = Ax̂t + Bwt, x̂0 = 0

]
(14.4.32)

where Hs = 0 when s ≥ k. Our goal is to pick in C8,0 a control law with desired
properties (to be precisely specified below) expressed in terms of the following 6
criteria:

• the four peak to peak gains z2x, z2u, d2x, d2u defined on p. 400;

• the two H∞ gains

H∞,x = max
|s|=1,i,j

|(Hx(s))|ij , H∞,u = max
|s|=1,i,j

|(Hu(s))|ij ,

where Hx and Hu are the transfer functions from the disturbances to the
states and the controls, respectively.
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Optimized Resulting values of the criteria
criterion z2x40 z2u40 d2x40 d2u40 H∞,x H∞,u

z2x40 25.8 205.8 1.90 3.75 10.52 5.87
z2u40 58.90 161.3 1.90 3.74 39.87 20.50
d2x40 5773.1 13718.2 1.77 6.83 1.72 4.60
d2u40 1211.1 4903.7 1.90 2.46 66.86 33.67
H∞,x 121.1 501.6 1.90 5.21 1.64 5.14
H∞,u 112.8 460.4 1.90 4.14 8.13 1.48

z2x z2u d2x d2u H∞,x H∞,u

(14.4.34) 31.59 197.75 1.91 4.09 1.82 2.04
(14.4.35) 2.58 0.90 1.91 4.17 1.77 1.63

Table 14.2 Gains for time invariant control laws of order 8 yielded by optimizing, one
at a time, the criteria z2x40,...,H∞,u over control laws from F = {η ∈ C8,0 :
d2x40[η] ≤ 1.90} (first six lines), and by solving programs (14.4.34), (14.4.35)
(last two lines).

Note that while the purified-output-based control wt we are seeking is defined in
terms of the stabilized plant (14.4.31), the criteria z2u,d2u, H∞,u are defined in
terms of the original controls ut = Kyt +wt = KCxt +wt affecting the actual plant
(14.4.29).

In the synthesis we are about to describe our primary goal is to minimize the
global disturbance to state gain d2x, while the secondary goal is to avoid too large
values of the remaining criteria. We achieve this goal as follows.

Step 1: Optimizing d2x. As it was explained on p. 400, the optimization problem

Optd2x(k, 0; N+) = min
η∈Ck,0

max
0≤t≤N+

d2xt[η] (14.4.33)

is an explicit convex program (in fact, just an LO), and its optimal value is a
lower bound on the best possible global gain d2x achievable with control laws from
Ck,0. In our experiment, we solve (14.4.33) for k = 8 and N+ = 40, arriving at
Optd2x(8, 0; 40) = 1.773. The global d2x gain of the resulting time-invariant control
law is 1.836 — just 3.5% larger than the outlined lower bound. We conclude that
the control yielded by the solution to (14.4.33) is nearly the best one, in terms of
the global d2x gain, among time-invariant controls of order 8. At the same time,
part of the other gains associated with this control are far from being good, see line
“d2x40” in table 14.2.

Step 2: Improving the remaining gains. To improve the “bad” gains yielded
by the nearly d2x-optimal control law we have built, we act as follows: we look at
the family F of all time invariant control laws of order 8 with the finite-horizon
d2x gain d2x40[η] = max

0≤t≤40
d2xt[η] not exceeding 1.90 (that is, look at the controls
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from C8,0 that are within 7.1% of the optimum in terms of their d2x40 gain) and
act as follows:

A. We optimize over F , one at a time, every one of the remaining crite-
ria z2x40[η] = max

0≤t≤40
z2xt[η], z2u40[η] = max

0≤t≤40
z2ut[η], d2u40[η] = max

0≤t≤40
d2ut[η],

H∞,x[η], H∞,u[η], thus obtaining “reference values” of these criteria; these are lower
bounds on the optimal values of the corresponding global gains, optimization being
carried out over the set F . These lower bounds are the underlined data in table
14.2.

B. We then minimize over F the “aggregated gain”

z2x40[η]
25.8

+
z2u40[η]
161.3

+
d2u40[η]

2.46
+

H∞,x[η]
1.64

+
H∞,u[η]

1.48
(14.4.34)

(the denominators are exactly the aforementioned reference values of the corre-
sponding gains). The global gains of the resulting time-invariant control law of
order 8 are presented in the “(14.4.34)” line of table 14.2.

Step 3: Finite-horizon adjustments. Our last step is to improve the z2x and
z2u gains by passing from a time invariant affine control law of order 8 to a nearly
time invariant law of order 8 with stabilization time N∗ = 20. To this end, we solve
the convex optimization problem

min
η∈C8,20

⎧⎪⎪⎨⎪⎪⎩z2x50[η] + z2u50[η] :

d2x50[η] ≤ 1.90
d2u50[η] ≤ 4.20
H∞,x[η] ≤ 1.87
H∞,u[η] ≤ 2.09

⎫⎪⎪⎬⎪⎪⎭ (14.4.35)

(the right hand sides in the constraints for d2u50[·], H∞,x[·], H∞,u[·] are the slightly
increased (by 2.5%) gains of the time invariant control law obtained in Step 2). The
global gains of the resulting control law are presented in the last line of table 14.2,
see also figure 14.4. We see that finite-horizon adjustments allow us to reduce by
orders of magnitude the global z2x and z2u gains and, as an additional bonus, result
in a substantial reduction of H∞-gains.

Simple as this control problem may be, it serves well to demonstrate the
importance of purified-output-based representation of affine control laws and the
associated possibility to express various control specifications as explicit convex
constraints on the parameters of such laws.

14.5 EXERCISES

Exercise 14.1. Consider a discrete time linear dynamical system

x0 = z

xt+1 = Atxt + Btut + Rtdt, t = 0, 1, ...
(14.5.1)

where xt ∈ R
n are the states, ut ∈ R

m are the controls, and dt ∈ R
k are the

exogenous disturbances. We are interested in the behavior of the system on the
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Figure 14.4 Frequency responses and gains of control law given by solution to (14.4.35).
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finite time horizon t = 0, 1, ..., N . A “desired behavior” is given by the requirement

‖Pw − q‖∞ ≤ R (14.5.2)

on the state-control trajectory w = [x0; ...; xN+1;u0; ...; uN ].

Let us treat ζ = [z; d0; ...; dN ] as an uncertain perturbation with perturbation
structure (Z,L, ‖ · ‖r), where

Z = {ζ : ‖ζ − ζ̄‖s ≤ R}, L = R
L [L = dim ζ]

and r, s ∈ [1,∞], so that (14.5.1), (14.5.2) become a system of uncertainty-affected
linear constraints on wN . We want to process the Affinely Adjustable GRC of the
system, where ut are allowed to be affine functions of the initial state z and the
vector of disturbances dt = [d0; ...; dt] up to time t, and the states xt are allowed
to be affine functions of z and dt−1. We wish to minimize the corresponding global
sensitivity.

In control terms: we want to “close” the open-loop system (14.5.1) with a
non-anticipative affine control law

ut = Uz
t z + Ud

t dt + u0
t (14.5.3)

based on observations of initial states and disturbances up to time t in such

a way that the “closed loop system” (14.5.1), (14.5.3) exhibits the desired

behavior in a robust w.r.t. the initial state and the disturbances fashion.

Write down the AAGRC of our uncertain problem as an explicit convex program
with efficiently computable constraints.

Exercise 14.2. Consider the modification of Exercise 14.1 where the cone
L = R

L is replaced with

L = {[0; d0; ...; dN ] : dt ≥ 0, 0 ≤ t ≤ N},
and solve the corresponding version of the Exercise.

Exercise 14.3. Consider the simplest version of Exercise 14.1, where (14.5.1)
reads

x0 = z ∈ R

xt+1 = xt + ut − dt, t = 0, 1, ..., 15,

(14.5.2) reads

|θxt| = 0, t = 1, 2, ..., 16, |ut| = 0, t = 0, 1, ..., 15

and the perturbation structure is

Z = {[z; d0; ...; d15] = 0} ⊂ R
17, L = {[0; d0; d1; ...; d15]}, ‖ζ‖ ≡ ‖ζ‖2.

Assuming the same “adjustability status” of ut and xt as in Exercise 14.1,

i) Represent the AAGRC of (the outlined specializations of) (14.5.1), (14.5.2),
where the goal is to minimize the global sensitivity, as an explicit convex
program;
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ii) Interpret the AAGRC in Control terms;

iii) Solve the AAGRC for the values of θ equal to 1.e6, 10, 2, 1.

Exercise 14.4. Consider a communication network — an oriented graph G

with the set of nodes V = {1, ..., n} and the set of arcs Γ. Several ordered pairs of
nodes (i, j) are marked as “source-sink” nodes and are assigned traffic dij — the
amount of information to be transmitted from node i to node j per unit time; the
set of all source-sink pairs is denoted by J . Arcs γ ∈ Γ of a communication network
are assigned with capacities — upper bounds on the total amount of information
that can be sent through the arc per unit time. We assume that the arcs already
possess certain capacities pγ , which can be further increased; the cost of a unit
increase of the capacity of arc γ is a given constant cγ .

1) Assuming the demands dij certain, formulate the problem of finding the
cheapest extension of the existing network capable to ensure the required source-
sink traffic as an LO program.

2) Now assume that the vector of traffic d = {dij : (i, j) ∈ J } is uncertain and
is known to run through a given semidefinite representable compact uncertainty set
Z. Allowing the amounts xij

γ of information with origin i and destination j traveling
through the arc γ to depend affinely on traffic, build the AARC of the (uncertain
version of the) problem from 1). Consider two cases: (a) for every (i, j) ∈ J , xij

γ

can depend affinely solely on dij , and (b) xij
γ can depend affinely on the entire

vector d. Are the resulting problems computationally tractable?

3) Assume that the vector d is random, and its components are independent
random variables uniformly distributed in given segments ∆ij of positive lengths.
Build the chance constrained versions of the problems from 2).

14.6 NOTES AND REMARKS

NR 14.1. Multi-stage decision making problems, including those where the
decisions should be made in an uncertain environment, are of extreme applied
importance and therefore were on the “optimization agenda” for several decades,
essentially, since the birth of Mathematical Programming in late 1940s. Unfortu-
nately, because of the immense intrinsic complexity of these problems, there still
is a dramatic gap between what we would like to do and what we indeed can do.
Here is the opinion of George Dantzig, the founder of Mathematical Programming:
“In retrospect it is interesting to note that the original problem that started my re-

search [on Linear and Mathematical Programming] is still outstanding — namely,

the problem of planning or scheduling dynamically over time, particularly planning

dynamically under uncertainty. If such a problem could be successfully solved it

could eventually through better planning contribute to the well-being and stability

of the world.” [43, p. 30]. We strongly believe that this opinion reflects equally
well the situations today and in 1991, when it was expressed.
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We think that the only “well defined” existing optimization technique for
uncertainty-affected multi-stage optimization problems is Dynamic Programming
(DP). When applicable, DP allows to solve the “true” ARC of the problem, which
is the huge advantage of the technique. Unfortunately, DP suffers of the “curse of
dimensionality” and becomes computationally impractical (except for rare cases of
problems with very specific structure) when the state dimension of the underlying
Markov decision process becomes something like 4–5 or more. Aside of DP, the main
traditional approach to multi-stage decision making under uncertainty is offered by
Multi-Stage Stochastic Programming that, typically, assumes the uncertain data
to be random with known distribution and offers to solve the uncertain problem in
general-type decision rules with a prescribed information base (typically, the deci-
sions of stage t = 1, ..., N are allowed to depend on the portion ζt = [ζ1; ...; ζt−1] of
the complete data ζN ). These decision rules should satisfy the constraints (exactly
or with a given close to 1 probability) and to minimize under these restrictions
the expected value of a given objective. While the model in question seems to
be adequate for what we actually want in multi-stage optimization, the difficulty
comes from the fact that as a rule, the multi-stage stochastic programming models
are severely computationally intractable, aside of problems of really rare and very
“fragile” structure. Specifically, the best known to us complexity bounds for N -
stage Linear Stochastic Programming [104] are O(ε−2(N−1)), ε being the required
accuracy. Practically speaking, it means that at the present level of our knowl-
edge, problems with N = 3 “most probably,” and problems with N ≥ 4 “surely”
are far beyond the reach of computational methods capable of producing solutions
of reasonable accuracy in reasonable time. In light of these disastrous complexity
results, the reader could ask to which extent the Multi-Stage SP can be considered
as a practical tool for processing “really multi-stage” (N > 2) decision making
problems, and how should one interpret frequent claims of successful processing
of complicated problems with 5, 10, or even more stages. Well, this is how this
processing typically looks: first people discretize possible values of ζt and build
“scenario trees,” in the simplest case something like “ζ1 can take values from such
and such set of low cardinality. Every one of these values can be augmented by the
values of ζ2 from such and such low cardinality set (perhaps depending on ζ1); the
resulting pairs [ζ1; ζ2] can be augmented by the values of ζ3 from such and such
low cardinality set, perhaps depending on the pair, etc. The actual set of possible
realizations of ζ is then replaced with the tree, the routes in the tree are somehow
assigned probabilities, and the “true” multi-stage problem is approximated with
the problem where the decision rules of step t are functions of the values of ζt−1

coming from scenarios, i.e., they are functions on a finite set and thus can be rep-
resented by vectors. When, as is usually the case, the original uncertain problem
is an LO program, the resulting “restricted to the tree of scenarios” multi-stage
decision-making problem is just the usual large LO program that can be solved by
the LO machinery, perhaps adjusted to the specific “staircase structure” of the LO
in question.
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With all due respect to practical results that can be obtained with this ap-
proach, it has a severe methodological drawback: it is absolutely unclear what the
resulting solution has to do with the problem we intend to solve. Strictly speaking,
we even cannot treat this solution as a candidate solution, bad or good alike, to the
original problem — the decision rules we end up with simply do not say what our
decisions should be when the actual realizations of the uncertain data differ from
the scenario realizations (this will happen with probability 1, provided that the true
distribution of uncertain data has no atoms). The standard answer to this question
is as follows: all we need are the first stage decisions, and they are independent of
uncertain data and thus are indeed yielded by the scenario approximation. In “real
life” we shall implement these decisions; after arriving at the second stage, we apply
the same scenario approximation to the problem with the number of stages reduced
by one, implement the resulting “here and now” decisions, etc. This answer still is
far from being satisfactory. First, there is no guarantee that with this approach at
the second, third, etc., stage we shall not meet an infeasible scenario approximation
— and this well can happen even when the “true” multi-stage problem is perfectly
feasible. The standard way to avoid this unpleasant possibility is to postulate
“complete recourse” — whatever be our “here and now” decisions that satisfy the
“here and now” constraints, the problem of the next stage will be feasible.5 How-
ever, even under complete recourse and with all numerous tricks of Multi-Stage SP
aimed at reducing the number of scenarios, the question “how far from optimum,
in terms of the criterion we intend to minimize, are the decision rules we get with
the scenario approximation” remains unanswered; to the best of our knowledge, in
typical situations meaningful optimality guarantees become possible only with an
astronomically large, completely impractical, number of scenarios in the tree.

The dramatic theoretical gap between what Multi-Stage Stochastic Program-
ming intends to achieve and what, if any, it provably achieves disappears when
passing from the general-type decision rules to affine ones. Here we indeed achieve
what we intend to achieve, at least in the case of multi-stage uncertain LO with
a fixed recourse and tractable uncertainty set. Needless to say, the gap is closed
“from the bad end” — by replacing our actual (unreachable at the present state of
our knowledge) goal with an incomparably more modest one, and not by inventing
“Wunderwaffen” capable of solving a multi-stage problem to “true optimality.” On
a good side of the AARC approach, when the AARC is tractable and feasible, we
are indeed able to guarantee the validity of the constraints whatever be the realiza-
tion of the uncertain data from the uncertainty set — a feature that is not shared
by the scenario approximation of a multi-stage problem with incomplete recourse.
The bottom line is, that both the scenario and the AARC approach are very far
from being “ideal” tools for solving multi-stage decision making problems; what is

5“In reality,” complete recourse means that when running out of money and other resources,
we can lend/buy what is absent, perhaps at a high price. More often than not this assumption is
as relevant as the famous advice given by the Queen of France Marie Antoinette (1755–1793) to
the peasants coming to her gate begging for food: “qu’ils mangent de la brioche.” ([If they have
no bread,] “let them eat cake.”)
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better in a particular situation depends on the situation and should be decided on
a “case by case” basis; thus both approaches seem to have the “right to exist.”

NR 14.2. The idea of affine decision rules is too old and too simple to be
easily attributable to a particular person/paper (especially taking into account
that linear controllers are commonplace in Control, a “close scientific relative”
of Optimization). To the best of our knowledge, (which in this particular case
is not that much of a guarantee), in the optimization literature first mention of
this approach should be attributed to Charnes. The major bulk of the AARC
methodology and results as presented in the main body of this chapter originate
from [13].

NR 14.3. The main results of Section 14.4 originate from [15] (the finite
horizon results, including Theorem 14.4.1) and from [16] (infinite horizon results).
These results are close to (although not completely covered by) the well known in
Control results on Youla parameterization [117]; the “common roots” of the results
in question lie in the simple fact that the purified outputs, as defined in (14.4.6),
are affine functions of the initial state and disturbances, and these functions remain
the same whatever non-anticipating control law we use. In hindsight, our results
are somehow connected to those in [80]; we are grateful to M. Campi for making
us aware of this connection.



Part IV

Selected Applications



This page intentionally left blank 



Chapter Fifteen
Selected Applications

We have considered already numerous examples illustrating applications of the
Robust Optimization methodology, but these were, essentially, toy examples aimed
primarily at clarifying particular RO techniques. In this chapter, we present a
number of additional examples, with emphasis on potential and actual “real-life”
aspects of Robust Optimization models in question. Many more examples can be
found in the literature, see, e.g., [9, 16, 110, 89] and references therein.

15.1 ROBUST LINEAR REGRESSION AND MANUFACTURING OF TV

TUBES

The application of RO to follow is from E. Stinstra and D. den Hertog [108], to
whom we are greatly indebted for the permission to reproduce here part of their
results.

The problem we want to solve is

min
x
{f0(x) : fi(x) ≤ 0, i = 1, ..., r, x ∈ X} , (15.1.1)

where
fi(x) = αT

i g(x), 0 ≤ i ≤ m, (15.1.2)

g(x) = [g1(x); ...; gt(x)] : R
n → R

t is comprised of basic functions given in advance,
and X ⊂ R

n is a given computationally tractable closed convex set.

Data uncertainty comes from the fact that the coefficients αi ∈ R
t in (15.1.2)

are not known in advance. All we know are inexact measurements

ys
ik ≈ yr

ik := fi(χk), 0 ≤ i ≤ r, 1 ≤ k ≤ p

of the values of fi (“responses”) along a given set χ1, ..., χp of the values of the
design vector.

In the situation of [108], ys
ik are the responses of a simulation model of the

true physical system, while yr
ik are the responses of the system itself; thus,

the inexactness of the measurements reflects the simulation errors.

We assume that the relation between the true and the measured responses is given
by

yr
ik = (1 + ζm

ik)ys
ik + ζa

ik, (15.1.3)
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where ζm
ik and ζa

ik are the multiplicative and the additive errors, respectively; all
we know about these errors is that their collection ζ = {ζm

ik, ζa
ik} 0≤i≤m,

1≤k≤p
belongs to

a given convex and closed perturbation set Z.

The robust counterparts. Assume that the “design matrix”

D =

⎡⎢⎣ g1(χ1) · · · gt(χ1)
...

...
...

g1(χp) · · · gt(χp)

⎤⎥⎦
is of rank t, so that from the relations yr

ik = αT
i g(χk), k = 1, ..., p, it follows that

αi = Gyr
i , G = (DT D)−1DT , yr

i = [yr
i1; ...; y

r
ip], 0 ≤ i ≤ m, (15.1.4)

and, in addition, that
yr

i ∈ ImD. (15.1.5)

The latter information allows one to reduce, given ys, the perturbation set Z to
the set

Z(ys) = {ζ ∈ Z : ys
i + Y s

i ζm
i + ζa

i ∈ ImD, 0 ≤ i ≤ m},[
ys

i = [ys
i1; ...; y

s
ip], Y s

i = Diag{ys
i}, ζm

i = [ζm
i1 ; ...; ζm

ip ], ζa
i = [ζa

i1; ...; ζ
a
ip]
]
.

Note that all we know about yr
i given ys is that

yr
i = ys

i + Y s
i ζm

i + ζa
i for some ζ ∈ Z(ys).

Consequently, all we know about αi given ys is that

αi ∈ Ui = {a = G[ys
i + Y s

i ζm
i + ζa

i ], ζ ∈ Z(ys)} .

Therefore the robust version of (15.1.1), where we require the validity of the con-
straints for all collections α0, ...αm compatible with our measurements ys and mini-
mize under this restriction the guaranteed value of the objective, is the optimization
problem

min
z,x

⎧⎪⎪⎨⎪⎪⎩z :

aT
0 g(x) ≤ z ∀a0 ∈ U0

aT
i g(x) ≤ 0 ∀ai ∈ Ui,

1 ≤ i ≤ m

x ∈ X

⎫⎪⎪⎬⎪⎪⎭ . (15.1.6)

Along with this “true” RC of the uncertain problem in question, one can consider
its simplified, somehow more conservative, version where we ignore the information
contained in (15.1.5). The simplified RC reads

min
z,x

⎧⎪⎪⎪⎨⎪⎪⎪⎩z :

aT
0 g(x) ≤ z ∀a0 ∈ Ũ0

aT
i g(x) ≤ 0 ai ∈ Ũi,

1 ≤ i ≤ m

x ∈ X

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

Ũi = {a = G[ys
i + Y s

i ζm
i + ζa

i ], ζ ∈ Z}, 0 ≤ i ≤ m.

(15.1.7)

Note that what actually is used in [108] is the simplified RC (15.1.7).

Tractability of the RCs. Assume that the perturbation set Z is a computation-
ally tractable convex set, e.g., a set given by a polyhedral, or conic quadratic, or
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semidefinite representation. Then so is Z(ys) (as a set cut off Z by finitely many
linear equations on ζ expressing the fact that ys

i + Y s
i ζm

i + ζa
i ∈ Im D). Invoking

Theorem 1.3.4, we conclude that in the case of linear regression models, (i.e., when
all the basic functions gj(x), 1 ≤ j ≤ t, are affine), both (15.1.6) and (15.1.7) are
computationally tractable.

The assumption that gj(x) are affine is essential, otherwise the RCs in ques-
tion can lose convexity even when no measurement errors are allowed (Z = {0}).
What we indeed can do efficiently in the case of general regression models (those
where gj(x) non necessarily are affine) is to solve the Analysis problem, i.e., to
check whether a given x is feasible for the RCs, since such a verification reduces to
maximizing the linear form aT g(x) of a over the computationally tractable convex
sets Ui (in the case of (15.1.6)) or Ũi (in the case of (15.1.6)). When there are
reasons to conclude that (15.1.6), (15.1.7) by themselves are convex programs, this
possibility to solve efficiently the Analysis problem implies, modulo minor techni-
cal assumptions, the possibility to solve efficiently the Synthesis problems (15.1.6),
(15.1.7) (this is a well known fact of Convex Programming complexity theory, see,
e.g., [56]).

Assume, e.g., that all non-affine functions gj(x) are convex and that the cor-

responding coefficients (αi)j in (15.1.2) are known to be nonnegative, so that

the “true” problem (15.1.1) indeed is convex. Adding to the description of

Ui, Ũi the (valid for the true coefficients) requirements that the entries in

a with indices j ∈ J = {j : gj is not affine} are nonnegative, we end up

with reduced, still computationally tractable, uncertainty sets U+
i , Ũi

+
. At

the same time, the semi-infinite constraints aT
i g(x) ≤ ... ∀ai ∈ U+

i in the re-

sulting modification of (15.1.6) (‘...’ is either z, or 0) can be written down as

f̄i(x) := max
a∈U+

i
aT g(x) ≤ .... Observing that the functions aT g(x), a ∈ U+

i ,

are convex, we conclude that f̄i(x) is convex as well. Moreover, given x, we

can find efficiently ax ∈ U+
i such that aT

x g(x) = f̄i(x), (since U+
i is compu-

tationally tractable). Note that the vector
∑t

j=1(ax)jg
′
j(x) is a subgradient

of f̄i(x). Thus, (15.1.6) in our case is a convex problem with efficiently com-

putable objective and constraints and as such is computationally tractable,

and similarly for (15.1.7).

Numerical illustration. In [108], the outlined methodology was applied to opti-
mizing the temperature profile in enameling of TV tubes. In this process, a tube
is heated in a designated oven. The resulting thermal stresses in the tube depend
on the “temperature profile” x — the collection of temperatures along certain grid
on the surface of the tube, see figure 15.1. A bad profile can result in stresses that
are too large and therefore in much of scrap. The designer’s goal is to choose a
temperature profile in a way that ensures the temperature values are between given
bounds and the differences in temperature at nearby locations are not too big, and
to minimize under these restrictions the maximal thermal stress in a specified area.
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Figure 15.1 A temperature profile

The mathematical model of the problem is

min
smax,x

⎧⎨⎩smax :
si(x) ≤ smax, 1 ≤ i ≤ m (a)

� ≤ x ≤ u (b)
−∆ ≤ pT

j x + qj ≤ ∆, j ∈ J (c)

⎫⎬⎭ , (15.1.8)

where x ∈ R
23 stands for the temperature profile, si(x) are the thermal stresses at

m = 210 control points, and constraints (c) impose bounds on the absolute values
of differences in temperature at neighboring points. It is assumed that si(x) are
given by linear regression model:

si(x) = αT
i [1; x]︸ ︷︷ ︸

g(x)

. (15.1.9)

The simulated responses are the stresses at control points yielded by a finite element
model, with a typical simulation, (i.e., running the model for a given x) taking
several hours.

As for the uncertain perturbations, (i.e., the simulation errors), it is assumed
that the only nonzero components in the perturbation ζ are the multiplicative errors
ζm
ik, and two models of the perturbation set Z are considered:

box uncertainty:

Z =
{

ζ = {ζm
ik, ζa

ik = 0} 1≤i≤m,
1≤k≤p

: −σb
i ≤ ζm

ik ≤ σb
i ∀i, k

}
,

ellipsoidal uncertainty:

Z =
{

ζ = {ζm
ik, ζa

ik = 0} 1≤i≤m,
1≤k≤p

:
∑p

k=1[ζ
m
ik]2 ≤ [σe

i ]
2 ∀i

}
.
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The corresponding tractable reformulations of the simplified robust counterpart
(15.1.7) (this is what was used in [108] to get a robust solution) are

case of box uncertainty:

min
x,smax

⎧⎨⎩smax :
[ys

i ]
T GT [1;x] + σb

i ‖Y s
i GT [1;x]‖1 ≤ smax,

1 ≤ i ≤ m

� ≤ x ≤ u, −∆ ≤ pT
j x + qj ≤ ∆, 1 ≤ j ≤ J

⎫⎬⎭ ,

case of ellipsoidal uncertainty:

min
x,smax

⎧⎨⎩smax :
[ys

i ]
T GT [1;x] + σe

i ‖Y s
i GT [1; x]‖2 ≤ smax,

1 ≤ i ≤ m

� ≤ x ≤ u, −∆ ≤ pT
j x + qj ≤ ∆, 1 ≤ j ≤ J

⎫⎬⎭ .

(15.1.10)

The experiments reported in [108] were conducted as follows. After ys was
generated,
• a sample of 100 independent realizations ζ1, ..., ζ100 was built. When generating
ζµ, the additive errors were set to 0, and the multiplicative errors were drawn,
independently of each other, either from the uniform, or from normal distribution,
depending on whether the box or the ellipsoidal model of uncertainty was explored
(for details, see [108]);
• a realization ζi of ζ along with ys according to (15.1.3) yields a realization
yr,µ, of “true” responses;1 the latter, according to (15.1.4), yields a collection αµ

i ,
i = 1, ...,m of the “true” coefficients αi in (15.1.9), thus allowing one to com-
pute the corresponding “true” stresses and their maximum sµ

max(x) for any given
temperature profile x.

The goal of the outlined simulation was to compare the “true” values of the
maximal stresses associated with the robust optimal and the nominally optimal
temperature profiles. The robust optimal profile is the optimal solution to the
robust problem (15.1.10) associated with the uncertainty model in question, while
the nominally optimal profile is the optimal solution to the same problem with
σb

i and σe
i set to 0. The results of the experiment are presented on figure 15.2.

It is clearly seen that the robust temperature profile significantly outperforms the
nominal one in terms of both the expectation and the variance of the resulting
maximal thermal stress.

15.2 INVENTORY MANAGEMENT WITH FLEXIBLE COMMITMENT

CONTRACTS

The content of this section originates from [14].

1Here and below, quotation marks in “true” express the fact that what is considered as true
responses in the reported experiments comes from the simulated responses ys and the perturbation
model (15.1.3), rather than from measuring the actual responses of the physical system.
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Figure 15.2 Distributions of maximal stresses for nominal and robust temperature profiles
(x-axis: values of the stress, y-axis: frequency in a 100-element sample).
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15.2.1 The Problem

Consider a single product inventory functioning at a finite time horizon. The state
of the inventory at time t = 1, 2, ..., T is specified by the amount xt of product
in the inventory at the beginning of period t. During the period, the inventory
management (“the retailer”) orders qt units of product from the supplier, that
we assume arrive immediately, and satisfies external demand for dt units of the
product. Thus, the state equations of the inventory are

x1 = z

xt+1 = xt + qt − dt, 1 ≤ t ≤ T
(15.2.1)

where z is a given initial state. We assume that backlogged demand is allowed, so
that the states xt can be nonpositive. Our additional constraints include:

• lower and upper bounds on the orders Lt ≤ qt ≤ Ut, 1 ≤ t ≤ T , and
• lower and upper bounds on cumulative orders L̂t ≤

∑t
τ=1 qτ ≤ Ût, 1 ≤ t ≤

T , where Lt ≤ Ut, L̂t ≤ Ût are given bounds and Lt, L̂t ≥ 0.

Our goal is to minimize the overall inventory management cost that includes
the following components:

i) Holding cost
∑T

t=1 ht max[xt+1, 0], where ht ≥ 0 is the cost of storing a unit
of the product in period t.

ii) Shortage cost
∑T

t=1 pt max[0,−xt+1], where pt ≥ 0 is the per unit penalty for
backlogged demand in period t.

iii) Ordering cost
∑T

t=1 ctqt, where ct ≥ 0 is the per unit cost of replenishing the
inventory in period t.

iv) Salvage term −s max[xT+1, 0], where s ≥ 0 is the salvage coefficient. In other
words, we assume that after T periods the product remaining in the inventory
can be sold at the per unit price s.

At this point, our model is pretty similar to the one of Example 14.1.2. We, however,
are about to enrich this simple model by an important additional component —
commitments. In this model “as it is,” the only restrictions on the replenishment
policy are given by bounds on the instant and the cumulative orders, and the
retailer has complete freedom in choosing the orders within these bounds, with no
care of how this freedom affects the supplier. The latter therefore is supposed to
work “on very short notice,” with very limited options of predicting what will be
required from him in the future. In other words, in the model we have presented
so far the retailer and the supplier are in different positions as far as the risk
from the inevitable demand uncertainty is concerned: the retailer can vary, within
certain bounds, the replenishment orders, thus adjusting himself, to some extent,
to the actual demand; while the supplier must blindly execute the orders, with no
compensation for their unpredictable variations. One of the real life mechanisms
aimed at a more fair distribution of the risk along a supply chain is offered by



424 CHAPTER 15

flexible commitments contracts as follows. “At time 0,” before the inventory starts
to function, the supplier and the retailer make an agreement about commitments

wt, 1 ≤ t ≤ T — the “projected” future orders for the entire horizon 1 ≤ t ≤ T . The
retailer is not required to “fully respect” the commitments — to make the future
orders qt exactly equal to wt — but is supposed to pay to the supplier penalties for
deviations of the actual orders from the commitments. As a result, the inventory
management cost gets an extra component∑T

t=1

[
α+

t max[qt − wt, 0] + α−
t max[wt − qt, 0]

]
+
∑T

t=2

[
β+

t max[wt − wt−1, 0] + β−
t max[wt−1 − wt, 0]

]
,

where α±
t ≥ 0 are given penalties for per unit excess/recess of the actual orders

as compared to commitments, and β±
t ≥ 0 are given penalties for variations in the

commitments. The resulting inventory management model becomes the optimiza-
tion problem:

minimize
C =

∑T
t=1 ht max[xt+1, 0] +

∑T
t=1 pt max[0,−xt+1] +

∑T
t=1 ctqt

[holding cost] [shortage cost] [ordering cost]
+
∑T

t=1

[
α+

t max[qt − wt, 0] + α−
t max[wt − qt, 0]

]
[penalty for deviations from commitments]

+
∑T

t=2

[
β+

t max[wt − wt−1, 0] + β−
t max[wt−1 − wt, 0]

]
[penalty for commitments variability]
−smax[xT+1, 0]
[salvage term]

subject to
x1 = z

xt+1 = xt + qt − dt, 1 ≤ t ≤ T [state equations]
Lt ≤ qt ≤ Ut, 1 ≤ t ≤ T [bounds on orders]
L̂t ≤

∑t
τ=1 qτ ≤ Ût, 1 ≤ t ≤ T [bounds on accumulated orders]

(15.2.2)
Introducing analysis variables, the problem reduces to the LO program as follows:

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
C :

C ≥
∑T

t=1[ctqt + yt + ut] +
∑T

t=2 zt (a)
xt+1 = xt + qt − dt, 1 ≤ t ≤ T (b)
x1 = z (c)
Lt ≤ qt ≤ Ut, 1 ≤ t ≤ T (d)
L̂t ≤

∑t
τ=1 qτ ≤ Ût, 1 ≤ t ≤ T (e)

yt ≥ htxt+1, yt ≥ −ptxt+1, 1 ≤ t ≤ T (f)
ut ≥ α+

t (qt − wt), ut ≥ α−
t (wt − qt), 1 ≤ t ≤ T (g)

zt ≥ β+
t (wt − wt−1) + β−

t (wt−1 − wt), 2 ≤ t ≤ T (h)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.2.3)

in variables C, {xt}T+1
t=1 , {qt, wt, yt, ut}T

t=1, {zt}T
t=2; here ht = ht for 1 ≤ t ≤ T − 1

and hT = hT − s. Note that (15.2.3) is indeed equivalent to (15.2.2) under the
additional restriction that

hT + pT ≥ s, (15.2.4)

which we assume from now on.
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The role of assumption (15.2.4) can be explained as follows. It indeed is true,
without any assumptions, that every feasible solution to (15.2.2) can clearly
be extended to a feasible solution to (15.2.3) by setting

yt = max[htxt+1,−ptxt+1], ut = max[α+
t (qt − wt), α

−
t (wt − qt)],

zt = max[β+
t (wt − wt−1), β

−
t (wt−1 − wt)].

In order to conclude that (15.2.2) and (15.2.3) are equivalent, we also need the

inverse to be true — that is, every feasible solution to (15.2.3) should induce

a feasible solution to (15.2.2) with the same or better value of the objective.

On a closest inspection, it turns out that in order for the latter statement

to be true, the quantity max[h̄T s,−pT s] should be equal to hT s or to −pT s

depending on whether s ≥ 0 or s < 0, which is the case if and only if (15.2.4)

takes place.

15.2.2 Specifying Uncertainty and Adjustability

“In reality,” the definitely uncertain element of the data in (15.2.3) is the demand
trajectory d = [d1; ...; dT ]. In our model, we consider the demands as the only

uncertain component of the data, thus treating all the cost coefficients, bounds on
the orders, and the initial state z as known in advance. We further should decide
on the “adjustability status” of our decision variables, and this is easy: the actual
decisions in our problem are the commitments wt, that by their origin are non-
adjustable, and the replenishment orders qt, which it makes sense to consider as
adjustable: according to the “covering story,” a decision on the actual value of qt

should be made at the beginning of the period t and as such can depend on the part
dt−1 = [d1; ...; dt−1] of the demand trajectory that “reveals itself” at this moment.

Of course, there is no necessity to take our “covering story” completely
at its “face value.” It may happen, e.g., that there are delays in register-
ing the demands and/or in executing the orders, so that what actually
will be delivered in period t should be determined according to the de-
mands dτ of “remote past.” On the other hand, it may happen that
not only the past demands, but also the current demand dt can be used
when making the decision on qt. To cover all these possibilities, we as-
sume that we are given in advance certain sets It ⊂ {1, ..., t} of indices
of the demands dτ , which are known when the decision on qt is being
made. Note that some (or even all) of It can be empty, meaning that
the corresponding orders qt are non-adjustable.

The remaining variables in (15.2.3) are the analysis variables; all of them, except
for the (upper bound on the) management cost C are, in principle, fully adjustable.
However, it is clear that it makes no sense to make adjustable the variables zt that
neither appear in uncertainty-affected constraints, nor are linked to other variables
that do appear in such constraints. Thus, the analysis variables that indeed make
sense to treat as fully adjustable — depending on the entire demand trajectory —
are yt and ut. With this convention, specifying somehow the (closed, convex, and
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bounded) uncertainty set D for the uncertain demand trajectory, we end up with
an uncertain LO problem with fixed recourse and are in a good position to process
this problem via the AARC methodology as presented in chapter 14.

15.2.3 Building an Affinely Adjustable Robust Counterpart of (15.2.3)

To build the AARC of (15.2.3), we

i) Keep the non-adjustable decision variables w1, ..., wt, (which represent the
commitments), and the non-adjustable analysis variables C, z2, ..., zT “as they
are” and introduce affine decision rules for the “actual decisions” q1,...,qt,
respecting the given “information base” of these decisions:

qt = q0
t +

∑
τ∈It

qτ
t dτ , 1 ≤ t ≤ T. (15.2.5)

ii) Introduce “fully adjustable” affine decision rules for the remaining analysis
variables:

yt = y0
t +

∑T
τ=1 yτ

t dτ

ut = u0
t +

∑T
τ=1 uτ

t dτ

}
, 1 ≤ t ≤ T. (15.2.6)

iii) Replace in (15.2.3) the adjustable variables qt, yt, ut with the just introduced
affine decision rules, thus arriving at a semi-infinite LO problem in variables
ξ = {C, {wt}, {zt}, {qτ

t , yτ
t , uτ

t }}. In this problem, the objective and part
of the constraints are certain, while the remaining constraints are affinely
perturbed by the demand trajectory d.

iv) Finally, impose on all the constraints the requirement to be satisfied for all
d ∈ D, and minimize the (upper bound on the) inventory management cost
under the resulting constraints.

Of course, in order to implement the latter recommendation efficiently, we need
to reformulate in tractable form the semi-infinite constraints we end up with. As
we know, this is possible, provided that D is a computationally tractable convex
set; however, what exactly are the “tractable reformulations,” depends on the de-
scription of D. In what follows, we restrict ourselves to the simplest case of box
uncertainty:

D = {d ∈ R
T : dt ≤ dt ≤ dt, 1 ≤ t ≤ T}.

In this case, the tractable reformulation of a semi-infinite constraint

∀(d ∈ D) :
T∑

τ=1

dτaτ (ξ) ≤ b(ξ)

(here aτ (ξ), b(ξ) are known in advance affine functions of the decision vector ξ of
the AARC; note that all semi-infinite constraints we end up with are of this generic
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form) is really simple: this is the convex constraint∑T
τ=1 d∗τAτ (ξ) +

∑T
τ=1 δτ |aτ (ξ)| ≤ b(ξ)[

d∗τ = 1
2 [dτ + dτ ], δτ = 1

2 [dτ − dτ ]
]
,

which further can be converted into a system of linear constraints by introducing
slack variables. The bottom line is that the AARC of (15.2.3), the uncertainty set
being a box, is just an explicit LO program.

While the outlined construction is correct, it is not as “economical” as
it could be. Indeed,

• We can use the state equations (15.2.3.b,c) to eliminate the state vari-
ables xt, 1 ≤ t ≤ T + 1; with affine decision rules (15.2.5), the resulting
affine decision rule for xt expresses this variable as an affine function of
dt−1 = [d1; ...; dt−1], the coefficients being known linear combinations of
the variables uτ

t . Thus, we do not need variables xτ
t at all.

• The latter observation taken along with the direct product structure
of the uncertainty set D allows one to “save” on the decision rules for
yt and ut — while we allowed these variables to be affine functions of
the entire demand trajectory d, we in fact lose nothing when restricting
these affine functions to depend on appropriate parts of this trajectory.
Indeed, let us look at the constraints (15.2.3.f) for a particular value of
t. There are two of them, both of the form

yt ≥ atxt+1.

We are interested in the case when xt+1 is substituted by an affine
function Xt+1(dt) of dt with coefficients depending solely on qτ

t , and yt

is substituted by an affine function Yt(d) ≡ y0
t +

∑T
τ=1 yτ

t dτ of d such
that the constraints in question are satisfied for all d from the box D.
Clearly this is the case if and only if

Ȳt(dt) ≡
[
y0

t + min
dt+1,...,dT

{
T∑

τ=t+1
yτ

t dτ :
dτ ≤ dτ ≤ dτ ,

t < τ ≤ T

}]
+
∑t

τ=1 yτ
t dτ ≥ atXt+1(dt)

for all dt from the “truncated box” Dt = {dt : dτ ≤ dτ ≤ dτ , 1 ≤ τ ≤ t}.
We see that as far as the constraints (15.2.3.f) are concerned, we lose
nothing when replacing the affine decision rule Yt for yt with the affine
decision rule Ȳt. Since by construction Ȳt(dt) ≤ Yt(d) for all d ∈ D, this
updating clearly preserves robust validity of the only other constraint
involving our particular variable yt, namely, the constraint (15.2.3.a).
The bottom line is that we lose nothing when restricting yt to be an

affine function of dt rather than of the entire d. Am similar argument
is applicable to the variables ut — the corresponding decision rules
can without any harm be restricted to be affine functions of the part
dt of the demand trajectory. Thus, the actual number of yτ

t and uτ
t
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variables in AARC can be made essentially smaller than in the above
“straightforward” construction.

15.2.4 Numerical Results

The outlined model was proposed in [14]; this paper also reports on intensive nu-
merical study of the model, and we are about to reproduce here part of the re-
sults. In all reported experiments, the uncertainty set D is a box of the form
{d ∈ R

T : |dt − d∗t | ≤ ρd∗
t , 1 ≤ t ≤ T} with positive “nominal demands” d∗t , “un-

certainty level” ρ varying in the range from 10% to 70%, and time horizon T set to
12.

15.2.4.1 AARC vs. optimal decision rules

The most interesting question is, of course, how much we lose when restricting our-
selves with affine decision rules — that is, how far is the optimal value Opt(AARC)
of the AARC from the optimal value Opt(ARC) of the Adjustable Robust Coun-
terpart of the uncertain problem (15.2.2). While in general the latter quantity is
difficult to compute, the extreme simplicity of the box uncertainty set we consider
allows us to compute it, provided T is not too large, specifically, as follows. We
start with the following simple fact from [14]:

Lemma 15.2.1. Consider a multi-stage problem

min
{St(dt−1)}T+1

t=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
E :

∀dT ∈ F0 × ...× FT :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E ≥
T+1∑
t=1

ft(St(dt−1)),

A1S1(d0) ≥ b1,

At+1St+1(dt) ≥ Bt+1d
t + Ct+1St(dt−1)
+bt+1, 1 ≤ t ≤ T

‖St(dt−1)‖∞ ≤ R, 1 ≤ t ≤ T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(P )

where ∅ �= Ft ⊂ Dt, Dt are polytopes in R
nt , and ft are lower semicontinuous

convex functions with polyhedral domains. Then the optimal value in the problem
corresponding to Ft = Dt, 0 ≤ t ≤ T , is equal to the optimal value in the problem
corresponding to Ft = Ext(Dt), 0 ≤ t ≤ T , where Ext(D) is the set of extreme
points of a polytope D. The ARC of uncertain problem (15.2.2) clearly satisfies
the assumptions of Lemma, and here Dt are the segments [dt, dt], and the extreme
points of Dt are dt and dt. By Lemma, the optimal value of the ARC of (15.2.2)
remains intact when passing from the box uncertainty set D to the finite uncertainty
setD′ comprised of 2T “extreme” demand trajectories — those where the demand at
every time instant t is either dt, or dt. Now, the ARC of a multi-stage uncertain LO
problem with a finite uncertainty set D′ is just a large LO problem. Indeed, we can
assign every pair comprised of a time instant t ∈ {1, ..., T} and a possible “scenario”
s ∈ D′ with a set of decision variables representing the decisions that should be
made at the instant t when the realization of the uncertain data is s. We impose
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on these variables the non-anticipativity restriction “the decisions associated with
(t, s) and (t, s′) should be identical to each other, provided that the information
on uncertain data, available at time t, is the same for both scenarios s and s′,”
and then optimize the objective over the resulting set of decision variables under
the non-anticipativity constraint coupled with the requirement that the original
constraints are valid for every one of the scenarios s ∈ D′.

Here is an illustrative example: there are two assets, and we want to invest
$1 in these assets at the beginning of time period 1, to sell the assets at the
end of this period, and to reinvest the resulting capital in the same two assets
at the beginning of time period 2 in order to maximize the guaranteed value
of the resulting portfolio at the end of the period 2. Denoting pt,i ≥ 0 the
(uncertain) return of asset i, i = 1, 2, in period t, t = 1, 2, the uncertain
problem is

max
[xt,i]1≤i,t≤2

⎧⎪⎪⎨⎪⎪⎩p2,1x2,1 + p2,2x2,2 :

x2,1 + x2,2

≤ p1,1x1,1 + p1,2x1,2

x1,1 + x1,2 ≤ 1
xt,i ≥ 0

⎫⎪⎪⎬⎪⎪⎭ ,

where xt,i is the capital invested in asset i at the beginning of time period t.
Assume that all we know at the end of time period t are the returns of the
assets in this and in the preceding periods, and that there are just 5 possible
scenarios represented in the following table

Scenario pti

# [p1,1, p1,2] [p2,1, p2,2]

1 [1, 1] [1, 1]

2 [1, 1] [1, 2]

3 [2, 1] [2, 1]

4 [1, 2] [1, 1]

5 [3, 1] [2, 2]

The LO representing the ARC of this uncertain problem reads

max
C,xk

t,i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
C :

C ≤ pk
2,1x

k
2,1 + pk

2,2x
k
2,2, 1 ≤ k ≤ 5

xk
2,1 + xk

2,2 ≤ pk
1,1x

k
1,1 + pk

1,2x
k
1,2, 1 ≤ k ≤ 5

xk
1,1 + xk

1,2 ≤ 1, 1 ≤ i ≤ k

xk
ti ≥ 0, 1 ≤ k ≤ 5, q ≤ t, i ≤ 2

xk
1,i = x1

1,i, 1 ≤ k ≤ 5, i = 1, 2
x1

2,i = x2
2,i, i = 1, 2

x3
2,i = x4

2,i, i = 1, 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
where xk

t,i is the investment in asset i at the beginning of period t in the
scenario k, pk

t,i are the corresponding returns, and the concluding lines in the
list of constraints represent the non-anticipativity restrictions, specifically, say
that
• all decisions made at the beginning of period 1 (at this time we do not know
what the scenario is) should be the same for all scenarios;
• with the information available when the decisions xk

2,i should be made, the
scenarios 1 and 2 are undistinguishable, so that the corresponding decisions
should be the same, and similarly for the scenarios 3 and 4.
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ρ,% Opt(ARC) Opt(AARC) Opt(RC)

10 13531.8 13531.8 (+0.0%) 15033.4 (+11.1%)
20 15063.5 15063.5 (+0.0%) 18066.7 (+19.9%)
30 16595.3 16595.3 (+0.0%) 21100.0 (+27.1%)
40 18127.0 18127.0 (+0.0%) 24300.0 (+34.1%)
50 19658.7 19658.7 (+0.0%) 27500.0 (+39.9%)
60 21190.5 21190.5 (+0.0%) 30700.0 (+44.9%)
70 22722.2 22722.2 (+0.0%) 33960.0 (+49.5%)

Table 15.1 Optimal values of ARC, AARC, and RC of the Inventory Management prob-
lems with Flexible Commitments Contracts, data W12 (for the description of
the data, see [14]). In parentheses: the excess of the optimal value as compared
to Opt(ARC).

We see that the ARC of our toy uncertain problem is an explicit LO program.

Of course, the sizes of the LO representing the ARC of problem (15.2.2) associated
with the 2T point uncertainty set D′ grow exponentially with T , which makes this
naive approach intractable unless T is small. However, with T = 12 (this is the
time horizon used in the experiments) the sizes of the LO representing the ARC
of (15.2.2) (45,072 inequalities with 24,597 variables) are still amenable for the
state-of-the-art LP solvers, which makes it possible to compare Opt(AARC) and
Opt(ARC).

Our experiment was organized as follows. We generated several hundreds of
data sets for (15.2.2), picking at random the (both varying in time and time invari-
ant) cost coefficients, the bounds on instant and cumulative orders, the nominal
demand trajectory {d∗

t }12t=1, and the uncertainty level ρ, and filtered out all data
sets that either result in problems with infeasible ARCs, or are such that our LO
solver (the state-of-the-art commercial LO solver mosekopt) reported numerical
difficulties when processing either ARC, or the AARC of the problem. For the re-
maining data sets (there were 300 of them) we computed Opt(ARC), Opt(AARC),
the information base being It = {1, ..., t−1} (“when decision on qt is made, the past
demands are known, while the current and the future ones are unknown”), and,
finally, the optimal value of the RC (no adjustable variables at all). The results of
the experiment were striking: among the 300 processed data sets, there were just
two (!) where the computed Opt(AARC) was > Opt(ARC), and the difference of
the optimal values in both these cases was less than 4% of Opt(ARC). Note that
this surprisingly good performance of affine decision rules is in full accordance with
the experimental results on a simpler inventory problem reported in section 14.3.4.

It should be stressed that the RC in our experiments sometimes was essentially
inferior as compared to AARC, see table 15.1.
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ρ,
%

Opt(AARC),
It = [1 : t − 1]

Opt(AARC),
It = [t − 3 : t − 1]

Opt(AARC),
It = [1 : t − 3]

Opt(AARC),
It = ∅

30 16595 16595 (+0.0%) 17894 ( +8.4%) 21100 (+27.1%)
70 22722 22722 (+0.0%) 26044 (+14.6%) 33960 (+49.5%)

Table 15.2 The role of information base, data W12. [a : b] stands for the set {a, a +
1, ..., b}. In parentheses: excess over Opt(AARC) for the case of complete
information base [1 : t − 1].

15.2.4.2 The role of information base

The results reported so far correspond to the case when the decisions on replen-
ishment orders qt can depend on all the preceding demands d1, ..., dt−1. Table 15.2
illustrates possible consequences of changes in the information base. We see that
we lose nothing when making decisions solely on the basis of last three demands,
suffer from non-negligible losses when the last two demands are unavailable when
making decisions on the replenishment orders, and lose a lot when demands are not
observed at all (that is, our AARC reduces to the RC).

15.2.4.3 Folding horizon

For the time being, we have been using a straightforward interpretation of the
AARC of (15.2.3): this is a problem that we solve when the agreement on com-
mitments is being made and before the inventory starts to function. The “here
and now” components of the resulting solution — that is, the commitments and
the initial order q1 — are executed immediately; as for the remaining orders, we
get decision rules that never will be revised in the future. When the time comes
to specify a future replenishment order qt, we shall just plug into the correspond-
ing decision rule the actual demands dτ , τ ∈ It. On a close inspection, there is a
smarter way to implement our methodology, specifically, the folding horizon scheme
as follows. Just as with our present approach, we solve the AARC of (15.2.3) be-
fore the inventory starts to function and implement the resulting “here and now”
decisions (commitments and the first replenishment order q1). At the beginning
of period 2, we resolve the AARC for the reduced time horizon 2, ..., T , treating
the current state of the inventory as the initial state, and the already computed
commitment-related quantities w1, .., wT , z2, ..., zT as known constants rather than
variables. Solving the AARC of the problem on the reduced time horizon, we get
the value of the new “here and now” decision — the replenishment order q2, and
implement this order. We proceed in the same fashion, solving at a every step
t = 1, 2, ..., T the AARC of the uncertain problem associated with the remaining
part of the original time horizon and using the solution to specify the decisions that
should be made at time t.

It is clear that the “folding horizon” strategy, (which can be applied to every
multi-stage decision-making problem, not necessarily to our Inventory one), can
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only outperform our initial strategy, where we never revise the decision rules yielded
by the AARC of the “full-horizon” uncertain problem. Indeed, let the optimal value
of the latter AARC be C∗, meaning that with the original decision rules our total
expenses will never exceed C∗, whatever the demand trajectory from the uncertainty
set in question. When resolving the problem at the beginning of the second period,
with “already implemented” variables w1, ..., wt, z2, ..., zT , q1 set to their values
computed at the beginning of the first period and the original uncertainty set
replaced with its cross-section with the plane “d1 equals to its already observed
value,” the optimal value of the new AARC cannot be greater than C∗ (since this
value is guaranteed already by the original decision rules), and can happen to be
less than C∗, so that it definitely makes sense to switch to the decision rules given
by the AARC of the problem on the reduced time horizon.

Note that the above reasoning is applicable to any kind of “worst-case-
oriented” multi-stage decision-making in an uncertainty-affected environment, and
not only to the AARC-based decision making. If we were smart enough to solve the
ARCs, and thus were able to build decision rules with the best possible worst-case
guarantees, it still would make sense to implement the folding horizon strategy,
since it preserves the worst-case performance guarantees yielded by the full-horizon
ARC and is capable, to some extent, of utilizing “the luck.” Attractiveness of the
folding horizon strategy only increases when passing from the situation where we
can solve ARCs (and thus achieve the optimal worst-case performance guarantees)
to the situation where we use restricted versions of ARCs, (e.g., use AARCs) and
thus achieve only suboptimal worst-case performance guarantees. In this case it
well may happen that the folding horizon strategy results in better worst-case per-
formance guarantees than the “full horizon” AARC-based strategy (in this respect,
note that when folding horizon is combined with AARC-based decision rules, the
actual decision rules we end up with are not necessarily affine.)

All this being said, the numerical experimentation suggests that in the case
of the particular uncertain problem we are considering the folding horizon strategy
yields only marginal savings, see table 15.3.

15.3 CONTROLLING A MULTI-ECHELON MULTI-PERIOD SUPPLY CHAIN

In this section we describe an application of the AARC methodology of section
14.3, combined with the Globalized Robust Optimization model studied in chapter
3, to derive optimal policies for controlling a multi-echelon supply chain. We treat
the problem as synthesizing a discrete time dynamical system, using the “purified
outputs” scheme developed in section 14.4. The presentation to follow is based on
[20].

15.3.1 The Problem

Consider a multi-echelon serial supply chain as in figure 15.3.
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ρ,
%

Opt(AARC),
full horison

Full horizon
AARC policy

Folding horizon
AARC policy

10 13532 13375 (-1.2%): 41 13373 (-1.2%): 41
20 15064 14745 (-2.1%): 86 14743 (-2.1%): 86
30 16595 16122 (-2.8%): 124 16115 (-2.9%): 127
40 18127 17477 (-3.6%): 170 17464 (-3.7%): 174
50 19659 18858 (-4.1%): 207 18848 (-4.1%): 209
60 21191 20267 (-4.4%): 236 20261 (-4.4%): 229
70 22722 21642 (-4.8%): 287 21633 (-4.8%): 280

Table 15.3 Full horizon AARC policy vs. the Folding horizon strategy, data W12. Num-
bers a(b%) : c in the second and the third columns stand for the average (a)
and the empirical standard deviation (c), as computed over 100 simulated de-
mand trajectories, of the actual inventory management cost; b is the excess
of a as compared to the optimal value of the full horizon AARC given in the
second column. At every uncertainty level ρ, full and folding horizon policies
were tested at the same 100 randomly selected demand trajectories.

External
supply � Echelon

1
� Echelon

2
� . . . � Echelon

m
�

External
demand

Figure 15.3 A serial supply chain.

Let us denote by j = 1, 2, . . . , m, the index of an echelon, with echelon j being
the predecessor of echelon j + 1, j = 1, 2, . . . , m− 1. There is an external demand
dt faced by echelon m in period t (t = 1, 2, . . . , n), where n is the planning horizon.

Let xj
t ≥ 0 denote the amount of product echelon j orders from echelon

j + 1 at the beginning of period t and yj
t denote the inventory level in echelon j

at the end of time period t. The initial inventory level in echelon j is denoted by
zj . Delays between the time that an order is placed and the time it is supplied
can occur. There are 3 types of delays: (1) information delay : the time it takes
the information about the order to reach the preceding echelon, (2) manufacturing
delay : the time it takes to manufacture or assemble the order (measured from the
time the order is received), and (3) lead time: the time it takes the replenishment
to travel from its origin to its destination. The 3 delays are nonnegative integers for
each echelon j, which are denoted by I(j),M(j) and L(j), respectively. I(m + 1)
denotes the information delay between the external demand and echelon m. The
dynamics of the system is given by:

yj
t = yj

t−1 + xj
t−(I(j)+M(j−1)+L(j)) − xj+1

t−(I(j+1)+M(j)), 1 ≤ j ≤ m− 1
yj
0 = zj , 1 ≤ j ≤ m

ym
t = ym

t−1 + xm
t−(I(m)+M(m−1)+L(m)) − dt−(I(m+1)+M(m)),

(15.3.1)
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which simply says that the change in inventory level from one period to the next is
equal to the quantities received minus the requirements. Negative levels of inven-
tory, which may occur, represent unsatisfied requirements or backlogging.

The objective is to minimize the total cost, that is comprised of three com-
ponents: (1) buying or manufacturing costs, (2) inventory holding costs, and (3)
backlogging cost. Let cj

t be the buying/manufacturing cost per item at echelon j

and time period t, hj
t the holding cost per item per unit of time in echelon j at time

t, and pj
t the backlogging (or shortage) cost per item per unit of time in echelon j

at time t. The index t of the various costs allows us to consider capitalization (for
instance cj

t = cj(1 + r)t−1), which can greatly impact the cost when the planning
horizon is long.

Instead of minimizing the cost elements above, one may opt to control supply
chains so as to minimize or even eliminate the “bullwhip effect” — the amplification
of demand variability from a downstream site to an upstream site (see [73]). Reduc-
ing this effect has implications beyond cost minimization since bullwhip peaks and
ebbs often cause disruptions that are difficult to quantify, e.g., loss of reputation
and goodwill among customers and suppliers. Bullwhip effects may be caused by
the use of heuristics [77, 57]; by irrational behavior of the supply chain members, as
illustrated in the “Beer Distribution Game” in [107], or as a result of the strategic
interactions among rational supply chain members in [74]. There are many real-
world evidences of the occurrence of the bullwhip effect. Examples include diapers
[75], TV sets [64], food products [74, 59], pharmaceutical products [36], and more.
It is noted in [112] that the semiconductor equipment industry is more volatile
than the personal computer industry, and [30] shows evidence of bullwhip existence
through an empirical study conducted in the automotive industry.

There were many studies attempted to construct strategies aimed at mini-
mizing the bullwhip effect. The objective of most of the studies is to minimize the
bullwhip effect by minimizing either the ratio or the difference between the order
variance and the demand variance [41, 36, 118]. In contrast, in this section we
follow the approach of [20] and apply an economic rationale to the control problem;
thus, we want to control the chain not merely for the sake of stabilizing the system
for operational reasons but first and foremost for minimizing the cost. Such an
optimal controller is likely to generate a small bullwhip effect.
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The problem is posed as the following optimization program:

min
y,x

∑
j,t

[cj
tx

j
t + max(hjyj

t ,−pjyj
t )]

s.t.

yj
t = yj

t−1 + xj
t−(I(j)+M(j−1)+L(j))

−xj+1
t−(I(j+1)+M(j)), 1 ≤ j ≤ m− 1

ym
t = ym

t−1 + xm
t−(I(m)+M(m−1)+L(m))

−dt−(I(m+1)+M(m))

xj
t ≥ 0

aj ≥ yj
t ≥ aj

yj
0 = zj

⎫⎪⎬⎪⎭∀j ∈ {1, . . . , m}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1 ≤ t ≤ n (15.3.2)

To simplify the notation, let TL(j) = I(j)+M(j−1)+L(j) and TM (j) = I(j+1)+
M(j). Introducing slack variables for the max-terms in the objective, we transform
(15.3.2) into the LO program as follows:

min
y,x

∑
j,t

[cj
tx

j
t + wj

t ]

s.t.

yj
t = yj

t−1 + xj

t−T L(j)
− xj+1

t−T M (j)
1 ≤ j ≤ m − 1

ym
t = ym

t−1 + xm
t−T L(m) − dt−T M (m)

wj
t ≥ hj

ty
j
t , wj

t ≥ −pj
ty

j
t , wj

t ≥ 0

aj ≥ yj
t ≥ aj , bj ≥ xj

t ≥ 0, yj
0 = zj

}
, 1 ≤ j ≤ m

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , 1 ≤ t ≤ n.

(15.3.3)

Using the equality constraints to eliminate the y variables, we arrive at the final
LO formulation of the nominal problem:

min
σ,w,x

σ

s.t.

σ ≥ ∑
j,t

[cj
tx

j
t + wj

t ]

wj
t ≥ hj

t(z
j +

t∑
t′=1

(xj

t′−T L(j)
− xj+1

t′−T M (j)
)),

wj
t ≥ −pj

t((z
j +

t∑
t′=1

(xj

t′−T L(j)
− xj+1

t′−T M (j)
)),

aj ≤ zj +
t∑

t′=1

(xj

t′−T L(j)
− xj+1

t′−T M (j)
),

aj ≥ zj +
t∑

t′=1

(xj

t′−T L(j)
− xj+1

t′−T M (j)
),

1 ≤ j ≤ m − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
wm

t ≥ hm
t (zm +

t∑
t′=1

(xm
t′−T L(m) − dt′−T M (m)))

wm
t ≥ −pm

t ((zm +
t∑

t′=1

(xm
t′−T L(m) − dt′−T M (m)))

am ≤ zm +
t∑

t′=1

(xm
t′−T L(m) − dt′−T M (m))

am ≥ zm +
t∑

t′=1

(xm
t′−T L(m) − dt′−T M (m))

bj ≥ xj
t ≥ 0, wj

t ≥ 0, 1 ≤ j ≤ m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, 1 ≤ t ≤ n.

(15.3.4)
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We assume that the demand d = {dt}n
t=1 and the initial inventory levels z =

{zj}m
j=1 are uncertain; all we know is that they belong to some uncertainty sets:

dt ∈ Dt, zj ∈ Zj . Thus, formulation (15.3.4) in fact represents a family of LPs —
one for each possible realization of the uncertain data.

15.3.2 Illustrating the Bullwhip Effect

To illustrate the bullwhip effect, we use an example based on Love [77].

The example uses a fluctuating demand that is shown in table 15.4. The
planning horizon consists of n = 20 time periods and there are m = 3 echelons.
Furthermore, we assume that there is 2-unit delay in executing replenishment orders
(TL(j) = 2), while TM (j) = 0, 1 ≤ j ≤ m. The initial inventory level is assumed
to be 12 for every echelon (zj = 12 for all j).

t 1 2 3 4 5 6 7 8 9 10
dt 6 6 6 6 6 6 6 6 7 8

t 11 12 13 14 15 16 17 18 19 20
dt 9 10 9 8 7 6 5 4 5 6

Table 15.4 Demand for Love’s data.

Love [77] uses the following simple control law to solve (the deterministic)
problem (15.3.4):

xj
t = xj+1

t−1 +
1
2
(Υj − yj

t−1)
∀j ∈ 1, . . . ,m

∀t ∈ 1, . . . , n.
(15.3.5)

Here xm
t = dt, and Υj is the “target” inventory for echelon j (equal to 12, for

all the echelons, in the example) and acts as insurance against unforeseen produc-
tion or supply disruptions.

Figure 15.4 shows the inventory level of the 3 echelons resulting from im-
plementing the heuristic control law (15.3.5). The bullwhip effect here is evident;
small demand fluctuations (only between 4 and 10) cause huge fluctuations in the
inventory levels.

15.3.3 Building the Affinely Adjustable Globalized Robust Counterpart (AA-

GRC) of the Supply Chain Problem

For our supply chain problem (15.3.3), the discrete time dynamic system is:

yj
t = yj

t−1 + xj
t−T L(j)

− xj+1
t−T M (j)

, 1 ≤ j ≤ m− 1
yj
0 = zj , 1 ≤ j ≤ m

ym
t = ym

t−1 + xm
t−T L(m) − dt−T M (m).
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Figure 15.4 Inventory levels in each of the 3 echelons

Here the purified outputs (see section 14.4) are given by:

vj
t = yj

t − ŷj
t =

⎧⎪⎨⎪⎩ zm −
t−T M (m)∑

τ=1
dτ if j = m

zj otherwise.
(15.3.6)

After eliminating the equalities in (15.3.3) we arrived at the LO problem
(15.3.4), which we showed to be of a form amenable to treatment by the RO
methodology. We use a purified output-based linear control law and also make
the associated auxiliary variables affinely dependent on the uncertain data, specif-
ically:

xj
t ≡ xj

t (d, z) = ηx,t,j
0 +

m∑
j′=1

n∑
τ=1

ηx,t,j
τ,j′ zj′ −

n∑
τ=1

τ−M(m)∑
τ ′=1

ηx,t,j
τ,m dτ ′

wj
t = ηw,t,j

0 +
m∑

j′=1

η̃w,t,j
j′ zj +

n∑
τ=1

ηw,t,j
τ dτ

(15.3.7)

Of course we impose the constraints ηx,t,j
τ,j′ = 0 ∀τ ≥ t and set ηw,t,j

τ = 0 ∀τ ≥ t

to make the affine decision rules non-anticipative.

What we arrived at is, essentially, the AARC of the uncertain problem
(15.3.4), see section 14.3. As it should be, the AARC is bi-affine in the deci-
sion variables and the uncertain data, and thus is amenable to processing via the
GRC methodology (see chapter 3).

Let us illustrate our approach by processing the second constraint in (15.3.4).
The original constraint is of the form

wj
t ≥ hj

t (z
j +

t∑
t′=1

(xj
t′−T L(j)

− xj+1
t′−T M (j)

)). (15.3.8)
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Implementing the decision rules given by (15.3.7), we arrive at

0 ≥ hj
t

t∑
t′=1

(ηx,t′−T L(j),j
0 − η

x,t′−T M (j),j+1
0 )− ηw,t,j

0 + hj
tz

j

+
m∑

j′=1

zj′
[hj

t

t∑
t′=1

n∑
τ=1

(ηx,t′−T L(j),j
τ,j′ − η

x,t′−T M (j),j+1
τ,j′ )− η̃w,t,j

j′ ]

+
n∑

τ ′=1

dτ ′ [−hj
t

t∑
t′=1

n∑
τ=τ ′+M(m)

(ηx,t′−T L(j),j
τ ′,m − η

x,t′−T M (j),j+1
τ,m )− ηw,t,j

τ ′ ],

1 ≤ j ≤ m.
(15.3.9)

We now implement the GRC assuming that the normal ranges of both dt

and zj are the intervals [dt, dt] and [zj , zj ] respectively and the norm defining
the distance function (see Definition 3.1.1 in chapter 3) is the �1 norm. Now, by
Example 3.2.3.(a) the GRC of (15.3.9) is the linear system

0 ≥ hj
t

t∑
t′=1

(ηx,t′−T L(j),j
0 − η

x,t′−T M (j),j+1
0 )− ηw,t,j

0 +
m∑

j′=1

v2,t,j
j′ +

n∑
τ ′=1

ϑ2,t,j
τ ′ ,

1 ≤ j ≤ m

v2,t,j
j′ ≥ zj′

[hj
t

t∑
t′=1

n∑
τ=1

(ηx,t′−T L(j),j
τ,j′ − η

x,t′−T M (j),j+1
τ,j′ )− η̃w,t,j

j′ + hj
tδ

j′
j ],

1 ≤ j′ ≤ m

v2,t,j
j′ ≥ zj′

[hj
t

t∑
t′=1

∑n
τ=1(η

x,t′−T L(j),j
τ,j′ − η

x,t′−T M (j),j+1
τ,j′ )− η̃w,t,j

j′ + hj
tδ

j′
j ],

1 ≤ j′ ≤ m

ϑ2,t,j
τ ′ ≥ dτ ′ [−hj

t

t∑
t′=1

n∑
τ=τ ′+M(m)

(ηx,t′−T L(j),j
τ,m − η

x,t′−T M (j),j+1
τ,m )− ηw,t,j

τ ′ ],

1 ≤ τ ′ ≤ n

ϑ2,t,j
τ ′ ≥ dτ ′ [−hj

t

t∑
t′=1

n∑
τ=τ ′+M(m)

(ηx,t′−T L(j),j
τ,m − η

x,t′−T M (j),j+1
τ,m )− ηw,t,j

τ ′ ],

1 ≤ τ ′ ≤ n

µ2,t,j
j′ ≥ [hj

t

t∑
t′=1

n∑
τ=1

(ηx,t′−T L(j),j
τ,j′ − η

x,t′−T M (j),j+1
τ,j′ )− η̃w,t,j

j′ + hj
tI{j′=j}],

1 ≤ j′ ≤ m

µ2,t,j
j′ ≥ −[hj

t

t∑
t′=1

n∑
τ=1

(ηx,t′−T L(j),j
τ,j′ − η

x,t′−T M (j),j+1
τ,j′ )− η̃w,t,j

j′ + hj
tI{j′=j}],

1 ≤ j′ ≤ m

µ̃2,t,j
τ ′ ≥ [−hj

t

t∑
t′=1

n∑
τ=τ ′+M(m)

(ηx,t′−T L(j),j
τ,m − η

x,t′−T M (j),j+1
τ,m )− ηw,t,j

τ ′ ],

1 ≤ τ ′ ≤ n

µ̃2,t,j
τ ′ ≥ −[−hj

t

t∑
t′=1

n∑
τ=τ ′+M(m)

(ηx,t′−T L(j),j
τ,m − η

x,t′−T M (j),j+1
τ,m )− ηw,t,j

τ ′ ],

1 ≤ τ ′ ≤ n

Here µ2,t,j and µ̃2,t,j are the “sensitivity parameters” (denoted by α in chapter 3),

and δj′
j =

{
1, j = j′

0, j �= j′
are the Kronecker symbols. Rather than choosing µ2,t,j ,
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Data type Notation Data set I Data set II
number of periods n 20 20
number of echelons m 3 3

L(j) 2 2
delays (all j) M(j) 0 0

I(j) 0 0
ct
j 2 2

costs (all j and t) ht
j 1 1

pt
j 3 3

normal ranges of Dt [4,10] [90,110] if t ≤ 10
uncertainty set [135,165] if t > 10
(all j and t) Zj [10,14] [130,220]

Table 15.5 Data sets for the supply chain problem.

µ̃2,t,j in advance, we treat them here as variables, but limit their variability by
adding the following constraints:

n∑
t=1

m∑
j=1

µ2,t,j
j′ ≤ α2,Zj′ , 1 ≤ j′ ≤ m,

n∑
t=1

∑m
j=1 µ̃2,t,j

τ ′ ≤ α2,Dτ′ , 1 ≤ τ ′ ≤ n.

The complete AAGRC formulation of the supply chain problem (15.3.4) is
an LP with O(m2n + mn2) constraints and O(m2n2) variables (more precisely
1 + 27m + 27n + mn(8 + 28m + 28n) constraints and 1 + 8m + 8n + 2mn + mn(2 +
15m + 15n + mn) variables). As an example for a problem with 3 echelons and 20
time periods, and where all the linear decision rules (LDRs) use the entire demand
history, the LP has 39,742 constraints and 24,605 variables. Such a problem is
solved in about 10 minutes using a state-of-the-art LP solver on a PC with an
AMD 1.8 GHz processor and 1GB of memory.

15.3.4 Computational Results

We have tested the outlined AAGRC approach as applied to the supply chain
problem (15.3.4) in an intensive simulation study. We used two different data sets
given in table 15.5.

15.3.4.1 Bullwhip effect results

Here we used data set I, which complies with the data used in the example of
section 15.3.2. We solved problem (15.3.3) by the RC, the AARC, and the AAGRC
methods. The results are shown in figure 15.5.

All three robust methods resulted in a dramatic reduction of the bullwhip
effect compared to the heuristic method employed in section 15.3.2 (See figure
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Figure 15.5 Bullwhip effects.
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15.4). Of the three, the AAGRC method exhibited the smallest fluctuation range
in the inventory level.

15.3.4.2 Optimal cost results

Here we used data set II, in which the demand is of a step-type: the demand starts
at a constant value and after some time jumps to a new, higher value, and remains
at this new level until the end of the planning horizon. This type of demand is
used in [103] since, according to [69], it invokes all resonance frequencies of the
dynamical system and is therefore very useful when studying the dynamics of the
system. We chose the demand average over the first 10 periods to be 100 units,
and the average over the remaining 10 periods to be 150 units; the actual demand
fluctuated within a given margin around these averages.

In our simulations we used 4 different demand distributions as given in ta-
ble 15.6. In two of them, the fluctuation margin was 10%, and in the remaining
two it was 20%.

Distribution Input number Demand (Dt)
Initial

inventory (Zj)

Uniform

LB UB Relevance LB UB

1(a)
90 110 t ≤ 10

180 220
135 165 t > 10

1(b)
80 120 t ≤ 10

160 240
120 180 t > 10

Normal

Mean Std Relevance Mean Std

2(a)
100 3 1

3
t ≤ 10

200 6 2
3150 2.5 t > 10

2(b)
100 6 2

3
t ≤ 10

200 13 1
3150 5 t > 10

Table 15.6 Step demand — input distributions.

In order to estimate the quality of our solution, we have used the utopian
solution as a benchmark. For a given simulated demand/initial inventory, the
utopian solution is the optimal solution of the corresponding deterministic LP in
(15.3.4). The average (over all simulated trajectories) of the optimal utopian cost
is denoted by OPT. Let CA be the average optimal cost for a solution method A.
We use the deviation ratio:

RA =
CA

OPT
− 1

as our measure of the effectiveness of method A.

We can see in table 15.7 that the average cost tends to decrease as we move
from the RC to the AAGRC. The methods are comparatively close to the utopian
solution, and for both the AARC and AAGRC the cost is, on average, just 15%
higher than the “utopian” cost. Note that the difference with the utopian cost is an
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upper bound on the deviation from the “true optimal” solution, that is, the solution
of the (untractable) ARC.

Input Measure Average
RC AARC AAGRC

1(a)
Cost 14,910 14,330 14,330
R 0.19 0.14 0.14

1(b)
Cost 15,598 14,386 14,386
R 0.24 0.15 0.15

2(a)
Cost 14,701 14,271 14,113
R 0.18 0.14 0.13

2(b)
Cost 15,112 14,335 14,229
R 0.21 0.15 0.14

Table 15.7 Step type demand — method comparison — averages of the cost and of devi-
ation ratio R.

15.3.4.3 The effect of the sensitivity parameter

The main feature of the AAGRC approach as compared to the AARC is the pos-
sibility to control to some extent the behavior of the system when uncertain data
run outside of their normal range by playing with the sensitivity parameter α (see
Definition 3.1.1 in chapter 3). The choice of α = 0 results in the most conservative
attitude: the constraint must be satisfied not just for parameters in the normal
range, but for all physically possible values, which typically results in infeasible
AAGRC. The choice α = ∞ corresponds to focusing solely on the normal range
of uncertain data and makes the AAGRC identical to the AARC. An intermedi-
ate choice α ∈ (0,∞) balances these two extreme attitudes. With such an α, the
AAGRC is “more constrained” than the AARC and thus leads to a larger (or the
same) optimal value. This comparison, however, has to do with the worst-case
realization of the data in the normal range; when the data can run out of their
normal range, the AAGRC-based decision rules can outperform the AARC-based
rules. We are about to present the related numerical results as obtained for our
supply chain problem.

We focus on the constraint in (15.3.4) that requires nonnegativity of the
vectors x and w and impose, when solving the AAGRC, an upper bound α on the
related sensitivity parameters. Note that in the AAGRC, the sensitivity parameters
are treated as variables rather than given constants. The possible values of α in
our experiments were values ∞ = α0 > α1 > α2 ≥ α3 ≥ α4. Our goal was to
investigate the influence of α on the cumulative distribution function (cdf) of the
deviation ratio R. To this end we used the data set I from table 15.5 and tested 6
different cases of the probability distribution of the demands and initial inventories
(see table 15.7). For each input distribution we simulated 50 realizations to build
the empirical cdf of the deviation ratio R. The results are plotted in figure 15.6.
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Figure 15.6 Cumulative distribution function of the demand ratio R vs. α. From
left to right: solid: GRC(α0), RC; dashed: AAGRC(α2), AAGRC(α1),
AAGRC(α3), AAGRC(α4)
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It is clearly seen that for all input distributions we examined, the results
are consistent. First, the AARC, as it should be, is better than the RC. Second,
as α decreases, starting from ∞, which is the AARC case, the optimal value of
the AAGRC increases (since the problem becomes more constrained). Specifically,
it is Opt(AARC) = 1410 for α ∈ [α1, α0 = ∞], 1628 for α = α2, 2055.5 for
α = α3, and 2137 for α = α4. However, the simulation results (reflecting average
performance of the corresponding solutions) are of a different flavor: we get better
results when using the AAGRC with α = α1 and α = α2 than when using the
AAGRC with α = α0, which is the AARC. We also see that too strong bounds
on the sensitivity parameters could be dangerous: when setting α to α3 and α4,
the results become worse than even those for the RC solution. The bottom line is,
that with our distributions of initial states and demands, the intermediate choice
α = α2 in the AAGRC results in a control policy that outperforms those given by
the AARC and RC. For example, figure 15.6 shows that with the AAGRC-based
policy corresponding to α = α2, the deviation ratio is ≤ 40% with probability 0.7,
while for the AARC-based policy similar probability is < 0.2.

15.3.4.4 The effect of the normal range

In the previous section we discussed how changes in the upper bound α on the
sensitivity parameters affect the performance of the associated AAGRC-based con-
trol of our supply chain. Note, however, that the decision on α depends on the
chosen normal range of the uncertain data. Reducing this range with α being fixed,
we reduce both Opt(AAGRC) and Opt(AARC) (since now we have to protect the
system against a smaller set of data perturbations), and at the same time spoil
the guarantees on the system’s behavior in the original range of uncertain data
(since what used to be in the normal range, now is outside of it). We are about
to report on an experiment that gives an impression of the associated tradeoffs. In
this experiment, we use data set I (see table 15.5); in particular, when evaluating
the performance of a control policy by simulation, we used a fixed demand distri-
bution P with the support [4, 10]. In contrast to this, the AARC and the AAGRC
(with α = α2) were solved for two different normal data ranges shown in table 15.8,
which also presents the corresponding costs. We see that the optimal values of both
AARC and AAGRC indeed decrease as the normal data range shrinks, and that
with the same normal range, the optimal value of the AARC is indeed better than
that of the AAGRC. At the same time we see that in terms of the “empirical worst
case cost” (defined as the largest cost observed when processing a sample of 50 de-
mand trajectories drawn from the distribution P ) the winner is the AAGRC-based
policy associated with the “small” normal range [5, 9]. This means that using a
smaller normal range and protecting against infeasibility outside this range via the
AAGRC methodology, we can get better results than those yielded by the AARC
associated with a wider normal range.
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Assumed AARC AAGRC
normal Optimal Empirical worst Optimal Empirical worst
range value case value case

[4,10] 1410 1240 1628 1124

[5,9] 1149 1100 1311 1068

Table 15.8 AARC and AAGRC costs for different normal ranges of the uncertain data.

How much protection against infeasibility does the AAGRC provide? To
test this we again used simulations with demand trajectories drawn from P . The
AARC was run with three uncertainty sets [4,10], (which is the actual range of
the demand distributed according to P ), [5,9] and [6,8], while the AAGRC was
run with the same sets as the normal ranges of the uncertain data, α being set to
α2. Since the second and the third sets of uncertain data underestimate the true
range of the uncertain demand, the resulting control policies from time to time can
generate infeasible controls (negative replenishment orders). Table 15.9 reports on
the frequency of these failures for the control policies in question, specifically, it
presents empirical probabilities, (built upon a sample of 50 demand trajectories
drawn from P ) to issue at least one and at least two infeasible order(s).

Assumed AARC AAGRC
normal range N ≥ 1 N ≥ 2 N ≥ 1 N ≥ 2

[4,10] 0% 0% 0% 0%
[5,9] 24% 22% 28% 0%
[6,8] 24% 24% 0% 0%

Table 15.9 Percent of replications with N > 0 infeasible orders.

Here again we see how advantageous the AAGRC approach is: in every one
of the experiments with time horizon 20, the AAGRCs associated with “underes-
timated” uncertainty result in at most one infeasible order. In contrast to this,
AARCs associated with “underestimated” uncertainty result in more than one in-
feasible order in about 20% of experiments (and in some of them produce as much
as 6 infeasible orders).
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Appendix A
Notation and Prerequisites

A.1 NOTATION

• Z, R, C stand for the sets of all integers, reals, and complex numbers, respectively.

• C
m×n, R

m×n stand for the spaces of complex, respectively, real m× n matrices.
We write C

n and R
n as shorthands for C

n×1, R
n×1, respectively.

For A ∈ C
m×n, AT stands for the transpose, and AH for the conjugate transpose

of A:
(AH)rs = Asr,

where z is the conjugate of z ∈ C.

• Both C
m×n, R

m×n are equipped with the inner product

〈A,B〉 = Tr(ABH) =
∑
r,s

ArsBrs.

The norm associated with this inner product is denoted by ‖ · ‖2.
• For p ∈ [1,∞], we define the p-norms ‖ · ‖p on C

n and R
n by the relation

‖x‖p =

{
(
∑

i |xi|p)1/p
, 1 ≤ p < ∞

limp→∞ ‖x‖p = maxi |xi|, p = ∞ , 1 ≤ p ≤ ∞.

Note that when p, q ∈ [1,∞] and 1
p + 1

q = 1, then the norms ‖ · ‖p and ‖ · ‖q are
conjugates of each other:

‖x‖p = max
y:‖y‖q≤1

|〈x, y〉|.

In particular, |〈x, y〉| ≤ ‖x‖p‖y‖q (Hölder inequality).

• We use the notation Im, 0m×n for the unit m ×m, respectively, the zero m × n

matrices.

• Hm, Sm are real vector spaces of m×m Hermitian, respectively, real symmetric
matrices. Both are Euclidean spaces w.r.t. the inner product 〈·, ·〉.
•We use “MATLAB notation”: when A1, ..., Ak are matrices with the same number
of rows, [A1, ..., Ak] denotes the matrix with the same number of rows obtained by
writing, from left to right, first the columns of A1, then the columns of A2, and so
on. When A1, ..., Ak are matrices with the same number of columns, [A1; A2; ...; Ak]
stands for the matrix with the same number of columns obtained by writing, from
top to bottom, first the rows of A1, then the rows of A2, and so on.
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• For a Hermitian/real symmetric m×m matrix A, λ(A) is the vector of eigenvalues
λr(A) of A taken with their multiplicities in the non-ascending order:

λ1(A) ≥ λ2(A) ≥ ... ≥ λm(A).

• For an m×n matrix A, σ(A) = (σ1(A), ..., σn(A))T is the vector of singular values
of A:

σr(A) = λ1/2
r (AHA),

and
‖A‖2,2 = ‖A‖ = σ1(A) = max {‖Ax‖2 : x ∈ C

n, ‖x‖2 ≤ 1}
(by evident reasons, when A is real, one can replace C

n in the right hand side with
R

n).

• For Hermitian/real symmetric matrices A, B, we write A � B (A � B) to express
that A−B is positive semidefinite (resp., positive definite).

A.2 CONIC PROGRAMMING

A.2.1 Euclidean Spaces, Cones, Duality

A.2.1.1 Euclidean spaces

A Euclidean space is a finite dimensional linear space over reals equipped with an
inner product 〈x, y〉E — a bilinear and symmetric real-valued function of x, y ∈ E

such that 〈x, x〉E > 0 whenever x �= 0.

Example: The standard Euclidean space R
n. This space is comprised

of n-dimensional real column vectors with the standard coordinate-wise linear op-
erations and the inner product 〈x, y〉Rn = xT y. R

n is a universal example of an
Euclidean space: for every Euclidean n-dimensional space (E, 〈·, ·〉E) there exists a
one-to-one linear mapping x �→ Ax : R

n → E such that xT y ≡ 〈Ax,Ay〉E . All we
need in order to build such a mapping, is to find an orthonormal basis e1, ..., en,

n = dimE, in E, that is, a basis such that 〈ei, ej〉E = δij ≡
{

1, i = j

0, i �= j
; such

a basis always exists. Given an orthonormal basis {ei}n
i=1, a one-to-one mapping

A : R
n → E preserving the inner product is given by Ax =

∑n
i=1 xiei.

Example: The space R
m×n of m×n real matrices with the Frobenius

inner product. The elements of this space are m×n real matrices with the stan-
dard linear operations and the inner product 〈A,B〉F = Tr(ABT ) =

∑
i,j AijBij .

Example: The space Sn of n × n real symmetric matrices with the
Frobenius inner product. This is the subspace of R

n×n comprised of all sym-
metric n×n matrices; the inner product is inherited from the embedding space. Of
course, for symmetric matrices, this product can be written down without trans-
position:

A,B ∈ Sn ⇒ 〈A,B〉F = Tr(AB) =
∑
i,j

AijBij .
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Example: The space Hn of n×n Hermitian matrices with the Frobe-
nius inner product. This is the real linear space comprised of n × n Hermitian
matrices; the inner product is

〈A,B〉 = Tr(ABH) = Tr(AB) =
n∑

i,j=1

AijBij .

A.2.1.2 Linear forms on Euclidean spaces

Every homogeneous linear form f(x) on a Euclidean space (E, 〈·, ·〉E) can be rep-
resented in the form f(x) = 〈ef , x〉E for certain vector ef ∈ E uniquely defined by
f(·). The mapping f �→ ef is a one-to-one linear mapping of the space of linear
forms on E onto E.

A.2.1.3 Conjugate mapping

Let (E, 〈·, ·〉E) and (F, 〈··〉F ) be Euclidean spaces. For a linear mapping A : E → F

and every f ∈ F , the function 〈Ae, f〉F is a linear function of e ∈ E and as such
it is representable as 〈e,A∗f〉E for certain uniquely defined vector A∗f ∈ E. It is
immediately seen that the mapping f �→ A∗f is a linear mapping of F into E; the
characteristic identity specifying this mapping is

〈Ae, f〉F = 〈e,A∗f〉 ∀(e ∈ E, f ∈ F ).

The mapping A∗ is called conjugate to A. It is immediately seen that the conjuga-
tion is a linear operation with the properties (A∗)∗ = A, (AB)∗ = B∗A∗. If {ej}m

j=1

and {fi}n
i=1 are orthonormal bases in E, F , then every linear mapping A : E → F

can be associated with the matrix [aij ] (“matrix of the mapping in the pair of bases
in question”) according to the identity

A

m∑
j=1

xjej =
∑

i

⎡⎣∑
j

aijxj

⎤⎦ fi

(in other words, aij is the i-th coordinate of the vector Aej in the basis f1, ..., fn).
With this representation of linear mappings by matrices, the matrix representing
A∗ in the pair of bases {fi} in the argument and {ej} in the image spaces of A∗ is
the transpose of the matrix representing A in the pair of bases {ej}, {fi}.

A.2.1.4 Cones in Euclidean space

A nonempty subset K of a Euclidean space (E, 〈·, ·〉E) is called a cone, if it is a
convex set comprised of rays emanating from the origin, or, equivalently, whenever
t1, t2 ≥ 0 and x1, x2 ∈ K, we have t1x1 + t2x2 ∈ K.

A cone K is called regular, if it is closed, possesses a nonempty interior and
is pointed — does not contain lines, or, which is the same, is such that a ∈ K,
−a ∈ K implies that a = 0.
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Dual cone. If K is a cone in a Euclidean space (E, 〈·, ·〉E), then the set

K∗ = {e ∈ E : 〈e, h〉E ≥ 0 ∀h ∈ K}
also is a cone called the cone dual to K. The dual cone always is closed. The
cone dual to dual is the closure of the original cone: (K∗)∗ = clK; in particular,
(K∗)∗ = K for every closed cone K. The cone K∗ possesses a nonempty interior if
and only if K is pointed, and K∗ is pointed if and only if K possesses a nonempty
interior; in particular, K is regular if and only if K∗ is so.

Example: Nonnegative ray and nonnegative orthants. The simplest
one-dimensional cone is the nonnegative ray R+ = {t ≥ 0} on the real line R

1. The
simplest cone in R

n is the nonnegative orthant R
n
+ = {x ∈ R

n : xi ≥ 0, 1 ≤ i ≤ n}.
This cone is regular and self-dual: (Rn

+)∗ = R
n
+.

Example: Lorentz cone Ln. The cone Ln “lives” in R
n and is comprised

of all vectors x = [x1; ...;xn] ∈ R
n such that xn ≥

√∑n−1
j=1 x2

j ; same as R
n
+, the

Lorentz cone is regular and self-dual.

By definition, L1 = R+ is the nonnegative orthant; this is in full accordance
with the “general” definition of a Lorentz cone combined with the standard con-
vention “a sum over an empty set of indices is 0.”

Example: Semidefinite cone Sn
+. The cone Sn

+ “lives” in the Euclidean
space Sn of n× n symmetric matrices equipped with the Frobenius inner product.
The cone is comprised of all n×n symmetric positive semidefinite matrices A, i.e.,
matrices A ∈ Sn such that xT Ax ≥ 0 for all x ∈ R

n, or, equivalently, such that all
eigenvalues of A are nonnegative. Same as R

n
+ and Ln, the cone Sn

+ is regular and
self-dual.

Example: Hermitian semidefinite cone Hn
+. This cone “lives” in the

space Hn of n× n Hermitian matrices and is comprised of all positive semidefinite
Hermitian n× n matrices; it is regular and self-dual.

A.2.2 Conic Problems and Conic Duality

A.2.2.1 Conic problem

A conic problem is an optimization problem of the form

Opt(P ) = min
x

{
〈c, x〉E :

Aix− bi ∈ Ki, i = 1, ..., m,

Ax = b

}
(P )

where

• (E, 〈·, ·〉E) is a Euclidean space of decision vectors x and c ∈ E is the objective;

• Ai, 1 ≤ i ≤ m, are linear maps from E into Euclidean spaces (Fi, 〈·, ·〉Fi),
bi ∈ Fi and Ki ⊂ Fi are regular cones;

• A is a linear mapping from E into a Euclidean space (F, 〈·, ·〉F ) and b ∈ F .
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Examples: Linear, Conic Quadratic and Semidefinite Optimization.
We will be especially interested in the three generic conic problems as follows:

• Linear Optimization, or Linear Programming: this is the family of all conic
problems associated with nonnegative orthants R

m
+ , that is, the family of all

usual LPs minx{cT x : Ax− b ≥ 0};

• Conic Quadratic Optimization, or Conic Quadratic Programming, or Second

Order Cone Programming: this is the family of all conic problems associated
with the cones that are finite direct products of Lorentz cones, that is, the
conic programs of the form

min
x

{
cT x : [A1; ...;Am]x− [b1; ...; bm] ∈ Lk1 × ...× Lkm

}
where Ai are ki×dimx matrices and bi ∈ R

ki . The “Mathematical Program-
ming” form of such a program is

min
x

{
cT x : ‖Āix− b̄i‖2 ≤ αT

i x− βi, 1 ≤ i ≤ m
}

,

where Ai = [Āi; αT
i ] and bi = [b̄i;βi], so that αi is the last row of Ai, and βi

is the last entry of bi;

• Semidefinite Optimization, or Semidefinite Programming: this is the family
of all conic problems associated with the cones that are finite direct products

of Semidefinite cones, that is, the conic programs of the form

min
x

⎧⎨⎩cT x : A0
i +

dim x∑
j=1

xjA
j
i � 0, 1 ≤ i ≤ m

⎫⎬⎭ ,

where Aj
i are symmetric matrices of appropriate sizes.

A.2.3 Conic Duality

A.2.3.1 Conic duality — derivation

The origin of conic duality is the desire to find a systematic way to bound from
below the optimal value in a conic problem (P ). This way is based on linear

aggregation of the constraints of (P ), namely, as follows. Let yi ∈ K∗
i and z ∈ F .

By the definition of the dual cone, for every x feasible for (P ) we have

〈A∗
i yi, x〉E − 〈yi, bi〉Fi

≡ 〈yi, Axi − bi〉Fi
≥ 0, 1 ≤ i ≤ m,

and of course
〈A∗z, x〉E − 〈z, b〉F = 〈z,Ax− b〉F = 0.

Summing up the resulting inequalities, we get

〈A∗z +
∑

i

A∗
i yi, x〉E ≥ 〈z, b〉F +

∑
i

〈yi, bi〉Fi . (C)
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By its origin, this scalar linear inequality on x is a consequence of the constraints
of (P ), that is, it is valid for all feasible solutions x to (P ). It may happen that
the left hand side in this inequality is, identically in x ∈ E, equal to the objective
〈c, x〉E ; this happens if and only if

A∗z +
∑

i

A∗
i yi = c.

Whenever it is the case, the right hand side of (C) is a valid lower bound on the
optimal value in (P ). The dual problem is nothing but the problem

Opt(D) = max
z,{yi}

{
〈z, b〉F +

∑
i

〈yi, bi〉Fi
:

yi ∈ K∗
i , 1 ≤ i ≤ m,

A∗z +
∑

i A∗
i yi = c

}
(D)

of maximizing this lower bound.

By the origin of the dual problem, we have

Weak Duality: One has Opt(D) ≤ Opt(P ).

We see that (D) is a conic problem. A nice and important fact is that conic duality

is symmetric.

Symmetry of Duality: The conic dual to (D) is (equivalent to) (P ).

Proof. In order to apply to (D) the outlined recipe for building the conic
dual, we should rewrite (D) as a minimization problem

−Opt(D) = min
z,{yi}

{
〈z,−b〉F +

∑
i

〈yi,−bi〉Fi :
yi ∈ K∗

i , 1 ≤ i ≤ m

A∗z +
∑

i A∗
i yi = c

}
; (D′)

the corresponding space of decision vectors is the direct product F × F1 × ...× Fm

of Euclidean spaces equipped with the inner product

〈[z; y1, ..., ym], [z′; y′
1, ..., y

′
m]〉 = 〈z, z′〉F +

∑
i

〈yi, y
′
i〉Fi

.

The above “duality recipe” as applied to (D′) reads as follows: pick weights ηi ∈
(K∗

i )
∗ = Ki and ζ ∈ E, so that the scalar inequality

〈ζ, A∗z +
∑

i

A∗
i yi〉E +

∑
i

〈ηi, yi〉Fi︸ ︷︷ ︸
=〈Aζ,z〉F +

∑
i〈Aiζ+ηi,yi〉Fi

≥ 〈ζ, c〉E (C ′)

in variables z, {yi} is a consequence of the constraints of (D′), and impose on the
“aggregation weights” ζ, {ηi ∈ Ki} an additional restriction that the left hand side
in this inequality is, identically in z, {yi}, equal to the objective of (D′), that is,
the restriction that

Aζ = −b, Aiζ + ηi = −bi, 1 ≤ i ≤ m,
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and maximize under this restriction the right hand side in (C ′), thus arriving at
the problem

max
ζ,{ηi}

{
〈c, ζ〉E :

Ki # ηi = Ai[−ζ]− bi, 1 ≤ i ≤ m

A[−ζ] = b

}
.

Substituting x = −ζ, the resulting problem, after eliminating ηi variables, is noth-
ing but

max
x

{
−〈c, x〉E :

Aix− bi ∈ Ki, 1 ≤ i ≤ m

Ax = b

}
,

which is equivalent to (P ). �

A.2.3.2 Conic Duality Theorem

A conic program (P ) is called strictly feasible, if it admits a feasible solution x̄ such
that Aix̄ = −bi ∈ intKi, i = 1, ...,m.

Conic Duality Theorem is the following statement resembling very much the
standard Linear Programming Duality Theorem:

Theorem A.2.1. [Conic Duality Theorem] Consider a primal-dual pair of
conic problems (P ), (D). Then

(i) [Weak Duality] One has Opt(D) ≤ Opt(P ).

(ii) [Symmetry] The duality is symmetric: (D) is a conic problem, and the
problem dual to (D) is (equivalent to) (P ).

(iii) [Strong Duality] If one of the problems (P ), (D) is strictly feasible and
bounded, then the other problem is solvable, and Opt(P ) = Opt(D).

If both the problems are strictly feasible, then both are solvable with equal
optimal values.

Proof. We have already verified Weak Duality and Symmetry. Let us prove
the first claim in Strong Duality. By Symmetry, we can restrict ourselves to the
case when the strictly feasible and bounded problem is (P ).

Consider the following two sets in the Euclidean space G = R×F×F1×...×Fm:

T = {[t; z; y1; ...; ym] : ∃x : t = 〈c, x〉E ; yi = Aix− bi, 1 ≤ i ≤ m;
z = Ax− b},

S = {[t; z; y1; ...; ym] : t < Opt(P ), y1 ∈ K1, ..., ym ∈ Km, z = 0}.
The sets T and S clearly are convex and nonempty; observe that they do not
intersect. Indeed, assuming that [t; z; y1; ...; ym] ∈ S ∩ T , we should have t <

Opt(P ), and yi ∈ Ki, z = 0 (since the point is in S), and at the same time for
certain x ∈ E we should have t = 〈c, x〉E and Aix− bi = yi ∈ Ki, Ax− b = z = 0,
meaning that there exists a feasible solution to (P ) with the value of the objective
< Opt(P ), which is impossible. Since the convex and nonempty sets S and T do
not intersect, they can be separated by a linear form: there exists [τ ; ζ; η1; ...; ηm] ∈
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G = R× F × F1 × ...× Fm such that

(a) sup
[t;z;y1;...;ym]∈S

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G

≤ inf
[t;z;y1;...;ym]∈T

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G,

(b) inf
[t;z;y1;...;ym]∈S

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G
< sup

[t;z;y1;...;ym]∈T

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G,

or, which is the same,

(a) sup
t<Opt(P ),yi∈Ki

[τt +
∑

i〈ηi, yi〉Fi
]

≤ inf
x∈E

[τ〈c, x〉E + 〈ζ,Ax− b〉F +
∑

i〈ηi, Aix− bi〉Fi
] ,

(b) inf
t<Opt(P ),yi∈Ki

[τt +
∑

i〈ηi, yi〉Fi ]

< sup
x∈E

[τ〈c, x〉+ 〈ζ,Ax− b〉F +
∑

i〈ηi, Ax− bi〉Fi
] .

(A.2.1)

Since the left hand side in (A.2.1.a) is finite, we have

τ ≥ 0, −ηi ∈ K∗
i , 1 ≤ i ≤ m, (A.2.2)

whence the left hand side in (A.2.1.a) is equal to τOpt(P ). Since the right hand
side in (A.2.1.a) is finite and τ ≥ 0, we have

A∗ζ +
∑

i

A∗
i ηi + τc = 0 (A.2.3)

and the right hand side in (a) is 〈−ζ, b〉F −
∑

i〈ηi, bi〉Fi , so that (A.2.1.a) reads

τOpt(P ) ≤ 〈−ζ, b〉F −
∑

i

〈ηi, bi〉Fi
. (A.2.4)

We claim that τ > 0. Believing in our claim, let us extract from it Strong Duality.
Indeed, setting yi = −ηi/τ , z = −ζ/τ , (A.2.2), (A.2.3) say that z, {yi} is a feasible
solution for (D), and by (A.2.4) the value of the dual objective at this dual feasible
solution is ≥ Opt(P ). By Weak Duality, this value cannot be larger than Opt(P ),
and we conclude that our solution to the dual is in fact an optimal one, and that
Opt(P ) = Opt(D), as claimed.

It remains to prove that τ > 0. Assume this is not the case; then τ = 0 by
(A.2.2). Now let x̄ be a strictly feasible solution to (P ). Taking inner product of
both sides in (A.2.3) with x̄, we have

〈ζ, Ax̄〉F +
∑

i

〈ηi, Aix̄〉Fi
= 0,

while (A.2.4) reads
−〈ζ, b〉F −

∑
i

〈ηi, bi〉Fi ≥ 0.

Summing up the resulting inequalities and taking into account that x̄ is feasible for
(P ), we get ∑

i

〈ηi, Aix̄− bi〉 ≥ 0.
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Since Aix̄ − bi ∈ intKi and ηi ∈ −K∗
i , the inner products in the left hand side of

the latter inequality are nonpositive, and i-th of them is zero if and only if ηi = 0;
thus, the inequality says that ηi = 0 for all i. Adding this observation to τ = 0
and looking at (A.2.3), we see that A∗ζ = 0, whence 〈ζ, Ax〉F = 0 for all x and, in
particular, 〈ζ, b〉F = 0 due to b = Ax̄. The bottom line is that 〈ζ, Ax− b〉F = 0 for
all x. Now let us look at (A.2.1.b). Since τ = 0, ηi = 0 for all i and 〈ζ, Ax−b〉F = 0
for all x, both sides in this inequality are equal to 0, which is impossible. We arrive
at a desired contradiction.

We have proved the first claim in Strong Duality. The second claim there is
immediate: if both (P ), (D) are strictly feasible, then both problems are bounded
as well by Weak Duality, and thus are solvable with equal optimal values by the
already proved part of Strong Duality. �

A.2.3.3 Optimality conditions in Conic Programming

Optimality conditions in Conic Programming are given by the following statement:

Theorem A.2.2. Consider a primal-dual pair (P ), (D) of conic problems, and
let both problems be strictly feasible. A pair (x, ξ ≡ [z; y1; ...; ym]) of feasible solu-
tions to (P ) and (D) is comprised of optimal solutions to the respective problems
if and only if

(i) [Zero duality gap] One has

DualityGap(x; ξ) := 〈c, x〉E − [〈z, b〉F +
∑

i〈bi, yi〉Fi ]
= 0,

same as if and only if

(ii) [Complementary slackness]

∀i : 〈yi, Aixi − bi〉Fi
= 0.

Proof. By Conic Duality Theorem, we are in the situation when Opt(P ) =
Opt(D). Therefore

DualityGap(x; ξ) = [〈c, x〉E −Opt(P )]︸ ︷︷ ︸
a

+

[
Opt(D)−

[
〈z, b〉F +

∑
i

〈bi, yi〉Fi

]]
︸ ︷︷ ︸

b

Since x and ξ are feasible for the respective problems, the duality gap is nonnegative
and it can vanish if and only if a = b = 0, that is, if and only if x and ξ are optimal
solutions to the respective problems, as claimed in (i). To prove (ii), note that since
x is feasible, we have

Ax = b, Aix− bi ∈ Ki, c = A∗z +
∑

i

A∗
i yi, yi ∈ K∗

i ,
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whence
DualityGap(x; ξ) = 〈c, x〉E − [〈z, b〉F +

∑
i〈bi, yi〉Fi

]
= 〈A∗z +

∑
i A∗

i yi, x〉E − [〈z, b〉F +
∑

i〈bi, yi〉Fi
]

= 〈z, Ax− b〉F︸ ︷︷ ︸
=0

+
∑

i 〈yi, Aix− bi〉Fi︸ ︷︷ ︸
≥0

,

where the nonnegativity of the terms in the last
∑

i follows from yi ∈ K∗
i , Aixi−bi ∈

Ki. We see that the duality gap, as evaluated at a pair of primal-dual feasible
solutions, vanishes if and only if the complementary slackness holds true, and thus
(ii) is readily given by (i). �

A.2.4 Conic Representations of Sets and Functions

A.2.4.1 Conic representations of sets

When asked whether the optimization programs

min
y

m∑
i=1

|aT
i y − bi| (A.2.5)

and
min

y
max

1≤i≤m
|aT

i y − bi| (A.2.6)

are Linear Optimization programs, the answer definitely will be ”yes”, in spite of
the fact that an LO program is defined as

min
x

{
cT x : Ax ≥ b, Px = p

}
(A.2.7)

and neither (A.2.5), nor (A.2.6) are in this form. What the “yes” answer actually
means, is that both (A.2.5) and (A.2.6) can be straightforwardly reduced to, or,
which is the same, represented by LO programs, e.g., the LO program

min
y,u

{
m∑

i=1

ui : −ui ≤ aT
i y − bi ≤ ui, 1 ≤ i ≤ m

}
(A.2.8)

in the case of (A.2.5), and the LO program

min
y,t

{
t : −t ≤ aT

i y − bi ≤ t, 1 ≤ i ≤ m
}

(A.2.9)

in the case of (A.2.6).

An “in-depth” explanation of what actually takes place in these and similar
examples is as follows.

i) The “initial form” of a typical Mathematical Programming problem is
minv∈V f(v), where f(v) : V → R is the objective, and V ⊂ R

n is the feasible
set of the problem. It is technically convenient to assume that the objective
is “as simple as possible” — just linear: f(v) = eT v; this assumption does
not restrict generality, since we can always pass from the original problem,
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given in the form minv∈V φ(v), to the equivalent problem

min
y=[v;s]

{
cT y ≡ s : y ∈ Y = {[v; s] : v ∈ V, s ≥ φ(v)}

}
.

Thus, from now on we assume w.l.o.g. that the original problem is

min
y

{
dT y : y ∈ Y

}
. (A.2.10)

ii) All we need in order to reduce (A.2.10) to an LO program is what is called a
polyhedral representation of Y , that is, a representation of the form

U = {y ∈ R
n : ∃u : Ay + Bu− b ∈ R

N
+}.

Indeed, given such a representation, we can reformulate (A.2.10) as the LO
program

min
x=[y;u]

{
cT x := dT y : A(x) := Ay + Bu− b ≥ 0

}
.

For example, passing from (A.2.5) to (A.2.8), we first rewrite the original
problem as

min
t,y

{
t :

∑
i

|aT
i y − bi| ≤ t

}
and then point out a polyhedral representation

{[y; t] :
∑

i |aT
i y − bi| ≤ t}

= {[y; t] : ∃u :

⎧⎨⎩
ui − aT

i y + bi ≥ 0,
ui + aT

i y − bi ≥ 0,
t −

∑
i ui ≥ 0︸ ︷︷ ︸

A[y;t]+Bu−b≥0

}

of the feasible set of the latter problem, thus ending up with reformulating
the problem of interest as an LO program in variables y, t, u. The course of
actions for (A.2.6) is completely similar, up to the fact that after “linearizing
the objective” we get the optimization problem

min
y,t

{
t : −t ≤ aT

i y − bi ≤ t, 1 ≤ i ≤ m
}

where the feasible set is polyhedral “as it is” (i.e., with polyhedral represen-

tation not requiring u-variables).

The notion of polyhedral representation naturally extends to conic problems, specif-
ically, as follows. Let K be a family of regular cones, every one “living” in its own
Euclidean space. A set Y ⊂ R

n is called K-representable, if it can be represented
in the form

Y = {y ∈ R
n : ∃u ∈ R

m : Ay + Bu− b ∈ K}, (A.2.11)

where K ∈ K and A, B, b are matrices and vectors of appropriate dimensions. A rep-
resentation of Y of the form (A.2.11), (i.e., the corresponding collection A,B, b,K),
is called a K-representation (K-r. for short) of Y .

Geometrically, a K-r. of Y is the representation of Y as the projection

on the space of y variables of the set Y+ = {[y; u] : Ax + Bu− b ∈ K},
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which, in turn, is given as the inverse image of a cone K ∈ K under the
affine mapping [y; u] �→ Ay + Bu− b.

The role of the notion of a conic representation stems from the fact that given a K-r.
of the feasible domain Y of (A.2.10), we can immediately rewrite this optimization
program as a conic program involving a cone from the family K, specifically, as the
program

min
x=[y;u]

{
cT x := dT y : A(x) := Ay + Bu− b ∈ K

}
. (A.2.12)

In particular,

• When K = LO is the family of all nonnegative orthants (or, which is the same,
the family of all finite direct products of nonnegative rays), a K-representation
of Y allows one to rewrite (A.2.10) as a Linear program;

• When K = CQO is the family of all finite direct products of Lorentz cones,
a K-representation of Y allows one to rewrite (A.2.10) as a Conic Quadratic
program;

• When K = SDO is the family of all finite direct products of positive semidefi-
nite cones, aK-representation of Y allows one to rewrite (A.2.10) as a Semidef-
inite program.

Note that a K-representable set is always convex.

A.2.4.2 Elementary calculus of K-representations

It turns out that when the family of cones K is “rich enough,” K-representations
admit a kind of simple “calculus” that allows to convert K-r.’s of operands partic-
ipating in a standard convexity-preserving operation, like taking intersection, into
a K-r. of the result of this operation. “Richness” here means that K

• contains a nonnegative ray R+;

• is closed w.r.t. taking finite direct products: whenever Ki ∈ K, 1 ≤ i ≤ m <

∞, one has K1 × ...×Km ∈ K;

• is closed w.r.t. passing from a cone to its dual: whenever K ∈ K, one has
K∗ ∈ K.

In particular, every one of the three aforementioned families of cones LO, CQO,
SDO is rich.

We present here the most basic and most frequently used “calculus rules” (for
more rules and for instructive examples of LO-, CQO-, and SDO-representable sets,
see [8]). Let K be a rich family of cones. Then
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i) [taking finite intersections] If the sets Yi ⊂ R
n are K-representable, 1 ≤ i ≤ m,

then so is their intersection Y =
m⋂

i=1

Yi.

Indeed, if Yi = {y ∈ R
n : ∃ui : Aix + Biu − bi ∈ Ki with Ki ∈ K, then

Y = {y ∈ R
n : ∃u = [u1; ...; um] :

[A1; ...; Am]y + Diag{B1, ..., Bm}[u1; ...; um] − [b1; ...; bm]
∈ K := K1 × ... × Km},

and K ∈ K, since K is closed w.r.t. taking finite direct products.

ii) [taking finite direct products] If the sets Yi ⊂ R
ni are K-representable, 1 ≤

i ≤ m, then so is their direct product Y = Y1 × ...× Ym.
Indeed, if Yi = {y ∈ R

n : ∃ui : Aix + Biu − bi ∈ Ki with Ki ∈ K, then

Y = {y = [y1; ...; ym] ∈ R
n1+...+nm : ∃u = [u1; ...; um] :

Diag{A1, ..., Am]y + Diag{B1, ..., Bm}[u1; ...; um] − [b1; ...; bm]
∈ K := K1 × ... × Km},

and, as above, K ∈ K.

iii) [taking inverse affine images] Let Y ⊂ R
n be K-representable, let z �→ Pz+p :

R
N → R

n be an affine mapping. Then the inverse affine image Z = {z :
Pz + p ∈ Y } of Y under this mapping is K-representable.
Indeed, if Y = {y ∈ R

n : ∃u : Ay + Bu − b ∈ K} with K ∈ K, then

Z = {z ∈ R
N : ∃u : A[Pz + p] + Bu − b︸ ︷︷ ︸

≡Ãz+Bu−b̃

∈ K}.

iv) [taking affine images] If a set Y ⊂ R
n is K-representable and y �→ z = Py+p :

R
n → R

m is an affine mapping, then the image Z = {z = Py + p : y ∈ Y } of
Y under the mapping is K-representable.
Indeed, if Y = {y ∈ R

n : ∃u : Au + Bu − b ∈ K}, then

Z = {z ∈ R
m : ∃[y; u] :

⎡⎣ Py + p − z
−Py − p + z
Ay + Bu − b

⎤⎦
︸ ︷︷ ︸

≡Ãz+B̃[y;u]−b̃

∈ K+ := R
m
+ × R

m
+ × K},

and the cone K+ belongs to K as the direct product of several nonnegative rays

(every one of them belongs to K) and the cone K ∈ K.

Note that the above “calculus rules” are “completely algorithmic” — a K-r. of the
result of an operation is readily given by K-r.’s of the operands.

A.2.4.3 Conic representation of functions

By definition, the epigraph of a function f(y) : R
n → R ∪ {+∞} is the set

Epi{f} = {[y; t] ∈ R
n × R : t ≥ f(y)} .

Note that a function is convex if and only if its epigraph is so.
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Let K be a family of regular cones. A function f is called K-representable, if
its epigraph is so:

Epi{f} := {[y, t] : ∃u : Ay + ta + Bu− b ∈ K} (A.2.13)

with K ∈ K. A K-representation (K-r. for short) of a function is, by definition,
a K-r. of its epigraph. Since K-representable sets always are convex, so are K-
representable functions.

Examples of K-r.’s of functions:

• the function f(y) = |y| : R → R is LO-representable:

{[y; t] : t ≥ |y|} = {[y; t] : A[y; t] := [t− y; t + y] ∈ R
2
+};

• the function f(y) = ‖y‖2 : R
n → R is CQO-representable:

{[y; t] ∈ R
n+1 : t ≥ ‖y‖2} = {[y; t] ∈ Ln+1};

• the function f(y) = λmax(y) : Sn → R (the maximal eigenvalue of
a symmetric matrix y) is SDO-representable:

{[y; t] ∈ Sn × R : t ≥ λmax(y)} = {[y; t] : A[y; t] := tIn − y ∈ Sn
+}.

Observe that a K-r. (A.2.13) of a function f induces K-r.’s of its level sets {y :
f(y) ≤ c}:

{y : f(y) ≤ c} = {y : ∃u : Ay + Bu− [b− ca] ∈ K}.
This explains the importance of K-representations of functions: usually, the feasible
set Y of a convex problem (A.2.10) is given by a system of convex constraints:

Y = {y : fi(y) ≤ 0, 1 ≤ i ≤ m}.
If now all functions fi are K-representable, then, by the above observation and by
the “calculus rule” related to intersections, Y is K-representable as well, and a K-r.
of Y is readily given by K-r.’s of fi.

K-representable functions admit simple calculus, which is similar to the one
of K-representable sets, and is equally algorithmic; for details and instructive ex-
amples, see [8].

A.3 EFFICIENT SOLVABILITY OF CONVEX PROGRAMMING

The goal of this section is to explain the precise meaning of the informal (and in
fact slightly exaggerated) claim,

An optimization problem with convex efficiently computable objective

and constraints is efficiently solvable.

that on many different occasions was reiterated in the main body of the book. Our
exposition follows the one from [8, chapter 5].
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A.3.1 Generic Convex Programs and Efficient Solution Algorithms

In what follows, it is convenient to represent optimization programs as

(p) : Opt(p) = min
x

{
p0(x) : x ∈ X(p) ⊂ R

n(p)
}

,

where p0(·) and X(p) are the objective, which we assume to be a real-valued function
on R

n(p), and the feasible set of program (p), respectively, and n(p) is the dimension
of the decision vector.

A.3.1.1 A generic optimization problem

A generic optimization program P is a collection of optimization programs (p)
(“instances of P”) such that every instance of P is identified by a finite-dimensional
data vector data(p); the dimension of this vector is called the size Size(p) of the
instance:

Size(p) = dim data(p).

For example, Linear Optimization is a generic optimization problem LO
with instances of the form

(p) : min
x

{
cT
p x : x ∈ X(p) := {x : Apx− bp ≥ 0}

}
[Ap : m(p)× n(p)],

where m(p), n(p), cp, Ap, bp can be arbitrary. The data of an instance
can be identified with the vector

data(p) = [m(p);n(p); cp; bp; A1
p; ...; A

n(p)
p ],

where Ai
p is i-th column in Ap.

Similarly, Conic Quadratic Optimization is a generic optimization prob-
lem CQO with instances

(p) : minx

{
cT
p x : x ∈ X(p)

}
,

X(p) := {x : ‖Apix− bpi‖2 ≤ eT
pix− dpi, 1 ≤ i ≤ m(p)}

[Api : ki(p)× n(p)].
The data of an instance can be defined as the vector obtained by listing,
in a fixed order, the dimensions m(p), n(p), {ki(p)}m(p)

i=1 and the entries
of the reals dpi, vectors cp, bpi, epi and the matrices A�

pi.

Finally, Semidefinite Optimization is a generic optimization problem
SDO with instances of the form

(p) : minx

{
cT
p x : x ∈ X(p) := {x : Ai

p(x) � 0, 1 ≤ i ≤ m(p)}
}

Ai
p(x) = A0

pi + x1A
1
pi + ... + xn(p)A

n(p)
pi ,

where A�
pi are symmetric matrices of size ki(p). The data of an instance

can be defined in the same fashion as in the case of CQO.
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A.3.1.2 Approximate solutions

In order to quantify the quality of a candidate solution of an instance (p) of a
generic problem P, we assume that P is equipped with an infeasibility measure

InfeasP(p, x) — a real-valued nonnegative function of an instance (p) ∈ P and a
candidate solution x ∈ R

n(p) to the instance such that x ∈ X(p) if and only if
InfeasP(p, x) = 0.

Given an infeasibility measure and a tolerance ε > 0, we define an ε solution

to an instance (p) ∈ P as a point xε ∈ R
n(p) such that

p0(xε)−Opt(p) ≤ ε & InfeasP(p, xε) ≤ ε.

For example, a natural infeasibility measure for a generic optimization problem P
with instances of the form

(p) : min
x
{p0(x) : x ∈ X(p) := {x : pi(x) ≤ 0, 1 ≤ i ≤ m(p)}} (A.3.1)

is
InfeasP(p, x) = max

[
0, p1(x), p2(x), ..., pm(p)(x)

]
; (A.3.2)

this recipe, in particular, can be applied to the generic problems LO and CQO. A
natural infeasibility measure for SDO is

InfeasSDO(p, x) = min
{
t ≥ 0 : Ai

p(x) + tIki(p) � 0, 1 ≤ i ≤ m(p)
}

.

A.3.1.3 Convex generic optimization problems

A generic problem P is called convex, if for every instance (p) of the problem, p0(x)
and InfeasP(p, x) are convex functions of x ∈ R

n(p). Note that then X(p) = {x ∈
R

n(p) : InfeasP(p, x) ≤ 0} is a convex set for every (p) ∈ P.

For example, LO, CQO and SDO with the just defined infeasibility mea-
sures are generic convex programs. The same is true for generic problems with
instances (A.3.1) and infeasibility measure (A.3.2), provided that all instances are
convex programs, i.e., p0(x), p1(x), ..., pm(p)(x) are restricted to be real-valued con-

vex functions on R
n(p).

A.3.1.4 A solution algorithm

A solution algorithm B for a generic problem P is a code for the Real Arithmetic
Computer — an idealized computer capable to store real numbers and to carry out
the operations of Real Arithmetics (the four arithmetic operations, comparisons
and computing elementary functions like

√·, exp{·}, sin(·)) with real arguments.
Given on input the data vectors data(p) of an instance (p) ∈ P and a tolerance
ε > 0 and executing on this input the code B, the computer should eventually stop
and output

— either a vector xε ∈ R
n(p) that must be an ε solution to (p),
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— or a correct statement “(p) is infeasible”/“(p) is not below bounded.”

The complexity of the generic problem P with respect to a solution algorithm
B is quantified by the function ComplP(p, ε); the value of this function at a pair
(p) ∈ P, ε > 0 is exactly the number of elementary operations of the Real Arithmetic
Computer in the course of executing the code B on the input (data(p), ε).

A.3.1.5 Polynomial time solution algorithms

A solution algorithm for a generic problem P is called polynomial time (“efficient”),
if the complexity of solving instances of P within (an arbitrary) accuracy ε > 0 is
bounded by a polynomial in the size of the instance and the number of accuracy

digits Digits(p, ε) in an ε solution:

ComplP(p, ε) ≤ χ (Size(p)Digits(p, ε))χ
,

Size(p) = dim data(p), Digits(p, ε) = ln
(

Size(p)+‖data(p)‖1+ε2

ε

)
;

from now on, χ stands for various “characteristic constants” (not necessarily iden-
tical to each other) of the generic problem in question, i.e., for positive quantities
depending on P and independent of (p) ∈ P and ε > 0. Note also that while
the “strange” numerator in the fraction participating in the definition of Digits
arises by technical reasons, the number of accuracy digits for small ε > 0 becomes
independent of this numerator and close to ln(1/ε).

A generic problem P is called polynomially solvable (“computationally
tractable”), if it admits a polynomial time solution algorithm.

A.3.2 Polynomial Solvability of Generic Convex Programming Problems

The main fact about generic convex problems that underlies the remarkable role
played by these problems in Optimization is that under minor non-restrictive techni-

cal assumptions, a generic convex problem, in contrast to typical generic non-convex
problems, is computationally tractable.

The just mentioned “minor non-restrictive technical assumptions” are those
of polynomial computability, polynomial growth, and polynomial boundedness of

feasible sets.

A.3.2.1 Polynomial computability

A generic convex optimization problem P is called polynomially computable, if it
can be equipped with two codes, O and C, for the Real Arithmetic Computer, such
that:

• for every instance (p) ∈ P and any candidate solution x ∈ Rn(p) to the
instance, executingO on the input (data(p), x) takes a polynomial in Size(p) number
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of elementary operations and produces a value and a subgradient of the objective
p0(·) at the point x;

• for every instance (p) ∈ P, any candidate solution x ∈ R
n(p) to the instance

and any ε > 0, executing C on the input (data(p), x, ε) takes a polynomial in Size(p)
and Digits(p, ε) number of elementary operations and results
— either in a correct claim that InfeasP(p, x) ≤ ε,
— or in a correct claim that InfeasP(p, x) > ε and in computing a linear form
e ∈ R

n(p) that separates x and the set {y : InfeasP(p, y) ≤ ε}, so that

∀(y, InfeasP(p, y) ≤ ε) : eT y < eT x.

Consider, for example, a generic convex program P with instances of the form (A.3.1) and
the infeasibility measure (A.3.2) and assume that the functions p0(·), p1(·), ..., pm(p)(·) are
real-valued and convex for all instances of P. Assume, moreover, that the objective and
the constraints of instances are efficiently computable, meaning that there exists a code
CO for the Real Arithmetic Computer, which being executed on an input of the form
(data(p), x ∈ R

n(p)) computes in a polynomial in Size(p) number of elementary operations
the values and subgradients of p0(·), p1(·),..., pm(p)(·) at x. In this case, P is polynomially
computable. Indeed, the code O allowing to compute in polynomial time the value and
a subgradient of the objective at a given candidate solution is readily given by CO. In
order to build C, let us execute CO on an input (data(p), x) and compare the quantities
pi(x), 1 ≤ i ≤ m(p), with ε. If pi(x) ≤ ε, 1 ≤ i ≤ m(p), we output the correct claim that
InfeasP(p, x) ≤ ε, otherwise we output a correct claim that InfeasP(p, x) > ε and return,
as e, a subgradient, taken at x, of a constraint pi(x)(·), where i(x) ∈ {1, 2, ..., m(p)} is such
that pi(x)(x) > ε.

By the reasons outlined above, the generic problems LO and CQO of Linear and

Conic Quadratic Optimization are polynomially computable. The same is true for Semidef-

inite Optimization, see [8, chapter 5].

A.3.2.2 Polynomial growth

We say that P is of polynomial growth, if for properly chosen χ > 0 one has

∀((p) ∈ P, x ∈ R
n(p)) :

max [|p0(x)|, InfeasP(p, x)] ≤ χ (Size(p) + ‖data(p)‖1)χSizeχ
(p)

.

For example, the generic problems of Linear, Conic Quadratic and
Semidefinite Optimization clearly are with polynomial growth.

A.3.2.3 Polynomial boundedness of feasible sets

We say that P is with polynomially bounded feasible sets, if for properly chosen
χ > 0 one has

∀((p) ∈ P) : x ∈ X(p) ⇒ ‖x‖∞ ≤ χ (Size(p) + ‖data(p)‖1)χSizeχ
(p)

.

While the generic convex problems LO, CQO, and SDO are polynomially
computable and with polynomial growth, neither one of these problems (same as
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neither one of other natural generic convex problems) “as it is” possesses polynomi-
ally bounded feasible sets. We, however, can enforce the latter property by passing
from a generic problem P to its “bounded version” Pb as follows: the instances
of Pb are the instances (p) of P augmented by bounds on the variables; thus, an
instance (p+) = (p,R) of Pb is of the form

(p,R) : min
x

{
p0(x) : x ∈ X(p,R) = X(p) ∩ {x ∈ R

n(p) : ‖x‖∞ ≤ R}
}

where (p) is an instance of P and R > 0. The data of (p,R) is the data of (p)
augmented by R, and

InfeasPb((p,R), x) = InfeasP(p, x) + max[‖x‖∞ −R, 0].

Note that Pb inherits from P the properties of polynomial computability and/or
polynomial growth, if any, and always is with polynomially bounded feasible sets.
Note also that R can be really large, like R = 10100, which makes the “expressive
abilities” of Pb, for all practical purposes, as strong as those of P. Finally, we
remark that the “bounded versions” of LO, CQO, and SDO are sub-problems of
the original generic problems.

A.3.2.4 Main result

The main result on computational tractability of Convex Programming is the fol-
lowing:

Theorem A.3.1. Let P be a polynomially computable generic convex program
with a polynomial growth that possesses polynomially bounded feasible sets. Then
P is polynomially solvable.

As a matter of fact, “in real life” the only restrictive assumption in Theorem
A.3.1 is the one of polynomial computability. This is the assumption that is usu-
ally violated when speaking about semi-infinite convex programs like the RCs of
uncertain conic problems

min
x

{
cT
p x : x ∈ X(p) = {x ∈ R

n(p) : Apζx + apζ ∈ K∀(ζ ∈ Z)}
}

.

associated with simple non-polyhedral cones K. Indeed, when K is, say, a Lorentz
cone, so that

X(p) = {x : ‖Bpζx + bpζ‖2 ≤ cT
pζx + dpζ ∀(ζ ∈ Z)},

to compute the natural infeasibility measure

min
{
t ≥ 0 : ‖Bpζx + bpζ‖2 ≤ cT

pζx + dpζ + t∀(ζ ∈ Z)
}

at a given candidate solution x means to maximize the function fx(ζ) = ‖Bpζx +
bpζ‖2− cT

pζx−dpζ over the uncertainty set Z. When the uncertain data are affinely
parameterized by ζ, this requires a maximization of a nonlinear convex function

fx(ζ) over ζ ∈ Z, and this problem can be (and generically is) computationally
intractable, even when Z is a simple convex set. It becomes also clear why the out-
lined difficulty does not occur in uncertain LO with the data affinely parameterized
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by ζ: here fx(ζ) is an affine function of ζ, and as such can be efficiently maximized
over Z, provided the latter set is convex and “not too complicated.”

A.3.3 “What is Inside”: Efficient Black-Box-Oriented Algorithms in Convex

Optimization

Theorem A.3.1 is a direct consequence of a fact that is instructive in its own right
and has to do with “black-box-oriented” Convex Optimization, specifically, with
solving an optimization problem

min
x∈X

f(x), (A.3.3)

where

• X ⊂ R
n is a solid (a convex compact set with a nonempty interior) known to

belong to a given Euclidean ball E0 = {x : ‖x‖2 ≤ R} and represented by a
Separation oracle — a routine that, given on input a point x ∈ R

n, reports
whether x ∈ X, and if it is not the case, returns a vector e �= 0 such that

eT x ≥ max
y∈X

eT y;

• f is a convex real-valued function on R
n represented by a First Order oracle

that, given on input a point x ∈ R
n, returns the value and a subgradient of

f at x.

In addition, we assume that we know in advance an r > 0 such that X contains a
Euclidean ball of the radius r (the center of this ball can be unknown).

Theorem A.3.1 is a straightforward consequence of the following important
fact:

Theorem A.3.2. [8, Theorem 5.2.1] There exists a Real Arithmetic algorithm
(the Ellipsoid method) that, as applied to (A.3.3), the required accuracy being ε >

0, finds a feasible ε solution xε to the problem (i.e., xε ∈ X and f(xε)−minX f ≤ ε)
after at most

N(ε) = Ceil
(
2n2

[
ln
(

R
r

)
+ ln

(
ε+VarR(f)

ε

)])
+ 1

VarR(f) = max‖x‖2≤R f(x)−min‖x‖2≤R f(x)

steps, with a step reducing to a single call to the Separation and to the First
Order oracles accompanied by O(1)n2 additional arithmetic operations to process
the answers of the oracles. Here O(1) is an absolute constant.

Recently, the Ellipsoid method was equipped with “on line” accuracy certifi-
cates, which yield a slightly strengthened version of the above theorem, namely, as
follows:

Theorem A.3.3. [86] Consider problem (A.3.3) and assume that
• X ∈ R

n is a solid contained in the centered at the origin Euclidean ball E0
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of a known in advance radius R and given by a Separation oracle that, given on
input a point x ∈ R

n, reports whether x ∈ intX, and if it is not the case, returns a
nonzero e such that eT x ≥ maxy∈X eT y;

• f : intX → R is a convex function represented by a First Order oracle
that, given on input a point x ∈ intX, reports the value f(x) and a subgradient
f ′(x) of f at x. In addition, assume that f is semibounded on X, meaning that
VX(f) ≡ supx,y∈intX(y − x)T f ′(x) < ∞.

There exists an explicit Real Arithmetic algorithm that, given on input a
desired accuracy ε > 0, terminates with a strictly feasible ε-solution xε to the
problem (xε ∈ intX, f(xε)− infx∈intX f(x) ≤ ε) after at most

N(ε) = O(1)
(

n2

[
ln
(

nR

r

)
+ ln

(
ε + VX(f)

ε

)])
steps, with a step reducing to a single call to the Separation and to the First
Order oracles accompanied by O(1)n2 additional arithmetic operations to process
the answers of the oracles. Here r is the supremum of the radii of Euclidean balls
contained in X, and O(1)’s are absolute constants.

The progress, as compared to Theorem A.3.1, is that now we do not need a
priori knowledge of r > 0 such that X contains a Euclidean ball of radius r, f is
allowed to be undefined outside of intX and the role of VarR(f) (the quantity that
now can be +∞) is played by VX(f) ≤ supintX f − infintX f .



This page intentionally left blank 



Appendix B
Some Auxiliary Proofs

B.1 PROOFS FOR CHAPTER 4

B.1.1 Proposition 4.2.2

10. Let us first verify that Zε ⊂ Z∗, where Z∗ is the feasible set of (4.0.1). Observe,
first, that Zo

ε ⊂ Z∗. Indeed, let z = [z0; w] ∈ Zo
ε , and let P be the distribution of

ζ. Since z ∈ Zo
ε , there exists α > 0 such that αz0 + Φ(αw) ≤ ln(ε). We have

Prob{ζ : z0 + wT ζ > 0} ≤ E{exp{αz0 + αwT ζ}} ≤ exp{αz0 + Φ(αw)} ≤ ε

(the second ≤ is given by (4.2.3)), as claimed. Since Z∗ clearly is closed, we conclude
that Zε = cl Zo

ε ⊂ Z∗ as well.

20. Now let us prove that Zε is exactly the solution set of the convex inequality
(4.2.6). We need the following

Lemma B.1.1. Let H(z) : R
N → R ∪ {+∞} be a lower semicontinuous

convex function and a be a real. Assume that H(0) > a, 0 ∈ intDomH and the set
{z : H(z) < a} is nonempty. Consider the sets

Ho = {z : ∃β > 0 : H(β−1z) ≤ a}, H = clHo.

Then the function G(z) = infβ>0

[
βH(β−1z)− βa

]
is convex and finite everywhere,

H = {z : G(z) ≤ 0} (B.1.1)

and H is a nonempty closed convex cone.

Lemma B.1.1 ⇒ Proposition 4.2.2: Setting H(z0, z1, ..., zL) = z0 +
Φ(z1, ..., zL), a = ln(ε), we clearly satisfy the premise in Lemma B.1.1; with this
setup, the conclusion of Lemma clearly completes the proof of Proposition 4.2.2.

Proof of Lemma B.1.1: 00. H is convex, whence the function βH(β−1z)
is convex in (β > 0, z). It follows that G(z) is convex, provided that it is finite
everywhere. The latter indeed is the case. To see it, note that since 0 ∈ intDomH,
βH(β−1z) is finite whenever β is large enough, so that G(z) < ∞ for every z. Due
to the same inclusion 0 ∈ intH, we have H(u) ≥ H(0)+gT u for certain g and all u,
whence βH(β−1z)−βa ≥ β(H(0)−a)+gT z, so that G(z) > −∞ due to H(0) > a.
Thus, G(z) is a real-valued convex function, as claimed.

10. Let G = {z : H(z) ≤ a}. Then G is a nonempty closed and convex set, and
Ho = {z : ∃α > 0 : αz ∈ G}, so that the set Ho is convex, nonempty and satisfies



470 APPENDIX B

the relation αHo = Ho for all α > 0. It follows that H = clHo is a nonempty closed
convex cone. All we need to prove is that H admits the representation (B.1.1). Let
H̄ be the right hand side set in (B.1.1); note that this set clearly contains Ho.

20. We first prove that H̄ contains H. To this end it suffices to verify that
if βi > 0 and zi are such that H(β−1

i zi) ≤ a for all i and zi → z̄ as i → ∞, then
z̄ ∈ H̄. Indeed, passing to a subsequence, we may assume that as i → ∞, one of
the following 3 cases takes place:

1) βi → β̄ ∈ (0,∞), 2) βi → +∞, 3) βi → +0.

In case 1) we have β−1
i zi → β̄−1z̄ and H(β−1

i zi) ≤ a; since H is lower semicon-
tinuous, it follows that H(β̄−1z̄) ≤ a, and since β̄ > 0, we get z̄ ∈ Ho ⊂ H̄, as
required.

Case 2) is impossible, since here a ≥ H(β−1
i zi) → H(0) as i → ∞ due to the

continuity of H at 0 ∈ intDomH, while H(0) > a by assumption.

In case 3), β−1
i zi ∈ G, β−1

i → +∞ and zi → z̄ as i → ∞, whence z̄ is a recessive
direction of the nonempty closed convex set G. Let z0 ∈ G. Since H(0) > a, we
have z0 �= 0, and since 0 ∈ intDomH, we can find λ ∈ (0, 1) and w ∈ Dom H such
that λz0 + (1−λ)w = 0. Since z0 + R+z̄ ∈ G and H is convex, H is bounded above
on the convex hull of the ray z0 +R+z̄ and w, and this convex hull, by construction,
contains the ray R+z̄. We conclude that H(β−1z̄) is a bounded above function of
β > 0, whence limβ→+0

[
βH(β−1z̄)− βa

]
≤ 0, and z̄ ∈ H̄, as claimed.

30. It remains to prove that H̄ ⊂ H. Let z ∈ H̄, so that
lim

i→∞
βi[H(β−1

i z)− a] ≤ 0

for certain sequence {βi > 0}; we should prove that z ∈ clHo. Passing to a
subsequence, we can assume that as i → ∞, one of the above 3 cases 1), 2), 3)
takes place.
In case 1), we, same as above, have H(β̄−1z) ≤ a, whence z ∈ Ho, as required.
Case 2 is impossible by the same reasons as above. In case 3) H clearly is bounded
above on the ray R+z: H(αz) ≤ ā < ∞ for certain ā. Now let z0 be such that
H(z0) < a; then with properly chosen λ ∈ (0, 1) we have H(λz0 + (1 − λ)αz) ≤
λH(z0)+(1−λ)ā ≤ a for all α ≥ 0, whence the points zi = [(1−λ)i]−1[λz0+(1−λ)iz]
are in Ho due to H([(1 − λ)i]zi) ≤ a. As i → ∞, we have zi → z, meaning that
z ∈ clHo. �

B.1.2 Proposition 4.2.3

Assume, on the contrary to what should be proved, that there exists c ∈ R and a
sequence ui, ‖ui‖ → ∞, i →∞, such that φ(ui) ≤ c ∀i. Since A has trivial kernel,
the sequence Aui +a is unbounded, so that we can find w such that the sequence of
reals wT (Aui + a) is above unbounded. On the other hand, from (4.2.7) it follows
that wT (Au+a) ≤ Φ(w)+φ(u) for all w, u, whence wT (Aui +a) ≤ Φ(w)+φ(ui) ≤



SOME AUXILIARY PROOFS 471

Φ(w)+ c, that is, the sequence wT (Aui + a) is above bounded, which is the desired
contradiction. �

B.1.3 Theorem 4.2.5

Theorem 4.2.5 is an immediate corollary of the following statement:

Theorem B.1.2. Let Ψ(z) : R
n → R be a convex function and ψ(u) : R

m →
R∪{+∞} be a lower semicontinuous convex function with bounded level sets such
that

Ψ(z) = sup
u

{
zT (Bu + b)− ψ(u)

}
. (B.1.2)

Let, further, real ρ and a direction e ∈ R
L be such that

ρ < Ψ(0) (B.1.3)

and
lim

t→∞
Ψ(z + te) < ρ ∀z ∈ R

n. (B.1.4)

Let us set Zρ
o = {z : ∃α > 0 : Ψ(αz) ≤ ρ}, Zρ = cl Zρ

o . Then the set Uρ = {u :
ψ(u) ≤ −ρ} is a nonempty convex compact set and

z ∈ Zρ ⇔ zT (Bu + b) ≤ 0 ∀u ∈ Uρ. (B.1.5)

Theorem B.1.2 ⇒ Theorem 4.2.5. Let us set Ψ(z0, z1, ..., zL) = z0 +
Φ([z1; ...; zL]), ψ(·) ≡ φ(·), Bu + b = [1; Au + a], ρ = ln(ε), e = [−1; 0; ...; 0]. These
data clearly satisfy the premise in Theorem B.1.2. It remains to note that Zρ

o = Zo
ε

(so that Zρ = Zε), Uρ = Uε and zT (Bu + b) ≡ z0 + [z1; ...; zL]T (Au + a).

Proof of Theorem B.1.2.

10. First, let us verify that
inf
u

ψ(u) = −Ψ(0) (B.1.6)

and extract from this relation that Uρ is a nonempty compact convex set.

Indeed, by (B.1.2) we have

Ψ(0) = sup
u

{
0T (Bu + b)− φ(u)

}
= − inf

u
ψ(u),

and (B.1.6) follows. Now, since ρ < Φ(0), (B.1.6) says that −ρ > infu ψ(u), so that
the set Uρ is nonempty. This set is convex, closed and bounded due to the fact
that ψ is a convex lower semicontinuous function with bounded level sets.

20. The result of 10 states that Uρ is a nonempty convex compact set, that is the
first statement of Theorem B.1.2. To complete the proof, we need to justify the
equivalence in (B.1.5), which is the goal of items 30 and 40 to follow.

30. We claim that whenever z ∈ Zρ, one has

zT (Bu + b) ≤ 0 ∀u ∈ Uρ. (B.1.7)
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Indeed, assuming, on the contrary, that zT (Bū + b) > 0 for certain ū with ψ(ū) ≤
−ρ, observe that there exists a neighborhood Uz of z and δ > 0 such that [z′]T (Bū+
b) > δ whenever z′ ∈ Uz. Consequently, for every α > 0 and every z′ ∈ Uz we have
Ψ(αz′) ≥ α[z′]T (Bū+ b)−ψ(ū) ≥ αδ +ρ > ρ, so that Uz does not intersect Zρ

o and
therefore z �∈ Zρ, which is a desired contradiction.

40. To complete the proof of Theorem B.1.2, it suffices to justify the following
statement:

(!) If z satisfies (B.1.7), then z ∈ Zρ.

To this end, let us fix z satisfying (B.1.7).

40.1. We claim that eT (Bu + b) ≤ 0 for all u ∈ Dom ψ.
Indeed, assuming the opposite, there exists ū ∈ Dom ψ such that eT (Bū + b) > 0,
whence Ψ(te) ≥ teT (Bū + b) − ψ(ū) → ∞ as t → ∞, which is impossible due to
(B.1.4).

40.2. Consider the case when z is such that zT (Bu+b) ≤ 0 for all u ∈ Dom ψ.
We claim that in this case z + δe ∈ Zρ

o for all δ > 0, whence, of course, z ∈ Zρ. Let
us fix δ > 0.

40.2.1) Let us first prove that (z + δe)T (Bu + b) < 0 for every u ∈ Uρ.
Indeed, assuming the opposite, there exists ū ∈ Uρ with (z + δe)T (Bū + b) ≥ 0.
Since zT (Bu+ b) ≤ 0 and eT (Bu+ b) ≤ 0 for all u ∈ Dom ψ (by assumption in 40.2
and by 40.1, respectively), we conclude that zT (Bū + b) = eT (Bū + b) = 0, whence
(z + te)T (Bū + b) ≥ 0 for all t ≥ 0, and therefore

∀t > 0 : Ψ(z + te) ≥ (z + te)T (Bū + b)− ψ(ū) ≥ 0− (−ρ) = ρ,

which contradicts (B.1.4).

40.2.2) Since Uρ is a compact set, 40.2.1) implies that there exists γ > 0 such
that

(z + δe)T (Bu + b) ≤ −γ ∀u ∈ Uρ.

Now let α > 0. We have

Ψ(α(z + δe)) = sup
u∈Domψ

{
α(z + δe)T (Bu + b)− ψ(u)

}
= max

[
sup

u∈Uρ

{α(z + δe)T (Bu + b)− ψ(u)},

sup
u∈(Domψ)\Uρ

{α(z + δe)T (Bu + b)− ψ(u)}
]
.

When u ∈ Uρ, we have α(z+δe)T (Bu+b)−ψ(u) ≤ −αγ+Ψ(0); this quantity is ≤ ρ

for all large enough α ≥ 0. When u ∈ (Dom ψ)\Uρ, we have α(z + δe)T (Bu + b)−
ψ(u) ≤ 0 + ρ = ρ due to ψ(u) > −ρ and (z + δe)T (Bu + b) ≤ 0 for all u ∈ Dom ψ.
We see that Ψ(α(z + δe)) ≤ ρ for all large enough values of α, whence z + δe ∈ Zρ

o ,
as claimed in 40.2.

40.3. We have seen that the inclusion z ∈ Zρ takes place in the case of 40.2.
It remains to verify that this inclusion takes place also when zT (Bu + b) > 0 for
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certain u ∈ Dom ψ. Assume that the latter is the case, and let us set

S = {[p; q] ∈ R
2 : ∃u : p ≥ ψ(u), q ≥ c(u) ≡ −zT (Bu + b)}

T = {[p; q] ∈ R
2 : p ≤ −ρ, q < 0}.

The sets S, T clearly are convex and nonempty; let us prove that S, T do not
intersect. Indeed, assuming that [p̄; q̄] ∈ S ∩ T , we would have p̄ ≤ −ρ, q̄ < 0 and
for certain ū it holds p̄ ≥ ψ(ū), q̄ ≥ c(ū), that is, zT (Bū+ b) > 0, while ψ(ū) ≤ −ρ;
this is the desired contradiction, since z satisfies (B.1.7).

Since S, T are nonempty non-intersecting convex sets, they can be separated:
there exists [µ; ν] �= 0 such that

inf
[p;q]∈S

[µp + νq] ≥ sup
[p;q]∈T

[µp + νq].

Due to the structure of S, T , this relation implies that µ, ν ≥ 0 and that

inf
u∈Domψ

[µψ(u) + νc(u)] ≥ −µρ. (B.1.8)

We claim that ν > 0. Indeed, otherwise µ > 0, and (B.1.8) would imply that
ψ(u) ≥ −ρ for all u ∈ Dom ψ, which is not the case (indeed, infu ψ(u) = −Ψ(0) <

−ρ according to (B.1.6) and (B.1.3)). Thus, ν > 0. We claim that µ > 0 as well.
Indeed, otherwise (B.1.8) would imply that inf

u∈Domψ
c(u) ≥ 0, that is, zT (Bu+b) ≤

0 for all u ∈ Dom ψ, which contradicts the premise in 40.3. Thus, µ > 0, ν > 0 and
therefore (B.1.8) implies that with α = ν/µ > 0 one has inf

u∈Domψ
[ψ(u) + αc(u)] ≥

−ρ, that is,
Ψ(αz) = sup

u

{
αzT (Bu + b)− ψ(u)

}
≤ ρ,

whence z ∈ Zρ
o . The proof of (!) is completed. �

B.1.4 Proposition 4.3.1

The set Γ0
ε is contained in the feasible set Z∗ of the chance constraint (4.0.1) by

(4.3.3), and since Z∗ is closed, it contains Γε ≡ cl Γo
ε as well. All remaining assertions

are readily given by Lemma B.1.1 (where one should set H(z) = Ψ(z), a = ε and
use (4.3.2) to verify the validity of Lemma’s premise) combined with Remark 4.1.2.
�

B.1.5 Propositions 4.4.2, 4.4.4

B.1.5.1 Proof of Proposition 4.4.2

Let π, θ ∈ Π. We first prove that θ �m π is equivalent to every one of the relations
(4.4.1), (4.4.2). Let p, q be the densities, and let µ, ν be the probability distributions
of π, θ. Let, further, mπ = Prob{π = 0}, mθ = Prob{θ = 0}, P (a) =

∫∞
a

p(s)ds,
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Q(a) =
∫∞

a
q(s)ds. For f ∈Mb we have∫

f(s)dµ(s) = mπf(0) + 2
∫∞
0

f(s)p(s)ds = mπf(0) + 2
∫∞
0

f(s)[− d
dsP (s)]ds

= mπf(0) + 2f(0)P (0) + 2
∫∞
0

P (s)f ′(s)ds = f(0) + 2
∫∞
0

P (s)f ′(s)ds,

and similarly
∫

f(s)dν(s) = f(0) + 2
∞∫
0

f ′(s)Q(s)ds. Thus,
∫

f(s)dν(s) ≥∫
f(s)dµ(s) for all f ∈ Mb if and only if

∫∞
0

f ′(s)(Q(s) − P (s))ds ≥ 0 for ev-
ery f ∈ Mb, and the latter clearly is equivalent to Q(s) ≥ P (s) for all s ≥ 0
(since P , Q are continuous, and the image of Mb under the mapping f �→ f ′∣∣

s≥0
is

exactly the set of all nonnegative continuous functions g on R+ such that g(0) = 0
and

∫∞
0

g(s)ds < ∞). Thus, (4.4.1) is equivalent to Q(s) ≥ P (s) for all s ≥ 0,
which is nothing but θ �m π. Observing that 2

∫∞
0

f ′(s)P (s)ds =
∫

f(s)p(s)ds,
2
∫∞
0

f ′(s)Q(s)ds =
∫

f(s)q(s)ds, the same argument proves that (4.4.2) is equiva-
lent to θ �m π.

The fact that (4.4.1) implies the inequalities

(a)
∫

f(s)dν(s) ≥
∫

f(s)dµ(s), (b)
∫

f(s)q(s)ds ≥
∫

f(s)p(s)ds (B.1.9)

for every even function f that is monotone on R+ is due to the standard ap-
proximation argument. Indeed, let (4.4.1) takes place. Every bounded f with
the outlined properties is the pointwise limit of a uniformly bounded sequence
fi ∈ Mb. Passing to limit, as i → ∞, in the relation

∫
fi(s)dν(s) ≥

∫
fi(s)dµ(s),

we conclude that (B.1.9.a) takes place for every bounded even function on the
axis that is monotone on R+. Passing to limit, as i → ∞, in the relation∫

min[f(s), i]dν(s) ≥
∫

min[f(s), i]dµ(s), we further conclude that the target re-
lation holds true for every even function that is monotone on R+. By completely
similar argument, the relation (4.4.2) which, as we have already verified, is equiva-
lent to (4.4.1)), implies (B.1.9.b). �

B.1.5.2 Proof of Proposition 4.4.4

Item (i) is evident. Let us prove item (ii). We claim that

(a) If ξ, ξ′ ∈ Π are independent, then ξ + ξ′ ∈ Π.

(b) If p ∈ P and f ∈Mb, then f+ := f ∗ p belongs to Mb, where ∗ stands for
the convolution: (f ∗ g)(s) =

∫
f(t)g(s− t)dt.

(c) Let ζ, ζ̃ ∈ Π, ζ �m ζ̃, and let δ, δ̃ be uniformly distributed in [−d, d].
Assume also that ζ, ζ̃, δ, δ̃ are independent. Then ζ + δ ∈ Π, ζ̃ + δ̃ ∈ Π, both these
random variables are regular, and ζ + δ �m ζ̃ + δ̃.

Let us prove (a). Denoting by p, r the densities of ξ, ξ′, and setting m = Prob{ξ =
0}, m′ = Prob{ξ′ = 0}, the density of ξ + ξ′ is mr + m′p + p ∗ r. We should prove
that this density is even (this is evident) and is nondecreasing when s < 0. To
this end, it clearly suffices to verify that the density p ∗ r is nondecreasing when
s < 0. By the standard approximation argument, it suffices to establish the latter
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fact when p, r ∈ P are smooth. We have

(p ∗ r)′(s) =
∫

p′(s− t)r(t)dt =
∫

p(s− t)r′(t)ds

=
0∫

−∞
(p(s− t)− p(s + t))r′(t)dt.

(B.1.10)

Since s < 0, with t < 0 we have |s− t| ≤ |s + t| = |s|+ |t|; and since p is even and
nonincreasing on R+, we conclude that p(s− t) = p(|s− t|) ≥ p(|s + t|) = p(s + t),
so that p(s − t) − p(s + t) ≥ 0 when s, t ≤ 0. Since, in addition, r′(t) ≥ 0 when
t ≤ 0, the concluding quantity in (B.1.10) is nonnegative. (a) is proved.

To prove (b), observe that the facts that f+ is even, continuously differentiable
and bounded are evident. All we should prove is that f+ is nondecreasing on R+; by
the standard approximation argument, it suffices to verify this fact when p ∈ P is
smooth. In the latter case we have f ′

+(s) =
∫

f(s−t)p′(t)ds =
∫ 0

−∞(f(s−t)−f(s+
t))p′(t)dt. Assuming s ≥ 0, t ≤ 0, and taking into account that f is even and is
nondecreasing on R+, we have f(s−t) = f(|s−t|) = f(|s|+|t|) ≥ f(|s+t|) = f(s+t);
since p′(t) ≥ 0 when t ≤ 0, we conclude that

∫ 0

−∞(f(s − t) − f(s + t))p′(t)dt ≥ 0
when s ≥ 0. (b) is proved.

To prove (c), note that the inclusions ζ + δ ∈ Π, ζ̃ + δ̃ ∈ Π are given by (a),
and the fact that both these random variables are regular is evident. It remains
to verify that ζ + δ �m ζ̃ + δ̃. Given f ∈ Mb, let f+(s) = 1

2d

∫ s+d

s−d
f(r)dr, so that

f+ ∈Mb by (b). We have

E{f(ζ + δ)} = E{f+(ζ)} ≥ E{f+(ζ̃)} = E{f(ζ̃ + δ̃)},
where ≥ is due to Proposition 4.4.2 combined with ζ �m ζ̃ and f+ ∈ Mb. The
resulting inequality, by Proposition 4.4.2, implies that ζ +δ �m ζ̃ + δ̃. (c) is proved.

Now we can complete the proof of (ii). Let the premise of (ii) hold true.
Observe that from (a) it follows that ξ + ξ̄ ∈ Π, η + η̄ ∈ Π, so that all we need
is to verify that η + η̄ �m ξ + ξ̄. Let us first verify this conclusion in the case
when all four random variables ξ,...,η̄ are regular. Denoting the density of a regular
random variable ω ∈ Π by pω and taking into account that such a density is even,
for f ∈Mb we have

E{f(ξ + ξ̄)} =
∫

f(s)(pξ ∗ pξ̄)(s)ds =
∫

pξ̄(s) (f ∗ pξ)(s)︸ ︷︷ ︸
f+(s)

ds,

E{f(ξ + η̄)} =
∫

f(s)(pξ ∗ pη̄)(s)ds =
∫

pη̄(s) (f ∗ pξ)(s)︸ ︷︷ ︸
f+(s)

ds,

and f+ ∈Mb by (b). Since η̄ �m ξ̄ and f+ ∈Mb, Proposition 4.4.2 implies that

E{f(ξ + ξ̄)} ≤ E{f(ξ + η̄)}. (B.1.11)

Completely similar reasoning demonstrates that

E{f(ξ + η̄)} ≤ E{f(η + η̄)}. (B.1.12)
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Combining (B.1.11) and (B.1.12), we get

E{f(ξ + ξ̄)} ≤ E{f(η + η̄)}.
This inequality holds true for all f ∈ Mb; applying Proposition 4.4.2, we get
ξ + ξ̄ �m η + η̄, as claimed.

We have proved (ii) in the special case when, in addition to the premise of
(ii), the four random variables ξ,..,η̄ are regular. To justify the validity of (ii) in the
general case, let δκ

i , κ = 1, 2, 3, 4, i = 1, 2, ..., be independent of each other and of
the variables ξ,...,η̄ and uniformly distributed in [−1/i, 1/i] random variables. For
a fixed i, setting ξi = ξ + δ1

i , ξ̄i = ξ̄ + δ2
i , ηi = η + δ3

i , η̄i = η̄ + δ4
i , we get four

independent random variables. By (c), these variables belong to Π, are regular and
satisfy

ηi �m ξi, η̄i � ξ̄i,

whence, by the already proved version of (ii),

ηi + η̄i �m ξi + ξ̄i,

and thus, by Proposition 4.4.2, for every f ∈Mb one has

E{f(ηi + η̄i)} ≥ E{f(ξi + ξ̄i)}.
This combines with the evident relations

lim
i→∞

E{f(ηi + η̄i) = E{f(η + η̄)}, lim
i→∞

E{f(ξi + ξ̄i) = E{f(ξ + ξ̄)}

to imply that E{f(η + η̄)} ≥ E{f(ξ + ξ̄)}. Since f ∈ Mb is arbitrary, Proposition
4.4.2 implies that η + η̄ �m ξ + ξ̄. �

B.1.6 Theorem 4.4.6

The case of L = 1 is evident, so that in the sequel we assume that L > 1.

10. We start with the following

Lemma B.1.3. Let p1, ..., pL, q1,...,qL be unimodal and symmetric w.r.t. 0
probability densities such that p� �m q�, 1 ≤ � ≤ L, and T be a symmetric w.r.t.
the origin convex compact set in R

L. Then∫
T

p1(x1)...pL(xL)dx ≥
∫
T

q1(x1)...qL(xL)dx. (B.1.13)

Proof. By evident reasons it suffices to prove the lemma in the particular case
when p�(·) = q�(·) when 1 ≤ � ≤ L− 1. Thus, we want to prove that if p1, ..., pL, qL

are symmetric and unimodal w.r.t. 0 probability densities and p� �m q�, then∫
T

p1(x1)...pL−1(xL−1)pL(xL)dx ≥
∫
T

p1(x1)...pL−1(xL−1)qL(xL)dx. (B.1.14)



SOME AUXILIARY PROOFS 477

Observe that if p is an unimodal and symmetric w.r.t. 0 probability density on the
axis, then there exists a sequence {pt}∞t=1 of probability densities on the axis such
that

— every pt is a convex combination of the densities of uniform symmetric
w.r.t. 0 distributions;

— the sequence {pt} converges to p in the sense that∫
f(s)pt(s)ds →

∫
f(s)p(s)ds as t →∞

for every bounded piecewise continuous function f on the axis.

Approximating p1,...,pL−1 in this fashion, we see that it suffices to verify
(B.1.14) under the assumption that p1, ..., pL−1 are densities of uniform distribu-
tions supported on symmetric w.r.t. 0 segments Σ1, ...,ΣL−1.

To proceed, we need the following fundamental fact:

Symmetrization Principle [Brunn-Minkowski] Let S ⊂ R
n, n > 1,

be a nonempty convex compact set, e ∈ R
n be a unit vector, and ∆ be

the projection of S onto the axis Re: ∆ = [minx∈S eT x,maxx∈S eT x].
Then the function

f(s) =
(
mesn−1{x ∈ S : eT x = s}

) 1
n−1

is concave and continuous on ∆.

Now let Σ = Σ1 × ...×ΣL−1 ×R, T̂ = T ∩Σ, so that T̂ is a convex compact set in
R

L, and let
f(s) = mesn−1{x ∈ T̂ : xL = s}.

The function f(s) is even; denoting by ∆ the projection of T̂ onto the xL axis and
applying the Symmetrization Principle, we conclude that f

1
L−1 (s) is concave, even

and continuous on ∆, whence, of course, f
1

L−1 (s) is nonincreasing on ∆ ∩ R+. We
see that the function f(s) is even and nonnegative and is nonincreasing on R+,
whence ∫

f(s)pL(s)ds ≥
∫

f(s)qL(s)ds (B.1.15)

due to pL �m qL and Proposition 4.4.2. It remains to note that with p� being
the uniform densities on Σ�, 1 ≤ � ≤ L − 1, the left and the right hand sides in
(B.1.14) are proportional, with a common positive proportionality coefficient, to
the respective sides in (B.1.15). Lemma is proved. �

20. Lemma B.1.3 says that the Majorization Theorem is valid under the
additional assumption that all random variables ζ�, η� are regular, and all we need
is to get rid of this extra assumption. This we do next.

20.1. Let f(x) be an even continuous and nonnegative function on R
L that

has a bounded support and is quasiconcave, so that for all a, 0 < a ≤ f(0) = max f

the sets {x : f(x) ≥ a} are convex compacts symmetric w.r.t. the origin. We claim
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that under the premise of the Majorization Theorem we have

E{f([ξ1; ...; ξL])} ≥ E{f([η1; ...; ηL])}. (B.1.16)

Indeed, for i = 1, 2, ..., let δi
�, ζ

i
�, 1 ≤ � ≤ L, be random variables uniformly dis-

tributed in [−1/i, 1/i] and independent of each other and of ξ and η variables. For
a fixed i, setting ξi

� = ξ� + δi
�, ηi

� = η� + ζi
�, we get a collection of 2L independent

regular random variables from Π, and ξi
� �m ηi

� by Proposition 4.4.4.(ii). Observe
that since f is with a bounded support and continuous, we clearly have

E{f([ξi
1; ...; ξ

i
L])} → E{f([ξ1; ...; ξL)}, E{f([ηi

1; ...; η
i
L])} → E{f([η1; ...; ηL])}

(B.1.17)
as i →∞. At the same time, we have

E{f([ξi
1; ...; ξ

i
L])} ≥ E{f([ηi

1; ...; η
i
L])} ∀i. (B.1.18)

Indeed, f can be represented as the limit of a uniformly converging sequence {f t}∞t=1

of functions that are weighted sums, with nonnegative weights, of the characteristic
functions χa(·) of the sets {x : f(x) ≥ a} associated with positive values of a. Since
these sets are convex compacts symmetric w.r.t. the origin, Lemma B.1.3 as applied
to regular random variables ξi

�, ηi
� implies that

E{χa([ξi
1; ...; ξ

i
L])} ≥ E{χa([ηi

1; ...; η
i
L])}

whence
E{f t([ξi

1; ...; ξ
i
L])} ≥ E{f t([ηi

1; ...; η
i
L])} ∀t.

As t → ∞, the left and the right hand sides in this inequality converge to the
respective sides in (B.1.18), so that the latter inequality indeed takes place.

Combining (B.1.18) and (B.1.17), we arrive at (B.1.16).

20.2. Now we can complete the proof of the Majorization Theorem. The char-
acteristic function χ of S clearly is the pointwise limit of a uniformly bounded se-
quence {χt}∞t=1 of functions with the properties imposed on f in item 20.1, whence,
by the latter item,

E{χt([ξ1; ...; ξL])} ≥ E{χt([η1; ...; ηL])}.
As t →∞, the left and the right hand sides in the latter inequality converge to the
respective sides in the target inequality (4.4.7), thus implying its validity. �

B.1.7 Proposition 4.5.4

As it is explained immediately after formulating Proposition 4.5.4, the situation can
be reduced to the case when z0 = 0 and z1 = ... = zL = 1, which we assume from
now on. Besides this, we assume that ζ1, ..., ζL are the random variables (4.5.17).

10. We start with the following conditional statement:

(!) If (4.5.16) holds true for all affine functions f and all functions f of

the form
f(s) = max[0, a + s],
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then (4.5.16) holds true for all piecewise linear convex functions f .

Indeed, every piecewise linear convex function f(·) is a linear combination, with
nonnegative coefficients λi, of an affine function f0 and functions fi, i = 1, ..., I =
I(f), of the form max[0, a + s]. Under the premise of (!), we have

Φ[fi, z] = E{fi(
∑

�

ζ�)}, i = 0, 1, ..., I(f), (B.1.19)

whence by the results of Proposition 4.5.3

Φ[f, z] = Φ[
I∑

i=0

λifi, z] ≤
I∑

i=0

λiΦ[fi, z] = E{f(
∑

�

ζ�)},

where the concluding equality is given by (B.1.19) combined with the fact that∑I
i=0 λifi = f . Thus, Φ[f, z] ≤ E{f(

∑
�

ζ�)}; since the opposite inequality always

is true, we get Φ[f, z] = E{f(
∑
�

ζ�)}, as claimed in (!).

20. In view of (!), all we need in order to prove Proposition 4.5.4 is to verify that
the relation (4.5.16) indeed takes place when f is linear or f(s) = max[0, a + s].

When f is linear, relation (4.5.16) holds true independently of whether
ζ1, ..., ζL are linked to each other by (4.5.17) or are arbitrary random variables
with given distributions. Indeed, when f(s) = a + bs, then, setting

γ�(u�) =
1
L

a + bu�,

we clearly ensure that ∑
�

γ�(u�) = f(
∑

�

u�) ∀u ∈ R
L,

which, by (4.5.12), implies that Φ[f, z] ≤ ∑
�

E{γ�(ζ�)}; but the latter quantity is

exactly E{f(
∑
�

ζ�)} ≤ Φ[f, z], so that Φ[f, z] = E{f(
∑
�

ζ�)}.

Now let us prove that (4.5.16) takes place when f(s) = max[0, a+ s]. To save
notation, let a = 0 (the case of an arbitrary a is completely similar). As above, all
we need is to verify that

Φ[f, z] ≤ E{max[0,
∑

�

ζ�]}. (B.1.20)

Let φ(t) =
∑
�

φ�(t), t ∈ (0, 1). There are three possibilities:

a) φ(t) ≤ 0 for all t ∈ (0, 1);

b) φ(t) ≥ 0 for all t ∈ (0, 1);

c) φ(t−) < 0 and φ(t+) > 0 for appropriately chosen t±, 0 < t− < t+ < 1.

In the case of a), the nondecreasing functions φ�(t) are above bounded, and 0 ≥
limt→1−0 φ(t) =

∑
�

d�, d� = limt→1−0 φ�(t). Setting γ�(u�) = max[0, u� − d�], we
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clearly get ∑
�

γ�(u�) ≥ max[0,
∑

�

(u� − d�)] ≥ max[0,
∑

�

u�],

where the concluding inequality is given by
∑
�

d� ≤ 0. Invoking (4.5.12), we con-

clude that

Φ[f, z] ≤
∑

� E{max[0, ζ� − d�]} =
∑

�

∫ 1

0
max[0, φ�(t)− d�]dt

= 0 =
∫ 1

0
max[0,

∑
� φ�(t)]dt = E{f(

∑
� ζ�)},

where the second and the third equalities follow from the fact that φ�(t) ≤ d� and
φ(t) ≤ 0 when t ∈ (0, 1). The resulting inequality is exactly the relation (B.1.20)
we need.

In the case of b), the nondecreasing functions φ� are below bounded on (0, 1),
and 0 ≤ limt→+0 φ(t) =

∑
� d�, d� = limt→+0 φ�(t). Setting γ�(u�) = max[d�, u�],

we ensure that ∑
�

γ�(u�) ≥ max[0,
∑

�

u�] ∀u

due to
∑

� d� ≥ 0, whence, invoking (4.5.12),

Φ[f, z] ≤∑
� E{max[d�, ζ�]} =

∑
�

∫ 1

0
max[d�, φ�(t)]dt

=
∫ 1

0
[
∑

� φ�(t)]dt =
∫ 1

0
max[0,

∑
� φ�(t)]dt = E{f(

∑
� ζ�)},

where the second and the third equalities follow from the fact that φ�(t) ≥ d� and
φ(t) ≥ 0 when t ∈ (0, 1). The resulting inequality is exactly (B.1.20).

In the case of c), the quantity t∗ = sup{t ∈ (0, 1) : φ(t) ≤ 0} is well defined
and belongs to (0, 1); since φ� are continuous from the left at t∗, we have

0 ≥ φ(t∗) =
∑

�

d−
� , d−� = φ�(t∗),

and since φ(t) > 0 when t > t∗, we have

0 ≤ lim
t→t∗+0

φ(t) =
∑

�

d+
� , d+

� = lim
t→t∗+0

φ�(t).

Since φ� are nondecreasing, we have d+
� ≥ d−� ; since

∑
� d−� ≤ 0 ≤

∑
� d+

� , we
can find reals d� ∈ [d−

� , d+
� ] in such a way that

∑
� d� = 0. Setting γ�(u�) =

max[0, u� − d�], we clearly get∑
�

γ�(u�) ≥ max[0,
∑

�

u� −
∑

�

d�] = max[0,
∑

�

u�],

whence, invoking (4.5.12),

Φ[f, z] ≤∑
� E{max[0, ζ� − d�]} =

∑
�

∫ 1

0
max[0, φ�(t)− d�]dt

=
∑

�

∫ 1

t∗
[φ�(t)− d�]dt =

∫ 1

t∗
φ(t)dt ≤

∫ 1

t∗
max[0, φ(t)]dt = E{f(

∑
� ζ�)},

where the second equality follows from the fact that φ�(t)− d� ≤ d−� − d� ≤ 0 when
t ≤ t∗ and φ�(t)− d� ≥ d+

� − d� ≥ 0 when t > t∗, and the third equality is given by∑
� d� = 0. The resulting inequality is exactly (B.1.20). �
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B.1.8 Theorem 4.5.9

In view of Lemma 4.5.8, the only reason for Theorem 4.5.9 to need a proof rather
than to be qualified as an immediate corollary of Proposition 4.2.2 is that the
function F (that now plays the role of function z0 + Φ(z1, ..., zL) in Proposition
4.2.2) is not finite-valued, which was assumed in the Proposition. However, the fact
that the domain of F is not the entire space clearly does not affect the conclusion
that Γo

ε (and therefore Γε) is contained in the feasible set of the chance constraint
(4.5.24). All remaining assertions are readily given by Lemma B.1.1 (where one
should set z = (W,w), H(z) = F (W,w) and a = ln(ε)) combined with Remark
4.1.2. �

B.2 S-LEMMA

Theorem B.2.1. [S-Lemma] (i) [homogeneous version] Let A,B be symmetric
matrices of the same size such that x̄T Ax̄ > 0 for certain x̄. Then the implication

xT Ax ≥ 0 ⇒ xT Bx ≥ 0

holds true if and only if
∃λ ≥ 0 : B � λA.

(ii) [inhomogeneous version] Let A,B be symmetric matrices of the same size,
and let the quadratic form xT Ax + 2aT x + α be strictly positive at certain point
x̄. Then the implication

xT Ax + 2aT x + α ≥ 0 ⇒ xT Bx + 2bT x + β ≥ 0 (B.2.1)

holds true if and only if

∃λ ≥ 0 :
[

B − λA bT − λaT

b− λa β − λα

]
� 0.

Proof. (i): In one direction the statement is evident: if B � λA with λ ≥ 0,
then xT Bx ≥ λxT Ax for all x and therefore xT Ax ≥ 0 implies xT Bx ≥ 0.

Now assume that xT Ax ≥ 0 implies that xT Bx ≥ 0, and let us prove that
B � λA for certain λ ≥ 0. Consider the optimization problem

Opt = min
X
{Tr(BX) : Tr(AX) ≥ 0, Tr(X) = 1, X � 0} . (B.2.2)

This problem clearly is strictly feasible. Indeed, by assumption there exists X̄ =
x̄x̄T � 0 such that Tr(AX̄) > 0; adding to X̄ a small positive definite matrix
and normalizing the result to have unit trace, we get a strictly feasible solution to
(B.2.2). Moreover, the problem is below bounded, since its feasible set is compact.
Applying Semidefinite Duality, we conclude that there exists λ ≥ 0 such that B −
λA � Opt · I. We see that it suffices for us to prove that Opt ≥ 0.
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Problem (B.2.2) is clearly solvable. Let X∗ be its optimal solution, and let
Ā = X

1/2
∗ AX

1/2
∗ , B̄ = X

1/2
∗ BX

1/2
∗ . Then

Tr(Ā) = Tr(AX∗) ≥ 0, Tr(B̄) = Tr(BX∗) = Opt, xT Āx ≥ 0 ⇒ xT B̄x ≥ 0.

Now let Ā = UΛUT be the eigenvalue decomposition of Ā, so that U is orthogonal
and Λ is diagonal, and let ζ be a random vector with independent coordinates
taking values ±1 with probability 1/2, and let ξ = Uζ. For all realizations of ζ, we
have

ξT Āξ = ζT UT (UΛUT )Uζ = ζT Λζ = Tr(Λ) = Tr(Ā) ≥ 0,

whence ξT B̄ξ ≥ 0. Taking expectation, we have

0 ≤ E{ξT B̄ξ} = E{ζT (UT B̄U)ζ} = E{Tr([UT B̄U ][ζζT ])}
= Tr([UT B̄U ]E{ζζT }︸ ︷︷ ︸

=I

) = Tr([UT B̄U ]) = Tr(B̄) = Opt.

Thus, Opt ≥ 0, as claimed.

(ii): Let us pass from original inhomogeneous quadratic forms on R
n to their

homogenizations:

fA(x) ≡ xT Ax + 2aT x + α

�→ f̂A([x; t]) = [x; t]T Â[x; t] ≡ xT Ax + 2taT x + αt2,

fB(x) ≡ xT Bx + 2bT x + β

�→ f̂B([x; t]) = [x; t]T B̂[x; t] ≡ xT Bx + 2tbT x + βt2.

Claim: In the situation of (ii), ∃ȳ : ȳT Âȳ > 0, and implication (B.2.1) is equivalent

to the implication
yT Ây ≥ 0 ⇒ yT B̂y ≥ 0 (∗)

Claim ⇒ Inhomogeneous S-Lemma: Combining Claim and Homoge-
neous S-Lemma as applied to matrices Â, B̂, we conclude that (B.2.1) is equivalent
to the existence of a λ ≥ 0 such that B̂ � λÂ, which is exactly what is stated by
the Inhomogeneous S-Lemma.

Justifying Claim: We clearly have [x̄; 1]T Â[x̄; 1] = fA(x̄) > 0. Further, if
(∗) is valid, then so is (B.2.1), since fA(x) = f̂A([x; 1]), fB(x) = f̂B([x; 1]). We
see that all we need is to show that the validity of implication (B.2.1) implies the
validity of implication (∗). Thus, assume that (B.2.1) is valid, and let us prove that
(∗) takes place. Let [x; t] be such that [x; t]T Â[x; t] ≥ 0; we should prove that then
[x; t]T B̂[x; t] ≥ 0. The case of t �= 0 is trivial due to

[x; t]T Â[x; t] ≥ 0 ⇒ [t−1x; 1]T Â[t−1x; 1]︸ ︷︷ ︸
fA(x)

≥ 0 ⇒ [t−1x; 1]T B̂[t−1x; 1]︸ ︷︷ ︸
fB(x)

⇒ [x; t]T B̂[x; t] ≥ 0.

In order to prove that [x; 0]T Â[x; 0] ≥ 0 implies that [x; 0]T B̂[x; 0] ≥ 0, it suffices
to verify that the point y = [x; 0] can be represented as the limit of a sequence
yi = [xi; ti] with ti �= 0 and [yi]T Âyi ≥ 0. Indeed, in this situation, due to the
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already proved part of (∗), we would have [yi]T B̂yi ≥ 0 for all i, and passing to
limit as i →∞, we would get the required relation yT B̂y ≥ 0.

To prove the aforementioned approximation result, let us pass to the coordi-
nates zj of a point z in the eigenbasis of Â, so that

yT Ây =
∑

j

λjy
2
j ≥ 0,

where λ1 ≥ λ2 ≥ ... are the eigenvalues of Â. Observe that λ1 > 0, since, as
we remember, there exists ȳ such that ȳT Âȳ > 0. It follows that replacing the
first coordinate in y with (1+1/i)y1 and keeping the remaining coordinates intact,
we get points ŷi such that ŷi → y, i → ∞, and [ŷi]T Âŷi > 0. Since the latter
inequalities are strict, we can perturb slightly the points ŷi to get a sequence {yi}
that still converges to y, still satisfies [yi]T Âyi > 0, and, in addition, is comprised
of points with nonzero t-coordinates. �

B.3 APPROXIMATE S-LEMMA

Theorem B.3.1. [11] Let ρ > 0, A,B,B1, ..., BJ be symmetric m×m matrices

such that B = bbT , Bj � 0, j = 1, ..., J ≥ 1, and B +
J∑

j=1

Bj � 0.

Consider the optimization problem

Opt(ρ) = max
x

{
xT Ax : xT Bx ≤ 1, xT Bjx ≤ ρ2, j = 1, ..., J

}
(B.3.1)

along with its semidefinite relaxation

SDP(ρ) = max
X

{
Tr(AX) : Tr(BX) ≤ 1, Tr(BjX) ≤ ρ2,

j = 1, ..., J,X � 0
}

= min
λ,{λj}

{
λ + ρ2

J∑
j=1

λj : λ ≥ 0, λj ≥ 0, j = 1, ..., J,

λB +
J∑

j=1

λjBj � A
}
.

(B.3.2)

Then there exists x̄ such that
(a) x̄T Bx̄ ≤ 1
(b) x̄T Bj x̄ ≤ Ω2(J)ρ2, j = 1, ..., J

(c) x̄T Ax̄ = SDP(ρ),
(B.3.3)

where Ω(J) is a universal function of J such that Ω(1) = 1 and

Ω(J) ≤ 9.19
√

ln(J), J ≥ 2. (B.3.4)

In particular,
Opt(ρ) ≤ SDP(ρ) ≤ Opt(Ω(J)ρ). (B.3.5)

Proof. 10. First of all, let us derive the “in particular” part of the statement
from its general part. Indeed, given that x̄ satisfying (B.3.3) does exist, observe that
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x̄ is a feasible solution to the problem defining Opt(Ω(J)ρ), whence Opt(Ω(J)ρ) ≥
x̄T Ax̄ = SDP(ρ). The first inequality in (B.3.5) is evident.

20. The problem

SDP(ρ) = max
X

{
Tr(AX) : Tr(BX) ≤ 1,Tr(BjX) ≤ ρ2, 1 ≤ j ≤ J, X � 0

}
(B.3.6)

clearly is strictly feasible and solvable; by this reason, the semidefinite dual of this
problem is solvable with the optimal value SDP(ρ), which is nothing but the second
equality in (B.3.2).

30. Consider the case J = 1, where we should prove that here Ω(J) = 1. This can
be immediately derived from the following nice fact:

Theorem [95] Let A, B, B1 be three m×m symmetric matrices with

m ≥ 3 such that certain linear combination of the matrices is � 0. Then

the joint range I = {(xT Ax, xT Bx, xT B1x)T : x ∈ R
m} ⊂ R

3 of the

associated quadratic forms is a closed convex set.

We, however, prefer to present an alternative straightforward proof.

30.0. Since B � 0, B1 � 0 and B + B1 � 0, problem (B.3.6) clearly is
solvable. All we need is to prove that this problem admits an optimal solution X∗
of rank ≤ 1. Indeed, such a solution is representable in the form x̄x̄T for certain
vector x̄; from the constraints of (B.3.6) it follows that x̄ satisfies (B.3.3.a–b) with
Ω(1) = 1, and from the optimality of X∗ = x̄x̄T — that x̄ satisfies (B.3.3.c) as well.
Now, when proving that (B.3.6) admits an optimal solution with rank ≤ 1, we may
assume that B1 � 0. Indeed, assuming that in the latter case the statement we
are interested in is true, we would conclude that whenever ε > 0, the optimization
problem

Optε = max
X

{
Tr(AX) : Tr(BX) ≤ 1, Tr([B1 + εI]X) ≤ ρ2, X � 0

}
(Pε)

has an optimal solution Xε
∗ of rank ≤ 1. Since B + B1 � 0, the matrices Xε

∗ are
bounded, so that, by compactness argument, there exists a matrix X∗ of rank ≤ 1
such that

Tr(AX∗) ≤ lim sup
ε→+0

Optε, Tr(BX∗) ≤ 1, Tr(B1X∗) ≤ ρ2.

We see that X∗ is a feasible solution to (B.3.6), and all we need is to prove that
this solution is optimal, that is, to prove that SDP(ρ) ≤ lim infε→+0 Optε. To this
end, let Y∗ be an optimal solution to (B.3.6). For every γ, 0 < γ < 1, the matrix
γY∗ clearly is feasible for problems (Pε) with all small enough ε, whence γSDP(ρ) ≤
lim supε→+0 Optε. Since γ < 1 is arbitrary, we get SDP(ρ) ≤ lim infε→+0 Optε, as
required.

Thus, we may focus on the case when B1 � 0, and all we need is to prove
that in this case (B.3.6) has an optimal solution of rank ≤ 1.

30.1. Passing in the optimization problem in (B.3.1) from variables x to
variables B

1/2
1 x, we may assume w.l.o.g. that B1 = I; in the latter case, passing
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to the orthonormal eigenbasis of A, we may further assume that A is diagonal:
A = Diag{λ1, ..., λm} with λ1 ≥ λ2 ≥ ... ≥ λm.

30.2. Problem (B.3.6) clearly is solvable; all we need to prove is that this
problem has an optimal solution X∗ that is a matrix of rank ≤ 1.

30.3. Assuming that SDP(ρ) ≤ 0, the optimization problem in (B.3.6) clearly
has an optimal rank 0 solution X∗ = 0, and we are done. Thus, assume that
SDP(ρ) > 0, which implies that λ1 > 0. Note that since A is diagonal and B1 = I,
we have

SDP(ρ) ≤ max
X

{
Tr(AX) : Tr(X) ≤ ρ2, X � 0

}
= λ1ρ

2. (B.3.7)

30.4. It is possible that λ1 = λ2. We clearly have SDP(ρ) ≤ λ1ρ
2; on the

other hand, there exists a vector x̄, ‖x̄‖2 = ρ, that is in the linear span of the first
two basic orths and is orthogonal to b. The rank 1 matrix X∗ = x̄x̄T clearly is
feasible for (B.3.6), and for this matrix Tr(AX∗) = λ1ρ

2, so that X∗ is an optimal
solution to (B.3.6) by (B.3.7). Thus, (B.3.6) has a rank 1 optimal solution, and we
are done.

30.5. From now on we assume that λ1 > λ2. There are two possible cases:
one where (B.3.6) has an optimal solution X∗ with Tr(BX∗) < 1 (“Case I”) and
another one where Tr(BX∗) = 1 for every optimal solution X∗ to (B.3.6). Assume,
first, that we are in Case I, and let X∗ be an optimal solution to (B.3.6) with
Tr(BX∗) < 1. Let X∗ = V T V , let vi be the columns of V and pi be the Euclidean
norms of the vectors vi, so that vi = pifi, ‖fi‖2 = 1. We clearly have

(a) SDP(ρ) =
∑
i

λi(X∗)ii =
∑
i

λip
2
i ,

(b) ρ2 ≥ Tr(B1X∗) = Tr(X∗) =
∑
i

p2
i ,

(c) 1 ≥ Tr(BX∗) = Tr(bbT V T V ) = ‖∑
i

bivi‖22.
(B.3.8)

We claim that in fact pi = 0 for i > 1, so that X∗ is a rank 1 optimal solution,
as required. Indeed, assuming that there exists i∗ > 1 with pi∗ > 0 and given ε,
0 ≤ ε < p2

i∗ , let us pass from V to a new matrix V+ as follows: we replace in V

the column vi∗ = pi∗fi∗ , with its multiple v+
i∗ = γfi∗ , where γ > 0 is such that

‖v+
i∗‖22 = p2

i∗ − ε, and replace column v1 = p1f1 in V with the column v+
1 = θf1,

where θ > 0 is such that ‖v+
1 ‖22 = p2

1 + ε; all remaining columns in V+ are exactly
the same as in V . Setting X+ = [V+]T V+, we clearly have X+ � 0, Tr(B1X+) =
Tr(X+) = Tr(X∗) ≤ ρ2 and Tr(AX+) = Tr(AX∗) + (λ1 − λi∗)ε > Tr(AX∗) (recall
that λ1 ≥ λ2 ≥ ... ≥ λm and λ1 > λ2). On the other hand, for small ε > 0,
X+ is close to X∗, so that for small enough ε > 0 we have Tr(BX+) < 1 due to
Tr(BX∗) < 1. Thus, for small ε > 0 X+ is a feasible solution to (B.3.6) that is
better than X∗ in terms of the objective, which is a contradiction. Thus, pi = 0 for
i > 1, as claimed.

30.6. It remains to consider Case II. Let X∗ be an optimal solution to (B.3.6),
and let V, vi, pi be defined exactly as in 30.5, so that (B.3.8) takes place. Since we
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are in Case II, the vector e =
∑
i

bivi is of Euclidean norm 1. Let I = {i : bi �= 0}.
We claim that all vectors vi, i ∈ I, are proportional to e. Indeed, assume that i ∈ I

and vi is not proportional to e, so that the vectors vi and wi = e− bivi are nonzero
and are not proportional to each other. Let v+

i be the vector of exactly the same
Euclidean norm as vi and of the direction opposite to the one of the vector biwi,
let V+ be the matrix obtained from V by replacing the column vi with the column
v+

i , and let X+ = [V+]T V+. By construction, the Euclidean norms of the columns
in V+ are the same as those of columns in V , whence

Tr(AX+) = Tr(AX∗) = SDP(ρ), Tr(B1X+) = Tr(B1X∗) ≤ ρ2. (B.3.9)

At the same time, by construction

Tr(BX+) = ‖V+b‖22 = ‖biv
+
i + wi‖22 = b2

i ‖v+
i ‖22 + 2(v+

i )T (biwi) + ‖wi‖22
= b2

i ‖vi‖22 − 2‖bivi‖2‖wi‖2 + ‖wi‖22
< b2

i ‖vi‖22 + 2biv
T
i wi + ‖wi‖22 = ‖bivi + wi‖22 = 1,

where the strict inequality is given by the fact that bi �= 0 and the nonzero vectors
vi and wi are not proportional to each other. Invoking (B.3.9), we conclude that
X+ is an optimal solution to (B.3.6) with Tr(BX+) < 1, which is impossible, since
we are in Case II.

Thus, all vi, i ∈ I, are proportional to e. Replacing in V columns vi, i �∈ I,
with columns of the same Euclidean norms proportional to e, we get a matrix V+

such that (a) all columns in V+ are proportional to e, (b) the columns in V+ are of
the same Euclidean norms as the corresponding columns in V , and (c) V+b = V b.
From (b), (c) it follows that X+ = [V+]T V+ is a feasible solution to (B.3.6) with
the same value of the objective as the one at X∗, i.e., is optimal for the problem,
while (a) implies that V+ = efT for certain f , so that X+ is a rank 1 solution, and
we are done.

40. Now consider the case of J > 1. Let X∗ be an optimal solution to the semidef-
inite program defining SDP(ρ), and let

Â = X
1/2
∗ AX

1/2
∗ .

Let also
Â = UΛUT

be the eigenvalue decomposition of Â, so that U is orthogonal and Λ is diagonal.
Consider the random vector

ξ = X
1/2
∗ Uζ,
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where ζ ∈ R
m is random vector with independent coordinates taking values ±1

with probabilities 0.5. We have

(a) ξT Aξ = ζT UT X
1/2
∗ AX

1/2
∗ Uζ = ζT UT ÂUζ = ζT Λζ

= Tr(Λ) = Tr(UΛUT ) = Tr(Â) = Tr(AX∗)
= SDP(ρ),

(b) E{ξT Bξ} = Tr(BE{ξξT }) = Tr(BX
1/2
∗ UE{ζζT }UT X

1/2
∗ )

= Tr(BX∗) ≤ 1,

(c) E{ξT Bjξ} = Tr(BjE{ξξT }) = Tr(BjX
1/2
∗ UE{ζζT }UT X

1/2
∗ )

= Tr(BjX∗) ≤ ρ2

(B.3.10)

(we have used the fact that X∗ is an optimal solution to the problem defining
SDP(ρ)).

50. We need the following

Lemma B.3.2. One has

Prob{ξT Bξ > 1} ≤ 2/3. (B.3.11)

Proof. Recalling that B = bbT , we have

ξT Bξ = ζT UT X
1/2
∗ bbT X

1/2
∗ Uζ = (βT ζ)2,

where β = UT X
1/2
∗ b. From (B.3.10.b) it follows that E{(βT ζ)2} = ‖β‖22 ≤ 1; the

fact that in this situation one has Prob{|βT ζ| > 1} ≤ 2/3 is proved in Lemma A.1
in [11]. �

60. We next need the following fact.

Lemma B.3.3. Let e1, ..., em be deterministic vectors such that
m∑

i=1

‖ei‖22 ≤ 1.

Then

∀(t > 1) : Prob

⎧⎨⎩‖
m∑

j=1

ζiei‖2 ≥ t

⎫⎬⎭ ≤ φ(t) = inf
r:1<r<t

r2 exp{−(t− r)2/16}
r2 − 1

.

(B.3.12)
Proof uses the following fundamental fact:

Talagrand Inequality [see, e.g., [67]] Let η1, ..., ηm be independent

random vectors taking values in unit balls of the respective finite-di-

mensional vector spaces (E1, ‖ · ‖(1)),...,(Em, ‖ · ‖(m)), and let η =
(η1, ..., ηm) ∈ E = E1 × ... × Em. Let us equip E with the norm

‖(z1, ..., zm)‖ =

√
m∑

i=1

‖zi‖2(i), and let Q be a closed convex subset of

E. Then

E

{
exp{

dist2‖·‖(η, Q)
16

}
}
≤ 1

Prob{η ∈ Q} .
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Let us specify the spaces (Ei, ‖ · ‖(i)), i = 1, ..., m, as (R, | · |), and let ηi = ζi,
i = 1, ..., m. Let, further,

Q1 = {u ∈ R
m : ‖

m∑
i=1

uiei‖2 ≤ 1}.

Observe that Q1 is a closed convex set in R
m and that this set contains the unit

‖ · ‖2-ball; indeed,

‖
m∑

i=1

uiei‖2 ≤
m∑

i=1

|ui|‖ei‖2 ≤ ‖u‖2

√√√√ m∑
i=1

‖ei‖22 ≤ ‖u‖2.

Observe, further, that

E{‖
∑

i

ζiei‖22} =
∑

i

‖ei‖22 ≤ 1,

whence, by Tschebyshev Inequality,

Prob

{
‖
∑

i

ζiei‖2 > r

}
≡ Prob{ζ �∈ rQ1} ≤

1
r2
∀r > 1. (B.3.13)

For t > r > 1 we have

‖∑
i

uiei‖2 > t ⇒ u �∈ t
r (rQ1) ⇒ u �∈ (rQ1) + ( t

r − 1)(rQ1)

⇒ dist‖·‖2(z, rQ1) ≥ ( t
r − 1)r = t− r,

where the concluding inequality follows from the fact that Q1 contains the unit
Euclidean ball centered at the origin. We now have for t > r > 1:

Prob{‖∑
i

ζiei‖2 > t} ≤ Prob
{

dist2
‖·‖2

(ζ,rQ1)

16 ≥ (t−r)2

16

}
≤ exp{− (t−r)2

16 }E{dist2
‖·‖2

(ζ,rQ1)

16 }
[Tschebyshev Inequality]

≤ exp{−(t−r)2/16}
Prob{ζ∈rQ1}

[Talagrand Inequality]
≤ exp{−(t−r)2/16}

1−1/r2 ,

where the concluding ≤ is due to

Prob{ζ �∈ rQ1} = Prob{‖
∑

i

ζiei‖2 > r} ≤ 1
r2

. �

70. Given integer J > 1, let Ω(J) = inf {t ≥ 1 : φ(t) > 1/(3J)}. Note that from
(B.3.12) it follows immediately that

J > 1 ⇒ Ω(J) ≤ C
√

ln(J) (B.3.14)
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where C is an absolute constant (computer says that it can be set to the value
9.19). Denoting by ej

i the columns of the matrix ρ−1B
1/2
j X

1/2
∗ U , we have

m∑
i=1

‖ej
i‖22 = E{‖ρ−1B

1/2
j X

1/2
∗ Uζ‖22} ≤ 1, (B.3.15)

where the concluding inequality is nothing but (B.3.10.c). Taking into account that

Prob{ξT Bjξ > a} = Prob{ζT [B1/2
j X

1/2
∗ U ]T [B1/2

j X
1/2
∗ U ]ζ > a}

= Prob{‖B1/2
j X

1/2
∗ Uζ‖22 > a} = Prob{‖

∑
i

ζie
j
i‖22 > ρ−2a}

and invoking Lemma B.3.3, we get

Prob{ξT Bjξ > ρ2t2} = Prob{‖
∑

i

ζie
j
i‖2 > t} ≤ φ(t),

whence
t > Ω(J) ⇒ Prob{ξT Bjξ > ρ2t2} <

1
3J

. (B.3.16)

Invoking Lemma B.3.2, it follows that when t > Ω(J), one has

Prob{ξ : ξT Bξ > 1 or ∃j : ξT Bjξ > ρ2t2} <
2
3

+ J
1
3J

= 1,

that is, there exists a realization ξ̃ of ξ such that

ξ̃T Bξ̃ ≤ 1, ξ̃T Bj ξ̃ ≤ t2ρ2 ∀j, 1 ≤ j ≤ J.

Since t > Ω(J) is arbitrary, there exists a realization x̄ of ξ such that

x̄T Bx̄ ≤ 1, x̄T Bj x̄ ≤ Ω2(J)ρ2 ∀j, 1 ≤ j ≤ J.

Since x̄ is a realization of ξ, we have also

x̄T Ax̄ = SDP(ρ)

by (B.3.10.a). Thus, x̄ satisfies (B.3.3). �

B.4 MATRIX CUBE THEOREM

B.4.1 Matrix Cube Theorem, Complex Case

The “Complex Matrix Cube” problem is as follows:

CMC: Let m, p1, q1,...,pL, qL be positive integers, and A ∈ Hm
+ , Lj ∈

C
pj×m, Rj ∈ C

qj×m be given matrices, Lj �= 0. Let also a partition
{1, 2, ..., L} = Irs ∪ Ics ∪ Ic

f of the index set {1, ..., L} into three non-

overlapping sets be given, and let pj = qj for j ∈ Ir
s ∪ Ic

s . With these
data, we associate a parametric family of “matrix boxes”

U [ρ] =

{
A + ρ

L∑
j=1

[LH
j ΘjRj + RH

j [Θj ]HLj ] :
Θj ∈ Zj ,
1 ≤ j ≤ L

}
⊂ Hm,

(B.4.1)
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where ρ ≥ 0 is the parameter and

Zj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Θj = θIpj
: θ ∈ R, |θ| ≤ 1}, j ∈ Ir

s
[“real scalar perturbation blocks”]

{Θj = θIpj
: θ ∈ C, |θ| ≤ 1}, j ∈ Ic

s
[“complex scalar perturbation blocks”]

{Θj ∈ C
pj×qj : ‖Θj‖2,2 ≤ 1}, j ∈ Ic

f
[“full complex perturbation blocks”] .

(B.4.2)

Given ρ ≥ 0, check whether

U [ρ] ⊂ Hm
+ . A(ρ)

Remark B.4.1. In the sequel, we always assume that pj = qj > 1 for j ∈ Ics .
Indeed, one-dimensional complex scalar perturbations can always be regarded as
full complex perturbations.

Our main result is as follows:

Theorem B.4.2. [The Complex Matrix Cube Theorem [12]] Consider, along
with predicate A(ρ), the predicate

∃Yj ∈ Hm, j = 1, ..., L such that :
(a) Yj � LH

j ΘjRj + RH
j [Θj ]HLj ∀(Θj ∈ Zj , 1 ≤ j ≤ L)

(b) A− ρ
L∑

j=1

Yj � 0.

B(ρ)

Then:

(i) Predicate B(ρ) is stronger than A(ρ) — the validity of the former predicate
implies the validity of the latter one.

(ii) B(ρ) is computationally tractable — the validity of the predicate is equiv-
alent to the solvability of the system of LMIs

(s.R) Yj ±
[
LH

j Rj + RH
j Lj

]
� 0, j ∈ Ir

s ,

(s.C)
[

Yj − Vj LH
j Rj

RH
j Lj Vj

]
� 0, j ∈ Ic

s ,

(f.C)
[

Yj − λjL
H
j Lj RH

j

Rj λjIpj

]
� 0, j ∈ Ic

f

(∗) A− ρ
L∑

j=1

Yj � 0.

(B.4.3)

in the matrix variables Yj ∈ Hm, j = 1, ..., k, Vj ∈ Hm, j ∈ Ics , and the real
variables λj , j ∈ Ic

f .

(iii) “The gap” between A(ρ) and B(ρ) can be bounded solely in terms of the
maximal size

ps = max
{
pj : j ∈ Ir

s ∪ Ic
s
}

(B.4.4)
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of the scalar perturbations (here the maximum over an empty set by definition is
0). Specifically, there exists a universal function ϑC(·) such that

ϑC(ν) ≤ 4π
√

ν, ν ≥ 1, (B.4.5)

and
if B(ρ) is not valid, then A(ϑC(ps)ρ) is not valid. (B.4.6)

(iv) Finally, in the case L = 1 of single perturbation block A(ρ) is equivalent
to B(ρ).

Remark B.4.3. From the proof of Theorem B.4.2 it follows that ϑC(0) = 4
π ,

ϑC(1) = 2. Thus,

• when there are no scalar perturbations: Ir
s = Ic

s = ∅, the factor ϑ in the
implication

¬B(ρ) ⇒ ¬A(ϑρ) (B.4.7)

can be set to 4
π = 1.27...

• when there are no complex scalar perturbations (cf. Remark B.4.1) and all
real scalar perturbations are non-repeated (Ic

s = ∅, pj = 1 for all j ∈ Ir
s ), the

factor ϑ in (B.4.7) can be set to 2.

The following simple observation is crucial when applying Theorem B.4.2.

Remark B.4.4. Assume that the data A, R1, ..., RL of the Matrix Cube prob-
lem are affine in a vector of parameters y, while the data L1, ..., LL are independent
of y. Then (B.4.3) is a system of LMIs in the variables Yj , Vj , λj and y.

B.4.2 Proof of Theorem B.4.2.(i)

Item (i) is evident.

B.4.3 Proof of Theorem B.4.2.(ii)

The equivalence between the validity of B(ρ) and the solvability of (B.4.3) is readily
given by the following facts:

Lemma B.4.5. Let B ∈ C
m×m and Y ∈ Hm. Then the relation

Y � θB + θBH ∀(θ ∈ C, |θ| ≤ 1) (B.4.8)

is satisfied if and only if

∃V ∈ Hm :
[

Y − V BH

B V

]
� 0. (B.4.9)

Lemma B.4.6. Let L ∈ C
�×m and R ∈ C

r×m.

(i) Assume that L,R are nonzero. A matrix Y ∈ Hm satisfies the relation

Y � LHUR + RHUHL ∀(U ∈ C
�×r : ‖U‖2,2 ≤ 1) (B.4.10)
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if and only if there exists a positive real λ such that

Y � λLHL + λ−1RHR. (B.4.11)

(ii) Assume that L is nonzero. A matrix Y ∈ Hm satisfies (B.4.10) if and
only if there exists λ ∈ R such that[

Y − λLHL RH

R λIr

]
� 0. (B.4.12)

Lemmas B.4.5, B.4.6 ⇒ Theorem B.4.2.(ii). All we need to prove is
that a collection of matrices Yj satisfies the constraints in B(ρ) if and only if it can
be extended by properly chosen Vj , j ∈ Ic

f , and λj , j ∈ Ics , to a feasible solution
of (B.4.3). This is immediate, since matrices Yj , j ∈ Ic

f , satisfy the corresponding
constraints B(ρ).a if and only if these matrices along with some matrices Vj satisfy
(B.4.3.s.C)) (Lemma B.4.5), while matrices Yj , j ∈ Ic

s , satisfy the corresponding
constraints B(ρ).a if and only if these matrices along with some reals λj satisfy
(B.4.3.f.C) (Lemma B.4.6.(ii)). �

Proof of Lemma B.4.5. ”if” part: Assume that V is such that[
Y − V BH

B V

]
� 0.

Then, for every ξ ∈ C
n and every θ ∈ C, |θ| = 1, we have

0 ≤
[

ξ

−θξ

]H [
Y − V BH

B V

] [
ξ

−θξ

]
= ξH(Y − V )ξ + ξHV ξ

−ξH [θB + θBH ]ξ,

so that Y � θB + θBH for all θ ∈ C, |θ| = 1, which, by evident convexity reasons,
implies (B.4.8).

”only if” part: Let Y ∈ Hm satisfy (B.4.8). Assume, on the contrary to what

should be proved, that there does not exist V ∈ Hm such that 0 �
[

Y − V BH

B V

]
,

and let us lead this assumption to a contradiction. Observe that our assumption
means that the optimization program

min
t,V

{
t :

[
tIm + Y − V BH

B V

]
� 0

}
(B.4.13)

has no feasible solutions with t ≤ 0; since problem (B.4.13) is clearly solvable,
its optimal value is therefore positive. Now, our problem is a conic problem on
the (self-dual) cone of positive semidefinite Hermitian matrices; since the problem
clearly is strictly feasible, the Conic Duality Theorem says that dual problem

max
Z∈Hm,

W∈Cm×m

⎧⎨⎩−2�
{
Tr(WHB)

}
− Tr(ZY ) :

[
Z WH

W Z

]
� 0, (a)

Tr(Z) = 1 (b)

⎫⎬⎭ (B.4.14)
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is solvable with the same — positive — optimal value as the one of (B.4.13). In
(B.4.14), we can easily eliminate the W -variable; indeed, constraint (B.4.14.a), as
it is well-known, is equivalent to the fact that Z � 0 and W = Z1/2XZ1/2 with
X ∈ C

m×m, ‖X‖2,2 ≤ 1. With this parameterization of W , the W -term in the
objective of (B.4.14) becomes −2�{Tr(XHZ1/2BZ1/2)}; as it is well-known, the
maximum of the latter expression in X, ‖X‖2,2 ≤ 1, is 2‖σ(Z1/2BZ1/2)‖1. Since
the optimal value in (B.4.14) is positive, we arrive at the following intermediate
conclusion:

(*) There exists Z ∈ Hm, Z � 0, such that

2‖σ(Z1/2BZ1/2)‖1 > Tr(ZY ) = Tr(Z1/2Y Z1/2). (B.4.15)

The desired contradiction is now readily given by the following simple observation:

Lemma B.4.7. Let S ∈ Hm, C ∈ C
m×m be such that

S � θC + θCH ∀(θ ∈ C, |θ| = 1). (B.4.16)

Then 2‖σ(C)‖1 ≤ Tr(S).

To see that Lemma B.4.7 yields the desired contradiction, note that the matri-
ces S = Z1/2Y Z1/2, C = Z1/2BZ1/2 satisfy the premise of this lemma by (B.4.8),
and for these matrices the conclusion of the lemma contradicts (B.4.15).

Proof of Lemma B.4.7: As it was already mentioned,

‖σ(C)‖1 = max
X

{
�{Tr(XCH)} : ‖X‖2,2 ≤ 1

}
.

Since the extreme points of the set {X ∈ C
m×m : ‖X‖2,2 ≤ 1} are unitary matrices,

the maximizer X∗ in the right hand side can be chosen to be unitary: XH
∗ =

X−1
∗ ; thus, X∗ is a unitary similarity transformation of a diagonal unitary matrix.

Applying appropriate unitary rotation A �→ UHAU , UH = U−1, to all matrices
involved, we may assume that X∗ itself is diagonal. Now we are in the situation
as follows: we are given matrices C,S satisfying (B.4.16) and a diagonal unitary
matrix X∗ such that ‖σ(C)‖1 = �{Tr(X∗CH)}. In other words,

‖σ(C)‖1 = �
{

m∑
�=1

(X∗)��C��

}
≤

m∑
�=1

|C��| (B.4.17)

(the concluding inequality comes from the fact that X∗ is unitary). On the other
hand, let e� be the standard basic orths in C

m. By (B.4.16), we have

θC�� + θC�� = eH
� [θC + θCH ]e� ≤ eH

� Se� = S�� ∀(θ ∈ C, |θ| = 1),

whence, maximizing in θ, 2|C��| ≤ S��, � = 1, ...,m, which combines with (B.4.17)
to imply that 2‖σ(C)‖1 ≤ Tr(S). �

Proof of Lemma B.4.6 (cf. section 5.3).
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(i), “if” part: Let (B.4.11) be valid for certain λ > 0. Then for every ξ ∈ C
m

one has

ξHY ξ ≥ λξHLHLξ + λ−1ξHRHRξ ≥ 2
√

ξHLHLξ
√

ξHRHRξ

= 2‖Lξ‖2‖Rξ‖2
⇒ ∀(U, ‖U‖2,2 ≤ 1) :

ξHY ξ ≥ 2|[Lξ]HU [Rξ]| ≥ 2�{[Lξ]HU [Rξ]}
= ξH [LHUR + RHUHL]ξ,

as claimed.

(i), “only if” part: Assume that Y satisfies (B.4.10) and L �= 0, R �= 0; we
prove that then there exists λ > 0 such that (B.4.11) holds true. First, observe
that w.l.o.g. we may assume that L and R are of the same sizes r×n (to reduce the
general case to this particular one, it suffices to add several zero rows either to L

(when � < r), or to R (when � > r)). We have the following chain of equivalences:

(B.4.10)
⇔ ∀ξ ∈ Cm : ξHY ξ ≥ 2‖Lξ‖2‖Rξ‖2
⇔ ∀(ξ ∈ C

n, η ∈ C
r) : ‖η‖2 ≤ ‖Lξ‖2 ⇒ ξHY ξ − ηHRξ − ξHRHη ≥ 0

⇔ ∀(ξ ∈ C
m, η ∈ C

r) :
ξHLHLξ − ηHη ≥ 0 ⇒ ξHY ξ − ηHRξ − ξHRHη ≥ 0

⇔ ∃(λ ≥ 0) :
[

Y RH

R

]
− λ

[
LHL

−Ir

]
� 0 [S-Lemma]

⇔ (a)
[

Y − λLHL RH

R λIr

]
� 0.

(B.4.18)
(Note that S-Lemma clearly holds true in the Hermitian case, since Hermitian
quadratic forms on C

m can be treated as real quadratic forms on R
2m.)

Condition (B.4.18.a), in view of R �= 0, clearly implies that λ > 0. Therefore,
by the Schur Complement Lemma (SCL), (B.4.18.a) is equivalent to Y − λLHL−
λ−1RHR � 0, as claimed.

(ii): When R �= 0, (ii) is clearly equivalent to (i) and thus is already proved.
When R = 0, it is evident that (B.4.12) can be satisfied by properly chosen λ ∈ R

if and only if Y � 0, which is exactly what is stated by (B.4.10) when R = 0. �

B.4.4 Proof of Theorem B.4.2.(iii)

In order to prove (iii), it suffices to prove the following statement:

Lemma B.4.8. Assume that ρ ≥ 0 is such that the predicate B(ρ) is not
valid. Then the predicate A(ϑC(ps)ρ), with appropriately defined function ϑC(·)
satisfying (B.4.5), is also not valid.

We are about to prove Lemma B.4.8. The case of ρ = 0 is trivial, so that
from now on we assume that ρ > 0 and that all matrices Lj , Rj are nonzero (the
latter assumption, of course, does not restrict generality). From now till the end of
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section B.4.4.3, we assume that we are under the premise of Lemma B.4.8, i.e., the

predicate B(ρ) is not valid.

B.4.4.1 First step: duality

Consider the optimization program

min
t,{Yj∈Hm}

j∈Irs
{Uj,Vj∈Hm}

j∈Ics
,

{λj,νj∈R}
j∈Ic

f

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t :

Yj ± [LH
j Rj + RH

j Lj ]︸ ︷︷ ︸
2Aj ,Aj=AH

j

� 0, j ∈ Ir
s , (a)

[
Uj RH

j Lj

LH
j Rj Vj

]
� 0, j ∈ Ic

s , (b)

[
λj 1
1 νj

]
� 0, j ∈ Ic

f , (c)

tI + A− ρ

[ ∑
j∈Irs

Yj +
∑

j∈Ics
[Uj + Vj ]

+
∑

j∈Icf

[λjL
H
j Lj + νjR

H
j Rj ]

]
� 0 (d)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (B.4.19)

Introducing “bounds” Yj = Uj + Vj for j ∈ Ic
s and Yj � λjL

H
j Lj + νjR

H
j Rj for

j ∈ Ic
f and then eliminating the variables Uj , j ∈ Ic

s , νj , j ∈ Ic
f , we convert (B.4.19)

into the equivalent problem

min
t,{Yj∈Hm}L

j=1
{Vj∈Hm}

j∈Ics
,

{λj∈R}
j∈Ic

f

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
t :

Yj ± [LH
j Rj + RH

j Lj ] � 0, j ∈ Ir
s ,

[
Yj − Vj RH

j Lj

LH
j Rj Vj

]
� 0, j ∈ Ics ,

[
Yj − λjL

H
j Lj RH

j

Rj λjIpj

]
� 0, j ∈ Ic

f ,

tI + A− ρ
L∑

j=1

Yj � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

By (already proved) item (ii) of Theorem B.4.2, predicate B(ρ) is valid if and only
if the latter problem, and thus problem (B.4.19), admits a feasible solution with
t ≤ 0. We are in the situation when B(ρ) is not valid; consequently, (B.4.19) does
not admit feasible solutions with t ≤ 0. Since the problem clearly is solvable, it
means that the optimal value in the problem is positive. Problem (B.4.19) is a
conic problem on the product of cones of Hermitian and real symmetric positive
semidefinite matrices. Since (B.4.19) is strictly feasible and bounded below, the
Conic Duality Theorem implies that the conic dual problem of (B.4.19) is solvable
with the same positive optimal value. Taking into account that the cones associated
with (B.4.19) are self-dual, the dual problem, after straightforward simplifications,
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becomes the conic problem

max
−2ρ

⎡⎢⎣ ∑
j∈Irs

Tr([Pj −Qj ]Aj) +
∑

j∈Ics
�{Tr

(
SjR

H
j Lj

)
}+

∑
j∈Icf

wj

⎤⎥⎦
−Tr(ZA)

subject to
(a.1) Pj , Qj � 0, j ∈ Irs ,

(a.2) Pj + Qj = Z, j ∈ Ir
s ;

(b)
[

Z SH
j

Sj Z

]
� 0, j ∈ Ic

s ;

(c)
[

Tr(LjZLH
j ) wj

wj Tr(RjZRH
j )

]
� 0, j ∈ Ic

f ;

(d) Z � 0,Tr(Z) = 1.
(B.4.20)

in matrix variables Z ∈ Hm
+ , Pj , Qj ∈ Hm, j ∈ Irs , Sj ∈ C

m×m, j ∈ Ics , and real
variables wj , j ∈ Ic

f . Using (B.4.20.c), we can eliminate the variables wj , thus
arriving at the following equivalent reformulation of the dual problem:

maximize 2ρ

[
− ∑

j∈Irs
Tr([Pj −Qj ]Aj)−

∑
j∈Ics

�{Tr
(
SjR

H
j Lj

)
}

+
∑

j∈Icf

√
Tr(LjZLH

j )︸ ︷︷ ︸
‖LjZ1/2‖2

√
Tr(RjZRH

j )︸ ︷︷ ︸
‖RjZ1/2‖2

]
− Tr(ZA)

subject to
(a.1) Pj , Qj � 0, j ∈ Irs ,

(a.2) Pj + Qj = Z, j ∈ Irs ;

(b)
[

Z SH
j

Sj Z

]
� 0, j ∈ Ic

s ;

(c) Z � 0, Tr(Z) = 1.

(B.4.21)

Next we eliminate the variables Sj , Qj , Rj . It is clear that

1. (B.4.21.a) is equivalent to the fact that Pj = Z1/2P̂jZ
1/2, Qj =

Z1/2Q̂jZ
1/2 with P̂j , Q̂j � 0, P̂j + Q̂j = Im. With this parameterization of Pj , Qj ,

the corresponding terms in the objective become −2ρTr([P̂j − Q̂j ](Z1/2AjZ
1/2)).

Note that the matrices Aj are Hermitian (see (B.4.19)), and observe that if A ∈ Hm,
then

max
P,Q∈Hm

{Tr([P −Q]A) : 0 � P,Q, P + Q = Im} = ‖λ(A)‖1 ≡
∑

�

|λ�(A)|

(w.l.o.g., we may assume that A is Hermitian and diagonal, in which case the
relation becomes evident). In view of this observation, partial optimization in
Pj , Qj in (B.4.21) allows to replace in the objective of the problem the terms
−2ρTr([Pj − Qj ]Aj) with 2ρ‖λ(Z1/2AjZ

1/2)‖1 and to eliminate the constraints
(B.4.21.a).
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2. Same as in the proof of Lemma B.4.5, constraints (B.4.21.b) are equivalent
to the fact that Sj = −Z1/2UjZ

1/2 with ‖Uj‖2,2 ≤ 1. With this parameterization,
the corresponding terms in the objective become 2ρ�{Tr(Uj(Z1/2RH

j LjZ
1/2))},

and the maximum of this expression in Uj , ‖Uj‖2,2 ≤ 1, is 2ρ‖σ(Z1/2RH
j LjZ

1/2)‖1.
With this observation, partial optimization in Sj in (B.4.21) allows to replace in
the objective the terms −2ρ�{Tr(SjR

H
j Lj)} with 2ρ‖σ(Z1/2RH

j LjZ
1/2)‖1 and to

eliminate the constraints (B.4.21.b).

After the above reductions, problem (B.4.21) becomes

maximize 2ρ

[ ∑
j∈Irs

‖λ(Z1/2AjZ
1/2)‖1 +

∑
j∈Ics

‖σ(Z1/2RH
j LjZ

1/2)‖1

+
∑

j∈Icf

‖LjZ
1/2‖2‖RjZ

1/2‖2
]
− Tr(ZA)

subject to Z � 0, Tr(Z) = 1.

(B.4.22)

Recall that we are in the situation when the optimal value in problem (B.4.20), and
thus in problem (B.4.22), is positive. Thus, we arrive at an intermediate conclusion
as follows.

Lemma B.4.9. Under the premise of Lemma B.4.8, there exists Z ∈ Hm,
Z � 0, such that

2ρ

[ ∑
j∈Irs

‖λ(Z1/2AjZ
1/2)‖1 +

∑
j∈Ics

‖σ(Z1/2RH
j LjZ

1/2)‖1

+
∑

j∈Icf

‖LjZ
1/2‖2‖RjZ

1/2‖2
]

> Tr(Z1/2AZ1/2).
(B.4.23)

Here the Hermitian matrices Aj are given by

2Aj = LH
j Rj + RH

j Lj , j ∈ Ir
s . (B.4.24)

B.4.4.2 Second step: probabilistic interpretation of (B.4.23)

The major step in completing the proof of Theorem B.4.2.(iii) is based on a prob-
abilistic interpretation of (B.4.23). This step is described next.

Preliminaries. Let us define a standard Gaussian vector ξ in R
n (notation: ξ ∈

Nn
R

) as a real Gaussian random n-dimensional vector with zero mean and unit
covariance matrix; in other words, ξ� are independent Gaussian random variables
with zero mean and unit variance, � = 1, ..., n. Similarly, we define a standard
Gaussian vector ξ in C

n (notation: ξ ∈ Nn
C

) as a complex Gaussian random n-
dimensional vector with zero mean and unit (complex) covariance matrix. In other
words, ξ� = α� + iαn+�, where α1, ..., α2n are independent real Gaussian random
variables with zero means and variances 1

2 , and i is the imaginary unit.

We shall use the facts established in the next three propositions.
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Proposition B.4.10. Let ν be a positive integer, and let ϑS(ν), ϑH(ν) be
given by the relations

ϑ−1
S (ν) = min

α

{
Eξ

{
|

ν∑
�=1

α�ξ
2
� |
}

: α ∈ R
ν , ‖α‖1 = 1

}
[ξ ∈ N ν

R
],

ϑ−1
H (ν) = min

α

{
Eχ

{
|

ν∑
�=1

α�|χ�|2|
}

: α ∈ R
ν , ‖α‖1 = 1

}
[χ ∈ N ν

C
].

(B.4.25)
Then

(i) Both ϑS(·), ϑH(·) are nondecreasing functions such that

(a.1) ϑS(1) = 1, ϑS(2) = π
2 ,

(a.2) ϑS(ν) ≤ π
2

√
ν, ν ≥ 1;

(b.1) ϑH(1) = 1, ϑH(2) = 2,

(b.2) ϑH(ν) ≤ ϑS(2ν) ≤ π
√

ν/2, ν ≥ 1.

(B.4.26)

(ii) For every A ∈ Sn, one has

Eξ

{
|ξT Aξ|

}
≥ ‖λ(A)‖1ϑ−1

S (Rank(A)) [ξ ∈ N n
R ], (B.4.27)

and for every A ∈ Hn one has

Eχ

{
|χHAχ|

}
≥ ‖λ(A)‖1ϑ−1

H (Rank(A)) [χ ∈ Nn
C ]. (B.4.28)

Proof. 10. Observe that ϑS(·) satisfies (B.4.27). Indeed, since ξ ∈ Nn
R

implies
that Uξ ∈ N n

R
for an orthogonal matrix U , it suffices to verify (B.4.27) for a diagonal

matrix A = Diag{λ1, ..., λν , 0, ..., 0}, where ν = Rank(A), in which case (B.4.27) is
readily given by the definition of ϑS(·). By construction, ϑS(·) is nondecreasing. To
check that ϑS(·) satisfies (B.4.26.a), let α ∈ R

ν , ‖α‖1 = 1, let β = [α;−α] ∈ R
2ν ,

and let ξ ∈ N 2ν
R

. Let also

pν(u) = (2π)−ν/2 exp{−uT u/2} : R
ν → R

be the density of η ∈ N ν
R
. Setting

J =
∫ ∣∣∣∣∣

ν∑
i=1

u2
i αi

∣∣∣∣∣ pν(u)du,

we have

E

{∣∣∣∣∣
2ν∑
i=1

ξ2
i βi

∣∣∣∣∣
}
≤ E

{∣∣∣∣∣
ν∑

i=1

ξ2
i αi

∣∣∣∣∣+
∣∣∣∣∣

2ν∑
i=ν+1

ξ2
i αi−ν

∣∣∣∣∣
}

= 2J. (B.4.29)

On the other hand, setting ηi = (ξi − ξi+ν)/
√

2, ζi = (ξi + ξi+ν)/
√

2, we get∣∣∣∣∣
2ν∑
i=1

ξ2
i βi

∣∣∣∣∣ =

∣∣∣∣∣
ν∑

i=1

2αiηiζi

∣∣∣∣∣ = 2
∣∣η̂T ζ

∣∣ , η̂ = [α1η1; ...; ανην ], ζ = [ζ1; ...; ζν ].

(B.4.30)
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Note that ζ ∈ N ν
R

and η̂, ζ are independent. Setting η̃ = [|α1η1|; ...; |ανην |], we
have

E
{
|η̂T ζ|

}
= E {‖η̂‖2}

∫
|t|p1(t)dt

[since η̂, ζ are independent and ζ ∈ N ν
R
]

= E {‖η̂‖2} 2√
2π

= 2√
2π

E {‖η̃‖2}

≥ 2√
2π
‖E {η̃} ‖2 = 2√

2π

√
ν∑

i=1

α2
i

(
2√
2π

)2

≥ 2
π
√

ν
.

(B.4.31)

Combining (B.4.29), (B.4.30) and (B.4.31), we get 2J ≥ 4
π
√

ν
, i.e., 1

J ≤
π
√

ν
2 , which

yields (B.4.26.a.2). Relation (B.4.26.a.1) is given by the following computation:

1
ϑS(2)

= min
α∈R2,

‖α‖1=1

{∫ ∣∣α1u
2
1 + α2u

2
2

∣∣ p2(u)du

}
= min

θ∈[0,1]

∫ ∣∣θu2
1 − (1 − θ)u2

2

∣∣ p2(u)du︸ ︷︷ ︸
f(θ)

= 1
2

∫ ∣∣u2
1 − u2

2

∣∣ p2(u)du

[since f(θ) is convex and symmetric w.r.t. θ = 1/2]

=

[∫
|t|p1(t)dt

]2

= 2
π
.

20. From the definition of ϑH(·) it is clear that this function is nondecreasing.
To establish (B.4.28), by the same reasons as in the case of (B.4.27), it suffices to
verify (B.4.28) when A = Diag{λ1, ..., λν , 0, ..., 0}, where ν = Rank(A), in which
case (B.4.28) is readily given by the definition of ϑH(·).

It remains to verify (B.4.26.b). The relation ϑH(1) = 1 is evident. Further,
we clearly have

ϑ−1
H (2) = min

β∈[0,1]
ψ(β), ψ(β) = Eχ

{∣∣β|χ1|2 − (1− β)|χ2|2
∣∣} , χ ∈ N 2

C .

The function ψ(β) is convex in β ∈ [0, 1] and is symmetric: ψ(1 − β) = ψ(β). It
follows that its minimum is achieved at β = 1

2 ; direct computation demonstrates
that ψ(1/2) = 1/2, which completes the proof of (B.4.26.b.1).

It remains to prove the first inequality in (B.4.26.b.2). Given α ∈ R
ν , ‖α‖1 =

1, let α̃ = [α; α] ∈ R
2ν . Now, if χ = η + ıω is a standard Gaussian vector in C

ν ,
then the vector ξ = 21/2[η; ω] is a standard Gaussian vector in R

2ν . We now have

Eχ

{
|

ν∑
�=1

α�|χ�|2|
}

= Eχ

{
|

ν∑
�=1

α�[η2
� + ω2

� ]|
}

= 1
2Eξ

{
|

2ν∑
�=1

α̃�ξ
2
� |
}

≥ 1
2‖α̃‖1ϑ

−1
S (2ν) = ϑ−1

S (2ν),

whence ϑ−1
H (ν) ≥ ϑ−1

S (2ν), and the desired inequality follows. �

Proposition B.4.11. For every A ∈ C
n×n one has

Eη

{
|ηHAη|

}
≥ ‖σ(A)‖1

1
4
ϑ−1
H (2Rank(A)) [η ∈ N n

C ]. (B.4.32)
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Proof. Let Â =
[

A

AH

]
, so that Â ∈ H2n, Rank(Â) = 2Rank(A) and

the eigenvalues of Â are ±σ�(A), � = 1, ..., n. Let also χ = [η;ω] be a standard
Gaussian vector in C

2n partitioned into two n-dimensional blocks, so that η, ω are
independent standard Gaussian vectors in C

n. We have

χHÂχ = 2�{ηHAω}
= �

{[
(η + ω)HA(η + ω)− ηHAη − ωHAω

]
+ı
[
(η − ıω)HA(η − ıω)− ηHAη − ωHAω

]}
[polarization identity]

⇒ Eχ

{
|χHÂχ|

}
≤ Eη,ω

{
|(η + ω)HA(η + ω)|

}
+Eη,ω

{
|(η − ıω)HA(η − ıω)|

}
+2Eη

{
|ηHAη|

}
+ 2Eω{|ωHAω|}.

(B.4.33)

Since η, ω are independent standard Gaussian vectors in C
n, the vectors 2−1/2(η+ω)

and 2−1/2(η − ıω) also are standard Gaussian. Therefore (B.4.33) implies that

Eχ

{
|χHÂχ|

}
≤ 8Eη

{
|ηHAη|

}
. (B.4.34)

Since Â is a Hermitian matrix of rank 2Rank(A) and ‖λ(Â)‖1 = 2‖σ(A)‖1, the
left hand side in (B.4.34), by (B.4.28), is ≥ 2‖σ(A)‖1ϑ−1

H (2Rank(A)), and (B.4.34)
implies (B.4.32). �

Proposition B.4.12. (i) Let L ∈ C
p×n, R ∈ C

q×n, and let χ be a standard
Gaussian vector in C

n. Then

Eχ {‖Lχ‖2‖Rχ‖2} ≥
π

4
‖L‖2‖R‖2. (B.4.35)

(ii) Let L ∈ R
p×n, R ∈ R

q×n, and let ξ be a standard Gaussian vector in R
n.

Then
Eξ {‖Lξ‖2‖Rξ‖2} ≥

2
π
‖L‖2‖R‖2. (B.4.36)

Proof. (i): There is nothing to prove when L or R are zero matrices; thus,
assume that both L and R are nonzero.

Let us demonstrate first that it suffices to verify (B.4.35) in the case when
both L and R are rank 1 matrices. Let LHL = UHDiag{λ}U be the eigenvalue
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decomposition of LHL, so that U is a unitary matrix and λ ≥ 0. We have

E {‖Lξ‖2‖Rξ‖2} = E
{√

ξHLHLξ‖Rξ‖2
}

= E
{(

(Uξ)HDiag{λ} (Uξ)︸︷︷︸
χ

)1/2 ‖RUHχ‖2︸ ︷︷ ︸
φ(χ)≥0

}

= E

{
φ(χ)

√
n∑

�=1

λ�|χ�|2
}

= Φ(λ),

Φ(x) = E

{
φ(χ)

√
n∑

�=1

x�|χ�|2
}

.

(B.4.37)

The function Φ(x) of x ∈ R
n
+ is concave; therefore its minimum on the simplex

S = {x ∈ R
n
+ :

∑
�

x� =
∑

�

λ�}

is achieved at a vertex, let it be e. Now let L̂ ∈ C
d×n be such that L̂H L̂ =

UHDiag{e}U . Note that L̂ is a rank 1 matrix (since e is a vertex of S) and that

[‖L̂‖22 =] Tr(L̂H L̂) =
∑

�

e� =
∑

�

λ� = Tr(LHL) [= ‖L‖22].

Since the unitary factor in the eigenvalue decomposition of L̂H L̂ is U , (B.4.37)
holds true when L is replaced with L̂ and λ with e, so that

E
{
‖L̂χ‖2‖Rχ‖2

}
= Φ(e) ≤ Φ(λ) = E {‖Lχ‖2‖Rχ‖2} .

Applying the same reasoning to the quantity

E
{
‖L̂χ‖2‖Rχ‖2

}
with R playing the role of L, we conclude that there exists a rank 1 matrix R̂ such
that

‖R̂‖2 = ‖R‖2
and

E
{
‖L̂χ‖2‖R̂χ‖2

}
≤ E

{
‖L̂χ‖2‖Rχ‖2

}
.

Thus, replacing L and R with the rank 1 matrices L̂, R̂, we do not increase the left
hand side in (B.4.35) and do not vary the right hand side, so that it indeed suffices
to establish (B.4.35) in the case when L, R are rank 1 matrices. Note that so far
our reasoning did not use the fact that χ is standard Gaussian.

Now let us look what inequality (B.4.35) says in the case of rank 1 matrices
L, R. By homogeneity, we can further assume that ‖L‖2 = ‖R‖2 = 1. With this
normalization, for rank 1 matrices L, R we clearly have Lχ = z� and Rχ = wr

for unit deterministic vectors �, r and a Gaussian random vector [z;w] ∈ C
2 = R

4

such that E
{
|z|2

}
= E

{
|w|2

}
= 1 (both z and w are just linear combinations,

with appropriate deterministic coefficients, of the entries in χ). Since E
{
|z|2

}
=

E
{
|w|2

}
= 1, we can express (z, w) in terms of a standard Gaussian vector [η; ξ] ∈
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C
2 as z = η, w = cos(θ)η + sin(θ)ξ, where θ ∈ [0, π

2 ] is such that cos(θ) is the
absolute value of the correlation E {zw} between z and w. With this representation,
inequality (B.4.35) becomes

φ(θ) ≡
∫

C×C

|η|| cos(θ)η + sin(θ)ξ|dG(η, ξ) ≥ π

4
≡ φ(

π

2
), (B.4.38)

where G(η, ξ) is the distribution of [η; ξ]. We should prove (B.4.38) in the range
[0, π

2 ] of values of θ; in fact we shall prove this inequality in the larger range θ ∈ [0, π].
Given θ ∈ [0, π], we set

u = cos(θ/2)η + sin(θ/2)ξ, v = − sin(θ/2)η + cos(θ/2)ξ;

it is immediately seen that the distribution of (u, v) is exactly G. At the same time,

η = cos(θ/2)u− sin(θ/2)v, cos(θ)η + sin(θ)ξ = cos(θ/2)u + sin(θ/2)v,

whence

φ(θ) =
∫

C×C

| cos(θ/2)u− sin(θ/2)v|| cos(θ/2)u + sin(θ/2)v|dG(u, v)

=
∫

C×C

| cos2(θ/2)u2 − sin2(θ/2)v2|dG(u, v).

We see that

min
θ∈[0,π]

φ(θ) = min
0≤α≤1

ψ(α), ψ(α) =
∫

C×C

|αu2 − (1− α)v2|dG(u, v).

The function ψ(α) clearly is convex and ψ(1−α) = ψ(α) (since the distribution of
[u; v] is symmetric in u, v). Consequently, ψ attains its minimum when α = 1/2,
and φ attains its minimum when cos2(θ/2) = 1/2, i.e., when θ = π/2, which is
exactly what is stated in (B.4.38).

(ii): Applying exactly the same reasoning as in the proof of (i), we conclude
that it suffices to verify (B.4.36) in the case when L,R are real rank 1 matrices. In
this case, the same argument as above demonstrates that (B.4.36) is equivalent to
the fact that if ξ, η are independent real standard Gaussian variables and G(ξ, η)
is the distribution of [ξ; η], then the function

φ(θ) =
∫

R×R

|ξ|| cos(θ)ξ + sin(θ)η|dG(ξ, η) (B.4.39)

of θ ∈ [0, π] achieves its minimum when θ = π
2 . To prove this statement, one can

repeat word by word, with evident modifications, the reasoning we have used in the
complex case. �



SOME AUXILIARY PROOFS 503

B.4.4.3 Completing the proof of Theorem B.4.2.(iii)

We are now in a position to complete the proof of Theorem B.4.2.(iii). Let us set

ps
R

= 2 max {pj : j ∈ Irs} ,

ps
C

= 2 max {pj : j ∈ Ic
s } ,

ϑS = max
[
ϑH(ps

R
), 4ϑH(ps

C
), 4

π

]
;

(B.4.40)

here by definition the maximum over an empty set is 0, and ϑH(0) = 0. Note that
by (B.4.26) one has

ϑS ≤ 4π
√

ps

(cf. (B.4.4), (B.4.5)).

Let χ be a standard Gaussian vector in C
n. Invoking Propositions B.4.10 —

B.4.12, we have (for notation, see Lemma B.4.9):

‖λ(Z1/2AjZ
1/2)‖1

≤ ϑH(Rank(Z1/2AjZ
1/2))Eχ

{
|χHZ1/2AjZ

1/2χ|
}

≤ ϑSEχ

{
|χHZ1/2AjZ

1/2χ|
}

, j ∈ Ir
s[

by Proposition B.4.10 since Aj = AH
j and

Rank(Aj) = Rank([LH
j Rj + RH

j Lj ]) ≤ 2pj

]
‖σ(Z1/2RH

j LjZ
1/2)‖1

≤ 4ϑH(2Rank(Z1/2RH
j LjZ

1/2))Eχ

{
|χHZ1/2RH

j LjZ
1/2χ|

}
≤ ϑSEχ

{
|χHZ1/2RH

j LjZ
1/2χ|

}
, j ∈ Ics

[by Proposition B.4.11 since Rank(RH
j Lj) ≤ pj ]

‖LjZ
1/2‖2‖RjZ

1/2‖2
≤ 4

πEχ

{
‖LjZ

1/2χ‖2‖RjZ
1/2χ‖2

}
≤ ϑSEχ

{
‖LjZ

1/2χ‖2‖RjZ
1/2χ‖2

}
[by Proposition B.4.12.(i)]

and, of course,
Eχ

{
χHZ1/2AZ1/2χ

}
= Tr(Z1/2AZ1/2).

In view of these observations, (B.4.23) implies that

ρϑS

[ ∑
j∈Irs

Eχ

{
|χHZ1/2[LH

j Rj + RH
j Lj ]Z1/2χ|

}
+

∑
j∈Ics

Eχ

{
2|χHZ1/2RH

j LjZ
1/2χ|

}
+

∑
j∈Icf

Eχ

{
2‖LjZ

1/2χ‖2‖RjZ
1/2χ‖2

} ]
> Eχ

{
χHZ1/2AZ1/2χ

}
(we have substituted the expressions for Aj , see (B.4.24)). It follows that there
exists a realization χ̂ of χ such that with ξ = Z1/2χ̂ one has

ρϑS

⎡⎢⎣ ∑
j∈Irs

|ξH [LH
j Rj + RH

j Lj ]ξ| +
∑

j∈Ics

2|ξHRH
j Ljξ| +

∑
j∈Ic

f

2‖Ljξ‖2‖Rjξ‖2

⎤⎥⎦
> ξHAξ.

(B.4.41)
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Observe that

• The quantities ξH [LH
j Rj +RH

j Lj ]ξ are real; we therefore can choose θj = ±1,
j ∈ Irs , in such a way that with χj = θjIpj

one has

ξH [LH
j χjRj + RH

j [χj ]HLj ]ξ = |ξH [LH
j Rj + RH

j Lj ]ξ|, j ∈ Ir
s ;

• For j ∈ Ics , we can choose θj ∈ C, |θj | = 1, in such a way that with Θj = θjIpj

one has

ξH [LH
j ΘjRj + RH

j [Θj ]HLj ]ξ = 2|ξHRH
j Ljξ|, j ∈ Ic

s ;

• For j ∈ Ic
f , we can choose Θj ∈ C

pj×qj , ‖Θj‖2,2 ≤ 1, in such a way that

ξH [LH
j ΘjRj + RH

j [Θj ]HLj ]ξ = 2‖Ljξ‖2‖Rjξ‖2, j ∈ Ic
f .

With Θj ’s we have defined, (B.4.41) reads

ξH

[
A− ρϑS

L∑
j=1

[LH
j ΘjRj + RH

j [Θj ]HLj ]︸ ︷︷ ︸
C

]
ξ < 0,

so that C is not positive semidefinite; on the other hand, by construction C ∈
U [ϑSρ]. Thus, the predicate A(ϑSρ) is not valid; recalling the definition of ϑS, this
completes the proof of Lemma B.4.8, and thus the proof of Theorem B.4.2.(iii). �

B.4.5 Proof of Theorem B.4.2.(iv)

The fact that A(ρ) is equivalent to B(ρ) in the case of L = 1 is evident when the
only perturbation block in question is a real scalar one, is readily given by Lemma
B.4.5 when the block is a complex scalar one, and is readily given by Lemma B.4.6
when the block is full. �

B.4.6 Matrix Cube Theorem, Real Case

The Real Matrix Cube problem is as follows:

RMC: Let m, p1, q1,...,pL, qL be positive integers, and A ∈ Sm, Lj ∈
R

pj×m, Rj ∈ R
qj×m be given matrices, Lj �= 0. Let also a partition

{1, 2, ..., L} = Ir
s ∪Ir

f of the index set {1, ..., L} into two non-overlapping

sets be given. With these data, we associate a parametric family of
“matrix boxes”

U [ρ] =

{
A + ρ

L∑
j=1

[LT
j ΘjRj + RT

j [Θj ]T Lj ] : Θj ∈ Zj , 1 ≤ j ≤ L

}
⊂ Sm,

(B.4.42)



SOME AUXILIARY PROOFS 505

where ρ ≥ 0 is the parameter and

Zj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{θIpj

: θ ∈ R, |θ| ≤ 1}, j ∈ Ir
s

[“scalar perturbation blocks”]

{Θj ∈ R
pj×qj : ‖Θj‖2,2 ≤ 1}, j ∈ Ir

f
[“full perturbation blocks”]

. (B.4.43)

Given ρ ≥ 0, check whether

U [ρ] ⊂ Sm
+ A(ρ)

Remark B.4.13. In the sequel, we always assume that pj > 1 for j ∈ Ir
s .

Indeed, non-repeated (pj = 1) scalar perturbations always can be regarded as full
perturbations.

Consider, along with predicate A(ρ), the predicate

∃Yj ∈ Sm, j = 1, ..., L :
(a) Yj � LT

j ΘjRj + RT
j [Θj ]T Lj ∀

(
Θj ∈ Zj , 1 ≤ j ≤ L

)
(b) A− ρ

L∑
j=1

Yj � 0.

B(ρ)

The Real case version of Theorem B.4.2 is as follows:

Theorem B.4.14. [The Real Matrix Cube Theorem [10, 12]] One has:

(i) Predicate B(ρ) is stronger than A(ρ) — the validity of the former predicate
implies the validity of the latter one.

(ii) B(ρ) is computationally tractable — the validity of the predicate is equiv-
alent to the solvability of the system of LMIs

(s) Yj ±
[
LT

j Rj + RT
j Lj

]
� 0, j ∈ Irs ,

(f)
[

Yj − λjL
T
j Lj RT

j

Rj λjIpj

]
� 0, j ∈ Ir

f

(∗) A− ρ
L∑

j=1

Yj � 0.

(B.4.44)

in matrix variables Yj ∈ Sm, j = 1, ..., L, and real variables λj , j ∈ Ir
f .

(iii) “The gap” between A(ρ) and B(ρ) can be bounded solely in terms of the
maximal rank

ps = max
j∈Irs

Rank(LT
j Rj + RT

j Lj)

of the scalar perturbations. Specifically, there exists a universal function ϑR(·)
satisfying the relations

ϑR(2) =
π

2
; ϑR(4) = 2; ϑR(µ) ≤ π

√
µ/2 ∀µ ≥ 1

such that with µ = max[2, ps] one has

if B(ρ) is not valid, then A(ϑR(µ)ρ) is not valid. (B.4.45)
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(iv) Finally, in the case L = 1 of single perturbation block A(ρ) is equivalent
to B(ρ).

The proof of the Real Matrix Cube Theorem repeats word by word, with
evident simplifications, the proof of its complex case counterpart and is therefore
omitted. Note that Remark B.4.4 remains valid in the real case.

B.5 PROOFS FOR CHAPTER 10

B.5.1 Proof of Theorem 10.1.2

Let
Erf(t) = 1√

2π

∞∫
t

exp{−s2/2}ds,

ErfInv(r) : 1√
2π

∞∫
ErfInv(r)

exp{−s2/2}ds = r.

Theorem B.5.1. Let ζ ∼ N (0, Im), and let Q be a closed convex set in R
m

such that
Prob{ζ ∈ Q} ≥ χ >

1
2
. (B.5.1)

Then

(i) Q contains the centered at the origin ‖ · ‖2-ball of the radius

r(χ) = ErfInv(1− χ) > 0. (B.5.2)

(ii) If Q contains the centered at the origin ‖ · ‖2-ball of a radius r ≥ r(χ),
then

∀α ∈ [1,∞) : Prob{ζ �∈ αQ} ≤ Erf (ErfInv(1− χ) + (α− 1)r)

≤ Erf (αErfInv(1− χ)) ≤ 1
2 exp

{
−α2ErfInv2(1−χ)

2

}
.

(B.5.3)

In particular, for a closed and convex set Q, ζ ∼ N (0, Σ) and α ≥ 1 one has

Prob {ζ �∈ Q} ≤ δ < 1
2 ⇒

Prob {ζ �∈ αQ} ≤ Erf(αErfInv(δ)) ≤ 1
2 exp{−α2ErfInv2(δ)

2 }.
(B.5.4)

Proof. (i) is immediate. Indeed, assuming the opposite and invoking the
Separation Theorem, Q is contained in a closed half-space Π = {x : eT x ≤ r}
with a unit vector e and certain r < ErfInv(χ), and therefore Prob {η �∈ Q} ≥
Prob {η �∈ Π} = Erf(r) > χ, which is a contradiction.

(ii): This is an immediate corollary of the following fact due to C. Borell [31]:

(!) For every α > 0, ε ≥ 0 and every closed set X ⊂ R
k such that

Prob{ζ ∈ X} ≥ α one has

Prob {dist(ζ, X) > ε} ≤ Erf(ErfInv(1− α) + ε)

where dist(a,X) = min
x∈X

‖a− x‖2.
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The derivation of (ii) from (!) is as follows. Since Q contains the centered at the
origin ‖ · ‖2-ball Br of the radius r, the set αQ, α ≥ 1, contains Q + (α − 1)Q ⊃
Q + (α− 1)Br and thus contains the set {x : dist(x,Q) ≤ ε = (α− 1)r}. Invoking
(!), we arrive at the first inequality in (B.5.3); the second inequality is due to
r ≥ r(χ) = ErfInv(1− χ), and the third is well known.

Here is the demonstration of the inequality Erf(s) ≤ 1
2

exp{−s2/2}, s ≥
0. This is equivalent to 1

2
≥

∫∞
s

exp{(s2 − r2)/2}(2π)−1/2dr, that is, 1
2
≥∫∞

0
exp{(s2 − (s + t)2)/2}(2π)−1/2dt, which indeed is true, since the latter

integral is ≤
∫∞
0

exp{−t2/2}(2π)−1/2dt = 1/2.

�

B.5.2 Proof of Proposition 10.3.2

Items 1, 2, 3 are evident.

Item 4: Let f(x, y) ∈ CFr+s (x ∈ R
r, y ∈ R

s), The functions p(x) =∫
f(x, y)dP2(y), q(x) =

∫
f(x, y)dQ2(y) clearly belong to CFr and p ≤ q due to

P2 �c Q2. We have
∫

f(x, y)d(P1 × P2)(x, y) =
∫

p(x)dP1(x) ≤
∫

p(x)dQ1(x) ≤∫
q(x)dQ1(x) =

∫
f(x, y)d(Q1×Q2)(x, y), where the first ≤ follows from P1 �c Q1,

and the second ≤ is given by p ≤ q. The resulting inequality shows that
P1 × P2 �c Q1 ×Q2. �

Item 5: Given f ∈ CFm, let us set g(u1, ..., uk) = f(
∑k

i=1 Siui), so that
g ∈ CFkn. By item 4, we have [ξ1; ...; ξk] �c [η1; ...; ηk], whence E{g(ξ1, ..., ξk)} ≤
E{g(η1, ..., ηk)}, or, which is the same, E{f(

∑
i Siξi)} ≤ E{f(

∑
i Siηi)}. since the

latter inequality holds true for all f ∈ CFm, we see that
∑

i Siξi �c

∑
i Siηi. �

Item 6: Let f ∈ CF1; we should prove that∫
f(s)dPξ(s) ≤

∫
f(s)dPη(s). (∗)

When we add to f an affine function, both quantities we are comparing change by
the same amount (recall that R1 is comprised of probability distributions with zero
mean). It follows that w.l.o.g. we can assume that f(−1) = 0 and f ′(−1 + 0) = 0,
so that f is nonnegative to the left of the point −1. Replacing f in this domain by
0, we preserve convexity, keep the quantity

∫
f(s)dPξ(s) intact and do not increase∫

f(s)dPη(s); it follows that it suffices to prove our inequality when f , in addition
to f ′(−1 + 0) = f(−1) = 0, is identically zero to the left of −1. Now, either f is
identically zero on [−1, 1], or f(1) is positive. In the first case, the left hand side
in (∗) is 0, while the right hand side is nonnegative (since f is nonnegative due to
f(−1) = f ′(−1 + 0) = 0), and (∗) holds true. When f(1) > 0, we can, by scaling
f , reduce the situation to the one where f(1) = 1. In this case, f(s) ≤ (s+1)/2 on
[−1, 1] by convexity, whence, recalling that ξ is supported on [−1, 1] and has zero
mean, we have ∫

f(s)dPξ(s) ≤
∫

1
2
(1 + s)dPξ(s) =

1
2
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On the other hand, let α = f ′(1 + 0), so that α > 0. Besides this, f is nonnegative
and f(s) ≥ 1 + α(s− 1) for all s, whence

f(s) ≥ max[0, 1− α + αs] ∀s.
Consequently, setting σ =

√
π/2, we have∫

f(s)dPη(s) ≥
∫

max[0, 1− α + αs] 1√
2πσ

exp{−s2/(2σ2)}ds

≥ min
α≥0

∫
[max[0, 1− α + αs]

1√
2πσ

exp{−s2/(2σ2)}︸ ︷︷ ︸
p(s)

ds.

The function g(α) =
∫

max[0, 1 − α + αs]p(s)ds clearly is convex in α ≥ 0, and

g′(α) =
∞∫

α−1
α

(s−1)p(s)ds. Taking into account that
∞∫
0

p(s)ds =
∞∫
0

sp(s)ds = 1/2, we

conclude that g′(1) = 0, that is, α = 1 is a minimizer of g so that g(α) ≥ g(1) = 1/2
whenever α > 0. Thus, the right hand side in (∗) is ≥ 1/2 and thus (∗) is true. �

Item 7: Denoting by µ, ν the probability distributions of ξ, η respectively, we
should verify that ∫

f(s)dµ(s) ≤
∫

f(s)dν(s)

for every f ∈ CF1. Since both ξ and η are symmetrically distributed w.r.t. 0, it
suffices to verify this inequality for the case of an even f ∈ CF1 (pass from the
original f(x) to 1

2 (f(x) + f(−x))). An even convex function is monotone on the
nonnegative ray, and it remains to use Proposition 4.4.2. �

Item 8: Due to absolute symmetry, the distribution of ξ is the limit, in
the sense of weak convergence, of a sequence of convex combinations of uniform
distributions on the vertices of cubes {u : ‖u‖∞ ≤ r}, r ≤ 1. By item 6, all these
distributions are dominated by N (0, (π/2)In). It remains to apply item 2. �

Item 9: Since 0 � Σ � Θ, there exists a nonsingular transformation x �→
Ax : R

r → R
r such that the random vectors ξ̃ = Aξ and η̃ = Aη are, respectively,

N (0,Diag{λ}) and N (0,Diag{µ}); since Σ � Θ, we have λ ≤ µ, whence, by item
3, ξ̃ �c η̃, which, of course, is equivalent to ξ �c η. �

B.5.3 Proof of Theorem 10.3.3

Let ζ ∈ RL and η ∼ N (0, IL), and let ζ �c η. Let, further, Q ⊂ R
n be a closed

convex set such that χ ≡ Prob{η ∈ Q} ∈ (1/2, 1). All we need is to prove that
whenever γ > 1, one has

Prob{ζ �∈ γQ} ≤ inf
1≤β<γ

1
γ − β

∞∫
β

Erf(rErfInv(1− χ))dr. (B.5.5)
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Indeed, since Q is convex and Prob{η ∈ Q} > 1/2, the origin is in the interior of
Q. Let β ∈ [1, γ), let

θ(x) = inf{t : t−1x ∈ Q}
be the Minkowski function of Q, and let δ(x) = max[θ(x) − β, 0]. We clearly have
δ(·) ∈ CFn, so that ∫

δ(x)dPζ(x) ≤
∫

δ(x)dPη(x). (a)

For r ≥ β let p(r) = Prob{η �∈ rQ} = Prob{δ(η) > r − β}. By Theorem B.5.1, for
r ≥ β we have

p(r) ≤ Erf(rErfInv(1− χ)). (b)

We have∫
δ(x)dPη(x) = −

∞∫
β

(r − β)dp(r) =
∞∫
β

p(r)dr ≤
∞∫
β

Erf(rErfInv(1− χ))dr,

whence ∫
δ(x)dPζ(x) ≤

∞∫
β

Erf(rErfInv(1− χ))dr

by (a). Now, when ζ �∈ γQ, we have δ(ζ) ≥ γ−β. Invoking Tschebyshev Inequality,
we arrive at

Prob{ζ �∈ γQ} ≤ E{δ(ζ)}
γ − β

≤ 1
γ − β

∞∫
β

Erf(rErfInv(1− χ))dr.

The resulting inequality holds true for all β ∈ [1, γ), and (B.5.5) follows. �

B.5.4 Conjecture 10.1

The validity of Conjecture 10.1 with κ = 3
4 and Υ = 4

√
lnmax[m, 3] is given by the

following statement (to be applied to the matrices B� = A− 1
2 A�A

− 1
2 ; we assume

w.l.o.g. that A � 0):

Proposition B.5.2. Let B1, ..., BL be deterministic symmetric m×m matrices
such that

∑L
�=1 B2

� � I and let ζ� be random perturbations satisfying Assumption
A.I or A.II (see p. 235). Then with Υ = 4

√
ln(max(3,m)) one has

Prob

{
−ΥI �

L∑
�=1

ξ�B� � ΥI

}
≥ 3

4
. (B.5.6)

Proof is readily given by the following deep result from Functional Analysis
due to Lust-Piquard [78], Pisier [93] and Buchholz [35], see [111, Proposition 10]:

Let ε�, � = 1, ..., L, be independent random variables taking values

±1 with probabilities 1/2, and let Q1, ..., QL be deterministic matrices.
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Then for every p ∈ [2,∞) one has

E
{
|
∑L

�=1 ε�Q�|pp
}

≤
[
2−1/4

√
pπ/e

]p

max
[
|
∑L

�=1 Q�Q
T
� | p

2
, |
∑L

�=1 QT
� Q�| p

2

] p
2

,
(B.5.7)

where |A|p = ‖σ(A)‖p, σ(A) being the vector of singular values of a

matrix A.

Observe, first, that (B.5.7) remains valid when the random variables ε� in the left
hand side are replaced with ζ�. Indeed, assume first that we are in the case of A.I
— ζ� are independent with zero means and take values in [−1, 1]. It is immediately
seen that if µ is a random variable with zero mean taking values in [−1, 1] and
ν is a random variable taking values ±1 with probabilities 1/2, then ν �c µ (see
Definition 10.3.1). Applying Proposition 10.3.2.5, we conclude that if ζ = [ζ1; ...; ζL]
and ε = [ε1; ...; εL] with εi as in (B.5.7), then ε �c ζ, which, by definition of �c,
implies that E {f(ε)} ≥ E {f(ξ)} for every convex function f , in particular, for the
function f(z) = |∑L

�=1 z�Q�|pp. In the case of A.II, let ε�i, 1 ≤ � ≤ L, 1 ≤ i ≤ N ,
be independent random variables taking values ±1 with probability 1/2, and let
Q�i = 1

N Q�, 1 ≤ i ≤ N . By (B.5.7) we have

E
{
|∑L

�=1

ζN
� Q�︷ ︸︸ ︷∑N

i=1ε�iQ�i |pp
}

≤
[
2−1/4

√
pπ/e

]p

max
[
|∑L

�=1

∑N
i=1 Q�iQ

T
�i| p

2
, |∑L

�=1

∑N
i=1 QT

�iQ�i| p
2

] p
2

=
[
2−1/4

√
pπ/e

]p

max
[
|∑L

�=1 Q�Q
T
� | p

2
, |∑L

�=1 QT
� Q�| p

2

] p
2

.

(B.5.8)
The random variables ζN

� = 1√
N

∑N
i=1 ε�i, � = 1, ..., L, are independent, and their

distributions, by the Central Limit Theorem, converge to the standard Gaussian
distribution, so that (B.5.8) implies the validity of (B.5.7) when ε� are replaced
with independent N (0, 1) random variables.

Applying (B.5.7) to matrices B� in the role of Q� and random variables ζ� in
the role of ε�, we get

E

{
|

L∑
�=1

ζ�B�|pp

}
≤
[
2−1/4

√
pπ/e

]p

m,

Taking into account that |A|p ≥ ‖A‖ (‖A‖ is the maximal singular value of A) and
applying Tschebyshev Inequality, we get

∀(α > 0, p ≥ 2) : Prob

{
‖

L∑
�=1

ζ�B�‖ > α

}
≤
[

2−1/4m1/p
√

pπ/e

α

]p

.

Setting m̄ = max[m, 3], p = 2 ln m̄ and α = 4
√

ln m̄, we get

Prob

{
‖

L∑
�=1

ζ�B�‖ > 4
√

ln m̄

}
≤
[

2−1/4
√

2π ln m̄

4
√

ln m̄

]p

≤
[√

2π

29/4

]2 ln 3

≤ 1/4. �



Appendix C
Solutions to Selected Exercises

C.1 CHAPTER 1

Exercise 1.1: Setting c+
j = cn

j + σj/2, c−j = cn
j − σj/2, and similarly for A±

ij , b±i , the RC
is equivalent to

min
u≥0,v≥0

{∑
j

[c+
j uj − c−j vj ] :

∑
j

[A+
ijuj − A−

ijvj ] ≤ b−i , 1 ≤ i ≤ m

}
;

the robust optimal solution is u∗ − v∗, where u∗, v∗ are the components of an optimal
solution to the latter problem.

Exercise 1.2: The respective RCs are (equivalent to)

[an; bn]T [x;−1] + ρ‖P T [x;−1]‖q ≤ 0, q = p
p−1

(a)

[an; bn]T [x;−1] + ρ‖(P T [x;−1])+‖q ≤ 0, q = p
p−1

(b)

[an; bn]T [x;−1] + ρ‖P T [x;−1]‖∞ ≤ 0 (c)

where for a vector u = [u1; ...; uk] the vector (u)+ has the coordinates max[ui, 0], i =
1, ..., k.
Comment to (c): The uncertainty set in question is nonconvex; since the RC remains
intact when a given uncertainty set is replaced with its convex hull, we can replace the
restriction ‖ζ‖p ≤ ρ in (c) with the restriction ζ ∈ Conv{ζ : ‖ζ‖p ≤ ρ} = {‖ζ‖1 ≤ ρ},
where the concluding equality is due to the following reasons: on one hand, with p ∈ (0, 1)
we have

‖ζ‖p ≤ ρ ⇔
∑

i(|ζi|/ρ)p ≤ 1 ⇒ |ζi|/ρ ≤ 1∀i ⇒ |ζi|/ρ ≤ (|ζi|/ρ)p

⇒ ∑
i |ζi|/ρ ≤ ∑

i(|ζi|/ρ)p ≤ 1,

whence Conv{‖ζ‖p ≤ ρ} ⊂ {‖ζ‖1 ≤ ρ}. To prove the inverse inclusion, note that all
extreme points of the latter set (that is, vectors with all but one coordinates equal to 0
and the remaining coordinate equal ±ρ) satisfy ‖ζ‖p ≤ 1.

Exercise 1.3: The RC can be represented by the system of conic quadratic constraints

[an; bn]T [x;−1] + ρ
∑

j ‖uj‖2 ≤ 0∑
j Q

1/2
j uj = P T [x;−1]

in variables x, {uj}J
j=1.

C.2 CHAPTER 2

Exercise 2.1: W.l.o.g., we may assume t > 0. Setting φ(s) = cosh(ts) − [cosh(t) − 1]s2,
we get an even function such that φ(−1) = φ(0) = φ(1) = 1. We claim that φ(s) ≤ 1
when −1 ≤ s ≤ 1.
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Indeed, otherwise φ attains its maximum on [−1, 1] at a point s̄ ∈ (0, 1), and φ′′(s̄) ≤
0. The function g(s) = φ′(s) is convex on [0, 1] and g(0) = g(s̄) = 0. The latter, due

to g′(s̄) ≤ 0, implies that g(s) = 0, 0 ≤ s ≤ s̄. Thus, φ is constant on a nontrivial

segment, which is not the case.

For a symmetric P supported on [−1, 1] with
∫

s2dP (s) ≡ ν̄2 ≤ ν2 we have, due to
φ(s) ≤ 1, −1 ≤ s ≤ 1:∫

exp{ts}dP (s) =
∫ 1

−1
cosh(ts)dP (s)

=
∫ 1

−1
[cosh(ts) − (cosh(t) − 1)s2]dP (s) + (cosh(t) − 1)

∫ 1

−1
s2dP (s)

≤
∫ 1

−1
dP (s) + (cosh(t) − 1)ν̄2 ≤ 1 + (cosh(t) − 1)ν2,

as claimed in (2.4.33). Setting h(t) = ln(ν2 cosh(t) + 1 − ν2), we have h(0) = h′(0) =

0, h′′(t) = ν2(ν2+(1−ν2) cosh(t))

(ν2 cosh(t)+1−ν2)2
, maxt h′′(t) =

{
ν2, ν2 ≥ 1

3
1
4

[
1 + ν4

1−2ν2

]
≤ 1

3
, ν2 ≤ 1

3

, whence

Σ(3)(ν) ≤ 1.

Exercise 2.2: Here are the results:

n ε ttru tNrm tBll tBllBx tBdg

16 5.e-2 3.802 3.799 9.791 9.791 9.791
16 5.e-4 7.406 7.599 15.596 15.596 15.596
16 5.e-6 9.642 10.201 19.764 16.000 16.000

256 5.e-2 15.195 15.195 39.164 39.164 39.164
256 5.e-4 30.350 30.396 62.383 62.383 62.383
256 5.e-6 40.672 40.804 79.054 79.054 79.054

n ε ttru tE.2.4.11 tE.2.4.12 tE.2.4.13 tUnim

16 5.e-2 3.802 6.228 5.653 5.653 10.826
16 5.e-4 7.406 9.920 9.004 9.004 12.502
16 5.e-6 9.642 12.570 11.410 11.410 13.705

256 5.e-2 15.195 24.910 22.611 22.611 139.306
256 5.e-4 30.350 39.678 36.017 36.017 146.009
256 5.e-6 40.672 50.282 45.682 45.682 150.821

Exercise 2.3: Here are the results:

n ε ttru tNrm tBll tBllBx tBdg tE.2.4.11 tE.2.4.12

16 5.e-2 4.000 6.579 9.791 9.791 9.791 9.791 9.791

16 5.e-4 10.000 13.162 15.596 15.596 15.596 15.596 15.596

16 5.e-6 14.000 17.669 19.764 16.000 16.000 19.764 19.764

256 5.e-2 24.000 26.318 39.164 39.164 39.164 39.164 39.164

256 5.e-4 50.000 52.649 63.383 62.383 62.383 62.383 62.383

256 5.e-6 68.000 70.674 79.054 79.054 79.054 79.053 79.053

Exercise 2.4: In the case of (a), the optimal value is ta =
√

nErfInv(ε), since for a feasible
x we have ξn[x] ∼ N (0, n). In the case of (b), the optimal value is tb = nErfInv(nε).
Indeed, the rows in Bn are of the same Euclidean length and are orthogonal to each other,
whence the columns are orthogonal to each other as well. Since the first column of Bn is
the all-one vector, the conditional on η distribution of ξ =

∑
j ζ̂j has the mass 1/n at the

point nη and the mass (n − 1)/n at the origin. It follows that the distribution of ξ is the
convex combination of the Gaussian distribution N (0, n2) and the unit mass, sitting at
the origin, with the weights 1/n and (n − 1)/n, respectively, and the claim follows.
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The numerical results are as follows:

n ε ta tb tb/ta

10 1.e-2 7.357 12.816 1.74

100 1.e-3 30.902 128.155 4.15

1000 1.e-4 117.606 1281.548 10.90

C.3 CHAPTER 3

Exercise 3.1: A possible model is as follows: let us define the normal range Z of the
uncertain data — the vector of prices c — as the box {c : 0 ≤ c ≤ c̄}, where c̄ is the vector
of current prices, so that all “physically possible” price vectors form the set Z + R

+
n . To

account for volatilities, is natural to measure deviations of the price vector from its normal
range in the norm ‖c‖ = maxj |cj |/dj . We now can model the decision making problem
in question by the GRC of the uncertain LO problem

min
x

{
cT x : Px ≥ b, x ≥ 0

}
the uncertain data being c. By Proposition 3.2.1, the GRC of this uncertain problem is
the semi-infinite LO program

minx,t t
subject to

Px ≥ b (a)
x ≥ 0 (b)
cT x ≤ t ∀c ∈ Z (c)
∆T x ≤ α ∀(∆ ≥ 0 : ‖∆‖ ≤ 1), (d)

which is equivalent to the LO program

min
x

{
c̄T x :

Px ≥ b, x ≥ 0
dT x ≤ α

}
.

With the given data, the meaningful range of sensitivities (the one where the GRC is
feasible and the constraint dT x ≤ α is binding) is [0.16, 0.32], and in this range the cost
of the monthly supply at the current prices varies from 8000 to 6400.

C.4 CHAPTER 4

Exercise 4.1: In the notation of section 4.2, we have

Φ(w) ≡ ln
(
E{exp{∑� w�ζ�}}

)
=
∑

� λ�(exp{w�} − 1)
= maxu[wT u − φ(u)],

φ(u) = maxw[uT w − Φ(w)] =

{ ∑
�[u� ln(u�/λ�) − u� + λ�], u ≥ 0

+∞, otherwise.

Consequently, the Bernstein approximation is

inf
β>0

[
z0 + β

∑
�

λ�(exp{w�/β} − 1) + β ln(1/ε)

]
≤ 0,

or, in the RC form,

z0 + max
u

{
wT u : u ∈ Zε = {u ≥ 0,

∑
�

[u� ln(u�/λ�) − u� + λ�] ≤ ln(1/ε)}
}

≤ 0.
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Exercise 4.2: w(ε) is the optimal value in the chance constrained optimization problem

min
w0

{
w0 : Prob{−w0 +

L∑
�=1

c�ζ� ≤ 0} ≥ 1 − ε

}
,

where ζ� are independent Poisson random variables with parameters λ�.

When all c� are integral in certain scale, the random variable ζL =
∑L

�=1 c�ζ� is also
integral in the same scale, and we can compute its distribution recursively in L:

p0(i) =

{
1, i = 0
0, i �= 0

, pk(i) =

∞∑
j=0

pk−1(i − c�j)
λj

k

j!
exp{−λk};

(in computations,
∑∞

j=0 should be replaced with
∑N

j=0 with appropriately large N).
With the numerical data in question, the expected value of per day requested cash is
cT λ = 7, 000, and the remaining requested quantities are listed below:

ε
1.e-1 1.e-2 1.e-3 1.e-4 1.e-5 1.e-6

w(ε) 8,900 10,800 12,320 13,680 14,900 16,060

CVaR
9,732
+9.3%

11,451
+6.0%

12,897
+4.7%

14,193
+3.7%

15,390
+3.3%

16,516
+2.8%

BCV
9,836

+10.5%
11,578
+7.2%

13,047
+5.9%

14,361
+5.0%

15,572
+4.5%

16,709
+4.0%

B
10,555
+18.6%

12,313
+14.0%

13,770
+11.8%

15,071
+10.2%

16,270
+9.2%

17,397
+8.3%

E
8,900
+0.0%

10,800
+0.0%

12,520
+1.6%

17,100
+25.0%

— —

“BCV” stands for the bridged Bernstein-CVaR, “B” — for the Bernstein,
and “E” — for the (1 − ε)-reliable empirical bound on w(ε). The BCV
bound corresponds to the generating function γ16,10(·), see p. 97. The
percents represent the relative differences between the bounds and w(ε).
All bounds are right-rounded to the closest integers.

Exercise 4.3: The results of computations are as follows (as a benchmark, we display
also the results of Exercise 4.2 related to the case of independent ζ1, ..., ζL):

ε
1.e-1 1.e-2 1.e-3 1.e-4 1.e-5 1.e-6

Exer. 4.2 8,900 10,800 12,320 13,680 14,900 16,060

Exer. 4.3,
lower bound

11,000
+23.6%

15,680
+45.2%

19,120
+55.2%

21,960
+60.5%

26,140
+75.4%

28,520
+77.6%

Exer. 4.3,
upper bound

13,124
+47.5%

17,063
+58.8%

20,507
+66.5%

23,582
+72.4%

26,588
+78.5%

29,173
+81.7%

Percents display relative differences between the bounds and w(ε)

Exercise 4.4. Part 1: By Exercise 4.1, the Bernstein upper bound on w(ε) is

Bλ(ε) = inf
{
w0 : infβ>0

[
−w0 + β

∑
� λ�(exp{c�/β} − 1) + β ln(1/ε)

]
≤ 0

}
= infβ>0

[
β
∑

� λ�(exp{c�/β} − 1) + β ln(1/ε)
]

The “ambiguous” Bernstein upper bound on w(ε) is therefore

BΛ(ε) = maxλ∈Λ infβ>0

[
β
∑

� λ�(exp{c�/β} − 1) + β ln(1/ε)
]

= infβ>0 β
[
maxλ∈Λ

∑
� λ�(exp{c�/β} − 1) + ln(1/ε)

] (∗)
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where the swap of infβ>0 and maxλ∈Λ is justified by the fact that the function
β
∑

� λ�(exp{c�/β} − 1) + β ln(1/ε) is concave in λ, convex in β and by the compactness
and convexity of Λ.

Part 2: We should prove that if Λ is a convex compact set in the domain λ ≥ 0 such
that for every affine form f(λ) = f0 + eT λ one has

max
λ∈Λ

f(λ) ≤ 0 ⇒ Probλ∼P {f(λ) ≤ 0} ≥ 1 − δ, (!)

then, setting w0 = BΛ(ε), one has

Probλ∼P

{
λ : Probζ∼Pλ1×...×PλL

{∑
�

ζ�c� > w0

}
> ε

}
≤ δ. (?)

It suffices to prove that under our assumptions on Λ inequality (?) is valid for all w0 >
BΛ(ε). Given w0 > BΛ(ε) and invoking the second relation in (∗), we can find β̄ > 0 such
that

β̄

[
max
λ∈Λ

∑
�

λ�(exp{c�/β̄} − 1) + ln(1/ε)

]
≤ w0,

or, which is the same,

[−w0 + β̄ ln(1/ε)] + max
λ∈Λ

∑
�

λ�[β̄(exp{c�/β̄} − 1)] ≤ 0,

which, by (!) as applied to the affine form

f(λ) = [−w0 + β̄ ln(1/ε)] +
∑

�

λ�[β̄(exp{c�/β̄} − 1)],

implies that
Probλ∼P {f(λ) > 0} ≤ δ. (∗∗)

It remains to note that when λ ≥ 0 is such that f(λ) ≤ 0, the result of Exercise 4.1 states
that

Probζ∼Pλ1×...×Pλm

{
−w0 +

∑
�

ζ�c� > 0

}
≤ ε.

Thus, when ω0 > BΛ(ε), the set of λ’s in the left hand side of (?) is contained in the set
{λ ≥ 0 : f(λ) > 0}, and therefore (?) is readily given by (∗∗).
Exercise 4.5: The necessary and sufficient condition for x to satisfy (4.6.2) clearly is

∀(P ∈ P) :

Probη∼P

{
sup
ξ∈Zξ

{
[a0]T x − b0 +

L∑
�=1

ξ�[[a
�]T x − b�]

}
︸ ︷︷ ︸

g(x)

+
∑L

�=1 η�[[a
�]T x − b�] ≤ 0

}

≥ 1 − ε.

Now, by conic duality a pair x, t can be extended by properly chosen y to a solution of
(4.6.4.a − d) if and only if t ≥ g(x) (cf. proof of Theorem 1.3.4). Recalling the origin of
f , we conclude that if x can be extended to a solution of (4.6.4), then x satisfies (4.6.2).

Exercise 4.7: Let us fix the true vector of expected returns µ. The RC mentioned in the
exercise is the (random) optimization problem

max
x,t

{
t − ErfInv(ε)σ(x) :

νT x ≥ t∀ν ∈ M(ζ̃)
x ≥ 0,

∑
� x� = 1

}
.
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Let ζ̃ be such that M(ζ̃) contains a lower bound ν = ν(ζ̃) for µ; note that this happens with
probability ≥ 1− δ. Then the t-component of a feasible solution (x, t) to the RC satisfies

the relation t ≤ νT x ≤ µT x, whence the optimal value VaR(ζ̃) and the x-component

x∗ = X(ζ̃) of an optimal solution (x∗, t∗) to the problem satisfy the relation

VaR(ζ̃) = t∗ − ErfInv(ε)σ(x∗) ≤ µT x∗ − ErfInv(ε)σ(x∗),

and (4.6.6) follows. �

Exercise 4.8: We have µ̂ = µ + Ση with η ∼ N (0, In). Therefore the set M given by
(4.6.9) can be represented as

M = µ + [Ση + O] .

Such a set contains vector that is ≤ µ if and only if the set Ση +O contains a nonpositive
vector, i.e., if and only if O + R

n
+ contains the vector −Ση. In the case of (4.6.10), the

latter condition is indeed satisfied with probability ≥ 1 − δ. �

Exercise 4.9: The RC associated with the combined Ball-Box approximation is

max
x,u,v

{
n∑

�=1

µ̂�x� − ρ2N
−1/2σ(u) − ρ∞N−1/2

n∑
�=1

σivi :
x ∈ ∆n

u + v = x, u, v ≥ 0

}
, (C.4.1)

cf. Proposition 2.3.3.

Exercise 4.10: The solution x∗ to the random problem (C.4.1) depends on ζ̃: x∗ = x∗(ζ̃).
Therefore from the fact that the value of the problem’s objective at every fixed point
x ∈ ∆n with probability ≥ 1 − δ is a lower bound on the value of the objective of the
“true” problem (4.6.5) at x it does not follow that the same is true at x∗(ζ̃). It can
happen (and in fact indeed happens) that the “bad event” — the objective of the soft RC

approximation as evaluated at x∗ = x∗(ζ̃) is greater than the “true” objective at the same
point — has probability significantly greater than δ. Whenever this bad event happens,
the optimal value in the approximation, which is exactly the value of its objective at x∗,
is greater than VaRε[V

x∗ ], (which is nothing but the value of the true objective at x∗),
that is, our target relation VaR ≤ VaRε[V

x∗ ] takes place with probability less than the
desired probability 1 − δ. We could save the day by ensuring that the objective of the
approximation underestimates, with probability ≥ 1− δ, the true objective everywhere on
∆n, but this is much more than what is ensured by the soft approximation.

Exercises 4.6 — 4.11, numerical results. The results of our experiments are presented
in table C.1. In the table:
• “Inv” is the empirical mean of the capital invested in “true assets” (those with � ≥ 2);
• M(·)/S(·)/P (·) are the empirical mean/standard deviation/probability computed over
a sample of 100 collections of historical data and associated portfolio selections;
• “Id” is the ideal portfolio given by the optimal solution to (4.6.5), while “Bl” “Bx,”
“BB,” “S” and “CS” stand for portfolios yielded, respectively, by the Ball, Box, combined
Ball-Box, soft, and corrected soft approximations.

C.5 CHAPTER 5

Exercise 5.1: The proof is correct up to the fact that the mere existence of similar
ellipsoids, centered at the origin, with the similarity ratio

√
L which “bracket” Z is not

enough; we need a tractable approximation, so that we need an explicit description of
these ellipsoids, e.g., a description by explicitly given quadratic inequalities. Whether
such a description can be found efficiently, it depends on how Z itself is given. For
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Portf Inv M(VaR) S(VaR) M(VaRε[V
x]) S(VaRε[V

x]) P(VaR > VaRε[V
x])

Id 1.000 1.053 0.000 1.053 0.000 0.000
Bl 1.000 1.032 0.001 1.044 0.001 0.000
Bx 0.000 1.000 0.000 1.000 0.000 0.000
BB 1.000 1.032 0.001 1.044 0.001 0.000
S 1.000 1.062 0.002 1.042 0.001 1.000

CS 1.000 1.046 0.002 1.052 0.000 0.000
Data (4.6.7.a)

Portf Inv M(VaR) S(VaR) M(VaRε[V
x]) S(VaRε[V

x]) P(VaR > VaRε[V
x])

Id 1.000 1.053 0.000 1.053 0.000 0.000
Bl 0.990 1.002 0.001 1.013 0.006 0.000
Bx 1.000 1.040 0.003 1.053 0.000 0.000
BB 1.000 1.040 0.003 1.053 0.000 0.000
S 1.000 1.046 0.003 1.053 0.000 0.020

CS 1.000 1.040 0.003 1.053 0.000 0.000
Data (4.6.7.b)

Portf Inv M(VaR) S(VaR) M(VaRε[V
x]) S(VaRε[V

x]) P(VaR > VaRε[V
x])

Id 1.000 1.018 0.000 1.018 0.000 0.000
Bl 0.680 1.001 0.001 1.008 0.006 0.000
Bx 0.000 1.000 0.000 1.000 0.000 0.000
BB 0.620 1.001 0.001 1.008 0.006 0.000
S 1.000 1.020 0.002 1.012 0.001 1.000

CS 1.000 1.011 0.002 1.018 0.000 0.000
Data (4.6.7.c)

Table C.1 Numerical results for Exercises 4.6 — 4.11 on data sets (4.6.7.a-c).

example, when Z is “black-box-represented,” that is, it is given by a membership oracle
(a “black box” capable to check whether a given point ζ belongs to Z) or a separation
oracle (a membership oracle that in the case of ζ �∈ Z returns vector e such that eT ζ >
maxζ′∈Z eT ζ′), we do not know how to “round” Z within the factor ϑ = (1 + ε)

√
d

efficiently — i.e., how to find a pair of similar, with the similarity ratio ϑ, and centered at
the origin ellipsoids which bracket Z in a polynomial in L and ln(1/ε) number of calls to
the oracle, with polynomial in L and ln(1/ε) number of additional arithmetic operations
per call. The best known so far ϑ for which ϑ-rounding of a black-box-represented solid
Z = −Z can be found efficiently, is ϑ = O(1)L, and with this ϑ in the role of

√
d the

tightness factor of the safe tractable approximation of (5.3.3), (RCρ) developed at the
end of section 5.3 jumps from L to O(1)L3/2. To get better results, we need “more
informative” representation of Z. We could require, e.g., that along with the membership
(or separation) oracle we have at our disposal an “inclusion” oracle — one that, given on
input a centered at the origin ellipsoid E (represented by an explicit quadratic inequality)
reports whether this ellipsoid is contained in Z, and if it is not the case, returns a point
from E\Z. In this case, we can approximate efficiently to whatever accuracy the largest
volume ellipsoid contained in Z and thus round efficiently Z within factor ϑ = (1 + ε)

√
L

for whatever ε > 0 (for justification of this and the subsequent claims, see [8, section 4.9]).
Note that the inclusion oracle is easy to implement when, e.g., Z is given as intersection of
finitely many ellipsoids represented by explicit quadratic inequalities. Indeed, in this case
building an inclusion oracle reduces immediately to building a similar oracle for a pair
of ellipsoids given by explicit quadratic inequalities, and the latter problem is easy. Note
that in our context the inclusion oracle can be replaced with a “covering” one — a routine
that, given on input a centered at the origin ellipsoid E, reports whether E ⊃ Z, and if it
is not the case, returns a point from Z\E. In this case, we can approximate efficiently to
whatever accuracy the smallest volume ellipsoid containing Z, thus once again arriving at
an efficient ϑ-rounding of Z with ϑ = (1 + ε)

√
L, ε > 0. In order for a covering oracle to
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be readily available, it suffices to assume that Z is given as a convex hull of the union of
finitely many ellipsoids.

Exercise 5.2: Let S[·] be a safe tractable approximation of (CZ∗ [·]) tight within the
factor ϑ. Let us verify that S[λγρ] is a safe tractable approximation of (CZ [ρ]) tight
within the factor λϑ. All we should prove is that (a) if x can be extended to a feasible
solution to S[λγρ], then x is feasible for (CZ [ρ]), and that (b) if x cannot be extended to a
feasible solution to S[λγρ], then x is not feasible for (CZ [λϑρ]). When x can be extended
to a feasible solution of S[λγρ], x is feasible for (CZ∗ [λγρ]), and since ρZ ⊂ λγρZ∗, x is
feasible for (CZ [ρ]) as well, as required in (a). Now assume that x cannot be extended
to a feasible solution of S[λγρ]. Then x is not feasible for (CZ∗ [ϑλγρ]), and since the set
ϑλγρZ∗ is contained in ϑλρZ, x is not feasible for (CZ [(ϑλ)ρ]), as required in (b). �

Exercise 5.3: 1) Consider the ellipsoid

Z∗ = {ζ : ζT [
∑

i

Qi]ζ ≤ M}.

We clearly have M−1/2Z∗ ⊂ Z ⊂ Z∗; by assumption, (CZ∗ [·]) admits a safe tractable
approximation tight within the factor ϑ, and it remains to apply the result of Exercise
5.2.

2) This is a particular case of 1) corresponding to ζT Qiζ = ζ2
i , 1 ≤ i ≤ M = dim ζ.

3) Let Z =
M⋂

i=1

Ei, where Ei are ellipsoids. Since Z is symmetric w.r.t. the origin,

we also have Z =
M⋂

i=1

[Ei ∩ (−Ei)]. We claim that for every i, the set Ei ∩ (−Ei) contains

an ellipsoid Fi centered at the origin and such that Ei ∩ (−Ei) ⊂
√

2Fi, and that this
ellipsoid Fi can be easily found. Believing in the claim, we have

Z∗ ≡
M⋂

i=1

Fi ⊂ Z ⊂
√

2

M⋂
i=1

Fi.

By 1), (CZ∗ [·]) admits a safe tractable approximation with the tightness factor ϑ
√

M ;
by Exercise 5.2, (CZ [·]) admits a safe tractable approximation with the tightness factor
ϑ
√

2M .

It remains to support our claim. For a given i, applying nonsingular linear trans-
formation of variables, we can reduce the situation to the one where Ei = B + e, where
B is the unit Euclidean ball, centered at the origin, and ‖e‖2 < 1 (the latter inequality
follows from 0 ∈ intZ ⊂ int(Ei ∩ (−Ei))). The intersection G = Ei ∩ (−Ei) is a set
that is invariant w.r.t. rotations around the axis Re; a 2-D cross-section H of G by a
2D plane Π containing the axis is a 2-D solid symmetric w.r.t. the origin. By the results
on inscribed/cisrumscribed ellipsoids mentioned at the end of chapter 5, there exists an
ellipsis I, centered at the origin, that is contained in H and is such that

√
2I contains H.

This ellipsis can be easily found, see Solution to Exercise 5.1. Now, the ellipsis I is the
intersection of Π and an ellipsoid Fi that is invariant w.r.t. rotations around the axis Re,
and Fi clearly satisfies the required relations Fi ⊂ Ei ∩ (−Ei) ⊂

√
2Fi.

1

1In fact, the factor
√

2 in the latter relation can be reduced to 2/
√

3 <
√

2, see Solution to
Exercise 7.1.
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C.6 CHAPTER 6

Exercise 6.1: With y given, all we know about x is that there exists ∆ ∈ R
p×q with

‖∆‖2,2 ≤ ρ such that y = Bn[x; 1] + LT ∆R[x; 1], or, denoting w = ∆R[x; 1], that there
exists w ∈ R

p with wT w ≤ ρ2[x; 1]T RT R[x; 1] such that y = Bn[x; 1] + LT w. Denoting
z = [x; w], all we know about the vector z is that it belongs to a given affine plane Az = a
and satisfies the quadratic inequality zTCz+2cT z+d ≤ 0, where A = [An, LT ], a = y−bn,
and

[ξ; ω]TC[ξ; ω] + 2cT [ξ; ω] + d ≡ ωT ω − ρ2[ξ; 1]T RT R[ξ; 1], [ξ; ω] ∈ R
n+p.

Using the equations Az = a, we can express the n+p z-variables via k ≤ n+p u-variables:

Az = a ⇔ ∃u ∈ R
k : z = Eu + e.

Plugging z = Eu+e into the quadratic constraint zTCz+2cT z+d ≤ 0, we get a quadratic
constraint uT Fu + 2fT u + g ≤ 0 on u. Finally, the vector Qx we want to estimate can be
represented as Pu with easily computable matrix P . The summary of our developments
is as follows:

(!) Given y and the data describing B, we can build k, a matrix P and a
quadratic form uT Fu+2fT u+ g ≤ 0 on R

k such that the problem of interest
becomes the problem of the best, in the worst case, ‖ · ‖2-approximation
of Pu, where unknown vector u ∈ R

k is known to satisfy the inequality
uT Fu + 2fT u + g ≤ 0.

By (!), our goal is to solve the semi-infinite optimization program

min
t,v

{
t : ‖Pu − v‖2 ≤ t∀(u : uT Fu + 2fT u + g ≤ 0)

}
. (∗)

Assuming that infu

[
uT Fu + 2fT u + g

]
< 0 and applying the inhomogeneous version of

S-Lemma, the problem becomes

min
t,v,λ

{
t ≥ 0 :

[
λF − P T P λf − P T v

λfT − vT P λg + t2 − vT v

]
� 0, λ ≥ 0

}
.

Passing from minimization of t to minimization of τ = t2, the latter problem becomes the
semidefinite program

min
τ,v,λ,s

⎧⎨⎩τ :

vT v ≤ s, λ ≥ 0[
λF − P T P λf − P T v

λfT − vT P λg + τ − s

]
� 0

⎫⎬⎭ .

In fact, the problem of interest can be solved by pure Linear Algebra tools, without
Semidefinite optimization. Indeed, assume for a moment that P has trivial kernel. Then
(∗) is feasible if and only if the solution set S of the quadratic inequality φ(u) ≡ uT Fu +
2fT u + g ≤ 0 in variables u is nonempty and bounded, which is the case if and only if
this set is an ellipsoid (u − c)T Q(u − c) ≤ r2 with Q � 0 and r ≥ 0; whether this indeed
is the case and what are c, Q, r, if any, can be easily found out by Linear Algebra tools.
The image PS of S under the mapping P also is an ellipsoid (perhaps “flat”) centered at
v∗ = Pc, and the optimal solution to (∗) is (t∗, v∗), where t∗ is the largest half-axis of the
ellipsoid PS. In the case when P has a kernel, let E be the orthogonal complement to
KerP , and P̂ be the restriction of P onto E; this mapping has a trivial kernel. Problem
(∗) clearly is equivalent to

min
t,v

{
t : ‖P̂ û − v‖2 ≤ t∀(û ∈ E : ∃w ∈ KerP : φ(û + w) ≤ 0

}
.
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The set
Û = {û ∈ E : ∃w ∈ KerP : φ(û + w) ≤ 0}

clearly is given by a single quadratic inequality in variables û ∈ E, and (∗) reduces to a

similar problem with E in the role of the space where u lives and P̂ in the role of P , and
we already know how to solve the resulting problem.

C.7 CHAPTER 7

Exercise 7.1: In view of Theorem 7.2.1, all we need to verify is that Z can be “safely
approximated” within an O(1) factor by an intersection Ẑ of O(1)J ellipsoids centered at

the origin: there exists Ẑ = {η : ηT Q̂jη ≤ 1, 1 ≤ j ≤ Ĵ} with Q̂j � 0,
∑

j Q̂j � 0 such
that

θ−1Ẑ ⊂ Z ⊂ Ẑ,

with an absolute constant θ and Ĵ ≤ O(1)J . Let us prove that the just formulated

statement holds true with Ĵ = J and θ =
√

3/2. Indeed, since Z is symmetric w.r.t. the
origin, setting Ej = {η : (η − aj)

T Qj(η − aj) ≤ 1}, we have

Z =

J⋂
j=1

Ej =

J⋂
j=1

(−Ej) =

J⋂
j=1

(Ej ∩ [−Ej ]);

all we need is to demonstrate that every one of the sets Ej ∩ [−Ej ] is in between two
proportional ellipsoids centered at the origin with the larger one being at most 2/

√
3

multiple of the smaller one. After an appropriate linear one-to-one transformation of the
space, all we need to prove is that if E = {η ∈ R

d : (η1 − r)2 +
∑k

j=2 η2
j ≤ 1} with

0 ≤ r < 1, then we can point out the set F = {η : η2
1/a2 +

∑k
j=2 η2

j /b2 ≤ 1} such that

√
3

2
F ⊂ E ∩ [−E] ⊂ F.

When proving the latter statement, we lose nothing when assuming k = 2. Renaming η1

as y, η2 as x and setting h = 1 − r ∈ (0, 1] we should prove that the “loop” L = {[x; y] :
[|y| + (1 − h)]2 + x2 ≤ 1} is in between two proportional ellipses centered at the origin
with the ratio of linear sizes θ ≤ 2/

√
3. Let us verify that we can take as the smaller of

these ellipses the ellipsis

E = {[x; y] : y2/h2 + x2/(2h − h2) ≤ µ2}, µ =

√
3 − h

4 − 2h
,

and to choose θ = µ−1 (so that θ ≤ 2/
√

3 due to 0 < h ≤ 1). First, let us prove that
E ⊂ L. This inclusion is evident when h = 1, so that we can assume that 0 < h < 1. Let
[x; y] ∈ E , and let λ = 2(1−h)

h
. We have

y2/h2 + x2/(2h − h2) ≤ µ2 ⇒
{

y2 ≤ h2[µ2 − x2/(2h − h2)] (a)
x2 ≤ µ2h(2 − h) (b)

;

(|y| + (1 − h))2 + x2 = y2 + 2|y|(1 − h) + (1 − h)2 ≤ y2 +
[
λy2 + 1

λ
(1 − h)2

]
+(1 − h)2 = y2 2−h

h
+ (2−h)(1−h)

2
+ x2

≤
[
µ2 − x2

h(2−h)

]
(2h − h2) + (2−h)(1−h)

2
+ x2 ≡ q(x2),

where the concluding ≤ is due to (a). Since 0 ≤ x2 ≤ µ2(2h − h2) by (b), q(x2) is in-
between its values for x2 = 0 and x2 = µ2(2h− h2), and both these values with our µ are
equal to 1. Thus, [x; y] ∈ L.
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It remains to prove that µ−1E ⊃ L, or, which is the same, that when [x; y] ∈ L, we
have [µx; µy] ∈ E . Indeed, we have

[|y| + (1 − h)]2 + x2 ≤ 1 ⇒ |y| ≤ h & x2 ≤ 1 − y2 − 2|y|(1 − h) − (1 − h)2

⇒ x2 ≤ 2h − h2 − y2 − 2|y|(1 − h)

⇒ µ2
[

y2

h2 + x2

2h−h2

]
= µ2 y2(2−h)+hx2

h2(2−h)
≤ µ2 h2(2−h)+2(1−h)[

≤0︷ ︸︸ ︷
y2 − |y|h]

h2(2−h)
≤ µ2

⇒ [x; y] ∈ E ,

as claimed.

C.8 CHAPTER 8

Exercise 8.1: 1) We have

EstErr = sup
v∈V,A∈A

√
vT (GA − I)T (GA − I)v + Tr(GT ΣG)

= sup
A∈A

sup
u:uT u≤1

√
uT Q−1/2(GA − I)T (GA − I)Q−1/2u + Tr(GT ΣG)

[substitution v = Q−1/2u]

=
√

sup
A∈A

‖(GA − I)Q−1/2‖2
2,2 + Tr(GT ΣG).

By the Schur Complement Lemma, the relation ‖(GA − I)Q−1/2‖2,2 ≤ τ is equivalent to

the LMI

[
τI [(GA − I)Q−1/2]T

(GA − I)Q−1/2 τI

]
, and therefore the problem of interest

can be posed as the semi-infinite semidefinite program

min
t,τ,δ,G

⎧⎨⎩t :

√
τ2 + δ2 ≤ t,

√
Tr(GT ΣG) ≤ δ[

τI [(GA − I)Q−1/2]T

(GA − I)Q−1/2 τI

]
� 0∀A ∈ A

⎫⎬⎭ ,

which is nothing but the RC of the uncertain semidefinite program⎧⎨⎩ min
t,τ,δ,G

⎧⎨⎩t :

√
τ2 + δ2 ≤ t,

√
Tr(GT ΣG) ≤ δ[

τI [(GA − I)Q−1/2]T

(GA − I)Q−1/2 τI

]
� 0

⎫⎬⎭ : A ∈ A

⎫⎬⎭ .

In order to reformulate the only semi-infinite constraint in the problem in a tractable
form, note that with A = An + LT ∆R we have

N (A) :=

[
τI [(GA − I)Q−1/2]T

(GA − I)Q−1/2 τI

]
=

[
τI [(GAn − I)Q−1/2]T

(GAn − I)Q−1/2 τI

]
︸ ︷︷ ︸

Bn(G)

+LT (G)∆R + RT ∆TL(G),

L(G) =
[
0p×n, LGT

]
,R =

[
RQ−1/2, 0q×n

]
.

Invoking Theorem 8.2.3, the semi-infinite LMI N (A) � 0 ∀A ∈ A is equivalent to

∃λ :

[
λIp ρL(G)

ρLT (G) Bn(G) − λRTR

]
� 0,
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and thus the RC is equivalent to the semidefinite program

min
t,τ,

δ,λ,G

⎧⎪⎪⎨⎪⎪⎩t :

√
τ2 + δ2 ≤ t,

√
Tr(GT ΣG) ≤ δ⎡⎣ λIp ρLGT

τIn − λQ−1/2RT RQ−1/2 Q−1/2(AT
n GT − In)

ρGLT (GAn − In)Q−1/2 τIn

⎤⎦ � 0

⎫⎪⎪⎬⎪⎪⎭ .

2): Setting v = UT v̂, ŷ = W T y, ξ̂ = W T ξ, our estimation problem reduces to the
exactly the same problem, but with Diag{a} in the role of An and the diagonal matrix

Diag{q} in the role of Q; a linear estimate Ĝŷ of v̂ in the new problem corresponds to the

linear estimate UT ĜW T y, of exactly the same quality, in the original problem. In other
words, the situation reduces to the one where An and Q are diagonal positive semidefinite,
respectively, positive definite matrices; all we need is to prove that in this special case we
lose nothing when restricting G to be diagonal. Indeed, in the case in question the RC
reads

min
t,τ,

δ,λ,G

⎧⎪⎪⎨⎪⎪⎩t :

√
τ2 + δ2 ≤ t, σ

√
Tr(GT G) ≤ δ⎡⎣ λIn ρGT

τIn − λDiag{µ} Diag{ν}GT − Diag{η}
ρG GDiag{ν} − Diag{η} τIn

⎤⎦ � 0

⎫⎪⎪⎬⎪⎪⎭ (∗)

where µi = q−1
i , νi = ai/

√
qi and ηi = 1/

√
qi. Replacing the G-component in a feasible

solution with EGE, where E is a diagonal matrix with diagonal entries ±1, we preserve
feasibility (look what happens when you multiply the matrix in the LMI from the left and
from the right by Diag{I, I, E}). Since the problem is convex, it follows that whenever
a collection (t, τ, δ, λ, G) is feasible for the RC, so is the collection obtained by replacing
the original G with the average of the matrices ET GE taken over all 2n diagonal n × n
matrices with diagonal entries ±1, and this average is the diagonal matrix with the same
diagonal as the one of G. Thus, when An and Q are diagonal and L = R = In (or, which
is the same in our situation, L and R are orthogonal), we lose nothing when restricting G
to be diagonal.

Restricted to diagonal matrices G = Diag{g}, the LMI constraint in (∗) becomes a
bunch of 3 × 3 LMIs ⎡⎣ λ 0 ρgi

0 τ − λµi νigi − ηi

ρgi νigi − ηi τ

⎤⎦ � 0, i = 1, ..., n,

in variables λ, τ, gi. Assuming w.l.o.g. that λ > 0 and applying the Schur Complement
Lemma, these 3 × 3 LMIs reduce to 2 × 2 matrix inequalities[

τ − λµi νigi − ηi

νigi − ηi τ − ρ2g2
i /λ

]
� 0, i = 1, ..., n.

For given τ, λ, every one of these inequalities specifies a segment ∆i(τ, λ) of possible value
of gi, and the best choice of gi in this segment is the point gi(τ, λ) of the segment closest
to 0 (when the segment is empty, we set gi(τ, λ) = ∞). Note that gi(τ, λ) ≥ 0 (why?). It
follows that (∗) reduces to the convex (due to its origin) problem

min
τ,λ≥0

⎧⎨⎩
√

τ2 + σ2
∑

i

g2
i (τ, λ)

⎫⎬⎭
with easily computable convex nonnegative functions gi(τ, λ).
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C.9 CHAPTER 9

Exercise 9.1: Note that 1), 2) are nothing but the real case counterparts of Lemma
B.4.6. For the sake of completeness, we present the corresponding proofs.

1) Let λ > 0. For every ξ ∈ R
n we have ξT [pqT + qpT ]ξ = 2(ξT p)(ξT q) ≤ λ(ξT p)2 +

1
λ
(ξT q)2 = ξT [λppT + 1

λ
qqT ]ξ, whence pqT + qpT � λppT + 1

λ
qqT . By similar argument,

−[pqT + qpT ] � λppT + 1
λ
qqT . 1) is proved.

2) Observe, first, that if λ(A) is the vector of eigenvalues of a symmetric matrix A,
then ‖λ(pqT +qpT )‖1 = 2‖p‖2‖q‖2. Indeed, there is nothing to verify when p = 0 or q = 0;
when p, q �= 0, we can normalize the situation to make p a unit vector and then to choose
the orthogonal coordinates in R

n in such a way that p is the first basic orth, and q is in the
linear span of the first two basic orths. With this normalization, the nonzero eigenvalues

of A are exactly the same as the eigenvalues of the 2 × 2 matrix

[
2α β
β 0

]
, where α

and β are the first two coordinates of q in our new orthonormal basis. The eigenvalues of
the 2 × 2 matrix in question are α ±

√
α2 + β2, and the sum of their absolute values is

2
√

α2 + β2 = 2‖q‖2 = 2‖p‖2‖q‖2, as claimed.

To prove 2), let us lead to a contradiction the assumption that Y, p, q �= 0 are such
that Y � ±[pqT + qpT ] and there is no λ > 0 such that Y − λppT − 1

λ
qqT � 0, or, which

is the same by the Schur Complement Lemma, the LMI[
Y − λppT q

qT λ

]
� 0

in variable λ has no solution, or, equivalently, the optimal value in the (clearly strictly
feasible) SDO program

min
t,λ

{
t :

[
tI + Y − λppT q

qT λ

]
� 0

}
is positive. By semidefinite duality, the latter is equivalent to the dual problem possessing
a feasible solution with a positive value of the dual objective. Looking at the dual, this is
equivalent to the existence of a matrix Z ∈ Sn and a vector z ∈ R

n such that[
Z z
zT pT Zp

]
� 0, Tr(ZY ) < 2qT z.

Adding, if necessary, to Z a small positive multiple of the unit matrix, we can assume
w.l.o.g. that Z � 0. Setting Ȳ = Z1/2Y Z1/2, p̄ = Z1/2p, q̄ = Z1/2q, z̄ = Z−1/2z, the
above relations become [

I z̄
z̄T p̄T p̄

]
� 0, Tr(Ȳ ) < 2q̄T z̄. (∗)

Observe that from Y � ±[pqT + qpT ] it follows that Ȳ � ±[p̄q̄T + q̄p̄T ]. Looking at what
happens in the eigenbasis of the matrix [p̄q̄T + q̄p̄T ], we conclude from this relation that
Tr(Ȳ ) ≥ ‖λ(p̄q̄T + q̄p̄T )‖1 = 2‖p̄‖2‖q̄‖2. On the other hand, the matrix inequality in (∗)
implies that ‖z̄‖2 ≤ ‖p̄‖2, and thus Tr(Ȳ ) < 2‖p̄‖2‖q̄‖2 by the second inequality in (∗).
We have arrived at a desired contradiction.

3) Assume that x is such that all L�(x) are nonzero. Assume that x can be extended
to a feasible solution Y1, ..., YL, x of (9.2.2). Invoking 2), we can find λ� > 0 such that Y� �
λ�R

T
� R� + 1

λ�
LT

� (x)L�(x). Since An(x) − ρ
∑

� Y� � 0, we have [An(x) − ρ
∑

� λ�R
T
� R�] −∑

�
ρ

λ�
LT

� (x)L�(x) � 0, whence, by the Schur Complement Lemma, λ1, ..., λL, x are feasible
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for (9.2.3). Vice versa, if λ1, ..., λL, x are feasible for (9.2.3), then λ� > 0 for all � due
to L�(x) �= 0, and, by the same Schur Complement Lemma, setting Y� = λ�R

T
� R� +

1
λ�

LT
� (x)L�(x), we have

An(x) − ρ
∑

�

Y� � 0,

while Y� � ±
[
LT

� (x)R� + RT
� L�(x)

]
, that is, Y1, ..., YL, x are feasible for (9.2.2).

We have proved the equivalence of (9.2.2) and (9.2.3) in the case when L�(x) �= 0
for all �. The case when some of L�(x) vanish is left to the reader.

Exercise 9.2: A solution might be as follows. The problem of interest is

min
G,t

{t : t ≥ ‖(GA − I)v + Gξ‖2 ∀(v ∈ V, ξ ∈ Ξ, A ∈ A)}
�

min
G,t

{
t : uT (GA − I)v + uT Gξ ≤ t∀

⎛⎜⎜⎜⎜⎝u, v, ξ :

uT u ≤ 1
vT Piv ≤ 1,

1 ≤ i ≤ I
ξT Qjξ ≤ ρ2

ξ,
1 ≤ j ≤ J

⎞⎟⎟⎟⎟⎠ ∀A ∈ A
}

.

(∗)

Observing that

uT [GA − I]v + uT Gξ = [u; v; ξ]T

⎡⎣ 1
2
[GA − I] 1

2
G

1
2
[GA − I]T

1
2
GT

⎤⎦ [u; v; ξ],

for A fixed, a sufficient condition for the validity of the semi-infinite constraint in (∗) is
the existence of nonnegative µ, νi, ωj such that⎡⎣ µI ∑

i νiPi ∑
j ωjQj

⎤⎦ �

⎡⎣ 1
2
[GA − I] 1

2
G

1
2
[GA − I]T

1
2
GT

⎤⎦
and µ +

∑
i νi + ρ2

ξ

∑
j ωj ≤ t. It follows that the validity of the semi-infinite system of

constraints

µ +
∑

i νi + ρ2
ξ

∑
j ωj ≤ t, µ ≥ 0, νi ≥ 0, ωj ≥ 0⎡⎣ µI ∑

i νiPi ∑
j ωjQj

⎤⎦ �

⎡⎣ 1
2
[GA − I] 1

2
G

1
2
[GA − I]T

1
2
GT

⎤⎦
∀A ∈ A

(!)
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in variables t, G, µ, νi, ωj is a sufficient condition for (G, t) to be feasible for (∗). The only
semi-infinite constraint in (!) is in fact an LMI with structured norm-bounded uncertainty:⎡⎣ µI ∑

i νiPi ∑
j ωjQj

⎤⎦
−

⎡⎣ 1
2
[GA − I] 1

2
G

1
2
[GA − I]T

1
2
GT

⎤⎦ � 0 ∀A ∈ A

�⎡⎣ µI − 1
2
[GAn − I] − 1

2
G

− 1
2
[GAn − I]T

∑
i νiPi

− 1
2
GT ∑

j ωjQi

⎤⎦
︸ ︷︷ ︸

B(µ,ν,ω,G)

+
∑L

�=1[L�(G)T ∆�R� + RT
� ∆T

� L�(G)] � 0
∀ (‖∆�‖2,2 ≤ ρA, 1 ≤ � ≤ L) ,

L�(G) = 1
2

[
L�G

T , 0p�×n, 0p�×m

]
, R� = [0q�×n, R�, 0q�×m] .

Invoking Theorem 9.1.2, we end up with the following safe tractable approximation of (∗):

min
t,G,µ,νi,ωj ,λ�,Y�

t

s.t.
µ +

∑
i νi + ρ2

ξ

∑
j ωj ≤ t, µ ≥ 0, νi ≥ 0, ωj ≥ 0[

λ�I L�(G)

LT
� (G) Y� − λ�RT

� R�

]
� 0, 1 ≤ � ≤ L

B(µ, ν, ω, G) − ρA

∑L
�=1 Y� � 0.

C.10 CHAPTER 12

Exercise 12.1: For every i ∈ {1, . . . , m}, the condition

∀ δw, ‖δw‖∞ ≤ ρ‖w‖2 : yi((w + δw)T xi + b) ≥ 0

is equivalent to
yi(w

T xi + b) ≥ ρ‖w‖2,

which is similar to the condition (12.1.2). Finding the maximally robust classifier is
processed the same way as in the case of data uncertainty.

Exercise 12.2: For given vectors u, v, we have

max
∆∈D

uT ∆v = max
α≥0 : ‖α‖q≤1

max
δi : ‖δi‖p≤αi

m∑
i=1

vi(u
T δi)

= max
α≥0 : ‖α‖q≤1

m∑
i=1

max
δ : ‖δ‖p≤1

αi|vi| · |uT δ|

= ‖u‖p∗ · max
α : ‖α‖q≤1

m∑
i=1

|vi||αi|

= ‖u‖p∗ ‖v‖q∗ ,

as claimed.
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Exercise 12.3: 1): If i ∈ J , then we need to compute

max
yi∈{−1,1}

[1 − yi(w
T xi + b)]+ = 1 + |wT xi + b|.

Hence the robust counterpart expresses as

min
(w,b)

{∑
i∈I

[1 − yi(z
T
i w + b)]+ +

∑
i∈J

|zT
i w + b|

}
,

which can be expressed easily as a Linear Optimization problem. The above corresponds
to a regularized version of the SVM, with weighted �1-norm, where the weights involve
the data points.

2): With the notation Θk := {θ ∈ {0, 1}m : 1T θ = k}, this problem can be
formulated as

min
x

{
max
θ∈Θk

m∑
i=1

[
(1 − θi)p

+
i + θip

−
i

]
: p±

i = [1 ∓ yi(z
T
i w + b)]+, 1 ≤ i ≤ m

}
.

Using the fact that we can replace equality constraints by convex inequalities without loss
of generality in the above, we obtain the formulation

min
x

{
1T p+ + max

θ∈Θk

m∑
i=1

θi(p
−
i − p+

i ) : p±
i ≥ [1 ∓ yi(z

T
i w + b)]+, 1 ≤ i ≤ m

}
,

or, equivalently:

min
x

{
1T p+ +

k∑
i=1

(p− − p+)[i] : p±
i ≥ [1 ∓ yi(z

T
i w + b)]+, 1 ≤ i ≤ m

}
,

which can be cast into a linear optimization format via

min
x,µ

{
1T p+ + kµ +

m∑
i=1

[p−
i − p+

i − µ]+ : p±
i ≥ [1 ∓ yi(z

T
i w + b)]+, 1 ≤ i ≤ m

}
.

Exercise 12.4: 1): The solution involves addressing the following problem, where i, yi

and xi are given:
max
δ∈Θk

[1 − yi(w
T (xi + δi) + b)]+,

where Θk := {δ ∈ {−1, 0, 1}n : ‖δ‖1 ≤ k}. In turn, we are led to a problem of the form

max
δ∈Θk

δT r,

where r ∈ Rn is given. Without loss of generality, we can replace Θk by its convex hull.
Using duality, we can then easily convert the above problem to

min
u

{‖r − u‖1 + k‖u‖∞} .

Thus, the robust counterpart to our problem takes the form

min
w,b

m∑
i=1

[1 − yi(x
T
i w + b) + φ(w)]+,
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where
φ(w) := min

u
{k‖u‖∞ + ‖w − u‖1} .

2): The same approach leads us to the problem

φ(r, x) := max
δ

{
δT r : 0 ≤ δ + x ≤ 1, ‖δ‖1 ≤ k

}
,

where r ∈ Rn is given. Using duality again, we obtain that the value of the above problem
is

φ(r, x) = min
u

{
1T (r − u) − (r − u)T x + k‖u‖∞

}
.

The robust counterpart thus expresses as

min
w,b

m∑
i=1

[1 − yi(z
T
i w + b) + φ(yiw, xi)]+,

where the function φ is given above.

Exercise 12.5: Let zi = [yixi; yi], i = 1, . . . , m, and Z = [z1, . . . , zm]. For the new
data point/label pair (xm+1, ym+1), we can write [ym+1xm+1; ym+1] = Zu + [v; 0], where
u ∈ {0, 1}m,

∑m
i=1 ui = 1, and v ∈ Rn, ‖v‖2 ≤ 1. Denoting by U the set of such allowable

data point/label pair, we have

max
(xm+1,ym+1)∈U

[1 − ym+1(x
T
m+1w + b)]+ = [1 − min

i
yi(x

T
i w + b) + ρ‖w‖2]+,

which means that the robust counterpart can be written as

min
w,b

{
m∑

i=1

[1 − yi(w
T xi + b)]+ + [1 − min

i
yi(x

T
i w + b) + ρ‖w‖2]+

}
.

The above can be expressed as the second-order cone optimization problem

min
w,b,τ

{
m∑

i=1

[1 − yi(w
T xi + b)]+ + [1 − τ + ρ‖w‖2]+ : τ ≤ yi(x

T
i w + b), 1 ≤ i ≤ m

}
.

C.11 CHAPTER 14

Exercise 14.1: From state equations (14.5.1) coupled with control law (14.5.3) it follows
that

wN = WN [Ξ]ζ + wN [Ξ],

where Ξ = {Uz
t , Ud

t , u0
t}N

t=0 is the “parameter” of the control law (14.5.3), and WN [Ξ],
wN [Ξ] are matrix and vector affinely depending on Ξ. Rewriting (14.5.2) as the system of
linear constraints

eT
j wN − fj ≤ 0, j = 1, ..., J,

and invoking Proposition 3.2.1, the GRC in question is the semi-infinite optimization
problem

minΞ,α α
subject to

eT
j [WN [Ξ]ζ + wN [Ξ]] − fj ≤ 0 ∀(ζ : ‖ζ − ζ̄‖s ≤ R) (aj)

eT
j WN [Ξ]ζ ≤ α ∀(ζ : ‖ζ‖r ≤ 1) (bj)

1 ≤ j ≤ J.
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This problem clearly can be rewritten as

minΞ,α α
subject to

R‖W T
N [Ξ]ej‖s∗ + eT

j [WN [Ξ]ζ̄ + wN [Ξ]] − fj ≤ 0, 1 ≤ j ≤ J
‖W T

N [Ξ]ej‖r∗ ≤ α, 1 ≤ j ≤ J

where
s∗ =

s

s − 1
, r∗ =

r

r − 1
.

Exercise 14.2: The AAGRC is equivalent to the convex program

minΞ,α α
subject to

R‖W T
N [Ξ]ej‖s∗ + eT

j [WN [Ξ]ζ̄ + wN [Ξ]] − fj ≤ 0, 1 ≤ j ≤ J
‖[W T

N [Ξ]ej ]d,+‖r∗ ≤ α, 1 ≤ j ≤ J

where
s∗ =

s

s − 1
, r∗ =

r

r − 1

and for a vector ζ = [z; d0; ...; dN ] ∈ R
K , [ζ]d,+ is the vector obtained from ζ by replacing

the z-component with 0, and replacing every one of the d-components with the vector of
positive parts of its coordinates, the positive part of a real a being defined as max[a, 0].

Exercise 14.3: 1) For ζ = [z; d0; ...; d15] ∈ Z + L, a control law of the form (14.5.3) can
be written down as

ut = u0
t +

t∑
τ=0

utτdτ ,

and we have

xt+1 =

t∑
τ=0

[
u0

τ − dτ +

τ∑
s=0

uτsds

]
=

t∑
τ=0

u0
τ +

t∑
s=0

[
t∑

τ=s

uτs − 1

]
ds.

Invoking Proposition 3.2.1, the AAGRC in question is the semi-infinite problem

min{u0
t ,utτ},α α

subject to

(ax) |θ
[∑t

τ=0 u0
τ

]
| ≤ 0, 0 ≤ t ≤ 15

(au) |u0
t | ≤ 0, 0 ≤ t ≤ 15

(bx) |θ∑t
s=0

[∑t
τ=s uτs − 1

]
ds| ≤ α

∀(0 ≤ t ≤ 15, [d0; ...; d15] : ‖[d0; ...; d15]‖2 ≤ 1)

(bu) |
∑t

τ=0 utτdτ | ≤ α
∀(0 ≤ t ≤ 15, [d0; ...; d15] : ‖[d0; ...; d15]‖2 ≤ 1)

We see that the desired control law is linear (u0
t = 0 for all t), and the AAGRC is equivalent

to the conic quadratic problem

min
{utτ},α

⎧⎨⎩α :

√∑t
s=0

[∑t
τ=s uτs − 1

]2 ≤ θ−1α, 0 ≤ t ≤ 15√∑t
τ=0 u2

τt ≤ α, 0 ≤ t ≤ 15

⎫⎬⎭ .

2) In control terms, we want to “close” our toy linear dynamical system, where the initial
state is once and for ever set to 0, by a linear state-based non-anticipative control law
in such a way that the states x1, ..., x16 and the controls u1, ..., u15 in the closed loop
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system are “as insensitive to the perturbations d0, ..., d15 as possible,” while measuring
the changes in the state-control trajectory

w15 = [0; x1; ...; x16; u1, ..., u15]

in the weighted uniform norm ‖w15‖∞,θ = max[θ‖x‖∞, ‖u‖∞], and measuring the changes
in the sequence of disturbances [d0; ...; d15] in the “energy” norm ‖[d0; ...; d15]‖2. Specifi-
cally, we are interested to find a linear non-anticipating state-based control law that results
in the smallest possible constant α satisfying the relation

∀∆d15 : ‖∆w15‖∞,θ ≤ α‖∆d15‖2,

where ∆d15 is a shift of the sequence of disturbances, and ∆w15 is the induced shift in
the state-control trajectory.
3) The numerical results are as follows:

θ α

1.e6 4.0000

10 3.6515

2 2.8284

1 2.3094

Exercise 14.4: 1) Denoting by xij
γ the amount of information in the traffic from i to j

travelling through γ, by qγ the increase in the capacity of arc γ, and by O(k), I(k) — the
sets of outgoing, resp., incoming, arcs for node k, the problem in question becomes

min
{x

ij
γ },

{qγ}

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑
γ∈Γ

cγqγ :

∑
(i,j)∈J xij

γ ≤ pγ + qγ ∀γ∑
γ∈O(k) xij

γ −∑
γ∈I(k) xij

γ =

⎧⎨⎩
dij , k = i
−dij , k = j
0, k �∈ {i, j}
∀((i, j) ∈ J , k ∈ V )

qγ ≥ 0, xij
γ ≥ 0 ∀((i, j) ∈ J , k ∈ V )

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (∗)

2) To build the AARC of (∗) in the case of uncertain traffics dij , it suffices
to plug into (∗), instead of decision variables xij

γ , affine functions Xij
γ (d) = ξij,0

γ +∑
(µ,ν)∈J ξijµν

γ dµν of d = {dij : (i, j) ∈ J } (in the case of (a), the functions should be

restricted to be of the form Xij
γ (d) = ξij,0

γ +ξij
γ dij) and to require the resulting constraints

in variables qγ , ξijµν
γ to be valid for all realizations of d ∈ Z. The resulting semi-infinite

LO program is computationally tractable (as the AARC of an uncertain LO problem with
fixed recourse, see section 14.3.1).

3) Plugging into (∗), instead of variables xij
γ , affine decision rules Xij

γ (d) of the just
indicated type, the constraints of the resulting problem can be split into 3 groups:

(a)
∑

(i,j)∈J Xij
γ (d) ≤ pγ + qγ ∀γ ∈ Γ

(b)
∑

(i,j)∈J
γ∈Γ

Rij
γ Xij

γ (d) = r(d)

(c) qγ ≥ 0, Xij
γ (d) ≥ 0∀((i, j) ∈ J , γ ∈ Γ).

In order to ensure the feasibility of a given candidate solution for this system with prob-
ability at least 1− ε, ε < 1, when d is uniformly distributed in a box, the linear equalities
(b) must be satisfied for all d’s, that is, (b) induces a system Aξ = b of linear equality
constraints on the vector ξ of coefficients of the affine decision rules Xij

γ (·). We can use
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this system of linear equations, if it is feasible, in order to express ξ as an affine function
of a shorter vector η of “free” decision variables, that is, we can easily find H and h in
such a way that Aξ = b is equivalent to the existence of η such that ξ = Hη + h. We can
now plug ξ = Hη + h into (a), (c) and forget about (b), thus ending up with a system of
constraints of the form

(a′) a�(η, q) + αT
� (η, q)d ≤ 0, 1 ≤ � ≤ L = Card(Γ)(Card(J ) + 1),

(b′) q ≥ 0

with a�, α� affine in [η; q] (the constraints in (a′) come from the Card(Γ) constraints in
(a) and the Card(Γ)Card(J ) constraints Xij

γ (d) ≥ 0 in (c)).

In order to ensure the validity of the uncertainty-affected constraints (a′), as eval-

uated at a candidate solution [η; q], with probability at least 1 − ε, we can use either the

techniques from chapters 2, 4, or the techniques from section 10.4.1.
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summing maps. - Astérisque 247 (1998).
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Optimization, see
Semidefinite
Optimization
problem

Semidefinite
Optimization
problem, 150

uncertain, 203
Second Order Conic

Optimization, see
Conic Quadratic
Optimization
problem

Semidefinite
Optimization
problem, 451

Semidefinite problem, see
Semidefinite
Optimization
problem

semidefinite program, see
Semidefinite
Optimization
problem

structural design, 207
robust, 207–216,

249–252
Support Vector Machine,

301–308
SVM, see Support Vector

Machine
synthesis of robust linear

controllers
via Adjustable Robust

Optimization,
392–408

on finite time horizon,
394–402

under infinite-horizon
design specifications,
402–405

tractability of Convex
Programming,
460–467

tractable representation
of the RC of

an uncertain linear
constraint, 18–23

uncertain conic
constraint with
scenario uncertainty,
159–160

uncertain convex
quadratic inequality
with unstructured
norm-bounded
uncertainty, 165–167

uncertain CQI with
simple ellipsoidal
uncertainty, 167–173

uncertain CQI with
simple interval
uncertainty, 160–161

uncertain CQI with
unstructured
norm-bounded
uncertainty, 161–165

uncertain LMI with
unstructured
norm-bounded
uncertainty, 205–207

uncertainty, 3
∩-ellipsoidal, 195
in classification and

regression
affine, 325–331
coupled, 306
generalized bounded,

313–325
interval, 305
measurement-wise,

304, 312
norm-bound, 307
spherical, 304

in data, see data
uncertainty

set, 7
scenario-generated,

364
side-wise, 160
simple ellipsoidal, 162
structured

norm-bounded, 179
unstructured

norm-bounded, 161

w.l.o.g.
abbreviation for

“without loss of
generality”, 19

w.r.t.
abbreviation for “with

respect to”, 12


