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Introduction 

So far, we have studied the problem of linear programming in general. In 
this section, we will examine specific types of linear programming problems. In 
this section, we first examined the general model of minimum cost flow, and 
then we will examine the specific model of flow in the network, here the 
transportation problem. 

Minumum cost flow problem 

In the problem of minimum cost flow, we are looking for homogeneous 
product distribution from the factory (origin) to the sales market (destination). 
Suppose the number of products manufactored in each factory and the 
number of required products are known. Also, it is not necessary to send the 
products directly to the destinations, but it is possible to send it to the 
distribution centers through an intermediate point. In addition, transportation 
lines are limited in terms of line capacity. The goal in this issue is to minimize 
the cost of transporting products. 

Consider a numerical example of the minimum cost flow problem in the 
figure below. Nodes are represented by numbered circles and arcs by arrows. 
Arcs are directional. For example, materials can be sent from node 1 to node 2, 
but this is not possible from node 2 to node 1. We denote the arc from node i 
to node j as i-j. 

 

In the above figure, each arc is given a capacity and cost per unit of 
transportation, which is given next to each arc. For example, in arc (2-4), the 
flow can be from 0 to 4 units, and the cost of each unit passing through this arc 
is $2. The symbol   means unlimited capacity. Finally, the numbers in 
parentheses next to the nodes show the amount of supply and demand. In this 
figure, node 1 is the origin and the amount of supply is equal to 20 units, and 
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nodes 4 and 5 are the destinations that need 5 and 15 units, and it is the 
demand that is indicated by the sign -. 

In the minimum cost flow problem, the goal is to find the flow pattern 
with minimum cost. To transform the problem into linear programming, 
suppose: 

xij: is the number of units transported from node i to node j using arc i-j. 

The linear programming model of minimum cost flow is presented as 
follows. 

12 13 23 24 25 34 35 45 53
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12 23 24 25

13 23 34 35 53

24 34 45

25 35 45 53

12 13 23 24 25 34 35 45
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       
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    

     

    

     

          53 4.x   

Equations 1 to 5 are the flow balance equations in the network. For 
example, the balance flow equation at node 1 is as follows. 

12 13 20x x   

The above equation states that the output flow from node 1 (x12+x13) 
should be equal to the supply of node 1 (20). 

The balance equation in node 2 states that the input flow to node 2 (x12 ) 
is equal to the output flow from node 2 (x23+x24+x25 ). 

The minimum cost flow model in the network has a special structure that 
is used to provide the solution order. Flow variables xij in balance equations 
only get 0, +1 and -1 coefficients. In addition, they appear exactly in two 
balance equations: once with a coefficient of +1 corresponding to the node 
from which they originate and -1 corresponding to the node to which they 
enter. According to the above, the general form of the Minumum Cost Flow is 
expressed as follows. 

. .

1,...,

ij ij

i j

ij ki i
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ij ij ij
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s t
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The above model is the general model of minimum cost flow. The above 
model can be converted into simpler forms, which we will describe below. 

Shortest path problem 

One of the practical applications of network theory in the real world is 
related to determining the shortest path in the network. In this topic, networks 
whose nodes are the area and region and arcs are the communication paths 
between these nodes. Any node of this network can be considered as the 
origin or the destination. The goal is to determine a path between the origin 
and the destination and it leads to the shortest distance, which is called the 
shortest path, in the network. 

The networks mentioned in this course are divided into two types: 

• Loopless networks 

• Loop networks 

In the following, we will examine each of these two types of networks. 

Loopless networks 

These networks are often similar to simple vector networks, but here 
both nodes can be considered as the origin and destination nodes of 
movement. 

Simple shortest path method 

In this method, a computational movement is performed from the origin 
node (start) to the destination node (end). During this computational move, 
each node is assigned a code (m) that represents the shortest distance of that 
node from the starting node. It is assumed that the number of the starting 
node is equal to 1 and the number of the end node is to n, and the middle 
nodes are also numbered in ascending order. The algorithm steps of this 
method are as follows: 

Step 1: Assign a code equal to zero to the starting node (m1=0). 

Step 2: Get the code of node j (mj) from the following equation: 

( ) 1,2,..., 1 , 2,3,...,j i ij
i S

m Min m d i j j n


      

where S is the set of nodes ending in node j and dij is the direct distance 
from node i to node j 
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Step 3: When the end node gets the code ( ), this code represents the 
shortest distance between the start node and the end node of the network. 

Step 4: In order to find the shortest path, the backtracking method is 
used. In other words, each of the input arcs to a node, which determines the 
code of that node, is located on the shortest path. 

Example:  

Using the provided method, determine the shortest path between nodes 
1 and 8 in the network shown below. The distance between both nodes is 
marked on the arc. 

 

Solution:  

First, the code of node 1 is considered equal to zero (m1=0). 

For node 2, we can write (m2=m1+d12=0+4=4) 

For node 3, since there are two paths to reach this node, these two paths 
should be considered: 

 3 1 13

3

3 2 23

0 3 3
min(3,5) 3

4 1 5

m m d
m

m m d

     
  

       
 

Calculations for other nodes are done in the same way, the results of 
which are summarized in the figure below. It can be seen that the shortest 
distance of node 8 from node 1 is equal to 12. 
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Backtracking is used to determine the shortest path between nodes 1 and 
8. In this movement, any node (j) whose code (mj) applies in the relation 
mi=mj-dij is located on the shortest path. The movement starts from the end 
node, three branches are entered into this node: 

 
8 58 5

8 68 6

8 78 7

12 3 9

12 5 7

12 7 5

m d m

m d m

m d m

    

    

    

 

Arcs (5,8) and (6,8) are on the shortest path. Therefore, there are two 
shortest paths so far. First, we continue working from node 5. 

 5 25 29 5 4m d m      

The arc (2,5) lies on the shortest path. 

 2 12 14 4 0m d m      

The arc (1,2) is on the shortest path. The first route was determined. Now 

it's time for the second path. we continue the process from the sixth node. 

6 26 2

6 36 3

6 46 4

7 6 1

7 5 2

7 2 5

m d m

m d m

m d m

    

    

    

 

The arc (4,6) is on the shortest path. 

4 34 3

4 14 1

5 2 3

5 6 1

m d m

m d m

    

     
 

Arc (3,4) lies on the shortest path. 
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3 23 2

3 13 1

3 1 2

3 3 0

m d m

m d m

    

      
 

The arc (1,3) lies on the shortest path. It can be seen that there are two 

paths in this network, which has the shortest path. 

1 2 5 8

1 3 4 6 8

  

   
 

 

The k-th shortest path 

The bus driver has chosen the shortest route to take the passengers from 
the origin city (X) to the destination city (Z), during which he passes through 
the cities U, V and W. Suppose that on a particular week, there is an obstacle 
to go to city U, so the bus driver intends to use the second shortest route. This 
example shows that sometimes it is necessary to determine the second, third, 
or in general k-th shortest path. To determine the k-th shortest path, a change 
is made as follows in the second step of the simple shortest path method. 

( ) ( ){ } 1,2,..., 1; 2,3,..., ;1k r

j i ij
i S

m Mink m d j j n r k


        

where Mink means choosing the k-th minimum value inside {}. 

Example: 

Determine the 1st, 2nd, 3rd shortest path between nodes 1 and 8 in the 
following network. 
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Solution: 

Using the simple shortest path method, the shortest path (the first 
shortest path) to each node is obtained: 

(1) (1) (1) (1)

1 2 3 3

(1) (1) (1) (1)

5 6 7 8

0 , 4 , 3 , 5

9 , 7 , 8 , 12

m m m m

m m m m

   

   
 

Regarding the second short path, the source node is still assigned a code 
equal to zero. 

(2)

1 0m   

Only one branch enters node 2, so there is no second shortest distance 
between nodes 1 and 2: 

(2)

2m    

But for node 3, we can write: 
(2) (1) (2) (1) (2)

3 1 13 1 13 2 23 2 232{ , , , }

2{0 3,0 3,4 1, } 5

m Min m d m d m d m d

Min

    

     
 

For other nodes, we proceed as follows: 
(2) (1) (2) (1) (2)

4 1 14 1 14 3 34 3 342{ , , , }

2{0 6,0 6,3 2,5 2} 6

m Min m d m d m d m d

Min

    

       
(2)

5m    
(2) (1) (2) (1) (2) (1) (2) (1) (2)

6 2 26 2 26 3 36 3 36 4 46 4 46 5 56 5 562{ , , , , , , , }

2{4 6, ,3 5,5 5,5 2,6 2,9 1, } 8

m Min m d m d m d m d m d m d m d m d

Min

        

           
(2) (1) (2) (1) (2)

7 4 47 4 47 6 67 6 672{ , , , }

2{5 4,6 4,7 1,8 1} 9

m Min m d m d m d m d

Min

    

       
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(2) (1) (2) (1) (2) (1) (2)

8 5 58 5 58 6 68 6 68 7 78 7 782{ , , , , , }

2{9 3, ,7 5,8 5,8 7,9 7} 13

m Min m d m d m d m d m d m d

Min

      

         

The third shortest distance from the origin node to itself is also equal to 
zero: 

(3)

1 0m   

Because only one branch enters node 2, there is also no third shortest 
distance between nodes 1 and 2. 

(3)

2m    

For node 3 we have: 
(3) (1) (2) (3) (1) (2) (3)

3 1 13 1 13 1 13 2 23 2 23 2 233{ , , , , , }

3{0 3,0 3,0 3,4 1, , } 5

m Min m d m d m d m d m d m d

Min

      

       
 

In the same way, we can write: 
(3) (1) (2) (3) (1) (2) (3)

4 1 14 1 14 1 14 3 34 3 34 3 343{ , , , , , }

3{0 6,0 6,0 6,3 2,5 2,5 2} 7

m Min m d m d m d m d m d m d

Min

      

       
 

(3)

5m    
(3) (1) (2) (3) (1) (2) (3) (1) (2)

6 2 26 2 26 2 26 3 36 3 36 3 36 4 46 4

(3) (1) (2) (3)

46 4 46 5 56 5 56 5 56

3{ , , , , , , ,

, , , , }

3{4 6, , ,3 5,5 5,5 5,5 2,6 2,7 2,9 1, } 9

m Min m d m d m d m d m d m d m d m

d m d m d m d m d

Min

       

    

            
(3) (1) (2) (3) (1) (2) (3)

7 4 47 4 47 4 47 6 67 6 67 6 673{ , , , , , }

3{5 4,6 4,7 4,7 1,8 1,9 1} 10

m Min m d m d m d m d m d m d

Min

      

       
 

(3) (1) (2) (3) (1) (2) (3)

8 5 58 5 58 5 58 6 68 6 68 6 68

(1) (2) (3)

7 78 7 78 7 78

3{ , , , , , ,

, , }

3{9 3, , ,7 5,8 5,9 5,8 7,9 7,10 7} 14

m Min m d m d m d m d m d m d

m d m d m d

Min

      

  

          
 

The second and third shortest paths between nodes 1 to 8 are 
determined using backtracking. There are two answers for the second short 
path and one answer for the third short path: 

The second short path: 

1 3 6 8 & 1 4 6 8       

The third short route: 

1 2 3 4 6 8      

Three types of routes are shown in the following figures: 

The shortest routes 
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The second short paths 

 

 

The third short paths 
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Loop networks 

In these networks there are loops, which means that between a number 
of nodes there is an arc to go and another arc to return. Here, two methods 
are described for solving problems in loop networks (finding the shortest path): 

Dijkestra’s method 

The Dijkestra method is named after its inventor, and two codes are 
assigned to each node: 

mi: the shortest distance of node i from the origin node to the current 
step of the algorithm, which is called the temporary code. The shortest 
distance may also be obtained in the next steps. 

Mi: the shortest distance of node i from the origin node, which is called 
the permanent code, and a shorter distance will not be obtained in the next 
steps. 

 

Dijkestra's algorithm is as follows: 

Step 1: Assign a permanent code equal to zero to the start node (M1=0) 

Step 2: Assign a temporary code to the nodes adjacent to the nodes that 
have received a permanent code using the following relationship: 

 j i ijm M d   

where dij is the direct distance from node i with permanent code to node j 
which is the temporary code: 

If a node has previously received a temporary code, that code is 
compared with the new temporary code and a smaller code is selected. Then, 
among all the nodes that have received a temporary code so far, the node that 
has the smallest code, convert that code to a permanent code. Now, assign a 
temporary code to the nodes adjacent to the node that received the 
permanent code, and so on. 

Step 3: Stop when the end (destination) node has received the permanent 
code. Mn represents the shortest distance between the end node and the start 
node. 

Step 4: In order to find the shortest path, use the backtracking method 
with the following relation: 
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i j ijM M d   

To clarify the steps of the algorithm, check the following example. 

Example: 

Determine the shortest distance and path between nodes 1 and 7 in the 
following network using Dijkestra 's method. 

 

Solution: 

The permanent code of node 1 (origin of movement) is considered equal 
to zero. 

 1 0M   

Because node 1 has received a permanent code, the adjacent nodes are 
assigned a temporary code: 

 
2 1 12

3 1 13

4 1 14

0 3 3

0 7 7

0 5 5

m M d

m M d

m M d

    

    

    

 

The minimum number of temporary codes available so far is equal to 3, so 
the temporary code of node 2 becomes a permanent code: 

2(3,7,5) 3 3Min M    

Temporary code is given to the nodes adjacent to node 2 that received 
the permanent code: 

4 2 24

5 2 25

3 1 4

3 10 13

m M d

m M d

    

    
 

Node 4 already had a temporary code equal to 5, but at this stage a new 
temporary code equal to 4 has been obtained for it. Since the new temporary 
code is smaller than the previous code, it replaces: 
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 4 (5,4) 4m Min   

The minimum temporary codes available so far are 4 for node 4: 

 4(7,4,13) 4 4Min M    

The process continues like this: 

3 4 43 3

5 4 45 5

6 4 46

3 5 6 3

6 3 36 6

5 6 6

7 6 67

5 7 7

4 1 5 5

4 10 14 13

4 4 8

( , , ) (5,13,8) 5 5

5 3 8 8

( , ) (13,8) 8 8

8 3 11

( , ) (13,11) 11 11

m M d m

m M d m

m M d

Min m m m Min M

m M d m

Min m m Min M

m M d

Min m m Min M

      

      

    

   

      

   

    

   

 

The following figure summarizes the results of different steps of the 
algorithm. 

 

In order to determine the shortest path between nodes 1 and 7, 
backtracking is used. We continue as described in networks without loops. 

7 57 5

7 67 6

11 6 5

11 3 8

m d M

m d M

    

      

The arc (6,7) is located on the shortest path. 

 6 46 4

6 36 3

8 4 4

8 3 5

m d M

m d M

    

      
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Arcs (4,6) and (3,6) are the shortest paths. 

3 43 4

3 13 1

5 1 4

5 7 2

m d M

m d M

    

     
 

 The arc (3,4) is on the shortest path. 

 4 24 2

4 14 1

4 1 3

4 5 1

m d M

m d M

    

     
 

The arc (2,4) is on the shortest path. 

 2 12 1

2 25 5

3 3 0

3 8 5

m d M

m d M

    

     
 

The arc (1,2) lies on the shortest path. 

Therefore, in this network, there are two paths that have the shortest 
distance: 

 1 2 4 6 7

1 2 4 3 6 7

   

    
 

The figure below shows the shortest network paths as follows: 

 

Comprehensive shortest path method 

Dijkestra’s algorithm is an easy method to determine the shortest path in 
the network, but the weakness of the method is that with each iteration of the 
algorithm, only the shortest distance between the two nodes of origin and 
destination is determined. But by implementing the comprehensive shortest 
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path method, the shortest path between all nodes can be calculated from each 
other.  

If the desired network has n nodes, the starting node is numbered 1 and 
the end node is numbered n, and other nodes are also numbered in ascending 
order from the starting node to the end. 

In this method, two matrices of distance (D) and path (P) are defined. dij 
represents the distance of node i from node j and pij is the path from node i to 
node j. Whenever there is no direct path to reach from one node to another, 
the distance between them is considered  , and the path between them will 
be marked with a  "-" sign. It should be noted that the distance from one node 
to another node, i.e. dij, may not be the same as the return distance, i.e. dji. 

For example, d12 is the distance from node 1 to 2. 

 

11 12 1

21 2 2

1 2

...

...

n

n

n n nn

d d d

d d d
D

d d d

 
 
 
 
 
 

 

For example, p12 is the path from node 1 to node 2. 

11 12 1

21 2 2

1 2

...

...

n

n

n n nn

p p p

p p p
P

p p p

 
 
 
 
 
 

  

In each stage j (j=1,2,...,n), node j is considered as an intermediary node 
and the route between any two nodes other than node j is obtained using this 
intermediary. If this distance is less than the previous distance, it will be 
replaced, otherwise the previous distance will be kept. In other words, the j-1 
step matrices, namely Dj-1 and Pj-1, will be converted into j step matrices, 
namely Dj and Pj, by the following relations. 

( , ),
ik ik ij jk

ik ik ij jk

ij jk ik ij jk

ik ik ij jk

ik

ij ik ij jk

d if d d d
d Min d d d i j k

d d if d d d

p if d d d
p

p if d d d

   
     

    

 
 

 

  

More explanations are provided in the form of an example: 

Example:  
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By applying the comprehensive shortest path method, get the shortest 
path between all the nodes of the network in the following figure. 

 

Solution: 

First, we form the matrices D0 and P0. 

0 0

0 3 5 5 2 3 4

4 0 3 1 5

4 0 1 4 1 4 5

2 0 3 2 5

2 5 0 2 3

D P

     
   

    
   
      
   
       
          

 

It starts from an arbitrary node (here node 1) and this node is considered 
as an intermediary. The pairwise distance of nodes 2 to 5 is evaluated through 
node 1: 

Stage 1 (intermediary node 1): the distance between nodes 2 and 3 in the 
matrix is equal to  , while through the intermediary node, i.e. node 1, this 
distance will be equal to 9. Because the distance through the intermediary is 
less than the distance in the matrix, it is replaced by: 

23 23 21 13( , ) ( ,4 5) 9d Min d d d Min        Distance and route do change 

Up to this stage, to get from node 2 to node 3, you have to move through 
node 1, and the distance is equal to 9. The same is done for other nodes: 

24 24 21 14( , ) ( ,4 5) 9d Min d d d Min        Distance and route do change 

25 25 21 15( , ) (3,4 ) 3d Min d d d Min       Distance and route do not change 

32 32 31 12( , ) ( ,4 3) 7d Min d d d Min        Distance and route do change 
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34 34 31 14( , ) (1,4 5) 1d Min d d d Min       Distance and route do not change 

35 35 31 15( , ) (4,4 ) 4d Min d d d Min       Distance and route do not change 

42 42 41 12( , ) (2, 3) 2d Min d d d Min       Distance and route do not change 

43 43 41 13( , ) ( , 5)d Min d d d Min       Distance and route do not change 

45 45 41 15( , ) (3, ) 3d Min d d d Min       Distance and route do not change 

52 52 51 12( , ) (2, 3) 2d Min d d d Min       Distance and route do not change 

53 53 51 13( , ) (5, 5) 5d Min d d d Min       Distance and route do not change 

54 54 51 14( , ) ( , 5)d Min d d d Min       Distance and route do not change 

It can be seen that at this stage the distance and route change from node 
2 to 4 and also from node 3 to 2. Therefore, the matrices of this step are: 

1 1

0 3 5 5 2 3 4

4 0 9 9 3 1 1 1 5

4 7 0 1 4 1 1 4 5

2 0 3 2 5

2 5 0 2 3

D P

     
   


   
     
   
       
            

Stage 2 (intermediary node 2) 

13 13 12 23( , ) (5,3 9) 5d Min d d d Min       Distance and route do not change 

14 14 12 24( , ) (5,3 9) 5d Min d d d Min       Distance and route do not change 

15 15 12 25( , ) ( ,3 3) 6d Min d d d Min        Distance and route do change 

31 31 32 21( , ) (4,7 4) 4d Min d d d Min       Distance and route do not change 

34 34 32 24( , ) (1,7 9) 1d Min d d d Min       Distance and route do not change 

35 35 32 25( , ) (4,7 3) 4d Min d d d Min       Distance and route do not change 

41 41 42 21( , ) ( ,2 4) 6d Min d d d Min        Distance and route do change 

43 43 42 23( , ) ( ,2 9) 11d Min d d d Min        Distance and route do change 

45 45 42 25( , ) (3,2 3) 3d Min d d d Min       Distance and route do not change 

51 51 52 21( , ) ( ,2 4) 6d Min d d d Min       Distance and route do change 

53 53 52 23( , ) (5,2 9) 5d Min d d d Min       Distance and route do not change 

54 54 52 24( , ) ( ,2 9) 11d Min d d d Min        Distance and route do change 

In this step, the distance and route change from node 1 to 5, from node 4 
to 1, from node 4 to 3, from node 5 to 1, and from node 5 to 4. Therefore, the 
matrices of step 2 can be written as follows: 
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2 2

0 3 5 5 6 2 3 4 2

4 0 9 9 3 1 1 1 5

4 7 0 1 4 1 1 4 5

6 2 11 0 3 2 2 2 5

6 2 5 11 0 2 2 3 2

D P

   
   


   
     
   

   
      

 

Stage 3 (intermediary node 3) 

12 12 13 32( , ) (3,5 7) 3d Min d d d Min      Distance and route do not change 

14 14 13 34( , ) (5,5 1) 5d Min d d d Min       Distance and route do not change 

15 15 13 35( , ) (6,5 4) 6d Min d d d Min      Distance and route do not change 

21 21 23 31( , ) (4,9 4) 4d Min d d d Min       Distance and route do not change 

24 24 23 34( , ) (9,9 1) 9d Min d d d Min      Distance and route do not change 

25 25 23 35( , ) (3,9 4) 3d Min d d d Min       Distance and route do not change 

41 41 43 31( , ) (6,11 4) 6d Min d d d Min       Distance and route do not change 

42 42 43 32( , ) (2,11 7) 2d Min d d d Min       Distance and route do not change 

45 45 43 35( , ) (3,11 4) 3d Min d d d Min       Distance and route do not change 

51 51 53 31( , ) (6,5 4) 6d Min d d d Min       Distance and route do not change 

52 52 53 32( , ) (2,5 7) 2d Min d d d Min       Distance and route do not change 

54 54 53 34( , ) (11,5 1) 6d Min d d d Min       Distance and route do change 

In step 3, only the distance and path change from node 5 to 4, and as a 
result, the matrices of step 3 can be obtained as follows: 

3 3

0 3 5 5 6 2 3 4 2

4 0 9 9 3 1 1 1 5

4 7 0 1 4 1 1 4 5

6 2 11 0 3 2 2 2 5

6 2 5 6 0 2 2 3 3

D P

   
   


   
     
   

   
      

 

Stage 4 (intermediary node 4) 

12 12 14 42( , ) (3,5 2) 3d Min d d d Min       Distance and route do not change 

13 13 14 43( , ) (5,5 11) 5d Min d d d Min      Distance and route do not change 

15 15 14 45( , ) (6,5 3) 6d Min d d d Min       Distance and route do not change 

21 21 24 41( , ) (4,9 6) 4d Min d d d Min       Distance and route do not change 

23 23 24 43( , ) (9,9 11) 9d Min d d d Min       Distance and route do not change 
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25 25 24 45( , ) (3,9 3) 3d Min d d d Min      Distance and route do not change 

31 31 34 41( , ) (4,1 6) 4d Min d d d Min       Distance and route do not change 

32 32 34 42( , ) (7,1 2) 3d Min d d d Min       Distance and route do change 

35 35 34 45( , ) (4,1 3) 4d Min d d d Min      Distance and route do not change 

51 51 54 41( , ) (6,6 6) 6d Min d d d Min       Distance and route do not change 

52 52 54 42( , ) (2,6 2) 2d Min d d d Min      Distance and route do not change 

53 53 54 43( , ) (5,6 11) 5d Min d d d Min      Distance and route do not change 

In step 4, only the distance and path change from node 3 to 2, and as a 
result, the matrices of step 4 can be obtained as follows: 

4 4

0 3 5 5 6 2 3 4 2

4 0 9 9 3 1 1 1 5

4 3 0 1 4 1 4 4 5

6 2 11 0 3 2 2 2 5

6 2 5 6 0 2 2 3 3

D P

   
   


   
     
   

   
      

 

Stage 5 (intermediary node 5) 

12 12 15 52( , ) (3,6 2) 3d Min d d d Min       Distance and route do not change 

13 13 15 53( , ) (5,5 6) 5d Min d d d Min       Distance and route do not change 

14 14 15 54( , ) (5,6 6) 5d Min d d d Min       Distance and route do not change 

21 21 25 51( , ) (4,3 6) 4d Min d d d Min      Distance and route do not change 

23 23 25 53( , ) (9,3 5) 8d Min d d d Min       Distance and route do change 

24 24 25 54( , ) (9,6 3) 9d Min d d d Min       Distance and route do not change 

31 31 35 51( , ) (4,4 6) 4d Min d d d Min       Distance and route do not change 

32 32 35 52( , ) (3,4 2) 3d Min d d d Min       Distance and route do not change 

34 34 35 54( , ) (1,4 6) 1d Min d d d Min       Distance and route do not change 

41 41 45 51( , ) (6,3 6) 6d Min d d d Min       Distance and route do not change 

42 42 45 52( , ) (2,3 2) 2d Min d d d Min       Distance and route do not change 

43 43 45 53( , ) (11,3 5) 8d Min d d d Min       Distance and route do change 

At this stage, the distance and route changes from node 2 to 3 and also 
from node 4 to 3. Therefore, the matrices of this step (final matrix) are: 
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5 5

0 3 5 5 6 2 3 4 2

4 0 8 9 3 1 5 1 5

4 3 0 1 4 1 4 4 5

6 2 8 0 3 2 2 5 5

6 2 5 6 0 2 2 3 3

D P

   
   


   
     
   

   
      

 

The algorithm ends and the shortest distance between the two nodes can 
be obtained from the D5 matrix. The corresponding path can also be traced 
through the P5 matrix. As an example, the shortest distance between node 2 
and node 4 in matrix D5 is equal to 9 distance units. From matrix P5, the 
shortest path from node 2 to node 4 is through node 1. The shortest path from 
node 1 to node 4 is through node 4. 

Example: 

Find the shortest path and distance from node 1 to node 12 in the 
network shown below. 

 

Solution: 

 



First Encyclopedia Of Operations Research                      www.optimizationcity.com  

21 

 

Example: 

Find the shortest path and the second, third and fourth shortest path 
from node 1 to 11 in the network shown below. 

 

Solution: 

The length of the shortest path is equal to 14 and the path of the shortest 
path is as follows. 

1 4 6 8 11     

 

The length of the second shortest path is equal to 16 and the path of the 
second shortest path is as follows. 

1 4 7 9 11     

 1 4 6 9 11     
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The length of the third shortest path is equal to 19 and the path of the 
third shortest path is as follows. 

1 4 6 7 9 11       
1 4 6 8 9 11       
1 4 6 8 10 11       
1 2 5 10 11     

 

The length of the fourth shortest path is equal to 20 and the path of the 
fourth shortest path is as follows. 

1 4 6 8 11     

1 4 6 10 11     

1 2 3 6 8 11      

1 2 3 6 10 11      

1 2 6 8 11     
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1 2 6 10 11     

 

Example: 

Find the shortest, the second, third and fourth shortest path from city 1 to 
city 10 in the network shown below. 

 

Solution: 

The length of the shortest path is equal to 13 and the path of the shortest 
path is as follows. 

1 2 3 6 9 10       

1 2 3 6 8 10       

1 4 5 8 10     
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The length of the second shortest path is equal to 14 and the path of the 
second shortest path is as follows. 

1 2 9 10    

1 4 7 8 10     

 

The length of the third shortest path is equal to 15 and the path of the 
third shortest path is as follows. 

1 2 6 9 10     

1 2 6 8 10      

1 2 3 8 10     
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The length of the fourth shortest path is equal to 17 and the path of the 
fourth shortest path is as follows. 

1 2 3 6 8 9 10        

1 4 6 10 11      

1 3 6 9 10      

1 3 6 8 10     

1 3 5 8 10      

1 4 5 8 9 10       

1 4 7 10    

 

Example: 



First Encyclopedia Of Operations Research                      www.optimizationcity.com  

26 

 

Determine the shortest distance and path between nodes 1 and 8 in the 
network shown below using Dijkstra's method. 

 

Solution: 

The shortest paths are the following: 

 

Example: 

Using the comprehensive shortest path method, obtain the shortest 
distance and the path between all the nodes of the network in the following 
figure: 
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Solution: 

 

0 0

0 2 7 2 3

3 0 3 6 1 3 5

7 0 9 2 1 4 5

8 0 2 3 6

7 4 0 7 2 4 6

2 7 0 4 5

D P

         
   

    
   
       

     
         
       
   
         

  

In the matrix of each stage, the changed items are marked with a box. 

1 1

0 2 7 2 3

3 0 3 6 1 3 5

7 9 0 9 2 1 1 4 5

8 0 2 3 6

7 4 0 7 2 4 6

2 7 0 4 5

D P

         
   

    
   
     

     
         
       
   
            

  

2 2

0 2 5 8 2 2 2

3 0 3 6 1 3 5

7 9 0 9 2 1 1 4 5

8 30 2 6

10 7 10 4 0 7 2 2 2 4 6

2 7 0 4 5

D P

       
   

       
     
     
        

   
   

            
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3 3

0 2 5 14 7 2 3 3 3

3 0 3 12 5 1 3 3 3

7 9 0 9 2 1 1 4 5

15 17 8 0 10 2 3 3 3 3 6

10 7 10 4 0 7 2 2 2 4 6

2 7 0 4 5

D P

     
   

     
   

  
     
   
   

   
            

 

4 4

0 2 5 14 7 18 2 3 3 3 4

3 0 3 12 5 14 1 3 3 3 4

7 9 0 9 2 11 1 1 4 5 4

2 615 17 8 0 10 3 3 3 3

10 7 10 4 0 6 2 2 2 4 4

2 7 0 4 517 19 10 4 4 4

D P

   
   

   
   

     
   

   
   
   

      

 

5 5

0 2 5 11 7 13 2 5 3 3 5

3 0 3 10 5 11 1 5 3 3 5

7 9 0 6 2 8 1 1 5 4 5 5

15 17 8 0 10 2 3 3 3 3 6

10 7 10 4 0 6 2 2 2 4 4

17 10 2 7 0 4 4 4 514 5

D P

   
   

   
   
     
   
   

   
        

6 6

0 2 5 11 7 13 2 5 3 3 5

3 0 3 10 5 11 1 5 3 3 5

7 9 0 6 2 8 1 1 5 4 5 5

15 16 8 0 9 2 3 6 3 6 6

10 7 10 4 0 6 2 2 2 4 4

17 14 10 2 7 0 4 5 4 4 5

D P

   
   


   
   

     
   

   
   

        

 

 

 

 

 

 


