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PREFACE

One may think of stochastic programming as simply a subfield of nonlinear
programming. The fact that the objective function or some of the constraints are
expressed in terms of multidimensional integrals does not change the essence of
the problem, at least in theory. However, it is precisely because the problem at hand
demands the evaluation of multidimensional integrals that its nature is altered in a
fundamental way from a numerical viewpoint.

Let us consider the following type of problem

find xe€ ScR that minimizes F(x)

where F(x)- E{f(x,w)}=]f(x, w) dP(w), and S is a closed set determined by
some constraints that could be of probabilistic type. For simplicity, let us consider
the case in which only the objective is given by a multidimensional integral with
respect to the probability measure P. Because the operator £ has a ‘smoothing’
effect, this optimization problem usually has many desirable properties. For example,
if the integrand f is convex in x, then so is F, If f is differentiable with respect to
x or the measure P is absolutely continuous, then it usually turns out that F is also
differentiable. Thus, in principle the problem could be solved by relying on some
of the existing subroutines for nonlinear programming problems; all that is needed
is to appeal to a multidimensional integration subroutine to evaluate the function
F, its gradients, or subgradients, as the case may be. However, general purpose
integration subroutines are available only for the 1-dimensional case. In 2-
dimensions some serious difficulties already must be dealt with, and in 3-dimensions
subroutines are available only for very special cases. Typically, a stochastic program-
ming problem involves anywhere from 5 to 100 random variables, making it totally
impossible to rely on existing numerical integration subroutines. Naturally, some
efforts have been made to design multidimensional integration subroutines—and
some of the papers in this collection report the progress made in that direction—but
essentially they rely on sampling techniques (involving the generation of pseudo-
or quasi-random numbers). This presupposes that the integrand is sufficiently easy
to evaluate, and for stochastic programming models that is the exception, not the
rule. The integrand f(x, ») is often defined implicitly, for example as the optimal
value of an optimization problem. Thus efficient procedures must avoid numerous
evaluations of the integrand.

Although the search for reliable multidimensional integration subroutines has not
been abandoned, the design of solution procedures for stochastic optimization
problems has been chiefly oriented toward methods that in one way or another
avoid coming to grips with this potential stumbling block. Excluding some very
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Preface

specific classes of stochastic programming problems, the suggested solution strategies
can be divided into two major categories:

* ‘descent’ methods that rely on directions determined by statistical estimates of
the subgradients of F, and

* approximation methods that replace either the original distribution P by one
that would be more manageable or the integrand f by a ‘simpler’ one that would
make it possible to carry out the multidimensional integration.

All these possibilities are illustrated in the articles of this collection.

In Volume 1, the first three articles deal with evaluating multidimensional integrals
as they arise in stochastic programming (Szantai, Niederreiter) or obtaining bounds
for them (Gassman/Ziemba). The next group of three articles deal with approxima-
tion schemes. We start with a review of the existing results as well as some suggestions
for implementation (Birge/ Wets). Approximating by problem redefinition is illus-
trated in the article by Beale, Dantzig and Watson, whereas Andreatta and Runggal-
dier work by approximating the probability measure. Intimately related to approxi-
mation is the question of the stability of the problem under various perturbations,
in particular perturbations of the probability distribution function. This is the subject
of the contributions of Dupatova and Wang.

The remaining articles deal with specific procedures for solving particular or
general stochastic programming problems. In Volume 1, the articles by Klein
Haneveld and Qi deal with stochastic network problems. The structure of the
problems plays a very important role in the procedures they suggest. In Volume 2,
the first four articles deal with stochastic programs with recourse models
(Nazareth/ Wets, Wallace, Louveaux, Rockafellar/ Wets). Next, Komaromi suggests
a new dual-based procedure for solving problems with probabilistic constraints.
The last three articles introduce modifications of the stochastic-gradient method to
make the calculations of the step size more directly adaptive (Ruszczynski), to
include nonstochastic descent information (Marti/Fuchs), and to allow for its
application in the case where the decision variables themselves are probability
measures (Gaivoronski).

The decision to submit these contributions in the form of a Study was made at
the first meeting of COSP (Committee on Stochastic Programming) on December
1, 1983, at ITASA (International Institute for Applied Systems Analysis), Laxenburg,
Austria. These two volumes could very well serve as commemorative issues to mark
that occasion.

Andras Prékopa
Roger J.-B. Wets
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EVALUATION OF A SPECIAL MULTIVARIATE GAMMA
DISTRIBUTION FUNCTION
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In this paper we describe two different methods for the calculation of the bivariate gamma
probability distribution function. One of them is based on a direct numerical integration and the
other on a series expansion in terms of Laguerre polynomials. In the multivariate case we propose
a Monte Carlo method. Our method can be used for other types of multivariate probability
distributions too. In the special case of the multivariate normal distribution the computer experi-
ments show that our method has the same efficiency as other known methods. In the Jast paragraph
we briefly describe the possible applications of the proposed algorithms in stochastic programming.

Key words: Multivariate Probability Distribution, Multivariate Integration, Simulation, Stochas-
tic Programming.

1. Introduction

A. Prékopa and T. Széantai introduced a special multivariate gamma distribution
[10]. This is the probability distribution of the random vector

x= Ay (1.1)

where the random vector y has independent, standard gamma distributed com-
ponents and A is a matrix of 0 and 1 entries. A continuous probability distribution
is called standard gamma distribution if it has the following type of probability
density:

1_(119) 2?7 le ifz>0
and zero if z=<0; & is a positive constant. The matrix A consists of all possible
nonzero column vectors -having components 0 and 1.

The fitting of this distribution to empirical data means that we choose the parameter
values 9 belonging to the components of the random vector y in such a way that
the sampling expectations and sampling covariances of the random vector x coincide
with those corresponding to the random vector Ay. In this construction many
components of y will have a degenerated standard gamma distribution in practice,
i.e. many of the parameter values 9 will be equal to zero. In this paper we do not
deal with the problem of fitting the above-mentioned multivariate gamma distribution
to empirical data but we give an algorithm for the calculation of the values of the
probability distribution function.



2 T. Szdntai / Evaluation of a special multivariate gamma distribution function

First we describe two different methods for the calculation of the bivariate gamma
probability distribution function. These are then used to produce good lower and
upper bounds for the same function. Finally we develop a Monte Carlo simulation
algorithm for the evaluation of the multivariate gamma probability distribution
function. Results of computer experiments are described in Section 5.

Our algorithm can be used for other types of multivariate distributions as well.
We only need an efficient procedure for calculating the values of the univariate and
bivariate marginal distribution functions. In fact we also have computational
experience for the case of the multivariate normal distribution. The results show
that in this case our algorithm has the same efficiency as other known algorithms
(see e.g. Dedk [2]).

2. Evaluation of the bivariate gamma probability distribution function

Every bivariate marginal distribution of the multigamma distribution introduced
by Prékopa and Szantai [10] has the following structure:

xi;=nty: , 2.1)
X2 =) +ys

where y,, ¥, and y; have independent standard gamma distributions with parameters
#,, ¥, and 9, respectively.
We want to calculate the probability

P(x,<z,x,<z,) (2.2)

for all nonnegative real values z, and z,.

The first method to calculate (2.2) is based on the simple fact that when condition-
ing on the value of y,, the random variables x, and x, become independent. So we
have

F(z),2,)=P(x,<z,,%,<2) = P(y,+y, <z, y1 + y3< 2)

= P(y,+y, <z, )i+ ya<zolyr =y)fo,(y) dy
s O
=| P<zi=yy:<z—yni=y)fe,(y)dy
JO
’min(zl_zz)
= Fo (2~ y)Fs (2o~ y)fo,(¥) dy, (2.3)
v 0

where

X

1 91 - : 1 J -1 -t
_ X if x>0, F, = ! ds
So(x) F(ﬂ)x e if x s(x) 7o) ), 1P e ' ds
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Thus for the calculation of (2.2) we only need to perform a one dimensional
numerical integration and to calculate the values of the complete and incomplete
gamma functions. Most computers have good subroutines for these calculations.
However, there are difficulties if the parameter 4, has a value near zero because in
this case the numerical integration becomes instable.

The second, more efficient method uses the Laguerre polynomial expansion of
the joint probability density function of the random variables x,, x, given by (2.1).
This expansion can be derived by the application of the inverse Laplace transforma-
tion on the joint characteristic function of the random variables x,, x,. The joint
characteristic function of x; and x, is

(1, 1) = E(e"70%) = E (e 1 i)
= E(ei(tl-O [2)'y‘)E(e”"vz)E(e“-’y-‘)

_ 1 1 1
(=i + 60" (1=—it) (1—in)™>

If we put this joint characteristic function into the formula of the inverse Laplace
transformation

f+o frx
f(zy, 22)=m e i C_itzzzﬁp(h, t,) ds dt,
we get
1 f+< "+ B ) 1
2y, 25) =——= e i1z, e—ltzz2 .
f( ! 2) (2,",)2‘ 0 o =X (l_l(t|+t2))0'
1 1
dt, ds,

X
(1=ir)” (1= ity) ™

_ 1 +°°J’+‘r' --illz —itzz2 1 1
Tomi) ) i) (- i)

S (1=if)(1—i1) .

Applying here the binomial expansion we obtain
1 + +0 ) )

f(z, 25) 2(211)2,[ . ,[ e eI (1 = i) T (1 = i) T
ifit,
(1-i1)(1-1i1;)
(i1,)(it)?

x T2 2
(1-in)"(1-11y)

1
x[1+1‘}, +19,(191+1)5

+-- ']dt,dtz. (2.4)
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It is known (from the theory of Laplace transforms) that

fo(2)= ](19) "’e"’=ij’ e (1~ir)" dy,

f (z)=_1—zx9+r—] e-~z=LJ’+we-i12(1_it)—0—rdt R=0 1

S+ F(1‘}+r) 211 - > sy by ey
d70+r(z) 1 d’( Str— ]E z)

dz" F(19+r) dz"

=LI (=17 e "(1-ir) *"dt, r=0,1,....
27 )_ .

Thus from (2.4) we get

dfg¢02+1(21) df.$,+a,+1(zz)
dz, dz,

19 W(h+1)d fa ray2(21) dzf»,+0,+2(22)+
2! dz? dz2

Sz, 2,) =f0|+.92(21)f0|+0,(22)+ %,

(2.5)

Now by the definition of the Laguerre polynomials (see e.g. [5, 10.12(5)])

dfv‘}+r(z) 1 d’ Y+r—1 -z
4z To+ndr e ¢

_ 1 91 —z259-1

_F(19+r)r!z e L (z)

_— 8-1 =
1_(9+ )F(ﬂ)fa(z)L (z), r=0,1,...,

and from (2.5) we can obtain the final form of the joint probability density function
of the random variables x, and x,:

Sz 2 = oo 14 1

xF(a?I-Fr) g, +9,) s, +39,)
(%)) I'(9,+3,+r) I'(3,+3:+7r)

L;"l4 l"?_](21) L?' O l(zz)} . (2.6)

This expansion is well known in the literature (see Eagleson [4], Lancaster [9],
Sarmanov [11] and Diachenko [3]).

Now we can determine the joint probability distribution function of the random
variables x;, x,. We know that the Laguerre polynomials satisfy the following
differentiation formula (see e.g. [5, 10.12(28)] fora=9, m=1and n=r—1)

dd—x[x" e LY (x)]=rx" Te LY '(x).
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From this by integration we get

x

x¥e LY (x)=r I 1?7 eT L2 (1) dy,

0
ie.,

1 7(8+1)

* 9-1
L So(t)L; (t)dt—r ) — e for (X)L \(x). (2.7)

Using (2.6) and (2.7) we obtain the joint probability distribution function in the
following manner:

z

F(z, 22)=I 2 I lf('h ) dt, dt, = Fy , 5,(2))Fy . 5,(2:))

0

+ 3 C(8, 3y 35, r .f.9,+ﬂ2+1(21)L?1702(21 f.9.+02+1(22)Lﬂ +I9‘(2'2)
r=1
(2.8)
where

(r—=1F0,+r) F(9,+3,+1) F'(9,+9,+1)
r red,) rd,+9,+r) rd,+d;+r)

c(ﬂh ‘82’ ‘83, r) =

(=1 (O +r-1)---9
ro (O+hHr—1) (i + R+ F S +Hr—1) - (S +F+1)

The Laguerre polynomials involved in (2.8) can be calculated by the recursive
formula (see e.g. [5, 10.12(8)])

(r+ L% (x)=Qr+3+1-x)L2(x)+(r+ L2 (x)=0, r=1,2,...
where
L3(x)=1, LY x)=9+1-x.

Regarding the convergence of the infinite series in (2.8) it is not difficult to check
the following estimation:

(r*i)!

C(‘Bl, ‘82, ‘83, r) =

N (Sh+r—1)---9
(H+%h+r—-1) - (S, +H+ DD+ F+r—1) - - (S, +3:+1)

_19]"'193 (r_l)"'l
r (H+%h+r—1) - (3,+9,+1)

(%, +r-1)-
(1‘) ++r—1) - (19,+193)
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_19,+193(1_ 3+, )~“(1_ 9+ 0, )
o 9+ +r—1 9+ 9,+1
x(l_—&__)..~(1_ 193 )
F+o+r—1 T+
191+193, 1 ( 79]"'192 )r—] ( 193 )
< _ . A
- el =5 ) e\~ e s
9+ ( 1 ) ( -l 1 )
=1 9+ 9,) ¥ ——— 9, Y ————
r exp| ~( ),2119+192 “xp 3,2019 +3:+j

9, +

L exp(—(9,+ 3)(In(3, + 3, + r)—In(3,+ 9, +1))

i

xexp(—35(In(&,+ 83+ r) - In(3, + 95))

B 19,+193(19,+ 02+1>”-*”z( 9+, )"1
F+Hh+r 9+ D3+

r

1 1 1
_ + 034.] + + "’11—02
(9,+ 35) (h+3,+1) r(9,+ St r)? % (3 + 9+ )™

1

(r_ 1)‘*"1*‘92*'91’

<("-91+"-93)l‘)"d“]("-"}l"'"-"}2"'1)8‘%92 r=2,3,....

(2.9)
For the asymptotic behaviour of the Laguerre polynomials we have Fejér’s formula
(see e.g. [5, 10.15(1)])
Lv.?(x) - H—I/Z e(I/2)xx»(l/2)'.‘) -]/4r(1/2)'§—1/4 Cos(z(rx)l/Z ‘_%‘B‘ﬂ' —%‘IT)
+O(r(l/2)|‘} 3/4)

for real 4 and fixed x>0 or uniformly in 0<e<x=<w<x. Thus we have the
estimation

La ,82(21)[,‘? +.$‘(22)< K(r— 1)(1/2)(.3 +9,)~1/4+(1/2)( 9, + 3,)- 1/4
r
=K(r=1)%rW/n+a, h o on3 (2.10)
where K is a constant that depends on the arguments z,, z, and the parameters 3,,
p g

Ds, 3.
Now using (2.9) and (2.10) we finally obtain:

Z C(8, 92, 35, r)ft‘)l-|92+l(zl)L0 H)2(21)fe).+e>3+1(2'2)L ’(22)

’ < 1
< fo,49,41(21)f5,0,41(22) + K 22 r— 1)/ D) (211)
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where K’ is another constant that depends on the arguments z,, z, and the parameters
9, 3, 3.
This estimate proves the convergence of the infinite series in (2.8).

3. Lower and upper bounds on the value of multigamma probability distribution
function

If we can calculate the bivariate and univariate marginal distribution function
values then we can give good lower and upper bounds on the value of a multivariate
distribution function. For in this case we can apply the so called Bonferroni
inequalities to estimate the value of the distribution function. Concerning results
on inequalities of this type see the papers by Galambos [6], Galambos and Mucci
[7], Stathe, Pradhan and Shah [12].

We start the discussion by describing the main results of the last paper and then
show how those results can be used for estimation of the value of a multivariate
probability distribution function.

Let A, A,,..., A, be arbitrary events in a probability space. Let y, be the
probability of the occurrence of at least m of those events further

Sc= Y P(A,...A).

Is< - <ig=n

For every nonnegative integer k we define
Uk=Sl_k and 2Vk=252_k(k_1).

Stathe, Pradhan and Shah proved the following results.

Result 1
Result 2. If 2V, _,<(n+m-2)U,,_,, then
A =N Upr= Vi (32)

Im = U —m) (kK —m+1)

where k*+ m —3 is the largest integer smaller than or equal 1o 2V,,_,/ U, _,.

Result 3

Ym<1+[(n+m-1)U,, -2V,]/ mn. (3.3)
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Result 4. If 2V, <(m—1)U,, then

_ (k*-1U, -V,
(m—k**)(m—-k**+1)

Ym=1 (3.4)

where k**+ m — 1 is the largest integer smaller than or equal to 2V,,/ U,

Now let x,, x, ..., x, be random variables and define the random events
A ={x,<z}, A ={x=z}
As we have the equality
P(x,<z),...,%<z)=P(A,...A,)=1-P(A+---+A,),

we can apply the above results for the estimation of the probability P(A,+- - -+ A,).
For this we only need those special cases of the above results when m=1,
Below we give the lower and upper bounds in terms of

$i=3 P(&) and S,= Y P(AA).

1=1<)<n
Since we have the equalities

_ a -1
S,=n-S, and 52="("T)

- (n - I)Sl + 52
this means that the bounds are expressed only in terms of S,, S,, the one and two
dimensional marginal probability distribution function values.

From Results 1 and 3 we derive

(3.5)

_MSP(X|<21,-N,&,<%)SI_

25, + 5,
==

In addition, if 25, <(n—-1)$,, then accordiﬁg to Result 2 we can give the sharper
upper bound

(k*_ I)S-] _S-z

P(x;<zy,...,x,<2z,)<1-2 K~ Dk

(3.6)

where k* is the largest integer smaller than or equal to 25,/ S, +2.

As the inequality S, <0 is never fulfilled unfortunately Result 4 doesn’t yield a
sharper lower bound.

We remark that by Theorem 2 of Galambos and Mucci [7] the inequality 25, =<
(n—1)8, is always true so we can apply the sharper upper bound (3.6) except for
the very special case when 25, = (n—1)S§,. But in this case it can easily be seen that
there is no difference between the two upper bounds.
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4. An algorithm for the evaluation of the multivariate gamma probability distribution
function
With the notations of the previous section we have
P(x,<zy,...,%,<z,)=1-P(A/+---+A,)
=1-8§,+8,-§;+- - -+(-1)"S,. (4.1)

Now S, and S, can be expressed in terms of values of the one and two dimensional
marginal probability distribution functions. In fact

§1=Z P(x;zz)=n-% P(x;<z)=n-Y F(z) (4.2)
i=1 i=1 (=1
and
S$,= Y P(x=z, X = z;)
I<i<j=n

Y (1-P(x;<z)-P(x;<z))+ P(x;<z,x;,<z))

:n(nz'-l)_(n_l) i Fi(z)+ z Fy(z, z,). (4.3)

The main idea of our algorithm is we can produce three different estimates of
the distribution function in the same Monte Carlo simulation procedure. The first
one is the direct relative frequency corresponding to the probability P(x, <
Z),...,X%,<2,). In the second one we replace S, in (4.1) by the expression (4.2)
and then estimate the remaining part of the right hand side. In the third one we
replace both S, and S, in (4.1) by the expressions (4.2) and (4.3), respectively and
then estimate the remaining part of the right hand side. Let »,, v, and v, denote
the above estimates, respectively. Then the three different estimates of the distribution
function value are:

. n

130=V0a Pi=1-n+ Y F(z)+w,
i=1

p— p— n
ﬁ2=w_("_2) Y F(z)+ ¥  Fiz,z)+wv.
2 izl 1si<j=n

If we also estimate the covariance matrix of »,, », and v, in the simulation procedure
then, using this and the estimates 130, 13, and f’z we can give a very efficient estimation
for the function value (4.1). Here we only give the final formulae as the method
that we apply is well known in the literature (see Hammersley and Handscomb [8]).
Let us introduce the notation

Coo Cor  Co2
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for the empirical covariance matrix of vy, v, and v, and let

Ao = Coi(€22— €12) + €11(Co2— €22) + €12( €12~ €o2),

Ay = €ool €12 €22) + €01(€22 = Co2) + €02 €02 — €12),

A2 = ool €12~ €11) F €01 €0y — €12) + Co2( €11 — Con).
Now we define the following weights

Ao Ay Az

Wo=—"""_ """ w, = > Wy=—"—"—"""—"",
Aot A+, Aot A+ A, Aot A+ A,

and give the final estimation of the distribution function value as follows
P = woPy+ w, B+ w, P,

The empirical variance of the final estimation is
WiCooF Wit + W3Co+ 2w, Coy + 2Wo W5 Coz + 2W, WiCya.

The calculation of the estimates »,, », and v, can be performed in an economic
way. Suppose that the random numbers x\”,...,x'", s=1,..., S, have the same
multivariate gamma distribution as the random variables x,, ..., X,.

According to Formula (1.1) such random numbers can easily be transformed from
independent standard gamma distributed random numbers. For the generation of
independent standard gamma distributed random numbers there are well tested
efficient computer codes on most computers. These are based on the methods
presented in the papers by Ahrens and Dieter [1] and Wallace [13]. Now if we
count how many times all of the inequalities

X<z, xP <z, (4.4)

are satisfied and divide this number by the sample size S then we get the relative
frequency value v, for the given sample.

The situation is .more complicated in the case of », and v,. In these cases many
probability values are contained in the sums

5,~8;+- -+ (-1)"S, (4.5)
and
-8+ +(-1)"S,. (4.6)

However, we state that the calculation of v, and v, is no more difficult than that
of v, and one can make the calculations simultaneously that is one must check all
of the inequalities (4.4) only once.
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When calculating the value of », for every fixed s we must check the following
inequalities

(s) (s) . .
(xV=z,x"=2z), 1si<js<n,

(xV=z,x"=z,xP=2), I<i<j<k=n, (4.7)

(x\V=z, xP =z, x9=2)).

In view of (4.5) we must add plus one to the observed value every time a subsystem
of inequalities with an even number of elements is satisfied and minus one when a
subsystem of inequalities with an odd number of elements is satisfied. Instead of
checking separately all of the inequality subsystems in (4.7) we can proceed as
follows. Let us check again the inequalities (4.4) successively and let k denote the
total number of violations. Now if k <1 then the observed value is zero and for the
other k values we simply can take the sum

(§>~(:>+"'+("ly(:>:=k‘ (4.8)

as the observed value.
The situation is similar in the case of v,. Then if k <2 the observed value is zero
and for the other k values we can take the sum

—(k>+---+(—1)“(k>=—w+k— =3(k-1)(2-k) (4.9)
3 k 2
as the observed value.

If we add the observed values for all s and divide the sum by the simple size S
we get the estimates v, and »,, respectively.

Let i, i, and i, denote the observed values according to the estimates v, v, and
v,. Then we can summarize the necessary calculations at every simulation step. First
we must calculate the total number of violations of the inequalities (4.4). We remark
one can stop checking the inequalities after the first violation when calculating only
the estimate »,. Then we can take

=1, i,=0, =0 ifk=0,
i0=0, i|= ) i2=0 iszl,
i0=0, ilzl, i2:0 ifk=2,

ih=0, i=k~-1, i,=3k-1)(2-k) ifk=3.
We must add to the cross products
iolp according to ¢y only if k=0,

i,i; accordingto ¢; onlyif k=2,



12 T. Szdntai / Evaluation of a special multivariate gamma distribution function

i,i, accordingto ¢y, onlyif k=3,
ioi; according to ¢, zero for all k,
iol, according to ¢, zero for all k,
i,i, accordingto ¢, onlyifk=3.

We remark the calculation of the cross product according to ¢y is superfluous as
ioig=1 if k =0 that is one will get simply the value », as cross product.
Finally we give here an algorithmic description of our simulation procedure.
Step 1. Initialization.
Let

vo=10, vy =0, v, =0;
¢, =0, =0, =0,
s=0.
Step 2. Generation of a new random vector.

Let s=s+1; if s> S then go to Step 6.
Generate the random numbers x{*, ..., x{.

Step 3. Initialization of the cycle for checking the inequalities.
Let k=0; i=0.

Step 4. The cycle for checking the inequalities.
Let i=i+1; if i > n then go to Step 5.
If x{” <z, then repeat Step 4
else let k= k+1 and also repeat Step 4.

Step 5. Update of the frequency values and the cross products.
If k=0 then vy= v,+1 and go to Step 2.
If k=1 then go to Step 2.
If k=2then v,=»,+1; ¢;;=¢;;+1 and go to Step 2.
If k=3 then

ih=k-1, h=3k-1)2-k);
vy = vt vy = vyt
cn=cntih, €2 = Cop t bais, cr2=cpp+iyis;

and go to Step 2.
Step 6. Calculation of the relative frequencies and their covariance matrix.
Let

Vo= 1o/ S, vi=u/5, V= v,/ 8;
2 2
coo=v(1— vy), cn=cn/S—v, €= Cp/S—v3,

Co1 = ~ Vo, Coz = —¥oV3, Cz=C/ Sy



T. Szdntai /| Evaluation of a special multivariate gamma distribution function 13

Step 7. Calculation of the final estimation.
Let

P0: Yo,

P1:1""+.i E(z)+ vy,
(=12

P, )

(n=2) T F(z)+ T Fylzz)+os

1<i<j<n
Ao = €o1(€22— €12) + €11(Co2 — €22) + €12( €12~ Co2)s
A1 = Coo( €12~ €22) + €o1( €22~ Co2) + Coa( €02 — €12),
A2 = Coo( €12~ €11) + €o1( €01 — €12) + Coz( €11 — Cor),
A=Ag+ A+ Ay,
wo= Ao/ A, wi=A1/A, w2 = A/,
P=wyPy+w P +w,P,,

Let the empirical variance of the final estimation equal to

(W3Coo+ W31+ WiCay + 2WoW, Cop + 2WoW,Cop + 2w, Wy Cp2)/ S

5. Computer experiences

The computer runs were carried out on the VAX machine of the International
Institute for Applied Systems Analysis. Some of the measured execution times are:
floating add 1.0 ps, floating multiply 1.5 ps. The generation of random numbers
uniformly distributed in (0, 1) was carried out by the IMSL subroutine GGUBS
and one floating point number was produced in 115 ps.

The results of Table 1 represent the efficiency of the calculation of the bivariate
gamma probability distribution function value by the series expansion (2.8). In this
table we also give the results of the one-dimensional integration by (2.3), too. It
can be seen that for d,values near zero the results of the one-dimensional integration
are disappointing. The bivariate gamma probability distribution function values
were calculated for the arguments x =6, y =12 and for the single parameter values
¥, =1, 8, =3, whereas the values of the common parameter &, are given in Table
1.

The speed and proper working of the subroutine for the calculation of the
multigamma probability distribution function value was tested by evaluation of a
large number of randomly generated examples. In Table 2 we give the results for
dimensions 5-15. Four characteristics of the estimators are given as computed from
a sample with 1000 elements:
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Table 1

Results of the bivariate gamma probability distribution function value calculations

9, Probability CPU time for Probability CPU time for
value by series value by one- one dimensional
expansion expansion dimensional integration

integration

5 0.546773 0.009667 0.546785 0.092834

4 0.707647 0.010833 0.707649 0.098333

3 0.842963 0.010167 0.842965 0.143333

2 0.934346 0.010833 0934346 0.097000

1 0.980933 0.010500 0.980932 0.087833

0.5 0.991608 0.010667 0.990699 0.613333

0.1 0.996236 0.010667 0.733257¢ 0.553666

0.01 0.996930 0.010667 0.123711° 0.541500

0.001 0.996993 0.009333 0.013115° 0.529000

0.00001 0.997000 0.009167 0.001319° 0.542999

0 0.997000° 0.002000

“The DCADRE IMSL subroutine for the one-dimensional integration failed,
Exact value calculated by multiplication of the one-dimensional marginal distribution function values.

(i) the estimated value of the probability distribution function, (ii) the dispersion
o of the estimate, (iii) the elapsed processor time in seconds and (iv) the efficiency
of the estimator P compared to the estimator P,, that is the quantity t,05/(t0?).
The exact lower and upper bounds of the probability values are given as well.

6. Applications in stochastic programming

The theory of logarithmic concave measures was developed by A. Prékopa [14].
Due to this theory it became possible to handle joint probabilistic constraints in
the stochastic programming problems. These constraints have the form

P(ar‘x?Bi’izls-"am)Zpa (6~1)

where 8,,..., B, have a logconcave distribution,

When solving numerically this type of stochastic programming problems we have
to calculate the probability value (6.1). For this purpose one can apply multi-
dimensional integration techniques. Unfortunately the multi-dimensional integration
methods have extremely slow convergence for higher dimensions. In these cases we
can apply Monte-Carlo methods only. This paper is a contribution to this field. We
remark the lower and upper bounds derived in Section 3 are useful in the solution
of the stochastic programming problems as well.

Some applications are described in the papers [15, 16 and 17].
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Table 2

Results for the calculation of the multigamma probability distribution function values

Estimator 150 15, f’z P Lower Upper
Example bound bound
1. p 0.9830 0.9797 0.9843 0.9843 0.9791 0.9843
I°4 0.0041 0.0020 0.0000 0.0000 — —
n=5 ' 24.1667 — — 253333 — —
efl. — — — o® — —
2 4 0.9720 0.9734 0.9754 09747 0.9707 09774
o 0.0052 0.0032 0.0014 0.0004 — —
n=6 t 31.1833 — — 32.0167 — —
efl. — — — 142.5058 — —
3. 4 0.9750 0.9743 0.9688 0.9728 0.9678 0.9798
o 0.0049 0.0056 0.0100 0.0012 — —
n=17 ' 40.3500 — — 40.6167 — —
eff. — — — 13.8514 — —_
4. 4 0.9620 0.9643 0.9524 0.9615 0.9524 0.9729
I°4 0.0060 0.0083 0.0211 0.0020 — —_
n=8 t 49.8333 — — 50,7500 — —
eff. — — —_ 6.7068 — —
5. 4 0.9420 0.9453 0.9392 0.9437 0.9392 0.9453
[+4 0.0074 0.0071 0.0210 0.0010 — —
n=9 t 66.6833 — — 68.0500 — —
eff. — — — 50.2798 — —_
6. 4 0.9570 0.9637 0.9716 0.9669 0.9541 0.9758
o 0.0064 0.0056 0.0045 0.0011 — —
n=10 t 71.3000 — — 73.3500 — —
eff. — — — 22,9346 — —
7. 4 0.9893 0.9900 0.9900 0.9900 0.9893 0.9900
o 0.0033 0.0010 0.0000 0.0000 — —
n=11 t 90.2000 — — 93.4500 — —
eff. —_— — — oo — —
8. 4 0.9973 0.9969 0.9973 0.9969 0.9969 0.9973
o 0.0014 0.0000 0.0000 0.0000 — —
n=12 105.5833 — — 105.9167 — —
eff. — — — Lo — —
9. 4 0.9884 0.9872 0.9884 0.9872 0.9872 0.9884
o 0.0033 0.0000 0.0000 0.0000 — —
n=13 t 122.9500 — — 124.2167 — —
eff. — — — ©? — —
10. 4 0.9860 0.9847 0.9863 0.9847 0.9847 0.9863
' 0.0037 0.0000 0.0000 0.0000 — —
t 141.8000 — — 1442833 — —
eff. — —_ — oc? — —
11, 4 0.9771 0.9776 0.9804 0.9776 0.9771 0.9804
I°4 0.0048 0.0010 0.0000 0.0000 — —
' 155.2833 — — 158.9000 — —
eff. — — — oo® — —

*The value estimated by the Monte-Carlo simulation was zero so the efficiency is infinite.
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Practical implementations of Monte Carlo methods for multidimensional numerical integration
use nodes derived from pseudorandom numbers. We present effective error bounds for Monte
Carlo integration with nodes derived from the two most common types of pseudorandom numbers,
namely linear congruential pseudorandom numbers and Tausworthe pseudorandom numbers. We
compare the results with those obtained by the use of quasirandom nodes.
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1. Introduction

A standard method for the approximate calculation of high-dimensional integrals
is the Monte Carlo method. It is based on approximating the integral by an average
of values of the integrand at randomly selected nodes. If we normalize the integration
domain to be the s-dimensional unit cube I’ =[0, 1]’ then

N-1

J fl)d % ‘é Sf(x, (1)

where the nodes x,, ..., xy_;€ I’ are obtained by taking N independent samples
from the uniform distribution on I°. The expected integration error is of the order
of magnitude N~/

In practical implementations of Monte Carlo integration one actually does not
use random nodes, but rather nodes derived from pseudorandom numbers (abbrevi-
ated PRN) that can easily be generated by the computer. The question arises whether
for such deterministic nodes one can give effective error bounds for the approxima-
tion (1). We will show that recent work of the author on PRN can be used to
establish satisfactory error bounds for nodes derived from the two most popular
types of PRN, namely linear congruential (or Lehmer) PRN and digital (or
Tausworthe) PRN. In fact, it will turn out that if the parameters in these methods
are well chosen, then the error bounds are much smaller than the Monte Carlo
bound O(N /%),

The basic method of obtaining nodes in I* from PRN is the following. Let x,,
Xy, ... be uniform PRN in I =[0, ] and let s be a given dimension. Then we define

17
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the points
Xp = (Xpy Xnt1, - -5 Xass) €15 forn=0. (2)

It is one of the advantages of this method that the calculation of one new s-
dimensional point just requires the calculation of one new coordinate, so that these
points can be generated very quickly.

As usual in numerical integration, the error bounds depend on the regularity of
the integrand. Already for integrands with a rather low degree of regularity, namely
integrands of bounded variation, the bounds for (1) guarantee good convergence
rates for the method. In fact, by a proper choice of parameters in the method of
generating PRN one can obtain error bounds of the order O( N ~'(log N)“*) with
¢(s) only depending on s. For integrands of bounded variation, the bounds for the
integration errorin (1) involve a quantity that measures the uniformity of distribution
of the nodes, the so-called discrepancy. For arbitrary points wg, ..., wx_,€ ' we
define the discrepancy

Dn(wy, ..., wn_y) =sup 1 #{n-w,<t}—|1|,
ect® [N

where the vector inequality w, < t is interpreted coordinate-wise and |t| denotes the

product of the coordinates of t. Detailed information on the discrepancy is given

in Kuipers and Niederreiter [9, Chapter 2). If we are dealing with points x, derived

from PRN as in (2), we write

Ds\xl)=DN(x0y"'axN-l)' (3)

As there are various concepts of bounded variation for multivariable functions,
we note that the concept to be used here is that of bounded variation in the sense
of Hardy and Krause. We refer to Hua and Wang [6, Chapter 5], Kuipers and
Niederreiter [9, Chapter 2], and Niederreiter [16, Section 2] for the definition and
a discussion of this concept. The following result of Hlawka [5] is basic. A proof
can also be found in Kuipers and Niederreiter [9, pp. 147-153]; for the version
given here see Niederreiter [16, Section 2].

Theorem A. If fis of bounded variation V(f) on I’ in the sense of Hardy and Krause
and wy, ..., wx_, are arbitrary points in I’ then

N-1
U",f(t) dt_LN Z= Sw)| <= V(f)Dnlwg, ..., wno1).

n=0

In some applications the exact value of V(f) may be hard to determine. In such
cases one will have to make do with upper bounds for V(f) or with approximate
values. Upper bounds for V(f) can be obtained easily if f satisfies a Lipschitz
condition on I° (see [6, p. 101]). A numerical method for approximating V() can
be based on a standard discretization approach, namely to place a sufficiently fine
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grid on I* and calculate the variation V(f; P) of f with respect to the partition P
induced by the grid. This variation V(f’; P) is just a finite sum of values of difference
operators (compare with [16, Section 2]). If f is continuous on I’ and the mesh
size of the grid tends to zero, then V(f; P) converges to the exact value of V().

If we use the nodes x, defined in (2), then Theorem A shows that we have to
establish bounds for the discrepancy D% in (3). In Section 2 we will present such
bounds for nodes x, derived from linear congruential PRN and in Section 3 for
nodes x, derived from digital PRN.

It should be noted that there are analogs of Theorem A for other regularity classes,
such as continuous functions or Riemann-integrable functions, and also for general
integration domains. We refer to [16, Section 2] for details.

Itis a known phenomenon in classical integration formulas such as the trapezoidal
rule that periodic integrands tend to yield much smaller integration errors. This
phenomenon occurs again in our context if nodes derived from linear congruential
PRN are used. We will discuss this case in Section 4.

In the literature one can find constructions of various sets of nodes for the specific
purpose of making the integration error in (1) small. These nodes make no pretense
of passing statistical tests for randomness, and are therefore often called quasiran-
dom points (compare with [16, Section 3]). They offer the advantage that they have
very small discrepancy, but their calculation is more costly than that of the nodes
in (2). In Section 5 we will compare the relative merits of quasirandom points and
of nodes derived from PRN in more detail.

The following notation will be convenient throughout the paper. For a positive
integer b put

C(b)={heZ: —-b/2<h<b/2}.

The set C(b) forms a complete residue system modulo b in the sense of number
theory. For a given dimension s = | we define C,(b) = {(hq, ..., h,.1) e R": he C(b)
for 0=<<i=<s—1, not all h; =0}. By a lattice point we mean a point in R* with integer
coordinates, i.e. an element of Z°. In particular, all the elements of C,(b) are lattice
points.

2. Nodes derived from linear congruential PRN

Linear congruential PRN are generated in the following way. Let M =3 and r
be integers and let A be an integer relatively prime to M with 2=< A < M. A sequence
Yo, V1, - - . of integers with 0=y, <M is generated by the recursion

Yar1=Ay,+rmod M forn=0,1,...,

and the normalized numbers x, =y,/M in the interval I =[0, 1] are then linear
congruential PRN with modulus M, multiplier A, and increment r. In practice, M
is taken to be a large prime or a large power of 2. The sequence xo, Xy, . . . is always
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purely periodic; let 7 denote the length of the least period. Only those sequences
of PRN with a large value of 7 are of interest for simulation purposes. A detailed
study of the properties of linear congruential PRN can be found in Knuth [7,
Chapter 3].

From the discussion in Section 1, and in particular from Theorem A, it is clear
that effective bounds for the integration error in (1) with nodes x, derived from
linear congruential PRN are available once we can establish bounds for the dis-
crepancy D%’ in (3). Such bounds can, in fact, be found in several papers of the
author[13;15; 16, Section 11 ; 19]. We summarize the results for the most interesting
cases. We can assume s = 2, since for s = | classical integration methods are prefer-
able anyway.

The most convenient description of the bounds for D is in terms of the so-called
figure of merit p'*'(A, b), which depends on the dimension s, the multiplier A, and
an integer b that either agrees with the modulus M or is a slightly reduced modulus.
For more precise (but also more complicated) bounds we refer to the papers listed
above. To define p”(A, b), we first introduce the ‘size function’ R(h) for lattice
points h=(hy,..., h,_;) by

R(h) = no max(1, k). (4)
Then we set
(A, b) =min R(h), (5)

where the minimum is taken over all he C,(b) with
s—1 .
Y hA'=0modb.
i=0
Clearly, p(A, b) is a positive integer.
We consider now two typical cases leading to very large values of the least period
7. First, let M be prime, r=0, yo#0, and A be such that modulo M it yields the
largest possible multiplicative order M ~1| (i.e. A is a so-called primitive root
mod M); then 7= M —|. Second, let M be a power of 2, r odd, and A =5 mod §;
then 7= M. In both cases we have

c,(log M)*

D ==~
p (A, M)

(6)
with an explicit constant ¢, only depending on s. A passible value of ¢, is (2/log 2)".

Another common case is the one where M is a power of 2, r=0, y, odd, and
A=5mod8; here 7=M/4 and

c.(log M)*

D <= .
p (A, )

(7)
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The bounds in (6) and (7) already represent (up to logarithmic factors) the true
order of magnitude of D!, since D{* can also be bounded from below in terms
of the reciprocal of the relevant figure of merit (see [15; 16, Section 11; 19]).

The bounds in (6) and (7) refer to the case where we exhaust the full period of
the PRN. If only the first N points are taken, where N <7, then bounds for DY’
can still be obtained, but they are less satisfactory than those for N =1 (see [I15;
16, Section 11; 19]). For instance, in the two cases pertaining to (6) we have

(log M)*

D(s)S C,(N_lM”z(lO M)s+l+_____
" & P71, M)

) forl=sN<Tt (8)

These bounds are, of course, only useful if one knows that the figure of merit
p® (A, b) can be made large for large b. In fact, it follows from [13, Theorem 4.4]
that for any s =2 and any prime b there exists a primitive root A mod b with

(s) cib
Ab)=-
P2 b) (logb)*'loglog b’

where the constant ¢; >0 depends only on s. For the other case of interest, namely
where b is a large power of 2, it was shown in [13, Theorem 6.5] that for s =2 there
always exists a A =5 mod 8 with

cib
log b’

p (A, b)=

From the available tables for figures of merit (see e.g. Hua and Wang [6] and
Maisonneuve [11]) one is led to expect that for any s =2 and any b that is either
a prime or a power of 2 there is always a A yielding a value of = M and satisfying
p(A, b) = cib/(log b)*~". In the case (6), for instance, this will then give a bound
for the integration error of the form O(M ~'(log M)**™') for integrands of bounded
variation, where the number of nodes is M —1 or M. By a direct study of the
discrepancy one can prove the existence of multipliers A yielding even smaller
bounds. For instance, if M is prime, r =0, and y, # 0, then it follows from the proof
of [13, Theorem 3.4 and Corollary 3.5] that for any s =2 a primitive root A mod M
yields on the average

D' =0O(M "‘(log M)* log log M)

with 7=M —|. A similar result can be shown for s =2 when M is a power of 2,
r=0, y, odd, and A =5mod 8, the average bound being D{*’ =O(M '(log M)?)
with 7= M/4 (see [I3, Theorem 7.3 and Corollary 7.4]). Again one can expect that
for any s =2 and any modulus M that is either a prime or a power of 2, there is a
multiplier yielding 7= M and

D" =0(M'(log M)*). (9)

For integrands of bounded variation this will then give a bound for the integration
error of the same order of magnitude.
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Since multipliers yielding a value of 7= M produce on the average a small value
of D', a search method used by Haber [3] in a related context can be employed
here. Given a dimension s> 2 and a modulus M, pick a relatively small number of
‘candidates’ A (with A a primitive root mod M for M prime and A =5 mod 8 for
M a power of 2) and calculate p‘” (A, M) for those A. Then there is a good chance
that the candidate A yielding the largest value of p'’(A, M) is a good multiplier in
the sense that the corresponding value of D!” meets the bound (9). According to
the numerical experience reported in Haber [3], a choice of 50 candidates should
be quite sufficient. We note that a systematic search for optimal multipliers has so
far only been carried out in dimension s =2 and for moduli M =2% with a <35
(see Borosh and Niederreiter [1]). We refer to Knuth [7, Chapter 3] for tables of
good, though not necessarily optimal, multipliers.

When generating linear congruential PRN for simulation purposes, it is customary
to work with a very large modulus such as M =2’ and then use only a relatively
small segment of the period of the sequence. For purposes of numerical integration
this does not seem to be the best strategy since the bound (8) for parts of the period
is rather weak. It is more advisable to exploit the good behavior of the discrepancy
for the full period by choosing a smaller modulus and using all the points in the
period of the sequence. The use of smaller moduli also facilitates the search for
multipliers with large figures of merit. Needless to say, for very high dimensions s
the logarithmic factors in the error bounds can cause problems unless sufficiently
large moduli are employed.

3. Nodes derived from digital PRN

We consider now the discrepancy of points (2) derived from a sequence x,, xi, . . .
of digital PRN. These PRN were proposed by Tausworthe [20] and are generated
as follows. Let p be a prime (in practice often p=2) and let k=2 be an integer. A
sequence yo, V1, ... of integers with 0 <y, <p is generated by the recursion

Vatk = Qe 1Ynrk1t - +agy, modp forn=0,1,...,

where the a; are constant integral coefficients. The initial values yy, ..., yi_1 should
not all be 0. The characteristic polynomial

gx)=x*-a x*"—=---—a,

of the recursion, considered as a polynomial over the finite field F,=2Z/pZ, is
assumed to be primitive, that is, g is the minimal polynomial over F, of a generator
of the cyclic group F%, the multiplicative group of the finite field F, with ¢ =p*
elements. This guarantees that the sequence of y, is a maximal period sequence,
i.e. a sequence for which the length 7 of the least period is as large as possible for
fixed p and k, namely 7= p* — 1. We refer to Lidl and Niederreiter [10, Chapter 8]
for these facts on sequences generated by linear recursions.
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From the sequence yo, y1, ... we obtain a sequence X, Xy, ... of uniform PRN in
the interval I =[0, 1] in the following manner. We choose a positive integer m =<k
and put

m-—1

Xa= Y Ymae,p 7' formn=0,1,...,

j=0
that is, blocks of consecutive y, of length m are interpreted as digits of x, in the
base p. The sequence of x, is again periodic, with the length of the least period
being 7/gcd(m, 7). In order to make the length of the least period as large as possible,
we assume that gcd(m, 7) =1, i.e. that m is relatively prime to 7. In this way, the
length of the least period of the sequence of x, is again 7= p* —1.

With this sequence of x, we set up the s-dimensional nodes x, according to (2)
and consider their discrepancy D%’ defined in (3). This discrepancy was studied in
Niederreiter [18] for s =1 and in Niederreiter [17] for s> 1 under more general
hypotheses. For small dimensions s, i.e. for s < k/m, we get in our case

s Ce s
D‘,”<F+;‘m (log p)

with an explicit constant ¢, > 0 only depending on s. A possible value of ¢ is (2/#)".
This bound is independent of the characteristic polynomial g once g is chosen as
a primitive polynomial. The situation changes for dimensions s> k/m, where the
magnitude of D" depends strongly on the characteristic polynomial g. A bound
for DY can be given in terms of a quantity R“(g, p, m) introduced in [17]. For
m-dimensional lattice points h=(h,,..., h,,) define

™1
2 ifh=0,
e
=" P R

if he C,.(p),

m -1

- +-.
pél|sin(m/p)hy| p™—p

where d is the largest subscript with h, # 0. For an s-tuple H=(h,, ..., h, ;) of
lattice points with h; =0 or h;c C,.(p), define

PUH) =TI P(h).

With each H =(h,,..., h,_,), where h,=(h;,..., h,,), we associate a polynomial
s—=1 m
Fu(x)=% % hi,‘ximh !

i=0j. 1

over the finite field F,. Then
R™(g,p,m)=% P(H),
H

where the sum is extended over all H such that Fy is divisible by g and Fy is not
the zero polynomial.
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The quantity R*(g, p, m) is rather unwieldy for calculation, so we replace it by
a somewhat simpler one. We note first that

P(h)<2forh=0,
and that for he C,,(p) we can use |sin 71| = 2|t for |t| <} to obtain

I 2 p+4hy 3
P(h)<——-— +—-—: =< — .
2p*7 |kl p? 2p%lhal  2p¢ 7' hal

If we associate with k= (h,, ..., h,,) the polynomial

G(x)= 'Zn hx/™!

j=1

over F, and define

r(G)-{% for G=0,
2p?e8(9) |leading coefl. of G| for G #0,
where the leading coefficient of G is interpreted to be an element of C,(p), then
|
P(h)<—— forall h. 1
(h) 70) or all (10)

We introduce now a quantity R{*(g, p, m) as follows. We consider polynomials F
over F, with deg(F) < ms. Such a polynomial can be represented uniquely in the form
s -1
F(x)=Y Gi(x)x™ withdeg(G,)<m.
1 =0
We set
s—1
R(F)=[] (G
i=0
and define
Ri"(g,p,m)=% R(F)™,
’-

where the sum is extended over all F with 0< deg(F) < ms that are divisible by g.
From (10) we get then
R“(g,p, m) < R{"(g, p, m).

It follows thus from [17, Théoréme 2] that
(s) s o s s Ls)
DY <p—,,,+;m (log p)*+ R\’'(g, p, m) (1
with an explicit constant ¢, > 0 only depending on s. A possible value of ¢ is (2/w)".

One can also establish bounds for DY with N < 7. These bounds are analogous
to (8) and thus comparatively weak (see [17]). Hence we have a situation similar
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to that for linear congruential PRN (compare with the discussion at the end of
Section 2). It is advisable to choose k so small that it becomes feasible to use all
7=p* — 1 nodes from the full period in the numerical integration.

Concerning the order of magnitude of R{*’(g, p, m) one can show that one can
achieve basically the same order of magnitude as for the second term on the
right-hand side of (11). Indeed, one proves in analogy with [17, Théoréme 3] that
for given s, m, p, and k there exists a primitive polynomial g over F, of degree k with

cX s+ s
R®(g, p, m)<"m""'(log p)* log log 7, (12)
T

where the constant ¢, depends only on s. This upper bound represents in fact the
average order of magnitude of R{*(g, p, m) when g runs through all primitive
polynomials over F, of degree k. The search for primitive polynomials g meeting
the bound (12) can thus proceed in a similar way as the search for good multipliers
A in Section 2. Concretely, we select a relatively small number of primitive poly-
nomials g over F; of fixed degree k at random and calculate R{*(g, p, m). The
polynomial yielding the least value of this quantity can then be expected to be a
good choice as a characteristic polynomial. This procedure is facilitated by the fact
that extensive tables of primitive polynomaials are already available; see Lidl and
Niederreiter [10, Chapter 10]). With a primitive polynomial g satisfying (12) we
obtain from (11),

| L s
DY < cx(—,,_+—m" '(log p)* log log 7)
p" T
with a suitable constant ¢. For instance, the choice m =k yields
. 1
DY = O(—(Iog )" log log 7),
T

and thus, by Theorem A, a bound for the integration error of the same order of
magnitude for integrands of bounded variation. It is very likely that there exist
choices for g for which this bound becomes O(7~'(log 7)*), which would then be
comparable with (9).

4. Periodic integrands

Let f be a complex-valued continuous function on R* of period | in each variable.
We will show that if (1) is used with nodes x, derived from linear congruential
PRN and if f satisfies additional regularity conditions, then much better error bounds
than those in Section 2 can be obtained.

If f is as above, then it has a Fourier coefficient

c(h) =J S(1) 7R de
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associated with every s-dimensional lattice point h, where {(h, t) denotes the standard
inner product in R’. By the Riemann-Lebesgue lemma, c(h) tends to 0 as k moves
away from the origin. We introduce function classes E*(A) depending on the rate
of convergence of c¢(h) to 0. For constants k>1 and A>0 we let fe EX(A) if

lc(h)| < AR(h)™  forall h#0, (13)

where R(h) is as in (4). We note an important sufficient condition for f to belong
to such a function class: if k> 1 is an integer and all the partial derivatives

aql"'"‘*‘q‘f

————— withO=sg,<k-lforlsj<gs
atfl...a'gx q] J

exist and are of bounded variation on I* in the sense of Hardy and Krause, then
fe E*(A) with a value of A that can be given explicitly (see Zaremba [21]). The
following result is basic.

Lemma 1. The Fourier series of any f€ E*(A) is absolutely and uniformly convergent
and represents f.
Proof. The Fourier series of f is given by
F(£) =Y c(h) ™",
h
where h runs through all s-dimensional lattice points. From (13) we get

% le(h)|<|c(0)|+ A h\;o R(h)™* <|c(0)|+A§ R(h)*

=|c@|+A ¥ max(1,|h)*- - - max(1, |k |)
h r4

=1c(0)\+A( b max(l,]hl)"">s=|c(0)|+A(l+2 § h“‘>:<oo,
heZ h=1

thus the Fourier series is absolutely and uniformly convergent. In particular, F is
continuous and has the same Fourier coefficients as f. From the completeness of
the orthogonal system {e™*": h e Z°} it follows that F = f,

We also need some basic principles about sequences z, z,, . . . of integers satisfying
a recursion

Zz, = Az, +r forn=0,1,..., (14)

where A and r are given integers. Let M be a positive integer relatively prime to A.
If the sequence z,, 2,, . . . is considered modulo M, then it is periodic, and we denote
by 7(M) the length of the least period. If d is a positive divisor of M, then 7(M)
is a multiple of 7(d). For typographical convenience we write now e(t) =¢e*™" for
real t.
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Lemma 2. Letz,, z,, ... be a sequence of integers satisfying (14), and let M be relatively
prime to A. If there exists a divisor d > 1 of M such that (M) =dr(M/d), then

(M)—1 (2n> 0
EO e ) =0

Proof. Put P=7(M) and Q= 7(M/d). From (14) it follows that P is identical with
the number of distinct least residues modulo M in the sequence of z,, and similarly
for Q If by,..., by are the distinct least residues modulo M/d of the sequence,
then the least residues modulo M of the sequence are necessarily among the
arithmetic progressions {b,+ hAM/d: h=0,1,...,d — 1}, | <j=< Q. These yield dQ =
P distinct least residues modulo M, and so they produce all the P least residues
modulo M of the sequence. Therefore

B ()R eGra) (£ G)(E(3)
— = L4+ = —£ el—11=0,
L, e(M) ,\élh\éoe(M a) =\ EAmI\E s
since the second sum vanishes.

We consider now nodes x, derived from linear congruential PRN. We use the
same notation as in Section 2. We take a modulus M = p“ with a prime p and a =2,
and in addition to the assumptions in Section 2 we suppose that (A — 1)y, +r # 0.
We wnite p||g if p° is the largest power of p dividing the nonzero integer g. We
define x and w by p*|[(A —1) and p“||((A —1)y,+r). For an integer m relatively
prime to A we let ord (A, m) be the least positive integer n such that A" = | mod m.
Then we define B as follows: if p is odd, then p?||[(A°“*” —1); if p=2, then
28| (A°* — 1), According to [13, p. 131] we have

ord(A, p?*’) =p’ ord(A, p?) forall j=0. (15)

We set y = 8+ w — k, and we note that « < 8 implies ¥ =0. For a dimension s=1,
a positive integer b and an arbitrary k> | we define

PO(A, b)=% R(h) ",
where the sum is extended over all nonzero h=(hy, ..., h, |)€2Z’ satisfying

Y hA'=0 mod b.

s-1
=0

Theorem 1. Let M = p“ be a modulus with a prime p and a = 2. Suppose the conditions
above are satisfied and also y < a. Let the nodes x,, be derived from the corresponding
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linear congruential PRN according to (2). Then for any fe E*(A) we have

<APP(A,p* 7).

| Ana-L5 siey

Proof. Let u,, u,, ... be the sequence defined by u,= y, and u,.., = Au, +r for n=0,
l,..., and put u, =(u,, ..\, ..., U,+s_). From the periodicity of f it follows that

Sf(x,) =f($u,,) for all n.
Hence by Lemma I,
1 Til f(xn)-J f(e) dt='- Ti' f(iun> —c(0)
T n=0 I T n=0 M
=) gc(h)e(ﬁm un>) ~c(0)

| =
22,50 {370 00)
Using (13) we get

<A Y R(h)*

h=0

z e(LMu-, un>) ‘ (16)

n=

J f(t)dt*— Z Sfx,)
Now fix h=(hy,..., h,_,) #0 and put z, ={h, u,). Then
s -1
2oy = z hun+l+l z hi(/\unﬁi+r)=/\zn+r, forall n, (|7)
i~0

where

Furthermore,
s -1
A—Dzo+r'=z—2,= .>_:n h(u; ., —u,),
and a straightforward induction shows
Ug ey — Uy = A"((A = 1)y, +r) foralln,
hence

s 1

(/\—I)zo+r'=(z h,~/\‘>((/\—l)yo+r). (18)

1=0
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Now let h be such that
s—1 X
Y hA'#0modp” . (19)

i=0

If o is defined by p”|| ¥ 2, kA", then o < a — . Since p*|[((A — )yo+r), we have
PNA 1) zo+ 1) by (18). It follows from (17) and [12, Lemma 8] that the
sequence z,, z,, ... satisfies

(p ) =ord(A, p*TI 7T ) = ord(A, pPTeTY OT,
and so

(p* ™) =p 7" ord(A, pP)
by (15). Similarly, one shows that

(M)=7(p*)=p*" """ ord(A, p?)=pr(p°7").

Thus Lemma 2 implies

M)—1 (z )
—=1=0.
nzﬂ ¢ M

From the definition of u, it follows that u, =y, mod M, hence u,..=u, mod M
and z,,,=z, mod M for all n. Consequently, 7 is a multiple of 7(M), and so

T—1 I =1 z
—(h,u,) )= —=1=0
nz—:oe(M< ’u )> nz—;Oe(M>
whenever h satisfies (19). Now we go back to (16) and use the identity above as

well as the trivial bound for the exponential sums corresponding to those & not
satisfying (19). This yields the result of the theorem.

We note the values of the crucial parameter y in Theorem | for the special cases
considered in Section 2. If M is a power of 2, r odd, and A =5 mod 8§, then y=0;
if M is a power of 2, r =0, y, odd, and A =5 mod 8, then y =2. Thus in the upper
bound in Theorem | we have either P (A, M) or P& (A, M/4).

It is an important fact that P{(A, b) can be bounded from above in terms of the
figure of merit p‘(A, b) defined in (5). This can be done either by the method of
Hua and Wang (6, pp. 143-145] or that of Zaremba [22, pp. 90-96], and in both
cases we get an inequality of the form

PO(Ab)<C(k s)p “(1+1og p)*™" fors=2, (20)

where p = p‘”(A, b) and the constant C(k, s) depends only on k and s. From the
information on figures of merit in Section 2 we see that we can expect to obtain
values of p®’(A, b) that are of the order of magnitude b, up to logarithmic factors.
For such choices of A, (20) shows that PO’(A, b) is at most of the order of magnitude
b ¥, up to logarithmic factors. According to Theorem |, we get then a bound for
the integration error of the same order of magnitude.
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In the special cases considered above, namely M a power of 2, A =35 mod 8, and
r odd, or r=0 and y, odd, it follows that if A yields a large value of p‘*(A, M)
resp. p**'(A, M/4), then the bound for the integration error is of the order of
magnitude M ", up to logarithmic factors. This error bound is the better the more
regular f is, and is obviously a significant improvement on the error bounds in
Section 2.

For prime moduli M the improvement for periodic integrands is less dramatic.
We consider only the case where the multiplier A yields the largest possible value
of 7, namely when A is a primitive root mod M. We suppose also that (A — 1)y, +r #
0 mod M. Then it follows from well-known results (see e.g. [12, Lemma 8]) that
T=M-1.

Theorem 2. Let M be a prime modulus and suppose the conditions above are satisfied.

Let the nodes x,, be derived from the corresponding linear congruential PRN according
to (2). Then for any fe E*(A) we have

( (’ )+P(t)(/\ M))

with a constant B(k, s)> 0 only depending on k and s.

J‘f(t)dt—{‘é:)f(xn) <

Proof. The argument in the proof of Theorem | leading to (16) can be carried out
without any changes. For fixed h=(ho, ..., h,_,) #0 put z, ={h, u,). Then we have
again (17) and (18). Now let h be such that

s—1

¥ hA'#0mod M. (21

i=0
From the condition (A — 1)ys+r# 0 mod M and (18) it follows then that the prime
M does not divide (A —1)zo+r'. Hence [12, Lemma 8] implies that the sequence
Zo, 21, . . . satisfies 7(M) = ord(A, M) = M — | = 7. Consequently, the first 7(M) terms
of the sequence of z,, considered modulo M, run through all the least residues

modulo M except one, thus
T{M)—1 z"
el ==
nz—-O (M>

T o) =

whenever h satisfies (21). Now we go back to (16) and use the identity above as
well as the trivial bound for the exponential sums corresponding to those h not
satisfying (21). This yields

IJ ‘f(t) dt—ql. Tz::;f(x,,) < A(-I; ;.-zz‘ R(h) *+ P(A, M))

=A(£(I 12y h“‘>s+ P(A, M)),

h=1
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where the last identity comes from the proof of Lemma 1. This completes the proof
of the theorem.

By the remarks following Theorem [, a proper choice of A will yield a value of
PP(A, M) that is of the order of magnitude M ~*, up to logarithmic factors. Since
7=M -1 and k> |, the error bound in Theorem 2 will then only be of the order
of magnitude M ~'. This is still better, however, than the error bounds in Section 2.

The error bounds for periodic integrands in Theorems | and 2 are of such a good
quality that, for the purpose of numerical integration, one need not choose the
modulus M as large as is customary in pseudorandom number generation. Thus
the remarks at the end of Section 2 apply, mutatis mutandis, also to the present
situation. We note that for M =2% 2 < o < |7, tables of parameters A yielding small
values of P{'(A, M) for k=2, 4, 6 and 2< s <8 were recently compiled by Haber
[3]; not all of the parameters in these tables satisfy A =5 mod 8.

The fact that nodes derived from linear congruential PRN yield very precise
integration methods for periodic integrands makes it worthwhile to consider the
question of how to utilize such methods for nonperiodic integrands. Indeed, there
is the possibility of employing the device of ‘“‘periodization”, i.e. of replacing a
nonperiodic integrand by a periodic integrand without changing the value of the
integral. Several periodization techniques are available in the literature; we refer to
Hua and Wang [6, Chapter 6] and Zaremba [22, Section 3] for a detailed discussion
of such methods. Periodization involves, of course, an additional computational
effort, but this effort may well pay off through increased accuracy in the numerical
integration method.

5. Comparison with quasirandom points

Sets of N nodes wy, ..., wn_, in I° that are especially designed to give a small
value of the discrepancy Dn(wy, ..., wx_) are called quasirandom points (compare
with Niederreiter [16, Section 3]). Such nodes will produce a small error bound in
Theorem A. We discuss briefly the constructions that are available for dimension
s=2 and compare the-results with those in Sections 2 and 3.

We consider only constructions that pertain to the case where the number N of
nodes is prescribed. There are also constructions of infinite sequences of points in
I° such that any initial segment has small discrepancy (see [2; 16, Section 3]). Such
sequences are useful in cases where one does not want to fix N in advance.

A classical construction of quasirandom points is that of Hammersley [4]. For
integers b=2 and n=0 let

k .
n-= a,'bl
=0
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be the digit expansion of n in the base b and define
k
dp(n)=% ab™'"\.
i=0

Now choose bases by, ..., b,_; that are pairwise relatively prime and set

w,,=(¢>,,l(n),...,d>,,s I(n),%)el‘ forn=0,1,..., N—-1.

For these points we have
DN(WO’ ceey w_\,',_|) = C(b], ey bs_|)N_](|0g N)s_] for N ?2,
with a constant C(b,,..., b,_,) that is given roughly by

s-1 b
C(b,,...,b,_\)=~ i
(ly l) il;lllogb‘-

It is conjectured that the order of magnitude N~'(log N)* ' for the discrepancy of
N points in I° cannot be improved upon, and a proof of this conjecture is known
for s=1 and s =2 (see the discussion in [16, Section 3]).

A recent construction of Faure [2] achieves the same order of magnitude for the
discrepancy, but with a constant that is much smaller than C(b,,...,b,_,). Let p
be the least prime =s, and for n=0 let

be the digit expansion of n in the base p. For | < h<s—1 define

k
(hy —i—1
Wp = z Gp )
i=0

where

. )
=Y (h—|)j“(1>aj modp and 0Osc <p.

et i

Then set
- n s
w,,=(w‘,,",...,w‘,f '),—N)EI forn=0,1,..., N—1.

For these points we have
Dn(wo, ..., wn_))<B(s)N '(log N)*"' for N=2,

where the constant B(s) is given roughly by

| s \¢
B(s) z;(log s> ’

From Stirling’s formula it follows immediately that lim,_ . B(s)=0.
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The constructions of Hammersley and Faure have the disadvantage that the
calculation of the points is rather timeconsuming. There are, however, quasirandom
points that can be calculated quickly and for which the discrepancy is only slightly
larger than in the cases above. Let g =(go, ..., g&-1) € Z° be a fixed lattice point and
consider the points

n n
wnz({ﬁgo},...,{ﬁgs_,})eI’ forn=0,1,..., N—1, (22)

where {t} = t— | t]| denotes the fractional part of t. The following gives an improve-
ment on a result of the author [14)].

Theorem 3. For every integer N =2 and every dimension s =2 there exists a lattice
point g € Z* with coordinates relatively prime to N such that the points in (22) satisfy

| A(s)
D 1)<—(09+ N +——
N(WO, s WN I) N( Iog ) N s

where A(s)=s—1 if N is a prime power and
A(s)=(1.24)(1.09)°s+ (1.16)(1.17)°s+ s — |

if N is not a prime power.

Proof. With C,(N) denoting the set of lattice points defined in Section |, we can
apply [13, Lemma 2.2] to any points w, of the form (22) and obtain

Dn(w, w )<i+ y I
N Qs+ 00y N-1 N he CUND r(h, N)

NTI I
+ ) e(ﬁw, ng>) ’

where for h=(hq,..., h,_,)€ C,(N) we define
s—1
r(h, N)= [ r(h, N)
i=0
with
1 ifh=0,

r(h, N)={ . mlh|

N sin if h#0.

Now
N-1 | N-1 n
nz_o e(ﬁ(h, ng)) = EO e(ﬁ(h, g))
has the value N if (h, g)=0mod N and 0 otherwise. Therefore

s
Dn(wy, ..., wN—I)sﬁ"_ A(g, N)
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with

A(g, N)=ZW,

where the sum is extended over all he C,( N) with {(h, g) =0 mod N. From sin wt = 2¢
for 0<t=<1} it follows that r(h, N)=r(2h):=max(1,2|h|) for |h|=< N/2, hence
r(h, N)= R(2h) for all he C,(N) with the notation in (4). Consequently,
k)

DN("’O,---,"’N—I)SN"'B(& N) (23)
with

B(g, N)= > R(2h)™".

he C(N)

(hg)=0mod N

Let G be the set of lattice points ge C,(N) for which each coordinate is relatively
prime to N. The cardinality of G is ¢(N)*, where ¢ is Euler’s totient function. We
consider

M(N)=——= Z B(g, N). (24)

1
&(N)* 4o
It follows then as in [14, pp. 214-215] that

| -l- ) _»I>s——
(‘f’(N)he(Z(N, gC(Z(N) (Nhg r(2h)

gcd(g. N)Y=1

N

T

The contribution from j =0 to the sum above is (1 +3L(N))*, where
L(N)= T A"

he Cy(N)

Therefore,

- LNI _I__ l. ) 2h '-'>x._
M(N) (1+ L(N)) +N zﬂ (¢(N)hcfz'(N) ge(Z(N) e.(Nhg r( )

ged(g . NY=1 °

(25)
For fixed j, | =j< N — |, we consider
S= Y ¥ e(LNhg>r(2h)".

he C(N) geC(N)
ged(g N)=1

Separating the contribution from h =0, we get
J -
S=¢(N)+ ¥ % e(ﬁhg>|h| .
he C((N) geC(N)

ged(g. N)—1

Decompose b=gcd(N,j) in the form b= b b,, where b, is the product of those
highest prime powers in the canonical factorization of N that also divide b (we can
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have b, =1). Then it follows as in [14, pp. 211-213] that

5= ¢(N)+%b|¢>(bz)§ u(d)L(bd),

where u is the Moebius function and the sum is extended over all positive divisors
d of p,---p,, with p,,..., p, being the distinct prime factors of N that do not
divide b,. As in[14, p. 213] one shows that

|S)| < #(N) ifu=1 (26)
and

1.35
|Sj|<¢(N)+T ifu=2, Q7N

If N is a prime power, then always u =1, and so from (25) and (26),

N-1
N

1 I
—I:p(l+%L(N))’—ﬁ. (28)

1
M(N)<p(| +3IL(N))* +

If N is not a prime power, we can always apply the worse estimate (27) for |S)|.
We note also that for each proper divisor b of N there are exactly ¢(N/b) values
of j with | <=j< N—1 and gcd(N, j) = b. Hence from (25),

Lot 3 o) (1522
M(N)<N(l+2L(N)) +N bIZN ¢>(b> I+¢>(N)b 1. (29)

b< N
By [14, equation (31)] we have

L(N)<2log N-0.2 for N=6, (30)
and so for a prime power N =6 it follows from (28) that
M(N) <—'(0.9+|og N)* L
N N
The definition of M(N)-in (24) implies that there exists a ge G with

1 |
B(g, N)<—(0.9+ N)*——.
(g N) N( log N) N

The result of the theorem for prime powers N =6 follows now from (23). For
2< N =35 the result of the theorem is trivial, since always Dy(wq,...,wn_ ) <1,
whereas

1 s—1
—((09+log N)'+——>1.
N(O og N) N
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It remains to consider values of N that are not prime powers. From (29) we get

M(N)< —(|+2L(N))+ blzN ¢>( ) < 2 d>(5>

x[(]+ 1.35 >‘—1:|—1
¢(N)b

N 1.35 * 1
= QUL+ z, d)(b>[(l+fb(N)b> "]'_' (3D

b< N

Now assume that ¢(N)=8. Then for b=2,

(I+ 1.35 )’_ 1.35 (I+l35> s<(|.24)(!.09)"s
¢(N)b ¢>(N)b ¢(N)b
and for b=1,
135\ 1.35 I._35"' (1.16)(1.17)°s
('+ (N)b) '<¢>(N)('+ 8) SSTTeNy
Consequently,

2ol )

(1.24)(1.09)°s
<N b\lgN ¢( )b +(1.16)(1.17)"s

l<b< N

SU2BU09's o b (116)(1.17)'s.

S(NIN S
l<b< N
Now
1
SN I, ¢Ob<gg L (b)b-i<l
N 1<b< N

according to [14, equation (27)], hence

y ¢(;N)[(1+ 135 )s—l]<(I.24)(I.O9)“s+(1.16)(1.17)"5.

¢(N)b

b N

Going back to (31) and using (30), we obtain

A(s)—s 1 A(s)—s
—(09+log N)' +————.
<N(09 log N) N

| _
M(N)<N(l +IL(N)) +
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The definition of M(N) in (24) implies that there exists a g€ G with

A(s)—s

|
B(g, N) <—(0.9+ S+
(g N) N(09 log N) N

The result of the theorem for values of N that are not prime powers and satisfy
&(N)= 8 follows now from (23). The values of N with ¢(N) <8 that are not prime
powers are exactly N=6, 10, 12, 14, and 18. For these values of N the result of
the theorem is trivial, since always Dy (wy, ..., wn_,) < |, whereas

| A
7\7(0’9+|°g N)’+—LNS—)> 1.

The theorem is thus shown in all cases.

The proof of Theorem 3 is not constructive. There are, however, search algorithms
for lattice points g for which the points in (22) have a small discrepancy; see Hua
and Wang (6, pp- 95-97] and Korobov {8]. The book of Hua and Wang [6] also
contains tables of such lattice points for dimensions 2=<s=18.

From the results in this section we see that the lowest order of magnitude that
can be achieved for the discrepancy of N points in I’ is N '(log N)*"', or
N7(log N)’* if a simple construction is used. A comparison with the results in
Sections 2 and 3 shows that, with a proper choice of parameters in pseudorandom
number generation, nodes derived from PRN come very close to these lowest orders
of magnitude. In fact, their discrepancy may only differ by a logarithmic factor from
the lowest order of magnitude N~'(log N)*~'. As noted in Section I, nodes derived
from PRN can, however, be calculated very quickly.

Note added in proof. Further information on the discrepancy of digital PRN can be
found in H. Niederreiter, “The serial test for digital k-step pseudorandom numbers”’,
to appear.
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Edmundson and Madansky have developed an upper bound for the expectation of a convex
function of a multivariate random variable. The bound exists under rather general conditions.
However, it is computable for n =3 only when the random variables are independent. This paper
develops a procedure for computing this bound using a linear program. We also show how to
extend and sharpen the bound by utilizing it on subsets of the sample space. Moreover, the bound
is applicable to arbitrary convex domains which may be unbounded. The new bounds along with
Jensen’s Inequality may be applied on subsets using the procedures developed by Huang, Ziemba,
and Ben-Tal to yield a procedure for obtaining upper and lower bounds on the expectation of a
convex function of a multivariate random variable to an arbitrary degree of accuracy. The results
are useful in a wide variety of optimization applications. Some numerical work is provided to
illustrate the use of the new bounds.

Key words: Upper Bounds, Convex Functions, Approximations for Stochastic Programs.

1. Introduction

The problem of finding the expected value of a convex function of a multivariate
random variable has received considerable attention in the literature [1, 2, 8-12]. In
principle, it requires the evaluation of a multiple integral of the form

";EJ’"”J’ (X, ..., X)dF(X,,. ... X,), ()

-C

where ¢ is a convex function, R" > R and F is a probability distribution on R”. The
solution of (1) presents enormous computational difficulties if n is larger than about
S, particularly when ¢ is difficult to evaluate.

This paper extends an idea of Edmundson and Madansky [10] to find upper
bounds for (1), which, together with the known lower bounds arising from the use
of Jensen’s inequality [9], can be used to find bounds on ¢, sharp in the sense that
the new upper bound is the best bound available with only first moment information
on the probability distribution. The new bounds can be calculated for arbitrary

This research was partially supported by Natural Sciences and Engineering Research Council of
Canada grant 67-7147. Without implicating them, the authors would like to thank R. Wets and the
referees for the helpful comments on an earlier version of this paper.
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distributions, where previously the Madansky bounds were only available when
the X, were independent. See [8, 12] for surveys of this work.

The plan of the paper is as follows. Section 2 reviews the basic ideas of Edmund-
son-Madansky bound construction in the univariate case and then develops the
new bound in the multivariate case. Section 3 provides numerical examples to
illustrate the bound. The extension of the bound to subsets to make it arbitrarily
sharp is discussed in Section 4. The generalization to unbounded domains appears
in Section 5. Examples illustrating the upper bound as well as Jensen’s Inequality
lower bounds on subsets are discussed in Section 6. A computer code for performing
the bounds calculations for bivariate normal distributions is described in Section
7. Final conclusions are discussed in Section 8.

2. Upper bounds

Let X =(X,,..., X,)' be a multivariate random variable on the probability space
(£, X, P) with distribution function F and finite mean X. Let U denote the support
of X, i.e., the smallest closed subset contained in R" such that ]U dF=1.

Assume U is convex, and let ¢: U >R be a convex function which is integrable
with respect to dF, so that the expected value ¢ = E,¢(x) exists and is finite.

Suppose first that U is compact.

A discussion of upper bounds in the case n=1 is contained in [2]. In this case
U is the interval [a, b]. ‘This implies the estimate, see Fig. I,

(b-x)¢(a)+ (f—a)fb(b).

¢= b—a

a X b

Fig. 1. Madansky's upper bound in one dimension.

It is easy to extend this result to the case of a random vector (n> 1) with independent
components. For U is an n-dimensional rectangle of the form

U=1] (a, b]

and independence then yields the following estimate [9]:

1

F<¥ -3 (klnl a.ﬁ)ad:.,...,d:,) @)
i = =1

h=0 i,=0
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where d;, = a, d; =b, 53 = (b, — %)/ (b — a;) and 5:‘ = (% — ay)/ (b —ay).

If the X, are correlated, one has to proceed differently.

Let Gr¢ denote the graph of ¢, ie., the subset of R""' given by Gr ¢ =
{{(x, v)Ix e U, y = ¢(x)}, and let H beits convex hull. Then (%, ¢) € H whenever % and
¢ both exist, since integration with respect to a probability measure can be viewed
as simply taking convex combinations. Hence one immediately has the upper bound
@ <sup {y|(X, y)€ H}. For the case of an n-dimensional rectangle this was pointed
out by Madansky [ 10], whose notation H*(x):=sup {y|(x, y)€ H} we adopt.

The following result gives a computable upper bound on ¢ regardless of the
shape of U.

Theorem 1. Let V be a bounded convex polyhedron containing U and let {v,, ..., v,}
be the extreme points of V. Assume ¢ can be extended to a convex function mapping
Vinto R. (This extended map will be denoted by ¢ as well.) Then

p<z= max{ § ¢>(v.~)A.~|A,->0,Z A=LT Ay =f}-
i=1

Proof. Let (x, y)e H. Then there exist k, a;=0 and u;e U, i=1,..., k such that
Z,‘;l a; =1, Z,“,, au; =X, Zﬁ;, a;p(u;) = y. Now for every i, there exist u,, >0, j=
I,...,msuchthat Y w;=1,2 0, pyt;=u, i.e., x=2,% au;u;. Since ¢ is convex

k
y= Y o(u)a, =Y aid (Z I-‘-ujvj) S ai#u¢(vj)~
i=1 i J LI
Setting A; =Y, ayu; yields x=Y% A,5,¥ A, =1,4,20, and
y<Y X,»d)(vj)smax{z d(V)AA, =0, A =1,% Ay, =x}.
J J

In particular, this holds for (x, y) = (%, H*(x)) (which is an element of H). O

Remarks. 1. If U is a polyhedral set, then H*(x) = z. This holds in particular for
n-dimensional rectangles, so Theorem 1 subsumes Madansky’s result as a special
case. Figure 2 illustrates the upper bound when n=2.

2. If n=1, then U =[a, b], so z=max{A,d(a)+A,¢(b)|A,+A,=1, A,a+A,b=
%, A, A,=0}. This implies A, =(b—%)/(b—a), \,=1—-A,=(x—a)/(b—a), whence
z=(b—x)/(b—a)p(a)+(x—a)/(b—a)p(b), which is the usual Edmundson-
Madansky bound.

3. When V is a simplex, there is a unique convex combination of the extreme
points {v;} which yields x. The maximization in Theorem ! is therefore trivial.

4. Birge and Wets [3; Proposition 5.1] give a related result using a family
{v.(+), x€ U} of probability measures on ext U, the set of extreme points of U,
such that

I sv(ds)=x forall xelU (3)
ext U
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Fig. 2. The new bound when n=2,

This condition makes their result more difficult to apply, although it is in general
sharper than Theorem |. The A; of Theorem | can be interpreted as a probability
measure on ext V={v,,..., v,} such that (3) holds at x = X only.

3. Numerical examples

3WI—x*—yY)/ 2w if x2+y’<1,
0 otherwise.

(N olxy)=¢), f(x,y)={ 4

Then U ={(x, y){x*+y’<1} and

o3 M V1 x? 3
¢=2—I J e"\/l—xz—yzdydx=;‘~“|.0364.
mwJa

=

-v1-x

Jensen’s inequality yields the lower bound & = ¢(x) = ¢(0, 0) = |. There are many
polyhedra containing U which give rise to the following upper bounds (see Fig. 3):

(-1.-1 1.-1)

V1 Vz V3
Fig. 3.

(-1 ()
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22

¢+
Vlzco{(—la—l),(ly_I)’(—IyI)y(lyl)}y 2y =" Je

12 1.54308.
V,=Co{(—a,-1),(a, -1),(24,0),(a,1),(—a,1),(-24a,0)}

where a=3V3,
2= XM +e ) = 1 74411 > 2.,
V;=Co{(—-1, —a), (-1, 1),(0,2a),(l,a),(l, —a), (0, —2a)}, z3=12z4.

V; is obtained from V, by a 90 degree rotation. Moreover, the area of V, is smaller
than the area of V, (2v3 vs 4 square units) and V, seems a ‘better’ approximation
to U, although it yields a less sharp upper bound. V, and V, provide the same bound.

H 2 2
I/w if x"+y°<I,

(2)  d(xy)=(z+y)rx+2y, f(x,y)={0 otherwise

Then
~ I 1 \"1—-7 5 4\/5
=— +y)'+x+2y)dx dy =——=0.60021. 5
¢ ﬂI—lI-v]-xz((x y) x y) x y 31T ( )

Lower bound: ¢ = ¢(0,0)=0.
Using V, as in example |, z, =4,

Ve=Co{(=1,-1),G, = D. (1, -2, (1, 1), (=5 D, (-1,D)},  z=z=4
V5=C0{(—%v _|)9(Iv _I)y(ly%)’(%’ I)y(_lv l)y (_I’ —12)}y 25=2~25~

Although V, and Vs have the same shape and area, they yield different upper bounds.

See Fig. 4.

Vv, Vs
Fig. 4.

Remark. For the independent case the estimates obtained from Theorem | are not
as sharp as the upper bounds in (2). For example, let

I ifo<xy<l,

= + 2"' +2 F ] = ]
@(x, y)= (x+y) +x+2y, (x7) {0 otherwise.

Then (2) yields the upper bound & =<i[#(0,0)+¢(0, 1) +¢(1,0)+¢(1, N]=3,
whereas one computes, using Theorem 1:
max{3A, +2A;+ T4 A+ A+ A+ A =1, A+ A =4, A+ A, =1)
=max{3~2A,[0< A, <} =35

Jensen’s inequality yields the lower bound o=, =25.
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4. Improving the upper bound: Applying it on subsets

The bound can be sharpened by considering a partition of V into convex polyhedra
V,j=1,...,ksuchthat V=UUJ;_ V, Vin V/ =0 if i #].

Let "),ij dF(x), x;=1/n; ]V, xdF(x),j=1,...,k and z; be the upper bound
on E{¢| V’} obtained from Theorem I. Then we have

Theorem 2

ok
Z 'r;j¢>(ij)sd)$; N2z (6)

Remarks. If n; =0 set X; = X to remove ambiguities. The lower bounds are derived
from Jensen’s Inequality on subsets [9].

Example (see Figure 5)
1
— if x*+y’<|
B(x, y)=(x+y)+x+2y, f(x,y)={1r pxTy=5h
0 otherwise,

V=[-L1x[-1,1],  V'=Co{(},1),(1,-1), -1, 1},
Vi=Co{(1,-1), (=1, 1), (=1, -1}

Vv V2
V2 v

Fig. 5.

Then 5, = 7)22%, x| =2\/5/31T (L), £,=-x.
2, =72/3m, 2,=2/3w, and hence ¢ < 8/2/37=1.20042.

Using instead 'V'=Cof{(-1,-1),(1,-1), (I,1)} and V?>=Co{(-1I, 1), (-1,1),
(1, 1)} yields & <4—8v2/3m~2.79958.

Subdividing Vs into Vi=Cof{(—1,1), (3, 1), (1,3), (1, ~1)} and Vi=Cof{(-1, 1),
(=1, =), (=%, =1), (1, =)}, yields & < 6v/2/3m = 0.90032.

5. Generalization to unbounded domains

Throughout this section, assume that the domain U is convex but possibly
unbounded and [,, & dF exists. Then the theory of improper integrals implies that
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for every £>0 there exists a compact convex U< U such that |[,, s ¢ dF|<e,
[i g dF <e. A\B denotes the complement of B relative to A. The techniques of
Sections 2 and 4 can then be applied to U in place of U. One then obtains the
upper bound

é=Eup= I dF- E{¢| U}+I _dF E{¢|U\U}<E{e|U}+e

5N

as well as the lower bound
Jé(l—e)E{¢|U}+I _dF-E{¢|U\O}=(1-¢)E{¢| U} - .
U\U

Since it is often difficult to find a suitable U for given ¢, a different method is
desirable. Such a method is available under the following assumptions:

(i) U is contained in (the translate of) a pointed cone in R". A cone C is pointed
ifxeC, —xeC = x=0.

(ii) ¢ satisfies the linear growth condition: lim,_. ¢(x+td)/||x+td| < & <o,
Vxe U, V directions d of U. Recall that d is a direction of U, de A, if x+tde U
Vxe U, t=0 and d #0.

Theorem 3. Assume there exists a polyhedron V with extreme points {v,, . .., v} and
extreme directions {d,, ..., d;} such that Uc V. If ¢ can be extended to a convex
Sunction on V, and assumptions (i) and (ii) hold, then

B k 1
¢smax{zl Aip(v)+ L dulldl| | A =0, u; =0,
i= j=1
ZA;=|,Z/\fv;+Z I-‘-jdj=f}~ (7)
i j

Proof. We will show V(x, y)€ H,

ysmax{z /\,(t)(v,)"'z 6[.Lj||dj” /\, ?0, [.LJZO,Z /\i = I,z /\,'U,'"'z [.Ljdj =x}.
i Jj i j

The result then follows from the fact that (%, ¢) € H.
Let (x,y)€ H and assume without loss of generality that |d;||=1,j=1,...,1
Then there exist v, =0, y;e U, i=1,..., I such that

Yv=1l, Tyvu=x, Tyed(u)=y

Now for all i, there exist a; =0, 8; =0 such that

K !
o=l u=3 av+ Y Byd;.
i= 5=

~ ™=
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Therefore

x=%¥ y,.aijvj+Z_LZ yiByd;.
(] I v .

f = d

=w

Note that d is a direction of U for every i=1,..., I. Therefore

y=Xvd(u) =} v (Z ayb; +3 Bijdj>

<2 {na(3.) +ofp o]} <L rmeier o720

by convexity of ¢ and the triangle inequality. Then set
Xj=z‘YiaU, j=l,...,k, ’ljzz‘YiBijy j=l,...,1,

and observe that

-

k 4
A=0, YaA=1, i =0, YAyt Y pdi=x. (8)
j = =
In particular, then,

k 4
y<smax ¥ Ap(y)+ X w8 over all A, u; satisfying (8). O
j=1 j=1

Remarks. !. If both d and —d are directions of V, then the linear program (7) is
unbounded. This situation is ruled out by assumption (i).

2. For bounded V, the set of extreme direction is empty, i.e. /=0. Theorem 3
then reduces to Theorem 1.

3. Inone dimension, V has the form [a, ) (or (—0, b]). Taking d = |, one obtains

max{A¢(a)+ud|A=0,u=0A=1, Aa+pu=5x}=¢(a)+8(x—a).

This expression was derived in [2].

In practice it ‘may be difficult to check whether assumption (ii) is satisfied for
every x and d. Assumptions (i), (ii) can be replaced by the following set of
assumptions:

(i) V is contained in the translate of an orthant in R".

(ii") V satisfies the growth condition:

. dlu+d)
max lim——— =

=8<o0o., j=1.....1
i=1,...k (>0 ||U.+ld,~|| j s ) s ,

This leads to a slightly sharper bound:
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Theorem 4. If V and ¢ are as in Theorem 3 and (i') and (ii’) hold, then
B k !
¢ =max{ PR RICAE D) /’Ljsj"dj" A =0, u,>0,
i=1 j=1

zl\,*= |,Z/\,~v,«+z [.L]dj=f}.
i ]

The proof depends on two lemmas which are geometrically obvious in two dimensions
and easy to prove in general.
Define @(x,d) =lim,. o ¢(x+1td)/|x+td| if xe U, d € A, and the limit exists.

Lemma 1. @(x, d) is defined for all xc Co{v,},d € A.
Lemma 2. @ is convex in x and d separately (but not jointly).

The fact that the angle between any two directions of V is at most /2 is crucial
in the proof of convexity of @ in the second variable.

Proof of Theorem 4. Observe that, by convexity of ¢,

e dx+dd) L p(xt+d)—@(x) ¢(x+1d)—¢(x)
P d)=lim Sl T T T ]

ie. p(x+td) —p(x)< d(x, d)t|d| forall £>0, x € co{v;}, d € A. In particular, with
notation as in Theorem 3,

y =Zl_ Yid (? @b +§ Brj‘dj‘>

“Tno(z ) oz emzsa)101]

$Z Z yiayb(v;) +Z Z Z yiayBiy P(v;, d;)||d;|| (by Lemma 2)

tJ

=T Ab(5)+3 wd;
J J

J

o

Remarks. |. As in Section 4, the upper bound can be sharpened through the use
of a partition {V',..., V*} of V. Formula (6) still holds.

2. If assumption (i) is violated, e.g. if U =R", the use of subsets may still be
possible. Let t =(¢,, ..., t,)€ R" and consider the partition of U into the 2" subsets
U' given by U'={xe Ulx;<t,,...,x,<t,}, Us{xeU|x<t,..., X1 <t,_y,
x, > t,}, etc.
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6. Examples over unbounded regions

1. f(x,y)={§—x.l/m =0

otherwise,
|
o(x,y) =§+x—5+\/;—\/2x—'y2 if |y|$\/;.

In this example, U is the area inside the parabola y* = x, and ¢ can be extended
to a convex function on the right half-plane by linear continuation, i.e. setting

—Vx+y| i y]>Vx.

X
==+
o(x,y) 5t 24

The expected value of (x, y) is easily computed to be (1, 0), and the lower bound
&=¢(1,0)=4—-J2=0.41912 obtains. (The value of ¢ is approximately 0.60618.)
Different upper bounds for different polyhedra V are easily computed using Theorem
4, as indicated in Table I.

Table 1

Bounds on ¢ for some choices of V

Polyhedron Extreme points Extreme rays 8, 5, Upper bound on ¢
v, (0,3), (0, -3) y==(x+3) N2 N2 225
v, 0, 1),(0,~1) y=%£(x+1) 3/V17T 31T 225
vy (0,1,(0,-3 y=%(x+}) Vs s 200
Vi (0, £3), (0, £1) y=x(x+1) YNIT 0 3V1T 150

By subdividing these sets the upper bqunds can be improved as follows. We
subdivide V; into two sets and subdivide V, three different ways. This yields four
different estimates which are given in Table 2.

2. & (x, y) =2.28027(vx?+ (y*/4+ 1)(0.41896) — x)

The surface described by (x, y, ¢(x, y)) is the upper half of a hyperboloid of two
sheets, rotated around the y-axis through an angle of —0.3 radians to remove some
of the symmetries. This form was chosen because it satisfies the growth condition
in an obvious manner. Assume that x and y are normally distributed with zero
mean, unit variance and correlation coefficient r# +1. Here U =R?, so an upper
bound is not directly available without forming a partition. Jensen’s inequality yields
the lower bound ¢ = ¢ (0, 0) = 1.49388. Tables 3 and 4 give various upper bounds
based on different partitions of R* when the correlation between x and y is 0 and
+0.5, respectively.

The calculations and timing were performed on an Amdahl 470 V/8 at the
University of British Columbia.
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Table 2

Subset bounds on ¢ for various partitions

Sub- Extreme  Extreme 8, &, Measure (X, ¥7) Subset  Upper
set  points rays upper bound
bound on ¢
0.5, y=x/2+3%
Vs, 25 4 0.5 (1,v7/4) 144311
(0,0) y=0
1.44311
0,-3),  y=—(x/2+}), <
Vis Vs L 0.5 (1,Vm/4) 1.44311
(0,0) y=0
(0,0),
y=0,
Vi (0, 05  3N17 05 (1,vw/4) 1.10472
y=x/4+1
(1,3
1.10472
(0,0)
y=0
Ve (0,3), 0.5 31705 (1,Nm/4) 1.10472
y=-x/4-1
0,-3)
(0, £1), (1-1/e-1,0)
Vis — — 1/1/e 0.89267
(1, +3)
1.23871
Ve (L£3)  y=+(x/4+1) 317 3N1T 1/e (2,0) 1.8333
(0, £3), _(0.22925,0)
Vis — — 1-1/e 0.72382
(1/2, £3)
(1/2, £3), (0.72925,0)  0.87190
Vie — — 1/Ve—1/e
(1,+3) 1.08181
(1, %), (1.418, 0)
V,, — — 1/e—1/¢ 1.22366
(2,%3)
Vi (2%} y==x(x/4+l) 317 31T 1/€ (3,0) 2.25008

7. A computer code

The FORTRAN program EMG?2 [6] computes upper and lower bounds on the
expected value of a convex function of a bivariate normal distribution to within a
tolerance prescribed by the user.

The basic idea is as follows: An upper and lower bound is computed on each of
the four quadrants in R’. Then a weighted difference is formed on each quadrant
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Table 3

Bounds on Problem 2 when p =0

H. Gassmann, W.T. Ziemba / A tight upper bound

& =2.657

Subset  Measure Mean X Mean Y Number Number  Upper Lower
of of bound bound
extreme extreme
points directions

U, 0.2500 -0.7979 -0.7979 1 2 5.818 4.326

U, 0.2500 -0.7979 -0.7979 i 2 5.818 4.326

U,, 0.2500 0.7979 0.7979 1 2 2.090 0.598

Us, 0.2500 0.7979 0.7979 1 2 2.090 0.598

Partition:
_ U, | U,

Summary: 3.954= ¢ =2.462 i

UI) UZ)

Subset  Measure Mean X Mean Y Number  Number  Upper Lower
of of bound bound
extreme extreme
points directions

U, 0.0252 -1.5251 -1.5251 1 2 8.053 7.590

U,, 0.0542 —1.5251 -0.4599 2 1 7.608 7.441

U, 0.0542 -1.5251 0.4599 2 1 7.608 7.441

U, 0.0252 —1.5251 1.5251 1 2 8.053 7.590

U,, 0.0542 -0.4599 —1.5251 2 1 3.689 3.238

U,, 0.1165 -0.4599 -0.4599 4 0 3.237 2.946

U,, 0.1165 -0.4599 0.4599 4 0 3.237 2.946

U,y 0.0542 -0.4599 1.5251 2 1 3.689 3.238

Us, 0.0542 0.4599 -1.5251 2 1 1.541 1.090

U, 0.1165 0.4599 -0.4599 4 0 1.089 0.798

Us, 0.1165 0.4599 0.4599 4 0 1.089 0.798

U, 0.0542 0.4599 1.5251 2 1 1.541 1.090

U, 0.0252 1.5251 -1.5251 1 2 0.928 0.465

U,, 0.0542 1.5251 —-0.4599 2 1 0.482 0.316

U, 0.0542 1.5251 0.4599 2 1 0.482 0.316

Uy, 0.0252 1.5251 1.5251 1 2 0.928 0.465

Partition:
ty
UlA U24 U34 U44
1
Summary: 2.903 = ¢ = 2.587 U, Un U Uan
0.021 seconds CPU time - X
9 function evaluations -1 0 1
U, U,z Ui, U,
-1
v, l Us, Us, U.,




Table 4

Bounds on Problem 2 when p = +0.5
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& =2.648
Subset  Measure Mean X Mean Y Number  Number Upper Lower
of of bound bound
extreme extreme
points directions

U, 0.3333 -0.8976 ~0.8976 1 2 6.359 4757

U, 0.1667 ~0.5984 ~0.5984 1 2 4.737 3.492

U, 0.1667 0.5984 0.5984 1 2 1.941 0.696

U, 0.3333 0.8976 0.8976 1 2 2.164 0.564

Partition:
_ U, Uy,

Summary: 3.954= ¢ =2.472

Un U,,

Subset  Measure Mean X Mean Y Number  Number  Upper Lower
of of bound bound
extreme  extreme
points directions

U, 0.0625 -1.6364 ~1.6364 1 2 8.656 8.105

U, 0.0649 -1.4831 -~0.5255 2 1 7.418 7.258

U, 0.0275 -1 3979 0.3776 2 1 7.005 6.868

U, 0.0038 -1.3316 1.3316 1 2 7.005 6.702

U, 0.0649 —0.5255 ~1.4831 2 1 3.890 3.456

U, 0.1141 —0.4720 -0.4720 4 0 3.284 2.993

U 0.1079 -0.4254 0.4254 4 0 3.107 2.816

Uz, 0.0275 —-0.3776 1.3979 2 1 3.303 2.907

Uy, 0.0275 0.3776 -1.3979 2 1 1.539 1.143

Us, 0.1079 0.4254 —~0.4254 4 0 1.119 0.828

U, 0.1411 0.4720 0.4720 4 0 1.078 0.787

U, 0.0649 0.5255 1.4831 2 1 1.435 1.001

U, 0.0038 1.3316 -1.3316 1 2 0.783 0.481

Ui, 0.0275 1.3979 ~0.3776 2 1 0.474 0.337

U, 0.0649 1.4831 0.5255 2 1 0.489 0.329

Uy 0.0625 1.6364 1.6364 1 2 1.011 0.460

Partition:
ty
Upa Usa ! Us, Ui
1
Summary: 2.902= ¢ = 2.580 U U, Us, Uy
0.021 seconds CPU time ->Xx
9 function evaluations -1 0 1
U, U, Us, Us
-1
Uy, U, Us, Ui,
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to determine whether the overall upper and lower bounds (3;nu; and Y, nl,
respectively, where 7, is the measure of the ith subset) differ by less than the
tolerance supplied by the user. If this is not the case, for some region, then this
region is subdivided into four subregions and the process repeated. This continues
up to a maximum of six subdivisions or until the tolerance criterion is met.

8. Final remarks

The lower bound obtained from Jensen'’s inequality seems to be consistently much
better than the upper bounds resulting from Theorems | and 4. Hausch and Ziemba
[8] also found this to be the case in their experiments with independent random
variables. To obtain good estimates it therefore may be necessary to partition V
into a relatively large number of subsets. This has the disadvantage that the measure
and mean have to be calculated on every subset, requiring in principle a large
number of numerical integrations. Therefore the method of bounding may only be
competitive with a direct evaluation of the integrand (1) if the value of ¢ is difficult
to compute. Even then it is essential to have efficient algorithms at hand which
calculate the measures and means on each subset. For normal distributions this could
be effected by using Monte-Carlo methods along the lines of Dedk [4,5]. An
algorithm for the bivariate normal case appears in Gassmann [7].
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Various approximation schemes for stochastic optimization problems, involving either approxi-
mates of the probability measures and/or approximates of the objective functional, are investigated.
We discuss their potential implementation as part of general procedures for solving stochastic
programs with recourse,
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Recourse

1. Introduction

We consider a simple abstract version of stochastic optimization problems and
present general results for approximating both the probability measure and the
objective functional. The error bounds are derived as the case may be from convexity,
sublinearity, linearity, and monotonicity properties of the objective functional. The
probability measure approximations are generally discrete measures that should
allow for easy calculation of the objective at each value. The functional approxima.
tions are appropriate linearizations of the objective functional. The guidelines are
provided by a class of problems known as stochastic programs with (fixed) recourse.
It also canditions the implementation methodology of the general results. It is
anticipated that these approximations can be used together in stochastic optimization
solution procedures. We also report on some experimental computational results in
the last section.

We take

find xeR" that minimizes E;(x)= E{f(x, £(x, {(w))} (1.1

as a prototype for the class of stochastic optimization problems under investigation.

Supported in part by grants of the National Science Foundation.
54
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where
E{f(x, f(w))}=If(& ¢(w))P(dw), (1.2)

¢ is a random vector which maps the probability space (£2, &, P) on to (R™, B, F)
with F the distribution function and = € R"™ the support of the probability measure
induced by £ (i.e. Z is the set of possible values assumed by £), and f:R" xR >R U
{+o0} is an extended real-valued function. Assume:

forall x, w - f(x, £(w)) is measurable, (1.3)
and the following integrability condition:
if Plo|f(x, £#(w))<+o]=1 then E/(x)<+oo. (1.4)

We refer to E, = E{f(-, é(w))} as an expectation functional. Note that it can also
be expressed as a Lebesgue-Stieltjes integral with respect to F:

E/(x) = J f(x,) dF(Q). (1.5)

A wide variety of stochastic optimization problems fit into this (abstract)
framework; in particular stochastic programs with (fixed) recourse [41]

find xeR}' suchthat Ax =b,and z = cx + 2(x) is minimized (1.6)

where A 1s an m, X n,-matrix, be R™,

2(x) = E{Q(x, f(w))}=f Q(x, {(w)) P(dw), (1.7)
and the recourse function is defined by
QUx, é(w)) = inf {g(w)y| Wy =h(w) - T(w)x}. (1.8)

The (m, x n,)-matrix W is called the recourse matrix. For each w: T(w) is my X n,,
g(w) € R™and h(w) € R™. Piecing together the stochastic components of the problem
yields a vector £€ RY with N = n,+ m,+(m,xn,), and

§= (qla R ] an hla‘ R ] hm;a tll’ IR ) tln" 121’ IR ) tm;.n.)‘
We set

ex+Q(x, &) ifAx=b,x=0,
S(x, §)=[ ) (1.9)
+00 otherwise.
Provided the recourse problem is a.s. bounded, i.e.

Plw|37 such that #W = g(w)] =1, (1.10)
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which we assume henceforth, the function Q and thus also f, does not take on the
value —oo. The measurability of f(x,-) follows directly from that of ¢&— Q(x, &)
[1, Section 3]. If ¢ has finite second moments, then 2(x) is finite whenever w—
Q(x, £(w)) is finite [41, Theorem 4.1] and this guarantees condition (1.4).

Much is known about problems of this type [41]. The properties of f, as defined
through (1.9), quite often motivate and justify the conditions under which we obtain
various results. The relevant properties are

(h, T)—>Q(x, £=(q, h, T)) is a piecewise linear convex function

for all feasible xe K =K, n K,, (1.11)
where
K,={x|Ax=b,x =0},
K,={x|V&(w)e =,y =0 such that Wy = h(w) — T(w)x},
g— Q(x,£=(q, h, T)) is a concave piecewise linear function, (1.12)
and
x— Q(x, &) is a convex piecewise linear function (1.13)

which implies that
x+—2(x) is a Lipschitzian convex function, (1.14)

finite on K,, as follows from the integrability condition on £(-).
When T is nonstochastic, or equivalently does not depend on o, it is sometimes
useful to work with a variant formulation of (1.6). With T = T(w) for all w, we obtain

find xe R}, x€eR™ such that

Ax=0b, Tx = x,and z=cx+ ¥(y) is minimized (1.15)
where

w(x)=E{y(x, f(w))}=f P(x, é(w))P(dw) (1.16)
and

¥(x, £€(w)) =inf{g(w)y| Wy = h(w) - x, ye R} (1.17)

This formulation stresses the fact that choosing x corresponds to generating a tender
Xx = Tx to be 'bid’ against the outcomes h(w) of random events. The functions ¢
and ¥ have basically the same properties as Q and 2, replacing naturally the
set K, by the set L,={x=Tx|xe K,}={x|Vh(w)e E,,Iy=0 such that

Wy = h(w) — Tx}. The function f is now given by
ex+y(x, &) ifAx=b Tx=x,x=0,

otherwise.
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A significant number of applications have the function ¢ separable, i.e. ¢(x, &)=
Y2 wi(x, &) such as in stochastic programs with simple recourse ([41, Section 6],
for the nonlinear version cf. [49]). This will substantially simplify the implementa-
tion of various approximation schemes described below. When separability is not
at hand, it will sometimes be useful to introduce it, by constructing appropriate
approximates for ¢ or Q, see Section 3.

Another common feature of stochastic optimization problems, that one should
not lose track of when designing approximation schemes, is that the random behavior
of the stochastic elements of the problem can often be traced back to a few
independent random variables. Typically

£w)= (@) + L(w)E+ -+ Lu(w) g™ (1.19)
where the

{£: 2 >R;i=1,..., M}
are independent real-valued random variables, and

fi:(q;,~~-aq;z, ‘I"“’h‘mzv l:,,..., t:nzn,)

are fixed vectors. In fact many applications—such as those involving scenario
analysis—involve just one such random variable {(-); naturally, this makes the
components of the random vector £(-) highly dependent. Last, but not least, in
many practical cases, we do not have adequate statistics to model with sufficient
accuracy joint phenomena involving intricate relationships between the components
of £ Hence, we shall devote most of our attention to the independent case, remaining
at all times very much aware of the construction (1.19).

This will serve as background to our study of approximation schemes for calcu-
lating

E/(x)= I f(x, {(0))P(dw).

After discussing general convergence results (Section 2), we begin our study with
a description of possible approximates of f in the context of stochastic programs
with recourse (Section 3). We then examine the possibility of obtaining lower or
upper bounds on E; by means of discretization (of the probability measure) using
conditional expectations (Section 4), measures with extremal support (Section 5),
extremal measures (Section 6) or majorizing probability measures (Section 7). In
each case we also sketch out the implementation of the results in the framework of
stochastic programs with recourse, relying in some cases on the approximates to f
obtained in Section 3. In Section 8, we give some further error bounds for inf E;
that require the actual calculation of E,(x) at some points.
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2. Convergence results

The purpose of this section is to free us at once from any further detailed
argumentation involving convergence of solutions, infima, and so on. To do so we
rely on the tools provided by epi-convergence. Let {g; g, v =1, ...} be a collection

of function s defined on R" with valuesin R =[ -0, +0]. Thesequence {g*, »=1, ...}
is said to epi-converge to g if for all xe R", we have

liminf g*(x*)=g(x) forall {x*, v=1,...} converging to x, (2.1)

and
there exists {x", v=1,...} converging to x such that

lim sup g“(x") < g(x). (2.2)

v

Note that any one of these conditions implies that g, the epi-limit of the g°, is
necessarily lower semicontinuous. The name epi-convergence comes from the fact
that the functions {g”, v =1, ...} epi-converge to g if and only if the sets {epi g*, v =
1,...} converge to epi g ={(x, a)|g(x) =< a}; for more details consult [44,1]. Our
interest in epi-convergence stems from the following properties [2].

2.3. Theorem. Suppose a sequence of functions {g*, v=1, ...} epi-converges to g. Then

lim sup (inf g*)<inf g, (2.4)

and, if
x* e argmin g* = {x|g"(x)<inf g"}

for some subsequence of functions {g* k=1,...} and x =lim,_.. x, it follows that
xeargming and lim,_.. (infg")=infg

Moreover, if argmin g #@, then lim,.(inf g*)=inf g if and only if x € argmin g
implies the existence of sequences {¢,>0,v=1,...} and {x",v=1,...} with

lime, =0 and lim x"=x,

P00 v—aoC

such that forall v=1,...,

x, € e,-argmin g* ={x|g"(x)<infg”+¢,}.

2.5. Corollary. Suppose a sequence of functions {g", v=1,..} epi-converges to g, and
there exists a bounded set D such that

argming"n D#0)
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Jor all v sufficiently large. Then
lim(inf g, )=inf g
v =00

and the minimum of g is attained at some point in the closure of D.

Proof. Since D is bounded, there exists a bounded sequence {x*, v=1,...} with
x“eargming”n D.

This means that a subsequence converges {x", k=1,...} to a point x both in the
closure of D and in argmin g as follows from epi-convergence. Theorem 2.3 also
yields

lim g(x")=g(x)=infg.

There remains only to argue that the entire sequence {(inf g"), v=1, ...} converges
to inf g. But this simply follows from the observation that the preceding argument
applied to any subsequence yields a further subsequence converging to infg. O

The following proposition provides very useful criteria for verifying epi-conver-
gence.

2.6. Proposition [3, Proposition 3.12]. Suppose {g":R" > R,v=1,...} is a collection
of functions pointwise converging to g, i.e. for all x, g(x)=1im,_, g"(x). Then the g*
epi-converge to g, if they are monotone increasing, or monotone decreasing with g lower
semicontinuous.

For expectation functionals, we obtain the next assertion as a direct consequence
of the definition of epi-convergence and Fatou’s lemma.

2.7. Theorem. Suppose {f;f*,v=1,...} is a collection of functions defined on R"” x {2
with values in R U {+00} satisfying conditions (1.3) and (1.4), such that for all € =
the sequence {f*(-, &), v=1,...} epi-converges to f( -, £). Suppose moreover that the
functions f* are absolutely bounded by uniformly integrable functions. Then the expecta-
tion functionals E;- epi-converge to E,.

When instead of approximating the functional f, we approximate the probability
measure P, we get the following general result that suits our needs in most applica-
tions, see [45, Theorem 3.9], [46, Theorem 3.3].

2.8. Theorem. Suppose {P,, v=1,...} is a sequence of probability measures converg-
ing in distribution to the probability measure P defined on (2, a separable metric space
with o the Borel sigma-field. Let

(x, @)= f(x, é():R" X 2 >R {+0}



60 J.R. Birge, R.J-B. Wets / Approximation schemes for stochastic programs
be continuous in w for each fixed x in K, where
K = {x| E/(x) <+0} = {x|f(x, £(w)) <+, a5.} %4,

and locally Lipschitz in x on K with Lipschitz constant independent of w. Suppose
moreover that for any x € K and £ > 0 there exists a compact set S, and v, such that
Jorall v=w,

I |f(x, £(w))|P,(dw) <, (2.9)
NS,

and with V ={w|f(x, ) =+}, P(V)>0 if and only if P,(V)> 0. Then the sequence
of expectation functionals {E;,v=1,...} epi- and pointwise converges to E,, where

Ef(x)= I J(x, (@) P,(dw).

Proof. We begin by showing that the E; pointwise converge to E,. First let xe K
and set

g(w) =f(x, w).

From (2.9), it follows that for all £ > 0, there is a compact set S, and index i, such
that for all v = v,

I |g(w)|P.(dw) <e.
ms,

Let M, =sup,.s|g(w)|. We know that M, is finite since S, is compact and g is
continuous, recall that x € K. Let g° be a truncation of g defined by

glw) if|glw)l=M,
g (w)=4M, ifgle)>M,
-M, ifge)<-M..
The function g* is bounded and continuous and for all we 2
lg" ()| <]g(w)l.

Hence from the convergence in distribution of the P,

lim [BZ=I g'(w)Pu(dw)]=I g (w)P(dw) = B* (2.10)
{2 (7]

=00

and also for all v= v,

I g (w)P,(dw)<e.
S,
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Now let

B»=Ef(x)=f g(w)PV(dw)+I g(w)P,(dw).
S, MN\S,

We have that, for all v = v,,

<2e¢

18.—B:l= H [g(w)— g (w)]P,(dw)
NS,

and also that
|Ef(x) - Brl <28.

Combining the two last inequalities with (2.10) shows that for all £ > 0, there exists
v, such that for all v= v,

|Ef(x)_BV|<6£a
and thus for all xe K|

lim Ef(x)= E;(x).

If x 2 K, this means that
PLV ={w]|f(x, {(w)) = +0}]>0
which also means that for all »
P(V)>0,

from which it follows that for all v

lim Ef(x)=+0= E/(x).

v — +00

And thus, for all xeR", E;(x)=1im,.. Ef(x). This gives us not only pointwise
convergence, but also condition (2.2) for epi-convergence.

To complete the proof, it thus suffices to show that condition (2.1) is satisfied for
all xe K. The function x> f(x, £(w)) is Lipschitzian on K, with Lipschitz constant
L independent of w. For any pair x, x” in K, we have that for all ©

|f(x, £(w)) = f(x*, é(w)) < L dist(x, x")
which implies that
S(x, {(w)) — L dist(x, x*) < f(x", £(w)).

Let us now take x” as part of a sequence {x", v =1,...} converging to x. Integrating
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on both sides of the preceding inequality and taking lim inf, ., we get

E/(x)= 1i210 Ef(x)—L 1112 dist(x, x”)
= lirvtljgf(E}'(x) - Ldist(x, x”))
slirﬂi?f Ef(x"),
which completes the proof. [

2.11. Application. Suppose {P,, v=1,...} is a sequence of probability measures that
converge in distribution to P, all with compact support (2. Suppose

9"(x)=I Q(x, {(w))P,(dw)

with the recourse function Q defined by (1.8) and 2 by (1.7). Then the 2 both epi-
and pointwise converge to 2.

[t suffices to observe that the conditions of Theorem 2.8 are satisfied. The continuity
of Q(x, &) with respect to £ (for x € K;) follows from (1.11) and (1.12). The Lipschitz
property with respect to x is obtained from [41, Theorem 7.7]; the proof of that
theorem also shows that the Lipschitz constant is independent of ¢, consult also [40].

2.12. Implementation. From the preceding results it follows that we have been given
great latitude in the choice of the probability measures that approximate P. However,
in what follows we concern ourselves almost exclusively with discrete probability
measures. The basic reason for this is that the form of f(x, £)—or Q(x, £) in the
context of stochastic programs with recourse—renders the numerical evaluation of
E, (or Ey) possible only if the integral is actually a (finite) sum. Only in highly
structured problems, such as for stochastic programs with simple recourse [42], may
it be possible and profitable to use other approximating measures.

3. Approximating the recourse function Q

When f is convex in ¢, it is possible to exploit this property to obtain simple but
very useful lower bounding approximates for E,

3.1. Proposition. Suppose £— f(x, £) is convex, {£',1=1,..., v} is a finite collection
of points in E, and for =1, ...,

Ul € a{ (x’ f’),
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ie v'is a subgradient of f(x,-) at £'. Then

E/(x)= E{ max [v'¢(w)+(f(x, £')—v'e"]} (3.2)

Isl<y

Proof. To say that v'isa subgradient of the convex function of f(x, -) at f', means
that

f(x, &) —f(x, &Y= o'(£- ).

Since this holds for every I, we obtain

S(x, €)= max[v'E+(f(x, £)-v'e))

Integrating on both sides yields (3.2). 5

3.3. Application. Consider the stochastic program with recourse (1.6) and suppose
that only h and T are stochastic. Let {£' = (k' T"), 1=1, ..., v} be a finite number of
realizations of hand T, xe K, and for I1=1, ..., v,

' e argmax[#(h'— T'x)| #W =< q].
Then
2(x) = E{ max ' (h(w)- T(w)x)}. (3.4)
This is a direct corollary of Proposition 3.1. We give an alternative proof which

could be of some help in the design of the implementation. Since x € K, for every
£=(h, T) in E, the linear program

find #€R™ such that #W=gq and w= o(h— Tx) is maximized (3.5)

is bounded, given naturally that it is feasible as follows from assumption (1.10).
Hence, for I=1,.., »,

Q(x, &) =m'(h'~Tx),

and moreover since 7' is a feasible solution of the linear program (3.5), for all £ € =,
Q(x, &)= ='(h—Tx).

Since this holds for every /,
Q(x, ¢£) = max w'(h—Tx).

1=i= v

Integrating on both sides yields (3.4).

3.6. Implementation. In general finding the maximum for each £, in expression
(3.4)—or equivalently for each (h, T)e E—could be much too involved. But we
may assign to each 7' a subregion of =, without resorting to (exact) maximization.
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The lower bound may then not be as tight as (3.4), but we can refine it by taking
successively finer and finer partitions. However, one should not forget that (3.4)
involves a rather simple integral and the expression to the right could be evaluated
numerically to an acceptable degree of accuracy, without major difficulties. The
calculation of this lower bound imposes no limitations on the choice of the £
However, is is obvious that a well-chosen spread of the {¢',I=1,..., v} will yield
a better approximation. For example, the £’ could be the conditional expectation
of £(-) with respect to a partition ¥ ={S,, /=1, ..., v} of = which assigns approxi-
mately the same probability to each S;. The use of a larger collection of points, i.e.
increasing », will also yield a better lower bound.

3.7. Convergence. Suppose that ¢— f(x, £) is convex and E;(x) is lower semicon-
tinuous. For eachv=1,..., let ¥*={S;,1=1,..., L,} denote a partition of = with

£ = E{¢(0)| S},
the conditional expectation of £( - ) given S} . Suppose moreover that ¥” < ¥**' and that

1@;(]22)5 Plw|£(w)e S7]) =0. (3.8)

Then, with v*' € 3,f(x, £”') and

Ej(x) = E{ max [6"§(w) +f(x, £) ~v"¢"]} (3.9)

we have that the sequence of functions {E;, v=1,...} is monotone increasing, and,
Sor all x,

E;(x)=lim E;(x).
Hence the sequence {Ef, v=1,...} is both pointwise- and epi-convergent.

Proof. From Proposition 3.1, it follows that E} < E, for all v. The inequality
E;<E;/"'<E

then follows simply from the fact that ¥”*' > %*. Now observe that

]mg’l("[vplg_’_f(x, é«vl)__vvlgvl]?gV(x’ g) (3.10)

where g” is defined as follows:
g (x &) =v"E+f(x ")~ "¢ ifge ST

It follows that

L,
Ef(x)=E{g"(x, f(w))}=l§] Pl&(w) e SP1f(x, )
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which gives us

E;(x)=lim Ej(x)=lim E{g"(x, {(@))} = E/(x);

the last equality following from assumption (3.8).
We have thus shown that the sequence {Ef, »=1,...} is monotone increasing
and pointwise converges, and this implies epi-convergence, see Proposition 2.6. [J

If f(x, -) is concave, the equality in (3.2) is reversed and, instead of a lower bound
on E; we obtain an upper bound. In fact, we can again use Proposition 3.1, but
this time applied to —f

3.11. Application. Consider the stochastic program with recourse (1.6) and suppose
that only the vector q is stochastic. Let {¢'=q' 1=1,..., v} be a finite number of
realizations of q, xe K, and, for1=1,..., v,

y'eargmin[q'y| Wy =p—Tx, y=0].
Then
2(x) < E{ min q(w)y'}. (3.12)

This is really a corollary of Proposition 3.1. A slightly different proof proceeds
as follows: Note that for all g = £€ =, for every I, y' is a feasible, but not necessarily
optimal, solution of the linear program

find yeRY> such that Wy =p— Tx and w =gy is minimized.
Hence

Q(x, £)< min gy’

from which (3.12) follows by integrating on both sides.

The remarks made about Implementation 3.6 and the arguments used in Conver-
gence 3.7 still apply to the concave case since we are in the same setting as before
provided we work with ~f or —Q.

Proposition 3.1 provides us with a lower bound for E; when £+ f(x, £) is convex.
The next result yields an upper bound. '

3.13. Proposition. Suppose £+ f(x, £) is convex, {£', =1, ..., v} is a finite collection
of points in =. Then

E;(x)SE,F(x)=If"(x, {(w))P(dw) (3.14)

where

fix, §)=Ai:1r£.[§v WETIITEDWVAES ,\,]. (3.15)
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If the function £— f(x, &) is sublinear, the f* can be defined as follows:
f7(x, &)= Aing,.[lz Af(x, &Y €= IZ /\fl]- (3.16)
R+ 1= =1
(Note that f*(x, &) is +00 if the corresponding program is infeasible.)

Proof. Convexity implies that for all A,=0,...,A,=0 with ZL, A=1, and &=
Y-, A’ we have

S5 6= T Mfx, ) (3.17)

from which (3.14) follows using (3.15). Sublinearity (convexity and positive
homogeneity) also yields (3.17) but this time without ¥,;_, A;=1, and this in turn
yields (3.14) using (3.16) this time. [

3.18. Application. Ray functions. Consider the stochastic program with recourse in
the form (1.15) and suppose that only h is stochastic, i.e., with fixed matrix T and
recourse cost coefficients q. Now suppose that for given x, we have the values of
{¢(x, £)| &' =h" 1=1,..., v} for a finite collection of realizations of h(-). Let £€ =
and define

U (x, €)= inf, [Iz Ab(x, € I £=x+ lz /\:(f'—x)]- (3.19)
Then
¥ (x)<¥"(x) =I ¥ (X, §(@)) P(dw).

The above follows from the second part of Proposition 3.13 provided we observe
that from the definition (1.17) of ¢, we have that

h—y¢(x, h+x)

is sublinear. From this it follows that for any A e R}
B AE= 0+ 0= T A6 (€= X0+ 0)
whenever
£-x= L Mg~ ),
and this leads to the construction of * in (3.19). 0O

3.20. Implementation. Finding for each ¢, the optimal value of a linear program as
required by the definition of ¢* in (3.19), could involve much more work than is
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appropriate to invest in the computation of an upper bound. One way to remedy
this is to subdivide = such that each ¢ is automatically assigned to a particular
region spanned by a subset of the {¢,I=1,..., v} or to the subset whose points

are such that

f—x6905(§’~x,--.,f"—x)={t t=l‘;v /\:(f‘—x),z\eﬂi}.

One case in which all of this falls nicely into place is when a stochastic program
with recourse of type (1.15) can be approximated by stochastic program with simple
recourse [41, Section 6] where the function ¢(y, £) is separable,

bx )= T hx €) (3.21)

and
& xo &) =inflqly; +q;y |y —yi =hi—x, y7=0,y7 = 0], (3.22)

here & =(q7, g7, h;). The function ¥ is then also separable and can be expressed as
(x)=3% ¥(x)
i=1

where
Wi(x:) = E{¢i(xs &(w))}
{This is the linear version of the simple recourse problem.)
3.23. Application. Approximation by simple recourse. Consider a stochastic program

with recourse of the type (1.15), with only h stochastic and complete recourse [1,
Section 6]. This means that the recourse matrix W is such that

pos W={t|t=Wy, y=0}=R"™,
i.e. the recourse problem is feasible whatever be h or x. For i=1,..., m,, define
g/ =inf{qy| Wy = ¢', y =0}, (3.24)
and
q; =inf{qy| Wy =—¢', y=0}, (3.25)
where ¢' is the unit vector with a 1 in the ith position, i.e.
e'=(0,...,0,1,0,... 00"

The recourse function #(y, £) is then approximated by the recourse function (3.21)
of a stochastic program with simple recourse using for q; and g, the values defined
by (3.24) and (3.25). This is a special case of the ray functions built in Application
3.18; each (£—x) falls in a given orthant and is thus automaticallly assigned a
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particular positive linear combination of the chosen points (e’ —yx,i=1,..., m,).
To improve the approximation we have to introduce additional vectors &', which
brings us back to the more general situation described in Application 3.18.

3.26. Application. Consider a stochastic program with recourse of type (1.15), with
only g stochastic. The function

a—¢(x. 9 =£):R">R

is not only concave and polyhedral (1.12), it is also positively homogeneous. For
any finite collection {¢'=q',I=1,..., v} we have that

¥(x, q)= sup [z Aw(x, ") |q= ) A,q‘]. (3.27)
AeRY Li=1 I=1

This again follows directly from Proposition 3.13; note that ¢(x, ') = g'y’ where
y'eargmin[q'y| Wy = h—x, y =0].

3.28. Implementation. Calculating for each g, the upper bound provided by (3.27)
may be prohibitive. We could assign each g € = to some subregion of = spanned
by the positive combinations of some of the {g’, /=1,..., »}. Such a bound is easier
to obtain but is not as sharp as that generated by (3.27).

Another approach to constructing upper and lower bounds for stochastic programs
with recourse is to rely on the pairs programs as introduced in [6, Section 4]. One
relies again on convexity properties and once again one needs to distinguish between
(h, T) stochastic, and q stochastic. To begin with, let us consider h, and T stochastic.
For every (h, T)=£€ =, and (i;, ”i‘) = éeco E (the convex hull of =), let

p(£ &) =inflex+paf+(1- p)ay]
such that Ax = b,
Tx+Wp =h,
Tx+ Wy, = h,
x=0, =0, y, =0, (3.29)

with pe[0, 1]. If (1.6) is solvable, so is (3.29) as follows from [41, Theorem 4.6].
Suppose x° solves (1.6) and for all £=(h, T), let

y(&)e argglin[qyl Wy =h-Tx].
ycR2

It is well-known that y°(¢) can be chosen so that £ y°(£) is measurable [41, Section
3]. Now suppose

£=(h T)=E{£} and y=E{y%&)}.
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The triple (x° 7, y°(£)) is a feasible, but not necessarily optimal, solution of the
linear program (3.29) when (h, T) = (h, T). Hence

p(£ )= ox’+pay+(1-p)ay°(£)
and integrating on both sides, we obtain
E{p(£ £)}< ex”+2(x°). (3.30)

This bound can be refined in many ways: first, instead of just using one point £,
one could use a collection of points obtained as conditional expectations of a
partition of =, and create a pairs program for each subregion of =. Second, instead
of just one additional point £, we could use a whole collection {.f', cis .f"} to build
a program of the type (3.29). This is described in detail in [6] for the case when
only h is stochastic but can easily be generalized to the case h and T stochastic.

When only g is stochastic, we consider a dual version of (3.29), viz. for every
g=¢€ = and (j:éeco E, let

p? (€ &) =suplob+ pih+(1 - p)mh]

such that oA+ 4T <c,
W =<q,
mW=gq (3.31)

with pe[0, 1]. The same arguments as above with .§= £, but relying this time on the
dual [37] of problem (1.6), lead to

E{p?(& &)} = ex®+ 2(x°) = inf(c + 2). (3.32)

4. Discretization of the probability measure P throughout conditional expectations

Jensen’s inequality for convex functions is the basic tool to obtain lower bounds
for E; when f(x, -) is convex or upper bounds when E, is concave. Here, it leads
to the use of (molecular) probability measures concentrated at conditional expecta-
tion points. In the context of stochastic programming this was first done by Madansky
[31] and further refined by Huang, Ziemba and Ben-Tal [20] and Kall [22].

4.1. Proposition. Let & = {(s'i=1,..., v} be a partition of =, with
¢'= E{é(0)|S"Y and p=Plt(w)eS'].
Suppose first that £— f(x, &) is convex. Then

Ef(x)= ¥ pf(x €. (42)
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If £ f(x, £) is concave, then

E/(x)< lz pf(x, £, (4.3)

Proof. Follows from the iterated application of Jensen’s inequality: f(x, E{£é(w)}) =<
E{f(x, £(w))} when f(x, ) is convex; consult [35]. (O

4.4. Application. Consider the stochastic program with recourse with only h and T
stochastic. With ¥ ={S',I=1,..., v} a partition of = and for I=1,..., v, let

¢'=(h', T") = E{(h(w), T(0))|S"}
and p, = P[£(w) € S']. As follows from (1.11) and (4.2), we obtain
T pQ(x £)=2(x), (4.5)

and thus if

2= lnf [““ T pQ(x, &) Ax=””‘?°]
xeRT 1=1

where

Q(x, &)= inf [qy| Wy =h'~T'x, y=0],

we have that
2’ < z*=inf[ex+ 2(x)|Ax=b, x =0].

Each z* is thus a lower bound for the optimal value of the stochastic program. (An
alternative derivation of (4.5) relying on the dual of the recourse problem that

defines Q(x, &) appears in [7].)

4.6. Convergence. Suppose ¥*={S' I=1,..., v} for v=1,..., are partitions of =
with ¥” < $**' and chosen so that the P,, v=1,... converge in distribution to P.
The P, are the (molecular) probability distributions that assign probability p, =
P[£(w) e S'] to the event [£(w) = £'] where ¢' is the conditional expectation (with
respect to P) of £(-) gi'vén that £(w) € S' The epi-convergence of the {2”, v=1,...}

to 2, with the accompanying convergence of the solutions, follows from Theorem
2.8, where

27(x) = lz PQ(x, £) = I Q(x, £(w))P.(dw).

To make use of these results we need to develop a sequential partitioning scheme
for =, i.e. given a partition ¥* of = how should it be refined so as to improve the
approximation to 2 as much as possible. P. Kall has also worked out various
refinement schemes [24] that overlap and complement these given here.
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4.7. 1lmplementation. Stochastic programs with simple recourse, with h stochastic, g
and T are fixed. Recall that for a stochastic program with simple recourse ¥ takes
on the form:

¥(x)= E{ Y dilxs g.-)},
i=1
where & = h; and, as follows from (3.21),

q?(hf -xi) ifh=y,

Uilxi, &) ={q.~_(XI‘ ~h,) ifh =X

Fig. 4.8. The function ¢,(x,, ).

Let[a; B:]1be the support of the realizations of h,( - ), possibly an unbounded interval.
If we are only interested in a lower bound for ¥ that approximates it as closely as
possible at the point y, then the optimal partitioning of [a; 8;] is given by

Si=[a, X)) and Si=[X,B]
In this way the approximating function ¥{ takes on the form:
9 h—qix if x; < hj,
Vi(x,)=4(q,hip2—qi hipa)+(qipn—q/P)xi ifhi<x;<hi,
—-qihi+q: x if x,=h}
where, for I=1, 2,

h=E{h(w)|S'} and ps=P[h(w)eS'],

and h,= E{h,(w)}. Note that

(fi—hf(w))P(deqff (h(@) = X:)P(dw)

h(w)zx,

q’i(fi) =q, I

hiw)< g,

=V{(X)
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Fig. 4.9. The function ¥

Thus ¥{ < ¥; with equality holding for x; < a;, x;= B; and at y; = x. If the interval
[a;, B:] has already been partitioned into v intervals {{a?=a, a}),...,[a! ", a!=
B:1} and %: €[a!, @!™"). Then again the optimal subdivision of the interval [a}, a!*")
into [a!, x;) and [X, a!™") yields an exact bound for ¥, at x.. An alternative is to
split the interval under consideration around ¥; such that y; turns out to be the
conditional expectation of the new region. This would provide a quite good bound
for ¥, in the neighborhood of x; and this would be very useful if the value of ; is
not expected to change much in the next iterations.

4.10. Implementation. General recourse matrix W, with h stochastic; g and T are
fixed. The function

h—y(x, h)
is not separable, it is convex and polyhedral (1.11). Note also that
h—y(x, h—Xx)

is a sublinear function. Because of this we shall say that ¢(yx, -) is sublinear with
root at x. We assume that = cR™ is a rectangle and that we are given a partition
{§' 1=1,..., v} illustrated in Fig. 4.11. We shall take it for granted that the next

g 52

st ex

Fig. 4.11. Partition .= {S' S§*} of =

partition of = will be obtained by splitting one of the cells S’ Other partitioning
strategies may be used but this single cell approach has the advantage of increasing

only marginally the linear program that needs to be solved in order to obtain the
lower bound.
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(i) Let us first consider the case when y € §'< Z. We plan to split S' with a
hyperplane containing x and parallel to a face of S’ or equivalently parallel to a
hyperplane bounding the orthants. To do this, we study the behavior of h— (x, h)
on each edge E, of the cell S’ Let

hh—-)ﬂk(h)=(//(x,h):Ek—>[R.

This is a piecewise linear convex function. The possible shape of this function is
illustrated in Fig. 4.12; by x” we denote the orthogonal projection of x on E. If

o T} z

| ! ' |

/: {!

{ |

| ! |

| |

i | |
- 4 e

: o ' * |

16k i Bk ;

] '

| ] l

| L r
-+ -

! X ! X

Fig. 4.12. The function 8, on E,.

8, is linear on E,, it means that we cannot improve the approximation to 6, by
splitting S’ so as to subdivide E*. On the other hand if the slopes of 6 at the end
points are different, then splitting S' so as to subdivide E, would improve the
approximation to ¥. On the subdivided cells, the resulting functions 6, would be
close to, if not actually, linear. Among all edges E,, we would then choose to
partition the cell S’ so as to subdivide the edge E, that exhibits for 6, the largest
difference of slopes at the end points. What we need to know are the subgradients
of the function

h—y(x, h)

at each vertex {h°,s=1,..., r} of the cell §’. This is obtained by solving the linear
programs

find #€R™ suchthat #W=gqand w, = w(h*— x) is maximized (4.13)

for s=1,...,r The optimal #° is a subgradient of ¢(x,-) at h* [41, Proposition
7.12]. From this we obtain the directional subderivative of ¢(x, - ) in each coordinate
direction (which are the slopes of the functions 6,); they are simply the components
of the vector {=},i=1,..., m,}). We now construct a subdivision of s' with a
hyperplane passing through x and orthogonal to the edge of S' that exhibits
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maximum slope difference. If the underlying probability structure is such that the
random vector h(-) is the sum of a few randonm variables, such as described by
(1.19), the calculation of the directional subderivatives of £&— y/(x, £) again begins
with the calculation of the optimal solution of the programs (4.13) each h* being
obtained as the map of a vertex of S' through the map (1.19). To obtain the
subderivatives, we again need to use this transformation.

(ii) We now consider the case when y ¢ =. This time we cannot always choose
a hyperplane passing through x that generates a further subdivision of some cell
S’ Even when this is possible, it might not necessarily improve the approximation,
the function £— ¢ (x, &) being linear on that cell for example. Ideally, one should
then search all cells S’ and each edge in any given cell to find where the maximum
gain could be realized. Generally, this is impractical. What appears reasonable is
to split the cell with maximum probability, on which ¢(x, -) is not linear.

Concerning the implementation of this partitioning technique, we are seeking the
best possible approximation to ¥ in the neighborhood of x. We are thus working
with the implicit assumption that we are in a neighborhood of the optimal solution
and that y will not change significantly from one iteration to the next. If this is
the case, and the problem is well-posed, then we should not really have to deal with
case (ii), since it would mean that the optimal tender x° would be such that we
would consistently underestimate or overestimate the demand!

4.14. Application. Consider the stochastic program with recourse with only g
stochastic. With #={S" I=1,..., v} a partition of Z, and for I=1,..., v, let

¢'=q'=E{q(w)|S"}
and p, = P[£(w) € S']. As follows from (1.12) and (4.3) we have
l‘;: pQ(x, &)= 2(x). (4.15)

Thus, with

z¥= irgﬁ [cx+ Y pQ(x, & Ax=b,x>0]
xeRD =1

where _

Qx ¢ = inf [g'y|Wy=h—Tx y=0],
we have that

2z z*=inflex+ 2(x)|Ax = b, x = 0].

Each z" is thus an upper bound for the optimal value of the stochastic program.

4.15. Implementation. The function

g 9(x, q) =max{n(£-x)| =W <gq}
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is polyhedral and sublinear. What changes from one x to the next are the slopes
of this function, so we cannot use the present x as a guide for the design of the
approximation. One possibility in this case is to simply subdivide a cell of the
partition with maximum probability.

5. Discrete probability measures with support on extreme points

The maximum of a convex function on a compact convex set is attained at an
extreme point; moreover, the function value at any point (of its domain) obtained
as a convex combination of extreme points is dominated by the same convex
combination of the function values at those extreme points. These elementary facts
are used in the construction of measures that yield upper bounds for the expectation
functional E,.

5.1. Proposition. Suppose £— f(x, &) is convex, = the support of the random variable
£(-) is compact, and let ext = denote the extreme points of co =, the convex hull of
E. Suppose moreover that for all £, v(¢£, -) is a probability measure defined on (ext =, &)
with € the Borel field, such that

I _ev(gde)=¢

and the multifunction
w—>v({(w), A)

is measurable for all A€ €. Then

E,(x)sf f(x, e)A(de) (5.2)

extE

where A is the probability measure on € defined by

A(A)=I v(é(w), A)P(dw). (5.3)
n

Proof. The convexity of f(x,-) implies that for the measure v
S(x, &) sf f(x, e)v(¢ de).
ext =

Substituting £( ) for ¢ and integrating both sides with respect to P yields the desired
inequality (5.2). O

5.4. Corollary. Suppose £ f(x, £) is convex, E the support of the random variable
&(+) is compact, and let ext = denote the extreme points of co =, the convex hull of
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Z. Then

Ef(x)< sup f(x, e)=f(x,e). (5.5)

ecextE
Proof. Simply follows from f(x, e,) = f(x, &) for all £ € =, or we could use Proposi-
tion 5.1 with v concentrated on e¢,. [

5.6. Application. Consider the stochastic program with recourse (1.6) with only h
and T stochastic. Assume that = the support of the random variables h(-) and
T(-) is compact, with

ext E={¢'=(n", T, I=1,..., L}
the extreme points of co =. We explicitly assume that L is finite. As usual
Q(x, ¢') =min{qy| Wy =h'-T'x, y = 0}.
Then with
£ ecargmax{Q(x, &), 1=1,..., L},
as follows from (5.5), we have that 2(x) < Q(x, £°). Hence
z*=inf{ex + 2(x)|Ax = b, x =0}
<inf{ex+gy|Ax=b, T°x+ Wy =h",x =0, y=0}. (5.7)

This is a very crude bound that can easily be improved by partitioning =. Say
P={S* k=1,...,v} is a partition and for each k we compute ¢“e
argmax . Q(x, £). Then

A

2(x)= ¥ Iko(x, é(w))P(dw)=< T Iko(x, £)P(dw).
) )

k=1 k=1

With p, = P[£(w) € §*], we obtain

z*sinf{cx+ Y pay*|Ax=b, Tx+ Wyk=hk,x20,yk>0}. (5.8)
k=1

The potential use of this inequality as an approximation tool for solving stochastic
programs with recourse was pointed out by Kall and Stoyan [23].

5.9. Application. We take the same situation as in Application 5.6. Let us define a

probability measure v(& -) on ext Z ={¢',..., £}, i.e. scalars {p,(£),..., p(&)}
such that ):,';, pi(€)=1 and

L
E=(h,T)= E pi(€) - (B, T, (5.10)
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Then
< 1
Q(x, f)slz p(8)Q(x, &)
=1

and

L
2(x)= T P &' (5.11)
=1
where, for each I=1,..., L,

ﬁ:=IP:(§(w))P(dw)-

The{p;,I=1, ..., L} determine a probability measure on ext =. The right-hand term
of {5.11) may however be quite difficult to compute since the dependence of the p,
on £ may not be easy to express: they must be chosen so as to satisfy (5.10). There
are some important cases when all of this can be worked out relatively easily. We
review them next.

(i) E (or co F) is a simplex. Each ¢ in = has a unique representation in terms
of the extreme points ext =, viz. in terms of its barycentric coordinates. For example,
if co = is the fundamental simplex in RN whose extreme points are

{0,(¢),j=1,..., N} withe'=(0,...,0,1,0,...,0)7,
then each point

£E=(&,..., &) In E
has the barycentric representation

po(&)=1-|é| (p=¢&1=1,...,N)

where |¢| =Z,’:, £ All other cases can be reduced to this example by an invertible
linear transformation.

(ii) E is an interval. This is a special case of the preceding one. Let = =[a, 8],
then £=(1—p)a+pB with 0sp=<1; and thus p=(£—a)/(B —a) from which it
follows that

(1-p)=(B-8)/(B-a) and p=({-a)/(B—a)
with £= E{¢}. Thus
2(x)<(1-p)Q(x, a)+pQ(x, B). (5.12)

This inequality is due to Edmundson. Madansky [31] used it in the context of
stochastic programs with simple recourse random right-hand sides h. A much refined
version of this upper bound can be obtained by partitioning the interval [, 8] and
computing for each subinterval the corresponding version of (5.12). The expression
for the p will now involve conditional expectations. For stochastic programs with
simple recourse this was carried out by Ben-Tal and Hochmann [4], Huang, Ziemba,
and Ben-Tal [20] and by Kall and Stoyan [23]; see also [17].



78 J.R. Birge, R.J-B. Wers /| Approximation schemes for stochastic programs

(iii) = is a rectangle and £— Q(x, &) :Z,N__, Qi(x, &) is separable. This is the case
of stochastic programs with simple recourse with stochastic h, for example. Then

N

2(x)= Y I Qi(x, &(w)) P(dw).

i=1

We can now find bounds for 2 by seeking bounds for each Q(x, -) separately. We
are in the situation considered in (ii). The inequality (5.12) becomes

2(x) = EI [(1-p)Qi(x, ai)+ﬁioi(-x’ B:)] (5.13)

where [a;, 8] is the support of the random variable £(-) and p; defined as above.
(iv) = is a rectangle and the random variables are independent. Let F,:R ~>[0, 1]
be the distribution function of the random variable &. We have that

B 8,
2(x) =I dFn(én) -+ I dF(£)Q(x, (&, ..., éN))

anN

where = = XN [a, Bil. With &,, .., &y fixed, for each ¢, €[a,, 8,], it follows from
convexity that

Qx, (&1, &0, EN)) = g‘ SQ(x, (a1, &2, -+ -, €n))
B] Q(x(ﬁh §21'--$§N))'
Integrating on both sides with respect to dF,, and with £, = E{£,} we have
B,
I dF(£)Q(x, (&1, & ..., EN)) < Zl Q(x (e, &, ..., £n))
B] Q( (Bh §2$'--’§N))-

We can now repeat this process for £,, considering the two functions

gZHQ(xa (ah §2$ CEEECY gN)» §2Ho(x’ (Bh §2’ L) §N)

One obtains
8, 8,
I sz(fz)I dF,(£)0Q(x, (&, &, .. ., EN))

<[(B1~a))(B2~ a)] (B = &)(B2— &) Q(x, (), @z, ... ., £N))
+(B1 = &E)(&~ a2) Q(x, (@, Bas - -, €N))
+{6~a)) (B2~ &)Q(x (B, a2, . .., EN))
+(&~ a)) (&~ @) Q(x, (B, B, - - -+ €n))).
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Doing this, in turn, for every &, . .., £ yields an upper bound for 2 of the following
type:

2(x) =1l (B—a)' T (Aﬂllé—vilo(x,(%,---,YN))) (5.14)

ye G

where |-| is absolute value, and G is the collection of 2™ vectors defined by
G:{YZ(YH---, yN)ly":aiorﬁbi:l’-"a N}

One can also interpret (5.14) as follows: Let ext £ ={¢', I=1,..., L=2"} and now
define on ext = a probability measure v which assigns probability p, to ¢’ where

p= [[] (1 “(lg. _‘f”/(ﬁi“ai)))-

Note that this probability measure, suggested first in [23], yields an upper bound
for 2 that does not require passing through a transformation assigning to each ¢ a
particular combination of the extreme points.

(v) Eis a polytope, possibly a rectangle. Let ¥ = {S* k=1, ..., v} be a simplicial
decomposition of =, i.e. the partition is generated by a complex whose cells are
simplices. Then in each cell we are in the situation described in (i). On each one
we have an upper bound of type (5.11) for

I _Q(x, é(w)) P(dw)
{é(w)e ST}

which we can then add up to obtain a bound for 2. The bounds can be improved
by refining the partition, for example. Another way is to consider for each £ not
just one possible representation, but look for the smallest upper bound given by a
number of possible simplicial decompositions. Again, let {£,1=1,...,L}=
ext Z<R", and 2 the sets of all (N + 1)-subsets of ext =. Let 2(£) be the elements
of ? such that ¢ belongs to their convex hull. Then

!

Q(x, §)<  min {Z p(&)Q(x, £) f}- (5.15)

gl e'Nreo(e) Lj=0

Eopj(f)fl’

Integrating on both sides, after replacing ¢ by £(w), gives the desired upper bound
on 2(x), and thus also on z* as defined by (5.7). A last suggestion, in this general
case, is for Z a rectangle but the {£(-),j=1,..., N} not independent. We still
have that for all j, £— Q(x, £) is convex. Set j=1. Using (5.5), and with F the
distribution function of £(-) on =, we have that

9()€)=I Q(x, &) dF(¢)

B, “ ” N
= qu I Q(x, (fh §21---a§."l))dF(§h f)

1é=(éy. én)lEc B} a,
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= max [(Bl f,(f)) Q(x, (ay, £))

1é=(brmbn)lécE) B

(f (&)~

B, - )Q( (B, ))] (5.16)

A
—
=]

where E,(.f) is the conditional expectation of £,(-) given Eand where = is the
projection of = into RV™' through its first component. A bound of this type can
be computed for each j and then we should choose the smallest one to bound 2.

5.17. Application. Consider the stochastic program with recourse (1.15) with only
g stochastic. If we now assumethat =, the support of the random variable £(-) = g( -),
is compact, all the bounds obtained for 2 when h and T are stochastic have their
counterparts in this case, except that this time we get lower bounds instead of upper
bounds.

5.18. Implementation. We are in the same situation as in Section 4. Given a partition
(simplicial decomposition, interval subdivision, or a rectangular cell splitting case
such as illustrated by Fig. 4.11) the question which arises is to find a refinement of
the partition that adds only a few cells and improves the approximation as much
as possible. In practice, this boils down, as in Implementation 4.10, to subdividing
just one cell. The piecewise linear character of £+ Q(x, £) plays the predominant
role; as a matter of fact, all the arguments used to justify subdivision by a hyperplane
passing through x still apply. We would thus follow the same strategies as those
suggested in Implementations 4.7, 4.10 and 4.15. The situation is illustrated by
considering the simple recourse case (with h stochastic). Then h;~—>;(x:, h;) is a
one-dimensional piecewise linear function. If [a; 8;] is the support of h;(:), we
have as a first bound

Bl i
= ,t//.(xl, a;) + =

Subdividing [a;, 8;] at x; we get

Pix)< {(Xn Bi)-

Vi(x) <Yathi(Xi @) + Wi(Xio X) + Vati(Xis Bi)
where
Yo = (X~ E{h( )| hi(w) €[, £)})/ (%~ ),
s = (E{h(-) | hi(w) € [Xs B} = X1/ (Bi = X:),
= (E{h;|la; X:)} ~ a)(B:~ E{hi|[ X5 B/ (% — @) (B — X:)

This is a much tighter bound for general y; and equality holds if x; = x.. To illustrate
what is going on, compare the graph of the approximating function a, to (x; ')
before subdividing at x; and the graph of a, after subdivision (see Fig. 5.19).
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az

f i
I |
1 1] {
| i
! |

|

i

N ~
a; X; B; a; X; B;
Fig. 5.19. Splitting [e,, 8,] at X,.

5.20. Convergence. The same argument as that used to obtain Convergenc 4.6 in
Section 4, again relying on Theorem 2.8, applies to this case. Except here, we start
with = compact and for all ], £' is the extreme point of the cell S' at which ¢~ Q(x, £)
attains its maximum or minimum, depending on Q(x, -) being convex or concave.

6. Extremal probability measures

The use of extremal measures to construct upper and lower bounds is intimately
related to a number of questions usually raised in the context of stochastic optimiz-
ation with partial or incomplete information. In order to find a bound for

Ef(x)=If(x, {(w)) P(dw)

we intend to replace P by another probability measure, say P,, that automaticallly
guarantees

E;(x)BIf(x, {(w))P,(dw) = Ef(x), (6.1)

or its converse. One way to do this is to find a measure P, in a certain class 2 of
probability measures on (£2, &), which contains P, and that maximizes (or minimizes)
the linear functional P’ [ f(x, {(w))P'(dw) on the set P. Since by assumption
Pec P we have

Jinf Jf(x, ¢(w))P'(dw) < E(x) < sup Jf(x, {(w))P'(dw). (6.2)

Note that the measures that minimize or maximize the preceding expressions in
general depend on x, but not always. And if they do, quite often the same measure
remains extremal for a relatively large neighborhood of x.

To exploit (6.2) in the search of upper and lower bounds for stochastic program-
ming problems, the choice of 2 is of utmost importance. On one hand we want %
to be ‘narrow’ enough to give us a measure in the immediate neighborhood of P;
on the other hand, the chosen measure P, should be such that finding E/(x) is
easy. In the context of the applications we have in mind, this means that P, should
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be a discrete measure. One possibility is to define ? as a neighborhood of P such
as

% = {prob. meas. Q|sup |P(A) — Q(A)| <&}, (6.3)

Ae A

or even

P= {prob. meas Q|sup I (w)P(dw) —I w)Q(dw)| = e}, (6.4)
fc O
where @ is a class of test functions. Or with F the distribution function of £(-)

defined on R™

@ = {dist. funct. G|sup |F(z) — G(z)| s &}. (6.5)

The class 2 can be further restricted by limiting the acceptable class of measures
to those having finite molecular support, etc.

The construction of bounds through extremal measures will however follow a
quite different course; ? will be defined by a finite number of equalities and
inequalities which lead automatically to extremal measures with finite support. For
a number of reasons that will become apparent later on, it is easier to work here
with & cR" as the support of the measure P (technically, £(-) is then the identity
map and {2 = Z). So let ? be the set of probability measures Q on (=, B") that
satisfy

I_ v(6)QdE) < a,, i=1,...,s5, (6.6)

I vi(8)Qde)=a, i=s+1,..., M, (6.7)

where M is finite and the v; are bounded continuous functions. We shall always
assume that Pe P, i.e. satisfies the relations (6.6) and (6.7). The problem of finding
a measure that satisfies these conditions and maximizes or minimizes

L vo(£)Q(d¢) (6.8)

where vo(¢) = f(x, £), can be viewed as a generalized moment problem [28]. For
problems of this type, we have the following general result:

6.9. Theorem. Suppose = is compact. Then the set P is convex and compact (with
respect to the weak™ topology), and P = cl co(ext P). Assuming that v, is continuous
relative to =, then Q> | vo(£) Q(d¢) attains its optimum (maximum or minimum) at
an extreme point of . Moreover the extremal measures of P are precisely those having
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finite (molecular) support {¢', ..., &%} with L< M + 1 such that the vectors
vi(¢") ( v(¢h)

ol LvM('gL)
1 1

are linearly independent.

Except for the presence of inequalities in the definition of 2, this result can be
found in [26, Theorem 2.1]. Kemperman [27] shows that the supremum can be
obtained if v, is upper semicontinuous, the v, 1 <i=<s, are lower semicontinuous
and the v, s + 1 < i< m, are continuous (with all functions appropriately dominated).
We choose more restrictive assumptions since we work with both maxima and
minima. Dupadova’s minimax approach to stochastic programming [48] led to the
investigation of extremal measures. She obtained results of this type [12, 13] for
related moment problems. The proof we give here, based on generalized linear
programming [10, Chapter 24), is due to Ermoliev, Gaivoronsky and Nedeva [15].
It is reproduced here because it is constructive and used in the sequel.

Proof. Suppose the constraints (6.6), (6.7), and

I Q(d§) =1

are consistent, otherwise there is nothing to prove. The convexity of 2 is easy to
verify, the compactness for the space of measures on a compact metric space follows
from Prohorov’s Theorem, and 2 =cl co(ext ) from the Krein-Milman Theorem
about the representation of the elements of a convex set as convex combinations
of its extremal points.

Now suppose that {£',..., £”} is a finite collection of points of = that we view
as part of the potential support of the extremal measure that maximizes (6.8); the
case of minimization of (6.8) involves the same arguments and does not need to be
dealt with separately. The question now is to assign to these points {¢',...,¢"} a
probability distribution- that maximizes (6.8). This can be expressed as a linear
programming problem, with variables {p,, ..., p,}, formulated as follows:

find p,=0,...,p,=0

such that

hM!
=
i
—

~

b [«
<

(Epi<a; fori=1,...,s
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Y v(gYp=ea, fori=s+1,..., M, and
=1

z=Y vo(¢")p, is maximized. (6.10)

=1

Assuming the points {£',...,£"} have been picked so as to make this problem
feasible, it is then also solvable. Let {pf,I=1,..., v} denote the optimal solution
and let

(6,”7’-;’$- L | 7’-:3 7":—4‘1’ R ] 7’-;;1)=(6V$ 7’-V)

be the simplex multipliers associated at the optimum to the constraints of (6.10).
The measure determined by

Qv[gl]:p;’$ I=1""$V$

is the desired extremal measure, unless some £ in = can be found such that
M
vo(€)— Y 7/ v(£)—6">0. (6.11)
i=1

This follows directly from the optimality criteria for linear programs, when we note

that each £ in = potentially generates a column that could be added to (6.10). If
(6.11) holds for some ¢, let

M

&le argmaX[vo(f)— Y wiu(€)

i=1

e E]. (6.12)

v+1

The existence of £
Adding the column

is not in question since the v, are continuous and Z is compact.

1
Ul(f,’H)

UM(‘fVH)
vo(£7)

to linear program (6.10) is guaranteed to yield a new solution {p;*', I=1, ..., v+1}
and a measure

Qv+][§l]:p;’+]a I=1$"-’V+1’

such that

I Uo(‘f)ov(df) < I vO(f)Qv-fl(dg)-

Repeating this until the point ¢ generated by (6.12) fails to satisfy (6.11) yields the
extremal measure that maximizes (6.8). Since this is generalized linear programming,
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the convergence proof of Dantzig [10, Chapter 24] applies; a variant appears in
[43, Chapter 11.B] which can be exploited to obtain convergence of a modified
procedure that only requires verification of (6.11) up to £ [15, Theorem 5], a most
desirable feature in practice.

To complete the proof of the theorem, it suffices to observe that the optimal basis,
associated with the solution of (6.10) will involve at most M +1 columns of the
type [1, vi(£Y), ..., va(£)]" that are linearly independent. And this holds for every
possible objective [ vo(£)Q(d¢), which by varying v, yields all extreme points
of . [J

Theorem 6.9 can now be applied to a variety of cases. The simplest one is
Z =[a, B]1=R', and the only condition is that the expectation with respect to P,
should match the expectation £ with respect to P. The problem reads:

find Q a measure on (Z, #')

8 8
such that Q =0, I Q(d¢) = I,I £Q(dé) =

8
and I vo(€) Q(d¢) is maximized.

a

Using the mechanism of the algorithm for generating P,, in particular (6.12), it is
not difficult to see that

with v, concave, P,{}=1, (6.13)
with v, convex, P, {a}—B " {B}—; (6.14)

This result and extensions thereof involving conditional expectation conditions,
variance and unimodality conditions have been obtained and then applied to
stochastic programming problems by Dupacova [12, 13, 14] and Cipra [9]). Observe
that the extremal measure defined by (6.14) is precisely the discrete measure with
support on extreme points obtained in Application 5.6 when Z is an interval (Case
(i))) and £ vo(€) = Q(x, &) is convex. In fact, many of the results obtained in
Sections 4 and 5 can be recovered by a judicious application of Theorem 6.9, most
often by relying on the further characterization of the support of the extremal
measure given by the next theorem.

6.15. Theorem. Suppose = < R" is compact,

P= {Q L £Q(d¢)=¢= L fP(df)},
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and vy: = >R is convex. Then there exists

P, € argmax I vo(£) Q(d¢)

Qc® =

with finite (molecular) support {¢', ..., ¢} with L< N+1 and

{¢',..., Y cext(co B)c &

Proof. From Theorem 6.9 we already know that P, can be chosen with finite support
n = Suppose

¢'e E\ext(co Z) and P {£'}=p,>0.
Then there exist {¢’eext(co Z),j=1,...,J} and nonnegative scalars (A, )=
., J} such that
J ‘ i
= z /\jé'll’ z ’\jzl
i=1 i=

By convexity of v,

’
pvol(¢) § PiAY o(€Y).

Thus replacing P, which assigns probability p; to £' with P/, which assigns probability
0to ¢ and for j=1,...,J, probability pA; to £7 we have

~

vo(£) P, (d¢) <I vo(€) P(d€)

but still

£P(dg) = I £P.(d¢g) =

o

The argument shows that the search for an extremal measure can, in this case, be
restricted to those having their support included in ext(co Z'). But this is a compact
subset of R™. We complete the proof by applying Theorem 6.9 with

P ={Q prob. meas. on ext(co =) I I £Q(d¢) = &} O

6.16. Corollary [31; 17, Theorem 1). Suppose K is polytope that includes =, P =
{Q|f = £Q(d¢) = &} and vy: K >R is convex. Then

g, i ,\j=1] (6.17)

j=1

Ivo(f)P(d§)$wgg[i Ajve(€’) 21 A =

where {e', ..., e'}=ext K.
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Proof. Of course

sup I vo(f)Q(d§)$5U£ I v(£) Q(¢)

QeP

where P ={Q prob. meas on K |{, £Q(d¢) = £} > ?. We then apply Theorem 6.15
with = replaced by K and 2 by .. [0

Reformulating this in terms of f and E, this becomes:

6.18. Proposition. Suppose £— f(x, ¢) is convex. Then

L

T Ae'=¢ i ’\j=1] (6.19)

j=1

E/(x) <max [ YA h(e

where {e', ..., e"} is a (finite) collection of points in R™ such that co(e',...,e")> =
and h:co(e', ..., e") >R is a convex function such that

h=f(x,-) onZ

In general, however, i.e. when other constraints than first moment conditions are
part of the definition of 2 or the function v, is not convex or concave, what limits
the use of Theorem 6.9 in practice is solving (6.12)! In general, the function’

£ vo(8) - »\é, 7 vi(£) (6.20)

is neither convex nor concave, if some v; is nonlinear, since the #; are not restricted
in sign. The remainder of this section is concerned with how to handle this global
optimization problem in the context of stochastic programs with recourse. We begin
with the simplest case.

6.21. Application. Consider the stochastic program with simple recourse withrandom
right-hand sides h, i.e. of the form (1.15) with ¢(x, £) defined through (3.21) and
(3.22). The problem is then separable and the function v, can be expressed as

m.

Uo(f) = 'znf vOj(f} zz X}’ gj

j=1 j=

and consequently is also separable. Since only marginal density information would
be required in evaluating (6.8), the only sensible (generalized moment) conditions
of type (6.6) or (6.7) would involve no more than one component of £ at a time.
Thus finding the maximum (or the minimum) of vo—zx, 7! v is reduced to N
(=m,) one-dimensional maximization problems that can be handled in practice
in a number of ways, see also [8].
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6.22. Implementation. We have to solve

M
find £€[a, B] such that z = vy;(£)— ¥ #/v;(£) is maximized. (6.23)
i=1
We consider the case when M =2, v,(£) = £, vy,(£) = £°; we want to match the first

two moments. The function ¢(£) = vy;(£) is convex (1.11). Reformulating (6.23) we
have:

find £€[a, B] suchthat ¢(&)—mié—7;¢° is maximized. (6.24)

If w5 =<0, the objective function is convex, in which case we only need to examine
its values at the boundary points of the interval. If #; > 0, the interval can be divided
up into regions of convexity and concavity and on each one the maximum can be
found by conventional methods. Another possibility when higher moments are
involved, is to use the bounds on the expected value of a convex function, obtained
by Don [11], for a class of sample-based probability measures. The optimal points
of density £', ..., £' and the associated probabilities p,, ..., p, are then straightfor-
ward to calculate provided the measure P has certain symmetries. When this last
condition is not satisfied, we could still use the so-generated discrete measure to
initialize an algorithmic procedure for solving (6.23).

6.25. Application. Considerthe stochastic program with recourse (1.15) with random
right-hand sides h. Suppose
y={Ef,i:1,...,M}

is a partition of =, for every i=1,..., M, v; is the indicator function of =; and
a; = E{h(-)| E;} is the conditional expectation of h(-) given Z. Fori=1, ..., M, let

pi=P(Z)=Plh(-)e =]

and again let vo(£&) = ¥ (x, £). The problem of maximizing v, subject to (6.7) is then
decomposable, in that each subregion =; can be dealt with separately. Indeed,

[ werpan=3 [ werpae

i=1

and thus the original problem decomposes into M subproblems of the type

find a probability measure Q, on E;

such that I_ £Q(d¢) = a;

and I_ vo(£) Qi(d¢) is maximized (or minimized). (6.26)
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With P; the optimal solution to (6.26), the desired measure is given by

M
P"=3 pP,.
=1
Solving (6.26) is in principle not any easier than solving the general problem, except
that we are only dealing with linear functions v, (which means that the convexity
of v, yields the convexity of the objective function of the subproblem (6.20)) and
if the partition & of Z is left to us, we can choose it so that it corresponds to linear
pieces of £— ¥ (yx, £).

6.27. Application. Consider the stochastic program with recourse (1.15) withrandom
right-hand sides h, with the h,(-) independent random variables for i=1,..., m,;
we also have that vy(£) = ¥(y, £). With the independence of the random variables
comes the separability of the constraints (6.6) and (6.7). We would thus have a
relatively easy problem to solve if it were not for the intricate relationship between
the & = h; that appears in the objective v,.

6.28. Implementation. 1f we are interested in the probability measure that minimizes
f vo(£)Q(d€) we can rely on the approximation to ¥ provided by Application 3.3.
We have that

vo(£) = max 7'(§~x)
where x = Tx and, as in Application 3.3,

n'e argmax[n(¢'—x)|nW=gq]

for {¢'=h'I=1,..., L} a finite number of realizations of h(-). Minimizing the
function (6.20) that appears in the subproblem can then be expressed as

find 6eR, and ((,e E,i=1,...,m,)

suchthat 9=n(&—x),I=1,..., L,

M
and 0 - Y 7 v;(£) is minimized.
t=1
If, for example, the functions v, correspond to first- and second-order moments,
then this is a quadratic program, not necessarily convex. To solve it, we can rely
on existing subroutines [16].

6.29. Implementation. If in Application 6.27 we are interested in the probability
measure that maximizes _[ ¥ (x, £)Q(d¢), we rely instead on the approximation to
¥ (-, x) which comes from Application 3.23, which gives a separable function v,,
actually of the same type as for stochastic programs with simple recourse. This
brings us to the case already studied in Application 6.21 and Implementation 6.22.
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We note that the use of the approximating functions for the recourse function
makes the calculation of extremal measures a reasonable undertaking. Otherwise,
the global optimization problem of finding the ¢ € = that maximizes (or minimizes)
the function vo( - ) =3, ,“:, m{v;(-) would be too involved to solve exactly as a subprob-
lem in obtaining error bounds. Finally, we observe that all the results derived here
could be extended to h, T and g stochastic; each case, however, requires a separate
analysis to take full advantage of the properties of the problem under consideration.
As more information is gathered about these types of approximation and resulting
bounds, we expect to see a more detailed analysis of each case. The use of these
techniques in an overall scheme for solving stochastic programs with recourse also
needs further study, here we have limited ourselves to finding extremal measures
that yield the best possible lower and upper bounds for a given x or x. Changing
x only affects the function v, and this may affect the extreme points (see [12] and
[13]). Often, however, all that may be needed when passing from x to another is a
recalculation of the weight factors p,,...,p, in (6.10) the points {£',...,¢"}
remaining unchanged. Moreover at each new x, it may not be necessary to solve
the generalized moment problem to optimality.

6.30. Convergence. To obtain convergence, we need to consider sequences of gen-
eralized moment problems with an increasing number of restrictions on the moments
of £( ). This must be done such that a sequence of extremal measures {P,, v=1,...}
is obtained that converges in distribution to P. We may, for example, fit additional
conditional mean information as in Section 4. We can then apply Theorem 2.8.

7. Majorizing probability measures

The role that convexity played in obtaining many of the bounds in the previous
sections is taken over here by order preserving properties. The approximations are
based on stochastic ordering [32, Chapter 17]. They are especially useful because of
their simple calculability. The use of majorizing measures to approximate stochastic
programs was first advocated in [46].

We denote by < the partial ordering induced by the closed convex pointed cone
C on R™. We write

t'<.t? if ?-t'eCcrY

and say that t' precedes t* (with respect to <c). A random vector ¢': 02 ->RY
stochastically precedes the random vector £°: {2 »R" (with respect to <) if

Plo|é'(w) < (w)l=1;

we write ¢'(-) =< £%-). A function ¢ from R" into Ru {+cc} is order preserving
with respect to < if

t'<c1® implies &(1')=< (1)
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For ¢ order preserving and £'(-) < £%(*), obviously
E{¢(¢(w))} < E{¢(£}(w))}. (7.1)
From this follows directly
7.2. Proposition. Suppose ¢— f(x, ) is order preserving with respect to <. and for

i=1,2, £(:): (8, o, P)> (R, BN, F,) are two random vectors such that £'(-)
stochastically precedes £*(+). Then

Ej(x)= If(x, £'(w))P(dw) = If(x, £(w)) P(dw) = Ef(x). (7.3)

7.4. Application. Consider the stochastic program with recourse (1.15) with only
h(-), the right-hand sides, stochastic. Let

pos W:{t t=Y nyj,yjzo},

ji=1
the convex cone generated by the columns of W, see (1.17). Let {t'eR™, I=1,..., L}
be a frame for this polyhedral cone, i.e. the vectors t' are positively linearly
independent and pos(t',/=1,...,L) =pos W. Suppose that for all /=1,..., L, and
£¢< E, the function

A= dlx, E+At) R >R

is monotone increasing and that pos W is pointed. Then, if £(*) <posw £(*)
vi(x)= I ¥(x, £"(w))P(dw) < ¥(x) (7.5)
and, if £(-) = poswé”(+)
‘I'(x)g‘l'u(x):f ¥(x, £V(w)) P(dw). (7.6)

This all follows directly from Proposition 7.2. It suffices to verify that the conditions
imply that £ - (x, £) is order preserving with respect to <, w, details are worked
out in [46, Proposition 3.2].

Below, in Application 7.8, we give an example where the monotonicity of ¢ in
each direction t' can be verified directly. In other cases, one may have to rely on
various properties of the problem at hand. The construction of the random variables
£5(-) and £Y(-) relies on subdividing the range of £(-) into subsets generated by
the partial ordering <,,.w. This is done in [46, Section 3]. Convergence can be
obtained by relying on finer and finer subdivisions of = and by relying on a special
form of Theorem 2.8. We shall concentrate instead on questions of implementability
and special cases.



92 J.R. Birge, R.J-B. Wers / Approximation schemes for stochastic programs

7.7. Application. Consider the stochastic program with recourse (1.15) with only
q( ) stochastic. Let

D(W)={y|y=#W forsome m € R™}

and let {u’, =1, ..., L} be a frame for the convex polyhedral cone D( W). Suppose
that for all I=1,..., L and £¢< E, the function

Ay, E+Au’):RY SR
is monotone increasing, and
£ () S pw EC)Spmn €7 ().
Then
vh(x)= I ¥(x, £"(w)) P(dw) < ¥(x) (7.8)

and
T(x)s¥Y(x)= I P(x, £Y(w))P(dw). (7.9)

To apply Proposition 7.2, we need to show that the monotonicity of A — ¢(x, £+ Au’)
for I=1,..., L implies that £— y(x, £) is order preserving. Suppose ¢' sD(W)gz,
then ¢*— ¢'e D(W) which means that

L
£=¢+73 au'
=1

for some scalars a; =0. Relying on the monotonicity of ¢ in each coordinate, we
obtain:
Y6 EVSU(x & tau') < yl(x, £ Hau' +au’) << y(x, £).

Note that h and g stochastic can be handled simultaneously provided naturally
that the conditions laid out in Applications 7.4 and 7.7 be satisfied; this suggests
some of the advantages of this approach. The real utility of this approach is, however,
in the separable case.

7.8. Application. Consider a stochastic program with simple recourse with random
right-hand sides h, i.e. of the form (1.15) with ¢(x, £) separable as defined by (3.21}
and (3.22). Suppose that for i=1,..., m,, ¢} =0 and g; =0, and define £,(+) and
£¥(+) as follows:

()= &) on{w|é(w)=x},
EH(-)s£(-) otherwise

and
£2()=&() onfwla(w)=xl,

£Y(-)=¢(-) otherwise.
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Then

LA IED) I i(xs, €7(@)) P(dw) < ¥ (x)

i=1

and

P(X)<PUx)= Y Iwi(Xi’ £ (w)) P(dw).

i=1

To see this, observe that the functions

& i(xs &)

are monotone decreasing on (—0, x;], and monotone increasing on [x;, +o) since

q: (xi— &) if&=x,

¥i(xi &) = {q?(f;—/\’i) if §, = x.

Therefore, —y,(x;, -) is order preserving with respect to <g, when ¢ < x; and ¢;(x,, *)
is order preserving with respect to <, when ¢ = x. We apply Proposition 7.2 to
obtain

—I " i (@) P(dw) < —I " (X £5(w)) P(dw)

—oo —

and

I i Xis f,L(w))P(dw)SJ’ Yi(x, &i(w)) P(dw).
Xi X

Adding up these two inequalities and then summing with respect to i yields the
assertion involving £( ). The symmetric inequality with £Y(-) is obtained similarly.

7.9. Implementation. The search for random variables &) and £Y(-) that yield
the desired inequalities, can be carried out in terms of the distribution functions
Ftand FY induced by these random variables. Let F, be the distribution function
of &(+) with support [a;, 8;]. The conditions become

Fr<F,<F!? on (-0, x:],

Fi=F,=F’ on[y,©).

Figure 7.10 gives an example of a discrete distribution F\ that could be used to
approximate F,. As usual, we are only interested in discrete approximations. Our
goal is thus to find best discrete approximates that are below or above F. Since
Fi=F,=F" at x; we can find the best approximating distribution function that is
below (or above) F, on each segment (—0, y;] and [x;, +¢) separately. And since
below or above is just a question of reversing signs, we may as well consider the
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Fig. 7.10. Majorizing distribution function FY.

problem at hand in the following framework:
find a distribution function F:R [0, 1]

such that F= F, Fis piecewise constant with at most L jumps
and I |F(s)— I:'(s)l ds is minimized. (7.11)

We have defined best approximation in terms of the /,-norm. Recalling that F<F,
we have

J’|F(s)—1:'(s)|ds=J’ F(s)ds—I 1:'(5) ds

and thus we may as well simply maximize ]I:"(s) ds subject to F<FiIfz,...,z
are the points of discontinuity of F,itis easy to verify that F cannot be optimal
unless at those points F“(z,)=F(z,), I=1,..., L Taking these observations into
account, Problem (7.11) becomes

find a=z<zsz<-.-<sz=sz7,,=8
L
such that p(z)= ¥ (z;4,—2))(F(z;) = F(z,_,)) is maximized, (7.12)
1.21
where [, 8] is the support of the distribution function F. Note that p is not convex.
Even with L=1, when (7.12) reads

find ze[a, B8]
such that p(z)= (8 —z)(F(z) — F(a)) is maximized, (7.13)

the solution is not necessarily unique, in fact the solution set may be a disconnected
set of points. Assuming that F is twice differentiable with F’' denoting the correspond-
ing density, we have that z* is optimal if

F(z*)- F(a)
F'(z*)

F'(z*)
F"(z*)

=B—z*=2 (7.14)

which in general has a multiplicity of solutions. To solve (7.12) we propose a
heuristic that sequentially adjusts the jump points z,,. .., z,.



J.R. Birge, R.J-B. Werts / Approximation schemes for stochastic programs 95

Step 0. Pick L points (for example with equal quantiles) in (e, 8). Set I=0.
Step 1. Set I=1+1. Readjust z using the formula:

zi € argmax (z.,,—z)(F(z)~ F(z].))).
zelz]. o)
Solve using (7.14) exploring the local optima. Restart Step 1 if / < L; otherwise, go
to Step 2.
Step 2. Stop if for all I=1,..., L, |z —z| < e Otherwise, return to Step 1 with
z=z forl=1,... Land I=0.

This algorithm converges (a monotone increasing sequence bounded above by
f F(s)ds) but not necessarily to the optimal solution, this depends on the initial
choice of z,, ..., z,.

An alternative approach to finding the best approximating discrete distribution
function is to enter the points z,, ..., z; with associated weights. These may corre-
spond to the values of the recourse function, for example. With v( ) as the weighting
function, Problem (7.12) becomes

find a=zy=z;<.. =z, <z,,,=8

such that p(z) = 2’3 [v(zi5)) — v(z)][F(z) — F(z4,)] is maximized.
B (1.15)

In the case L=1, we have a formula for the optimal z* that corresponds to (7.14),
and for the general case the same algorithm, with the obvious modifications, can
be used as a heuristic. We could also use generalized programming, as in Section
6, to solve Problem (7.12) or (7.15). The problem corresponding to (7.25) is then

find p,=0,j=1,...,v

j v

such that ), p;sF(z),j=1,...,v,and ¥ v(z)p, is maximized (7.16)
11 1=1

where p; = ﬁ(zj)—ﬁ(zj_,). For v(z;) =0, which is usually the case, the optimal

solution is p, = F(z;)— F(z;.,). The optimal dual variables associated to (7.16) are

defined by

Uv:v(zv), Uj:v(zj)— Z g;.
I=j11
To add a new point z,,, that generates a new column of (7.16), we need to solve:
max [ max {v(z)— Y a,}]. (7.17)
I1sy=v [ z&(z,.,.7] f=j+1

This approach however does not lend itself easily to a fixed upper bound on the
number of discontinuities of F. It could be used to initialize the procedure suggested
earlier.
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7.18. Implementation. When ¥ is not separable, we can still proceed as in
Implementation 7.9, if we first replace the recourse function by its simple recourse
approximate, cf. Application 3.18, at least when seeking an upper bound for ¥(x).

8. Further bounds involving E; or 2

In this concluding section, we just want to record a number of bounds that require
the evaluation of the objective functional E, at some points. The use of these results
is thus limited by our capability of evaluating E, (or its gradient) with sufficient
accuracy.

To begin, let us simply observe that for all xeR"

inf E; < E/(x), (8.1)
which gives us a readily available upper bound. Using the subgradient inequality
for convex functions we have:

8.2. Proposition. Suppose x— f(x, £):R" >R U {+0} is a convex function. Then for
any pair x, X in R",

E(x)~E(X)=0-(x—X) (8.3)

with 0 € 9E;(X), provided the set 3E;(x) of subgradients of E, at X is nonempty.

Proof. Simply observe that f(-, £) convex implies that E, is convex which then
implies (8.3). O

8.4. Application. Consider the stochastic program with recourse (1.6) with only
h(-) stochastic. Then from {41, Corollary 7.16], we know that with h = ¢:
~—E{m(x, 6)}Tcds2(x),
where 7(x, -): {2 >R™ is a measurable function such that
m(x, £) € argmax{m(&— Tx)|#W <gq).
Thus, with f as defined by (1.9), we obtain
2(%)=2(x)+ E{m(x, £&(0))}T(x - X). (8.5)
8.5. Implementation. Except for some special cases such as stochastic programs
with simple recourse, evaluating 2(x) or E{#(x, £)} is not feasible, but suppose

that 2" < 92 where 2" has been obtained by relying on an approximating measure
P,. Then for any X we have that

2(%)=25(%) = 2%(x) +J 7(x, §(w)) T(x - X) P (dw),
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with 2%(x) =] Q(x, £)P.(d¢). The term on the right can.now be calculated and

gives us a lower bound.

8.6. Application. Consider the stochastic program with recourse (1.15) with g(-)
and h(-) stochastic. As usual

Y(x)=E{¢(x, ()},
but let us now also define p as follows:
p(x)=inf[ex|Ax=b, T = x, x = 0].
The stochastic program can then be formulated:
find x €R™ such that p(x)+ ¥ (x) is minimized. (8.7)

Suppose x is a point at which both p and ¥ are finite, and suppose 7€ dp(¥); the
convexity of p follows from standard results in parametric linear programming. Let
x be such that

~feav(y).

Assume such a point exists. Forany y e R™, it follows from the subgradient inequality
for convex functions, in particular (8.3), that

p(X)=p(X)=8(x—x) and ¥(x)-¥(X)=-d(x—X)
Adding up these two inequalities, we obtain that for all x,
p(X)+ ¥ (x)=p(X)+¢(X) - (X~ X)
and hence
inf(p+ ¥)=p(X)+ ¥ (X) - 0(X - X). (8.8)

We have thus a lower bound for the infimum of the stochastic program.
We note that inequality (8.8) also follows from a duality argument. Assuming
that all operations are well-defined:

inf(p+ ¥)=—(p+ ¥)*0)=—~(p*O¥*)(0)
= —iaf(p*(v) + ¥*(-0))

= —p*(v)-¥*(—v) forall v,

where * denotes conjugacy and O inf-convolution. Inequality (8.8) now follows
from the preceding one with v = and observing that:

p*(B)=dx-p(X), ¥*-D)=-dx-¥(X).
This also shows that inequality (8.8) is sharp since

inf(p+ ¥)=sup[-p*(v) - ¥*(—v)]
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8.9. Implementation. Let us illustrate the use of this inequality in the case of a
stochastic program with simple recourse with stochastic right-hand sides h(-).
Suppose x° is, for possibly heuristic reasons, believed to be a good guess at the
optimal tender (certainty equivalent). Let us now solve the linear program

find xeR}, u"eRT:, u eRT:

such that Ax =b,
Tx+ u"— wu =x° and
cx+q*ut+q u” =z is minimized (8.10)

where ¢, ¢~ are as usual the recourse costs. Let (X, @7, éi~) be the optimal solution,
and (&, ) the associated simplex multipliers. Then

7 €dp(x)
with ¥ = Tx and p as defined in Application 8.6. Moreover, #€[—q~, ¢7] as follows
from the optimality conditions, and thus there exists ¥ such that

—-7€d¥(¥)
as follows from the formula for subgradients of the recourse function in the simple

recourse case [21, Chapter III, Section 4). If for i=1,..., m,, F, denotes the
distribution function of the random variable A,(-),

7= q, — g:F(X))

where g, = g7 + q,. With z° the optimal value of the stochastic program (1.15) we have
222 R+ () - F(X —- X).

Let Z=cx+ ¥ (x) which with the above yields
0=<Z-2=s¥(x)-¥()+7(X—X)- (8.11)

In the case at hand, this becomes [33, Chapter III, Section 4]

m, X,
0=7-2<Y g J (- x)dF.(2),
i X
which is knewn as Williams' inequality. Let us point out that the path followed to
obtain this last inequality, using (8.8) is quite different from the original proof of
Williams [47] and should clarify the underpinnings of this result.

9. Preliminary computational report
The objective functional and probability measure approximations presented above

are intended to be used together in solution procedures for stochastic programs.
The characteristics of each objective functional approximation make it especially
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amenable for use with certain probability measure approximations. We consider
here the case of stochastic programs with recourse and discuss the merits of various
objective functional-probability measure approximation pairs. The pairs which
appear to be the most promising are marked by lines in Fig. 9.1.

Objective Probability
Functional Measures
Original — = Original
. Conditional

Subgradients < E xpectatians
- Extreme
Rays <. Sz -)‘/— Paints
',/)/;? "\}\& Extremal
Pairs 4&° ™~ ~3a, Probability
AN Measures
\\ . )
~~. Majorizing
Prabability
Measures

Fig. 9.1. Approximation pairs.

The original objective functional refers to the evaluation of Q(x, £(w)) as in (1.7).
Since the integral in (1.7) may be extremely difficult to evaluate, the original
probability measure must often be approximated. The simplest and most straightfor-
ward approximations that only require convex objective functionals are probably
the conditional expectations and extreme point approximations. These approxima-
tions are linked to the original objective functional in Fig. 9.1 because of their
simplicity and generality of application.

The subgradient objective approximation allows the original probability measure
to be used when each region in the support = is assigned a specific subgradient.
In this case, the difficult integration in (1.7) is reduced to evaluating the probability
of and the conditional expectation over each subgradient’s region, where these
regions can be chosen to be appropriately easy to evaluate. Subgradients are also
well-suited to the extremal probability measure approximations because they can
make the solution of (6.12) easier. If = is partitioned into regions of concavity or
convexity of Z,MH ! v;(£), then the maximum can be found by checking optimality
conditions for each of the subgradients without explicitly considering vy(£) in the
solution.

The use of the ray function approximation is useful in similar circumstances to
the subgradient approximation. In using the original probability measure, the simple
recourse approximation 3.23 can be used in conjunction with an algorithm such as
in Wets [42] to solve (1.6) using the ray approximation of Q(x, {(w)). The ray
function approximation is also well-suited to the extremal probability measure
approximation because the simple recourse formulation can be used to make the
problem separable so that we are in the setting of Application 6.16. A further
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advantage of this simple recourse formulation is that it can be used to achieve the
conditions for the use of majorizing probability measures as in Application 7.8.

The pairs function approximation is basically a method for reducing the computa-
tional burden of a large deterministic equivalent program to (1.6). If the original
distnibution is finite, but perhaps too large for the deterministic equivalent to be
easily solvable, then the pairs approximation may be used to obtain a bound by
solving a number of small, closely-related programs. For continuous distributions,
the pairs problem may also be used as a bounding technique. It may consider a
large number of regions with conditional expectation or extreme point bounds and
again obtain results through the solution of a series of small programs.

Computational studies in each of these areas are planned but only limited
experience is currently available. Hausch and Ziemba [18], for example, have
reported on the use of the original objective functional with conditional expectations
and extremal support approximations. They found that these approximations pro-
vided good bounds for some simple production examples. They also noted that the
improvement in the accuracy of the bounds is not necessarily strictly monotonic in
the number of regions used in the approximation. Kall [24] has reported similar
results in using these approximations as part of a solution procedure for (1.6). His
initial experiments have shown that optimal solutions to (1.6) can often be obtained
with very few regions used in the evaluation of the approximations. In some cases,
however, the procedure of refining the partition in the region of greatest probability
did not produce any improvement in the bounds and many iterations were required.

We have also observed this behavior in our initial investigations of the conditional
expectation and extremal support applications. No improvements occur when refine-
ments are made in regions of linearity of the recourse function. This led us to
proposing the refinement procedure in 4.10 which produces monotonic improvement
in the approximations. Our initial experiments have also shown that few refinements
are necessary in many examples. This occurs because the recourse function is often
‘flat’, having little variation across the different regions in the partition of =Z. In
some examples, the recourse function, however, has more variation and more
iterations are required.

We have begun limited experiments with the use of extremal probability measures
and second moment conditions on the probability measures. Our initial results
indicate that the master problem (6.10) and the subproblem (6.19) for simple recourse
problems can be solved quickly with convergence established within five or six
subproblem solutions. The resulting bounds provide a more precise interval around
the simple recourse function than do a single expectation and extremal support
bound. The utility of this bound as part of a solution procedure is still to be evaluated.

The emphasis in this paper has been on two-stage stochastic programs with
recourse. The general functional form in (1.2), however, can also be applied to
multistage stochastic linear programs. These problems have a wide variety of
applications, including financial planning (Kallberg, White and Ziemba [25], Kusy
and Ziemba[29]) and energy modeling (Louveaux and Smeers[30]). Their theoretical
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properties are closely linked to those of two-stage programs and have been investi-
gated, for example, by Olsen [33, 34] and Rockafellar and Wets [36, 38, 39]. Some
initial results on approximation in multi-stage stochastic programs appear in Birge
[5]. The application of the methods presented here in the multistage context should
provide a foundation for the analysis and solution of these widely applicable models.
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There are many types of multi-time-period stochastic programming problems. In particular,
there are problems where activities in one time period provide inventories or new capacities of
uncertain magnitude for use in the next time period. One approach is then to ignore the uncertainties
and solve a deterministic model using mean values. A slightly more sophisticated approach is to
make first-order corrections to allow for the uncertainty. This paper suggests a strategy for
computing such corrections. The problem of implementing this strategy is then studied by
considering some very simple examples. These examples suggest that it may be seriously misleading
to assume that all the relevant random variables are normally distributed unless the vanance is
small compared with the mean This is because in reality the random variables are nonnegative.
Fortunately the approach also works if the variables are assumed to have Gamma distributions.

Key words: Multi-Time Periods, Stochastic Programming, Exploration Activities, Approximate
Solutions, Gamma Distributions.

1. Introduction

The task of finding an effective general method for solving multi-time-period
stochastic linear programming problems has remained an elusive one since the
problem was first posed, see Dantzig (1955). If the random variables have a discrete
joint distribution, theén the problem of choosing values for the first-time-period
decision variables to optimize the expected value of the objective function reduces
in principle to one of solving a large linear-programming problem. But the size of
this problem becomes unmanageable except in very special cases. Beale et al. (1980)
proposed a method for finding an approximate solution to problems with random
right-hand sides representing uncertain sales demands, and this work has been
extended by Ashford (1982). But other problem structures require other approaches.
In some problems there are activities that provide either inventories or capacities
for use in the next time period, where the extent of the new resource is a nonnegative
random variable. The mathematical structure of the problem is then as follows:

1G3
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If x, denotes the set of values of the first stage decision variables x;,(j=1,...,J))
and xz denotes the set of values of the remaining decision variables x; (j=1,..., J,)
for t>1, the problem is to choose x, to minimize

JI T J'
Y apux;, +E{min ¥ ¥ agx;,
g=1 o

xg t=2j=1

subject to
Zaijl-le =b, (i=1,..., 1),

J

(1.1)
_Z aul-xjr—l+zaijrle=bil (122’ vavy Ta i:1’~~~’ Ir)’
J J

where the a;, and b, are known constants, but the a; are nonnegative random
variables with a known joint probability distribution. We make the further assump-
tion that the vectors of coefficients of the variables x;,_, are statistically independent.
In other words, while a; ;, and a;,;, may be correlated, a; ;, is independent of «
unless j, =j, and t, = t,.

We assume that the decision variables x;, must be chosen without any further
information, but that, for t>1, the a; will be known before the x;, have to be
chosen. We also assume that the problem has complete recourse, or in other words
that there are no feasible sets of values of ay,., and x;, for u <t that make the
problem infeasible with respect to the decision variables x;,.

We are particularly interested in the special case where 0< x;, <1 for all variables
having random coefficients. These variables then represent whether or not some
activity with uncertain outcome is selected. The variable should then be restricted
to integer values, but the LP relaxation may already provide adequate guidance.

We propose an approximate solution strategy that can be considered as a combina-
tion of linear and dynamic programming concepts (following Dantzig (1955)). The
approach is conceptually similar to that used by Beale et al. (1980) and extended
by Ashford (1982), and its effectiveness could usefully be tested by the type of
simulation study made by Ashford. But the detailed assumptions and approximations
are different. The problem of implementing this strategy is then studied by consider-
ing some very simple examples, taken from Watson (1983).

i jt 26

2. A recursive formulation

The state of the system when the x, have to be chosen is summarized by the
vector B,, whose components B, are defined by

Bir=bil+z aij,.xi,_l (i=1,..‘,ll)‘ (2.1)
J

If V,(B,) denotes the minimum value of E(ZL, Y, o X)), When the x;, are chosen
to satisfy (1.1) for all u =t and B, is defined by (2.1), then we have the recurrence
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relation, for t=T+1, T,...,2,
V:-I(B:—l)zmin<z 0011—1-’511—1+E(‘/:(Br))>, (2.2)
J

where the term E(V,(B,)) is dropped for t= T +1, minimization being over all
nonnegative x;,—, satisfying

Zaijl—l-le—l=ﬁil—l (i=1,...,1_)) (2.3)
J
with B, being defined by (2.1), and the expectation being conditional on the given
value of 8,_,.
If we define B, as b;,, then V,(B8,) defines the optimum value of the objective
function, and the corresponding values of x;, are optimum.

3. The approximation

The first stage of the approximation procedure uses an idea introduced by Beale
et al. (1980) and extended by Ashford (1982). To avoid working with separate
subproblems defined by (2.2) and (2.3) for different values of 8,_,, these subproblems
are combined into a single subproblem. The quantities x;,_, then represent the mean
values of the decision variables averaged over all possible values of B,_,. Since the
problem is linear in these variables, these mean values must satisfy (2.3) with the
Bi.-1 replaced by their mean values, and we neglect the further constraints on the
variables for individual realizations of 8,_,. On the other hand, the variability in
the vector B, must allow for the variability in the input conditions for time period
t—1 as well as the variability in the coefficients a,;, We therefore compute the first
derivatives of the optimum values of the decision variables x;,_, with respect to the
components of B,_,. This provides linear approximations to the values of these
variables as functions of these components, and hence we can use (2.1) to estimate
the mean and covariance matrix for the components of 8, in terms of the mean and
covariance matrix for the components of 8,., and the means, variances and covari-
ances of the ay.

The mean values of the x; are denoted throughout by x;,. When t=1, x, and X,
are synonymous.

The next stage is to find an approximation to E(V,(8,)) that is both adequate
and computationally tractable. Even when ¢ = T this quantity represents the expected
value of a wait-and-see stochastic programming problem, whose accurate solution
in general requires a massive computing effort. And for smaller values of ¢ the
objective function has an additional component, being the expected value of the
next wait-and-see stochastic programming problem.

So some further approximation is needed. A possible approach is suggested by
considering the special case where only the first component 8,, of 8, is unknown.
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Then we know from the theory of parametric linear programming that V,(8,) is a
convex piecewise-linear function of 8,,. Further progress may be possible if we can
approximate this function by a simple analytic form. One might first consider a
convex quadratic approximation. If

Vr(Br)=00r+011Blr+02rB$l (31)

for some values of 6, 6,, and 6,, with 6,,> 0, then
E(Vi(B.)) = 0o+ 01+ Oy 17 + 0,00, (3.2)

where u, and o} denote the mean and variance of 8,, which can be computed as
functions of the X, ., from (2.1) given the means and variances of the ay;,.

This approximation implies that, when compared with the deterministic model
where each a,, is replaced by its mean, E(V,) is increased by 8,07. It is therefore
desirable to reduce this variance, but there is no particular incentive to choose a
different value of u, except to the extent that a smaller value of u, may produce a
smaller value of o2, This implication follows essentially from the symmetry of the
function defined by (3.1). Such an approximation is therefore inappropriate for
problems where it is important to achieve at least some specified minimum value
of B,. In a stochastic model u, must then exceed this minimum value.

Now S,, cannot be less than b,,, because we assume that all a,, = 0, but 8,, has
no obvious upper bound. Since the problem has full recourse, we may assume an
alternative approximation in which V,(8,,) is asymptotically linear as 8,, tends to
infinity. Thus, as 8,, = 0.

Vl(Bl)') 00r+ ollﬁlr

for some values of the parameters 6,, and 6,,. It may often be the case that ,,=0,
but we do not need to assume this.

A convenient analytical formula for a convex function with this asymptotic
behaviour is

Vi(B:) = 00, + 0,8, + 6, exp(—6;8,,), (3.3)

where 8,, and 05, are positive. Then E( V,(8,)) is related to the mean x, and variance
ol of B,, by the formula

E( Vr(Br)) =6y + O, + 021MB,,(_031)s

where M, (s) denotes E(exp(sB,,)). The function My (s) is therefore the Moment
Generating Function for 8,. It is always convex, with M, (0)=1.
If 8, is normally distributed with mean y, and variance o7, then

Mg, (5) =exp(u,s +iois?). 3.9

But, since 8, is assumed to be greater than or equal to b,,, the assumption that it
is normally distributed may be unrealistic. If we assume, following Watson (1983),
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that { =B,,— b,, has a Gamma distribution, with probability density

(£/k)" e "

k() for (=0,

the mean of the distribution is nk, the variance nk’, and the moment generating
function for ¢ is

M (s)=(1-ks) ",
and hence

M (s)=(1—ks)" " exp(b,,s). (3.5)
To compare this with the normal case, it is useful to express (3.5) in the form

M, (s)=exp(p,s+ T0ls%), (3.6)
where

w,=b,+nk and ol=nk
Comparing (3.5) and (3.6) we see that

10257 =—nIn(1—ks)+ b, s — w.s.
)

PN -l ST
= a'fszln(l ks) o’s B (ks)?

In(1 —ks)—%. (3.7)

This shows that 7, is a slowly varying function of ks, where k is the ratio of the
variance of B,, — b,, to its mean. If ks is small, then In{1 — ks) can be expanded as
a power series and we find that

ro=dHiks) +ilks)

and hence (3.6) reduces to (3.4) when k- 0.
In practice, although u, and o? are functions of the decision variables and therefore
k is also a function of the decision variables, we may be able to make an adequate
first approximation to k and hence to 7, a priori. Since s = —#8;,, it is always negative
and 7, is always less than its limiting value of 1.
Given (3.6) we can write
E(Vr(Bl))ZOOr"_ellﬂ-l"'oZr CXP(‘Zn), (38)
where
2y = 03r#r_710§r0'%~ (39)

If a); has mean a,; and variance v,;, we see from (2.1) that

He = bu+Z dljlijl-l
j
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and

or=Y vy %, if we neglect the variability in x;_,.
j

But if the x;,_, are now regarded as random variables, being approximately linear
functions of the 8;._,, then the formula for u, is unaffected, but the formula for o7
becomes

2 =2
o= Z Uy Xje—1 + 7,
j

where

N =var(y &;x;_1)+% vy var(x;,_,).
j j

Given an estimate of the covariance matrix for the components of B8,_, and
estimates of the derivatives of x;,_, with respect to the components of B,_,, we can
compute 7, and treat this as a constant when computing appropriate values for the

So (3.8) and (3.9) reduce to

E(V/{(B.) = 6y + oubxr"'z 01, @ Xj_, + 0, exp(—2z,,),
j

where

2y, = 03by + Y (03raljrxjr—] =703y, Xj,y) — 703,
J

Thus E(V,(B,)) is a linear function of the X;_, plus a convex function of the scalar
argument z,, where z;, is itself a sum of concave functions of the X;_,. Thus
exp(—z,,) is a convex function of X;,_,. So under these assumptions the problem is
convex and separable. It becomes even easier if we can restrict attention to the case
where 0 < x;,_, <1 and interior values are of little interest. We can then approximate
%5,y by %,_, and write

2y, = 03,b, +Z (031&1;': - Treitvlj()ijl—l - T:0§:"h~ (3~10)
j

Note that if there are n identical investment opportunities defined by the same
values of d,, d,, and v,;, we may let X;,_, be a decision variable between 0 and
n defining the number of these opportunities selected. Provided that the random
variables are statistically independent, (3.10) will still hold.

But what shall we do if several components of B8, are unknown? We may assume
that the first J, are unknown. We might then be willing to assume that the main
effects of the uncertainties in each component are approximately additive. More
precisely, we might generalize (3.3) to read

Vr(Br) = 00'+Z’ 018 +Z 02 CXP(“Osnﬁn)~
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A further generalization can be made without making the analysis more complicated
if we write

V!(Bl)z 00:"'2 eliyﬁir"'%ezkr exp(_')'k!)a (311)

where

Yie = Z 03ki:Biu (312)

provided that all 8,,, =0 and all 8, = 0. This last assumption assures the correct
asymptotic behaviour of V,(B8,).

1t is perhaps worth noting that this model requires assumptions about the univari-
ate distributions of the random variables y,, but does not require explicit assump-
tions about any multivariate distributions. This is convenient because there are not
many suitable families of multivariate distributions other than the normal and
lognormal, although the multivariate gamma distribution of Prékopa and Szantai
(1978) should be noted.

If the mean of ay, is d;, and the covariance of a;; and a,; is ¢,.;, then the
mean value of vy, is

Z 03kilbi! + Z Z 03kir&ijl-ijl-l »
i i g
and its variance is ¥, vy, + 1, Where

Ukje = ) Z O34, D3ki, Ciy gy (3.13)
and

Mhee = Val'(Z, Z 0300 je X0 1) XYY 034,034y Ciryj, Var(le-l)‘
i ]

Joh o

So if we again assume that the random variables have Gamma distributions such
that the parameters 7., can be approximated a priori, and that the 7, are estimated
a priori from preliminary estimates of the covariance matrix for the components of
B.-. and the partial derivatives of the X; -1, then

E(V(B)) =00 +Y 01:bi +3 Y 0100, Xy +2 02, exp(—2zy,), (3.14)
] [ k

where

Zy = Z Osiicby + 3 Y, O30ie @y X1 — Tir Y, Ukjrf,zl 1T ThMkes (3.15)
i L) i

and again we may replace X;,_, by %, if 0<x;,_,<1.
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Given the values of 8y, 0,,, &, and 8,,,,, the computation of optimum values of
the %, ., therefore reduces to a convex separable-programming problem.

4. Estimating the parameters

Computational experiments will be needed to assess the value of this approach
for any particular class of problem, and in particular how to choose the parameters
00, 0,.:, 02, and 85,,. A possible way to do this is now outlined.

Returning to the recursive formulation of Section 2, we see that, given the values
of B.7, the optimum decision variables x;; for the last time period can be found by
solving a linear programming problem. But, even given the values of 8;r_,, the
optimum decision variables x;r_, can only be found if we have a formula for
E(Vy(Br)). This formula is given by (3.13), (3.14) and (3.15), but only in terms of
parameters defining the approximate formula for V,(8+).

For any given vector B, we can compute V. ((B+) as the optimum objective
function value of the last time period LP. And we can also compute —3V7/a8;r as
the shadow price #;;- on the ith constraint in (2.3). If (3.11) and (3.12) were exact,
we would therefore have the relationships

L OVdB)
8B

fort=T.

Given values of the quantities on the left hand sides, these relationships can be
used to estimate the parameters.

So we can estimate the parameters by solving the last time period LP for a suitable
set of values of the vector B+ and choosing the parameters so that (4.1) is approxi-
mately true.

The whole process can now be applied recursively to each earlier time-period in
turn.

In the first instance we may set all the n,, to their lower bounds of zero. Having
computed first approximations to the values of the X;, and the derivatives of x; with
respect to the components of 8,, we can compute estimated covariance matrices for
the components of 8, and for the quantities x;, for t=2,3,..., T, since

=01+, 0210300 €Xp(— Vi) (4.1)
K

COV(B:‘.:B-‘;:) =3 Z & iy Cov(ler—lszr—-l) +Y Ci.i:jl(xfl-l + Var('xjr-l))’
ho22 7

and cov(x;,x;,,) can be estimated from the covariance matrix for the components
of B, and the derivatives of x; with respect to these components.

These formulae can be applied immediately for ¢ =2, since cov(x;,x;,,) =0 for all
Jr and j,, and hence they can be applied recursively for each successive larger value
of t. Hence more realistic values for the 7, can be derived.

How might this be implemented?
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It seems natural to start by solving a T-time-period LP problem in which all ay,
are replaced by their mean values. This will produce a trial set of values for all x,
which can be used to compute approximate mean values, say ﬂ, for B, from (2.1).

We should ensure that the parameters satisfy (4.1) exactly when B,=ﬁ,. The
model will then be correct when all the variances are very small, even when it is
solved recursively as indicated in Section 2. We can choose 6,,., and the 8,,_, by
minimizing (2.2) subject to (2.3) and (2.1) when the 8,,_, (for i=<J,_,) are all
increased indefinitely. There should be no great difficulty in finding other plausible
values of the B8,_, for which a good fit is desirable.

Even given the data to be fitted, the choice of parameter values may not be easy.
But if we choose to minimize the sum of squares of the discrepancies between the
left and right hand sides of (4.1), then, for given values of the 8, the problem
reduces to a quadratic programming problem. One might therefore choose a large
number of values of k with fixed coefficients 8., and rely on the fitting program
not choosing positive weights 8,,, for more than a few of them - exploiting the fact
that no 6,,, may be negative.

5. Examples

To provide some practical insight into the problems of finding convenient analyti-
cal approximations to the solution to wait-and-see stochastic programming problems,
two families of related very simple examples were studied by Watson (1983). The
first represents an idealization of an oil exploration and recovery program. There
are two time periods. In the first time period, exploration is carried out in one or
both of two types of prospect. Each exploration venture may find either a large
field, or a small field or nothing. In the second time period, oil may be produced,
up to a maximum total capacity. For convenience this total capacity is defined as
one unit,

The financial data are as follows:

Let B, denote the net benefit from recovering a unit of oil from a field of Size i
(i=1or2), where B,> B,.

Let C; denote the cost of one unit of exploration activity of Type j (j=1 or 2).

The probabilistic data‘are based on the assumption that there is a probability =
that one unit of exploration of Type j will find a field of Size i. The probabilities
are assumed to be independent for different ventures. On this basis we can compute
means and variances of any linear functions of the random variables occurring in
the problem when the amounts of exploration are integer. We assume that the same
formulae apply for fractional amounts of exploration.

A convenient mathematical formulation for this problem is as follows:

Let x,, denote the amount of exploration activity of Type j.

Let x;, denote the amount of o0il produced from fields of Size i.
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The problem is to choose x,, and x,, to maximize

~Cixy;— Cyxyy + E(V(B))

where
V(B) is max(B;x;;+ B,x;,))
subject to
X12 < B2
X< B,
X2t X =1,

and B,, has mean
T X+ Xy
and variance é.1)
(1= 7)) x+ 7l — 7)) %0,
while 8,,+ 85, has mean
(mp+ma)xn+ (7 + ma0)xn (5.2)
and variance
(mou+ 7)) =7 —m)xn+ (o + 7)1 — 1 — 722) %01

It turns out that 8,, and f8,,+ 8, are the relevant random variables. It has already
been noted that the general approach of this paper requires data (or assumptions)
about the distribution of various linear functions of the original random variables,
which can be computed without assuming that the variables are statistically indepen-
dent, but we do not need to known the joint distribution of the variables explicitly.
4n our example it would be unrealistic to assume that 8,, and 3,, were independent
unless the m; were small.

Now if we consider a general wait-and-see linear programming problem with
random right-hand sides and constant coefficients elsewhere, the tableau can be
written as

Xo= Coo+{.‘, Cokﬂk_z apx;,
_ j
X;= i0+%cikﬂk_z a;x; (i=1,...,m),
J

where x, denotes the objective function value to be maximized, X; denotes the ith
basic variable, the 8, denote the random right hand sides and x; denotes the jth
nonbasic variable.

If ﬂk denotes a realistic value of B, for which the problem is feasible, then we
can find a tableau such that

A

X, =co+Y caf =0 forall i
k
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If we now assume that there is a negligible probability that c,,+ Y, cuBi will be
negative for more than one value of i, then the value of the solution to our LP
problem will be

(Coo"'Ek:COkﬂk)"‘fo(C:‘o"'z i) (5.3)

where the f;(z;) are the functions that are zero when z,=0 and can be computed
by parametric programming for negative values of z. In fact if none of the variables
has an upper bound,
. do;
fi(z,)= min <_—°’>2.~,
7,8,<0 |a,.j
whenever z; <0.

Now our problem has the particularly convenient property that this approximation
holds globally. We find that

V(B) =B,+(B,— BZ)f(BlZ_ 1)+ BZf(B12+B22— 1), (5.4)
where
f(z) =min(0, z). (5.5)

Our general theory suggests that the function f(z) should be approximated by an
expression of the form

f(2)= ¢, exp(—¢,2). (5.6)

Since z= -1, it is natural to compute ¢, and ¢, to minimize the mean square
difference between f(z) and f(z) for z= —1. This leads to the values

¢l=_0.1373, ¢2=2.1491.

If we now assume that both 8,,~1 and 8,,+ 8,,— 1 are normally distributed, it is
reasonably easy to compute the expected net benefit and the corresponding values
of x;, and x,, in the three following ways:

We can use LP, taking the mean values of 8,, and B,, given by (5.1) and (5.2)
and ignoring their variances.

We can use the true variances and the exponential approximation (5.6) to f(z).

We can in this particular instance compute E(V(B)) exactly and hence find
optimum values of x,, and x,, as an unconstrained optimization exercise.

This was done using the following numerical data:

B,=10.0, Cl=1~5, 7T“=0.2, 7le=0.1,
Bz = 2.0, C2 = 1.0, Tn= 0.2, W= 0.5.

The results were as shown in Table 1. This shows that all is not well. At first sight,
the value —1.4776 is absurd, because we know in fact that if x,, = x;; = 0 then the
objective function will be zero. The error arises from an underestimate of f(—1).
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Table 1

Normally distributed random variables

Solution method Objective function Xy, X5,

LP 2.5000 5.0000 0.0000
Exponential —1.4776 0.0000 0.8403
Exact 1.2158 0.6686 1.5034

One way of improving the approximation would be to choose the parameters ¢,
and ¢, to give a better estimate for f(z) for values of z near —1. But the fundamental
cause of the error is the fact that the normal approximation to the distribution of
B2 gives a finite probability that 8,, <0, which is quite large in this instance; and
this causes trouble because the exponential approximation to f(z) is very inaccurate
when z< 1.

If we replace the normal distributions of 8,, and 8,,+ 8., by Gamma distributions,
as suggested in Section 3, we find that k, defined as the variance divided by the
mean of the Gamma variate, is between 0.800 and 0.900 for 8,, and between 0.400
and 0.600 for B8,,+ B,.. The values of 7 are then given by (3.7) with s = — ¢, = —2.1491.

This leads to a value of 7 between 0.229 and 0.243 for B,, and between 0.277 and
0.324 for B8,,+ B,,. These ranges are both small, but both some way from the value
0.5 implied by the normal approximations.

When the model was recalculated assuming that both 8,, and B,,+ 8, have
Gamma distributions, the results were as shown in Table 2. The true objective
function value associated with each solution method was calculated from the exact
formula using the suggested values of x,;, and x,,. The exponential method used
values of 7 derived from the LP values of x,; and x,,, which are 0.243 for 8,, and
0.277 for B, + B,

Table 2

Gamma distributed random variables

Solution method objective function x5 X3 True objective
function value

LP 2.5000 5.0000 0.0000 ~0.2756
Exponential 0.6383 2.3109 0.4223 0.8429
Exact 1.0050 0.0000 2.0424 1.0050

A comparison of Tables 1 and 2 shows that if the exact model for the function
f(2) is used, then the results do not depend much on whether the more convenient
normal approximations to the distributions of 8,, and 8,,+ $,, or the more realistic
Gamma distributions are used. It also shows that if the approximate exponential
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model is used, the results are appreciably more realistic with the Gamma distribu-
tions. In larger stochastic programming models, the corresponding functions f(z)
may well look more like exponential functions than the function that occurs here,
and in these circumstances the use of the Gamma distributions seems definitely
worth while.

The fact that the optimum values of x,, and x,, are not accurately determined
by our approximate method is not too worrying: the calculations show that the true
objective function is very flat near the optimum.

Similar results were obtained using other values of the parameters B;, C; and 7.
If C;=2.0 but the parameters are otherwise unaltered the results were as shown in
Table 3. This is one example where the exponential approximation gives slightly
worse results than the LP approximation. This is disappointing, but the important
result is that the true objective function value associated with the solution derived
using the exponential approximation is always close to the calculated objective
function, while that associated with the solution derived using the deterministic LP
approximation is sometimes considerably smaller, as in our first problem,

Table 3

Solution method Objective function Xy, X2 True objective
function value

LP 1.6667 0.0000 1.6667 0.9807

Exponential 0.2866 0.0000 2.6762 0.9370

Exact 1.0050 0.0000 2.0424 1.0050

Finally we considered another model in which there is no exact solution of the
form (5.3). This has the same distributions for 8,, and B,, but requires the maximiz-
ation of E(V(B)) where

V(B) = max Bx,,

subject to

X2 < B,

X12 < B,

xp=1.
Here

V(B)= B min(B,,, B, 1). (5.7)
We have the formula

V(B) = B+ Bf(Bi,— 1)+ Bf(B::— 1), (5.8)

which holds as long as either B8,,=1 or 8,1, but underestimates V() when
B:<1and B,,<1.
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We calculated the solutions as if (5.8) were true globally, and also estimated the
true objective function value associated with each solution by simulation, using the
formula (5.7). The simulations were run 1000 times and the estimated standard
errors are quoted. The parameter values were:

B=14, C,=15  GC,=10.

In all cases B,, and B,, were assumed to have Gamma distributions. The results
were as shown in Table 4. The results suggest that, although the estimated objective
function value is pessimistic, since (5.8) often underestimates V(B8), the values of
x,; and x;, recommended by the exponential method appear to be quite good.
Indeed the exponential approximation apparently gives slightly better results than
the *Exact’ solution using (5.8), but our simulation results are not conclusive in this
respect, and we did not consider that this particular issue was important enough to
deserve further investigation,

Table 4

Solution method Objective function Xy X33 True objective
function value
from (5.7)

LP 6.5000 5.0000 0.0000 —0.2442 + 0.1463

Exponential 0.2962 2.7132 3.6361 0.9225+0.1509

‘Exact’, using (5.8) 0.6341 2.3739 3.8141 0.8834+0.1539

6. Conclusion

The toy problems studied in Section 5 illustrate some of the potential, as well as
some of the difficulties, of implementing the general strategy suggested in Section
3. We believe that the approach deserves to be studied further. The use of toy
problems where exact results can be obtained helps to illuminate the method, and
has led to what we believe is an important practical conclusion, namely that the
use of normal-approximations to nonnegative distributions is dangerous unless o/ u
is small, and that Gamma approximations should be preferred.
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1. Introduction

In this paper we study from a computational point of view a class of finite horizon
dynamic stochastic optimization problems that includes a particular application to
oil exploration. Such problems can most naturally be formulated as Bayesian
stochastic control problems [5, 12, 16]. While most related work in the literature
deals with Markovian or stationary models, here the problem is formulated in the
framework of non-Markovian models and this is the subject of Section 2. For all
such models a natural solution procedure is given by the method of stochastic
dynamic programming (see e.g. [5, 12]). From a computational point of view
however, dynamic programming may not be feasible due to the familiar problem
of the ‘curse of dimensionality’, namely the problem of having the natural state
space too large and this problem is particularly severe in non-Markovian models
such as the one to be described here.

The purpose of this paper is to present for the model of Section 2, a procedure
to construct an approximate solution along with an explicit error bound and this
will be done in Section 3.

* Partially supported by the Italian Ministry of Education within the project 40% **Calcolo stocastico
¢ sistemi dinamici stocastici”.
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The basic idea underlying our approach is that of shortening the horizon of action
and changing the terminal value function. Such an idea is already discussed by
Hindererin[6] and [7]in the context of Markovian decision models with discounting.
To apply his approach to the class of problems described in Section 2, one has to
take as state space at every stage the entire set of admissible histories, so that the
amount of computing is roughly of the same order of magnitude as is needed to
exactly solve the original problem. A numerical comparison is given in Section 5.

Our approach can also be transformed to fit into a general framework proposed
by Whitt in [19] for infinite horizon Markovian decision models with discounting.
In fact, the basic idea underlying our approach is equivalent to restricting the
dynamic programming to a subset of the set of all admissible histories and replacing
the optimal value function outside this subset by upper and lower bounds, which
is the basic idea underlying Whitt’s approach. The main difference is that Whitt
does not provide any procedure for defining the subsets and finding the bounds,
whereas we explicitly present a constructive procedure for the non-Markovian finite
horizon model described in Section 2.

For a very general theoretical framework to obtain bounds for dynamic programs,
including those of Hinderer and Whitt, we refer the reader to [17].

In Section 4 further results are shown that are designed to improve the algorithmic
aspects of our approach in various applications. In the last Section 5, a short
description of the particular application to exploratory oil drilling is given along
with numerical results and comparisons. For this application, an approximation
approach along the lines of [18] and [7] has been studied in [13] exploiting the
special structure of monotone Markov decision models (see e.g. [14]). In contrast
to that approach, the present one is simpler to apply and requires considerably less
computation.

2. The model
Consider a system that may be in one of a finite number M of possible states.
S:z{sl’SZ,"'asM} (2.1)
with a prior probability p? of being in state 5; (1< i< M).

Assume the possibility is given to act on the system in a finite number of ways
with the result of an action being both an observation described by a random
variable, whose distribution depends on the actual state of the system, as well as a
reward. Given a finite number N of periods, the purpose is to choose for every
period, on the basis of the past history of actions and observations, an action so as
to maximize the total expected reward.

To make the above more precise and building mainly on [5], we introduce various
notations:

A: Finite set of a-priori possible actions, whose generic element is denoted by a.
X,eTcR**Y(n=1,..., N): Random variable describing the observation in the
generic period n; we assume I a finite set.
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H,=AxI'xAxI x-+-xI (2nfactors, n=1,..., N): Set of all a priori possible
histories of actions and observations up to and including period n< N, whose
elements are h, =(a,, x,, ay, X, . .., G, X,). By convention, set Hy:= {h}, i.e. ‘no
prior information’.

In general, the actions that are admissible in period n (1<n< N) will depend
on the past history, e.g. they may be subject to satisfy a series of constraints; so let

An(h, )< A (2.2)

denote the set of admissible actions in period n, given h,_,.
The set H, of admissible histories up to the period n is then defined recursively by

Hy= Ho,
(2.3)
Hn = {(hn—l’ am xn)lhn—le Hn“la a € An(hn—l)a Xn € Ii}'
By strategy in period n we mean a mapping
f;u:Hn—l—)A Withﬁl(hn-l)EAn(hn-l) (2'4)

i.e. a rule, giving an admissible action for every history. An admissible policy is then
a sequence f={f.}.-, _n Of strategies. We denote

F: set of all amissible policies, and, for any h, =(a,, x,, a;, X5, ..., a,, X,) € H,
F(h)={f€ Flfm(hmy)=am;m=1,2,... n}.
For s€ S, h,e H,, aec A, ,,(h,) assume given
P Xniy=Xps1|hn, s}, Xpy€T, (2.5)

namely the probability of observing x,., in period n+ 1 as a consequence of action

a, given a current history h, and given that the actual state of the system is 5. We

understand that this probability is zero if h, cannot occur when the state is s.
For fe F(h,) we now let

) PAX,.1=Xnsr| B s} il By =(hy, a xnpy) Witha=f, . ,(h,),
pf(hn+l|hn, s)_: R
0 otherwise. (2.6)

Notice that pf(h,,+,|h,,, s) actually depends on f only through a =, ,(h,), so that
we may equivalently write p,(h,+:| h,, s). From (2.6) we can compute forall n > m =0
and fe F(h,) the conditional probabilities p,(h,|h,, s). Furthermore let

pr(ha|s)= pi(h,| kg, s). (2.7

Then, using the a priori distribution p?, we have

M
prtha)= T pylhalsi)pl (2.8)
as well as
(1]
pf(silhn) =p(Jh"—|s‘)’“_ (2.9)

pf(hn)
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Notice that, given h,, the probability p;(s:|h,) does not depend explicitly on f, so
that we may also write p(s;|h,). Using (2.9), we finally have for fe F(h,,) and
n>m=0:

M
pf(hnlhm)= '2-:1 pf(hnlhma Si)P(Silhm)- (2'10)
For any given h,=(a,, x,,..., a, x,)€ H, let now A}, (1<m<n) be defined as
h:i:= (al’ Xisenvs Qmy xm)' (2'11)

Then define, for 0s m<n< N and fe F(h,,),

Hn(hmaf) = {hne Hn |h:|n= hm, h:‘ = (h:‘—laﬁ(h:‘—l)$ xl); m< 1$ n, xl'E r}’
(2.12)

Ho (B, £, 8):={ By € H,(hp, )| ps( By | By 5)> O} (2.13)

and notice that in many applications H,(h,., f, s) can be considerably smaller than
H,(h,, ).

In the sequel we shall use expectations, whose meaning is as follows (G is any
measurable function):

E/{G(h,)| b, s} = ) G(h)ps(hy|hm, s), m<n, fe F(h,), (2.14)
hrl& H,(h,J.5)
M
E{G(h,) | hm}= Y EAG(hy)|Am, s)}p(s,|Bm), f€ F(hm), (2.15)
i=1
E{G(h,)} = E{G(h,)|h,}. (2.16)

When n=m+1, letting a = f,,.,(h,), we shall prefer to write
E.{G(hpm.\)| hm, s} instead of E,{G(hp.,)| Bm, s}

as well as
E,{G(hpm.\)| hn}instead of E;{G(hp.,)|hm}.

Finally, let r,(h,) be the reward in period n < N, given the history h,, and define

.
R.(hn)= % r(hD). (2.17)
By convention let
Ry 1(hn)=0. (2.18)

Our original problem can then be described as that of finding f* ¢ F such that,
for any fe F,

Ep{R\(hn)} = E{R,(hn)}. (2.19)
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3. The approximation approach

We start with some preliminaries. For f€ F(h,_,) let

Vn(hn—l;f):z Ef{Rn(hN)lhn—l} (3.1
and

Vn(h"_l):=jtrl?(%,’,(|) Vn(hn“l’f)‘ (3'2)

Our problem can then be reformulated as that of finding /™ € F such that

Viho, f*) = Vu(ho)=rjnax Vi(ho, f) (3.3)

e F
and the dynamic programming algorithm (see e.g. [12, Section 5]) becomes

Vn(hn ])zf‘rrfn(%iﬂ Ej'{rn(hn)+ Vn+l(hn)|hn- l}

= T(ahx Eu{rn(hn)+ Vn+l(hn)|hn- l} (3'4)
ac Anthy 1)
for n=1,..., N, with (see (2.18)) Vy.,(hn)=0.
This algorithm allows us to compute the sequence of optimal values
{V.(h,_1)}a -1~ for all admissible histories and to determine the optimal policy
S* which is given by

ﬁ(hn-l): arg max Ea{rn(hn)+ Vn-v—l(hn)lhn-l}' (35)

ac A,(h, 1

However, we have to perform the computations in (3.4) starting from n= N down
to n=1 taking into account all admissible histories, whose number increases
exponentially with n. Assume now that for a certain, possibly small n (1<n < N},
we know V,(h,_,)forall h,_.,€ H,_,. Then we may restrict the dynamic programming
only to the periods from 1 to n< N and still obtain the optimal total expected
reward V,(h,). Now, if V,(h, ;) is not known and we do not want to perform all
the computations required by dynamic programming, we may be satisfied with
obtaining good approximations to the optimal value V,(h,). For this purpose we
may proceed in anatogy to what is done by different techniques for infinite horizon
Bayesian Markov control models in [16, Section 6], or for two stage recourse
problems in [8] (see also the overview in [4]) where approximations to the optimal
value are obtained by approximating the recourse function. We shall in fact show
that for a given n (1=n=< N) it is relatively easy to compute upper and lower
bounds for V,(h,.,) that we shall denote by U,(h,_,) and L,(h,-,) respectively.
Then, using dynamic programming over the periods from 1 to n starting from
U,(h, ,) and L.(h,_,) respectively, by the monotonicity of the dynamic program-
ming operator, we obtain in the first period an upper bound U{(h,} and a lower
bound L7(h,), for V,(h,). More precisely, in this Section we shall prove the following
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Theorem 3.1. For any givenn (1<n< N+1)
L7(hy) < Vi(hy) < UT(hy) (3.6)
and, defining
"= Ui(ho) — L7 (hy), (3.7
the sequence ¢" is decreasing to "' =0.
The theorem will follow immediately from the Propositions 3.1 and 3.2 below.
Choosing the approximating policy f” as in (3.18) below will imply that
Vi(ho, f™) = Li(ho) (3.8)

and, by virtue of Theorem 3.1, we then have

Corollary 3.1. Given n with 1=n<N +1,

Vi(ho) = Vi(ho, /") < UT(ho) — Li(ho) = £".

The policy f” will be constructed after the proof of Proposition 3.2, We first derive
the upper bounds U,(h, ;). For this purpose let, forall n=1,..., N,

tp(hn-ry $)i=  max Ef{Ru(hx)|ha-s, s} (3.9)
and define
M
U.(h, )= %’1 U, (h,.,, Si)P(S-‘lhn 1) (3.10)

Ietting UN r](hN) =0.
From their definitions we immediately have
‘/rl(hn-l)S Un(hn--l)4 (3-11)

In fact,

M
Vn(hn-l) = f;rl‘-p(ﬁx Z Ef{Rn(hN)lhn-h si} " p{silhn—l}

n=1) 1= 1
M .
Slgl p(silhn-l) I'erl‘-p(%,,x_” Ef{Rn(hN)lhn-h Sl}

= Un(hn-y). (3.12)

Notice that the idea of conditioning on the underlying state s to obtain upper
bounds has close analogies to the method of ‘perceptive dynamic programming’
introduced by Platzman [11] in the context of partially observable Markov decision
processes. This idea which cannot be deduced from the framework in [19] is also
implicit in the approximations proposed in [16, Section 6] in the context of infinite
horizon Bayesian Markov control models. Notice also that the difference U,(h,.,) —
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V.(h,_,) may be interpreted as the expected value of perfect information relative
to the state s of the system.

For n given (1< n=< N +1), define for m < n the functions U},(h,,_,) recursively
as

U:(hn—l):: Un(hn—l),
Un(hn_y)= max )Ea{rm(hm)+U:,+,(hm)|hm_.}

ac€Apm(hy,

(3.13)

setting Un,,(hn) =0. Notice that UY*'(h,_,) = V,(h._,). Furthermore we have

Lemma 3.1. Givenac A,(h,_,),
Ea{r,,(h,,)+u,.+1(hn, s)lhn—h s}su"(h"—l’s)'

Proof. Let fe F(h,)c F(h,_,) be such that
E7{R,.\(hn)|hu s} = t1ys (By, 5).
Notice that, if h, =(h,_,, 4, x,), then f,(h,_,) = a; therefore
E a{ra(hy) + ty 1 (hny $)| By, 5}
= Ea{ra(hs)+ Ef{Ro.1(An)| Boy s} hasy, s}
= EA{Ep{ra(h.)+ Rour(hn) by, s} Bo_y, s}
= E{E7{Ru(hn)|h,, s} .y, s} = EF{R,(hn)| b, s}

Sfcrl‘p(z::(_,] Ef{Rn(hN)ihn—h S}= un(hn—h S).

Since a 1s any element in A,(h,_,), the result then follows. (O

Propeosition 3.1. For all m and n with 1<sm=n<Nand all h,,_,c H,, ,
Vorbm )= U™ (B 1)< - o< UR (By)
s Unlbpm_)) < < Up(bhm_y).
Proof. By induction on p=n—m. By Lemma 3.1, Yac A, (h._,), E.{rm(hs)+
U i(B) | A1} < Un(hm_,) therefore
Un*'(hnoy)= max  Ea{rm(hn)+ Uns1(hm) | B} < Up (B _y).

Apl By
Thus the assertion is true for p=1. Assume it is true for p=1; then

Un' '(hmy)= max  Ealrm(bm) + Ui () [ Ay}

ac A, (h,_,

<  max )Ea{r,,,(h,,,)+U",,,+,(hm)|hm = Umn(hm-y)

aeA, (h,_,

from which the result follows. T
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Remark 3.1. With analogous proofs it can be shown that the results of Lemma 3.1
and Proposition 3.1 also hold if instead of (3.9) we let

u,(h,_,, s)'= max max R, (hy). (3.14)

Je F(h, ) hye Hyih, 1, fis)
In this way the bounds will be less sharp, but computation is further reduced. [
Next we turn to deriving the lower bounds L,(h,_,). To this effect choose, for n
(I=n<N)and h,_,€ H,_, given, any policy fe€ F(h,_,) and let
Ln(hn—l):= Ef{Rn(hN)lhn—l}' (3'15)

The choice of such f could be based on simple heuristic arguments, or restricted
to those f, if any, for which (3.15) is easy to compute. It immediately follows that

V,(h,_,)= L.(h,_,). (3.16)

For n given (1 <n=< N +1), define for m < n the functions L,(h._,) recursively
as

L:(hn—l) = Ln(hn—l)9
{ (3.17)

L"m(hm—l):: max Ea{rm(hm)+L::H-l(hm)lhm—l}v

acA,{h, )

setting Ln..(hn)=0. Notice that LY *'(h,_,) = V,(h,.,). Furthermore we have

Proposition 3.2. Forallm and n with 1<m=<n<Nand all h,,_,e H,,_ |,

‘/m(hm—l)= Lz+](hm—l)>' L= L"m-”(hm—l)z L"m(hm——l)?' : 'ZLm(hm l)-

Proof. We proceed by induction on p=n—m. For p=0, letting a., = f,.(h.._,),
Lm(hm—l):Ea,,,{rm(hm)+L:::(hm)lhm—]}
= max Ea{rm(hm)+sz:(hm)lhm—l}:’-L:+](hm—l)'

ac Ay (h, )
Assume now the assertion is true for p = 0; then

L"m(hm—])= max Ea{rm(hm)+L"m+l(hm)|hm—l}

ac Ay bm-1)

= max )Ea{rm(hm)+L"m-:-ll(hm)lhm—l}zL"m-”(hm l)

aeApth,

from which the result follows. O

Given n (1< n=< N), we finally construct the approximating policy " for which
Vi(ho, f7) = L7(hy). It is easily seen that such policy is given by

n fm(hm— ) fOl‘m?n,
S hmy) = ’ . (3.18)
argmax E{r,(hn)+ Lo, \(hn)| by} form<n.
ac A, (hy, )
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4. Additional results

A convenient way to apply in practice the approximation approach described in
the previous Section is the following: Fix an £>0, the accepted level for the
approximation error, and determine n* (1 <n*=< N +1) such that U7 = L7 <& (by
Theorem 3.1 such n* always exists). So far, with only the results of the previous
Section, we would either have to guess n* or to compute all U7, L7 starting from
n =1 until the condition is met.

The purpose of this Section is to provide, under the explicit assumption of a
discount factor B, additional results, that will allow us to more conveniently deter-
mine such n*. The main result of this Section is the following Theorem 4.1, whose
proof is an immediate consequence of Proposition 4.1 below.

Theorem 4.1. For 1sm<n<N+1,
n-1 i1 .
(Ur-L"- ¥ BT E<UT-LI<(U'-L")- X B' e

where (1<i=< N)

E=sup (U,— U +sup(L{*'~ L)), (4.1)
H, H,_,

e:=inf (Ui~ U™ +inf (L*'= L. (4.2)
H, , H,

The practical application of Theorem 4.1 for the purpose of this Section is given
by the following Algorithm 4.1, that by Theorem 3.1 certainly terminates.

Algorithm 4.1

Step1: Fixm=1.

Step2: Compute UT— L.
Terminate with n* =m if

Ul'-LT<e:

otherwise.

Step3: Letn=m+1,

Step4: Compute E,_,, e, ..
Terminate with n* =n if

n-1
UT-L7"- L B le<e:
i=m

otherwise.
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Step 5: Let m = n and return to Step 2 if
n-1
UT—LT- ¥ B 'E<e;
otherwise increase n by 1 and return to Step 4.

The rest of this Section is devoted to the proof of Theorem 4.1 and to an additional
remark. Given the assumption on the discount factor, we may rewrite R,(hy) in
(2.17) as

R.(hn) =2 B "ri(hi) (4.3)

and the dynamic programming algorithm in (3.4) becomes

mahx )Ea{rn(hn)+an+l(hn)|hn—l} (4'4)

AN

Vn(hn—l):a

€

with the recursions for U7, in (3.13) and for L, in (3.17) modified accordingly.
Letting M, denote the set of all real functions defined on H,, the dynamic
programming algorithm leads to an operator D, (n=1,..., N)

Dn:Mn_’Mn—l
defined as (v,.,€ M,)
(I)nvnfl)(hn-l):zaemax )Ea{rn(h")+ﬁvnfl(hrl)lhn l}' (45)

Aqlh,
Also let
D :M,»M,., (I<i<n)
be given by
(Dntn. 1) (o) = (DA Dyvg1)(h-)) (4.6)

with D} = D,.
It then follows immediately (see e.g. [6]) that foralln=1,..., N,alli (1<i<n)
and all v,, w, € M,:

v,<w, = D.v,<D'w,, (4.7)

D!(v,+c)=Div, +8'c, (4.8)

B'inf (v, — w,) < D,v,— Dw, < B'sup (v,—w,) (4.9)
H, H,

where cc R is a given constant.

Lemma 4.1. Foralli (1si<N),
Gy B linf(U,-UM<U-UY'sB "sup(U-U"Y,
Hr~l

H,
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()  B7inf (L' - L)< Ly - Li<g " sup (L~ L)).

H., H,_,

Proof. (i) U= DZ\U,=D{_\U"'+ (D2} Ui- DiZ}U*") from which, by (4.9),

Ut H,_,
BUT+BT inf (UI- U,

r UM+ 8 ' sup (Ui- U,
(ii) V=Dl = DITIL+ (DI LT - DITILY)
from which, by (4.9),
<sLi+ B8 Tsup (LT~ L),
Li+l _ H, , . ]
"l=Li+ gt Lnf(L}“—L:)- a

From Lemma 4.1 we immediately have
Proposition 4.1. For Ism<n<s N+1,

n~1 . n—-1 R .
() UT-3 BT sup(Ui-UM)<Ui<UT- 3 g7 inf (UI-UMY,
i=m H, , i=m H,_y

-1 . . . n—1 X .
Bl inf (L' ~L)<Li<Ly+ ¥ B 'sup(Li"'~L). O
H, ., i

=m H,.,

(i L7+
Remark 4.1. Consider the operator T, (1<i< N),
T:M,_,» M,
defined by (v; € M,)
(Twi_)(hy) = vy (Bisy). (4.10)

Then it can be easily seen that Theorem 4.1 also holds with E; and ¢; defined as

E;:==sup (U;— D,;TIU}) +sup (D,T.L;~ L;)
H,.,

H,_,

+B[5UP(TiU'}_U::i]u)SUP(L:flx—ﬂL::)], (4.11)
H,

H,

e = inf (Ui-DTU)+ inf (DT.Li - Li)
-1 =1

8] (- Uiz + o aizi- o | @12)

Depending on the particular application one may run Algorithm 4.1 with E; and ¢,
defined either by (4.1) and (4.2) or by (4.11) and (4.12). O
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5. An application to oil exploration

5.1. Oil discovery process model

A petroleum prospect is a geologic anomaly that is conceived of as containing
hydrocarbons and forms a target for drilling. A petroleum play is a collection of
prospects within a geographic region, all of which share certain common geologic
attributes. A prospect is said to be a field if it contains hydrocarbons, a dry hole
otherwise.

It is never a priori certain whether or not a prospect is a field or a dry hole and
there is uncertainty also concerning the amount of petroleum (magnitude) contained
in a field. Exploratory drilling is used to discover the fields among the prospects as
well as their magnitudes.

The discovery process model is assumed to be essentially that presented in [10]
except for minor modifications. More precisely, we make the following assumptions:

Assumption I. Multinomial magnitude distribation. The magnitudes of the fields,
as deposed by Nature, are realizations of mutually independent, identically dis-
tributed multinomial random variables (taking on k possible values).

Assumption II. Sampling without replacement and proportional to random magni-
tude. That is, if there are N; fields of magnitude B, (i=1,2,..., k), the probability
that the magnitude of the first discovered field is B, is given by: I\Iij/(Zf=, N,B,).

Assumption III. There are N prospects in the play among which N, are known to
be dry holes. Drilling successes and failures occur via hypergeometric sampling of
these N prospects.

For a justification of assumption I see [15]. Assumption Il has been suggested
and extensively tested by Kaufman et al. [3, 9].

5.2. The oil discovery process as a stochastic dynamic optimization problem

The oil discovery process may be formulated as a dynamic stochastic optimization
problem. In fact, since drilling is costly and the outcomes, and therefore also the
rewards, from any drilling effort are uncertain, it makes sense to distribute the
drilling effort over time and to determine sequentially the optimal number of wells
to be drilled in each of a finite number of periods so as to maximize the total
expected reward.

We now formulate such problem as a problem within the class defined in Section
2 and give a numerical example for which in the next subsection computational
results are reported and compared with those from other approximation approaches.

States. A state is a (k+1)-tuple (Ny, N,..., N,) with the following meaning:
N, is the number of dry holes and N, ..., N, are the numbers of fields of magnitude
B, ..., B, respectively as deposed by Nature. In the numerical example for subsec-
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tion 5.3 weassume: k=3, Ny =10, Ny+ N, + N,+ N, =30, therefore the total number
of possible states is M =231.

State probabilities p;. The a priori distribution p? is assumed to be multinomial
(see Assumption I in subsection 5.1).

Actions. The action a, to be taken in period n simply means the number of wells
to be drilled in that period. In the numerical example, if n,, n,, n,, n; are the
numbers of dry holes and of fields of magnitude B,, B,, B, respectively already
discovered prior to period n, then a, must be less than or equal to 30—
(no+ ny+ n,+ ny). We further assume A={a|0=<a=<3}.

Observations. An observation x,=(x% x», x2 x3) is a 4-tuple, where x° is the
number of dry holes and x), x%, x3 are the numbers of fields of magnitude B,, B,,
B; respectively discovered in period n as a consequence of action a,. Obviously,
given a,, we only need to consider those x, for which x%+x%+x2+x} =a,. For
example, if a, <3, only 35 such histories need to be considered.

Histories. A history h, is the collection of all actions and observations up to
period n. Notice that the cardinality of H, is exponentially growing with n. In the
numerical example |H,| = (35)".

For the oil discovery problem considered here, it was possible to find a ‘sufficient
statistic’ so that the number of different histories that had to be taken into account
was reduced to: |H,| =35, |H,| =210, |H,;| =715, |H,| = 1820, |H| =3876 etc. For
details see [1].

Horizon. The most natural choice for N is to take it equal to Ny+ N, + N,+ Nj,
so that in the numerical example N =30. '

Reward. Letting h, =(h,_,, a, x), the reward function can be chosen as r,(h,)=
r(a, x), and, for the numerical example, we explicitly assume a discount factor 8 = .8.

Probabilities. Given Assumption II, the computation of probabilities such as
pf(h,,lh,,,,s) and p,-(h,,lh,,,) is by no means easy both in terms of memory and
computing time requirements. For computational details we refer to [1]; the basic
idea is presented in [2].

Upper and lower bounds. In the numerical example, u,(h,_,,s) is computed
according to (3.14) and, for the computation of the lower bound L,(h,_,), the policy
f is chosen so that f;(h;_,)=0foralli=n,..., N.

5.3. Numerical results and comparisons

The bounds derived in Section 3, have been computed for an instance of the
problem just described and are shown in Table 5.1 for different truncation periods
of the horizon of action.

These bounds have been compared with bounds derived from Whitt [19] and
Hinderer [7]. Whitt’s lower and upper bounds depend on the particular choice of
functions e and g outside the designated subset. Since he does not give any
constructive procedure for finding them, we chose e =0 which appears to be most
appropriate for the given problem and as function g we used an improvement to
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Table 5.1
Bounds to the optimal value V, =28.69

n (truncation LY Uy Hinderer Whitt
period) lower bound upper bound upper bound upper bound
2 8.27 49.72 84.66 78.98
3 14.54 43.65 71.53 67.83
4 19.25 39.17 60.45 58.83
5 22.69 3591 50.83 51.63
6 25.15 33.59 42.20 45.93
7 26.81 31.98 36.17 41.53
8 27.84 30.88 33.02 38.16
9 28.39 30.14 31.16 35.55
10 28.63 29.64 29.78 33.59
11 28.68 29.30 28.97 32.10
12 28.69 29.05 28.73 30.95
13 28.69 28.86 28.70 30.11
14 28.69 28.73 28.69 29.47
15 28.69 28.70 28.69 29.00
16 28.69 28.69 28.69 28.75
17 28.69 28.69 28.69 28.70
18 28.69 28.69 28.69 28.69

the particular g given in the Remark of p. 182 in [19]. Hinderer's bounds (see
Theorem 3.1 p. 296 in [7]) also depend on the choice of a function \7(,: in our
problem, a natural choice is \70=0.

Wwith this choice of e and \70, the lower bounds of Whitt and Hinderer both
coincide with ours. Therefore in Table 5.1 only Whitt’s and Hinderer’s upper bounds
are reported. In the example our upper bounds are uniformly better than Whitt’s,
whereas they are numerically worse than Hinderer's for n=11,...,15; however,
to compute Hinderer's bounds, when truncating at period n, one has to take into
account all possible histories belonging to Hy, not only those belonging to H,,
which makes their computation extremely heavy, if not impossible.
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In the paper, stability of the optimal solution of a stochastic program with recourse with respect
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Consider the following stochastic programming problem:

Maximize f(x; F)= Ex{c(x)— ¢(x; z)} on the set X where ¥ cR"
is a nonempty closed convex set of admissible solutions, ¢ : Z >R’
is a given function, F is a given joint probability distribution of
a random vector z on (%, RB,), Z<R' ¢: FXxZ >R is a given
nonnegative function such that ¢(x;z) are measurable for all
xe&. (n

An example of (1) is when a nonlinear program
maximize c(x)
subject to g(x;2)=20, Isksm, xe&,

contains random parameters in g.(x; z), | < k=m, and the decision x € Z has to
be chosen before the values of these random parameters are observed. The function
¢(x; z) evaluates the loss corresponding to the case that the chosen x € & does not
fulfil the constraints g.(x;z)=0, 1 < k= m for the observed values of the random
parameters.

The essential results concerning the objective function in (1) are summarized in
the following lemma (see e.g. [10]):

Lemma. Let ¢ :%Z X% - R' be Lipschitz continuous on the set ¥ for an arbitrary z€ ¥
and let the Lipschitzian constant k,(z) be integrable with respect to F. Let the gradient
133
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V,0(x; 2) exist for x € ¥ almost surely with respect to F and let Eqp(x; z) be finite
ai least for one point x € ¥. Then Erp(x: z) is Lipschitz continuous on Z, the gradient
V. Ero(x; z) exists for xe ¥ and

V. Epp(x;2) = ExV,0(x;2). (2)

Remark 1. Under assumptions of the Lemma, the existence of the expectation

f(x; F)=Ep{c(x)—e(x;2)}

is evidently guaranteed for all x € Z. Under the additional assumption that ¢(-; z)
is convex on Z for all z€ % and c is concave, then the function f(x; F) is concave,
differentiable on .

As in stochastic linear programming, the optimal solution x(F) of (1) (provided
that it exists) depends on the assumed distribution F. In many real-life situations,
however, the assumption of a completely known distribution F is hardly acceptable
and the solution of (1) should be thus at least supplemented by a proper stability
study with respect to F. In the robust case, a small change in the distribution F
should cause only a small change of the optimal solution. In the preceding papers
(4, 5], the first attempts were made to study stability of the optimal solution x(F)
of (1) with respect to the distribution F and its parameters through completing the
approaches developed for nonlinear programming stability studies by suitable statis-
tical methods. In this paper, local behaviour of x(F) will be studied via t-contamina-
tion of F by a distribution G belonging to a specified set of distributions (see [3, 4]
for special cases), i.e., instead of F, distributions of the form

F=(1-0)F+1G, 0st=<], (3)

will be considered. In (3), F, is called distribution F t-contaminated by distribution
G and for our purpose, the Gateaux differential

dx(F: G - F) = fjm X FFHGZF) = x(F)

=0" !

of the optimal solution x(F) at F in the direction of G — F is of importance.
Disregarding the constraints (i.e., taking & =R"), the optimal solution x(F,) of
the program

maximize f(x; F,) = E; {c(x) ~ ¢(x: 2)} (4)
should fulfil the system of n equations

V(x;F)=0
where (for F, G fixed) ¥ :R" x¢0, 1)>R" and its components

B
gx; F)="——f(x; F), 1=sj<n,
X,
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are assumed to exist for all j. Obviously
V(x;: F)=¥(x; F)+{¥(x; G)-¥(x; F)], 0st=s1.

Using the implicit function theorem, the Gateaux difterential dx(F; G- F) can
be computed under suitable differentiability and regularity assumptions; taking into
account that ¢(x(F); F)=0, we get

dx(F,; G- F)=-D'¥v(x(F); G)

where

D= (a(//j(x(F); F)) _ (azf(x(F): F)

), I<jk=sn
Xy %, X

To obtain the Gateaux differential dx(F; G — F) of the optimal solution of (1),
we shall use the theory of perturbed Kuhn-Tucker points and strongly regular
equations developed in [12], [13]. In principle, it is possible to get Gateaux differen-
tials of optimal solutions for probabilistic constrained programs using similar tools.

The knowledge of the Giteaux differential of x( F) at F in the direction of G- F
is useful not only for the first order approximation of the optimal solutions corre-
sponding to distributions belonging to a neighbourhood of F but also for deeper
statistical conclusions on robustness, namely, in connection with statistical properties
of the estimate x(F,) of x(F), which is based on the empirical distribution F,. For
the special choices G = 8, (degenerated distributions concentrated at one point u),
the Gateaux differential dx(F; 8, — F) corresponds to the influence curve 2:(u)
widely used in asymptotic statistics. Different characteristics of £2,:(y) suggested in
[9] measure the effect of contamination of the data by gross errors, the local effect
of rounding or grouping of the observations, etc.

We shall concentrate upon obtaining formulas for the Gateaux differentials under
different assumptions leaving the detailed investigation of the statistical aspects to
a forthcoming paper. We shall start with the general constrained case with

F={xeR": g(x)=0,1<i<m h(x)=0,1<r<p},

the Lagrange function and the Kuhn-Tucker points will be denoted by

Lw; F)=f(x: F)+ T ug(x)+ T vh(x),

o r=1

w(F) =[x(F), u(F), v(F)]and I(F) = {i: g(x(F)) =0}.

Theorem 1. For the program

maximize f(x; F):=E{c(x)— ¢(x;z)} ontheset¥ (5)
assume
(1) F={xeR" g(x)=0,1<i=mh{x)=0,1<r<p}#¢g, (6)

W 1<i<m, h, 1<r<p, are twice continuously differentiable
k] $ ]
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(i1) c:Z->R' is twice continuously differentiable.

(i11) The distribution F on (%, B) and the function ¢ : ¥ X% >R" fulfil the assump-
tions of the Lemma and the mean value Erp(x; z) is twice continuously differentiable.

(iv) For the program (5) with & given by (6), Kuhn- Tucker conditions of the first
and second order, the linear independence condition and the strict complementarity
conditions are fulfilled for w(F)=[x(F), u(F), v(F)]eR" xR} XR”, and the matrix

C =VLL(w(F): F)

is nonsingular.

(v) There is a neighbourhood O(x(F)) cR" on which ¢ and the distribution G on
(%, By) fulfil the assumptions of the Lemma and Egp(x, z) is twice continuously
differentiable on O(x(F)).

Then: (a) There is a neighbourhood O(w(F)) cR" xR7Y xR", a real number t,>0
and a continuous function w:{0, t;)> O(w(F)), w(0)=w(F) such that for any te
{0, ), w(t)=[x(1), u(t), v(t)] is the Kuhn-Tucker point of

max f(x; )= Ex{c(x) - o(x; 2)} ™)
Jor which the second order sufficient condition, the linear independence condition and
the strict complementarity conditions are fulfilled.

(b) The Gateaux differential dx(F; G— F) of the isolated local maximizer x(F)
of (5), (6) in the direction of G— F is given by

dx(F; G- F)=-D7 'V, L(w(F): G), (8)
where

D_l=[1—C_lP(PTC_lP)_lPT]C_I, ( )
9
P:[vxgl(x(F)),ie[(F)svxhr(x(F))slsrsp]

and I is the n-dimensional unit matrix.

Proof. The first assertion of Theorem 1 can be proved by means of the implicit
function theorem as in [12, Theorem 2.1]. To prove the second assertion, we shall
use the implicit function theorem once more. (See also [7] for a similar approach.)

For the sake of simplicity assume that I(F)={1,..., s}, denote by #€R’ the
projection of u into R* and define

¥V :R" XR* XR? x{0, 1)>R" xR° XR",
a vector valued function whose components are
af(x. F,)

ax,

g 8gi(x) ivrﬂh,(x)

ax; r=1 ax;

(l/j(x, ay U; t) =

(l/n-fi(xa l‘.‘, v;t)zgi(x), ISiSs,

Ynsonr(X% B 05 1) = h(x), I<r<p.
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Under our specification of I(F), the system ¥(x, i, v;t)=0 together with ¥, =0,
s+ 1< i< m, forms the local Kuhn-Tucker conditions of the first order for problem
(7) with t<t, and according to (i), (i1), (iii), (v), there exists a neighbourhood
O(x(F)) on which ¥(x, &, v; t) is continuously differentiable with respect to all
variables. The matrix

aW(x, a4, v;t) aV(x,a,v;t)

, 1sj<sn, —_— =iy,

D(x, i v t)=( ™

axj

_((ViL(w, F) P)
a P 0
with w=(x, i, 0, v) and 0€R™"* is nonsingular for w= w(F) according to (1v).
This implies the existence of continuous right-hand derivatives of Ww(t)=
[x(1), #(1), v(1)] at O:
dw(0™)
dt

=~ D(#(0); 0! ¥ (4(0); 0) (10)
where

8 vy 0

2 w(#(0):0)

_ (fo(x(F); G)— V. f(x(F), F))
0

s

V. S(x(F); G)+ 3 w(FIV.g(x(F)+ % v.(F)V h(x(F))

r=1

0

(v,L(w(F)-, G)>. (1)

0

Formula (8), (9) follows from (10), (11) by inversion of the block matrix
D(w(0); 0) = (£7 §); the first equality in (11) follows from V,L(w(F); F)=0.

Remark. Due to the fact that (7) is a special type of a linearly perturbed nonlinear
program, the Giteaux differentials of x(F) at F both in the direction of G-F and

in the direction of G are equal: dx(F. G— F)=dx(F; G).
For & polyhedral we get, as a special case of Theorem I,

Theorem 2. Let in the problem
max f(x; F) = Ep{c(x) - ¢(x; 2)} (12)
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the following assumptions be fulfilled :
(i) ={xeR": Px=p,x=0}#@, P(r,n), pcR’ are a given matrix of rank r and

a given vector ; let the vertices of  be nondegenerate.

(i) ¢:F->R' is twice continuously differentiable.

(iii) The distribution F on (%, %) and the function ¢ : ¥ X ¥ >R’ fulfil the assump-
tions of the Lemma and the mean value E. ¢(x; z) is twice continuously differentiable.

(iv) There exists a Kuhn-Tucker point [x(F); w(F)] for (12) such that the second
order sufficient condition and the strict complementarity conditions are fulfilled. For
J={j:x,(F)>0}, the matrix

.2 .
C‘Iz(m_}:.).)’ j,kEJ, (13)

dx, X

is nonsingular.

(v) There is a neighbourhood G{x(F))cR" on which the function ¢ and the
distribution G on (Z, B) fulfil assumptions of the Lemma and f(x, G) is twice
continuously differentiable on G(x(F)).

Then (a) There are neighbourhoods C,(x(F)) c €(x(F)), ¥(w(F))<R’, a real number
t,>> 0 and continuous functions

x:40, to) » O,(x(F)), x(0)=x(F),
such that for any t€{0, t,), [x(1): #(1)] is a Kuhn-Tucker point for the problem

max f(x; F,) = Er{c(x) - ¢(x. 2)} (14)
with F,=(1~t)F+1tG, 0<t< 1. The second order sufficient condition and the strict
complementarity conditions are fulfilled for [x(t); w(t)] and

.r,(F,)=xJ(t)=0, JEJ,

x(F)=x(1)>0, jel

(b) The vector dx,(F; G — F) of the components of the Gdteaux differential of the
isolated local maximizer x(F) of (12) in the direction of G-F for j € J is given by

dx,;(F; G-FY=-D;'¥,(x(G); #(F); G) (15)

where

W (< F); w(F): ) = (S fx(F): G+ £ pym(F))

D,'=[I,-C;'P](P,C;'P})'P,]C}",

P= (ij)ls,ks_,,

jeJ

I, is a unit matrix of dimension s = card J and C, is given by (13).
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The remaining components of the Gdteaux differential dx(F; G~ F) are equal to
zero.

In the special case of a simple recourse problem with random right-hand sides
and with =R, i.e., for

i ai,x,—bi>+}, (16)

J

max EF{ch— y qi(

i=1

we have the following theorem:

Theorem 3 [4]. Assume:

(1) Fis an m-dimensional continuous distribution of b for which Egb exists.

(ii) The optimal solution x(F) of (16) exists and the strict complementarity condi-
tions hold true. Let J={j:x,(F)>0}.

(i) ¢.>0, 1<i<m, A, =(a,), | <i<m, jeJ has full column rank.

(iv) The marginal densities f;, 1 < i< m, are continuous and positive at the points
X(F)=3%,., ax(F), 1<i<m, respectively.

(v) G is an m-dimensional distribution whose marginal distribution functions G,
have continuous derivatives in a neighbourhood of the points X(F)=Y,_, a;x;(F),
1 < i< m, respectively.

Then (a) There is a neighbourhood O(x(F)) and a real number t,> 0 such that the
program

max E,.-,{crx~ i qi(i a,~,~x,—b,>+} (17)

x=0

with F, = (1 — t) F + tG has a unique optimal solution x(F,) € O(x(F)) forany 0< t<1,,
x(F,), je J are nonzero components of x(F,) and x;(F,)=0 for j¢ J.

(b) Components of the Gateaux differential of the optimal solution x(F) at F in
the direction of G- F corresponding to the nonzero components of x(F) are given by

dx,(F: G-F)=(AJKA,) (¢, - ATk) (18)
where ¢; = (¢;);cs, k=(k,), 1 i< m with
k.= q,G,-(hZI a;,.x,.(F)), l<ism,
and
K =diag{qifi(h21 ai,,x,,(F)), I<i= m}.
Theorem 3 illustrates, inter alia that the assumption of twice continuous

differentiability of f(x; F) can be fulfilled in practice. For detailed discussion of
this question see [15].
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Example. Let us compute the influence curve corresponding to the case considered
in Theorem 3. Having solved the program (16) for the chosen distribution F, the
set J, reduced matrices A, ¢, and the diagonal matrix K are known. Let u # Ax(F)
be a chosen point and G = §,. For the vector k we have k=q(u; F), where

9:(u; F)=q; if u, < X(F),
=0 otherwise.
The influence curve £2-(u) is given by
Qr(u)=(AJKA,;)" (¢, - Ajq(u; F))
and to get its characteristics, e.g., the gross-error-sensitivity

v* = sup | 2¢(u)|

means to solve a discrete optimization problem
2
maximize Y, [Z akj(cj -y 5:"1&%)] (19)
kK Lj i

with zero-one variables 8, 1<i<=m (In (19), ay’s denote the corresponding
elements of (ATKA;)™')

The assumptions of strict complementarity play an essential role in the proofs of
Theorems 1, 2 and 3. They guarantee that the interval (0, t,) on which w(t) (resp.
[x(2), m(1)]) is the Kuhn-Tucker point of (7) (resp. of (14)) is nonempty. Alterna-
tively, the strict complementarity conditions can be replaced by the strong second
order sufficient condition [ 13] which gives the existence of continuous Kuhn-Tucker
points on a nonempty interval {0, t,). This approach was applied in imbedding
methods [8] and it will be used to get parallel results in our case.

Without assuming the strict complementarity conditions in (5), (6) denote

I'(F)={i: g(x(F))=0and u,(F) >0},
I°(F)={i: g{x(F))=0and u(F)=0}

and formulate the strong second order sufficient condition [13]:
For each y # 0 with

y'V.g(x(F))=0, ielI’(F), y'V.h(x(F))=0, lsr<p,
the inequality y"V2, L(x(F), u(F), v(F))y <0 holds true.
Theorem 4. Let assumptions (i)-(iii), (v) of Theorem 1 be fulfilled and the assumption
(iv) be replaced by

(iv') For the program (5) with Z given by (6), the linear independence condition
and the strong second order sufficient condition are fulfilled for the Kuhn- Tucker point

w(F)=[x(F), u(F), v(F)].
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Then: (a) There is a neighbourhood O(w(F))cR" XR7T xR”, a real number t,>0
and a continuous function

wi{0, to) » O(w(F)), w(0)=w(F),
such that for any t €0, ty), w(t)=[x(1), u(t), v(t)) is the Kuhn- Tucker point of
max f(x; F)= Er{c(x) - ¢(x; 2)}.
(b) The Gateaux differential dx(F; G-F) is the unique solution of the quadratic
program
maximize x"V2 L(w(F); F)x+x"V,L(w(F); G)
subjectto x'V.g(x(F))=0, iel*(F),
(20)
x'V.g(x(F))=0, iel’F),
XV, h(x(F))=0, I=<rs<p,
and du(F; G-F), dv(F, G-F) are the unique Lagrange multipliers for (20) related
with dx(F, G-F) with zero components du(F;, G-F) for i¢ I(F).

Proof. The first part follows from [13, Theorem 2.1] and the second one is a variant
of {8, Theorem 5].

Assuming strict complementarity condition valid for the optimal solution
dx(F; G- F) of (20), one can get the new active set I(F,) for (7) with  small enough:

I(F)=TI"(F)u{ie I°(F): dx(F; G-F)™V ,g.(x(F))=0}
[8, Corollary 1]. For the special case of Theorem 2 we have

1*(F)={ji x,(F)=0and£—c-f(x(F); F)+2k:p,(,7rk(F)<0},

IO(F)={j: x,(F)=0and j;—f(x(F); F)+§pk,7r,((F)=0},

so that J={1,..., n}—[I"(F)u I°(F)]. The program (20) has the form
maximize 3x V2 f(x(F); F)x+x"V f(x(F); G)
subjectto x,=0, jelI*(F), x=0, jel%F),
and for ¢ >0 small enough, the new set J(F,) = {j: x,(F,) >0} fulfils
J< J(F)c JUIXF).
In the simple case where I°(F) = {jo}, we have explicitly
Theorem 5. Let assumptions (i)-(iii), (v) of Theorem 2 be fulfilled. Assume further

the existence of a Kuhn-Tucker point [x(F), w(F)] for (12) such that the strong
second order sufficient condition is fulfilled and I°(F) = {j,).
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Then: (a) There exist a neighbourhood 0,(x(F)) and a real number t,> 0 such that,
Jor 0=t <y,

x(t)=0, jeJ'=JuUI’F)
and x(1t) is the isolated local maximizer of one of the following problems:

max{f(x; F,): xe%,} or max{f(x; F): x €%}

where for Hc{l,..., n}

H={xeR": Px=p,x;=0,j¢ H}.
(b) Correspondingly, the components of the Gdteaux differential are
(dxH(F'. G—F)> - _(CH PL)”(‘I'H(X(F), w(F); G))
dw(F; G-F) P, © 0
where for H=J or J°
Ff(x(F), F
Cu = (%&—;—)) e P

af(x(F); G)
ax,

¢}

‘I’H(X(F),W’(F);G)=( +k§::lpkj7rk(F)>

JeH
The remaining components of dx(F; G-F) for j& H equal zero.

By specifying the set 4 of distributions G under consideration, the effect of
t-contamination of F by distributions belonging to % on the optimal solution x(F)
can be studied. As a rule, F € % Typical examples are

1. F uniform distribution of the random vector z on a closed interval I c R’ and
% the set of distributions such that

Egz=Egz and Pg(zel)=1 VGe 4 2N

2. The marginal distributions F; are normal N{u; o?) and 9 is the set of distribu-
tions of the random vector z or R’ such that

EGZ,=[-L|g 'Vaer,‘=U,2, lslsl, vGe & (22)

In this context, the extremal distributions belonging to %4 are of main interest.
For the derivative of the objective function in (7) or (14)

3
8—tf(x: F)=f(x;G)-f(x. F)
we have, for all Ge &,

inf f(x: G)— f(x; F)<8%f(x: F)<sup f(x; G)—-f(x. F).

Ge's Ges
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Let G*, G** be such that
inf f(x: G)=f(x; G*),  sup f(x: G)=f(x; G*).

Ge'§ Ge¥

The local changes of x(F) in the direction of G*-F or G**-F give the extremal
local decrease or increase of the optimal value of the objective function f(x; F).
The corresponding problem, for G = G*,

max f(x: (1= 0)F+1G*) =max [(1 - )f(x: F)+ 1 inf f(x; G)]

can be evidently related to the Hodges-Lehman decision rule [14] or to the Nadeau-
Theodorescu restricted Bayes strategies [11]. The existence of the extremal distribu-
tions G*, G** has been proved for wide classes of recourse problems and for various
sets ¢ of distributions, e.g., for the sets 4 given by (21) and (22). For details see
[1,2,6]
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This paper deals with Lipschitz continuity of the objective functions of two-stage stochastic
program with fixed recourse w.r.t. the first stage variable x and the random vector £ jointly. This
is then used to study stability of the considered problem. Some results, especially the Lipschitz
continuity of the infimal functional in & are stronger than early ones.
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Continuity.

1. Introduction
This paper deals with two-stage stochastic programs of the following type:
Min c'x+I Qlx, g(w), T(w), b(w))P(dw)=c'x+ Q(x,q, T, b)
a

st. xe€S8 1)

where Q(x, g(w), T(w), b(w)) is the optimal value of the second stage problem
Min g(w)y
st. Wy=blw)-T(w)x, y=0, (2)

xeR™, yeR™; b is an m-dimensional vector; ¢, g, W, T are vectors or matrices
with consistent dimensions, W is non-stochastic while g, T, b are random and
defined on a probability space (2, , P); q(w), T(w), b(w) are their sample values
respectively.

Clearly the objective function of (1) is related to the involved random vector
¢=(q, T, b). To indicate this relation we write the objective function as Z(x, &).
Now suppose we have a family of problems, corresponding to a family of random
vectors in L3, where Lj is the space of square integrable random vectors, taking
values in R" and r=n,+ mn,+m. Then Z(x, £) is a mapping from R™ x L to R".
The product space R™ x L; can be endowed with a distance d, defined by

dz(ala a,) =|x, _x2|2+|§| - éZli;a
145
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where a, = (x,, &), a; = (X3, £&,) are two points of R™ x L; and | -|.; denotes the norm
in Lj. In the next section we will show Lipschitz continuity of Z(x, &) over the
space R™ x L5. This property turns out to be useful for studying stability problem
for programs (1). In sections 3 and 4 we use it to investigate epi-convergence of
Z(x, &™) to Z(x, &), as £ L,-converge to . Local Lipschitz continuity of the
infima functional inf,.s Z(x, £) is established there.

As mentioned earlier we assume that g, T, b are square integrable thorughout
this paper. This is not a special restriction for our discussion. In fact this assumption
is also imposed for Z(x, £) to be finite. Thus £ and g, T, b are elements of L3, L3z,
L™, L3 respectively. In the context the superscripts of these L’s will be omitted.
The reader can identify to which space they belong.

2. Lipschitz continuity of Z(x, £)
First we introduce the following definitions:

Definition 1. A functional f, defined on L,, is said to be locally Lipschitz continuous
at £'% if there exist positive numbers & and h such that

|f(&)=f() = h-|£- 7,
holds for all ¢, satisfying |¢ — ¢'”|,, <é.

Definition 2. A mapping Z(x, £), defined on R™ Xx L,, is said to be locally Lipschitz
continuous with respect to x and £ jointly at point (x'”, £&?) if there exist positive
numbers £ and L such that

1Z(x, &)= Z(x, 7)< L- d((x, &), (x, 7))

for all (x, £) in the e-neighborhood of (x@, £).

We assume that W is a complete recourse matrix. Then Q(x, g(w), T(w), b(w))
is either finite or —co. Since the latter case is meaningless in practice, we assume
Q(x, g(w), T(w), b(w)) is finite on R™ x £2. Thus by square integrability of g, T, b,
Z(x, &) is finite on R™ X L, and the explicit formula of Z(x, £) is

Z(x,&)=2Z(x,q, T,b)=c'x+} J gi(@) W, (b(w) - T(w)x)P(dw) (3)

i Ju,
where W, is one of the optimal bases {W, i€ I} of W, g,(w) is a sub-vector of g(w),
whose components correspond to the columns of W, and U, i€ I, are the decision
regions of problem (2), i.e.,

U = V\U] V,, Vi={w: W] (b(w)-T(w)x)=0,

9(w) - gj(w) WJ'I W =0}.
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As ¢’x is a linear function of x, the Lipschitz continuity of Z(x, £) is equivalent
to that of the integral in (3). Let (x, £) and (x®, &%) be two points in R™ x L,. First
consider the following difference

Q(x, g(w), T(w), b(w)) - Q(x”, ¢V(w), T(w), bw))
= Q(x, 9(0), T(w), b(w)) - Q(x, g(w), T(w), b (w))
+Q(x, g(w), T(w), b (@)~ Q(x'?, g(w), T(w), b'(w))
=+Q(x”, g(w), T (w), b (0)) - Q(x®, ¢ (w), T (w), b'”(w))
= D,+ D,+ D,.

In [6] it was porved that Q(x, g(w), T(w), b(w)) is convex in x, T(w), b{w)
respectively and concave in g(w). Using inequalities for convex (and concave)
functions we can get the following estimates:

|D\| =gi(@) W' (b(w) - T(w)x) - gi(@) W' (b (0) - T (w)x)|

<max |gi(«) W'l - {|b(@) = b (@) +|T(w) - T(@)] - IxI},  (4)
|D,| < “I_"Ealx 1gi(@) W' - |Tw)] - |x - x, (5)
| Dy = max |W7' (b (@) = T()x)] - |g(w) - ¢ (@)l. (6)

Combining inequalities (4), (5), (6) and integrating w.r.t. w, we obtain
|Q(x, g, T, b) - Q(x'”, ¢, T, b'?)|
< hilb~ b+ hi T~ T\, +hi|x = x|+ hilg— 9|, (7)

where

172
h{:{f ‘a’le,-"q.-(w)PP(dw)} , hy=h}-|x|, hi=h|T,
n i€

172
h, ={J ma’x | W:'(b(m(w) - T(O)(w)x(°)|2P(dw)} .
n 1<

From these formulas it can be seen that h; is a constant related to b'®, 7@, x®
and that k|, h5, h} depend on x, g, T and b.

Let h, be defined by

h, = max W' - gl

Obviously hi<h,<max.,;|W;'|-|q¢"|,+¢, provided |g—q'”|, is small
enough, where g, is a small positive number.
Define

hi=max|W7-1g% 4, h=h X9, hy=h | T,
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Then hj<h,, hy<h,, hi=<h,, provided |g—q'%|., |T— T, |x— x| are small
enough, With h,= h we can reduce (7) to
|Q(x, 4, T, b))~ Q(x¥, ¢©, T, )|
<h, - |b= b9, +hy|T— T+ hy|x — x|+ halg — ¢'%,.
This inequality can yield Lipschitz continuity of Q(x, g, T, b) w.r.t. the all arguments

jointly at (x'©, ¢, T, b'?). This implies the local Lipschitz continuity of Z(x, &)
w.r.t. x and £ jointly at (x®, £%). We summarize the discussion as

Propasition 1. In two-stage stochastic programs with complete recourse of type (1) if
all random vectors are square integrable, then the objective Z(x, &) is locally Lipschitz
continuous in x and ¢ jointly.

In the sequel we need the following

Corollary 2. For any fixed x, Z(x, ¢) is locally Lipschitz continuous in ¢ and the
Lipschitz constant can be continuous in x.

Proof. With the same procedure as above we get
1Z(x, £) = Z(x, N < h|b=b"|,+ h] T T'|, + halg = g1, (8)

where h,, h,, h, are defined in the same way as above. Therefore h, is independent
of x, h, and h, are continuous in x.

3. Applications

The Lipschitz continuity given in section 2 can be of use in studying stability and
constructing approximation procedure. First we show that it will lead to epi-
convergence of Z(x, &™) to Z(x, &?) as ¢ converge to £ in L,-sense, which
further yields stability of the optimal solutions of two-stage stochastic programs of
type (I). The definition and main results of epi-convergence are cited below.

Definition 3 [1]. A sequence of lower semi-continuous functions f"(x) epi-
converges to function f iff for all x the following conditions are satisfied:

(A) liminf £ (x"™) = f(x) for all sequences x‘™ converging to x;

(B) there exists a sequence x™ converging to x such that

limsup f™(x™) < f(x).

Theorem 3 [1]. If a sequence of lower semi-continuous functions '™ epi-converges to
f, then

limsup Argmin ' < Argmin f
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and liminf(inf ') =inff, where Argminf={x: minf=f(x)}. Moreover if
Argmin f# @ and inf f is finite, then

lim(inf f") =inf f,

if and only if X € Argmin f implies that there exist sequences ™’ >0 with ¢ > 0 and
x") converging to X such that for all n

x™e g™ — Argmin £ ={x: f7"(x) <inf f+ ™).

For details of epi-convergence theory, see [1] and [7].
A direct consequence of Proposition 1 and Theorem 3 is the following

Proposition 4. Suppose there is a sequence of two-stage problems of type (1) with
random vectors £€© and ¢, n=1,2, ... such that they are square integrable and
&M L,-converge to £°. Then Z(x, &™) converges pointwise and in epi-sense to
Z(x, &%)

Proof. By the virtue of joint Lipschitz continuity of Z(x, £) in x and £ it is very
easy to verify conditions A and B in the definition of epi-convergence and conditions
for pointwise convergence.

To get stability of the optimal solution of problem (1), we need
Lemma 5. If the sequence of lower semi-continuous functions " epi-converges to f
and S is a closed set in a Euclidean space, then F™ epi-converge to F, where F = f+ s,

F™M=f"4ysand

0 ifxes,
+00  otherwise.

ll's(x)={

Proof. Immediate.
Combining the results in Theorem 3, Proposition 4 and Lemma 5 we obtain

Proposition 6. Suppose the assumptions in Proposition 4 hold true. Then
limsup Argmin Z(x, &)< Argmin Z(x, &)

and
liminl‘( inf Z(x, g‘"’)) = inf Z(x, £°).

If there is a sequence x™ e Argmin, s Z(x,¢™), converging to Xe€
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Argmin,.s Z(x, £9), then
inf Z(x, &™) —inf Z(x, £7)| < M|g" - £,
i.e. the infima functional is locally Lipschitz continuous in .

Proof. The first two assertions are direct consequences of the last three propositions.
It remains to show the Lipschitz property of the infima functional.
Observe that

. Z(x™, M)~ Z(%, £°)
|Z(.f("), f("])—Z(f, é—( ))l _ )
Z(%, )= Z(x", &™)
{Z(x, M)~ Z(%, £?) if Z(x™, £y = Z(%, £7),

Z(xM, EM) = Z(R7, €M) i Z(%, €T = Z(27, €7).

-

=

From the joint Lipschitz continuity of Z(x, ¢) it follows that

|Z(%, £€7)— Z(%, €)= L(x) - |7 - €9,
and
|Z(x", £0) = Z(2, )< L(x™) - |€™ - €9 .

By Corollary 2, L(x) is continuous in x. Hence when n is large enough there
exists a positive number M such that

L(x)<M and L(x"")<M
or, equivalently,
|Z(f(n), é—(n)) —Z(f, 6(0))|$ M- |§(H]_§(O)|L2-

This inequality gives the desired Lipschitz continuity.

The results presented here are stronger than some early ones in the following
senses. In[2] and [4] P. Kall gave error bounds for the difference Z(x, £ = Z(x, ).
Here we establish the: Lipschitz continuity of Z(x, £) in x and ¢ jointly. In [8]
R. Wets proved that for two-stage problems of type (1) if £ and ¢ are distributed
on a compact set, then Z(x, £™) epi-converges to Z(x, £°) as £ converges to
£ in distribution. Here in proposition 6 the compactness assumption is unnecessary
(but we need L,-convergence of £ to &®). The more important one is that we
give Lipschitz continuity of the infima functional.

To obtain Lipschitz continuity of the infima functional under some conditions
one also may resort to more sophisticated tools, e.g. the results in [S] by
R. Rockafellar. Nevertheless the approach used here is much cheaper in the sense
that the conditions are easier to be verified and the proof procedure is much simpler.
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4. Constructing L,-convergent sequences

In literature and practice of solving two-stage stochastic programs discretization
approximation is widely used. Here we show that the sequences in this kind of
approximation scheme do converge in L,-sense.

Proposition 7. Any random vector £ in L, can be approximated by a sequence of simple
random vectors ¢ in L,-sense.

Proof. It is a ready result of probability theory. If £ is a one dimensional random
variable, then ¢ can be constructed as follows

i

- . .
12" ifwe Uf-"’={w: X sg(w)<2~'n},

EM(w) = i=—n2"...,0,1,...,n2"
n ifwe UM ={w: n<é(w)},

-n foeU™={w: —n>¢tw)}.

For a multi-dimensional random vector it is sufficient to construct such a sequence
for each component.

Another often used discretization approximation is through using conditional
expectation, see [3]. We show that one may construct a sequence of conditional
expectations, which L,-converges to a given random vector. Again it is sufficient to
show that for a random variable.

For a given partition T of the sample space {2 into several parts 2 =N, U,
where U, are measurable sets, we denote by G the o-algebra generated by U,
i=1,2,..., N. Then the conditional expectation E(¢/G) of £ given G is defined.
Suppose there is a family of partitions T, ={U"™, i= 1,2,..., N,}. Let E(¢/G,)
be the corresponding sequence of conditional expectations, where G, is the o-algebra
generated by {U,i=1,2,..., N,}.

Proposition 8. Suppose ¢ is square integrable and T,, n=1,2,..., are partitions,
consisting of sets {U™, U™, U™, i=—n2", ..., n2"}, which are defined in Proposi-
tion 7. Then E(¢/G,) L,-converges to £, where G, is the o-algebra generated by T,.

Proof. First we show that E(£/G,) almost surely converges to & By martingale
theory E(¢/G,) almost surely converges to E(¢/G.), where G, is the smallest
o-algebra containing all G,, n=1,2,.... Therefore for the present purpose it is
sufficient to prove £ = E(¢/G.), or equivalently to prove G = G,, where G is the
o-algebra induced by &

From the construction of G, we know that any set U of the form U = ¢ ' (-, a)
is either an element of some G, or a union of (finite or countably infinite number
of) elements of certain G,. As G, is a o-algebra, this set U must belong to G..
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From this fact follows that the o-algebra G, generated by the family of sets U
corresponding to all intervals (—o0, a), is contained in G,. The inverse inclusion
relation is trivial. Thus we have G = G, or, equivalently, E(¢/G,)= E(¢/G)=¢&

Next we show that E(£/G,) L,-converges to & Note that ¢€ L, implies ¢é€ L,,
i.e., [ |£é(w)|P(dw) <. Hence

L |E(¢/G.)|P(dw) =T L |E&/ G,)|P(dw)

o) f(")e(w)P(dw) sf ()] P(dw).
( U‘ n

Then by a.e. convergence of E(¢/G,) to £ and the dominated convergence theorem
we arrive at the conclusion that E(¢/G,) L,-converges to &

The two L,-convergent sequences discussed above are two examples. From what
we have done in this section one may expect many other sequences, L,-converging
to the given random vector.
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A PERT-type project planning problem is considered, under the assumption (to be relaxed in
Section 4) that the marginal distributions of the durations of the activities are known. Instead of
the assumption of independence a minimax approach is proposed. A complete characterization
of worst-case joint distributions, which by definition maximize the mean delay of the project
completion time over a fixed target time 7, is given. In the same framework also an optimal value
for T is determined: it balances the costs of delay with the costs for large values of T in a two-stage
stochastic program.

The main tool of analysis is duality. Worst-case distributions can be described as the solutions
of a generalized transportation problem. The complementary slackness conditions of this linear
program and its dual characterize the worst-case distributions by means of a condition on their
supports. Due to the special structure, the dual problem can be reduced to a finite-dimensional
convex program. By dualizing the reduced dual again, a flow problem on the PERT-network is
derived. Optimal flows appear to be the criticality numbers of the worst-case distributions. In
Seciion 2 special attention is paid to the characterization of the so-called NW Rule Solution for
a generalized transportation problem.

Key words: Stochastic Programming, Duality, Transportation Problem, Minimax Approach,
Distributions with Known Marginals, Dependent Random Variables, Worst-Case Distributions,
Robustness, Stochastic Networks, Project Planning, PERT.

1. Introduction and summary

Suppose that a multivariate distribution is unknown, except for the fact that all
one-dimensional marginals have been given. In general, there are many joint distribu-
tions compatible with the given marginals, one of them being defined by indepen-
dence. In a worst-case analysis the following distribution problem is appropriate:

Find the joint distribution which maximizes the expected value of a given criterion

function.
This optimization problem has a nice structure: it is a linear programming problem
of a special type. In fact, it is a generalization of the well-known transportation
problem. For details we refer to Section 2. The dual of the generalized transportation
problem involves an upper approximation of the criterion function by a separable
function. By means of duality theory it is possible to characterize the optimal joint
distributions by means of a condition on their supports. Special attention is paid
153
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in Section 2 to conditions under which the so-called NW Rule Solution generates
an optimal solution. The name refers to the well-known device to get a starting
basic feasible solution of a transportation problem.

The distribution problem and its dual have been studied in different areas of
probability theory. In this paper it is applied to a stochastic programming problem
arising from a project planning model. At stake is the decision on making a promise
on the completion time of the project, whereas the durations of the activities of the
project are random. In practical situations only very partial information on the joint
distribution is available. PERT is a heuristic for this problem which is often used,
but which has a poor probabilistic basis. We show in Section 3, that a minimax
approach is possible; this leads to a distribution problem, where the criterion function
represents the delay of the completion time of the project. Due to the special form
of this criterion it is possible to use a reduced version of the dual problem which
appears to be a finite dimensional convex minimization problem. By means of the
dual solution the most unfavorable distributions can be characterized completely.
This can be done in an appealing way by dualizing the reduced dual again, with a
Jflow problem defined on the PERT network as a result. Optimal flows appear to be
criticality numbers of the worst-case distributions.

In Section 4 we show that the results of Section 3 can be applied also if only
partial knowledge on the marginals is available, as is not unusual in project planning.
In Section 5 we give some numerical results, showing that the minimax approach
to project planning is computationally feasible.

2. The distribution problem and its dual

Let n be a natural number, n=2, let, for i=1,..., n, X, be a Borel measurable
subset of R and u; a probability measure on the Borel sets of R such that u,(X;)=1.
One might restrict X; to the support of u,, or its convex hull, but this is not necessary.
Defining X :=[],_, X,, let # be the linear space of all finite, signed measures on
the Borel sets of X, and denote the projection of u € # on the coordinate space X;
by proj; u. For a Borel set B< X; one has (proj; u)(B): p.(ﬂ .., E;) where E, =B
and E;:= X; for j# i Then the distribution problem on X with cntenon function
f:X >R and prescribed marginals w, i=1,..., n, can be formulated as:

P: maximize{J’ fdp.:projp.=p.,,i=l,...,n,p.>0}.
C # x i

Sometimes it is more convenient to formulate P in terms of n random variables ¢
and the distribution functions F, of u;; F,(x):= P({ < x). Then P can be rewritten

as
P max1mlze Euf(é,, ..., &)

He X(F|.

where ¥(F,,..., F,) denotes the set of all n-dimensional distribution functions
with marginals F,, ..., F,.
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Moreover, by transforming the criterion function it is possible to reformulate P’
in such a way that the marginals are uniform distributions. Let F;' be an arbitrary
version of the inverse function of F. That is, F;' is any real function on (0, 1)
satisfying F,'(¢+) = x = F,(x) <1< F,(x+0). Then it is easy to show, that the distri-
bution function of F;'(w;) is F, if w; is a random variable with uniform distribution
on (0,1), U(0,1). Consequently, the distribution of (F;'(w,),..., Fr'(w,)) is
feasible for P'. Moreover, every H € %(F,, ..., F,) can be represented as the distribu-
tion of (F,'(®,),..., Fi'(w,)) for a random vector (w,,...,w,) with U(0,1)
marginals [39, 33], so that P’ is equivalent to
P maximize EGf(Fi'(w),..., Fy'(w,)).

In fact, it is even possible to reformulate P” in terms of only one U(0, 1) random
variable wg:

p: maXLmize Ef(@1(wo), @x{wo), . . -, @nlwy)),

where ¢, is an arbitrary so-called rearrangement of F;' (see [33]). For our purposes
the formulations P and P’ are the most appropriate; we shall switch the notations
freely.

It is clear that problem P is trivial if the criterion function f is separable on X,
thatis, if f(x) =¥, fi(x;)) ¥x=(x,,..., x,) € X. Then | f du depends only on u via
the marginals wx; which are fixed in P. Therefore a separable function f does not
discriminate between the feasible solutions and does not deserve the name criterion
function. If f is not separable on X, then still separable functions are important in
the analysis of problem P. For example, a sufficient condition for the finiteness of
the optimal value sup P of P is that |f| has a separable upper bound which is
integrable:

n
[f(x)|< ¥ elx,) Vxe X, with I e, du; <o Vi (n
i=1 X,
Moreover, it will be shown that problem P is related by duality to an upper
approximation of the criterion function by a separable function.

Before introducing the dual problem, let us first notice that the objective function
as well as the constraints ja P are linear in y, so that P is a linear programming
(LP) problem. It has a special structure; in fact, it is a generalized n-dimensional
transportation problem. Indeed, for n:=2, X,:={s,,..., s,}, Xo={t,,.. ., t,}, p. =
wil{s)), a,=w({1}), x,=p{{s, 1)}), ¢;=f(s, 1;), P reduces to the well-known
transportation problem

a b b
P, maximize{ Y Y ooaxs X xg=p,i=1,...,a,
x¢R” =141 21

¥ x.;,=qj,j=l,...,b,x,,?OVi,j}.

=1
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The dual problem of P, can be written as

a n

Dy: min"imizg { eyt Y gyyiynty,=e, Vi,j}.
yeR”yeR® Li=) j=1

The dual problem of the distribution problem P can be formulated analogously.

Let Y, denote the linear space of real Borel functions on X, which are integrable

with respect to u,, and let Y be the linear space of all separable real functions on

X determined by Y, i=1,..., n:

Y:= {yERx:y(Xl,.. .,xn)= z y.(x.)vxEX,yle Y:V'}'
=1

Generalizing D,, we get as the dual for P the problem of finding a separable upper
bound for the criterion function f with minimal expected value with respect to an
arbitrary distribution H e #(F,, ..., F,):

D: minimize { y I yodu: ¥ yi(x)=f(x,,...,x,) forall (x,...,x,)€ X}.
yeyY i=1J X, 7 =1

If X is a finite set (so that each g, is finitely discrete) then obviously (P) and (D)

are finite dimensional LP problems with max P =min D. In the general case it is

clearthatforany ue M, u =20, proj,u =p,,i=1,...,mandforany ye Y,z:'__l y. =/,

one has that

Ifd# sf (z y.) du=Y Jy. dus

so that sup P < inf D, which is weak duality, with equality if complementary slackness
is true:

p.({xe X: i yix)=flxy,..., x,,)}) =1.

1=1

Even strong duality can be proved:

Theorem 1. Duality for P and D.

Suppose that the criterion function f is upper semicontinuous, and that |f| is bounded
by an integrable separable function. Then the following statements are true.

(a) Both Pand D have optimal solutions, and they have the same finite optimal value:

—00<max P=min D<+x. )

(b) The probability measure u*e 4 is optimal for P and the separable function
y*e Y is optimal for D if and only if
(i) w™ has the required marginals u,, i=1,..., n;
(ii) y* is an upper bound for fon X ;
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(ifi) the support of u* is contained in the closure of the set X* on which y* coincides
with f:

X*= {XEX: i y;k(xi)=f(xh"‘;xn)}~ (3)

Proof. (a) As is seen from (1), [sup P| <co. The other statements follow from a
theorem of Kellerer ([18], proved in [19]). This theorem is much more general than
ours (see the next remark) except for the fact that we allow for an integrable
separable lower bound on f instead of a constant. However, the result remains true
(see [19], private communication).

(b) This is a direct reformulation of primal and dual feasibility, and complemen-
tary slackness, 1

Remark. The assumption X; <R is not necessary for Theorem 1. For example, if
X; is compact metrizable and f is continuous then it is possible to use standard
duality theory to prove max P=min D [9,31]. Kellerer generalizes this result to
Hausdorff spaces X; and upper semicontinuous functions f, which are bounded
from below, whereas sup P =min D is established for a large class of function f
(analytic with respect to all upper semicontinuous functions on X). In the proof
an application of Choquet’s capacity theorem is a crucial tool.

In different degrees of generality, the pair of dual problems P and D has been
studied extensively in probability theory. For example, with f being the indicator
function of {x € R* |x, —x,|< ¢} problem P is a major tool in proving a famous
theorem of Strassen: the minimum Ky Fan distance between two random variables
with given distributions equals the Prokhorov distance of their distributions ([36,
34, 11, 14]; related results in [18, 37, 38]). Closely related is the problem of existence
of probability measures under conditions including prescribed one dimensional
marginals [15, 16, 17, 36, 10]. For the theory of variance reduction the problem P
gives an appropriate framework with e.g. f(¢,,..., &) =—(T ., (& —E(£)))? and
several inequalities can be derived using P and D [31, 32, 30, 1, 39, 21]. In the
literature mentioned often a statement related to problem P is derived by solving
D explicitly. In this paper we follow the same line in deriving results for a minimax
approach to a stochastic programming model for a project planning problem (see
Section 3).

One feasible solution for P is the joint distribution specified by independence
w'"NP([17, B)=11:., m(B,). Itis interesting to realize, that the independent solution
can only be optimal for P in trivial cases. Indeed, theorem 1 shows, that w'~P s
optimal for P iff Borel sets S, X,, i=1,..., n, exist such that u,(S,)=1Viand f
is separable on [];_, S. In such a case every feasible solution for P is in fact optimal.
If the criterion function f is not separable one may expect that the optimal solutions
of P show heavy dependence between the marginals.
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One other special feasible solution for P deserves attention. Let u“ be the
probability measure on X defined by the distribution function

H°(zl,...,z,,):=ipl1inn Fi(z), zeR" (4)
It is easy to verify that H® indeed is a distribution function with marginals F, We
shall call ° the NW Rule Solution or the NW Rule Distribution of P, since in the
case of the transportation problem P, it reduces to the well-known basic feasible
solution determined by the North West Corner Rule. In terms of P” the NW Rule
Solution corresponds to the uniform distribution on the main diagonal in the unit
cube, that is w, =w, =" - - = w,. In other words, H? is the distribution function of
the random vector

(Fi'(w), F3 (@),..., F;'(w)), wis U(0,1). (5)

In P” the NW Rule Solution is described by ¢; = F;' Vi: no real rearrangement is
made.

Since u° depends only on the marginals but not on the criterion function £ it is
not to be expected to be optimal for P in general. However, it is possible to give
conditions on f which guarantee that u° is optimal for all specifications of wu,
i=1,...,n The function f is called L-superadditive ([23]) if for all x € R", all unit
vectors e; and e, i # j, and all nonnegative scalars o and 8

fx+ae,+Be)+ f(x)= f(x+ae)+ f(x + Be).

Theorem 2. If u,, ..., u, have first moments and f is L-superadditive then the NW
Rule Solution u° is optimal for P.

Proof. See[33]). O

The well-known result that the NW Rule Solution maximizes the correlation
coefficient of two random variables can be formulated as a consequence of this
theorem: take f(x,, x,) =x, - x,. For the transportation problem P, the NW Rule
Solution is, as can easily be verified,

[l o) o2 5)]

where [z]* == max(0, z).

Corollary 3. The NW Rule Solution (6) is optimal for P, for all values of p; =0, q,=0
with Y p;=Y,.,q; (=1) ifand only if, foreachk=1,...,a—landI=1,..., b1,

it T Chevr o1 = Charg T Crgra (7

Proof. Sufficiency follows from Theorem 2 (a direct proof based on Theorem 1 is
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also not difficult). Necessity can be proved by contradiction: if (7) does not hold
for (k, I) then (6) is not optimal if pr=pr., =5 and g;r=qj., =3 O

As a typical application of Corollary 3 let us interpret P, as a dynamic production
model. Then p; is the production capacity in period i, g; is the demand in period }j,
and x, is the production in period ¢ destined for demand in period j, with correspond-
ing unit cost ¢;. Both indices i and j are ordered in a natural way, namely increasing
with time. The NW Rule can then be interpreted as a FIFO type of strategy: the
oldest demands have highest priority. According to corollary 3 it gives the minimal
cost solution for all values of the capacity parameters p; and demand parameters
q; (provided the problem is balanced: ¥, p, =%, q,) if for all (k, I) the cost vector ¢
satisfies

Cirt Cray 131 = Char g+ G

This is true for example if ¢, = d + h(i—j), h convex. On the other hand, under the
same conditions for ¢ the total costs are maximized under the LIFO strategy. The
corresponding solution can be called the NE Rule Solution since high values of j
are coupled with low values of i and vice versa. By the way, generalizations of the
NE Rule Solution to general n are not as obvious as in the NW case, see e.g. [31].

From (6) useful formulas for u® and H° can be derived. For example, let
—wsa,<bh s, —osz=c, I[c{l,...,n} then the probability of each rec-
tangle under H® can be expressed in terms of the marginal distribution functions:

Pyla,<§<b,iel)= [mlin F.(b.)—mlax E(a.-)] ,

+

Pyela; <& =<b,iel)= [m’in E(bi+0)_mlax E(ai+0)] >
(8)

Py(bi<zjice s &<zyiel; g=z,ie L 6>z, i€ ly)
= [min(mlin F(z), m’in E(z,+0)>

.
- max(mlax Fi(z), max F,(z,~+0)>:| .

Hence, for any ze R" and any h, ke {1,..., n} we have
Po(€n <zp & = 2i) - Pur(n 2 20, £ <2,) =0,
Pyo(€n < zp &> zi) - Poo(&n = 2, £c< 2,) =0, 9)
Pyo(én < zp, &> zi) - Poyo(&n> 2y < 2,) = 0.

This is a characteristic property of the NW Distribution. It holds also for disjunct
index sets I, and I. instead of {h} and {k}. Hence, H® has positive probability mass
in at most one of each pair of opposite translated orthants in R", except if the
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positive and negative orthants are concerned. For that case we have a characteristic
maximality property:

Theorem 4. For arbitrary zeR" and I, I,<{1, ..., n}, define A, and A, by
A ={xeR". x;<z foriel, and x,< z; for i€ L},

A;y={xeR": x;>z foric I, and x; =z, for ic L}.

Then max, .« {n(AL): proj, u = p; Vi, u =0} = u°(A,), k=1,2. Consequently, the
NW Rule Distribution maximizes the probability of all translated positive or negative
orthants.

Proof. By directly using (8), or from Theorem 2 by showing that the indicator
function of A, is L-superadditive. [

If we call a distribution H with marginals F,, ..., F, positively quadrant dependent
if H(zy,...,2,)=[];., Fi(z) for all ze R" (see [22]), then Theorem 4 characterizes
the NW Rule Distribution as the maximally positively quadrant dependent distribu-
tion compatible with the fixed marginals.

Finally, we remark that from Theorem 4 it follows that the NW Rule Distribution
is optimal for P if f(x) or f(—x) is the distribution function of a finite measure on
the Borel sets of R”, as proved in an earlier version of this paper (or as a consequence
of [30]).

3. Worst-case analysis in project planning

Suppose that one has to make a decision (‘promise’) T on the unknown completion
time 7 of a project. Reduction of T is profitable at a rate ¢ =0, but if the promise
is not kept the delay [T — T] is penalized with g = ¢ per time unit. Assuming that
T can be considered as a random variable with known distribution, the simple model
(which is in fact a stochastic program with simple recourse)

miniTmize {'cT+q- E[+-T717} (10)
1S a reasonable starting point for the analysis of the decision on T. T* is optimal
for this ‘production model’ ( T:= production, 7:= demand, ¢ := unit production cost,

g = unit shortage cost) iff T* € @ (1 ~ ), where a:=¢/q and @ is the distribution
function of 7, that is iff

P(r>T*)<as<P(r=T%*). (ay

If there is only partial knowledge on the distribution of 7, one may introduce the
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minimax variant of (10),

miniTmize{aT+ sup E¢[7—T]+}, O<sas<l, (12)

Pe ot

where o is the family of distributions of 7 compatible with the partial information.

Remark. Although (10) is practically equivalent to the chance constrained (CC)
model min{T: P(7> T) =< a}, it is not true that (12) is equivalent to the minimax
CC model

minimize{ T: sup Pyp(7> T)sa}, O0<sasl. (13)

Deol
In (12) the amount of the delay is important, not only its sign as in (13). If T* and
®* solve (12) then Ep[7— T*]" < Eg[7— T*]* for all @€ o in this sense the
distribution @* one is looking for in (12) can be called a worst-case distribution. It
depends on T*, hence on a. However, @* is not necessarily a worst-case distribution
in the sense of (13). Of course, Py«(7> T*) <a, see (11), but the existence of a
® e o with Pp(7> T*)> a is not excluded.

Usually, a project is represented by a directed graph with one source and one
sink. The arcs i =1,..., n represent activities which have to be completed in order
for the project to be completed, and the precedence relations between the activities
are given by the network. Let B, j=1,..., p, be the index set of all activities at
path j from source to sink, then B,, ..., B, are different, nonempty sets whose union
is {1,..., n}. Denote the duration of activity i by &. Then the project completion
time is given by 7= R(¢£) where

R(x)= max Y x;, xeR" (14)

J=1.,P ieB;

If the maximum is attained by j, path j is called critical. We shall denote the set of
critical paths by CP(£),

CP(x) = argjmg?(p Y x, xeR" (15)

P ieB;
The set of critical activities- is then CA(¢),
CA(x)=\J{iiie B,je CP(x)}, xeR" (16)

Obviously, each activity on a critical path is critical. The reverse is also true, in the
sense that

jeCP(x) & ie CA(x) for all i B;.

This is due to the fact that if two critical paths j and k contain the same activity i
one gets another critical path by replacing in j the activities before (or after) i by
those of k.
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In our analysis we shall assume that the network structure of the project is known,
whereas the time durations ¢ are random variables. One would like to be able to
calculate the probability distribution of R(¢); in particular, ER(¢), P(R(£§)>T)
and E[R(£)— T]" for certain values of T. Also criticality indices as P(je CP(¢)),
P(jeCP(£), R(£)> T) and P(ie CA(¢)), P(ic CA(¢), R(¢)> T) are important in
the analysis of the random case. However, there are two practical difficulties. First
of all, the joint distribution of {£,, ..., £,) has to be specified completely. Moreover,
even if this is possible, the amount of calculations is prohibitive for networks of a
reasonable size (see e.g. [24, 6]). Under the assumption of independenceof £,,.. ., &,
it is possible to derive bounds for the expectation of R(¢) [8, 5, 12] and for its
distribution function [20, 35, 28, 13] from the marginal distributions. We shall,
however, not assume independence, and analyze the ‘worst-case’ problem (12),
where & is the family of all distributions of 7 = R(£) compatible with the knowledge
about the marginal distributions. In this section we shall assume that for each &
the complete distribution function F,, F,(t) = P(& <t) for te R, is known, with finite
mean value & and support [a, b;], a;=lim,;, F '(a)=0, b, = limg;, F7'(a)<+c.
(If v=+00, the notation [u, v] has to be interpreted as [u,0).) In Section 4 the
assumption of the complete knowledge of the marginal distributions will be relaxed.
It will appear that the worst-case analysis is tractable from a computational point
of view. A similar problem has also been studied in [25] and [27] without explicit
use of duality, but by Duality Theorem 1 the results become more transparent and
more general.

Under the specification mentioned above problem (12) becomes

PP(a): find ﬁ(a)2=in£{aT+h(T)}, O<a<l,

with

P(T): h(T) = Sup EHf(gl,"',gn), TER,
HcX(Fy,.. Fu)

where

f(x)=fr(x)=[R(x)-T]", xeR" (17)

Notice that the inner problem P(T), which is of independent interest and which
will be discussed first, is a distribution problem of the type P’ (or P) of Section 2,
with X, :=R. Moreover, f satisfies the conditions of the Duality Theorem 1. Hence,
the supremum is attained and the optimal value function h( T) and the corresponding
worst-case distributions for 7 can be analyzed by means of the dual of P(T)

D(T): minimyize {Ey:y=f},
ye
where Y is the set of separable real Borel functions on X, of which the components

y. are integrable with respect to F. It will appear that D(T) can be reduced to a
convex program in R". In order to show this, we define for i=1,...,n

Y, ={y,eR*:Iw,eR, zie Rs.t. y,(x,) = wi+[x;—~ z]" Vx, € X;}
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and
Y={yeR*:y=3 y,yeY,i=1,...,nh
i=1

Since ] |y, (x))| dFi(x;) <o for all y, € f’i, Y is a subset of Y. Since for arbitrary but
fixed (xy, X2, ..., Xi_1, Xis1, - - - , Xn) the criterion function f, considered as a function
of x, only, belongs to Y; it is not surprising that in D(T) only upper bounds y € ¥
for f are relevant.

Proposition 5. Forany yc Y, y= f there exists a y€ Y such that y =y = f.
Proof. Fix y€ Y with y=f Then

oo>y,(x,)>f(x)—ézy,.(xi)>—-oo VxeR" (18)

i

Denote the vector (x,,..., x,) €R"™' by v,. Then f(x)-Y"_, yi(x;) can be written
as w,(v,) +[x, — z,(v,)]" for certain w,(v,) €R, z,(v,) € R not depending on x,. With
y, defined by

i(xy) = sup {wi(v,) +[x,— 2,(v)]"}, x€R, (19)

v eR
it follows from (18) that
00>y (x,) Z V(X)) = f(x)— L yi(x,)>—-¢ VxeR" (20)
i=2
We shall show that y, € )7,. Define

Wy i= sup wi(v)), Zy=— sup | (wi(vy) = z,(v))) + W,

- n
vieR” v eR

From (18) it follows that both suprema are finite. Moreover,

Y1(x;) = sup max(w,(v,), wi(v,) — z,(v,) + x,)

= max(sup (wi(vy), x, +sup (wy(v,) — zl(vl))>

vty vy
=max(w,, w,; +x,— Z;) = w, +[x, — ,]"
so that §,€ Y,. From (20) we conclude that the replacement of y, by 7, does not

disturb the feasibility condition y = f. In the same way, y; € Y, can be constructed,
successively for k=2,..., n, such that

n

Yi(xe) = Yie(xi) = f(x) =~ .Zk yi(x;) = _Zk yi(x,), xeR"

For k = n we have the desired result. C
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Proposition 5 shows that in D(T) one may restrict attention to functions y € Y
rather than y € Y. Doing this, a great simplification is possible: if y;(x;) = w; +[x; — z]"
then

yi(x;)) = f(x)

[Naek]

i

is true for all x €R" iff it holds x = z; that is iff }.]_, w; = f(z). Hence D(T) can be
reduced to

D(T): minimize {f(z)+ G(2)},

zeR”

where

G(z):= i G.(z;), zeR", and
- 1)

o0

Gi(z)=E[¢(-z] = I [xi~2z]" dFi(x;)= I (1-F(x;))dx;, z€R.
Clearly, G, is a finite, nonnegative, nonincreasing, convex function on R. Its
asymptotes for |z,| = o are given by [£— z]"; in fact, G(z;) = £~z iff z;<a, and
Gi(z,)=0iff z;= b, (see Figure 1).

G{Z) i
i 5 ™ 1 T,

: i (0)
0§ Lz B~

Fig. 1. The function G; and its conjugate function é,. Slopes are indicated by (- ); z% and = are related
by subgradient duality.

Theorem 6. D(T) and ﬁ(T) are equivalent,
(a) For each TeR the minimum in D(T) is attained, and

min D(T)=min D(T)=max P(T)=h(T), TeR.

(b) If z*€R" is optimal for D(T) then y*e Y, defined by y*(x;) = w;+[x; — z¥]",
i=1,...,nwithY_ w,=f(z*), is optimal for D(T). If y* € Y is optimal for D(T),
then a y € Y exists which is also optimal for D(T) with Py«(5 = y*) = 1 for any optimal
distribution H* for P(T).
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Proof. Follows directly from Theorem 1 and (the discussion after) Proposition5. [

The reduced dual D(T) can be interpreted as the problem of finding reference
values (‘promises’) z for the durations of the activities, in such a way that the delay
(over T) of the project completion based on z, is balanced with the sum of the
expected delays (over z) of the random activity durations. It is easy to prove, that
an optimal solution z* exists with a,=< z¥=<b;: the objective is a nonincreasing
function of z; if z; < a,, and nondecreasing if z,= b, D( T) is a convex program; in
fact, it can be seen as a simple recourse model of stochastic programming, and all
the preceding observations are well-known in that setting.

From Theorem 6a we know, that the optimal value function h of P(T) and D(T)
can be written as

h(T) =min {[R(z) - TT"+ G(2)}. (22)
This representation allows for a complete characterization of h (see Figure 2):

Proposition 7. The function h is finite, nonnegative, nonincreasing and convex. Its
asymptotes are given by [T,— T]", where T, is the finite number

T.:= inf (R(2)+ G(z)) = R(d).

In fact,
W(T)=T,—T iff T=<T,=sup{R(z): zminimizes R(z)+ G(z)},
h(T)=0 if T=T,= R(b).

Since all a, = 0 it holds that T, = 0. Moreover, T, < T, < Ty< 0, and T, is finite iff all
b; are finite.

LS @
(Ta)

) N

n(Te

O

0 & 1

Fig. 2. The function  and its conjugate function k. Slopes are indicated by (+); T* and a are related
by subgradient duality.
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Proof. The first statement is trivial. Since for all zeR"

R(z)+ G(z)=max Y 2;+Z[5—Z.~]+

1€ B, i

=max{ Y E+ T [a-E+ T [a—z(r}

J icB, i€B, i€ B,

=max ¥ £=R(§)
JieB,
it follows that T, = R(£). The infimum in the definition of 7. is attained, since one
might restrict the attention to z=a (=0), and R(2)+ G(z)>» @ if ||z|| 300, z=0.
Consequently, T, = R(a)=0. Also,

AT+ T= mg*q {max(R(z), T)+ G(2)}=T.

and for T small enough the difference is arbitrarily small:

h(T)+T-T. =m_Lq {max(R(z2)+G(z)-T.,, T+ G(z)-T.)}s¢

if T<R(z,)—¢eforaz, €eR" with R(z,)+ G(z,) < T.+ & Therefore limy, _o (h(T)+
T)=T.; the limit is attained for T<T,, but h(T)>T.—T if T>T,, both by
definition of T,. Clearly h(T)= 0. Moreover, since lim, .. G;(z) = 0, there exists a
z, e R" with G(z.)=< ¢ and

[R(z)~Tj"+ G(zl)<e if T=R(z)),

so that limy.. h(T)=0. It is easy to show that h(T) >0 for all tcR unless all b,
are finite and T=R(b). O

Corollary 8. For T=T,, z*€R" is optimal for D(T) iff z*=b and R(z*)<T. For
T<T, z*cR" is optimal for D(T) iff z*<c arg min, (R(z)+ G(z)) and R(z*)=T.
In particular, R(z*) = T if z* is optimal for D(T) and T=T, or T=T,.

Proof. By substitution of h(T)=[T.~T] in (22). O
Note. T, < T < T, implies also R(z*)= T, see Corollary 11.

The values TeR with T> T, are not restrictive in problem P(T) since in that
case Py(R(£)=<T)=1 for all feasible distributions H. On the other hand, the
specification of T in (—o0, T;]is very demanding in the sense that Py-(R(£§)=T) =1
for the worst-case distribution H*. Both statements are easily derived by the
substitution h(T)=[T.~ T]". In problem PP(a) the optimal T* are characterized
by —~a € 0h(T%),sothat TEe (T, T,) ifa € (0, 1) with lim, o T% = Ty, lim,,, T5=T,.
Values for T% outside [T}, T,] can only occur if a =1 (but then also T, itself is
good) or if « =0 (but then also T, is good).
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The number T, has an interesting interpretation as the mean value of a certain
distribution @_. Indeed, the subgradient of A determines the function

@ (1):=1+min{u: ucdh(t)}, teR, (23)

and from the characterization of k in Proposition 7 it follows that @, is a probability
distribution function of a random variable 7 with support in [ T,, T,]. Representing
h as the integral of its subgradient (see [29, Theorem 24.2]) we get

h(T)=I (1—¢c(t))dt=I[t—T]" do. (1), TeR, (24)
,

so that
I tde. ()= Tlerco I max(t, T)dd (1) = Tlin_1 (h(T)+T)=T..

The distribution function @, is interesting by itself since for all TeR

h(T)= sup  EulR(§)~T] =Es[r-TJ"

HcX(F,,.., F,

n

In general, there is no distribution of ¢ in #(F,,..., F,) for which 7= R(£) is
distributed according to @. The existence of such a distribution is equivalent to
having the same worst-case distribution for P(T) forall Te R. @, can be interpreted
as the smallest upperbound for all feasible distributions of 7 in the sense of convex
ordering of probability distributions (see [25, 27]).

It is well-known, that for deterministic time durations z, i=1, ..., n, the project
completion time R(z) can be described in terms of flows in the PERT network.
Indeed, augment the network with an arc 0 from sink to source, and denote the
flow in arc i by 7, i=0,1,...,n A flow is called a feasible circulation of the
augmented network if in each arc the flow is in the direction of the arc (7; = 0) and
if at each node the flow is conserved. Clearly,  is then the total flow in the original
network from source to sink, and 7; < 7, Vi It is easy to see, that

R(z)=max{ Yz mwell, 7r<,=1} (25)
i=1

where [T is the polyhedron in R"*' corresponding to all feasible circulations. A
similar representation by flows is possible for the stochastic case. First we define
fori=1,..., n the ‘concave conjugate’ function G, of G,

n

Gi(m)=inf {mz+G(z)}, meR, G(m)=% G(m), 7eR™"
2, 1

(26)

The graph of the function G, is given in Figure 1.
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Proposition 9. G.(w,) =—¢ if ;<0 or w,> 1, and
k)

Gi(ri)zj 'F,“](l"'t,)dt,, OS 7T,'S1, (27)

Q

where F;' is any real function on (0, 1) satisfying F7'(1)=x= F(x)< (=< F(x+0).
On [0,1] G. is a finite nonnegative increasing concave function, with G;(0)=0,
G,(1) = &, and with slope b, in m, =0+ and slope a; in ;= 1—. Moreover,

Giz)= sup {-mz,+G(m)}, zeR. (28)
1

0 g,

The minimizing z, in (26) and the maximizing =, in (28) are related via subgradient
duality:

z€3G(m) & —medG(z) & G(m)=mz+Gy(z), (29)
and these conditions are equivalent to

Fi(z)<1-m < F/(z,+0). (30

Note. Whereas the subgradient of the convex function G, is
G, (z)={meR: Gi(x)=G,(z;)) + 7 (x—z)VxeR}, (31
the definition of the subgradient (or supergradient) of the concave function G, is
aG,(m)={z.eR: G.(y)<G,(m)+ z(y—m) VyeR}. (32)

The equivalence in (29) is illustrated in Figure 1.

Proof of Proposition 9. (28) and (29) are a direct consequence of the fact that
-—G.(—m) is the convex conjugate function of G (see [29] Theorem 23.5). Formula
(27) is true, since it gives the correct supergradients (see (21) and (29)) and the
correct value at m, =0 (see (26) and (29)). Since Gi(z,)= £ — z; with equality for
z, =< a, it follows that G.(l) = £, Finally, the statement on the directional derivatives
in 0 and 1 follows from (29), and (30) follows from (21) and (29). O

By performing a dualization we shall give a representation of the optimal value
function h of P(T)in terms of circulations in the augmented network. Similar results
hold for the optimal value function h of PP(a), which can be interpreted as the
concave conjugate of h (see also Figure 2).

Theorem 10
P(T): h(T)-——maﬁ({-—m,T+G(7r):m,sl}, TeR,

DD(a): E(a)=m_aﬁ({(§(7r): m,=a}, O0sa=l.



W.K. Klein Haneveld / Robusiness againsi dependence in PERT 169

Moreover, h and h determine each other by conjugacy:

E(a)=;n£{ar+h(r)}, a €0, 1], (33)
h(T)= sup {—aT+h(a)}, TeR. (34)
ael0.1]

In particular, the minimizing T in (33), (i.e. the optimal solutions of PP(a)) and the
maximizing « in (34) are related via duality of subgradients (as defined in (31) and
(32); see also Figure 2):

Tesh(a) & —acoh(T) © h(a)=aT+h(T). (35)
These conditions are equivalent to
D (T)<=1—-a<sP(T+0) (36)

where @_ is the convex upperbound of the distribution of R(¢) as defined in (23). Also,
the slope of hina =0+ is Tyand ina =1- itis T,; and h(0) =0, h(1)=T,.

Proof. From (22) it follows that
-y=<0
h(T)=min y+ G(2): —y+Z,eB'ziST,j=1,...,p . (37)
" YER,zeR"

This convex program is stable (the optimal value stays finite under perturbation of
the right hand sides), therefore h(T) is also the optimal value of the dual of (37),

h(T)= max { inf  L(y,z;A) A 20}
AcR” L (uzyer™!
where the Lagrangian function is defined by
P P

P
Ly, z;A)=y+G@)-T L A=y L A+ 2 A X z. (38)
j=1 =0 j-1 icH,

The dual objective function is —00 if ¥)_oA;# 1. If 7., A, =1 then it is equal to
-, T+ G(w) (see (26)) for 7= Z,’;, Ajand m=% {Asie B}, i=1,...,n If we
interpret A; as a flow through path j then =, is the flow in arc i, i=1,..., n, and
, is the total low from source to sink. Consequently, each A e R”"' with A =0 and
f_,o A, =1 determines a feasible circulation in the augmented network, with mo<1.
On the other hand, each circulation of this type can be decomposed into flows
through paths, so that we might eliminate A for =, leading to the formula in P(T).

By definition we have (33); using (22) we get
fz\(a)=n}in{aT+[R(z)—T]++G(z)}, O<a<l, (39)

so that without loss T = R(z) and

PD(a): h(a)=min{aR(z)+ G(2)}.



170 W.K. Klein Haneveld / Robustness against dependence in PERT

Completely similarly to the derivation of the formula in P(T) from (37) the formula
in DD(a) follows from PD(a). Since h behaves like G; with F; replaced by @,
the remaining statements follow directly from Propositions 7 and 9. (1

Corollary 11. If T, < T < T, then each optimal solution z* for D(T) satisfies R(z*) =
T.

Proof. If z* solves D(T), then y:=[R(z*)~ T]" and z:= z* solve the stable convex
program

min {y+G(z): R(z)-y<T,-y<0}.
Y.z

Let @ and 8 be multipliers for the constraints, then the dual problem is

max inf{—~aT+y(l-a—-8)+G(z)+aR(z)}

a,f3=0 v,z

so that B =1~ «a necessarily, and with PD(a) we get

Jmax {—aT+mzin {aR(2)+ G(z)} = max {—aT+ﬁ(a)}.
Optimal values for @ and B are therefore determined by T coh(a*), that is —a*e
ah(T), see (35), and B* =1-a®* Consequently a*>0 and B*>0if T, <T<T,,
and the complementarity conditions imply R(z*)= T. If T= T, or T = T, this result
was already proved in Corollary 8. 0O

For h(T) we have a ‘project planning representation’ in ﬁ( T) and a ‘flow
representation’ in B( T) which are dual to each other. By reformulation of the
Kuhn-Tucker conditions we get

Theorem 12. Duality of P(T) and D(T), T R.

The circulation 7* ¢ II with w¥ <1 is optimal for P(T) and z* € R" is optimal for
D(T) iff the Sollowing conditions are true.

(a) (30) holds fori=1,...,n

(b) If m¥>0 then ic CA(z*), i=1,...,n

(c) If >0 then R(z¥)=T, if n¥ <1 then R(z*)< T.
For any =&, —w§ € oh(T).

Proof. The Lagrangian L defined in (38) has a saddle point (y*, z*; A¥*) iff the
following conditions hold.
(i) Primal feasibility (and optimality): y*=[R(z*)- T .
(ii) Dual feasibility: A*=0, T7_oA¥=1.
(iii) 0€d,.L(y*, z*;A*): (29) hence (30) holds with #¥:=% {A¥:ie B}, i=
1,...,n
(iv) Complementary slackness: Ay*=0, A¥(Y, 5 zF—y*~T)=0, j=1,...,p,
or, equivalently: I
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if A¥>0then R(z*)< T, and

if A¥>0foraj=1then R(z*)=T and je CP(z*).
Corresponding to every A* satisfying (ii) a 7* e IT with #§ =<1 can be defined by
af =Y {Afrie B}, i=1,...,nand ¥ =37  AF=1-A{. Reversely, each 7* e [T
with 7§ < 1 can be decomposed (not uniquely, generally) into flows A¥ =0 in paths
j=1,..., p, and the same relations hold. It is an elementary exercise to show that
these A — 7 transformations make (i)-(iv) equivalent to a - ¢. Use has to be made
of: je CP(z*) & ie CA(z*) for all i € B, Finally, if #* € IT solves P(T), then a := 7
solves

max {—aT+maﬁ( {G(w): T = a}} = max {-aT+ ﬁ(a)}

Osasl

so that — 7 € 3h(T), see (35). O
Similar relations exist between the solutions of PD(a) and DD(a).

Theorem 13. Duality of PD(a) and DD(a), 0< a < 1. The circulation 7* ¢ IT with
w¢ = a is optimal for DD(a) and z* is optimal for DD(«a) iff the following conditions
are true.

(a) (30) holds fori=1,...,n.

(b) If ¥ >0 thenie CA(z*),i=1,...,n
For any such z*, T:= R(z*) solves PP(a). All optimal solutions T of PP, satisfy
T*coh(a), so that T,<T*<T, if 0<a <l.

Proof. The first statement is proved similarly as in Theorem 12. The last claims
have been shown before (after Corollary 8, and (39)). O

We now shall characterize the worst-case distribution(s) H*, the optimal sol-
ution(s) of P(T). From Theorem 1 and 6 it is clear that the solutions z* of ﬁ(T)
provide information on the support of H*. Moreover, it is not surprising, that the
optimal flows 7* in P(T), which problem is the dual of the reduced dual of P(T),
can be interpreted in terms of H*: it will appear that the lows are criticality numbers
based on the distribution ‘H*. Define the following orthants in R":

Ky={xeR": x=<0}, K={xeR" x,20if ic B, and x; <0 if i¢ B}
forj=1,...,p
and also the index sets
CPr(z):= {0} if R(z2)< T,
CP+(z)={0} U CP(2) if R(z2)=T,
CP+(z)=CP(z2) if R(z)>T,
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Lemma 14. Forall x,zcR"
R(x)=R(z)+ ¥ [x;—z]". (40)
i—1

Equality holds iff x ~z€\,ccpiz) K;. If x—z€ K; and j€ CP(z) then je CP(x) too.
Proof. The inequality (40) follows from

Yy x,= ¥ z,+z [x;—z]" ¥xVzVj (41)

< B, e B,

In (41) equality holds iff x — z € K. Therefore, je CP(z) and x - z € K; imply equality
in (40), together with je CP(x). On the other hand, if equality holds in (40) then
for any je CP(x)

Y xi=R(x)=R(z2)+ Z [xi—z]"= ¥ z+ Z [x; - (42)

icB, i B,

so that equality must be true in (41) and (42). Hence x —z€ K; and je CP(z). O

Theorem 15. In order that H* ¢ #(F,, ..., F,) is optimal for P(T) it is necessary and
sufficient that its support is contained in X *(z*), with

X¥z)=z+U{K,: je CPr(2)}, (43)
J
where z* is any optimal solution of D(T).

Proof. From Theorems 1 and 6 it is clear that it is sufficient to prove that X*(z) is
the same set as

Wir(z) = {xe R":[R(x)-T]"=[R(z)-TI" + i] [x; - zi]+}- (44)

First we shall show that X*(z)c Wi(z). If R(z)=<T and x € z+ K, this is trivial
since x < z implies R(x) < R(z) =< T so that each term in (44) vanishes. If R(z)=T,
J€CP(z) and xe z+ K, then

R(x)=R(z)+ Z [x. -
(Lemma 14), so that

R(x)=T and [R(x)-T]"=[R(z)-T]* + i [x,—2z]".

In order to prove the reverse inclusion, let x e Wr(z). Suppose first that R(z)<T.
Then [R(x)-T]" =Y _,[x,~ z]". From (40) we know however, that

R(x)<R(2)+ ¥ [x-z]"<T+ 3 [x-z]".
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Consequently, R(x)- T<0and ¥ |_, [x;~ z]" =0 so that x € z+ K. Suppose now
that R(z) = T. If x —z € K, we have nothing to prove, so assume Y./_ [x;-z,]" > 0.
Since xe Wy(z) it follows that R(x)= T, and that equality must hold in (40), so
that xe z+_J; {K,: je CP(2)}. Finally suppose R(z)>T. Then x € Wy(z) implies
also equality in (40), since now [R(x)— T]" = R(x)~ T because of [R(x)~-T] =
[R(z)-T]">0. O

The structure of the support of a worst-case distribution H* shows the dependence
of the random variables ¢, ..., £, under H*. For example, in the most interesting
case (T, <T=<T,) we have T=R(z*) and (43) indicates that with probability 1
there are only two possibilities for the realisations of ¢ in relation to the promises

z*:

either  all activities are ready in time: £ =<z*Viand R(¢)<T,

or the project has a delay due to lateness of the activities of one critical
subpath: 3j e CP(z*), not necessarily unique, such that ¢ <z¥Vig B,
whereas £ =z} Vie B; (and strict inequality holds at least for one ipe B)
so that je CP(¢) and R(&)Y>T.

Theorem 15 indicates that the worst-case distributions H* might be constructed
by conditioning upon z* + K, j € CP1(z*). Any probability distribution with support
in z*+{_J]_, K; may be decomposed into

P
H(x)= .ZU A H(x), xeR" (45)
o
withA,=0,¥7_ A; =1, where H, is a probability distribution with support in z* + K.
The question arises: how to define A; and H, in order that H solves P(T)? We will
show that the conditions on A; can by characterized by means of the optimal
solution(s) #* for P(T). The conditions on the H, appear to be only conditions on
their marginals. For the formulation of these conditions, we need two conditional
distributions derived from F; with use of #F and z¥, i=1,..., n, where 7* solves
P(T) and z* solves D(T). If z*<a, then

Gi(x)=0 ifx =<z},
=1 if x,> 2%, (46)
If z¥>a; (hence 0< F,(z*)<1~—7¥=< F,(z¥+0)) we define for x;eR
G (x:)= B+ Pr(&<x|& <zF)+(1-B) - Pr(& <xi|é=z}) (47)
where B; €[0, 1] satisfies

1 - Bi I‘B:
1—wF F(zF) F(2F+0) (48)
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Clearly, if F,({z}}) =0 then the value of 8; does not matter, but if F,({z*})>0 we
must have

_F(zh) F(zF+0)-(1-m¥)

C1-nt F({z¥})

B

It is easy to show that in all cases G; is a probability distribution function with
support in (—oc, z¥]. If z¥ = b, we define

Gl (x)=0 ifx =<z},

(49)
=1 if x,>z¥.
If zF < b, (hence Fi(z¥)<1-7¥=<F.(z¥+0)<1) we define for x;,eR
Gi(x)=y- PF,(gi<xi|§i>z:'k)+(l - Yx)PF,(‘fx‘<xi|§t> z¥) (50)
where vy, €[0, 1] satisfies
1 [ 1_ i
— = Y Y (51)

+ X
wF 1= F(zF) 1-F(z¥+0)
Again, if F;({z¥}) = 0 the value of y; does not matter, but if F,({z*}) > 0 we must have

_1-F(z¥) F(zf+0)-(1-7)
R F:({z}H

Y:

In all cases, G| is a probability distribution function with supportin [z¥, ). Finally,
define for i=1,...,n, B;''={j:0<j=<p, ie B;} with B,:=9. Hence 0¢ B;' for all
i; B'#@since UJ., B,={1,...,n}.

Theorem 16. Let z* be optimal for D(T).
(a) Let Hbeoptimal for P(T),andletA;,j=0,1,...,p, begiveninits representation
(45). Then meR""', defined by

P
7T0:=1‘A0= z Aj, ;= z Aj, i=1,...,n, (52)
J=1 jeB, !
is optimal for f’( T).
(b) Let w* be optimal for P(T). Then H, defined by (45) and (52) with == m*,
is optimal for P(T), if He #(G,...,G,), j=0,1,...,p, where

G,=G; ifigB, and G,=G/ ifieB,.

Proof. (a) Let H solve P(T). From Theorem 15 it follows that without loss we
may take A, =0 if j& CPr(z*). We shall show that 7 defined in (52) satisfies the
conditions of Theorem 12. It is obvious that = is a feasible circulation in the
augmented network, with 7,=<1. If 7m,<1 then A,>0 hence 0 CP+(z*) so that
R(z*)=T. If #,>0 then 3j=1 with A;>0, so that je CPr(z*) and R(z*)<T
follows. In the same way, if 7,>0 for an i= 1 then 3j=1 with i€ B, A;> 0 so that
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j€CP(z*) and ie CA(z*). (30) follows from the fact that F; must be the i-th marginal
of H. Indeed,

Fi(z7)= Py(§,<zf)=YL APu(§<zf)< ¥ N=1-m; (53)

e8!
where the inequality is a consequence of PHj(z*+ K;)=1 so that

Py(&<z¥)=0 ificB,

(54)
=1 ifigB,.
Similarly
Py(¢<zf)=0 ifiecB,
. (595)
=1 ifie B,
so that
Fi(zf+0)=Py(&<z) =L ANPu(&<zi)= ¥ A=1-m (56)
g jEB,l

From (53) and (56) follows (30), which completes the proof.

(b) Because of Theorem 15 we have to show that H has the correct support and
the correct marginals. Its support is contained in X%(z*), see Theorem 12, since
A;>0 for a j=1 implies R(z*)<T and #¥>0Vie B, Hence ie CA(z*) for all
i€ B, so that je CP(z*), and A,>0 implies 7§ <1 so that R(z*)= T. In order to
show that F; is the i-th marginal of H, it is sufficient to prove

Py (& <x;)= Fi(x;) for all x; <z¥, (57)
Py(&>x)=1~-F,(x;+0) forall x;>z¥* (58)
Since Py (£ <x;)=0if x; <z} and i€ B;, we have for x; <z}

Py(&i<x)= Y A Py(&<x))=(1—-mF)Ps:(&<x).

seB;!

If z} =< a, the right-hand side vanishes, so that (57) holds in that case. Suppose now
that z*> a;. Then from (47) and (48)

Bi + I_Bi
Fi(z) Fi(zf+0)

PG,_(‘fi<xi)=( )Fi(xi)= Fi(x;)

1-=wF
so that (57) is also true if z*> a;. Similarly, (58) follows from

Py(&>x)= X% Aj'PH,(§i>xi)=W?PGf(§r>xi),x:>z:k,
jes/!

using (49), (50) and (51). [C

In general many worst-case distributions exist for P(T), T fixed. Even if ﬁ(T)
and P(T) have unique solutions (as occurs e.g. for T, <T < T, if G is strictly
concave and differentiable; in particular if each marginal distribution has a positive
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density on (a, b;)) the corresponding A; are not unique, generally. Depending on
the structure of the network one has no/little/ample freedom in decomposing a
feasible circulation into flows through paths. Moreover, the freedom of choice of
H, in (45) is enormous. Although no attempt has been made to characterize all H,
it is clear from Theorem 16 that it is sufficient to prescribe only their marginals. In
fact, Theorem 16b specifies for each relevant j a distribution problem on z*+ K|,
comparable with P’ or P in Section 2, with the difference that each feasible solution
is good: one may take the independent solution, the NW Rule Solution, etc. The
distinction between different worst-case distributions does not seem to be very
important, since the relevant information is contained in # and A which have an
interpretation as criticality numbers. This is most easily seen for continuous distribu-
tions F; as shown in the next theorem.

Theorem 17. Suppose that F, has a positive density function on [a, b;], for each
i=1,...,n Then P(T) has a unique solution m*=n% for T,< T=<T,, and each
optimal solution H* = H%. for P(T) satisfies then:

Py«(R(£)>T) =my=1-A%, (59)
Py«(R(§)>T ieCA(E))=nf, i=1,...,n (60)
Pu-(R(§)>T,jeCP(£)=AF, j=1,...,p, (61)

where A\*e A:={AeR""": A =0,%7_ A, =1} is related to w* by (52); A* may depend
on H*. In fact, for each X € A satisfying (52) there exist corresponding worst-case
distributions H*,

Proof. Consider ﬁ(T) for T, < T < T, Since necessarily R(z*)< T (Corollary 11),
the set of optimal solutions of D(T) can be written as

Z*=arg er), {G(2): R(z)=< T}

Obviously, Z¥:={uecR: 3z* e Z* with z} = u} is a closed convex set, i=1,...,n
Since F; is strictly increasing on [a, b;], Z} can only be more than a singleton if it
is contained in either (~0, a,] or [b, ). In all cases, 7¥ is unique, since F, is
continuous (see (30)). Of coursé, uniqueness of 7¥, i=1,..., n, implies uniqueness
of 7g. In order to show (59)-(61), represent any worst-case distribution H* by (45),
with A = A*€ A satisfying (52). Since R(z*) =T,

z*+int Koo {x € X(z*): R(x) < T} cz*+ K,,
z*+int Ko {x € X7(z*): R(x) > T, {j}=CP(x)}c z*+ K,, j=1,

the events {R(x)= T} and {|CP(x)|=2} are contained in the (partly common)
boundaries of the translated orthants, which have zero probability under H* since
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F.({z*})=0Vi Therefore,

Pu(R(§)< T) = Pus(R(£)< T) = Pus(2* + Ko) = A%,
Pu~(R(£)> T, j€ CP(£)) = Py-(R(£) > T, {j} = CP(£))

= Py(z*+ K)) = A}, j=1,
Pu(R(§)>T,i€CA(£))= L Pur(R(8)>T;jeCP(£))

jes!

= z Aj:‘_ﬂ':'k. l_—_]

jeB !

From the proof it is clear that (59)-(61) also hold for discrete marginals F, if z*
can be chosen such that F,({z¥})=0Vi; but this is not possible in general. If
F,({z¥}) >0 for some i the analysis is more difficult since the common boundaries
of the translated orthants get positive probability. If in (45) the representation is
changed into

H:=F{A;- H:je CPi(z*)}
J

with P;,I(z*+ 12,) =1, where 12,.c K, \; IejA:Uj K, and Iej A 12,, =@ for j # h, then
it is not difficult to show, that (59)-(61) generalize to
Py-(R(§)>T)< #y=1-4,< Py-(R(£)=T),
Py(R(£)> T, {j} =CP(£))<k; < Pu-(R(£§)= T, je CP(¢)), j=1,
Py-(R(£)>T,ie CA(£),|CP(§)|= 1)< 7, < Py-(R(£) = T, ie CA(¢)),
i=1.

As a final remark, we notice that the characterization of the optimal solution of
P(T) is at the same time applicable to problem PP(a); just substitute T:= T%.

4. Worst-case marginals

In the previous section we assumed that the marginal distributions F; are known
completely. From a practical point of view this assumption is not realistic. In this
section we shall show that the results on worst-case joint distributions can be
combined in a natural way with a minimax approach to the marginals, too. Then
the problem P(T) is replaced by

h_;(T)=sup{ sup Ef(f):ﬁeg:,,i=l,...,n},
)

Hec¥(R,.. F,

where %; is the class of all distribution functions F; compatible with the partial
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information. From the previous section we know, that
n
hg(T) =sup min (f(z) + Y Eg[é- z,]*).
#, rem” =1

If %, is such, that an F¥ ¢ %, exists, for which
max Ei.l¢~2) = Eps{&—-2) forallz,eR", i=1,...,n,
1 €F

then sups and min, may be interchanged. In that case the analysis of Section 3 is
applicable directly, by taking for F; the worst-case marginal distribution F¥.

Examples. If %, is the class of all distributions with given bounded range [a, b,],
then F¥({b,})=1, since r(x):=[x —z]" is nondecreasing. Less trivial is the situation,
if also the mean value £ is known; then the convexity of r implies that F¥ is the
two-point distribution (see e.g. [40, 4])

bl_é

b, —a,

fi_al

. 62
b—a (62)

F*({a} = Fr({b}) =
The same author shows, that if %, is the class of all symmetrical unimodular
distributions on [a,, b,], then F¥ is the uniform distribution on [a, b,]. If #, is the
class of all unimodular distributions on [a, b,] with a given mode m, then F7 is the
uniform distribution on [m, b,] (see [2]). This last specification of %; is the most
interesting, since it contains precisely the information which usually is supposed to

be known in PERT networks.

5. Numerical calculations

The convex, polyhedral function f(z) =[R(z)~ T]® can be represented as the
solution of a LP program (as in (37), or in a more common dynamic formulation
in terms of earliest times for all nodes). Therefore, ﬁ(T) and PD(a) are simple
recourse models for which good algorithms exist. For example, if all F, are discrete
then also each G; can be put into a LP form, so that ﬁ(T) and PD(a) are LP
programs. Of course, also the original programs P(T) and PP(a) are then finite
LP problems but theift size is tremendously larger. If the F, are uniform distributions,
ﬁ( T) and PD(a) are quadratic with linear constraints; in the general case the
objective G(z) is separable convex. Similar statements hold for the flow formulations
f’( T) and DD(«a); e.g.

Gl(ﬂl) =m?X { Azl t]yj: Zl y] =Ty Osy]sp] VJ}
3 j= 7=

if’ F, is the discrete distribution F,({t})=p,j=1,...,m, with 4, > ,>--->1, and
):;":, pi =1, p;> 0. Moreover, the flow structure may be exploited to devise special
algorithms (see [3]). In fact, in [3] a simple recourse model, which is slightly more
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general than D(T), is taken as starting-point, and a well-known network flow
algorithm is adjusted to solve the problem with discrete distributions.

Inorder to get an idea about the influence of alternative specifications the problem
DD(a) has been solved for the project network of Figure 3. This network is a slight
modification of the Electronic Module Development Project as described in [26, p.
216). Apart from the network structure, the only information on the duration of
activity i is given by a, m; and b; (see Figure 3), where [a, b;] is the support and
m, the mode of F; This is the ‘standard’ information needed for PERT. According
to this heuristic, the distribution of the project completion time can be approximated
by the normal distribution N (u, 0%), where y = Tics, &, ol= Tics, oiforaje CP(£),
with

z it i+ b b — a
,.:=a—4;n— and a,~:=—63- for all i.

In the example u =47.7 and o =13.3. In spite of its charming simplicity it is not
surprising that the PERT approach has been criticized for its dubious probabilistic
justification. It seems to us that the minimax approach as worked out in Section 3
is an alternative. One might solve P(T) (via D( T) or B( T)) for one or more relevant
values of T, or solve PP(a) (via DD(a) or PD(a)) for one or more relevant values
of a, or solve P(T) or PP(a) for ‘all’ values in order to get the convex upperbound
&. We solved PP(a) for a range of a-values, under four assumptions on the
marginals:

A. F, is triangular on [a, b ], with mode m,.

B. F, is uniform on [m, b,].

C. F; is restricted to {a, b;}, with mean value m, see (62).

D. F, is restricted to {a, b, m;}, with mean value m; and F,({m,}) =1.
Distribution A seems to be a reasonable distribution compatible with the underlying
interpretation of the data [a,, m, b;], whereas B is the worst-case unimodal distribu-
tion. In C and D the value for m, is interpreted as the mean value & of £ rather

Table 1

The optimal solutions T# and the corresponding optimal values A(a) for PP(a) for different distributions
and a-values; T, =T¥, T,=h(1), T,=T¢

a=10 09 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
T%
A 468 493 509 524 540 556 574 594 619 653 760
B 580 594 607 622 636 651 665 682 702 724  76.0
C 414 454 460 460 510 560 560 Ti.0  T1.0 760 760
D 42.1 42.1 441 44.1 486 496 520 550 570 Ti.0  76.0
h

56.5 51.7 46.7 41.5 36.2 30.7 25.1 19.3 13.2 6.9 0.0
66.0 59.7 53.7 47.5 413 348 28.2 21.5 14.6 7.4 0.0
57.0 533 48.7 4.1 393 34.0 28.4 22.2 15.1 7.6 0.0
52.0 48.6 43 39.9 35.2 303 25.0 19.8 14.2 7.6 0.0

o0 = >
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than its mode; C is the worst-case marginal for that situation, whereas D is a rather
arbitrary ‘unimodal’ discrete distribution with the same mean value. The results are
summarized in Table 1. The necessary calculations have been carried out by Evert
Jan Bakker and Jan Blaakmeer, to whom I am much obliged.

Notice that Table 1 gives also quantile points of the convex upperbound distribu-
tions @.: 1 —a as a function of T%. Table 1 shows, that the uniform distribution B
indeed is much less favorable than the triangular distribution A; the two-point
distribution C gives much higher values for T than the three-point distribution D
for not too large values for a. Of course, in any case the solutions coincide
(approximately) for a = (approximately) 0. For distribution A and a = 0.5 more
details about the solutions are indicated in Figure 3: for each activity i the values
for #¥ and z¥ are indicated. If, loosely speaking, we interpret a as the maximal
acceptable ‘risk’ which we are ready to take under unfavorable conditions, 77
indicates the (uniquely) determined contribution of activity i to that risk. If ¥ =0
then activity i is not important in that respect, and the promise z¥ can be taken
maximal = b, but the more 7¥/a is close to one, the more risk we have to take in
activity i. By the way, this example illustrates also that the criticality numbers of
the paths are far from unique: every flow passes node 18, and the flow in each
sub-path from source to 18 and in each sub-path from 18 to sink is uniquely
determined by 7*, but there are many possibilities to combine the flows in sub-paths
to flow in paths.
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Stochastic linear programming with simple recourse arises naturally in economic problems and
other applications, One way to solve it is to discretize the distribution functions of the random
demands. This will considerably increase the number of variables and will involve discretization
errors, Instead of doing this, we describe a method which alternates between solving some
n-dimensional linear subprograms and some m-dimensional convex subprograms, where n is the
dimension of the decision vector and m is the dimension of the random demand vector. In many
cases, m is relatively small. This method converges in finitely many steps.

Key words: Stochastic Linear Programming, Convex Program, Linear Program,

1. Introduction

The standard form of stochastic linear programs with simple recourse is as follows
min cx+ E(Q(x, £))
st. Ax=b, (SLP)
x=0,
with
Q(x,§)=min g7y +q7y"
st. y -y =§&-Tx, (RP)
y' =0, y =0,

where x, ceR", y~, ¥y, g%, ¢ €R™, beR* Aec L(R",R¥), Te L(R",R™) and £ is
an m-dimensional random vector with known distribution F, £<, g=g*+q = 0.

One of the economic interpretations of this model is as follows: x is the decision
vector, which is nonnegative. Ax=0>b is the resource constraint on x, T is the
technology matrix which yields the linear transformation of the activities in finished
products w = Tx, £ represents demand. The goal is to minimize the total expected
cost which consists of two parts: the production cost ¢x and the penalty cost. For
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* Current address: Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh,
PA 15260, USA.

183



184 L. Qi / Stochastic programming with simple recourse

the ith product, i=1,..., m, the output w; is to be compared with the observed
value £ of the stochastic demand &, Any discrepancies between ¢ and w, i=
l,...,m, are penalized as follows:

if £, < w; then the penalty is g, (w; — &),
if £,= w, then the penalty is q; (£ — w,).

The first eventuality corresponds to excess product, the second to shortage.
The equivalent deterministic problem can be written as

min  c¢x+ ¢(w)

st. Ax=b,
(EDP)

Tx =w,

x=0,

where weR™ represents the output as mentioned above, ¢s(w)=)::"=| bi(w;) 1s
separable convex and continuous,

(W.—f.-)dﬁ(f.-)ﬁ“qi"{ (&—w) dFi(&),

£y

dw)=q, J‘
£ <w,

F; is the marginal distribution of &, i=1,...,m [6,12,13].

Suppose that m + k is small comparing with n. This assumption is practical. For
example, in the stochastic transportation problem [I, 8, 15,16, 17,18], n=m xk.

There are simplex-type methods to solve (EDP) by discretizing ¢ [3, 11] (for
more references, see [10]). Usually, this will considerably increase the number of
variables and will involve discretization errors. To avoid these two drawbacks, we
describe here a method which alternates between solving some n-dimensional linear
subprograms by fixing w and some m-dimensional convex subprograms by restricting
n-m-k activities to zero levels. In Section 2, we define such subprograms and discuss
their solvability. In Section 3, we give the algorithm. In Section 4, we prove the
convergence of our method.

2. Subprograms

Definition 2.1. For any fixed w e R™, the following linear program is called a linear
subprogram of (EDP) and denoted by L(w):

min  ¢cx+ ¢(w)

st. Ax=b,
L(w)

Tx =w,

x=0.

Without confusion, we also denote its optimal value by L(w).
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The constant term ¢(w) in the objective function does not affect the solution.
However, we keep it there for comparison with (EDP).

Theorem 2.2. Suppose (EDP) is solvable. Then L(w) is solvable if and only if it is
feasible.

Proof. ‘Only if” is obvious. For the ‘if” part, it suffices to know that L(w) is bounded,
then we know that L(w) is solvable according to the duality theorem of linear
programming. However, L(w) cannot be unbounded, since otherwise (EDP) would
be unbounded. This proves the theorem. [J

If (EDP) is solvable, then for certain w* L(w®*) will yield optimal solutions of
(EDP). Such w* is called a certainty equivalent of (EDP) [12, 14]. If we can find a
certainty equivalent, then we have almost solved (EDP). Our method will provide
a way to seek such a certainty equivalent.

Denote the support vector of x by supp(x).

L=1 ifx,#0,

(I =supp(x)) 3={1‘ =0 ifx;=0.

Definition 2.3. Let M be the set of all n-dimensional vectors with m + k components
being ‘1’ and others being *0’. Suppose that /€ M. The following convex program
is called a convex subprogram of (EDP) and is denoted by C(/):

min  cx+ ¢(w)

st. Ax=b,
Tx = w,
supp(x) </,
x=0.
Without confusion, we also denote its optimal value by C(I).

The following theorem is proved in [12]. Since it is important to our discussion,
we still give a proof here.

Theorem 2.4. Suppose (EDP) is solvable. Then there exists an I* € M such that C(I*)
yields an optimal solution of (EDP).

Proof. Suppose (x*, w*) is an optimal solution of (EDP). Consider L(w*). L(w¥)
is solvable by Theorem 2.2. Suppose x° is a basic optimal solution of L(w*). Then
there exists I*€ M such that supp(x®)</*. Then C(I*) yields an optimal solution
(x°, w*) of (EDP). O
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We call such I* an optimal support of (EDP). If we find an optimal support of
(EDP), we have also almost solved (EDP). The solvability of C(I), however, is not

so simple even if it is feasible and (EDP) is solvable. In fact, the solvability of
(EDP) only implies the boundedness of C(!).

Suppose € M. Then there are m+ k positive integers i, s
that | =i, <ip,<-: <ip,x<nand

=1,...,m+k such
| _{I if h = i, for some s,
"7 10 otherwise.

Let x, and ¢, be the m+ k dimensional vectors consisting of the i;-th components,

s=1,...,m+k of x and ¢ Let A, and T, be the submatrices of A and T, consisting
of the i,-th columns, s=1,...,m+k, of A and T. Then C(I) is equivalent to
min ¢, x,+d(w)

st.  A,x,=b,

T.x.=w,

X = 0.

Write B = (%). This is an (m + k) X (m + k) square matrix. Suppose G = B™' exists.
Then (2.1) is equivalent to

min ceG( b>+¢(w)
w w
s.t. G( b) =0.
w

(2.2)
Let .G =(g, h), where g€ R*, he R™. Then (2.2) is equivalent to
min Y [¢:(w,)+hw]+gb
w =1
’ (2.3)
b
s.t. G( ) =0.
w
Another equivalent foem of (2.1) is simply
min  cx.+¢(T.x.)
s.t.  A.x,=b,
x, =0,

(2.4)

We shall not discuss this here.

Remark 2.5. (2.3) is an m-variable convex program with linear constraints and a
separable convex objective function. There are many methods to solve it[2,4,5,7,9].
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The solvability of C(I) can be assured by some conditions on the random
vector &

Theorem 2.6. Suppose q =0 and {2, the support of the random vector &, is compact.
Then C(1) is solvable for any I € M if it is feasible and (EDP) is solvable.

Proof. If {2 is compact, then 2, the support of &, i=1,..., m, are also compact,
This also implies that £ exists and thus ¢ is finite. Since (EDP) is solvable, (2.1),
ie, C(I) is bounded. Then there exists feasible point sequence {(x., w')|r=
0,1,2,...} such that

lim(cx,+ 6 (w)] = Inf{C(D}.

If {(x;, w)|r=0,1,2,...} has a limiting point, then this limiting point will be an
optimal solution of C(/) since the feasible set of C(!) is closed and the objective
function of C(!) is continuous. Suppose it has no limiting point. Then it has a
limiting direction (x¢, w). Since the feasible set of C(I) is closed convex and the
objective function of C(I) is continuous,

limc. (x2+ AxS) + ¢ (w*+ Awe)] = Inf{ C (1)},

Now the only case for (2.1) failing to be solvable is that
C(X2+Ax) + ¢ (WP +Aw) > Inf{C (D)} > —o¢ VA=0.

But this is impossible since ¢(w®+Aw®) is linear for A sufficiently large (see 10.2
and 124 of [12]). O

3. The alternating algorithm

Algorithm 3.1. Starting from any I°e M orstarting from any w®<c R™, do the following
two procedures alternatively until the method stops in step 2. This (x’, w’) is an
optimal solution.

1. From I, solve C(I’) to get an optimal solution w’.

2. From w’, solve L(w’).to get a basic optimal solution x’*'. Pick I’"' €, such that

supp(x’*")y =7, (3.1

If there is more than one basic optimal solution of L(w’), we should choose x’*'
such that there exists I’"'€ M satisfying (3.1) and

cry< ). (3.2)

If no such /’*' can be found, or /"' =1’  stop.

Remark 3.2. To start this algorithm, we can pick any x°¢ {x| Ax — b, x =0} and let
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w®= Tx°. However, a good starting point should be a good estimate of the certainty
equivalent w*. According to our model, we can take w’= £

Remark 3.3. If L(w’) is nondegenerate, we can simply take

1! = supp(x’*).

Remark 3.4. This algorithm yields a sequence I°,I', ..., I’ = an optimal support. We
will prove in Section 5 that I" = I* for r# s. In this sense, it looks like a pivoting
method in M. However, I"*' is not necessarily a neighbar vector of I”. They may be
different in more than two components.

4. The convergence theorem

Theorem 4.1 (Convergence Theorem). Suppose that- q=0, that K=
{x|Ax =b, x =0} # @, that (EDP) is solvable and that the support of the random
variable & is compact. Then Algorithm 3.1 is well-defined and stops in finitely many
steps if it starts from a feasible point w°. Furthermore, (3.2) holds for every j in this case.

Proof. In Algorithm 3.1, C(l’) and L(w’) are always feasible if the algorithm begins
from a feasible point. Therefore, by Theorems 2.2, 2.6 and the hypotheses of this
theorem, we know that C(/’) and L(w’) are always solvable. In fact, it now suffices
to prove that (3.2) holds for each I’ which is not an optimal support. Then we get
the conclusion since M is finite. Suppose C(/’) has an optimal solution (%,, w’).
Let X be the n-dimensional vector whose compenents consist of X, and 0 correspond-
ingly. If % is not an optimal solution of L(w’), then there exists an I’*'€ M with

C(*y< L(w) < C(P).

Thus, suppose X is an optimal solution of L(w’). We shall prove that there is an
optimal solution of L(w’) such that the associated I”*' satisfies (3.2). Suppose that
w* is a certainty equivalent. Let x* be an optimal solution of L(w*). Since /’ is not
an optimal support,

oxX* + (W) <K+ plw').
Let

(x*, wh)=A(x, w)+(1-A)(x*, w*), 0<A<I.
According to the convexity of ¢, we have

o’ +p(wh)<cex+ p(w!) VO<A<I.
Suppose £* is a basic optimal solution of L(w”). Then

gt +p(wh)<oxt + p(wh) <cx+p(w).
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Now pick /" € M corresponding to the optimal basis of ¥*. We have
C(I")< & + p(w) < ek + d(w!) = C(I).
Therefore
P#P Yo<a<l.

Therefore, since M is finite, there exists a sequence {A"|r=1,2,...} such that
A">17, 1" =1""" for some I’"' € M. Let B be the basic matrix of (1), corresponding
to P7'. Then £=B7'(2) =lim,.. B™'(,%) =lim, .. x* =0 exists. Therefore, I'*'
also corresponds to an optimal basic solution of L(w’), and

c('"hY=c"y<cuh.
This proves the theorem. [

Corollary 4.2. Let x be defined in the above proof. Then a necessary condition for w’
to be a certainty equivalent is that ¥ be an optimal solution of L(w’). A sufficient

condition for w’ to be a certainty equivalent is that % be the unique optimal solution
of Liw’). O
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PREFACE

One may think of stochastic programming as simply a subfield of nonlinear
programming. The fact that the objective function or some of the constraints are
expressed in terms of multidimensional integrals does not change the essence of
the problem, at least in theory. However, it is precisely because the problem at hand
demands the evaluation of multidimensional integrals that its nature is altered in a
fundamental way from a numerical viewpoint.

Let us consider the following type of problem

find xe ScR that minimizes F(x)

where F(x)- E{f(x,w)}=[f(x, ) dP(w), and S is a closed set determined by
some constraints that could be of probabilistic type. For simplicity, let us consider
the case in which only the objective is given by a multidimensional integral with
respect to the probability measure P. Because the operator E has a ‘smoothing’
effect, this optimization problem usually has many desirable properties. For example,
if the integrand f is convex in x, then so is F. If f is differentiable with respect to
x or the measure P is absolutely continuous, then it usually turns out that F is also
differentiable. Thus, in principle the problem could be solved by relying on some
of the existing subroutines for nonlinear programming problems; all that is needed
is to appeal to a multidimensional integration subroutine to evaluate the function
F, its gradients, or subgradients, as the case may be. However, general purpose
integration subroutines are available only for the 1-dimensional case. In 2-
dimensions some serious difficulties already must be dealt with, and in 3-dimensions
subroutines are available only for very special cases. Typically, a stochastic program-
ming problem involves anywhere from 5 to 100 random variables, making it totally
impossible to rely on existing numerical integration subroutines. Naturally, some
efforts have been made to design multidimensional integration subroutines—and
some of the papers in this collection report the progress made in that direction—but
essentially they rely on, sampling techniques (involving the generation of pseudo-
or quasi-random numbers). This presupposes that the integrand is sufficiently easy
to evaluate, and for stochastic programming models that is the exception, not the
rule. The integrand f(x, @) is often defined implicitly, for example as the optimal
value of an optimization problem. Thus efficient procedures must avoid numerous
evaluations of the integrand.

Although the search for reliable multidimensional integration subroutines has not
been abandoned, the design of solution procedures for stochastic optimization
problems has been chiefly oriented toward methods that in one way or another
avoid coming to grips with this potential stumbling block. Excluding some very

v



Preface

specific classes of stochastic programming problems, the suggested solution strategies
can be divided into two major categories:

* ‘descent’ methods that rely on directions determined by statistical estimates of
the subgradients of F, and

e approximation methods that replace either the original distribution P by one
that would be more manageable or the integrand f by a ‘simpler’ one that would
make it possible to carry out the multidimensional integration.

All these possibilities are illustrated in the articles of this collection.

In Volume 1, the first three articles deal with evaluating multidimensional integrals
as they arise in stochastic programming (Szantai, Niederreiter) or obtaining bounds
for them (Gassman/Ziemba). The next group of three articles deal with approxima-
tion schemes. We start with a review of the existing results as well as some suggestions
for implementation (Birge/ Wets). Approximating by problem redefinition is illus-
trated in the article by Beale, Dantzig and Watson, whereas Andreatta and Runggal-
dier work by approximating the probability measure. Intimately related to approxi-
mation is the question of the stability of the problem under various perturbations,
in particular perturbations of the probability distribution function. This is the subject
of the contributions of Dupacova and Wang.

The remaining articles deal with specific procedures for solving particular or
general stochastic programming problems. In Volume 1, the articles by Klein
Haneveld and Qi deal with stochastic network problems. The structure of the
problems plays a very important role in the procedures they suggest. In Volume 2,
the first four articles deal with stochastic programs with recourse models
(Nazareth/ Wets, Wallace, Louveaux, Rockafellar/ Wets). Next, Komaromi suggests
a new dual-based procedure for solving problems with probabilistic constraints.
The last three articles introduce modifications of the stochastic-gradient method to
make the calculations of the step size more directly adaptive (Ruszczynski), to
include nonstochastic descent information (Marti/Fuchs), and to allow for its
application in the case where the decision variables themselves are probability
measures (Gaivoronski).

The decision to submit these contributions in the form of a Study was made at
the first meeting of COSP (Committee on Stochastic Programming) on December
1, 1983, at IIASA (International Institute for Applied Systems Analysis), Laxenburg,
Austria. These two volumes could very well serve as commemorative issues to mark
that occasion.

Andras Prékopa
Roger J.-B. Wets
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We consider solution strategies for stochastic programs whose deterministic equivalent programs
take on the form: Find xeR", y€R™ such that x=0, Ax=b, Tx=y and z=cx+ ¥ (x) is
minimized. We suggest algorithms based upon (i) extensions of the revised simplex method, (ii)

inner approximations (generalized programming techniques), (iii) outer approximations (min-
max) strategies.
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Tenders, Inner Linearization.

1. Introduction

The class of stochastic programs (with recourse) that we consider in this paper,
and to which we refer as having nonstochastic tenders, arise as models for the
following decision process. An (optimal) decision vector x must be selected when
some of the parameters of the problem are only known in probability, i.e. only in
a statistical sense, the actual cost depending in part on how well a transformation
of x, y = Tx matches a random demand or recourse vector p.

We think of y as a tender, nonstochastic if the transformation T does not depend
on the (unknown) values of the random parameters. For example, stochastic pro-
grams with simple recourse and fixed technology matrix are of this type. As we
shall see in Section 2, for stochastic (linear) programs, the equivalent deterministic
program can then be expressed as:

find xeR", yeR™ suchthat
Ax=b, Tx=y, x=0, (1.1)
and z = cx+ ¥ (y) is minimized.

The algorithms that we analyze could be viewed as procedures for convex programs
of the type (1.1) that seek to take advantage of the special structure, and to some
extent that view is certainly correct. In fact we expect that the suggested techniques

* Present address: CDSS, P.O. Box 4908, Berkeley, CA 94704, USA
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will also be efficient whenever nonlinear optimization problems can be cast in the
form (1.1). However, because stochastic programming problems present computa-
tional challenges of their own, it is their specific properties that are always in the
background of our solution strategies. For example, our title is intended to suggest
that the major task of the solution procedure is the finding of optimal or nearly optimal
tenders,

In Section 2, we review briefly the properties of stochastic programs that will be
used in the design of algorithmic procedures. In Section 3, we examine the issue
of what information can be made available and its cost, and we also exhibit some
important special cases when the objective and the underlying distribution functions
are such, that the equivalent deterministic programs can be conveniently and
inexpensively specified. We then turn to the three main solution strategies that we
consider here. They are based upon

(i) extensions of the revised simplex method,

(i) inner approximations (generalized programming techniques),

(iil) outer approximations (min-max strategies).

In order to give the essence of each solution strategy, we consider first, in Section
4, a very simple case, viz., equivalent linear programming formulations for finding
the minimum of a convex piecewise linear function of one variable. In Sections 5,
6 and 7 we then go into each one as it applies to our class of stochastic programming
problems. The detailed design and implementation of two specific algorithms can
be found in a companion paper, Nazareth and Wets (1985).

2. Stochastic programs with recourse: Nonstochastic tenders

We consider stochastic (linear) programs of the type
find x€ R™ such that
Ax=b, x=0, (2.1)
and z= E{c(w)x+ Q(x, w)} is minimized,

where Q is calculated by finding for given decision x and event w, an optimal
recourse y € R™, viz.

Qx, w)= m(ﬁ [q(y, w)| Wy = p(w) — Tx]. (2.2)

Here A(m,xn,), T(m,xn,), W(m,xn,) and b(m,) are given (fixed) matrices,
¢(-)(n,) and p(-)(m,) are random vectors, y+>q(y,-):R™—R is a random finite-
valued convex function and C is a convex polyhedral subset of R™, usually C =R%.
Because W is nonstochastic one refers to (2.1) as having fixed recourse. Tenders are
nonstochastic because T is fixed. With

¢=E{c(w)} and Q(x)=E{Q(x,w)}
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we obtain the equivalent deterministic form of (2.1):

find xeR™ such that
Ax=b, x=0, (2.3)
and z = cx+ Q(x) is minimized.

We assume that the random elements of the problem are such that all quantities
introduced are well-defined, with Q(x) finite, unless

P{w|(p(w)—Tx)g W(C)}>0

where W(C)={t= Wy|ye C}, i.e. there is no feasible recourse with positive proba-
bility, in which case Q(x)=+c0. Detailed conditions have been made explicit in
Wets, 1974; extensions to the multistage and nonconvex cases have been provided
by P. Olsen, 1976 and J.B. Hiriart-Urruty, 1978 respectively.

As background to the algorithmic development, we review the basic properties
of (2.3), proofs and further details can be found in Wets, 1974; see also Kall, 1982
for a compact treatment of stochastic prqgrams with complete recourse, i.e. when
W(C)=R™ and consequently Q is everywhere finite.

2.4. Properties. The function Q is lower semicontinuous and convex. It is Lipschitz if
Jor (almost) all w, yr> q(y, w) is Lipschitz. Also the set

K, ={x|Q(x) < +o0}
is a convex polyhedron that can be expressed as

K,={x|Dx=d}

for some matrix D and vector d. Moreover if the distribution of the random elements
of the problem is absolutely continuous then Q is differentiable relative to K.

Because q(-, w) is Lipschitz rather than linear, the assertion about Q being
Lipschitz does not follow directly from Theorem 7.7 of Wets, 1974 but can be
gathered from its proof, or see Wets, 1972, for example.

In the case of nonstochastic tenders it is useful to consider another representation
of the deterministic equivalent program. Let us define y and other associated
quantities by

x=Tx, ¢Y(x,w)= ymg [q(y, w)| Wy = p(w)—x]

and

¥ (x)= E{y(x, w)}.
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Problem (2.3) is then cast in the form (1.1):

find xeR™, yeR™ such that
Ax=b, Tx=yx x=0, (2.5)

and z=cx+ ¥ (y) is minimized.

This program, more exactly the function ¥, exhibits the same properties as those
listed for Q under Properties 2.4. In particular it is finite for all y such that y = Tx
and x € K. Including these constraints explicitly in the formulation of the problem,
we get

find xeR™, yeR™ such that

z=cx+ ¥(y) is minimized, and

Ax =b,
(2.6)
Dx =d,
Tx—x =0,
x=0,

i.e. a convex program with ¥ finite on the feasible region. In what follows we shall
assume that the constraints Dx = d have been incorporated in the constraints Ax = b,
x =0, so that they will no longer appear explicitly, and that ¥ is finite on

{x=Tx|Ax=b, x=0}.

Stochastic programs of this type are said to have relatively complete recourse (Wets,
1974, Section 6), a situation which is always obtained if the (induced) constraints,
determining K, are incorporated in the original constraints.

When W =TI and C =R"™ there is really no need to solve an optimization problem
to know the optimal recourse and its associated cost. It is uniquely determined by
the relation

y=pw)—x, Tx=x and ¥(x)=E{q(p(w)—x,w)}

The stochastic program is then said to be with simple recourse, which clearly implies
complete recourse: K, =R™. Determining the value of ¥ at y depends then on our
capability of performing the multidimensional integration. Usually, the cost-function
will be separable. However, if there is dependence between some of the components
of the p(-)-vector and the cost depends on the joint realizations, then one must
necessarily resort to this more general form. Assuming that the integral is well-
defined, we have that the subdifferential ¥ is given by

¥ (x) =—E{3,q9(p(w)—x, w)}

where d,4( -, w) denotes the subdifferential with respect to the first variable. If the
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convex function y+» q(y, w) is differentiable, then so is ¥. The function ¥ is also
differentiable if the measure is absolutely continuous. If the random variables are
independent, then the multidimensional integration to obtain the value of ¥ or its
gradient is reduced to a number of simple integrals on R'. This also occurs when
there is separability.

If in addition to simple recourse, the recourse costs are separable, i.e., for all w,

40, W= alr,w),
then

m.

YOO=E T a(p(w)=xiw)

T Ea(pi(w)=xis W)

g} ¥:(x:)-

Thus (2.5) becomes a convex separable program:
find xeR™, yeR™ suchthat

Ax=b, Tx=y, x=0, 2.7

my
and ex+ Y, Vi(x;) is minimized.
i=1
This latter optimization problem possesses many properties. Those that are directly
relevant to our further development are summarized here below.

2.8. Properties. Fori=1,..., m,, the functions ¥; are convex, finite-valued and thus
continuous. If the random elements have a discrete distribution, the V¥, are piecewise
linear when the q;(-, w) are piecewise linear. On the other hand, if the marginals of
{(gi(-, w), pi(w)), i=1,..., m,} are absolutely continuous then the ¥, are differenti-
able. Moreover, if problem (2.7) is solvable it admits an optimal solution with no more
than m, + m, positive engries in the x-vector.

These properties are derived in Walkup and Wets (1970) (see also Ziemba, 1974),
except the last assertion which was obtained by Murty (1968) in a somewhat modified
context. A very simple proof appears in Wets (1979). In essence this latter proof
says that when the optimal tender is known, (2.7) reduces to an LP and then appeals
to a standard theorem of linear programming. Note that the result also holds when
¥ (x) is not separable.

A version of (2.7) which has received a lot of attention, because of its direct
amenability to efficient computational schemes and the many applications that can



6 J.L. Nazareth, R.J.-B. Wets | Stochastic programs: Nonstochastic tenders

be cast in this form, is when g; is itself independent of w and piecewise linear with
respect to y. More precisely g;(-) is given by

q,_y, lfy,SO,
(y.. w)= 29
q.(y., ) { -:-y' if ,-20, ( )

with g, = g/ + q; =0, yielding the convexity of y;—> q;(y;, w). In this case the function
¥, takes on a form particularly easy to describe. This is done in the next section.

3. Availability of information about the objective

The exact evaluation of Q or its gradient for general probability distribution ,
function g and recourse matrix W, might be prohibitively expensive, if at all possible.
The difficulties come from two directions:

(i) for each w, evaluating Q(x, w) involves solving a minimization problem, and

(ii) performing the multidimensional integration

Q(x) =I Q(x, wp(dw).

For simple recourse, the evaluation of Q(x, w), or equivalently ¢(x, w), because T
is fixed, is easy since the recourse is uniquely determined. When the recourse costs
are also separable, the multidimensional integration is reduced to m, separate
one-dimensional integrals. With T fixed, it takes the form:

m,

¥(x)= _gl Yixi)= 2 I g:(pi(w) ~ x;, w)F.(dw)

i=1

where F; is the marginal distribution function of the random elements appearing
in this expression, and the integral | is a Lebesgue-Stieltjes integral. The subgradients
of the convex function ¥ are then the (Cartesian) product of the subgradients of
the ¥; which are themselves

aV¥;(x;)=—cl I ayqi(pi(w)_Xi, w)F.(dw), (3.1

at least when the problem satisfies the regularity conditions suggested at the begin-
ning of Section 2. Hence cl denotes closure. In general 3,g(p;(w) — x;, w) is multi-
valued, in fact closed convex valued, and the integral is then also a closed convex
set. In particular if g is piecewise linear as in (2.9), we get the following expression:

aq’i(Xi)=[QiFi_(Xi)—‘1i+,qn'Fi(Xi)—q:], (3.2)
where ¢, =¢q; + 47,

Fi(z)=Prob[pi(w)<z] and F;(z)=Prob.[pi(w)=z].
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We just note in passing that given (3.2), it implies that ¥, is differentiable whenever
the distribution function F; is continuous. In general, we have the following two
representations for ¥;:

‘Pi(X)_qu_i =(q|'Fi_(Xi)‘qn'+)Xi_qn' I {dF(()

{<x

= (tii(Xi)'"qT)Xi_qi I {dF(0) (3.3)

E=xi
where p, = E{p;(-)}. If the distribution of p;(-) is discrete, say with possible values

pil,piZ, L spi,k.-y

with p, <p;,.,, and with associated probabilities

ﬁlsﬁZ, o sﬁ,k,,

the function W, is piecewise linear. With ¥!_ =0, we obtain
Fi(x:) =T_i:ﬁ, where 7' = min[k;, inf(¢| p,, = x:)],
and
Fi(x)= z: S where r=min[k;, inf(¢] pi > x)1.
Also

{dF()) = z pafi

=X:

I ¢dFi($)= i puf; and I
{<xi =1 {

Note that 7'=17 unless x;=p; for some t=1,...,k; and then 7'=7—1. For /=
0,..., k;, we set

Sy = ( z.l f;r) qi—~ qn'+
and
ey = quji —q; ( E.l Pnfn) .

We obtain

¥(x:)= _Squ.(qui‘*’eu)- (3.4)

=1

..... i

Observe that for any value of y; the supremum is attained by at most 2 linear forms.
As we shall see in the subsequent sections, both (3.3) and (3.4) yield useful
representations for ¥, leading to algorithmic procedures for problems involving
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functions of this type. Still another representation of ¥; can be exploited in an
algorithmic context. The value of ¥, is obtained as the solution of an optimization
parametrized by yx;. Let

dy=p—py forl=1,...,k_, and di=p,.
Then

k

¥.(x;)—q; p;=inf > Suyu
=1

k.
subjectto Y yi=xi,
=0

Yios dio, (3.5)
Osyy<dy, I=1,...,k_,
0=<yix.
To verify (3.5) it suffices to use the fact that the coefficients s,, /=0,...,k; are
strictly increasing and that consequently y; > 0 only if y;,=d;, and for 0<t </, all
¥ are at their upper bounds. Details are worked out in [Wets, 1983a, Proposition 1].
These expressions derived for ¥; taken in conjunction with the methods of Section
4 contain the germ of different algorithmic procedures embedded in them.
Before we turn to this, and in order not to lose sight of the fact that we are also
interested in a more general class of problems, not simply stochastic programs with

simple recourse with piecewise linear separable cost structure, we also describe a
more general case. Suppose

¥(x w)=inf[qy| Wy=p(w)~x]

and y is such that $(x, w) is finite for all possible p(w), i.e. the linear program
defining ¢(x, w) is feasible and bounded with probability 1. Then parametric
analysis, in particular the Basis Decomposition Theorem (Wets, 1974), shows that
there is a (simplical) decomposition of the sample space of p(-) (= the activity space),

S={S,<cR™ h=1,..., 1}
such that if p(w)e §, then

lll(Xs W):q(h)w(_hl)(P(W)—X), (36)
and with co denoting the convex hull,

W(x, w) = —co{qum Wim| p(w) € Sp}, (3.7)

where W, is an invertible submatrix of W and q,, the subvector of g corresponding
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to the columns of W,,. Let S’ be any partition generated by S. Then
Y(x)=2% I qn) W(_hl)(P(W) - x)P(dw)
hJs;

and

I¥(x) =§ L’ Y (x, w)P(dw),
adding to the second term the normal cone to K, at x, when x is on the boundary
of K, if we do not have relatively simple recourse or have not cast the original
problem in that form, see (2.6). The potential use of the preceding formulas depends
very much on how accurate one needs to be. Multidimensional integration over
convex polyhedral cones can only be approached through sampling methods, cf.
Deak (1980), Birge and Smith (1982), and the references given therein.

If p(-) is discretely distributed by which we mean here that it takes on a finite
number of possible values, with

P[p(w):pk]:ﬁn k:].,...,N,

then the above formulas become simply sums, viz.

Y(x)=Y % q(h)W(hl)(pk_X)ﬁc (3.8)

h {k| pxe Si}

and a similar expression for d¥. To actually compute the above we can proceed
via a sort of parametric analysis that we now describe. We refer to it as a bunching
procedure. Let

G=p—Xx, k=1,..., N,
and suppose we have solved the linear program
find y=0 suchthat Wy={, and gy is minimized, (3.9
with optimal basis W(,, and associated subvector q(,, of g. S{, bunch 1, is defined by
Si={a| Wi\ ¢ =0}

While constructing this.set, identify those {, £ S| such that the vector W(,‘)gk has
the fewest number (and smallest) negative elements. Let {,, be such a vector. We
find the optimal solution and a corresponding basis W,,, of the linear program (3.9)
with ¢, replacing ¢, by dual simplex pivoting, starting with the old basis W(,,. The
second bunch §; is given by

S:={pg S| W\l =0}

We continue in this fashion until all p, have been bunched. Alternative procedures
can be devised taking further advantage of the combinatorial structure of decomposi-
tions. How to do this so as to minimize the work involved needs further investigation.
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In any case with the above we obtain the value of ¥ at x, as well as a subgradient
of ¥ at y, viz.
) , (@ W fked¥(x).

h {k|preSi

Observe that g, W), the vector of simplex multipliers, remains constant on S.
With

Ph:P[pkeS;-],
the above becomes

L gmWmPhed¥(x).
h

This formula for a subgradient of ¥ is, in fact, independent of the form of the
distribution of p( ), the problem being always the evaluations of P, for a partitioning
scheme constructed in the manner described above.

4. An illustration of each algorithmic approach

We consider the very simple problems of finding the unconstrained minimum of
a 1-dimensional finite piecewise linear convex function ¢ defined on [x,, xy] by
reformulating the problem as an equivalent linear program. (This function ¢ could
of course be minimized by some 1-dimensional search procedure or simply by a
sort of slopes to find where they change sign, but this is not our real concern here.)
There are at least three ways of formulating this equivalent linear program. Each
contains the germ of a more general solution strategy considered in later sections.

Fig. 4.1. The function ¢.
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The coordinates of the breakpoints of ¢ are denoted by

(xp, &(x)), h=0,....,H
and with slopes

s, forxe[x,_,,x,), h=1,..., H
The convexity of ¢ implies that

S <SS S 85y (4.2)
With

a,=xp—Xxp_y and e, =d(x,)— suXy,
the line segment on [x,_,, x,] takes the form

on(x)=s,x+ey. (4.3)

The bounded variable method

If we introduce a new variable y, for each interval [x,_,, x,] for any given value
of x it is easily verified that on [x,, x4],

H
b(x)= ¢(x0)+min[h§1 Shyn|x =xo+§.)’h,

Osy;.Sa,.,h=1,...,H]. (4.4)

The assumption of convexity and hence (4.2) is of course crucial, since this means
that y, is preferred to y,, and y, to y; and so on in the minimization of (4.4). Hence
at the optimum point in (4.3), y, >0 implies

Nh=a,,Yy2=0z,..., V1= &p—y.
Minimizing ¢ on [xo, x5 ] is equivalent to solving the following linear program:

find y,€[0, ay] forh=1,...,H
= (4.5)

H
such that z= Y s,y, is minimized.
h=1

The optimal x* is determined by

x*=x,+Y y¥
h
where (y¥, h=1,..., H) is the optimal solution of (4.5).

Inner approximation

Referring to Fig. 4.1, any point (x, @) in the shaded region C, i.e. with a = ¢(x),
can be written as a convex combination of the extreme points

(xp, ¢(xn)), h=0,..., H
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For any given x it follows that
H
¢(x):min[ Z )\h¢(x,,)|2)\,,x,,=x, ZA'.=1, )\,,?0] (46)
h=0

and thus minimizing ¢ on [x,, x4] is equivalent to solving the following linear
program
H
find A,=0, h=1,...,H, ¥ A,=1
h=1

4.7)

H
such that z= Y A,é(x,) is minimized.
=0

The optimal x* is determined by

where (A%, h=0,..., H) is the solution of (4.7). For an arbitrary convex function
p with p(x,) = ¢(x,), the function ¢ can be viewed as an inner linearization of p.

Outer approximation

Since ¢ is piecewise linear, we have that

o(x) = ,max bn(x) (4.8)

where the functions ¢, are defined by (4.3) when ¢ is expressed in this form, finding
its minimum consists in solving the minimax problem:

min max dn(x).

xc{xp,xygl h=1,..,
This is equivalent to solving the following linear program:

ve R and xe€[xg, x4] suchthat
v=s,x+ e, and (4.9)
z = v is minimized.

The methods of inner and outer approximation rely on dual representations of the
epigraph of ¢, but one should note that the linear programs (4.7) and (4.9) are not
dual linear programs.

Each of the above three problem manipulations delineates an approach to solving
problems of the type (1.1). We consider each one in this more general setting in
the next three sections.
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5. Extensions of the revised simplex method

An algorithm for solving stochastic programs with simple recourse with separable
piecewise linear recourse costs and discrete random variables has been proposed
in Wets (1983a)', a write-up and computer code have been provided by Kallberg
and Kusy (1976) and computational experience is reported in Kallberg, White and
Ziemba (1982), Kusy and Ziemba (1981); cf. also Cleef (1981). From (3.4) we know
that

T(0= T ¥ix)

with each ¥; polyhedral with the slopes s;, and s;<s;; <---<s;;. We can clearly
apply the bounded variable method of Section 4 to the m,-functions ¥;. Using (3.5)
we obtain the following linear program, the analog of (4.5):

find 0=x;, j=1,...,n,,
and for i=1,..., m,, (5.1
Osy;<dy, 1=0,...,k_; and y,;, =0
such that
Ax=b, i=1,...,m,
k

7‘l'x_X,yil=pl'0’ i=1a""m2’ and
=0

2 ki

z=cx+ Y Y syyyis minimized,
i=11=0

m.

where A; and T; are the ith rows of A and T, and, for i=1,..., m,

dio= pi» — Pios

with pe)—oo, p;,( chosen so that for the optimal solution x*, Tix*> p;y is
guaranteed.

In seeking the solution of (5.1) using the revised simplex method for linear
programs with simple upper bounds, let us assume that we have in hand a nondegen-
erate basic feasible solution say (%, y;, i=1,...,m,,1=0,..., k;) which yields the
values of the functions ¥;, i=1,...,m, at a point y = TX as follows: for each
i=1,...,m,,

V(X)) =¥ pio) + héo SinVins

i.e. the y, actually solve the program (3.5) for x; = .. It follows that if
0<y;<d

! This algorithm was proposed several years ago, but published only recently.
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then

yin=dy, for h<l,

yw=0 forh>1l

In Wets (1983a) such a solution is called a perfect basic solution. The fact that the
optimal solution is of that type and that one can pass from a perfect basic solution
to another can be argued as follows: Let (g, 7) e R™ XR™ be the simplex multipliers
associated with the solution at hand. To find the variable to be entered into the
basis at the next iteration, we compute §,, the reduced cost (the component of the
reduced gradient corresponding to the current basis) associated with the variable
Vin, ViZ.

§ih = S,-;.+ Ti.

The {5,,, h=0,..., k;} are increasing, thus for each i among all variables at their
lower bound (h > 1), the variable y;,,, is the one that yields potentially the greatest
(marginal) improvement. Similarly, among all variables at their upper bound (h <)
the best candidate for decrease is y;; -, . It is also readily established that when either
Yit+1 OF ¥ is introduced into the basis then y; will move to its appropriate bound
and leave the basis. Thus the new basis will also be perfect. This property is not
affected by exchanges between x-variables and y;,-variables, unless degenerate cases
are mishandled. A potential difficulty is that the algorithm could go through a great
number of steps and associated basis changes if ¥; has many pieces. This can
partially be overcome by an acceleration procedure that in one sweep makes a
number of basis changes involving variables {y;,, h =0, ..., k;} for a given i, see
Wets (1983a). This algorithm can thus be regarded as an application of the bounded
variable revised simplex method with an acceleration step; in Wets (1983a) it is
also shown how to exploit the structure of the problem to obtain a good starting basis.

A practical implementation of the above bounded variable method based upon
the MINOS code, see Murtagh and Saunders (1978), is given in Nazareth and Wets
(1985).

An extension and natural continuation of the above approach that seeks to avoid
the difficulties associated with introducing bounded variables, and has the advantage
of greater generality is to handle the tender y explicitly rather than implicitly in
terms of the basic variables y,. This permits, for example, the distribution function
F; to be arbitrary and q(-, w) to be nonlinear and nonseparable. Let us return to
the problem expressed in the form (2.5) or (2.6). Induced constraints are assumed
to be incorporated into Ax = b, x =0, and bounds on x can be introduced if desired
without substantially altering the following discussion.

As we have described under Properties 2.4 and 2.8, when the distribution function
of the random elements is absolutely continuous, ¥ (x) is differentiable. Various
methods of smooth optimization can then be used or adapted directly to solve (2.5),
see, for example, Ziemba (1970). The number of nonlinear variables y in (2.5) is
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determined by the number of technology rows, and this will normally be small
compared with the number of linear variables, x. Under these circumstances, the
reduced gradient method in the form given by Murtagh and Saunders, 1978, is
particularly effective. To simplify the discussion let us write (2.5) as

minimize f(z)
s.t. Az=b, (5.2)

zj?()’ isjsml’

where z =(x, x), f(2):ex+ ¥ (x). A=[54 %]is an m X n matrix, with m = m,+ m,,
and b= (). Let us for this moment also assume that f(z) is a smooth function.

Since f(z) is nonlinear, we cannot claim that (5.2) has an optimal solution with
at most m variables basic, i.e. off their bounds. In the MINOS implementation of
the reduced gradient method (see Murtagh and Saunders, 1978) the variables at
each cycle are partitioned into three groups z =(zg, zs, zy) representing m basic
variables, s superbasic variables with 0<<s<n—m, and nb=n— m—s nonbasic
variables respectively. Nonbasics are at their bounds. A is similarly partitioned as
A =[B|S|N] where B is an m X m nonsingular matrix, S is an m x s matrix and N
isanm X (n- m— s) matrix. Let g = Vf(z) be similarly partitioned as g = (gg, gs, g~ )-
A basic property of the reduced gradient method in this form is that an optimal
solution exists for which the number of superbasics does not exceed the number of
nonlinear variables, in this case m,. Its proof is trivial, and indeed this is precisely
the counterpart of Murty’s, 1968 result discussed under (2.8).

Each cycle of the method can be viewed as roughly equivalent to (a) and (b) below:

(a) one or more iterations of a quasi-Newton method on an unconstrained
optimization problem of dimension s. Here, a reduced gradient, say u, is computed
as

4:]
p=[—(B7'S)"|L..0]| gs | £ Z5g. (5.3)

4

The columns of Zg span the space in which the quasi-Newton step lies and normally
rank (Zs)=s. We can view this also in terms of active sets as follows: Az=b and
Zn =0 are m+(n—wm—s) active constraints. If the columns of N=[AT|I’] are the
normals to these constraints, with I’ denoting suitable columns of the n x n identity
matrix I,.,, then ZIN=0.

To compute u we can write (5.3) as

p=gs—S'1I (5.4)

where IT1T = g5 B™" is the vector of prices. The search direction, say p, is then defined
by p=—ZsHpu, where H is a positive definite symmetric matrix defining a (variable)
metric; a line search is usually carried out along p.
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(b) an iteration of the revised simplex method on a linear program of dimension
mx nb. Here a central operation is the computation of Lagrange multipliers A as
components of a reduced gradient corresponding to constraints Zy = 0. This is like
temporarily reversing the roles of superbasics and nonbasics, and analogously to
(5.3) gives

g8
A=[=(BT'N)"|0| Loxms]| &5 | & Z g (5.5)
g~
The components of A computed from (5.5) are used differently from u. They are
used in a pricing out operation to revise the active set. Again A can be conveniently
computed using the above price vector I by

A=gn—NTIL (5.6)

A special case of the reduced gradient method is the convex simplex method, see,
for example, Zangwill (1969). Here s =0, and

=[_(B_IN)Tll(n—m)x(n—m)]- (57)

In place of (a) above we simply do a line search along a coordinate of Z, determined
from A.
Let us now turn to the case of more immediate interest to us when f(z) in (5.2)
is nonsmooth. A single price vector I can no longer be used to compute g and A.
Instead the counterparts of (5.3) and (5.5) are to compute suitable vectors of steepest
descent from the subdifferential® of f(z) in the appropriate reduced space. This gives
p =argmin{||§[*: § = Z5g, g € 8f(2)}
this can be computed as
=argmin{g(ZsZ5)g: ge3f (2)}, p=2Zs§ (5.8)
and
= argmin{|g|*: § = Z\g, g€ af(2)}

which can be computed as
=argmin{g" (ZnvZN)g: g€3f(2)}, A=ZNE. (5.9)

There is an alternative apprpaeh to (5.8) and (5.9) which is computationally more
convenient but heuristi¢. Here a single ‘gradient-like’ vector is first computed from

¢ =argmin{||g|*: gedf(2)} (5.10)

and p and A are then defined by

p=2Z5§=4s-5"0, (5.11)
A=ZNg=gn—NTII (5.12)

2 We will not discuss here the need to replace 9f(x) by 8f,(x) the e-subdifferential, which is needed
in general for proofs of convergence, see Demyanov and Vasiliev (1981).



J.L. Nazareth, R.J.-B. Wets | Stochastic programs: Nonstochastic tenders 17

where § = (&g, &5, §~) and I1T= gL B™". Note that u = Oimplies 0 ZXaf(z) and A =0
implies 0 € Z3f(z) which are necessary optimality conditions. However, u # 0 is
not necessarily a direction of descent in the reduced space. That is why we use the
term heuristic for a straightforward extension of the convex-simplex or the reduced
gradient method which uses (5.11) and (5.12). In order to ensure convergence one
must modify this particular extension by drawing upon techniques of nonmonotonic
optimization, see, for example, Shor (1983) or of bundle methods, see Lemarechal
(1977).

Let us now come back to the application of these ideas to stochastic programs
with complete recourse and nonstochastic tenders, and let us thus revert to our
original notation (2.5). Wets (1976) first suggested a method for solving problems
with simple recourse whose equivalent deterministic form is

m.

minimize cx+ ¥ Yi(x:)
i=1

s.t. Ax =b, (5.13)
Tx—x=0,
x=0.

The subdifferential of ¥;(y;) is given by (3.1) and can be expressed as d¥;(x;) =
[c, ¢7). It can be easily verified that this method is conceptually very closely related
to the extension of the convex simplex method based upon (5.7), (5.10) and (5.12).
An alternative is to use (5.7) and (5.9), which requires the solution of a suitable
bound constrained quadratic program. In a similar vein, we could extend the reduced
gradient method to solve (5.13) using either {(5.8), (5.9)} or {(5.10), (5.11), (5.12)}.
In each case the special form of the objective function and constraints in (5.2)
results in considerable simplification. For example, for the first possibility, namely,
extension of the convex simplex method based upon (5.7), (5.10), (5.12), it is easily
seen that (5.10) requires only the solution of

for all i, find c¢;=<g,<c; such that|§| is minimized, (5.19)

and this can be found explicitly.

This approach, based upon suitable adaptation and extension of MINOS carries
across in a natural way to more general stochastic programming problems expressed
in the form (2.5); the question of what information about the subdifferential can
be provided becomes much more pressing, in particular, when we are outside the
case of simple recourse. Very often it is necessary to resort to an approximation
scheme that would provide upper and lower bounds for the solution, see Wets
(1983b, Section 3) or accept the fact that the gradient can only be estimated such
as in the methods of stochastic quasi-gradients, see Ermoliev (1983). We sketch out
some possibilities in order to highlight the new obstacles that need to be overcome,
and to stress the fact that there is a natural continuation of this approach that
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provides solution procedures for more sophisticated stochastic programming
problems.
Recall that ¥ (x) = E{¢(x, w)} and

v(x, w)= ymg [q(y, w)| Wy = p(w)—x]

in this more general case, cf. Section 2. Let us consider only the linear case, i.e.,

¢(x, w)=inf[q(w)y| Wy = p(w) —x]

=sup [7(p(w)~x) | 7W=< q(w)].

For stochastic programs with complete recourse (that are bounded), (-, w) is finite
for all (possible) w and

d¥(x)=E{oy(x, w)}
where

3y(x, w)={—-meR™|rearg omax [7(p(w)—x)1}.

Suppose the random variables have a discrete distribution with p(-) and q(-)
taking on the values

{(p' g 1=1,...,L}

with probabilities f}, I=1,..., L, then extensions of MINOS analogous to those
described above for problem (5.13) must again solve structured quadratic program-
ming problems. For example, the heuristic extension based upon (5.7), (5.10), (5.12)
requires solution of

find v € R™ such that »"v is minimized,
where

L
v'=Y fr' and #'Ws=gq, «'(p'-x)=u(x (d'p")). (5.15)
=1

To solve this program efficiently we need to take advantage of its special structure,
use the fact that for most ! there is only a unique #' that satisfies the inequalities
and that for many /, # will be determined by the same basis of (W, I'), and so on.

In general, when the random variables are not discretely distributed or when
there are too many values for the discretely distributed random variables, it may
not be possible to obtain complete information about ¥(x) or d¥(x). We are then
reduced to accepting approximates. There is at present no theory that allows us to
deal directly with this case. What is needed is to extend the subgradient techniques,
such as Demyanov (1968), Lemarechal (1978), Wolfe (1975) and, in particular,
Bihain (1982) with appropriate reduced gradient calculations to handle this case.
The convergence proofs could be derived by relying on the framework provided by
nonlinear programming methods in the presence of noise, for example, Poljak (1978).
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The question of how approximate the calculations of ¥(y) and d¥(x) should
be is still very much open to deeper investigation. We can even speculate at this
point on the possibility of extension of the reduced gradient approach into the
domain of stochastic quasi-gradient methods, see Ermoliev, 1983 which advocates
the use of one or more sample points, say (p°, ¢°) to obtain a¢(x*, (¢°, p*)) as a
stochastic estimate of 3 W (x°).

A more detailed discussion of some of the approaches outlined above can be
found in Nazareth and Wets (1985).

6. Inner approximation

The algorithms we consider next use inner approximation of the type discussed
in Section 4, see (4.7). After a general discussion of the algorithm, we consider first
how it applies to problems with simple recourse and, as in Section 5, see how to
extend the approach to more general classes of stochastic programs (with non-
stochastic tenders).

The resulting algorithm is in effect the generalized programming technique,
attributed by Dantzig (1963, Chapter 24) to P. Wolfe. Here we apply it to problems
of type (2.5) taking advantage of the special structure and of the form of ¥(x). As
a means of obtaining error bounds, Williams (1966) already suggested an approach
of this nature, Parikh (1968) has described some of the details for simple recourse,
and Ziemba (1972) gives particular application to a portfolio problem again with
simple recourse, but apparently it has not been exploited as a general solution
technique.

The algorithm as it applies to (1.1) or equivalently (2.5) can be summarized as
follows:

Step 0. Find a feasible solution of Ax°=b, x°=0

Set x°= Tx°.
Choose x', ..., x” (a selection of tenders, v =0).

Step 1. Solve the linear program:
minimize x+ ¥ A () =z
-0
subject to Ax=0b,

Tx- Y Ax'=0, (6.1)
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Let (¢, w%, v”) be the (optimal) multipliers associated with the solution of (6.1).
Step 2. Find x”*'eargmin[ ¥ (x)+ 7"x].

If ¥(x"*")+#"x"""'=v” stop: optimal.
Otherwise return to Step 1 with v =v+1.

We have assumed here that for all #” generated in Step 1, the function y—
(¥(x)+7"x) attains its minimum. There are naturally regularity conditions for
stochastic programs that will guarantee this (Wets, 1974; Williams, 1966) but mostly
we have done so to simplify the presentation and interpretation of the algorithm.
Note that both upper and lower bounds for the infimum are available. Let z” denote
the optimal value of z, and (A{,!=0,..., v) the optimal values of the A variables
in (6.1). Then

AP+ T AP () + iy ]szé sz (6.2)
=0

where z* is the optimal value of the original program. The second inequality follows
from the fact that (6.1) is an inner approximation, whereas the first one follows
from Step 2 which implies that

_7TVX+[‘P(XV+1)+7TVXV+1]$ ‘P(X).

Adding cx and taking inf on both sides with respect to (x, x) on the set {x = 0| Ax =
b, Tx = x} yields the desired inequality, it suffices to observe that the first one of
these two minimization problems admits for optimal solution the pair (x*, ¥,_  A{ xh
with (x*, A7, 1=0,..., v) the optimal solution of (6.1). Thus

0<z"—z*< max [(‘I'(x”+‘)+7r”x”+‘)—IZOAT(‘I’(X')HT”X')]-

We interpret the algorithm as the search for a particular (optimal) tender x*. It
is easy to see that if x* is part of the collection x°, ..., x* then solving (6.1) will
yield the optimal x*. One reason for believing that this approach holds promise, is
that in practice one should be able to initialize the algorithm with a good choice
of tenders x° ..., x”. The subsequent iterations can then be viewed as refinements
of the original guesses. A line of further research is to find effective strategies for
choosing initial tendeérs, see Birge and Wets (1983).

The convergence of the algorithm, with the following assumptions

(i) all tenders are retained, as part of (6.1), (6.3)

(i1) complete information is available about the function (6.4)

values of ¥ so that Step 2 can be carried out exactly, ’
has been proved by Dantzig (1963, Chapter 24). Further, the algorithm applied to
the convex program (2.5) is equivalent to a cutting plane algorithm applied to its
dual. We can thus translate the results about retention of cuts (Topkis, 1970; Eaves
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and Zangwill, 1971) into retention of tenders. In particular in our case, they imply
that under suitable assumptions all tenders not associated with a basic variable A,
can be dropped at the next iteration, without affecting the convergence proof of the
algorithm.

A large number of tenders could be generated, although this is very unlikely in
practice, especially if a good set of initial tenders is used. From a theoretical
standpoint, however, and for reasons of sound implementation, it is worth examining
the question of which tenders should be retained to enhance convergence. At iteration
v with the multipliers (o”, 7*, v”) we have for all tenders x', I=0,..., v,

v(xH+ax'=v" (6.5)

At the next iteration, a tender y**' is developed (several tenders could equally well
be formed) and we need to resolve (6.1) with respect to x°, ..., x”*". Suppose prior
to the commencement of the next iteration v+ 1, a subset of tenders

v+l}

{x' leLye{x%...,x

must be found such that the optimal solution of (6.1) is unaffected. Since the
(optimal) multipliers

(a_v+l 7Tv+l vv+l)
are unknown at this stage, we formulate this problem as

given any (o, 7, v) and a fixed index k

find L<{0,...,v+1} such that

(6.6)
Y(xHY+mx'=v foralllelL
implies ¥ (x*)+mx*=v.
Let us write
v (x") v(x") 1
D'=] x' |, b=| x* and I'=]0
-1 -1 0
with D=[D°, ..., D**""].
6.7. Proposition. A sufficient condition that
Y(x"Y+mx'=v forallle L (6.8)
implies
Y(x")+mxk=v (6.9)
is that

bepos[I'; D' Ie L],
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i.e. that b belongs to the positive hull of (or equivalently the convex cone, generated
by) the columns of D corresponding to L and I'.

Proof. To say that be pos[I'; D' Ie L] is to say that the linear system

b=y Dy +I'a, a=0, y=0, leL,

lelL

is solvable. Thus the system
(A, m,0)D'=0, Ie L, A=0 and (A, mv) - b<0

is not solvable, as follows from Farkas Lemma. Using now the definitions of D'
and b, we see that this implies that for a choice of variables (A =1, m, v) satisfying
(6.8), we necessarily must satisfy (6.9). O

The question raised in (6.6) can thus be translated into finding a minimum number
of generators, i.e., a frame, for the convex polyhedral cone

pos[I'; D, 1=0,...,v+1].

An algorithm for doing this is described by Wets and Witzgall (1967). Note also
that it may be worthwhile to also eliminate tenders that have not been utilized in
the solution of (6.1) on several prior iterations.

The use of this algorithm in the context of stochastic programming makes assump-
tion (6.4) nontrivial. Even in the case of simple recourse, situations can arise when
¥ (x) cannot be calculated exactly or the cost of calculating it could be excessive.
For example, if g(y, w) is nonlinear in y and the dependence on w is not simple
(e.g. linear), the cost of evaluating

E{q(p(w)—x, w)}

could be very large. A similar situation could arise even after approximating the
distribution functions by piecewise constant or piecewise linear distributions. In
this case the generalized linear programming approach must be revised to include
noisy functions and the question of convergence, both theoretical and practical,
still needs further investigation.

In the case of simple recourse with separable cost the evaluation of the function
¥ presents no serious challenge since

m

Y(x)= ¥ ¥ilx)
i=1
and each ¥, defined on R is given by a one-dimensional integral, viz.
Yi(xi) = j q:(pi(w)—x;, w) Fi(dw)

with the subgradient given by (3.1). Special forms of g; and F; lead to even simpler
representations for ¥ such as (3.3). Even more explicit is the expression obtained
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in (3.4) and (3.5) in the case of piecewise linear recourse costs and piecewise constant
distributions; for piecewise linear recourse costs and piecewise linear distributions
see Wets (1975, Section 3); for even more detailed expressions for specific distribu-
tions consult Hansotia (1977). Note also that in this case Step 2 of the algorithm
consists in finding for i=1,..., my, x/*"' such that

—m/edW,(x!™),

where the subgradient is given by (3.1). Again, in many cases it is possible to use
the special forms of ¢; and F; to find efficient solutions procedures for the preceding
relation. For example, in the situation covered by (3.3), the above becomes: find

v+1

xi " such that

%e[ﬁ(xr“), F(x*).

It thus suffices to have a bracketing routine for finding the point at which the
monotone function F; passes through the value (¢ — 7))/ q:. For some of these
more simple cases it is easy to show that the generalized linear programming
algorithm has finite termination.

In the more general case, when it is not feasible to compute the value of ¥ at x
exactly, see Section 3, there are basically two strategies available. The first one is
to accept inaccurate evaluations of ¥, view them as noisy observations of ¥ and
rely on a convergence in probability argument (Poljak, 1978) with Step 2 being
performed using, for example, the method of stochastic quasi-gradients, Ermoliev
(1983). How to design an efficient and reliable algorithm that proceeds in this fashion
has not been investigated yet.

The second approach is to proceed by approximations. By this we mean replace
the original problem (2.1) by an approximate one, solve the approximating problem,
obtain if possible bounds using this approximating solution and repeat the process
with a refinement of the approximation if the bounds are not sufficiently tight. The
subject of approximations, specially via discretization of the random variables, is
reviewed in Wets (1983b) and will not be taken up here. We only want to raise
some of the questions that need to be resolved before such a scheme could be made
operational:

(i) How should the initial approximation be designed so as to obtain with
minimal computational effort a ‘good’ approximate of the solution?

(ii) How to improve (refine) the approximation so as to ‘maximize’ the resulting
improvement?

(iii) How to blend in, these successive approximations with the steps of the
algorithm?

With regard to implementation and computational experience for the case of
simple recourse see Nazareth (1983) and Nazareth and Wets (1985). See also Nazareth,
1983 for some further results and discussion of the complete recourse case.
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7. Outer linearization

The third class of algorithms that we consider is based upon the outer approxima-
tion approach described in Section 4, see (4.9). We deal with this technique somewhat
more briefly because for problems with simple recourse it appears at this time to
be more limited in scope, whereas for more general classes of stochastic programs
this approach is very close to the L-shaped algorithm (Van Slyke and Wets, 1969)
which has already been studied extensively in the stochastic programming setting
(Birge, 1982; Wets, 1983b, Section 2).

Consider first simple recourse with separable piecewise linear recourse cost and
discrete random variables. From (3.4), the objective of the equivalent deterministic
program is

m

ox+ Zz V.(x:), (7.1)

where each ¥, is polyhedral with slopes s;, and s;0<s;; <- - - <s,,,. Then using the
outer approximation approach of Section 4, in particular (4.9) applied to each ¥,
defined by (3.4) we obtain the counterpart of (5.1), namely

find xeR%Y, yeR™ and »eR™ such that
Ax =,
Tx—x=0,

vizsyxitey, 1=0,...,k, i=1,...,m,, and

m,

cx+ Y v is minimized.
i=1

Since most of the constraints involving »; will be slack at optimality, a linear
programming algorithm utilizing an active set strategy immediately suggests itself.

For the more general case when the above assumptions on linearity of the recourse
objective and on the distribution are dropped but the recourse is still simple and
the recourse objective separable, we again have the objective of the equivalent
deterministic program of the form (7.1); now ¥;(x;) is no longer polyhedral. Let
us assume that complete information is available about values and derivatives of
¥,(x;). Consistent with (4.8), we assume that we have the following representation
for each V.

Yi(xi)= max ¥i(x:)

where each ¥; is a convex differentiable function and J; a finite set of indices. For
each y;, the value of max;., ¥;(x:) is attained for a finite set A(x;)<J; known as
the active set, i.e., we are dealing with stochastic programs whose equivalent deter-
ministic forms have (possibly) nondifferentiable objectives with explicitly known
subdifferentials.
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Problem (2.7) can thus be stated as

find xeRY, xeR™ and veR™ such that
Ax=b,
Tx—x=0, (7.2)

-Y:(x:)+v,i=0 forjeld, i=1,...,m,, and

cx+ Y v; is minimized.

i=1

When A(x;) and 3¥,(x;) are known explicitly, the functions ¥, can be obtained
systematically and as needed.

One can utilize the method of successive linear approximation; see Frank and
Wolfe (1956); Madsen and Schjaer-Jacobsen (1978), for example, with differentiable
V.. This requires the solution of a sequence of linear programming problems of the
form

find xeRY, xeR™ and veR™ suchthat

Ax=b,

Tx—x=0, (7.3)
V¥ (x:) xitvi=(Yix))-V¥%(xi) - xi) fori=1,...,m, and

my
cx+ Y v; is minimized.
i=1

r+1i

The next approximation is obtained by linearization of the ¥; at x;"' where x**'
is the optimal value for y in (7.3). (It is necessary to use an additional constraint
to restrict the step size when implementing this.)

When second order differentiables (or good approximates thereof) can be com-
puted, such as when the recourse costs and marginal distribution functions are
piecewise linear (Wets, 1975) or other cases dealt with in the beginning of Section
3, one could proceed via quadratic approximations, as proposed for nonlinear
programming by Wilson (1963) and Han (1976). Good reviews of both approaches
can be found in Fletcher (1981), Powell (1978), Wierzbicki (1982); see also Han
(1981). The code of Schittkowski (1980) to solve nonlinear programming problems
by successive approximations using quadratic programs should also be studied for
implementation in this setting. Because of the second order information necessary
to carry out the steps, it may however only be possible to use it for a special class
of stochastic programs with simple recourse.

In the more general situation when ¥ is not necessarily separable or smooth,
and only subgradients can be calculated (or approximates thereof), one could
consider a cutting plane algorithm. This would, for example, involve a sequence of
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problems of the form
find xeR%}, yeR™ and veR such that
Ax=b,
Tx—x=0, (7.4)
—alx+v=(TOhH -, I=1,...,v, and
¢x+ v is minimized.

Here w'ea¥(x") for I=1,..., v. The solution of (7.4) yields a new tender x**';
we then need to compute 7°*' and ¥(x**"). This defines a new constraint to be
added to (7.4). More sophisticated strategies based upon utilizing higher order
information are given by Womersley (1981).

When the equation Tx =y is used to delete x from the formulation of (7.4) we
are precisely in the L-shaped format Wets (1983b, Section 2) for which we already
have experimental codes (Birge, 1982). It is, however, important to realize that
introduction of the tender x in (7.4) is useful from a computational viewpoint, since
it will result in few nonzero elements in the representation of the problem. Note
however that the associated cuts —a'y + v = ¥ (x")— 'y’ are still dense.

In conclusion, we should point out that the algorithms that have been investigated
in the preceding sections are those that seemed to us to be the most promising and
most readily implementable. Clearly, other directions of algorithmic development
are possible and should be pursued, see for example, Kallberg and Ziemba (1981a)
for an approach based upon the Frank-Wolfe algorithm and Hogan (1973) and
Kallberg and Ziemba (1981b) for an approach that uses directional derivatives in
place of gradients.
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Solving a large number of linear programs with the same coefficient matrix, but different cost
coefficients or right hand sides is often an important part of the solution procedures for dynamic
and stochastic programs. This usually involves a decomposition of the parameter space, a
decomposition which is dictated by the optimality criteria. The subregions correspond to (sub)bases
of the coefficient matrix. We suggest an efficient procedure to generate such a decomposition in
the following case: the linear programs are transportation problems with different right hand
sides. We also report on our computational results.
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Polyhedral Cones.

1. Introduction

A linear programming problem is feasible if and only if the right hand side can
be written as a nonnegative combination of the columns of the coefficient matrix.
Or to put it another way, if and only if the right hand side is an element of the
polyhedral cone generated by the columns of the coefficient matrix.

The purpose of this report is to give an algorithm for decomposing the polyhedral
cone generated by the columns of the coefficient matrix of a transportation problem
into a set of M-dimensional cones (where M is the number of rows in the matrix).
These cones will have the property that all vectors (i.e. possible right hand sides)
that belong to the same cone, will have the same dual solution (with respect to a
given objective function).

This decomposition is useful if the same system is going to be solved for a large
number of right hand sides. A clear-cut application of this is within stochastic
programming with recourse when the recourse problem is a transportation problem
such as in [4].

Because of the duality theorem and the above-mentioned property of the dual
solutions within each cone, a method using decomposition might be an easy way
to find the expected value of the objective function and to produce a subgradient.
This is of course only true if it is easier to find the correct cone for a given right
hand side than it is to find the solution directly. We will return to this in Section 5
of this paper.

29
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When the problem at hand is large, we cannot generate all the cones in the
decomposition. We therefore investigate the problem of characterizing the differen-
ces between ‘large’ and ‘small’ cones, such that we are able to create those that
cover the largest collection of possible right hand sides.

The paper is organized as follows: In Section 2 we give the necessary formal
definitions. The decomposition algorithm is presented in Section 3, with Section 4
outlining the problems connected to dual degeneracy. How to check if a given right
hand side belongs to a given cone is explained in Section 5. We suggest a way of
organizing the data in Section 6. Thereafter follow two sections on the number of
cones and an attempt to define a ‘large’ cone. Finally in Section 9 we give an example.

2. Formal definition

Given a transportation problem with M, supply points and M, demand points,
and making sure that total demand equals total supply, we get the following
formulation when we have left out the redundant equation for supply point 1.

Min Y X ¢y

i=1j=1
subject to

MZ
Zyij:Sis izza*"le’
j=1

Ml
_Zyy:_Dj’ jzla"',MZa
i=1

Yy =0.

Let the coefficient matrix of the system be called N. It will have (M, + M,—1)=M
rows and M, * M, = N columns.

The following 2 definitions and theorem are taken from [6], the proof can be
found in [3].

Definition 1. pos N={t: Ny=¢, y=0}.

Definition 2. A finite closed polyhedral complex H will be any finite collection of
closed convex polyhedra, called cells of H, such that

(i) if C is a cell of H, then every closed face of C is a member of H;

(ii) if C; and C, are distinct cells of H, then either they are disjoint, or one is a
face of the other, or their intersection is a common face.

Theorem 3 (Basis Decomposition Theorem). Let P(t) denote the linear program
Minimize cy
subjectto Ny=t¢,

y=0,
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where c is fixed and N is a fixed M X N matrix of rank M. Then:
(i) P(t) is feasible if and only if t lies in pos N.

(i1) Either P(t) is bounded for all t in pos N or P(t) is unbounded for all t in pos N.

(iii) If P(t) is bounded, there exists a decomposition of pos N into a finite closed
polyhedral complex H whose cells are simplicial cones with vertex at the origin, and a
one-to-one correspondence between the one-dimensional cells of H and selected columns
of N which generate.them, such that

(a) the closed M-dimensional cells of H cover pos N, and

(b) the M columns of N associated with the edges of a closed M-dimensional cell
C of H constitute an optimal basis for all t in C.

Our task is then to find such a finite closed polyhedral complex for the uncapaci-
tated transportation problem. With ‘cell’ we shall hereafter always refer to M-
dimensional cells of H.

We will now assume that the system is nondegenerate (it will be made clear what
that means). In Section 4 we shall return to the problem without a nondegeneracy
assumption and study a perturbation technique.

3. The decomposition algorithm

The method is based on the dual simplex method. Each cell is pos N represents
a dual feasible basis. Going from one cell to another (from one basis to an adjacent
basis) requires that one first picks an outgoing column and then finds the appropriate
entering column. By doing this for all basic columns, we will find all the neighbour
cells. Provided that they all exist, nondegeneracy tells us that there will be M of them.

The dual simplex method is oriented towards pivot selection in selected rows of
the simplex tableau. The first question to answer is therefore: What is the significance
of arow inthe simplex tableau? In orderto answerthis we will referto a result from [ 2].

Let a basis B be given in a network. Let arc(i, j) (arc (i, j) is the arc that goes
from node i to node j) be a nonbasic arc, and let y; be the cycle created when we
add arc (i, j) to the basic tree. See Fig. 1. Furthermore, let arc(i, j) define the direction
of the cycle, i.e. arc(i, j) is a forward arc. Let the (n—1)-vector u(y;) be defined as

1 if basic arc k is a forward arc 1n vy,
() =4 —1 (if basic arc k is a reverse arc in vy;,
0 if basic arc k is not in v;.

In our example in Fig. | assume the arcs have the following numbering: (1,2)- 1,
(3,5)>2 and (1,3)->3. Then

u(ys)=(1,-1,-1,0)

where 0 represents all other basic arcs, since arc(1, 2) is a forward arc and (3, 5)
and (1, 3) are reverse arcs.
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/,@

—» BASIC ARCS
---> NON-BASIC ARC

Fig. 1. The nonbasic arc(2, S) creates a cycle y,5=(2, 5,3, 1, 2) in the basic tree.

If we denote the column corresponding to arc(i, j) by a;, we then have
u(yy)=—B"ay (N

i.e. the simplex tableau shows which arcs are in the cycle created by arc (i, j) and
which orientation they have.

Therefore, the significance of row k is that if a,; =+1 (ay; is the kth element
of the column in the simplex tableau representing the arc from node i to node j),
basic arc no. k is a reverse arc (note the minus sign in (1)) on the cycle created by
arc(i, j), if ax; =—1 it is a forward arc and if a, ;=0 basic arc no. k is not part of
the cycle. In other words, only arcs that use the leaving arc as forward arc in their
cycles are candidates for entering the basis. (In the dual simplex method only
negative entries in a row are candidates to become pivot elements).

So far we have not used any properties from the transportation structure of our
problem. First we note that our graph is bipartite and that all supply points are
connected with all demand points. See Fig. 2.

Proposition 4. All cycles created by nonbasic arcs have an even number of arcs.
Proof. Follows from the fact that no arcs connect two supply or two demand points.
Proposition 5. Every second arc in all cycles created by nonbasic arcs is a forward arc.

Therefore we can give an algorithm to find all arcs satisfying a, ; <0 (ax; = —1)
because of the following observations.

Proposition 6. The entering arc must not be connected to the leaving arc by an even
number of basic arcs.

Algorithm
(0) Let S=¢, T =/{all nodes}.
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— ORIGINAL ARCS

Fig. 2. A transportation network.

(1) Define the head and tail nodes of the leaving arc to be blocked and put their
indices into the set S: Let T=T- 8.

(2) Find all nodes in T connected to nodes in S by basic arcs. Let these be open
and redefine S to contain only these open nodes. Let T=T-S8 If T=9,
stop, otherwise go to 3.

(3) Find all nodes in T connected to nodes in S by basic arcs. Define these as
being blocked nodes, and redefine S to contain only these blocked nodes.
Let T=T-S. If T=0, stop, otherwise go to 2.

When this algorithm terminates, a certain set of nodes are open and another set
is blocked, see Fig. 3. All arcs that have both their originating and terminating node
open, satisfy a,; <0. In Fig. 3 these are arcs (1,4) and (3,4). Note also that all
basic arcs automatically are excluded from this set since one of their end nodes will
be blocked. Furthermore, non-basic arcs which create a cycle in the basis not
containing arc k will also be excluded since they automatically have a blocked node
in one end and an open node in the other. This follows from the fact that all cycles

\ / \
\

\

\

\

\

\

Fig. 3. With arc(2, 5) as leaving arc, nodes 2 and 5 are blocked and nodes 1, 3 and 4 are open.

—» BASIC ARCS
---2= LEAVING ARC
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are of even length and nodes along cycles without arc k will alternate as open and
closed nodes.
According to the dual simplex method we are seeking the arc(i, j) such that

Cij Cre
— = max .
ak,ij a5 <0 ak,rs

Since the relevant value of a,; is —1, we are looking for the (i, j) such that
%= mip &
where K is the set of arcs which have open nodes at both ends. This is the pivoting
rule of the dual simplex method for transportation networks.
The duals are easily found by the usual formula

s D
mi=m; ¢y

for the arc from i to j basic, and therefore ¢; is found by

C; = 7TjD+c,~j—7r;9.

We have now established the formulas if potential entering arcs exist. What if
such an arc does not exist?

First we show that this situation occurs if and only if the leaving arc is connected
to a leaf node. A node is a leaf if it is an end node for only one basic arc.

This can easily be seen as follows: By deleting the leaving arc, which is not
connected to a leaf node, from the basic tree, we are left with two disjoint trees.
One of them will have a blocked supply node, the other a blocked demand node.
In the tree with one blocked supply node, all supply nodes are blocked and all

—= BASIC ARCS

Fig. 4. Leaving arc is connected to a leaf node.
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—®= BASIC ARCS

Fig. 5. Leaving arc is not connected to a leaf.node.

demand nodes are open. In the other tree all demand nodes are blocked and all
supply nodes are open. But if the leaving arc is connected to a leaf, that part of the
tree will have no open nodes, and therefore no arc will have open nodes at both ends.

It is therefore clear that the number of leaves in a tree tells us something about
how ‘extreme’ the given basis is, i.e. in how many directions we will end up outside
pos N.

Since all trees have at least two leaves, no basis can be said to be ‘internal’ i.e.
they all have at least two faces in common with pos N. The interested reader is
referred to [S].

From the definition of the transportation problem, we know that as long as we
let supply equal demand, and only supply/demand nonnegative amounts, our
problem is feasible. Therefore ending up outside pos N is in this case equivalent
to a badly stated problem.

If we make a cut through a three-dimensional decomposed cone, we get a figure
like Fig. 6 (the points corresponding to rays generated by the columns). An interesting
question is whether or not we can have a situation as in Fig. 7 i.e. a linear dependence
among 3 (or in general M) columns. The answer is

Fig. 6. A cut through a decomposed polyhedral cone in R>.
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Fig. 7. A type of linear dependence we never experience.

Proposition 7. We will never experience that a set of weights k;=0, ¥ k; # 0 exists,
such that

M
Y kia; =0

=1

where a;; is the column of N representing arc(i, j).

Proof. All columns contain nonzero entries and all nonzero entries in one row have
the same sign.

This does not rule out degeneracy, but clearly simplifies the nature of degeneracy.

4. Degeneracy

We now consider degeneracy, and not for purely theoretical reasons. The following
figure illustrates the problem.

Assume that at a certain step of the algorithm we have found both the cells (bases)
I and II in Fig. 8 and that all the dots represent columns that are such that the
reduced costs are unaffected by which three we pick. The risk is then that from I
we pick arc2 and from II we pick arc 1 thereby creating a situation like Fig. 9.

This situation is clearly nonunique and is caused by dual degeneracy. It is also
clear that the nonuniqueness is only within the area of constant reduced costs, and
that cycling is no problem if the data is properly organized. It should also be clear
that whether or not the nonuniqueness is a problem at all, is a question of algorithms
and data structures. Very advanced structures will be needed, however, since the

o=

Fig. 8. The situation in an intermediate step of the algorithm. The dots represent columns. The triangles
represent optimal bases already found.
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Fig. 9. A possible outcome from Fig. 8 if degeneracy is not considered. This situation represents
nonuniqueness of the decomposition.

pointer-structure explained in the next section could be spoilt. We shall not discuss
data structures, but rather give an algorithm to prevent degeneracy. For further
details the reader is referred to [3]. Let

cy(8) =c;— ™I,

This implies that arcs originating in supply node 1 are numbered 1 through M,,
and those originating in supply node M, are numbered from M, * M,— M, to
M,* M, ie from N— M, to N.

By choosing 8 small enough we know that 8° < 6/ if and only if i > j. The definition
of ¢;(0) is now (arc(i,j) not basic).

&;(0)=c;— 0™V + 9.B7'a, — cxB'a,

=EU‘0M2“_”+j_OBI~L(7ij):Eij_ ) 0“+ ) 0~
ke FORW(i, j) ke REV(iyj)
where ¢; is the unperturbed reduced cost, FORW(i, j) is the set of forward arcs
in the cycle created by arc(i,j) in the basic trees and REV(i, j) the set of reverse
arcs in the cycle. Note that arc(i, j) is included in the set FORW(4, j).

If therefore &, = ¢,, we shall look for the lowest indexed column’in each of the
cycles y; and 7,,. If one has a lower index than the other, the min of ¢;(#) and
¢ (08) depends on whether this is a forward or reverse arc in the cycle.

Therefore, to check for min ¢;(8) when we have a tie on ¢, we must identify the
cycles created by these arcs in the basic tree in order to break the tie.

Since transportation networks are likely to be very degenerate (at least with integer
costs), an efficient method must be found to solve the above-mentioned problem,
since ties are very likely to occur often.

5. Checking if a right-hand side belongs to a cell

A right-hand side belongs to a given basis (cell) if it can be written as a nonnegative
linear combination of the columns in that basis.
Since we know that any basis in a pure network can be written as an upper
triangular matrix, we shall be looking for a method that takes advantage of this
property.
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We shall store the basic arcs in an integer vector as follows (using k = M,(i —1)+j
as column index):

(i) Give each node in the network an index showing how often it appears as
an end node of a basic arc (clearly the first M, nodes are only tail nodes, the last
M, nodes are only head nodes).

(ii) Find a node with index 1.

(iii) Put the arc which has this node as an end node in the next position in the
arc list, with a positive sign if the node was a tail node, and with negative sign
otherwise.

(iv) Reduce the indices of the end nodes of the arc by one.

(v) If all nodes have index 0, stop, otherwise go to (ii).

Example. With the following simple network, an acceptable vector of basic arcs is
(5,-4,3,—-1).

—» ORIGINAL ARCS

Fig. 10. Basic network for the example,

With this structure for the basic arcs we shall show how to check if a right hand
side belongs to this cell by means of an example. Let b=(2,3,4,5,4) where we
have left out the negative signs for the demand. (Note that in the example we have
ordered the nodes consecutively, and not restarted the numbering at the first
demand-node, as the formulas require).

Since the first element of the basic arc list is 5, we start by letting all supply in
node 3 (tail node of arc5) be sent to node 4, i.e. y;,=4. Then b is changed to
b=(2,3,0,1,4).

The next element in the list of basic arcs is —4. Therefore all demand at the head
node of arc 4 is to be satisfied, i.e. y,s=4. b then becomes b=(2,-1,0,1,0).
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The next element of the list is 3, i.e. y,,=—1 which makes b=(2,0,0, 2,0).

The last element in the list is —1 (could as well have been +1) i.e. y,,=2.

Therefore the solution is (using k= M,(i—1)+j), (2,0,—1, 4, 4,0), and hence b
does not belong to this cell.

The next step is therefore to check the neighbour of this cell found by leaving
out arc3 (arc(2, 4)).

As can be seen we only need to go through the M-list of basic arcs once to check
if a given right hand side belongs to a given cell. If it does not belong to the cell,
that will often be discovered before we have gone through the whole list.

6. Organizing the data

In the previous section we showed how to store the data once the decomposition
was done. In this section we show how to organize the data in order to efficiently
perform the decomposition. If the decomposition is done as we pass along, i.e. we
create new cells as they are needed, an appropriate adjustment must be made.

We shall now construct a graph. The graph consists of a set of nodes, one for
each cell and a set of arcs, one for each pair of neighbour nodes/cell/bases. Two
bases are neighbours if and only if they differ in exactly one column. The arcs are
represented by pointers. We shall also construct a list that consists of the same
nodes as in the graph, but here the pointers order the nodes sequentially. The list
starts by a dummy node 0.

To each node is attached

a;: Integer array of basic variables of length M.

Bi: Boolean array of length M.

pi: Array of pointers of length M.

P;: List of pointers.

V;: Objective value—real.

The objective value is defined as 21::4:. ¢(a;(k)) and is used to simplify a search
which will be explained later. The array a; will be ordered according to increasing
values of k = (i — 1) M, +j. If B;(¢) =true, it has not yet been checked if a neighbour
can be found by taking arc «;(¢) out of basis. As long as B;(t) =true, p;(t) has no
meaning. If B;(¢)=false, p,(t) will be the null-pointer if the arc ;(¢) is connected
to a leaf, and p;(t) will'be a pointer to another node in the graph if the arc is not
connected to a leaf. This other node represents the basis which we get if we take
arc a;(t) out of the basis. The P-pointers order the nodes according to increasing
values of V, Let {x} be the set containing the elements of the vector x, unordered.

The algorithm then goes as follows:

(i) Pick an arbitrary basic tree which has non-negative reduced costs. Construct
a,: its index vector. Find V;. For all basic arcs k such that the arc is connected to
a leaf, let p,(k) =0 and B,(k)=false. Let the rest of 8, be true. Let r=1. Let po=1
and p, =0.
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(ii) Remove node r from the list (of p-pinters). For all k such that 8,(k) =true,
find the entering arc k,. Let OBJ = V, - ¢(a,(k)) + c(k,). Go through the list of nodes,
starting with node p, to find T={r. OBJ=V,}. If T =0 go to (iii): We have found
a new node. Else check for all te T if {a,} —{a,(k)} +{k,} ={a,}. If no such ¢ exists,
go to (iii); a new node is found. Otherwise an already created basis has been
reached—go to (iv) with ¢, as the pointer to the node.

(iii) A new node s is to be created. Create «a, from a, by leaving out «,(k) and
putting k, in its appropriate place. Let V, = OBJ. Define B, and p, as in (i). Let
k,besuchthat a,(k,) =k,. Let p,(k,) = r and B,(k,) = false. Furthermore, let p,(k) = s
and put node s into its correct place in the list by giving p, its appropriate value.
Go to (v).

(iv) The node was already created, namely node ¢,. Let k, be such that a, (k,) =k,.
Let B, (k;) =false and p, (k;) =r. Let p,(k) =1t,. Go to (V).

(v) Let r=r+1: If r is greater than the number of nodes created so far, stop.
Otherwise go to (ii).

As we can see, the ordering of a; according to increasing values for k makes it
easier to find k, such that «;(k,) = k,. But this does not fit with what we suggested
to check efficiently if a given right hand side belongs to a given cell or not. Therefore,
in order to facilitate this, we proceed as follows:

(1) Resort a; (and remember to resort p; accordingly) as needed to make the
above-mentioned check easy, cf. Section 5.

(2) Drop V, P and B for all nodes.

Now it is easy fo find the appropriate cell for a given right hand side b. Pick a
node. Use the algorithms in Section 5 to check if the cell corresponding to this node
contains b. As soon as a negative value shows up, €.g. ¥, ) <0 follow pointer 8(k)
to a new node and check that one. Continue until the correct node has been found.

Alternatively one might want to find all the negative y’s and follow the pointer
of the one with largest absolute value. Here the search takes longer, but the number
of nodes visited is likely to be smaller.

7. The number of cells

In [1] Balinski showed that the number of cells is independent of the cost structure
of the transportation problem. Furthermore he obtained the following theorem.

Theorem 8. Let a=(a,, a,, ..., an,) be a vector of integers with a,=1 and ¥ a;=
M,+ M, — 1. There is a one-to-one correspondence between cells in a nondegenerate
transportation problem and possible ways of writing a, when M, is the number of
supply-points and M, is the number of demand-points.

From Theorem 8 we can prove the following theorem.
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Theorem 9. With M, supply points and M, demand points there are exactly

(M,+M2—2)
M, -1

cells in the decomposition of pos N.

Proof. Define the sequence {b;}1" ™" such that

l=b <b,<: - -<by_<(M+M,-2).
Then let

a,=b, ay=b,—b,,...,apm 1 =by_,—by_>
and

Am =M+ M,—1—(a,+---+ay,_,).

This sequence {a;}"": is of the type required in Theorem 8. The problem is therefore
reduced to finding the number of ways we can pick M, — | numbers from M, - M, -2
numbers, i.e.

Ml+M2—2)
. O
( M,—1

8. The size of a cell

As shown in the previous section, the number of cells increases rapidly as M,
and M, increase. The largest system that has less than 4000 cells is one with 8 supply
points and 8 demand points. Therefore we cannot create all the cells in advance if
the problem is of a reasonably large size. The following question therefore arises:
Which cells should be generated? What is a large cell?

In order to answer this question, we made the following experiment:

Consider a system with 5 supply points and 5 demand points and let C; =0 for
all i and j. We have chosen this cost structure (which is extremely degenerate)
because we want to test the effect of the cells’ relative position to one another and
not the effects of the cost structure. (It might be fruitful to test the effect of costs
too, but at least the two should be separated, if possible). Theorem 9 in the previous
section shows that a 5 * 5 system has 70 cells.

We next created 10 000 random right hand sides in the following way:

(1) For supply point 2 to 5 and demand point | to 4, pick a random number
from a uniform distribution between 0 and 3.

(2) Iftotal supply exceeds total demand, let the demand at point S be the difference
and let the supply at point 1 be 0.

(3) If total demand exceeds total supply, let supply point 1 supply the difference
and let the demand at point 5 be 0.
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As we can see, the expected total supply is one and the expected total demand
is one, thereby giving node | an expected supply of zero and demand point 5 an
expected demand of zero.

We then ran a program that checked how many right hand sides fit into each of
the 70 cells.

We then posed two questions:

(1) What is the significance of a cell’s position relative to the cell that contains
the expected values for the supply and demand?

(2) Is it important how many neighbours a given cell has? I.e. how ‘extreme’ it is?

To answer question 1 we attached to each cell a number showing how many
pivots were necessary to get to it from the central cell (containing the expected
values of supply and demand) along the shortest path. The results are shown in
Table 1.

Table |

Statistics for 10 000 random, uniformly distributed right-hand sides on a 5 * 5 system with all costs zero.
Criterion: Number of pivots from central cell.

Number of Number Number Number of Average Aggregate  Average Aggregate

pivots from of cells of cells right hand  for all average for used average
central cell used sides in cells for all cells for used
these cells cells cells
0 1 1 483 483 483 483 483
1 6 6 1921 320 343 320 343
2 14 13 3136 224 264 241 277
3 18 15 2573 143 208 172 232
4 13 9 1129 87 178 125 210
5 9 3 412 46 158 137 205
6 5 3 273 55 150 91 199
7 4 1 73 18 143 73 196

As can be seen in the table, we have distinguished between the number of cells
at a certain distance and the number of cells used at the same distance. The reason
is as follows: Certain cells will never be used (the probability is zero) because they
are generated by an arc structure illustrated in Fig. 11.

Since the probability that D, =0 (i.e. the demand at node 5) is zero and since
the probability that §;=0 is zero, and since we have that both §,>0 and D;>0
never happen, one of two things can happen:

(a) S,=0, D,>0 making it impossible to satisfy the demand at node 5.

(b) Dy;=0and S;>0 making it impossible to send the supply at node 3 anywhere.

The probability of (a) or (b) is one.

Therefore all cells having the property that both supply node 1 and demand node
M, is connected to at least one leaf node each, will fall into the category of ‘cells
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Fig. 11. A cell for which the probability of being used is zero.

never used’ (with probability one). But even if the ‘cells never used’ can be identified
in advance through this property, they must still be used in the decomposition since
they represent pivot steps.

The result to be read from Table 1 is very clear:

- Being close to the cell containing the expected values (the central cell) is a
good measure of size. The first 20 cells (29%) (those with 0, 1 and 2 pivots) contain
55% of the right-hand sides and if we also add those with 3 pivots, we get that 38
cells (54%) contain 81% of the right-hand sides.

This supports the idea of creating cells in circles around the central cell if not all
cells can be created. If a right-hand side does not fit any of the cells, use a dual
method to calculate the solution from the last cell found. Few steps will probably
be needed.

This result is supported by numerous tests with networks other than 5 * 5.

We mentioned in Section 3 that the number of neighbours for a cell shows how
‘extreme’ it is. Few neighbours mean that the cell has a high number of faces in
common with those of the polyhedral cone pos N. Therefore we checked if the
number of neighbours was a good measure of the size of a cell. The result is shown
in Table 2. The explanation of the columns in Table 2 is the same as for Table 1.

The lesson to be drawn is also clear:

- The number of neighbours is a good measure of size. The 21 largest cells (among
which 6 are never used) (30% of the total) contain 48% of the right hand sides,
and if we also add those with 4 neighbours, 48 cells (69%) contain 86% of the
right-hand sides.

Although we now have found two different measures of size for a cell, it should
be clear that the last one is not very practical from a computational point of view.
We therefore conclude (noting that the central cell has 6 neighbours):

If only a limited number of cells can be generated, one should pick those that have the
lowest distance from the central cell.
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Table 2

Statistics for 10 000 random, uniformly distributed right hand sides on a 5 * 5 system with all costs zero.
Criterion: Number of neighbours.

Number Number  Number Number of Average Aggregate  Average Aggregate

of of cells of cells right hand for all average used average
neighbours used  sides in cells for all cells for used
these cells cells cells
6 5 4 1664 333 333 416 416
5 16 11 3127 195 228 284 319
4 27 19 3765 139 178 198 252
3 17 12 1204 71 150 100 212
2 4 3 154 39 143 51 202
1 1 1 86 86 143 86 200

We have also tested the following problems: When a search for the correct cell
is initiated, in which cell should the search start? We have checked 2 possibilities:

~ pick the cell where the last search ended,

- pick the central cell.

With no kind of sorting of the right-hand side (which perhaps could favour
alternative 1), alternative 2 was significantly better than the other. Hence we suggest:

The search for the correct cell should always start in the central cell (the cell containing
the expected values of supply and demand).

To fit 10 000 right-hand sides into the 70 cells of a 5 * 5 system takes about 35
seconds CPU-time on a PRIME 850. We doubt that it will be faster to sort the
10 000 right-hand sides in order to make the total process faster by using the
above-mentioned alternative 1 for the initial cell. One of the reasons is that it is not
at all clear what criterion the sort should be based on. A suggestion might be to
sort on the basis of the Euclidean distances between the right-hand sides. Note,
however, that the sort must be sequential, such that K right-hand sides will require
(K ~1)! distance calculations and comparisons.

It is clear that provided pos N is totally decomposed, this method is superior to
bunching [7], once the decomposition is done. But if only a limited number of cells
have been found; bunching might be useful on those right hand sides that fall
outside the decomposed area. We have not compared with sifting [7].

9. Example

Let the network of Fig. 12 be given for M, =2, M,=3. Furthermore, let

c~( 0 0 o)
367 6.12 3.4)
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—» ORIGINAL ARCS

Fig. 12. Original transportation problem.

This problem decomposes into the three cells shown in Figs. 13, 14 and 15. The
important variables can be found in Table 3. We therefore know that every consistent
combination of supply and demand will have one of these cells as optimal.

— BASIC ARCS
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Fig. 14. Cell 2.

—® BASIC ARCS
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Table 3

The most important variables for the example

Cell Basis Reduced cost Pointer Duals

1 1,2,3,6 0,0,0,0.27,2.72,0 0,0,2,0 0,3.4,0,0,0

2 1,2,4,6 0,0,0.27,0,2.45,0 3,0,1,0 0,3.67,0,0,0.27

3 2,4,5,6 2.45,0,2.72,0,0,0 0,0,2,0 0,6.12,2.45,0,2.72
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1. Introduction

Much research has been devoted in the field of stochastic programming to the
two-stage programs, see e.g. Dempster [4, Introduction] and Wets [18] for recent
surveys.

In practice however, many problems have an inherently dynamic structure. Most
theoretical results naturally extend from the two-stage situation to the multistage
one, see e.g. Olsen [12,13]. Algorithms that have been proposed for multistage
programs can also be considered as extensions of the two-stage L-shaped algorithm
of Van Slyke and Wets [16]. They are mainly nested decompositions studied by
Birge [2] in the linear case and Louveaux [9] in the quadratic case. Basic definitions
of multistage programs are reviewed in Section 1.

The object of this paper is to study a structural property that most multistage
programs either naturally possess or can be led to possess: the so-called block-
separability. If the multistage problem is viewed as a set of subproblems in each
node of some decision tree, block-separability means that the decision vector in any
subproblem is formed of two vectors, the aggregate level decision vector and the
detailed level decision vector, and that the objective function and the constraint
matrices related to those two vectors are separable, in the mathematical sense. The
definition of block-separability is given in Section 3. Examples of applications where
this property holds are presented in Section 4: capacity expansion, resource exhaus-
tion and hierarchical planning systems from which the terminology aggregate-
detailed is taken [7]. In Section 5, we show that any multistage program with
block-separable recourse can be transformed into a two-stage stochastic program

48



F.V. Louveaux / Multistage stochastic programs 49

where the first-stage is the extensive form of the aggregate level problems and the
second-stage is related to the detailed level. We also discuss algorithmic implications
of this property, in particular the possibility of solving multistage stochastic integer
programs when the integer variables are associated with the aggregate level decisions.

Finally, in Section 6, we study how a nested decomposition approach can still
be used to solve the two-stage equivalent form in the linear case but not in the
quadratic case.

2. Multistage stochastic programs

Let x,=(x,,..., x,) denote the set of decisions made up to and including time ¢,
and & =(£,...,&) the set of realisations of the random vectors as seen from
period t.

Then, a multistage stochastic program with recourse can be defined recursively
as follows:

(MS.P) inf {z,(x,)|x;€ D;}

where
z2(x, &) = ¢(x;) + E,, 1, Qi(x,, £041)
and
Q(x, &vr) =inf zeyi(xepy, &ivy)
st. x.,€ Fiy,
Tax+ WXy = heyy
for

1<st< N-1, with Qn( )=0and z,(x,) = z,(x,, &).

For all stages ¢, the function ¢,(x,) describes the current objective function at time
t and its expression may contain random elements. In particular, if ¢,(x,)=¢,- x, is
linear, the vector ¢, is random. In addition, the vector h,,; and the matrices T,
and W, , are random. Those vectors have sizes consistent with x,,; € R and h,, ;e R"™,
so W,,, is a m X n matrix and T,,, is a m X(n X t) matrix, e.g.

Properties of the multistage stochastic programs are best expressed in terms of
the deterministic equivalent program as seen from period ¢ which is defined as
follows.

(D.E.P.), Find inf z/(x, &)
st. x,eF,

Tx._,+ Wx,=h,.
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Properties of the (D.E.P.), have been extensively studied when the random vectors
£,1| € have a finite support for all «. Then the (D.E.P.),’s are known to be piecewise
linear if ¢,(x,) is linear and piecewise quadratic when ¢,(x,) is quadratic (see Gartska
and Wets [5] and also Wets [17] for results on feasibility sets).

Solution techniques for multistage program are based on dual decomposition
schemes and are as such extensions of the 2-stage L-shaped algorithm proposed by
Van Slyke and Wets [16], which is directly related to Benders’s decomposition [1].
The multistage algorithms solve nested sequences of (D.E.P.),’s using backward
and forward induction, see e.g. Birge [2] in the linear case, and Louveaux [9] in the
quadratic case.

3. Multistage stochastic program with block-separable recourse

Definition. A multistage stochastic program is said to have block-separable recourse
if for all periods t=1,..., N and all random events £, ,,| £ the decision vectors x,
can be separated into two subvectors x, = (w,, y,) in such a way that

(a) The objective function ¢,(x,) is separable in two parts:

c,(x,) = rt(wt) + qt(yr)-

(b) The constraint matrix W, is block diagonal

W= (A, 0 )
t 0 B,
where the first block A, is associated to the vector w, and the second block B, to

the vector y,.
(c) The region x, € F; is equivalent to

{x,€e F}={w,e D,} x{y,€ E,}.

The w, vector is called the aggregate level decision vector and the y, vector the
detailed level decision vector.

(d) The T, and h, matrices are decomposed to conform with the (w,, y,) separation
and T, only possesses nonzero elements in the columns associated with the aggregate
level decisions

R, 0 b,
T,= = -
(s, o) and b (d)

Illustrations of examples where the block-separable recourse property occurs are
given in the next section.

Then, a multistage stochastic program with block-separable recourse (in short BS
MSP for block-separable multistage stochastic program) is defined as follows:

(BS-MSP) inf {z,(w,)|w,eD,}
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where
2wy, &) =r(w)+ Eg, 161 Q7 (w, &)+ QY(w, &)}
and
Qf(w, &) =inf  z,,(w;s)
st. w €Dy,
Reyi-wit AW = biy,
and

Qi(w, &) =inf  grsy(yiss)
s.it. Y€ Eo,
SeeiWit By = dy
fort=1,..., N—1, with z,(w;)=z,(w,, £) and Q% _,(-,-)=0, QX(-,-)=0.

Comments. 1. The ordinary two-stage stochastic program appears to be a particular
case of block-separable multistage program where the first stage decisions only
consist of aggregate level decisions and the second stage only consist of detailed
level decisions.

2. Multistage programs with simple recourse, as discussed in Kusy and Ziemba
[6], naturally possess the block-separability property. In the linear case, using the
above notation, they can be defined by taking

r(w)=r-w, D =R, R,=0, E:=R2+ma qr(yr)zqr+'y:+
+q;-y,, B=(,-I) and d =¢,.

The multistage extension of the quadratic problem with simple recourse considered
by Rockafellar and Wets [15] can be defined in a similar fashion using a piecewise
quadratic function q(y).

3. Block-separability has immediate advantages from the algorithmic point of
view: a reduction in size for each of the subproblems to be solved as well as a more
efficient description of the polyhedral cells needed in the quadratic case, see
Louveaux and Smeers [10] for details. Other interesting properties of block-
separability are given in Section 5 and 6.

4. Examples of block-separability

Example 1. Capacity expansion of power plants. The basic description and most of
the results cited in this example are taken from Louveaux and Smeers [10].

We assume here a given set of commercially available technologies, along with
the date when each technology becomes commercially available. So we only consider



52 F.V. Louveaux / Multistage stochastic programs

the timing and the size of the investments made in the existing technologies (exclud-
ing the aspects of financing R&D for creating new technologies) so as to meet future
electricity demand. We give a description of the objective function and of the
constraints for one (D.E.P.).. Let

i=1,...,n, index the set of technologies,

Jj=1,..., m, index the set of operating modes, in which we divide the area under
the load curve, described in Fig. 1, which represents the number of hours h during
which the total electricity demand during one year period reaches the level D.

Fig. 1.

Define

x{=new capacity (investment) decided for technology (equipment type) i attime ¢,

s; =total capacity of technology i available plus in order at time ¢,

yi = capacity of technology i effectively used at time ¢ in operating mode j,

4, = construction lead time for technology i,

a; = utilization factor of technology i,

g =existing capacity of technology i which has been decided before period 1,
and is therefore an exggeneous data for the problem,

d;=maximal demand (power) covered in operating mode j.

We also assume there exists one technology, say technology n, with zero construc-
tion lead-time (4, =0) and large operating cost. The (D.E.P.), can be defined as

(D.E.P.);, min C,(x,)*’lb(yx)*’Eg,ﬂ;g,Q:(S',§m) (1)

st.  si=s{"+xi, i=1,...,n, 2

m n—1
a (gatsy ' +x)= T di- T a(gitsiTY), (3)

Jj=t i=1
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Zy:’=d;, jzla"'ama (4)
i=1

Zyl{jsai'(g:-*’sl{_‘li)a i:1,...,n, (5)
j=1

x,y,5s=0.

Constraint (3) defines the minimal investment needed in the zero lead-time
technology so as to ensure feasibility of the (D.E.P.), for any past decisions (relatively
complete recourse). Since we only consider new investments over a relatively short
time horizon (N =5 periods of 5 years each), such that most equipments will not
become obsolete inside the period, all costs are computed in a yearly equivalent
basis and new investment decisions taken after period 1 are assumed to be repeated
when the equipment becomes obsolete, so an explicit treatment of obsolescence in
equation (2) is avoided.

The cost function ¢,(x,) describes the investment cost and is linear in x, The
function g.(y,) describes the cost of meeting demand as a function of the operation
of the equipments. It is nonlinear in the y’s (since the load curve is nonlinear) and
can be approximated by simple functions such as piecewise linear or piecewise
quadratic functions.

Given those assumptions, the optimal investment in the technology n is described
by

1 m n—1
x;=—maX{0; T di-Y ai(g§+SE“")—an(gi,+s;")} (6)
j=1 i

n i=1

hence

m n—1

T di— ¥ algitsi®)
si,:max{sﬁ,_';r_‘1 = -gﬁ,}.

- (7

It follows that the (D.E.P.), possesses the block-separability property since it can

be divided in

- an aggregate level problem involving the investment decisions in the n—1
equipment types, plus in the zero lead-time technology as given by (6);

- a detailed level problem involving setting the operations levels for the n
equipment types in the m operating modes with available capacities gi+s!™*
fori=1,...,n—1 and g, +s,, for i=n, where s, is given by (7).

Furthermore, the detailed level problem can now readily be solved through a

simple rule: the so-called ‘order merit rule’ is optimal, namely demand should be
met by using the equipment types in order of increasing operating costs up to their
capacity limit. It follows that the computation of the recourse function QY(w,_;)
and, in the quadratic case the construction of the associated polyhedral cell, can
be performed very effectively by using a specific and separate subroutine implement-
ing the order of mérit rule. This is another important advantage of block-separability.



54

F.V. Louveaux / Multistage stochastic programs

Example 2. Capacity expansion and resource exhaustion. This example is taken from
a larger problem which also involves the optimal allocation of R&D budgets to a
number of electrical and non electrical technologies. It is described in de Groote,
Louveaux, Poncelet and Smeers [3]. Here we consider the part of the problem related
to the investments in the commercially available technologies as well as the usage
of the exhaustible resources. Let
i=1,...,n,index the set of technologies
J=1,..., m, index the set of resources. Resources from different origins (extrac-
ted/or imported coal from various regions, e.g.) are considered distinct. A resource
wears the same index as the corresponding extraction/import technology (equipment
type) hence m <n.
k=1,..., f index the set of fuels (for one fuel, there are several resources).

Let

x;=investment in technology i decided at time ¢,
s =total capacity of i available plus in order at time ¢,
y; = capacity of i effectively used at time ¢,

7
t

J

Let also

u; =amount of resource j effectively extracted/imported at time ¢,

a, = total availability of resource j,
4; = construction lead-time for equipment type i,
L, = life-time of equipment type i,

; = utilisation factor of equipment type i,

Ji. = set of resources from which fuel k can be obtained,

T, =set of technologies using fuel k.

Then, the (D.E.P.), can be described as follows:

(D.E.P.), min

s.t.

¢ X+ q(y, u)+ EE,HK,Qr(xu &)

si=siT'+xi—-xiH i=1,...,n,

1~ 4,

yisasi%, i=m+l1,...,n,

=1 t .
e‘,*ej +uj, j-—l,...

t -4, .
ujsa;-s; %, j=1,...,m,

t
e;<a,

Z}’:$Z uj‘" k=19"'9f’

i€y Jjet

Jj=1...,m,

(xh sn el) € Db (yh ul) € E('

e; = total amount of resource j extracted/imported from period 1 to period ¢,

(8)

9
(10)
(11)
(12)
(13)
(14)

The objective function in (D.E.P.), contains one linear term ¢, associated with
the new investments decided in ¢t and a nonlinear term q,(y, u,) describing minus
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the consumer’s surplus one is willing to maximize. Since we consider evaluating the
impact of R&D in the long run, this approach of using the consumer’s surplus
avoids the difficult exercise of forecasting demand in the long run.

Constraints (9) and (10) define the cumulative investment in equipment type i
and its usage. As seen from those two equations when using a nested decomposition
approach, it is necessary to maintain information about the investment decisions
over L,+ A; periods. This is a major difficulty to which approximating (9), see [3],
or block-separability, see Section 5, can give some solution.

Constraints (11) to (13) describe the extraction of resources. Constraint (14)
relates usages of fuels to effective usage of equipment types. The set D, contains
limitations on the penetration of new electrical technologies, a simplification which
avoids an explicit description of the load curve as in Example 1. The set E, defines
the demand in the electrical and non electrical part as a function of the effective
usage of fuels and equipment types as well as a relation between production, usage
and inventory of nuclear fuels. Two main directions for simplifying the (D.E.P.),
formulation and the solution method can be proposed.

Method 1. ‘Wise planner’. The first approach has become classical in the field of
energy modelling, see Manne, Richels and Weyant [11]. It assumes that new
capacities are built in such a way that they are always fully used in all later periods.
This means that constraints

-4 .
yi<asi™, i=m+1,... n

>

and
uj<asi™h, j=1,...,n,
are all binding.

The advantage of making these assumptions is that the size of the (D.E.P.), is
strongly reduced. However the (D.E.P.), loses the relatively complete recourse
property and becomes difficult to handle in a nested decomposition approach. In
addition, this approach is somewhat unnatural in a stochastic framework, where by
definition, there cannot exists such a thing as a wise planner in the above sense.

Method 2. ‘Myopic consumer’. The approach we propose is to make the (D.E.P.),
block-separable. Separability between investment and usage of technologies can be
obtained as in Example 1, either by assuming a construction lead time greater than
or equal to one for all equipments, or that a rule similar to (6) exists for equipment
types with zero lead time.

In addition, some assumption is to be made on the usage of resources since they
have an impact on later availabilities. To obtain separability, any sort of myopic
behaviour should be assumed. One such example is the following.

Replace constraints (11), (12) and (13) by the relations

u.;zmin(ajs;:d]? aj_ej{—l)a j=1,...,m, (16)
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hence

e;=min(e; '+ a;5;"%, a), j=1,...,m. (17)

The above assumption, along with a similar assumption on the nuclear fuel,
induces the block-separability of the (D.E.P.), in two types of decisions:

- aggregate level decisions: capacity investments (x, s,) as well as cumulative

extraction given by (17);
~ detailed level decisions: effective use of capacities (u;, y;) based on available
resources given by (16).

It is interesting to observe that block-separability is obtained with a weaker
assumption than in the wise planner method. Moreover, if block-separability holds,
it is still possible to consider designing simple (heuristic) rules in order to obtain
an effective computation of the recourse function Q7 ,(x._;, &_,), and in the quad-
ratic case, of the associated polyhedral cell. It might be more difficult however to
find a rule which can be proved to be optimal as is the case for the order of merit
rule in Example 1.

Example 3. Stochastic integer programming. Several examples of block-separability
can be found in the literature on hierarchical planning systems from which the
terminology (aggregated level-detailed level) has been taken, see, e.g. [7]. To cite
only a few, consider the machine scheduling problem (aggregate level = number of
machines to buy, detailed level =scheduling of jobs to machines), vehicle routing
problem (aggregate level =vehicle capacity, detailed level =routing of vehicle),
location-allocation problem (aggregate level=location and capacity of plants,
detailed level = allocation of available capacity to the most profitable demand
points).

One of the immediate advantage of block-separability is in fact to make it possible
to solve multistage stochastic integer programs, as we will see in the next section.

5. Block-separable multistage programs as two-stage programs

In this section, we indicate how any block-separable multistage program can be
transformed into a two-stage program.

Assumption. The random variable £, | £,_, has a finite support. Letj=1, ..., K, index
the possible realisations of &|£,_,. Hence, at time ¢, the tree of outcomes includes
k, =H,'.__, K; nodes. Let p; be the probability associated with node j at time ¢, and
let j denote a predecessor of node j (these notations are taken from Birge [2]).
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Define

__ 1 k 1 ky_
W={( Wy, Wy, ..., Wl .. W g, ..., W),

the vector of all aggregate-level decisions, and

yz(y;1"'ay‘2(25"'ayTa”'!y";'r)a

the vector of all detailed level decisions. The vector of all aggregate-level decisions
up to time ¢ for outcome j is denoted by

j 1 k 1 k, _ j
ij: (wh Woy ooy w221 A (o TR wll—lla wjl)
In practice, w’ could be limited to the decisions vectors associated to all predecessors

of j.
Define in a similar fashion the immediate objective

k ko _
r(w)=r,(w,)+ :g pir(wi)+- -+ E Prorr—i(whr_y)

j=

and the recourse function
kr . -
Qw, &)= QU(wi, )+ + % prQH(wi_1,))
j=1
where

QY(wi_,,j)=min q,(y})
s.t. S:—l”’{‘—l'*’Bry{: dj;a

yie EJ.
Finally, let

D={w|w{eD{for all 1, j},
A={w|Rwi_+ Awi=b] forallt,j}

and
bT:[blab;9"'9b§29"'ab'll'a"‘ab"l\:—r]'

A block-representation of A is depicted below, where for simplicity, we assume that
R, w, is limited to R,,, w,.
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It follows from this construction, that the stochastic multistage program with
block-separable recourse can be written as

(BS-2) min r(w)+E.Q(w,¢)
st. webD,
Aw=>b

which is the 2-stage version of a block-separable problem represented as BS-2. We
have therefore obtained the following result:

Proposition. A multistage stochastic program with block-separable recourse is
equivalent to a two-stage stochastic program where the first-stage is the extensive form
of the aggregate level problems and the value function of the second stage for one
realisation of the random vector in the second stage is the sum (weighted by the
appropriate probabilities) of the detailed level recourse functions Q}(w,, £) for that
realisation of the random vector and all its successors,
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Comments

1. As far a numerical methods are concerned, it follows that L-shaped based
techniques can again be applied to solve BS-2, with the additional possibility of
using large scale LP. techniques for the extensive form of the aggregate level
decisions, and sometimes specific routines for the detailed level decisions, as sug-
gested in Example 1.

2. Constraints of the form

si=s! T+ xi-xi"h

where L, islarge can be handled explicitly without increasing the number of variables,
as is needed in the usual nested decomposition techniques to maintain a staircase
structure.

3. The use of nested decomposition for block-separable multistage programs is
further discussed in the next section.

4. The use of 2-stage programs to solve multistage programs was already con-
sidered by some authors using a rolling horizon approximation schema, see e.g.
Kusy and Ziemba [6] for an example in finance, and Prekopa [14] for use with
chance-constraints. The above proposition however does not use any approximation.

5. Last but not least, it follows from the above proposition that multistage
programs having INTEGER variable in ALL STAGES, (not only the first one) can
be solved using available two-stage techniques such as the one proposed by Wollmer
[19], provided the integer variables are associated with the aggregate level decisions,
which is very often the case as suggested by our discussion in Example 3.

6. Nested decomposition for block-separable multistage programs

Nested decomposition can readily be used to solve block-separable multistage
stochastic programs, simply by using the separability of the value function Q,(x, &)
in its two components Q;(w, &) and Q}(w, &) with possibly an efficient simple
rule for the latter.

6a. The linear case

It is interesting to observe that nested decomposition can also be applied to solve
the 2-stage equivalent program (BS-2).
The L-shaped algorithm, applied to BS-2, solves a sequence of problems of the type

min z=cw+9, (18)
Aw=b, (19)
ol-w+o=p, I1=1,... L, (20)

where the optimality cuts /=1, ..., L are facets of the recourse function E.Q(w, §).
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For simplicity, we assume here relatively complete recourse, hence induced con-
straints need not be introduced.

As such, constraints (20) are dense and destroy the staircase structure present in
A. To restore the staircase structure, we consider a different approximation of
EQ(w, &) as follows.

k, ke
min z=cw+0,+z ot -+ (Z, &r_1, (21)
j=1 j=1
Aw=bh, (22)
o wi+@=p,, I=1,...,L j=1,...,k, t=1,...,N—1

(23)

The values of o.; and p. ; are obtained through the computation of the optimal

dual variables u(w/, j) of

Q(wl,j)=min g,y (24)
st. S w{+ B, yia<di,,, (25)
yin € Efuy
as
pti=Eq qu(wl,)) di, (26)
and
45 = Egigu(whj) - S, (27)

where the expectation is taken over all successors j of f

If we consider (w;, 8,) as the decision vector of the first stage,
(w), 8Y), ..., (wk, 6%) as the decision vector of the second stage for j=1,..., ks,
and so on, the contraint matrix of any iteration of the L-shaped algorithm used to
solve (BS-2) resumes a staircase structure and is thus amenable to a nested decompo-
sition technique. In addition, if specific routines as suggested in Example 1 exist,
the coefficients p and o are obtained in a very efficient way.

6b. The quadratic case

The same approach is unfortunately not so useful when the recourse function
E:Q(w, £) is piecewise quadratic. In order to use a ‘L-shaped’ based technique, we
consider the problem (21), (22), (23) at some iteration and look for efficient cuts
(23). This is done by applying the subgradient inequality for convex functions. The
functions ) are used to describe the function z,(w’}) which is piecewise quadratic
in w/ when q,,,(-, ) is quadratic. This means, see Louveaux [8], that there exists
a polyhedral decomposition of the constraint set (related to the constraints (22) and
(23) containing w’ and #)) in a finite collection of closed convex sets C’, called
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the cells of the decomposition, such that the intersection of two distinct cells has
an empty interior and such that either the function zJ( - ) is identically —co or on each
cell, the function zJ(-) is a positive semi-definite quadratic form, say zJ,(-). Let

v} = arg min{zj; (w}) | w}e Ci}. (28)
The subgradient inequality applied in v/, implies
= 2} (vh) + VZiu(0h) - (w]—vh) (29)

for all (w/, #) since Vzi (v’) € 3z/(v,), where V and 3 denote the gradient and
subdifferential operators, respectively.

In the nested decomposition approach, the constraint (29) can be simplified since
the relation

Zi(wi) =<z (v (30)
holds for an optimal vector w’ associated to (D.E.P.)’, the (D.E.P.), obtained at
node j. Moreover, the resulting cut is efficient in the sense that either v’ is an
optimal point of (D.E.P.)} or no interior point of C/; satisfies this cut.

In the L-shaped approach (21), (22), (23), the relation (30) no longer holds since
zJ(w’}) or equivalently @/ is only one term in the summation (21).

Therefore (29) cannot be further simplified. Using the L-shaped approach with
(29) would mean approximating the piecewise quadratic objective function by linear
constraints. The finite convergence property of MQSP no longer carries over and
therefore the nested decomposition approach cannot be suggested to solve the
extensive form of the aggregate level decision in BS-2 when the recourse functions
associated with the detailed level decisions are quadratic.

Acknowledgments

The first two examples in Section 3 where block-separability can be obtained are
derived from joint work with Prof. Y. Smeers, see [3, 10]. I gratefully acknowledge

his support and suggestions in obtaining the above concepts and in applying them
to these examples.

References

[1] J.F. Benders, *‘Partitioning procedures for solving mixed-variables programming problems™,
Numerische Mathematik 4 (1962) 238-252.

[2] J. Birge, **Decomposition and partitioning methods for multistage stochastic linear programs™,
Technical Report 82-6, Department of Industrial and Operations Engineering, University of
Michigan, 1982.

[3] X. de Groote, F. Louveaux, A.M. Poncelet and Y. Smeers, “‘A stochastic Energy R&D budget
allocation model”, DG XII, Commission of the European Communities, Bruxelles-Luxembourg,
1983.



62 E.V. Louveaux | Multistage stochastic programs

[4] M. Dempster, Stochastic programming (Academic Press, London, 1980).

[5] S.J. Gartska and R. Wets, **On decision rules in stochastic programming”, Mathematical Programming
7 (1974) 117-143.

[6] M.L. Kusy and W.T. Ziemba, “*A bank asset and liability management model”, IIASA, CP 83-59,
December 1983.

[7] J.K. Lenstra, A.H.G. Rinnooy Kan and L. Stougie, **A framework for the probabilistic analysis of
hierarchical planning systems”, Report 8311/0, Econometric Institute, Erasmus Universiteit Rotter-
dam, 1983.

[8] FE.V. Louveaux, ‘‘Piecewise convex programs”, Mathematical Programming 15 (1978) 53-62.

[9] F.V. Louveaux, “A solution method for multistage stochastic programs with recourse, with applica-
tion to an energy investment problem”, Operations Research 28 (1980) 889-902.

[10] F.V. Louveaux and Y. Smeers, “Stochastic optimization for the introduction of a new energy
technology”, to appear in Stochastics.

[11] A.S.Manne, R.G. Richels and J.P. Weyant, **Energy policy modeling: A survey”, Operations Research
27 (1979) 1-34,

[12] P. Olsen, “Multistage stochastic program with recourse: The equivalent deterministic problem”,
SIAM Journal on Control Optimization 14 (1976) 495-517.

[13] P. Olsen, ““When is a multistage stochastic programming problem well defined?”, SIAM Journal on
Control Optimization 14 (1976) 518-527.

[14] A. Prekopa, “Dynamic type stochastic programming models™, in: A. Prékopa ed., Studies in applied
stochastic programming (Hungarian Academy of Sciences, Budapest, 1978), 179-209.

[15] R.T. Rockafellar and R. Wets, *“A dual solution procedure for quadratic stochastic programs with
simple recourse”, in: V. Pereyra and A. Reinoza, eds., Numerical methods, Lecture Notes in Mathe-
matics, Vol. 1005, (Springer-Verlag, Berlin, 1983), pp. 252-265.

[16] R. Van Slyke and R. Wets, ‘“L-shaped linear programs with applications control and stochastic
programming”, SIAM Journal on Applied Mathematics 17 (1969) 638-663.

[17] R. Wets, **Characterization theorems for stochastic programs”, Mathematical Programming 2 (1972)
166-175.

[18] R. Wets, “Stochastic programming: Solution techniques and approximation schemes”, in: A.
Bachem, M. Grotschel and B. Korte, eds., Mathematical programming: The state of the art (Springer-
Verlag, Berlin, 1983) pp. 566-603.

[19] R.D. Wollmer, “Two stage linear programming under uncertainty with 0-1 integer first stage
variables, Mathematical Programming 19 (1980) 279-288.



Mathematical Programming Study 28 (1986) 63-93
North-Holland

A LAGRANGIAN FINITE GENERATION TECHNIQUE FOR
SOLVING LINEAR-QUADRATIC PROBLEMS IN STOCHASTIC
PROGRAMMING

R.T. ROCKAFELLAR
Department of Mathematics, University of Washington, Seattle, WA 98115, USA

R.J.-B. WETS
Department of Mathematics, University of California, Davis, CA 95616, USA

Received 1 March 1984
Revised manuscript received 8 December 1984

A new method is proposed for solving two-stage problems in linear and quadratic stochastic
programming. Such problems are dualized, and the dual, althought itself of high dimension, is
approximated by a sequence of quadratic programming subproblems whose dimensionality can
be kept low. These subproblems correspond to maximizing the dual objective over the convex
hull of finitely many dual feasible solutions. An optimizing sequence is produced for the primal
problem that converges at a linear rate in the strongly quadratic case. An outer algorithm of
augmented Lagrangian type can be used to introduce strongly quadratic terms, if desired.
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Methods.

1. Introduction

In the recourse model in stochastic programming, a vector x must be chosen
optimally with respect to present costs and constraints as well as certain expected
costs and induced constraints that are associated with corrective actions available
in the future. Such actions may be taken in response to the observation of the values
of various random variables about which there is only statistical information at the
time x is selected. The actions involve costs and constraints that depend on these
observed values and on x. The theory of this kind of stochastic programming and
the numerical methods that have been proposed for it has been surveyed recently
by Wets [12].

We aim here at developing a new solution procedure for the case where the first
and second stage problems in the recourse model fit the mold of linear or quadratic
(convex) programming. We assume for simplicity that the random variables are
discretely distributed with only finitely many values. This restriction is not fully
necessary in theory, but it reflects the realities of computation and a natural division
among the questions that arise. Every continuous distribution must in practice be
replaced by a finite discrete one, whether empirically, or through sampling, mathe-
matical approximation, or in connection with the numerical calculation of integrals
expressing expectations. The effects of such discretization raise important questions

This work was supported in part by grants from the National Science Foundation.
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of convergence and statistical confidence in the solutions that are obtained, but
such matters are best left to separate study.

We assume therefore that the probability space is a finite set £2: the probability
associated with an element w € (2 is p,, and the expectation of a quantity u, that
depends on w is

Eu,= Y p.u,.

we N
The fundamental problem we want to address is

minimize c¢-x+3jx- Cx+ Ey,(x) overall xe XcR" (P)

where X is a nonempty convex polyhedron, ¢ is a vector in R”, C is a symmetric
matrix in R""" that is positive semidefinite, and ¢, (x) is the minimum cost in a
certain recourse subproblem that depends on w and x. (Here x - y denotes the inner
product of x and y.) We view this recourse subproblem as one of linear or quadratic
programming, but instead of handling it directly we work with its dual. More will
be said about this later (see Proposition 1 in Section 2 and the comments after its
proof), but what counts in the end is the following: we suppose a representation
W, (x)=max{z, [h,— T,x]—3z,  H,z,} (1.1)
z,€Z,

is available, where Z, is a nonempty convex polyhedron in R™, T, is a matrix in
R™*", h, is a vector in R™ and H, is a symmetric matrix in R™*™ that is positive
semidefinite. Such a formulation also covers important cases where, as will be
explained presently, “recourse” is not the key idea and instead i,,(x) arises when
penalty expressions of a certain general type are introduced to restrain the difference
vector h, — T, x. Note from the subscript w that all the elements in the representation
(1.1) are in principle allowed to be random, although a particular application might
not involve quite so much randomness.

Two basic conditions are imposed on the given data. We assume X and C are
such that for every veR" the set

£(v)= argrr)l(in{v-x+%x- Cx} (1.2)
is nonempty and bounded. We also assume Z,, h,, T, and H,, are such that for
every x€ X the set

{u(x)=argmax{z, - [h, - T.x]-32," H.z.} (1.3)
is nonempty and bounded. Certainly the first condition holds if X is bounded or
C is positive definite, and the second holds if Z,, is bounded or H,, is positive definite.

The first condition is quite innocuous, since in practice X can always be taken
to be bounded. It implies that the function

o(v) = in)f; {v- x+3x- Cx}, (1.4)

which will have a role in duality, is finite everywhere.
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The second condition is more subtle, since it involves dual elements that might
not be given directly but derived instead from a primal statement of the recourse
subproblem that depends on x and w. It ensures in particular that for every xe X
and w € {2, the optimal value ,(x) in this subproblem is finite, and an optimal
recourse exists. This means that our stochastic programming problem (P) is one of
relatively complete recourse [10]: there are no induced constraints on x that arise
from the need to keep open the possibility of recourse at a later time.

Of course, if our problem were not one of relatively complete recourse, we could
make it so by identifying the induced constraints and shrinking the set X until they
were all satisfied. The smaller X would still be a convex polyhedron, although its
description might be tedious in situations where special approaches such as in
[10, Section 1] can’t be followed. In this sense our second condition forces no real
restriction on the problem either, except in requiring that the induced constraints,
if any, be identified thoroughly in advance.

In some of the situations that motivate our model the recourse subproblem is
actually trivial and its solution can be given in closed form. Such situations occur
when constraints are represented by penalties: the term Ey,(x) in (P) can then be
interpreted as an expected penalty. Indeed, using the notation

6,(u)=max {z, - u—3z,- Hyz,} (1.5)

z,€Z,

we can write

Yo (x)=0,(h, — T,x). (1.6)
If 0e Z,, then
8,(u)=0 forall yu, 6,(0)=0, 1.7

so we can view 6,(h,— T,x) as a penalty attached to certain degrees or directions
of deviation of T, x from the vector h,. Many useful penalty functions of linear-
quadratic type can be expressed as in (1.5). In particular the case where 6,,(h, — T,x)
is a sum of separate terms, one for each scalar component of the deviation vector
h,— T,x, can be identified with the case where each Z, is a product of intervals
and H, is diagonal. This case underlies a special model we have treated in [9].

The solution procedure that we shall present depends on a Lagrangian representa-
tion of problem (P) which leads to the dual problem

maximize ¢(c— ET*z,)+E{z,- h,—3z,  H,z,}
subjectto z,e€Z, for all we 2 (D)

Here ¢ is the function in (1.4), for which another representation will later be given
(Proposition 2 in Section 2). The asterisk * signals the transpose of a matrix. The
maximization in (D) takes place over the convex polyhedron

Z:HweﬂZwC(Rm)n; (1'8)
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we think of z, as the component in Z, of a point z€ Z. The vector space (R™)"
here, which is a product of copies of R™, one for each w € {2, is likely to be of very
high dimension, since the number of points in 2 may be very large. Despite this
formidable dimensionality it is by way of (D), at least in concept, that we propose
to solve (P). Properties of expectation, decomposition and quadratic structure, will
make this possible. The relationship between (P) and (D) is explored in Section 2
along with other questions of quadratic programming duality that are crucial to in
our formulation and our algorithm.

We approach problem (D) by a finite generation technique in which the feasible
region Z is approximated from within by polytopes of comparatively low dimension,
a polytope being a subset generated as the convex hull of finitely many points. This
technique is presented in Section 3. It resembles the classical finite-element or
Galerkin approach to the unconstrained maximization of a functional defined over
an infinite-dimensional space, where one maximizes over finite-dimensional sub-
spaces that grow in size as the approximation is refined. An important difference,
however, is that in our case the new element or elements that are introduced at each
stage in modifying the polytope over which we maximize are not obtained from
some predetermined scheme, as classically, but identified in an ‘adaptive’ manner.
Furthermore, the total number of elements used in generating the polytope does
not have to keep increasing; the sequence of polytopes does not have to be nested.
We prove in Section 4 that when the matrix C is positive definite these elements
can readily be consolidated without threat to ultimate convergence, although the
rate of progress may be better if a substantial set of generating elements is maintained.
In this way the dimension of the subproblem to be solved in every iteration can be
kept as low as seems desirable.

The subproblem of maximizing over a polytope can be represented as a standard
type of quadratic programming problem and solved exactly by available codes. It
yields as a byproduct an approximate solution vector for (P) along with bounds
that provide a test of near optimality. The sequence of such approximate solutions
converges to an optimal solution to (P). If not only C but also the matrices H,, are
positive definite, the rate of convergence is linear, in fact with guaranteed progress
of a certain sort in every iteration, not just for the tail of the sequence.

In producing a new element to be used in the subrepresentation of Z in terms
of a convex polytope, we have a particular x on hand and must carry out the
maximization in (1.1) for every w € 2. In other words, we must solve a large number
of closely related linear or quadratic programming problems in R™. This could be
a difficult task in general, but techniques such as have already been developed in
connection with other approaches to stochastic programming problems of a more
special nature (see Wets [12]) do offer hope. Furthermore, there are cases of definite
interest where the maximization in (1.1) is trivial, for instance where Z, is a product
of intervals and H,, is diagonal. Such a case has been described in [11].

Not all of the problems we wish to solve have C and H, positive definite, but
this does not prevent the application of our method and the achievement of a linear
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rate of convergence. Augmented Lagrangian techniques [7] can be effective in
approximating any problem (P) by a sequence of similar problems that do exhibit
positive definiteness. We explain this in Section 5 after having established in Section
4 the results that show the advantages of the strongly quadratic case.

Our algorithm has been implemented successfully by Alan King on a VAX 11/780
at ITASA and at the University of Washington for solving quadratic stochastic
programs with simple recourse. We have solved some product-mix test problems,
and used it in the analysis of investment strategies to control the eutrophication
process of a shallow lake. This last class of problems involved 56 decision variables,
most of them with upper and lower bounds; the set X was determined by 35 linear
constraints. The matrix TeR***® and the vector h e R* were random, whereas the
(nonstochastic) quadratic term involving H was introduced as a result of the
augmentation procedure suggested in Section 5. A report on this implementation
and the numerical results that have been obtained has been written by A. King [4].

2. Lagrangian representation and duality

As the Lagrangian associated with problem (P) under the representation (1.1) of
the recourse costs, we shall mean the function

L(x,2)=c-x+3x- Cx+E{z, - [h, — Tux]—3z,  H,z,}
for xe X, ze Z, 2.1n

where Z is the convex polyhedron in (1.8). Clearly L(x, z) is convex in x and
concave in z, since C and H,, are positive semidefinite. General duality theory [6]
associates with L, X, and Z, the primal problem

minimize F over X, where F(x):= max L(x, z), (2.2)
and the dual problem

maximize G over Z, where G(z):= mi)r(1 L(x, z). (2.3)
The functions F -and G are convex and concave, respectively. Our assumptions in
Section 1 allow us to write ‘max’ and ‘min’ in their definitions rather than ‘sup’ and
“inf".

These problems turn out to be the ones already introduced. In terms of the

notation in (1.2) and (1.3), we have

argmax L(x, z) ={z|z, € {,(x), for all we (2}, (2.4)

argn}in L(x, z)=¢(c— ET%z,). (2.5)
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Moreover for x€ X and ze Z we have
F(x)=c- x+3x: Cx+ Ey,(x), (2.6)
G(z)=¢(c—-ET*z, )+ E{z,- h,—3z,- H,z,}. 2.7

Thus the primal and dual problems (2.2) and (2.3) can be identified with (P) and
(D), respectively.

In order to continue with our analysis of these problems, we need to step back
briefly for a look at some basic facts about duality in quadratic programming, not
only as they might apply to (P) and (D), but also to various subproblems in our
schemes. A quadratic programming problem is usually defined as a problem in
which a quadratic convex function is minimized (or a quadratic concave function
maximized) subject to a system of linear constraints, or in other words, over a
convex polyhedron. As is well known, such a problem has an optimal solution
whenever its optimal value is finite (see Frank and Wolfe [3, Appendix (i)]); the
Kuhn-Tucker conditions are both necessary and sufficient for optimality. For the
purpose at hand, it is essential to adopt a more general point of view in which a
problem is considered to fall in the category of quadratic programming as long as
it can be represented in this traditional form, possibly through the introduction of
auxiliary variables.

Consider an arbitrary Lagrangian of the form

Ku,v)=p-u+q-v+iu-Pu—3v- Qv—v-Ru foruelU, veV, (2.8)

where U and V are nonempty convex polyhedra, and P and Q are symmetric,
positive semidefinite matrices. Let

f(u)=su€{v-[q—Ru]—%v- Qu}, (2.9)
U,={u|f(u) finite} = {u|sup in (2.9) attained}, (2.10)
g(v)= inf {u-[p— R*v]—3u- Pu}, (2.11)
Vo= {v|g(v) finite} = {v|inf in (2.11) attained}. (2.12)

The primal and dual problems associated with /, U, and V by general duality theory
can then we written as:

minimize p- u+3u- Pu+f(u) over ue Un U,, (Py)
maximize q- v—3v- Qv+g(v) over e VA V. (Dy)

The following duality theorem for (P,) and (D,) extends the standard results in
quadratic programming that were achieved by Dorn [2] and Cottle [1]. Those authors
concentrated in effect on the case where U and V are orthants. The proof that we
furnish is directed not only at an extension of theory, however. It explains how the
optimal solutions to problems in the general framework of (P,) and (D,) can be
identified in terms of the input and output 6f standard algorithms in quadratic
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programming after a reformulation. This observation is essential in dealing with the
variouus subproblems that will play a role in Section 3.

Theorem 1. Problems (P,) and (D,) are representable as quadratic programming in
the traditional sense. If (Py) and (Do) both have feasible solutions, or if either (P,)
or (D) has finite optimal value, then both have optimal solutions, and

min(Py) = max(D,).

This occurs if and only if the Lagrangian | has a saddle point (i1, ©) relative to U X V,
in which case the saddle value I(ii, ©) coincides with the common optimal value in (P,)
and (D), and the saddle points are the pairs (1, ©) such that 4 is an optimal solution
to (Py) and ¥ is an optimal solution to (D).

Proof. General duality theory [8] assures us that inf(P,) = sup(D,) and in particular
that both (P,) and (D,) have finite optimal value if both have feasible solutions. It
also informs us that (i, ) is a saddle point of ! on U X V if and only if @ is an
optimal solution to (P,), ¥ is an optimal solution to (D,), and min(P,) = max(D,),
this common optimal value then being equal to (i, 7). We know further that a
quadratic programming problem in the traditional sense has an optimal solution if
it has finite optimal value [3, Appendix (i)]. The Kuhn-Tucker conditions are both
necessary and sufficient for optimality in such a problem, because the constraint
system is linear. The proof of the theorem can be reduced therefore to demonstrating
that (Py) and (D,) are representable as quadratic programming in the traditional
sense and in such a manner that the Kuhn-Tucker conditions for either problem
correspond to the saddle point condition for  on U X V.

The sets U and V are associated with systems of linear constraints that can be
expressed in various ways, but to be specific we can suppose that

U={ueR"|Au=a}#9 and V={veR™|B*v=<b}#0, (2.13)

where A is m'xn and B is mxn'. Let u'e R" and v'€ R™ be Lagrange multiplier
vectors paired with the conditions B*v < b and Au = q, respectively.

Formula (2.9) gives f(u) as the optimal value in a classical quadratic programming
problem in v. The optimal solutions to this problem are vectors that satisfy the usual
Kuhn-Tucker conditions, or in other words, correspond to saddle points of the
Lagrangian

v-[q—Rul—3v- Qu+u'-[b—B*v]=b-u'+v-[q— Ru— Bu'l—4v- Qv
(2.149)

relative to u’e R} and veR™ In partcular, then, we have

f(u)=inf sup {b-u'+v-[q— Ru— Bu'l-3v- Qu}. (2.15)

ueRy yer

The inner supremum here is attained whenever finite, and it is attained at a point
v=u". Thus it equals inf unless there exists a vector u” € R™ such that[qg — Ru— Bu']—
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Qu" =0, in which case it equals b- u’'+3u" - Qu”, a value that actually depends only
on u and u'. We may conclude that
U,={ueR"|3u’e R}, with Ru+ Bu'+ Qu"=gq}, (2.16)
f(u)=minimum of b- u'+3u"- Qu"
subject to u'e R}, u"€eR™, Ru+ Bu'+Qu"=gq. (2.17)
We can therefore represent (Pg) as

minimize p-u+3u- Pu+b-u'+5u" Qu” .
P
subjectto Au=a, u'=0, Ru+ Bu'+Qu"=gq, (Fo
where the value of u” - Qu” does not depend on the particular choice of the vector
u” satisfying Ru+ Bu'+ Qu"= q but only on u and u'. This is a quadratic program-
ming problem in the usual sense, but in which u” is a sort of vector of dummy
variables that can be eliminated, if desired. In any case it follows that (P,) has an
oPtimal solution if its optimal value is finite, inasmuch as this property holds for
(Po). .
The optimal solutions (i, @', @") to (P,) are characterized by the Kuhn-Tucker
conditions that involve multiplier vectors ¢ for the constraint Ru+ Bu'+ Qu"=gq
and 7’ for the constraint Au = a. These conditions take the form:

Au=a, ©'20, 0 -[Ad'—a]=0,
u'=0, B*5<b, ' -[B*0—b]=0,
R*6+A*t'—Pi=p, Rua+Bi'+Qiu"=gq, Qu"= Qb

Because of the final condition we can write the next-to-last condition instead as

Rii + Bii' + Q0 = q. Note that there is no restriction then on ", except that Qu" = Qp;
we could always take #"”= ¥ in particular. This is in keeping with our observation
that (P,) is really just a problem in u and u’. We see in fact that the pairs (i, @)
which are optimal for (130) are the ones which, for some pair (7, '), satisfy the
conditions

Aua=0, =0, - -[Ad’'—al=0,
u'=0, B*®=<b, a - -[B*0—-b]=0, (2.18)
Ra+Bi'+Qt=q, R*t+A*0'—Pa=p.

Problem (D,) can be understood in the same way. From the formula (2.11) for
g(v) we deduce that

Voz{velegl)’ER.T', U"ERN, with R*U+B* ,_PU"=p}’ (219)
g(v)=maximum of a- v'—v" - Pv"

subject to v'eRY, v"eR", R*v+A*v'— Pv"=p. (2.20)
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These formulas yield for (D,) the representation
maximize gq-v—3v-Qu+a-v'—3v" Py"
subjectto B*v=<b, v'=0, R*v+A*v'— Pv"=p, ~ (Dy)

where the value of v”- Pv” does not depend on the particular v” satisfying R*v +
A*v'— Pv"=p but only on v and v'. This is really a problem in v and v’, and the
Kuhn-Tucker conditions characterize © and ¢’ as optimal if and only if there exist
# and &' such that (2.18) holds, the same conditions as before. Since (130) is a
quadratic programming problem in the usual sense, it has an optimal solution
whenever its optimal value is finite, and (D,) therefore has this property too.

Our argument demonstrates that if either (Py) or (D,) has finite optimal value,
then both problems have optimal solutions. The optimal solutions in both cases are
characterized by the existence of auxiliary vectors such that (2.18) holds. But (2.18)
can also be seen as the Kuhn-Tucker conditions for (i, ©) to be a saddle point of
the Lagrangian (2.8), when U and V are given by (2.13). Thus for & and 7 to be
optimal solutions to (P,) and (D,) respectively, it is necessary and sufficient that
(@, D) be a saddle point in (2.18). Following on the remarks at the beginning of the
proof, this establishes the theorem. O

Corollary. Any standard quadratic programming method can in principle be used to
solve problems of the form (P,) or (D), in fact both simultaneously, thereby determining
a saddle point of the corresponding Lagrangian ! on U X V, if such a saddle point exists.

Proof. The representations in the proof of the theorem show more specifically that
if an algorithm is applied to (P,), the optimal solution vectors &, @' and multiplier
vectors © and ' which it produces yield optimal solutions i to (P,) and & to (D,),
and (4, 0) is a saddle point in (2.8). The same holds if an algorithm is applied to
(Dy), except that then © and ¢’ are the optimal solution vectors, whereas & and @'
are the multiplier vectors. [

Theorem 2. The stochastic programming problems (P) and (D) are representable as
quadratic programming problems in the traditional sense, although with potentially
very high dimensionality. Both problems have optimal solutions, and

min(P) = max(D).

A pair (%, Z) is a saddle point of the Lagrangian L relative to X X Z if and only if X
is an optimal solution to (P) and Z is an optimal solution to (D). The set of such pairs
(X, 2) is bounded.

Proof. We need only observe that the triple L, X, Z, can be construed as a special
case of the triple /, U, V, in Theorem 1. A term like Ez, - H,z, can be expressed as
z- Qz for certain matrix Q, and so forth. Our assumption that the extremal sets £(v)
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in (1.2) and ¢, (x) in (1.3) are nonempty for all veR", x€ X and w € {2, guarantees
that every xe X is feasible for (P), and every z€ Z is feasible for (D). Therefore
we are in the case of Theorem 1 where both problems have feasible solutions.

As for the boundedness of the set of saddle points (X, Z), consider a particular
pair of optimal solutions * and z* to (P) and (D). Observe that for every optimal
solution x to (P), (X, z*) is a saddle point and therefore satisfies

X € argmin L(x, 2*)=§¢(c— ET%z%)
xc X
(cf. (2.5)). But the set on the right is bounded (one of our basic assumptions in
Section 1). Likewise for every optimal solution Z to (D), (X*, Z) is a saddle point
and therefore satisfies
zeargmax L(x* z), so Z,€{,(x*) for all we £2.
zeZ
(cf. (2.4)). The sets {,(x*) are all bounded (again by one of our basic assumptions
in Section 1), so Z belongs to a certain bounded set. The pairs (X, Z) thus all belong
to a product of bounded sets dependent only on ¥* and z*. O

The following pair of results will help to clarify the quadratic programming nature
of problems (P) and (D).

Proposition 1. For the function s, given by (1.1), if the polytope Z,, has a representation
Z,={z,€R"|B%z,<b,} (2.21)

mxs

Sfor some vector b, € R° and matrix B, €R
an alternative expression of the form

(with s independent of w), then ., has

¥, (x) = minimum of d, - y, +3y. - D.y.
_ _ (2.22)
subject to y,€Y,, T.x+ W_y,=h,,

for certain vectors d,, € R, h, € R?, and matrices T, e RT*", W, e R", and D, € R***
with D, symmetric and positive semidefinite, and where

Y, ={y.eR’|A.y. = a.} (2.23)

Sfor some a, € R? and A, e RP™".
Conversely, any function s, having a representation (2.22) as just described (with
Y., (x) finite for all x € X) also has a representation (1.1) with Z, of the form (2.21).

Proof. Starting with the representation (1.1) and Z, of the form (2.21), view the
maximization problem in (1.1) as the dual problem associated with the Lagrangian

for u,€R% and z, eR™.
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The corresponding primal problem, whose optimal value is also equal to ,,(x) by
Theorem 1 (as long as x € X, so that ¢, (x) is finite by assumption) js

minimize b, u,+f,(u,) over u,eR;, where

fw(uw) = sup {zw ' [hw - wa_ Bwuw]_%zw ' szw}'

z,eR™
Using the trick in the proof of Theorem 1, we can reformulate the latter as
minimize b, u, +3u” - Hu"
subjectto u,€R?, u,eR™ B,u,+ H,ul =h,—T,x

We can then pass to form (2.22) in terms of y,, = (u,, u,,) (or by setting y,, = u,, after
algebraic elimination of u,,, if the rank of H,, is the same for all w € 2).

Starting with the representation (2.22) and Y,, of the form (2.23), on the other
hand, we can view y,(x) as the optimal value for the primal problem associated
with the Lagrangian

Lew(Vor ) =do Yo+ 3Ve* DuYo+ 0y [Ay— Tox— Woy.]
fory,e Y, and v, eR",
Then ¢,,(x) (when finite) is also the optimal value in the corresponding dual problem
maximize v, -[h, - T,x]+g.(v,) over v,€ R% where

gw(vw) = ln{/ {yw ' [dw_ Wt:vw]'*’%yw . Dwyw}'
Yo € Yo

As we saw in the proof of Theorem 1, this problem can also be written as
maximize v, -[h, — T,x]+ v, - a, —iv" - D, v"
subjectto v,eRY v, eRi, Wio,+AXv. +D,v"=d,

With z, = (v,, v,,, v,), this can be brought into the form (1.1) with Z, as in (2.21).
(Alternatively one could take z,, = (v,, v.,) and eliminate v}, algebraically, provided
that the rank of D, is independent of w. If also the rank of the matrix W, is
independent of w, one could even eliminate v, from the problem and just take
z, = U,, to get a representation (1.1) in fewer variables.) [

Proposition 2. The function ¢ in (1.4) also has a representation

¢(v)=maximum of g u—3u- Qu over all ue U satisfying Bu=1v
for some choice of vectors b and q and matrices B and Q with Q symmetric and positive
semidefinite, where U is a convex polyhedron.
Proof. Recall that ¢(v) is finite for all v by assumption. Express X as {x€R"|Ax =
a} for some a €R? and Ae RP™", and consider the Lagrangian

Lix,u)=v x+3ix- Cx+u'-[a—Ax] for xeR" and u'eR?".
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The primal problem associated with this Lagrangian is the minimization problem
in (1.4), whereas the dual problem, which also has ¢(v) as its optimal value, is

- ,
maximize a-u'+g(u’) over u'eRf,

where g(u') = in}{" {x:[v— A*u'l+ix- Cx}.

The reformulation trick in Theorem 1 translates this into
maximize a-u'—3u"- Cu’
subjectto u'eR%, u"eR", A*u'—Cu"=1.

We can then get a representation (2.24) in terms of u=(u', u"). O

Propositions 1 and 2 make possible a more complete description of the quadratic
programming representation of problems (P) and (D) indicated in Theorem 2. When
¥, (x) is expressed in terms of a recourse subproblem in y, as in Proposition 1, we
can identify (P) with the problem

minimize c¢-x+3x- Cx+E{d, " y, +3V0 " Duyu}

_ _ (2.25)
subjectto xeX, y,€Y,, T.x+W,-y,=h, forall we 2
Similarly, when ¢ is expressed as in Proposition 2 we can pose (D) as
maximize gq-u-—3u- Qu+E{z,  h,—3z, H,2,} (2.26)

subjectto ue U, z,€Z,, and Bu+ E{T5z,}=c

In the latter, our assumption that ¢(v) is finite for all ve R" implies that no matter
what the choice of vectors z, € Z,,, there does exist a u € U such that the constraint
Bu+ E{T%z,}=c is satisfied.

3. Finite generation method

Our aim is to solve problem (P) by way of (D) according to the following scheme.
We replace (D) by a sequence of subproblems

maximize G(z) overall zeZ'cZ (D*)

for v=1,2,..., where G is the dual objective function in (2.3) and (2.7), and Z’
is a polytope of relatively low dimension generated as the convex hull of finitely
many points in Z. Obviously (D") is the dual of the problem

minimize F”(x) overall xe X, (P*)

where F" is obtained by substituting Z* for Z in the formula (2.2) for the primal
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objective function F:

F”(x)=m%)5 L(x, z)
=c-x+5ix- Cx+m%)5 E{z,-[h,— T, x]~%z,  H,z,}. 3.1)

Indeed, (P*) and (D") are the primal and dual problems that correspond to L on
X xXZ" rather than X xZ. In calculating a solution Z* to (D) we obtain also a
solution x” to (P") that can be viewed as an approximately optimal solution to (P).
From z* and x” we gain information that helps in determining the polytope Z**'
to be used in the next iteration. The new polytope Z**' is not necessarily ‘larger’
than Z”.

Problems (P*) and (D") belong to the realm of ‘generalized’ quadratic program-
ming as demarcated in Section 2. Clearly

F(x)=F¥(x) for all x, (3.2)

where F is the primal objective function in (2.2) and (2.6), so (P*) can be regarded
as a ‘lower envelope approximation’ to (P). The feasible sets in (P*) and (D") are
X and Z*, respectively, whereas the ones in (P) and (D), are X and Z. From
Theorem 1, therefore, we know that optimal solutions x* and Z* to (P*) and (D")
exist and satisfy

F*(x")= G(2"), (3.3)
x'e argn}in F¥(x)c argn}in L(x, z%), 3.49)
Z¥e argmax G(z)c argmax L(x”, z). (3.5)

oV =V

Having determined a pair (X”, Z*) of this type, which is a saddle point of L relative
to X XZ” we can test whether it is actually a saddle point of L relative to X X Z.
This amounts to checking the maximum of L(x”, z) over all z € Z to see if it occurs
at z=z" If yes, x* and Z" are optimal solutions to (P) and (D), and we are done.
If no, we obtain from the test an element

z” e argmax L(x", z) (3.6)
zeZ
and have
L(x", ") < L(x*, z")= F(x"). 3.7

The crucial feature that makes the test possible is the decomposition in (2.4):
maximizing L(X", z) in z€ Z reduces a solving a separate quadratic programming
problem (perhaps trivial) in z, € Z, for each w € £2. Anyway, with such a z* we have

F(x)= L(x, z*) for all x, with equality when x = x". (3.8)

We can use this in conjunction with (3.3) in constructing a new lower envelope
approximation F**' for F, which in primal terms is what is involved in constructing
a new set Z**' to replace Z”. More will be said about this later.
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Of course the optimality test also furnishes a criterion for termination with
suboptimal solutions, if desired. Since x* and Z* are feasible solutions to (P) and
(D) and satisfy (by Theorem 2)

F(x") = min(P) = max(D) = G(z"), 3.9
we know that for ¢, = F(x")~ G(Z"), both X” and Z” are ¢,-optimal:
|F(%*)~min(P)|<e, and |G(%*)-max(D)|<e,. (3.10)

Our basic procedure can be summarized now as follows.

Algorithm

Step 0 (Initialization). Choose the optimality test parameter £ = 0 and the initial
convex polytope Z'c Z. Set v=1.

Step 1 (Approximate Solution). Determine a saddle point (X, Z") of L relative
to X X Z" and the value a, = L(x", Z").

Step 2 (Decomposition). For each w € {2, determine an optimal solution z, to the
problem

maximize z,-[h,— T x"]~3z, - H,z, over z, € Z, (3.11)

and the optimal value a,. Let z* be the element of Z having component z., in Z,,
and let

a,=c- X" +ix"- Cx*+ Eal = L(x", z*). (3.12)

Step 3 (Optimality Test). Let £, = a, — &@,. Then x” is an g,-optimal solution to
(P), z” is an g,-optimal solution to (D), and

a, = min(P) =max(D)= a,. (3.13)

If g, < terminate.

Step 4 (Polytope Modification). Choose a new convex polytope Z**' that contains
both z” and z*, although not necessarily all of Z*. Replace v by v+1; return to
Step 1.

We proceed to comment on these algorithmic steps individually in more detail,
one by one. Properties of the algorithm as a whole will be developed in Section 4
and Section 5.

The most important observation concerns the quadratic programming nature of
the subproblem solved in Step 1. Suppose that Z” is generated from certain elements
ZveZ:

Z"=co{z',’§|k=1,...,mv}:{ Y Adilae=zo0, Y )\k=1}. (3.14)
k= k=1

-2 =V

Finding a saddle point (x*, z*) of L(x, z) relative to x€ X and z€ Z"” is equivalent
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to finding a saddle point (x*,1") of

LY(x,A)= L(x, kgl )\kZ’,’() (3.15)
relative to xe X and A € A", where A” is the unit simplex in R™,

A”:={)\=()\,,....,)\,,,y) Akao,:g"l )\k=1}, (3.16)
and then setting

P Ay, (3.17)

But from the definition (2.1) of L(x, z) we have

L*(x,\)=c  x+3ix- Cx+ Z ME{Z%o - [h, — T x1}
k=1

J=1 k=1
=c-x+ix- Cx+A-[A” = T"x]—2r- H*A, (3.18)

where
h*eR™ with components hy = E{Z{, " h.}, (3.19)
H*eR™ ™ with entries HY = E{z%, - H,iL,}, (3.20)
T"eR™" with entries T4 = E{5}, - T.}, (3.21)

mXxXm

T, being the ith column of the matrix T, e R™*™ Problem (D*) thus reduces to a
deterministic quadratic programming problem in which the coefficients are certain
expectations:

maximize ¢(c—T**A)-iA- H*A overall Ae A", (D*)
Here ¢ is the function in (1.4), which has alternative representations such as in
Proposition 2 that can be used to place (D”) in a more traditional quadratic
programming format. Regardless of such reformulation, the dimensionality of this
quadratic programming problem will be relatively low as long as m,, the number
of elements z}, used in generating Z”, is kept modest.

The translation of (D*) into (13") also sheds light on the lower envelope function
F" in the approximate primal subproblem (P*):

F”(x)=£r§z}‘)g L(x,A)=c- x+3ix: Cx+ ¥*(x), (3.22)

where
Y (x)= ?E‘XV{A (R - T*x]-Ir- H*A} = max E{z, [h,— T x]—-3z,  H,z,}.
(3.23)



78 R.T. Rockafellar, R.J.-B. Wets / A Lagrangian finite generation technique
Clearly ¥*(x) is a lower envelope approximation to the recourse cost function

W (x)=max E{z, " [h, = T.¥]- 42, - Hoz} = B (). (3:24)

Especially worth noting in (3.23) is the case where there are no quadratic terms
z,* H,z,, i.e. where H, =0 for all w € 2 and consequently H” = 0. Then

W"(x)=kmax {ir,’:—’f,';-x}, (3.25)

=1,u, m,
where T% is the vector in R” given by the kth row of the matrix T* in (3.21):
Ti=E{T*:1,}. (3.26)

In this case ¥ is a polyhedral convex envelope representation of ¥, the pointwise
maximum of a collection of affine functions

lk(x)=ﬁ,'§——’1~'§’('x for k=1,...,m,.

Our technique then resembles a cutting-plane method, at least as far as the function
¥ is concerned.

Indeed, if not only H, =0 but C =0, so that there are no quadratic cost terms
at all and (P) is a purely linear stochastic programming problem, we can regard F*
as a polyhedral convex subrepresentation of F. Then the subproblems (P”) and
(13") can be solved by linear rather than quadratic programming algorithms. Further-
more the function L(x, z) determined in (3.8) is then affine in x. If in fact we were
to take Z**' =co{Z”, z*}, we would get

F"'(x)=max{F”(x), L(x, z*)},

and this would truly be a cutting-plane method applied to problem (P).

It must be remembered, though, that in such a cutting-plane approach it might
generally be necessary to retain more and more affine functions in the polyhedral
approximation to F, since the conditions that theoretically validate the dropping of
earlier cutting-planes might not be met. The dimension of the linear programming
subproblem to be solved in each iteration would become progressively larger. In
contrast, by taking advantage of the quadratic structure even to the extent of
introducing it when it is not already at hand (as proposed in Section 5), one can
avoid the escalation of dimensionality and at the same time get convergence results
of a superior character (as presented in Section 4).

Note that with a nonvanishing quadratic term A - A" in (3.23) (the matrix HY
being positive semidefinite, of course) the lower envelope approximation ¥ to ¥
will generally not be polyhedral but have ‘rounded corners’. As a matter of fact, if
H" is nonsingular, then ¥" is a smooth convex function with Lipschitz continuous
derivatives.

In Step 2 of the algorithm, we need to solve a potentially large number of quadratic
programming problems (3.11) in the vectors z,. This could be a trouble spot. If the
problems are complicated and require full application of some quadratic program-
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ming routine, the secret to success would have to lie in taking advantage of the

similarities between neighboring problems. Techniques of parametric programming

and ‘bunching’ might be useful. Not to be overlooked, however, are the situations

in which each problem (3.11) decomposes further into something simpler.
Especially important is the case where

szzwl XZwZX' T XZwl (3.27)
and H, does not involve cross terms between the sets in this product:
Hw = diag[le’ HwZ’ et er]‘ (3~28)

Then (3.11) reduces to a separate problem over each of the sets Z,,,...,Z,. If
these sets are actually intervals (bounded or unbounded), then the separate problems
are one-dimensional, and their solutions can be given in closed form. Such is indeed
what happens when the costs ,(x) in (P) are penalties 6,,(h, — T,x) as in (1.5),
(1.6),(1.7), and 8,,(h, — T_x) is a sum of separate terms, one for each real component
of the vector h, — T x. The special mode! we have treated in [11] makes use of this
simplification. In such a setting the vector z” is readily computed as a simple function
of x*, and indeed one can get away with storing only x*, which has only a small
number of components compared to z*; cf, [4].

The product form (3.27) for Z,, if it is present, also raises further possibilities
for structuring the subproblems introduced in Step 1, by the way. One could write

Z=2,x"xZ, with Z;=11,.07Z,; (3.29)
and work with polytopes of the form
Z'=Z{x--+ XZ; with Z]c Z, (3.30)

for instance. This could be advantageous in holding the dimensionality down. If
each Z; is generated as the convex hull of a finite subset of Z; consisting of n,
elements, one can get away with describing the points of Z* by rn, parameters Ay,
On the other hand, if Z" is regarded as the convex hull of the product of these
finite subsets of Z,, ..., Z, one would need (n,)" parameters.

The procedure invoked in Step 4 of the algorithm has been left open to various
possibilities, which could be influenced too by such considerations as the foregoing.
Two basic possibilities that immediately come to mind are:

Z"*'=co{z”,z*} (generalized Frank-Wolfe rule) (3.31)
and
Z"*'=co{Z", z"} (generalized cutting-plane rule). (3.32)

The first of these is adequate for convergence if the matrix C is positive definite,
as we shall see in Section 4. 1t is certaintly the simplest but might suffer from too
much information being thrown away between one iteration of Step 1 and the next.
It gets its name from the interpretation in terms of problem (D) that will underly
the proof of Theorem 5.
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The second formula goes to the opposite extreme. It achieves better and better
representations of the primal objective F, in the sense that

F(x)= F**Y(x)=max{F"(x), L(x, z")} for all x, with
F(x")=F""(%")=L(x", 2"), (3.33)

but this is at the expense of keeping all information and continually enlarging the
size of the quadratic programming subproblem. A good compromise possibility
might be

Zv+l=co{zl’ zv’ ZV}, (334)

where Z' is the fixed initial polytope.

This brings us to the choice of Z' in Step 0, which in determining the first
approximate solutions %' and Z' could have a big effect on the progress of the
computations. We can, of course, start with Z'={Z}, where 7 is an element of Z
that may be regarded as an estimate for an optimal solution to (D). For example,
if an initial guess X is available for an optimal solution to (P), one might take 7 to
be a vector constructed by calculating an element Z,, € {,,(X) for each w. This approach
makes sense especially in situations where {,(X) is a singleton for each w € £2, so
that Z is uniquely determined by the estimate X.

Another approach to the initial Z' requires no guesses or prior information about
solutions. A fixed number of elements a, (k=1,..., p) is chosen from each Z,,
such as the set of extreme points of Z, augmented by some selected internal points.
These yield p elements a, of Z, where a, has component g, in Z,. The convex
hull of these a,’s can be taken as Z'. Such an approach to initialization has turned
out to be very effective in the case of our special model in [11] when adapted to a
product structure (3.27); see King [4].

In summary, there are many possibilities for choosing the initial polytope Z' in
Step 0 and modifying it iteratively in Step 4. They can be tailored to the structure
of the problem. Various product representations of Z and Z* could be helpful in
particular. Versions of rules (3.31), (3.32), and (3.34), which maintain the product
form, can be developed.

See the end of Section 4 for other comments on forming Z**' from Z”,

4. Convergence results

Properties of the sequences produced by the finite generation algorithm in Section
3 will now be derived. For this purpose we ignore the optimality test in Step 3 of
the algorithm, since our interest is centered on what happens when the procedure
is iterated indefinitely. Unless otherwise indicated, our assumptions are merely the
basic ones in Section 1. The initial polytope Z' is arbitrary, and Z**' is not subjected
to any requirement stricter than the one in Step 4, namely that Z**' 5{z*, z*}. In
addition to the symbols already introduced in the statement of the algorithm in
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Section 3 we use the supplementary notation

a = min(P) = max(D), (4.1)
§,=a-a,, (4.2)
W =V, L(X" ") =c+ Cx*— ET*z?, (4.3)
Ixlle =[x Cx]'"2. (4.4)

Of course ||x||c is a norm on R" if C is positive definite. If C is only positive
semidefinite, then || x||c vanishes on the subspace {x € R"| Cx =0} but is positive
elsewhere.

Theorem 3. The sequences {x"}, {z"}, and {z*} are bounded and satisfy

F(Z')=a,za="-za,.,=a,=G(Z"). 4.5
Furthermore one has the estimate,

Nx-—x"|e<é,-w (X-%")<§,<§, (4.6)
Jor every optimal solution x to (P), where

w - (x—-x")=0 forevery xeX 4.7)

If £, > 0, then every cluster point of {X"} is an optmal solution to (P), and every cluster
point of {Z*} is an optimal solution to (D).

Proof. We have &, = L(X%, £*) and a, = L(X", z") by definition, so F(x")=a, by
(3.7). Then a, = @ = a, by (3.9). By the same token, G(z**")=a,., and @ = a,,,.
But also

Gz = may, G(2)=G(3%)

because z¥ € Z**'. All the relations in (4.5) are therefore correct.

Next we verify that the sequence {Z”} is bounded. Recall that G is a continuous
concave function on Z, since G is given by (2.7), where ¢ is the concave function
defined by (1.4); our basic assumption about the sets £(v) being bounded implies
¢ is finite everywhere. (As is well known, a concave function is continuous at a
point if it is finite on a neighborhood of the point [9, Theorem 10.1].) We know
from (4.5) that the sequence {G(Z")} us nondecreasing, so the boundedness of {Z"}
can be established by showing that the set {z € Z|G(z) = G(z')} is bounded. Consider
the closed concave function

(Z)_{G(z) ifzeZ,
& ©  ifzeZ

We wish to show that a certain level set {z|g(z) = a,} is bounded. But the level sets
{z|g(z) = a}, a € R, are all bounded if merely one of them is bounded and nonempty
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(see [9, Corollary 8.7.1]). In the present case we know that the level set
{z| g(z) = a}=[set of all optimal solutions to (D)]

is bounded and nonempty (Theorem 2). Therefore the set {ze Z|G(z) = G(z")} is
indeed bounded, and the sequence {Z”} is bounded as claimed.
We invoke now the fact that

x'eé(c—ET*XzY) for all v, (4.8)

=V =V

which is true by (2.5) because (X7, ") is a saddle point of L relative to X xZ". In
terms of the finite concave function ¢ we have

£(v)=3d¢(v) for all veR™. (4.9)
Indeed, (1.4) defines ¢ as the conjugate of the closed proper concave function

{—-%x- Cx ifxeX,

x =
¥(x) if xg X,

50 d¢(v) consists of the points x which minimize v - x — y(x) over R" (see [9, Theorem
23.5]). These are the points that make up the set £(v) in (1.2). Thus

x"ede(9") for all v, where 0" =c— ET%z.. (4.10)

The sequence {7} is bounded, since {z*} is. Moreover the multifunction d¢ is
locally bounded: for every ¥ € R” there is a 6 > 0 such that the set \_ {3¢(v)||v - d|=<
8} is bounded (see [9, Corollary 24.5.1]). It follows by a simple compactness
argument that d¢ carries bounded sets into bounded sets: if V<R” is bounded,
then ) {8¢(v)|ve V} is bounded. Taking V ={#*}, we conclude that the sequence
{X"} is bounded.

The argument establishing that {z”} is bounded is similar. We have z € {, (%),
where ¢, is the multifunction defined in (1.3). Since the sequence {x”} is now known
to be bounded, we need only show that £, is locally bounded at every ¥* in order
to conclude that each of the sequences {z.,} is bounded and consequently that {z*}
is bounded.

In terms of the convex function 8, defined in (1.5) we have

Lo(x)= 60.,,.(}1‘,, ~T.,x) forall xe X. (4.11)

This holds because (1.5) expresses 6, as the conjugate of the closed proper convex
function

(2 {%zw-szw ifz,eZ,,
wl\Zy) = 0

ifz, gZ,.
The vectors z, €96,,(u) are therefore the ones that maximize u- z,— f,(z,) (see
[9, Theorem 23.5]). Our assumption that £, (x) is nonempty and bounded for every

x € X means that 46,,(u) is nonempty and bounded for every u of the form h,— T, x
for some xe X. Every such u=h,— T x therefore belongs to int(dom 6,) (cf.



R.T. Rockafellar, R.J.-B. Wets | A Lagrangian finite generation technique 83

[9, Theorem 23.4]). 1t follows then that 46,, is locally bounded at u (cf. [9, Corollary
24.5.1]). The mapping x~ h,— T,x is continuous, so this implies £, is locally
bounded at x for every x € X, as we needed to prove.

The argument just given shows also that the convex function 6, is continuous at
h,— T, x for every x € X (since 8, is continuous on int(dom 8,,) [9, Theorem 10.1]).
Therefore F is continuous on X by (1.6) and (2.6). We observed earlier in the proof
that G is also continuous on Z. Of course X and Z, being convex polyhedra, are
dosed sets. Hence if £, > 0, so that F(x*)- & and G(z") > &, any cluster points ¥
of {£*} and z® of {Z"} must satisfy F(x®)=a = G(Z*) and be optimal solutions to
(P) and (D).

We turn finally to the estimate (4.6). The saddle point condition on (X”, Z*) entails

x"eargmin L(x, z7).
xeX

Since X is a closed convex set and L(x, ") is a differentiable convex function of
x, this condition implies that the vector —w”* = -V L(X", Z") belongs to the normal
cone to X at x” (cf. [9, Theorem 27.4]), which is exactly the assertion of (4.7). We
have

L(x, ") = L(x%, )+ V,L(X*, ") - (x - ")+ }(x - %") - C(x—-%x")

=a,+w” (x—x")+3||x—-%"| % for all x (4.12)
from the quadratic nature of L, and also
L(x,z")=< F(x) fqr all xe X
by (2.2). For any optimal solution X to (P), then, we have
@ +w - (X-x")+i||f-x"||e s F(X)=a

In terms of £, = @ — &,, this can be written as the first inequality in (4.6). The rest
of (4.6) then follows from (4.7), inasmuch as ¢, =a,—a,=¢,+a,—a=¢,. O

Theorem 3 focuses our attention on finding conditions that guarantee ¢, » 0. Our
first result in this direction makes no additional assumptions on the data in the
problem and therefore serves as a baseline. It relies on an increasing sequence of
polytopes in Step 4, however. The generalized cutting-plane rule in (3.32) is covered
as a special case.

Theorem 4. If Z**' > Z* U {z"} in Step 4 of the algorithm, then &, 0.

Proof. Let @&, =1im, @, and a,=limsup, a,. (The first limit exists because {&,} is
nondecreasing in (4.5).) Since ¢, = a, — &, =0 for all », we need only demonstrate
that a. < @,. The sequences {x"}, {Z*}, and {z"}, are bounded by Theorem 3, so
we can extract convergent subsequences with a common index set N<{1,2,...}
such that

=V =0 =V =00 v e o}
z%, 2V — z a, —— U
N

ve N ve N veN ve
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Then since
&V = L(fy’ zy) e L(x_w’ zw)’ aV = L(fy’ ZV) —— L(fm’ zw)’
ve N veN
we have do= L(X%,Z") and a,=L(X%%, z%). Our task now is to prove that
L(x%, z%) =< L(X™, 27).
From the saddle point condition on (%%, Z*) we have

L(x*,z)< L(X*,z") forall zeZ".

Let Z¥=\J5_, Z" Since Z*< Z**'<- - - we know that for any fixed ze Z*™ the
inequality L(X", z) =< L(X”, Z¥) holds for all v sufficiently high. Taking the limit as
v->0, ve N, we obtain L(X7, z) < L(x™, 2*). This holds for arbitrary ze Z%, so

L(x%,z)< L(x,2*) forall zecl Z*,

But z7 is one of the elements of cl Z*, since z, € Z**" for all v. Therefore L(x~, z°) <
L(%*, ) in particular, and the proof is complete.

Our main result comes next. It assures us that when C is positive definite, we do
not have to keep increasing the size of the polytope Z* in order to have convergence.
The number of elements used to generate Z* can be kept at whatever level seems
adequate in maintaining a robust representation of F and G.

Theorem 5. Suppose the matrix C in (P) is positive definite. Then under the minimal
requirement Z**' >{z", z*} in Step 4 of the algorithm, one has £, 0 and also * - %,
where X is the unique optimal solution to (P).

If in addition there exists p =0 such that

z,- T,C'T%z,<pz,- Hyz, forallz,eR™ we, (4.13)

(as is true in particular if every H, is positive definite), then in the estimate (4.6) one
has

E, =1, forv=1,2,... (4.14)
where the factor T€[0, 1) is given by
'r={p L 1 .ifosf’sé’ (4.15)
1-3p ifp=s.
Thus
EqSTE <7Ve, forv=1,2,...,andp=1,2,.... (4.16)

Note that Theorem 5 asserts in (4.14) a linear rate of convergence of &, to @ with
modulus 7, and the estimate (4.6) effectively translates this into a linear rate of
convergence of X” to ¥ with modulus 7'/2 Indeed, from (4.6) and (4.16) we have

% -%"**||lc<[27"¢,]Y? for v=1,2,...and p=1,2,....
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This is an unusual sort of result, because it applies not just to the tail of the sequence
{%*} but right from the beginning. Moreover the value of ¢, is known in each
iteration, and the value of 7€[0, 1) can be estimated in advance.

Theorem 5 makes no assertion about the convergence of {Z"} beyond the one in
Theorem 3. Of course if there is a unique optimal solution Z to (D), then by Theorem
3 we have ¥ - z whenever £, - 0, as is the case here. In particular (D) has a unique
optimal solution if the matrices H, are all positive definite.

The proof of Theorem 5 depends on further analysis of the dual objective function
G. Essentially what we must provide is a lower estimate of G that ensures that the
direction z*—Z" determined in Step 2 of the algorithm is always a direction of
ascent for G.

Proposition 3. Let

f7(w) =max {(w=w") - (x-x")—3(x~%x") - C(x—%x")} for weR"

(4.17)
Then f" is a finite convex function on R" with 0=f*(0)<f"(w) for all w, and
0=< L(x*,2)-G(z)—f"(ET%(z, - 2))
< Ef*(T¥(z,—Z%.)) forallzeZ (4.18)
If C is positive definite, then
fFwysfw-—w")+sw*] C'[(w—w")+sw*] forall s=0, (4.19)

so that in particular (for s =1)

G(z)= L(%*, z)-3E{(z,—-2.) - T,C™'T*(z,—z.)} forallzeZ (4.20)

Proof. First re-express f” in terms of the finite concave function ¢ in (1.4), so as
to verify that f” is a finite convex function and that ‘max’ rather than ‘sup’ is
appropriate in (4.17):

=f"(w)=min {(w*~w) - (x=x*)+3(x - ") - C(x— ")}

=(w—w¥)} ¥V +3%" Cx"+max {{W - Cx" ~w] - x+ix- Cx}
xe X

=(w—w") X" +1x"- Cx"+ o(W* ~ CX* — w).

Clearly f*(w) =0 for all w, because x = % is one of the points considered in taking
the maximum in (4.17). Furthermore

=f7(0) =min {®w”- (x - %") +3(x— ") - C(x-x")}.

Recalling the expansion (4.12) of L(x, z¥) around x* and the fact that £* minimizes
L(x, ") over X (since (x*, Z¥) is asaddle point of Lon X xZ"), we see that f*(0) = 0.
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To get the equation in (4.18), from which the two inequalities in (4.18) immediately
follows (the first because f(w)= 0 and the second by Jensen’s inequality, because
Sf¥ is convex), we look at the expansion

L(x,z)= L(x”, 2)+ V. L(X", z) - (x = %) +3(x - %*) - C(x — %"),
where

V,L(x*,z) =c+ Cx*"—ET¥z,=w"— ET%(z, — Z.).
From this we calculate

L(x",z)— G(z) = L(x%, z)—-{(r}i)r(l L(x, z)= max {L(%*, z) — L(x, 2)}
=max {[ET(z, - 25) -~ @"] - (x—X7)

—3(x=x") - C(x=%")}
=f(ET5(z, ~ 2.))-

This establishes (4.18).
Finally we use property (4.7) in Theorem 3 to estimate for arbitrary s =0:

f"(W)$Sl_1£ {liw=w")+s%"]- (x—%") —3(x—x") - C(x —x")}

<sup {Iw—-w)+sw"] - (x—%)—}x—%")- C(x—x")}.

When C is positive definite, this last supremum equals the quadratic expression on
the right side of (4.19).

Proof of Theorem 5. Since (x**, **") is a saddle point of L relative to X xZ", we
have

a,.,=G(z"")= max G(z2).
zczv 't

But Z*"" includes the line segment joining Z” and z”. Therefore

G,y = max G(2°+1(z" - £)). (4.21)

0=¢=1

To see what this implies, we substitute z = z"+ t(z* —Z") into the estimate (4.20) of
Proposition 3 and make use of the fact that, for 0=r=<1,

L(x%,z"+1(z*=Z")=L(x",1—t)z" + z")
=2(1-0OL(x*, ) +tL(x", z)=(1~-t)a, +ta, — @, + I&,. (4.22)
This yields

G +1(z*)=a,+te,—3°8, foro=<t=<] (4.23)
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where
8, =E{(z-z.) - T,C™'Tk(z: - 7.)}. (4.24)
Combining (4.23) with (4.21), we get
a,n=za,+o(e,s,), (4.25)
where

e-16 ifo<ése,

4.26
1287 ifé>e ( )

a(e, 8)= Jmax {te —41*8} = {

Note that o is a continuous function of (g, §) e R2 with o(e, 6) =0 if £ =0, but
o(g, 8)>0 if £ >0. The sequence {a,} is nondecreasing and bounded above by a
(cf. (4.5)), so o(g,, 8,) > 0. The sequence {5,} is bounded, because the sequences
{z"} and {z"} are bounded (Theorem 3). From the cited properties of o, it follows
then that £, > 0. This implies x* - X by property (4.6) in Theorem 1.

We can also write (4.25) as

£,,<£,~0(e,,8,). (4.27)
Under the additional assumption in Theorem 5 that (4.13) holds, we have

5,<pB,, where 8,=E{(z;,—-2.)- H,(z.,—Z.)}. (4.28)
Consider now the quadratic function

q(t)=L(x", 2" +1(z"—-%")) forO0=t=].

This has ¢q(0) = L(X*,Z")=a,, q(1)= L(%",z")=a,, q"(t)=—B,, so g must be of
the form

g()=(01-t)a,+ta,+3t(1—1)8,.

Moreover the maximum of g(t) over 0 < ¢ <1 is attained at r = 1, since the maximum
of L(x", z) over z€ Z is attained at z=z". Therefore

(1-0a,+ta, +35t(1-)B,<a, for0=t=<l,
or in other words,

t(1-0B.<21—-t)a,—a,)=2(1—1t)g, for0=<r=1.
This implies B, <2g¢,, and then (4.28) yields

8,<2pe,. (4.29)
Formula (4.26) now gives us

o(e,, 8,) = a(e,, 2pe,) = £,0(1,2p) = £,0(1, 2p).
Substituting in (4.27) we get

£, =<&,—£,0(1,2p)=[1-0(1,2p)]s,, (4.30)
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where
1-p if0=<p= 5
0(1,2p)={, . \
ap” ifp=3
The factor 1-0(1,2p) is the number 7 defined in (4.15), and (4.30) is thus the
desired condition (4.14). O

Remark. Proposition 3 provides additional information that could be used in the
direction search and polytope modification steps in the algorithm. Inequality (4.18)
asserts that

L(x*,2)= G(z) = L(x", z) - Ef"(Ti(z, — 2))

for all z € Z, with equality when z = z". (4.31)

The vector z¥ maximizes L(X", z) over all ze Z and thus provides not only the
needed value L(x", z¥) = F(X") but also a clue as to where we might look to move
next in trying to improve on the current value G(Z*) of G. A further clue can be
found by maximizing the right side of (4.31) over Z to get a vector Z”. This is
possible because the right side decomposes into separate terms for each w. Indeed,
the components Z., of Z* can be determined by
7Y e argmax { f*(T*(z, — z.)) + 2, - [h, — T, %" -3z, H,z,}. (4.32)
z,cZ,

In view of the form of f* in (4.17), this amounts to solving a special quadratic
programming problem for each w € {2.

If £¥ is calculated in this way along with z” in Step 2, it can also be incorporated
in the new polytope Z**' in Step 4 in order to enrich the representation of G.

5. Adding strongly quadratic terms

The theoretical convergence properties of the finite generation algorithm are
markedly superior when the quadratic forms that are involved are positive definite.
But many problems lack this positive definiteness. Stochastic linear programming
problems, for instance, have no quadratic terms at all. Such problems can be handled
by a procedure which combines the finite generation algorithm with an augmented
Lagrangian technique that introduces the desired property.

The technique in question was developed by Rockafellar [7] in a general context
of minimax problems and variational inequalities. As applied to the present situation,
it concerns the replacement of the saddle point problem for L on X XxZ by a
sequence of saddle point problems for augmented Lagrangians of the form

L,(x, z)=L(x, z)+g (x—5%) - Clx— %) - g E{(z,~2%.) - Ho(z, — 72.)}

on XxZ foru=1,2,.... (5.1)
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Here C and H,, are fixed positive definite matrices, 7 is a penalty parameter value
that helps to control the rate of convergence, and (X%, Z%) is a current ‘estimate’
for a saddle point of L itself on X X Z, i.e. for an optimal solution pair for problems
(P) and (D).

When the augmenting terms in L, are expanded and combined with those in L,
the expression (5.1) turns into

L.(x,z)=ck - x+3x- Cx+E{z, " [hy,— T,x]-3z,  Hy,z,}+const.

(5.2)

where
C,=C+1C, H,,=H,+nH,, (5.3)
ch=c-nCxk,  hi,=h,—nHz%,. (5.4)

Note that the vectors ¢ and hj,, giving the linear terms in L, depend on the pth
solution estimates, but the matrices C, and H,,,, giving the quadratic terms remain
fixed as long as the value of 7 is not varied. Since » > 0, these matrices are positive
definite. Therefore the saddle point problem for L, on X x Z can be solved by the
finite generation algorithm with an essentially linear rate of convergence (cf. Theorem
5).

We make use of this as follows.

Master Algorithm

Step 0 (Initialization). Fix the matrices C, H,, and the parameter value n> 0.
Choose initial points x, € X and z,€ Z Set u = 1.

Step 1 (Finite Generation Method). Use the finite generation algorithm to deter-
mine an approximate saddle point (x,, z,.) of L, on X x Z (according to a stopping
criterion given below).

Step 2 (Update). Set (x4 "', z4'") =(%,, z,)- Replace u by u+1 and return to
Step 1 (with the same value of 7).

The finite generation method in Step 1 generates for the function L, a sequence
of pairs (x, ") and test values ¢,. To get an approximate saddle point we take

(%, 2,) = (¥, 2°)  when &, < 4(x", 2°), (5.5)

where the function £ in the stopping criterion is defined as follows. In terms of
the norms

x|, =[x- Cx]'? for x eR", Izl =[E{z., - H,z,}]"* for ze (R™)?,
I(x, 2) e =CIx 5+ 12013172 (5.6)
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we set
£4(x, 2) = 02 min{1, (n/D)I(x, 2) — (¥, 2)|3} with 6,>0, ¥ 6, <.
m—1

(5.7)

Obviously £4(x, z) >0 unless (x, z) =(x*, z*). The sequence {(X", z")} converges to
the unique saddle point of L, on X xZ, so except in the lucky, degenerate case
where (X, z4) is already that saddle point, the values e4(x”, ") will be bounded
away from zero, and the stopping criterion in (5.5) will eventually be satisfied. (In
the degenerate case, (¥4, Z5) must in fact be a saddle point of L itself and there is
no need to leave Step 1: the sequence {(x*, *)} converges to this saddle point at a
linear rate.)

Theorem 6. The sequences {X%} and {zi} generated by the master algorithm converge
to particular optimal solutions X and 7 to problems (P) and (D), respectively. If x and
Z are the unique optimal solution to (P) and (D), then there is a number B(n)€[0, 1)
such that (xk, z%) converges to (X, Z) at a linear rate with modulus B(n). Moreover
B(n)~0 as n->0.

Proof. We shall deduce this from [7, Theorems 1 and 2], which are general results
applicable to the calculation of a saddle point of a convex-concave function on a
product of Hilbert spaces. The Hilbert spaces in this case are R” and (R™)" under
the norms in (5.5). The convex-concave function in question is

L(x,z) ifxeX and z€ Z,
L(x, z) ={~00 if xe X but z¢ Z,
00 if xg X.

The saddle points of L on R" x(R™)? are the same as those of L on X xZ. The
problem of finding a saddle point of L, on X x Z reduces to the one for

- - n = n -
Lu(n2)= Lx, )+ |x - 5213 - Iz - 2413

on R" x(R™)“.

Denote by P(x*, z*) ttie unique saddle point of L, on R" x(R™), which is also
the unique saddle point of L, on X xZ. The mapping P is the ‘proximal mapping’
associated with the maximal monotone multifunction T that corresponds to n 'L
in the sense of [7, Section 1 and Section 5]. In consequence of [7, Theorem 1], the
sequence {(X%, Z4)} generated by the master algorithm will converge to a particular
saddle point (%, Z) of L on R" x(R™)* (the same as a saddle point of L on X xZ)
if

I+, 24 ) = P(5%, 24) |, < ¥, With 7,>0, T 1, <oo. (5.8)
m=1
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Under the more stringent condition

Iee !, 2471 = P(x, 29|l < Bl (=47, 247 = (7%, 2) |
with ,>0, ¥ 6, <00, (5.9)
m—1

we know from [7, Theorem 2] that if (X, Z) is the unique saddle point of L and a
certain Lipschitz property holds in terms of a constant o =0, we will have
lim sup [|(£5™", 25™") = (%, D/ |1 (£5) = (%, D)l = B(n),
R

where
B(n)=on/(1+a%9?)?<1. (5.10)

The Lipschitz property in question is the following: for =0 and some ¢ >0, all
the saddle points (X, Z) of any perturbed Lagrangian of the form

I:(x,y)zL(x,y)+c"- x+E{h,-2z,} on XxZ,
with eR” and A=(..., h,,...) e (R™), will satisfy
1% 2) = (% D <I(& Mllus when (& D)< e

(Here | - || 44 is the norm dual to | -||,.) This needed property does hold, because
of the quadratic nature of our problem. The optimality conditions that characterize
(X, 2) as a saddle point of Lon X xZ are all linear; the multifunction that associates
with each (¢ h) this corresponding set of saddle points is in fact a polyhedral
multifunction in the sense of Robinson, i.e. its graph is the union of finitely many
convex polyhedra. Any such multifunction has the Lipschitz property in question;
see Robinson [6].

We shall show now that our stopping criterion (5.5), (5.7), does imply (5.8) and
(5.9) with y,.=6,,[2/ 17]‘/2. Consider the primal and dual objective functions associ-
ated with L, namely

F, (x)= max L,(x,z), G,.(z)= 21)1(1 L,(x, z). (5.11)
The approximate saddle point (x4 "', z4*') = (%%, z*) satisfies
F (%, =G, (2, )<e <ef(x47, 247 (5.12)

by Theorem 3 (as applied to L, ) and (5.5). The true saddle point (X%, Z5) = P(Xk, Z%)
satisfies

mi)r(l L,(x,z8)=L, (X%, 2%) = max L, (X%, z),
and because L, is strongly quadratic by virtue of the terms added to form it from
L, this must actually hold in the strong sense that

L.(x 25)= L, (3%, 20+ (n/2)|x - 2415 forall ze Z,

L, (%4, z)< L, (%%, 54— (n/2)|z—2%|; forall ze Z
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Taking x = %4"' and z =x""'
(5.11) that

in these inequalities and observing from definition

F.(x{)= L, (%5, 25) = G .(25),
we obtain
Fu (%" = Gz = (/DI = 255+ (/2N 25 = 2515
=(n/DNET, 257 = P(R5, 2915
This, combined with (5.12) and (5.7), yields
(/D= 257 ~ P(xs, 25011 %
<67 min{l, (n/2)|(%5*", 25 - (%%, 25 L
Then (5.8) and (5.9) hold as claimed, with v, =6,[2/y]V% O
We conclude by connecting the choice of the matrices C and H, in (5.1) with

the convergence rate of the finite generation algorithm in Step 1 of the master
algorithm.

Proposition 4. Suppose C and H,, are selected so that for a certain 5> 0,

2, [T,C'T*)z, <plz, - H,z,] forall z,eR™. (5.13)
Then the matrices C,, and H,, in (5.3) have

2, [T.C:' Tz, < (p/n")z, - Hyw2o] forall z,eR™, (5.14)

so that when the finite generation algorithm is applied to finding a saddle point of L,,,
the convergence results in Theorem 3 will be valid for p = />

Proof. Let us simplify notation by writing A=< B for positive definite symmetric
matrices A and B to mean that B— A is positive semidefinite. Since A and B can
be diagonalized simultaneously, this relation can be interpreted also as a coordinate-
wise inequality on the corresponding vectors of eigenvalues. In this notation, our
assumption (5.13) is that T,C ' T*=<pH,,. Since C,=C+7nC we know C,=nC
and therefore C,'<»n *€~'. But also, from H,, = H,+ nH, we have nH,< H,,,
or in other words H, <7 'H,,. It follows that

T.Cy'Th=<n 'T,.C'Th<n"'pH,<n "pHy.
as claimed in (5.14). O
This result reveals a trade-off between the rates of linear convergence that can

be achieved in the finite generation algortihm and in the master algorithm. The
modulus B(7) for the latter can be improved by making n smaller. But one cannot
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at the same time make p smaller, as would be desirable for the finite generation
algorithm in the light of Theorem 5.
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This paper introduces a problem with stochastic objective function and linear constraints as a
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involved in both problems is supposed to have logarithmic concave joint probability distribution.
A dual type algorithm is presented for solving both problems simultaneously.
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Introduction

In this paper we are concerned with the following probabilistic constrained
problem:

(1) Find £, if it exists, such that

¢X = min cx,
xc X

XeX={xeR"|P(A\x=8)=p, A,x = b}

where A, and A, are deterministic matrices of dimension m xn and rxn, b and ¢
are deterministic vectors of dimension r and n, respectively; 8 is an m-dimensional
random vector with associated continuous joint probability distribution function
F; ? denotes probability, p is a constant reliability level (0<p<1); x is an
n-dimensional decision vector.

The original statement of:probabilistic constrained programming is due to Charnes
and Cooper [1] who prescribed reliability levels for each constraint separately; this
problem was shown to be equivalent deterministically to a linear program. The
extension of this concept to joint probabilistic constraints was first developed by
Miller and Wagner [6], who assumed uncorrelated components in 8 and later by
Prékopa [7] who permitted multivariate distribution F for 8.

Prékopa’s results on logarithmic concave probability distributions [8] guarantee
the convexity of the set of solutions of (1) for a rather broad class of distributions.
But even if convexity can be asserted, there are major numerical difficulties to
overcome in order to solve it. This is partly due to the fact that handling nonlinear

94
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constraints is usually more complicated than handling nonlinear objective function.
In this paper we suggest the other way: we will introduce a dual maximization
problem with linear constraints and concave objective function, and develop a dual
type algorithm which solves both problems simultaneously under reasonable
conveXxity assumptions.

We begin by formulating a deterministic equivalent to problem (1). Let us observe
that x € X if and only if there exists y € R™ such that x and y satisfy the constraints

Ax=zy  Ax=b  P(B=<y)=p

Let us also observe that A,x=y implies that A,x =y’ for all y'=<y. Therefore y
can be chosen in the support set of the probability distribution function F:ye
supp F < R™. (The support of F is the smallest closed subset of R™ with correspond-
ing probability measure equal to 1. Of course, the equality supp F =R™ is not
excluded.) Taking into account these observations and the fact that #(B < y) = F(y)
by the continuity of F, we redefine the set X so as

X ={x|3yesupp F: A\ix=y, A.x=b, F(y)=p}.

Now divide the constraints into two parts: one for the linear constraints and the
other for the nonlinear constraint. Accordingly, define the sets

Y={yesupp FIF(y)=p}, X(y)={x|A x=y, A;x=b}.

m

Furthermore, for a given y e R™ define the convex function g(v) to be

i{(l'f ox if X(y)#0,
xe X (v
gly)=

+00 otherwise,

Then our original stochastic problem is equivalent to the following deterministic
problem:

(2) Find y, if it exists, such that

g(y)= min g(y), jev.

These two problems are equivalent in the sense that if y is optimal to (2) then
X €Argmin,, x s ¢x is optimal to (1), and conversely, if X is optimal to (1) then
any je{ye Y|A;X=y} is optimal to (2).

Let us now summarize some properties of problem (2):

(a) Y is closed because F is assumed to be continuous.

(b) There exists a we R™, such that y € Y implies that y = w. This holds by the
fact that the probability distribution is a monotonic function of each of its variables
and F(y) tends to 0 if one component y, of y tends to —oco; for example, for
i=1,...,rset F(w))=p where F; is the ith marginal.

(c) If sup, suppryvi<+oo for i=1,..., m then Y is bounded by (b) and thus
compact by (a).
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(d) g(y)>—oo if and only if the dual feasibility set of the linear programming
problem min, x(,, cx (see linear programming results in Dantzig’s book [2])

V={(u,v)=0|uA, +vA,=c}

is nonempty, by the duality theorem of linear programming.
(e) inf,.y g(y)> —o0 if and only if the set V is nonempty, by (b) and (d).
Suppose that the set V is nonempty. Then

(maxv(uy+vb) if X(y)#0,
u.v)e
gly)= +00 otherwise,

by the duality theorem of linear programming. Thus, problem (2) is to find ye Y
such that

gly)= min[ max (uy+ vb)].

Y| (urye V

Obviously,

$3p, [nf(uy +ob)<nf sup, (uy +ob).
If the function uy +vb did have a saddle-point on V x Y then the original stochastic
problem could be solved via maximizing the function (min,. y uy + vb) over the
polyhedral set V.

We are ready now to derive the dual problem by examining the existence of a
saddlepoint of the function uy + vb (with respect to maximizing over V and minimiz-
ing over Y). We begin Section | by establishing a theorem about necessary and
sufficient optimality criteria for problem (2) in relation with the existence of a
saddle-point. Then we obtain the dual problem and investigate its properties when
F is continuously differentiable and strictly logarithmic concave. In Section 2, under
the same assumption for F, we describe an algorithm for solving problem (2) and
the dual simultancously. The convergence of the algorithm is proved for compact
V. Finally, in Section 3 we describe the computational experience we have with this
algorithm.

1. The dual problem
The formulation of the dual problem is motivated by the following theorem.

Theorem 1. (1a) If the function uy + vb has a saddle-point ((4, 1), ¥) with respect to
maximizing over V and minimizing over Y then j is an optimal solution of problem
(2) and ((ii, D), y) is a saddle-point for any optimal y.

(1b) Let the probability distribution function F be quasiconcave. Let y be an optimal
solution of problem (2).
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— Ifthe interior of the set {y|y € Y, X(y) # @} is nonempty then there exists (4, b) € V
such that ((4, 0), y) is the saddle-point of uy + vb with respect to maximizing over
V and minimizing over Y.

— If the interior of the set {y|ye Y, X(y) # @)} is empty then there exists

(u',v')e V’={(u,v)?0|uA,+vA2 =0, Y u= l}
i=1

such that ((u', v'), ¥) is the saddle-point of uy + vb with respect to maximizing
over V' and minimizing over Y, u'¥ +v'b=0.

Proof. (la) follows from the definition of the saddle-point. (1b) The proof is based
on the Kuhn-Tucker saddle-point necessary optimality theorem [5, Chapter 5].
According to this theorem,

if Z°={(x,y)|yeY, A,x=b} is convex (it is, if F is quasiconcave) and
if there exists (x', ') € Z°suchthat A, x'> y’(thatis, ifint{y € Y| X (y) # @} # @) and

if (£ 9)eZ={(x,y)|(x,y)e Z° A,x=y} is minimizing cx over the set Z (that
is, if y is optimal for problem (2) and x € Arg min, x ;) ¢x)

then there exists #=0 such that 4(y—A,x)=0 and
K tu(-AN) s +d(F-Af)<sex+id(y—Ax)

for any u=0, (x, y) € Z°. The second inequality implies that

X=cX+u(J-—AX)= min (c—#A)x+min iy,
xc{x|A;x=b} veY
SO
X — 1A X = max vb=10b forate{v=0|vA,=c—1dA,}.

ve{r=0/vAy=c—dA,}
Hence (i, §) € V and
up+ovbsay+ob=cx<uy+ob
for any (u, v)€ V and y € Y, which is the first statement of (1b).

To prove the second statement of (1b) we apply the Kuhn-Tucker saddle-point
theorem for the following problem:

Xo—> min,
A x+xozy, i=1,...,m,
(x,y)eZ°,

where A,; is the ith row of A,.
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This problem satisfies the assumptions of the Kuhn-Tucker theorem:
Z° is convex;

for (£, 7) and x,>0, A X+x,> ¥, (i=1,..., m);

(¥, 7) and %, =0 is minimizing x, because

int{ye Y| X(y)#08}=0.
Hence, by the above argumentation, there exists

(u',v')e V’:{(u,v)?0|uA,+vA2:0, y u,-=l}
i—1

such that
uw+vb=suy+v'b=0<su'y+v'b

for any (1, v)e V' and y € Y. Thus the proof is complete. [

This theorem offers the basis to derive the dual in the form of the following
problem:

(3) Find (i, 0), if it exists, such that

h(#, 0)= max h(u, v),
(u,r)c v

(4, 0)e V={(u,v)=0|uA, + vA,=c},

infuy+vb ifu=0 u#0,

ycY
h(u, v) = pp ifu=0,

—-00 otherwise,
Y ={yesupp F|F(y)=p}.

It is easy to see that inf uy is a concave function of u. Hence this problem is
always convex, even if the function F is not quasiconcave (the set Y is not convex).
However, in the absence of convexity the equality of the optimal values of problems
(2) and (3) cannot be guaranteed.

We shall use the notation u = 0 for semipositive vectors u, thatis, foru: u=0, u#0.

Suppose now that the probability distribution function F is strictly logarithmic
concave and continuously differentiable on the interior of supp F. Since F(y)=p&
In F(y)=In p, Y is convex, thus, this assumption implies that inf .y uy is attained
for u >0 at unique point (see Rockafellar’s results in [10, Section 27]). Denote this
minimum point by y(u):

y(u) = Arg mie uy (u>0).

Since p <1 hence the constraint In F(y)=1Inp fulfills the Slater condition: there
exists y'€ R™ such that In F(y')>In p. Thus there exists 8 € R such that § and y(u)
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satisfy the following Kuhn-Tucker conditions [4]:

1 3F(y)
U=80—"———
F(y) oy

5§=0, F(y)=p, S(lnp—1In F(y))=0.

(i=1,...,m)

[}

(K-T)

It is known from the probability theory that between the partial derivate aF(y)/dy;
of F and the  conditional  probability  distribution  function
F(yi, ..., YimciyYiers - Ym|y) Of By, ..., Bm at B; = y; the following relation holds:

3F(yi, ..., Ym)
9y

where f; is the probability density of the random variable 8. This relation implies that

=FYi, ooy Viets Yiers o5 Ym| ) - i)

yi(u)> sup LY ifu,»0
vesupp ¥
where sup y; may take the value +00 when supp F is not bounded.
Let us define y(u) for any u= 0 by taking this limit. Then the objective function
of (3) can be reformulated for u=0 so as

h(u, v)=uy(u)+vb (u=0).

The function uy(u) and hence h(w, v) has remarkably nice properties. These are
summarized in the following theorem.

Theorem 2. Suppose that the probability distribution F is continuously differentiable
and strictly logarithmic concave on int supp F. Then

(2a) y(u) is continuous on {u|u>0}. If lim.ou“=1d for a sequence
u' u? . (520, u* =0 for all k) then limy.o y(u*) = y(it).

(2b) uy(u) is continuous on {u|u=0}.

(2¢) uy(u) is strictly concave on {u|u=0} in the sense that

[Au' +(1=)uly(Au' +(1=A)u?)> Au'y(u') + (1= 2)u’y(u?)

forany u'=0 u’=0, u'/|u'|# u?/|W], 0<A <.
(2d) uy(u) is differentiable, Vuy(u)=y(u) on {u|u>0}.

Proof. (2a) For u> 0, y(u) satisfies the above (K—T) conditions where necessarily
F(y(u))=p, 6>0, in fact

Z:‘:l u;
T aF(y(u)/ oy

Therefore the (K—T) conditions represent a continuous one-to-one correspondence
between {y e supp F|F(y)=p} and {u>0|¥ ", u; = 1} under the assumption made
for F. Hence y(u) is continuous on {u| u > 0} which implies that lim ,«_ ; y(u*) = y(d)
if 1> 0. For i1 =0, u # 0 the statement follows from the definition of y(u).

6=p
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(2b) Define uy(u) to be 0 for u=0 and —co for u# 0. Then —uy(u) is the support
function of the convex set Y therefore it is continuous on {u|u=0}. (For details
and results about support functions see [10, Section 13].)

(2¢) The statement is immediate from the definition of y(u): uy’> uy(u) for any
u=0,y'eY, y'#y(u).

(2d) By definition a t € R™ is a subgradient of the concave function uy(u) at d if

zy(z)<uy(d)+t(z—i) forallz=0.

By Rockafellar’s theorem [10, Section 25] uy(u) is differentiable at i@ and Viiy(i) =
y(it) if y(i) is the unique subgradient of uy(u) at & t=y(d) is finite at 4> 0 and
it satisfies the above inequality because, for any z=0,

zy(z)—zt<dy(id)—dt=0

by the definition of y(z).
To prove (2d) we show that for t # y(ii) there cxists a z> 0 such that

zy(z) — zt > diy(a) — it

Suppose first that dy(ii) — it = p # 0. Choose z= A#l, where A>1if p>0,0< A <1
if p <0. Then, taking into account the fact that y(Au) = y(ii) for A >0 one has

zy(z)— zt = ALy (a) — it ]> dy (i) — it

Suppose next that dy(d)—at=0. Let I ={i|y,(d)—t,>0}<{l,..., m}. I #§ since
t # y(1) and ii> 0. Choose z>0 and 0<A <1 such that

Z,-=(1—/\)12,- ify,(ﬁ)—t,ﬂo,

i if y,(d)—¢,>0

Z;
and y;(z) —¢; is still nonnegative for i€ I. Such a A exists by (2a). Then

zy(z) =zt = (1= A)ay(z) - @]+ A ¥ d4[y(2)-1).

But dy(z)>dy(i) and ¥, #[y.(z) — ;1= 0 by the choice of A; therefore
zy(z) —zt> dy(f) -t =0
Thus the proof is complete. [

The next two properties are most important from the point of view of the algorithm
in Section 2.

Corollary 1. u'y(u+Au') is a continuous, and strictly decreasing function of A,
lim u'y(u+Au')=u'y(u') for A>0, u'=0, u=0, u'/|u'|#u/|u|, under the
A—=>Q0

assumption of Theorem 2,
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Proof. The fact that u'y(u +Au') is a continuous function of A (A >0) with
lim u'y(u+au')= lim u'y(%u +u') =u'y(u')
is immediate from (2a). To prove that it is strictly decreasing we show that u'y(u+
AMu')<u'y(u+A,ut) if 0<A,<A,. One has
(w+Au)y(u+r,u)<(u+ru")v(u+Aru')
=(u+ru' +(A, =) u")y(u+A,u')
<(u+Au)y(u+r,u')+ (A, — ) u'y(u+r,u’)
which implies the statement. O
Corollary 2. If (u',v') and (u?, v’) are optimal solutions of problem (3) and u' =0
then either u> =0 or u'/|u'| = u?/|u’|, under the assumption of Theorem 2.
Proof. If, on the contrary, u>=0 and u'/|u'|# u?/|u?| then
hQau'+ (1= ), Aot + (1= 2)v) > Ah(u', o)) +(1— ) h(u?, v?)
=h(u',v")
by (2¢). Since (Au'+(1—A)u?, Av' +(1—A)v?) €V, it contradicts the assumption

that (u', »') and (u?, v?) are optimal. [J

We end this section by characterizing the situation in which an optimal solution
(#, 7) of problem (3) offers an optimal solution for problem (2).

Corollary 3. Suppose that the assumption of Theorem 2 is fulfilled. If there exists
(4, 9)e V, i =0, y(ii) finite and (u°, v") € V, u’ =0 such that

v’b= max uy(d)+vb
(u,v)c vV

then y(i) is an optimal solution of problem (2). If V# ¢ and (u, v) € V implies that
u=0 then any y € Y is an optimal solution of problem (2).

Proof. The first statement is immediate from the fact that

b = max vb= min ¢x< min cx
vrci{v0leAs ¢} re{x Asxzb} xe X(y)

forany y e R™, X (y) # ¢. The second statement follows from the fact that (u, v)e V=
u=01is equivalent, by Motzkin’s theorem of the alternative (see in [5, Chapter 2]),
to: that {x|A,x>0, A,x =0, cx =0} is not empty.

Theorem 3. Suppose the assumption of Theorem 2 is fulfilled. Suppose that (4, d)e V
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is an optimal solution of problem (3), ii = 0. Then either y(ii) is finite in which case it
is the unique optimal solution of problem (2), or problem (2) has no optimal solution.

Proof. First we show that no y other than y(i) is optimal for problem (2). Suppose,
on the contrary, that y's y(ii) is optimal. We distinguish two cases: (I) y' is the
unique element of Y such that X(y') #9; (11) there exists y"# y’ such that y"c Y
and X (y")#9.

In case (1) int{y € Y| X (y) # 0} = 0. Hence, by Theorem 1, there exists

(u’v’)e{(u, v)Z0|uA, +vA,=0, ¥ u = 1}
i-l

such that
y(u')=y'" and u'y' +v'b=0.

By picking A >0 arbitrarily, we get
(d+ru',p+Av)e V; uy(d +Av')> dy(d)
wy(d+av)+o'db>u'y(u')+0v'b=0.

Hence h(ii +Av', § +Av")> h(d, §), which contradicts the fact that (i, 7) is optimal.
In case (1) F(Ay'+(1~A)y")>p and X(Ay'+(1-A)y")#@ for any 0<A < 1;
therefore int{y € Y| X (y)# @0} # @. By Theorem | there exists (i, ) € V such that

y(d)=y if4#0 and ay'+ b= max (uy'+ vb).
(u.v)e
Obviously, dy(if)+6b <y’ + b because y'# y(d) and @'+ db<iy'+5b by the
duality theorem of linear programming. Thus,
h(d, )< h(4, b)

which again contradicts the fact that (4, ©) is optimal.
Next we show that if y(i) is finite then ((&, 7), y(i1)) is the saddle-point of the
function uy + vb with respect to minimizing over Y and maximizing over V:

ay(ia)+0b= maxv(uy(ﬁ)+vb).
{ut)e
Suppose, on the contrary, that either (III) X (v(#))=¢ or (IV) X (v(1))# ¢ but
max, . v(uy(it) +vb)> h(i, 5).

In case (IIT) the optimal value of the following linear programming problem is
positive:

Xy —> min,
A x+x,zy(a), i=1,...,m,

A;x +x02 b, j=1l...,r
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Hence there exists

(u, v’)e{(u, v)>0|uA,+vA2=0, T out Y vjzl}
i=1 j=1

such that u'y (i) +v'b>0. By picking A > 0 such that
u'yv(i+Aau')+0'6>0

is still satisfied (such a A exists by Corollary 1) we get
(d+Au',D+Av)eV, uy(i+Au') = av(a).

Hence h(ii +Au', 5+ Av") > h(il, §) which contradicts the fact that (&, 9) is optimal.
In case (IV) there exists (@, )€ V such that

ddy (i) + 6b < y (i) + 0b.
By picking p >0 such that
v +pd) + 8b> dv(id) + b
is still satisfied (such a p exists by Corollary 1) and by letting A =1/(1 +p) we get
(Ad+(1= M), A5 +(1-2)D)e V,
dy (i +ph) = dy(Ad +(1 - X)) = dy(#).

Hence h(Ad +(1=A)d, Ad +(1 —A)d) > h(#, 5) which contradicts the fact that (&, 7)
is optimal. [

2. The algorithm

In this section we introduce an algorithm for solving problem (3) as well as
problem (2). It belongs to the family of feasible directions methods. Its concept is
similar to that of the Frank—Wolfe linear approximation method [3] which is intended
to solve nonlinear problems with linear constraints. The Frank—Wolfe algorithm
requires continuously differentiable objective function and uses the gradient at given
feasible points as objective function coefficients for lincar programming subprob-
lems. The similarity stands in that we use (y(u), b) in the same role, the difference
partly stands in that we use it even at the boundary of the feasibility region although
Vh(u, v) exists and equals (y(u), b) only for u>0 (see (2d) of Theorem 2), and
partly in details concerning the choice of stepsize. Moreover, we have to take carc
of the case when Y is not compact (that is, the support set of F is not ‘bounded
above’ as it is interpreted in (c) in Introduction) hence some components of a y(u)
may even have the value +oc, by definition. In practical problems the support of
the probability distribution of the random variables in question is necessarily
bounded. However, the support of the approximating theoretical distribution func-



104 E. Komaromi /| A dual method for probabilistic constrained problems

tion is often R™, like for the multivariate normal distribution, furthermore, an
unbounded Y does not exclude the existence of a finite optimal solution for problem
(2). Thus, we must be prepared for solving linear programming problems with
infinite objective function coefficients. The way of doing it is described and motivated
in the Appendix.

The algorithm assumes that F is continuously differentiable and strictly logarith-
mic concave on int supp F. Although it is intended to solve problem (2) it may, in
case of unbounded Y, only solve problem (3). However, by getting an optimal (&, 5)
either an optimal solution for problem (2) is also obtained in the form of y(ii), or
it comes to light that problem (2) has no optimal solution (sce Theorem 3 and
Corollary 3), or a postanalysis may help when it = 0. The role of the postanalysis
is illustrated by the following example

X, min,
F(y,v)=p, xi=y, X2y, x=b,

where F is a strictly increasing function of both variables, F(+00, a) = p, a<<b. The
dual problem is

min  u,y, +vb-> max,
Fly i y)rp

u,=0, w+v=1, u,=0, v=0.

For u,>0, v=1-u, we get y, = +0, y, = a. Furthermore, &, =0, § = | maximizes
u.a +vb over u,+v =1, u,, v=0, hence it is optimal. It, in turn, gives x.=a, x,= b
which implies that all (y,, y,) such that a <y, =< b, y, = Arg,[ F(y, y,) = p] arc optimal
for the primal program.

The algorithm starts with a point (u',»')e V in which u'=0, and constructs a
sequence {(u*, v*)} such that u* =0, (u*, v*)c V and h(u*, v*) is strictly increasing.
It terminates after a finite number of iterations if it

(1) finds an optimal solution for problem (3),

(2) finds unique feasible solution for problem (2), or

(3) finds that problem (2) is not feasible.

Since the optimal value a, if it exists, satisfies
wy(u¥) +ofb<a= maxv(uy(uk) +vb)

{u,v)e
when X (y(u*))# @, the rehative error

[maxyve v (uy(u®) + vb) — u*y(u*) - v*b]
|max,, e v(uy(u*)+ vb)|

quite correctly evaluates the closeness of the objective function value at the given
point (u*, v*) to the optimum.

Let us come now to the description of the algorithm. Having (u*, v*) the kth
iteration consists of the following steps:
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Step 1. Find the optimal vertex (i, 5*) of V for the following linear programming
problem

uy(u*)+ vb>max, (u,v)eV,

to obtain the direction of ascent d* = (&* — u*, 5* - v*).
If failing then continue at Step 3, otherwise continue at Step 2.

Step 2. If a* =0 or a*/|i*|= u*/|u*| then set y(a*)=y(u*) and stop: (a*, &*) is
optimal. Otherwise:
Choose the stepsize A, such that

Ay = if h(a¥, 5%)> h(u*, v*),
0< A, <larbitrary if h(a*, %)= h(u*, v"),

— Sk
1+Sk

Ax if h(a*, 5%) < h(u*, v*)

where 0< s, satisfies the following equality
a“v(u* + 53" +5°b = h(u*, v").
(Such a s, exists by Corollary 1.) Set

(u‘\‘ﬂl’ vk+l) - (uk’ Dk) +/\de

Step 3. Find an optimal (i#* #*)e V' for the following linear programming
problem

uy(u*) +vb-> max,

(u,v)e V’={(u,v)20|uA,+vA3:0, Y u,-=1}
i1

to obtain the direction of ascent d* = (&%, 5%).

If failing or V' =¢ then stop: problem (2) is not feasible because {x| A,x = b} =¢.
If h(i*, 5*)> Othen stop: problem (2) is not feasible because {y € Y X (y) # ¢} = 4.
If h(i*, 5*) = 0 then check whether X (y(i@*)) =¢ and stop: cither problem (2) is
not feasible or its unique feasible solution is y(d*).
If h(d* 5*)< 0 then choose the stepsize 7, > 0 such that it satisfies the following
inequalities
a*y(ut +nat)+5* <0,
h(u* +na*, o +7.8%)> h(u*, o*).
(Such a 7, exists by Corollary 1.) Set

(ukd-l’ Dk”):(uk, Dk)+7'kdk.
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We prove the convergence of the algorithm for a compact feasibility region V. In
this case the procedure only includes Step 1 and Step 2.

Theorem 4. Suppose that the assumption for F of Theorem 2 is fulfilled. Suppose that
the set V is nonempty and bounded. If the sequence {(u*, v*)} is infinite then it converges
Jor an optimal solution of problem (3).

Proof. The sequence {(u*, v*)} has a cluster point (i, #) ¢ V because V is compact.
Obviously, @ =0, since #* =0 for all k in Step 1. Let us characterize the subsequence
of {(u*, v*)} which converges for (i, ) by the increasing subsequence'% of indices
1,2,... and denote it by {(u*, v*)},:

lim(u*,0*) = (4, 9).
ke X

(Here we follow the notation used by Zangwill in [11].) It is clear that
lim A(u*, v*) =1lim h(u* v*) = h(& 5)
k-=x ke X
because h(u*, v*) is strictly increasing. Since {(u*, v*)}x is infinite there exists a

vertex (u*, v*) of the polyhedron V which is obtained as (@*, 5*) in Step 1 for
infinitc number of the k’s, k€ %. Choose %' < J such that

(a*, %) = (u*, v*) forall ke ¥".
Due to the choice of A, in Step 2
h(u*, v*)<h(u* v*) forall ke ! (i)

holds.
First, to prove that {(u* v*)} itself converges for (i, #) we shall show that
lim, ;' A, =0. The inequalities h(u*, v*) < h(u**", v**") < h(i, §) imply that

lim[h(u* "', o) = h(ut, v*)]=0.

ke i

Furthermore, it says that

klir;}I (1= Ay (1= A)u® +au®) —u*y(u*)} =0 (ii)

while, by the choice of A, in Step 2,

w*p((1 = Ao u + Au*) +o*b~ u*y(u*) - b =0. (iii)
Since {A:}, is infinite and A, is chosen in the interval [0, 1] thus it has a cluster
point A. Let ¥>< %' be such that {A,}," is convergent and

hex?

Let & =(1~A)i +Au™.
In case that A =1, u*y(u*) +0*b = diy(d) + &b from (iii) which contradicts (i).
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In case that 0< A < 1, dy(d) = diy(d) from (ii) thus d/|d| = 4/|d| by definition of
y(u). It implies that u*/|u*|=d/|d| and u*y(d)=u*y(u*). Thereby, u*y(u*)+
v*b = {iy(1) + db from (iii) which contradicts (i).

Thus A =0,

u*y(d) +o*b=dy(id)+db (iv)

by (iii), limyest Ax =0, limyc,(u* ', v**") = (4, 5). Since this argumentation is valid

for any vertex of V which is obtained as (4% #*) in Step 1 for infinite number of
the ks, k€ ¥, hence lim, ,(u**', v*'") = (& #) which proves that {(u* v*)} itself
converges for (4, ¥).

Next, we prove that (4, §) is optimal. If, on the contrary, for a vertex (u’, v')e V
u'y(d) +0v'b>idy(ii) + db
then, by (2a) of Theorem 2, there exists an index N such that
u'y(u*)+v'b>dy(d)+ b forall k= N.
But
wy(u*)+o*b=u'y(u*)+v'b forall ke X'

due to the choice of (#*, 5%) = (u*, v*) in Step 1 and u*y(it) + v*b = dy(it) + 0b by
(iv) hence u'y(i1) + v'b < ay(ii) + db. Thus the proof is complete. [

3. Computational experiences

We investigated the numerical features of the algorithm on two types of sample
problems. In the first one F was assumed to be the joint distribution of normally
distributed independent random variables, in the second one F was a two-variable
normal distribution. In the first type of the sample problems the data were composed
from the data of the STABIL model [9]. The size of the matrix (A}, A}) in the
examples was 17 x17, 21 x31, 28 x36 and 28 x 52, respectively, the number of the
random variables varied from 3 to 8. Eleven variants were formed concerning the
size of matrix, the number of stochastic constraints and the cost coefficients. The
sample problems of the second type together with the necessary data were provided
by A. Prékopa, they arose trom reservoir system design. The problem included a
matrix (A}, Aj) of the size 2 X 4. Eight variants were formed concerning the elements
of the matrix, cost coefficients, reliability level, the expectations, variances and
correlation coefficient of the two-variable normal distribution function F. The
computations were executed on the IBM 3031 computer of the Hungarian Academy
of Sciences. I worked out the computer code in PL 1, for solving the associated
linear programming subproblems I used the MPSX code.

In formulating the models we followed the argumentation used by Prékopa in
[9]. We replaced the random vector (B,,..., Bm) by (e;+oin., ..., €n+Tmnm)
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where e, o; are the expectation and variance of B, the random variable n; was
supposed to have expectation 0 and variance | (i=1,..., m). Accordingly, the pair
of problems to be solved had the following form:

¢x - min,

Axze+aoy (i=1,...,m),

(A)
A,x= b,
F(y)=p
and
min (Z u,-a,-y,-) +Y we + Y vb->max,
F(y)=p\i=} i=1 i~ (B)

uA,+vA=¢, u=0, v=0,

where F is the joint probability distribution function of n,,..., %, it is normal in
which the correlation coefficients equal the correlation coefficients of 8,,..., B..
Thus, in the first type of problems

m m 1 Y, 5
Fo)= T o=l 2= [ e ax
i=1 i=l\/2'n' -

and in the second type
! G RPN )
—- -( (x,%,)C 1(xy,x,)
F()’h}’2)‘2ﬂ\/—lﬂp2 I,q‘j me dx, dx,

where p is the correlation coefficient of 8, and 8,, C ™' is the inverse of the correlation
matrix:

1 .
Cc-' = l—p2 l—p2
p 1

1 —p’ 1-p°
It is easy to verify that

— all the assertions made for problem (2) and problem (3) hold for (A) and (B),
too;

- the algorithm for solving (A) and (B) only differs from the algorithm presented
in Section 2 in insignificant details.

We summarize here a few technical details concerning the computations:

- In Step 2 of the algorithm, instead of the stepsize A, specified in Section 2, 1
used a stepsize 0<A <1 fixed in advance. Due to this fact for some of the sample
problems the value of the objective function h(u, v) temporarily decreased. I tried
3 values for A; these were: 0.25, 0.5, 0.75. As to the number of the necessary iterations
I did not find considerable differences, thus I accepted the value 0.75.
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— In Step 3 of the algorithm, in the choice of the stepsize 7, | also tried to neglect
the second condition specified in the description of the algorithm in Section 2.
However, 1 found the procedure faster when I stayed with the specifications.

- In Step 1 and Step 3 the value 10° was given to y;(u*) if u¥ happened to be 0.

— As to the ‘optimality criterion’ the procedure was terminated upon attaining a
relative error

[(:n.?xv(uy(u") + vb) — h(u", v")]/|(mz;1cxv(uy(uk) + vb)|

less than 2%.
— In all the sample problems the feasibility region V of (B) was unbounded.
As to the reliability level p, I used 3 values; these were 0.85, 0.9, 0.95.
— In case of both types of F the numerical determination of y(u) was carried
out by solving the (K-T) problem described in Section 1.
(i) For F(y)=[17., G(y;) the (K-T) problem is the following:

¥i 3
u,—=6e’“/2""$/J‘ eV dx, iel(u)={ilu,>0}<={l,..., m},

S§=p- ek ¥ T (- \/2—7;)
ke liu)
For solving this problem we used the following procedure: choose yi, i€ I(u)
arbitrarily, set k= 1. Then
(1) If [p~Tl. 1wy G(y¥)| < then stop. Otherwise:
(2) Compute
s =p- PRAVE) R M (u,--x/-2_7r).

iel(u)

(3) Compute

yf*':Arg[§i=e-‘l/2)zz/IZ o (/202 dx]

for ie I(u).

(4) Set k=k+1, goto (1).
This procedure works because the (K-T) problem has unique solution and because
In G(z) is concave and hence

dln G(z)=e_(l/2)zz/j o (/2% 4o
dz -0

is a decreasing function of z. For carrying out this procedure we tabulated the values
of G(z) and d In G(z)/dz at the beginning of the computation.
(ii) For
1

¥ »
F(yi,y))=—— ,[ I e (/DO o dx
1 2 271'\/1—p2 e 1 2




110 E. Komaromi /| A dual method for probabilistic constrained problems

we used the replacement z = (x, —pxz)/\/l —p® and got

1 72 , [Vl p? .
F(YI,Yz)=2—I e""/z’xzj e VP dz dx,
T J-

-0

and F(y,, y,)= F(y,,y,). Then the (K-T) problem is the following:

1 1 (ry-o0) /T P07 R
u o= $——mm — S(1/2)y2 I e-(l/z):- dz,
F(yi,y2) 2w =
1 1 ) (y=py) V1597 )
u,o =5————~e_“/2”2j e (V7 4z
T F(,y) 27 o

6?0’ F(}’n)’z):P

This is equivalent to finding a solution for

1 . (_\‘:-p_\‘])/\/l-p' .
e (l/2)_)-] e-(l/2)z- dZ
u,o, —oC
1 s (v, =y }/~v1-p* }
_ e-(l/Z)y2 e (1/2)z* dZ=0, F(yhyz):p—
U, o, -0

For the solution of this problem we prepared a tabulation of (y,, y,)=
Arg,, ., [F(z, z;) = p] and of G(z) at the beginning of the computation. Then for
y(u,0, u,0,) we accepted (#,, y,) for which the absolute value of the lefthand side
of the first equality was minimum.

The computational experiences concerning the speed of convergence are
encouraging: after not more than five iterations each of the procedures terminated
upon attaining a relative error less than 2%. At the worst the computation included
the solution of 7 linear programs and the determination of the Kuhn-Tucker
stationary point y(u) at 15 turns. For the first type of sample problems we found
that the number of subproblems to be solved (the linear programs as well as the
{K-T) problems) mainly depended on the number of random variables, less on the
size of the problem.

Appendix

It remains to interpret a linear programming problem with infinite objective
function coefficients, and to show how to find an optimal solution for it. Let the
M-dimensional vector s be such that s; = +cc for | <i< M|, s, is a finite constant
for M\ +1<isM, M<M. Let D be a matrix of dimension M x N, d be a vector
of dimension N both having fixed finite elements. Suppose that W=
{weRM|wD=d, w=0}#¢. Then we say the problem

sw->max, weW, (Al)
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is solvable if the linear program
M, M
(Z w,-)y+ Y sw,->max, weW, (A2)
=l i M+l
is solvable for all yeR.

We will show that if (A1) is solvable then there exists a vertex wo of W and y,e R
such that wy is an optimal solution of (A2) for all y = vy,. By the linear programming
duality theorem (A1) is solvable if and only if

X,={xeRY|Dix=y(i=1,..., M),Dix=s(i=M +1,..., M)} #0
for all yeR. (Here D; is the i-th row of D.) Furthermore, it is easy to verify that
X, #¢ for all yeR if and only if both

X ={x|Dix=0(i=1,... M),Dx=s(i=M+1,... M)}#§
and

X={x|Dx=1(i=1,...,M),Dx=0(i=M,+1,..., M)} #0.
In order to construct w, and vy, suppose X#@ and X*#¢. Let ¢ Arg min,.x dx
and d,=dXx. Let

Xo={(x,x0)| Dix—xo=0(i=1,..., M), Dix=s, (i=M +1,..., M)}
and

M]
W0={W|W€ W,y wizdo}.
inl

X, # ¢ because X* # ¢ and W,#¢ because dy=max, . w ZM‘ w;. Let

M
(X, %,) € Arg min (cx—dyx,) and weArgmax Y sw;.
(x.xp)e Xo we Wo i n +l

Then dx — dofozzxM]H s;w; which says

. . M, M
A +(y-2051=(T 0 )+ 3 s

izl i M+
for any yeR. Since X +(y— %)X € X, if y— X, 0 hence w, = w is optimal for (A2)
for any y = y, = X,. Furthermore, w, is a vertex of W if it was chosen to be a vertex
of W, because W, is a face of W. Thus, we have shown that in order to compute
an optimal vertex of W for (Al) it is enough to compute an optimal vertex for (A2)
for a ‘sufficiently big’ y—namely, for y = x,.
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A new stochastic subgradient algorithm for solving convex stochastic programming problems
is described. It uses an auxiliary filter to average stochastic subgradients observed and is provided
with on-line rules for determining stepsizes and filter gains in the course of computation. Conver-
gence with probability one is proved and numerical examples are described.

Key words: Stochastic Programming, Nondifferentiable Programming, Subgradient Optimiz-
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I. Introduction

In this paper we define and analyse a stochastic algorithm for solving the problem
minimize F(x) over xe X, (1)

where X is a convex compact subset of R” and F is a real-valued convex function
on R". We assume that neither the values of F nor its subgradients are available.
Instead of those, at any point x* one can only obtain a random vector £* = g* + r¥,
where g“€aF(x*) and r* is a random noise of zero mean. We shall call ¢* a
stochastic subgradient of F at x*.

Example 1. Consider a convex two-stage problem of stochastic programming (see e.g.
[6,14]), in which one has

F(x)= E{chyg)r)w)ﬂ)(x, ¥ w)},

Y(x,w)={yeR™: filx,y,w)<0,i=1,..., p}.

Here w is an clementary event in a sample space ({2, £, P), E denotes mathematical

expectation and the functions f;:R" XR™ x 2> R', i=0, ..., p, are convex in (x, y).

In such a problem, if the mathematical expectation exists for all xe X then F is

convex on X, but its values and subgradients are rather difficult to calculate. Still,

for a given x* one can sample *, minimize fo(x* v, *) over y € Y(x* ") and

thus obtain a solution y* and Lagrange multipliers A¥, i=1, ..., p. Then the vector
113
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- =gs+Y"  Akgh, where gfea fi(x", ¥, ©*), is a stochastic subgradient of F at
x* i.e. E{£5/x*} € aF(x*), provided F is finite around x* (see [2, 3]).

Example 2. In a convex stochastic min-max problem one has

F(x)= E{lmax Ji(x, w)}

where f;:R" X 2 >R' are convex in x. Although it is again hard to evaluate F(x) or
its subgradients, for a given x* one can draw ", find i, such that f, (x*, 0*)=
fi(x¥, 0%), i=1,..., m, and choose & € 3,f, (x*, @*). Under simple conditions £* is
a stochastic subgradient of F at x* (see e.g. [2, 13]).

In[1] and [3] a stochastic subgradient method for solving (1) was suggested, which
consists in the following iterations

xk”=Hx(xk—7'k§k)’ k=0,1,2,.--a (2)

where 7, is a nonnegative stepsize coefficient and I is the orthogonal projection
onto X. This method was further extended to nonconvex problems in [9, 13]. Serious
difficulties however, are connected with an application of (2) as well as many other
stochastic algorithms. First, the direction negative to a subgradient is a poor search
direction even in the deterministic case, and in (2) it is additionally disturbed with
a random noise r*. Secondly, it is not casy to determine the sequence of stepsizes
{7}, since classical rules (Zf_o T = 00, Zf__o Er} <) are insufficient for practical
computation.

In this paper we aim at constructing (at least for the simplest convex case), a
new practical stochastic subgradient algorithm for solving (1). Its idea consists in
the application of an auxiliary filter which averages stochastic subgradients observed
and produces directions for iterating x*. This, when applied far from the solution,
helps to filter out the direction towards minimum. Similar ideas were used in many
works (cf. [4, 5, 7, 10, 15]) and proved efficient for smooth stochastic problems (sce
[15]) and nonsmooth deterministic problems (see [8]). A novel feature of the new
method is the rule for determining stepsizes and coefficients appearing in the auxiliary
filter. They are controlled on-line on the basis of the information gathered in the
course of calculation. Our approach combines, extends and modifies the methods
introduced in [11, 15 and-18]. Our hope is that such stepsize rules will enhance
convergence far from the solution, while retaining the local properties of classical
methods.

In Section 2 we describe the method and formulate assumptions used in further
analysis. In Section 3 we derive some important properties of our stepsize rules and
in Section 4 we establish convergence of the method. Section S concerns some
asymptotic properties of the method. Finally Section 6 is devoted to the description
of the practical code, and section 7 provides some numerical evidence.

Weuse (-, -)and |- | to denote the usual inner product and norm in n-dimensional
Euclidean space R". For a convex function F:R">R' we denote by aF(x) the
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subdifferential of F at x, i.e. 3F(x)={geR": F(y)= F(x)+(g, y—x) for all yeR"}.
A sequence x° x',x? ... is written {x*} and {x*}..» denotes its subsequence
associated with an infinite set of indices #. We denote by E¢ the mathematical
expectation of a random variable ¢ and by E{¢/ %} or simply E,£ its conditional
expectation with respect to a o-subfield %, Abbreviation a.s. is used for ‘almost
surely”.

2. The algorithm and assumptions

The algorithm generates sequences of random directions d* and points x* in R",
k=0,1,2,..., according to the formulae

dk:(fk‘*’ik)'kdk_')/(l'*’)'k), (3)

x*7 = I (x* ~ min(7 (14 v,), t/|d*)d"), (4)

where £° is a stochastic subgradient of F at x¥ i.e.
g-=g"+r" gteaF(x"), (5)

and r* is a random noise. In (3) and (4), 7, is a positive stepsize coefficient, v, is a
positive aggregation coefficient i € {0, 1} is a reset coefficient, and t € (0; +00]. At the
starting point x®€ X we set d ' =0 and thus it follows from (3) that the direction
d* is a convex combination of the null vector and the previous stochastic subgradients
£ i=0,...,k We shall call it the aggregate stochastic subgradient. It is used to
iterate x* as in the common projection method, with an optional (for t<+0o0)
truncation of steplengths.
The stepsizes {7} are computed recursively as follows:

TO> 09 T = min{‘i Tk 1 exp[min( 7, —au _jk(sTk l)]}a k = 19 2a R ] (6)
where
w = (€5, Ax*)+ A[Ax“[, (7

Ax*=x*—-x*"' and >0, n>0, a>0, §>0 and A =0 are fixed parameters. The
coefficient j, in (6) is a binary multiplier satisfying the relations

jeef{0,1} if |Ax¥|= A,
(8)

mins

Je=1 if |Ax*| < A

where A, is a small positive constant.
Similar rules are used for determining the aggregation coefficients {v,}:

Yo=7:>0,

Yi =min{¥y, v, ., exp(—Bo —jikvi-1)}, k=2,3,... 9
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with

v = B (85, AxFTD +A(AxR, AxETYY), (10)
and some parameters y>0, « > 0.

Finally, the reset coefficients {i.} are defined as follows:

ie{0,1} if |7 <o,
(11)

ik:() if |§k_'|>0',

where o> 0 is a fixed threshold.
In further considerations we denote by %, the o-subfield generated by
{x% &, ..., x"", £ x*} and by E, the conditional expectation with respect to %,.

Remark 1. To motivate the rules (6) and (9) suppose that the algorithm operates
in the interior of X and uses ¢ = +c0. For given x*~' and d*“~* consider the regularized
improvement function

2 (12)

ei(7, ¥) = F(x*(7, 7, 7)) = F(x* ) +3A|x* (7, 3, £71) - x*7!
where x*(7, vy, £7") is defined by (3) and (4), i.e.
X7y, £ =X (£ i yd ).

A natural and most convenient solution would be to choose 7,_, and vy,_, so as to
minimize ®,(7, y)= E,_, (7, v). This, however, is extremely difficult to realize.
Therefore, let us use some values of 7,_, and vy,_; and try to verify a posteriori, i.e.
at x* their optimality for (12). After simple calculations one obtains

2,

T |
30 (Tiory Yio1) = {(u, o): =T—[<g", Ax*)+ A|Ax*
k-1
Te—1lk -1

5:
Te-2(1+ v )

[Kg", Ax* "+ A(Ax*, Ax* 1], gke 8F(x")}.

Recalling (7) and (10) we get

1
—_ uk
Tk-1
E,_, € 9P (T 15 Yi-1)-
Tk—1 o
Kk

Te-2{1+ ¥, 2)

Thus the vector (u,, v,) may be interpreted as a stochastic subgradient of &, at
(Te-1, Y -1)- Itis used in (6) and (9) to correct the coefficients 7._; and vy, _, for the
next iteration.

The additional terms j,.67,_, and jix7y,_, in (6) and (9) are to force a slow decrease
of {r.} and {v,} in case of u, and v, being close to zero.
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Let us formulate assumptions which we shall use in the analysis of convergence
of our method.
Assumptions
(H1) A+ »>0, where
v=sup{u: F(y)= F(x)+(g y—x)+uly—x[
for all x, ye X and all ge dF(x)}.

(H2) E.r* =0 for every k=0.
(H3) There exist constants s,>0 and S such that for any z € R” with |z| < s, one
has

E, exp(z, r*)= S a.s. for all k=0.

Remark 2. It follows from (H1) that in case of a strongly convex objective (with
v>0) one can remove the regularizing term from (12), i.e. use A = 0in the algorithm.

Remark 3. Condition (H3) is closely related to the stepsize rules (6) and (9), since
the noise appears there in the exponents. (H3) is a kind of Cramér’s condition for
vector-valued variables and holds for each bounded distribution of r* as well as
for many unbounded distributions.

3. Properties of stepsizes

In this section we prove that the sequences {7} and {v:}, although determined
on-line in a sophisticated way, possess some of the properties usually required from
the coefficients in recursive stochastic algorithms. We start from two simple auxiliary
results.

Lemma 1. There exist §>0 and € >0 such that, for all k=0,

7= 11 expl—al F(x*) — F(x* )4 (r* Ax*)+ £'Ax**) — 67, _,].
Proof. By (5), (7) and (H1),

W = (r, Ax*)+ F(x*) = F(x* ")+ (A + v)|Ax* ]~

Choosing 0<e <A+ v we see from (6) and the definition of j, that one can find
8> 0 such that

a(A+v—g)|Ax*+ jibr = b7,

for each k, which completes the proof.
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Lemma 2. For each £ >0 one can find s,> 0 such that for any 0<s<s, and every
k=1 one has

E, exp[—as((r, Ax*y+ ¢|Ax*[")]=<1.
Proof. By the boundedness of X, |Ax*|< T for some T>0 and each k. Hence it

follows from (H3) that E, exp(—as{r¥, Ax*)) exists for all 0 < s =< 5o/ aT. Let us now
use the inequality

exp(—py) +exp( py) <2+ p’[exp(—y) +exp(y)]

which holds for every 0<p=1 and each ye R'. Setting p = as|Ax*|/s, and y=
so(r¥, Ax*)/|Ax¥| we obtain for 0= s=<s,/aT the relation

exp(—as(r, Ax*)) +exp(as(r*, Ax*))
=2+ (as|Axk|/so)2[ exp(—so(r, Axk>/|Axk|)
+ exp(so(rt, Ax*)/|Ax*|)].

Let us apply the operator E, to both sides of the above inequality. By (H3), the
conditional expectation of the right-hand side does not exceed 2+ Cs?|Ax*|*, where
C=2S(a/s,)*. Observe also that by (H2) and the Jensen’s inequality one has
E, exp(as(r*, Ax*))= 1. Therefore

E, exp(—as(r*, Ax*)) < 1+ Cs?|Ax*|* < exp(Cs?|Ax*[*)
for every 0<s=<s,/aT and each k. If s < ae/C we obtain
E, exp(—as(r*, Ax")) < exp(ass|Ax*|?),

as required.
We are now ready to derive the first important property of stepsizes {7}.

Lemma 3. For any s> 0 one has

Z:__O E{7}"*}< 0.

Proof. By Lemmas 1-and 2, for all sufficiently small s >0 we have

E {7} explasF(x*)]} < 7} _, exp[asF(x* "] exp(—sérc_,).
Since 0< 7, _; =<7, one has exp(—sér,_,)<1— Cr_,, where C =[1—exp(—sé7)]/ 7.
Define p, = 7} exp[asF(x*)]. We obtain

Eipi<prer €Xp(—$87_ )< proy— CSProy Ty, k=1,2,....

Taking the expectation of both sides of the above inequality and noting that p, =0
forall k=0, we conclude that ¥ ;_, E{p. 7} <c0.Thus ¥ _, E{r,"* explasF(x*)]} <
oo for all sufficiently small s > 0. Since X is compact, exp{asF(x*)]is bounded from
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below by some positive constant, and so Zf___o E{7}""} < oo for all sufficiently small
§>0. But 0<7, =7 and hence s may be an arbitrary positive number, which
completes the proof.

Remark 4. It is clear from the proof of the above lemma why the additional term
Ji07. ; has been inserted into the exponent in (6). Without it (with A,;,=0) one
can only show that ¥;_, E{7;_,|Ax"|*}<co for s>0, but this is insufficient for
convergence. One has to force faster convergence of {7} towards zero in order to
suppress oscillations around the minimum with small [Ax"|.

From Lemma 3 we easily deduce the following results.

Lemma 4. ¥ , E{r|¢"[} <co.

Proof. We have |¢[?<2|g"[+2|r*[>. The series ¥;_, E{rz|g“["} is convergent by
Lemma 3 (s =1) and by the boundedness of subgradients {g*} in the bounded set
X. Next, it follows from (6) that 7, <7,_, exp(n) and so

E{rilr*[} < exp(2n) E{zi,[r["}.

By (H3) there exists C such that E |r*[>=< C for all k. Since 7,_, is %,-measurable
we get E{7;_,|r*|’} =< CE{7; .;} and using again Lemma 3 obtain the required result.

Lemma 5. ¥, E{7%|d*|*} < and ¥;_, E|Ax*|? <.

Proof. It follows from (3) that for k=1,2,... one has

1 iYic - _ Yk . l
dk__— k:_k_(dkl_ k 1)+ i kl‘ (13
1+, 1+ 7y, 1+7k--1§ (14 y)(1+ yiey) € )

By (11), i|¢*"'|=< o and thus for every k we have

Yo

1+%°

k1
1+ vy,

1
1+,

-7

1+¥

k-1 k—1

gk

Since (1+ v,)d’= ¢£°, we get by induction
|d*~&/(1+y)|<7o (14)
for each k. Because 0=< vy, < ¥, our first assertion follows from Lemma 4. The second

assertion is a simple corollary from the first one.

In the following two lemmas we prove that the rule (6) does not reduce stepsizes
too rapidly.

Lemma 6. lim,_... 7_,/7 =1 a.s. and lim, . (1 —7_,/7)r*=0 as.
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Proof. Consider the exponent in (6). From Lemmas 3 and 5 we see that 7, >0 a.s.
and Ax*->0 as. We shall prove that (¢5 Ax*)->0 a.s. We have (£ Ax¥)=
(g*, Ax*)+(r* Ax*). The sequence {g*} is bounded, hence (g*, Ax*)> 0 a.s. Next,
by (H2), (H3) and Lemma 5 the series ¥, _, (r¥, Ax*) is a convergent martingale,
and thus (r* 4x*)-0 a.s. Consequently, the exponent in (6) tends to 0 a.s. and
/7> 0as., as required'. Moreover, we also see that there exists a random index
m (m <0 as.) such that for all k= m one has both 7, /7, =exp(au,+ 8r,_;) and
au, + 67, =< 1. Since exp(-) is convex and increasing, the two preceding relations
imply that for k= m we have

|1_7k—1/7k|$e(a|uk|+57’k—l),
and thus
=7 o/ n |75 < e(a| €] |Ax"| |r*|+ ar |Ax* P |r|+ 67 | r¥)). (15)

We have |£||Ax*||r¥|<|Ax¥||r*]*+|g"||Ax*||r*|. By (H3) there is C such that
E,|r*|*< C for all k. Therefore E{|Ax*|*|r*|*} < CE|Ax*". From Lemma 5 we deduce
that ¥, _, E{|Ax*"|r*|*} < co which implies that |Ax*| |[r*|*> 0 a.s. In a similar fashion
we treat the other components of the right-hand side of (15) and obtain the second
assertion of the lemma. The proof is complete.

Lemma 7. ¥, _, 7« = a.s.

Proof. From Lemma 3 we deduce that 7,->0 as. By Lemma 6, 7./7,_,=
exp(—auy — 87,_,) for k= m, where m <o a.s. Therefore one must have ¥ ., (au, +
87,-,)=+ as. Consider the series ¥,_, u, =Y., (£ Ax*)+A|Ax*[*). Since
Y., |Ax*F < as. by Lemma 5, these components may be left out of account.
Next, Y5, (&5 Ax5y=Y1_ [(g", Ax*)+(r¥, Ax¥)]. The series ¥, (r*, Ax*) is, by
(H2), (H3) and Lemma 5, a convergent martingale and hence does not matter for
Yo .. (au + 87,_,) being infinite. Therefore

g(a(g",Ax")+67k_,)=+00 a.s. (16)

k—1

By the compactness of X, there is C,> 0 such that (g*, Ax*)=< C,|4x"| for all k.
Hence, in view of (6). and (9),

(gk, Axk>$ C(+ )_')Tk—1|dk l|s Ci\(1+7%) exp(n)'rk__2|dk’ l|-

Define the variables d, = E,|d*|. In view of (14), (H3) and the boundedness of X
there exists C, such that d, < C; for all k. Thus we obtain the inequality

(g", Ax*Y< Cymioa+ Cs7y, 5(|d* Y| —d,.)),

where C, and C; are some constants. Since E,_,(|d*~'| - d,_;)* =< const by (14) and
(H3), the series ¥, _, Tc-2(|d* '|—d,_;) is, in view of Lemma 3 (s = 1), a convergent
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martingale. Therefore (16) implies that

e o
Y (aCyre_y+ 61_;) =+ as.,
k=2

which yields the required result.

Let us now pass on to the analysis of the aggregation coefficients {v,} and the
directions {d*}.

Lemma 8. lim, . v, =0 a.s.

Proof. Proceeding as in the proof of Lemma 6 we deduce that v, >0 a.s. By Lemma
5,|4x*|> 0 a.s., and thus ji =1 for all sufficiently large k. Suppose that lim sup vy, =
e>0. Let ¥ = N be such that y,—» ¢ for k € ¥, k> co. From (9) we then get

£= lkirr;( ykSlirkn i{nf Vi -1 €XP(—KYi_;) <lim sup y, exp(—«vy,) <e.

ko

We have arrived at a contradiction which completes the proof.
Lemma 9. lim,_. . [(1+v,)d*—£&]=0 a.s.

Proof. From (13) and (11) we obtain

B gk 1 gk*l
1+ 1+

d- <7y |d +vo, k=1,2,....

This combined with Lemma 8 immediately yields the required result.

Before proceeding to the convergence analysis let us note that all the results of
the above section remain valid for a nonconvex function F, too, provided an
appropriate definition of a subdifferential may be introduced for them and the
constant » in (H1) is well defined, i.e. v > —o0.

4. Convergence

Having established useful properties of stepsizes and aggregation coefficients we
shall now prove that our method is convergent a.s.
Let us define

/.L=in£ F(x), X*={xe X: F(x)=pu}.

We shall prove convergence in a rather standard way: by recursive inequality which
we derive in the following lemma.

Lemma 10. There exist sequences of scalar random variables {S,} and { W, } such that
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for any x*e X* and any k=1 one has

[T = x*Pix* - x*+ 21— F(x¥)+ S)+ W,,
where

lim S, =0 a.s.,

k—»o0

and

O
Yy W< as.,
k=1

Proof. Define the coefficients

e Tt
¢ t/|d"| if Tk(1+7k)|dk|>t~

From (4) one obtains

[xA*! — x*P < |x* — x*P+ 28(d*, x* — x*)+ i} d* |
We have

td” = 1.(1+ y)d* + (1, - 7. (1+ 7)) d*

= Tkgk+7krk+ Tk((1+yk)dk—§k)+(tk—7k(l +7k))dk

=g+ 7k_,rk+7k((1+yk)dk—§k+(l —T—:_—')r")
k
+(tk‘7k(1+7k))dk-
Using this identity in (20) we get
| = x*P < |x* = x*P+27.((g5, x* — x)+ S ) + W,
where

and

We =1 (r5 x* = x5+ (4 — 1 (14 yiId¥, x*—x )+ ti|dk|2-

(17)

(18)

(19)

(20)

21

In view of the subgradient inequality (g*, x* — x*)=< F(x*) — F(x*), (21) may be
rewritten in the required form (17). Directly from Lemmas 6 and 9 we see that
S, =0, i.e. (18) is true. Consider the series ¥,._, W,. By (H2), (H3) and Lemma 3
the series Y., me1(r*, x*—x*) is a convergent martingale. Next, the series
Yoo, (= n(1+ y)Xd", x*~x*) is convergent too, since f, =7(1+7v,) for all
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sufficiently large k. Finally, the series Y5 ., ti|d“[*
thus (19) holds. The proof is complete.

is convergent a.s. by Lemma 5, and

We are now ready to prove our main result.

Theorem 1. Assume (H1) to (H3). Then almost surely all accumulation points of the
sequence {x*} generated by the method (3)-(11) belong to X *.

Proof. Let 2 be the sample space on which the process {x*} is defined and let
£, be the union of null sets excluded in Lemmas 7 and 10. Let us fix an event
o ¢ (), and consider the path {x*(w)}. Henceforth we shall for brevity omit the
argument w.

Let us use Lemma 10 and consider two cases.

Case 1: there exists ko= 0 such that F(x*)> p + S, for all k= k.

Suppose that there exist £ >0 and k,=0 such that F(x*)= u+ S+ ¢ for all
k= k,. Then for every x* € X* and all !/ = k = k, inequality (17) yields

1—1 -1

—x*Ps|xf—-x*-2e ¥ 1+ T W.
i=k k

|x
Letting ! approach infinity we obtain a contradiction with (19) and Lemma 7.
Therefore, in view of (18), one can extract from {x*} and infinite subsequence
{x*}1ex convergent to some %€ X*. Define for every sufficiently large ! an index
k() =max{ke X: k<l}. Since ¥ is infinite, k(!) = k, for all sufficiently large I Then
(17) with x* = X gives

I- 1
x - FP<[x"O—%P+ T W,
i=k(l)

11

iy Wi~ 0. Therefore

If 1> oo then k(/)-> o, hence x*" > % and, in view of (19), ¥
% is the only accumulation point of {x*}.

Case 2: inequality F(x*) =gy + S, is fulfilled infinitely often.

Suppose that there exists a subsequence {x'},. » convergent to some x’ ¢ X *. Define
k(1) =max{k: k<! and F(x*)=<pu+S,}. By hypothesis, k(!) is well-defined for all
sufficiently large /, and k() > oo as /- co. Extracting a sub-subsequence of {(x'}ee
if necessary, without los§ of generality we may suppose that {x“"},. » converges to
some X € X. Owing to the definition of k(/), one has F(X) =y, i.e. £€ X*. From
(17) for x* = £ we obtain

-1 -1
|x'—£P=<|x*""-%+2 ¥ 7m(n-F(xH+S)+ ¥ W.
i=k(l) i=k(l)
By construction, F(x')>pu+ S, for i=k(l)+1,...,1—1, and so

-1
|x'_’e'zs'xk(l)"f'z'*’szu)(#*F(ka)'*’sk(l))‘*’ r W
i=k(l)
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The right-hand side of the above inequality tends to zero as /- o0, whereas the
left-hand side converges to |x'— X" >0. We have arrived at a contradiction, hence
there are no cluster points outside X*. The proof is complete.

In a similar way one can obtain convergence results for many other classes of
problems, e.g. for smooth, unconstrained, but not necessarily convex problems [16].

5. Some asymptotic properties

Although our aim is to speed up convergence far from the solution, it could be
interesting to verify whether our stepsize rule changes asymptotic properties of the
method, when compared with classical approaches (cf. [9, 12]). Clearly, the crucial
question here is the asymptotic behavior of the sequence {7.}. We pursue this
question in the following theorem.

Theorem 2. Assume (H1) to (H3). Additionally suppose that F is twice continuously
differentiable in an open set containing X. Then

. 1
+)n. == as.
,lcl_f?o(k 7, 5 as

Proof. Define the variables z =In[(k+1)7], k=1,2,.... By Lemma 6 for
sufficiently large k one has

1
z = zk_,+ln(1 +E) —au, — 81 _,.

This combined with (7) and (5) yields

1 1\ 1
2=zt (1-8 exp(zk-,))+ln(1 +E) X

—a((r*, Ax*)+(g* Ax"*)+ A|Ax ). (22)

Obviously, ZZ;, [In(1+1/k)—1/k] is convergent. From (H2), (H3) and Lemma 5,
via the martingale convergence theorem, we deduce that the series Zf___, alr, Ax")
is convergent a.s. Directly from Lemma 5 we see that ¥ | aA|Ax*[* < a.s. Next,
expansion of F gives (g*, Ax*)= F(x"*)— F(x*"") +16,]Ax"*|* where 6, is uniformly
bounded for all k. Since F(x*)-> u a.s.by Theorem 1and ¥;_, 6,|4x*[? is convergent
a.s. by Lemma 5, the series Zc,’;, (g*, Ax*) is convergent, too. Therefore one may
rewrite (22) as follows

1
I = zk—l‘*’;(l — 8 exp(z_y))+ Wi,

where the series Zc,’::, W, is convergent a.s. The above formula is a simple Robbins-
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Monro algorithm for solving the equation 1 -8 exp(z)=0. By virtue of standard
results on convergence of stochastic approximation algorithms (cf. [9,12]) we
conclude that z, > —In § a.s., as required.

It follows from the above theorem that for sufficiently large k one can write

1 1
= + .
e S (k+1) °(k+1)

Hence one can apply (with some modifications) the techniques of [9] or [12] to
obtain some results on the rate of convergence of our method in the smooth case.
Since this requires a number of additional assumptions and the way of analysis is
well-known, we shall go no further into the matter confining ourselves within the
observation that {r,} behaves in the neighborhood of the solution as the sequence
acknowledged to be the best one (for the smooth unconstrained case) among
sequences of the form {1/(k+1)°}, o=<1.

It should be stressed, however, that even in the differentiable case the asymptotic
behavior of {7.} as {1/8(k+1)} is not a prepared cause of {x*} approaching a
neighborhood of the minimum, since we see from (2) that {z,} converges to —In &
owing to u, - 0. Besides, the term &7, _, activates only for small |Ax*| (see (6), (8)).
So, the asymptotic properties of {7} and the convergence of {x“} are mutually
related.

In the nonsmooth case, which is our main concern in this paper, the assertion of
Theorem 2 is doubtful, because the terms (g*, Ax*) in (22) need not be summable
and may be significant as compared with 87,_,, thus causing irregular fluctuations
of {z,}.

6. Modifications of the method

The basic model (3)-(11) may be modified in various ways so as to improve its
practical efficiency and preserve theoretical convergence properties.

Crucial from the practical point of view are the values of parameters a, 8, § and
x in (6) and (9). With constant values of these parameters, there is a danger of
rapid changes of stepsizes and aggregation coefficients due to a wide range of
changes of stochastic subgradients £ It would be convenient in practice to ensure
for k=1, 2, ... the fulfillment of the conditions

Y
Ye-1

In —%- In <7 (23)

Tk 1

=<7 and

with a fixed 5 > 0. To this end one can replace «, 8, 8 and « in (6) and (9) with
varying coefficients a,, B, 8, and «,, provided that the following conditions are
satisfied:

(i) for k=0,1,2,... the coefficients «,, B, 8 and «, are %, ,,-measurable;
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(ii) there exist 0<a =<a and 0< <4 such that, for k=0,1,2,..., a< o, <gq,
a<B<a d<é,=<6and §<k,<§;

(iii) there exist positive constants b, C; and C, such that b<<A + v and for each
k=2 one has

k 1 .
y [(____1_) In 7, +b|Ax'|2] =C,+Cnr7.

i=2 a;.; a;

Under these conditions and (H1)-(H3) the algorithm (3)-(11) remains convergent,
i.e. Theorem 1 is still true. The way of proving it is in general similar to that of
Sections 3 and 4. The only major difference is in the proof that ¥ ;_, E{7}"*} <o
for all s> 0 (Lemma 3). Let us observe that (5), (7) and (H1) imply that for each k=1

T < 7. expl—aE(F(x*) = F(x* ") + (A 4 v)|Ax [P+ (r*, Ax¥)) = ji8iTi-1].

Let us denote

k
F(x* —1/a, 2
p=e gl [ glo Ve gblax 9 3
i=2

Proceeding exactly like in Lemmas 1-3 we demonstrate that

P <pr-rexp[-(A+v— b)|Axk|2 —<rk, Axk>—jk§7k—l/&]

and then
Y E{npit<w
k=2

for sufficiently small s> 0. From condition (iii) we see that
Ky .
P = T£2+l/ak e FUMIC 5 C3'ri"

for some C;>0 and C,>0. Hence
T E{r"}<wo,
k=0

as required. Differences in other proofs are only of technical nature.

Let us return to the construction of a flexible practical algorithm. Condition (iii),
although sufficient for convergence, cannot be used directly for determining gains
{a,}, since the right-hand side of this inequality does not necessarily decrease, if k
increases. However, if we ensure that 7, < a ming.;<,_; 7; for some a>1, a more
convenient sufficient condition for (iii) may be derived. To this end define 7, =
Ming~, <k 7, Tx = MaXg«,<k T, replace 7 in (6) with ar,_; and assume that the gains
{a.} satisfy the condition

; I:(—I——L.)(ln T_,—Inf_)+ b|Ax‘|2] B(L—a%)(ln T —InF._)),

a;,_; «Q; ag k
(24)
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where a, = ming<;«, @; and @, = maxyx;=, a. By Abel’s criterion and the fact that
T/ Ty < exp(n), condition (24) implies (iii).
The above ideas are the basis of the following useful modification of the rules
(6) and (9):
Tk = min{azk—l, Tk—-1 exp(_akuk —.jksk‘rk—l), k= 11 21 R ] (25)
Ye = min{a}'k—h Y1 €Xp(—Bibi —JikiYe1), k=2,3,..., (26)
where §, = min{8, n/27_}, k, =min{k, 7/2¥c1}, Yis =MiNjzi<i—1 ¥, @>1,8>0,

k>0 and n > 0. The gains {«,} and {8, } are determined according to the following
procedure. For each k we define auxiliary quantities

2\ 1/2
(-5

X

where

yk=xk' '—min{fk#,(1+7k—n) |dk 1|}dk '

If y* # x* then L, is the length of the projection of £* on the hyperplane supporting
X at x*; if y* = x* then L, =|£¢*|. We define coefficients {g,} and {s.} recursively by:

qk+l=qk/(1—q+qk)a k:293a"'a q2=1a
Skv1=Sc/[1 =i (g—s)], k=3,4,..., s3=1,

where 0 < g <1. They are used to calculate scaling factors {U,} and {V,.} according
to the formulae

Ui = U+ g (L |Ax |+ A |Ax*P - Uy), k=2,3,..., 27)
Vierr = Vit sl (L Ax* 7|+ A |Ax¥| |[Ax* 7|~ Vi), k=2,3,..., (28)

where U, = U, = L,|Ax'|+ A|Ax'[, V, = V3 = L,|Ax"|+ A|Ax'| |Ax?|. We also compute
recursively auxiliary quantities { W} and {¢,} by

1
——)(ln o —InT_), k=23,...

Qp .1 &g

Wi = W+ b|Axk|2+(

where W, = W, =0, and

¢, =max{l/a, Uc/h, |“k|/(’7 —JibiTi-1)}s (29)
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with h > 0. Finally, we define

(¢ if W+ b|AX PP+ (1/ e, — c)(In 7_, — In F_,)
z(1/ar-i~¢)In 7 —In 7)),
1
— = max{ ¢ (30)
ay Ay
+ Wk+b|Ax"|2+ (/@i —1/a_)(InF_,—1In Ik—x)}
ln Tk—l ‘ln ik -1
otherwise,
and
L=maX{l_,&‘,—!v—k|—}- (31)
Bk @’ h’n— iKY

Typically, we shall have in (29)-(31) ¢, = U,/ h and o, = h/ Uy, B, = h/ V,, where h
is a certain gain and U, and V, are normalizing factors for u, and v, calculated
by (27), (28). However, if these values of a, and B, violate (23), (i), (ii), or (24),
other parts of (29)-(31) are used, which ensure that all these conditions are
satisfied.

Following the main line of argument presented in this paper one can still prove
that for a bounded noise this modified version of the method is convergent a.s.

In the practical algorithm the reset rule is specified as follows: if o, <@, B, < a,
. >0 and the new direction d* calculated by (3) with i, =1 satisfies (J", £9H>0
(i.e. £* would disagree with two successive directions), we set iy =0, d, = £/ (1+ v,);
otherwise, we keep i, =1 and continue averaging.

7. Examples

The algorithm described in this paper was implemented in FORTRAN and tested
successfully on manifold stochastic programming problems. Owing to the on-line
rules for adjusting stepsizes and gains, the final version of sec. 6 turned out to be
insensitive to many parameters, and worked properly for the following values:
t=a=o=a=10"(these canbe arbitrary large numbers), A =0, § = a = 10”'* (these
can be arbitrary sufficiently small numbers), ¢ =0.1+0.3, h=0.05, n =0.3.

To gain an insight into the numerical properties of the method let us consider
two simple computational examples.

Example 3 (a two-stage problem). Consider the problem of Example 1 with
fO(xa ya w) = (x1)2+3(x2)2+ loyl + 10)’2,

Y(x,0)={yeR* y=0,2y,+y, = x; + X, + 0}, X =R~
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Here w is a discrete random variable with the following distribution: P{w =1}=
P{w=—1}=0.5. After simple calculations we see that

F(x)= E{y re(inmj},(x, ¥, w)}: (x,)2+3(x,)*+ SE{max(0, x;, + x, + )}

and the minimum of F is attained at X = (—0.75, —0.25). At this point F is nondiffer-
entiable and

aF(x)=co{(—1.5,-1.5),(1,1)},

i.e. Fis ‘essentially gully’ and is difficult to minimize even for deterministic methods.

For the purpose of testing our method, the analytical form of F was assumed
unknown and only stochastic subgradients £* calculated in a way indicated in
Example 1, were used. The results of computations are shown in Table 1. The
differences F(x*)— F(X), not used in the computation, were calculated analytically
‘a posteriori’.

Table 1

Results for Example 3

k T Y x{ x3 F(x*)- F(£)
0 20%x107* 10 5.000 5.000 149.2
10 1.5x107" 8.5 0.5260 -0.0566 3.210
20 1.4x107" 78 -0.9657 0.2543 1.098
30 1.0%107! 6.3 -0.5095 -0.2866 0.2657
40 7.7%1072 5.3 -0.5804 -0.0011 0.6386
50 5.5%1072 3.2 -0.1970 -0.2610 0.8482
60 44x10 2 3.1 -0.6675 -0.1660 0.1944
70 3.4%x1072 27 -0.6427 -0.1188 0.3017
80 4.1x1072 2.0 -0.6674 -0.3282 0.2953x 107!
90 3.6x1072 1.7 -0.3741 -0.1883 0.5903
100 2.5%1072 2.0 -0.7747 -0.2861 09576 x107!
150 1.3x10°2 99x10 ! -0.6008 -0.1371 0.3226
200 6.1x10°3 6.5%107} -0.7226 -0.2424 0.3589 x 107"
300 1.1x1073 1.6x107! -0.7433 -0.2487 0.8026 1072
400 5.6x107* 4.6x1072 -0.7457 -0.2496 0.4712x1072
500 1.7x107* 38x1072 -0.7484 -0.2519 0.5288 %1073
1000 9.3x1078 4.1x%107° -0.7483 -0.2517 0.1146 x107*

Example 4 (production yield optimization). Let x€R" be the nominal values of
elements in an electronic circuit and let w represent random deviations of real values
from the nominal ones. The problem consists in maximizing the production yield

Y(x)=P{x-we A}
where Ac R" is a set of acceptable values of elements. Defining

1 ifx—-wgA,

f(x""):{o ifx—weA



130 A. Ruszczyiriski, W. Syski / Aggregate stochastic subgradients

Table 2
Results for Example 4

k T Vi xy x3 Y(x*)
0 1.5x1073 1.0 1.300 1.300 0.12
10 20x1073 13 1.153 1.387 0.27
20 23x%x1073 1.2 1.193 1.338 0.35
30 2.3%1073 1.1 1.135 1.325 0.41
40 24x1073 1.0 1.113 1.230 0.62
50 2.7x1073 1.1 0.9968 1.159 0.65
60 36x1073 17 1.004 0.9595 0.84
70 27%x10 3 1.6 0.9649 0.8904 0.79
80 26%1073 1.5 1.049 09177 0.63
90 1.6x1073 1.3 1.067 0.9591 0.67
100 1.5%1073 1.2 0.9680 09156 0.83
200 2.2x1073 0.67 1.028 1.068 0.86
300 1.3x1073 0.43 09916 1.018 0.89
400 44x107* 0.20 0.9920 1.033 0.88
500 3.6x107% 0.31 0.9970 1.033 0.88
1000 57%107° 0.05 0.9932 1.013 0.89

one can rewrite our problem as
er;‘ [F(x) = Ef(x —w) =If(x—w)p(w) dw] ,

where p(w) is the density of the distribution of w. Using rules for differentiating

convolutions one immediately gets the formula for generating a stochastic gradient

of F at a point x*:

e f(x*—0")p(e")
 p(e")

which in case of a normal distribution takes on the form

é-k — _D—lwkf-(xk_wk)’

(0* —sampled),

3

where D is the covariance matrix of w.

As a simple computational example consider a voltage divider, in which x € R?,
A={yeR*: 0=sy,<1.2, 0=<y,<13, 045<y,/(y,+y,)=<0.55}, and w is a two-
dimensional Gaussian variable with Ew =0, Ew?=0.01, Ew3=0.04 and Ew,0,=
0.014. The results of computations are shown in Table 2. The yield Y(x*) was
computed ‘a posteriori’, on the basis of 10 000 simulations, to gain an insight into
the progress of the algorithm.

8. Conclusions

The algorithm described in this paper differs from the basic stochastic subgradient
method in two ways.

First, averaging of stochastic subgradients observed at successive points is used.
It is organized in a different manner than in earlier works (cf. [4, 5,7, 15]), since
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we use adaptive aggregation coefficients and reset tests to avoid excessive inertia
of the method.

Secondly, on-line rules for determining stepsizes and aggregation coefficients are
introduced. The rules are derived from the concept of regularized improvement
functions and increase adaptive praperties of the method, while retaining its theoreti-
cal convergence properties. It seems that in a similar way one can modify other
theoretical models of stochastic algorithms thus broadening the area of their practical
applications.

Finally, it is worth noting that without the term 87, in (6) (see Remark 4) one
can still prove convergence a.s. of the sequence X = (ZLO 7,-x")/2f=0 7; (see [17]).
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Searching for descent directions in stochastic optimization problems having an objective function
F of the type F(x)= Eu(A(w)x - b(w)), xeR", where u is a convex loss function, (A(w), b(w))
is a random m x(n+ 1) matrix and E denotes the expectation operator, the main difficulty is the
fact that the mean value function F is represented in general by a multiple integral. Hence, the
derivatives of F may be obtained only with a big computational effort.

Under the weak assumption that F is not constant on line segments of the feasible domain D,
for finding feasible descent directions h=y —x, y € D, for F at x € D, a derivative-free method is
presented which is based on certain relations between the random m-vectors A(w)x —b(w) and
A(w)y — b(w). Furthermore, introducing the concept of efficient points for stochastic optimization
problems, necessary optimality conditions not involving any derivatives of F are obtained.

Key words: Stochastic Programming, Feasible Descent Directions, Efficient Points, Necessary
Optimality Conditions, Stochastic Dominance, Derivative-Free Methods.

1. Introduction

Let (£2,%, 1) be a probability space and (A(w), b(w)) a random m x(n+1)
matrix. By P we denote the distribution of (A(w), b(w)) and P4\ 4., is the
distribution of the random m-vector A(w)x — b(w), where x is a vector of R".

Let u:R™ >R be a given (loss) function such that the expectation Eu(A(w)x—
b(w)) exists for every x e R" and define the mean value function F:R" >R by

F(x) = Eu(A(w)x - b(w)), xeR" (1)
If £=(7%) for xeR" and H;:R™"'V>R™ is defined by
H.(M)=M% MeR™™" xeR",

then F(x) may also be written in the form
F(x)= j u(A(w)x —b(w))p(dow) = j,(u o H)(A, b)P(dA, db)
ZI u(Z)PA(-)x—b(-)(dZ)- (2)

Supported by the Deutsche Forschungsgemeinschaft.
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Remark. In this paper the elements M of R™"*" are m x(n+ 1) matrices. Further-
more, vec M is defined by vec M =(M,, M, ..., M,,), where M, is the ith row of
M.
The problem to be considered in the following is
minimize F(x) s.t. xe D, 3)
where D is a convex subset of R".
Problems of the form (3) arise in many different connections:

(a) Instochastic linear programming with recourse [11, 19] the objective function
F has the special form

F(x)=5’x+Ep(f§(w)x—I;(w)), xeR”, 4.1
where ¢ is a fixed n-vector, (A(w), E(w)) is an m x(n+1) random matrix and p is
a sublinear function [11] on R™. If (A(w), b(w)) is defined by

(Aw), b(w)) = ( A(Cw) b(‘;)), 42)

where m is replaced by m+1, and u:R'*™ >R is given by u(}) =t+ p(z), () eR"* ™,
then obviously (4.1) is a mean value function of the type (1).

(b) Portfolio optimization [14, 17] is characterized within our frameworkby m =1
and b(w)=0, where u(z) is the negative utility of the return z = A(w)x of the
portfolio x=(x;,..., x,)"

(¢) In error minimization and optimal design [1, 15] the loss function u(z)
measures the deviation z = A(w)x— b(w) between the output A(w)x of a stochastic
linear system x—> A(w)x with input x and the target b(w). Solving (1), one wants
to minimize the mean deviation between output and target.

Solving (3) by one of the standard mathematical programming routines [5] based
mostly on certain derivatives of F, one meets the following difficulties:

(A) Under weak assumptions on the loss function u and the distribution P of
the random matrix (A(w), b(w)) the gradient (or subgradient) of F exists and has
the form

VF(x)=EA(w)'Vu(A(w)x—b(w)), xeR", (5)
where Vu is the gradient (or subgradient) of u and A’ is the transpose of A.
Corresponding formulas can also be obtained for the higher derivatives of F.
However, since V F and the higher derivatives of F are defined in our case by certain
multiple integrals, any programming routine involving derivatives of F is not very
useful in practice since multiple integrals can be computed only with a big computa-
tional effort. In order to omit the expensive computation of the gradient VF of F
in every iteration, we may replace VF(x) by a stochastic gradient (or subgradient)
[6, 8, 12], as e.g.

Y(x)=AVu(Ax—b),
where (A, b) is a realization of the random matrix (A(w), b(w)) obtained e.g. by
means of a pseudo random generator [12]. Unfortunately, since the deviation
VF(x)— Y(x) between the gradient and its stochastic approximate is equal to zero
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only in the mean, there is always a nonzero probability that the negative stochastic
gradient is not a direction of decrease for F at x. In fact, in practice one observes
[7] that stochastic approximation algorithms only have a poor convergence
behaviour though under some weak conditions [6, 8] they converge with probability
one to an optimal solution x* of (3).

(B) Besides the above mentioned difficulties in the computation of multiple
integrals, in the calculation of V F there is still a second main source of difficulties:
The objective function F of (3) depends on the loss function u, hence F = F,. Since
in practice the penalty costs involved in u hardly can be specified exactly, there is
always a certain uncertainty about the true loss function u = u,. Hence, if u # u,,
then the direction given by formula (5) may be far away from the true gradient
VF,(x), see eg. [11].

Consequently, in this paper we want to find feasible descent directions h of F at
x € D such that

(I) h can be obtained without using any derivatives of F and

(I1) h is stable with respect to variations of the loss function u in a large class
U of loss functions ¥ coming into question.

Note that safeguarding against variations of u is closely related to the stochastic
dominance considerations in [9, 10] as well as in many other areas of decision
theory, see e.g. [4, 16, 18].

In practice engineers often have already a certain approximation x, of an optimal
solution x* of (1). Having at x, a direction h of the above type, then we can compute
at least an improvement x, of x,, i.e. a vector x, € D such that F(x,) < F(x,). Hence,
it is certainly not reasonable to throw away descent directions h obtained in this way.

Moreover, introducing the set of ‘efficient points’ of (3), which may be computed
also without using any derivatives of F, we get some information about the location
of the optimal solutions x* = x} of (3) for an arbitrary ue U.

It turns out that the mentioned construction of derivative-free descent directions
and efficient points depends on the weak assumption that F = F, is a quasiconvex
function being not constant on the line segments under consideration, i.e. the class
U of loss functions u is defined by

U ={u: F=F, is quasiconvex and F, is not constant on line segments xy
joining arbitrary points x€ D and y e R"}.
We want to add here that the proposed method for finding descent directions fails
at every efficient point x°. Consequently, in order to have a ‘complete’ algorithm
for solving (3), one has to combine the proposed method with some other procedure,
e.g. a stochastic approximation algorithm.

2. Some preliminary discussions

Denote by K,(D) the convex cone of feasible directions for D at x and let
xy={Ax+(1—A)y: 0< A <1} be the line segment joining x and y. The simple basic
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idea how feasible descent directions h of F at certain points x € D can be constructed
is contained in the following theorem.

Theorem 2.1. Assume that F is quasiconvex on D. If x € D is given and y € R" is such
that F(y) < F(x), then h =y — x is a feasible descent direction of F at x provided that
F is not constant on xy and y — x € K, (D)\{0}.

Proof. Obvious.

Before we are going to characterize points y such that F(y)= F(x) in Section 3
and more generally F(y)=< F(x) in Section 4, we want to discuss the hypotheses
on F.

Lemma 2.1. Let v: {2 x D> R be defined by v(w, x) = u(A(w)x —b(w)). If v(w, -) is
convex a.s., i.e. for all o up to a p-null set, then F is convex on D, hence also quasiconvex.
From the convexity of u the convexity of v(w, -) follows, but not vice versa.

Lemma 2.2. Assume that v(w, -) is convex a.s. Then F is constant on xy if and only
if F(x)=F(y) and v(w, *) is affine on xy a.s., i.e.

v(w, Ax+(1-21)y) =Av(w, x)+(1-2)v(w, y)
for all A €[0, 1] and almost all w € (2.
Proof. The ‘if” part is clear. For the converse assume that F is constant on xy. Then
forO0sa=<litis

0=AF(x)+(1-MF(y)—F(ax+(1—-1)y)
=I [Av(w, x)+(1-2)v(w, y) — v(w, Ax+(1—21)y)]u(dw).

Since v(w, -) is convex a.s., the integrand is nonnegative a.s. Therefore the integral
can be 0 only if the integrand is 0 a.s. This means that v(w, -) is affine on xy a.s.

Corollary 2.1. Assume that v(w, ) is convex a.s. Then F is affine on xy if and only
if v(w, -) is affine on xy a.s.

Remark. If v(w,-) is convex a.s. and if there is a A€ (0, 1) such that v(e, Agx+
(1=2x0)¥) =Aov(w, x) + (1 —Ag)v(w, y) a.s., then v(w, -) is affine on xy a.s.
Corollary 2.2. If there is a vector n €R", 7 # 0, such that

Alw)n=0 as., (4)
then F is constant on any line segment with direction 1.

Proof. F(x+An)=Ju(A(w)(x+An)—b(w))p(dw)=fu(A(w)x—blw))u(dw)
= F(x).



136 K. Marti, E. Fuchs |/ Descent directions and efficient points

Remark. If m =1, i.e. if A(w) is a row vector, and if some (=2) components of
A(+) are nonstochastic, then there exists an 7 # 0 such that (4) is satisfied. More
generally assume that there are some (=2) column vectors of A(-) which are linearly
dependent. Then again there is a nontrivial solution n of (4). In [13] sufficient
conditions are given for F being not constant on line segments xy.

In the situation of Corollary 2.2 it is easy to conjecture that the dimension n of
problem (3) may be reduced.

Indeed, assume that » =(7,,..., n,) # 0 is such that (4) is satisfied and without
loss of generality let 7, # 0. Define T:R” >R""' and D by

Xn . ~
(T(xl’~"’xn))j:=xj_;nj’ J=1""9n—1a D=T(D)° (5)

If A(w)=(a,(w),...,a,(w)), then let /{(w)=(a.(w), .o+, @y (®)). Furthermore,
define F:R""'>R by

F(X)= Eu(A(w)%—b(w)) forXeR™ " (6)
Then for x€ D we have F(x)= F(Tx). Hence F(D)= I:'(D~) and therefore
inf F(x)= inf F().

xeD xeD
If xo€ D is such that
F(xo) = inf F(x), (7
then Tx,€ D is such that
F(Txo) = inf F(%). (8)
XeD

Conversely, assume that x, € D is such that

F(%) = inf F(%). 9)
xe D
Then for any
X €T Y%} D (10)
we have

F(x,) = inlf) F(x).
So we have proved the following

Theorem 2.2. If n=(7n,,..., n,) #0 satisfies (4), then the n-dimensional problem (3)
may be transformed into a n — 1-dimensional one. If n,, # 0, then the latter is given by

gilg F(x), (1

where D and F are defined by (5) and (6).

The minimum in (3) is attained if and only if the corresponding one in (11) is
attained. The minima of problems (3) and (11) are equal and the points where they
are attained are related by (7)-(10).



K. Marti, E. Fuchs / Descent directions and efficient points 137

More generally than above one may ask the consequences of
A(w)n=c as. (12)
for some 7 # 0. In a special case we can give the following -answer:
Theorem 2.3. Ifm =1 and b(w) =0 a.s. and if there is an n # 0 such that {An: A eR} <
D and (12) is satisfied with a ¢ # 0, then
inf F(x)=inf F(An)=inf u(z).
xcD AeR zeR

Proof. F(x)=] u(z) Py x(dz) =inf, g u(z),

hence

inf FO)inf ).
Furthermore

F(An)= I u(A(w)An)p(dw) = I u(Ac)p(dw)=u(xc).
Therefore

inf F(An)=inf u(Ac)=inf u(z).
A€ER AceR zeR

Remark. Problems (3) arising from portfolio analysis are characterized by m =1
and b(w)=0.

As a generalization of the above Theorem 2.3 we formulate the

Remark. Assume b(w)=0a.s.and let n,,..., 7, €R" be such that A(w)7,= ¢ a.s.,
j=1,..., m, withlinearly independent vectors ¢,, ..., ¢, ER™ I F{ny, ..., gutc D
(& is the linear hull), then

inf _ F(A;ym+- -+ Amn) = inf u(z2).

An)eR zeR

teesAm

inf F(x)=
xcD (A

We can also give a generalization of Corollary 2.2.

Corollary 2.3. If there is a vector n € R", n #0, which satisfies (12) with a vector ¢
such that, for all A\ eR and x€ D,

I u(A(w)x—Ac—b(w))p(dw) = I u(A(w)x - b(w))p(dw), (13)
then F is constant on any line segment with direction 7.

Remark. (13) is satisfied if
(i) ¢=0orif
(il) u(z+Ac)=u(z) for all A eR,
i.e. u is invariant with respect to translations parallel to c.
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Obviously, Theorem 2.2 remains valid in the more general situation of Corollary
2.3.

3. How to find points y with F(y) = F(x)

n

In this section we want to restrict our attention to the problem of finding a y eR
with F(x)= F(y) for a given x € D. If not otherwise stated we want to assume in
what follows that F is quasiconvex and not constant on the line segments under
consideration. Then from xe D, y eR", F(x)= F(y) and y — x € K, (D)\{0} we can
conclude that y — x is a feasible descent direction of F at x. A vector h € K, (D)\{0}
is called a nontrivial feasible direction for D at x. In the next subsection we give a
lemma which is fundamental for the rest of this paragraph.

(3a) A basic lemma

Lemma 3.1. Let x € D be given. If y e R" is such that

u(A(w)x—b(w)) = u(A(w)y —b(w)) as. (14)
or

Pacyx-b0)= Pacry-e)> (15)

then F(x)= F(y).
In the situation of (15) F(x)= F(y) holds for all loss functions u for which F exists.

Proof. The assertions follow immediately from the representation (2) of F. Of course,
(14) is of minor importance. We only give an example when (14) is satisfied.

Remark. Assume that A is a n Xn matrix and let S be a constant matrix of the
same dimension satisfying

u(Sz)=u(z) forall zeR",
SA(w)=A(w)S as.,
Sh(w) =b(w) a.s.
Let x € D be given and define y = Sx. Then (14) is satisfied.

Before we are going to discuss the decisive equation (15), we want to introduce first
the concept of an efficient point.

(3b) Efficient points

Definition 3.1a. A point x € D is called efficient for (3) if there is no point y e R"
such that (15) is satisfied and y —x € K, (D)\{0}.
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If xe 15, where D denotes the topological interior of D, then K,(D)=R" and
consequently x is efficient in this case if and only if there is no solution y of (15)
such that y # x.

The significance of efficient points for (3) is easy to see. Let x* € D be an optimal
solution of (3). Then there can be no y, y — x* € K,«(D)\{0} such that (15) with
x=x* holds. Hence, the optimal solutions of (3) are efficient points or to state it
otherwise, the efficient points of (3) are possible candidates for optimal solution of
(3).

Let E denote the set of efficient points for (3).

Remark. (a) If besides the weak condition u € U, i.e. that the objective function F,
of (3) is quasiconvex and is not constant on the line segments under consideration,
there is some additional knowledge about the loss function u, then a stronger
definition of an efficient point can be given. We mention two examples.
(1) Stochastic linear programs with recourse
According to the special form (4) of the objective function F, Definition 3.1a can
be modified here as follows.
Definition 3.1b. For a stochastic linear program with recourse a point x € D is called
efficient if there is no point y € R" such that y —x € K, (D)\{0} and
&y<éx, (16.1)
Piyy-b0)=Pi(yx—b(.)- (16.2)

(2) Problems with a monotone loss function u

In some applications, e.g. in portfolio optimization [14], the loss function u has
a monotonicity property of the type

u(z)su(w) ifzs(=)w, Qa7

where the partial ordering z<(=)w is defined componentwise. Let (A, b) denote
the mean of (A(w), b(w)) and define (Ay(®), by(w)) =(A(w)— A, b(w)— b). Then
Definition 3.1a can be modified in this way.

Definition 3.1c. If the loss function u is monotone according to (17), then a point
x € D is called efficient if there is no point y €eR” such that y —x € K,(D)\{0} and
Ay=(=)Ax, (18.1)
Py ry-bo) = Pagyx-b0)- (18.2)

We observe that the notion of efficiency in optimal portfolio theory is closely
related to the efficiency concept given by the above Definition 3.1c.
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Notes. (a) Equations (15), (16.2) and (18.2) are of the same type!

(b) It may happen, e.g. if n=1, that the set E of efficient points described by
Definitions 3.1a-c is not much different from the set D of all admissible points of
(3) or is even equal to D. Clearly, if this occurs, then the notion of efficiency yields
only few or even trivial information about the location of an optimal solution x*
of (3). On the other hand, if this happens, then we know at least that the correspond-
ing problem is very sensitive with respect to variations of u. Hence, in this case one
must be very careful in selecting an appropriate loss function u for (3).

In any case, an important problem is therefore to compute the set E of efficient
points or if not possible to give inclusions for this set.

Theorem 3.1. For given x cR" let A, and B, be two systems of conditions for an
n-vector y. Assume that whenever a vector y satisfies A, for a given x, then y is also
a solution of (15) (relations (16), (18) rsp.). Conversely, assume that whenever a
vector y satisfies (15) (relations (16), (18) rsp.) for a given x, then y is also a solution
of B,. Let A (B rsp.) be the set of points x € D such that no solution y of A.(B, rsp.)
with y— x € K, (D)\{0} exists. Then

Bc EcC A,

where E is the set of efficient points according to Definition 3.1a (3.1b, 3.1¢ rsp.).

Proof. If x& B, then B, has no solution y with y —x e K, (D)\{0}. Consequently,
also (15) (relations (16), (18) rsp.) has no solution y such that y —x € K,(D)\{0}.
For if y satisfies (15) (relations (16), (18) rsp.), then it satisfies B,, too. Hence x is
efficient.

The other inclusion is proved similarly.

By means of Theorem 3.1 it is possible now to compare the notion of efficiency
given by Definition 3.1a and Definition 3.1b, 3.1c¢ rsp.

(1) Stochastic linear programs with recourse. Since (A(w), b(w)) is defined here
by (4.2), ¢ being a fixed vector, (15) holds if and only if &x=¢"y and Pg(.\x—5..,=
Pz .yy-i(-,- Hence, (15) implies relation (16). From Theorem 3.1 follows now that
the set Eg; p of efficient points described by Definition 3.1b is a subset of the set E
of efficient points actording to Definition 3.1a.

(2) Problems with a monotone loss function u. According to the definition of (A, b)
and (Aq(w), b(w)), (15) holds if and only if Ax= Ay and Pa,c.)x—b(-)= Pag(-)y—ba(-)-
Hence, (15) implies relation (18). Again from Theorem 3.1 follows that the set E,,
of efficient points according to Definition 3.1¢ is a subset of E.

Since in the above two examples we have additional information about the loss
function u, we obtain a notion of efficiency which is sharper than that given by the
general Definition 3.1a working also in the case with maximal uncertainty about w.
Clearly, the set of efficient points for (3) depends on D. We give the following
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Lemma 3.2. Let E(D) denote the set of efficient points (according tp Definition 3.1a,
3.1b or 3.1¢) for (3). If D, = D, are two convex subset of R", then E(D,) > D, n E(D,).

Proof. Because of D, D, we also have that K.(D,)c K,(D,) for every x. Let
x€ D,n E(D,) and suppose that x¢ E(D,). Then there is a yeR" with y—x¢€
K, (D))\{0} such that (15) (relation (16), (18) rsp.) is satisfied. Since K, (D))<
K, (D,), we also have that y —x € K, (D,)\{0}. Hence, there is a y e R" with y—x¢€
K, (D;)\{0} such that (15) (relation (16), (18) rsp.) is satisfied, which is a contradic-
tion to x € E(D,).

Proving the inclusions Eg p< E and E,, c E, we already have worked with a
system of relations B,. Further examples for our systems A, and B, will be given
in the next subsections.

(3¢) Conditions necessary for equation (15) ((16.2), (18.2) rsp.)

Since (15), (16.2) and (18.2) are of the same type, it is sufficient to consider (15)
only. Note that these equations may also be described by means of the characteristic
functions or the densities (if they exist) of the corresponding probability distribu-
tions, see e.g. [13].

Theorem 3.2. If two n-vectors x, y are related by (15), then for every measurable
Sunction f:R™ >R" we have
Pracyx-o00)= Preaciy-biy)
and, provided these expectations exist,
Ef(A(w)x—b(w)) = Ef(A(w)y — b(w)).
Especially, for each r x m matrix H the equation
Pricacyx-b-) = Prcaciy-bey
must hold and hence also
PA,(-)x—b,(-)=PA,-(-)y-b‘-(-) fori=1,...,m, (19)
where (A,, b;) is the ith row of (A, b). Also all moments of A(w)x—b(w) and
A(w)y - b(w) must be equal, provided they exist. Let us note especially
Ax = Ay, (20)
var(A(-)x—b(-)) =var(A(-)y—b(-)), (21)

where A= EA(w) is the mean of A(w) and var(A(-)x— b(-)) denotes the covariance
matrix of A(w)x —b(w), provided these moments exist.

Remark. The equations of Theorem 3.2 are examples for relation systems B,. Hence,
they are suitable for searching efficient points.

In some cases the conditions of Theorem 3.2 are also sufficient for (15) as
demonstrated by this
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Lemma 3.3. (a) If the rows of (A(w), b(w)) are stochastically independent, then
equations (19) are also sufficient for (15).

(b) If the random matrix (A(w), b(w)) has a normal distribution, then (20) and
(21) are also sufficient for (15).

(c) If (A(w), b(w)) has an elliptically contoured distribution (see e.g. [13]), then
(15) is equivalent to a system of linear and quadratic equations which have the same
Sfunctional form as the equations given by (20) and (21).

Among many other distributions, the multivariate normal, Cauchy, stable, Student
t-, inverted Student ¢-distribution as also their truncations to an elliptically contoured
set in R™*" and the uniform distributions on elliptically contoured sets in R™"*"
are members of the family of elliptically contoured distributions, see e.g. [13].

We want to discuss (20) and (21) in some detail. First we will consider only the
row means

0 =(A)ics
for some J<{1,..., m}, i.e. (20) implies that

O(y—x)=0. (22)
The general solution of (22) is given by

y~x=Bh,
where h €R’, B, is a n X r matrix with rank B, =r and r=n—rank @. If xe D and
if rank @ < n (the latter is true in practical relevant cases since m < n), then there

is always a solution y—xe€ K,(D)\{0} of (22). So assume x€dD, D being the
boundary of D. Let D be given e.g. by

D={xeR": g(x)<go},
where g is a differentiable function and g, €R. If g(x)=g, and Vg(x) # 0, then the
topological closure K, (D) of K, (D) is given by

K, (D)={neR": Vg(x)'n =<0}
We can give this

Lemma 3.4. Let xe 3D be given. Assume that g(x)=g,, Vg(x)#0 and K,(D)=
{neR™: Vg(x)n<0}.
If B}Vg(x) =0, then x is efficient.
Proof. By the above an x€9D with Vg(x) # 0 is efficient if
On=0, Vg(x)n<o0
have no solution n € R” or equivalently if
Vg(x)'Bh <0

has no solution heR".
Of course this is the case if and only if B,Vg(x)=0.
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Example 1. If |[J|=1 and @ # 0, then rank B, = n—1. So, in order that B,Vg(x)=0
there must exist an a € R such that

Vg(x)=a®'.
That is, if we can find a row vector EA;(w) such that for an x € 3D the relation
Vg(x)=aEA(w)#0

holds, then x is efficient.

Example 2. Let D be an ellipsoid, that is go=0 and g(x) =x'Cx+ ¢'x+ v, where C
is a positive definite matrix. From Lemma 3.4 it follows that if

x'Cx+c'x+y=0, 2Cx+c¢c#0, 2B;Cx=—-B/c,

then x is efficient.
Let us now take into consideration only the covariances, i.e., (21) alone.
Denote by Q; the (n+1) x(n+1)-matrix

Q; =cov((Ai(w), bi(w)), (4;(w), b(w))).
Then it is easily verified that

where again X = ().
Hence, (21) is equivalent to

2QuX=§'Q5, ij=1,...,m,
and since Q; = Qj; this can be reduced to

A l"+ ji A A i'+ ji A - .
x'Q?QLx=y192;QLy for i<},

where now Q(Q,j+ Q;;) is a symmetric matrix. So we can write

Ry d'j) fori<j,

%(Qij+oji)=<d{_ G

where the R; are symmetric n X n-matrices and d,; € R", g; €R. Hence,

Lt Qi , o
y 12 y=le'jy_2d|‘jy+q,-j fori<j.

So (21) is equivalent to
x'Ryx—2dx=y'R;y—2d}y (23)

for i=j and x is efficient if there is no y, y—x € K,(D)\{0}, which satisfies (23)
simultaneously for all i=<j.
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Denote by K, (K, rsp.) those pairs (i, j), i <j, for which R;; is positive (negative
rsp.) definite. R, is positive semidefinite, so chances are good that K, is not empty.
For (i,j)e K, and y # x we have

y'Ryy—2dyy> x'Ryx—2d};x+2(R;x—d;)'(y — x)
and hence, from (23),

0> (Ryx—d;)(y—x) for(ij)eK,,y#x
Analogously, we must have

0<(Ryx—d;)(y—x) for(i,j)eK,,y#x

Hence, we can prove

Theorem 3.3. If there is no solution n € K, (D) of
0> (R;x—d;)n for(ij)eK,,
(24)
0<(Ryx—dy)'n for(ij)eK,,
where x € D, then x is efficient.
Proof. If x is not efficient, then there is a solution y of (21) with y —x € K,(D)\{0}.

By the above considerations we know that in this case n = y — x € K,(D) is a solution
of (24).

Finally we want to take into consideration both mean and covariance.
Denote by B the matrix B, corresponding to J={1,..., m}. Substituting y =
x— Bh into (23) we can write

x'R;x—2d};x=x'R;x+h'B'R;Bh+2h'B'R;x —2d;x—2d; Bh.
So we have
Theorem 3.4. Equations (20) and (21) have no solution y with y —x € K, (D)\{0} iff
there is no h e R" with Bh € K, (D)\{0} such that
gi(h)=h'B'R;Bh+2(B'R;x— B'd;)’h=0 (25)
simultaneously for all pairs (i, j) with i<j. If there is no such h e R’, then x is efficient.
Let us note an interesting consequence:
Corollary 3.1. Denot‘e'by K those pairs (i, j) with i< j such that R, is definite. If x€ D
is such that
B'R,x=B'd

Jor some (i, j) € K, then x is efficient.

(26)

ijo

Proof. (26) implies g,;(h)=h'B'R;Bh. By the definition of K we conclude that
rank B'R;B=r for (i,j) € K. So B'R;B is a definite matrix and g;(h) =0 is true if
and only if h=0. But this meang that only h =0 satisfies (25) for all i=<j. Hence x
is efficient by Theorem 3.4.
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Corollary 3.1 can also be derived from Theorem 3.3. If we take into consideration
that n = Bh is the general solution of (20), then we can tell that x € D is efficient
if there is no solution h of

0> (R;x—d;)Bh for(i,j)eK,,

0<(Ryx—d;) Bh for(ij)eK,.
So if (R;x—d;)B=0 for a (i,j)€ K = K,u K,, then x is efficient. Since K,u K,
is the set of indices (i, j) such that R; is definite we have again proved Corollary 3.1.
Corollary 3.2. For each (i,j)<€ K all points x € D contained in the n—r dimensional
linear manifold

S;={xe D: x=Rj'(d;+ A, EA\(0)+: - -+ A, EAl(®)), (A}, ..., A,) ER™}

are efficient. Here A;(w) denotes the jth row of A(w).

Proof. (26) means that R;x—d,; is in the kernel of B’. By the very definition of B
the kernel of B’ is the linear hull of the rows of EA(w). This proves the corollary.

All x € D in the union of the n —r dimensional linear manifolds S are efficient.
But in general there are still more efficient points. For (i, j)e K the set {x¢€
R": g,(x) =0} is an ellipsoid. Now, x € D is efficient if any two such ellipsoids, say
those pertaining to (i, j) and (k, I), are tangent to each other from outside in 0. This
is true if for a A <0

Vg-‘j(o) =AVgu(0),
which is equivalent to
B,Rijx - B’d,-j =A (B'Rk,x - B’d’d).

So we have proved

Corollary 3.3. Let (i,j)e K and (k,I) € K be given. If A <0 and x € D are such that
B'(R;— ARy)x=B'(d;—Ady.),

then x is efficient.

Note that Corollary 3.1 is a special case of Corollary 3.3 if we allow A =0 in the
latter.

Corollary 3.4. Suppose that m=1 and that (A(w), b(w)) has a normal distribution.
Let R, where det R #0, d and q be such that

var(AGe), b@) =( 5. 9)
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and let B be an n X(n—1) matrix with rank B=n—1 and EA(w)B=0. Ifxe D is
efficient then

xedDu(Dn G),

where G is the straight line
G={x:x=R7'(d+AEA(w)"), A €R}.

If D=R", then the set of efficient points is equal to G.

Proof. In our situation (25) reads
g(h)=h'B'RBh+2(B'Rx—B'd)h=0. (27)

By Lemma 3.2b and Theorem 3.5, x € D is efficient if and only if (27) has no solution
heR"™ with Bhe K,(D)\{0}. Let xe D be efficient. Then K,(D)=R" and (27)
has no solution h# 0. g being continuous this can be true only if g(h) <0 for all
h#0 or g(h)>0 for all h#0. In both cases h=0 is an extremum of g(-). So
necessarily Vg(0) =0 which gives B'(Rx —d)=0. But this means that Rx—d is in
the kernel of B’ and therefore Rx —d = A EA(w)’ for a A €R. This proves the first
part of our corollary.

If D=R" then we have proved that E, the set of efficient points, is a subset of
G. By Corollary 3.1 a point x with B'(Rx—d) =0 is efficient. So the points of G
are efficient which proves the second part of our corollary.

(3d) Conditions sufficient for (15)
Let us define E:=R™"*" where again the elements of E are m x (n+ 1) matrices.
Then P, the distribution of (A(-), b(*)), is a probability measure on E.
Theorem 3.5. Assume that there are two measurable mappings
A:E->E fork=1,2,
such that P is invariant with respect to A, i.e.
A(P)=P fork=1,2.
Let x eR" be given. If y e R" is such that
H,oA,=H,°A, Pas, (28)
then (15) is satisfied.

Proof. By our hypotheses
PA(-)x—b(-)': HX(P) = Hx(Al(P)) = Hy(Az(P)) = Hy(P) = PA(-)y—b(-)°

Remark 1. If A, is a 1-1 mapping, then (28) reduces to the condition H,* A =H,
with A: E-> E known from [12].
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Remark 2. For an invariance A of P clearly A" is also an invariance of P for all
reN. So (15) is satisfied if H,oA{= H,° A5 for some reN, seN and invariances
Ay, A, of P

Remark 3. Equation (28) is an example for a relation system A, (see Theorem 3.2).
So an immediate consequence is

Corollary 3.5. If for a given x € D there is a y with y — x € K,(D)\{0} which satisfies
(28) for some invariances A,, A,, then x is not efficient.
Let us restrict our attention to affine transformations A, : E » E given by
Ak(M):TkM+Ak fork=1,2,

where T,:E > E are linear transformations and 4, are fixed elements of E for
k=1,2.
Then (28) is equivalent to

(T1M+Al)£=(T2M+A2)j} P'a.S. (29)

k=1, 2, and assume that T, is given by vec(T, M) =(vec M)7, for k=1, 2. '
Introducing the notation

S, =diag(x, ..., x),
S, being an m(n+1) x m matrix, we see that (29) can be written as

(4,X)'+(vec M)7, S, =(4,§) +(vec M)1,S, P-as. (30)
(30) can be further reduced if we have some information about the support Cp of.
P (Cp is the minimal closed subset of E such that P(Cp)=1).
Lemma 3.5. If A(P)= P and A(E) is a closed set, then

Cp < A(E).

Proof. Of course E= A"'(A(E)) and hence, also using A(P)= P, we have
P(E)=P(A™'(A(E)))= P(A(E)),
hence P(E)=1.Since A(E) is closed by our assumption, according to the definition

of support we conclude that Cp, = A(E).

If A is an affine transformation then A(E) is a linear manifold and therefore
closed. So Lemma 3.5 applies in this case. We want to give now examples for
supports Cp and the corresponding simplifications of (30).
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Example 1. Full support. Let 0 be an inner point of Cp. Then C; is not a subset of
any linear manifold other than E. So by Lemma 3.5 we have A,(E)= E and since
E is finite dimensional A, must be 1-1. By Remark 1, (30) can be reduced to

(Ax)' + (vec M)7S, = (vec M)S, forall M € Cp.
Since 0 is an inner point of C, this is satisfied if and only if
AX=0, 75, =S,.
These conditions were obtained in [13].
Example 2. Affine support. Let Moe E and H=(H,, ..., H,), H;beinga rx(n+1)
matrix, be given. Assume that C, is the linear manifold given by
Co={M+M,,vec M=A"H XA eR"}.
Now (30) is equivalent to
(A,X)'+ (vec Mo+ A'H)7, S, =(4,5) + (vec Mg+ A'H)7,S, forall A eR".
This is true if and only if
(4,%)"+ (vec My)7, S, = (A,9)' + (vec M) 7.8, H7,S, = Hr,S,.

Example 3. Polyhedral support. Let Cp be given by
Cp=conv{iM'V, ..., M'"},

ie.vee M=Y'_,avec MY, a;=0,Y . a;=1.1f 0€ Cp then (30) reduces to

r r
A% =A,7, Y a;vee MY'1,S, = ¥ a;vee MYV'1,S,.
i ji=1

Jj=1 j=
Of course the latter equation is valid if
vec MY'1, S, =vec MU'7,S, forj=1,...,r

In [13] methods for finding invariances for concrete distributions are discussed.

4. How to find points y with F(y)< F(x)

Let K:R™ x 3™ >R be a Markov kernel from R™ to R™, i.e., assume that K(z, -)
is a measure on (R™, 8™) for each fixed ze R™ and that K(-, B) is a measurable
function on R™ for each fixed Be 8™ Assume further that K(z, B) is a dilatation,
ie.,

I wK(z,dw)=2z forzeR™.
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If v is any measure on (R™, ™), then by Kv we designate the measure
(Kv)(B)= I K(z, B)v(dz).
Now we have this

Theorem 4.1. Assume that
PA(-)x—b(-)= KPA(-)y—b(-) (31)

with a dilatation K. Then
(a) EA(w)x=EA(w)y,
(b) F(y)<F(x)
Sor all convex loss functions u.

Proof. (a)

.

E(A(w)x—b(w)) WPA(x—bi(dW) = I WKP, (. b (dw)

= (I wK(z, dw)) Paiyy-b-(d2)

o

.

= | 2P b0 (d2) = E(A(@)y — b(w)).

o

(b) By Jensen’s inequality we obtain

F(x)= 1 u(2)Pa.yx—p\(dz)= I u(z)KPy( .y p(-y(dz)

o

= (I u(z)K(w, dz)) Py (dw)

o

Y

u(j ZK(W, dZ)) PA(')y—b(')(dw)

.

= u(W)PA(.)y_b(.)(dw)=F(y).

Remark. It is easily seen that the second statement in Lemma 3.1 is a special case
of the above theorem.

For this observe that the Markov kernel K(z, -)=¢,, where ¢, is the one-point
measure defined by

1 ifzeB,
0 else

ez(B)={
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is a dilatation and that

Pacyx-bcy= KPacyy-b)
is equivalent to

Pacyx-b)= Pacyy-be)-

Let for fixed x and y the stochastic variables X and Y be defined by X(w)=
A(w)x—b(w) and Y(w)=A(w)y—-b(w). Then the conditional distribution
Px,y-:(B) of X under the hypothesis that Y =z has the property

(see e.g. [2]). Furthermore,
E(X/Y=2z)= I XPx,y ., (dx) Py-as.,

where E(X/Y =z) is the conditional expectation of X under the hypothesis that
Y=z
So Px,y_-.(B) is a dilatation if and only if

E(X/Y=z)=z Pyas.
We have proved this

Corollary 4.1. If
E(A(w)x—b(w)/A(w)y —b(w))= A(w)y - b(w) p-as,

then the statements of Theorem 4.1 are valid.

In a forthcoming paper the situation of Theorem 4.1 is discussed in the case of
.a discrete distribution .

For another application assume that the kernel K(z,-) and the measures
Pa(yx—b(-ys Pac)y-n(-) have densities k(z, w), p,(z) and p,(z) with respect to the
Lebesgue-Borel-measure on R™. Then the following conditions must be satisfied:

px(w)=j k(z, w)p,(z)dz as., 32)

I k(z,w)dw=1 forallzeR™

(33)
k(z,w)=0 forall(z, w)eR™ xR"™,
I wk(z, w)dw=2z forall zeR™ 34)

Here conditions (33) guarantee that k(z, -) is a density for each fixed zeR™, (32)
is equivalent to (31) and (34) means that K(z, ) is a dilatation.
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Let us further simplify the situation by assuming that we have a translation model,
ie.,

k(z, wy=¢p(w—z) forw,zeR",

where ¢ is a probability density on R™ Then (32) has the form

Px(w)= I d(w—2)p,(z)dz=(d*p,)(w) as,

hence

pPx=¢*p, as., (3%)

where ¢ * p, denotes the convolution of the densities ¢ and p,. Now we have this

Corollary 4.2. Assume that ¢ is a probability density on R™ with

I z¢p(z)dz=0.

If for the Fourier-transforms p,, p,, d; of px, p, and ¢, respectively, the equation
p. = b, (36)
holds, then F(y)=< F(x).

Proof. We show that K, given by K(z, B) =_[B ¢(w—z) dw, is a dilatation, which
satisfies (31). Then the assertion of the Corollary follows from Theorem 4.1. It is
sufficient to show that k(z, w) = ¢ (w—z) satisfies (32)-(34).

By the well known relation between the convolution of two functions and their
Fourier-transforms, (36) is equivalent to (35) and therefore also to (32). Furthermore,
(33) is true because ¢ is a probability density.

Finally,

I wk(z, w)dw=j wo(w—z) dw=j (w=—z)¢p(w—2z)dw+z I d(w—z)dw=7z

so (34) holds, too.

The above corollary suggests, that if x is given, then one has to choose y such
that p./p, is the charactenstic function d; of a probability density ¢, which has
mean zero.

Example 1. Assume that P is normal distribution. Then also P,(.)x_p., and
Pa(.),-b(-) are normal distributions with e.g.
Px(z) = exp(i(Ax — b)'z - 52'Q,2),

where (A, b) = E(A(w), b(w)) and Q, =var(A(-)x—b(-)).
In this situation we can give a theorem which generalizes some discussions in
Section 3.
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Theorem 4.2. Let x and y be related by
Ax = Ay, (37
Q= Q,. (38)
Then F(x)= F(y). Here Q.= Q, means that Q. — Q, is positive semidefinite.

Proof. By the above considerations,

e expl-1(2/(Q. = Q)2 = (2
So <£(z) is the Fourier-transform of a density of a normal distribution with mean
zero and covariance matrix A= Q,— Q,.
When we want to apply Theorem 4.2 the problem is to find for a given x a y such
that conditions (37) and (38) are satisfied. In the special case when the rows of
(A(w), b(w)) are stochastically independent, then Q,— Q, is the diagonal matrix

Q. — Q_v = ((floiif_ﬁloii}j)sij)u:l ..... m

for any choice of x and y. Here again £=(7) and §,=0, i #j, §;=1. Hence, in
this case we have to choose y such that

NQXx=y'Qy fori=1,...,m,

subject to Ax = Ay.

In the general case denote by A(R) and A(R) the smallest and the greatest
eigenvalue of a symmetric matrix R, respectively. Then y is a solution of Q,= Q,
if and only if

So we have the problem

max A(Q,—Q,) subjectto Ax=Ay. (40)
ycR"
Because y = x is a.feasible point for problem (40) we have that for any solution y
of (40) also conditions (37), (38) are satisfied.
If 2(Q,)—A(Q,) =0 for a point y with Ax = Ay, then y is a solution of (37), (38).

Remark. The optimization problem (40) may be very complicated in practice.
However, we observe the following:

(A) The smallest eigenvalue A (Q, — Q,) of Qx— Q, can be computed numerically
by one of the very fast standard eigenvalue routines!

(B) In many important special cases A (Q, — Q,) can be given explicitly, as e.g.
in the following examples.
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(i) If (A(w), b(w)) has stochastically independent rows (including the important
special case m =1), then

A(Q— Q)= lEisnm x'Qix _)A"Qic}j-

Hence, in this case (40) turns out to be a convex programming problem!
(ii) If the covariance matrix Q of (A(w), b(w)) is a block-tridiagonal matrix, i.e.
if Q; =0 for |j—i|=2, and furthermore

Qi=0xn=""=Qun and Q,;=Qpn=:--= Qm-1.m,
then (cf. [3])

o
m+1

AMQ— Q)= (X'QuX—7'Quy)— (2 cos ) X' Q1% — 3" Q129
Furthermore, several sufficient conditions for the decisive inequality (39) can be
given, as e.g.:

(C) Let A=(n,)=Q,—Q, and denote by D, = D,(x, y), k=1, ..., m, the deter-
minant of the kx k submatrix A, =(7;);;-1,.« of A. Then (39) is implied by the
m inequalities

.....

D.(x, y)=0, k=1,...,m.

(D) According to Gersgorin’'s circle theorem, inequality (39) is implied also by
the m inequalities

m

Z |f’ouf_ﬁloyﬁ|sf’o,,x‘_ﬁlo,j, i= 1,2,. o, m

J#i

Example 2. Assume that the distribution P of (A(w), b(w)) is a stable distribution
of order s, given by its characteristic function

P(M) =exp(i tr ME'—} i ((vec M)Q(a)(vec M)’)"(‘”/Z), (41)

see [12]. Here vec M means the row vector (M,, M,,..., M,,) having m(n+1)
components and ‘tr’ denotes the trace of a matrix.
If the (n+1) x(n+1) blocks of Q(a) are designated by Q; (o), i,j=1,...,m,i.e.

Q(U) = (Qij(a))ij=l,...,ma
then define

Qi (o)= (floﬁ(a)f)u=l...._m-

Now the characteristic function of P4 .)x_s.) may be written in the form

Parxobi(2) =CXP(iZ'5A—% z (Z’Ox(a)z)"“””).
o=1
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—

Hence, if x and y are related by EX= =y, where = is a given fixed m x(n+1)
matrix, then

v———PA""‘”“’=exp(—% i, ((z'oxw)z)““’“—(z'o).<a>z>°(°’”>). (42)

PA(-)y—b(-) o=

By Corollary 4.2 we have this

Theorem 4.3a. Let the distribution P of (A(w), b(w)) be given by (41), where = is a
fixed mx(n+1) matrix and 1<a(o)<2, o=1,...,s. Furthermore, assume that
Q(o) is a fixed m(n+1) xm(n+1) positive semidefinite matrix such that Q;(o)=90
Joralli,j=1,... . mi#jando=1,...,s. If, for a given n-vector x, y is chosen such
that

Ox =@y (whereE =(0,80)),

(43)
XQi(a)=7'Qu(a)y fori=1,...,m o=1,...,s5,

Proof. In our case the right hand side of (42) is given by

exp(—% > 5 <<z?f'oi.-<a>f>°“'”2—(z%y"o,-ma)y‘)“("’“))

o=1i=1

= CXP(—é z

1i

el

|Zila(o)(()?Q-‘-‘((T))e)a(0)/2 - (ﬁ'Q,-,-((r)f))“("’/z))

1

=exP(_; ) (z?((f'oﬁw)f)““’“—(y"o.-.-<a>y‘>"“’”2>”"“’>>““”“)

=exp(—; ) (z'A(a)z)"“””)
= 11 exp(~4(z'A(e)2)""2),

where A(o) is the matrix
A(0) = ((FQiu(a)R)* 72 = (§' Qu(a) )™ %)/ *5y).

From (43) follows that A(o) is a positive semidefinite matrix foreach o=1,...,s.
So z- exp(—3(z'A(0)z)*”?) is the characteristic function of a probability distribu-
tion. Since 1 < a(o) =2, this distribution has mean zero. Hence, the right hand side
of (44) is the Fourier-transform of a convolution of s probability distributions all
having mean zero. This means that it is the characteristic function of a distribution
with mean zero. Now the assertion follows by Corollary 4.2.

Theorem 4.3b. Suppose that Q. (o) =q,(d)R(c), where q.(o)=0 and R(o) is an
m X m matrix. If n-vectors x, y are related such that

@x:@y’ qx(al)?qy(al)a (T:la'*'asa
then F(x)= F(y).
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Proof. In the present case the right hand side of (42) is given by

exp(—% ) ((qAa)z'R(a)z)““’”Z—(qAa)z'R(a)z)W’ﬂ))

=exp(—% 3 (z'A(a)z)““”“),

o=1
where the matrix A(o) is defined by
A((T) = (qx(a_)a(o)/Z_qy(a_)a(o)/Z)Z/a(o)R(a_)_

Now the assertion follows as in the first part of this theorem.
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The main purpose of this paper is to discuss numerical optimization procedures for problems
in which both the objective function and the constraints depend on distribution functions. The
objective function and constraints are assumed to be nonlinear and to have directional derivatives.
The proposed algorithm is based on duality relations between the linearized problem and some
special finite-dimensional minimax problem and is of the feasible-direction type. The resulting
minimax problem is solved using the cutting-plane technique.

Key words: Optimization in the Space of Probability Measures, Generalized Linear Program-
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1. Introduction

The purpose of this paper is to present numerical methods for solving optimization
problems in which both the objective function and the constraints depend on
distribution functions. Such problems occur in stochastic programming [8, 9], relia-
bility theory and various branches of operations research (surveyed in [15]), and
robust statistics [17], among others.

In what follows we discuss two examples of this type of problem in more detail.

Stochastic programming problems with partially-known distribution functions

Stochastic programming problems may be formulated quite generally as:
max E, F(x, y)=max I F(x,y)dH(y)
xeX xe X Y

where the x are controlled variables which belong to feasible set X and the y are
random parameters with distribution function H(y). It is usually assumed that the
distribution function H(y) is known. We obtain this information from some set of
observations y,, ..., y,. .. of the random parameters y, using statistical techniques.
However, in most cases this information is not sufficient to define a unique distribu-
tion; we estimate instead some statistical properties such as the mean or the variance
of the distribution H(y). In this case we can only be sure that H(y)e G where the
157
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set of distributions G is defined by

G={H:I q"(y)dH(y)so,i=l,—m},

and q'(y) are known functions. In this case it is natural to use the minimax approach
[5, 6,25] and instead of solving the original problem to consider:

mag pin | Fx) @b
where the inner problem is one of minimizing an integral functional over a set of
distribution functions (for details see [8, 9]). The other problem is to find lower
and/or upper bounds on the probability that a random variable with distribution
function H(y) takes values in a specified set Z when H(y) is not known exactly.
In this problem both the objective function and the constraints depend linearly on
the distribution function:

min L q°(y) dH (), (1
I g'(y)dH(y)=<0, i=T1,m, (2)
L dH(y) =1, (3)

where Y is a set in Euclidean space R". In this particular case ¢°(y) is the indicator
function of the set Z Some other applications of this approach to stochastic
programming problems have been studied in [1, 2, 5, 6, 25]. Some specific cases of
problem (1)-(3) arise in the moment theory and can be solved analytically [18, 21].
However, the success of analytical methods is limited even in the linear case (1)-(3)
and therefore numerical algorithms are necessary.

Design of optimal experiments

Much attention is paid in regression analysis to the following problem of parameter
estimation:
zi=
J

‘pj(yi)aj+§i’ i=1; Na

1~

where the z' are observations, the y’ are controlled variables whose value can be
chosen by the experimenter, the £ are (in the simplest case) identically distributed
independent random variables with zero mean, the ¢’ are known functions and the
a; are the parameters to be estimated. The problem of optimal experiment design
[11, 20, 24] is to choose the points y* in some optimal way, that is, to minimize some
characteristics of the variance matrix of the best linear estimate of parameters a;
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This matrix equals
D(d)=E[d-a)(d—-a)']= [; <p(y.-)<PT(y.-)] E(£)'=M 'E(£',

where d=M"'Y Y, o(y)z' is the best linear estimate, M is called information
matrix, ¢(y)=(¢'(y),..., ¢'(»)) and the superscript T indicates transposition. In
general, the probability measure H(y) is considered instead of the set of points y';
these points are chosen later on the basis of this measure. The information matrix
M(H) then becomes:

M(H)= j e(»)e(y)" dH(y)

where ¢(y)=(¢'(»),..., ¢'(y)) and the superscript T indicates transposition. The
problem is to minimize some function ¥(M), which may be the determinant of
M, the trace of M ™' or some other characteristics. Very often it is desirable to
impose additional constraints on the measure H(y), such as bounds on its covariance
matrix:

L yyTdH(y)= Q.

Once again we have a problem in which both the objective function and the
constraints depend on a distribution function; in this particular case the objective
function is nonlinear.

Numerical methods for solving such problems began to appear in the middle of
the last decade. One approach is to approximate set Y by a sequence of finite
subsets Y, Y,, ..., Y,,..., where

Y=(ys. ¥9)
This sequence of sets has the property that
sopmip Iy =7+
as s tends to infinity, i.e., the greatest distance between points in set Y and set Y,

tends to zero. Let G, be the set of all distribution functions which correspond to
probability measures with support Y;:

GS={(y;’pl)""’(y;‘1’pm)’ ‘Z D= lapi?()}.
i=1

If we include one more constraint,
HeG,, (4)

problem (1)-(4) becomes a finite-dimensional linear programming problem; this
raises the possibility of approximating the original problem (1)-(3) by a sequence
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of finite-dimensional problems (1)-(4). The dual simplex method is then applied
to this sequence in such a way that the solution of problem number s becomes the
initial approximation to the solution of problem number s + 1. This idea was explored
in[15, 16], where it was also used to solve nonlinear and minimax problems involving
distribution functions. However, this approach can be used only for sets Y of small
dimension (in fact not exceeding three) due to the high dimensionality of the
associated linear programming problems.

Another possible way of solving (1)-(3) is based on the duality relations between
problem (1)-(3) and some finite-dimensional minimax problem which may be solved
using convex programming methods. First proposed in [8], this idea was extended
in [9, 10] using generalized linear programming techniques [3, 23].

The purpose of this paper is to use this last approach to develop solution techniques
for nonlinear problems of the kind:

min ¥°(H) (5)
subject to
HeG (6)

where G is defined by:

G={H: Wi(H)SO,i=l,m;j dH(y)=l}. @)

We propose an analogue of the linearization (Frank-Wolfe) method in which we
are required to solve subproblems of type (1)-(3). It appears that it is not necessary
to solve these subproblems precisely: duality relations make it possible to utilize
rough solutions of (1)-(3) so that only a limited number of calculations are needed
at each iteration. The case in which the constraints are linear, i.e., of type (2), was
considered in [14].

2. Characterization of optimal distributions

We shalt use the same letter, say H, to denote both the distribution function and
the underlying probability measure, where this will not cause confusion. For a given
probability measure. H we shall denote by B* (H) the collection of all closed subsets
A of Y such that [, dH(y) =1, and by supp H the support set of H, i.e.,

supp H= () A.

AeB*

Let us first impose some conditions on the functionals under consideration. What
we actually need is some analogue of directional differentiability. Suppose that

V' (H +a(H,~H))=Y¥'(H)+a I g'(y, H\) d(Hy(y)~ Hi(y)) + 7'(e, H,, H,)
(8)
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for i=0, m and all H,, H,e G(Y), where
(a, H, H,)/Ja>0 asa->0
and
G(Y)={H:supp Hc Y}.

In what follows we assume that functions f(y, H) are such that expression (8) is
meaningful.

The following simple conditions are necessary, and in the convex case also
sufficient, for distribution H to be a solution of problem (5)-(7):

Lemma 1. Suppose that W°(H*)< W(H) for some H*€ G and all H € G and the
following conditions are satisfied :

1. fi(y, H), i=0, m are bounded on Y for all He G(Y).

2. For %a, H,, H,) from (8) we have:

|To(ay Hl’ HZ)lsi‘(a)’ Osasl’

and 7(a)/a~>0 as a 0.
3. ¥i(H), i=1, m are convex, i.e.,

Yi(aH,+(1—a)H,)<a¥'(H)+(1-a)¥'(H,)
JorH,, Hye G(Y) and 0< a < 1. Also, there exists an He Gsuchthat Wi(H)< -0 <

0 fori=1, m.
Then

2*= inf nyo(y, H*)dH(y) = ny°(y, H*) dH*(y), 9)
where

G*={Ht ny‘(y, H*)dH(y)=< ny‘(y, H*)dH*(y),I dH(y)=1,ie 10},

1°={i: ¥ (H*)=0)}.

If, additionally, W°(H) is convex and the distribution H* satisfies (9) then H* is the
solution of problem (5)-(7).

Proof. The proof is of the traditional type for necessary conditions. Note that

< | f°(y, H*)dH*(y)
JY
is always true. Suppose, arguing by contradiction, that there exists a y > 0 such that

.

*—| f%y, H*) dH*(y)<-2y.

JY
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Then there exists an H € G* such that
I Sy, H*) dﬁ(y)—j [0y, H*) dH*(y) <-7.
Y Y
Now take 7(a, H*, H) = max |7'(a, H*, H)| and consider distributions H,,:

H,=aH+(1—-a)H*.

Take a such that 7(a, H*, H)/o <1 and

a. 2(}_7((1, H*,ﬁ))Ha+<7(a, H*, ﬁ))ﬁ

a a
Then for i=1, m we have
- H* H
Wl(Ha)s(l_T(a’ » )
a

s(] _M*’_I;_))[lpi(l_]*)
g

)tp"(H,,)—-r(a, H* H)

+a I fi(y, H*) d(H — H*)+ 7'(a, H*, H)]— 7(a, H*, H)

< (1 —T—(a—’l-j:’—Hl)l:‘P"(H*)+a j fi(y, H*)d(H - H*)].

Now we have ¥'(H,)=<0, i=1,m, for sufficiently small a because
fyfi(y, H*) d(H— H*)<0 for ie I’ and

GI fi(y, H*)d(H - H*)<Ka, K <,
Y

for i€ I°. Therefore H, € G for a <a, @>0. We shall now estimate the value of
wO(H_). Assumption 2 implies for sufficiently small « and some C > 0:

7(a, H*,ﬁ)j 7(a, H*, 1'7))
o

vO(H,)< V°H,)+ 10, Ha)d(ﬁ—Ha)+i<

a

H* H
slP"(Ha)+C————T(a’  H)

- H* H
< YUH*)—ay+1%a, H*, H)+Cz(a—’—).

This last inequality gives W°(H,)< W°(H*) when « is sufficiently small, which
contradicts the initial assumption and proves the first part of the lemma.

Now suppose that ¥°(H) is convex and that (9) is satisfied for some distribution
H*, but that there exists an H € G such that ¥°(H*)— ¥°(H)= vy =0. The function
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F(a)=Y°(H*+a(H - H*)) is convex for 0<a =<1 and.F,(a) exists and equals
Fa(a)=j £y, H*+ a(H — H*)) d(H — H*).
Y

This gives

nyo(y, H*) dﬁ(y)—jyf°(y, H*)dH*(y) = F,(0)(1-0)< F(1) - F(0) < —.

which, taken together with the fact that H € G*, contradicts the assumption that
H* satisfies (9). This completes the proof.

Lemma | implies that to check the necessary conditions for problem (5)-(7) at
point H* requires solution of a linear problem of the form (1)-(3), where ¢°(y) =
f'(y, H*) and ¢'(y) =f*(y, H*) — ¢, ¢; = [y f%(y, H*) dH*(y). The solution of prob-
lem (1)-(3) can be characterized through the duality relations summarized in the
following theorem, which was proved in [10].

Theorem 1. Suppose that the following assumptions are satisfied:
(a) Set Y is compact and functions q'(y), i =0, m, continuous on Y.
(b) There exists a distribution H such that

I qg'(y)dA(y)<0, i=T m.

Then
1. A solution of problem (1)-(3) exists and the optimal value of | ¢°(y) dH(y) is
equal to the optimal value of the following minimax problem:

max ¢(u), ¢(u)=min (qo(y)+ ) u.-qi(y))
wcU* yeY i=1
where U" ={u: ue R™, u; = 0}.
2. For any solution H* of problem (1)-(3) there exists a u®*e U™ such that
@(u*)=max ¢(u),  supp H*c Y*(u*)
ueU®

where
Y*(u*) = {y: ye Y, ¢(u*)=4"(y)+ _i ui—"q‘(y)}-

3. There exists a finiteset Y,={y',...,y'}, t<m+1, and a solution H* of problem
(1)-(3) such that supp H* = Y, i.e., the probability measure H* can be expressed as
a collection of t< m+1 pairs {(y', p\),-.., (y", B.)}.

The probabilities p,, . . . , p, are solutions of the following linear programming problem:

t
min _; pa’(y"),
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-gl P-qj(y')so, J=l’ m,

Combining Theorem 1 and Lemma 1 we obtain the following result:

Theorem 2. Suppose that W°(H*)< W°(H) for all H € G and that the conditions of
Lemma 1 are satisfied. We make the additional assumptions:
(a) Set Y R" is compact.

(b) Functions f'(y, H*), i =0, m are continuous on Y.

Then
1. We have
I f°(y, H*) dH*(y) = max ¢(u)
Y uc U™
where

¢(u) = min (f°<y, HY+ T s, H*)) - 3, e
6= nyi(y, H*)dH*(y).

2. There exists a u*, (u*)=max,.y* ¢(u), u*c U" such that
supp H*c Y*(u*)

where
Y*(u*) = {y: yeY, e(u*)=f(y, H*)+ 2z, uwif'(y) - L, u"i‘c.-}.

The situation that arises when the constraints are linear deserves special attention.
Suppose that the feasible set G is defined in the following way:

G={H: j q' ) dH(y)=0fori=m,j q'(y) dH(y)=<0fori=m,, m}

(10)
and we are trying to solve the problem miny.c Y°(H).

Theorem 2a. Suppose that W°(H*)< W°(H) for all H € G and the following assump-
tions are satisfied:

(a) Set Y is compact and functions f°(y, H*), q'(y), i =1, m are continuous on Y.
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(b) Oecint co Z where

Z={z:z2=(q'(y),...,q™(¥)), ye Y}

Then
1. We have
I Sy, H*) dH*(y) = max ¢(u)
Y uelO*
where

¢(u) =min (f"(y, H*Hé. u,-q‘(y)),
U*={u:ueR™ u,=0fori=m,, m}.

2. There exists a u*, ¢(u*) =max, g+ ¢(u), u*e U* such that
supp H*c Y*(u*)

where
Y*(u*) = {y: ye Y, o) =10, H)+ -g. u’!‘qi(y)}-

This last theorem is considered in more detail in [14].

3. Linearization method

It is now possible to construct a method which finds points satisfying the necessary
conditions of Lemma 1 or, in the convex case, global minima. This method is of
the linearization type [13].

Algorithm 1

1. Begin with an initial distribution H'.

2. Suppose we have an approximate solution H® before starting iteration number
s. Then at the sth iteration we do the following:

(i) Find a distribution H* such that

I £y, H*) dﬁ‘(y)s zZ,+ &

where

zx=igfj f°(y, H*) dH(y) (11)
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subject to constraints

11"(H")+j fi(y, H)d(H- H*)=<0, i=1,m, (12)
Y

and &, >0 is the accuracy with which problem (11)-(12) is to be solved. It is not
necessary to know the value of &, only that £,>0 as s> 0.

(ii) Choose a stepsize p,: 0<p,<1 and calculate a new approximation to the
optimal solution:

H*"'=(1-p,)H’+p,H". (13)

Then go to step (i).

Remark. The stepsize can be chosen according to a number of different rules:

(a) ps >0, §0p5=00. (14)

s

In the case where the constraints are linear (see (2)) and the initial point is a member
of G, the following two line-search techniques could be used:

(b)  p, =argmin Yo(H +a(H* - H®)). (15)

(¢) Take a sequence a,, Where

a,»0, ¥ a,=©
s=0
and
p, =min{arg mi{)l Y(H*+a(H’ - H%)), a,}. (16)

If the constraints are nonlinear analogous methods could be used.
We shall now prove the convergence of the algorithm given above.

Theorem 3. Suppose that the following statements are true:
1. Functions W'(H), i=0, m satisfy (8) where

|7'(a, H;, H))|< 7fl@)<o, 0<a<l, #Ha)/la>0 asa-0,

and are convex.
2. There exists a distribution H such that ¥'/(H)< - <0 forl<sism
3. |fi(y, H)|<K <o forye Y, He G(Y).
4. £,-0.
5. p,20,p,20,L7 o p, = 0.
Then lim,_ ., Y’ (H*)=infy.; Y°(H) and Tim,_ ., ¥'(H’)<0 for Isis<m.

Proof. 1. Let H be an arbitrary distribution such that ¥'(H)=<0 forall I<i<m.
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If we now consider the convex function F'(a)= ¥'(H’+a(H — H*)) we have

Fi(a)) = F'(as) < Fo(a;)(a;— ay)
=(a,—a,) nyi(y, H’+a,(H-H*)d(H-H°)
which, after setting a, =0, a, = 1, gives:
W‘(H’)+ny‘(y, HYd(H-H®)< ¥'(H).

Therefore all H € G satisfy constraints (12), problem (11)-(12) always has a solution
and the algorithm is defined correctly.

2. We shall now prove that lim,_ ., ¥ (H*) <0 for all 1 <i< m. From (8) we have
the estimate

VI (H*Y=¥'(H +p,(H’ - H"))
< V¥'(H’)+p, I ’f"(y, H*)d(H*-H’)+7(p,)

<(1=p) ¥'(H*)+7(p,).
Since 7(p,)/p, > 0 we have for any y>0 an § such that
VI(H*Y<(1-p,/2)¥'(H*) ifs>5and ¥'(H')=y,
YI(H ) <y(1+p,/2) if s>5and ¥'(H’) <.

This and the fact that [[7 (1—p,/2)=0 since Y iy p;=cc finally show that
max{0, ¥'(H’*)}->0.
3. Consider

Ys :I [y, HYAH (y)—z,  7.=¥Y°(H")- Jnf V°(H),
Y €
where z, is defined in (11). We shall now derive some useful relations between v,
and 7, Take arbitrary £ >0 and H. € G such that ¥°(H,)—infy.; Y°(H)<e and

consider the convex function F’a)= ¥ H*+a(H, — H*}).
Just as in the first part of the proof we obtain

—vfj S H)d(H, —H*)< ¥°(H,) - Y(H’)<—y,+¢
Y

which gives vy, = ¥, because ¢ is an arbitrary positive number. Thus, for any sequence
s, such that max{0, y,,} > 0 we have

max{0, lI'O(H’k)—Filnf('; Yo (H)}»0

and vy, > & whenever y, > é.
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4. Let us now prove that y, -0, which will complete the proof of the thecorem.
We begin with the following estimate:

VOH™") =¥ (H +p,(H -H")
< ¥°(H’)+p, I SOy, H?) d(H* - H) +7(p,)

s‘I,O(I-I’-)_ps(’Yx_es_i(ps)) (17)

where 7(p,) > 0as p,—» 0; £, 0, due to assumptions | and 4 of the theorem. Suppose
now that there exists an § such that for s> 3§

Ys> £+ a+ T(p)
where a > 0. Now from (17) we get:

YOH )< Y°(H*) - ap,. (18)
Summing (18) from s> 5 to k we obtain:

VO HY) < ¥(H’)—a ’fil o

Observe now that | W°(H)| < K, forsome K, <coand all H € G(Y) from assumptions
1 and 3 of the theorem. This contradicts the previous inequality because ¥ ;2 p; = .
Therefore a subsequence n; exists such that

max{o’ Y, — enk - i(pm()}_) 0.

From part 3 of the proof we have max{0, ¥’ (H™)~infy. s ¥°(H)}->0. Now
suppose that there is a subsequence m, such that 7y,, >2a >0 for some a > 0. We
may assume without loss of generality that

nk<mk<nk+l<mk+l<- c .
Let us take a sequence /, such that

mn<h<smg, viza forl,<is=mg, Vi1 < a.

We deduce from (17) that max{0, ¥°(H**')— ¥°(H"*)}> 0 as s> c© and therefore
.. exists, which satisfies previous inequalities and 7y, <2a for k sufficiently large.
From part 3 of the proof this will give y,= a for I, <i=< m,, which together with
(17) gives

VOH" < Yo (H")—pi(a—e&~7(p))< Y(H')

for I, <i< m, and sufficiently large k. Combining this with y, <2a gives ym, <2a,
which contradicts the initial assumption. Therefore max{0, y,} - 0.

Let us now take 4, = max{0, max, ., ¥'(H®)} and H’=H’+(4,/0)(H - H").
The convexity of functions ¥, i=T, m and the fact that ¥'(H)<—c imply that
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Wi(H%)<0, 1 <i<m. Thus H® satisfies all constraints (12), so that

2KA, _(A,)
-1 el
o o

and y,- 0 since 4, - 0. This completes the proof.

7, = | WOH*) - WO(H*)|= -

Remark. We did not come to any conclusion about the convergence of distributions
H’ because we did not introduce any topology on the set G(Y). Let us now do
this using weak™ convergence topology, which by definition is the weakest topology
in the space of all probability measures such that the map

H*I g(y)dH(y)

is continuous wherever g(y) is bounded and continuous. Note that in this topology
the set of all probability measures with compact support Y is compact. If we assume
that ¥/(H) is continuous in this topology then we can deduce the existence of an
H* such that

1] Ky ¢ 1]
WO(H*)= inf V(H).

Under the assumptions of the theorem all of the limit distributions of the sequence
H’® minimize ¥°(H).

The choice of the stepsize using (15), (16) when the constraints are linear is
discussed in more detail in [14], which also gives some results for nonconvex
functions W°(H). In order to obtain a practical method from the general framework
described in this section, we have to specify ways of performing step 2(i). This is
the purpose of the next section.

4. Solving the linear subproblem using cutting-plane techniques

We shall now consider a method for solving linear subproblem (9) which reduces
step 2(i) of algorithm 1 to the solution of one finite-dimensional linear programming
problem. This method is based on generalized linear programming [3, 23], cutting-
plane algorithms [19], and has much in common with the method proposed in [10]
for solution of linear problem (1)-(3). The method is based on the duality relations
for problem (1)-(3), which were studied in [10].

Let us assume that the assumptions of Theorems 1 and 3 are satisfied. Then,
under the assumptions of Theorem 1, the optimal value z; of problem (11)-(12)
equals the optimal value of the finite-dimensional minimax problem:

z,=max ¢’(u)

+
ue U
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where

¢*(4) =mip (f°<y, H*)+ ﬁ ufi(y, H’)) - § ubi,

b= I fi(y, H)dH’ — W' (H").

Suppose that distribution H’ is fixed. Then it is possible to solve the problem
max ¢’ (u) (19)

+
uclU

using the following method.
Algorithm 2

1. First select m+1 points y', y°,...,y™""' and set v=m+ 1. These points are
used to approximate function ¢’(u) by the function

¢’ (u,0)= 121}2,, (fo(yj, H)+ gl “Lfi(yj, Hr)) _ gl ubi.

The initial approximation u° to the solution of problem (19) maximizes the function
¢’(u,0):
°=arg max ¢’(u, 0)
ue U
so that we have to solve a linear programming problem. The points y',..., y™"'
are selected in such a way that the solution of this problem exists and bounded.
2. Suppose that before beginning iteration number k we have » points
y', ¥*, ..., y" and the current estimate of the minimum u*“~". Then iteration number
k involves the following stages:
(i) Take v=v+1

(ii) Find
y" =arg min (fo(y, H)+ ¥ ui7'f'(y, H’)) (20)
ycyY i=1
(iii) Calculate the next approximation to the optimal solution u*:
u“=arg max ¢°(u, k) @n

uelU .

where ¢°(u, k) is the current approximation of function ¢’(u):
¢*(u, k) = min (f°(y’;H’)+ ) u-J"(ﬂ,H’)) - 3 ubl
=j=v i—=1 i=1

It should be realized that this is only a general framework for solution—much
has already been done to avoid increasing the number of points y’ stored and to
implement approximate solutions of problem (20) (for details see [7, 10]). The
advantage of this method is that it becomes possible to obtain approximate solutions
of the initial problem (9) during the solution of problem (19). These approximations
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are discrete distributions containing no more than m+ 1 points with positive prob-
abilities:

(yla ﬁl)a (yza 152)’ ] (ym-H! ﬁM+l)

where the p; are nonzero solutions of the following linear programming problem:

min T pf, H),
i=1

and the y' are the corresponding points. Note that the above problem is actually
dual to the linear program equivalent to (21), and therefore both problems can be
solved simultaneously.

Some other ways of solving minimax problems of the type (19) were considered
in [4,12].

What we actually need when implementing algorithm 1 is not a precise solution
of problem (11)-(12) at each step, but rather to track its changing extreme value.
The approximate solutions of (11)-(12) may be very rough for the first few iterations,
gradually increasing in accuracy. It appears that algorithm 2 can be used to follow
the extreme value by tracking the changing optimal solution of dual problem (19).
It is only necessary to make one iteration of algorithm 2 for each iteration of
algorithm 1.

In the remainder of this section we shall simplify the notation, writing

SO HY =), SO, H)=b=1iy).

We now want an algorithm which allows us to follow the optimal solution of problem
(19) as the current distribution H* changes.

Algorithm 2a
1. First select m+1 points y', y%,...,y™"" and set v =m+ 1. The inital approxi-
mation u° to the solution of problem (19) maximizes the function ¢°(u, 0):

u’:-arg max ¢°(u,0),  ¢°(4,0)= min (fé’(y")+ ) u.-fé(y"))-
ue =jsv i=1
2. Suppose that before beginning iteration number s we have v points y',
y%,...,»" and the current estimate of the minimum u’ '. Then iteration number s
involves the following stages:
(i) Take v=v+1.
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(ii) Find
0 s i
y" =argmin (fs M+ X ui 'f_i(y))-
yeyYy i=1
(iii) Calculate the next approximation to the optimal solution u’:
u’=argmax ¢’(u,5),  ¢°(u,5)= min (f?(y’)+ )X u-Ji(y’))
ueU" isj=y i=1
The following theorem proves the convergence of this method.
Theorem 4. Assume that

(a) Set Y is compact.
(b) Functions fi(y), i=0, m are uniformly on s continuous for ye Y and

max |f5.1(y) = f:(»)]| >0
as s - oo, In addition |fi(y)| <K <o for 0<i<m,yeY.

(c) The sequence u’ is bounded.
Then max, .+ ¢ ' (u)— @*(u’) >0, where

o' =mip (£20)+ £ wsi0).

Proof. Suppose, arguing by contradiction, that the theorem is not true and that
there exists an a >0 and a sequence s, such that

max *(u)— @ (u)>a.

ue U

From the boundedness of sequence u*® and assumptions (a) and (b) we may assume
without loss of generality that

wesu¥,  fluti—ute]| 50, @M(u*)> ¥, yiosyE, fLOM) S
where v, =s,+1+m+1.
We shall now estimate the difference

max (p’kﬂ(u) — ‘psk+l(u’k+l)‘
ue Ut

From assumption (b) and definition of the function ¢*(u) we have:

lo*(uy) — @° ()| < || u, - “2||T;1€a"}|f.i()’)| < K|lu,— u,
for all u,, u,€ U". This gives

e (U= @k (u'h) — K || u' — u’v|. (22)
We also know that ¢’<(u*)-> ¢*, which together with assumption (b) implies that

e(u) > o* and @ (u')-> p*.
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Hence
n(u) = ™ (u')—o(l).
We have assumed that

ryneaglfiﬂ(y)—fi(y)l*o

as s » 00 and this gives
@ (u')= % (u%)~o(1).

According to the step (ii) of the algorithm we have
W W) = f2 (") + T i (™)
which gives from assumption (b):

PR U2 fA0™)+ E ubfi (™) o).

173

(23)

(24)

Taking into account uniform with respect to s continuity of f3(y) and our previous

assumption y*« > y*, f1 (y*)- f,we obtain:
@ Uty = [0 (y)+ L oulfe, . (y7)—o(1)
1=1

where v, = s+ 1+ m+ . From estimate (25) we obtain:
o ™)+ T urfy, (v
i=1

= min I:f,"m(yf)fiu,’*ﬂ..,()’j)]

15jsy, —1

= [f?k4,<yf>+zu:mf;;.,(yf)]—llu‘*—u’wn max
i=1

Isj<yee—1

>max _min [fs‘l.,.(y’)+2uJi.,.(y’)]—Kllu’*—u‘“'ll
i=1

ueU™ VSimvie -1

= max ¢ i(u)— K| u'—ue|.
ueU”

Combining (22)-(26) gives:

max @’ (u) ~ @’ i(u) < 2K [|u' — u' | +o(1) < o(1).

uell

This contradicts the initial assumption
max ¢ (u)—¢’(u’)>a>0
ueU™

and thus completes the proof.

YEY I 1<m

(25)

[foen )]

(26)
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There are various ways to ensure the boundedness of sequence u® which depend
on the nature of the functions f,. Let us now turn again to our initial problem,
assuming that the constraints are linear (see (2)). In this case fi(y)=q'(y), i=1, m.
Suppose also that we have a distribution H such that

I qg'(y)dH(y)<0, i=1, m. (27)

In this case it is possible to select the initial m + 1 points in a way that will guarantee
the desired boundedness. Let us consider the following problem:

m}}n i, (28)
ny(y)dH(y)sﬂ, j=lm (29)
I dH(y)=1. (30)

According to Theorem 1 there exist m+1 points 7', 7, ..., ™" such that one of
the solutions of (28)-(30) is a measure with support consisting of points 7' with
probabilities which are solutions of the following linear programming problem:

min y, (31)
P

m+1 . .

Z plqj()_)')s#’a j:lama (32)
i=1

m+1 _

Y p=1, p=0, i=1, m+1. (33)
i=1

According to (27) the optimal solution u* of this problem is negative. The problem
dual to (31)-(33) has the form:

max Upit1s (34)
ueU"*

L uq (7)) =t =0, i=T,m+1, (35)
j=1

Z uj= l’ (36)

with solution u¥ ., <0. This implies that there exists a y > 0 such that forany ue U™*,
|ul| =1 there exists an i€ {1,..., m+1} for which

) “jqj()_’ N<-y.
j=1

We shall prove that, under the assumptions of Theorem 4, sequence u’ will be
bounded if 7', i = 1, m are taken as initial points. Take any point @ € U* and estimate



A. Gaivoronski / Nonlinear optimization with respect to probability measures 175

the value of ¢*(u, s) at this point. Select i < m+1 such that

£ a9'Gh<-al,
which will always be possible. Then

@’ (d, 5)<f7(7)—vllal. (37
According to assumption (b) of the theorem there exists a constant K such that
|£2(»)| =< K. Combining this with (37) yields

e'(a,5)<K—vyla
and

¢°(0,s)=—-K.
These two inequalities lead to

®’(0,5)— @’ (3, s) = y|lu| - 2K,

which implies that the norm of any point u* which maximizes ¢*(u, s) is bounded,
i.e.,
=2
Y
where constants K and y do not depend on s. This proves that sequence u’ is
bounded, because u* maximizes ¢’(u, s).

It is not necessary to solve problem (28)-(30) precisely—in fact, any distribution
satisfying (27) with support consisting of m+ 1 points would do. If the constraints
are nonlinear it is not possible to guarantee the boundedness of the sequence u’ by
choosing initial points. In the case when 11"(1-7) <0 for all 1 <i=< m and for some
A, and functions Wi(H) <0 are convex for all 1 <i=< m, one possible strategy is to
update the set of m+1 initial points periodically so that (27) is always satisfied for
some distribution with the initial points as support.

5. Version of algorithm 1 based on generalized linear programming techniques

We shall now describe an algorithm based on the results obtained in Sections 3
and 4. It is assumed that the conditions of Theorem 3 are met.

Algorithm 1a
1. We begin by choosing an initial distribution H' such that the problem

max mip [fo(y, HY+ §. uf(y, Hl)]

ueU* ¥€

has a solution. This may be done by applying algorithm 2 to the problem (28)-(30)
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until a distribution is obtained which satisfies (27). Under the assumptions of
Theorem 3 this will occur in a finite number of steps. If the constraints are linear,
such a choice will also guarantee the boundedness of the sequence u’. The initial
step of algorithm la therefore involves the following stages:

(i) Take vo=m+1, where v, is the number of points in distribution H'.

(ii) Obtain the initial distribution H', where

H'={(" p}), G5 pD), -, ™, prst)}s

by applying algorithm 2 to problem (28)-(30). This algorithm will produce a sequence
of distributions H* which, after substitution in problem (28)-(30), yields the corre-
sponding values of u,. Take as H' the first H* with pu, <0.

(iii) Take u'e U™* as an initial point for solution of the dual problem.

2. Suppose that before beginning iteration number s we have the current approxi-
mation H® to the optimal solution, which consists of v, points:

H ={(y", pD),-.., (b pL)}
and point u°. Iteration number s then involves the following operations, where steps
(i)-(iii) correspond to steps (1)-(iii) of algorithm 2a and step (i) of algorithm 1,
and step (iv) corresponds to step (ii) of algorithm 1:
(i) Take v, ;=vr,+1.
(i) Find a new point y"s+1, where

yher = arg 521{} I:fo(y’ H)+ gl uff‘(y, HS)] (3%)

(iii) Solve the following linear programming problem:

Vs+1

min 3 p.f°(, H), (39)
i=1

Z pl'fj(yi! HS)SOa j::l,m, (40)
i=1

ilpl'=la pi;oa i=layx+l (41)
l=1 . . -

together with its dual:

max U, ; (42)

SO HD+ Z uf' (Y, HY) ~ Uy 20, j=1Lu,, (43)

u;=0, i=1,m.

This will give us the next approximation to the solution of the dual problem, u**’,
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and also a vector p**':

=s+1

P =(p LB

which will have no more than m+ 1 nonzero elements, say (pi’ ', ..., pi..,)-

(iv) Take the family of distributions
H ' (a) ={(y', pi" (@), ..., (»"+, pill(a))}

where

Pi

=s5+1

1) {p.f(l—a), ifik forj=T, m+1,
a =
pi}(l~—a)+ap,(j , otherwise.

Then take
H*"'=H"""(p;) where ¥ p,=c0, p,>0
s=0
and go to step 2(i).

Remark 1. If the constraints are linear step (iv) can be performed in the following
way [14]:
Set
a, =arg 0rsnaig1 YUH"  (a)).

Take p; = min{a;, 8,}, where
B,->0, Y Bi=co.
i=1

Then take
H:+1 — H:+l(ps)

and go to step 2(i).

Remark 2. It is not necessary to solve nonlinear programming problem (38) with
great accuracy. All we neéd is a point y”s+! such that

im {007 10+ £ i

—-irli‘r} [fo(y, H%+ gl uif'(y, H‘)]} =0.

It is also possible to avoid increases in the dimension of linear programming problem
(39)-(41) by considering only points y' which satisfy some additional inequality
(see [10]).
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Remark 3. Algorithm la adds one additional point to the current approximation
H’ of the optimal solution at each iteration, which may not be convenient if we
have restrictions on the amount of memory available for storing the distribution.
In this case measures should be taken to avoid this expansion, perhaps at the expense
of accuracy. Some possible ways of achieving this are discussed below.

1. Suppose we want to find approximation, which consists of N points, to the
optimal solution of (5)-(7). (It is assumed that some additional memory is available
for storing N further points.) We then proceed as follows:

(i) Run algorithm la until the current distribution H* contains 2N points.
Arrange these points in order of decreasing probabilities:

HS = {(ylia pl.)a ey (yIZN! plzN)}-
(ii) Start algorithm la again from the distribution

H' ={(" ph),..., N, pN)}

(iii) Continue this process until the new N-point distribution no longer has a
better value of W°(H) than the previous one.
2. Suppose that we want to find an approximation to the optimal solution using
at most N points.
(i) Run algorithm la until the current distribution contains N points. Let
p=maX;.;<n pi. Divide the set {I,..., N} into two subsets:

I, ={i: pi= xp}, L={i: p; <xp}

where y >0 should be chosen before the run.
(ii) Start algorithm la again from distribution H':

D PN i _}
" {(y’p')’ el p 1=, p;)

(iii) Continue this process for as long as the value of ¥°(H) in consecutive
N-point distributions inrproves and set I, is not empty.

3. Another possibility is to use approximation techniques to fit discrete distribu-
tions by continuous ones. For example, splines can be used when the dimensions
are small or when the distributions H’ have independent components. This approach
needs further study.

The convergence of algorithm la follows directly from Theorems 3 and 4. The
next result may be derived from these theorems.

Theorem 5. Let the following conditions be satisfied :
1. Y is a compact set.
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2. Functions ¥'(H), i=0, m satisfy (8) where
(a, H,, H))<F(a)<o, O0<a<l], fa)/a>0 asa-0.

3. Functions f'(y, H) are uniformly continuous with respecttoy € Y over He G(Y);
If'(y, H)|< K <o forye Y, He G(Y).

4. There exists a distribution H such that ¥ (H)< -0 <0 forl=i=m

5. Sequence u’ is bounded.
Then

lim [ ¥°(H*) - min ¥°(H)]=0.

If the constraints are linear then assumption 5 is satisfied automatically for algorithm
la.

It is interesting to compare this algorithm with the methods for solving stochastic
problems with recourse recently proposed by Nazareth and Wets [22]. Although
applied to quite different problems, they both use generalized linear programming
techniques and on each iteration require solution of one linear programming problem
and one nonlinear optimization problem.

6. Some generalizations

Another way of dealing with problem (5)-(7) is to apply the dual approach
directly. When the functions ¥'(H), i =0, m are convex and the constraints satisfy
the Slater condition, (5)-(7) is equivalent (under certain assumptions) to the problem

. 0 i
Tg(})( min I:‘I’ (H)+.-§'1 R (H)] (44)
where linear constraints of type (2) may be included in the set G. If the functions
¥'(H) are directionally differentiable (see (8)) then the following algorithm can
be used.

1. Take initial points v' and H' where H' is selected as in algorithm la.

2. At step s compute

=0+ B, ¥ (H")
and take
.?+l

v;"' =max{0, d;}.

Then perform one step of algorithm la.
Problem (44) is a particular case of the minimax problem

minmax ¥(v, H
n max (v, H),

ve
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where V< R", G is defined by (7) or (10) and function ¥(v, H) has directional
derivatives of type (8) with respect to H. In this case algorithm la can be modified
to include some kind of gradient descent with respect to variables v at the same
time as the inner problem is being solved. Problems of this kind occur in optimal
experiment design when the underlying regression problem depends nonlinearly on
the parameters to be estimated. More general minimax problems arise when finding
the solution of a game problem with mixed strategies:

min max Y(P, H)

PcQ HeG

where sets Q and G are both defined analogously to G in (7) and the function ¥
possesses some regularity properties in addition to directional differentiability.
In this case the analogue of algorithm la will include two cutting plane processes.
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