
Welcome to the eighth course on our website, where we will explore the concept of 
Minimum cost flow problem! The minimum cost flow problem is a puzzle in network 
optimization that asks for the cheapest way to route a given amount of flow through 
a network, considering capacity limits and aiming to minimize the total cost involved. 
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In this course, we will cover important topics related to graph optimization. The 
minimum cost flow problem is like a puzzle where we aim to find the most affordable 
way to move things through a network. Then We use special methods to solve this 
puzzle and figure out the cheapest route. Afther, To start, we make an initial plan 
considering things like how much can be carried and wanting to spend the least 
amount of money. Finally, By doing exercises and practice activities, we can get better 
at understanding and solving this problem. 
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In the minimum cost flow problem, we want to distribute the same type of product 
from the factory to the sales market efficiently. We know the quantity of products 
produced at each factory and the required quantity at each destination. Instead of 
sending products directly to the destinations, we can send them to distribution 
centers through an intermediate point if needed. However, there are limits on how 
much can be transported on each transportation line. The objective is to minimize 
the cost of transporting the products while meeting the demand. 
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Let's look at a simple example of the minimum cost flow problem using the diagram 
below. The nodes are shown as numbered circles, and the arcs are represented by 
arrows. The arcs have a specific direction, meaning materials or goods can be 
transported from one node to another in that direction. For instance, we can send 
materials from node 1 to node 2, but we cannot send them from node 2 to node 1. 
We use the notation i-j to indicate the arc going from node i to node j. 
 
In the diagram above, each arrow represents a path with a specific capacity and cost 
for transportation. The capacity indicates the maximum amount that can be 
transported along that path, while the cost per unit represents the expense 
associated with each unit of transportation. For instance, in the arrow (2-4), the flow 
can range from 0 to 4 units, and each unit passing through this path costs $2. The 
symbol ∞ indicates that there is no limit on the capacity of that particular path. 
 
Moreover, the numbers in parentheses next to the circles represent the available 
supply and the required demand at each node. In this diagram, node 1 is the starting 
point with a supply of 20 units. Nodes 4 and 5 are the destinations that require 5 and 
15 units respectively, indicated by the negative sign. 
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In the minimum cost flow problem, our objective is to discover the flow pattern that 
incurs the lowest cost. To formulate this problem as a linear programming model, 
let's consider the following notation: 
xij: represents the quantity of units transported from node i to node j using the arc i-j. 
Now, let's present the linear programming model for the minimum cost flow 
problem. 
 
Equations 1 to 5 represent the flow balance equations in the network. Let's consider 
the balance equation at node 1 as an example. 
The equation states that the combined flow leaving node 1 (x12 + x13) should be 
equal to the supply available at node 1, which is 20 units. This ensures that the 
outgoing flow matches the available supply. 
 
Similarly, the balance equation at node 2 indicates that the incoming flow to node 2 
(x12) is equal to the outgoing flow from node 2 (x23 + x24 + x25). This ensures that 
the flow entering and leaving node 2 is properly balanced. 
 
The minimum cost flow model in the network has a unique structure that helps 
determine the solution algorithm. The flow variables, denoted as xij in the balance 
equations, have coefficients of 0, +1, or -1. Additionally, these variables appear 
precisely in two balance equations: once with a coefficient of +1 representing the 
node where the flow originates, and once with a coefficient of -1 representing the  
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node where the flow enters. 
Based on the above characteristics, the general form of the Minimum Cost Flow 
problem can be expressed as follows. 
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The model shown here represents the general form of the minimum cost flow 
problem. However, we can simplify this model into more straightforward forms, 
which are explained below. 
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In this part, we will learn about the simplex network method, which builds upon the 
network concepts discussed earlier. The minimum cost flow problem is more complex 
than the transportation problem because it involves intermediate nodes and capacity 
restrictions on each connection. To solve this problem using the simplex method, we 
need to find an initial feasible solution. This process is slightly different from the 
transportation problem and requires significant effort. Let's assume that we already 
have an initial feasible solution. We will illustrate the application of the simplex 
method to the minimum cost flow problem through an example. 
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In the diagram, each arc is labeled with two values: A and B. A represents the 
capacity of the arc, indicating how much can pass through it, while B represents the 
cost of moving one unit through the arc. Now let's take a look at the initial solution 
that we will consider. 
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In the picture above, the arcs represented by .._ are non-basic arcs that have reached 
their maximum capacity, while the solid arcs (represented by ___) are basic arcs. 
These solid arcs form a spanning tree, which serves as the initial solution. To 
determine if this solution is optimal, we need to calculate the cost of all the non-basic 
arcs. To do this, we calculate yi values for each arc (where i ranges from 1 to n). If the 
calculated yi values satisfy certain conditions, we can evaluate the optimality of the 
solution. 
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If the calculated yi values meet certain conditions, then the current basic solution is 
considered optimal. To calculate the yi values, we can arbitrarily set one of the yi 
values to zero and determine the remaining yi values using the formula cij - yi + yj = 0. 
Let's compute the yi values based on this equation. 
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The cost associated with non-basic variables ij which is cijbar is as follows: 
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To improve the current solution using the provided cij values, we have two options: 
Increase the flow through an arc that has a negative cij and is currently at its 
minimum limit. 
Decrease the flow through an arc that has a positive cij and is currently at its 
maximum limit. 
Considering these cases, the only possible candidate is the arc (4,5). In the following 
diagram, we added the arc (4,5) to the network to determine which arc should be 
removed from the basic solution. 
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We can increase the value of θ up to 2, which would cause the arc (2,4) to reach its 
maximum capacity and be removed from the basic solution. Consequently, the 
current basic solution is as follows: 
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Based on the assumption that y2 is equal to zero, we can calculate the values of yi for 
the basic variables using the equations cij - yi + yj = 0.  
 
The costs cijbar for identifying the input arc to the basic solution and the output arc 
from the basic solution are as follows: 
 
At this point, we include the arc (2,3) in the basic solution. To determine the output 
arc, we proceed as follows: 
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We can increase the value of θ up to 8, resulting in the removal of the arc (2,5) from 
the basic solution. As a result, the updated basic solution is as follows: 
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Using the basic solution, we calculate the values of yi.  
 
Based on these yi values, we determine the amounts of cijbar as follows: 
 
For non-basic variables, the cijbar values are negative, and the arc flow is at its 
maximum limit. For basic variables, the cijbar values are positive, and the arc flow is 
at its minimum limit. Therefore, the current solution is the optimal solution. 
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Let's solve the minimum cost flow problem in the network shown using the simplex 
method. We will utilize the provided tree as the initial solution. 
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Solution: 
The value of the objective function for the initial solution is 380. Assuming y2 is equal 
to zero, we can calculate the yi values using the equation cij - yi + yj = 0. 
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The costs cijbar for the non-basic arcs are as follows. 
 
 
Out of the four arcs that can enter the basic solution, we select the arc (2,4). The 
output arc is determined as follows. 
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As the arc (2,5) has reached its maximum capacity, it is removed from the basic 
solution.  
 
Therefore, the updated basic solution is as follows. 
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In this solution, the objective function has a value of 295. Assuming y2 is zero, we can 
calculate the yi values for the basic arcs using the equations cij - yi + yj = 0 as follows. 
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The cijbar cost for the non-basic arcs are as follows. 
 
 
The arc (3,5) can be included in the basic solutions. 
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By setting θ to 5, the arc (4,5) is removed from the base, and the arc (3,5) is added to 
the base. As a result of this change, the current solution is as follows. 
 
In this solution, the objective function has a value of 255. Assuming y2 is zero, we can 
calculate the yi values for the basic arcs using the equations cij - yi + yj = 0 as follows. 
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By setting θ to 10, the arc (3,2) is removed from the base, and the arc (1,3) is added 
to the base. Therefore, the current solution is as follows. 
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In this solution, the objective function has a value of 155. Assuming y2 is zero, we can 
calculate the yi values for the basic arcs using the equations cij - yi + yj = 0 as follows. 
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The arc (5,6) is added to the base. The calculation for the output arc is as follows. 
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By setting θ to 0, the arc (1,2) is removed from the base. Therefore, the updated 
current solution is as follows. 
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In this solution, the objective function has a value of 155. Assuming y2 is zero, we can 
calculate the yi values for the basic arcs using the equations cij - yi + yj = 0 as follows. 
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The cost cijbar for the non-basic arcs are as follows. 
 
The optimality condition is met, indicating that we have reached the optimal solution. 
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Note: Since θ is set to 0 in the current step, it implies a degenerate state where no 
improvement in the objective function value has occurred. The optimal solution is as 
follows. 
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To create an initial feasible basic solution, we can use a method when it's challenging 
to find such a solution, especially for large networks. This method involves 
introducing an additional node called Vn+1. 
 
For nodes with a supply, we connect them to Vn+1 by adding an arc with a cost of 
one. On the other hand, for nodes with demand or intermediate nodes (nodes with 
neither supply nor demand), we connect Vn+1 to those nodes with an arc having a 
cost of one. The remaining arcs have a cost of zero. 
 
Next, we apply the simplex algorithm to this network until the value of the optimal 
objective function becomes zero. Once we reach this point, we have obtained an 
initial feasible basic solution, and we can proceed with the simplex algorithm using 
this solution as a starting point. 
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To find an initial feasible basic solution for the given network, we can follow these 
steps: 
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Create an artificial node, let's call it node 7. 
Connect node 1 to node 7 with an arc, and create arcs from node 7 to all other nodes 
with a cost of 1. 
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The resulting basic solution is as follows: 
There is an arc from node 1 to node 7. 
There are arcs from node 7 to each of the other nodes, namely nodes 2, 3, 4, 5, and 
6, all with a cost of 1. 
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Assuming the value of y7 is zero, we can calculate the yi coefficients based on the 
equation cij - yi + yj = 0. 
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The cost cij values for non-basic arcs are as follows. 
 
Since the arc (1,2) is at its lower bound and satisfies the condition, it enters the base. 
The output arc from the base can be determined as follows. 
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The arc (7,2) is removed from the base, resulting in the current basic solution as 
follows. 
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In this iteration, the value of the objective function is 40. Assuming y7 is zero, we can 
calculate the values of the yi coefficients using the equation cij - yi + yj = 0. 
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The cost cij values for non-basic arcs are as follows. 
 
Since the arc (1,3) is at its lower bound and satisfies the condition, it enters the base. 
The output arc from the base can be determined as follows. 
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The arc (7,3) is removed from the base, resulting in the current basic solution as 
follows. 
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In this iteration, the value of the objective function is 40. Assuming y7 is zero, we can 
calculate the values of the yi coefficients using the equation cij - yi + yj = 0. 
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The cost cij values for non-basic arcs are as follows. 
 
Since the arc (2,4) is at its lower bound and satisfies the condition, it enters the base. 
The output arc from the base can be determined as follows. 
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The arc (7,4) is removed from the base, resulting in the current basic solution as 
follows. 
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In this iteration, the objective function has a value of 40. Assuming y7 is zero, we can 
find the values of the yi coefficients by using the equation cij - yi + yj = 0. 
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Since the arc (4,6) is at its lower bound and meets the condition, it becomes part of 
the base. Let's determine the output arc from the base as follows. 
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With θ (theta) equal to 10, the arc (4,6) enters the base but quickly reaches its upper 
limit and is removed from the base. As a result of this change, the current solution is 
updated as follows, and the objective value becomes 20. 
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If we assume that y7 is zero, we can calculate the values of the yi coefficients using 
the equation cij - yi + yj = 0. 
 
Now, let's consider the costs for non-basic arcs, which are as follows. 
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The arc (4,6) has reached its maximum limit and fulfills the condition, making it an 
optimal arc. Conversely, the arc (3,5) is at its minimum limit and meets the condition, 
allowing it to enter the base. Let's find the output arc from the base using the 
following steps. 
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The arc (7,5) is no longer part of the base, which leads to the current basic solution as 
follows. Moreover, the objective value remains at 20. 
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If we assume that y7 is zero, we can calculate the values of the yi coefficients using 
the equation cij - yi + yj = 0. 
 
Now, let's consider the costs for non-basic arcs, which are as follows. 
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Since the arc (5,6) is at its lower bound and meets the condition, it enters the base. 
Let's determine the output arc from the base as follows. 
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The arc (1,7) is removed from the base, resulting in the current basic solution as 
follows. Additionally, the objective value is equal to 0. 
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Assuming y7 is zero, we can calculate the values of the yi coefficients using the 
equation cij - yi + yj = 0. 
Now, let's consider the costs for non-basic arcs, which are as follows. 
The optimal conditions are met, indicating that the initial feasible basic solution is as 
follows. It is important to note that the optimal objective function value is zero.  
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Therefore, there is no need for artificial arcs anymore, and node 7 can be removed 
from the network. Additionally, the arc (7,6) is deleted as well. 
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If you want more practice to improve what you've learned, I've got something perfect 
for you. Check out my website where you'll find plenty of extra exercises to explore. 
Take a moment to visit my website and try out the exercises. They're not only 
educational but also enjoyable. I'm confident they'll help you strengthen your 
understanding and feel more confident. Give it a try and see for yourself. 
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